WorldWideScience

Sample records for undissociated butyric acid

  1. An investigation using atomic force microscopy nanoindentation of dental enamel demineralization as a function of undissociated acid concentration and differential buffer capacity

    International Nuclear Information System (INIS)

    Barbour, Michele E; Shellis, R Peter

    2007-01-01

    Acidic drinks and foodstuffs can demineralize dental hard tissues, leading to a pathological condition known as dental erosion, which is of increasing clinical concern. The first step in enamel dissolution is a demineralization of the outer few micrometres of tissue, which results in a softening of the structure. The primary determinant of dissolution rate is pH, but the concentration of undissociated acid, which is related to buffer capacity, also appears to be important. In this study, atomic force microscopy nanoindentation was used to measure the first initial demineralization (softening) induced within 1 min by exposure to solutions with a range of undissociated acid concentration and natural pH of 3.3 or with an undissociated acid concentration of 10 mmol l -1 and pH adjusted to 3.3. The results indicate that differential buffering capacity is a better determinant of softening than undissociated acid concentration. Under the conditions of these experiments, a buffer capacity of >3 mmol l -1 pH -1 does not have any further effect on dissolution rate. These results imply that differential buffering capacity should be used for preference over undissociated acid concentration or titratable acidity, which are more commonly employed in the literature

  2. An investigation using atomic force microscopy nanoindentation of dental enamel demineralization as a function of undissociated acid concentration and differential buffer capacity

    Science.gov (United States)

    Barbour, Michele E.; Shellis, R. Peter

    2007-02-01

    Acidic drinks and foodstuffs can demineralize dental hard tissues, leading to a pathological condition known as dental erosion, which is of increasing clinical concern. The first step in enamel dissolution is a demineralization of the outer few micrometres of tissue, which results in a softening of the structure. The primary determinant of dissolution rate is pH, but the concentration of undissociated acid, which is related to buffer capacity, also appears to be important. In this study, atomic force microscopy nanoindentation was used to measure the first initial demineralization (softening) induced within 1 min by exposure to solutions with a range of undissociated acid concentration and natural pH of 3.3 or with an undissociated acid concentration of 10 mmol l-1 and pH adjusted to 3.3. The results indicate that differential buffering capacity is a better determinant of softening than undissociated acid concentration. Under the conditions of these experiments, a buffer capacity of >3 mmol l-1 pH-1 does not have any further effect on dissolution rate. These results imply that differential buffering capacity should be used for preference over undissociated acid concentration or titratable acidity, which are more commonly employed in the literature.

  3. Effects of dietary probiotic, prebiotic and butyric acid glycerides on ...

    African Journals Online (AJOL)

    Primalac), prebiotic (Fermacto) and butyric acid glycerides (Baby C4) on broiler performance and serum composition. Seven hundred and four day-old broilers were randomly distributed in a 222 factorial arrangement with two levels of probiotic ...

  4. Cholesterylbutyrate Solid Lipid Nanoparticles as a Butyric Acid Prodrug

    Directory of Open Access Journals (Sweden)

    Alessandro Mauro

    2008-02-01

    Full Text Available Cholesterylbutyrate (Chol-but was chosen as a prodrug of butyric acid.Butyrate is not often used in vivo because its half-life is very short and therefore too largeamounts of the drug would be necessary for its efficacy. In the last few years butyric acid'santi-inflammatory properties and its inhibitory activity towards histone deacetylases havebeen widely studied, mainly in vitro. Solid Lipid Nanoparticles (SLNs, whose lipid matrixis Chol-but, were prepared to evaluate the delivery system of Chol-but as a prodrug and totest its efficacy in vitro and in vivo. Chol-but SLNs were prepared using the microemulsionmethod; their average diameter is on the order of 100-150 nm and their shape is spherical.The antineoplastic effects of Chol-but SLNs were assessed in vitro on different cancer celllines and in vivo on a rat intracerebral glioma model. The anti-inflammatory activity wasevaluated on adhesion of polymorphonuclear cells to vascular endothelial cells. In thereview we will present data on Chol-but SLNs in vitro and in vivo experiments, discussingthe possible utilisation of nanoparticles for the delivery of prodrugs for neoplastic andchronic inflammatory diseases.

  5. Fermentative production of butyric acid from wheat straw: Economic evaluation

    DEFF Research Database (Denmark)

    Baroi, G. N.; Gavala, Hariklia N.; Westermann, P.

    2017-01-01

    2014) at 3.50 and 3.95 $ per kg product (for S1 and S2 respectively) and a plant capacity of 10,000 tonnes indicated an internal rate of return of 14.92% and 12.42% and payback time of 4.28 and 4.70 years for S1 and S2 respectively. Sensitivity analysis showed that under the assumptions of the present......The economic feasibility of biochemical conversion of wheat straw to butyric acid was studied in this work. Basic process steps included physicochemical pretreatment, enzymatic hydrolysis and saccharification, fermentation with in-situ acids separation by electrodialysis and product purification...

  6. Modeling of Clostridium tyrobutyricum for Butyric Acid Selectivity in Continuous Fermentation

    OpenAIRE

    Du, Jianjun; McGraw, Amy; Hestekin, Jamie

    2014-01-01

    A mathematical model was developed to describe batch and continuous fermentation of glucose to organic acids with Clostridium tyrobutyricum. A modified Monod equation was used to describe cell growth, and a Luedeking-Piret equation was used to describe the production of butyric and acetic acids. Using the batch fermentation equations, models predicting butyric acid selectivity for continuous fermentation were also developed. The model showed that butyric acid production was a strong function ...

  7. Modeling of Clostridium t yrobutyricum for Butyric Acid Selectivity in Continuous Fermentation

    OpenAIRE

    Jianjun Du; Amy McGraw; Jamie A. Hestekin

    2014-01-01

    A mathematical model was developed to describe batch and continuous fermentation of glucose to organic acids with Clostridium tyrobutyricum . A modified Monod equation was used to describe cell growth, and a Luedeking-Piret equation was used to describe the production of butyric and acetic acids. Using the batch fermentation equations, models predicting butyric acid selectivity for continuous fermentation were also developed. The model showed that butyric acid production was a strong function...

  8. Butyric acid fermentation of sodium hydroxide pretreated rice straw with undefined mixed culture.

    Science.gov (United States)

    Ai, Binling; Li, Jianzheng; Chi, Xue; Meng, Jia; Liu, Chong; Shi, En

    2014-05-01

    This study describes an alternative mixed culture fermentation technology to anaerobically convert lignocellulosic biomass into butyric acid, a valuable product with wide application, without supplementary cellulolytic enzymes. Rice straw was soaked in 1% NaOH solution to increase digestibility. Among the tested pretreatment conditions, soaking rice straw at 50°C for 72 h removed ~66% of the lignin, but retained ~84% of the cellulose and ~71% of the hemicellulose. By using an undefined cellulose-degrading butyrate-producing microbial community as butyric acid producer in batch fermentation, about 6 g/l of butyric acid was produced from the pretreated rice straw, which accounted for ~76% of the total volatile fatty acids. In the repeated-batch operation, the butyric acid production declined batch by batch, which was most possibly caused by the shift of microbial community structure monitored by denaturing gradient gel electrophoresis. In this study, batch operation was observed to be more suitable for butyric acid production.

  9. Continuous butyric acid fermentation coupled with REED technology for enhanced productivity

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Skiadas, Ioannis; Westermann, Peter

    strains, C.tyrobutyricum seems the most promising for biological production of butyric acid as it is characterised by higher selectivity and higher tolerance to butyric acid. However, studies on fermentative butyric production from lignocellulosic biomasses are scarce in the international literature...... of continuous fermentation mode and in-situ acids removal by Reverse Enhanced Electro Dialysis (REED) resulted to enhanced sugars consumption rates when 60% PHWS was fermented. Specifically, glucose and xylose consumption rate increased by a factor of 6 and 39, respectively, while butyric acid productivity...

  10. Modeling of Clostridium tyrobutyricum for Butyric Acid Selectivity in Continuous Fermentation

    Directory of Open Access Journals (Sweden)

    Jianjun Du

    2014-04-01

    Full Text Available A mathematical model was developed to describe batch and continuous fermentation of glucose to organic acids with Clostridium tyrobutyricum. A modified Monod equation was used to describe cell growth, and a Luedeking-Piret equation was used to describe the production of butyric and acetic acids. Using the batch fermentation equations, models predicting butyric acid selectivity for continuous fermentation were also developed. The model showed that butyric acid production was a strong function of cell mass, while acetic acid production was a function of cell growth rate. Further, it was found that at high acetic acid concentrations, acetic acid was metabolized to butyric acid and that this conversion could be modeled. In batch fermentation, high butyric acid selectivity occurred at high initial cell or glucose concentrations. In continuous fermentation, decreased dilution rate improved selectivity; at a dilution rate of 0.028 h−1, the selectivity reached 95.8%. The model and experimental data showed that at total cell recycle, the butyric acid selectivity could reach 97.3%. This model could be used to optimize butyric acid production using C. tyrobutyricum in a continuous fermentation scheme. This is the first study that mathematically describes batch, steady state, and dynamic behavior of C. tyrobutyricum for butyric acid production.

  11. Butyric acid production from red algae by a newly isolated Clostridium sp. S1.

    Science.gov (United States)

    Lee, Kyung Min; Choi, Okkyoung; Kim, Ki-Yeon; Woo, Han Min; Kim, Yunje; Han, Sung Ok; Sang, Byoung-In; Um, Youngsoon

    2015-09-01

    To produce butyric acid from red algae such as Gelidium amansii in which galactose is a main carbohydrate, microorganisms utilizing galactose and tolerating inhibitors in hydrolysis including levulinic acid and 5-hydroxymethylfurfural (HMF) are required. A newly isolated bacterium, Clostridium sp. S1 produced butyric acid not only from galactose as the sole carbon source but also from a mixture of galactose and glucose through simultaneous utilization. Notably, Clostridium sp. S1 produced butyric acid and a small amount of acetic acid with the butyrate:acetate ratio of 45.4:1 and it even converted acetate to butyric acid. Clostridium sp. S1 tolerated 0.5-2 g levulinic acid/l and recovered from HMF inhibition at 0.6-2.5 g/l, resulting in 85-92% butyric acid concentration of the control culture. When acid-pretreated G. amansii hydrolysate was used, Clostridium sp. S1 produced 4.83 g butyric acid/l from 10 g galactose/l and 1 g glucose/l. Clostridium sp. S1 produces butyric acid from red algae due to its characteristics in sugar utilization and tolerance to inhibitors, demonstrating its advantage as a red algae-utilizing microorganism.

  12. Recent advances and strategies in process and strain engineering for the production of butyric acid by microbial fermentation.

    Science.gov (United States)

    Luo, Hongzhen; Yang, Rongling; Zhao, Yuping; Wang, Zhaoyu; Liu, Zheng; Huang, Mengyu; Zeng, Qingwei

    2018-04-01

    Butyric acid is an important platform chemical, which is widely used in the fields of food, pharmaceutical, energy, etc. Microbial fermentation as an alternative approach for butyric acid production is attracting great attention as it is an environmentally friendly bioprocessing. However, traditional fermentative butyric acid production is still not economically competitive compared to chemical synthesis route, due to the low titer, low productivity, and high production cost. Therefore, reduction of butyric acid production cost by utilization of alternative inexpensive feedstock, and improvement of butyric acid production and productivity has become an important target. Recently, several advanced strategies have been developed for enhanced butyric acid production, including bioprocess techniques and metabolic engineering methods. This review provides an overview of advances and strategies in process and strain engineering for butyric acid production by microbial fermentation. Additionally, future perspectives on improvement of butyric acid production are also proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. In vitro intestinal bioaccessibility of alkylglycerols versus triacylglycerols as vehicles of butyric acid.

    Science.gov (United States)

    Martín, Diana; Morán-Valero, María I; Señoráns, Francisco J; Reglero, Guillermo; Torres, Carlos F

    2011-03-01

    Butyric acid has been the subject of much attention last years due to its bioactivity. However, the potential advantages of butyrate are limited by the problem to reach enough plasma concentrations; therefore, pro-drugs have been proposed as an alternative to natural butyrate. A comparative study on in vitro intestinal digestion of 2,3-dibutyroil-1-O-octadecyl glycerol (D-SCAKG) and tributyrin (TB), as potential pro-drugs of butyric acid, was performed. Aliquots were taken at different times of digestion for studying the extent and rate of hydrolysis of both substrates. The micellar phase (MP) and oily phase (OP) formed in the digestion media were separated and their composition in lipid products was analyzed. Initially, it was confirmed that the in vitro model reproduced physiological results by testing against olive oil as a standard lipid. The progress of in vitro intestinal digestion of D-SCAKG was slower than that of TB. TB hydrolyzed completely to butyric acid, whereas D-SCAKG mainly yielded 2-butyroil-1-O-octadecyl glycerol (M-SCAKG), followed by butyric acid and 1-O-octadecyl glycerol (AKG). The MP from both substrates mainly consisted of butyric acid. Minor levels of M-SCAKG and AKG were also found in the MP after hydrolysis of D-SCAKG, the M-SCAKG being mainly distributed in the OP. Therefore, D-SCAKG produced a stable form of esterified butyric acid as M-SCAKG after in vitro intestinal digestion, unlike TB. Additionally, such a product would integrate both bioactive compounds, butyric acid and alkylglycerol, within the same molecule. Free butyric acid and AKG would be also released, which are lipid products of interest as well.

  14. Gamma amino butyric acid accumulation in medicinal plants without stress.

    Science.gov (United States)

    Anju, P; Moothedath, Ismail; Rema Shree, Azhimala Bhaskaranpillai

    2014-01-01

    Gamma amino butyric acid (GABA) is an important ubiquitous four carbon nonprotein amino acid with an amino group attached to gamma carbon instead of beta carbon. It exists in different organisms including bacteria, plants, and animals and plays a crucial role in humans by regulating neuronal excitability throughout the nervous system. It is directly responsible for the regulation of muscle tone and also effective in lowering stress, blood pressure, and hypertension. The aim of the study was to develop the fingerprint profile of selected medicinally and economically important plants having central nervous system (CNS) activity and to determine the quantity of GABA in the selected plants grown under natural conditions without any added stress. The high-performance thin layer chromatography analysis was performed on precoated silica gel plate 60F-254 plate (20 cm × 10 cm) in the form of bands with width 8 mm using Hamilton syringe (100 μl) using n-butanol, acetic acid, and water in the proportion 5:2:2 as mobile phase in a CAMAG chamber which was previously saturated for 30 min. CAMAG TLC scanner 3 was used for the densitometric scanning at 550 nm. Specific marker compounds were used for the quantification. Among the screened medicinal plants, Zingiber officinale and Solanum torvum were found to have GABA. The percentage of GABA present in Z. officinale and S. torvum were found to be 0.0114% and 0.0119%, respectively. The present work confirmed that among the selected CNS active medicinal plants, only two plants contain GABA. We found a negative correlation with plant having CNS activity and accumulation of GABA. The GABA shunt is a conserved pathway in eukaryotes and prokaryotes but, although the role of GABA as a neurotransmitter in mammals is clearly established, its role in plants is still vague.

  15. Butyrate and deoxycholic acid play common and distinct roles in HCT116 human colon cell proliferation.

    Science.gov (United States)

    Zeng, Huawei; Claycombe, Kate J; Reindl, Katie M

    2015-10-01

    Consumption of a high-fat diet causes an increase in bile acid deoxycholic acid (DCA) in colon lumen and colon cancer risk, while butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit colon cancer-preventive effects. To distinguish these opposing effects of DCA and butyrate (two major metabolites in colon lumen), we examined the effects of physiologically relevant doses of butyrate (0.5-2 mmol/l) and DCA (0.05-0.3 mmol/l) on colon cell proliferation. We hypothesize that butyrate and DCA each modulates the cell cycle and apoptosis via common and distinct cellular signaling targets. In this study, we demonstrated that both butyrate and DCA inhibited cell proliferation by up to 89% and 92% and increased cell apoptosis rate by up to 3.1- and 4.5-fold, respectively. Cell cycle analyses revealed that butyrate led to an increase in G1 and G2 fractions with a concomitant drop in the S-phase fraction, but DCA induced an increase in only G1 fraction with a concomitant drop in the S-phase fraction when compared with the untreated cells. The examination of early cellular signaling revealed that DCA but not butyrate increased intracellular reactive oxygen species, genomic DNA breakage, the activation of ERK1/2, caspase-3 and PARP. In contrast, DCA decreased activated Rb protein level, and butyrate but not DCA increased p21 expression. Collectively, although both butyrate and DCA inhibit colonic cell proliferation, butyrate increases tumor suppressor gene expression, whereas DCA decreases tumor suppressor activation in cell cycle and apoptosis pathways. Published by Elsevier Inc.

  16. Consolidated bioprocessing for butyric acid production from rice straw with undefined mixed culture

    Directory of Open Access Journals (Sweden)

    Binling Ai

    2016-10-01

    Full Text Available Lignocellulosic biomass is a renewable source with great potential for biofuels and bioproducts. However, the cost of cellulolytic enzymes limits the utilization of the low-cost bioresource. This study aimed to develop a consolidated bioprocessing without the need of supplementary cellulase for butyric acid production from lignocellulosic biomass. A stirred-tank reactor with a working volume of 21 L was constructed and operated in batch and semi-continuous fermentation modes with a cellulolytic butyrate-producing microbial community. The semi-continuous fermentation with intermittent discharging of the culture broth and replenishment with fresh medium achieved the highest butyric acid productivity of 2.69 g/(L•d. In semi-continuous operation mode, the butyric acid and total carboxylic acid concentrations of 16.2 and 28.9 g/L, respectively, were achieved. Over the 21-day fermentation period, their cumulative yields reached 1189 and 2048 g, respectively, corresponding to 41% and 74% of the maximum theoretical yields based on the amount of NaOH pretreated rice straw fed in. This study demonstrated that an undefined mixed culture-based consolidated bioprocessing for butyric acid production can completely eliminate the cost of supplementary cellulolytic enzymes.

  17. Consolidated Bioprocessing for Butyric Acid Production from Rice Straw with Undefined Mixed Culture.

    Science.gov (United States)

    Ai, Binling; Chi, Xue; Meng, Jia; Sheng, Zhanwu; Zheng, Lili; Zheng, Xiaoyan; Li, Jianzheng

    2016-01-01

    Lignocellulosic biomass is a renewable source with great potential for biofuels and bioproducts. However, the cost of cellulolytic enzymes limits the utilization of the low-cost bioresource. This study aimed to develop a consolidated bioprocessing without the need of supplementary cellulase for butyric acid production from lignocellulosic biomass. A stirred-tank reactor with a working volume of 21 L was constructed and operated in batch and semi-continuous fermentation modes with a cellulolytic butyrate-producing microbial community. The semi-continuous fermentation with intermittent discharging of the culture broth and replenishment with fresh medium achieved the highest butyric acid productivity of 2.69 g/(L· d). In semi-continuous operation mode, the butyric acid and total carboxylic acid concentrations of 16.2 and 28.9 g/L, respectively, were achieved. Over the 21-day fermentation period, their cumulative yields reached 1189 and 2048 g, respectively, corresponding to 41 and 74% of the maximum theoretical yields based on the amount of NaOH pretreated rice straw fed in. This study demonstrated that an undefined mixed culture-based consolidated bioprocessing for butyric acid production can completely eliminate the cost of supplementary cellulolytic enzymes.

  18. Butyric acid fermentation from pre-treated wheat straw by a mutant clostridium tyrobutyricum strain

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Baumann, Ivan; Westermann, Peter

    Only little research on butyric acid fermentation has been carried out in relationship to bio-refinery perspectives involving strain selection, development of adapted strains, physiological analyses for higher yield, productivity and selectivity. However, a major step towards the development...... strain could grow in up to 80% pre-treated wheat straw and can ferment both glucose and xylose. The yield of butyric acid without optimization was 0,37±0,051 g butyric acid/g sugar monomers and the acetate yield was 0,06±0,021 g acetic acid/g sugar monomers. Moreover, the strain could grow without...... addition of yeast extract. Further optimization of yield and productivity is under investigation....

  19. Production of Butyric Acid and Butanol from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, David E. [Environmental Energy Inc., Blacklick, OH (United States); Yang, Shang-Tian [The Ohio State Univ., Columbus, OH (United States). Dept. of Chemical and Biomolecular Engineering

    2005-08-25

    prices as a chemical are at $3.00 per gallon – wholesaling in 55 gallon drums for $6.80, with a worldwide market of 1.4 billion gallon per year. The market demand is expected to increase dramatically since butanol can now be produced economically from low-cost biomass. Butanol’s application as a replacement for gasoline will outpace ethanol, biodiesel and hydrogen when its safety and simplicity of use are seen. Butanol’s application for the Department of Defense as a clean-safe replacement for batteries when used in conjunction with fuel cell technology is seen as an application for the future. Disposable canisters made of PLA that carry butanol to be reformed and used to generate electricity for computers, night vision and stealth equipment can be easily disposed of. In a typical ABE fermentation, butyric, propionic and acetic acids are produced first by C. acetobutylicum; the culture then undergoes a metabolic shift and solvents (butanol, acetone, and ethanol) are formed (Fond et al., 1985). In conventional ABE fermentations, the butanol yield from glucose is low, typically at ~15% (w/w) and rarely exceeds 25% (0.77–1.3 gallons per bushel corn respectfully). The production of butanol is also limited by severe product inhibition. Butanol at a concentration of 10 g/L can significantly inhibit cell growth and the fermentation. Consequently, butanol titers in conventional ABE fermentations are usually lower than 13 g/L. The low butanol yield and butanol concentration made butanol production from glucose by ABE fermentation uneconomical.

  20. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.

    Science.gov (United States)

    Cibis, Katharina Gabriela; Gneipel, Armin; König, Helmut

    2016-02-20

    In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firmicutes, Tenericutes or Thermotogae. According to 16S rRNA gene sequences, most isolates were related to Clostridium sporosphaeroides, Defluviitoga tunisiensis and Dendrosporobacter quercicolus. Acetic, propionic or butyric acid were produced in cultures of isolates affiliated to Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, C. sporosphaeroides, D. quercicolus, Proteiniborus ethanoligenes, Selenomonas bovis and Tepidanaerobacter sp. Isolates related to Thermoanaerobacterium thermosaccharolyticum produced acetic, butyric and lactic acid, and isolates related to D. tunisiensis formed acetic acid. Specific primer sets targeting 16S rRNA gene sequences were designed and used for real-time quantitative PCR (qPCR). The isolates were physiologically characterized and their role in BGP discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Radiation-chemical formation of acids in polyvinyl butyral films with chlorinated additives

    International Nuclear Information System (INIS)

    Kriminiskaya, Z.K.

    1993-01-01

    Radiochromic indicators are commonly produced by reacting an indicator dye with an acid formed inside a polymer by irradiation. Halogenated and unhalogenated polymers were used, the latter containing halogenated organics. It was therefore of interest to study the formation of acid in polyvinyl butyral (PVD) with addition of a halogenated compound. Yields were measured of radiation-chemical acid formation in PVB films containing chloral hydrate and hexachloroethane. 5 refs., 1 fig., 2 tabs

  2. Improving farm management by modeling the contamination of farm tank milk with butyric acid bacteria

    NARCIS (Netherlands)

    Vissers, M.M.M.; Driehuis, F.; Giffel, te M.C.; Jong, de P.; Lankveld, J.M.G.

    2006-01-01

    Control of contamination of farm tank milk (FTM) with the spore-forming butyric acid bacteria (BAB) is important to prevent the late-blowing defect in semi-hard cheeses. The risk of late blowing can be decreased via control of the contamination level of FTM with BAB. A modeling approach was applied

  3. Uptake and metabolism of the short-chain fatty acid butyrate, a critical review of the literature.

    Science.gov (United States)

    Astbury, Stuart M; Corfe, Bernard M

    2012-07-01

    Butyrate is a short-chain fatty acid (SCFA) formed by bacterial fermentation of fibre in the colon, and serves as an energy source for colonocytes. The action of butyrate as a histone deacetylase inhibitor (HDACi) has led to a number of clinical trials testing its effectiveness as a potential treatment for cancer. The biology of butyrate transport is therefore relevant to both its physiological and pharmacological benefits. This review of the literature was carried out to assess the evidence for both the uptake and metabolism of butyrate, in an attempt to determine possible mechanism (s) by which butyrate can act as an HDACi. It is noted that although uptake and metabolism are well characterised, there are still significant gaps in the knowledgebase around the intracellular handing of butyrate, where assumptions or dated evidence are relied upon.

  4. Short Chain Fatty Acids in the Colon and Peripheral Tissues: A Focus on Butyrate, Colon Cancer, Obesity and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Sean M. McNabney

    2017-12-01

    Full Text Available Increased dietary fiber consumption has been associated with many beneficial effects, including amelioration of obesity and insulin resistance. These effects may be due to the increased production of short chain fatty acids, including propionate, acetate and butyrate, during fermentation of the dietary fiber in the colon. Indeed, oral and dietary supplementation of butyrate alone has been shown to prevent high fat-diet induced obesity and insulin resistance. This review focuses on sources of short chain fatty acids, with emphasis on sources of butyrate, mechanisms of fiber and butyrate metabolism in the gut and its protective effects on colon cancer and the peripheral effects of butyrate supplementation in peripheral tissues in the prevention and reversal of obesity and insulin resistance.

  5. Butyric acid fermentation from pretreated and hydrolyzed wheat straw by C.tyrobutyricum

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Westermann, Peter; Gavala, Hariklia N.

    and xylose at a concentration of 71,6±0,2 g/l and 55,4±0,2 g/l respectively, with TS content 20,87% (g/g). From an economical point of view, the conversion of both sugars is very important. In fact C.tyrobutyricum has the capability to convert both hexose and pentose sugars. Results from batch experiments......Butyric acid fermentation has long been discussed in the last decade due to the wide application of butyric acid in chemical, pharmaceutical and food industries. Among other microbial strains, C.tyrobutyricum was found interesting due to its higher yield (more than 93% of the theoretical yield...

  6. Effect of indole-3-butyric acid (IBA) on in vitro root induction in ...

    African Journals Online (AJOL)

    Root induction pre-developed in vitro plantlets of orchid was carried out using indole-3-butyric acid (IBA) (0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3 mM) on basal Murashige and Skoog (MS) medium. Among the concentrations of IBA, the number of roots per plantlet with 1 mM IBA was found to be the highest (2.25 roots per plantlet) ...

  7. Biopolymer blends based on polylactic acid and polyhydroxy butyrate-co-valerate: effect of clay on mechanical and thermal properties

    CSIR Research Space (South Africa)

    John, MJ

    2015-11-01

    Full Text Available Biodegradable polymer blends consisting of polylactic acid (PLA) and polyhydroxy butyrate-co-valerate (PHBV) have been prepared by melt mixing in a twin screw extruder and followed by injection molding technique. Cereplast PLA containing starch...

  8. Metastablity of the undissociated state of dissociated dislocations

    International Nuclear Information System (INIS)

    Takeuchi, Shin

    2005-01-01

    Undissociated, metastable dislocations have been observed in various crystals in addition to stable dissociated dislocations by high-resolution transmission electron microscopy. The origin of the metastablity of the undissociated state has been discussed specifically for the dissociation into Shockley partial dislocations in fcc or hcp lattice. It is shown that the metastability is due either to a high Peierls-Nabarro stress larger than a few percent of the shear modulus of the partial dislocations and/or to the increase of the total core energy by an increase of the dangling bonds. The metastablity of undissociated dislocations in zincblende III-V compounds is concluded to be due to a contribution of the latter effect

  9. Proboscis conditioning experiments with honeybees, Apis mellifera caucasica, with butyric acid and DEET mixture as conditioned and unconditioned stimuli.

    Science.gov (United States)

    Abramson, Charles I; Giray, Tugrul; Mixson, T Andrew; Nolf, Sondra L; Wells, Harrington; Kence, Aykut; Kence, Meral

    2010-01-01

    Three experiments are described investigating whether olfactory repellents DEET and butyric acid can support the classical conditioning of proboscis extension in the honeybee, Apis mellifera caucasica (Hymenoptera: Apidae). In the first experiment DEET and butyric acid readily led to standard acquisition and extinction effects, which are comparable to the use of cinnamon as a conditioned stimulus. These results demonstrate that the odor of DEET or butyric acid is not intrinsically repellent to honey bees. In a second experiment, with DEET and butyric acid mixed with sucrose as an unconditioned stimulus, proboscis conditioning was not established. After several trials, few animals responded to the unconditioned stimulus. These results demonstrate that these chemicals are gustatory repellents when in direct contact. In the last experiment a conditioned suppression paradigm was used. Exposing animals to butyric acid or DEET when the proboscis was extended by direct sucrose stimulation or by learning revealed that retraction of the proboscis was similar to another novel odor, lavender, and in all cases greatest when the animal was not permitted to feed. These results again demonstrate that DEET or butyric acid are not olfactory repellents, and in addition, conditioned suppression is influenced by feeding state of the bee.

  10. Butyrate and other short-chain fatty acids increase the rate of lipolysis in 3T3-L1 adipocytes

    Directory of Open Access Journals (Sweden)

    John M. Rumberger

    2014-10-01

    Full Text Available We determined the effect of butyrate and other short-chain fatty acids (SCFA on rates of lipolysis in 3T3-L1 adipocytes. Prolonged treatment with butyrate (5 mM increased the rate of lipolysis approximately 2–3-fold. Aminobutyric acid and acetate had little or no effect on lipolysis, however propionate stimulated lipolysis, suggesting that butyrate and propionate act through their shared activity as histone deacetylase (HDAC inhibitors. Consistent with this, the HDAC inhibitor trichostatin A (1 µM also stimulated lipolysis to a similar extent as did butyrate. Western blot data suggested that neither mitogen-activated protein kinase (MAPK activation nor perilipin down-regulation are necessary for SCFA-induced lipolysis. Stimulation of lipolysis with butyrate and trichostatin A was glucose-dependent. Changes in AMP-activated protein kinase (AMPK phosphorylation mediated by glucose were independent of changes in rates of lipolysis. The glycolytic inhibitor iodoacetate prevented both butyrate- and tumor necrosis factor-alpha-(TNF-α mediated increases in rates of lipolysis indicating glucose metabolism is required. However, unlike TNF-α– , butyrate-stimulated lipolysis was not associated with increased lactate release or inhibited by activation of pyruvate dehydrogenase (PDH with dichloroacetate. These data demonstrate an important relationship between lipolytic activity and reported HDAC inhibitory activity of butyrate, other short-chain fatty acids and trichostatin A. Given that HDAC inhibitors are presently being evaluated for the treatment of diabetes and other disorders, more work will be essential to determine if these effects on lipolysis are due to inhibition of HDAC.

  11. [Simultaneous determination of clevidipine butyrate and its metabolite clevidipine acid in dog blood by liquid chromatography-tandem mass spectrometry].

    Science.gov (United States)

    Wei, Hui-hui; Gu, Yuan; Liu, Yan-ping; Wei, Guang-li; Chen, Yong; Liu, Chang-xiao; Si, Duan-yun

    2015-10-01

    A rapid, sensitive and simple liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the simultaneous determination of clevidipine butyrate and its primary metabolite clevidipine acid in dog blood. After one-step protein precipitation with methanol, the chromatographic separation was carried out on an Ecosil C18 column (150 mm x 4.6 mm, 5 µm) with a gradient mobile phase consisting of methanol and 5 mmol · L(-1) ammonium formate. A chromatographic total run time of 13.0 min was achieved. The quantitation analysis was performed using multiple reaction monitoring (MRM) at the specific ion transitions of m/z 454.1 [M-H]- --> m/z 234.1 for clevidipine butyrate, m/z 354.0 [M-H]- --> m/z 208.0 for clevidipine acid and m/z 256.1 [M-H]- --> m/z 227.1 for elofesalamide (internal standard, IS) in the negative ion mode with electrospray ionization (ESI) source. The linear calibration curves for clevidipine butyrate and clevidipine acid were obtained in the concentration ranges of 0.5-100 ng · mL and 1-200 ng · mL(-1), separately. The lower limit of quantification of clevidipine butyrate and clevidipine acid were 0.5 ng · mL(-1) and 1 ng · mL(-1). The intra and inter-assay precisions were all below 12.9%, the accuracies were all in standard ranges. Stability testing indicated that clevidipine butyrate and clevidipine acid in dog blood with the addition of denaturant methanol was stable under various processing and/or handling conditions. The validated method has been successfully applied to a pharmacokinetic study of clevidipine butyrate injection to 8 healthy Beagle dogs following intravenous infusion at a flow rate of 5 mg · h(-1) for 0.5 h.

  12. Effect of ionizing radiation and indole butyric acid on rooting of olive cuttings

    International Nuclear Information System (INIS)

    Al-Bachir, Mahfouz

    1993-12-01

    This study was performed to investigate the effects of indole butyric acid (IBA) (2000 and 4000 ppm), low doses of gamma irradiation (2,4, and 6 Gy), combined treatment of IBA followed by irradiation, and irradiation followed by IBA on olive cuttings (Variety Khodairi). Rooting percentage, callus formation, vegetative growth root number, and the length of the roots were measured after 100 days of planting. The results indicated that IBA treatments in both concentrations increased the callus formation, rooting, vegetative growth, and the number and length of the roots. Low doses of gamma irradiation had no effects on rooting percentage in comparison with the hormonal treatments. Callus formation, rooting, vegetative growth, and length of the root of cuttings produced in 1990 were better than those produced in 1991, and cuttings produced in January were better than those produced in March and October. (author). 16 refs., 15 tabs

  13. Synthesis of γ-amino[4-11C]butyric acid (GABA)

    International Nuclear Information System (INIS)

    Antoni, G.; Laangstroem, B.

    1989-01-01

    A one-pot synthesis of no-carrier added γ-amino[4- 11 C]butyric acid (GABA) starting with hydrogen [ 11 C]cyanide prepared from [ 11 C]carbon dioxide, is presented. Hydrogen [ 11 C]cyanide was trapped in tetrahydrofuran/potassium hydroxide in the presence of the amino polyether Krytofix 2.2.2. A Michael addition with ethyl acrylate followed by a selective reduction and hydrolysis of the resulting amino ester gave [4- 11 C]GABA. The radiochemical purity of GABA was higher than 99% and the decay corrected radiochemical yield was 60-65% based on the amount of H[ 11 C]CN used. The total synthesis time including purification was around 40 min, counted from the start of the Michael addition reaction. (Author)

  14. The effect of gamma irradiation and endole butyric acid on Olive cutting

    Energy Technology Data Exchange (ETDEWEB)

    Albachir, M [Atomic Energy Commission, P.O. Box 6091, Damascus, (Syrian Arab Republic)

    1995-10-01

    This study was performed to investigate the effect of 2 - 4 - 6 Gy doses of gamma radiation, 2000 - 4000 ppm concentrations of indole butyric acid (IBA), and combined treatment of IBA, and combined treatment of IBA followed by irradiation,followed by IBA on root formation of olive cuttings (var. Khodairi). The results indicated that two Gy gamma radiation increased rooting percentage, and root length at the cuttings collected in january. Both concentrations of IBA increased rooting percentage, callus formation, number and length of the roots at all collection times. The best IBA concentration for rooting was 2000 ppm in october and march, and 4000 in january. However, the stimulatory effects of 2 Gy gamma radiation did not reach that obtained by either concentration of IBA used. 2 tabs.

  15. Profile of preoperative fecal organic acids closely predicts the incidence of postoperative infectious complications after major hepatectomy with extrahepatic bile duct resection: Importance of fecal acetic acid plus butyric acid minus lactic acid gap.

    Science.gov (United States)

    Yokoyama, Yukihiro; Mizuno, Takashi; Sugawara, Gen; Asahara, Takashi; Nomoto, Koji; Igami, Tsuyoshi; Ebata, Tomoki; Nagino, Masato

    2017-10-01

    To investigate the association between preoperative fecal organic acid concentrations and the incidence of postoperative infectious complications in patients undergoing major hepatectomy with extrahepatic bile duct resection for biliary malignancies. The fecal samples of 44 patients were collected before undergoing hepatectomy with bile duct resection for biliary malignancies. The concentrations of fecal organic acids, including acetic acid, butyric acid, and lactic acid, and representative fecal bacteria were measured. The perioperative clinical characteristics and the concentrations of fecal organic acids were compared between patients with and without postoperative infectious complications. Among 44 patients, 13 (30%) developed postoperative infectious complications. Patient age and intraoperative bleeding were significantly greater in patients with postoperative infectious complications compared with those without postoperative infectious complications. The concentrations of fecal acetic acid and butyric acid were significantly less, whereas the concentration of fecal lactic acid tended to be greater in the patients with postoperative infectious complications. The calculated gap between the concentrations of fecal acetic acid plus butyric acid minus lactic acid gap was less in the patients with postoperative infectious complications (median 43.5 vs 76.1 μmol/g of feces, P = .011). Multivariate analysis revealed that an acetic acid plus butyric acid minus lactic acid gap acid profile (especially low acetic acid, low butyric acid, and high lactic acid) had a clinically important impact on the incidence of postoperative infectious complications in patients undergoing major hepatectomy with extrahepatic bile duct resection. Copyright © 2017. Published by Elsevier Inc.

  16. Lipase in biphasic alginate beads as a biocatalyst for esterification of butyric acid and butanol in aqueous media.

    Science.gov (United States)

    Ng, Choong Hey; Yang, Kun-Lin

    2016-01-01

    Esterification of organic acids and alcohols in aqueous media is very inefficient due to thermodynamic constraints. However, fermentation processes used to produce organic acids and alcohols are often conducted in aqueous media. To produce esters in aqueous media, biphasic alginate beads with immobilized lipase are developed for in situ esterification of butanol and butyric acid. The biphasic beads contain a solid matrix of calcium alginate and hexadecane together with 5 mg/mL of lipase as the biocatalyst. Hexadecane in the biphasic beads serves as an organic phase to facilitate the esterification reaction. Under optimized conditions, the beads are able to catalyze the production of 0.16 mmol of butyl butyrate from 0.5 mmol of butyric acid and 1.5 mmol of butanol. In contrast, when monophasic beads (without hexadecane) are used, only trace amount of butyl butyrate is produced. One main application of biphasic beads is in simultaneous fermentation and esterification (SFE) because the organic phase inside the beads is very stable and does not leach out into the culture medium. SFE is successfully conducted with an esterification yield of 6.32% using biphasic beads containing iso-octane even though the solvent is proven toxic to the butanol-producing Clostridium spp. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Continuous fermentation and in-situ reed separation of butyric acid for higher sugar consumption rate and productivity

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Skiadas, Ioannis; Westermann, Peter

    that disconnection of the REED system resulted to much lower (48 and 83% for glucose and xylose, respectively) sugars consumption rates and consequently lower butyric acid production rates. It was also noticeable that continuous operation, even without the REED system, resulted to higher glucose consumption rates...

  18. β-Amino-n-butyric Acid Regulates Seedling Growth and Disease Resistance of Kimchi Cabbage

    Directory of Open Access Journals (Sweden)

    Yeong Chae Kim

    2013-09-01

    Full Text Available Non-protein amino acid, β-amino-n-butyric acid (BABA, has been involved in diverse physiological processes including seedling growth, stress tolerance and disease resistance of many plant species. In the current study, treatment of kimchi cabbage seedlings with BABA significantly reduced primary root elongation and cotyledon development in a dose-dependent manner, which adverse effects were similar to the plant response to exogenous abscisic acid (ABA application. BABA was synergistically contributing ABA-induced growth arrest during the early seedling development. Kimchi cabbage leaves were highly damaged and seedling growth was delayed by foliar spraying with high concentrations of BABA (10 to 20 mM. BABA played roles differentially in in vitro fungal conidial germination, mycelial growth and conidation of necrotroph Alternaria brassicicola causing black spot disease and hemibiotroph Colletotrichum higginsianum causing anthracnose. Pretreatment with BABA conferred induced resistance of the kimchi cabbage against challenges by the two different classes of fungal pathogens in a dose-dependent manner. These results suggest that BABA is involved in plant development, fungal development as well as induced fungal disease resistance of kimchi cabbage plant.

  19. Comparative Analysis of Dibutyric cAMP and Butyric Acid on the Differentiation of Human Eosinophilic Leukemia EoL-1 Cells.

    Science.gov (United States)

    Jung, YunJae

    2015-12-01

    Purification of enough numbers of circulating eosinophils is difficult because eosinophils account for less than 5% peripheral blood leukocytes. Human eosinophilic leukemia EoL-1 cells have been considered an in vitro source of eosinophils as they can differentiate into mature eosinophil-like cells when incubated with dibutyryl cAMP (dbcAMP) or butyric acid. In this study, the viability and phenotypic maturation of EoL-1 cells stimulated by either dbcAMP or butyric acid were comparatively analyzed. After treatment with 100 µM dbcAMP or 0.5 µM butyric acid, EoL-1 cells showed morphological signs of differentiation, although the number of nonviable EoL-1 cells was significantly increased following butyric acid treatment. Stimulation of EoL-1 cells with 0.5 µM butyric acid more effectively induced the expression of mature eosinophil markers than stimulation with dbcAMP. These results suggest that treatment of EoL-1 cells with 0.5 µM butyric acid for limited duration could be an effective strategy for inducing their differentiation. Considering that expression of CCR3 was not sufficient in EoL-1 cells stimulated with 0.5 µM butyric acid, treatment of the chemically stimulated EoL-1 cells with cytokines, which primarily support eosinophil maturation, would help to obtain differentiated EoL-1 cells with greater functional maturity.

  20. Simultaneous Intercalation of 1-Naphthylacetic Acid and Indole-3-butyric Acid into Layered Double Hydroxides and Controlled Release Properties

    Directory of Open Access Journals (Sweden)

    Shifeng Li

    2014-01-01

    Full Text Available Controlled release formulations have been shown to have potential in overcoming the drawbacks of conventional plant growth regulators formulations. A controlled-release formulation of 1-naphthylacetic acid (NAA and indole-3-butyric acid (IBA simultaneous intercalated MgAl-layered double hydroxides (LDHs was prepared. The synthetic nanohybrid material was characterized by various techniques, and release kinetics was studied. NAA and IBA anions located in the gallery of MgAl-LDHs with bilayer arrangement, and the nanohybrids particles were of typical plate-like shape with the lateral size of 50–100 nm. The results revealed that NAA and IBA have been intercalated into the interlayer spaces of MgAl-LDHs. The release of NAA and IBA fits pseudo-second-order model and is dependent on temperature, pH value, and release medium. The nanohybrids of NAA and IBA simultaneously intercalated in LDHs possessed good controlled release properties.

  1. Subclinical Ketosis on Dairy Cows in Transition Period in Farms with Contrasting Butyric Acid Contents in Silages

    Directory of Open Access Journals (Sweden)

    Fernando Vicente

    2014-01-01

    Full Text Available This study examines the relationship between subclinical ketosis (SCK in dairy cows and the butyric acid content of the silage used in their feeding. Twenty commercial farms were monitored over a period of 12 months. The feed at each farm and the silages used in its ration were sampled monthly for proximal analysis and for volatile fatty acid analysis. A total of 2857 urine samples were taken from 1112 cows to examine the ketonuria from about 30 days prepartum to 100 postpartum. Wide variation was recorded in the quality of silages used in the preparation of diets. Approximately 80% of the urine samples analyzed had no detectable ketone bodies, 16% returned values indicative of slight SCK, and the remainder, 4%, showed symptoms of ketosis. Most of the cases of hyperkenuria were associated with the butyric acid content of the silage used (r2=0.56; P<0.05. As the metabolizable energy content of the feed was similar, no relationship was observed between the proportion of cows with SCK and the energy content of the feed. In our study, the probability of dairy cows suffering SCK is higher when they are eating feed made from silage with a high butyric acid content (35.2 g/kg DM intake.

  2. Subclinical ketosis on dairy cows in transition period in farms with contrasting butyric acid contents in silages.

    Science.gov (United States)

    Vicente, Fernando; Rodríguez, María Luisa; Martínez-Fernández, Adela; Soldado, Ana; Argamentería, Alejandro; Peláez, Mario; de la Roza-Delgado, Begoña

    2014-01-01

    This study examines the relationship between subclinical ketosis (SCK) in dairy cows and the butyric acid content of the silage used in their feeding. Twenty commercial farms were monitored over a period of 12 months. The feed at each farm and the silages used in its ration were sampled monthly for proximal analysis and for volatile fatty acid analysis. A total of 2857 urine samples were taken from 1112 cows to examine the ketonuria from about 30 days prepartum to 100 postpartum. Wide variation was recorded in the quality of silages used in the preparation of diets. Approximately 80% of the urine samples analyzed had no detectable ketone bodies, 16% returned values indicative of slight SCK, and the remainder, 4%, showed symptoms of ketosis. Most of the cases of hyperkenuria were associated with the butyric acid content of the silage used (r2=0.56; P<0.05). As the metabolizable energy content of the feed was similar, no relationship was observed between the proportion of cows with SCK and the energy content of the feed. In our study, the probability of dairy cows suffering SCK is higher when they are eating feed made from silage with a high butyric acid content (35.2 g/kg DM intake).

  3. Negative polarity of phenyl-C61 butyric acid methyl ester adjacent to donor macromolecule domains

    International Nuclear Information System (INIS)

    Alley, Olivia J.; Dawidczyk, Thomas J.; Hardigree, Josué F. Martínez; Katz, Howard E.; Wu, Meng-Yin; Johns, Gary L.; Markovic, Nina; Arnold, Michael S.

    2015-01-01

    Interfacial fields within organic photovoltaics influence the movement of free charge carriers, including exciton dissociation and recombination. Open circuit voltage (V oc ) can also be dependent on the interfacial fields, in the event that they modulate the energy gap between donor HOMO and acceptor LUMO. A rise in the vacuum level of the acceptor will increase the gap and the V oc , which can be beneficial for device efficiency. Here, we measure the interfacial potential differences at donor-acceptor junctions using Scanning Kelvin Probe Microscopy, and quantify how much of the potential difference originates from physical contact between the donor and acceptor. We see a statistically significant and pervasive negative polarity on the phenyl-C 61 butyric acid methyl ester (PCBM) side of PCBM/donor junctions, which should also be present at the complex interfaces in bulk heterojunctions. This potential difference may originate from molecular dipoles, interfacial interactions with donor materials, and/or equilibrium charge transfer due to the higher work function and electron affinity of PCBM. We show that the contact between PCBM and poly(3-hexylthiophene) doubles the interfacial potential difference, a statistically significant difference. Control experiments determined that this potential difference was not due to charges trapped in the underlying substrate. The direction of the observed potential difference would lead to increased V oc , but would also pose a barrier to electrons being injected into the PCBM and make recombination more favorable. Our method may allow unique information to be obtained in new donor-acceptor junctions

  4. Indole butyric acid and substrates influence on multiplication of blackberry 'Xavante'

    Directory of Open Access Journals (Sweden)

    Ibrar Hussain

    2014-10-01

    Full Text Available Blackberry is a shrubby plant specie which has a high economic importance among agriculture crops. Brazil is the major country of Latin America with the highest future scope for blackberries. For availability of good quality and maximum quantity of seedlings, the present study was carried out at the Universidade Estadual de Londrina,PR from January to March in 2013. The aim of the study was to evaluate the multiplication of blackberry 'Xavante' cuttings under different type of substrates treated with different levels of indole butyric acid (IBA. The experiment was laid out in randomized complete block design with 2 factors, i.e., substrate (rice husk, vermiculite and coconut fiber and IBA (0; 1,000; 2,000 and 3,000mg L-1, with 5 replications. Each replicate consisted of 10 cuttings. The variables studied were: cutting rooting, cutting survival, leaf retention, cuttings with new leaves, number of major roots, length of major roots and roots dry weight. Most of the variables were significantly affected by both substrate and IBA. Rice husk and vermiculite performed better than coconut fiber and provided the same results for most of the variables, while coconut fiber showed lower performance for all of the variables studied. IBA significantly affected the rooting and the number of major roots. It is concluded that for multiplication of blackberry 'Xavante', both rice husk and vermiculite can be used along 2,000mg L-1 of IBA

  5. Augmentation of tendon healing with butyric acid-impregnated sutures: biomechanical evaluation in a rabbit model.

    Science.gov (United States)

    Leek, Bryan T; Tasto, James P; Tibor, Lisa M; Healey, Robert M; Freemont, Anthony; Linn, Michael S; Chase, Derek E; Amiel, David

    2012-08-01

    Butyric acid (BA) has been shown to be angiogenic and to enhance transcriptional activity in tissue. These properties of BA have the potential to augment biological healing of a repaired tendon. To evaluate this possibility both biomechanically and histologically in an animal tendon repair model. Controlled laboratory study. A rabbit Achilles tendon healing model was used to evaluate the biomechanical strength and histological properties at 6 and 12 weeks after repair. Unilateral tendon defects were created in the middle bundle of the Achilles tendon of each rabbit, which were repaired equivalently with either Ultrabraid BA-impregnated sutures or control Ultrabraid sutures. After 6 weeks, BA-impregnated suture repairs had a significantly increased (P Tendons repaired with BA-impregnated sutures demonstrated improved biomechanical properties at 6 weeks relative to control sutures, suggesting a neoangiogenic mechanism of enhanced healing through an increased myofibroblast presence. These findings demonstrate that a relatively simple alteration of suture material may augment early tendon healing to create a stronger repair construct during this time.

  6. Moessbauer spectroscopic evidence for iron(III) complexation and reduction in acidic aqueous solutions of indole-3-butyric acid

    International Nuclear Information System (INIS)

    Kovacs, K.; Kuzmann, E.; Vertes, A.; Kamnev, A.A.; Shchelochkov, A.G.; Medzihradszky-Schweiger, H.; Mink, J.; Hungarian Academy of Sciences, Budapest

    2004-01-01

    Moessbauer spectroscopic studies were carried out in acidic (pH 2.3) 57 Fe III nitrate containing aqueous solutions of indole-3-butyric acid (IBA), rapidly frozen in liquid nitrogen at various periods of time after mixing the reagents. The data obtained show that in solution in the presence of IBA, iron(III) forms a complex with a dimeric structure characterised by a quadrupole doublet, whereas without IBA under similar conditions iron(III) exhibits a broad spectral feature due to a slow paramagnetic spin relaxation which, at liquid nitrogen temperature, results in a large anomalous line broadening (or, at T = 4.2 K, in a hyperfine magnetic splitting). The spectra of 57 Fe III +IBA solutions, kept at ambient temperature under aerobic conditions for increasing periods of time before freezing, contained a gradually increasing contribution of a component with a higher quadrupole splitting. The Moessbauer parameters for that component are typical for iron(II) aquo complexes, thus showing that under these conditions gradual reduction of iron(III) occurs, so that the majority (85%) of dissolved iron(III) is reduced within 2 days. The Moessbauer parameters for the iron(III)-IBA complex in aqueous solution and in the solid state (separated from the solution by filtration) were found to be similar, which may indicate that the dissolved and solid complexes have the same composition and/or iron(III) coordination environment. For the solid complex, the data of elemental analysis suggest the following composition of the dimer: [L 2 Fe-(OH) 2 -FeL 2 ] (where L is indole-3-butyrate). This structure is also in agreement with the data of infrared spectroscopic study of the complex reported earlier, with the side-chain carboxylic group in indole-3-butyrate as a bidentate ligand. The Moessbauer parameters for the solid 57 Fe III -IBA complex at T = 80 K and its acetone solution rapidly frozen in liquid nitrogen were virtually identical, which indicates that the complex retains its

  7. The effect of butyric acid with autogenous omental graft on healing of experimental Achilles tendon injury in rabbits.

    Science.gov (United States)

    Jahani, S; Moslemi, H R; Dehghan, M M; Sedaghat, R; Mazaheri Nezhad, R; Rezaee Moghaddam, D

    2015-01-01

    In this study, the role of local injection of butyric acid (BA) with autogenous omental graft was evaluated in healing of experimental Achilles tendon injury in rabbits. Nine adult male New Zealand rabbits were anesthetized and a partial thickness tenotomy was created on both hindlimbs. In treated group, omental graft was secured in place using BA soaked polygalactin 910 suture. In control group, the graft was sutured without BA. Butyric acid and normal saline were injected daily to treatment and control groups for three days, respectively. Based on the findings, on day 15 after injury, the tendon sections showed that healing rate in BA treated group was higher than that in control group. Furthermore, at days 28 and 45, comparison between BA treated and control groups demonstrated that BA increased the healing rate but with no significance. In summary, results of this study show that application of BA with autogenous omental graft can improve healing process of damaged Achilles tendon.

  8. Lipid alterations in human colon epithelial cells induced to differentiation and/or apoptosis by butyrate and polyunsaturated fatty acids

    Czech Academy of Sciences Publication Activity Database

    Hofmanová, Jiřina; Ciganek, M.; Slavík, J.; Kozubík, Alois; Stixová, Lenka; Vaculová, Alena; Dušek, L.; Machala, M.

    2012-01-01

    Roč. 23, č. 6 (2012), s. 539-548 ISSN 0955-2863 R&D Projects: GA ČR(CZ) GA524/07/1178; GA ČR(CZ) GAP301/11/1730 Institutional research plan: CEZ:AV0Z50040507 Institutional support: RVO:68081707 Keywords : Colon cancer * Polyunsaturated fatty acids * Butyrate Subject RIV: BO - Biophysics Impact factor: 4.552, year: 2012

  9. γ-amino butyric acid (GABA) level as an overall survival risk factor in breast cancer.

    Science.gov (United States)

    Brzozowska, Anna; Burdan, Franciszek; Duma, Dariusz; Solski, Janusz; Mazurkiewicz, Maria

    2017-09-21

    The γ-amino butyric acid (GABA) plays important role in the proliferation and migration of cancer cells. The aim of the study was to evaluate the level of GABA in breast cancer, in relation to clinical and epidemiological data. The study was conducted on 89 patients with breast cancer in stage I-II. GABA level was assessed using spectrofluorometric method in tumour homogenates. Immunoexpression of E-cadherin was evaluated histologically on paraffin fixed specimens. Overall and disease-free survival was assessed for a 15-year interval period. Median overall survival was significantly longer (127.2 months) in patients with a high level of GABA (>89.3 μg/1), compared with a group with a low level of the amino acid (106.4 months). Disease-free survival was insignificantly different - 99 and 109 months, respectively. A significantly longer overall survival (131.2 months) was seen among patients with a high level of GABA and positive E-cadherin immunoexpression, compared with a group characterized by a low level of GABA and lack of E-cadherin immunorectivity (98.1 months). The co-existence of negative immunoexpression of E-cadherin and low GABA concentration resulted in a six-fold increase in the risk of death (HR=6.03). GABA has a significant prognostic value in breast cancer. Co-existence of a low level of GABA and loss of E-cadherin immune-expression seems to be a new, independent, and negative prognostic marker of the neoplasm.

  10. Differential effects of short chain fatty acids on endothelial Nlrp3 inflammasome activation and neointima formation: Antioxidant action of butyrate

    Directory of Open Access Journals (Sweden)

    Xinxu Yuan

    2018-06-01

    Full Text Available Short chain fatty acids (SCFAs, a family of gut microbial metabolites, have been reported to promote preservation of endothelial function and thereby exert anti-atherosclerotic action. However, the precise mechanism mediating this protective action of SCFAs remains unknown. The present study investigated the effects of SCFAs (acetate, propionate and butyrate on the activation of Nod-like receptor pyrin domain 3 (Nlrp3 inflammasome in endothelial cells (ECs and associated carotid neointima formation. Using a partial ligated carotid artery (PLCA mouse model fed with the Western diet (WD, we found that butyrate significantly decreased Nlrp3 inflammasome formation and activation in the carotid arterial wall of wild type mice (Asc+/+, which was comparable to the effect of gene deletion of the adaptor protein apoptosis-associated speck-like protein gene (Asc-/-. Nevertheless, both acetate and propionate markedly enhanced the formation and activation of the Nlrp3 inflammasome as well as carotid neointima formation in the carotid arteries with PLCA in Asc+/+, but not Asc-/- mice. In cultured ECs (EOMA cells, butyrate was found to significantly decrease the formation and activation of Nlrp3 inflammasomes induced by 7-ketocholesterol (7-Ket or cholesterol crystals (CHC, while acetate did not inhibit Nlrp3 inflammasome activation induced by either 7-Ket or CHC, but itself even activated Nlrp3 inflammsomes. Mechanistically, the inhibitory action of butyrate on the Nlrp3 inflammasome was attributed to a blockade of lipid raft redox signaling platforms to produce O2•- upon 7-Ket or CHC stimulations. These results indicate that SCFAs have differential effects on endothelial Nlrp3 inflammasome activation and associated carotid neointima formation. Keywords: Arterial endothelium, Short chain fatty acids, Inflammation, Neointima, Atherosclerosis

  11. Al18F-NODA-butyric acid: Biological evaluation of a new PET renal radiotracer

    International Nuclear Information System (INIS)

    Lipowska, Malgorzata; Klenc, Jeffrey; Shetty, Dinesh; Nye, Jonathon A.; Shim, Hyunsuk; Taylor, Andrew T.

    2014-01-01

    Introduction: Renal scintigraphy is an important imaging modality for the diagnosis and management of a variety of renal diseases including obstruction and renovascular hypertension as well as the evaluation of absolute and relative kidney function. The goal of this work was to evaluate Al 18 F-NODA-butyric acid (Al 18 F-1) as a potential PET tracer to image the kidneys and monitor renal function by comparing its pharmacokinetic properties with those of 131 I-o-iodohippurate ( 131 I-OIH), the radioactive standard for the measurement of effective renal plasma flow. Methods: Al 18 F-1 was prepared in aqueous conditions using a one-pot Al 18 F-radiofluorination method and its radiochemical purity was determined by HPLC. Biodistribution studies, using 131 I-OIH as an internal control, were performed in normal rats and in rats with renal pedicle ligation. In vitro stability and metabolism of Al 18 F-1 were analyzed by HPLC. Dynamic microPET/CT studies were conducted in normal rats. Results: Al 18 F-1 showed excellent stability in vitro and in vivo. Biodistribution studies in normal rats and in rats with simulated renal failure confirmed that Al 18 F-1 was exclusively cleared through the renal–urinary pathway and that the hepatic/gastrointestinal activity was less for Al 18 F-1 than for 131 I-OIH both at 10 and 60 min. Dynamic PET showed a rapid transit of Al 18 F-1 through the kidneys into the bladder. Conclusion: These results suggest that the easily labeled Al 18 F-based compounds provide a highly promising approach for the development of a PET renal radiotracer that combines superior imaging qualities with a reliable measure of effective renal plasma flow

  12. Comparative photocatalytic study of two selected pesticide derivatives, indole-3-acetic acid and indole-3-butyric acid in aqueous suspensions of titanium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Qamar, M. [Department of Chemistry, Aligarh Muslim University, Aligarh 202002 (India); Muneer, M. [Department of Chemistry, Aligarh Muslim University, Aligarh 202002 (India)]. E-mail: cht12mm@amu.ac.in

    2005-04-11

    Heterogeneous photocatalysed degradation of two selected pesticide derivatives such as indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) has been investigated in aqueous suspensions of titanium dioxide by monitoring the change in substrate concentration employing UV spectroscopic analysis technique and depletion in total organic carbon (TOC) content as a function of irradiation time. The degradation kinetics was studied under different conditions such as pH, types of TiO{sub 2,} substrate and catalyst concentration, and in the presence of electron acceptor such as hydrogen peroxide (H{sub 2}O{sub 2}) besides molecular oxygen. The degradation rates were found to be strongly influenced by all the above parameters. The photocatalyst Degussa P25 showed comparatively highest photocatalytics. The pesticide derivative, indole-3-acetic acid was found to degrade slightly faster than indole-3-butyric acid.

  13. Comparison of the effect of acetic, propionic and butyric acids on ...

    African Journals Online (AJOL)

    番茄花园

    2011-05-23

    May 23, 2011 ... Graded levels of mixed VFA sodium salt (the molar proportion of acetate, propionate, and butyrate was 65:25:10), i.e. 0, 5, ... be more associated with the VFA energy level (Ma and. Zhao, 2010) and mediated by IGF-I, insulin ..... Influence of nutrition and bovine growth hormone (GH) on hepatic GH binding, ...

  14. Effects of adding butyric acid to PN on gut-associated lymphoid tissue and mucosal immunoglobulin A levels.

    Science.gov (United States)

    Murakoshi, Satoshi; Fukatsu, Kazuhiko; Omata, Jiro; Moriya, Tomoyuki; Noguchi, Midori; Saitoh, Daizoh; Koyama, Isamu

    2011-07-01

    Parenteral nutrition (PN) causes intestinal mucosal atrophy, gut-associated lymphoid tissue (GALT) atrophy and dysfunction, leading to impaired mucosal immunity and increased susceptibility to infectious complications. Therefore, new PN formulations are needed to maintain mucosal immunity. Short-chain fatty acids have been demonstrated to exert beneficial effects on the intestinal mucosa. We examined the effects of adding butyric acid to PN on GALT lymphocyte numbers, phenotypes, mucosal immunoglobulin A (IgA) levels, and intestinal morphology in mice. Male Institute of Cancer Research mice (n = 103) were randomized to receive either standard PN (S-PN), butyric acid-supplemented PN (Bu-PN), or ad libitum chow (control) groups. The mice were fed these respective diets for 5 days. In experiment 1, cells were isolated from Peyer's patches (PPs) to determine lymphocyte numbers and phenotypes (αβTCR(+), γδTCR(+), CD4(+), CD8(+), B220(+) cells). IgA levels in small intestinal washings were also measured. In experiment 2, IgA levels in respiratory tract (bronchoalveolar and nasal) washings were measured. In experiment 3, small intestinal morphology was evaluated. Lymphocyte yields from PPs and small intestinal, bronchoalveolar, and nasal washing IgA levels were all significantly lower in the S-PN group than in the control group. Bu-PN moderately, but significantly, restored PP lymphocyte numbers, as well as intestinal and bronchoalveolar IgA levels, as compared with S-PN. Villous height and crypt depth in the small intestine were significantly decreased in the S-PN group vs the control group, however Bu-PN restored intestinal morphology. A new PN formula containing butyric acid is feasible and would ameliorate PN-induced impairment of mucosal immunity.

  15. Hepatic metabolism of anaesthetized growing pigs during acute portal infusion of volatile fatty acids and hydroxy-methyl butyrate

    DEFF Research Database (Denmark)

    Theil, Peter Kappel; Larsen, Uffe Krogh; Bjerre-Harpøth, Vibeke

    2016-01-01

    ABSTRACT: The objective of the experiment was to study hepatic metabolism during infusion of volatile fatty acids (VFA) differing in amounts and composition or infusion of HMB. Three fasted (20 h) pigs (mean BW ± SE; 58 kg ± 1) were fitted with indwelling catheters in the portal vein, hepatic vein......, respectively, for Inf2 and Inf3, or 65%, 20%, and 10% of acetate, propionate, and butyrate, respectively, for Inf4 and Inf5. In addition, for Inf5, HMB was infused at 2 mmol/h. Statistical analysis included fixed effects of infusion and interaction between infusion and samplings within infusion while...

  16. Tie line data for the (water + butyric acid + n-butyl alcohol or amyl alcohol) at T = (298.2, 308.2, and 318.2) K and (water + butyric acid + isoamyl alcohol) at T = 298.2 K

    International Nuclear Information System (INIS)

    Ghanadzadeh Gilani, A.; Ghanadzadeh Gilani, H.; Amouzadeh, F.

    2014-01-01

    Highlights: • Liquid equilibrium data of (water + BA + alcohols) systems were measured. • Experimental LLE data were correlated with NRTL and UNIQUAC models. • Distribution coefficients and separation factors were evaluated. -- Abstract: In this study, solubility and tie-line data of the (water + butyric acid + n-butyl alcohol or amyl alcohol) ternary systems were determined at T = (298.2, 308.2, and 318.2) K and p = 101.3 kPa for the first time. Due to the structural similarity, the tie-line data for (water + butyric acid + isoamyl alcohol) system were also measured and correlated at T = 298.2 K. The ternary systems investigated display type-1 behaviour of LLE. The cloud point method was used to measure the solubility data and the Karl-Fischer, acidimetric titration, and refractive index methods were used to determine the tie-line data. For each system, the experimental tie-line data were correlated using the UNIQUAC and NRTL models. The Othmer–Tobias and Hand correlations equations were used to establish the quality of the LLE data. Experimental distribution coefficients and separation factors were evaluated over the immiscibility regions

  17. Analysis of the key enzymes of butyric and acetic acid fermentation in biogas reactors

    Science.gov (United States)

    Gabris, Christina; Bengelsdorf, Frank R; Dürre, Peter

    2015-01-01

    This study aimed at the investigation of the mechanisms of acidogenesis, which is a key process during anaerobic digestion. To expose possible bottlenecks, specific activities of the key enzymes of acidification, such as acetate kinase (Ack, 0.23–0.99 U mg−1 protein), butyrate kinase (Buk, biogas reactor content from three different biogas reactors. Furthermore, the detection of Ack was successful via Western blot analysis. Quantification of corresponding functional genes encoding Buk (buk) and But (but) was not feasible, although an amplification was possible. Thus, phylogenetic trees were constructed based on respective gene fragments. Four new clades of possible butyrate-producing bacteria were postulated, as well as bacteria of the genera Roseburia or Clostridium identified. The low Buk activity was in contrast to the high specific But activity in the analysed samples. Butyrate formation via Buk activity does barely occur in the investigated biogas reactor. Specific enzyme activities (Ack, Buk and But) in samples drawn from three different biogas reactors correlated with ammonia and ammonium concentrations (NH3 and NH4+-N), and a negative dependency can be postulated. Thus, high concentrations of NH3 and NH4+-N may lead to a bottleneck in acidogenesis due to decreased specific acidogenic enzyme activities. PMID:26086956

  18. (Liquid + liquid) equilibria of aqueous solutions of butyric acid with n-heptane and toluene at T = (298.2, 308.2, and 318.2) K

    International Nuclear Information System (INIS)

    Ghanadzadeh Gilani, H.; Ghanadzadeh Gilani, A.; Janbaz, M.

    2013-01-01

    Highlights: ► Liquid equilibrium data of (water + butyric acid + n-heptane) were obtained. ► LLE data were correlated with NRTL and UNIQUAC models. ► Distribution coefficients and separation factors were evaluated. - Abstract: Solubility and tie line data for the (water + butyric acid + n-heptane) and (water + butyric acid + toluene) ternary systems were determined at T = (298.2, 308.2, and 318.2) K and atmospheric pressure. Solubility data were obtained by the cloud-point titration method. The concentration of each phase was determined by acidimetric titration, the Karl-Fischer technique, and refractive index measurements. The experimental tie-line data were correlated using the UNIQUAC and NRTL thermodynamic models. The reliability of the experimental data was determined through the Othmer–Tobias and Hand plots. Distribution coefficients and separation factors were evaluated for each system over the immiscibility regions.

  19. Effect of Volatile Fatty Acids and Trimethylamine on Denitrification in Activated Sludge

    DEFF Research Database (Denmark)

    Eilersen, Ann Marie; Henze, Mogens; Kløft, Lene

    1995-01-01

    The effect of volatile fatty acids and trimethylamine on denitrification activity of activated sludge was studied in laboratory batch experiments. Formic acid had no effect on the denitrification rates. Acetic acid, n-butyric acid and trimethylamine all enhanced the rates. Acetate is the compound...... wastewaters from fish, potato and onion industries all stimulated denitrification. Reject water from anaerobic treatment of excess sludge had no significant effect on the denitrification processes. For isobutyric, isovaleric and n-valeric acid the undissociated compounds appear to act as the inhibitor...... with the strongest effect, n-butyric acid has a moderate effect, while TMA only have a small effect in stimulating the rates. Propionic, isobutyric, n-valeric, isovaleric and caproic acid inhibit denitrification, nitrate reduction being more inhibited than nitrite reduction. The inhibitor concentration, KI, at which...

  20. Hyper-thermal acid hydrolysis and adsorption treatment of red seaweed, Gelidium amansii for butyric acid production with pH control.

    Science.gov (United States)

    Ra, Chae Hun; Jeong, Gwi-Taek; Kim, Sung-Koo

    2017-03-01

    Optimal hyper-thermal (HT) acid hydrolysis conditions for Gelidium amansii were determined to be 12% (w/v) seaweed slurry content and 144 mM H 2 SO 4 at 150 °C for 10 min. HT acid hydrolysis-treated G. amansii hydrolysates produced low concentrations of inhibitory compounds and adsorption treatment using 3% activated carbon. An adsorption time of 5 min was subsequently used to remove the inhibitory 5-hydroxymethylfurfural from the medium. A final maximum monosaccharide concentration of 44.6 g/L and 79.1% conversion from 56.4 g/L total fermentable monosaccharides with 120 g dw/L G. amansii slurry was obtained from HT acid hydrolysis, enzymatic saccharification, and adsorption treatment. This study demonstrates the potential for butyric acid production from G. amansii hydrolysates under non-pH-controlled as well as pH-controlled fermentation using Clostridium acetobutylicum KCTC 1790. The activated carbon treatment and pH-controlled fermentation showed synergistic effects and produced butyric acid at a concentration of 11.2 g/L after 9 days of fermentation.

  1. Bioprotective carnitinoids: lipoic acid, butyrate, and mitochondria-targeting to treat radiation injury: mitochondrial drugs come of age.

    Science.gov (United States)

    Steliou, Kosta; Faller, Douglas V; Pinkert, Carl A; Irwin, Michael H; Moos, Walter H

    2015-06-01

    Preclinical Research Given nuclear-power-plant incidents such as the 2011 Japanese Fukushima-Daiichi disaster, an urgent need for effective medicines to protect against and treat the harmful biological effects of radiation is evident. To address such a challenge, we describe potential strategies herein including mitochondrial and epigenetic-driven methods using lipoic and butyric acid ester conjugates of carnitine. The antioxidant and other therapeutically beneficial properties of this class of agents may protect against ionizing radiation and resultant mitochondrial dysfunction. Recent studies of the compounds described herein reveal the potential-although further research and development is required to prove the effectiveness of this approach-to provide field-ready radiation-protective drugs. © 2015 Wiley Periodicals, Inc.

  2. Origin of the enhanced performance in poly(3-hexylthiophene) : [6,6]-phenyl C-61-butyric acid methyl ester solar cells upon slow drying of the active layer

    NARCIS (Netherlands)

    Mihailetchi, Valentin D.; Xie, Hangxing; Boer, Bert de; Popescu, Lacramioara M.; Hummelen, Jan C.; Blom, Paul W.M.; Koster, L. Jan Anton

    2006-01-01

    The origin of the enhanced performance of bulk heterojunction solar cells based on slowly dried films of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C-61-butyric acid methyl ester is investigated, combining charge transport measurements with numerical device simulations. Slow drying leads to a

  3. Killed Whole-Cell Oral Cholera Vaccine Induces CCL20 Secretion by Human Intestinal Epithelial Cells in the Presence of the Short-Chain Fatty Acid, Butyrate

    Directory of Open Access Journals (Sweden)

    Ju-Ri Sim

    2018-01-01

    Full Text Available Short-chain fatty acids (SCFAs, such as acetate, butyrate, and propionate, modulate immune responses in the gut. However, the effect of SCFAs on mucosal vaccine-induced immune cell migration is poorly understood. Here, we investigated whether SCFAs modulate chemokine expression induced by the killed whole-cell oral cholera vaccine, Shanchol™, in human intestinal epithelial cells. Shanchol™ induced expression of CCL2, CCL5, CCL20, and CXCL10 at the mRNA level, but not at the protein level. Interestingly, CCL20 secretion was substantially increased by co-stimulation with Shanchol™ and butyrate, while neither acetate nor propionate showed such effect. Enhanced CCL20 secretion was associated with GPR109A activation, and histone deacetylase (HDAC inhibition. In addition, co-treatment with Shanchol™ and butyrate synergistically increased the secretion of adenosine triphosphate (ATP. Moreover, CCL20 secretion was decreased by inhibiting the extracellular ATP receptor P2X7. However, neither inflammasomes nor caspases were involved in CCL20 production. The culture supernatant of cells treated with Shanchol™ and butyrate augmented human immature dendritic cell migration. Collectively, these results suggest that butyrate enhances Shanchol™-induced CCL20 production in human intestinal epithelial cells via HDAC inhibition and ATP-P2X7 signaling by activating GPR109A. These effects potentially enhance the mucosal immune responses in the gut induced by this oral cholera vaccine.

  4. Wheat bran promotes enrichment within the human colonic microbiota of butyrate-producing bacteria that release ferulic acid.

    Science.gov (United States)

    Duncan, Sylvia H; Russell, Wendy R; Quartieri, Andrea; Rossi, Maddalena; Parkhill, Julian; Walker, Alan W; Flint, Harry J

    2016-07-01

    Cereal fibres such as wheat bran are considered to offer human health benefits via their impact on the intestinal microbiota. We show here by 16S rRNA gene-based community analysis that providing amylase-pretreated wheat bran as the sole added energy source to human intestinal microbial communities in anaerobic fermentors leads to the selective and progressive enrichment of a small number of bacterial species. In particular, OTUs corresponding to uncultured Lachnospiraceae (Firmicutes) related to Eubacterium xylanophilum and Butyrivibrio spp. were strongly enriched (by five to 160 fold) over 48 h in four independent experiments performed with different faecal inocula, while nine other Firmicutes OTUs showed > 5-fold enrichment in at least one experiment. Ferulic acid was released from the wheat bran during degradation but was rapidly converted to phenylpropionic acid derivatives via hydrogenation, demethylation and dehydroxylation to give metabolites that are detected in human faecal samples. Pure culture work using bacterial isolates related to the enriched OTUs, including several butyrate-producers, demonstrated that the strains caused substrate weight loss and released ferulic acid, but with limited further conversion. We conclude that breakdown of wheat bran involves specialist primary degraders while the conversion of released ferulic acid is likely to involve a multi-species pathway. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. A new highly selective metabotropic excitatory amino acid agonist: 2-amino-4-(3-hydroxy-5-methylisoxazol-4-yl)butyric acid

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Sløk, F A; Skjaerbaek, N

    1996-01-01

    The homologous series of acidic amino acids, ranging from aspartic acid (1) to 2-aminosuberic acid (5), and the corresponding series of 3-isoxazolol bioisosteres of these amino acids, ranging from (RS)-2-amino-2-(3-hydroxy-5-methylisoxazol-4-yl)acetic acid (AMAA, 6) to (RS)-2-amino-6-(3-hydroxy-5......-methylisoxazol-4-yl)hexanoic acid (10), were tested as ligands for metabotropic excitatory amino acid receptors (mGlu1 alpha, mGlu2, mGlu4a, and mGlu6). Whereas AMAA (6) and (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propinoic acid (AMPA, 7) are potent and highly selective agonists at N......-methyl-D-aspartic acid (NMDA) and AMPA receptors, respectively, the higher homologue of AMPA (7), (RS)-2-amino-4-(3-hydroxy-5-methylisoxazol-4-yl)butyric acid (homo-AMPA, 8), is inactive at ionotropic excitatory amino acid receptors. Homo-AMPA (8), which is a 3-isoxazolol bioisostere of 2-aminoadipic acid (3), was...

  6. Whole-body pharmacokinetics of HDAC inhibitor drugs, butyric acid, valproic acid and 4-phenylbutyric acid measured with carbon-11 labeled analogs by PET

    International Nuclear Information System (INIS)

    Kim, Sung Won; Hooker, Jacob M.; Otto, Nicola; Win, Khaing; Muench, Lisa; Shea, Colleen; Carter, Pauline; King, Payton; Reid, Alicia E.; Volkow, Nora D.; Fowler, Joanna S.

    2013-01-01

    The fatty acids, n-butyric acid (BA), 4-phenylbutyric acid (PBA) and valproic acid (VPA, 2-propylpentanoic acid) have been used for many years in the treatment of a variety of CNS and peripheral organ diseases including cancer. New information that these drugs alter epigenetic processes through their inhibition of histone deacetylases (HDACs) has renewed interest in their biodistribution and pharmacokinetics and the relationship of these properties to their therapeutic and side effect profiles. In order to determine the pharmacokinetics and biodistribution of these drugs in primates, we synthesized their carbon-11 labeled analogues and performed dynamic positron emission tomography (PET) in six female baboons over 90 min. The carbon-11 labeled carboxylic acids were prepared by using 11 CO 2 and the appropriate Grignard reagents. [ 11 C]BA was metabolized rapidly (only 20% of the total carbon-11 in plasma was parent compound at 5 min post injection) whereas for VPA and PBA 98% and 85% of the radioactivity were the unmetabolized compound at 30 min after their administration respectively. The brain uptake of all three carboxylic acids was very low ( VPA > PBA), which is consistent with the need for very high doses for therapeutic efficacy. Most of the radioactivity was excreted through the kidneys and accumulated in the bladder. However, the organ biodistribution between the drugs differed. [ 11 C]BA showed relatively high uptake in spleen and pancreas whereas [ 11 C]PBA showed high uptake in liver and heart. Notably, [ 11 C]VPA showed exceptionally high heart uptake possibly due to its involvement in lipid metabolism. The unique biodistribution of each of these drugs may be of relevance in understanding their therapeutic and side effect profile including their teratogenic effects

  7. Gamma-amino butyric acid (GABA) release in the ciliated protozoon Paramecium occurs by neuronal-like exocytosis.

    Science.gov (United States)

    Ramoino, P; Milanese, M; Candiani, S; Diaspro, A; Fato, M; Usai, C; Bonanno, G

    2010-04-01

    Paramecium primaurelia expresses a significant amount of gamma-amino butyric acid (GABA). Paramecia possess both glutamate decarboxylase (GAD)-like and vesicular GABA transporter (vGAT)-like proteins, indicating the ability to synthesize GABA from glutamate and to transport GABA into vesicles. Using antibodies raised against mammalian GAD and vGAT, bands with an apparent molecular weight of about 67 kDa and 57 kDa were detected. The presence of these bands indicated a similarity between the proteins in Paramecium and in mammals. VAMP, syntaxin and SNAP, putative proteins of the release machinery that form the so-called SNARE complex, are present in Paramecium. Most VAMP, syntaxin and SNAP fluorescence is localized in spots that vary in size and density and are primarily distributed near the plasma membrane. Antibodies raised against mammal VAMP-3, sintaxin-1 or SNAP-25 revealed protein immunoblot bands having molecular weights consistent with those observed in mammals. Moreover, P. primaurelia spontaneously releases GABA into the environment, and this neurotransmitter release significantly increases after membrane depolarization. The depolarization-induced GABA release was strongly reduced not only in the absence of extracellular Ca(2+) but also by pre-incubation with bafilomycin A1 or with botulinum toxin C1 serotype. It can be concluded that GABA occurs in Paramecium, where it is probably stored in vesicles capable of fusion with the cell membrane; accordingly, GABA can be released from Paramecium by stimulus-induced, neuronal-like exocytotic mechanisms.

  8. Optimization of conditions to achieve high content of gamma amino butyric acid in germinated black rice, and changes in bioactivities

    Directory of Open Access Journals (Sweden)

    Chaiyavat CHAIYASUT

    Full Text Available Abstract The present study estimated the optimum germination conditions to achieve high content of Gamma-amino butyric acid (GABA and other phytochemicals in Thai black rice cultivar Kum Payao (BR. The Box–Behnken design of response surface methodology was employed to optimize the germination conditions. The changes in the GABA, phytochemical content, impact of salt, and temperature stress variation on phytochemical content, and stability of GABA were studied. The results showed that 12 h of soaking at pH 7, followed by 36 h of germination was the optimum condition to achieve maximum GABA content (0.2029 mg/g of germinated BR (GBR. The temperature (8 and 30 °C, and salt (50-200 mM NaCl content affected the phytochemicals of GBR, especially GABA, and anthocyanins. Obviously, the antioxidant capability, and enzyme (α-amylase and α-glucosidase inhibiting nature of BR was significantly (P < 0.001 increased after germination. The storage of GBR at 4 °C significantly, preserved the GABA content (∼80% for 45 days. Primarily, the current study revealed the changes in phytochemical content, and bioactivity of Thai black rice cr. Kum Payao during germination. More studies should be carried out on pharmacological benefits of GABA-rich GBR.

  9. Growth inhibitory effect of 4-phenyl butyric acid on human gastric cancer cells is associated with cell cycle arrest.

    Science.gov (United States)

    Li, Long-Zhu; Deng, Hong-Xia; Lou, Wen-Zhu; Sun, Xue-Yan; Song, Meng-Wan; Tao, Jing; Xiao, Bing-Xiu; Guo, Jun-Ming

    2012-01-07

    To investigate the growth effects of 4-phenyl butyric acid (PBA) on human gastric carcinoma cells and their mechanisms. Moderately-differentiated human gastric carcinoma SGC-7901 and lowly-differentiated MGC-803 cells were treated with 5, 10, 20, 40, and 60 μmol/L PBA for 1-4 d. Cell proliferation was detected using the MTT colorimetric assay. Cell cycle distributions were examined using flow cytometry. The proliferation of gastric carcinoma cells was inhibited by PBA in a dose- and time-dependent fashion. Flow cytometry showed that SGC-7901 cells treated with low concentrations of PBA were arrested at the G₀/G₁ phase, whereas cells treated with high concentrations of PBA were arrested at the G₂/M phase. Although MGC-803 cells treated with low concentrations of PBA were also arrested at the G₀/ G₁ phase, cells treated with high concentrations of PBA were arrested at the S phase. The growth inhibitory effect of PBA on gastric cancer cells is associated with alteration of the cell cycle. For moderately-differentiated gastric cancer cells, the cell cycle was arrested at the G₀ /G₁ and G₂/M phases. For lowly-differentiated gastric cancer cells, the cell cycle was arrested at the G₀/G₁ and S phases.

  10. Effects of 4-phenyl butyric acid on high glucose-induced alterations in dorsal root ganglion neurons.

    Science.gov (United States)

    Sharma, Dilip; Singh, Jitendra Narain; Sharma, Shyam S

    2016-12-02

    Mechanisms and pathways involving in diabetic neuropathy are still not fully understood but can be unified by the process of overproduction of reactive oxygen species (ROS) such as superoxide, endoplasmic reticulum (ER) stress, downstream intracellular signaling pathways and their modulation. Susceptibility of dorsal root ganglion (DRG) to internal/external hyperglycemic environment stress contributes to the pathogenesis and progression of diabetic neuropathy. ER stress leads to abnormal ion channel function, gene expression, transcriptional regulation, metabolism and protein folding. 4-phenyl butyric acid (4-PBA) is a potent and selective chemical chaperone; which may inhibit ER stress. It may be hypothesized that 4-PBA could attenuate via channels in DRG in diabetic neuropathy. Effects of 4-PBA were determined by applying different parameters of oxidative stress, cell viability, apoptosis assays and channel expression in cultured DRG neurons. Hyperglycemia-induced apoptosis in the DRG neuron was inhibited by 4-PBA. Cell viability of DRG neurons was not altered by 4-PBA. Oxidative stress was significantly blocked by the 4-PBA. Sodium channel expression was not altered by the 4-PBA. Our data provide evidence that the hyperglycemia-induced alteration may be reduced by the 4-PBA without altering the sodium channel expression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Optimization of γ-amino butyric acid production in a newly isolated Lactobacillus brevis.

    Science.gov (United States)

    Binh, Tran Thi Thanh; Ju, Wan-Taek; Jung, Woo-Jin; Park, Ro-Dong

    2014-01-01

    An isolate from kimchi, identified as Lactobacillus brevis, accumulated γ-aminobutyric acid (GABA), a major inhibitory neurotransmitter, in the culture medium. Optimal culture conditions for growth of L. brevis and production of GABA were 6 % (w/v) l-glutamic acid, 4 % (w/v) maltose, 2 % (w/v) yeast extract, 1 % (w/v) NaCl, 1 % (w/v) CaCl2, 2 g Tween 80/l, and 0.02 mM pyridoxal 5′-phosphate at initial pH 5.25 and 37 °C. GABA reached 44.4 g/l after 72 h cultivation with a conversion rate 99.7 %, based on the amount (6 %) of l-glutamic acid added. GABA was purified using ion exchange column chromatography with 70 % recovery and 97 % purity.

  12. Role of indole-3-butyric acid or/and putrescine in improving productivity of chickpea (Cicer arientinum L.) plants.

    Science.gov (United States)

    Amin, A A; Gharib, F A; Abouziena, H F; Dawood, Mona G

    2013-12-15

    The response of chickpea (Cicer arientinum L. cv. Giza 3) to treatment with two plant growth regulators putrescine (Put) and Indole-3-butyric acid (IBA) at 25, 50 and 100 mg L(-1) applied either alone or in combinations was studied. Spraying of Put and IBA either individually or in combination significantly increased the plant height, number and dry weight of branches, leaves and pods/plant and leaf area/plant at the two growth stages. Total photosynthetic pigments in fresh leaves were significantly promoted as a result of application of Put or IBA. Generally, application of Put and/or IBA at 100 mg L(-1) produced the highest numbers of pods which resulted in substantially the highest seed yield. Put and IBA increased the seed yield by 21.3 and 19.2%, respectively, while the combination of Put at 100 mgL(-1) and IBA at 50 mgL(-1) increased it by 27.4%. Greatest increases in straw and biological yield/fed (38.3 and 30.4%, respectively) were noted with the combination treatment of IBA 100 mg L(-1) plus Put at 100 mg L(-1). Put and IBA significantly increased the nitrogen, phosphorus, potassium, total soluble sugars and total free amino acids in chickpea seeds over control, but the effects were less marked than those of their combination. This response was greater following treatment with IBA than with Put. It could be conclude that spraying Put or/and IBA on chickpea plants have promotion effects on the seeds yield criteria which have promising potential as sources of low-cost protein and minerals for possible use as food/feed supplements.

  13. Structural Basis for Recognition of L-lysine, L-ornithine, and L-2,4-diamino Butyric Acid by Lysine Cyclodeaminase.

    Science.gov (United States)

    Min, Kyungjin; Yoon, Hye-Jin; Matsuura, Atsushi; Kim, Yong Hwan; Lee, Hyung Ho

    2018-04-30

    L-pipecolic acid is a non-protein amino acid commonly found in plants, animals, and microorganisms. It is a well-known precursor to numerous microbial secondary metabolites and pharmaceuticals, including anticancer agents, immunosuppressants, and several antibiotics. Lysine cyclodeaminase (LCD) catalyzes β-deamination of L-lysine into L-pipecolic acid using β-nicotinamide adenine dinucleotide as a cofactor. Expression of a human homolog of LCD, μ-crystallin, is elevated in prostate cancer patients. To understand the structural features and catalytic mechanisms of LCD, we determined the crystal structures of Streptomyces pristinaespiralis LCD (SpLCD) in (i) a binary complex with NAD + , (ii) a ternary complex with NAD + and L-pipecolic acid, (iii) a ternary complex with NAD + and L-proline, and (iv) a ternary complex with NAD + and L-2,4-diamino butyric acid. The overall structure of SpLCD was similar to that of ornithine cyclodeaminase from Pseudomonas putida . In addition, SpLCD recognized L-lysine, L-ornithine, and L-2,4-diamino butyric acid despite differences in the active site, including differences in hydrogen bonding by Asp236, which corresponds with Asp228 from Pseudomonas putida ornithine cyclodeaminase. The substrate binding pocket of SpLCD allowed substrates smaller than lysine to bind, thus enabling binding to ornithine and L-2,4-diamino butyric acid. Our structural and biochemical data facilitate a detailed understanding of substrate and product recognition, thus providing evidence for a reaction mechanism for SpLCD. The proposed mechanism is unusual in that NAD + is initially converted into NADH and then reverted back into NAD + at a late stage of the reaction.

  14. Gamma-amino butyric acid (GABA) synthesis of Lactobacillus in fermentation of defatted rice bran extract

    Science.gov (United States)

    Dat, Lai Quoc; Ngan, Tran Thi Kim; Nu, Nguyen Thi Xuan

    2017-09-01

    This research focused on the synthesis of GABA by Lactobacillus bacteria in fermentation of defatted rice bran extract without adding glutamate. Two strains of Lactobacillus were investigated into capacity of GABA synthesis. Result indicates that, Lactobacillus brevis VTCC - B - 454 exhibited the higher capacity of GABA synthesis in fermentation of defatted rice bran extract than that of Lactobacillus plantarum VTCC - B - 890. Total dissolved solid (TDS), free amino acids (AA) and reducing sugar (RS) contents in fermentation of defatted rice bran extract with two strains also significantly decreased. At pH 5 and 9 %w/w of TDS content in defatted rice bran extract, Lactobacillus brevis VTCC - B - 454 accumulated 2,952 ppm of GABA in 24 hours of fermentation. The result implies that fermentation with Lactobacillus brevis VTCC - B - 454 can be applied for GABA production from defatted rice bran extract.

  15. Revealing charge carrier dynamics in squaraine:[6, 6]-phenyl-C 71-butyric acid methyl ester based organic solar cells

    Science.gov (United States)

    Rana, Aniket; Sharma, Chhavi; Prabhu, Deepak D.; Kumar, Mahesh; Karuvath, Yoosaf; Das, Suresh; Chand, Suresh; Singh, Rajiv K.

    2018-04-01

    Ultrafast charge carrier dynamics as well as the generation of polaron pair in squaraine (SQ) and squaraine:[6,6]-phenyl-C 71-butyric acid methyl ester (SQ:PCBM71) have been studied using ultrafast transient absorption spectroscopy (UTAS). The current study reveals that the pure SQ exhibits the creation of singlet and triplet states; however, incorporation of PCBM71 in SQ results in the formation of polaron pairs with ˜550ps lifetime, which in turn leads to the creation of free electrons in the device. We show that the considerable increment in monomolecular and bimolecular recombination in SQ:PCBM71 compared to pure SQ which describes the interfacial compatibility of SQ and PCBMC71 molecules. The present work not only provides the information about the carrier generation in SQ and SQ:PCBM71 but also gives the facts relating to the effect of PCBM71 mixing into the SQ which is very significant because the SQ has donor-acceptor-donor (D-A-D) structure and mixing one more acceptor can introduce more complex recombinations in the blend. These findings have been complimented by the charge transport study in the device using impedance spectroscopy. The various important transport parameters are transit time (τt), diffusion constant (Dn), global mobility (μ) and carrier lifetime (τr). The values of these parameters are 26.38 μs, 4.64x10-6 cm2s-1, 6.12x10-6 cm2V-1s-1 and 399 μs, respectively. To the best of our knowledge such study related to SQ is not present in the literature comprehensively.

  16. Negative polarity of phenyl-C{sub 61} butyric acid methyl ester adjacent to donor macromolecule domains

    Energy Technology Data Exchange (ETDEWEB)

    Alley, Olivia J.; Dawidczyk, Thomas J.; Hardigree, Josué F. Martínez; Katz, Howard E., E-mail: hekatz@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, Maryland 21218 (United States); Wu, Meng-Yin [Department of Electrical and Computer Engineering, University of Wisconsin, 415 Engineering Drive, Madison, Wisconsin 53706 (United States); Johns, Gary L.; Markovic, Nina [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218 (United States); Arnold, Michael S. [Department of Materials Science and Engineering, University of Wisconsin, 248 MS and E Building, 1509 University Avenue, Madison, Wisconsin 53706 (United States)

    2015-01-19

    Interfacial fields within organic photovoltaics influence the movement of free charge carriers, including exciton dissociation and recombination. Open circuit voltage (V{sub oc}) can also be dependent on the interfacial fields, in the event that they modulate the energy gap between donor HOMO and acceptor LUMO. A rise in the vacuum level of the acceptor will increase the gap and the V{sub oc}, which can be beneficial for device efficiency. Here, we measure the interfacial potential differences at donor-acceptor junctions using Scanning Kelvin Probe Microscopy, and quantify how much of the potential difference originates from physical contact between the donor and acceptor. We see a statistically significant and pervasive negative polarity on the phenyl-C{sub 61} butyric acid methyl ester (PCBM) side of PCBM/donor junctions, which should also be present at the complex interfaces in bulk heterojunctions. This potential difference may originate from molecular dipoles, interfacial interactions with donor materials, and/or equilibrium charge transfer due to the higher work function and electron affinity of PCBM. We show that the contact between PCBM and poly(3-hexylthiophene) doubles the interfacial potential difference, a statistically significant difference. Control experiments determined that this potential difference was not due to charges trapped in the underlying substrate. The direction of the observed potential difference would lead to increased V{sub oc}, but would also pose a barrier to electrons being injected into the PCBM and make recombination more favorable. Our method may allow unique information to be obtained in new donor-acceptor junctions.

  17. Biochemical changes in barberries during adventitious root formation: the role of indole-3-butyric acid and hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Ali Tehranifar

    2014-03-01

    Full Text Available Peroxidase, polyphenol oxidase (PPO, phenolic compounds and total sugars (TS were investigated during root formation in cuttings of Berberis vulgaris var. asperma (BVA and Berberis thunbergii var. atropurpurea (BTA treated with indole-3-butyric acid (IBA and IBA+H2O2. Rooting was observed on BTA cuttings but not on BVA cuttings. The BTA cuttings treated with IBA and IBA+H2O2 showed higher rooting percentages, number of roots, and root length over the control. Those treated with IBA+H2O2 recorded the lowest peroxidase activity after planting. BTA cuttings treated with IBA+H2O2 showed the highest peroxidase activity at 50 d after planting; BVA cuttings under different treatments showed no significant difference for peroxidase activity at planting time or up to 80 d after planting. PPO activity for the BTA cuttings in the control treatment was lower than for other treatments during root formation. The cuttings in the IBA and IBA+H2O2 treatments showed increased PPO activity from 0 to 50 d after planting and a slight decrease in PPO activity from 60 to 80 d after planting. PPO activity for the BVA cuttings was significantly lower than for BTA during root formation. The BTA cuttings treated with IBA and IBA+H2O2 showed the highest phenolic compound content during root formation. The BVA cuttings displayed higher TS than BTA during the initial stage of root formation. A comparison of the anatomical structure of easy-to-root and difficult-to-root cuttings indicated that physical inhibitors did not affect the rooting capacity of BVA.

  18. Optimization of Medium Components for Cell Biomass and Polyhydroxy Butyric Acid Production by Azotobacter vinelandii Mutant Using Response Surface Methodology

    International Nuclear Information System (INIS)

    Safiyyah Zainuddin; Nur Izzah Mohd Razak; Ying, P.L.W.; Chyan, J.B.; Elly Ellyna Rashid

    2016-01-01

    Polyhydroxy butyric acid (PHB) is a biodegradable and food-safe alternative to petroleum-based polymers. Using RSM approach, the interaction of sucrose, urea and K_2HPO_4 were investigated to determine the optimum medium compositions for cell biomass and PHB production by Azotobacter vinelandii mutant. Fifteen medium types were prepared and each contained different amount of sucrose, urea and K_2HPO_4. Analyses of cell biomass and PHB concentration were performed from day-2 until day-4 (3 days). Based on the biomass analysis, Medium 13 achieved the highest cell dry weight of 15.4 mg/ mL on day-3. Medium 13 contained 0.5 g/ L of urea, 0.1 g/ L of K_2HPO_4 and 10 g/ L of sucrose. For PHB production, Medium 11 achieved the highest PHB production on day-3 (3.7 mg/ mL) and dropped to 1.3 mg/ mL on day-4. Sample 11 contained 0.5 g/ L of urea, 0 g/ L of K_2HPO_4 and 20 g/ L of sucrose. Sample 2 (1.0 g/ L urea, 0.05 g/ L K_2HPO_4 and 15 g/ L sucrose) and 6 (1.0 g/ L urea, 0.05 g/ L K_2HPO_4 and 25 g/ L sucrose) showed PHB production of >2.0 mg/ mL on day-3 and persisted to day-4. Sample 3 (0.25 g/ L urea, 0.2 g/ L K_2HPO_4 and 15 g/L sucrose) achieved PHB production of >2.0 mg/mL only on day-4. All the other medium types showed PHB production of lower than 1.5 mg/ mL throughout the experiment. (author)

  19. Enhanced productivity of gamma-amino butyric acid by cascade modifications of a whole-cell biocatalyst.

    Science.gov (United States)

    Yang, Xinwei; Ke, Chongrong; Zhu, Jiangming; Wang, Yan; Zeng, Wenchao; Huang, Jianzhong

    2018-04-01

    We previously developed a gamma-amino butyric acid (GABA)-producing strain of Escherichia coli, leading to production of 614.15 g/L GABA at 45 °C from L-glutamic acid (L-Glu) with a productivity of 40.94 g/L/h by three successive whole-cell conversion cycles. However, the increase in pH caused by the accumulation of GABA resulted in inactivation of the biocatalyst and consequently led to relatively lower productivity. In this study, by overcoming the major problem associated with the increase in pH during the production process, a more efficient biocatalyst was obtained through cascade modifications of the previously reported E. coli strain. First, we introduced four amino acid mutations to the codon-optimized GadB protein from Lactococcus lactis to shift its decarboxylation activity toward a neutral pH, resulting in 306.65 g/L of GABA with 99.14 mol% conversion yield and 69.8% increase in GABA productivity. Second, we promoted transportation of L-Glu and GABA by removing the genomic region encoding the C-plug of GadC (a glutamate/GABA antiporter) to allow its transport path to remain open at a neutral pH, which improved the GABA productivity by 16.8% with 99.3 mol% conversion of 3 M L-Glu. Third, we enhanced the expression of soluble GadB by introducing the GroESL molecular chaperones, leading to 20.2% improvement in GABA productivity, with 307.40 g/L of GABA and a 61.48 g/L/h productivity obtained in one cycle. Finally, we inhibited the degradation of GABA by inactivation of gadA and gadB from the E. coli genome, which resulted in almost no GABA degradation after 40 h. After the cascade system modifications, the engineered recombinant E. coli strain achieved a 44.04 g/L/h productivity with a 99.6 mol% conversion of 3 M L-Glu in a 5-L bioreactor, about twofold increase in productivity compared to the starting strain. This increase represents the highest GABA productivity by whole-cell bioconversion using L-Glu as a substrate in one cycle observed

  20. Effect of sodium caproate on the volumetric and viscometric properties of glycine, DL-α-alanine, and DL-α-amino-n-butyric acid in aqueous solutions

    International Nuclear Information System (INIS)

    Wang Jianji; Yan Zhenning; Lu Jinsuo

    2004-01-01

    The apparent molar volumes (V m,2 ) and relative viscosities (η r ) at T=(298.15 and 308.15) K have been obtained for glycine, DL-α-alanine, and DL-α-amino-butyric acid in aqueous sodium caproate solutions from measurements of density and the flow time. The standard partial molar volumes (V 0 m,2 ), standard volumes of transfer (Δ t V 0 ), the viscosity B-coefficients, and the activation thermodynamic quantities (Δμ 2 0≠ and ΔS 2 0≠ ) of viscous flow have been calculated for the amino acids. It is shown that the standard partial molar volumes, viscosity B-coefficients, and activation free energies for viscous flow increase with increasing number of carbon atoms in the alkyl chain of the amino acids. An increase in V 0 m,2 and Δ t V 0 with increasing electrolyte concentrations have been explained due to the interactions of sodium caproate with the charged center of zwitterions for the amino acids. A comparison of the V 0 m,2 values for glycine, DL-α-alanine, and DL-α-aminon-n-butyric acid in different aqueous salts solutions showed that carboxylate ions have stronger interactions with amino acid than chloride, thiocyanate, and nitrate ions. Results of viscosity are discussed in terms of changes in solvent structure

  1. Interaction of polyunsaturated fatty acids and sodium butyrate during apoptosis in HT-29 human colon adenocarcinoma cells

    Czech Academy of Sciences Publication Activity Database

    Hofmanová, Jiřina; Vaculová, Alena; Lojek, Antonín; Kozubík, Alois

    2005-01-01

    Roč. 44, č. 1 (2005), s. 40-51 ISSN 1436-6207 R&D Projects: GA ČR(CZ) GA525/01/0419 Institutional research plan: CEZ:AV0Z50040507 Keywords : colon cancer * diet * butyrate Subject RIV: BO - Biophysics Impact factor: 2.257, year: 2005

  2. Rapid measurement of 13C-enrichment of acetic, propionic and butyric acids in plasma with solid phase microextraction coupled to gas chromatography-mass spectrometry

    International Nuclear Information System (INIS)

    Moreau, N.M.; Delepee, R.; Maume, D.; Le Bizec, B.; Nguyen, P.G.; Champ, M.M.; Martin, L.J.; Dumon, H.J.

    2004-01-01

    An analytical procedure based on solid phase microextraction (SPME) has been developed to quantify [1- 13 C]-labelled short-chain fatty acids (SCFAs)--mainly acetic, propionic and butyric acids--in a small volume (120 μl) of deproteinised plasma (corresponding to 200 μl of raw plasma) by gas chromatography-mass spectrometry (GC-MS) analysis. Simultaneous SCFA extraction was optimal after 5 min using a 75 μm Carboxen/polydimethylsiloxane-coated fiber. The base peak of the three analytes has been characterised by middle-resolution mass spectrometry (R>6000). All these data allowed the specificity reinforcement of the measure. The validation of the method also considered the linearity and the repeatability of the [ 13 C]SCFA measurements by SPME-GC-MS. Results were linear in a range from 5 to 100 mol% of [ 13 C]SCFA enrichment and the method provided a good intra-day (R.S.D. 13 C]butyric acid) by cecal infusion before blood sampling in portal vein. Results of [1- 13 C]butyric acid enrichment showed an excellent correlation (r 2 =0.9832; n=30) with data obtained on the same samples using a previously published procedure based on diethyl extraction and derivatisation before GC-MS analyses. SPME coupled to GC-MS appears to be a powerful analytical tool for the direct isotopic measurements of low deproteinised plasma volume avoiding consequently preliminary treatment such as extraction or derivatisation. The presented method could be of great interest for real time [ 13 C]SCFA plasma determination of in metabolic in vivo studies in small animal models

  3. Verification of γ-Amino-Butyric Acid (GABA) Signaling System Components in Periodontal Ligament Cells In Vivo and In Vitro.

    Science.gov (United States)

    Konermann, Anna; Kantarci, Alpdogan; Wilbert, Steven; Van Dyke, Thomas; Jäger, Andreas

    2016-11-01

    CNS key neurotransmitter γ-amino-butyric acid (GABA) and its signaling components are likewise detectable in non-neuronal tissues displaying inter alia immunomodulatory functions. This study aimed at identifying potential glutamate decarboxylase (GAD)65 and GABA receptor expression in periodontal ligament (PDL) cells in vivo and in vitro, with particular regard to inflammation and mechanical loading. Gene expression was analyzed in human PDL cells at rest or in response to IL-1ß (5 ng/ml) or TNFα (5 ng/ml) challenge via qRT-PCR. Western blot determined constitutive receptor expression, and confocal laser scanning fluorescence microscopy visualized expression changes induced by inflammation. ELISA quantified GAD65 release. Immunocytochemistry was performed for GABA component detection in vitro on mechanically loaded PDL cells, and in vivo on rat upper jaw biopsies with mechanically induced root resorptions. Statistical significance was set at p GABA B1 , GABA B2 , GABA A1 , and GABA A3 were ubiquitously expressed both on gene and protein level. GABA A2 and GAD65 were undetectable in resting cells, but induced by inflammation. GABA B1 exhibited the highest basal gene expression (6.97 % ± 0.16). IL-1ß markedly increased GABA B2 on a transcriptional (57.28-fold ± 12.40) and protein level seen via fluorescence microscopy. TNFα-stimulated PDL cells released GAD65 (3.68 pg/ml ± 0.17 after 24 h, 5.77 pg/ml ± 0.65 after 48 h). Immunocytochemistry revealed GAD65 expression in mechanically loaded PDL cells. In vivo, GABA components were varyingly expressed in an inflammatory periodontal environment. PDL cells differentially express GABA signaling components and secrete GAD65. Inflammation and mechanical loading regulate these neurotransmitter molecules, which are also detectable in vivo and are potentially involved in periodontal pathophysiology.

  4. Molecular modeling study of agglomeration of [6,6]-phenyl-C61-butyric acid methyl ester in solvents.

    Science.gov (United States)

    Mortuza, S M; Banerjee, Soumik

    2012-12-28

    The molecular interactions between solvent and nanoparticles during photoactive layer formation in organic photovoltaic (OPV) cells influence the morphology of the photoactive layer and hence determine the power conversion efficiency. Prediction of optimal synthesis parameters in OPVs, such as choice of solvent, processing temperature, and nanoparticle concentration, requires fundamental understanding of the mechanisms that govern the agglomeration of nanoparticles in solvents. In this study, we used molecular dynamics simulations to simulate a commonly used organic nanoparticle, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), in various solvents to correlate solvent-nanoparticle interactions with the size of the agglomerate structure of PCBM. We analyzed the effects of concentration of PCBM and operating temperature on the molecular rearrangement and agglomeration of PCBM in three solvents: (i) toluene, (ii) indane, and (iii) toluene-indane mixture. We evaluated the agglomeration behavior of PCBM by determining sizes of the largest clusters of PCBM and the corresponding size distributions. To obtain further insight into the agglomerate structure of PCBMs, we evaluated radial distribution functions (RDFs) and coordination numbers of the various moieties of PCBMs with respect to solvent atoms as well as with respect to that of other PCBMs. Our simulations demonstrate that PCBMs form larger clusters in toluene while they are relatively dispersed in indane, which indicates the greater solubility of PCBM in indane than in toluene. In toluene-indane mixture, PCBMs are clustered to a greater extent than in indane and less than that in toluene. To correlate agglomerate size to nanoparticle-solvent interactions, we also evaluated the potential of mean force (PMF) of the fullerene moiety of PCBM in toluene and indane. Our results also show that the cluster size of PCBM molecules increases with the increase of concentration of PCBM and the processing temperature. To

  5. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C61-butyric acid methyl ester

    OpenAIRE

    Lazzerini, GM; Paterno, GM; Tregnago, G; Treat, N; Stingelin, N; Yacoot, A; Cacialli, F

    2016-01-01

    We report high-resolution, traceable atomic force microscopymeasurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8???nm), was used to measure the cr...

  6. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C-61-butyric acid methyl ester

    OpenAIRE

    Lazzerini, G. M.; Paterno, G. M.; Tregnago, G.; Treat, N.; Stingelin, N.; Yacoot, A.; Cacialli, F.

    2016-01-01

    We report high-resolution, traceable atomic force microscopymeasurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crys...

  7. Multispectroscopic investigation of the interaction of BSA and DNA with the anticancer drug, N-(6-ferrocenyl-2-naphthoyl)-gamma-amino butyric acid methyl ester

    Science.gov (United States)

    Rajina, S. R.; Sudhi, Geethu; Austin, P.; Praveen, S. G.; Xavier, T. S.; Kenny, Peter T. M.; Binoy, J.

    2018-05-01

    The interaction of a drug with DNA and BSA play a great role in studying anti cancer activity and drug transport properties, which can be effectively, investigated using vibrational spectroscopy, UV visible spectroscopy and Fluorescence spectroscopy. The present work reports the structural features of N-(6-ferrocenyl-2-naphthoyl)-gamma-amino butyric acid Methyl ester (FNGABME) based on FTIR and FTRaman spectroscopy. The absorption and fluorescence spectroscopic methods were used to study the efficiency of the interaction of the compound FNGABME with BSA and DNA and also molecular docking were performed computationally to validate the results which shows that the title compound may exhibit inhibitory activity against the cancer cells.

  8. Transport of Indole-3-Butyric Acid and Indole-3-Acetic Acid in Arabidopsis Hypocotyls Using Stable Isotope Labeling1[C][W][OA

    Science.gov (United States)

    Liu, Xing; Barkawi, Lana; Gardner, Gary; Cohen, Jerry D.

    2012-01-01

    The polar transport of the natural auxins indole-3-butyric acid (IBA) and indole-3-acetic acid (IAA) has been described in Arabidopsis (Arabidopsis thaliana) hypocotyls using radioactive tracers. Because radioactive assays alone cannot distinguish IBA from its metabolites, the detected transport from applied [3H]IBA may have resulted from the transport of IBA metabolites, including IAA. To test this hypothesis, we used a mass spectrometry-based method to quantify the transport of IBA in Arabidopsis hypocotyls by following the movement of [13C1]IBA and the [13C1]IAA derived from [13C1]IBA. We also assayed [13C6]IAA transport in a parallel control experiment. We found that the amount of transported [13C1]IBA was dramatically lower than [13C6]IAA, and the IBA transport was not reduced by the auxin transport inhibitor N-1-naphthylphthalamic acid. Significant amounts of the applied [13C1]IBA were converted to [13C1]IAA during transport, but [13C1]IBA transport was independent of IBA-to-IAA conversion. We also found that most of the [13C1]IBA was converted to ester-linked [13C1]IBA at the apical end of hypocotyls, and ester-linked [13C1]IBA was also found in the basal end at a level higher than free [13C1]IBA. In contrast, most of the [13C6]IAA was converted to amide-linked [13C6]IAA at the apical end of hypocotyls, but very little conjugated [13C6]IAA was found in the basal end. Our results demonstrate that the polar transport of IBA is much lower than IAA in Arabidopsis hypocotyls, and the transport mechanism is distinct from IAA transport. These experiments also establish a method for quantifying the movement of small molecules in plants using stable isotope labeling. PMID:22323783

  9. Indole-3-butyric acid promotes adventitious rooting in Arabidopsis thaliana thin cell layers by conversion into indole-3-acetic acid and stimulation of anthranilate synthase activity.

    Science.gov (United States)

    Fattorini, L; Veloccia, A; Della Rovere, F; D'Angeli, S; Falasca, G; Altamura, M M

    2017-07-11

    Indole-3-acetic acid (IAA), and its precursor indole-3-butyric acid (IBA), control adventitious root (AR) formation in planta. Adventitious roots are also crucial for propagation via cuttings. However, IBA role(s) is/are still far to be elucidated. In Arabidopsis thaliana stem cuttings, 10 μM IBA is more AR-inductive than 10 μM IAA, and, in thin cell layers (TCLs), IBA induces ARs when combined with 0.1 μM kinetin (Kin). It is unknown whether arabidopsis TCLs produce ARs under IBA alone (10 μM) or IAA alone (10 μM), and whether they contain endogenous IAA/IBA at culture onset, possibly interfering with the exogenous IBA/IAA input. Moreover, it is unknown whether an IBA-to-IAA conversion is active in TCLs, and positively affects AR formation, possibly through the activity of the nitric oxide (NO) deriving from the conversion process. Revealed undetectable levels of both auxins at culture onset, showing that arabidopsis TCLs were optimal for investigating AR-formation under the total control of exogenous auxins. The AR-response of TCLs from various ecotypes, transgenic lines and knockout mutants was analyzed under different treatments. It was shown that ARs are better induced by IBA than IAA and IBA + Kin. IBA induced IAA-efflux (PIN1) and IAA-influx (AUX1/LAX3) genes, IAA-influx carriers activities, and expression of ANTHRANILATE SYNTHASE -alpha1 (ASA1), a gene involved in IAA-biosynthesis. ASA1 and ANTHRANILATE SYNTHASE -beta1 (ASB1), the other subunit of the same enzyme, positively affected AR-formation in the presence of exogenous IBA, because the AR-response in the TCLs of their mutant wei2wei7 was highly reduced. The AR-response of IBA-treated TCLs from ech2ibr10 mutant, blocked into IBA-to-IAA-conversion, was also strongly reduced. Nitric oxide, an IAA downstream signal and a by-product of IBA-to-IAA conversion, was early detected in IAA- and IBA-treated TCLs, but at higher levels in the latter explants. Altogether, results showed that IBA induced

  10. 4,4,4-trifluoro-3-(indole-3-)butyric acid promotes root elongation in Lactuca sativa independent of ethylene synthesis and pH

    Science.gov (United States)

    Zhang, Nenggang; Hasenstein, Karl H.

    2002-01-01

    We studied the mode of action of 4,4,4-trifluoro-3- (indole-3-) butyric acid (TFIBA), a recently described root growth stimulator, on primary root growth of Lactuca sativa L. seedlings. TFIBA (100 micromoles) promoted elongation of primary roots by 40% in 72 h but inhibited hypocotyl growth by 35%. TFIBA induced root growth was independent of pH. TFIBA did not affect ethylene production, but reduced the inhibitory effect of ethylene on root elongation. TFIBA promoted root growth even in the presence of the ethylene biosynthesis inhibitor L-alpha-(2-aminoethoxyvinyl)glycine. TFIBA and the ethylene-binding inhibitor silver thiosulphate (STS) had a similar effect on root elongation. The results indicate that TFIBA-stimulated root elongation was neither pH-dependent nor related to inhibition of ethylene synthesis, but was possibly related to ethylene action.

  11. Photovoltaic properties of pentacene/[6,6]-phenyl C61 butyric acid methyl ester based bilayer hetero-junction solar cells

    International Nuclear Information System (INIS)

    Reddy, V S; Karak, S; Ray, S K; Dhar, A

    2009-01-01

    The photovoltaic properties of devices based on a new combination, pentacene/[6,6]-phenyl C 61 butyric acid methyl ester (PCBM) bilayer hetero-junctions, were investigated. The crystallinity of pentacene was found to be improved by depositing a PEDOT : PSS layer on an indium tin oxide substrate, which in turn doubled the power conversion efficiency of the device. The PCBM layer showed a significant contribution to the device photocurrent, which originated mainly due to the dissociation of excitons at the pentacene/PCBM interface. By optimizing the thickness of the pentacene and PCBM layers, a broader photo-response was obtained in the external quantum efficiency spectra indicating efficient light harvesting throughout the visible region of the solar spectrum.

  12. Metabolism of γ-hydroxyl-[1-14C] butyrate by rat brain: relationship to the Krebs cycle and metabolic compartmentation of amino acids

    International Nuclear Information System (INIS)

    Doherty, J.D.; Roth, R.H.

    1978-01-01

    Ninhydrin decarboxylation experiments were carried out on the labelled amino acids produced following intraventricular injection of either γ-hydroxy-[1- 14 C] butyric acid (GHB) or [1- 14 C] succinate. The loss of isotope (as 14 CO 2 ) was similar for both substances. The [1- 14 C] GHB metabolites lost 75% of the label and the [1- 14 C] succinate metabolites lost 68%. This observation gives support to the hypothesis that the rat brain has the enzymatic capacity to metabolize [1- 14 C] GHB to succinate and to amino acids that have the isotope in the carboxylic acid group adjacent to the α-amino group. These results also indicate that the label from [1- 14 C] GHB does not enter the Krebs cycle as acetate. The specific activity ratio of radio-labelled glutamine to glutamic acid was determined in order to evaluate which of the two major metabolic compartments prefentially metabolize GHB. It was found that for [1- 14 C] GHB the ratio was 4.20 +- 0.18 (S.E. for n = 7) and for [1- 14 C] succinate the ratio was 7.71 (average of two trials, 7.74 and 7.69). These results suggest that the compartment thought to be associated with glial cells and synaptosomal structures is largely responsible for the metabolism of GHB. Metabolism as it might relate to the neuropharmacological action of GHB is discussed. (author)

  13. Morphology and performance of poly(2-methoxy-5-(20-ethyl-hexyloxy)-p-phenylenevinylene) (MEH-PPV) : (6,6)-phenyl-C61-butyric acid methyl ester (PCBM) based polymer solar cells

    NARCIS (Netherlands)

    Liu, L.J.; Bavel, van S.S.; Wen, S.P.; Yang, X.N.; Loos, J.

    2013-01-01

    Polymer solar cells were fabricated based on composite films of poly(2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylenevinylene) (MEH-PPV):fullerene derivative (6,6)-phenyl-C61-butyric acid methyl ester (PCBM) with weight blend ratio of 1:3, 1:4 and 1:5, spin-coated from chloroform (CF), chlorobenzene

  14. Kinetics of butyrate, acetate, and hydrogen metabolism in a thermophilic, anaerobic, butyrate-degrading triculture.

    Science.gov (United States)

    Ahring, B K; Westermann, P

    1987-02-01

    Kinetics of butyrate, acetate, and hydrogen metabolism were determined with butyrate-limited, chemostat-grown tricultures of a thermophilic butyrate-utilizing bacterium together with Methanobacterium thermoautotrophicum and the TAM organism, a thermophilic acetate-utilizing methanogenic rod. Kinetic parameters were determined from progress curves fitted to the integrated form of the Michaelis-Menten equation. The apparent half-saturation constants, K(m), for butyrate, acetate, and dissolved hydrogen were 76 muM, 0.4 mM, and 8.5 muM, respectively. Butyrate and hydrogen were metabolized to a concentration of less than 1 muM, whereas acetate uptake usually ceased at a concentration of 25 to 75 muM, indicating a threshold level for acetate uptake. No significant differences in K(m) values for butyrate degradation were found between chemostat- and batch-grown tricultures, although the maximum growth rate was somewhat higher in the batch cultures in which the medium was supplemented with yeast extract. Acetate utilization was found to be the rate-limiting reaction for complete degradation of butyrate to methane and carbon dioxide in continuous culture. Increasing the dilution rate resulted in a gradual accumulation of acetate. The results explain the low concentrations of butyrate and hydrogen normally found during anaerobic digestion and the observation that acetate is the first volatile fatty acid to accumulate upon a decrease in retention time or increase in organic loading of a digestor.

  15. Selective oxidation of trimethylolpropane to 2,2-bis(hydroxymethyl)butyric acid using growing cells of Corynebacterium sp. ATCC 21245.

    Science.gov (United States)

    Sayed, Mahmoud; Dishisha, Tarek; Sayed, Waiel F; Salem, Wesam M; Temerk, Hanan A; Pyo, Sang-Hyun

    2016-03-10

    Multifunctional chemicals including hydroxycarboxylic acids are gaining increasing interest due to their growing applications in the polymer industry. One approach for their production is a biological selective oxidation of polyols, which is difficult to achieve by conventional chemical catalysis. In the present study, trimethylolpropane (TMP), a trihydric alcohol, was subjected to selective oxidation using growing cells of Corynebacterium sp. ATCC 21245 as a biocatalyst and yielding the dihydroxy-monocarboxylic acid, 2,2-bis(hydroxymethyl)butyric acid (BHMB). The study revealed that co-substrates are crucial for this reaction. Among the different evaluated co-substrates, a mixture of glucose, xylose and acetate at a ratio of 5:5:2 was found optimum. The optimal conditions for biotransformation were pH 8, 1v/v/m airflow and 500rpm stirring speed. In batch mode of operation, 70.6% of 5g/l TMP was converted to BHMB in 10 days. For recovery of the product the adsorption pattern of BHMB to the anion exchange resin, Ambersep(®) 900 (OH(-)), was investigated in batch and column experiments giving maximum static and dynamic binding capacities of 135 and 144mg/g resin, respectively. BHMB was separated with 89.7% of recovery yield from the fermentation broth. The approach is applicable for selective oxidation of other highly branched polyols by biotransformation. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Amino acid analysis and cell cycle dependent phosphorylation of an H1-like, butyrate-enhanced protein (BEP; H10; IP25) from Chinese hamster cells

    International Nuclear Information System (INIS)

    D'Anna, J.A.; Gurley, L.R.; Becker, R.R.; Barham, S.S.; Tobey, R.A.; Walters, R.A.

    1980-01-01

    A fraction enriched in the butyrate-enhanced protein (BEP) has been isolated from Chinese hamster (line CHO) cells by perchloric acid extraction and Bio-Rex 70 chromatography. Amino acid analyses indicate that the composition of BEP resembles that of CHO H1; however, BEP contains 11% less alanine than H1, and, in contrast to H1, BEP contains methionine. Treatment of BEP with cyanogen bromide results in the cleavage of a small fragment of approx. 20 amino acids so that the large fragment seen in sodium dodecyl sulfate-acrylamide gels has a molecular weight of approx. 20,000. Radiolabeling and electrophoresis indicate that BEP is phosphorylated in a cell cycle dependent fashion. These data suggest that (1) BEP is a specialized histone of the H1 class and (2) BEP is the species equivalent of calf lung histone H1 0 , rat H1 0 , and IP 25 , a protein enhanced in differentiated Friend erythroleukemia cells. The data also indicate that putative HMG1 and HMG2 proteins do not undergo the extensive cell cycle dependent phosphorylations measured for histone H1 and BEP

  17. Periodontal disease level-butyric acid amounts locally administered in the rat gingival mucosa induce ER stress in the systemic blood.

    Science.gov (United States)

    Cueno, Marni E; Saito, Yuko; Ochiai, Kuniyasu

    2016-05-01

    Periodontal diseases have long been postulated to contribute to systemic diseases and, likewise, it has been proposed that periodontal disease treatment may ameliorate certain systemic diseases. Short-chain fatty acids (SCFA) are major secondary metabolites produced by oral anaerobic bacteria and, among the SCFAs, butyric acid (BA) in high amounts contribute to periodontal disease development. Periodontal disease level-butyric acid (PDL-BA) is found among patients suffering from periodontal disease and has previously shown to induce oxidative stress, whereas, oxidative stress is correlated to endoplasmic reticulum (ER) stress. This would imply that PDL-BA may likewise stimulate ER stress, however, this was never elucidated. A better understanding of the correlation between PDL-BA and systemic ER stress stimulation could shed light on the possible systemic effects of PDL-BA-related periodontal diseases. Here, PDL-BA was injected into the gingival mucosa and the systemic blood obtained from the rat jugular was collected at 0, 15, 60, and 180 min post-injection. Collected blood samples were purified and only the blood cytosol was used throughout this study. Subsequently, we measured blood cytosolic GADD153, Ca(2+), representative apoptotic and inflammatory caspases, and NF-κB amounts. We found that PDL-BA presence increased blood cytosolic GADD153 and Ca(2+) amounts. Moreover, we observed that blood cytosolic caspases and NF-κB were activated only at 60 and 180 min post-injection in the rat gingival mucosa. This suggests that PDL-BA administered through the gingival mucosa may influence the systemic blood via ER stress stimulation and, moreover, prolonged PDL-BA retention in the gingival mucosa may play a significant role in ER stress-related caspase and NF-κB activation. In a periodontal disease scenario, we propose that PDL-BA-related ER stress stimulation leading to the simultaneous activation of apoptosis and inflammation may contribute to periodontal disease

  18. Molecularly imprinted polystyrene–titania hybrids with both ionic and π–π interactions: a case study with pyrene butyric acid

    International Nuclear Information System (INIS)

    Selyanchyn, Roman; Lee, Seung-Woo

    2013-01-01

    We present hybrid films consisting of a composite prepared from polystyrene (PS) and titanium dioxide (titania; TiO 2 ) and molecularly imprinted with 1-pyrene butyric acid (PBA). The interaction of PBA with the polymer is shown to occur via binding of the carboxylic group to TiO 2 and hydrophobic interaction of the pyrene moiety with the PS network. We investigated the effects of the PS fraction on morphology, imprinting properties, and guest binding. The template could be completely removed by incubating the films in an acetonitrile solution of pyrene, which is due to the stronger π–π interaction between PBA and pyrene than the interaction between PBA and its binding site. A guest binding study with pyrene, 1-amino pyrene, pyr enemethanol, and anthracene-9-carboxylic acid showed that the hybrid films possessed selectivity and much higher binding capacity for PBA. This study demonstrates the first case of clear PS-assisted imprinting, where the π–π interaction of the template with a linear (non-crosslinked) polymer creates selective binding sites and enhances the binding capacity. This is a driving force for guest binding in addition to the interaction of the template/analyte with TiO 2 . All molecularly imprinted films displayed better binding, repeatability and reversibility compared to the respective non-imprinted films. (author)

  19. Growth and development of moringa (Moringa oleifera L. stem cuttings as affected by diameter magnitude, growth media, and indole-3-butyric acid

    Directory of Open Access Journals (Sweden)

    Shamsuddeen Rufai

    2016-12-01

    Full Text Available The acknowledged status of Moringa oleifera L. in sub-Saharan Africa, especially western Africa, has of recent accorded it the significance of being a good source of income to a large segment of many of its populace. Intensification of research into the realization of its full economic potential will be of utmost value to impoverished societies globally. One way to achieve this is the full exploration of all possible means that will facilitate its successful growth, propagation, and domestication. Even though it can be successfully raised through seeds, the high level outcrossing (64.3% observed is a hindrance to realization of true to type trees. Vegetative propagation can be employed as an option to tackle the noted limitation, ease the cultivation process, and achieve the required realization of its economic potential. Our trial was carried out to study the influence of two growth media and three levels of indole 3-butyric acid (IBA on root and shoot development in cuttings taken from a coppiced moringa tree existent in Universiti Putra Malaysia. Semi-hardwood cuttings of moringa, of between 20 and 30 mm diameter, cut into 25 cm length, were obtained, rinsed with a fungicide, then dipped, through their basal portion, inside varying levels (0, 1000, 2000, and 3000 ppm of indole-3-butyric acid (IBA for between 7 and 10 seconds. The treated cuttings were then transplanted into a polyethylene bags (23 cm × 36 cm, containing two growth media - a munchong series soil (M and a combination of a munchong series soil thoroughly mixed with biochar (MB in a 3:1 ratio sequence. The trial was conducted inside a shade house where the humidity of the experimental area was manipulated through a regular daily manual hand sprinkling. Plant height, percentage of primary branch produced, leaf area, and dry matter (DM were found to be significantly (P<0.05 influenced by variation in stem diameter magnitude, while the diameter of the primary branch and spad

  20. The gas-liquid chromatography of carboxylic acid esters of the urinary 11-deoxy-17-oxo steroids. Determination as n-butyrates.

    Science.gov (United States)

    Sadler, P A; Kellie, A E

    1967-06-01

    1. The gas-liquid-chromatographic separations of the acetate, propionate, n-butyrate, isobutyrate and n-valerate esters of androsterone, aetiocholanolone and dehydroepiandrosterone were studied on a 1% neopentyl glycol sebacate column. The n-butyrate, isobutyrate and n-valerate esters were well resolved. 2. The three steroids derived from hydrolysed urinary 17-oxo steroid conjugate extracts were analysed by gas-liquid chromatography after conversion into their n-butyrate esters. The results were compared with independent determinations involving chromatography on alumina.

  1. Thermophilic anaerobic degradation of butyrate by a butyrate-utilizing bacterium in coculture and triculture with methanogenic bacteria.

    Science.gov (United States)

    Ahring, B K; Westermann, P

    1987-02-01

    We studied syntrophic butyrate degradation in thermophilic mixed cultures containing a butyrate-degrading bacterium isolated in coculture with Methanobacterium thermoautotrophicum or in triculture with M. thermoautotrophicum and the TAM organism, a thermophilic acetate-utilizing methanogenic bacterium. Butyrate was beta-oxidized to acetate with protons as the electron acceptors. Acetate was used concurrently with its production in the triculture. We found a higher butyrate degradation rate in the triculture, in which both hydrogen and acetate were utilized, than in the coculture, in which acetate accumulated. Yeast extract, rumen fluid, and clarified digestor fluid stimulated butyrate degradation, while the effect of Trypticase was less pronounced. Penicillin G, d-cycloserine, and vancomycin caused complete inhibition of butyrate utilization by the cultures. No growth or degradation of butyrate occurred when 2-bromoethanesulfonic acid or chloroform, specific inhibitors of methanogenic bacteria, was added to the cultures and common electron acceptors such as sulfate, nitrate, and fumarate were not used with butyrate as the electron donor. Addition of hydrogen or oxygen to the gas phase immediately stopped growth and butyrate degradation by the cultures. Butyrate was, however, metabolized at approximately the same rate when hydrogen was removed from the cultures and was metabolized at a reduced rate in the cultures previously exposed to hydrogen.

  2. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C61-butyric acid methyl ester

    International Nuclear Information System (INIS)

    Lazzerini, Giovanni Mattia; Yacoot, Andrew; Paternò, Giuseppe Maria; Tregnago, Giulia; Cacialli, Franco; Treat, Neil; Stingelin, Natalie

    2016-01-01

    We report high-resolution, traceable atomic force microscopy measurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crystals' height. The optical interferometer together with the stabilized laser provides traceability (via the laser wavelength) of the vertical measurements made with the atomic force microscope. We find that the crystals can conform to the surface topography, thanks to their height being significantly smaller compared to their lateral dimensions (namely, heights between about 50 nm and 140 nm, for the crystals analysed, vs. several tens of microns lateral dimensions). The vast majority of the crystals are flat, but an isolated, non-flat crystal provides insights into the growth mechanism and allows identification of “molecular terraces” whose height corresponds to one of the lattice constants of the single PCBM crystal (1.4 nm) as measured with X-ray diffraction

  3. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C61-butyric acid methyl ester

    Science.gov (United States)

    Lazzerini, Giovanni Mattia; Paternò, Giuseppe Maria; Tregnago, Giulia; Treat, Neil; Stingelin, Natalie; Yacoot, Andrew; Cacialli, Franco

    2016-02-01

    We report high-resolution, traceable atomic force microscopy measurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crystals' height. The optical interferometer together with the stabilized laser provides traceability (via the laser wavelength) of the vertical measurements made with the atomic force microscope. We find that the crystals can conform to the surface topography, thanks to their height being significantly smaller compared to their lateral dimensions (namely, heights between about 50 nm and 140 nm, for the crystals analysed, vs. several tens of microns lateral dimensions). The vast majority of the crystals are flat, but an isolated, non-flat crystal provides insights into the growth mechanism and allows identification of "molecular terraces" whose height corresponds to one of the lattice constants of the single PCBM crystal (1.4 nm) as measured with X-ray diffraction.

  4. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C{sub 61}-butyric acid methyl ester

    Energy Technology Data Exchange (ETDEWEB)

    Lazzerini, Giovanni Mattia; Yacoot, Andrew [National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Paternò, Giuseppe Maria; Tregnago, Giulia; Cacialli, Franco [Department of Physics and Astronomy and London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT (United Kingdom); Treat, Neil; Stingelin, Natalie [Department of Materials Science, Imperial College London, London SW7 2AZ (United Kingdom)

    2016-02-01

    We report high-resolution, traceable atomic force microscopy measurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crystals' height. The optical interferometer together with the stabilized laser provides traceability (via the laser wavelength) of the vertical measurements made with the atomic force microscope. We find that the crystals can conform to the surface topography, thanks to their height being significantly smaller compared to their lateral dimensions (namely, heights between about 50 nm and 140 nm, for the crystals analysed, vs. several tens of microns lateral dimensions). The vast majority of the crystals are flat, but an isolated, non-flat crystal provides insights into the growth mechanism and allows identification of “molecular terraces” whose height corresponds to one of the lattice constants of the single PCBM crystal (1.4 nm) as measured with X-ray diffraction.

  5. Periodontal disease level-butyric acid putatively contributes to the ageing blood: A proposed link between periodontal diseases and the ageing process.

    Science.gov (United States)

    Cueno, Marni E; Seki, Keisuke; Ochiai, Kuniyasu; Imai, Kenichi

    2017-03-01

    Periodontal diseases are partly attributable to periodontopathic bacteria found in the host, whereas, butyric acid (BA) is a common secondary metabolite produced by periodontopathic bacterial pathogens. BA has been linked to oxidative stress induction while oxidative stress has long been associated with the ageing process. However, the possible link between BA-induced oxidative stress and the ageing process has never been elucidated. Here, we attempted to show the possible role of periodontal diseaselevel-BA (PDL-BA) in influencing the rat blood ageing process. We injected PDL-BA into the young rat gingiva and, after 24h, heart blood extraction was performed. Blood obtained from PDL-BA-treated young rats was compared to untreated young and middle-aged rats. We found that cytosolic, but not mitochondrial, heme was affected 24h post-injection. In addition, we observed that PDL-BA treatment altered blood NOX activation, NADPH-related oxidative stress components (H 2 O 2 and GR), calcium homeostasis, cell death signals (CASP3 and CASP1), and age-related markers (SIRT1 and mTOR) in young rats, with some components more closely mimicking levels found in middle-aged rats. In this regard, we propose that PDL-BA may play a role in contributing to the rat blood ageing process. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Dipyrrolidinyl-substituted perylene diimide as additive for poly(3-hexylthiophene): [6,6]-Phenyl C61 butyric acid methylester bulk-heterojunction blends

    International Nuclear Information System (INIS)

    Vivo, Paola; Dubey, Rajeev; Lehtonen, Elina; Kivistö, Hannele; Vuorinen, Tommi; Lemmetyinen, Helge

    2013-01-01

    The effects of the addition of 1,7-dipyrrolidinyl-substituted perylene diimide (1,7-PyPDI) to a traditional poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C61-butyric acid methylester (PCBM) bulk-heterojunction blend on the performance of organic solar cells, are described. When the 1,7-PyPDI amount in the mixture is accurately tuned, the power conversion efficiency (η) of the 1,7-PyPDI-doped cells is enhanced compared to a reference non-doped device. Cells fabricated by spin-coating blends from chloroform solution with P3HT (monomer):PCBM:1,7-PyPDI molar ratio of 6.85:1:0.03 resulted in 39.6% higher power conversion efficiency than P3HT:PCBM blend. The efficiency improvement is attributed to possible photochemical interactions between the three components of the blend, which contribute to enhance the charge separation, and minimize the charge recombination processes. Moreover, the increased absorption and the microstructural implications induced by the introduction of 1,7-PyPDI contribute to explain the enhancement of the solar cell performance. - Highlights: • The solar cell active layer is doped with perylene derivative in different ratios. • The addition of the dopant significantly enhances the solar cell efficiency. • The possible role of the dopant in the heart of the solar cell is discussed

  7. Influence of indole-butyric acid and electro-pulse on in vitro rooting and development of olive (Olea europea L.) microshoots.

    Science.gov (United States)

    Padilla, Isabel Maria Gonzalez; Vidoy, I; Encina, C L

    2009-09-01

    The effects of indole-butyric acid (IBA) and electro-pulses on rooting and shoot growth were studied in vitro, using olive shoot cultures. Tested shoots were obtained from seedlings belonging to three Spanish cultivars, 'Arbequina', 'Manzanilla de Sevilla' and 'Gordal Sevillana', which have easy-, medium- and difficult-to-root rooting abilities, respectively. The standard two-step rooting method (SRM), consisting of root induction in olive rooting medium supplemented with 0, 0.1 or 1 mg/l IBA followed by root elongation in the same rooting medium without IBA, was compared with a novel one-step method consisting of shoot electro-pulses of 250, 1,250 or 2,500 V in a solution of IBA (0, 0.1 or 1 mg/l) and direct transferral to root elongation medium. The rooting percentage of the seedling-derived shoots obtained with the SRM was 76% for 'Arbequina' and 'Gordal Sevillana' cultivars and 100% for 'Manzanilla de Sevilla' cultivar, whereas with the electro-pulse method, the rooting percentages were 68, 64 and 88%, respectively. IBA dipping without pulse produced 0% rooting in 'Arbequina' seedling-derived shoots. The electroporation in IBA not only had an effect on shoot rooting but also on shoot growth and development, with longer shoots and higher axillary shoot sprouting and growth after some of the treatments. These effects were cultivar-dependent. The electro-pulse per se could explain some of these effects on shoot development.

  8. Simultaneous Enhancement of Electrical Conductivity and Seebeck Coefficient of [6,6]-Phenyl-C71 Butyric Acid Methyl Ester (PC70BM by Adding Co-Solvents

    Directory of Open Access Journals (Sweden)

    Mina Rastegaralam

    2018-05-01

    Full Text Available Chemical modification by co-solvents added to [6,6]-Phenyl-C71 butyric acid methyl ester, commonly known as an n-type semiconducting fullerene derivative PC70BM, is reported to change the electrical and thermoelectric properties of this system. Power factor of the casted PC70BM samples achieves values higher than that determined for a variety of organic compounds, including conducting polymers, such as PEDOT:PSS in the pristine form. After chemical functionalization by different solvents, namely N,N-Dimethylformamide (DMF, dimethyl sulfoxide (DMSO, N-Methyl-2-pyrrolidone (NMP, acetonitrile (AC, and 1,2-Dichloroethane (DCE, the four-probe in-plane electrical conductivity and Seebeck coefficient measurements indicate a simultaneous increase of the electrical conductivity and the Seebeck coefficient. The observed effect is more pronounced for solvents with a high boiling point, such as N,N-Dimethylformamide (DMF, dimethyl sulfoxide (DMSO, and N-Methyl-2-pyrrolidone (NMP, than in acetonitrile (AC and 1,2-Dichloroethane (DCE. We identified the origin of these changes using Hall mobility measurements, which demonstrate enhancement of the PC70BM charge carrier mobility upon addition of the corresponding solvents due to the improved packaging of the fullerene compound and chemical interaction with entrapped solvent molecules within the layers.

  9. Electrical and optical modeling of poly(3-hexylthiophene):[6,6]-phenyl-C61 butyric acid methyl ester P3HT-PCBM bulk heterojunction solar cells

    Science.gov (United States)

    Brioua, Fathi; Remram, Mohamed; Nechache, Riad; Bourouina, Hicham

    2017-11-01

    In this work, we investigate a two-dimensional theoretical model for the photon conversion through an integration of the optical and electrical part of multilayer system in a bulk heterojunction solar cell based on poly(3-hexylthiophene) (P3HT)/6,6-phenyl C61-butyric acid methyl ester (PCBM) blend. The optical properties of the studied structure ITO/PEDOT:PSS/P3HT:PCBM/Ca/Al, such as the exciton generation rate and the electrical field distribution, are predicted at vicinity of the active layer and have been used to solve Poisson and continuity, drift-diffusion equations of the electrical model which characterize the electrical behavior of semiconductor device using finite element method (FEM). The electrical parameters such as power conversion efficiency (PCE), open voltage circuit ( V oc), short-circuit current density ( J sc) and fill factor (FF) are extracted from the current-voltage (J-V) characteristics under illumination and in dark conditions. Highest external quantum efficiency (IPCE), up to 60%, is obtained around 520 nm, while a power conversion efficiency (PCE) value of 3.62% is found to be in good agreement with the literature results. Integration of such theoretical approach into technological applications dealing with optoelectrical material performance will rapidly provide to the user accurate data outputs required for efficient validation of proof-of-concepts.

  10. Dependence of protein binding capacity of dimethylamino-γ-butyric-acid (DMGABA)-immobilized porous membrane on composition of solvent used for DMGABA immobilization

    International Nuclear Information System (INIS)

    Iwanade, Akio; Umeno, Daisuke; Saito, Kyoichi; Sugo, Takanobu

    2013-01-01

    Dimethylamino-γ-butyric acid (DMGABA) as an ampholite was reacted with the epoxy group of the poly-glycidyl methacrylate chain grafted onto the pore surface of a porous hollow-fiber polyethylene membrane by radiation-induced graft polymerization. DMGABA was dissolved in a mixture of dioxane and water at various dioxane volume fractions, defined by dividing the dioxane volume by the total volume. The equilibrium binding capacity (EBC) of the DMGABA-immobilized porous hollow-fiber membrane for lysozyme was evaluated in the permeation mode. The EBC was varied from a 1/50-fold monolayer binding capacity to a 10-fold monolayer binding capacity by controlling the composition of the solvent used for DMGABA immobilization and the molar conversion of the epoxy group into the DMGABA group. - Highlights: ► A DMGABA membrane was immobilized by irradiation induced graft polymerization. ► The DMGABA was immobilized in a mixture of dioxane and water of various compositions. ► Lysozyme adsorptivity of DMGABA-immobilized membranes evaluated in the permeation mode. ► The composition of the DMGABA immobilized solvent can control adsorptivity

  11. Electrolyte-gated transistors based on phenyl-C61-butyric acid methyl ester (PCBM) films: bridging redox properties, charge carrier transport and device performance.

    Science.gov (United States)

    Lan, Tian; Soavi, Francesca; Marcaccio, Massimo; Brunner, Pierre-Louis; Sayago, Jonathan; Santato, Clara

    2018-05-24

    The n-type organic semiconductor phenyl-C61-butyric acid methyl ester (PCBM), a soluble fullerene derivative well investigated for organic solar cells and transistors, can undergo several successive reversible, diffusion-controlled, one-electron reduction processes. We exploited such processes to shed light on the correlation between electron transfer properties, ionic and electronic transport as well as device performance in ionic liquid (IL)-gated transistors. Two ILs were considered, based on bis(trifluoromethylsulfonyl)imide [TFSI] as the anion and 1-ethyl-3-methylimidazolium [EMIM] or 1-butyl-1-methylpyrrolidinium [PYR14] as the cation. The aromatic structure of [EMIM] and its lower steric hindrance with respect to [PYR14] favor a 3D (bulk) electrochemical doping. As opposed to this, for [PYR14] the doping seems to be 2D (surface-confined). If the n-doping of the PCBM is pursued beyond the first electrochemical process, the transistor current vs. gate-source voltage plots in [PYR14][TFSI] feature a maximum that points to the presence of finite windows of high conductivity in IL-gated PCBM transistors.

  12. Side chain effect on electronic structure of spin-coated films of [6,6]-phenyl-C61-butyric acid methyl ester and its bis-adduct

    International Nuclear Information System (INIS)

    Akaike, Kouki; Kanai, Kaname; Ouchi, Yukio; Seki, Kazuhiko

    2013-01-01

    Highlights: ► Electronic structure of spin-coated films of PCBM and bis-PCBM was investigated. ► Ionization energy and electron affinity of bis-PCBM are smaller than those of PCBM. ► Electron donation from the side chain to C 60 -backbone raises the HOMO and LUMO. ► Open circuit voltages of PCBM-based solar cells relates to electron affinities. - Abstract: We investigated the electronic structure of spin-coated films of two soluble fullerenes; [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) and its bis-adduct (bis-PCBM) using ultraviolet photoelectron spectroscopy, inverse photoemission spectroscopy and molecular orbital calculations. The ionization energy and electron affinity of spin-coated films of bis-PCBM were determined to be 6.01 eV and 3.4 eV, respectively. Analysis of electron density suggested the stronger electron donation from the two side chains to fullerene-backbone in a bis-PCBM molecule, compared with PCBM. The electron donation raises the energies of the frontier orbitals of bis-PCBM, which mainly consist of π-orbitals of fullerene-backbone. As a result, the ionization energy and electron affinity of bis-PCBM are smaller than those of PCBM. Moreover, we also concluded that the larger open circuit voltage observed for bis-PCBM based organic photovoltaics was explained by the higher-lying unoccupied molecular orbital of bis-PCBM

  13. Dielectric relaxation dependent memory elements in pentacene/[6,6]-phenyl-C61-butyric acid methyl ester bi-layer field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byoungnam

    2015-03-02

    We fabricate a pentacene/[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) bi-layer field effect transistor (FET) featuring large hysteresis that can be used as memory elements. Intentional introduction of excess electron traps in a PCBM layer by exposure to air caused large hysteresis in the FET. The memory window, characterized by the threshold voltage difference, increased upon exposure to air and this is attributed to an increase in the number of electron trapping centers and (or) an increase in the dielectric relaxation time in the underlying PCBM layer. Decrease in the electron conduction in the PCBM close to the SiO{sub 2} gate dielectric upon exposure to air is consistent with the increase in the dielectric relaxation time, ensuring that the presence of large hysteresis in the FET originates from electron trapping at the PCBM not at the pentacene. - Highlights: • Charge trapping-induced memory effect was clarified using transistors. • The memory window can be enhanced by controlling charge trapping mechanism. • Memory transistors can be optimized by controlling dielectric relaxation time.

  14. Dipyrrolidinyl-substituted perylene diimide as additive for poly(3-hexylthiophene): [6,6]-Phenyl C61 butyric acid methylester bulk-heterojunction blends

    Energy Technology Data Exchange (ETDEWEB)

    Vivo, Paola, E-mail: paola.vivo@tut.fi [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Dubey, Rajeev; Lehtonen, Elina; Kivistö, Hannele [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Vuorinen, Tommi [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Lemmetyinen, Helge [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland)

    2013-12-02

    The effects of the addition of 1,7-dipyrrolidinyl-substituted perylene diimide (1,7-PyPDI) to a traditional poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C61-butyric acid methylester (PCBM) bulk-heterojunction blend on the performance of organic solar cells, are described. When the 1,7-PyPDI amount in the mixture is accurately tuned, the power conversion efficiency (η) of the 1,7-PyPDI-doped cells is enhanced compared to a reference non-doped device. Cells fabricated by spin-coating blends from chloroform solution with P3HT (monomer):PCBM:1,7-PyPDI molar ratio of 6.85:1:0.03 resulted in 39.6% higher power conversion efficiency than P3HT:PCBM blend. The efficiency improvement is attributed to possible photochemical interactions between the three components of the blend, which contribute to enhance the charge separation, and minimize the charge recombination processes. Moreover, the increased absorption and the microstructural implications induced by the introduction of 1,7-PyPDI contribute to explain the enhancement of the solar cell performance. - Highlights: • The solar cell active layer is doped with perylene derivative in different ratios. • The addition of the dopant significantly enhances the solar cell efficiency. • The possible role of the dopant in the heart of the solar cell is discussed.

  15. Gamma Amino Butyric Acid Attenuates Liver and Kidney Damage Associated with Insulin Alteration in γ-Irradiated and Streptozotocin-Treated Rats

    International Nuclear Information System (INIS)

    Saada, H.N.; Eltahawy, N.A.; Hammad, A.S.; Morcos, N.Y.S.

    2016-01-01

    Gamma aminobutyric acid (GABA) is one of the inhibitory neurotransmitters that may have the ability to relive the intensity of stress. The aim of the current study was to evaluate the role of γ-amino butyric acid (GABA) in modulating insulin disturbance associated with liver and kidney damage in γ-irradiated and streptozotocin-treated rats. Irradiation was performed by whole body exposure to 6 Gy from a Cs-137 source. Streptozotocin (STZ) was administered in a single intraperitoneal dose (60 mg/kg body weight). GABA (200 mg/Kg body weight/day) was administered daily via gavages during 3 weeks to γ-irradiated and STZ-treated-rats. The results obtained showed that γ-irradiation induced hyperglycemia, hyperinsulinaemia and insulin resistance (similar to type 2 Diabetes), while STZ-treatment produced hyperglycemia, insulin deficiency with no insulin resistance detected (similar to type 1 Diabetes). In both cases, significant increases of alanine amino transferase (ALT) and aspartate amino transferase (AST) activities, urea and creatinine levels were recorded in the serum. These changes were associated with oxidative damage to the liver and kidney tissues notified by significant decreases of superoxide dismutase (SOD ), catalase and glutathione peroxidase ( GSH-Px) activities in parallel to significant increases of malondialdehyde (MDA) and advanced oxidation protein products ( AOPP) levels. The administration of GABA to irradiated as well as STZ-treated rats regulated insulin and glucose levels, minimized oxidative stress and reduced the severity of liver and kidney damage. It could be concluded that GABA could be a useful adjunct to reduce some metabolic complications associated with insulin deficiency and insulin resistance

  16. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells--possible relevance to autism spectrum disorders.

    Directory of Open Access Journals (Sweden)

    Bistra B Nankova

    Full Text Available Alterations in gut microbiome composition have an emerging role in health and disease including brain function and behavior. Short chain fatty acids (SCFA like propionic (PPA, and butyric acid (BA, which are present in diet and are fermentation products of many gastrointestinal bacteria, are showing increasing importance in host health, but also may be environmental contributors in neurodevelopmental disorders including autism spectrum disorders (ASD. Further to this we have shown SCFA administration to rodents over a variety of routes (intracerebroventricular, subcutaneous, intraperitoneal or developmental time periods can elicit behavioral, electrophysiological, neuropathological and biochemical effects consistent with findings in ASD patients. SCFA are capable of altering host gene expression, partly due to their histone deacetylase inhibitor activity. We have previously shown BA can regulate tyrosine hydroxylase (TH mRNA levels in a PC12 cell model. Since monoamine concentration is known to be elevated in the brain and blood of ASD patients and in many ASD animal models, we hypothesized that SCFA may directly influence brain monoaminergic pathways. When PC12 cells were transiently transfected with plasmids having a luciferase reporter gene under the control of the TH promoter, PPA was found to induce reporter gene activity over a wide concentration range. CREB transcription factor(s was necessary for the transcriptional activation of TH gene by PPA. At lower concentrations PPA also caused accumulation of TH mRNA and protein, indicative of increased cell capacity to produce catecholamines. PPA and BA induced broad alterations in gene expression including neurotransmitter systems, neuronal cell adhesion molecules, inflammation, oxidative stress, lipid metabolism and mitochondrial function, all of which have been implicated in ASD. In conclusion, our data are consistent with a molecular mechanism through which gut related environmental signals

  17. Indole-3-butyric acid mediates antioxidative defense systems to promote adventitious rooting in mung bean seedlings under cadmium and drought stresses.

    Science.gov (United States)

    Li, Shi-Weng; Zeng, Xiao-Ying; Leng, Yan; Feng, Lin; Kang, Xiao-Hu

    2018-06-08

    In vitro experiments were performed to determine whether auxin can mediate the formation of adventitious roots in response to heavy metal and drought stresses using a model rooting plant, mung bean [Vigna radiata (L.) Wilczek]. The treatments with CdCl 2 or mannitol alone significantly inhibited the formation and growth of adventitious roots in mung bean seedlings. In contrast, when CdCl 2 or mannitol was applied together with indole-3-butyric acid (IBA), IBA considerably cancelled the inhibition of adventitious rooting by stresses. Treatment with CdCl 2 or mannitol alone significantly increased the soluble protein and malondialdehyde (MDA) contents. CdCl 2 and mannitol stress each induced differentially significant changes in the activities of antioxidative enzyme and antioxidant levels during adventitious rooting. Notably, both CdCl 2 and mannitol stress strongly reduced the peroxidase (POD) and ascorbate peroxidase (APX) activities and glutathione (GSH) and phenols levels. Catalase and superoxide dismutase (SOD) activity were enhanced by CdCl 2 but reduced by mannitol. CdCl 2 increased the ascorbate acid (ASA) level, which was decreased by mannitol. Furthermore, when CdCl 2 or mannitol was applied together with IBA, IBA counteracted the CdCl 2 - or mannitol-induced increase or decrease in certain antioxidants, MDA, and antioxidative enzymes. These results suggest that Cd and mannitol stress inhibition of adventitious rooting is associated with the regulation of antioxidative enzymes and antioxidants in cells to defense the oxidative stress. Moreover, IBA alleviates the effects of Cd and mannitol stress on the rooting process partially through the regulation of antioxidative defense systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Quantification of transcriptome responses of the rumen epithelium to butyrate infusion

    Science.gov (United States)

    Short-chain fatty acids (SCFAs), such as butyrate, produced by gut microorganisms play an important role in energy metabolism and physiology in ruminants as well as in human health. Butyrate is a preferred substrate in the rumen epithelium where approximately 90% of butyrate is metabolized. Additi...

  19. Quantum confinement-tunable ultrafast charge transfer at the PbS quantum dot and phenyl-C61-butyric acid methyl ester interface

    KAUST Repository

    El-Ballouli, AlA'A O.; Alarousu, Erkki Antero; Bernardi, Marco; Aly, Shawkat Mohammede; Lagrow, Alec P.; Bakr, Osman; Mohammed, Omar F.

    2014-01-01

    Quantum dot (QD) solar cells have emerged as promising low-cost alternatives to existing photovoltaic technologies. Here, we investigate charge transfer and separation at PbS QDs and phenyl-C61-butyric acid methyl ester (PCBM) interfaces using a combination of femtosecond broadband transient absorption (TA) spectroscopy and steady-state photoluminescence quenching measurements. We analyzed ultrafast electron injection and charge separation at PbS QD/PCBM interfaces for four different QD sizes and as a function of PCBM concentration. The results reveal that the energy band alignment, tuned by the quantum size effect, is the key element for efficient electron injection and charge separation processes. More specifically, the steady-state and time-resolved data demonstrate that only small-sized PbS QDs with a bandgap larger than 1 eV can transfer electrons to PCBM upon light absorption. We show that these trends result from the formation of a type-II interface band alignment, as a consequence of the size distribution of the QDs. Transient absorption data indicate that electron injection from photoexcited PbS QDs to PCBM occurs within our temporal resolution of 120 fs for QDs with bandgaps that achieve type-II alignment, while virtually all signals observed in smaller bandgap QD samples result from large bandgap outliers in the size distribution. Taken together, our results clearly demonstrate that charge transfer rates at QD interfaces can be tuned by several orders of magnitude by engineering the QD size distribution. The work presented here will advance both the design and the understanding of QD interfaces for solar energy conversion. © 2014 American Chemical Society.

  20. Poly(3-hexylthiophene): Functionalized single-walled carbon nanotubes: (6,6)-phenyl-C{sub 61}-butyric acid methyl ester composites for photovoltaic cell at ambient condition

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rajiv K.; Kumar, Amit; Kumar, Vikram; Singh, Ramadhar [National Physical Laboratory (Council of Scientific and Industrial Research), Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Kumar, Jitendra [Metals and Ceramics Division, University of Dayton Research Institute, Dayton, OH 45469-0171 (United States); Kant, Rama [Department of Chemistry, University of Delhi, New Delhi 110007 (India)

    2010-12-15

    We report the synthesis and characterization of nonhygroscopic composites of poly(3-hexylthiophene):functionalized single-walled carbon nanotubes:(6,6)-phenyl-C{sub 61}-butyric acid methyl ester (P3HT:FSWCNT:PCBM) for photovoltaic applications. The composite films have been characterized for their structural, electronic, photo-physical and photovoltaic properties. Fourier transform infrared (FT-IR) investigation suggests that the nanotubes can induce structural changes in P3HT matrix. The homogeneous dispersion of nanotubes in P3HT and its self-arranged matrix in P3HT:PCBM are evident from scanning electron microscopy (SEM). Ultraviolet-visible (UV-vis) spectrum indicates the betterment of P3HT chain stacking by addition of nanotubes, which is further confirmed by transmission electron microscopy (TEM). The small-angle X-ray scattering (SAXS) was used to determine the bulk microstructure of the polymer composite. The photovoltaic cells have been fabricated using the aforementioned photoactive composite and tested at ambient conditions. The comparison of the current density-voltage (J-V) characteristics of photovoltaic cells in light and dark conditions, with and without modified nanotubes, shows that the latter gives better photovoltaic properties. A photovoltaic cell using modified nanotubes exhibit a photo-conversion efficiency of {proportional_to}1.8%. The addition of FSWCNT in P3HT:PCBM composite enhances the conjugation length of P3HT:FSWCNT:PCBM composite, which in turn enhances its absorption capacity of solar energy radiation. (author)

  1. 2-keto-4-(methylthio)butyric acid (keto analog of methionine) is a safe and efficacious precursor of L-methionine in chicks.

    Science.gov (United States)

    Dilger, Ryan N; Kobler, Christoph; Weckbecker, Christoph; Hoehler, Dirk; Baker, David H

    2007-08-01

    Relative bioefficacy and toxicity of Met precursor compounds were investigated in young chicks. The effectiveness of DL-Met and 2-keto-4-(methylthio)butyric acid (Keto-Met) to serve as L-Met precursors was quantified using Met-deficient diets of differing composition. Efficacy was based on slope-ratio and standard-curve methodology. Using L-Met as a standard Met source added to a purified diet, DL-Met and Keto-Met were assigned relative bioefficacy values of 98.5 and 92.5%, respectively, based on weight gain. Relative bioefficacy values of 98.5 and 89.3% were assigned to DL-Met and Keto-Met, respectively, when chicks were fed a Met-deficient, corn-soybean meal-peanut meal diet. Thus, both DL-Met and Keto-Met are effective Met precursor compounds in chicks. Additionally, growth-depressing effects of L-Met, DL-Met, and Keto-Met were compared using a nutritionally adequate corn-soybean meal diet supplemented with 15 or 30 g/kg of each compound. Similar reductions in weight gain, food intake, and gain:food ratio were observed for each compound. Subjective spleen color scores, indicative of splenic hemosiderosis, increased linearly (P Keto-Met to L-Met in vivo merely requires transamination, Keto-Met may prove to be a useful supplement not only in food animal production, but also as a component of enteral and parenteral formulas for humans suffering from renal insufficiency.

  2. Di-2-pyridylhydrazone Dithiocarbamate Butyric Acid Ester Exerted Its Proliferative Inhibition against Gastric Cell via ROS-Mediated Apoptosis and Autophagy

    Directory of Open Access Journals (Sweden)

    Xingshuang Guo

    2018-01-01

    Full Text Available Diversified biological activities of dithiocarbamates have attracted widespread attention; improving their feature or exploring their potent action of mechanism is a hot topic in medicinal research. Herein, we presented a study on synthesis and investigation of a novel dithiocarbamate, DpdtbA (di-2-pyridylhydrazone dithiocarbamate butyric acid ester, on antitumor activity. The growth inhibition assay revealed that DpdtbA had important antitumor activity for gastric cancer (GC cell lines (IC50 = 4.2 ± 0.52 μM for SGC-7901, 3.80 ± 0.40 μM for MGC-803. The next study indicated that growth inhibition is involved in ROS generation in mechanism; accordingly, the changes in mitochondrial membrane permeability, apoptotic genes, cytochrome c, bax, and bcl-2 were observed, implying that the growth inhibition of DpdtbA is involved in ROS-mediated apoptosis. On the other hand, the upregulated p53 upon DpdtbA treatment implied that p53 could also mediate the apoptosis. Yet the excess generation of ROS induced by DpdtbA led to cathepsin D translocation and increase of autophagic vacuoles and LC3-II, demonstrating that autophagy was also a contributor to growth inhibition. Further investigation showed that DpdtbA could induce cell cycle arrest at the G1 phase. This clearly indicated the growth inhibition of DpdtbA was via triggering ROS formation and evoking p53 response, consequently leading to alteration in gene expressions that are related to cell survival.

  3. Cardiac sympathetic afferent reflex response to intermedin microinjection into paraventricular nucleus is mediated by nitric oxide and γ-amino butyric acid in hypertensive rats.

    Science.gov (United States)

    Zhou, Hong; Sun, Hai-jian; Chang, Jin-rui; Ding, Lei; Gao, Qing; Tang, Chao-shu; Zhu, Guo-qing; Zhou, Ye-bo

    2014-10-01

    Intermedin (IMD) is a member of calcitonin/calcitonin gene-related peptide (CGRP) and involves in the regulation of cardiovascular function in both peripheral tissues and central nervous system (CNS). Paraventricular nucleus (PVN) of hypothalamus is an important site in the control of cardiac sympathetic afferent reflex (CSAR) which participates in sympathetic over-excitation of hypertension. The aim of this study is to investigate whether IMD in the PVN is involved in the inhibition of CSAR and its related mechanism in hypertension. Rats were subjected to two-kidney one-clip (2K1C) surgery to induce renovascular hypertension or sham-operation (Sham). Acute experiments were carried out four weeks later under anesthesia. The CSAR was evaluated with the renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) responses to the epicardial application of capsaicin. The RSNA and MAP were recorded in sinoaortic-denervated, cervical-vagotomized and anesthetized rats. Bilateral PVN microinjection of IMD (25 pmol) caused greater decrease in the CSAR in 2K1C rats than in Sham rats, which was prevented by pretreatment with adrenomedullin (AM) receptor antagonist AM22-52, non-selective nitric oxide (NO) synthase (NOS) inhibitor L-NAME or γ-amino butyric acid (GABA)B receptor blocker CGP-35348. PVN pretreatment with CGRP receptor antagonist CGRP8-37 or GABA(A) receptor blocker gabazine had no significant effect on the CSAR response to IMD. AM22-52, L-NAME and CGP-35348 in the PVN could increase CSAR in Sham and 2K1C rats. These data indicate that IMD in the PVN inhibits CSAR via AM receptor, and both NO and GABA in the PVN involve in the effect of IMD on CSAR in Sham and renovascular hypertensive rats. © 2014 by the Society for Experimental Biology and Medicine.

  4. Quantum confinement-tunable ultrafast charge transfer at the PbS quantum dot and phenyl-C61-butyric acid methyl ester interface

    KAUST Repository

    El-Ballouli, AlA'A O.

    2014-05-14

    Quantum dot (QD) solar cells have emerged as promising low-cost alternatives to existing photovoltaic technologies. Here, we investigate charge transfer and separation at PbS QDs and phenyl-C61-butyric acid methyl ester (PCBM) interfaces using a combination of femtosecond broadband transient absorption (TA) spectroscopy and steady-state photoluminescence quenching measurements. We analyzed ultrafast electron injection and charge separation at PbS QD/PCBM interfaces for four different QD sizes and as a function of PCBM concentration. The results reveal that the energy band alignment, tuned by the quantum size effect, is the key element for efficient electron injection and charge separation processes. More specifically, the steady-state and time-resolved data demonstrate that only small-sized PbS QDs with a bandgap larger than 1 eV can transfer electrons to PCBM upon light absorption. We show that these trends result from the formation of a type-II interface band alignment, as a consequence of the size distribution of the QDs. Transient absorption data indicate that electron injection from photoexcited PbS QDs to PCBM occurs within our temporal resolution of 120 fs for QDs with bandgaps that achieve type-II alignment, while virtually all signals observed in smaller bandgap QD samples result from large bandgap outliers in the size distribution. Taken together, our results clearly demonstrate that charge transfer rates at QD interfaces can be tuned by several orders of magnitude by engineering the QD size distribution. The work presented here will advance both the design and the understanding of QD interfaces for solar energy conversion. © 2014 American Chemical Society.

  5. Purification of gamma-amino butyric acid (GABA) from fermentation of defatted rice bran extract by using ion exchange resin

    Science.gov (United States)

    Tuan Nha, Vi; Phung, Le Thi Kim; Dat, Lai Quoc

    2017-09-01

    Rice bran is one of the significant byproducts of rice processing with 10 %w/w of constitution of whole rice grain. It is rich in nutrient compounds, including glutamic acid. Thus, it could be utilized for the fermentation with Lactobateria for synthesis of GABA, a valuable bioactive for antihypertensive effects. However, the concentration and purity of GABA in fermentation broth of defatted rice bran extract is low for production of GABA drug. This research focused on the purification of GABA from the fermentation broth of defatted rice bran extract by using cation exchange resin. The results indicate that, the adsorption isotherm of GABA by Purelite C100 showed the good agreement with Freundlich model, with high adsorption capacity. The effects of pH and concentration of NaCl in eluent on the elution were also investigated. The obtained results show that, at the operating conditions of elution as follows: pH 6.5, 0.8 M of NaCl in eluent, 0.43 of bed volume; concentration of GABA in accumulative eluent, the purity and recovery yield of GABA were 743.8 ppm, 44.0% and 84.2%, respectively. Results imply that, it is feasible to apply cation exchange resin for purification of GABA from fermentation broth of defatted rice bran extract.

  6. Determination of indole-3-acetic acid and indole-3-butyric acid in mung bean sprouts using high performance liquid chromatography with immobilized Ru(bpy)3(2+)-KMnO4 chemiluminescence detection.

    Science.gov (United States)

    Xi, Zhijun; Zhang, Zhujun; Sun, Yonghua; Shi, Zuolong; Tian, Wei

    2009-07-15

    A novel method for determination of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) in an extract from mung bean sprouts using high performance liquid chromatography (HPLC) with chemiluminescence (CL) detection is described. The method is based on the CL reaction of auxin (indole-3-acetic acid and indole-3-butyric acid) with acidic potassium permanganate (KMnO(4)) and tris(2,2'-bipyridyl)ruthenium(II), which was immobilized on the cationic ion-exchange resin. The chromatographic separation was performed on a Nucleosil RP-C18 column (i.d.: 250 mm x 4.6 mm, particle size: 5 microm, pore size: 100) with an isocratic mobile phase consisting of methanol-water-acetic acid (45:55:1, v/v/v). At a flow rate of 1.0 mL min(-1), the total run time was 20 min. Under the optimal conditions, the linear ranges were 5.0x10(-8) to 5.0x10(-6)g mL(-1) and 5.0x10(-7) to 1.0x10(-5)g mL(-1) for IAA and IBA, respectively. The detection limits were 2.0x10(-8)g mL(-1) and 2.0x10(-7)g mL(-1) for IAA and IBA, respectively. The relative standard deviation (RSD) of intra-day were 3.1% and 2.3% (n=11) for 2x10(-6)g mL(-1) IAA and 2x10(-6)g mL(-1) IBA; The relative standard deviations of inter-day precision were 6.9% and 4.9% for 2x10(-6)g mL(-1) IAA and 2x10(-6)g mL(-1) IBA. The proposed method had been successfully applied to the determination of auxin in mung bean sprouts.

  7. Effects of ruminal ammonia and butyrate concentrations on reticuloruminal epithelial blood flow and volatile fatty acid absorption kinetics under washed reticulorumen conditions in lactating dairy cows

    DEFF Research Database (Denmark)

    Storm, Adam Christian; Hanigan, M.D.; Kristensen, Niels Bastian

    2011-01-01

    and mesenteric, right ruminal, and hepatic portal veins. The experiment was designed with 2 groups of cows: 4 cows adapted to high crude protein (CP) and 4 to low CP. All cows were subjected to 3 buffers: butyric, ammonia, and control in a randomized replicated 3 × 3 incomplete Latin square design. The buffers...

  8. Effects of Indole-Butyric Acid Doses, Different Rooting Media and Cutting Thicknesses on Rooting Ratios and Root Qualities of 41B, 5 BB and 420A American Grapevine Rootstocks

    OpenAIRE

    DOĞAN, Adnan; UYAK, Cüneyt; KAZANKAYA, Ahmet

    2016-01-01

    The present study was conducted to investigate the effects of different rooting media [perlite, perlite+sand (1:1), perlite+sand+soil (1:1:1)], different indole butyric acid (IBA) doses (control, 1000, 2000, 3000 and 4000 ppm) and different cutting thicknesses [thin (4-7 mm), medium (8-10 mm) and thick (10-12 mm)] on rooting and root qualities of 41B, 5BB and 420A American grapevine rootstocks adapted to Van region of Turkey. Within the scope of the study, rooting ratios (%), number of roots,...

  9. Accumulation, selection and covariation of amino acids in sieve tube sap of tansy (Tanacetum vulgare) and castor bean (Ricinus communis): evidence for the function of a basic amino acid transporter and the absence of a γ-amino butyric acid transporter.

    Science.gov (United States)

    Bauer, Susanne N; Nowak, Heike; Keller, Frank; Kallarackal, Jose; Hajirezaei, Mohamad-Reza; Komor, Ewald

    2014-09-01

    Sieve tube sap was obtained from Tanacetum by aphid stylectomy and from Ricinus after apical bud decapitation. The amino acids in sieve tube sap were analyzed and compared with those from leaves. Arginine and lysine accumulated in the sieve tube sap of Tanacetum more than 10-fold compared to the leaf extracts and they were, together with asparagine and serine, preferably selected into the sieve tube sap, whereas glycine, methionine/tryptophan and γ-amino butyric acid were partially or completely excluded. The two basic amino acids also showed a close covariation in sieve tube sap. The acidic amino acids also grouped together, but antagonistic to the other amino acids. The accumulation ratios between sieve tube sap and leaf extracts were smaller in Ricinus than in Tanacetum. Arginine, histidine, lysine and glutamine were enriched and preferentially loaded into the phloem, together with isoleucine and valine. In contrast, glycine and methionine/tryptophan were partially and γ-amino butyric acid almost completely excluded from sieve tube sap. The covariation analysis grouped arginine together with several neutral amino acids. The acidic amino acids were loaded under competition with neutral amino acids. It is concluded from comparison with the substrate specificities of already characterized plant amino acid transporters, that an AtCAT1-like transporter functions in phloem loading of basic amino acids, whereas a transporter like AtGAT1 is absent in phloem. Although Tanacetum and Ricinus have different minor vein architecture, their phloem loading specificities for amino acids are relatively similar. © 2014 Scandinavian Plant Physiology Society.

  10. The Volumetric Properties of Some α-Amino Acids in Aqueous Sodium Butyrate Solutions at 308.15 K%α-氨基酸在丁酸钠水溶液中的体积性质(308.15K)

    Institute of Scientific and Technical Information of China (English)

    颜振宁; 成庆堂; 王键吉; 刘大壮

    1999-01-01

    Density data have been reported for glycine,DL-α-alanine,DL-α-amino-n-butyric acid,DL-valine and DL-leucine in aqueous solutions of 0.5,1.0,1.5 and 2.0 mol.kg-1 sodium butyrate at 308.15 K.The apparent molar volumes V2,φand standard partial molar volumes for the amino acids in aqueous sodium butyrate solutions have been calculated.The linear correlation between and the number of carbon atoms in the alkyl chain of the amino acids has been observed and utilized to estimate the contributions of the charged end groups ,CH2 group and other alkyl chains of the amino acids to .The results show that values for increase,while those for CH2 decrease,with sodium butyrate concentration.The hydration number of the amino acids decreases with increasing electrolyte concentrations.These phenomena are discussed by means of the dehydration effect of electrolyte on the amino acids.

  11. Liquid-liquid equilibrium data in aqueous solutions of propionic and butyric acids with 1-heptanol at T=(298.15, 308.15, and 318.15) K

    Energy Technology Data Exchange (ETDEWEB)

    Gilani, Ali Ghanadzadeh; Gilani, Hossein Ghanadzadeh; Saadat, Seyedeh Laleh Seyed; Nasiri-Touli, Elham; Peer, Mahrokh [Faculty of Science, University of Guilan, Rasht (Iran, Islamic Republic of)

    2016-04-15

    Liquid-liquid phase equilibrium (LLE) data were determined for the (water+propionic or butyric acid+1- heptanol) ternary systems at T=(298.15, 308.15, and 318.15) K and p=101.3 kPa. For both systems, a type-1 LLE phase diagram was obtained. The quality of the experimental LLE data was determined through the Othmer-Tobias and Bancroft equations. The experimental tie-lines were fitted using the UNIQUAC and NRTL correlation models. For the studied systems, a comparison was made between the experimental and correlated distribution coefficients and separation factors. The LSER model of Katritzky was applied to obtain the contributions of intermolecular interactions in these systems.

  12. Estimation of dark and active dielectric constants in the sub-THz frequency domain of an optically tunable organic semiconductor blend of poly(3-hexylthiophene) and phenyl-C61-butyric acid methyl ester

    Science.gov (United States)

    Andy, Andre S.; Kneller, James W. E.; Sushko, Oleksandr; Dubrovka, Rostyslav; Parini, Clive; Scott, Ken; Kreouzis, Theo; Donnan, Robert S.

    2018-06-01

    The dielectric properties of a 95% poly(3-hexylthiophene):5% phenyl-C61-butyric acid methyl ester blend are measured in the dark and under white light illumination by quasi-optical transmissometry and terahertz time-domain spectroscopy. The real part of the dielectric constant varies monotonically between 2.75 and 3.50, in agreement with the literature, and displays a reversible photoinduced drop of 0.05–0.55 at sub-THz. The imaginary part fluctuates between 0.1 and 1.5 in the dark and displays a reversible increase upon illumination of 0.10–0.52 at sub-THz. The corresponding charge carrier concentration under illumination (using transient and steady-state photoconduction) is 1014 to 1015 cm‑3.

  13. Selective agonists at group II metabotropic glutamate receptors: synthesis, stereochemistry, and molecular pharmacology of (S)- and (R)-2-amino-4-(4-hydroxy[1,2,5]thiadiazol-3-yl)butyric acid

    DEFF Research Database (Denmark)

    Clausen, Rasmus P; Bräuner-Osborne, Hans; Greenwood, Jeremy R

    2002-01-01

    Homologation of analogues of the central excitatory neurotransmitter glutamic acid (Glu), in which the distal carboxy group has been bioisosterically replaced by acidic heterocyclic units, has previously provided subtype selective ligands for metabotropic Glu receptors (mGluRs). The (S......)-form of the 1,2,5-thiadiazol-3-ol Glu analogue, 2-amino-3-(4-hydroxy[1,2,5]thiadiazol-3-yl)propionic acid (TDPA, 6), is an 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor agonist, which in addition stereospecifically activates group I mGluRs. We have now synthesized the (S)- and (R......)-forms of 2-amino-4-(4-hydroxy[1,2,5]thiadiazol-3-yl)butyric acid (homo-TDPA, 7) and shown that whereas neither enantiomer interacts with AMPA receptors, (S)- and (R)-7 appear to be selective and equipotent agonists at group II mGluRs as represented by the mGluR2 subtype. The activities of (S)- and (R)-7...

  14. Membrane potential and proton cotransport of alanine and phosphate as affected by permeant weak acids in Lemna gibba

    International Nuclear Information System (INIS)

    Basso, B.; Ullrich-Eberius, C.I.

    1987-01-01

    The treatment of Lemna gibba plants with the weak acids (trimethylacetic acid and butyric acid), used as tools to decrease intracellular pH, induced a hyperpolarization of membrane potential, dependent on the concentration of the undissociated permeant form of the weak acid and on the value of the resting potential. Measurements were carried out both with high potential and low potential plants and the maximum values of acid induced hyperpolarization were about 35 and 71 millivolts, respectively. Weak acids influenced also the transient light-dark membrane potential changes, typical for photosynthesizing material, suggesting a dependence of these changes on an acidification of cytoplasm. In the presence of the weak acids, the membrane depolarization induced by the cotransport of alanine and phosphate with protons was reduced; the maximum reduction (about 90%) was obtained with alanine during 2 millimolar trimethylacetic acid perfusion at pH 5. A strong inhibition of the uptake rates (up to 48% for [ 14 C]alanine and 68% for 32 P-phosphate) was obtained in the presence of the weak acids, both by decreasing the pH of the medium and by increasing the concentration of the acid. In these experimental conditions, the ATP level and O 2 uptake rates did not change significantly. These results constitute good evidence that H + /solute cotransport in Lemna, already known to be dependent on the electrochemical potential difference for protons, is also strongly regulated by the cytoplasmic pH value

  15. Effects of β-hydroxy β-methyl butyrate supplementation to sows in late gestation on absorption and hepatic metabolism of glucose and amino acids during transition

    DEFF Research Database (Denmark)

    Flummer, Christine; Lyby, H; Storli, K S

    2012-01-01

    A multicatheter sow model was established to study the effects of dietary β-hydroxy β-methyl butyrate (HMB) supplementation on net portal flux (NPF) and net hepatic flux (NHF) of HMB, glucose, and the AA Ala, Gly, Ile, Leu, Phe, Tyr, and Val. Eight second parity sows were fitted with permanent...... the experiment, and 4 HMB sows were fed the control diet supplemented with 15 mg Ca(HMB)2/kg BW mixed in one third of the morning meal from day –10 until parturition. Net portal flux of HMB was affected by treatment (Trt; P HMB sows at 6.9 mmol/h 30 min after the morning meal...... and then decreased towards preprandial level (0.0 mmol/h) 3.5 h after the meal, revealing that dietary HMB was rapidly absorbed from the intestine. The NHF of HMB tended to be affected by Trt (P = 0.06) showing a small hepatic uptake of HMB (1.1 mmol/h) in HMB sows. Net portal flux of glucose and all measured AA...

  16. Biosynthesis of heparin. Effects of n-butyrate on cultured mast cells

    International Nuclear Information System (INIS)

    Jacobsson, K.G.; Riesenfeld, J.; Lindahl, U.

    1985-01-01

    Murine mastocytoma cells were incubated in vitro with inorganic [ 35 S]sulfate, in the absence or presence of 2.5 mM n-butyrate, and labeled heparin was isolated. The polysaccharide produced in the presence of butyrate showed a lower charge density on anion exchange chromatography than did the control material and a 3-fold increased proportion of components with high affinity for antithrombin. Structural analysis of heparin labeled with [ 3 H] glucosamine in the presence of butyrate showed that approximately 35% of the glucosamine units were N-acetylated, as compared to approximately 10% in the control material; the nonacetylated glucosamine residues were N-sulfated. The presence of butyrate thus leads to an inhibition of the N-deacetylation/N-sulfation process in heparin biosynthesis, along with an augmented formation of molecules with high affinity for antithrombin. Preincubation of the mastocytoma cells with butyrate was required for manifestation of either effect; when the preincubation period was reduced from 24 to 10 h the effects of butyrate were no longer observed. A polysaccharide formed on incubating mastocytoma microsomal fraction with UDP-[ 3 H]glucuronic acid, UDP-N-acetylglucosamine, and 3'-phosphoadenylylsulfate in the presence of 5 mM butyrate showed the same N-acetyl/N-sulfate ratio as did the corresponding control polysaccharide, produced in the absence of butyrate. These findings suggest that the effect of butyrate on heparin biosynthesis depends on the integrity of the cell

  17. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit.

    Science.gov (United States)

    Li, Zhuang; Yi, Chun-Xia; Katiraei, Saeed; Kooijman, Sander; Zhou, Enchen; Chung, Chih Kit; Gao, Yuanqing; van den Heuvel, José K; Meijer, Onno C; Berbée, Jimmy F P; Heijink, Marieke; Giera, Martin; Willems van Dijk, Ko; Groen, Albert K; Rensen, Patrick C N; Wang, Yanan

    2017-11-03

    Butyrate exerts metabolic benefits in mice and humans, the underlying mechanisms being still unclear. We aimed to investigate the effect of butyrate on appetite and energy expenditure, and to what extent these two components contribute to the beneficial metabolic effects of butyrate. Acute effects of butyrate on appetite and its method of action were investigated in mice following an intragastric gavage or intravenous injection of butyrate. To study the contribution of satiety to the metabolic benefits of butyrate, mice were fed a high-fat diet with butyrate, and an additional pair-fed group was included. Mechanistic involvement of the gut-brain neural circuit was investigated in vagotomised mice. Acute oral, but not intravenous, butyrate administration decreased food intake, suppressed the activity of orexigenic neurons that express neuropeptide Y in the hypothalamus, and decreased neuronal activity within the nucleus tractus solitarius and dorsal vagal complex in the brainstem. Chronic butyrate supplementation prevented diet-induced obesity, hyperinsulinaemia, hypertriglyceridaemia and hepatic steatosis, largely attributed to a reduction in food intake. Butyrate also modestly promoted fat oxidation and activated brown adipose tissue (BAT), evident from increased utilisation of plasma triglyceride-derived fatty acids. This effect was not due to the reduced food intake, but explained by an increased sympathetic outflow to BAT. Subdiaphragmatic vagotomy abolished the effects of butyrate on food intake as well as the stimulation of metabolic activity in BAT. Butyrate acts on the gut-brain neural circuit to improve energy metabolism via reducing energy intake and enhancing fat oxidation by activating BAT. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Butyrate decreases its own oxidation in colorectal cancer cells through inhibition of histone deacetylases.

    Science.gov (United States)

    Han, Anna; Bennett, Natalie; Ahmed, Bettaieb; Whelan, Jay; Donohoe, Dallas R

    2018-06-05

    Colorectal cancer is characterized by an increase in the utilization of glucose and a diminishment in the oxidation of butyrate, which is a short chain fatty acid. In colorectal cancer cells, butyrate inhibits histone deacetylases to increase the expression of genes that slow the cell cycle and induce apoptosis. Understanding the mechanisms that contribute to the metabolic shift away from butyrate oxidation in cancer cells is important in in understanding the beneficial effects of the molecule toward colorectal cancer. Here, we demonstrate that butyrate decreased its own oxidation in cancerous colonocytes. Butyrate lowered the expression of short chain acyl-CoA dehydrogenase, an enzyme that mediates the oxidation of short-chain fatty acids. Butyrate does not alter short chain acyl-CoA dehydrogenase levels in non-cancerous colonocytes. Trichostatin A, a structurally unrelated inhibitor of histone deacetylases, and propionate also decreased the level of short chain acyl-CoA dehydrogenase, which alluded to inhibition of histone deacetylases as a part of the mechanism. Knockdown of histone deacetylase isoform 1, but not isoform 2 or 3, inhibited the ability of butyrate to decrease short chain acyl-CoA dehydrogenase expression. This work identifies a mechanism by which butyrate selective targets colorectal cancer cells to reduce its own metabolism.

  19. Destructive effects of butyrate on the cell envelope of Helicobacter pylori.

    Science.gov (United States)

    Yonezawa, Hideo; Osaki, Takako; Hanawa, Tomoko; Kurata, Satoshi; Zaman, Cynthia; Woo, Timothy Derk Hoong; Takahashi, Motomichi; Matsubara, Sachie; Kawakami, Hayato; Ochiai, Kuniyasu; Kamiya, Shigeru

    2012-04-01

    Helicobacter pylori can be found in the oral cavity and is mostly detected by the use of PCR techniques. Growth of H. pylori is influenced by various factors in the mouth, such as the oral microflora, saliva and other antimicrobial substances, all of which make colonization of the oral cavity by H. pylori difficult. In the present study, we analysed the effect of the cell supernatant of a representative periodontal bacterium Porphyromonas gingivalis on H. pylori and found that the cell supernatant destroyed the H. pylori cell envelope. As P. gingivalis produces butyric acid, we focused our research on the effects of butyrate and found that it significantly inhibited the growth of H. pylori. H. pylori cytoplasmic proteins and DNA were detected in the extracellular environment after treatment with butyrate, suggesting that the integrity of the cell envelope was compromised and indicating that butyrate has a bactericidal effect on H. pylori. In addition, levels of extracellular H. pylori DNA increased following treatment with the cell supernatant of butyric acid-producing bacteria, indicating that the cell supernatant also has a bactericidal effect and that this may be due to its butyric acid content. In conclusion, butyric acid-producing bacteria may play a role in affecting H. pylori colonization of the oral cavity.

  20. Models construction for acetone-butanol-ethanol fermentations with acetate/butyrate consecutively feeding by graph theory.

    Science.gov (United States)

    Li, Zhigang; Shi, Zhongping; Li, Xin

    2014-05-01

    Several fermentations with consecutively feeding of acetate/butyrate were conducted in a 7 L fermentor and the results indicated that exogenous acetate/butyrate enhanced solvents productivities by 47.1% and 39.2% respectively, and changed butyrate/acetate ratios greatly. Then extracellular butyrate/acetate ratios were utilized for calculation of acids rates and the results revealed that acetate and butyrate formation pathways were almost blocked by corresponding acids feeding. In addition, models for acetate/butyrate feeding fermentations were constructed by graph theory based on calculation results and relevant reports. Solvents concentrations and butanol/acetone ratios of these fermentations were also calculated and the results of models calculation matched fermentation data accurately which demonstrated that models were constructed in a reasonable way. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Side chain effect on electronic structure of spin-coated films of [6,6]-phenyl-C{sub 61}-butyric acid methyl ester and its bis-adduct

    Energy Technology Data Exchange (ETDEWEB)

    Akaike, Kouki, E-mail: akaike@riken.jp [Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Kanai, Kaname [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda 278-8510 (Japan); Ouchi, Yukio; Seki, Kazuhiko [Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan)

    2013-03-29

    Highlights: ► Electronic structure of spin-coated films of PCBM and bis-PCBM was investigated. ► Ionization energy and electron affinity of bis-PCBM are smaller than those of PCBM. ► Electron donation from the side chain to C{sub 60}-backbone raises the HOMO and LUMO. ► Open circuit voltages of PCBM-based solar cells relates to electron affinities. - Abstract: We investigated the electronic structure of spin-coated films of two soluble fullerenes; [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) and its bis-adduct (bis-PCBM) using ultraviolet photoelectron spectroscopy, inverse photoemission spectroscopy and molecular orbital calculations. The ionization energy and electron affinity of spin-coated films of bis-PCBM were determined to be 6.01 eV and 3.4 eV, respectively. Analysis of electron density suggested the stronger electron donation from the two side chains to fullerene-backbone in a bis-PCBM molecule, compared with PCBM. The electron donation raises the energies of the frontier orbitals of bis-PCBM, which mainly consist of π-orbitals of fullerene-backbone. As a result, the ionization energy and electron affinity of bis-PCBM are smaller than those of PCBM. Moreover, we also concluded that the larger open circuit voltage observed for bis-PCBM based organic photovoltaics was explained by the higher-lying unoccupied molecular orbital of bis-PCBM.

  2. Extraction and high-performance liquid chromatographic analysis of C60, C70, and [6,6]-phenyl C61-butyric acid methyl ester in synthetic and natural waters.

    Science.gov (United States)

    Bouchard, Dermont; Ma, Xin

    2008-09-05

    Studies have shown that C(60) fullerene can form stable colloidal suspensions in water that result in C(60) aqueous concentrations many orders of magnitude above C(60)'s aqueous solubility; however, quantitative methods for the analysis of C(60) and other fullerenes in environmental media are scarce. Using a 80/20v/v toluene-acetonitrile mobile phase and a 4.6 mm x 150 mm Cosmosil 5micron PYE column, C(60), C(70), and PCBM ([6,6]-phenyl C(61)-butyric acid methyl ester) were fully resolved. Selectivity factors (alpha) for C(60) relative to PCBM and C(70) relative to C(60) were 3.18 and 2.19, respectively. The best analytical wavelengths for the fullerenes were determined to be 330, 333, and 333 nm with log molar absorption coefficients (log epsilon) of 4.63, 4.82, and 4.60 for PCBM, C(60), C(70), respectively. Extraction and quantitation of all three fullerenes in aqueous suspensions over a range of pH (4-10) and ionic strengths were very good. Whole-method quantification limits for ground and surface suspensions were 2.87, 2.48, and 6.54 microg/L for PCBM, C(60), and C(70), respectively.

  3. Formation of a ground-state charge-transfer complex in Polyfluorene//[6,6]-Phenyl-C61 butyric acid methyl ester (PCBM) blend films and its role in the function of polymer/PCBM solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Benson-Smith, J.J.; Bradley, D.D.C.; Nelson, J. [Department of Physics, Imperial College London, London SW7 2BW (United Kingdom); Goris, L.; Vandewal, K.; Haenen, K.; Manca, J.V.; Vanderzande, D. [Institute for Materials Research, Limburgs Universitair Centrum, Wetenschapspark 1, 3590 Diepenbeek (Belgium)

    2007-02-12

    Evidence is presented for the formation of a weak ground-state charge-transfer complex in the blend films of poly[9,9-dioctylfluorene-co-N-(4-methoxyphenyl)diphenylamine] polymer (TFMO) and [6,6]-phenyl-C{sub 61} butyric acid methyl ester (PCBM), using photothermal deflection spectroscopy (PDS) and photoluminescence (PL) spectroscopy. Comparison of this polymer blend with other polyfluorene polymer/PCBM blends shows that the appearance of this ground-state charge-transfer complex is correlated to the ionization potential of the polymer, but not to the optical gap of the polymer or the surface morphology of the blend film. Moreover, the polymer/PCBM blend films in which this charge-transfer complex is observed also exhibit efficient photocurrent generation in photovoltaic devices, suggesting that the charge-transfer complex may be involved in charge separation. Possible mechanisms for this charge-transfer state formation are discussed as well as the significance of this finding to the understanding and optimization of polymer blend solar cells. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  4. Mechanism of Butyrate Stimulation of Triglyceride Storage and Adipokine Expression during Adipogenic Differentiation of Porcine Stromovascular Cells.

    Directory of Open Access Journals (Sweden)

    Hui Yan

    Full Text Available Short chain fatty acids (SCFA, products of microbial fermentation of dietary fiber, exert multiple metabolic effects in cells. Previously, we had demonstrated that soluble fiber influenced fat mass accumulation, gut microbial community structure and SCFA production in pigs. The current study was designed to identify effects of SCFA treatment during adipogenic differentiation of porcine stromovascular cells on lipid metabolism and adipokine expression. Differentiating cells were treated with varying concentrations of butyrate. Results show that butyrate treatment enhanced adipogenesis and lipid accumulation, perhaps through upregulation of glucose uptake and de novo lipogenesis and other mechanisms that include induction of SREBP-1c, C/EBPα/β, GLUT4, LPL, PPARγ, GPAT4, DGAT1 and DGAT2 expression. In addition, butyrate induced adiponectin expression, resulting in activation of downstream target genes, such as AMPK and AKT. Activation of AMPK by butyrate led to phosphorylation of ACC. Although increased ACO gene expression was seen with butyrate treatment, experiments with the peroxisomal fatty acid inhibitor, thioridazine, suggest that butyrate may have an inhibitory effect on peroxisomal fatty acid oxidation. Our studies also provide evidence that butyrate may inhibit lipolysis, perhaps in an FFAR3-dependent manner. Therefore, this study presents a novel paradigm for butyrate action in adipocytes and shows that adipocytes are capable of utilizing butyrate, leading to increased expression of adiponectin for enhanced glucose uptake and improved insulin sensitivity.

  5. Differential responses to isoprenoid, N-6-substituted aromatic cytokinins and indole-3-butyric acid in direct plant regeneration of Eriocephalus africanus

    Czech Academy of Sciences Publication Activity Database

    Madzikane-Mlungwana, O.; Moyo, M.; Aremu, A.O.; Plíhalová, Lucie; Doležal, Karel; Van Staden, J.; Finnie, J.F.

    2017-01-01

    Roč. 82, č. 1 (2017), s. 103-110 ISSN 0167-6903 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : in-vitro cultures * auxin transport * meta-topolin * antioxidant activity * biological-activity * arabidopsis roots * phenolic-acids * l. asteraceae * south-africa * flavonoids * Auxins * Cytokinins * Flavonoids * Plant regeneration * Phenolics Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 2.646, year: 2016

  6. Kinetics of Butyrate, Acetate, and Hydrogen Metabolism in a Thermophilic, Anaerobic, Butyrate-Degrading Triculture

    OpenAIRE

    Ahring, Birgitte K.; Westermann, Peter

    1987-01-01

    Kinetics of butyrate, acetate, and hydrogen metabolism were determined with butyrate-limited, chemostat-grown tricultures of a thermophilic butyrate-utilizing bacterium together with Methanobacterium thermoautotrophicum and the TAM organism, a thermophilic acetate-utilizing methanogenic rod. Kinetic parameters were determined from progress curves fitted to the integrated form of the Michaelis-Menten equation. The apparent half-saturation constants, Km, for butyrate, acetate, and dissolved hyd...

  7. Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis.

    Directory of Open Access Journals (Sweden)

    Jintao Zhang

    Full Text Available Butyrate, a short-chain fatty acid derived from dietary fiber, inhibits proliferation and induces cell death in colorectal cancer cells. However, clinical trials have shown mixed results regarding the anti-tumor activities of butyrate. We have previously shown that sodium butyrate increases endoplasmic reticulum stress by altering intracellular calcium levels, a well-known autophagy trigger. Here, we investigated whether sodium butyrate-induced endoplasmic reticulum stress mediated autophagy, and whether there was crosstalk between autophagy and the sodium butyrate-induced apoptotic response in human colorectal cancer cells.Human colorectal cancer cell lines (HCT-116 and HT-29 were treated with sodium butyrate at concentrations ranging from 0.5-5mM. Cell proliferation was assessed using MTT tetrazolium salt formation. Autophagy induction was confirmed through a combination of Western blotting for associated proteins, acridine orange staining for acidic vesicles, detection of autolysosomes (MDC staining, and electron microscopy. Apoptosis was quantified by flow cytometry using standard annexinV/propidium iodide staining and by assessing PARP-1 cleavage by Western blot.Sodium butyrate suppressed colorectal cancer cell proliferation, induced autophagy, and resulted in apoptotic cell death. The induction of autophagy was supported by the accumulation of acidic vesicular organelles and autolysosomes, and the expression of autophagy-associated proteins, including microtubule-associated protein II light chain 3 (LC3-II, beclin-1, and autophagocytosis-associated protein (Atg3. The autophagy inhibitors 3-methyladenine (3-MA and chloroquine inhibited sodium butyrate induced autophagy. Furthermore, sodium butyrate treatment markedly enhanced the expression of endoplasmic reticulum stress-associated proteins, including BIP, CHOP, PDI, and IRE-1a. When endoplasmic reticulum stress was inhibited by pharmacological (cycloheximide and mithramycin and genetic

  8. Spray deposition of poly(3-hexylthiophene) and [6,6]-phenyl-C{sub 61}-butyric acid methyl ester blend under electric field for improved interface and organic solar cell characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, Neha, E-mail: nchaturvedi9@gmail.com; Swami, Sanjay Kumar; Dutta, Viresh

    2016-01-01

    Spray process is used for the deposition of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) blend film under different voltages (0 V, 300 V, 500 V and 700 V) applied to the nozzle. The presence of the electric field during the spray process makes the P3HT:PCBM film smoother, uniform and more crystalline with well aligned domains. X-ray photoelectron spectroscopy study shows that PCBM rich surface is formed by application of the DC voltage (700 V) which improves the electron transport at the active layer and cathode interface. The application of electric field reduces the recombination at interfaces. The increased charge carrier separation between donor and acceptor at the interface and the crystallinity enhancement result in improved short circuit current density–voltage characteristics of Indium tin oxide/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) /P3HT:PCBM/Aluminum solar cell. The organic bulk-heterojunction solar cell using the electric field assisted spray deposited PEDOT:PSS and P3HT:PCBM layers exhibited 84% and 154% increment in the short circuit current density and power conversion efficiency, respectively in comparison to the solar cell having spray deposited PEDOT:PSS and P3HT:PCBM layers in the absence of the electric field. - Highlights: • Spray deposition of P3HT:PCBM is carried out. • Spray deposition under electric field is done. • Electric field application enhanced the crystallinity of the layers. • P3HT:PCBM film arranged in more ordered form with electric field • Efficiency of organic solar cell is enhanced with application of electric field.

  9. A novel approach for the characterization of a bilayer of phenyl-c71-butyric-acid-methyl ester and pentacene using ultraviolet photoemission spectroscopy and argon gas cluster ion beam sputtering process

    International Nuclear Information System (INIS)

    Yun, Dong-Jin; Chung, JaeGwan; Jung, Changhoon; Chung, Yeonji; Kim, SeongHeon; Lee, Seunghyup; Kim, Ki-Hong; Han, Hyouksoo; Park, Gyeong-Su; Park, SungHoon

    2013-01-01

    The material arrangement and energy level alignment of an organic bilayer comprising of phenyl-c71-butyric-acid-methyl ester (PCBM-71) and pentacene were studied using ultraviolet photoelectron spectroscopy (UPS) and the argon gas cluster ion beam (GCIB) sputtering process. Although there is a small difference in the full width at half maximum of the carbon C 1s core level peaks and differences in the oxygen O 1s core levels of an X-ray photoemission spectroscopy spectra, these differences are insufficient to clearly distinguish between PCBM-71 and pentacene layers and to classify the interface and bulk regions. On the other hand, the valence band structures in the UPS spectra contain completely distinct configurations for the PCBM-71 and pentacene layers, even when they have similar atomic compositions. According to the valence band structures of the PCBM-71/pentacene/electrodes, the highest unoccupied molecular orbital (HOMO) region of pentacene is at least 0.8 eV closer to the Fermi level than that of PCBM-71 and it does not overlap with any of the chemical states in the valence band structure of PCBM-71. Therefore, by just following the variations in the area of the HOMO region of pentacene, the interface/bulk regions of the PCBM/pentacene layers were distinctly categorized. Besides, the variation of valence band structures as a function of the Ar GCIB sputtering time fully corroborated with the surface morphologies observed in the atomic force microscope images. In summary, we believe that the novel approach, which involves UPS analysis in conjunction with Ar GCIB sputtering, can be one of the best methods to characterize the material distribution and energy level alignments of stacks of organic layers

  10. A novel approach for the characterization of a bilayer of phenyl-c71-butyric-acid-methyl ester and pentacene using ultraviolet photoemission spectroscopy and argon gas cluster ion beam sputtering process

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Dong-Jin; Chung, JaeGwan; Jung, Changhoon; Chung, Yeonji; Kim, SeongHeon; Lee, Seunghyup; Kim, Ki-Hong; Han, Hyouksoo; Park, Gyeong-Su; Park, SungHoon [Analytical Science Laboratory of Samsung Advanced Institute of Technology, P.O. Box 14-1, Yongin 446-712 (Korea, Republic of)

    2013-09-07

    The material arrangement and energy level alignment of an organic bilayer comprising of phenyl-c71-butyric-acid-methyl ester (PCBM-71) and pentacene were studied using ultraviolet photoelectron spectroscopy (UPS) and the argon gas cluster ion beam (GCIB) sputtering process. Although there is a small difference in the full width at half maximum of the carbon C 1s core level peaks and differences in the oxygen O 1s core levels of an X-ray photoemission spectroscopy spectra, these differences are insufficient to clearly distinguish between PCBM-71 and pentacene layers and to classify the interface and bulk regions. On the other hand, the valence band structures in the UPS spectra contain completely distinct configurations for the PCBM-71 and pentacene layers, even when they have similar atomic compositions. According to the valence band structures of the PCBM-71/pentacene/electrodes, the highest unoccupied molecular orbital (HOMO) region of pentacene is at least 0.8 eV closer to the Fermi level than that of PCBM-71 and it does not overlap with any of the chemical states in the valence band structure of PCBM-71. Therefore, by just following the variations in the area of the HOMO region of pentacene, the interface/bulk regions of the PCBM/pentacene layers were distinctly categorized. Besides, the variation of valence band structures as a function of the Ar GCIB sputtering time fully corroborated with the surface morphologies observed in the atomic force microscope images. In summary, we believe that the novel approach, which involves UPS analysis in conjunction with Ar GCIB sputtering, can be one of the best methods to characterize the material distribution and energy level alignments of stacks of organic layers.

  11. Chemical processing for production of no-carrier-added selenium-73 from germanium and arsenic targets and synthesis of L-2-amino-4-([73Se]methylseleno) butyric acid (L-[73Se]selenomethionine)

    International Nuclear Information System (INIS)

    Plenevaux, A.; Guillaume, M.; Brihaye, C.; Lemaire, C.; Cantineau, R.

    1990-01-01

    The Ge( 4 He,xn) and 75 As(p,3n) reactions were compared as the best potential routes for routine production of selenium-73 ( 73 Se) for medical applications. With 26 MeV α particles, available with compact cyclotrons, the first reaction required an enriched 70 Ge target of sodium metagermanate to give a production yield of 1 mCi/μAh (0.037 GBq/μAh) in a 105 mg/cm 2 target. With 55 MeV protons the As(p,3n) reaction on natural arsenic yielded 20 mCi/μAh (0.74 GBq/μAh) in a 685 mg/cm 2 target. A simple method was developed and optimized for both targets in order to isolate and purify the no-carrier-added selenium in the elemental form with a radiochemical yield greater than 75% in less than 90 min. An automated radiochemical processing unit has been designed for the routine production of 100-150 mCi(3.7-5.5 GBq) batches of carrier-free 73 Se ready for radiopharmaceutical labeling. 30 mCi (1.11 GBq) (EOS) of L-2-amino-4-([ 73 Se]methylseleno) butyric acid (L-[ 73 Se]selenomethionine) ready for injection with a specific activity of 5 Ci/mmol (185 GBq/mmol) (EOS) were obtained through a fast chemical synthesis. Radiation absorbed dose estimates for L-[ 73 Se ]selenomethionine have been determined. A value of 0.70 rem/mCi (0.19 mSv/MBq) administered was calculated for the risk from irradiation in man. The first human PET investigation with [ 73 Se]selenomethionine showed a very good delineation between liver and pancreas. (author)

  12. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis?

    Science.gov (United States)

    Stilling, Roman M; van de Wouw, Marcel; Clarke, Gerard; Stanton, Catherine; Dinan, Timothy G; Cryan, John F

    2016-10-01

    Several lines of evidence suggest that brain function and behaviour are influenced by microbial metabolites. Key products of the microbiota are short-chain fatty acids (SCFAs), including butyric acid. Butyrate is a functionally versatile molecule that is produced in the mammalian gut by fermentation of dietary fibre and is enriched in butter and other dairy products. Butyrate along with other fermentation-derived SCFAs (e.g. acetate, propionate) and the structurally related ketone bodies (e.g. acetoacetate and d-β-hydroxybutyrate) show promising effects in various diseases including obesity, diabetes, inflammatory (bowel) diseases, and colorectal cancer as well as neurological disorders. Indeed, it is clear that host energy metabolism and immune functions critically depend on butyrate as a potent regulator, highlighting butyrate as a key mediator of host-microbe crosstalk. In addition to specific receptors (GPR43/FFAR2; GPR41/FFAR3; GPR109a/HCAR2) and transporters (MCT1/SLC16A1; SMCT1/SLC5A8), its effects are mediated by utilisation as an energy source via the β-oxidation pathway and as an inhibitor of histone deacetylases (HDACs), promoting histone acetylation and stimulation of gene expression in host cells. The latter has also led to the use of butyrate as an experimental drug in models for neurological disorders ranging from depression to neurodegenerative diseases and cognitive impairment. Here we provide a critical review of the literature on butyrate and its effects on multiple aspects of host physiology with a focus on brain function and behaviour. We find fundamental differences in natural butyrate at physiological concentrations and its use as a neuropharmacological agent at rather high, supraphysiological doses in brain research. Finally, we hypothesise that butyrate and other volatile SCFAs produced by microbes may be involved in regulating the impact of the microbiome on behaviour including social communication. Copyright © 2016 Elsevier Ltd. All

  13. Upregulation of genes related to bone formation by γ-amino butyric acid and γ-oryzanol in germinated brown rice is via the activation of GABAB-receptors and reduction of serum IL-6 in rats.

    Science.gov (United States)

    Muhammad, Sani Ismaila; Maznah, Ismail; Mahmud, Rozi; Zuki, Abu Bakar Zakaria; Imam, Mustapha Umar

    2013-01-01

    Osteoporosis and other bone degenerative diseases are among the most challenging non-communicable diseases to treat. Previous works relate bone loss due to osteoporosis with oxidative stress generated by free radicals and inflammatory cytokines. Alternative therapy to hormone replacement has been an area of interest to researchers for almost three decades due to hormone therapy-associated side effects. In this study, we investigated the effects of gamma-amino butyric acid (GABA), gamma-oryzanol (ORZ), acylated steryl glucosides (ASG), and phenolic extracts from germinated brown rice (GBR) on the expression of genes related to bone metabolism, such as bone morphogenic protein-2 (BMP-2), secreted protein acidic and rich in cysteine (SPARC), runt-related transcription factor 2 (RUNX-2), osteoblast-specific transcription factor osterix (Osx), periostin, osteoblast specific factor (Postn), collagen 1&2 (Col1&2), calcitonin receptor gene (CGRP); body weight measurement and also serum interleukin-6 (IL-6) and osteocalcin, in serum and bone. Rats were treated with GBR, ORZ, GABA, and ASG at (100 and 200 mg/kg); estrogen (0.2 mg/kg), or remifemin (10 and 20 mg/kg), compared to ovariectomized non-treated group as well as non-ovariectomized non-treated (sham) group. Enzyme-linked immunosorbent assay was used to measure the IL-6 and osteocalcin levels at week 2, 4, and 8, while the gene expression in the bone tissue was determined using the Genetic Analysis System (Beckman Coulter Inc., Brea, CA, USA). The results indicate that groups treated with GABA (100 and 200 mg/kg) showed significant upregulation of SPARC, calcitonin receptor, and BMP-2 genes (P < 0.05), while the ORZ-treated group (100 and 200 mg/kg) revealed significant (P < 0.05) upregulation of Osx, Postn, RUNX-2, and Col1&2. Similarly, IL-6 concentration decreased, while osteocalcin levels increased significantly (P < 0.05) in the treated groups as compared to ovariectomized non-treated groups. GABA and ORZ from

  14. Butyrate transcriptionally enhances peptide transporter PepT1 expression and activity.

    Directory of Open Access Journals (Sweden)

    Guillaume Dalmasso

    Full Text Available BACKGROUND: PepT1, an intestinal epithelial apical di/tripeptide transporter, is normally expressed in the small intestine and induced in colon during chronic inflammation. This study aimed at investigating PepT1 regulation by butyrate, a short-chain fatty acid produced by commensal bacteria and accumulated inside inflamed colonocyte. RESULTS: We found that butyrate treatment of human intestinal epithelial Caco2-BBE cells increased human PepT1 (hPepT1 promoter activity in a dose- and time-dependent manner, with maximal activity observed in cells treated with 5 mM butyrate for 24 h. Under this condition, hPepT1 promoter activity, mRNA and protein expression levels were increased as assessed by luciferase assay, real-time RT-PCR and Western blot, respectively. hPepT1 transport activity was accordingly increased by approximately 2.5-fold. Butyrate did not alter hPepT1 mRNA half-life indicating that butyrate acts at the transcriptional level. Molecular analyses revealed that Cdx2 is the most important transcription factor for butyrate-induced increase of hPepT1 expression and activity in Caco2-BBE cells. Butyrate-activated Cdx2 binding to hPepT1 promoter was confirmed by gel shift and chromatin immunoprecipitation. Moreover, Caco2-BBE cells overexpressing Cdx2 exhibited greater hPepT1 expression level than wild-type cells. Finally, treatment of mice with 5 mM butyrate added to drinking water for 24 h increased colonic PepT1 mRNA and protein expression levels, as well as enhanced PepT1 transport activity in colonic apical membranes vesicles. CONCLUSIONS: Collectively, our results demonstrate that butyrate increases PepT1 expression and activity in colonic epithelial cells, which provides a new understanding of PepT1 regulation during chronic inflammation.

  15. Parameters for Novel Production of Fruity Floral Fragrance Ester (Geranyl Butyrate) by Locally Isolated Lipase Geobacillus thermodenitrificans nr68 (LGT)

    Science.gov (United States)

    Nik Raikhan, N. H.

    2018-05-01

    Geranyl butyrate has been synthesized successfully using our locally isolated lipase Geobacillus thermodenitrificans nr68 (LGT) as the fragrance ester with aim to be used in a nanotechnology fragrance application. We have used and modified few parameters from the previous research and then, continued with optimization of the synthesis by looking into degree of esterification and water content in the system. Butyric acid (C4), stearic acid (C18: 0), caprylic acid (C8), linolenic acid (C18: 3), myristic acid (C14), linoleic acid (C18: 2) and oleic acid (C18: 1) were used in the substrate selection. The yield of geranyl butyrate before the optimization was 31.68±0.01%. The optimum parameters for the synthesis of geranyl butyrate were recorded as temperature of 65°C, shaking rate at 200 rpm, 5.0 ml of geraniol and 0.40 ml of butyric acid and 4.0 ml of n-butanol and 0.40 ml of oleic acid. After the optimization, geranyl butyrate synthesis was increased by 297% as to compare with the value before the parameters were optimized. We also have significantly reduced water content as a byproduct of the esterification and managed to run the system a success. The ability thermotolerant lipase from Geobacillus thermodenitrificans (LGT) in this synthesis is novel to Malaysian fragrance industry.

  16. n-Butyrate inhibits Jun NH(2)-terminal kinase activation and cytokine transcription in mast cells

    International Nuclear Information System (INIS)

    Diakos, Christos; Prieschl, Eva E.; Saeemann, Marcus D.; Boehmig, Georg A.; Csonga, Robert; Sobanov, Yury; Baumruker, Thomas; Zlabinger, Gerhard J.

    2006-01-01

    Mast cells are well known to contribute to type I allergic conditions but only recently have been brought in association with chronic relapsing/remitting autoimmune diseases such as celiac disease and ulcerative colitis. Since the bacterial metabolite n-butyrate is considered to counteract intestinal inflammation we investigated the effects of this short chain fatty acid on mast cell activation. Using RNAse protection assays and reporter gene technology we show that n-butyrate downregulates TNF-α transcription. This correlates with an impaired activation of the Jun NH(2)-terminal kinase (JNK) but not other MAP kinases such as ERK and p38 that are largely unaffected by n-butyrate. As a consequence, we observed a decreased nuclear activity of AP-1 and NF-AT transcription factors. These results indicate that n-butyrate inhibits critical inflammatory mediators in mast cells by relatively selectively targeting the JNK signalling

  17. X-ray crystallographic study of 3-Oxo-2-{[4-(thiazol-2-ylsulfamoyl)-phenyl]-hydrazono}-butyric acid ethyl ester and its application in the solvent assisted naked eye sensing of Hg(II)

    Science.gov (United States)

    Upadhyay, K. K.; Upadhyay, Shalini; Kumar, Kamlesh; Prasad, Rajendra

    2009-06-01

    The 3-Oxo-2-{[4-(thiazol-2-ylsulfamoyl)-phenyl]-hydrazono}-butyric acid ethyl ester (OSPBE) was studied through single crystal structure analysis revealing some interesting supramolecular architectural patterns. The N(3)-N(4) bond length of OSPBE was found to be 1.36 Å matching well with reported N-N bond length in the literature and hence clearly proved that it is the keto form of OSPBE which is stable. Full structural optimization of OSPBE using density functional theory (DFT) at the HCTH407/6-31G ∗∗ level also proved that the keto form of OSPBE is stable. The UV-Vis absorption peaks for OSPBE predicted by the time dependent DFT at B3LYP/6-311G ∗∗ level matched quite well with the experimentally observed UV-Vis bands for OSPBE. The OSPBE was successfully tested as the naked eye sensor for Hg(II) as its chloride salt at the millimolar level in dimethylsulfoxide. A color change from red orange to olive green was observed on addition of 1.0 equiv. of Hg(II) to the 1.0 × 10 -3 M DMSO solution of the chemosensor. The role of DMSO in the sensing process appears to be the crucial one because the intramolecular charge transfer (ICT) band of OSPBE in DMSO observed at 489 nm did not appear in the UV-Vis spectrum of OSPBE in nujol. The UV-Vis and 1H NMR titrations revealed that formation of six membered 1:1 chelate between OSPBE and Hg(II) along with reversible supramolecular association of DMSO with NH at N-2 position in OSPBE may be responsible for its Hg(II) sensing. No sensing for other d 10 metal ions like Zn(II) and Cd(II) were observed with OSPBE under similar conditions. Besides DMSO, some other polar aprotic solvents like DMF and acetone having X dbnd O (where X = C) also produced similar type of color change on the addition of 1.0 equiv. of Hg(II) to their respective 1.0 × 10 -3 M OSPBE solutions. Nevertheless, polar aprotic solvent like acetonitrile not having X dbnd O or non-polar aprotic solvent like chloroform no color change was observed under

  18. Indol-butyric acid levels on cashew cloning by air-layering process Níveis de ácido indolbutírico na clonagem do cajueiro pelo processo de mergulhia aérea

    Directory of Open Access Journals (Sweden)

    Rodrigo Luiz Lopes

    2005-12-01

    Full Text Available A study was conducted to determine the possibility of cashew (Anacardium occidentale cloning by air-layering and influence of IBA (indol-butyric acid on this process. It was adopted a completely randomized design with 4 treatments, 10 air layers each and 4 replications, reaching 160 air layers. The IBA levels on the treatments were, as follow: 0, 1000, 3000 and 5000 mg.kg-1. It was evaluated: survival, callus and rooting percentage, average number and length of roots. The highest survival rate (67.5% was registered with no growth regulator and IBA at 1000 mg.kg-1, while the best rooting percentage (82% referred to 1000 mg.kg-1. In spite of average number and length of roots, the highest results were observed with IBA at 5000 mg.kg-1. IBA concentrations had no influence on cashew air-layering formation.Um estudo foi conduzido com a finalidade de determinar a possibilidade de clonagem do cajueiro (Anacardium occidentale por alporquia e a influência do AIB (ácido indolbutírico nesse processo. Adotou-se delineamento experimental inteiramente casualizado, com 4 tratamentos, 10 alporques por parcela, repetidos por 4 vezes, num total de 160 alporques. Os tratamentos constaram das concentrações de AIB: 0 (testemunha, 1.000, 3.000 e 5.000 mg.kg-1. Foram avaliadas as percentagens de sobrevivência, calejamento e enraizamento, bem como número e comprimento médio de raízes. A maior percentagem de sobrevivência (67,5% foi observada para a testemunha e concentração de 1.000 mg.kg-1, enquanto a melhor percentagem de enraizamento (82% foi relacionada com o nível de 1.000 mg.kg-1. Para o número e comprimento médio de raízes, os melhores resultados foram concernentes à dose de 5.000 mg.kg-1. Não houve influência do AIB na clonagem do cajueiro por alporquia.

  19. Bicarbonate-dependent transport of acetate and butyrate across the basolateral membrane of sheep rumen epithelium.

    Science.gov (United States)

    Dengler, F; Rackwitz, R; Benesch, F; Pfannkuche, H; Gäbel, G

    2014-02-01

    This study aimed to assess the role of HCO₃⁻ in the transport of acetate and butyrate across the basolateral membrane of rumen epithelium and to identify transport proteins involved. The effects of basolateral variation in HCO₃⁻ concentrations on acetate and butyrate efflux out of the epithelium and the transepithelial flux of these short-chain fatty acids were tested in Ussing chamber experiments using (14)C-labelled substrates. HCO₃⁻-dependent transport mechanisms were characterized by adding specific inhibitors of candidate proteins to the serosal side. Effluxes of acetate and butyrate out of the epithelium were higher to the serosal side than to the mucosal side. Acetate and butyrate effluxes to both sides of rumen epithelium consisted of HCO₃⁻-independent and -dependent parts. HCO₃⁻-dependent transport across the basolateral membrane was confirmed in studies of transepithelial fluxes. Mucosal to serosal fluxes of acetate and butyrate decreased with lowering serosal HCO₃⁻ concentrations. In the presence of 25 mm HCO₃⁻, transepithelial flux of acetate was inhibited effectively by p-hydroxymercuribenzoic acid or α-cyano-4-hydroxycinnamic acid, while butyrate flux was unaffected by the blockers. Fluxes of both acetate and butyrate from the serosal to the mucosal side were diminished largely by the addition of NO₃⁻ to the serosal side, with this effect being more pronounced for acetate. Our results indicate the existence of a basolateral short-chain fatty acid/HCO₃⁻ exchanger, with monocarboxylate transporter 1 as a primary candidate for acetate transfer. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  20. Perturbation dynamics of the rumen microbiota in response to exogenous butyrate.

    Directory of Open Access Journals (Sweden)

    Robert W Li

    Full Text Available The capacity of the rumen microbiota to produce volatile fatty acids (VFAs has important implications in animal well-being and production. We investigated temporal changes of the rumen microbiota in response to butyrate infusion using pyrosequencing of the 16S rRNA gene. Twenty one phyla were identified in the rumen microbiota of dairy cows. The rumen microbiota harbored 54.5±6.1 genera (mean ± SD and 127.3±4.4 operational taxonomic units (OTUs, respectively. However, the core microbiome comprised of 26 genera and 82 OTUs. Butyrate infusion altered molar percentages of 3 major VFAs. Butyrate perturbation had a profound impact on the rumen microbial composition. A 72 h-infusion led to a significant change in the numbers of sequence reads derived from 4 phyla, including 2 most abundant phyla, Bacteroidetes and Firmicutes. As many as 19 genera and 43 OTUs were significantly impacted by butyrate infusion. Elevated butyrate levels in the rumen seemingly had a stimulating effect on butyrate-producing bacteria populations. The resilience of the rumen microbial ecosystem was evident as the abundance of the microorganisms returned to their pre-disturbed status after infusion withdrawal. Our findings provide insight into perturbation dynamics of the rumen microbial ecosystem and should guide efforts in formulating optimal uses of probiotic bacteria treating human diseases.

  1. Quantitative and temporal proteome analysis of butyrate-treated colorectal cancer cells.

    Science.gov (United States)

    Tan, Hwee Tong; Tan, Sandra; Lin, Qingsong; Lim, Teck Kwang; Hew, Choy Leong; Chung, Maxey C M

    2008-06-01

    Colorectal cancer is one of the most common cancers in developed countries, and its incidence is negatively associated with high dietary fiber intake. Butyrate, a short-chain fatty acid fermentation by-product of fiber induces cell maturation with the promotion of growth arrest, differentiation, and/or apoptosis of cancer cells. The stimulation of cell maturation by butyrate in colonic cancer cells follows a temporal progression from the early phase of growth arrest to the activation of apoptotic cascades. Previously we performed two-dimensional DIGE to identify differentially expressed proteins induced by 24-h butyrate treatment of HCT-116 colorectal cancer cells. Herein we used quantitative proteomics approaches using iTRAQ (isobaric tags for relative and absolute quantitation), a stable isotope labeling methodology that enables multiplexing of four samples, for a temporal study of HCT-116 cells treated with butyrate. In addition, cleavable ICAT, which selectively tags cysteine-containing proteins, was also used, and the results complemented those obtained from the iTRAQ strategy. Selected protein targets were validated by real time PCR and Western blotting. A model is proposed to illustrate our findings from this temporal analysis of the butyrate-responsive proteome that uncovered several integrated cellular processes and pathways involved in growth arrest, apoptosis, and metastasis. These signature clusters of butyrate-regulated pathways are potential targets for novel chemopreventive and therapeutic drugs for treatment of colorectal cancer.

  2. Fat coating of Ca butyrate results in extended butyrate release in the gastrointestinal tract of broilers

    NARCIS (Netherlands)

    Borne, van den J.J.G.C.; Heetkamp, M.J.W.; Buyse, J.; Niewold, T.A.

    2015-01-01

    Based on its described beneficial effects on small and large intestinal epithelium, butyrate can be a very good alternative to antimicrobial growth promoters. Effective dietary application requires coating because the majority of uncoated butyrate is purportedly absorbed before reaching the proximal

  3. Stimulation of butyrate absorption in the human rectum in vivo

    DEFF Research Database (Denmark)

    Holtug, K; Hove, H; Mortensen, P B

    1995-01-01

    BACKGROUND: Models of short-chain fatty acid absorption have focused on the stimulation of sodium absorption, an effect mainly located in the proximal colon of man. With the present efforts to utilize butyrate enemas as a treatment of ulcerative colitis, it seemed important to assess the transport...... in the rectum. METHODS: Non-equilibrium dialysis of the rectum was applied by placing dialysis bags containing various electrolyte solutions in the rectum of volunteers for 30 min. In this period changes in ion concentrations were linear with time. Net absorption and secretion rates were calculated from...

  4. [Effect of dietary fiber in the quantitative expression of butyrate receptor GPR43 in rats colon].

    Science.gov (United States)

    Corte Osorio, L Y; Martínez Flores, H E; Ortiz Alvarado, R

    2011-01-01

    Short chain fatty acids (SCFA) acetate, propionate and butyrate are the major anions produced by the bacterial fermentation of dietary fiber (DF) in colon. Recently, butyrate has been recently studied because is important to maintain colonic functions and because it has been related with a protective effect in colorectal cancer, which is mainly, explained by its potential to regulate gene expression by inhibiting enzyme histonedeacetylase (HDAC). Several investigationsshown that SCFAreceptor GPR43 is involved insignal transduction mechanisms once they bind to ligands such as butyrate to generate different physiological effects in colonocytes. Determine if dietary fiber consumption from nopal (Opuntia ficus I.) containing a ratio of soluble-insoluble fiber 40/60, has a direct influence on the quantitative expression of butyrate-specific receptor GPR43. Wistar rats were fed with four different diets formulated at different concentrations of dietary fiber of 0, 5, 15 and 25% of dietary fiber from opuntia, respectively. The results shown an increase in the expression of GPR43 (93.1%) when rats was fed with a 5% fiber diet, using β-actin as a reference gene. The results of this investigation will contribute to determinate the relation of diet with intestinal health for the purpose of expanding the knowledge of butyric acid on colonic functions.

  5. Butyrate down regulates BCL-XL and sensitizes human fibroblasts to radiation and chemotherapy induced apoptosis

    International Nuclear Information System (INIS)

    Chung, Diana H.; Ljungman, Mats; Zhang Fenfen; Chen Feng; McLaughlin, William P.

    1997-01-01

    Purpose/Objective: Butyrate is a short chain fatty acid that has been implicated in the induction of cell cycle arrest, cell differentiation and apoptosis. The purpose of this study was to determine if butyrate treatment sensitizes cells to radiation or chemotherapy induced apoptosis. Materials and Methods: Normal neonatal human diploid fibroblasts were used throughout this study. Apoptosis was scored and quantified using three different methods. First, cell morphology using propidium iodide and fluorescence microscopy was used to qualitatively determine apoptosis and to quantify the percentage of cells undergoing apoptosis. Second, apoptosis induced DNA degradation was scored by quantifying the amount of cells appearing in a sub-G1 peak using fixed and PI-stained cells and flow cytometry. Third, apoptosis-induced DNA degradation was examined by using an assay involving direct lysis of cells in the wells of agarose gels followed by conventional gel electrophoresis. Western blotting was used to quantify the cellular levels of the apoptosis regulators, Bcl-2, Bcl-XL and Bax. Results: Human diploid fibroblasts, which were resistant to radiation induced apoptosis, were found to undergo massive apoptosis when radiation was combined with butyrate treatment. Sensitization was obtained when butyrate was added before or after radiation although the combination of both pre and post-treatment was the most effective. Butyrate was also found to enhance UV light and cisplatin-induced apoptosis. These findings correlated with a reduction of the apoptosis antagonist Bcl-XL. Bcl-XL levels significantly dropped in a time and dose dependent manner. In addition, butyrate effectively blocked UV-induced accumulation of p53. Conclusion: Our results suggest that butyrate may be an attractive agent to use in combination with radiation or chemotherapy to lower the apoptotic threshold of tumor cells, regardless of the p53 status of the tumor cells

  6. Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms

    NARCIS (Netherlands)

    Müller, N.; Worm, P.; Schink, B.; Stams, A.J.M.; Plugge, C.M.

    2010-01-01

    In anoxic environments such as swamps, rice fields and sludge digestors, syntrophic microbial communities are important for decomposition of organic matter to CO2 and CH4. The most difficult step is the fermentative degradation of short-chain fatty acids such as propionate and butyrate. Conversion

  7. Morphological evolution of the poly(3-hexylthiophene)/[6,6]-phenyl-C61-butyric acid methyl ester, oxidation of the silver electrode, and their influences on the performance of inverted polymer solar cells with a sol-gel derived zinc oxide electron selective layer

    International Nuclear Information System (INIS)

    Liu, Meng-Yueh; Chang, Chin-Hsiang; Chang, Chih-Hua; Tsai, Kao-Hua; Huang, Jing-Shun; Chou, Chen-Yu; Wang, Ing-Jye; Wang, Po-Sheng; Lee, Chun-Yu; Chao, Cha-Hsin; Yeh, Chin-Liang; Wu, Chih-I; Lin, Ching-Fuh

    2010-01-01

    The inverted polymer solar cell (PSC) based on a sol-gel derived zinc oxide (ZnO) thin film as an electron selective layer is investigated. The device performance is improved after the fabricated device is placed in air for a few days. The improvement is attributed to the self-organization of the poly(3-hexylthiophene)/[6,6]-phenyl-C 61 -butyric acid methyl ester layer and oxidation of the silver electrode with time, resulting in a significant enhancement in the short circuit current, fill factor and open circuit voltage. The investigation shows that the inverted PSC based on ZnO thin film exhibits a high efficiency of 3.8% on the 6th day after fabrication without the use of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) and encapsulation.

  8. Thermophilic Anaerobic Degradation of Butyrate by a Butyrate-Utilizing Bacterium in Coculture and Triculture with Methanogenic Bacteria

    OpenAIRE

    Ahring, Birgitte K.; Westermann, Peter

    1987-01-01

    We studied syntrophic butyrate degradation in thermophilic mixed cultures containing a butyrate-degrading bacterium isolated in coculture with Methanobacterium thermoautotrophicum or in triculture with M. thermoautotrophicum and the TAM organism, a thermophilic acetate-utilizing methanogenic bacterium. Butyrate was β-oxidized to acetate with protons as the electron acceptors. Acetate was used concurrently with its production in the triculture. We found a higher butyrate degradation rate in th...

  9. Modulation of butyrate anticancer activity by solid lipid nanoparticle delivery: an in vitro investigation on human breast cancer and leukemia cell lines.

    Science.gov (United States)

    Foglietta, Federica; Serpe, Loredana; Canaparo, Roberto; Vivenza, Nicoletta; Riccio, Giovanna; Imbalzano, Erica; Gasco, Paolo; Zara, Gian Paolo

    2014-01-01

    Histone modification has emerged as a promising approach to cancer therapy. The short-chain fatty acid, butyric acid, a histone deacetylase (HD) inhibitor, has shown anticancer activity. Butyrate transcriptional activation is indeed able to withdraw cancer cells from the cell cycle, leading to programmed cell death. Since butyrate's clinical use is hampered by unfavorable pharmacokinetic and pharmacodynamic properties, delivery systems, such as solid lipid nanoparticles (SLN), have been developed to overcome these constraints. In order to outline the influence of butyrate delivery on its anticancer activity, the effects of butyrate as a free (sodium butyrate, NB) or nanoparticle (cholesteryl butyrate solid lipid nanoparticles, CBSLN) formulation on the growth of different human cancer cell lines, such as the promyelocytic leukemia, HL-60, and the breast cancer, MCF-7 was investigated. A detailed investigation into the mechanism of the induced cytotoxicity was also carried out, with a special focus on the modulation of HD and cyclin-dependent kinase (CDK) mRNA gene expression by real time PCR analysis. In HL-60 cells, CBSLN induced a higher and prolonged expression level of the butyrate target genes at lower concentrations than NB. This led to a significant decrease in cell proliferation, along with considerable apoptosis, cell cycle block in the G0/G1 phase, significant inhibition of total HD activity and overexpression of the p21 protein. Conversely, in MCF-7 cells, CBSLN did not enhance the level of expression of the butyrate target genes, leading to the same anticancer activity as that of NB. Solid lipid nanoparticles were able to improve butyrate anticancer activity in HL-60, but not in MCF-7 cells. This is consistent with difference in properties of the cells under study, such as expression of the TP53 tumor suppressor, or the transporter for short-chain fatty acids, SLC5A8.

  10. Steering endogenous butyrate production in the intestinal tract of broilers as a tool to improve gut health

    Directory of Open Access Journals (Sweden)

    Lonneke eOnrust

    2015-12-01

    Full Text Available The ban on antimicrobial growth promoters and efforts to reduce therapeutic antibiotic usage has led to major problems of gastrointestinal dysbiosis in livestock production in Europe. Control of dysbiosis without the use of antibiotics requires a thorough understanding of the interaction between the microbiota and the host mucosa. The gut microbiota of the healthy chicken is highly diverse, producing various metabolic end products, including gases and fermentation acids. The distal gut knows an abundance of bacteria from within the Firmicutes Clostridium clusters IV and XIVa that produce butyric acid, which is one of the metabolites that is sensed by the host as a signal. The host responds by strengthening the epithelial barrier, reducing inflammation, and increasing the production of mucins and antimicrobial peptides. Stimulating the colonization and growth of butyrate producing bacteria thus may help optimizing gut health. Various strategies are available to stimulate butyrate production in the distal gut. These include delivery of prebiotic substrates that are broken down by bacteria into smaller molecules which are then used by butyrate producers, a concept called cross-feeding. Xylo-oligosaccharides (XOS are such compounds as they can be converted to lactate which is further metabolized to butyrate. Probiotic lactic acid producers can be supplied to support the cross-feeding reactions. Direct feeding of butyrate producing Clostridium cluster IV and XIVa strains are a future tool provided that large scale production of strictly anaerobic bacteria can be optimized. Current results of strategies that promote butyrate production in the gut are promising. Nevertheless, our current understanding of the intestinal ecosystem is still insufficient, and further research efforts are needed to fully exploit the capacity of these strategies.

  11. Butyricicoccus pullicaecorum, a butyrate producer with probiotic potential, is intrinsically tolerant to stomach and small intestine conditions.

    Science.gov (United States)

    Geirnaert, Annelies; Steyaert, Alix; Eeckhaut, Venessa; Debruyne, Bo; Arends, Jan B A; Van Immerseel, Filip; Boon, Nico; Van de Wiele, Tom

    2014-12-01

    Butyrate has several beneficial properties that are essential to maintain gastrointestinal health. Therefore butyrate-producing bacteria are seen as the next generation of probiotics. The butyrate-producing bacterium Butyricicoccus pullicaecorum (a clostridial cluster IV strain) is such a promising probiotic candidate for people suffering from inflammatory bowel disease. To exert its beneficial properties, it is crucial that B. pullicaecorum survives the harsh conditions of the upper gastrointestinal tract to arrive in the colon in a viable and metabolically active state. Before developing a stable formulation of B. pullicaecorum for oral administration, it is important to know its intrinsic acid and bile tolerance. We monitored the survival during and short chain fatty acid production after incubation in conditions simulating the stomach and small intestine using in vitro batch experiments. In case of acid conditions (pH 2 and pH 3), B. pullicaecorum was viable and active but not cultivable. Cultivability was restored during subsequent small intestine conditions. Importantly, bile and pancreatic juice had no lethal effect. Milk, as a suspension medium, only had a protective effect on the cultivability during the first hour at pH 2. B. pullicaecorum was still metabolically active after upper gastrointestinal conditions and produced short chain fatty acids, but a shift from butyrate to acetate production was observed. Although the butyrate-producing anaerobe B. pullicaecorum showed good intrinsic acid and bile tolerance in terms of viability and metabolic activity, colonization efficiency and butyrate production under colon conditions is needed to further evaluate its probiotic potential. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Níveis críticos dos ácidos acético, propiônico e butírico para estudos de toxicidade em arroz em solução nutritiva Critical levels of acetic, propionic and butyric acids for toxicity studies of rice in nutrient solution

    Directory of Open Access Journals (Sweden)

    Mauricio Marini Kopp

    2007-03-01

    and 20 mM, propionic acid (0; 3; 6; 9; 12; and 15 mM and butyric acid (0; 2; 4; 6; 8 and 10 mM and two genotypes of high divergence (BRS-7-TAIM and SAIBAN were used. The results indicate that the most appropriate concentration ranges for studies of rice tolerance to organic acids are: 8.4 and 15.8; 4.2 and 9.1 and 3.7 and 7.7 mM for acetic, propionic and butyric acids, respectively, and the most responsive variable was root length.

  13. Esterification for butyl butyrate formation using Candida cylindracea lipase produced from palm oil mill effluent supplemented medium

    Directory of Open Access Journals (Sweden)

    Aliyu Salihu

    2014-12-01

    Full Text Available The ability of Candida cylindracea lipase produced using palm oil mill effluent (POME as a basal medium to catalyze the esterification reaction for butyl butyrate formation was investigated. Butyric acid and n-butanol were used as substrates at different molar ratios. Different conversion yields were observed according to the affinity of the produced lipase toward the substrates. The n-butanol to butyric acid molar ratio of 8 and lipase concentration of 75 U/mg gave the highest butyl butyrate formation of 63.33% based on the statistical optimization using face centered central composite design (FCCCD after 12 h reaction. The esterification potential of the POME based lipase when compared with the commercial lipase from the same strain using the optimum levels was found to show a similar pattern. It can be concluded therefore that the produced lipase possesses appropriate characteristics to be used as a biocatalyst in the esterification reactions for butyl butyrate formation.

  14. Genome-wide ChIP-seq mapping and analysis of butyrate-induced H3K9 and H3K27 acetylation and epigenomic landscapes alteration in bovine cells

    Science.gov (United States)

    Volatile short-chain fatty acids (VFAs, acetate, propionate, and butyrate) are nutrients especially critical to ruminants. Beyond their nutritional impact, clear evidence is beginning to link modifications in chromatin structure induced by butyrate to cell cycle progression, DNA replication and over...

  15. Colonic epithelial cell activation and the paradoxical effects of butyrate.

    Science.gov (United States)

    Gibson, P R; Rosella, O; Wilson, A J; Mariadason, J M; Rickard, K; Byron, K; Barkla, D H

    1999-04-01

    Butyrate may have paradoxical effects on epithelial cells of similar origin. This study aimed to examine the hypothesis that one mechanism that dictates a cell's response to butyrate is its state of activation. First, the responses to 24 h exposure to butyrate (1-2 mM) of normal and neoplastic human colonic epithelial cells activated by their isolation and primary culture, and of colon cancer cell lines, LIM1215 and Caco-2, were examined. In primary cultures of normal and cancer cells, butyrate had no effect on alkaline phosphatase activities but significantly suppressed urokinase receptor expression by a mean +/- SEM of 30 +/- 12% and 36 +/- 9%, respectively. Interleukin-8 secretion was suppressed by 44 +/- 7% in normal cells (P 50%, urokinase receptor expression >2-fold and interleukin-8 secretion >3-fold in response to butyrate. Secondly, the effect of butyrate on Caco-2 cells was examined with or without prior exposure to a specific activating stimulus [tumour necrosis factor alpha (TNF alpha)]. Interleukin-8 secretion increased by 145 +/- 23% and 132 +/- 17% on 24 h exposure to 2 mM butyrate or 0.1 microM TNF alpha alone, respectively. However, in cells pre-treated with TNF alpha, butyrate significantly inhibited secretion by 34 +/- 7% below unstimulated levels. The response to butyrate of urokinase receptor, whose expression was not stimulated by TNF alpha, was unchanged. These effects were mimicked by trichostatin A, an inhibitor of histone deacetylase, suggesting that butyrate's paradoxical effects may have been operating by the same mechanism. In conclusion, some of the paradoxical effects of butyrate do not appear to represent inherent differences between normal and transformed cells. Rather, the response may be determined by the state of activation of the cells.

  16. Dietary calcium phosphate content and oat β-glucan influence gastrointestinal microbiota, butyrate-producing bacteria and butyrate fermentation in weaned pigs.

    Science.gov (United States)

    Metzler-Zebeli, Barbara U; Zijlstra, Ruurd T; Mosenthin, Rainer; Gänzle, Michael G

    2011-03-01

    This study aimed to evaluate the effects of oat β-glucan in combination with low- and high-dietary calcium phosphate (CaP) content on gastrointestinal bacterial microbiota, prevalence of butyrate-production pathway genes and fermentation end-products in 32 weaned pigs allocated to four diets: a cornstarch-casein-based diet with low [65% of the calcium (Ca) and phosphorous (P) requirement] and high CaP content (125% and 115% of the Ca and P requirement, respectively); and low and high CaP diets supplemented with 8.95% of oat β-glucan concentrate. Pigs were slaughtered after 14 days, and digesta were collected for quantitative PCR analysis, and quantification of short-chain fatty acids and lactate. The high CaP content reduced gastric lactate and streptococci and propionate in the large intestine. Oat β-glucan distinctly raised gastric bacterial numbers, and colonic lactobacilli and bifidobacteria. Although not reflected by gene copies of butyrate-production pathway genes, oat β-glucan also increased gastric, caecal and colonic butyrate concentrations, which may be favourable for intestinal development in weaned pigs. Thus, a high CaP content negatively affected the intestinal abundance of certain fermentation end-products, whereas oat β-glucan generally enhanced bacterial numbers and activity. The results emphasize the importance of the stomach for bacterial metabolism of oat β-glucan in weaned pigs. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. Influence of resistant starch on the SCFA production and cell counts of butyrate-producing Eubacterium spp. in the human intestine.

    Science.gov (United States)

    Schwiertz, A; Lehmann, U; Jacobasch, G; Blaut, M

    2002-01-01

    The genus Eubacterium, which is the second most common genus in the human intestine, includes several known butyrate producers. We hypothesized that Eubacterium species play a role in the intestinal butyrate production and are inducible by resistant starch. In a human pilot study species-specific and group-specific 16S rRNA-targeted, Cy3 (indocarbocyanine)-labelled oligonucleotide probes were used to quantify butyrogenic species of the genera Eubacterium, Clostridium and Ruminococcus. Following the intake of RS type III a significant increase in faecal butyrate but not in total SCFA was observed. However, increase in butyrate was not accompanied by a proliferation in the targeted bacteria. The tested Eubacterium species have the capacity to produce butyrate but do not appear to play a major role for butyric acid production in the human intestine. In view of the fact that the bacteria responsible for butyrate production are largely unknown, it is still difficult to devise a dietary intervention to stimulate butyrogenic bacteria in a targeted way.

  18. Performance of spray deposited poly [N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′, 3′-benzothiadiazole)]/[6,6]-phenyl-C61-butyric acid methyl ester blend active layer based bulk heterojunction organic solar cell devices

    International Nuclear Information System (INIS)

    Saitoh, Leona; Babu, R. Ramesh; Kannappan, Santhakumar; Kojima, Kenzo; Mizutani, Teruyoshi; Ochiai, Shizuyasu

    2012-01-01

    Bulk heterojunction organic solar cell devices were fabricated using the spray deposited poly [N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′, 3′-benzothiadiazole)]/[6,6]-phenyl-C61-butyric acid methyl ester blend active layer. The spray coating parameters such as spraying time, substrate-nozzle distance for the deposition of active layers were analyzed. Optical absorption of the active layers was analyzed using UV–visible spectral studies in the wavelength range from 300 to 800 nm. The surface morphology of the active layers deposited with different parameters was examined using atomic force microscopy. Surface morphology of the active layers deposited with the substrate-nozzle distance of 20 cm and for 20 s shows smooth morphology with peak-valley value of 4 nm. The devices fabricated using the selected active layer show overall power conversion efficiency of 1.08%. - Graphical abstract: Current–voltage (J–V) characteristics of spray deposited PCDTBT:PC 61 BM active layer based solar cell device under illumination of AM 1.5 G, 100 mW/cm 2 . Highlights: ► Organic solar cells were fabricated using a spray deposited PCDTBT:PC61BM active layer. ► The active layers deposited with spray conditions show flat morphology. ► Using the selected active layers power conversion efficiency of 1.08% is obtained.

  19. Influence of poly(2-methoxy-5-(2’-ethyl)-hexyloxy-p-phenylene vinylene):(6,6)-phenyl C61 butyric acid methyl ester blend ratio on the performance of inverted type organic solar cells based on Eosin-Y-coated ZnO nanorod arrays

    International Nuclear Information System (INIS)

    Ginting, Riski Titian; Yap, Chi Chin; Yahaya, Muhammad; Salleh, Muhamad Mat

    2013-01-01

    The influence of poly(2-methoxy-5-(2’-ethyl)-hexyloxy-p-phenylene vinylene) (MEH-PPV) and (6,6)-phenyl C61 butyric acid methyl ester (PCBM) weight ratio on the photovoltaic performance of inverted type organic solar cell based on Eosin-Y-coated ZnO nanorods has been investigated. Experimental results showed that the photovoltaic performance improved with weight ratio of MEH-PPV:PCBM from 1:1 to 1:3 due to better percolation pathway for electron transport and enhanced infiltration of polymer blend into interspace of Eosin-Y-coated ZnO nanorods. However, the overall performance started to decrease at weight ratio of 1:4 due to the aggregation of PCBM clusters which results in poor polymer blend infiltration. The optimum device at weight ratio of 1:3 exhibited short circuit current density of 3.95 ± 0.10 mA cm −2 , open circuit voltage of 0.53 ± 0.03 V, fill factor of 0.50 ± 0.03, and power conversion efficiency of 1.02 ± 0.07 %. - Highlights: • The device performance increased with donor:acceptor weight ratio up to 1:3. • Aggregation of fullerene-derivative led to poor infiltration at weight ratio of 1:4. • The optimum weight ratio was different from that of conventional device

  20. Influence of poly(2-methoxy-5-(2’-ethyl)-hexyloxy-p-phenylene vinylene):(6,6)-phenyl C61 butyric acid methyl ester blend ratio on the performance of inverted type organic solar cells based on Eosin-Y-coated ZnO nanorod arrays

    Energy Technology Data Exchange (ETDEWEB)

    Ginting, Riski Titian [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Yap, Chi Chin, E-mail: ccyap@ukm.my [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Yahaya, Muhammad [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Salleh, Muhamad Mat [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2013-06-01

    The influence of poly(2-methoxy-5-(2’-ethyl)-hexyloxy-p-phenylene vinylene) (MEH-PPV) and (6,6)-phenyl C61 butyric acid methyl ester (PCBM) weight ratio on the photovoltaic performance of inverted type organic solar cell based on Eosin-Y-coated ZnO nanorods has been investigated. Experimental results showed that the photovoltaic performance improved with weight ratio of MEH-PPV:PCBM from 1:1 to 1:3 due to better percolation pathway for electron transport and enhanced infiltration of polymer blend into interspace of Eosin-Y-coated ZnO nanorods. However, the overall performance started to decrease at weight ratio of 1:4 due to the aggregation of PCBM clusters which results in poor polymer blend infiltration. The optimum device at weight ratio of 1:3 exhibited short circuit current density of 3.95 ± 0.10 mA cm{sup −2}, open circuit voltage of 0.53 ± 0.03 V, fill factor of 0.50 ± 0.03, and power conversion efficiency of 1.02 ± 0.07 %. - Highlights: • The device performance increased with donor:acceptor weight ratio up to 1:3. • Aggregation of fullerene-derivative led to poor infiltration at weight ratio of 1:4. • The optimum weight ratio was different from that of conventional device.

  1. Effect of dietary supplementation with butyrate and probiotic on the survival of Pacific white shrimp after challenge with Vibrio alginolyticus

    Directory of Open Access Journals (Sweden)

    Norha Constanza Bolívar Ramírez

    Full Text Available ABSTRACT This study evaluated the performance, immunology, and survival of the Pacific white shrimp Litopenaeus vannamei to experimental challenge to Vibrio alginolyticus based on the use of the probiotic Lactobacillus plantarum and the combined use of probiotic and butyrate. Four different diets resulted from the addition of additives: butyrate, probiotic, butyrate + probiotic, and control (no additives. The attractiveness of the diets was assessed by the percentage of positive choices and rejections, using a dual-choice Y-maze format aquarium. The shrimps were fed during four weeks and performance parameters, intestinal microbiota, and immunological parameters were all evaluated. Subsequently, the shrimps were challenged with V. alginolyticus and after 48 h, survival and immunological parameters were evaluated. The results showed increased attractiveness and intake, but only with diets supplemented with sodium butyrate. However, other diets were not rejected. No difference in performance or immunological parameters was observed among the different diets. Also, among the treatments, no difference in Vibrio spp., or total heterotrophic bacteria counts, was found in the intestinal tract. However, the lactic acid bacteria count was higher in the intestinal tract of shrimps fed diets supplemented with probiotic. After bacterial challenge, shrimp fed all diets had a greater survival when compared with the control group. Lactobacillus plantarum and sodium butyrate increase the resistance of shrimp to infection with V. alginolyticus, but do so without affecting performance, immunological parameters, or Vibrio spp., and total heterotrophic bacteria counts in the intestinal tract.

  2. Enraizamento de estacas de Pau-Brasil (Caesalpinia echinata Lam. tratadas com ácido indol butírico e ácido naftaleno acético Rooting cuttings of Pau-Brasil (Caesalpinia echinata Lam. treated with indole butyric acid and naphthalene acetic acid

    Directory of Open Access Journals (Sweden)

    Laurício Endres

    2007-06-01

    Full Text Available O pau-brasil (Caesalpinia echinata Lam. tem grande valor cultural no Brasil e a sua propagação por sementes é dificultada pela rápida perda do poder germinativo delas. A estaquia pode ser usada para a produção de mudas de espécies florestais, principalmente quando existem algumas dificuldades de propagação por sementes. Este trabalho teve como objetivo caracterizar o efeito de concentrações e fontes de auxinas sobre o enraizamento de estacas de pau-brasil. Estacas com cerca de 12cm de comprimento e de um a dois pares de folhas foram tratadas na base com ácido indol butírico (AIB, ácido naftaleno acético (ANA na forma líquida ou na forma de pó nas concentrações de 0, 1.250, 2.500, 5.000, 10.000mg L-1 ou mg Kg-1, respectivamente. As estacas foram transferidas para substrato contendo areia e mantidas sob nebulização (90-95% UR. Aos 120 dias de estaquia, foram avaliados a mortalidade, a retenção foliar, a formação de calo e a percentagem de estacas enraizadas. As estacas apresentaram índices de sobrevivência de até 70%. A formação de calos não foi relacionada com a concentração de auxinas utilizadas. O maior índice de enraizamento de estacas de pau-brasil, em torno de 16%, foi resgistrada com a utilização do ácido indolbutírico (AIB e do ácido naftalenoacético (ANA na concentração 2.500mg L-1. Os altos índices de sobrevivência e os baixos índices de enraizamento sugerem que as estacas devem permanecer por mais tempo sob nebulização, a fim de induzir o seu processo de enraizamento.The 'pau-brasil' tree (Caesalpinia echinata Lam. have a high cultural value in Brazil and its seed propagation is very difficult because of its rapid losses of germination potential. Cuttings propagation has been considered as alternative method to propagate forest species that seed propagation is poor. The objectives of this study were to determine the effects of indole-3-butyric acid (IBA and naphthalene acetic (NAA acid on

  3. Rice genotypes evaluate under the interactive phytotoxic effect of acetic, propionic and butyric acidsAvaliação de genótipos de arroz sob o efeito fitotóxico interativo dos ácidos acético, propiônico e butírico

    Directory of Open Access Journals (Sweden)

    Antonio Costa de Oliveira

    2012-05-01

    Full Text Available The objective of this work was to evaluate the development of 20 rice genotypes to acetic, pripionic and butyric acid, a phytotoxic compounds produced in low drainage soils with high organic matter content. This work was performed in hydroponics with four acid doses (0; 3; 6 e 9 mM and 6:3:1 relationship acetic, propionic and butyric respectively. A factorial random block design with three replications were performed. The variables measured were root (CR and shoot (CPA length, number of roots (NR and root (MSR and shoot (MSPA dry matter. The data relative to the measured variables were subjected to an analysis of variance in a factorial model (4x20 and regression fitting, considering dose and genotype as fixed factors. Significance for the interaction (genotype vs. dose was found only for CR and CPA. The variable CR was the most influenced by the acid and the regression stablished for the variables CR and CPA revealed 2 genotypes with root length stability and 3 with shoot length stability front to organic acid stress. Genotypes with higher rusticity and developed for irrigated systems were more tolerant. O objetivo do trabalho foi avaliar o desenvolvimento de 20 genótipos de arroz aos ácidos acético, propiônico e butírico, compostos fitotóxicos produzidos em solos de deficiente drenagem e alto teor de matéria orgânica. O trabalho foi executado em sistema de hidroponia com 4 doses (0; 3; 6 e 9 mM dos ácidos na relação 6:3:1 acético, propiônico e butírico respectivamente. O delineamento utilizado foi blocos casualizados com 3 repetições num esquema fatorial. As variáveis mensuradas foram comprimento de raízes (CR e parte aérea (CPA, número de raízes (NR e massa seca de raízes (MSR e parte aérea (MSPA. Os dados relativos às variáveis mensuradas foram submetidos à análise de variância em um modelo fatorial (4x20, considerando dose e genótipo como fatores fixos e ajuste de regressões. A variável CR foi a mais afetada

  4. [Isolation and identification of a lactate-utilizing, butyrate-producing bacterium and its primary metabolic characteristics].

    Science.gov (United States)

    Liu, Wei; Zhu, Wei-yun; Yao, Wen; Mao, Sheng-yong

    2007-06-01

    The distal mammalian gut harbors prodigiously abundant microbes, which provide unique metabolic traits to host. A lactate-utilizing, butyrate-producing bacterium, strain LB01, was isolated from adult swine feces by utilizing modified Hungate technique with rumen liquid-independent YCFA medium supplemented with lactate as the single carbon source. It was an obligate anaerobic, Gram positive bacterium, and could utilize glucose, fructose, maltose and lactate with a large amount of gas products. 16S rRNA sequence analysis revealed that it had the high similarity with members of the genus Megasphaera. The metabolic characteristics of strain LB01 was investigated by using in vitro fermentation system. Lactate at the concentration of 65 mmol/L in YCFA medium was rapidly consumed within 9 hours and was mainly converted to propionate and butyrate after 24h. As the level of acetate declined, the concentration of butyrate rose only in the presence of glucose, suggesting that butyrate could possibly be synthesized by the acetyl CoA: butyryl CoA transferase. When co-cultured with lactic acid bacteria strain K9, strain LB01 evidently reduced the concentration of lactate produced by strain K9 and decelerated the rapid pH drop, finally producing 12.11 mmol/L butyrate and 4.06 mmol/L propionate. The metabolic characteristics that strain LB01 efficiently converts toxic lactate and excessive acetate to butyrate can prevent lactate and acetate accumulation in the large intestine and maintain the slightly acidic environment of the large intestine, consequently revealing that stain LB01 could act as a potential probiotics.

  5. Kinetics of thermophilic, anaerobic oxidation of straight and branched chain butyrate and valerate

    DEFF Research Database (Denmark)

    Batstone, Damien J.; Pind, Peter Frode; Angelidaki, Irini

    2003-01-01

    The degradation kinetics of normal and branched chain butyrate and valerate are important in protein-fed anaerobic systems, as a number of amino acids degrade to these organic acids. Including activated and primary wastewater sludge digesters, the majority of full-scale systems digest feeds...... is also addressed, extending previous pure-culture and batch studies. A previously published mathematical model was modified to allow competitive uptake of i-valerate, and used to model a thermophilic manure digester operated over 180 days. The digester was periodically pulsed with straight and branched...

  6. Perinatal exposure to germinated brown rice and its gamma amino-butyric acid-rich extract prevents high fat diet-induced insulin resistance in first generation rat offspring

    Directory of Open Access Journals (Sweden)

    Hadiza Altine Adamu

    2016-02-01

    Full Text Available Background: Evidence suggests perinatal environments influence the risk of developing insulin resistance. Objective: The present study was aimed at determining the effects of intrauterine exposure to germinated brown rice (GBR and GBR-derived gamma (γ aminobutyric acid (GABA extract on epigenetically mediated high fat diet–induced insulin resistance. Design: Pregnant Sprague Dawley rats were fed high-fat diet (HFD, HFD+GBR, or HFD+GABA throughout pregnancy until 4 weeks postdelivery. The pups were weighed weekly and maintained on normal pellet until 8 weeks postdelivery. After sacrifice, biochemical markers of obesity and insulin resistance including oral glucose tolerance test, adiponectin, leptin, and retinol binding protein-4 (RBP4 were measured. Hepatic gene expression changes and the global methylation and histone acetylation levels were also evaluated. Results: Detailed analyses revealed that mothers given GBR and GABA extract, and their offspring had increased adiponectin levels and reduced insulin, homeostasis model assessment of insulin resistance, leptin, oxidative stress, and RBP4 levels, while their hepatic mRNA levels of GLUT2 and IPF1 were increased. Furthermore, GBR and GABA extract lowered global DNA methylation levels and modulated H3 and H4 acetylation levels. Conclusions: These results showed that intrauterine exposure to GBR-influenced metabolic outcomes in offspring of rats with underlying epigenetic changes and transcriptional implications that led to improved glucose homeostasis.

  7. Thermal decomposition of lanthanum(III) butyrate in argon atmosphere

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Yue, Zhao; Xiao, Tang

    2013-01-01

    The thermal decomposition of La(C3H7CO2)3·xH2O (x≈0.82) was studied in argon during heating at 5K/min. After the loss of bound H2O, the anhydrous butyrate presents at 135°C a phase transition to a mesophase, which turns to an isotropic liquid at 180°C. The decomposition of the anhydrous butyrate...

  8. EVALUACIÓN DE LA CONCENTRACIÓN DE LOS ÁCIDOS ACÉTICO, BUTÍRICO Y PROPIÓNICO EN EL CO-CULTIVO: ASPERGILLUS ORYZAE-BUTYRIVIBRIO FIBRISOLVENS. EVALUATION OF THE CONCENTRATION OF THE ACETIC, BUTYRIC AND PROPIONIC ACIDS IN THE CO-CULTURE: ASPERGILLUS ORYZAE-BUTYRIVIBRIO FIBRISOLVENS

    Directory of Open Access Journals (Sweden)

    C. LARA MANTILLA

    2008-12-01

    Full Text Available Se realizó un estudio en co-cultivo entre el hongo Aspergillus oryzae y la bacteria ruminal celulolítica Butyrivibrio fibrisolvens, cuyo objetivo fue determinar "in vitro" el efecto del hongo sobre la producción de los ácidos acético, propiónico y butírico por parte de la bacteria. El medio de cultivo se preparó utilizando líquido ruminal filtrado, centrifugado, autoclavado y diluído al 40% con agua, y 0,05 p/v de pastos Angleton (Dichamthium aristatum (Córdoba, Colombia. Las condiciones de cultivo fueron en anaerobiosis, y el tiempo de incubación de 24 horas. A partir del sobrenadante fueron determinadas las concentraciones de los ácidos grasos volátiles por cromatografía de gases. Se estudiaron dos relaciones bacteria-hongo: 1:1 y 1:3. Como resultado se observó un efecto negativo de Aspergillus oryzae sobre Butyrivibrio fibrisolvens, que se reflejó en la disminución en la producción de ácidos grasos volátiles.A study in co-culture between Aspergillus oryzae with the cellulolytic ruminal bacteria Butyrivibrio fibrisolvens was carried out aiming the "in vitro" determination of the effect of the fungi on the production of acetic, propionic and butyric acids by the bacteria. The culture medium was prepared using filtered, centrifuged, autoclaved and ruminal liquid diluted to 40% with water, and 0,05 % p/v of Angleton grass [;Dichamthium aristatum]; [;Córdoba, Colombia];. Culture was performed in anaerobic conditions for 24 hours. The concentrations of volatile fatty acids in the supernatant were determined by gas chromatography. Two bacteria-fungi relations were studied: 1:1 and 1:3. The results showed a negative effect of Aspergillus oryzae on Butyrivibrio fibrisolvens which was reflected in a decrease in the production of volatile fatty acids.

  9. Prebiotic potential of L-sorbose and xylitol in promoting the growth and metabolic activity of specific butyrate-producing bacteria in human fecal culture.

    Science.gov (United States)

    Sato, Tadashi; Kusuhara, Shiro; Yokoi, Wakae; Ito, Masahiko; Miyazaki, Kouji

    2017-01-01

    Dietary low-digestible carbohydrates (LDCs) affect gut microbial metabolism, including the production of short-chain fatty acids. The ability of various LDCs to promote butyrate production was evaluated in in vitro human fecal cultures. Fecal suspensions from five healthy males were anaerobically incubated with various LDCs. L-Sorbose and xylitol markedly promoted butyrate formation in cultures. Bacterial 16S rRNA gene-based denaturing gradient gel electrophoresis analyses of these fecal cultures revealed a marked increase in the abundance of bacteria closely related to the species Anaerostipes hadrus or A. caccae or both, during enhanced butyrate formation from L-sorbose or xylitol. By using an agar plate culture, two strains of A. hadrus that produced butyrate from each substrate were isolated from the feces of two donors. Furthermore, of 12 species of representative colonic butyrate producers, only A. hadrus and A. caccae demonstrated augmented butyrate production from L-sorbose or xylitol. These findings suggest that L-sorbose and xylitol cause prebiotic stimulation of the growth and metabolic activity of Anaerostipes spp. in the human colon. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Efficacy of the dietary histone deacetylase inhibitor butyrate alone or in combination with vitamin A against proliferation of MCF-7 human breast cancer cells

    International Nuclear Information System (INIS)

    Andrade, F.O.; Nagamine, M.K.; De Conti, A.; Chaible, L.M.; Fontelles, C.C.; Jordão Junior, A.A.; Vannucchi, H.; Dagli, M.L.Z.; Bassoli, B.K.; Moreno, F.S.; Ong, T.P.

    2012-01-01

    The combined treatment with histone deacetylase inhibitors (HDACi) and retinoids has been suggested as a potential epigenetic strategy for the control of cancer. In the present study, we investigated the effects of treatment with butyrate, a dietary HDACi, combined with vitamin A on MCF-7 human breast cancer cells. Cell proliferation was evaluated by the crystal violet staining method. MCF-7 cells were plated at 5 x 10 4 cells/mL and treated with butyrate (1 mM) alone or combined with vitamin A (10 µM) for 24 to 120 h. Cell proliferation inhibition was 34, 10 and 46% following treatment with butyrate, vitamin A and their combination, respectively, suggesting that vitamin A potentiated the inhibitory activities of butyrate. Furthermore, exposure to this short-chain fatty acid increased the level of histone H3K9 acetylation by 9.5-fold (Western blot), but not of H4K16, and increased the expression levels of p21 WAF1 by 2.7-fold (Western blot) and of RARβ by 2.0-fold (quantitative real-time PCR). Our data show that RARβ may represent a molecular target for butyrate in breast cancer cells. Due to its effectiveness as a dietary HDACi, butyrate should be considered for use in combinatorial strategies with more active retinoids, especially in breast cancers in which RARβ is epigenetically altered

  11. Efficacy of the dietary histone deacetylase inhibitor butyrate alone or in combination with vitamin A against proliferation of MCF-7 human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, F.O. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil); Nagamine, M.K. [Laboratório de Oncologia Experimental, Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil); De Conti, A. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil); Chaible, L.M. [Laboratório de Oncologia Experimental, Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil); Fontelles, C.C. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil); Jordão Junior, A.A.; Vannucchi, H. [Divisão de Nutrição, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Dagli, M.L.Z. [Laboratório de Oncologia Experimental, Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil); Bassoli, B.K.; Moreno, F.S.; Ong, T.P. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-06-22

    The combined treatment with histone deacetylase inhibitors (HDACi) and retinoids has been suggested as a potential epigenetic strategy for the control of cancer. In the present study, we investigated the effects of treatment with butyrate, a dietary HDACi, combined with vitamin A on MCF-7 human breast cancer cells. Cell proliferation was evaluated by the crystal violet staining method. MCF-7 cells were plated at 5 x 10{sup 4} cells/mL and treated with butyrate (1 mM) alone or combined with vitamin A (10 µM) for 24 to 120 h. Cell proliferation inhibition was 34, 10 and 46% following treatment with butyrate, vitamin A and their combination, respectively, suggesting that vitamin A potentiated the inhibitory activities of butyrate. Furthermore, exposure to this short-chain fatty acid increased the level of histone H3K9 acetylation by 9.5-fold (Western blot), but not of H4K16, and increased the expression levels of p21{sup WAF1} by 2.7-fold (Western blot) and of RARβ by 2.0-fold (quantitative real-time PCR). Our data show that RARβ may represent a molecular target for butyrate in breast cancer cells. Due to its effectiveness as a dietary HDACi, butyrate should be considered for use in combinatorial strategies with more active retinoids, especially in breast cancers in which RARβ is epigenetically altered.

  12. Digestibilidade de nutrientes e balanço de Ca e P em suínos recebendo dietas com ácido butírico, fitase e diferentes níveis de cálcio Nutrient digestibility and Ca and P balance in pigs receiving butyric acid, phytase and different calcium levels

    Directory of Open Access Journals (Sweden)

    Taiane Golfetto Machinsky

    2010-11-01

    Full Text Available Estudou-se o uso do ácido butírico (AB e da fitase em dietas de suínos na fase de crescimento, variando no nível de cálcio. O experimento foi subdivido no tempo em dois períodos de 17 dias, sendo três de adaptação e 14 de mensurações. Em cada período, foram utilizados 16 suínos machos castrados, com peso de 24,6±0,7kg no primeiro e 43,2±1,77kg no segundo período. As dietas diferiam no nível de cálcio (0,5 ou 0,72%, de AB (0 ou 0,3% de butirato de sódio 84% e de fitase (0 ou 500 FTU kg-1, fitase de origem bacteriana derivada de Escherichia coli. O delineamento foi em blocos casualizados (períodos, em decomposição fatorial 2x2x2, com quatro repetições. Foram avaliadas a digestibilidade aparente dos nutrientes e da energia bruta e o balanço de Ca e P. O AB melhorou a digestibilidade da proteína bruta, mas, de forma individual ou em combinação com a fitase, não aumentou a retenção de minerais. A fitase aumentou a retenção de P, reduzindo sua excreção fecal e urinária. O menor nível de Ca na dieta proporcionou maior retenção de Ca e menor retenção de P, em decorrência do aumento da excreção de P na urina (PIt was studied the use of butyric acid (BA and phytase in growing pigs diets, varying calcium level. The experiment was divided into two periods of time, of 17 days, with 3 days of adaptation and 14 of measurements. In each period, it was used 16 barrows weighing 24.6±0.7kg in the first and 43.2±1.77kg in the second. Diets were different in calcium level (0.5 or 0.72%, AB (0 or 0.3% sodium butyrate 84% and phytase (0 or 500FTU kg-1 phytase of bacterial origin derived from Escherichia coli. The experimental design was in randomized blocks (periods, decomposed in 2x2x2 factorial, with four replications. It was evaluated the apparent digestibility of nutrients, gross energy and balance of Ca and P. AB improved crude protein digestibility, but individually or in combination with phytase did not increase

  13. Effects of volatile fatty acids in biohydrogen effluent on biohythane production from palm oil mill effluent under thermophilic condition

    Directory of Open Access Journals (Sweden)

    Chonticha Mamimin

    2017-09-01

    Conclusion: Preventing the high concentration of butyric acid, and propionic acid in the hydrogenic effluent could enhance methane production in two-stage anaerobic digestion for biohythane production.

  14. Effects of acetic, propionic and butyric acids given intraruminally at ...

    African Journals Online (AJOL)

    USER

    2010-04-19

    Apr 19, 2010 ... such hormones like insulin, insulin-like growth factor-I. (IGF-I) and epidermal ... insulin and IGF-I and IGFBP-3 in plasma, liver and rumen tissues in growing ..... J. Dairy Sci. 87 (Suppl.): ... infusion of nutrients in cattle. Br. J. Nutr.

  15. Effects of dietary probiotic, prebiotic and butyric acid glycerides on ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... triglyceride, HDL and VLDL cholesterol concentrations were not significantly different among ... cholesterol and cholesterol/HDL ratio in the serum of broiler chickens. .... The serum concentrations of total triglyceride, cholesterol, high- density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL),.

  16. Effect of indole butyric acid on micrografting of cactus

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-03-22

    Mar 22, 2012 ... The histological studies were done on grafted plants with cross section. Auxin of 100 ppm was .... strands; formation of the radial pattern of xylem and phloem within .... were applied exogenously to stem segments indicate that.

  17. Gamma amino butyric acid accumulation in medicinal plants without stress

    Directory of Open Access Journals (Sweden)

    P Anju

    2014-01-01

    Results and Conclusion: Among the screened medicinal plants, Zingiber officinale and Solanum torvum were found to have GABA. The percentage of GABA present in Z. officinale and S. torvum were found to be 0.0114% and 0.0119%, respectively. The present work confirmed that among the selected CNS active medicinal plants, only two plants contain GABA. We found a negative correlation with plant having CNS activity and accumulation of GABA. The GABA shunt is a conserved pathway in eukaryotes and prokaryotes but, although the role of GABA as a neurotransmitter in mammals is clearly established, its role in plants is still vague.

  18. trench layering using indole-3-butyric acid and local organic ...

    African Journals Online (AJOL)

    ACSS

    2018-02-12

    Feb 12, 2018 ... 1Department of Forestry, Bio-diversity and Tourism, Makerere ... OSM (Site soil as control, TsaOm and TsdOm) then treated with IBA concentrations (IBA-0 ppm, IBA-4000 .... mainly through the use of clonal and seedling.

  19. Sodium Butyrate, a Histone Deacetylase Inhibitor, Reverses Behavioral and Mitochondrial Alterations in Animal Models of Depression Induced by Early- or Late-life Stress.

    Science.gov (United States)

    Valvassori, Samira S; Resende, Wilson R; Budni, Josiane; Dal-Pont, Gustavo C; Bavaresco, Daniela V; Réus, Gislaine Z; Carvalho, André F; Gonçalves, Cinara L; Furlanetto, Camila B; Streck, Emilio L; Quevedo, João

    2015-01-01

    The aim of the present study was to evaluate the effects of sodium butyrate on depressive-like behavior and mitochondrial alteration parameters in animal models of depression induced by maternal deprivation or chronic mild stress in Wistar rats. maternal deprivation was established by separating pups from their mothers for 3 h daily from postnatal day 1 to day 10. Chronic mild stress was established by water deprivation, food deprivation, restraint stress, isolation and flashing lights. Sodium butyrate or saline was administered twice a day for 7 days before the behavioral tests. Depressive behavior was evaluated using the forced swim test. The activity of tricarboxylic acid cycle enzymes (succinate dehydrogenase and malate dehydrogenase) and of mitochondrial chain complexes (I, II, II-III and IV) was measured in the striatum of rats. From these analyses it can be observed that sodium butyrate reversed the depressive-like behavior observed in both animal models of depression. Additionally, maternal deprivation and chronic mild stress inhibited mitochondrial respiratory chain complexes and increased the activity of tricarboxylic acid cycle enzymes. Sodium butyrate treatment reversed -maternal deprivation and chronic mild stress- induced dysfunction in the striatum of rats. In conclusion, sodium butyrate showed antidepressant effects in maternal deprivation and chronic mild stress-treated rats, and this effect can be attributed to its action on the neurochemical pathways related to depression.

  20. N-Butyrate alters chromatin accessibility to DNA repair enzymes

    International Nuclear Information System (INIS)

    Smith, P.J.

    1986-01-01

    Current evidence suggests that the complex nature of mammalian chromatin can result in the concealment of DNA damage from repair enzymes and their co-factors. Recently it has been proposed that the acetylation of histone proteins in chromatin may provide a surveillance system whereby damaged regions of DNA become exposed due to changes in chromatin accessibility. This hypothesis has been tested by: (i) using n-butyrate to induce hyperacetylation in human adenocarcinoma (HT29) cells; (ii) monitoring the enzymatic accessibility of chromatin in permeabilised cells; (iii) measuring u.v. repair-associated nicking of DNA in intact cells and (iv) determining the effects of n-butyrate on cellular sensitivity to DNA damaging agents. The results indicate that the accessibility of chromatin to Micrococcus luteus u.v. endonuclease is enhanced by greater than 2-fold in n-butyrate-treated cells and that there is a corresponding increase in u.v. repair incision rates in intact cells exposed to the drug. Non-toxic levels of n-butyrate induce a block to G1 phase transit and there is a significant growth delay on removal of the drug. Resistance of HT29 cells to u.v.-radiation and adriamycin is enhanced in n-butyrate-treated cells whereas X-ray sensitivity is increased. Although changes in the responses of cells to DNA damaging agents must be considered in relation to the effects of n-butyrate on growth rate and cell-cycle distribution, the results are not inconsistent with the proposal that increased enzymatic-accessibility/repair is biologically favourable for the resistance of cells to u.v.-radiation damage. Overall the results support the suggested operation of a histone acetylation-based chromatin surveillance system in human cells

  1. Increased butyrate priming in the gut stalls microbiome associated-gastrointestinal inflammation and hepatic metabolic reprogramming in a mouse model of Gulf War Illness.

    Science.gov (United States)

    Seth, Ratanesh Kumar; Kimono, Diana; Alhasson, Firas; Sarkar, Sutapa; Albadrani, Muayad; Lasley, Stephen K; Horner, Ronnie; Janulewicz, Patricia; Nagarkatti, Mitzi; Nagarkatti, Prakash; Sullivan, Kimberly; Chatterjee, Saurabh

    2018-07-01

    Most of the associated pathologies in Gulf War Illness (GWI) have been ascribed to chemical and pharmaceutical exposures during the war. Since an increased number of veterans complain of gastrointestinal (GI), neuroinflammatory and metabolic complications as they age and there are limited options for a cure, the present study was focused to assess the role of butyrate, a short chain fatty acid for attenuating GWI-associated GI and metabolic complications. Results in a GWI-mouse model of permethrin and pyridostigmine bromide (PB) exposure showed that oral butyrate restored gut homeostasis and increased GPR109A receptor copies in the small intestine (SI). Claudin-2, a protein shown to be upregulated in conditions of leaky gut was significantly decreased following butyrate administration. Butyrate decreased TLR4 and TLR5 expressions in the liver concomitant to a decrease in TLR4 activation. GW-chemical exposure showed no clinical signs of liver disease but a significant alteration of metabolic markers such as SREBP1c, PPAR-α, and PFK was evident. Liver markers for lipogenesis and carbohydrate metabolism that were significantly upregulated following GW chemical exposure were attenuated by butyrate priming in vivo and in human primary hepatocytes. Further, Glucose transporter Glut-4 that was shown to be elevated following liver complications were significantly decreased in these mice after butyrate administration. Finally, use of TLR4 KO mice completely attenuated the liver metabolic changes suggesting the central role of these receptors in the GWI pathology. In conclusion, we report a butyrate specific mechanistic approach to identify and treat increased metabolic abnormalities in GWI veterans with systemic inflammation, chronic fatigue, GI disturbances, metabolic complications and weight gain. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Butyrate Therapy for Poorly Differentiated Breast Cancer

    National Research Council Canada - National Science Library

    McBain, John

    2000-01-01

    ... with organicacidemias and hypoglycin (i.e., MCPA) poisoning suggested that prolonged exposure to such acids would lead to bone marrow depression and hair loss, but would be compatible with life...

  3. Role of formate and hydrogen in the syntrophic degradation of propionate and butyrate

    NARCIS (Netherlands)

    Xiuzhu Dong,

    1994-01-01

    Under methanogenic conditions, complex organic matter is mineralized by fermentative, acetogenic and methanogenic bacteria. Propionate and butyrate are two important intermediates; they account for 35% and 8% of the total methane formation, respectively. Propionate and butyrate are

  4. Development of a specific radioimmunoassay for cortisol 17-butyrate

    International Nuclear Information System (INIS)

    Smith, G.N.; Lee, Y.F.; Bu'Lock, D.E.; August, P.; Anderson, D.C.

    1983-01-01

    We describe the development and validation of an assay for cortisol 17-butyrate in blood in which there is no significant cross reaction with endogenous corticosteroids at levels encountered normally in man. Preliminary data on blood levels of the drug in absorption studies are presented

  5. Diet-dependent shifts in ruminal butyrate producing bacteria

    Czech Academy of Sciences Publication Activity Database

    Mrázek, Jakub; Tepšič, K.; Avguštin, G.; Kopečný, Jan

    2006-01-01

    Roč. 51, č. 4 (2006), s. 294-298 ISSN 0015-5632 R&D Projects: GA AV ČR IBS5045112 Institutional research plan: CEZ:AV0Z50450515 Keywords : butyrate-producing bacteria Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 0.963, year: 2006

  6. Drug-loaded Cellulose Acetate and Cellulose Acetate Butyrate Films ...

    African Journals Online (AJOL)

    The purpose of this research work was to evaluate the contribution of formulation variables on release properties of matrix type ocular films containing chloramphenicol as a model drug. This study investigated the use of cellulose acetate and cellulose acetate butyrate as film-forming agents in development of ocular films.

  7. Colonic production of butyrate in patients with previous colonic cancer during long-term treatment with dietary fibre (Plantago ovata seeds)

    DEFF Research Database (Denmark)

    Nordgaard, I; Hove, H; Clausen, M R

    1996-01-01

    BACKGROUND: Butyrate has antineoplastic properties against colorectal cancer cells and is the preferred oxidative substrate for colonocytes. Like acetate and propionate (short-chain fatty acids; SCFAs), butyrate is produced by colonic fermentation of dietary fibre. METHODS: Twenty patients resected...... for colorectal cancer were treated with 20 g/day of the fibre Plantago ovata seeds for 3 months, which increased the intake of fibre by 17.9 +/- 0.8 g/day, from basal levels of 19.2 +/- 1.7 g/day; 17 patients completed the study. Faecal samples were obtained on eight occasions, twice before treatment......, and monthly three times during and three time after treatment. RESULTS: One month of fibre therapy increased faecal concentrations of butyrate by 42 +/- 12% (from 13.2 +/- 1.2 to 19.3 +/- 3.0 mmol/l; P

  8. Kinetics and adsorption isotherm of lactic acid from fermentation broth onto activated charcoal

    Directory of Open Access Journals (Sweden)

    Seankham Soraya

    2017-01-01

    Full Text Available Activated charcoal was applied for the recovery of lactic acid in undissociated form from fermentation broth. Lactic acid was obtained from the fermentation of Lactobacillus casei TISTR 1340 using acid hydrolyzed Jerusalem artichoke as a carbon source. The equilibrium adsorption isotherm and kinetics for the lactic acid separation were investigated. The experimental data for lactic acid adsorption from fermentation broth were best described by the Freundlich isotherm and the pseudo-second order kinetics with R2 values of 0.99. The initial adsorption rate was 41.32 mg/g⋅min at the initial lactic acid concentration of 40 g/L.

  9. Microculture model studies on the effect of sorbic acid on Penicillium chrysogenum, Cladosporium cladosporioides and Ulocladium atrum at different pH levels.

    Science.gov (United States)

    Skirdal, I M; Eklund, T

    1993-02-01

    The minimum growth-inhibitory concentration of sorbic acid has been determined for Penicillium chrysogenum, Cladosporium cladosporioides and Ulocladium atrum at pH 4.1-7.6 by using a microculture technique. This technique had earlier been applied to bacteria and Candida albicans and gave very reliable minimum inhibitory values. This investigation has shown that it is suitable also for determination of mould growth. The minimum inhibitory concentrations of sorbic acid were at the tested pH levels 1-230 mmol l-1 for P. chrysogenum, 0.3-18.0 mmol l-1 for C. cladosporioides and 0.2-33.0 mmol l-1 for U. atrum. A mathematical model for combined inhibition by dissociated and undissociated acid, which gave a good description of the minimum inhibitory concentration data earlier obtained for bacteria and Candida albicans, was suitable also for moulds. Both dissociated and undissociated acid contributed to growth inhibition.

  10. Infusion of butyrate affects plasma glucose, butyrate, and ß-hydroxybutyrate but not plasma insulin in lactating dairy cows

    Science.gov (United States)

    The objective of this research was to investigate the effects on plasma metabolites and rumen measures when butyrate was infused into the rumen or abomasum of lactating cows. Jugular catheters were inserted into 5 ruminally fistulated Holstein cows (94.2 ± 26.3 days in milk [DIM]; 717 ± 45 kg body w...

  11. Electrolytes for methanol-air fuel cells. I. The performance of methanol electro-oxidation catalysts in sulphuric acid and phosphoric acid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Andrew, M.R.; McNicol, B.D.; Short, R.T.; Drury, J.S.

    1977-03-01

    Phosphoric acid and sulphuric acid have been compared as potential electrolytes for methanol-air fuel cells. The performances of typical electro-oxidation catalysts were measured in both electrolytes over a range of concentrations. With all catalysts the activity falls with increasing acid concentration. While this is to some extent due to the decrease in water activity at higher concentrations it seems that with both acids there is significant poisoning of the catalyst. The results can be explained for both electrolytes by assuming that adsorption of undissociated acid poisons the catalyst surfaces and that the reaction rate on the poisoned surfaces is proportional to the water activity.

  12. Pré-tratamento com água e doses de ácido indolbutírico para estaquia herbácea de pitangueiras Pre-treatments with water and indole butyric acid dosis for herbaceous cuttings of Surinam cherry

    Directory of Open Access Journals (Sweden)

    Daiane Silva Lattuada

    2011-12-01

    . In this context, a study for the multiplication of Surinam cherry was conduced with herbaceous cuttings, taken from young and adult mother plants, immersed in indole butyric acid doses (0, 2000, 4000 and 6000mg L-1, in three different water periods (0, 24 or 48 hours. Survival rate (%, leaf retention and emission (No. leaves /cutting, callus rate (% and rooting (% were evaluated. At the end of the experiment, were also evaluated fresh and dry weight of shoot and root, leaf number and leaf area. The experiment has a completely randomized design with three replications of ten plants per treatment for nom destructive and three replications of five plants per treatment for the destrutive parameters. The herbaceous cuttings were efficient to produce seedlings of Surinam cherry, particularly when using cuttings derived from seedlings in the absence of the immersion in water and exogenous auxin.

  13. Influência do ácido indolbutírico no enraizamento de estacas apicais e basais de caramboleira (Averrhoa carambola L. sob condições de nebulização intermitente Influence of indol butyric acid on the rooting of top and base cuttings of star fruit (Averrhoa carambola L. under intermitent mist

    Directory of Open Access Journals (Sweden)

    Débora Costa Bastos

    2004-08-01

    Full Text Available A produção de mudas de caramboleira é um dos fatores limitantes à expansão comercial da cultura, devido ao tempo que estas levam para serem formadas e iniciarem a produção. Uma boa alternativa pode estar na otimização dos métodos de propagação vegetativa, através de estudos relativos aos processos e fatores envolvidos no enraizamento de estacas. Este trabalho foi desenvolvido com o objetivo de estudar o enraizamento de estacas apicais e basais de caramboleira, tratadas com ácido indolbutírico (IBA, em condições de nebulização intermitente. Estacas apicais e basais de caramboleira foram coletadas de ramos de plantas-matrizes da cultivar B-10 e submetidas à aplicação de cinco concentrações de IBA (0; 1.000; 3.000; 5.000 e 7000 mg.L-1, em imersão por 10 segundos, para avaliar a capacidade de sobrevivência, enraizamento e número médio de raízes/estaca. Posteriormente, as estacas foram colocadas em caixas de madeira contendo vermiculita média como substrato e mantidas em casa de vegetação, sob nebulização intermitente, durante 70 dias. O delineamento experimental utilizado foi em esquema fatorial 2 x 5, com 4 repetições e 10 estacas/parcela. As estacas apicais obtiveram melhores resultados para porcentagem de sobrevivência (49,26%, enraizamento (34,84% e número médio de raízes (20,51, mostrando-se superiores às basais. O uso de IBA não influenciou em nenhuma das variáveis analisadas.Star fruit seedling production is one of the drawbacks to the commercial expansion due to the length of time it takes for their formation and production. An alternative would be the improvement of vegetative propagation methods studing the processes and factors concerned with rooting of cuttings. This paper was carried out with the objective to study rooting of top and base star fruit cuttings, treated with Indol Butyric Acid (IBA concentrations under intermittent mist. Top and base cuttings of star fruit 'B-10' were submitted to

  14. Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health?

    Science.gov (United States)

    Bourassa, Megan W; Alim, Ishraq; Bultman, Scott J; Ratan, Rajiv R

    2016-06-20

    As interest in the gut microbiome has grown in recent years, attention has turned to the impact of our diet on our brain. The benefits of a high fiber diet in the colon have been well documented in epidemiological studies, but its potential impact on the brain has largely been understudied. Here, we will review evidence that butyrate, a short-chain fatty acid (SCFA) produced by bacterial fermentation of fiber in the colon, can improve brain health. Butyrate has been extensively studied as a histone deacetylase (HDAC) inhibitor but also functions as a ligand for a subset of G protein-coupled receptors and as an energy metabolite. These diverse modes of action make it well suited for solving the wide array of imbalances frequently encountered in neurological disorders. In this review, we will integrate evidence from the disparate fields of gastroenterology and neuroscience to hypothesize that the metabolism of a high fiber diet in the gut can alter gene expression in the brain to prevent neurodegeneration and promote regeneration. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  15. Acetate adaptation of clostridia tyrobutyricum for improved fermentation production of butyrate.

    Science.gov (United States)

    Jaros, Adam M; Rova, Ulrika; Berglund, Kris A

    2013-12-01

    Clostridium tyrobutyricum ATCC 25755 is an acidogenic bacterium capable of utilizing xylose for the fermentation production of butyrate. Hot water extraction of hardwood lingocellulose is an efficient method of producing xylose where autohydrolysis of xylan is catalysed by acetate originating from acetyl groups present in hemicellulose. The presence of acetic acid in the hydrolysate might have a severe impact on the subsequent fermentations. In this study the fermentation kinetics of C. tyrobutyricum cultures after being classically adapted for growth at 26.3 g/L acetate equivalents were studied. Analysis of xylose batch fermentations found that even in the presence of high levels of acetate, acetate adapted strains had similar fermentation kinetics as the parental strain cultivated without acetate. The parental strain exposed to acetate at inhibitory conditions demonstrated a pronounced lag phase (over 100 hours) in growth and butyrate production as compared to the adapted strain (25 hour lag) or non-inhibited controls (0 lag). Additional insight into the metabolic pathway of xylose consumption was gained by determining the specific activity of the acetate kinase (AK) enzyme in adapted versus control batches. AK activity was reduced by 63% in the presence of inhibitory levels of acetate, whether or not the culture had been adapted.

  16. Butyrate and bioactive proteolytic form of Wnt-5a regulate colonic epithelial proliferation and spatial development

    Science.gov (United States)

    Uchiyama, Kazuhiko; Sakiyama, Toshio; Hasebe, Takumu; Musch, Mark W.; Miyoshi, Hiroyuki; Nakagawa, Yasushi; He, Tong-Chuan; Lichtenstein, Lev; Naito, Yuji; Itoh, Yoshito; Yoshikawa, Toshikazu; Jabri, Bana; Stappenbeck, Thaddeus; Chang, Eugene B.

    2016-01-01

    Proliferation and spatial development of colonic epithelial cells are highly regulated along the crypt vertical axis, which, when perturbed, can result in aberrant growth and carcinogenesis. In this study, two key factors were identified that have important and counterbalancing roles regulating these processes: pericrypt myofibroblast-derived Wnt-5a and the microbial metabolite butyrate. Cultured YAMC cell proliferation and heat shock protein induction were analzyed after butryate, conditioned medium with Wnt5a activity, and FrzB containing conditioned medium. In vivo studies to modulate Hsp25 employed intra-colonic wall Hsp25 encoding lentivirus. To silence Wnt-5a in vivo, intra-colonic wall Wnt-5a silencing RNA was used. Wnt-5a, secreted by stromal myofibroblasts of the lower crypt, promotes proliferation through canonical β-catenin activation. Essential to this are two key requirements: (1) proteolytic conversion of the highly insoluble ~40 kD Wnt-5a protein to a soluble 36 mer amino acid peptide that activates epithelial β-catenin and cellular proliferation, and (2) the simultaneous inhibition of butyrate-induced Hsp25 by Wnt-5a which is necessary to arrest the proliferative process in the upper colonic crypt. The interplay and spatial gradients of these factors insures that crypt epithelial cell proliferation and development proceed in an orderly fashion, but with sufficient plasticity to adapt to physiological perturbations including inflammation. PMID:27561676

  17. Butyricicoccus porcorum sp. nov., a butyrate-producing bacterium from swine intestinal tract.

    Science.gov (United States)

    Trachsel, Julian; Humphrey, Samuel; Allen, Heather K

    2018-05-01

    A Gram-stain-positive, non-motile, butyrate-producing coccus was cultured from the distal ileum of swine. This organism was isolated on rumen-fluid medium, consumes acetate, and produces butyrate as its major end product when grown on mono- and di-saccharides. A phylogenetic analysis based on near full-length 16S rRNA gene sequences as well as whole-genome phylogenies suggests that this isolate is most closely related to species in the genus Butyricicoccus, with Butyricicoccus pullicaecorum being the closest named relative (93.5 % 16S similarity). The G+C content of this isolate is 54 mol%, and the major cellular fatty acids are C18 : 0 DMA, C14 : 0, C18 : 1ω9c and C16 : 0. These data indicate that this isolate represents a novel species within the genus Butyricicoccus, for which the name Butyricicoccus porcorum sp. nov. is proposed. The type strain of Butyricicoccus porcorum is BB10 T (ATCC TSD-102 T , DSM 104997 T ).

  18. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chiaro, Christopher, E-mail: cchiaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Lazarova, Darina L., E-mail: dlazarova@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Bordonaro, Michael, E-mail: mbordonaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer We investigate mechanisms responsible for butyrate resistance in colon cancer cells. Black-Right-Pointing-Pointer Tcf3 modulates butyrate's effects on Wnt activity and cell growth in resistant cells. Black-Right-Pointing-Pointer Tcf3 modulation of butyrate's effects differ by cell context. Black-Right-Pointing-Pointer Cell cycle factors are overexpressed in the resistant cells. Black-Right-Pointing-Pointer Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G{sub 1} to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that

  19. Thermal decomposition of yttrium(III) propionate and butyrate

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2013-01-01

    The thermal decompositions of yttrium(III) propionate monohydrate (Y(C2H5CO2)3·H2O) and yttrium(III) butyrate dihydrate (Y(C3H7CO2)3·2H2O) were studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction and hot-stage microscopy. These two...

  20. Butyrate absorption and lactate secretion in ulcerative colitis

    DEFF Research Database (Denmark)

    Hove, H; Holtug, K; Jeppesen, P B

    1995-01-01

    .12. Despite normal butyrate absorption, sodium absorption was compromised in active ulcerative colitis (11.5 +/- 1.4 mumol/cm2/h) compared with quiescent (15.4 +/- 1.0 mumol/cm2/h) and controls (18.7 +/- 0.8 mumol/cm2/h) (P = 0.0006). Mucosal secretion of L-lactate was minimal in both healthy controls...

  1. Structure and properties of oil palm-based nanocellulose reinforced chitosan nanocomposite for efficient synthesis of butyl butyrate.

    Science.gov (United States)

    Elias, Nursyafiqah; Chandren, Sheela; Attan, Nursyafreena; Mahat, Naji Arafat; Razak, Fazira Ilyana Abdul; Jamalis, Joazaizulfazli; Wahab, Roswanira Abdul

    2017-11-15

    In this study, nanocellulose (NC) was successfully extracted from oil palm frond leaves (OPFL) using a combination of bleaching, alkaline treatment and acid hydrolysis. X-ray diffractogram revealed the extracted NC was crystalline with a crystallinity index of 70.2%. This indicates its suitability as nano-fillers for preparing the chitosan/nanocellulose (CS-NC) supports to immobilize Candida rugosa lipase (CRL) to produce the CRL/CS-NC biocatalysts. FTIR, FESEM and TGA characterizations of the CRL/CS-NC confirm the CRLs were successfully conjugated to the CS-NC supports. The air-dried CS-NC supports gave satisfactory immobilization of the CRLs (5.2mg/g) with the resultant CRL/CS-NCs catalysed conversions of ≥80% of butyl butyrate within 6h. Time course reaction profile revealed that 76.3% butyl butyrate conversion was achieved at 4h immobilization time using 3mg/mL of CRL/CS-NCs. NMR analyses on the purified butyl butyrate confirmed that the ester was successfully synthesized. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Síntese do butirato de n-butila empregando lipase microbiana imobilizada em copolímero de estireno-divinilbenzeno Synthesis of butyl butyrate by microbial lipase immobilized onto styrene-divinylbenzene copolymer

    Directory of Open Access Journals (Sweden)

    Pedro Carlos de Oliveira

    2000-10-01

    Full Text Available This work investigates the reaction parameters of an immobilized lipase in the esterification reaction of n-butanol and butyric acid. Microbial lipase from Candida rugosa was immobilized onto styrene-divinylbenzene copolymer (STY-DVB and subsequently introduced in an organic medium containing substrates in appropriate concentrations. Heptane was selected as solvent on the basis of its compatibility with the resin and the enzyme. The influence of molar ratio of acid to alcohol, amount of immobilized lipase and temperature on the butyl butyrate formation was determined. The results were compared with those achieved with free lipase and Lipozyme (commercially immobilized lipase under the same operational conditions.

  3. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    International Nuclear Information System (INIS)

    Chiaro, Christopher; Lazarova, Darina L.; Bordonaro, Michael

    2012-01-01

    Highlights: ► We investigate mechanisms responsible for butyrate resistance in colon cancer cells. ► Tcf3 modulates butyrate’s effects on Wnt activity and cell growth in resistant cells. ► Tcf3 modulation of butyrate’s effects differ by cell context. ► Cell cycle factors are overexpressed in the resistant cells. ► Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G 1 to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that prevent or reverse butyrate resistance.

  4. Comparing nonsynergistic gamma models with interaction models to predict growth of emetic Bacillus cereus when using combinations of pH and individual undissociated acids as growth-limiting factors

    NARCIS (Netherlands)

    Biesta-Peters, E.G.; Reij, M.W.; Gorris, L.G.M.; Zwietering, M.H.

    2010-01-01

    A combination of multiple hurdles to limit microbial growth is frequently applied in foods to achieve an overall level of protection. Quantification of hurdle technology aims at identifying synergistic or multiplicative effects and is still being developed. The gamma hypothesis states that

  5. Acetate and butyrate as substrates for hydrogen production through photo-fermentation: Process optimization and combined performance evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Srikanth, S.; Venkata Mohan, S.; Prathima Devi, M.; Peri, Dinakar; Sarma, P.N. [Bioengineering and Environmental Centre, Indian Institute of Chemical Technology, Tarnaka, Hyderabad, AP 500 007 (India)

    2009-09-15

    Organic acids viz., acetate and butyrate were evaluated as primary substrates for the production of biohydrogen (H{sub 2}) through photo-fermentation process using mixed culture at mesophilic temperature (34 C). Experiments were performed by varying parameters like operating pH, presence/absence of initiator substrate (glucose) and vitamin solution, type of nitrogen source (mono sodium salt of glutamic acid and amino glutamic acid) and gas (nitrogen/argon) used to create anaerobic microenvironment. Experimental data showed the feasibility of H{sub 2} production along with substrate degradation utilizing organic acids as metabolic substrate but was found to be dependent on the process parameters evaluated. Maximum specific H{sub 2} production and substrate degradation were observed with acetic acid [3.51 mol/Kg COD{sub R}-day; 1.22 Kg COD{sub R}/m{sup 3}-day (92.96%)] compared to butyric acid [3.33 mol/Kg COD{sub R}-day; 1.19 Kg COD{sub R}/m{sup 3}-day (88%)]. Higher H{sub 2} yield was observed under acidophilic microenvironment in the presence of glucose (co-substrate), mono sodium salt of glutamic acid (nitrogen source) and vitamins. Argon induced microenvironment was observed to be effective compared to nitrogen induced microenvironment. Combined process efficiency viz., H{sub 2} production and substrate degradation was evaluated employing data enveloping analysis (DEA) methodology based on the relative efficiency. Integration of dark fermentation with photo-fermentation appears to be an economically viable route for sustainable biohydrogen production if wastewater is used as substrate. (author)

  6. Transcriptomic impacts of rumen epithelium induced by butyrate infusion in dairy cattle in dry period

    Science.gov (United States)

    Transcriptomics and bioinformatics are utilized to accelerate our understanding of regulation in rumen epithelial transcriptome of cattle in the dry period induced by butyrate infusion. Butyrate, as an essential element of nutrients, is an HDAC inhibitor that can alter histone acetylation and methyl...

  7. Differential Cellular and Molecular Effects of Butyrate and Trichostatin A on Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Kasturi Ranganna

    2012-09-01

    Full Text Available The histone deacetylase (HDAC inhibitors, butyrate and trichostatin A (TSA, are epigenetic histone modifiers and proliferation inhibitors by downregulating cyclin D1, a positive cell cycle regulator, and upregulating p21Cip1 and INK family of proteins, negative cell cycle regulators. Our recent study indicated cyclin D1 upregulation in vascular smooth muscle cells (VSMC that are proliferation-arrested by butyrate. Here we investigate whether cyclin D1 upregulation is a unique response of VSMC to butyrate or a general response to HDAC inhibitors (HDACi by evaluating the effects of butyrate and TSA on VSMC. While butyrate and TSA inhibit VSMC proliferation via cytostatic and cytotoxic effects, respectively, they downregulate cdk4, cdk6, and cdk2, and upregulate cyclin D3, p21Cip1 and p15INK4B, and cause similar effects on key histone H3 posttranslational modifications. Conversely, cyclin D1 is upregulated by butyrate and inhibited by TSA. Assessment of glycogen synthase 3-dependent phosphorylation, subcellular localization and transcription of cyclin D1 indicates that differential effects of butyrate and TSA on cyclin D1 levels are linked to disparity in cyclin D1 gene expression. Disparity in butyrate- and TSA-induced cyclin D1 may influence transcriptional regulation of genes that are associated with changes in cellular morphology/cellular effects that these HDACi confer on VSMC, as a transcriptional modulator.

  8. Combined effects of starvation and butyrate on autophagy-dependent gingival epithelial cell death.

    Science.gov (United States)

    Evans, M; Murofushi, T; Tsuda, H; Mikami, Y; Zhao, N; Ochiai, K; Kurita-Ochiai, T; Yamamoto, M; Otsuka, K; Suzuki, N

    2017-06-01

    Bacteria in the dental biofilm surrounding marginal gingival grooves cause periodontal diseases. Numerous bacteria within the biofilm consume nutrients from the gingival crevicular fluid. Furthermore, some gram-negative bacteria in mature dental biofilms produce butyrate. Thus, gingival epithelial cells in close proximity to mature dental biofilms are at risk of both starvation and exposure to butyrate. In the present study, we determined the combined effects of starvation and butyrate exposure on gingival epithelial cell death and the underlying mechanisms. The Ca9-22 cell line was used as an in vitro counterpart of gingival epithelial cells. Cell death was measured as the amount of total DNA in the dead cells using SYTOX Green dye, which penetrates through membranes of dead cells and emits fluorescence when it intercalates into double-stranded DNA. AMP-activated protein kinase (AMPK) activity, the amount of autophagy, and acetylation of histone H3 were determined using western blot. Gene expression levels of microtubule-associated protein 1 light chain 3b (lc3b) were determined using quantitative reverse transcription-polymerase chain reaction. Butyrate-induced cell death occurred in a dose-dependent manner whether cells were starved or fed. However, the induction of cell death was two to four times higher when cells were placed under starvation conditions compared to when they were fed. Moreover, both starvation and butyrate exposure induced AMPK activity and autophagy. While AMPK inactivation resulted in decreased autophagy and butyrate-induced cell death under conditions of starvation, AMPK activation resulted in butyrate-induced cell death when cells were fed. Combined with the results of our previous report, which demonstrated butyrate-induced autophagy-dependent cell death, the results of this study suggest that the combination of starvation and butyrate exposure activates AMPK inducing autophagy and subsequent cell death. Notably, this combination markedly

  9. Hypoxia and Inactivity Related Physiological Changes (Constipation, Inflammation Are Not Reflected at the Level of Gut Metabolites and Butyrate Producing Microbial Community: The PlanHab Study

    Directory of Open Access Journals (Sweden)

    Robert Šket

    2017-05-01

    Full Text Available We explored the assembly of intestinal microbiota in healthy male participants during the run-in (5 day and experimental phases [21-day normoxic bed rest (NBR, hypoxic bedrest (HBR], and hypoxic ambulation (HAmb in a strictly controlled laboratory environment, balanced fluid, and dietary intakes, controlled circadian rhythm, microbial ambiental burden, and 24/7 medical surveillance. The fraction of inspired O2 (FiO2 and partial pressure of inspired O2 (PiO2 were 0.209 and 133.1 ± 0.3 mmHg for NBR and 0.141 ± 0.004 and 90.0 ± 0.4 mmHg for both hypoxic variants (HBR and HAmb; ~4,000 m simulated altitude, respectively. A number of parameters linked to intestinal transit spanning Bristol Stool Scale, defecation rates, zonulin, α1-antitrypsin, eosinophil derived neurotoxin, bile acids, reducing sugars, short chain fatty acids, total soluble organic carbon, water content, diet composition, and food intake were measured (167 variables. The abundance, structure, and diversity of butyrate producing microbial community were assessed using the two primary bacterial butyrate synthesis pathways, butyryl-CoA: acetate CoA-transferase (but and butyrate kinase (buk genes. Inactivity negatively affected fecal consistency and in combination with hypoxia aggravated the state of gut inflammation (p < 0.05. In contrast, gut permeability, various metabolic markers, the structure, diversity, and abundance of butyrate producing microbial community were not significantly affected. Rearrangements in the butyrate producing microbial community structure were explained by experimental setup (13.4%, experimentally structured metabolites (12.8%, and gut metabolite-immunological markers (11.9%, with 61.9% remaining unexplained. Many of the measured parameters were found to be correlated and were hence omitted from further analyses. The observed progressive increase in two immunological intestinal markers suggested that the transition from healthy physiological state toward

  10. Invited review: Use of butyrate to promote gastrointestinal tract development in calves.

    Science.gov (United States)

    Górka, P; Kowalski, Z M; Zabielski, R; Guilloteau, P

    2018-03-07

    Promotion of microbial butyrate production in the reticulorumen is a widely used method for enhancing forestomach development in calves. Additional acceleration of gastrointestinal tract (GIT) development, both the forestomach and lower parts of the GIT (e.g., abomasum, intestine, and also pancreas), can be obtained by dietary butyrate supplementation. For this purpose, different sources (e.g., butyrate salts or butyrins), forms (e.g., protected or unprotected), methods (e.g., in liquid feed or solid feed), and periods (e.g., before or after weaning) of butyrate administration can be used. The aim of this paper was to summarize the knowledge in the field of butyrate supplementation in feeds for newborn calves in practical situations, and to suggest directions of future studies. It has been repeatedly shown that supplementation of unprotected salts of butyrate (primarily sodium salt) in milk replacer (MR) stimulates the rumen, small intestine, and pancreas development in calves, with a supplementation level equating to 0.3% of dry matter being sufficient to exert the desired effect on both GIT development and growth performance. On the other hand, the effect of unprotected butyrins and protected forms of butyrate supplementation in MR has not been extensively investigated, and few studies have documented the effect of butyrate addition into whole milk (WM), with those available focusing mainly on the growth performance of animals. Protected butyrate supplementation at a low level (0.3% of protected product in DM) in solid feed was shown to have a potential to enhance GIT development and performance of calves fed MR during the preweaning period. Justification of this form of butyrate supplementation in solid feed when calves are fed WM or after weaning needs to be documented. After weaning, inclusion of unprotected butyrate salts in solid feed was shown to increase solid feed intake, but the effect on GIT development and function has not been determined in detail

  11. Short-Chain Fatty Acids Enhance the Lipid Accumulation of 3T3-L1 Cells by Modulating the Expression of Enzymes of Fatty Acid Metabolism.

    Science.gov (United States)

    Yu, Haining; Li, Ran; Huang, Haiyong; Yao, Ru; Shen, Shengrong

    2018-01-01

    Short-chain fatty acids (SCFA) such as acetic acid, propionic acid, and butyric acid are produced by fermentation by gut microbiota. In this paper, we investigate the effects of SCFA on 3T3-L1 cells and the underlying molecular mechanisms. The cells were treated with acetic acid, propionic acid, or butyric acid when cells were induced to differentiate into adipocytes. MTT assay was employed to detect the viability of 3T3-L1 cells. Oil Red O staining was used to visualize the lipid content in 3T3-L1 cells. A triglyceride assay kit was used to detect the triacylglycerol content in 3T3-L1 cells. qRT-PCR and Western blot were used to evaluate the expression of metabolic enzymes. MTT results showed that safe concentrations of acetic acid, propionic acid, and butyric acid were less than 6.4, 3.2, and 0.8 mM, respectively. Oil Red O staining and triacylglycerols detection results showed that treatment with acetic acid, propionic acid, and butyric acid accelerated the 3T3-L1 adipocyte differentiation. qRT-PCR and Western blot results showed that the expressions of lipoprotein lipase (LPL), adipocyte fatty acid binding protein 4 (FABP4), fatty acid transporter protein 4 (FATP4), and fatty acid synthase (FAS) were significantly increased by acetic acid, propionic acid, and butyric acid treatment during adipose differentiation (p fatty acid metabolism. © 2018 AOCS.

  12. Genes and Gut Bacteria Involved in Luminal Butyrate Reduction Caused by Diet and Loperamide.

    Science.gov (United States)

    Hwang, Nakwon; Eom, Taekil; Gupta, Sachin K; Jeong, Seong-Yeop; Jeong, Do-Youn; Kim, Yong Sung; Lee, Ji-Hoon; Sadowsky, Michael J; Unno, Tatsuya

    2017-11-28

    Unbalanced dietary habits and gut dysmotility are causative factors in metabolic and functional gut disorders, including obesity, diabetes, and constipation. Reduction in luminal butyrate synthesis is known to be associated with gut dysbioses, and studies have suggested that restoring butyrate formation in the colon may improve gut health. In contrast, shifts in different types of gut microbiota may inhibit luminal butyrate synthesis, requiring different treatments to restore colonic bacterial butyrate synthesis. We investigated the influence of high-fat diets (HFD) and low-fiber diets (LFD), and loperamide (LPM) administration, on key bacteria and genes involved in reduction of butyrate synthesis in mice. MiSeq-based microbiota analysis and HiSeq-based differential gene analysis indicated that different types of bacteria and genes were involved in butyrate metabolism in each treatment. Dietary modulation depleted butyrate kinase and phosphate butyryl transferase by decreasing members of the Bacteroidales and Parabacteroides . The HFD also depleted genes involved in succinate synthesis by decreasing Lactobacillus . The LFD and LPM treatments depleted genes involved in crotonoyl-CoA synthesis by decreasing Roseburia and Oscilllibacter . Taken together, our results suggest that different types of bacteria and genes were involved in gut dysbiosis, and that selected treatments may be needed depending on the cause of gut dysfunction.

  13. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine.

    Science.gov (United States)

    Louis, Petra; Flint, Harry J

    2009-05-01

    Butyrate-producing bacteria play a key role in colonic health in humans. This review provides an overview of the current knowledge of the diversity, metabolism and microbial ecology of this functionally important group of bacteria. Human colonic butyrate producers are Gram-positive firmicutes, but are phylogenetically diverse, with the two most abundant groups related to Eubacterium rectale/Roseburia spp. and to Faecalibacterium prausnitzii. Five different arrangements have been identified for the genes of the central pathway involved in butyrate synthesis, while in most cases butyryl-CoA : acetate CoA-transferase, rather than butyrate kinase, appears to perform the final step in butyrate synthesis. Mechanisms have been proposed recently in non-gut Clostridium spp. whereby butyrate synthesis can result in energy generation via both substrate-level phosphorylation and proton gradients. Here we suggest that these mechanisms also apply to the majority of butyrate producers from the human colon. The roles of these bacteria in the gut community and their influence on health are now being uncovered, taking advantage of the availability of cultured isolates and molecular methodologies. Populations of F. prausnitzii are reported to be decreased in Crohn's disease, for example, while populations of Roseburia relatives appear to be particularly sensitive to the diet composition in human volunteer studies.

  14. Transcriptome Analysis Reveals Regulation of Gene Expression for Lipid Catabolism in Young Broilers by Butyrate Glycerides

    Science.gov (United States)

    Yin, Fugui; Yu, Hai; Lepp, Dion; Shi, Xuejiang; Yang, Xiaojian; Hu, Jielun; Leeson, Steve; Yang, Chengbo; Nie, Shaoping; Hou, Yongqing; Gong, Joshua

    2016-01-01

    Background & Aims Butyrate has been shown to potently regulate energy expenditure and lipid metabolism in animals, yet the underlying mechanisms remain to be fully understood. The aim of this study was to investigate the molecular mechanisms of butyrate (in the form of butyrate glycerides, BG)-induced lipid metabolism at the level of gene expression in the jejunum and liver of broilers. Methodology/Principal Findings Two animal experiments were included in this study. In Experiment 1, two hundred and forty male broiler chickens were equally allocated into two groups: 1) basal diet (BD), 2) BG diets (BD + BG). Growth performance was compared between treatments for the 41-day trial. In Experiment 2, forty male broiler chickens were equally allocated into two groups. The general experimental design, group and management were the same as described in Experiment 1 except for reduced bird numbers and 21-day duration of the trial. Growth performance, abdominal fat deposition, serum lipid profiles as well as serum and tissue concentrations of key enzymes involved in lipid metabolism were compared between treatments. RNA-seq was employed to identify both differentially expressed genes (DEGs) and treatment specifically expressed genes (TSEGs). Functional clustering of DEGs and TSEGs and signaling pathways associated with lipid metabolism were identified using Ingenuity Pathways Analysis (IPA) and DAVID Bioinformatics Resources 6.7 (DAVID-BR). Quantitative PCR (qPCR) assays were subsequently conducted to further examine the expression of genes in the peroxisome proliferator-activated receptors (PPAR) signaling pathway identified by DAVID-BR. Dietary BG intervention significantly reduced abdominal fat ratio (abdominal fat weight/final body weight) in broilers. The decreased fat deposition in BG-fed chickens was in accordance with serum lipid profiles as well as the level of lipid metabolism-related enzymes in the serum, abdominal adipose, jejunum and liver. RNA-seq analysis

  15. Butyrate-induced proapoptotic and antiangiogenic pathways in EAT cells require activation of CAD and downregulation of VEGF

    International Nuclear Information System (INIS)

    Belakavadi, Madesh; Prabhakar, B.T.; Salimath, Bharathi P.

    2005-01-01

    Butyrate, a short-chain fatty acid produced in the colon, induces cell cycle arrest, differentiation, and apoptosis in transformed cell lines. In this report, we study the effects of butyrate (BuA) on the growth of Ehrlich ascites tumor (EAT) cells in vivo. BuA, when injected intraperitoneally (i.p) into mice, inhibited proliferation of EAT cells. Further, induction of apoptosis in EAT cells was monitored by nuclear condensation, annexin-V staining, DNA fragmentation, and translocation of caspase-activated DNase into nucleus upon BuA-treatment. Ac-DEVD-CHO, a caspase-3 inhibitor, completely inhibited BuA-induced apoptosis, indicating that activation of caspase-3 mediates the apoptotic pathway in EAT cells. The proapoptotic effect of BuA also reflects on the antiangiogenic pathway in EAT cells. The antiangiogenic effect of BuA in vivo was demonstrated by the downregulation of the secretion of VEGF in EAT cells. CD31 immunohistochemical staining of peritoneum sections clearly indicated a potential angioinhibitory effect of BuA in EAT cells. These results suggest that BuA, besides regulating other fundamental cellular processes, is able to modulate the expression/secretion of the key angiogenic growth factor VEGF in EAT cells

  16. Effect of propionic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    Science.gov (United States)

    Xu, Jian; Bao, Jia-Wei; Su, Xian-Feng; Zhang, Hong-Jian; Zeng, Xin; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2016-03-01

    In this study, an integrated citric acid-methane fermentation process was established to solve the problem of wastewater treatment in citric acid production. Citric acid wastewater was treated through anaerobic digestion and then the anaerobic digestion effluent (ADE) was further treated and recycled for the next batch citric acid fermentation. This process could eliminate wastewater discharge and reduce water resource consumption. Propionic acid was found in the ADE and its concentration continually increased in recycling. Effect of propionic acid on citric acid fermentation was investigated, and results indicated that influence of propionic acid on citric acid fermentation was contributed to the undissociated form. Citric acid fermentation was inhibited when the concentration of propionic acid was above 2, 4, and 6 mM in initial pH 4.0, 4.5 and, 5.0, respectively. However, low concentration of propionic acid could promote isomaltase activity which converted more isomaltose to available sugar, thereby increasing citric acid production. High concentration of propionic acid could influence the vitality of cell and prolong the lag phase, causing large amount of glucose still remaining in medium at the end of fermentation and decreasing citric acid production.

  17. Combining microbial cultures for efficient production of electricity from butyrate in a microbial electrochemical cell

    Science.gov (United States)

    Miceli, Joseph F.; Garcia-Peña, Ines; Parameswaran, Prathap; Torres, César I.; Krajmalnik-Brown, Rosa

    2014-01-01

    Butyrate is an important product of anaerobic fermentation; however, it is not directly used by characterized strains of the highly efficient anode respiring bacteria (ARB) Geobacter sulfurreducens in microbial electrochemical cells. By combining a butyrate-oxidizing community with a Geobacter rich culture, we generated a microbial community which outperformed many naturally derived communities found in the literature for current production from butyrate and rivaled the highest performing natural cultures in terms of current density (~11 A/m2) and Coulombic efficiency (~70%). Microbial community analyses support the shift in the microbial community from one lacking efficient ARB in the marine hydrothermal vent community to a community consisting of ~80% Geobacter in the anode biofilm. This demonstrates the successful production and adaptation of a novel microbial culture for generating electrical current from butyrate with high current density and high Coulombic efficiency, by combining two mixed micro bial cultures containing complementing biochemical pathways. PMID:25048958

  18. The effect of fiber diet on colonic cancer formation: the role of butyrate

    Directory of Open Access Journals (Sweden)

    Ari F. Syam

    2003-06-01

    Full Text Available The majority of colon cancers occur sporadically. They are thougth to be caused by non-inherited factors such as a combination of diet and environmental factors, which result in somatic mutations of specific genes. Among dietary factors butyrate which is derived from fermentable fibers may have important role as chemoprotector against colorectal cancer. The source of butyrate in daily diet mostly come from wheat products especially wheat bran. At molecular level, butyrate causes hystone acetylation, favours differentiation, induces apoptosis and regulates the expressions of various oncogens. These effects suggest that butyrate may be protective against colorectal cancers. (Med J Indones 2003; 12: 127-31Keywords: colon cancer, dietary fiber, apoptosis

  19. Physico-chemical study of erbium, thulium ytterbium and lutetium butyrates

    International Nuclear Information System (INIS)

    Loginova, V.E.; Dvornikova, L.M.; Khazov, L.A.; Rubinshtejn, A.S.

    1975-01-01

    Er-Lu butyrates have been obtained. The crystals of the obtained salts had an identical shape of combinations of hexagonal prisms and pyramids. The values of the refraction index, measured by the method of circular screening and use of immersion liquids, were found to be close to each other in all the salts considered. The densities of the crystallohydrates of rare earth element butyrates, measured by the pycnometric method in isooctane, increases in the order of Er, Tm, Lu: 1.73; 1.74; 1.79 g/cm 3 , respectively. Infrared spectra of rare earth element butyrates were studied, and the main ware frequencies of maximum absorption were determined with a view of finding the character of the bond between the metal and the anion. A thermo-differential and a thermo-gravimetric investigation of rare earth element butyrates was carried out

  20. Review: Exogenous butyrate: implications for the functional development of ruminal epithelium and calf performance.

    Science.gov (United States)

    Niwińska, B; Hanczakowska, E; Arciszewski, M B; Klebaniuk, R

    2017-09-01

    The importance of the use of exogenous butyrate in calves' diets is due to its role as a factor stimulating the functional development of ruminal epithelium and improving calf performance during the transition from preruminant to ruminant status. Our review will first present results related to effects of the administration of butyrate in calves' diets on the development of ruminal epithelium toward a more effective absorption and metabolism of fermentation products from the rumen. The introduction of sodium butyrate at a level of about 0.3% of diet dry matter is accompanied by an increase to 35% in butyrate concentration in the rumen of 33-day-old calves. Mutual reliance between an enhanced ruminal concentration of butyrate and the activities of transcription factors, genes and proteins involved in cell proliferation, ketogenesis and the maintenance of cell pH homeostasis in the ruminal epithelial cells has been clearly confirmed in many experiments. Second, the review presents results related to the effects of the introduction of butyrate salts in the diet on calf performance. Of 11 studies a positive effect was found in six; five of these were obtained from the calves that started receiving butyrate supplement at a level of about 0.3% diet dry matter from the age of 3 to 5 days. Results indicate that when a supplement is given to calves soon after birth the functional development of ruminal epithelium in cooperation with the endocrine and digestion systems is transferred into improving the efficiency of rearing. There have been no studies on the effects of greater amounts of butyrate salts in milk replacer; butyrate constitutes about 1.2% of the whole cow's milk dry matter. In older calves, when butyrate administration is provided as a component of a starter concentrate at the increasing inclusion rate from 0.3% to 3.0%, the practical effect in calf performance relates to the risk of depression of rumen pH below 5.5 and accompanying disruption of the

  1. Chitin butyrate coated electrospun nylon-6 fibers for biomedical applications

    Science.gov (United States)

    Pant, Hem Raj; Kim, Han Joo; Bhatt, Lok Ranjan; Joshi, Mahesh Kumar; Kim, Eun Kyo; Kim, Jeong In; Abdal-hay, Abdalla; Hui, K. S.; Kim, Cheol Sang

    2013-11-01

    In this study, we describe the preparation and characterizations of chitin butyrate (CB) coated nylon-6 nanofibers using single-spinneret electrospinning of blends solution. The physicochemical properties of nylon-6 composite fibers with different proportions of CB to nylon-6 were determined using FE-SEM, TEM, FT-IR spectroscopy, and water contact angle measurement. FE-SEM and TEM images revealed that the nylon-6 and CB were immiscible in the as-spun nanofibers, and phase separated nanofiber morphology becomes more pronounced with increasing amounts of CB. The bone formation ability of composite fibers was evaluated by incubating in biomimetic simulated body fluid. In order to assay the cytocompatibility and cell behavior on the composite scaffolds, osteoblast cells were seeded on the matrix. Results suggest that the deposition of CB layer on the surface of nylon-6 could increase its cell compatibility and bone formation ability. Therefore, as-synthesized nanocomposite fibrous mat has great potentiality in hard tissue engineering.

  2. Kinetic and thermodynamic control of butyrate conversion in non-defined methanogenic communities.

    Science.gov (United States)

    Junicke, H; van Loosdrecht, M C M; Kleerebezem, R

    2016-01-01

    Many anaerobic conversions proceed close to thermodynamic equilibrium and the microbial groups involved need to share their low energy budget to survive at the thermodynamic boundary of life. This study aimed to investigate the kinetic and thermodynamic control mechanisms of the electron transfer during syntrophic butyrate conversion in non-defined methanogenic communities. Despite the rather low energy content of butyrate, results demonstrate unequal energy sharing between the butyrate-utilizing species (17 %), the hydrogenotrophic methanogens (9-10 %), and the acetoclastic methanogens (73-74 %). As a key finding, the energy disproportion resulted in different growth strategies of the syntrophic partners. Compared to the butyrate-utilizing partner, the hydrogenotrophic methanogens compensated their lower biomass yield per mole of electrons transferred with a 2-fold higher biomass-specific electron transfer rate. Apart from these thermodynamic control mechanisms, experiments revealed a ten times lower hydrogen inhibition constant on butyrate conversion than proposed by the Anaerobic Digestion Model No. 1, suggesting a much stronger inhibitory effect of hydrogen on anaerobic butyrate conversion. At hydrogen partial pressures exceeding 40 Pa and at bicarbonate limited conditions, a shift from methanogenesis to reduced product formation was observed which indicates an important role of the hydrogen partial pressure in redirecting electron fluxes towards reduced products such as butanol. The findings of this study demonstrate that a careful consideration of thermodynamics and kinetics is required to advance our current understanding of flux regulation in energy-limited syntrophic ecosystems.

  3. The histone deacetylase inhibitor butyrate inhibits melanoma cell invasion of Matrigel.

    Science.gov (United States)

    Kuwajima, Akiko; Iwashita, Jun; Murata, Jun; Abe, Tatsuya

    2007-01-01

    Histone deacetylase (HDAC) inhibitors have anticancer effects. Their effects on expression of cell adhesion molecules might be related to their effects on tumor cell invasion. Murine B16-BL6 cells were treated with the HDAC inhibitors, butyrate or trichostatin A. Melanoma cell invasion of the artificial basement membrane, Matrigel, was examined by Transwell chamber assay. Butyrate as well as trichostatin A inhibited the cell growth mainly by arresting the cell cycle. The cell invasion of Matrigel was inhibited by butyrate and trichostatin A. The butyrate treatment increased the cell-cell aggregation, although neither E-cadherin nor N-cadherin mRNA were up-regulated. Both mRNA expression and protein levels of the immunoglobulin superfamily cell adhesion molecules, Mel-CAM and L1-CAM, were increased in the butyrate-treated cells. The HDAC inhibitor butyrate blocked the B16-BL6 melanoma cell invasion of Matrigel, although it increased the expression of Mel-CAM and L1-CAM which are important to the metastatic potential.

  4. Activation of PPARγ is not involved in butyrate-induced epithelial cell differentiation

    International Nuclear Information System (INIS)

    Ulrich, S.; Waechtershaeuser, A.; Loitsch, S.; Knethen, A. von; Bruene, B.; Stein, J.

    2005-01-01

    Histone deacetylase-inhibitors affect growth and differentiation of intestinal epithelial cells by inducing expression of several transcription factors, e.g. Peroxisome proliferator-activated receptor γ (PPARγ) or vitamin D receptor (VDR). While activation of VDR by butyrate mainly seems to be responsible for cellular differentiation, the activation of PPARγ in intestinal cells remains to be elucidated. The aim of this study was to determine the role of PPARγ in butyrate-induced cell growth inhibition and differentiation induction in Caco-2 cells. Treatment with PPARγ ligands ciglitazone and BADGE (bisphenol A diglycidyl) enhanced butyrate-induced cell growth inhibition in a dose- and time-dependent manner, whereas cell differentiation was unaffected after treatment with PPARγ ligands rosiglitazone and MCC-555. Experiments were further performed in dominant-negative PPARγ mutant cells leading to an increase in cell growth whereas butyrate-induced cell differentiation was again unaffected. The present study clearly demonstrated that PPARγ is involved in butyrate-induced inhibition of cell growth, but seems not to play an essential role in butyrate-induced cell differentiation

  5. Dissociation and homoconjugation equilibria of some acids and bases in N,N-dimethylformamide.

    Science.gov (United States)

    Roletto, E; Vanni, A

    1977-01-01

    The following monoprotic acids have been studied in N,N-dimethylformamide (DMF): p-toluenesulphonic acid; 2,6-dichlorobenzoic acid; 2,5-dichlorophenol; the anilinium ion; the N-methyl-anilinium ion. The first dissociation step of malonic and succinic acids has also been studied. Dissociation and homoconjugation constants have been determined potentiometrically, at 25 degrees , in buffer solutions containing either the acid and its tetraethylammonium salt or the base and its picrate. Homoconjugation equilibria between unchanged acid and univalent conjugate base have been found not only for benzoic acid and phenol derivatives, but also between undissociated diprotic carboxylic acids and the corresponding monoanions, which are strongly intramolecularly hydrogen-bonded. Results are discussed with reference to previously published values.

  6. Role of rumen butyrate in regulation of nitrogen utilization and urea nitrogen kinetics in growing sheep.

    Science.gov (United States)

    Agarwal, U; Hu, Q; Baldwin, R L; Bequette, B J

    2015-05-01

    Butyrate, a major rumen VFA, has been indirectly linked to enhancement of urea recycling on the basis of increased expression of urea transporter in the rumen epithelia of steers fed a rumen butyrate-enhancing diet. Two studies were conducted to quantify the effect of elevated rumen butyrate concentrations on N balance, urea kinetics and rumen epithelial proliferation. Wether sheep (n= 4), fitted with a rumen cannula, were fed a pelleted ration (∼165 g CP/kg DM, 10.3 MJ ME/kg DM) at 1.8 × ME requirement. In Exp. 1, sheep were infused intraruminally with either an electrolyte buffer solution (Con-Buf) or butyrate dissolved in the buffer solution (But-Buf) during 8-d periods in a balanced crossover design. In Exp. 2, sheep were infused intraruminally with either sodium acetate (Na-Ac) or sodium butyrate (Na-But) for 9 d. All solutions were adjusted to pH 6.8 and 8.0 in Exp. 1 and 2, respectively, and VFA were infused at 10% of ME intake. [15N2] urea was continuously infused intravenously for the last 5 d of each period, and total urine and feces were collected. In Exp. 1, 2H5-phenylalanine was continuously infused intravenously over the last 12 h, after which a biopsy from the rumen papillae was taken for measurement of fractional protein synthesis rate (FSR). Butyrate infusion treatments increased (P = 0.1 in Exp. 1; P urea entry (synthesis) rate was reduced ( urea kinetics were not altered by But-Buf compared with Con-Buf. These studies are the first to directly assess the role of butyrate in urea recycling and its effects on rumen papillae protein turnover in growing lambs. Under the feeding conditions used and the rate of continuous butyrate infusion into the rumen in the present studies, butyrate does not affect overall N retention in growing sheep. However, butyrate may play a role in the redistribution of urea N fluxes in the overall scheme of N metabolism.

  7. Economics of feeding drinking water containing organic acids to ...

    African Journals Online (AJOL)

    A feeding trial was conducted to determine the economic effect of acidifying drinking water of broiler chickens with organic acids. The organic acids were acetic, butyric, citric and formic acids, each offered at 0.25%. The control did not contain any of the acids. One hundred and fifty (150) day old AborAcre - plus chicks were ...

  8. Propolis augments apoptosis induced by butyrate via targeting cell survival pathways.

    Directory of Open Access Journals (Sweden)

    Eric Drago

    Full Text Available Diet is one of the major lifestyle factors affecting incidence of colorectal cancer (CC, and despite accumulating evidence that numerous diet-derived compounds modulate CC incidence, definitive dietary recommendations are not available. We propose a strategy that could facilitate the design of dietary supplements with CC-preventive properties. Thus, nutrient combinations that are a source of apoptosis-inducers and inhibitors of compensatory cell proliferation pathways (e.g., AKT signaling may produce high levels of programmed death in CC cells. Here we report the combined effect of butyrate, an apoptosis inducer that is produced through fermentation of fiber in the colon, and propolis, a honeybee product, on CC cells. We established that propolis increases the apoptosis of CC cells exposed to butyrate through suppression of cell survival pathways such as the AKT signaling. The programmed death of CC cells by combined exposure to butyrate and propolis is further augmented by inhibition of the JNK signaling pathway. Analyses on the contribution of the downstream targets of JNK signaling, c-JUN and JAK/STAT, to the apoptosis of butyrate/propolis-treated CC cells ascertained that JAK/STAT signaling has an anti-apoptotic role; whereas, the role of cJUN might be dependent upon regulatory cell factors. Thus, our studies ascertained that propolis augments apoptosis of butyrate-sensitive CC cells and re-sensitizes butyrate-resistant CC cells to apoptosis by suppressing AKT signaling and downregulating the JAK/STAT pathway. Future in vivo studies should evaluate the CC-preventive potential of a dietary supplement that produces high levels of colonic butyrate, propolis, and diet-derived JAK/STAT inhibitors.

  9. Sodium butyrate protects against severe burn-induced remote acute lung injury in rats.

    Directory of Open Access Journals (Sweden)

    Xun Liang

    Full Text Available High-mobility group box 1 protein (HMGB1, a ubiquitous nuclear protein, drives proinflammatory responses when released extracellularly. It plays a key role as a distal mediator in the development of acute lung injury (ALI. Sodium butyrate, an inhibitor of histone deacetylase, has been demonstrated to inhibit HMGB1 expression. This study investigates the effect of sodium butyrate on burn-induced lung injury. Sprague-Dawley rats were divided into three groups: 1 sham group, sham burn treatment; 2 burn group, third-degree burns over 30% total body surface area (TBSA with lactated Ringer's solution for resuscitation; 3 burn plus sodium butyrate group, third-degree burns over 30% TBSA with lactated Ringer's solution containing sodium butyrate for resuscitation. The burned animals were sacrificed at 12, 24, and 48 h after burn injury. Lung injury was assessed in terms of histologic changes and wet weight to dry weight (W/D ratio. Tumor necrosis factor (TNF-α and interleukin (IL-8 protein concentrations in bronchoalveolar lavage fluid (BALF and serum were measured by enzyme-linked immunosorbent assay, and HMGB1 expression in the lung was determined by Western blot analysis. Pulmonary myeloperoxidase (MPO activity and malondialdehyde (MDA concentration were measured to reflect neutrophil infiltration and oxidative stress in the lung, respectively. As a result, sodium butyrate significantly inhibited the HMGB1 expressions in the lungs, reduced the lung W/D ratio, and improved the pulmonary histologic changes induced by burn trauma. Furthermore, sodium butyrate administration decreased the TNF-α and IL-8 concentrations in BALF and serum, suppressed MPO activity, and reduced the MDA content in the lungs after severe burn. These results suggest that sodium butyrate attenuates inflammatory responses, neutrophil infiltration, and oxidative stress in the lungs, and protects against remote ALI induced by severe burn, which is associated with inhibiting HMGB1

  10. CaCO3 supplementation alleviates the inhibition of formic acid on acetone/butanol/ethanol fermentation by Clostridium acetobutylicum.

    Science.gov (United States)

    Qi, Gaoxiang; Xiong, Lian; Lin, Xiaoqing; Huang, Chao; Li, Hailong; Chen, Xuefang; Chen, Xinde

    2017-01-01

    To investigate the inhibiting effect of formic acid on acetone/butanol/ethanol (ABE) fermentation and explain the mechanism of the alleviation in the inhibiting effect under CaCO 3 supplementation condition. From the medium containing 50 g sugars l -1 and 0.5 g formic acid l -1 , only 0.75 g ABE l -1 was produced when pH was adjusted by KOH and fermentation ended prematurely before the transformation from acidogenesis to solventogenesis. In contrast, 11.4 g ABE l -1 was produced when pH was adjusted by 4 g CaCO 3 l -1 . The beneficial effect can be ascribed to the buffering capacity of CaCO 3 . Comparative analysis results showed that the undissociated formic acid concentration and acid production coupled with ATP and NADH was affected by the pH buffering capacity of CaCO 3 . Four millimole undissociated formic acid was the threshold at which the transformation to solventogenesis occurred. The inhibiting effect of formic acid on ABE fermentation can be alleviated by CaCO 3 supplementation due to its buffering capacity.

  11. Butyrate-Loaded Chitosan/Hyaluronan Nanoparticles: A Suitable Tool for Sustained Inhibition of ROS Release by Activated Neutrophils

    DEFF Research Database (Denmark)

    Sacco, Pasquale; Decleva, Eva; Tentor, Fabio

    2017-01-01

    that butyrate inhibits neutrophil ROS release in a dose and time-dependent fashion. Given the short half-life of butyrate, chitosan/hyaluronan nanoparticles are next designed and developed as controlled release carriers able to provide cells with a long-lasting supply of this SCFA. Notably, while the inhibition...... of neutrophil ROS production by free butyrate declines over time, that of butyrate-loaded chitosan/hyaluronan nanoparticles (B-NPs) is sustained. Additional valuable features of these nanoparticles are inherent ROS scavenger activity, resistance to cell internalization, and mucoadhesiveness. B-NPs appear...

  12. Butyrate Inhibits Cancerous HCT116 Colon Cell Proliferation but to a Lesser Extent in Noncancerous NCM460 Colon Cells.

    Science.gov (United States)

    Zeng, Huawei; Taussig, David P; Cheng, Wen-Hsing; Johnson, LuAnn K; Hakkak, Reza

    2017-01-01

    Butyrate, an intestinal microbiota metabolite of dietary fiber, exhibits chemoprevention effects on colon cancer development. However, the mechanistic action of butyrate remains to be determined. We hypothesize that butyrate inhibits cancerous cell proliferation but to a lesser extent in noncancerous cells through regulating apoptosis and cellular-signaling pathways. We tested this hypothesis by exposing cancerous HCT116 or non-cancerous NCM460 colon cells to physiologically relevant doses of butyrate. Cellular responses to butyrate were characterized by Western analysis, fluorescent microscopy, acetylation, and DNA fragmentation analyses. Butyrate inhibited cell proliferation, and led to an induction of apoptosis, genomic DNA fragmentation in HCT116 cells, but to a lesser extent in NCM460 cells. Although butyrate increased H3 histone deacetylation and p21 tumor suppressor expression in both cell types, p21 protein level was greater with intense expression around the nuclei in HCT116 cells when compared with that in NCM460 cells. Furthermore, butyrate treatment increased the phosphorylation of extracellular-regulated kinase 1/2 (p-ERK1/2), a survival signal, in NCM460 cells while it decreased p-ERK1/2 in HCT116 cells. Taken together, the activation of survival signaling in NCM460 cells and apoptotic potential in HCT116 cells may confer the increased sensitivity of cancerous colon cells to butyrate in comparison with noncancerous colon cells.

  13. Effects of dry whey powder and calcium butyrate supplementation of corn/soybean-based diets on productive performance, duodenal histological integrity, and Campylobacter colonization in broilers.

    Science.gov (United States)

    Ocejo, Medelin; Oporto, Beatriz; Juste, Ramón A; Hurtado, Ana

    2017-06-26

    Campylobacter is the main cause of gastroenteritis in humans in industrialized countries, and poultry is its principal reservoir and source of human infections. Dietary supplementation of broiler feed with additives could improve productive performance and elicit health benefits that might reduce Campylobacter contamination during primary production. The aim of this study was to assess the effect of dietary supplementation with whey (a prebiotic) and calcium butyrate (a salt of a short-chain fatty acid) on productive traits, duodenal histological integrity, and Campylobacter colonization and dissemination in broiler chickens during the 42-day rearing period. Six hundred one-day-old Ross-308 chickens were placed into 20 ground pens and assigned to one of 4 corn/soybean-based dietary treatments (5 replicates of 30 chicks per treatment) following a randomized complete block design: 1) basal diet with no supplementation as the control, 2) diet supplemented with 6% dry whey powder, 3) diet containing 0.1% coated calcium butyrate, and 4) diet containing 6% whey and 0.1% calcium butyrate. At age 15 days, 6 chickens per pen were experimentally inoculated with Campylobacter jejuni. The results showed that supplementation of the corn/soybean-based diet with 6% whey alone or, preferably, in combination with 0.1% coated calcium butyrate improved growth and feed efficiency, had a beneficial effect on duodenal villus integrity, and decreased mortality. These favourable effects were particularly significant during the starter period. Six days after oral challenge, Campylobacter was widespread in the flock, and the birds remained positive until the end of the rearing period. Although Campylobacter was not isolated from environmental samples, it was detected by real-time polymerase chain reaction (PCR) in dust, air filters, and drinkers while birds shed culturable C. jejuni cells. No differences (p > 0.050) in colonization or shedding levels that could be attributed to the diet

  14. Effect of methyl butyrate aroma on the survival and viability of human breast cancer cells in vitro

    International Nuclear Information System (INIS)

    Khan, M.A.; Rumana Ahmad, R.; Srivastava, A.N.

    2016-01-01

    Background: Aroma can have far reaching effects on mind, body and soul. Pleasant aromas are known to have a soothing effect on the mind and are known to relieve stress and enhance concentration. Recently, it has been demonstrated that aroma may also have some curative effects as well as benefits and can be used both for prophylaxis and therapy of diseases. Our aim was to test our hypothesis whether aroma can cure or prevent cancer. Methyl butyrate (MB) is the methyl ester of butyric acid having a characteristic sweet and fruity odor like that of apples and pineapples. It occurs in many plant products in minute quantities and in pineapple oil. Methods: In the present study, the effect of aroma of MB has been evaluated on human breast cancer cell line MDA-MB-231 in vitro . The percentage viability of the cell line was determined by using Trypan blue dye exclusion assay. Results: It was found that MB at a concentration of 0.01 M was effective in causing considerable cytotoxicity (40%) in breast cancer cells (without even coming in contact with cells) while at 0.02 M, % cytotoxicity was found to be 50%. Mechanism of action of MB on cancer cells was investigated by acridine orange–ethidium bromide assay using fluorescence microscopy and DNA fragmentation assay. MB aroma appeared to induce necrosis in cancer cells exposed to it. Conclusion: No study involving the effect of aroma/smell on cancer cells has ever been reported before and warrants further investigation on other cancer and normal cell lines.

  15. High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects.

    Directory of Open Access Journals (Sweden)

    Greta Jakobsdottir

    Full Text Available Obesity is linked to type 2 diabetes and risk factors associated to the metabolic syndrome. Consumption of dietary fibres has been shown to have positive metabolic health effects, such as by increasing satiety, lowering blood glucose and cholesterol levels. These effects may be associated with short-chain fatty acids (SCFAs, particularly propionic and butyric acids, formed by microbial degradation of dietary fibres in colon, and by their capacity to reduce low-grade inflammation.To investigate whether dietary fibres, giving rise to different SCFAs, would affect metabolic risk markers in low-fat and high-fat diets using a model with conventional rats for 2, 4 and 6 weeks.Conventional rats were administered low-fat or high-fat diets, for 2, 4 or 6 weeks, supplemented with fermentable dietary fibres, giving rise to different SCFA patterns (pectin - acetic acid; guar gum - propionic acid; or a mixture - butyric acid. At the end of each experimental period, liver fat, cholesterol and triglycerides, serum and caecal SCFAs, plasma cholesterol, and inflammatory cytokines were analysed. The caecal microbiota was analysed after 6 weeks.Fermentable dietary fibre decreased weight gain, liver fat, cholesterol and triglyceride content, and changed the formation of SCFAs. The high-fat diet primarily reduced formation of SCFAs but, after a longer experimental period, the formation of propionic and acetic acids recovered. The concentration of succinic acid in the rats increased in high-fat diets with time, indicating harmful effect of high-fat consumption. The dietary fibre partly counteracted these harmful effects and reduced inflammation. Furthermore, the number of Bacteroides was higher with guar gum, while noticeably that of Akkermansia was highest with the fibre-free diet.

  16. Membrane complexes of Syntrophomonas wolfei involved in syntrophic butyrate degradation and hydrogen formation

    Directory of Open Access Journals (Sweden)

    Bryan Regis Crable

    2016-11-01

    Full Text Available Syntrophic butyrate metabolism involves the thermodynamically unfavorable production of hydrogen and/or formate from the high potential electron donor, butyryl-CoA. Such redox reactions can occur only with energy input by a process called reverse electron transfer. Previous studies have demonstrated that hydrogen production from butyrate requires the presence of a proton gradient, but the biochemical machinery involved has not been clearly elucidated. In this study, the gene and enzyme systems involved in reverse electron transfer by Syntrophomonas wolfei were investigated using proteomic and gene expression approaches. S. wolfei was grown in coculture with Methanospirillum hungatei or Dehalococcoides mccartyi under conditions requiring reverse electron transfer and compared to both axenic S. wolfei cultures and cocultures grown in conditions that do not require reverse electron transfer. Blue native gel analysis of membranes solubilized from syntrophically grown cells revealed the presence of a membrane-bound hydrogenase, Hyd2, which exhibited hydrogenase activity during in gel assays. Bands containing a putative iron-sulfur (FeS oxidoreductase were detected in membranes of crotonate-grown and butyrate grown S. wolfei cells. The genes for the corresponding hydrogenase subunits, hyd2ABC, were differentially expressed at higher levels during syntrophic butyrate growth when compared to growth on crotonate. The expression of the FeS oxidoreductase gene increased when S. wolfei was grown with M. hungatei. Additional membrane-associated proteins detected included FoF1 ATP synthase subunits and several membrane transporters that may aid syntrophic growth. Furthermore, syntrophic butyrate metabolism can proceed exclusively by interspecies hydrogen transfer, as demonstrated by growth with D. mccartyi, which is unable to use formate. These results argue for the importance of Hyd2 and FeS oxidoreductase in reverse electron transfer during syntrophic

  17. Interleukin-15 promotes intestinal dysbiosis with butyrate deficiency associated with increased susceptibility to colitis

    Energy Technology Data Exchange (ETDEWEB)

    Meisel, Marlies; Mayassi, Toufic; Fehlner-Peach, Hannah; Koval, Jason C.; O' Brien, Sarah L.; Hinterleitner, Reinhard; Lesko, Kathryn; Kim, Sangman; Bouziat, Romain; Chen, Li; Weber, Christopher R.; Mazmanian, Sarkis K.; Jabri, Bana; Antonopoulos, Dionysios A.

    2016-09-20

    Dysbiosis resulting in gut-microbiome alterations with reduced butyrate production are thought to disrupt intestinal immune homeostasis and promote complex immune disorders. However, whether and how dysbiosis develops before the onset of overt pathology remains poorly defined. Interleukin 15 (IL-15) is upregulated in distressed tissue and its overexpression is thought to predispose susceptible individuals to and play a role in the pathogenesis of celiac disease and inflammatory bowel disease (IBD). While the immunological roles of IL-15 have been largely studied, its potential impact on the microbiota remains unexplored. Analysis of 16S rRNA-based inventories of bacterial communities in mice overexpressing IL-15 in the intestinal epithelium (v-IL-15tg mice) shows distinct changes in the composition of the intestinal bacteria. While some alterations are specific to individual intestinal compartments, others are found across the ileum, cecum, and feces. In particular, IL-15 overexpression restructures the composition of the microbiota with a decrease in butyrate producing bacteria that is associated with a reduction in luminal butyrate levels across all intestinal compartments. Fecal microbiota transplant experiments of wild-type and v-IL-15tg microbiota into germ-free mice further indicate that diminishing butyrate concentration observed in the intestinal lumen of v-IL-15tg mice is the result of intrinsic alterations in the microbiota induced by IL-15. This reconfiguration of the microbiota is associated with increased susceptibility to dextran sodium sulfate induced colitis. Altogether, this study reveals that IL-15 impacts butyrate-producing bacteria and lowers butyrate levels in the absence of overt pathology, which represent events that precede and promote intestinal inflammatory diseases.

  18. A cereal-based evening meal rich in indigestible carbohydrates increases plasma butyrate the next morning

    DEFF Research Database (Denmark)

    Nilsson, Anne C; Östman, Elin M; Knudsen, Knud Erik Bach

    2010-01-01

    , mean ± SD: 25.9 ± 3.2 y, BMI meals (50 g available starch) varying in content of indigestible carbohydrates. Each participant consumed all test meals in a random order on separate evenings. At a standardized breakfast following evening test meals......, the postprandial glucose response (incremental area under the curve, 0-120 min) was inversely related to plasma butyrate (r = -0.26; P meals composed of high-amylose barley kernels or high-ß-glucan barley kernels resulted in higher plasma butyrate...... concentrations the following morning compared with an evening meal with white wheat bread (P

  19. Effect of butyrate and fermentation products on epithelial integrity in a mucus-secreting human colon cell line

    DEFF Research Database (Denmark)

    Nielsen, Ditte Søvsø Gundelund; Jensen, Bent Borg; Theil, Peter Kappel

    2018-01-01

    . This was associated with regulation of different genes involved in epithelial integrity, mucus secretion, apoptosis, oxidative stress, and butyrate transport. In conclusion, butyrate in concentrations that can be achieved by dietary intervention in vivo enhanced the epithelial barrier function in vitro. B...

  20. Maternal sodium butyrate supplement elevates the lipolysis in adipose tissue and leads to lipid accumulation in offspring liver of weaning-age rats.

    Science.gov (United States)

    Zhou, Jiabin; Gao, Shixing; Chen, Jinglong; Zhao, Ruqian; Yang, Xiaojing

    2016-07-22

    Sodium butyrate (SB) is reported to regulate lipid metabolism in mammals, and the relationship between maternal nutrition and offspring growth has drawn much attention in the last several years. To elucidate the effects of maternal dietary SB supplementation on hepatic lipid metabolism in weaning rats, we fed 16 primiparous purebred female SD rats either a chow-diet or a 1 % sodium butyrate diet throughout pregnancy and lactation. At weaning age, samples of the maternal subcutaneous adipose tissue and offspring liver were taken. The serum indexes and expressions of proteins related to lipid metabolism were detected in the mother and offspring, respectively. The results showed that the maternal SB supplement increased the concentration of non-esterified fatty acid (NEFA) in the maternal and offspring serum (P pregnancy and lactation increased the hepatic total cholesterol (Tch) content (P pregnancy and the lactation period promotes maternal fat mobilization, which may result in fatty acid uptake and lipid accumulation in the liver of the offspring.

  1. Enhancing Butanol Production under the Stress Environments of Co-Culturing Clostridium acetobutylicum/Saccharomyces cerevisiae Integrated with Exogenous Butyrate Addition.

    Directory of Open Access Journals (Sweden)

    Hongzhen Luo

    Full Text Available In this study, an efficient acetone-butanol-ethanol (ABE fermentation strategy integrating Clostridium acetobutylicum/Saccharomyces cerevisiae co-culturing system with exogenous butyrate addition, was proposed and experimentally conducted. In solventogenic phase, by adding 0.2 g-DCW/L-broth viable S. cerevisiae cells and 4.0 g/L-broth concentrated butyrate solution into C. acetobutylicum culture broth, final butanol concentration and butanol/acetone ratio in a 7 L anaerobic fermentor reached the highest levels of 15.74 g/L and 2.83 respectively, with the increments of 35% and 43% as compared with those of control. Theoretical and experimental analysis revealed that, the proposed strategy could, 1 extensively induce secretion of amino acids particularly lysine, which are favorable for both C. acetobutylicum survival and butanol synthesis under high butanol concentration environment; 2 enhance the utilization ability of C. acetobutylicum on glucose and over-produce intracellular NADH for butanol synthesis in C. acetobutylicum metabolism simultaneously; 3 direct most of extra consumed glucose into butanol synthesis route. The synergetic actions of effective amino acids assimilation, high rates of substrate consumption and NADH regeneration yielded highest butanol concentration and butanol ratio in C. acetobutylicum under this stress environment. The proposed method supplies an alternative way to improve ABE fermentation performance by traditional fermentation technology.

  2. Electron transport phosphorylation in rumen butyrivibrios: unprecedented ATP yield for glucose fermentation to butyrate

    Directory of Open Access Journals (Sweden)

    Timothy eHackmann

    2015-06-01

    Full Text Available From a genomic analysis of rumen butyrivibrios (Butyrivibrio and Pseudobutyrivibrio spp., we have re-evaluated the contribution of electron transport phosphorylation to ATP formation in this group. This group is unique in that most (76% genomes were predicted to possess genes for both Ech and Rnf transmembrane ion pumps. These pumps act in concert with the NifJ and Bcd-Etf to form a electrochemical potential (ΔμH+ and ΔμNa+, which drives ATP synthesis by electron transport phosphorylation. Of the 62 total butyrivibrio genomes currently available from the Hungate 1000 project, all 62 were predicted to possess NifJ, which reduces oxidized ferredoxin (Fdox during pyruvate conversion to acetyl-CoA. All 62 possessed all subunits of Bcd-Etf, which reduces Fdox and oxidizes reduced NAD (NADred during crotonyl-CoA reduction. Additionally, 61 genomes possessed all subunits of the Rnf, which generates ΔμH+ or ΔμNa+ from oxidation of reduced Fd and reduction of oxidized NAD (NADox. Further, 47 genomes possessed all 6 subunits of the Ech, which generates ΔμH+ from oxidation of reduced Fd (Fdred. For glucose fermentation to butyrate and H2, the electrochemical potential established should drive synthesis of ~1.5 ATP by the F0F1-ATP synthase (possessed by all 62 genomes. The total yield is ~4.5 ATP/glucose after accounting for 3 ATP formed by classic substrate-level phosphorylation, and it is one the highest yields for any glucose fermentation. The yield was the same when unsaturated fatty acid bonds, not H+, served as the electron acceptor (as during biohydrogenation. Possession of both Ech and Rnf had been previously documented in only a few sulfate-reducers, was rare in other rumen prokaryotic genomes in our analysis, and may confer an energetic advantage to rumen butyrivibrios. This unique energy conservation system might enhance the butyrivibrios’ ability to overcome growth inhibition by unsaturated fatty acids, as postulated herein.

  3. Study of physicochemical properties of zinc(II) butyrate complex compounds with some heterocyclic ligands

    Czech Academy of Sciences Publication Activity Database

    Szakácsová, M.; Györová, K.; Szunyogová, E.; Kovářová, Jana

    2002-01-01

    Roč. 96, - (2002), s. 383 ISSN 0009-2770. [Meeting of Chemical Societies /54./. 30.06.2002-04.07.2002, Brno] R&D Projects: GA AV ČR KSK4050111; GA MŠk VEGA 1/9247/02; GA MŠk VEGA 047/074 Keywords : butyrate complex compounds * heterocyclic ligands Subject RIV: CD - Macromolecular Chemistry

  4. Increased levels of unscheduled DNA synthesis in UV-irradiated human fibroblasts pretreated with sodium butyrate

    International Nuclear Information System (INIS)

    Williams, J.I.; Friedberg, E.C.

    1982-01-01

    Pretreatment of growing normal and xeroderma pigmentosum (XP) human fibroblasts with sodium butyrate at concentrations of 5-20 mM results in increased levels of DNA repair synthesis measured by autoradiography after exposure of the cells to 254 nm UV radiation in the fluence range 0-25 J/m 2 . The phenomenon manifests as an increased extent and an increased initial rate of unscheduled DNA synthesis (UDS). This experimental result is not due to an artifact of autoradiography related to cell size. Xeroderma pigmentosum cells from complementation groups A, C, D and E and XP variant cells all exhibit increases in the levels of UV-induced UDS in response to sodium butyrate proportional to those observed with normal cells. These UDS increases associated with butyrate pretreatment correlate with demonstrable changes in intracellular thymidine pool size and suggest that sodium butyrate enhances uptake of exogenous radiolabeled thymidine during UV-induced repair synthesis by reducing endogenous levels of thymidine. (author)

  5. Behaviours of trinitratonitrosyl complexes of ruthenium in dilute nitric acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, S [Radia Industry Co. Ltd., Takasaki (Japan)

    1979-07-01

    This study aimed to elucidate the protolysis and condensation processes of the Ru complexes in relation to the concentration of nitric acid. The compositions of the dissociated and undissociated complexes were determined by the extraction with tributyl phosphate (TBP) and absorption spectroscopy in order to follow the rather rapid protolysis reaction of the complexes. The test solutions were prepared by dissolving the freshly obtained complexes into 0.50 - 0.001 M nitric acid solutions. The amounts of the undissociated complexes were determined at different elapses of time in the test solutions. The protolysis became significant when the concentration was below 0.15 M, and the dissociation rate suddenly increased at this concentration. At the concentrations above 0.2 M, the absorption peak of the complexes at 480 nm survived even after 144 hours. But below 0.15 M, the formation of dissociation products by protolysis was observed after the disappearance of the absorption peak. The amount of dissociation products rapidly increased after the preparation of the test solution as the concentration decreased below 0.15 M.

  6. Induction of porcine host defense peptide gene expression by short-chain fatty acids and their analogs.

    Directory of Open Access Journals (Sweden)

    Xiangfang Zeng

    Full Text Available Dietary modulation of the synthesis of endogenous host defense peptides (HDPs represents a novel antimicrobial approach for disease control and prevention, particularly against antibiotic-resistant infections. However, HDP regulation by dietary compounds such as butyrate is species-dependent. To examine whether butyrate could induce HDP expression in pigs, we evaluated the expressions of a panel of porcine HDPs in IPEC-J2 intestinal epithelial cells, 3D4/31 macrophages, and primary monocytes in response to sodium butyrate treatment by real-time PCR. We revealed that butyrate is a potent inducer of multiple, but not all, HDP genes. Porcine β-defensin 2 (pBD2, pBD3, epididymis protein 2 splicing variant C (pEP2C, and protegrins were induced markedly in response to butyrate, whereas pBD1 expression remained largely unaltered in any cell type. Additionally, a comparison of the HDP-inducing efficacy among saturated free fatty acids of different aliphatic chain lengths revealed that fatty acids containing 3-8 carbons showed an obvious induction of HDP expression in IPEC-J2 cells, with butyrate being the most potent and long-chain fatty acids having only a marginal effect. We further investigated a panel of butyrate analogs for their efficacy in HDP induction, and found glyceryl tributyrate, benzyl butyrate, and 4-phenylbutyrate to be comparable with butyrate. Identification of butyrate and several analogs with a strong capacity to induce HDP gene expression in pigs provides attractive candidates for further evaluation of their potential as novel alternatives to antibiotics in augmenting innate immunity and disease resistance of pigs.

  7. Evaluation of the efficacy of four weak acids as antifungal preservatives in low-acid intermediate moisture model food systems.

    Science.gov (United States)

    Huang, Yang; Wilson, Mark; Chapman, Belinda; Hocking, Ailsa D

    2010-02-01

    The potential efficacy of four weak acids as preservatives in low-acid intermediate moisture foods was assessed using a glycerol based agar medium. The minimum inhibitory concentrations (MIC, % wt./wt.) of each acid was determined at two pH values (pH 5.0, pH 6.0) and two a(w) values (0.85, 0.90) for five food spoilage fungi, Eurotium herbariorum, Eurotium rubrum, Aspergillus niger, Aspergillus flavus and Penicillium roqueforti. Sorbic acid, a preservative commonly used to control fungal growth in low-acid intermediate moisture foods, was included as a reference. The MIC values of the four acids were lower at pH 5.0 than pH 6.0 at equivalent a(w) values, and lower at 0.85 a(w) than 0.90 a(w) at equivalent pH values. By comparison with the MIC values of sorbic acid, those of caprylic acid and dehydroacetic acid were generally lower, whereas those for caproic acid were generally higher. No general observation could be made in the case of capric acid. The antifungal activities of all five weak acids appeared related not only to the undissociated form, but also the dissociated form, of each acid.

  8. Comparison of the butyrate effects on neurotransmitter receptors in neurohybrids NG108-15 and NCB-20 cells

    International Nuclear Information System (INIS)

    Zhu, X.Z.; Chuang, D.M.

    1987-01-01

    The authors previous study demonstrated that long term treatment of NCB-20 cells with sodium butyrate resulted in a marked increase in the density of delta-opioid receptors with a much lesser effect on muscarinic cholinergic and no effect on alpha 2 -adrenergic receptors. In the present study the authors investigated the effect of sodium butyrate on these three types of receptors in NG108-15 cells whose neuroblastoma parent is the same as that of NCB-20 cells. Long term treatment of NG108-15 cells with sodium butyrate (0.5 mM) induced a 2-fold increase in the density of the specific binding of 3 H-clonidine. A comparable increase in the number of binding sites was detected when 3 H-yohimbine was used as the receptor ligand. The butyrate-induced increase in the alpha 2 -adrenergic receptor binding could be totally abolished by treatment with a protein synthesis inhibitor, cycloheximide, suggesting that synthesis of receptor protein is involved. The same butyrate treatment had no significant effect on opioid and muscarinic cholinergic receptor bindings. Thus, butyrate effects on the expression of these three types of receptors in NG108-15 and NCB-20 cells are dramatically different. These data suggest that induction by butyrate of neurotransmitter receptors requires concerted action of genetic factors of both parents of the neurohybrids. 22 references, 2 figures, 2 tables

  9. Determination of organic acids evolution during apple cider fermentation using an improved HPLC analysis method

    NARCIS (Netherlands)

    Zhang, H.; Zhou, F.; Ji, B.; Nout, M.J.R.; Fang, Q.; Zhang, Z.

    2008-01-01

    An efficient method for analyzing ten organic acids in food, namely citric, pyruvic, malic, lactic, succinic, formic, acetic, adipic, propionic and butyric acids, using HPLC was developed. Boric acid was added into the mobile phase to separate lactic and succinic acids, and a post-column buffer

  10. Effect of organic acids on shrimp pathogen, Vibrio harveyi.

    Science.gov (United States)

    Mine, Saori; Boopathy, Raj

    2011-07-01

    Shrimp farming accounts for more than 40% of the world shrimp production. Luminous vibriosis is a shrimp disease that causes major economic losses in the shrimp industry as a result of massive shrimp kills due to infection. Some farms in the South Asia use antibiotics to control Vibrio harveyi, a responsible pathogen for luminous vibriosis. However, the antibiotic-resistant strain was found recently in many shrimp farms, which makes it necessary to develop alternative pathogen control methods. Short-chain fatty acids are metabolic products of organisms, and they have been used as food preservatives for a long time. Organic acids are also commonly added in feeds in animal husbandry, but not in aquaculture. In this study, growth inhibitory effects of short-chain fatty acids, namely formic acid, acetic acid, propionic acid, and butyric acid, on V. harveyi were investigated. Among four acids, formic acid showed the strongest inhibitory effect followed by acetic acid, propionic acid, and butyric acid. The minimum inhibitory concentration (MIC) of 0.035% formic acid suppressed growth of V. harveyi. The major inhibitory mechanism seems to be the pH effect of organic acids. The effective concentration 50 (EC50) values at 96 h inoculation for all organic acids were determined to be 0.023, 0.041, 0.03, and 0.066% for formic, acetic, propionic, and butyric acid, respectively. The laboratory study results are encouraging to formulate shrimp feeds with organic acids to control vibrio infection in shrimp aquaculture farms.

  11. Use of sodium butyrate as an alternative to dietary fiber: effects on the embryonic development and anti-oxidative capacity of rats.

    Science.gov (United States)

    Lin, Yan; Fang, Zheng-feng; Che, Lian-qiang; Xu, Sheng-yu; Wu, De; Wu, Cai-mei; Wu, Xiu-qun

    2014-01-01

    In this study, we evaluated the effect of replacing dietary fiber with sodium butyrate on reproductive performance and antioxidant defense in a high fat diet during pregnancy by using a rat model. Eighty virgin female Sprague Dawley rats were fed one of four diets--(1) control diet (C group), (2) high fat + high fiber diet (HF group), (3) high-fat +5% sodium butyrate diet (SB group), and (4) HF diet + α-cyano-4-hydroxy cinnamic acid (CHC group)--intraperitoneally on days 8, 10, 12, 14, and 16 of gestation. SB and dietary fiber had similar effects on improving fetal number and reducing the abortion rate; however, the anti-oxidant capacity of maternal serum, placenta, and fetus was superior in the HF group than in the SB group. In comparison, CHC injection decreased reproductive performance and antioxidant defense. Both dietary fiber (DF) and SB supplementation had a major but different effect on the expression of anti-oxidant related genes and nutrient transporters genes. In summary, our data indicate that SB and DF showed similar effect on reproductive performance, but SB cannot completely replace the DF towards with respect to redox regulation in high-fat diet; and SB might influence offspring metabolism and health differently to DF.

  12. Use of sodium butyrate as an alternative to dietary fiber: effects on the embryonic development and anti-oxidative capacity of rats.

    Directory of Open Access Journals (Sweden)

    Yan Lin

    Full Text Available In this study, we evaluated the effect of replacing dietary fiber with sodium butyrate on reproductive performance and antioxidant defense in a high fat diet during pregnancy by using a rat model. Eighty virgin female Sprague Dawley rats were fed one of four diets--(1 control diet (C group, (2 high fat + high fiber diet (HF group, (3 high-fat +5% sodium butyrate diet (SB group, and (4 HF diet + α-cyano-4-hydroxy cinnamic acid (CHC group--intraperitoneally on days 8, 10, 12, 14, and 16 of gestation. SB and dietary fiber had similar effects on improving fetal number and reducing the abortion rate; however, the anti-oxidant capacity of maternal serum, placenta, and fetus was superior in the HF group than in the SB group. In comparison, CHC injection decreased reproductive performance and antioxidant defense. Both dietary fiber (DF and SB supplementation had a major but different effect on the expression of anti-oxidant related genes and nutrient transporters genes. In summary, our data indicate that SB and DF showed similar effect on reproductive performance, but SB cannot completely replace the DF towards with respect to redox regulation in high-fat diet; and SB might influence offspring metabolism and health differently to DF.

  13. Uric Acid Nephrolithiasis: A Systemic Metabolic Disorder

    Science.gov (United States)

    Moe, Orson W.

    2014-01-01

    Uric acid nephrolithiasis is characteristically a manifestation of a systemic metabolic disorder. It has a prevalence of about 10% among all stone formers, the third most common type of kidney stone in the industrialized world. Uric acid stones form primarily due to an unduly acid urine; less deciding factors are hyperuricosuria and a low urine volume. The vast majority of uric acid stone formers have the metabolic syndrome, and not infrequently, clinical gout is present as well. A universal finding is a low baseline urine pH plus insufficient production of urinary ammonium buffer. Persons with gastrointestinal disorders, in particular chronic diarrhea or ostomies, and patients with malignancies with a large tumor mass and high cell turnover comprise a less common but nevertheless important subset. Pure uric acid stones are radiolucent but well visualized on renal ultrasound. A 24 h urine collection for stone risk analysis provides essential insight into the pathophysiology of stone formation and may guide therapy. Management includes a liberal fluid intake and dietary modification. Potassium citrate to alkalinize the urine to a goal pH between 6 and 6.5 is essential, as undissociated uric acid deprotonates into its much more soluble urate form. PMID:25045326

  14. Effect of indole-3-butyric acid (IBA) on in vitro root induction in ...

    African Journals Online (AJOL)

    ishtiaq

    2012-03-08

    Mar 8, 2012 ... physiological analyses of photo autotrophic callus cultures of the fern Platycerium coronarium (Koenig) under CO2 enrichment. J. Exp. Bot. 46 (10): 1535-1542. Liu C, Zhu J, Liu Z, Li L, Pan R, Jin L (2002). Exogenous auxin effects on growth and phenotype of normal and hairy roots of Pueraria lobata. (Wild.) ...

  15. Different response of normal and cancer colonic epithelial cells to butyrate and polyunsaturated fatty acids

    Czech Academy of Sciences Publication Activity Database

    Hofmanová, Jiřina; Vaculová, Alena; Hýžďalová, Martina; Koubková, Zuzana; Netíková, Jaromíra; Kozubík, Alois

    2006-01-01

    Roč. 18, č. 1 (2006), S51-S51 ISSN 1107-3756. [The 11th World Congress on Advances in Oncology and 9th International Symposium on Molecular Medicine . 12.10.2006-14.10.2006, Hersonissos] R&D Projects: GA ČR(CZ) GA524/04/0895; GA AV ČR(CZ) 1QS500040507 Institutional research plan: CEZ:AV0Z50040507 Keywords : dietary lipids * colon cancer * cellular lipids Subject RIV: BO - Biophysics

  16. Regulation of the Metabolism of Polyunsaturated Fatty Acids and Butyrate in Colon Cancer Cells

    Czech Academy of Sciences Publication Activity Database

    Hofmanová, Jiřina; Vaculová, Alena; Kozubík, Alois

    2013-01-01

    Roč. 14, č. 3 (2013), s. 274-288 ISSN 1389-2010 R&D Projects: GA ČR(CZ) GA524/07/1178; GA ČR(CZ) GA301/07/1557; GA ČR(CZ) GAP301/11/1730 Institutional research plan: CEZ:AV0Z50040702 Institutional support: RVO:68081707 Keywords : NF-KAPPA-B * HUMAN COLORECTAL - CANCER * INFLAMMATORY BOWEL DISEASES Subject RIV: BO - Biophysics Impact factor: 2.511, year: 2013

  17. Carboxymethyl Cellulose Acetate Butyrate: A Review of the Preparations, Properties, and Applications

    Directory of Open Access Journals (Sweden)

    Mohamed El-Sakhawy

    2014-01-01

    Full Text Available Carboxymethyl cellulose acetate butyrate (CMCAB has gained increasing importance in several fields, particularly in coating technologies and pharmaceutical research. CMCAB is synthesized by esterification of CMC sodium salt with acetic and butyric anhydrides. CMCAB mixed esters are relatively high molecular weight (MW thermoplastic polymers with high glass transition temperatures (Tg. CMCAB ester is dispersible in water and soluble in a wide range of organic solvents, allowing varied opportunity to the solvent choice. It makes application of coatings more consistent and defect-free. Its ability to slow down the release rate of highly water-soluble compounds and to increase the dissolution of poorly soluble compounds makes CMCAB a unique and potentially valuable tool in pharmaceutical and amorphous solid dispersions (ASD formulations.

  18. Increased Butyrate Production During Long-Term Fermentation of In Vitro-Digested High Amylose Cornstarch Residues with Human Feces.

    Science.gov (United States)

    Li, Li; Jiang, Hongxin; Kim, Hyun-Jung; Yum, Man-Yu; Campbell, Mark R; Jane, Jay-Lin; White, Pamela J; Hendrich, Suzanne

    2015-09-01

    An in vitro semi-continuous long-term (3 wk) anaerobic incubation system simulating lower gut fermentation was used to determine variability in gut microbial metabolism between 4 predigested high amylose-resistant starch residues (SR): SRV, SRVI, SRVII, and SRGEMS in human fecal samples. Subjects participated twice, 5 mo apart: 30 in Phase I (15 lean, 9 overweight and 6 obese), 29 in Phase II (15 lean, 9 overweight, 5 obese); 13 of 15 lean subjects participated in both phases. Of the 4 SRs, SRV displayed the highest gelatinization temperature, peak temperature, enthalpy changes, and the least digestibility compared with the other SRs. In both phases, compared with blank controls, all SRs increased butyrate ∼2-fold which stabilized at week 2 and only SRV caused greater propionate concentration (∼30%) after 3 wk which might have been partly mediated by its lesser digestibility. Fecal samples from lean and overweight/obese subjects incubated with SRs showed similar short-chain fatty acid production across both time points, which suggests that resistant starch may benefit individuals across BMIs. © 2015 Institute of Food Technologists®

  19. Potential Synergies of β-Hydroxybutyrate and Butyrate on the Modulation of Metabolism, Inflammation, Cognition, and General Health

    Directory of Open Access Journals (Sweden)

    Franco Cavaleri

    2018-01-01

    Full Text Available The low-carbohydrate high-fat diet (LCHFD, also known as the ketogenic diet, has cycled in and out of popularity for decades as a therapeutic program to treat metabolic syndrome, weight mismanagement, and drug-resistant disorders as complex as epilepsy, cancer, dementia, and depression. Despite the benefits of this diet, health care professionals still question its safety due to the elevated serum ketones it induces and the limited dietary fiber. To compound the controversy, patient compliance with the program is poor due to the restrictive nature of the diet and symptoms related to energy deficit and gastrointestinal adversity during the introductory and energy substrate transition phase of the diet. The studies presented here demonstrate safety and efficacy of the diet including the scientific support and rationale for the administration of exogenous ketone bodies and ketone sources as a complement to the restrictive dietary protocol or as an alternative to the diet. This review also highlights the synergy provided by exogenous ketone, β-hydroxybutyrate (BHB, accompanied by the short chain fatty acid, butyrate (BA in the context of cellular and physiological outcomes. More work is needed to unveil the molecular mechanisms by which this program provides health benefits.

  20. Population dynamics of biofilm development during start-up of a butyrate-degrading fluidized-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zellner, G.; Geveke, M.; Diekmann, H. (Hannover Univ. (Germany). Inst. fuer Mikrobiologie); Conway de Macario, E. (New York State Dept. of Health, Albany, NY (United States). Wadsworth Center for Laboratories and Research)

    1991-12-01

    Population dynamics during start-up of a fluidized-bed reactor with butyrate or butyrate plus acetate as sole substrates as well as biofilm development on the sand substratum were studied microbiologically, immunologically and by scanning electron microscopy. An adapted syntrophic consortium consisting of Syntrophospora sp., Methanothrix soehngenii, Methanosarcina mazei and Methanobrevibacter arboriphilus or Methanogenium sp. achieved high-rate butyrate degradation to methane and carbon dioxide. Desulfovibrio sp., Methanocorpusculum sp., and Methanobacterium sp. were also present in lower numbers. Immunological analysis demonstrated methanogens antigenically related to Methanobrevibacter ruminantium M1, Methanosarcina mazei S6, M. thermophila TM1, Methanobrevibacter arboriphilus AZ and Methanothrix soehngenii Opfikon in the biofilm. Immunological analysis also showed that the organisms isolated from the butyrate-degrading culture used as a source of inoculum were related to M. soehngenii Opfikon, Methanobacterium formicium MF and Methanospirillum hungatei JF1. (orig.).

  1. Sodium butyrate stimulates cellular recovery from UV damage in xeroderma pigmentosum cells belonging to complementation group F

    International Nuclear Information System (INIS)

    Nishigori, Chikako; Takebe, Hiraku

    1987-01-01

    Possible stimulation of the DNA repair capacity by sodium butyrate in normal and xeroderma pigmentosum (XP) cells was investigated. XP cells belonging to the complementation group F showed considerable stimulation of DNA repair by sodium butyrate in terms of both the amount of unscheduled DNA synthesis (UDS) and the colony-forming ability after UV irradiation. UDS in XP cells belonging to the complementation group A was not enhanced, while normal cells showed slight enhancement, but less than that of XP F cells. In XP A, XP C, and normal cells, sodium butyrate treatment enhanced the killing effect of UV irradiation. The residual repair capacity in XP F cells appeared to be stimulated by sodium butyrate. (author)

  2. Interspecies Electron Transfer during Propionate and Butyrate Degradation in Mesophilic, Granular Sludge

    OpenAIRE

    Schmidt, J. E.; Ahring, B. K.

    1995-01-01

    Granules from a mesophilic upflow anaerobic sludge blanket reactor were disintegrated, and bacteria utilizing only hydrogen or formate or both hydrogen and formate were added to investigate the role of interspecies electron transfer during degradation of propionate and butyrate. The data indicate that the major electron transfer occurred via interspecies hydrogen transfer, while interspecies formate transfer may not be essential for interspecies electron transfer in this system during degrada...

  3. Human fetal colon cells and colon cancer cells respond differently to butyrate and PUFAs

    Czech Academy of Sciences Publication Activity Database

    Hofmanová, Jiřina; Vaculová, Alena; Koubková, Zuzana; Hýžďalová, Martina; Kozubík, Alois

    2009-01-01

    Roč. 53, č. 1 (2009), S102-S113 ISSN 1613-4125 R&D Projects: GA ČR(CZ) GA524/07/1178; GA AV ČR(CZ) 1QS500040507; GA ČR(CZ) GA301/07/1557 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : apoptosis * butyrate * cell differentiation Subject RIV: BO - Biophysics Impact factor: 4.356, year: 2009

  4. Polyvinyl butyral films containing leuco-malachite green as low-dose dosimeters

    International Nuclear Information System (INIS)

    Hoang Hoa Mai; Solomon, H.M.; Taguchi, M.; Kojima, T.

    2008-01-01

    Thin films containing leuco-malachite green (LMG) dye in polyvinyl butyral (PVB) have been developed for dose measurements of a few hundreds Gy level. The film shows significant color change in the visible range, and the sensitivity of the film to absorbed dose was enhanced by addition of chloride-containing compounds, such as chloral hydrate or 2,2,2-trichloroethanol. The film is suitable as dosimeters for dose measurements, e.g. in food irradiation and environmental protection

  5. Differential Effects of Sodium Butyrate and Lithium Chloride on Rhesus Monkey Trophoblast Differentiation.

    Directory of Open Access Journals (Sweden)

    Priyadarsini Kumar

    Full Text Available Trophoblast differentiation during early placental development is critical for successful pregnancy and aberrant differentiation causes preeclampsia and early pregnancy loss. During the first trimester, cytotrophoblasts are exposed to low oxygen tension (equivalent to~2%-3% O2 and differentiation proceeds along an extravillous pathway (giving rise to invasive extravillous cytotrophoblasts and a villous pathway (giving rise to multinucleated syncytiotrophoblast. Interstitial extravillous cytotrophoblasts invade the decidua, while endovascular extravillous cytotrophoblasts are involved in re-modelling uterine spiral arteries. We tested the idea that sodium butyrate (an epigenetic modulator induces trophoblast differentiation in early gestation rhesus monkey trophoblasts through activation of the Wnt/β-catenin pathway. The results show that syncytiotrophoblast formation was increased by butyrate, accompanied by nuclear accumulation of β-catenin, and increased expression of EnvV2 and galectin-1 (two factors thought to be involved in trophoblast fusion. Surprisingly, the expression of GCM1 and syncytin-2 was not affected by sodium butyrate. When trophoblasts were incubated with lithium chloride, a GSK3 inhibitor that mimics Wnt activation, nuclear accumulation of β-catenin also occurred but differentiation into syncytiotrophoblast was not observed. Instead the cells differentiated to mononucleated spindle-shaped cells and showed molecular and behavioral characteristics of endovascular trophoblasts. Another highly specific inhibitor of GSK3, CHIR99021, failed to induce endovascular trophoblast characteristics. These observations suggest that activation of the Wnt/β-catenin pathway correlates with both trophoblast differentiation pathways, but that additional factors determine specific cell fate decisions. Other experiments suggested that the differential effects of sodium butyrate and lithium chloride might be explained by their effects on TNF

  6. Butyrate induces profound changes in gene expression related to multiple signal pathways in bovine kidney epithelial cells

    OpenAIRE

    Li, Robert W; Li, CongJun

    2006-01-01

    Abstract Background Global gene expression profiles of bovine kidney epithelial cells regulated by sodium butyrate were investigated with high-density oligonucleotide microarrays. The bovine microarray with 86,191 distinct 60mer oligonucleotides, each with 4 replicates, was designed and produced with Maskless Array Synthesizer technology. These oligonucleotides represent approximately 45,383 unique cattle sequences. Results 450 genes significantly regulated by butyrate with a median False Dis...

  7. Feed-drug interaction of orally applied butyrate and phenobarbital on hepatic cytochrome P450 activity in chickens.

    Science.gov (United States)

    Mátis, G; Kulcsár, A; Petrilla, J; Hermándy-Berencz, K; Neogrády, Zs

    2016-08-01

    The expression of hepatic drug-metabolizing cytochrome P450 (CYP) enzymes may be affected by several nutrition-derived compounds, such as by the commonly applied feed additive butyrate, possibly leading to feed-drug interactions. The aim of this study was to provide some evidence if butyrate can alter the activity of hepatic CYPs in chickens exposed to CYP-inducing xenobiotics, monitoring for the first time the possibility of such interaction. Ross 308 chickens in the grower phase were treated with daily intracoelomal phenobarbital (PB) injection (80 mg/kg BW), applied as a non-specific CYP-inducer, simultaneously with two different doses of intra-ingluvial sodium butyrate boluses (0.25 and 1.25 g/kg BW) for 5 days. Activity of CYP2H and CYP3A subfamilies was assessed by specific enzyme assays from isolated liver microsomes. According to our results, the lower dose of orally administered butyrate significantly attenuated the PB-triggered elevation of both hepatic CYP2H and CYP3A activities, which might be in association with the partly common signalling pathways of butyrate and CYP-inducing drugs, such as that of PB. Based on these data, butyrate may take part in pharmacoepigenetic interactions with simultaneously applied drugs or other CYP-inducing xenobiotics, with possible consequences for food safety and pharmacotherapy. Butyrate was found to be capable to maintain physiological CYP activity by attenuating CYP induction, underlining the safety of butyrate application in poultry nutrition. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  8. A proteomic view at the biochemistry of syntrophic butyrate oxidation in Syntrophomonas wolfei.

    Directory of Open Access Journals (Sweden)

    Alexander Schmidt

    Full Text Available In syntrophic conversion of butyrate to methane and CO2, butyrate is oxidized to acetate by secondary fermenting bacteria such as Syntrophomonas wolfei in close cooperation with methanogenic partner organisms, e.g., Methanospirillum hungatei. This process involves an energetically unfavourable shift of electrons from the level of butyryl-CoA oxidation to the substantially lower redox potential of proton and/or CO2 reduction, in order to transfer these electrons to the methanogenic partner via hydrogen and/or formate. In the present study, all prominent membrane-bound and soluble proteins expressed in S. wolfei specifically during syntrophic growth with butyrate, in comparison to pure-culture growth with crotonate, were examined by one- and two-dimensional gel electrophoresis, and identified by peptide fingerprinting-mass spectrometry. A membrane-bound, externally oriented, quinone-linked formate dehydrogenase complex was expressed at high level specifically during syntrophic butyrate oxidation, comprising a selenocystein-linked catalytic subunit with a membrane-translocation pathway signal (TAT, a membrane-bound iron-sulfur subunit, and a membrane-bound cytochrome. Soluble hydrogenases were expressed at high levels specifically during growth with crotonate. The results were confirmed by native protein gel electrophoresis, by formate dehydrogenase and hydrogenase-activity staining, and by analysis of formate dehydrogenase and hydrogenase activities in intact cells and cell extracts. Furthermore, constitutive expression of a membrane-bound, internally oriented iron-sulfur oxidoreductase (DUF224 was confirmed, together with expression of soluble electron-transfer flavoproteins (EtfAB and two previously identified butyryl-CoA dehydrogenases. Our findings allow to depict an electron flow scheme for syntrophic butyrate oxidation in S. wolfei. Electrons derived from butyryl-CoA are transferred through a membrane-bound EtfAB:quinone oxidoreductase (DUF

  9. Histone deacetylase inhibitors SAHA and sodium butyrate block G1-to-S cell cycle progression in neurosphere formation by adult subventricular cells

    Directory of Open Access Journals (Sweden)

    Doughty Martin L

    2011-05-01

    Full Text Available Abstract Background Histone deacetylases (HDACs are enzymes that modulate gene expression and cellular processes by deacetylating histones and non-histone proteins. While small molecule inhibitors of HDAC activity (HDACi are used clinically in the treatment of cancer, pre-clinical treatment models suggest they also exert neuroprotective effects and stimulate neurogenesis in neuropathological conditions. However, the direct effects of HDACi on cell cycle progression and proliferation, two properties required for continued neurogenesis, have not been fully characterized in adult neural stem cells (NSCs. In this study, we examined the effects of two broad class I and class II HDACi on adult mouse NSCs, the hydroxamate-based HDACi suberoylanilide hydroxamic acid (vorinostat, SAHA and the short chain fatty acid HDACi sodium butyrate. Results We show that both HDACi suppress the formation of neurospheres by adult mouse NSCs grown in proliferation culture conditions in vitro. DNA synthesis is significantly inhibited in adult mouse NSCs exposed to either SAHA or sodium butyrate and inhibition is associated with an arrest in the G1 phase of the cell cycle. HDACi exposure also resulted in transcriptional changes in adult mouse NSCs. Cdk inhibitor genes p21 and p27 transcript levels are increased and associated with elevated H3K9 acetylation levels at proximal promoter regions of p21 and p27. mRNA levels for notch effector Hes genes and Spry-box stem cell transcription factors are downregulated, whereas pro-neural transcription factors Neurog1 and Neurod1 are upregulated. Lastly, we show HDAC inhibition under proliferation culture conditions leads to long-term changes in cell fate in adult mouse NSCs induced to differentiate in vitro. Conclusion SAHA and sodium butyrate directly regulate cdk inhibitor transcription to control cell cycle progression in adult mouse NSCs. HDAC inhibition results in G1 arrest in adult mouse NSCs and transcriptional changes

  10. Effects of hydrogen and formate on the degradation of propionate and butyrate in thermophilic granules from an upflow anaerobic sludge blanket reactor.

    OpenAIRE

    Schmidt, J E; Ahring, B K

    1993-01-01

    Degradation of propionate and butyrate in whole and disintegrated granules from a thermophilic (55 degrees C) upflow anaerobic sludge blanket reactor fed with acetate, propionate, and butyrate as substrates was examined. The propionate and butyrate degradation rates in whole granules were 1.16 and 4.0 mumol/min/g of volatile solids, respectively, and the rates decreased 35 and 25%, respectively, after disintegration of the granules. The effect of adding different hydrogen-oxidizing bacteria (...

  11. Modelling Yersinia enterocolitica inactivation in coculture experiments with Lactobacillus sakei as based on pH and lactic acid profiles.

    Science.gov (United States)

    Janssen, M; Geeraerd, A H; Logist, F; De Visscher, Y; Vereecken, K M; Debevere, J; Devlieghere, F; Van Impe, J F

    2006-08-15

    In food processing and preservation technology, models describing microbial proliferation in food products are a helpful tool to predict the microbial food safety and shelf life. In general, the available models consider microorganisms in pure culture. Thus, microbial interactions are ignored, which may lead to a discrepancy between model predictions and the actual microbial evolution, particularly for fermented and minimally processed food products in which a background flora is often present. In this study, the lactic acid mediated negative microbial interaction between the lactic acid bacterium Lactobacillus sakei and the psychrotrophic food pathogen Yersinia enterocolitica was examined. A model describing the lactic acid induced inhibition (i.e., early induction of the stationary phase) of the pathogen [Vereecken, K.M., Devlieghere, F., Bockstaele, A., Debevere, J., Van Impe, J.F., 2003. A model for lactic acid induced inhibition of Yersinia enterocolitica in mono- and coculture with Lactobacillus sakei. Food Microbiology 20, 701-713.] was extended to describe the subsequent inactivation (i.e., decrease of the cell concentration to values below the detection limit). In the development of a suitable model structure to describe the inactivation process, critical points in the variation of the specific evolution rate mu [1/h] with the dynamic (time-varying) pH and undissociated lactic acid profiles were taken into account. Thus, biological knowledge, namely, both pH and undissociated lactic acid have an influence on the microbial evolution, was incorporated. The extended model was carefully validated on new data. As a result, the newly developed model is able to accurately predict the growth, inhibition and subsequent inactivation of Y. enterocolitica in coculture as based on the dynamic pH and lactic acid profiles of the medium.

  12. The Origin of Amino Acids in Lunar Regolith Samples

    Science.gov (United States)

    Cook, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K., Jr.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5 ppb to 651.1 ppb in 6M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: -aminoisobutyric acid (AIB), D-and L-amino-n-butyric acid (-ABA), DL-amino-n-butyric acid, -amino-n-butyric acid, -alanine, and -amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic -ABA were present in some samples.

  13. Effect of sodium butyrate and Yucca schidigera extract on bone characteristics in growing pigs

    Directory of Open Access Journals (Sweden)

    Puzio Iwona

    2016-03-01

    Full Text Available Introduction: The aim of this study was to investigate the influence of diet supplementation with sodium butyrate and Yucca schidigera extract (0.2% and 0.3% on femur quality of growing pigs (n = 45. Material and Methods: At the age of 28, 35 and 56 d, five piglets from each group fed a different diet were euthanised and the femora were collected for further analyses. The bone characteristics were assessed based on weight, length, densitometric analysis of BMC and BMD, pQCT analysis (area, mineral content, volumetric density of trabecular and cortical part of metaphysis and diaphysis, respectively, ultimate strength, and geometrical parameters (cross-sectional area and second moment of inertia. Results: There were no significant differences in femur bone parameters among experimental groups on the 28th d of life. On the 35th d of life, piglets with 0.2% supplementation of sodium butyrate and Yucca schidigera extract had significantly lower values of weight and second moment of inertia, and significantly higher trabecular BMD and BMC compared to other experimental groups. In 56-day-old pigs, the higher values were observed in both experimental groups regarding BMC, ultimate strength, geometrical parameters, cortical BMC, diaphyseal total area, and endosteal circumference (P < 0.05. Significant differences between experimental groups were observed only in bone weight and cortical thickness. Conclusion: This study proved that simultaneous supplementation with sodium butyrate and Yucca schidigera extract positively influences bone quality in pigs in the post-weaning period. However, there were no differences in bone characteristics between the addition of 0.2% and 0.3% preparations.

  14. Preparation of poly(3-hydroxybutyrate)/carboxymethyl cellulose acetate butyrate blends using gel formation

    International Nuclear Information System (INIS)

    Gomes, A.L.; Rodrigues, G.V.; Goncalves, M.C.

    2009-01-01

    This study investigates poly(3-hydroxybutyrate) (PHB) gel formation with a binary combination of solvents and its use on the preparation of PHB and carboxymethyl cellulose acetate butyrate (CMCAB) blends. The gel preparation method was compared to a precipitation method followed by hot pressing. The results from DSC and X-ray diffractions showed that both methodologies produced blends with very similar thermal properties and crystallization behavior. Scanning electron microscopy indicated better homogeneity in gel formation blends. Apart from this, the gel formation methodology provided new ways to prepare immiscible blends with the advantage of using friendlier solvents. (author)

  15. Effect of different butyrate supplementations on growth and health of weaning pigs challenged or not with E. coli K88

    Directory of Open Access Journals (Sweden)

    Paolo Trevisi

    2010-01-01

    Full Text Available In a full factorial design (4 diets X challenge, Yes/No, 72 weaning pigs were assigned to one of the diets: Control; experimental diets, obtained with the addition of 2 g/kg free sodium butyrate (fNaB, or 0.6 g/kg fat-protected sodium butyrate (pNaB, or 2 g/kg INVE-NutriAd commercial mixture (Mix, based on 75 g/kg protected butyrate. Oral challenge with Escherichia coli K88 was done on 2/3 of pigs on d 7. Pigs were slaughtered on d 13. The mortality in challenged pigs, tended to be higher in control group (50.0% than in the three supplemented groups (23.5%. Growth tended to be increased averagely by the supplements (p=0.100 after the challenge, that also significantly reduced growth. In general the diet did not affect the fecal shedding of Escherichia coli and Lactobacilli, the K88-specific IgA activity in blood, the morphology of oxyntic mucosa and the expression of H+/K+-ATPase gene. The supplementations tended to increase villous length of jejunum (p=0.101. On the whole, growth, villous height and surviving rate can be positively affected either when the supplementation is done by free butyrate, by protected butyrate or by the special Inve Nutri-Ad product and these effects are distributed both on pigs infected or not with Escherichia coli K88.

  16. Butyrate induces profound changes in gene expression related to multiple signal pathways in bovine kidney epithelial cells

    Directory of Open Access Journals (Sweden)

    Li CongJun

    2006-09-01

    Full Text Available Abstract Background Global gene expression profiles of bovine kidney epithelial cells regulated by sodium butyrate were investigated with high-density oligonucleotide microarrays. The bovine microarray with 86,191 distinct 60mer oligonucleotides, each with 4 replicates, was designed and produced with Maskless Array Synthesizer technology. These oligonucleotides represent approximately 45,383 unique cattle sequences. Results 450 genes significantly regulated by butyrate with a median False Discovery Rate (FDR = 0 % were identified. The majority of these genes were repressed by butyrate and associated with cell cycle control. The expression levels of 30 selected genes identified by the microarray were confirmed using real-time PCR. The results from real-time PCR positively correlated (R = 0.867 with the results from the microarray. Conclusion This study presented the genes related to multiple signal pathways such as cell cycle control and apoptosis. The profound changes in gene expression elucidate the molecular basis for the pleiotropic effects of butyrate on biological processes. These findings enable better recognition of the full range of beneficial roles butyrate may play during cattle energy metabolism, cell growth and proliferation, and possibly in fighting gastrointestinal pathogens.

  17. The diurnal variation in urine acidification differs between normal individuals and uric acid stone formers

    Science.gov (United States)

    Cameron, Mary Ann; Maalouf, Naim M.; Poindexter, John; Adams-Huet, Beverley; Sakhaee, Khashayar; Moe, Orson W.

    2012-01-01

    Many biologic functions follow circadian rhythms driven by internal and external cues that synchronize and coordinate organ physiology to diurnal changes in the environment and behavior. Urinary acid-base parameters follow diurnal patterns and it is thought these changes are due to periodic surges in gastric acid secretion. Abnormal urine pH is a risk factor for specific types of nephrolithiasis and uric acid stones are typical of excessively low urine pH. Here we placed 9 healthy volunteers and 10 uric acid stone formers on fixed metabolic diets to study the diurnal pattern of urinary acidification. All showed clear diurnal trends in urinary acidification but none of the patterns were affected by inhibitors of the gastric proton pump. Uric acid stone formers had similar patterns of change through the day but their urine pH was always lower compared to healthy volunteers. Uric acid stone formers excreted more acid (normalized to acid ingestion) with the excess excreted primarily as titratable acid rather than ammonium. Urine base excretion was also lower in uric acid stone formers (normalized to base ingestion) along with lower plasma bicarbonate concentrations during part of the day. Thus, increased net acid presentation to the kidney and the preferential use of buffers, other than ammonium, result in much higher concentrations of un-dissociated uric acid throughout the day and consequently an increased risk of uric acid stones. PMID:22297671

  18. Short-chain fatty acids induced autophagy serves as an adaptive strategy for retarding mitochondria-mediated apoptotic cell death

    OpenAIRE

    Tang, Y; Chen, Y; Jiang, H; Nie, D

    2010-01-01

    Short-chain fatty acids (SCFAs) are the major by-products of bacterial fermentation of undigested dietary fibers in the large intestine. SCFAs, mostly propionate and butyrate, inhibit proliferation and induce apoptosis in colon cancer cells, but clinical trials had mixed results regarding the anti-tumor activities of SCFAs. Herein we demonstrate that propionate and butyrate induced autophagy in human colon cancer cells to dampen apoptosis whereas inhibition of autophagy potentiated SCFA induc...

  19. Molar extinction coefficients of some fatty acids

    DEFF Research Database (Denmark)

    Sandhu, G.K.; Singh, K.; Lark, B.S.

    2002-01-01

    ) and stearic acid (C18H36O2), has been measured at the photon energies 81, 356, 511, 662, 1173 and 1332 keV. Experimental values for the molar extinction coefficient, the effective atomic number and the electron density have been derived and compared with theoretical calculations. There is good agreement......The attenuation of gamma rays in some fatty acids, viz. formic acid (CH2O2), acetic acid (C2H4O2), propionic acid (C3H6O2), butyric acid (C4H8O2), n-hexanoic acid (C6H12O2), n-caprylic acid (C8H16O2), lauric acid (C12H24O2), myristic acid (C14H28O2), palmitic acid (C16H32O2), oleic acid (C18H34O2...

  20. Sodium butyrate suppresses angiotensin II-induced hypertension by inhibition of renal (pro)renin receptor and intrarenal renin-angiotensin system.

    Science.gov (United States)

    Wang, Lei; Zhu, Qing; Lu, Aihua; Liu, Xiaofen; Zhang, Linlin; Xu, Chuanming; Liu, Xiyang; Li, Haobo; Yang, Tianxin

    2017-09-01

    Butyrate, a short-chain fatty acid, is the end product of the fermentation of complex carbohydrates by the gut microbiota. Recently, sodium butyrate (NaBu) has been found to play a protective role in a number of chronic diseases. However, it is still unclear whether NaBu has a therapeutic potential in hypertension. The present study was aimed to investigate the role of NaBu in angiotensin II (Ang II)-induced hypertension and to further explore the underlying mechanism. Ang II was infused into uninephrectomized Sprague-Dawley rats with or without intramedullary infusion of NaBu for 14 days. Mean arterial blood pressure was recorded by the telemetry system. Renal tissues, serum samples, and 24-h urine samples were collected to examine renal injury and the regulation of the (pro)renin receptor (PRR) and renin. Intramedullary infusion of NaBu in Sprague-Dawley rats lowered the Ang II-induced mean arterial pressure from 129 ± 6 mmHg to 108 ± 4 mmHg (P renal injury, including urinary albumin, glomerulosclerosis, and renal fibrosis, as well as the expression of inflammatory mediators tumor necrosis factor α, interleukin 6. The renal expression of PRR, angiotensinogen, angiotensin I-converting enzyme and the urinary excretion of soluble PRR, renin, and angiotensinogen were all increased by Ang II infusion but decreased by NaBu treatment. In cultured innermedullary collecting duct cells, NaBu treatment attenuated Ang II-induced expression of PRR and renin. These results demonstrate that NaBu exerts an antihypertensive action, likely by suppressing the PRR-mediated intrarenal renin-angiotensin system.

  1. Recycling of waste automotive laminated glass and valorization of polyvinyl butyral through mechanochemical separation

    International Nuclear Information System (INIS)

    Swain, Basudev; Ryang Park, Jae; Yoon Shin, Dong; Park, Kyung-Soo; Hwan Hong, Myung; Gi Lee, Chan

    2015-01-01

    Due to strong binding, optical clarity, adhesion to many surfaces, toughness and flexibility polyvinyl butyral (PVB) resin films are commonly used in the automotive and architectural application as a protective interlayer in the laminated glass. Worldwide million tons of PVB waste generated from end-of-life automotive associated with various environmental issues. Stringent environmental directive, higher land cost eliminates land filling option, needs a study, we have developed a mechanochemical separation process to separate PVB resins from glass and characterized the separated PVB through various techniques, i.e., scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), infrared spectroscopy (IR) and nuclear magnetic resonance spectroscopy (NMR). Commercial nonionic surfactants D201 used for the mechanochemical separation purpose. Through parameter optimization following conditions are considered to be the optimum condition; 30 vol% D201, stirring speed of 400 rpm, 35 °C temperature, operation time 1 h, and dilute D201 volume to waste automotive laminated glass weight ratio of ≈25. The technology developed in our laboratory is sustainable, environmentally friendly, techno-economical feasible process, capable of mass production (recycling). - Highlights: • Waste automotive laminated glass and polyvinyl butyral mechanochemically separated. • An economical total recovery and environment-friendly process has been developed. • It is a global problem rather than regional environmental issue has been addressed. • Without using hazardous chemical wastes are being converted to a wealth.

  2. Neuroprotective Effects of Clostridium butyricum against Vascular Dementia in Mice via Metabolic Butyrate

    Directory of Open Access Journals (Sweden)

    Jiaming Liu

    2015-01-01

    Full Text Available Probiotics actively participate in neuropsychiatric disorders. However, the role of gut microbiota in brain disorders and vascular dementia (VaD remains unclear. We used a mouse model of VaD induced by a permanent right unilateral common carotid arteries occlusion (rUCCAO to investigate the neuroprotective effects and possible underlying mechanisms of Clostridium butyricum. Following rUCCAO, C. butyricum was intragastrically administered for 6 successive weeks. Cognitive function was estimated. Morphological examination was performed by electron microscopy and hematoxylin-eosin (H&E staining. The BDNF-PI3K/Akt pathway-related proteins were assessed by western blot and immunohistochemistry. The diversity of gut microbiota and the levels of butyrate in the feces and the brains were determined. The results showed that C. butyricum significantly attenuated the cognitive dysfunction and histopathological changes in VaD mice. C. butyricum not only increased the levels of BDNF and Bcl-2 and decreased level of Bax but also induced Akt phosphorylation (p-Akt and ultimately reduced neuronal apoptosis. Moreover, C. butyricum could regulate the gut microbiota and restore the butyrate content in the feces and the brains. These results suggest that C. butyricum might be effective in the treatment of VaD by regulating the gut-brain axis and that it can be considered a new therapeutic strategy against VaD.

  3. [The effect of Redix Scutellariae on butyrate of Porphyromonas endodontalis in vitro].

    Science.gov (United States)

    Li, Ji-yao; Tang, Ya-ling; Tan, Hong; Zhou, Xue-dong; Zhang, Ping

    2004-02-01

    To study the effect of Radix Scutellariae on the growth, metabolism of Porphyromonas endodontalis (P.e), as a preparation for studying the mechanism of Radix Scutellariae in treating pulp and periapical diseases. P.e was chosen as the experimental bacteria. Radix Scutellariae was extracted by means of reflux with 80% ethanol. The value of MIC of Radix Scutellariae was measured by minute amount serial dilusion test, and the production of butyrate was measured by high liquid chromatograph(HPLC). Radix Scutellariae could inhibit the growth of P.e, of which the MIC was 100 mg/L. Following the increase in concentration of Radix Scutellariae, the amount of butyrate decreased to (3.527 +/- 0.009) mg/L, (3.048 +/- 0.005) mg/L, (2.490 +/- 0.011) mg/L, (2.209 +/- 0.016) mg/L, respectively (P < 0.05). Radix Scutellariae could inhibit the growth and metabolism of P.e and might be an effective agent in treating pulp and periapical diseases.

  4. Butyrate attenuates lipopolysaccharide-induced inflammation in intestinal cells and Crohn's mucosa through modulation of antioxidant defense machinery.

    Directory of Open Access Journals (Sweden)

    Ilaria Russo

    Full Text Available Oxidative stress plays an important role in the pathogenesis of inflammatory bowel disease (IBD, including Crohn's disease (CrD. High levels of Reactive Oxygen Species (ROS induce the activation of the redox-sensitive nuclear transcription factor kappa-B (NF-κB, which in turn triggers the inflammatory mediators. Butyrate decreases pro-inflammatory cytokine expression by the lamina propria mononuclear cells in CrD patients via inhibition of NF-κB activation, but how it reduces inflammation is still unclear. We suggest that butyrate controls ROS mediated NF-κB activation and thus mucosal inflammation in intestinal epithelial cells and in CrD colonic mucosa by triggering intracellular antioxidant defense systems. Intestinal epithelial Caco-2 cells and colonic mucosa from 14 patients with CrD and 12 controls were challenged with or without lipopolysaccaride from Escherichia coli (EC-LPS in presence or absence of butyrate for 4 and 24 h. The effects of butyrate on oxidative stress, p42/44 MAP kinase phosphorylation, p65-NF-κB activation and mucosal inflammation were investigated by real time PCR, western blot and confocal microscopy. Our results suggest that EC-LPS challenge induces a decrease in Gluthation-S-Transferase-alpha (GSTA1/A2 mRNA levels, protein expression and catalytic activity; enhanced levels of ROS induced by EC-LPS challenge mediates p65-NF-κB activation and inflammatory response in Caco-2 cells and in CrD colonic mucosa. Furthermore butyrate treatment was seen to restore GSTA1/A2 mRNA levels, protein expression and catalytic activity and to control NF-κB activation, COX-2, ICAM-1 and the release of pro-inflammatory cytokine. In conclusion, butyrate rescues the redox machinery and controls the intracellular ROS balance thus switching off EC-LPS induced inflammatory response in intestinal epithelial cells and in CrD colonic mucosa.

  5. Single-dose infusion of sodium butyrate, but not lactose, increases plasma ß-hydroxybutyrate and insulin in lactating dairy cows

    Science.gov (United States)

    Several previous studies have identified beneficial effects of butyrate on rumen development and intestinal health in pre-ruminants. These encouraging findings have led to further investigations related to butyrate supplementation in the mature ruminant. However, the maximum tolerable dosage rate of...

  6. Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures

    NARCIS (Netherlands)

    Steinbusch, K.J.J.; Hamelers, H.V.M.; Buisman, C.J.N.

    2008-01-01

    In this research we demonstrated a new method to produce alcohols. It was experimentally feasible to produce ethanol, propanol and butanol from solely volatile fatty acids (VFAs) with hydrogen as electron donor. In batch tests, VFAs such as acetic, propionic and butyric acids were reduced by mixed

  7. Organic acid profile of commercial sour cassava starch

    Directory of Open Access Journals (Sweden)

    DEMIATE I.M.

    1999-01-01

    Full Text Available Organic acids are present in sour cassava starch ("polvilho azedo" and contribute with organoleptic and physical characteristics like aroma, flavor and the exclusive baking property, that differentiate this product from the native cassava starch. Samples of commercial sour cassava starch collected in South and Southeast Brazil were prepared for high performance liquid chromatography (HPLC analysis. The HPLC equipment had a Biorad Aminex HPX-87H column for organic acid analysis and a refractometric detector. Analysis was carried out with 0.005M sulfuric acid as mobile phase, 0.6ml/min flow rate and column temperature of 60° C. The acids quantified were lactic (0.036 to 0.813 g/100g, acetic (0 to 0.068 g/100g, propionic (0 to 0.013 g/100g and butyric (0 to 0.057 g/100g, that are produced during the natural fermentation of cassava starch. Results showed large variation among samples, even within the same region. Some samples exhibited high acid levels, mainly lactic acid, but in these neither propionic nor butyric acids were detected. Absence of butyric acid was not expected because this is an important component of the sour cassava starch aroma, and the lack of this acid may suggest that such samples were produced without the natural fermentation step.

  8. First Insights into the Genome Sequence of Clostridium thermopalmarium DSM 5974, a Butyrate-Producing Bacterium Isolated from Palm Wine.

    Science.gov (United States)

    Poehlein, Anja; Hettwer, Eva; Mohnike, Lennart; Daniel, Rolf

    2018-04-26

    Clostridium thermopalmarium is a moderate thermophilic, rod-shaped, and endospore-forming bacterium, which was isolated from palm wine in Senegal. Butyrate is produced from a broad variety of sugar substrates. Here, we present the draft genome sequence of C. thermopalmarium DSM 5974 (2.822 Mb) containing 2,665 predicted protein-encoding genes. Copyright © 2018 Poehlein et al.

  9. Response of HT115, a highly invasive human colorectal adenocarcinoma cell line, to sodium butyrate treatment and glucose deprivation

    Czech Academy of Sciences Publication Activity Database

    Štokrová, Jitka; Sovová, Vlasta; Šloncová, Eva; Kučerová, Dana; Tuháčková, Zdena; Korb, Jan

    2005-01-01

    Roč. 26, č. 3 (2005), s. 793-799 ISSN 1019-6439 R&D Projects: GA AV ČR(CZ) KSK5020115 Keywords : HT115 cells * sodium butyrate * glucose deprivation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.681, year: 2005

  10. Cellulose acetate butyrate membrane containing TiO{sub 2} nanoparticle: Preparation, characterization and permeation study

    Energy Technology Data Exchange (ETDEWEB)

    Asgarkhani, Mohammad Ali Haj; Mousavi, Seyed Mahmoud; Saljoughi, Ehsan [Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2013-09-15

    Cellulose acetate butyrate/TiO{sub 2} hybrid membranes were prepared via phase inversion by dispersing the TiO{sub 2} nanoparticles in casting solutions. The influence of TiO{sub 2} nanoparticles on the morphology and performance of membranes was investigated. The scanning electron microscope images and experiments of membrane performance showed that the membrane thickness and pure water flux were first increased by adding the TiO{sub 2} nanoparticles to the casting solution up to 4 wt% and then decreased with the addition of further nanoparticles to it. The obtained results indicated that the addition of TiO{sub 2} in the casting solution enhanced the rejection and permeate flux in filtration of bovine serum albumin solution. Furthermore, increasing the TiO{sub 2} nanoparticle concentration in the casting solution increased the flux recovery and consequently decreased the fouling of membrane.

  11. Capturing one of the human gut microbiome’s most wanted: reconstructing the genome of a novel butyrate-producing, clostridial scavenger from metagenomic sequence data

    Directory of Open Access Journals (Sweden)

    Patricio eJeraldo

    2016-05-01

    Full Text Available The role of the microbiome in health and disease is attracting great attention, yet we still know little about some of the most prevalent microorganisms inside our bodies. Several years ago, Human Microbiome Project (HMP researchers generated a list of most wanted taxa: bacteria both prevalent among healthy volunteers and distantly related to any sequenced organisms. Unfortunately, the challenge of assembling high-quality genomes from a tangle of metagenomic reads has slowed progress in learning about these uncultured bacteria. Here, we describe how recent advances in sequencing and analysis allowed us to assemble most wanted genomes from metagenomic data collected from four stool samples. Using a combination of both de novo and guided assembly methods, we assembled and binned over 100 genomes from an initial data set of over 1,300 Gbp. One of these genome bins, which met HMP’s criteria for a most wanted taxa, contained three essentially complete genomes belonging to a previously uncultivated species. This species is most closely related to Eubacterium desmolans and the clostridial cluster IV/Clostridium leptum subgroup species Butyricicoccus pullicaecorum (71–76% average nucleotide identity. Gene function analysis indicates that the species is an obligate anaerobe, forms spores, and produces the anti-inflammatory short-chain fatty acids acetate and butyrate. It also appears to take up metabolically costly molecules such as cobalamin, methionine, and branch-chained amino acids from the environment, and to lack virulence genes. Thus, the evidence is consistent with a secondary degrader that occupies a host-dependent, nutrient-scavenging niche within the gut; its ability to produce butyrate, which is thought to play an anti-inflammatory role, makes it intriguing for the study of diseases such as colon cancer and inflammatory bowel disease. In conclusion, we have assembled essentially complete genomes from stool metagenomic data, yielding

  12. Single-dose infusion of sodium butyrate, but not lactose, increases plasma β-hydroxybutyrate and insulin in lactating dairy cows.

    Science.gov (United States)

    Herrick, K J; Hippen, A R; Kalscheur, K F; Schingoethe, D J; Casper, D P; Moreland, S C; van Eys, J E

    2017-01-01

    Several studies have identified beneficial effects of butyrate on rumen development and intestinal health in preruminants. These encouraging findings led to further investigations related to butyrate supplementation in the mature ruminant. However, the effects of elevated butyrate concentrations on rumen metabolism have not been investigated, and consequently the maximum tolerable dosage rate of butyrate has not been established. Therefore, the first objective of this work was to evaluate the effect of a short-term increase in rumen butyrate concentration on key metabolic indicators. The second objective was to evaluate the source of butyrate, either directly dosed in the rumen or indirectly supplied via lactose fermentation in the rumen. Jugular catheters were inserted into 4 ruminally fistulated Holstein cows in a 4×4 Latin square with 3-d periods. On d 1 of each period, 1h after feeding, cows were ruminally dosed with 1 of 4 treatments: (1) 2L of water (CON), (2) 3.5g/kg of body weight (BW) of lactose (LAC), (3) 1g/kg of BW of butyrate (1GB), or (4) 2g/kg of BW of butyrate (2GB). Sodium butyrate was the source of butyrate, and NaCl was added to CON (1.34g/kg of BW), LAC (1.34g/kg of BW), and 1GB (0.67g/kg of BW) to provide equal amounts of sodium as the 2GB treatment. Serial plasma and rumen fluid samples were collected during d 1 of each period. Rumen fluid pH was greater in cows given the 1GB and 2GB treatments compared with the cows given the LAC treatment. Cows administered the 1GB and 2GB treatments had greater rumen butyrate concentrations compared with LAC. Those cows also had greater plasma butyrate concentrations compared with cows given the LAC treatment. Plasma β-hydroxybutyrate was greater and insulin tended to be greater for butyrate treatments compared with LAC. No difference in insulin was found between the 1GB and 2GB treatments. Based on plasma and rumen metabolites, singly infusing 3.5g/kg of BW of lactose into the rumen is not as effective

  13. The role of peroxisomal fatty acyl-CoA beta-oxidation in bile acid biosynthesis

    International Nuclear Information System (INIS)

    Hayashi, H.; Miwa, A.

    1989-01-01

    The physiological role of the peroxisomal fatty acyl-CoA beta-oxidizing system (FAOS) is not yet established. We speculated that there might be a relationship between peroxisomal degradation of long-chain fatty acids in the liver and the biosynthesis of bile acids. This was investigated using [1- 14 C]butyric acid and [1- 14 C]lignoceric acid as substrates of FAOS in mitochondria and peroxisomes, respectively. The incorporation of [ 14 C]lignoceric acid into primary bile acids was approximately four times higher than that of [ 14 C]butyric acid (in terms of C-2 units). The pools of these two fatty acids in the liver were exceedingly small. The incorporations of radioactivity into the primary bile acids were strongly inhibited by administration of aminotriazole, which is a specific inhibitor of peroxisomal FAOS in vivo. Aminotriazole inhibited preferentially the formation of cholate, the major primary bile acid, from both [ 14 C]lignoceric acid and [ 14 C]butyric acid, rather than the formation of chenodeoxycholate. The former inhibition was about 70% and the latter was approximately 40-50%. In view of reports that cholate is biosynthesized from endogenous cholesterol, the above results indicate that peroxisomal FAOS may have an anabolic function, supplying acetyl CoA for bile acid biosynthesis

  14. The role of peroxisomal fatty acyl-CoA beta-oxidation in bile acid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, H.; Miwa, A. (Josai Univ., Saitama (Japan))

    1989-11-01

    The physiological role of the peroxisomal fatty acyl-CoA beta-oxidizing system (FAOS) is not yet established. We speculated that there might be a relationship between peroxisomal degradation of long-chain fatty acids in the liver and the biosynthesis of bile acids. This was investigated using (1-{sup 14}C)butyric acid and (1-{sup 14}C)lignoceric acid as substrates of FAOS in mitochondria and peroxisomes, respectively. The incorporation of ({sup 14}C)lignoceric acid into primary bile acids was approximately four times higher than that of ({sup 14}C)butyric acid (in terms of C-2 units). The pools of these two fatty acids in the liver were exceedingly small. The incorporations of radioactivity into the primary bile acids were strongly inhibited by administration of aminotriazole, which is a specific inhibitor of peroxisomal FAOS in vivo. Aminotriazole inhibited preferentially the formation of cholate, the major primary bile acid, from both ({sup 14}C)lignoceric acid and ({sup 14}C)butyric acid, rather than the formation of chenodeoxycholate. The former inhibition was about 70% and the latter was approximately 40-50%. In view of reports that cholate is biosynthesized from endogenous cholesterol, the above results indicate that peroxisomal FAOS may have an anabolic function, supplying acetyl CoA for bile acid biosynthesis.

  15. The separation and determination of fatty acids by isotopic dilution and radiogas-liquid chromatography

    International Nuclear Information System (INIS)

    Beardsley, D.A.

    1981-01-01

    A number of static phases have been evaluated for the GLC separation of fatty acids. Of those investigated, only AT 1200 was capable of resolving the isomeric forms of the acids. A radiogas-liquid chromatographic method incorporating isotopic dilution analysis has been developed for the determination of n-butyric acid. The proposed method has been applied to the determination of the acid in hydrolysed butter fat and milk chocolate extracts. (author)

  16. Inhibition of glycolysis and growth of colon cancer cells by 3-(3-pyridinyl-1-(4-pyridinyl-2-propen-1-one (3PO in combination with butyrate, 2-deoxy glucose, 3-bromopyruvate or biguanides

    Directory of Open Access Journals (Sweden)

    Lea MA

    2015-09-01

    Full Text Available Introduction: Glycolysis shows a positive correlation with growth of human colon cancer cells. PFKFB3 is an important enzyme regulating glycolysis in many tumor cells and presents a target for cancer chemotherapy. We studied the action of an inhibitor of PFKFB3, 3-(3-pyridinyl-1-(4-pyridinyl-2-propen-1-one (3PO, as a single agent and in combination with other molecules that affect glycolysis. Materials and methods: Effects on growth were studied in four human colon cancer cell lines. Glucose metabolism was monitored by uptake from the incubation medium and lactic acid production was judged by acidification of the medium. Induction of alkaline phosphatase served as a marker of differentiation. Results: Growth of colon cancer cells was inhibited by 3PO and butyrate but only butyrate induced activation of alkaline phosphatase. Although metformin and phenformin can increase glucose metabolism, they inhibit colon cancer cell growth and can exert additive inhibitory effects in combination with 3PO. Additive growth inhibitory effects with 3PO were also observed with two compounds that inhibit glycolysis: 2-deoxyglucose and 3-bromopyruvate. Conclusion: 3PO was an inhibitor of growth of colon cancer cells and may be a useful agent in combination with other drugs that inhibit colon cancer cell proliferation.

  17. Ester Sensing with Poly (Aniline-co-m-aminobenzoic Acid Deposited on Poly (Vinyl Alcohol

    Directory of Open Access Journals (Sweden)

    S. ADHIKARI

    2011-02-01

    Full Text Available Poly (aniline-co-m-aminobenzoic acid was deposited on poly (vinyl alcohol film by in situ oxidative polymerization of the monomers aniline and m-aminobenzoic acid. Sensing experiments were performed on the composite film with the injection of various concentrations of hexenyl acetate and hexenyl butyrate at room temperature. The sensor responded rapidly and reversibly in the presence of hexenyl acetate and hexenyl butyrate vapors which was detected by resistance change of the composite film upon exposure to the vapor. Selectivity tests revealed that the sensor selectively responded to hexenyl butyrate compared to hexenyl acetate. The sensing response has been explained on the basis of FT-IR spectroscopic analysis of the polymer film before and after exposure to the ester vapor.

  18. Fasting serum concentration of short-chain fatty acids in subjects with microscopic colitis and celiac disease

    DEFF Research Database (Denmark)

    Jakobsdottir, Greta; Bjerregaard, Jens Holst; Skovbjerg, Hanne

    2013-01-01

    Short-chain fatty acids (SCFAs), particularly propionic and butyric acids, have been shown to have many positive health effects. The amount and type of SCFAs formed from dietary fibre by the colonic microbiota depends on the substrate available and is reflected in blood. The total intake and type...

  19. Homogeneous preparation of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) from sugarcane bagasse cellulose in ionic liquid.

    Science.gov (United States)

    Huang, Kelin; Wang, Ben; Cao, Yan; Li, Huiquan; Wang, Jinshu; Lin, Weijiang; Mu, Chaoshi; Liao, Dankui

    2011-05-25

    Cellulose acetate butyrate (CAB) and cellulose acetate propionate (CAP) were prepared homogeneously in a 1-allyl-3-methylimidazolium chloride (AmimCl) ionic liquid system from sugarcane bagasse (SB). The reaction temperature, reaction time, and molar ratio of butyric (propionic) anhydride/anhydroglucose units in the cellulose affect the butyryl (B) or propionyl (P) content of CAB or CAP samples. The (13)C NMR data revealed the distribution of the substituents of CAB and CAP. The thermal stability of sugar cane bagasse cellulose was found by thermogravimetric analysis to have decreased after chemical modification. After reaction, the ionic liquid was effectively recycled and reused. This study provides a new way for high-value-added utilization of SB and realizing the objective of turning waste into wealth.

  20. Immobilization of Lipase using Alginate Hydrogel Beads and Enzymatic Evaluation in Hydrolysis of p-Nitrophenol Butyrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuang; Shang, Wenting; Yang, Xiaoxi; Zhang, Shujuan; Zhang, Xiaogang; Chen, Jiawei [Renmin Univ. of China, Beijing (China)

    2013-09-15

    The immobilization of enzyme is one of the key issues both in the field of enzymatic research and industrialization. In this work, we reported a facile method to immobilize Candida Antarctica lipase B (CALB) in alginate carrier. In the presence of calcium cation, the enzyme-alginate suspension could be cross-linked to form beads with porous structure at room temperature, and the enzyme CALB was dispersed in the beads. Activity of the enzyme-alginate composite was verified by enzymatic hydrolysis reaction of p-nitrophenol butyrate in aqueous phase. The effects of reaction parameters such as temperature, pH, embedding and lyophilized time on the reactive behavior were discussed. Reuse cycle experiments for the hydrolysis of p-nitrophenol butyrate demonstrated that activity of the enzyme-alginate composite was maintained without marked deactivation up to 6 repeated cycles.

  1. Butyrate activates the monocarboxylate transporter MCT4 expression in breast cancer cells and enhances the antitumor activity of 3-bromopyruvate.

    Science.gov (United States)

    Queirós, Odília; Preto, Ana; Pacheco, António; Pinheiro, Céline; Azevedo-Silva, João; Moreira, Roxana; Pedro, Madalena; Ko, Young H; Pedersen, Peter L; Baltazar, Fátima; Casal, Margarida

    2012-02-01

    Most malignant tumors exhibit the Warburg effect, which consists in increased glycolysis rates with production of lactate, even in the presence of oxygen. Monocarboxylate transporters (MCTs), maintain these glycolytic rates, by mediating the influx and/or efflux of lactate and are overexpressed in several cancer cell types. The lactate and pyruvate analogue 3-bromopyruvate (3-BP) is an inhibitor of the energy metabolism, which has been proposed as a specific antitumor agent. In the present study, we aimed at determining the effect of 3-BP in breast cancer cells and evaluated the putative role of MCTs on this effect. Our results showed that the three breast cancer cell lines used presented different sensitivities to 3-BP: ZR-75-1 ER (+)>MCF-7 ER (+)>SK-BR-3 ER (-). We also demonstrated that 3-BP reduced lactate production, induced cell morphological alterations and increased apoptosis. The effect of 3-BP appears to be cytotoxic rather than cytostatic, as a continued decrease in cell viability was observed after removal of 3-BP. We showed that pre-incubation with butyrate enhanced significantly 3-BP cytotoxicity, especially in the most resistant breast cancer cell line, SK-BR-3. We observed that butyrate treatment induced localization of MCT1 in the plasma membrane as well as overexpression of MCT4 and its chaperone CD147. Our results thus indicate that butyrate pre-treatment potentiates the effect of 3-BP, most probably by increasing the rates of 3-BP transport through MCT1/4. This study supports the potential use of butyrate as adjuvant of 3-BP in the treatment of breast cancer resistant cells, namely ER (-).

  2. Expression of beta-catenin is regulated by PI-3 kinase and sodium butyrate in colorectal cancer cells

    Czech Academy of Sciences Publication Activity Database

    Turečková, Jolana; Kučerová, Dana; Vojtěchová, Martina; Šloncová, Eva; Tuháčková, Zdena

    2006-01-01

    Roč. 17, č. 1 (2006), s. 69-75 ISSN 1107-3756 R&D Projects: GA AV ČR(CZ) KJB5052302; GA ČR(CZ) GA301/04/0550; GA ČR(CZ) GP301/02/D159 Institutional research plan: CEZ:AV0Z50520514 Keywords : PI-3 kinase * sodium butyrate * ribosomal protein S6 Subject RIV: EB - Gene tics ; Molecular Biology Impact factor: 1.854, year: 2006

  3. Polyvinylpyrrolidone/polyvinyl butyral composite as a stable binder for castable supercapacitor electrodes in aqueous electrolytes

    Science.gov (United States)

    Aslan, M.; Weingarth, D.; Herbeck-Engel, P.; Grobelsek, I.; Presser, V.

    2015-04-01

    Mixtures of polyvinylpyrrolidone/polyvinyl butyral (PVP/PVB) are attractive binders for the preparation of carbon electrodes for aqueous electrolyte supercapacitors. The use of PVP/PVB offers several key advantages: They are soluble in ethanol and can be used to spray coat or drain cast activated carbon (AC) electrodes directly on a current collector. Infrared spectroscopy and contact angle measurements show that the PVP-to-PVB ratio determines the degree of binder hydrophilicity. Within our study, the most favorable performance was obtained for AC electrodes with a composition of AC + 1.5 mass% PVP + 6.0 mass% PVB; such electrodes were mechanically stabile and water resistant with a PVP release of less than 5% of total PVP while PVB itself is water insoluble. Compared to when using PVDF, the specific surface area (SSA) of the assembled electrodes was 10% higher, indicating a reduced pore blocking tendency. A good electrochemical performance was observed in different aqueous electrolytes for composite electrodes with the optimized binder composition: 160 F g-1 at 1 A g-1 for 1 M H2SO4 and 6 M KOH and 120 F g-1 for 1 M NaCl. The capacitance was slightly reduced by 2.5% after cycling to 1.2 V with 1.28 A g-1 in 1 M NaCl for 10,000 times.

  4. Effect of sodium butyrate supplementation in milk replacer and starter diet on rumen development in calves

    DEFF Research Database (Denmark)

    Gorka, P; Kowalski, Z M; Pietrzak, P

    2009-01-01

    the effect of sodium butyrate (NaB) supplementation in milk replacer and starter diet on rumen development in rearing calves. Fourteen bull calves (5-day-old) were randomly allocated to two groups: Control (C) and NaB. The later received 0.3 % NaB in milk replacer and starter diet. Animals were in experiment...... up to age of 26 days. Addition of NaB to milk replacer and starter diet had no effect on daily growth rate, but reduced the weight loss observed in C calves in first 11 days of age. Additionally, the NaB calves weighed more at the end of the study and tended to have higher growth rate in the whole......, and no change in muscle layer thickness, as compared to control. Plasma glucagon-like peptide-2 relative increase was higher in NaB group than in C group, and may be involved in rumen development. In conclusion, supplementation of the diet (milk replacer and starter diet) with NaB may enhance rumen development...

  5. Transparent Blend of Poly(Methylmethacrylate/Cellulose Acetate Butyrate for the Protection from Ultraviolet

    Directory of Open Access Journals (Sweden)

    Raouf Mahmood Raouf

    2016-04-01

    Full Text Available The use of transparent polymers as an alternative to glass has become widespread. However, the direct exposure of these materials to climatic conditions of sunlight and heat decrease the lifetime cost of these products. The aim of this study was to minimize the harm caused by ultraviolet (UV radiation exposure to transparent poly(methylmethacrylate (PMMA, which usually leads to changes in the physical and chemical properties of these materials and reduced performance. This was achieved using environmentally friendly cellulose acetate butyrate (CAB. The optical, morphological, and thermal properties of CAB blended with transparent PMMA was studied using UV-VIS spectrophotometry, scanning electron microscopy, X-ray diffraction, dynamic mechanical analysis, and thermal gravimetric analysis. The results show that CAB was able to reduce the effects of UV radiation by making PMMA more transparent to UV light, thereby preventing the negative effects of trapped radiation within the compositional structure, while maintaining the amorphous structure of the blend. The results also show that CAB blended with PMMA led to some properties commensurate with the requirements of research in terms of a slight increase in the value of the modulus and the glass transition temperature for the PMMA/CAB blend.

  6. Regulation of osteogenesis of human amniotic mesenchymal stem cells by sodium butyrate.

    Science.gov (United States)

    Fan, Xiaoting; Li, Lei; Ye, Zhaoyang; Zhou, Yan; Tan, Wen-Song

    2018-04-01

    Human amniotic membrane-derived mesenchymal stem cells (hAMSCs) draw great interests for regenerative medicine due to convenient availability and low immunogenicity. However, suboptimal culture conditions limit their application. In recent years, small molecules have proven powerful in regulating stem cell fates and can be applied to stimulate their function. In the present study, the impacts of sodium butyrate (NaBu), a histone deacetylase inhibitor (HDACi), on hAMSCs were investigated. It was shown that NaBu at a low concentration inhibited cell proliferation by arresting cell cycle at G0/G1 rather than inducing apoptosis. When NaBu was supplemented at a concentration of generated and the expression of osteogenesis-related genes (ALP, Runx2, Opn, and Ocn) and proteins (Col1a1, OPN, OCN, Runx2, and TAZ) were both significantly enhanced. However, a higher concentration (1.0 mM) and longer exposure time (14 days) of NaBu showed no such effects, which may be partially attributed to both the increased expression of histone deacetylase 8 (HDAC8) and reduced level of H3K9-Ace, thus leading to the transcriptional inhibition during osteogenesis. Further, it was indicated that ERK might be involved in the stimulatory effects of NaBu. These findings may be helpful to develop an efficient culture process for hAMSCs towards bone regeneration. © 2018 International Federation for Cell Biology.

  7. pH sensitivity of emeraldine salt polyaniline and poly(vinyl butyral) blend

    International Nuclear Information System (INIS)

    Nguyen, Hoa Duyen; Hoang, Ngoc Vu; Le, Nguyen Ngan; Nguyen, Thi Ngoc Nhien; Doan, Duc Chanh Tin; Dang, Mau Chien; Nguyen, Thi Ha

    2014-01-01

    pH sensitivity of emeraldine salt polyaniline (ES-PANI) and poly(vinyl butyral) (PVB) blend film was investigated. This blend film can be used as a pH sensing element in new-type pH sensors to replace traditional instruments based on fragile glass electrodes for pH measurement of water in aquaculture farming. Structural and optical characteristic of PANI were studied by Fourier transform infrared spectroscopy (FTIR) and ultraviolet visible spectroscopy (UV–vis). Electrical characterization of ES-PANI:PVB blend films versus pH was performed with chemiresistors fabricated by micro-lithography. A ES-PANI:PVB layer was drop-coated on comb-shaped platinum electrodes patterned on SiO 2 /Si substrates. Scanning electron microscope (SEM) and optical microscope were used to investigate morphology of the fabricated platinum electrodes and the coated polymer blend films. I–V measurements of the polymer-coated chemiresistors were performed at very low relative humidity after the polymer films were exposed to pH 1–8. The results showed that logarithm of electrical resistance of the ES-PANI:PVB films increased almost linearly as pH increased from 1 to 8. The initial results showed that the PANI blend-coated chemiresistors can be used as pH sensors for water quality monitoring. (paper)

  8. Carboxymethylcellulose acetate butyrate/poly(4-vinyl-N-pentyl pyridinium bromide blends as antimicrobial coatings

    Directory of Open Access Journals (Sweden)

    L. S. Blachechen

    2015-09-01

    Full Text Available Blends of carboxymethyl cellulose acetate butyrate (CMCAB, a cellulose derivative, and poly(4-vinyl-N-pentyl pyridinium bromide (QPVP-C5, an antimicrobial polymer, were prepared by casting method and characterized by means of Fourier transform infrared vibrational spectroscopy (FTIR, scanning electron microscopy (SEM, thermogravimetric analysis (TGA, differential scanning calorimetry (DSC and contact angle measurements. Miscibility between CMCAB and QPVP-C5 was evidenced by DSC measurements of blends, which showed a single thermal event of Tg, and SEM images, which revealed homogenous morphology, regardless the blend composition. Moreover, thermal stability of QPVP-C5 was substantially enhanced, when it was mixed with CMCAB. Upon increasing the QPVP-C5 content in the blend the wettability and antimicrobial activity against Gram-positive bacteria Micrococcus luteus increased, indicating the surface enrichment by pyridinium groups. In fact, blends with 70 wt% QPVP-C5 reduced 5 log and 4 log the colony-forming units of Micrococcus luteus and Escherichia coli, respectively.

  9. Enhancement of Human Prolactin Synthesis by Sodium Butyrate Addition to Serum-Free CHO Cell Culture

    Directory of Open Access Journals (Sweden)

    Herbert Rodrigues Goulart

    2010-01-01

    Full Text Available Sodium butyrate (NaBu has been used as a productivity enhancer for the synthesis of recombinant proteins in Chinese hamster ovary (CHO cells. Thus, the influence of NaBu on the production of recombinant human prolactin (hPRL from CHO cells was investigated for the first time. CHO cell cultures were submitted to a treatment with different concentrations of NaBu (0.25 to 4 mM. Quantitative and qualitative analyses by reverse-phase high-performance liquid chromatography (RP-HPLC and Western blot or SDS-PAGE, carried out directly on CHO-conditioned medium, showed that the highest hPRL expression was obtained with 1 mM NaBu. In vitro biological assays based on noble rat lymphoma (Nb2 and mouse pro-B lymphoma (Ba/F3-LLP cells were carried out on purified hPRL. Its bioactivity in the presence of NaBu was not apparently different from that of the First International Reference Reagent of recombinant hPRL (WHO 97/714. Our results show that NaBu increased the synthesis of recombinant hPRL in CHO cells, apparently without compromising either its structure or function.

  10. Constitutive Investigation on Viscoelasticity of PolyVinyl Butyral: Experiments Based on Dynamic Mechanical Analysis Method

    Directory of Open Access Journals (Sweden)

    Bohan Liu

    2014-01-01

    Full Text Available PolyVinyl Butyral (PVB film is now widely used in automotive industry and architectures serving as the protective interlayer. The dynamic modulus of PVB is measured through systematic experiments based on Dynamic Mechanical Analysis (DMA method at various temperatures, heating rates, and vibration frequencies. Further, viscoelasticity of PVB influenced by time and temperature is systematically studied. Fitted empirical formulas describing the relationship between glass transition temperature and frequency, as well as the heating rate of PVB, are established. The master curve of PVB at 293 K is suggested based on the experiment data as to express the dynamic modulus variation at various frequencies in a wider range. Constitutive behavior of PVB is then analyzed based on Generalized Maxwell (GM model and Fractional Derivative (FD model, respectively. It is shown that PVB has higher efficiency of energy dissipation in its high energy absorption state, while both fifth-order GM model and FD model can characterize the viscoelasticity of PVB at glassy transition area. Results may offer useful fundamental experimental data and important constitutive characteristics of PVB and shed lights on further studies on viscoelasticity behavior of PVB and energy mitigation ability of laminated glass.

  11. Flexible thermoplastic composite of Polyvinyl Butyral (PVB and waste of rigid Polyurethane foam

    Directory of Open Access Journals (Sweden)

    Marilia Sônego

    2015-04-01

    Full Text Available This study reports the preparation and characterization of composites with recycled poly(vinyl butyral (PVB and residue of rigid polyurethane foam (PUr, with PUr contents of 20, 35 and 50 wt %, using an extruder equipped with a Maillefer single screw and injection molding. The components of the composites were thermally characterized using differential scanning calorimetry (DSC and thermogravimetry. The composites were evaluated by melt flow index (MFI, tensile and hardness mechanical tests and scanning electron microscopy (SEM. Tg determined by DSC of PVB sample (53 °C indicated the presence of plasticizer (Tg of pure PVB is 70 °C. MFI of the composites indicated a viscosity increase with the PUr content and, as the shear rate was held constant during injection molding, higher viscosities promoted higher shear stresses in the composites, thereby causing breaking or tearing of the PUr particles. The SEM micrographs showed low adhesion between PVB and PUr and the presence of voids, both inherent in the rigid foam and in the interphase PVB-PUr. The SEM micrographs also showed that PVB/PUr (50/50 composite exhibited the smallest particle size and a more homogeneous and compact structure with fewer voids in the interface. The stiffness of the composites increases with addition of the PUr particles, as evidenced in the mechanical tests.

  12. Improvement of CO2/N2 separation performance by polymer matrix cellulose acetate butyrate

    Science.gov (United States)

    Lee, R. J.; Jawad, Z. A.; Ahmad, A. L.; Ngo, J. Q.; Chua, H. B.

    2017-06-01

    With the rapid development of modern civilization, carbon dioxide (CO2) is produced in large quantities and mainly generated from industrial sectors. The gas emission is the major contributor to global warming. To address this issue, the membrane technology is implemented for the CO2 removal, due to the energy efficiency and economic advantages presented. Cellulose acetate butyrate (CAB) is selected as the polymeric material, due to the excellent film-forming properties and capable of developing a defect-free layer of neat membrane. This study described the fabrication development of CAB using a wet phase inversion method with different casting conditions. Where the composition of the casting solutions (3-5 wt %) and solvent evaporation time (4-6 min) were determined. The outcomes of these dominant parameters were then used to determine the best CAB membrane for CO2/Nitrogen (N2) separation and supported by the characterization i.e. scanning electron micrograph. Gas permeation measurements showed satisfactory performance for CAB membrane fabricated with 5 min evaporation time and 4 wt% polymer composition (M2). Where, its permeance and selectivity are 120.19 GPU and 3.17, respectively. In summary, this study showed a brief outlined of the future direction and perspective of CAB membrane for CO2/N2 separation.

  13. In vivo regulation of colonic cell proliferation, differentiation, apoptosis, and P27Kip1 by dietary fish oil and butyrate in rats.

    Science.gov (United States)

    Hong, Mee Young; Turner, Nancy D; Murphy, Mary E; Carroll, Raymond J; Chapkin, Robert S; Lupton, Joanne R

    2015-11-01

    We have shown that dietary fish oil is protective against experimentally induced colon cancer, and the protective effect is enhanced by coadministration of pectin. However, the underlying mechanisms have not been fully elucidated. We hypothesized that fish oil with butyrate, a pectin fermentation product, protects against colon cancer initiation by decreasing cell proliferation and increasing differentiation and apoptosis through a p27(Kip1)-mediated mechanism. Rats were provided diets of corn or fish oil, with/without butyrate, and terminated 12, 24, or 48 hours after azoxymethane (AOM) injection. Proliferation (Ki-67), differentiation (Dolichos Biflorus Agglutinin), apoptosis (TUNEL), and p27(Kip1) (cell-cycle mediator) were measured in the same cell within crypts in order to examine the coordination of cell cycle as a function of diet. DNA damage (N(7)-methylguanine) was determined by quantitative IHC analysis. Dietary fish oil decreased DNA damage by 19% (P = 0.001) and proliferation by 50% (P = 0.003) and increased differentiation by 56% (P = 0.039) compared with corn oil. When combined with butyrate, fish oil enhanced apoptosis 24 hours after AOM injection compared with a corn oil/butyrate diet (P = 0.039). There was an inverse relationship between crypt height and apoptosis in the fish oil/butyrate group (r = -0.53, P = 0.040). The corn oil/butyrate group showed a positive correlation between p27(Kip1) expression and proliferation (r = 0.61, P = 0.035). These results indicate the in vivo effect of butyrate on apoptosis and proliferation is dependent on dietary lipid source. These results demonstrate the presence of an early coordinated colonocyte response by which fish oil and butyrate protects against colon tumorigenesis. ©2015 American Association for Cancer Research.

  14. Diel Periodicity of 3-Methyl-2-Butenyl Butyrate Emissions by Bronze Bug Males Is Suppressed in the Presence of Females.

    Science.gov (United States)

    Groba, H F; Martínez, G; Rossini, C; González, A

    2018-02-07

    The bronze bug, Thaumastocoris peregrinus Carpintero & Dellapé (Heteroptera: Thaumastocoridae), is an exotic emerging pest in Eucalyptus commercial forests in South America, Africa, and southern Europe. Information on the chemical communication system and reproductive ecology of this insect is scant, and it may be relevant for designing management strategies for eucalypt plantations. Males emit large amounts of 3-methyl-2-butenyl butyrate, which attracts conspecific adult males but not females. To learn more about the biological function of this putative male-produced pheromone, we quantified this compound in volatile emissions collected from males, females, and couples, in three 4-h collecting periods during the morning, afternoon, and night of a single 24-h cycle. Our results showed that virgin males emit 3-methyl-2-butenyl butyrate in a diel time pattern, with an almost sevenfold difference between the afternoon emission peak compared to morning or night hours. In addition, we show that in the presence of females, males emit the compound in the same amounts throughout the photocycle. While a definite function cannot yet be attributed to the emission of 3-methyl-2-butenyl butyrate by T. peregrinus males, our findings point to an intraspecific function, possibly one related to male-male competition.

  15. The Impact of the Level of the Intestinal Short Chain Fatty Acids in Inflammatory Bowel Disease Patients Versus Healthy Subjects

    Science.gov (United States)

    Huda-Faujan, N.; Abdulamir, A.S.; Fatimah, A.B.; Anas, O. Muhammad; Shuhaimi, M.; Yazid, A.M.; Loong, Y.Y.

    2010-01-01

    The aim of this study was to determine the changes of short chain fatty acids (SCFAs) in faeces of inflammatory bowel disease (IBD) patients compared to healthy subjects. SCFAs such as pyruvic, lactic, formic, acetic, propionic, isobutyric and butyric acids were analyzed by using high performance liquid chromatography (HPLC). This study showed that the level of acetic, 162.0 µmol/g wet faeces, butyric, 86.9 µmol/g wet faeces, and propionic acids, 65.6 µmol/g wet faeces, decreased remarkably in IBD faecal samples when compared with that of healthy individuals, 209.7, 176.0, and 93.3 µmol/g wet faeces respectively. On the contrary, lactic and pyruvic acids showed higher levels in faecal samples of IBD than in healthy subjects. In the context of butyric acid level, this study also found that the molar ratio of butyric acid was higher than propionic acid in both faecal samples. This might be due to the high intake of starch from rice among Malaysian population. It was concluded that the level of SCFAs differ remarkably between faecal samples in healthy subjects and that in IBD patients providing evidence that SCFAs more likely play an important role in the pathogenesis of IBD. PMID:20563285

  16. Development and Validation of a HPTLC Method for Simultaneous Estimation of L-Glutamic Acid and γ-Aminobutyric Acid in Mice Brain.

    Science.gov (United States)

    Sancheti, J S; Shaikh, M F; Khatwani, P F; Kulkarni, Savita R; Sathaye, Sadhana

    2013-11-01

    A new robust, simple and economic high performance thin layer chromatographic method was developed for simultaneous estimation of L-glutamic acid and γ-amino butyric acid in brain homogenate. The high performance thin layer chromatographic separation of these amino acid was achieved using n-butanol:glacial acetic acid:water (22:3:5 v/v/v) as mobile phase and ninhydrin as a derivatising agent. Quantitation of the method was achieved by densitometric method at 550 nm over the concentration range of 10-100 ng/spot. This method showed good separation of amino acids in the brain homogenate with Rf value of L-glutamic acid and γ-amino butyric acid as 21.67±0.58 and 33.67±0.58, respectively. The limit of detection and limit of quantification for L-glutamic acid was found to be 10 and 20 ng and for γ-amino butyric acid it was 4 and 10 ng, respectively. The method was also validated in terms of accuracy, precision and repeatability. The developed method was found to be precise and accurate with good reproducibility and shows promising applicability for studying pathological status of disease and therapeutic significance of drug treatment.

  17. Fate of aliphatic compounds in nitric acid processing solutions

    International Nuclear Information System (INIS)

    Clark, W.E.; Howerton, W.B.

    1975-01-01

    The reaction of hyperazeotropic iodic acid-saturated nitric acid with short chain aliphatic iodides, nitrates, and acids was studied in order to determine the conditions for complete removal of organic materials from nitric acid systems. The aliphatic iodides are converted to the nitrates and the nitrates in strong HNO 3 are extensively converted into CO 2 and acids. The aliphatic acids are rather stable; acetic acid was unattacked by boiling in 20M HNO 3 and n-butyric acid was 80 percent unattacked. The dibasic acids oxalic and malonic are extensively attacked, but succinic acid is relatively stable. A wet oxidation method is successful in destroying acetic acid in 5 to 8M HNO 3 . (U.S.)

  18. Electrophysiological studies of salty taste modification by organic acids in the labellar taste cell of the blowfly.

    Science.gov (United States)

    Murata, Yoshihiro; Kataoka-Shirasugi, Naoko; Amakawa, Taisaku

    2002-01-01

    Using the labellar salt receptor cells of the blowfly, Phormia regina, we electrophysiologically showed that the response to NaCl and KCl aqueous solutions was enhanced and depressed by acetic, succinic and citric acids. The organic acid concentrations at which the most enhanced salt response (MESR) was obtained were found to be different: 0.05-1 mM citric acid, 0.5-2 mM succinic acid and 5-50 mM acetic acid. Moreover, the degree of the salt response was not always dependent on the pH values of the stimulating solutions. The salt response was also enhanced by HCl (pH 3.5-3.0) only when the NaCl concentration was greater than the threshold, indicating that the salty taste would be enhanced by the comparatively lower concentrations of hydrogen ions. Another explanation for the enhancement is that the salty taste may also be enhanced by undissociated molecules of the organic acids, because the MESRs were obtained at the pH values lower than the pKa(1) or pKa(2) values of these organic acids. On the other hand, the salty taste could be depressed by both the lower pH range (pH 2.5-2.0) and the dissociated organic anions from organic acid molecules with at least two carboxyl groups.

  19. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids

    NARCIS (Netherlands)

    den Besten, Gijs; Lange, Katja; Havinga, Rick; van Dijk, Theo H.; Gerding, Albert; van Eunen, Karen; Muller, Michael; Groen, Albert K.; Hooiveld, Guido J.; Bakker, Barbara M.; Reijngoud, Dirk-Jan

    2013-01-01

    Acetate, propionate, and butyrate are the main short-chain fatty acids (SCFAs) that arise from the fermentation of fibers by the colonic microbiota. While many studies focus on the regulatory role of SCFAs, their quantitative role as a catabolic or anabolic substrate for the host has received

  20. A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Guinovart, Tomàs [Departament de Química Orgànica i Química Analítica, Universitat Rovira i Virgili, Carrer Marcellí Domingo s/n 43007 Tarragona (Spain); Crespo, Gastón A. [Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva (Switzerland); Rius, F. Xavier [Departament de Química Orgànica i Química Analítica, Universitat Rovira i Virgili, Carrer Marcellí Domingo s/n 43007 Tarragona (Spain); Andrade, Francisco J., E-mail: franciscojavier.andrade@urv.cat [Departament de Química Orgànica i Química Analítica, Universitat Rovira i Virgili, Carrer Marcellí Domingo s/n 43007 Tarragona (Spain)

    2014-04-01

    Highlights: • A disposable solid-contact reference electrode for potentiometry is presented. • The device shows unsensitivity to most ions, redox potential and light. • Low-cost and good stability, ideal to build disposable potentiometric sensors. • Nanopores formed in the membrane control the flux of ions with the solution. Abstract: A new solid-state reference electrode using a polymeric membrane of polyvinyl butyral (PVB), Ag/AgCl and NaCl to be used in decentralized chemical measurements is presented. The electrode is made by drop-casting the membrane cocktail onto a glassy carbon (GC) substrate. A stable potential (less than 1 mV dec⁻¹ over a wide range of concentrations for the several chemical species tested is obtained. No significant influence to changes in redox potential, light and pH are observed. The response of this novel electrode shows good correlation when compared with a conventional double-junction reference electrode. Also good long-term stability (90 ± 33 μV/h) and a lifetime of approximately 4 months are obtained. Aspects related to the working mechanisms are discussed. Atomic Force Microscopy (AFM) studies reveal the presence of nanopores and channels on the surface, and electrochemical impedance spectroscopy (EIS) of optimized electrodes show low bulk resistances, usually in the kΩ range, suggesting that a nanoporous polymeric structure is formed in the interface with the solution. Future applications of this electrode as a disposable device for decentralized measurements are discussed. Examples of the utilization on wearable substrates (tattoos, fabrics, etc) are provided.

  1. Vildagliptin increases butyrate-producing bacteria in the gut of diabetic rats.

    Science.gov (United States)

    Zhang, Qian; Xiao, Xinhua; Li, Ming; Yu, Miao; Ping, Fan; Zheng, Jia; Wang, Tong; Wang, Xiaojing

    2017-01-01

    Emerging evidence supports a key role for the gut microbiota in metabolic diseases, including type 2 diabetes (T2D) and obesity. The dipeptidyl peptidase-4 inhibitor vildagliptin is highly efficacious in treating T2D. However, whether vildagliptin can alter the gut microbiome is still unclear. This study aimed to identify whether vildagliptin modifies the gut microbiota structure during T2D treatment. Diabetic Sprague-Dawley (SD) rats were induced by a high-fat diet and streptozotocin injection (HFD/STZ). Diabetic rats were orally administered a low dose of vildagliptin (LV, 0.01 g/kg/d vildagliptin), high dose of vildagliptin (HV, 0.02 g/kg/d vildagliptin), or normal saline for 12 weeks. Fasting blood glucose, blood glucose after glucose loading, and serum insulin levels were significantly reduced in the LV and HV groups compared with those in the T2D group. The serum GLP-1 level increased more in the vildagliptin-treated group than in the T2D group. Pyrosequencing of the V3-V4 regions of 16S rRNA genes revealed that vildagliptin significantly altered the gut microbiota. The operational taxonomic units (OTUs) and community richness (Chao1) index were significantly reduced in the vildagliptin and diabetic groups compared with those in the control group. At the phylum level, a higher relative abundance of Bacteroidetes, lower abundance of Firmicutes, and reduced ratio of Fimicutes/Bacteroidetes were observed in the vildagliptin-treated group. Moreover, vildagliptin treatment increased butyrate-producing bacteria, including Baceroides and Erysipelotrichaeae, in the diabetic rats. Moreover, Lachnospira abundance was significantly negatively correlated with fasting blood glucose levels. In conclusion, vildagliptin treatment could benefit the communities of the gut microbiota.

  2. Vildagliptin increases butyrate-producing bacteria in the gut of diabetic rats.

    Directory of Open Access Journals (Sweden)

    Qian Zhang

    Full Text Available Emerging evidence supports a key role for the gut microbiota in metabolic diseases, including type 2 diabetes (T2D and obesity. The dipeptidyl peptidase-4 inhibitor vildagliptin is highly efficacious in treating T2D. However, whether vildagliptin can alter the gut microbiome is still unclear. This study aimed to identify whether vildagliptin modifies the gut microbiota structure during T2D treatment. Diabetic Sprague-Dawley (SD rats were induced by a high-fat diet and streptozotocin injection (HFD/STZ. Diabetic rats were orally administered a low dose of vildagliptin (LV, 0.01 g/kg/d vildagliptin, high dose of vildagliptin (HV, 0.02 g/kg/d vildagliptin, or normal saline for 12 weeks. Fasting blood glucose, blood glucose after glucose loading, and serum insulin levels were significantly reduced in the LV and HV groups compared with those in the T2D group. The serum GLP-1 level increased more in the vildagliptin-treated group than in the T2D group. Pyrosequencing of the V3-V4 regions of 16S rRNA genes revealed that vildagliptin significantly altered the gut microbiota. The operational taxonomic units (OTUs and community richness (Chao1 index were significantly reduced in the vildagliptin and diabetic groups compared with those in the control group. At the phylum level, a higher relative abundance of Bacteroidetes, lower abundance of Firmicutes, and reduced ratio of Fimicutes/Bacteroidetes were observed in the vildagliptin-treated group. Moreover, vildagliptin treatment increased butyrate-producing bacteria, including Baceroides and Erysipelotrichaeae, in the diabetic rats. Moreover, Lachnospira abundance was significantly negatively correlated with fasting blood glucose levels. In conclusion, vildagliptin treatment could benefit the communities of the gut microbiota.

  3. STUDI BIODEGRADASI POLI HIDROKSI BUTIRAT DALAM MEDIA CAIR (Biodegradation of Poly Hydroxy Butyrate in Liquid Medium

    Directory of Open Access Journals (Sweden)

    Eka Sari

    2007-11-01

    Full Text Available ABSTRAK  Poli hidroksi butirat (PHS termasuk dalam golongan bioplastik. Plastik jenis ini diharapkan dapat menjadi plastik altematif yang ramah lingkungan sebagai pengganti plastik sintetis yang bersifat sangat suI it terdegradasi. Penelitian ini bertujuan menguji potensi biodegradabilitas PHS komersial dalam media cair dengan menggunakan lumpur aktif dan unit pengolahan limbah pabrik plastik sintetik. Identifikasi proses degradasi dilakukan dengan cara mengamati perubahan karakteristik PHS yang meliputi perubahan visual, perubahan morfologi permukaan, penurunan berat, perubahan kristalinitas, dan perubahan berat molekul selama 15 pekan inkubasi. Hasil penelitian menunjukkan bahwa kerusakan PHS se1ama proses degradasi dapat dilihat secara visual. Disamping itu, morfologi permukaan mengalami perubahan signifikan. Adapun penurunan berat, kristalinitas, dan berat molekul berturut-turut mencapai 22,91 %,57.44 %, dan 29,52 %.   ABSTRACT  Poly hidroxy butyrate (PHB is a member of bioplastic group. This type of plastic is expected to be alternative plastic which is environmently friendly to replace synthetic plastic that is known to be very difficult to degrade. This research aims to test the biodegradability of commercial PHB in liquid mediums used activated sludge from waste water treatment plant in plastic synthetic factory. Identification of biodegradation process  was done by monitoring the changes of PHB characteristics including visual change, surface morphology change, reduction of weight, reduction of crystallinity, and reduction of molecular weight during 15 weeks incubation. The result shows that  the damage of PHB sample during biodegradation could be seen visually and liquid medium show the existence of change which can be seen visually and the surface morphology of PHB changed significantly. Weight reduction, crystallinity  reduction, and molecular  weight reduction  revealed of 22.91%, 57.44%, and 29.52% respectively.

  4. Protective Effects of Butyrate-based Compounds on a Mouse Model for Spinal Muscular Atrophy

    Science.gov (United States)

    Butchbach, Matthew E. R.; Lumpkin, Casey J.; Harris, Ashlee W.; Saieva, Luciano; Edwards, Jonathan D.; Workman, Eileen; Simard, Louise R.; Pellizzoni, Livio; Burghes, Arthur H. M.

    2016-01-01

    Proximal spinal muscular atrophy (SMA) is a childhood-onset degenerative disease resulting from the selective loss of motor neurons in the spinal cord. SMA is caused by the loss of SMN1 (survival motor neuron 1) but retention of SMN2. The number of copies of SMN2 modifies disease severity in SMA patients as well as in mouse models, making SMN2 a target for therapeutics development. Sodium butyrate (BA) and its analogue (4PBA) have been shown to increase SMN2 expression in SMA cultured cells. In this study, we examined the effects of BA, 4PBA as well as two BA prodrugs—glyceryl tributyrate (BA3G) and VX563—on the phenotype of SMNΔ7 SMA mice. Treatment with 4PBA, BA3G and VX563 but not BA beginning at PND04 significantly improved the lifespan and delayed disease end stage, with administration of VX563 also improving the growth rate of these mice. 4PBA and VX563 improved the motor phenotype of SMNΔ7 SMA mice and prevented spinal motor neuron loss. Interestingly, neither 4PBA nor VX563 had an effect on SMN expression in the spinal cords of treated SMNΔ7 SMA mice; however, they inhibited histone deacetylase (HDAC) activity and restored the normal phosphorylation states of Akt and glycogen synthase kinase 3β, both of which are altered by SMN deficiency in vivo. These observations show that BA-based compounds with favourable pharmacokinetics ameliorate SMA pathology possibly by modulating HDAC and Akt signaling. PMID:26892876

  5. High doses of the histone deacetylase inhibitor sodium butyrate trigger a stress-like response.

    Science.gov (United States)

    Gagliano, Humberto; Delgado-Morales, Raul; Sanz-Garcia, Ancor; Armario, Antonio

    2014-04-01

    The hypothalamic-pituitary-adrenal (HPA) axis is activated by a wide range of stimuli, including drugs. Here we report that in male rats, a dose of sodium butyrate (NaBu) that is typically used to inhibit histone deacetylation (1200 mg/kg) increased the peripheral levels of HPA hormones and glucose. In a further experiment, we compared the effects of two different doses of NaBu (200 and 1200 mg/kg) and equimolar saline solutions on peripheral neuroendocrine markers and brain c-Fos expression to demonstrate a specific stress-like effect of NaBu that is not related to hypertonicity and to localise putatively involved brain areas. Only the high dose of NaBu increased the plasma levels of stress markers. The equimolar (hypertonic) saline solution also activated the HPA axis and the c-Fos expression in the paraventricular nucleus of the hypothalamus (PVN), a key area for the control of the HPA axis, but the effects were of a lower magnitude than those of NaBu. Regarding other brain areas, group differences in c-Fos expression were not observed in the medial prefrontal cortex or the medial amygdala, but they were observed in the central amygdala and the lateral ventral septum. However, only the latter area of the NaBu group showed enhanced c-Fos expression that was significantly higher than that after hypertonic saline. The present data indicate that high doses of NaBu appear to act as a pharmacological stressor, and this fact should be taken into account when using this drug to study the role of epigenetic processes in learning and emotional behaviour. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements

    International Nuclear Information System (INIS)

    Guinovart, Tomàs; Crespo, Gastón A.; Rius, F. Xavier; Andrade, Francisco J.

    2014-01-01

    Highlights: • A disposable solid-contact reference electrode for potentiometry is presented. • The device shows unsensitivity to most ions, redox potential and light. • Low-cost and good stability, ideal to build disposable potentiometric sensors. • Nanopores formed in the membrane control the flux of ions with the solution. - Abstract: A new solid-state reference electrode using a polymeric membrane of polyvinyl butyral (PVB), Ag/AgCl and NaCl to be used in decentralized chemical measurements is presented. The electrode is made by drop-casting the membrane cocktail onto a glassy carbon (GC) substrate. A stable potential (less than 1 mV dec −1 ) over a wide range of concentrations for the several chemical species tested is obtained. No significant influence to changes in redox potential, light and pH are observed. The response of this novel electrode shows good correlation when compared with a conventional double-junction reference electrode. Also good long-term stability (90 ± 33 μV/h) and a lifetime of approximately 4 months are obtained. Aspects related to the working mechanisms are discussed. Atomic Force Microscopy (AFM) studies reveal the presence of nanopores and channels on the surface, and electrochemical impedance spectroscopy (EIS) of optimized electrodes show low bulk resistances, usually in the kΩ range, suggesting that a nanoporous polymeric structure is formed in the interface with the solution. Future applications of this electrode as a disposable device for decentralized measurements are discussed. Examples of the utilization on wearable substrates (tattoos, fabrics, etc) are provided

  7. NMR-based metabolomics reveals that conjugated double bond content and lipid storage efficiency in HepG2 cells are affected by fatty acid cis/trans configuration and chain length

    DEFF Research Database (Denmark)

    Najbjerg, Heidi; Young, Jette F; Bertram, Hanne Christine S.

    2011-01-01

    from conjugated double bonds (5.65, 5.94, and 6.28 ppm) in cells exposed to vaccenic acid, revealing that vaccenic acid upon uptake by the HepG2 cells is converted into a conjugated fatty acid. Upon exposure of the HepG2 cells to either butyric acid (C4:0), caproic acid (C6:0), lauric acid (C12...

  8. The effect of short-chain fatty acids on human monocyte-derived dendritic cells

    DEFF Research Database (Denmark)

    Nastasi, Claudia; Candela, Marco; Bonefeld, Charlotte Menné

    2015-01-01

    negligible effects, while both butyrate and propionate strongly modulated gene expression in both immature and mature human monocyte-derived DC. An Ingenuity pathway analysis based on the differentially expressed genes suggested that propionate and butyrate modulate leukocyte trafficking, as SCFA strongly......The gut microbiota is essential for human health and plays an important role in the pathogenesis of several diseases. Short-chain fatty acids (SCFA), such as acetate, butyrate and propionate, are end-products of microbial fermentation of macronutrients that distribute systemically via the blood....... The aim of this study was to investigate the transcriptional response of immature and LPS-matured human monocyte-derived DC to SCFA. Our data revealed distinct effects exerted by each individual SCFA on gene expression in human monocyte-derived DC, especially in the mature ones. Acetate only exerted...

  9. CONSTRUCTION AND CHARACTERIZATION OF PTA GENE DELETED MUTANT OF C CLOSTRIDIUM TYROBUTYRICUM FOR BUTYRIC ACID FERMENTATION. (R829479C016)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  10. Association between butyrate and short-chain fatty acid concentrations in gut contents and faeces in weaning piglets

    DEFF Research Database (Denmark)

    Lærke, Helle Nygaard; Hedemann, Mette Skou; Bach Knudsen, Knud Erik

    2007-01-01

    of citrus pectin (soluble fibre) and barley hulls (insoluble fibre) and gastrointestinal contents were collected at euthanasia 9 days after weaning. In Trial 2, 120 pair-wise penned piglets were allocated to the same experimental diets as in Trial 1 (24 piglets per treatment), and fresh faecal samples were...

  11. Sodium butyrate improved performance while modulating the cecal microbiota and regulating the expression of intestinal immune-related genes of broiler chickens.

    Science.gov (United States)

    Bortoluzzi, C; Pedroso, A A; Mallo, J J; Puyalto, M; Kim, W K; Applegate, T J

    2017-09-01

    This study evaluated the effect of sodium butyrate (SB) on performance, expression of immune-related genes in the cecal tonsils, and cecal microbiota of broiler chickens when dietary energy and amino acids concentrations were reduced. Day-old male Ross 708 broiler chicks were fed dietary treatments in a 3 × 2 factorial design (8 pens per treatment) with 3 dietary formulations (control diet; reduction of 2.3% of amino acids and 60 kcal/kg; and reduction of 4.6% of amino acids and 120 kcal/kg) with or without the inclusion of 0.1% of SB. Feed intake (FI), body weight gain (BW gain), and feed conversion ratio (FCR) were recorded until 28 d of age. From 14 to 28 d, there was an interaction of nutrient density by SB (P = 0.003) wherein BW gain of birds fed SB was impaired less by the energy/amino acids reduction than unsupplemented birds. A similar result was obtained from 1 to 28 d (P = 0.004). No interaction (P density by SB was observed for FCR. Nutritional density of the diets and SB modified the structure, composition, and predicted function of the cecal microbiota. The nutritionally reduced diet altered the imputed function performed by the microbiota and the SB supplementation reduced these variations, keeping the microbial function similar to that observed in chickens fed a control diet. The frequency of bacterial species presenting the butyryl-CoA: acetate CoA-transferase gene increased in the microbiota of chickens fed a nutritionally reduced diet without SB supplementation, and was not changed by nutrient density of the diet when supplemented with SB (interaction; P = 0.01). SB modulated the expression of immune related genes in the cecal tonsils; wherein SB upregulated the expression of A20 in broilers fed control diets (P broilers fed nutritionally reduced diets, partially by modulating the cecal microbiota and exerting immune-modulatory effects. © 2017 Poultry Science Association Inc.

  12. Organic acid production from potato starch waste fermentation by rumen microbial communities from Dutch and Thai dairy cows.

    Science.gov (United States)

    Palakawong Na Ayudthaya, Susakul; van de Weijer, Antonius H P; van Gelder, Antonie H; Stams, Alfons J M; de Vos, Willem M; Plugge, Caroline M

    2018-01-01

    Exploring different microbial sources for biotechnological production of organic acids is important. Dutch and Thai cow rumen samples were used as inocula to produce organic acid from starch waste in anaerobic reactors. Organic acid production profiles were determined and microbial communities were compared using 16S ribosomal ribonucleic acid gene amplicon pyrosequencing. In both reactors, lactate was the main initial product and was associated with growth of Streptococcus spp. (86% average relative abundance). Subsequently, lactate served as a substrate for secondary fermentations. In the reactor inoculated with rumen fluid from the Dutch cow, the relative abundance of Bacillus and Streptococcus increased from the start, and lactate, acetate, formate and ethanol were produced. From day 1.33 to 2, lactate and acetate were degraded, resulting in butyrate production. Butyrate production coincided with a decrease in relative abundance of Streptococcus spp. and increased relative abundances of bacteria of other groups, including Parabacteroides , Sporanaerobacter , Helicobacteraceae, Peptostreptococcaceae and Porphyromonadaceae. In the reactor with the Thai cow inoculum, Streptococcus spp. also increased from the start. When lactate was consumed, acetate, propionate and butyrate were produced (day 3-4). After day 3, bacteria belonging to five dominant groups, Bacteroides, Pseudoramibacter _ Eubacterium , Dysgonomonas , Enterobacteriaceae and Porphyromonadaceae, were detected and these showed significant positive correlations with acetate, propionate and butyrate levels. The complexity of rumen microorganisms with high adaptation capacity makes rumen fluid a suitable source to convert organic waste into valuable products without the addition of hydrolytic enzymes. Starch waste is a source for organic acid production, especially lactate.

  13. Engineering poly(hydroxy butyrate-co-hydroxy valerate) based vascular scaffolds to mimic native artery.

    Science.gov (United States)

    Deepthi, S; Nivedhitha Sundaram, M; Vijayan, Ponni; Nair, Shantikumar V; Jayakumar, R

    2018-04-01

    Electrospun tri-layered fibrous scaffold incorporating VEGF and Platelet Factor Concentrate (PFC) in multiple layers having different layer architectures was designed to mimic native artery. The scaffold consisted of longitudinally aligned poly(hydroxy butyrate-co-hydroxy valerate) (PHBV) and poly(vinyl alcohol) (PVA) nanofibers (inner layer), radially aligned PHBV-elastin nanofibers (middle layer) to provide the bi-directional alignment and combination of longitudinally aligned PHBV-elastin and random PHBV/PVA multiscale fibers (peripheral layer). Tubular constructs of diameter <6 mm were developed. The developed electrospun fibers were characterised by Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopy and Tensile tests. Further the burst strength, compliance and stiffness index of tri-layered tubular scaffold was evaluated. SEM images of fibrous layers showed the typical longitudinal and radial alignment of fibers in the tubular construct. SEM images showed that the prepared PHBV nanofibers were in the range of 500-800 nm and PHBV microfibers were of 1-2 μm in diameter in the tri-layered electrospun membrane. PVA nanofibers were of size 200-250 nm. The tensile strength, percentage compliance and stiffness index of tri-layered membrane was in accordance with that of native small blood vessels. The developed tri-layered membrane was blood compatible, with hemolysis degree 0.85 ± 0.21% and did not activate platelets. Controlled release of VEGF and PFC was observed from the scaffold. The biocompatibility of the tri-layered scaffold was evaluated using HUVECs, SMCs and MSCs and SMCs infiltration from the outer layer was also evaluated. Specific protein expression for the HUVECs and SMCs was evaluated by flow cytometry and immunocytochemistry. HUVECs and SMCs exhibited good elongation and alignment along the direction of fibers and was found to maintain its CD31, VE-Cadherin and αSMA expression respectively. The results

  14. Li-Ion Cells Employing Electrolytes With Methyl Propionate and Ethyl Butyrate Co-Solvents

    Science.gov (United States)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2011-01-01

    Future NASA missions aimed at exploring Mars and the outer planets require rechargeable batteries that can operate at low temperatures to satisfy the requirements of such applications as landers, rovers, and penetrators. A number of terrestrial applications, such as hybrid electric vehicles (HEVs) and electric vehicles (EVs) also require energy storage devices that can operate over a wide temperature range (i.e., -40 to +70 C), while still providing high power capability and long life. Currently, the state-of-the-art lithium-ion system has been demonstrated to operate over a wide range of temperatures (-30 to +40 C); however, the rate capability at the lower temperatures is very poor. These limitations at very low temperatures are due to poor electrolyte conductivity, poor lithium intercalation kinetics over the electrode surface layers, and poor ionic diffusion in the electrode bulk. Two wide-operating-temperature-range electrolytes have been developed based on advances involving lithium hexafluorophosphate-based solutions in carbonate and carbonate + ester solvent blends, which have been further optimized in the context of the technology and targeted applications. The approaches employed include further optimization of electrolytes containing methyl propionate (MP) and ethyl butyrate (EB), which are effective co-solvents, to widen the operating temperature range beyond the baseline systems. Attention was focused on further optimizing ester-based electrolyte formulations that have exhibited the best performance at temperatures ranging from -60 to +60 C, with an emphasis upon improving the rate capability at -20 to -40 C. This was accomplished by increasing electrolyte salt concentration to 1.20M and increasing the ester content to 60 percent by volume to increase the ionic conductivity at low temperatures. Two JPL-developed electrolytes 1.20M LiPF6 in EC+EMC+MP (20:20:60 v/v %) and 1.20M LiPF6 in EC+EMC+EB (20:20:60 v/v %) operate effectively over a wide

  15. Effect of Whole-Body X-Irradiation of the Synthesis of Individual Fatty Acids in Liver Slices from Normal and Fasted Rats

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Hansen, Lisbeth Grænge; Faber, M.

    1965-01-01

    (1) Using (2-14C) acetate and (1-14C) butyrate as precursors, rat-liver fatty acids were synthesized in vitro and assayed by paper chromatography. (2) Whole-body x-irradiation induced a change in the synthetic pattern of hepatic fatty acids towards a relatively enhanced synthesis of palmitic acid....... (3) X-irradiation and fasting seem to have opposite effects on fatty-acid synthesis. X-irradiation counteracts the drop in total synthesis and the relatively enhanced synthesis of palmitoleic acid induced by fasting. The relative enhancement of palmitic-acid synthesis mentioned under (2) stands...... in contrast to the effect of fasting, which specifically decreases the hepatic synthesis of palmitic acid. (4) There is a general similarity between corresponding fatty-acid patterns based on synthesis from (2-14C) acetate and (1-14C) butyrate, respectively....

  16. Effect of addition of butyl benzyl phthalate plasticizer and zinc oxide nanoparticles on mechanical properties of cellulose acetate butyrate/organoclay biocomposite

    Science.gov (United States)

    Putra, B. A. P.; Juwono, A. L.; Rochman, N. T.

    2017-07-01

    Plastics as packaging materials and coatings undergo increasing demands globally each year. This pose a serious problem to the environment due to its difficulty to degrade. One solution to addressing the problem of plastic wastes is the use of bioplastics. According to the European Organization Bioplastic, one of the biodegradable plastics is derivative of cellulose. To improve mechanical properties of bioplastic, biocomposites are made with the addition of certain additives and fillers. The aim of this study is to investigate the effect of butyl benzyl phthalate plasticizer (BBP) and ZnO nanoparticles addition on mechanical properties of cellulose acetate butyrate (CAB) / organoclay biocomposite. ZnO nanoparticles synthesized from commercial ZnO precursor by using sol-gel size reduction method. ZnO was dissolved in a solution of citric acid in the ratio 1:1 to 1:5 to form zinc citrate. Zinc citrate then decomposed by calcination at temperature of 600oC. ZnO nanoparticles with an average size of 44.4 nm is obtained at a ratio of 1: 2. The addition of ZnO nanoparticles and BBP plasticizer was varied to determine the effect on the mechanical properties of biocomposite. The addition of 10 - 15 %wt ZnO nanoparticles and 30 - 40 %wt BBP plasticizer was studied to determine the effect on the tensile strength, elongation, and modulus elasticity of the biocomposites. Biocomposite films were made by using solution casting method with acetone as solvent. The addition of plasticizer BBP and ZnO nanoparticles by 30% and 10% made biocomposite has a tensile strength of 2.223 MPa.

  17. Regulation of the beta-adrenergic receptor-adenylate cyclase complex of 3T3-L1 fibroblasts by sodium butyrate

    International Nuclear Information System (INIS)

    Stadel, J.M.; Poksay, K.S.; Nakada, M.T.; Crooke, S.T.

    1986-01-01

    Mouse 3T3-L1 fibroblasts contain beta-adrenergic receptors (BAR), predominantly of the B 1 subtype. Incubation of these cells with 2-10 mM sodium butyrate (SB) for 24-48 hr results in a switch in the BAR subtype from B 1 to B 2 and promotes a 1.5 to 2.5 fold increase in total BAR number. Other short chain acids were not as effective as SB in promoting changes in BAR. BAR were assayed in membranes prepared from the 3T3-L1 cells using the radiolabeled antagonist [ 125 I]-cyanopindolol and the B 2 selective antagonist ICI 118.551. BAR subtype switch was confirmed functionally by measuring cellular cAMP accumulation in response to agonists. The structure and amount of the alpha subunits of the guanine nucleotide regulatory proteins N/sub s/ and N/sub i/ were determined by ADP-ribosylation using 32 P-NAD and either cholera toxin or pertussis toxin for labeling of the respective subunits. Preincubation of cells with 5 mM SB for 48 hr resulted in a 2-3 fold increase in the labeling of the alpha subunits of both N/sub s/ and N/sub i/. A protein of M/sub r/ = 44,000 showed enhanced labeling by cholera toxin following SB treatment of the cells. These data indicate SB concomitantly regulates expression of BAR subtype and components of the adenylate cyclase in 3T3-L1 cells

  18. Effect of sodium butyrate treatment on the granule morphology, histamine level and elemental content of the bone marrow-derived mast cell

    Energy Technology Data Exchange (ETDEWEB)

    Rydzynski, K. [Inst. of Occupational Medicine, Lodz (Poland); Dalen, H. [Bergen Univ. (Norway)

    1994-12-31

    Mast cells derived from the bone marrow of BALB/c mice (BMMC) were cultures and their growth ceased with sodium butyrate. Sodium butyrate treatment (1 mM, 4 days) caused maturation of the granules, and increased histamine content from approx. 1 pg/cell to 4 pg/cell. X-ray microanalysis revealed that maturation of the granules was accompanied by the increase in relative weight percent of sodium, phosphorus and sulphur, with concomitant decrease in chloride. The sulphur to potassium ratio increased three-fold in butyrate-treated mast cells. The existence of a different elemental composition during mast cell maturation may provide additional parameter for rapid discrimination of mast cell subpopulations. (author). 28 refs, 6 figs.

  19. Effect of acetic acid on Saccharomyces carlsbergensis ATCC 6269 batch ethanol production monitored by flow cytometry.

    Science.gov (United States)

    Freitas, Cláudia; Neves, Elisabete; Reis, Alberto; Passarinho, Paula C; da Silva, Teresa Lopes

    2012-11-01

    Bioethanol produced from lignocellulosic materials has been considered a sustainable alternative fuel. Such type of raw materials have a huge potential, but their hydrolysis into mono-sugars releases toxic compounds such as weak acids, which affect the microorganisms' physiology, inhibiting the growth and ethanol production. Acetic acid (HAc) is the most abundant weak acid in the lignocellulosic materials hydrolysates. In order to understand the physiological changes of Saccharomyces carlsbergensis when fermenting in the presence of different acetic acid (HAc) concentrations, the yeast growth was monitored by multi-parameter flow cytometry at same time that the ethanol production was assessed. The membrane potential stain DiOC(6)(3) fluorescence intensity decreased as the HAc concentration increased, which was attributed to the plasmic membrane potential reduction as a result of the toxic effect of the HAc undissociated form. Nevertheless, the proportion of cells with permeabilized membrane did not increase with the HAc concentration increase. Fermentations ending at lower external pH and higher ethanol concentrations depicted the highest proportions of permeabilized cells and cells with increased reactive oxygen species levels. Flow cytometry allowed monitoring, near real time (at-line), the physiological states of the yeast during the fermentations. The information obtained can be used to optimize culture conditions to improve bioethanol production.

  20. Quantifying Effect of Lactic, Acetic, and Propionic Acids on Growth of Molds Isolated from Spoiled Bakery Products.

    Science.gov (United States)

    Dagnas, Stéphane; Gauvry, Emilie; Onno, Bernard; Membré, Jeanne-Marie

    2015-09-01

    The combined effect of undissociated lactic acid (0 to 180 mmol/liter), acetic acid (0 to 60 mmol/liter), and propionic acid (0 to 12 mmol/liter) on growth of the molds Aspergillus niger, Penicillium corylophilum, and Eurotium repens was quantified at pH 3.8 and 25°C on malt extract agar acid medium. The impact of these acids on lag time for growth (λ) was quantified through a gamma model based on the MIC. The impact of these acids on radial growth rate (μ) was analyzed statistically through polynomial regression. Concerning λ, propionic acid exhibited a stronger inhibitory effect (MIC of 8 to 20 mmol/liter depending on the mold species) than did acetic acid (MIC of 23 to 72 mmol/liter). The lactic acid effect was null on E. repens and inhibitory on A. niger and P. corylophilum. These results were validated using independent sets of data for the three acids at pH 3.8 but for only acetic and propionic acids at pH 4.5. Concerning μ, the effect of acetic and propionic acids was slightly inhibitory for A. niger and P. corylophilum but was not significant for E. repens. In contrast, lactic acid promoted radial growth of all three molds. The gamma terms developed here for these acids will be incorporated in a predictive model for temperature, water activity, and acid. More generally, results for μ and λ will be used to identify and evaluate solutions for controlling bakery product spoilage.

  1. Highly sensitive and ultrafast response surface acoustic wave humidity sensor based on electrospun polyaniline/poly(vinyl butyral) nanofibers

    International Nuclear Information System (INIS)

    Lin Qianqian; Li Yang; Yang Mujie

    2012-01-01

    Highlights: ► Polyanline/poly(vinyl butyral) nanofibers are prepared by electrospinning. ► Nanofiber-based SAW humidity sensor show high sensitivity and ultrafast response. ► The SAW sensor can detect very low humidity. - Abstract: Polyaniline (PANi) composite nanofibers were deposited on surface acoustic wave (SAW) resonator with a central frequency of 433 MHz to construct humidity sensors. Electrospun nanofibers of poly(methyl methacrylate), poly(vinyl pyrrolidone), poly(ethylene oxide), poly(vinylidene fluoride), poly(vinyl butyral) (PVB) were characterized by scanning electron microscopy, and humidity response of corresponding SAW humidity sensors were investigated. The results indicated that PVB was suitable as a matrix to form nanofibers with PANi by electrospinning (ES). Electrospun PANi/PVB nanofibers exhibited a core–sheath structure as revealed by transmittance electron microscopy. Effects of ES collection time on humidity response of SAW sensor based on PANi/PVB nanofibers were examined at room temperature. The composite nanofiber sensor exhibited very high sensitivity of ∼75 kHz/%RH from 20 to 90%RH, ultrafast response (1 s and 2 s for humidification and desiccation, respectively) and good sensing linearity. Furthermore, the sensor could detect humidity as low as 0.5%RH, suggesting its potentials for low humidity detection. Attempts were done to explain the attractive humidity sensing performance of the sensor by considering conductivity, hydrophilicity, viscoelasticity and morphology of the polymer composite nanofibers.

  2. Nutrient balance of layers fed diets with different calcium levels and the inclusion of phytase and/or sodium butyrate

    Directory of Open Access Journals (Sweden)

    MM Vieira

    2011-06-01

    Full Text Available In this study, Hisex Brown layers in lay were evaluated between 40 and 44 weeks of age to evaluate the inclusion of bacterial phytase (Ph and sodium butyrate (SB to diets containing different calcium levels (CaL. Performance, average egg weight and eggshell percentage, in addition to nutrient metabolizability and Ca and P balance were evaluated for 28 days. Birds were distributed according to a completely randomized experimental design with a 3x2x2 factorial arrangement, with three calcium levels (2.8, 3.3, 3.8%; the addition or not of phytase (500PhU/kg and the addition or not of sodium butyrate (20mEq/kg, composing 12 treatments with eight replicates of one bird each. There was no additive effect of phytase or SB on the evaluated responses. Feed intake and feed conversion ratio were influenced by CaL, with the best performance obtained with 3.3% dietary Ca. Ca balance was positively affected by dietary Ca, and P balance by the addition of phytase. Ca dietary concentration, estimated to obtain Ca body balance, was 3.41%, corresponding to an apparent retention of 59.9% of Ca intake.

  3. Inulin-type fructan degradation capacity of Clostridium cluster IV and XIVa butyrate-producing colon bacteria and their associated metabolic outcomes.

    Science.gov (United States)

    Moens, F; De Vuyst, L

    2017-05-30

    Four selected butyrate-producing colon bacterial strains belonging to Clostridium cluster IV (Butyricicoccus pullicaecorum DSM 23266 T and Faecalibacterium prausnitzii DSM 17677 T ) and XIVa (Eubacterium hallii DSM 17630 and Eubacterium rectale CIP 105953 T ) were studied as to their capacity to degrade inulin-type fructans and concomitant metabolite production. Cultivation of these strains was performed in bottles and fermentors containing a modified medium for colon bacteria, including acetate, supplemented with either fructose, oligofructose, or inulin as the sole energy source. Inulin-type fructan degradation was not a general characteristic among these strains. B. pullicaecorum DSM 23266 T and E. hallii DSM 17630 could only ferment fructose and did not degrade oligofructose or inulin. E. rectale CIP 105953 T and F. prausnitzii DSM 17677 T fermented fructose and could degrade both oligofructose and inulin. All chain length fractions of oligofructose were degraded simultaneously (both strains) and both long and short chain length fractions of inulin were degraded either simultaneously (E. rectale CIP 105953 T ) or consecutively (F. prausnitzii DSM 17677 T ), indicating an extracellular polymer degradation mechanism. B. pullicaecorum DSM 23266 T and E. hallii DSM 17630 produced high concentrations of butyrate, CO 2 , and H 2 from fructose. E. rectale CIP 105953 T produced lactate, butyrate, CO 2 , and H 2 , from fructose, oligofructose, and inulin, whereas F. prausnitzii DSM 17677 T produced butyrate, formate, CO 2 , and traces of lactate from fructose, oligofructose, and inulin. Based on carbon recovery and theoretical metabolite production calculations, an adapted stoichiometrically balanced metabolic pathway for butyrate, formate, lactate, CO 2 , and H 2 production by members of both Clostridium cluster IV and XIVa butyrate-producing bacteria was constructed.

  4. EXTRACTION AND SORPTION BENZOIC ACID FROM AQUEOUS SOLUTIONS OF POLYMERS BASED ON N-VINYLAMIDES

    Directory of Open Access Journals (Sweden)

    A. G. Savvina

    2015-01-01

    Full Text Available The widespread use of aromatic acids (benzoic acid, salicylic as preservatives necessitates their qualitative and quantitative determination in food. Effective and common way to separation and concentration of aromatic acids liquid extraction. Biphasic system of water-soluble polymers based on (poly-N-vinyl pyrrolidone, and poly-N-vinylcaprolactam satisfy the requirements of the extraction system. When sorption concentration improved definition of the metrological characteristics, comply with the requirements for sensitivity and selectivity definition appears possible, use of inexpensive and readily available analytical equipment. When studying the adsorption of benzoic acid used as a sorbent crosslinked polymer based on N-vinyl pyrrolidone, obtained by radical polymerisation of a functional monomer and crosslinker. In the extraction of benzoic acid to maximize the allocation of water and the organic phase of the polymer used salt solutions with concentrations close to saturation. Regardless of the nature of the anion salt is used as salting-out agent, aromatic acids sorption increases with the size of the cations. In the experiment the maximum recovery rate (80% benzoic acid obtained in the PVP (0.2 weight%. Ammonium sulphate. The dependence stepepni benzoic acid extraction from time sorption sorbent mass and the pH of the aqueous phase. To establish equilibrium in the system, for 20 minutes. The dependence of the degree of extraction of the acid pH indicates that the acid is extracted into the molecular form. The maximum adsorption is reached at pH 3,5, with its efficiency decreases symbatically reduce the amount of undissociated acid molecules in solution.

  5. Differential modulation of enterocyte-like Caco-2 cells after exposure to short-chain fatty acids

    NARCIS (Netherlands)

    Malago, J.J.; Koninkx, J.F.J.G.; Douma, P.M.; Dirkzwager, A.; Veldman, K.T.; Hendriks, H.G.C.J.M.; Dijk, van J.E.

    2003-01-01

    The response of intestinal epithelial cells to short-chain fatty acids, which are increasingly used as food additives, was investigated. Human small intestinal epithelial cell model Caco-2 cells were exposed to formate, propionate and butyrate to assess their effect on cellular growth, metabolism,

  6. Effect of different Bacillus strains on the profile of organic acids in a liquid culture of Daqu

    NARCIS (Netherlands)

    Yan, Z.; Zheng, X.; Chen, J.Y.; Han, J.S.; Han, B.Z.

    2013-01-01

    A reversed-phase high-performance liquid chromatography method for the analysis of malic, lactic, acetic, citric, succinic, propionic and butyric acids, during the incubation of Bacillus spp., was developed. All samples taken from cultivation were centrifuged (20 min, 11,500g at 5 degrees C) and

  7. Quantification of in Vivo Colonic Short Chain Fatty Acid Production from Inulin.

    Science.gov (United States)

    Boets, Eef; Deroover, Lise; Houben, Els; Vermeulen, Karen; Gomand, Sara V; Delcour, Jan A; Verbeke, Kristin

    2015-10-28

    Short chain fatty acids (SCFA), including acetate, propionate, and butyrate, are produced during bacterial fermentation of undigested carbohydrates in the human colon. In this study, we applied a stable-isotope dilution method to quantify the in vivo colonic production of SCFA in healthy humans after consumption of inulin. Twelve healthy subjects performed a test day during which a primed continuous intravenous infusion with [1-(13)C]acetate, [1-(13)C]propionate and [1-(13)C]butyrate (12, 1.2 and 0.6 μmol·kg(-1)·min(-1), respectively) was applied. They consumed 15 g of inulin with a standard breakfast. Breath and blood samples were collected at regular times during the day over a 12 h period. The endogenous rate of appearance of acetate, propionate, and butyrate was 13.3 ± 4.8, 0.27 ± 0.09, and 0.28 ± 0.12 μmol·kg(-1)·min(-1), respectively. Colonic inulin fermentation was estimated to be 137 ± 75 mmol acetate, 11 ± 9 mmol propionate, and 20 ± 17 mmol butyrate over 12 h, assuming that 40%, 10%, and 5% of colonic derived acetate, propionate, and butyrate enter the systemic circulation. In conclusion, inulin is mainly fermented into acetate and, to lesser extents, into butyrate and propionate. Stable isotope technology allows quantifying the production of the three main SCFA in vivo and proved to be a practical tool to investigate the extent and pattern of SCFA production.

  8. Quantification of in Vivo Colonic Short Chain Fatty Acid Production from Inulin

    Directory of Open Access Journals (Sweden)

    Eef Boets

    2015-10-01

    Full Text Available Short chain fatty acids (SCFA, including acetate, propionate, and butyrate, are produced during bacterial fermentation of undigested carbohydrates in the human colon. In this study, we applied a stable-isotope dilution method to quantify the in vivo colonic production of SCFA in healthy humans after consumption of inulin. Twelve healthy subjects performed a test day during which a primed continuous intravenous infusion with [1-13C]acetate, [1-13C]propionate and [1-13C]butyrate (12, 1.2 and 0.6 μmol·kg−1·min−1, respectively was applied. They consumed 15 g of inulin with a standard breakfast. Breath and blood samples were collected at regular times during the day over a 12 h period. The endogenous rate of appearance of acetate, propionate, and butyrate was 13.3 ± 4.8, 0.27 ± 0.09, and 0.28 ± 0.12 μmol·kg−1·min−1, respectively. Colonic inulin fermentation was estimated to be 137 ± 75 mmol acetate, 11 ± 9 mmol propionate, and 20 ± 17 mmol butyrate over 12 h, assuming that 40%, 10%, and 5% of colonic derived acetate, propionate, and butyrate enter the systemic circulation. In conclusion, inulin is mainly fermented into acetate and, to lesser extents, into butyrate and propionate. Stable isotope technology allows quantifying the production of the three main SCFA in vivo and proved to be a practical tool to investigate the extent and pattern of SCFA production.

  9. Evaluation of co-immobilized lactobacillus delbrueckii with porous particles for lactic acid production

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.; Seki, M.; Furusaki, S. [The University of Tokyo, Tokyo (Japan)

    1996-02-01

    Lactic acid production using co-immobilized L.defbrveckii with porous particles has been studied. The effect of co-immobilization with porous particles was verified by measuring the variations of both overall production rate of lactic acid and effective diffusion coefficient in the co-immobilized gel. The effective diffusion coefficient decreased with increasing cell concentration in the co-immobilized gel. However, in the high cell density regimes, the effective diffusion coefficient in co-immobilized gel was higher than that without co-immobilized porous particles. The optimal volume fraction of porous particles in the co-immobilizing gel beads leas estimated experimentally at about 10%(v/v). An approximately 30% increase of the overall production rate was obtained compared to the control culture. Mathematical analysis showed that by co-immobilizing cells with porous particles, the steady-state concentration profiles of proton and undissociated lactic acid changed favorably inside the gel beads. The result indicates that co-immobilization with porous particles is a useful method to improve fermentation efficiency in processes using immobilized cells. 19 refs., 8 figs.

  10. The Putative Role of the Non-Gastric H+/K+-ATPase ATP12A (ATP1AL1 as Anti-Apoptotic Ion Transporter: Effect of the H+/K+ ATPase Inhibitor SCH28080 on Butyrate-Stimulated Myelomonocytic HL-60 Cells

    Directory of Open Access Journals (Sweden)

    Martin Jakab

    2014-10-01

    Full Text Available Background/Aims: The ATP12A gene codes for a non-gastric H+/K+ ATPase, which is expressed in a wide variety of tissues. The aim of this study was to test for the molecular and functional expression of the non-gastric H+/K+ ATPase ATP12A/ATP1AL1 in unstimulated and butyrate-stimulated (1 and 10 mM human myelomonocytic HL-60 cells, to unravel its potential role as putative apoptosis-counteracting ion transporter as well as to test for the effect of the H+/K+ ATPase inhibitor SCH28080 in apoptosis. Methods: Real-time reverse-transcription PCR (qRT-PCR was used for amplification and cloning of ATP12A transcripts and to assess transcriptional regulation. BCECF microfluorimetry was used to assess changes of intracellular pH (pHi after acute intracellular acid load (NH4Cl prepulsing. Mean cell volumes (MCV and MCV-recovery after osmotic cell shrinkage (Regulatory Volume Increase, RVI were assessed by Coulter counting. Flow-cytometry was used to measure MCV (Coulter principle, to assess apoptosis (phosphatidylserine exposure to the outer leaflet of the cell membrane, caspase activity, 7AAD staining and differentiation (CD86 expression. Results: We found by RT-PCR, intracellular pH measurements, MCV measurements and flow cytometry that ATP12A is expressed in human myelomonocytic HL-60 cells. Treatment of HL-60 cells with 1 mM butyrate leads to monocyte-directed differentiation whereas higher concentrations (10 mM induce apoptosis as assessed by flow-cytometric determination of CD86 expression, caspase activity, phosphatidylserine exposure on the outer leaflet of the cell membrane and MCV measurements. Transcriptional up-regulation of ATP12A and CD86 is evident in 1 mM butyrate-treated HL-60 cells. The H+/K+ ATPase inhibitor SCH28080 (100 µM diminishes K+-dependent pHi recovery after intracellular acid load and blocks RVI after osmotic cell shrinkage. After seeding, HL-60 cells increase their MCV within the first 24 h in culture, and subsequently

  11. Dipole-Dipole Electron Excitation Energy Transfer in the System CdSe/ZnS Quantum Dot - Eosin in Butyral Resin Matrix

    Science.gov (United States)

    Myslitskaya, N. A.; Samusev, I. G.; Bryukhanov, V. V.

    2014-11-01

    The electron excitation energy transfer from CdSe/ZnS quantum dots to eosin molecules in the polymer matrix of butyral resin is investigated. The main characteristics of energy transfer are determined. By means of luminescence microscopy and correlation spectroscopy methods we found that quantum dots in the polymer are in an aggregate state.

  12. Poly-(Epsilon-caprolactone) (PCL) and poly(hydroxy-butyrate) (PHB) blends containing seaweed fibers: Morphology and thermal-mechanical properties

    Science.gov (United States)

    Massive quantities of marine seaweed, Ulva armoricana are washed onto shores of many European countries and accumulates as waste. Attempts were made to utilize this renewable resource in hybrid composites by blending the algal biomass with biodegradable polymers such as poly(hydroxy-butyrate) and po...

  13. Anaerostipes caccae gen. nov., sp. nov., a new saccharolytic, acetate-utilising, butyrate-producing bacterium from human faeces.

    Science.gov (United States)

    Schwiertz, Andreas; Hold, Georgina L; Duncan, Sylvia H; Gruhl, Barbel; Collins, Matthew D; Lawson, Paul A; Flint, Harry J; Blaut, Michael

    2002-04-01

    Two strains of a previously undescribed Eubacterium-like bacterium were isolated from human faeces. The strains are Gram-variable, obligately anaerobic, catalase negative, asporogenous rod-shaped cells which produced acetate, butyrate and lactate as the end products of glucose metabolism. The two isolates displayed 99.9% 16S rRNA gene sequence similarity to each other and treeing analysis demonstrated the faecal isolates are far removed from Eubacterium sensu stricto and that they represent a new subline within the Clostridium coccoides group of organisms. Based on phenotypic and phylogenetic criteria, it is proposed that the two strains from faeces be classified as a new genus and species, Anaerostipes caccae. The type strain of Anaerostipes caccae is NCIMB 13811T (= DSM 14662T).

  14. Effects of orally applied butyrate bolus on histone acetylation and cytochrome P450 enzyme activity in the liver of chicken – a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Mátis Gábor

    2013-01-01

    Full Text Available Abstract Background Butyrate is known as histone deacetylase inhibitor, inducing histone hyperacetylation in vitro and playing a predominant role in the epigenetic regulation of gene expression and cell function. We hypothesized that butyrate, endogenously produced by intestinal microbial fermentation or applied as a nutritional supplement, might cause similar in vivo modifications in the chromatin structure of the hepatocytes, influencing the expression of certain genes and therefore modifying the activity of hepatic microsomal drug-metabolizing cytochrome P450 (CYP enzymes. Methods An animal study was carried out in chicken as a model to investigate the molecular mechanisms of butyrate’s epigenetic actions in the liver. Broiler chicks in the early post-hatch period were treated once daily with orally administered bolus of butyrate following overnight starvation with two different doses (0.25 or 1.25 g/kg body weight per day for five days. After slaughtering, cell nucleus and microsomal fractions were separated by differential centrifugation from the livers. Histones were isolated from cell nuclei and acetylation of hepatic core histones was screened by western blotting. The activity of CYP2H and CYP3A37, enzymes involved in biotransformation in chicken, was detected by aminopyrine N-demethylation and aniline-hydroxylation assays from the microsomal suspensions. Results Orally added butyrate, applied in bolus, had a remarkable impact on nucleosome structure of hepatocytes: independently of the dose, butyrate caused hyperacetylation of histone H2A, but no changes were monitored in the acetylation state of H2B. Intensive hyperacetylation of H3 was induced by the higher administered dose, while the lower dose tended to increase acetylation ratio of H4. In spite of the observed modification in histone acetylation, no significant changes were observed in the hepatic microsomal CYP2H and CYP3A37 activity. Conclusion Orally added butyrate in bolus

  15. D-Tagatose increases butyrate production by the colonic microbiota in healthy men and women

    NARCIS (Netherlands)

    Venema, K.; Vermunt, S.H.F.; Brink, E.J.

    2005-01-01

    D-Tagatose is partly absorbed in the stomach and small intestine. Most of it is fermented by the large intestinal microbiota. The effect of D-tagatose on the composition of the microbiota and production of short chain fatty acids (SCFAs) was studied in vivo and in vitro. Gastrointestinal (GI)

  16. A Glutamic Acid-Producing Lactic Acid Bacteria Isolated from Malaysian Fermented Foods

    Science.gov (United States)

    Zareian, Mohsen; Ebrahimpour, Afshin; Bakar, Fatimah Abu; Mohamed, Abdul Karim Sabo; Forghani, Bita; Ab-Kadir, Mohd Safuan B.; Saari, Nazamid

    2012-01-01

    l-glutamaic acid is the principal excitatory neurotransmitter in the brain and an important intermediate in metabolism. In the present study, lactic acid bacteria (218) were isolated from six different fermented foods as potent sources of glutamic acid producers. The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of this microorganism related to its glutamic acid-producing ability, growth rate, glucose consumption and pH profile were studied. Results revealed that glutamic acid was formed inside the cell and excreted into the extracellular medium. Glutamic acid production was found to be growth-associated and glucose significantly enhanced glutamic acid production (1.032 mmol/L) compared to other carbon sources. A concentration of 0.7% ammonium nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of our knowledge this is the first report of glutamic acid production by lactic acid bacteria. The results of this study can be further applied for developing functional foods enriched in glutamic acid and subsequently γ-amino butyric acid (GABA) as a bioactive compound. PMID:22754309

  17. Functional and molecular effects of arginine butyrate and prednisone on muscle and heart in the mdx mouse model of Duchenne Muscular Dystrophy.

    Directory of Open Access Journals (Sweden)

    Alfredo D Guerron

    2010-06-01

    Full Text Available The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin.In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy.These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with broad range of in vivo activity.

  18. Functional and molecular effects of arginine butyrate and prednisone on muscle and heart in the mdx mouse model of Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Guerron, Alfredo D; Rawat, Rashmi; Sali, Arpana; Spurney, Christopher F; Pistilli, Emidio; Cha, Hee-Jae; Pandey, Gouri S; Gernapudi, Ramkishore; Francia, Dwight; Farajian, Viken; Escolar, Diana M; Bossi, Laura; Becker, Magali; Zerr, Patricia; de la Porte, Sabine; Gordish-Dressman, Heather; Partridge, Terence; Hoffman, Eric P; Nagaraju, Kanneboyina

    2010-06-21

    The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD) is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin. In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated) mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy. These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with broad range of in vivo activity.

  19. Effects of corn oil on the volatile fatty acids in horses with induced gastric ulcers

    Directory of Open Access Journals (Sweden)

    José Martínez A

    2016-09-01

    Full Text Available Objetive. To determine the influence of corn oil on the volatile fatty acids (VFA concentrations in the gastric juice in horses with phenylbutazone (PBZ induced gastric ulcers and Correlate the gastroscopic findings with the VFA concentrations. Materials and methods. 15 horses were allotted in 3 groups. Group I (control received placebo during first 6 days (induction period and was treated with sucralfate for 2 weeks (treatment period. Groups II and III received PBZ during the induction phase. After 6 days, horses from group II received 70 mL of corn oil /100 kg of body weight/ po, twice a day, for 2 weeks and horses from group III received 90 mL of corn oil/100 kg of body weight/ po, twice a day, for 2 weeks. All horses were examined by gastroscopy at days 0, 7 and 21. The lesions were recorded and classified according to the number and severity. Samples from gastric fluid were taken to measure the concentrations of the acetic, propionic, butyric and lactic acids. Results. Both PBZ protocols produced lesions in the both non-glandular and glandular areas of the stomach. All the treatments produced healing of the injured mucosa glandular. Neither of the two corn oil treatments affected healing of the gastric ulcers located in the non-glandular area. Conclusions. The concentrations of acetic and butyric acids were highest in the gastric juice. The corn oil and sucralfate did not lead to differences in the concentration of acetic acid and butyric acid.

  20. Efeitos do butirato nos níveis de peroxidação lipídica em células da mucosa cólica sem trânsito fecal: estudo experimental em ratos Effects of butyrate on levels of lipid peroxidation in cells of the colonic mucosa without fecal stream: experimental study in rats

    Directory of Open Access Journals (Sweden)

    Thais Miguel do Monte Lameiro

    2011-06-01

    Full Text Available Os ácidos graxos de cadeia curta (AGCC representam o principal substrato energético para células da mucosa cólica. A derivação intestinal, reduzindo suprimento de AGCC, responsabiliza-se pela colite de exclusão (CE. Aplicação retal de butirato tem sido eficaz no tratamento da doença. Então, o objetivo deste estudo foi avaliar os níveis de lipoperoxidação na mucosa cólica, após aplicação de butirato, em modelo de CE. Vinte seis ratos Wistar foram submetidos à colostomia proximal e fístula mucosa distal. Os animais foram divididos em dois grupos segundo sacrifício ser realizado em duas ou quatro semanas. Cada grupo foi subdividido em dois subgrups segundo intervenção com soro fisiológico ou butirato. O diagnóstico de CE foi estabelecido por estudo histopatológico e os níveis de lipoperoxidação pelos níveis de malondialdeído (MDA. Utilizaram-se os testes de Mann-Whitney e Kruskal-Wallis (significantes quando pThe short-chain fatty acids (SCFA are the main energy substrate for the cells of the colonic mucosa. Diversion of the fecal stream reducing the supply of SCFA is responsible for diversion colitis (DC. Rectal application of butyrate has been demonstrated effective in the treatment of the disease. So the aim of this study was to evaluate the levels of lipid peroxidation in the colon mucosa after application of butyrate in model of DC. Twenty-six rats were submitted to proximal colostomy and distal mucous fistula. The animals were divided into two groups according sacrifice carried out in two or four weeks. Each group was divided into two subgroups according to intervention with saline solution or butyrate. The diagnosis of colitis was established by histopathology and the levels of lipid peroxidation by tissue levels of malondialdehyde (MDA. We used the Mann-Whitney and Kruskal-Wallis, establishing a significance level of 5% (significant with p<0.05. After two weeks, the levels of MDA were lower in the segments

  1. Volatile Compounds and Lactic Acid Bacteria in Spontaneous Fermented Sourdough

    International Nuclear Information System (INIS)

    Kam, W.Y.; Aida, W.M.W.; Sahilah, A.M.; Maskat, M.Y.

    2011-01-01

    The aim of this study is to identify the predominating lactic acid bacteria (LAB) in a spontaneous fermented wheat sourdough. At the same time, an investigation towards volatile compounds that were produced was also carried out. Lactobacillus plantarum has been identified as the dominant species of lactobacilli with characters of a facultative heterofermentative strain. The generated volatile compounds that were produced during spontaneous fermentation were isolated by solvent extraction method, analysed by gas chromatography (GC), and identified by mass spectrophotometer (MS). Butyric acid has been found to be the main volatile compound with relative abundance of 6.75 % and acetic acid at relative abundance of 3.60 %. Esters that were formed at relatively low amount were butyl formate (1.23 %) and cis 3 hexenyl propionate (0.05 %). Butanol was also found at low amount with relative abundance of 0.60 %. The carbohydrate metabolism of Lactobacillus plantarum may contributed to the production of acetic acid in this study via further catabolism activity on lactic acid that was produced. However, butyric acid was not the major product via fermentation by LAB but mostly carried out by the genus Clostridium via carbohydrate metabolism which needs further investigation. (author)

  2. D-Tagatose increases butyrate production by the colonic microbiota in healthy men and women

    OpenAIRE

    Venema, Koen; Vermunt, Susanne H.F.; Brink, Elizabeth J.

    2011-01-01

    D-Tagatose is partly absorbed in the stomach and small intestine. Most of it is fermented by the large intestinal microbiota. The effect of D-tagatose on the composition of the microbiota and production of short chain fatty acids (SCFAs) was studied in vivo and in vitro. Gastrointestinal (GI) complaints were also studied. The in vivo study was performed according to a randomized, placebo-controlled, double-blind, five-way cross-over design in healthy subjects (12 men and 18 women). All subjec...

  3. Effect of nerve growth factor on the synthesis of amino acids in PC12 cells

    International Nuclear Information System (INIS)

    Zielke, H.R.; Tildon, J.T.; Kauffman, F.C.; Baab, P.J.

    1989-01-01

    Radioactive short-chain fatty acids preferentially label glutamine relative to glutamate in brain due to compartmentation of glutamine and glutamate. To determine whether this phenomenon occurs in a single cell culture model, we examined the effect of fatty acid chain length on the synthesis as well as pool size of selected amino acids in rat pheochromocytoma PC12 cells, a cell culture model of the large glutamate compartment in neurons. Intracellular 14C-amino acids were quantitated by HPLC, and the incorporation of [U-14C]-glucose, [1-14C]-butyrate, [1-14C]-octanoate, and [1-14C]-palmitate into five amino acids was measured in native and NGF-treated PC12 cells. NGF pretreatment decreased the intracellular concentration of amino acids as did addition of fatty acids but these effects were not additive. Specific activities of amino acids in native cells labelled by 14C-octanoate were 1,300 DPM/nmol, 490 DPM/nmol, 200 DPM/nmol, and 110 DPM/nmol for glutamate, aspartate, glutamine, and serine, respectively. No radioactivity was detected in alanine. Similar specific activities were noted when 14C-butyrate was the precursor; however, there was at least 5-fold less if 14C-palmitate was the precursor. Pretreatment of cells with NGF decreased the specific activity of amino acids by 25-65%. Specific activities of amino acids synthesized from 14C-glucose decreased in the following order: glutamate, 1,640 DPM/nmol; aspartate, 1,210 DPM/nmol; alanine, 580 DPM/nmol; glutamine, 275 DPM/nmol; and serine, 80 DPM/nmol for native cells. NGF pretreatment decreased the specific activities of glutamate and glutamine, but not of the other 3 amino acids. The preferred precursor for glutamate synthesis in native PC12 cells was glucose followed by octanoate, butyrate and palmitate (16:6:3:1)

  4. Growth of aspergillus terreus and the production of itaconic acid in batch and continuous cultures. The influence of pH

    Energy Technology Data Exchange (ETDEWEB)

    Rychtera, M.; Wase, J.D.A.

    1981-01-01

    Aspergillus terreus (NRRL 1960) was cultivated in batch and in continuous single-stage culture. The influence of pH on the growth of the organism, on the formation of itaconic acid and on the kinetics of fermentation was studied under phosphate limitation, both at controlled ph values and also when the pH was allowed to decrease in a natural way. In the pH range 1.7-3.5, the ratio of undissociated:half-dissociated acid varied from 190:1 to 1.5:1. The amount of completely dissociated acid may be regarded as negligible. In batch systems operated without pH control, an initial pH of 3.1 proved to be the most effective. Product formation under such conditions started at a point where the exponential growth phase commenced and was described by a zero-order equation. The maximum itaconic acid production rate was shifted behind maximum growth rate. The continuous single-stage system was first order with respect to product formation. At pH greater than 3.1, a number of aberrant and pellet forms of the mould occurred, resulting in decreased acid production. (Refs. 41).

  5. A new dyed poly (vinyl butyral) film for high-dose applications

    International Nuclear Information System (INIS)

    Eid, S.A.; Beshir, W.B.; Ebraheem, S.

    2006-01-01

    The polymer films under investigation are comprising a mixture of 2 dyes, namely, 2,6-dichlorophenol indophenol sodium salt (DCP), and bromo cresol green (BCG) indicator in presence of different concentrations of chloral hydrate. The color of this film changes from the blue to purple and finally to yellow, the bleaching reaction for DCP takes place in the beginning, giving the tinge of purple color, followed by the transformation of BCG to its acidic form due to the presence of chloral hydrate. The response of these films is affected by the change in chloral hydrate concentration and also the ratio of the 2 combined dyes. Accordingly, these films could be used as dosimeter in two steps color change indicators, in the dose range from 0.2 to 6 kGy. To examine their suitability for eventual application in different food radiation processing, the dosimetric parameters, e.g. dose response, effect of relative humidity during irradiation on response as well as pre-and post-irradiation stability of these film are investigated. Using the phenomenon of HCl generation from PVC under irradiation, ph-indicating dyes have been added to PVC. A chlorine-containing polymer is not necessary for this reaction to occur. A similar color change can be produced if chloro alkanes are present in the dye-containing matrix (Whittaker, 1990). Ueno (1988) developed a radiation dosimeter from acidity indicators by coating a high molecular weight polymer support (e.g. polyester film) with a composition containing a halogen-containing polymer (e.g. PVC), a pigment which changes color with the change of ph and a basic material (e.g. KOH in EtOH). For routine dose monitoring in radiation processing, the polymeric dyed flexible films are most commonly used as dosimeters and indicators for both electron beams and gamma rays (Ebraheem et al., 1999 and McLaughlin et al

  6. Prevention of volatile fatty acids production and limitation of odours from winery wastewaters by denitrification.

    Science.gov (United States)

    Bories, André; Guillot, Jean-Michel; Sire, Yannick; Couderc, Marie; Lemaire, Sophie-Andréa; Kreim, Virginie; Roux, Jean-Claude

    2007-07-01

    The effect of the addition of nitrate to winery wastewaters to control the formation of VFA in order to prevent odours during storage and treatment was studied in batch bioreactors at different NO(3)/chemical oxygen demand (COD) ratios and at full scale in natural evaporation ponds (2 x 7000 m(2)) by measuring olfactory intensity. In the absence of nitrate, butyric acid (2304 mgL(-1)), acetic acid (1633 mgL(-1)), propionic acid (1558 mgL(-1)), caproic acid (499 mgL(-1)) and valeric acid (298 mgL(-1)) were produced from reconstituted winery wastewater. For a ratio of NO(3)/COD=0.4 gg(-1), caproic and valeric acids were not formed. The production of butyric and propionic acids was reduced by 93.3% and 72.5%, respectively, at a ratio of NO(3)/COD=0.8, and by 97.4% and 100% at a ratio of NO(3)/COD=1.2 gg(-1). Nitrate delayed and decreased butyric acid formation in relation to the oxidoreduction potential. Studies in ponds showed that the addition of concentrated calcium nitrate (NITCAL) to winery wastewaters (3526 m(3)) in a ratio of NO(3)/COD=0.8 inhibited VFA production, with COD elimination (94%) and total nitrate degradation, and no final nitrite accumulation. On the contrary, in ponds not treated with nitrate, malodorous VFA (from propionic to heptanoïc acids) represented up to 60% of the COD. Olfactory intensity measurements in relation to the butanol scale of VFA solutions and the ponds revealed the pervasive role of VFA in the odour of the untreated pond as well as the clear decrease in the intensity and not unpleasant odour of the winery wastewater pond enriched in nitrates. The results obtained at full scale underscored the feasibility and safety of the calcium nitrate treatment as opposed to concentrated nitric acid.

  7. Development of a new lactic acid bacterial inoculant for fresh rice straw silage

    Directory of Open Access Journals (Sweden)

    Jong Geun Kim

    2017-07-01

    Full Text Available Objective Effects of newly isolated Lactobacillus plantarum on the fermentation and chemical composition of fresh rice straw silage was evaluated in this study. Methods Lactic acid bacteria (LAB from good crop silage were screened by growing them in MRS broth and a minimal medium with low carbohydrate content. Selected LAB (LAB 1821 were Gram-positive, rods, catalase negative, and were identified to be Lactobacillus plantarum based on their biochemical characteristics and a 16S rRNA analysis. Fresh rice straw was ensiled with two isolated LAB (1821 and 1841, two commercial inoculants (HM/F and P1132 and no additive as a control. Results After 2 months of storage at ambient temperature, rice straw silages treated with additives were well-preserved, the pH values and butyric and acetic acid contents were lower, and the lactic acid content and lactic/acetic acid ratio were higher than those in the control (p0.05 effect on acid detergent fiber or neutral detergent fiber contents. Crude protein (CP content and in vitro DM digestibility (IVDMD increased after inoculation of LAB 1821 (p<0.05. Conclusion LAB 1821 increased the CP, IVDMD, lactic acid content and ratio of lactic acid to acetic acid in rice straw silage and decreased the pH, acetic acid, NH3-N, and butyric acid contents. Therefore, adding LAB 1821 improved the fermentation quality and feed value of rice straw silage.

  8. Parâmetros reacionais para a síntese enzimática do butirato de butila em solventes orgânicos Reactional parameters for enzymatic synthesis of butyl butyrate in organic solvent

    Directory of Open Access Journals (Sweden)

    Heizir F. CASTRO

    1997-12-01

    Full Text Available A síntese orgânica catalisada por enzimas envolve um mecanismo complexo dependente do tipo de substrato, enzima, solvente orgânico e teor de água no meio reacional. Neste trabalho foi estudado a influência de alguns desses parâmetros no rendimento da esterificação do butanol com ácido butírico, utilizando uma preparação enzimática comercial de lipase. A polaridade e natureza do solvente, bem como a razão molar entre o butanol e ácido butírico, foram considerados os fatores que mais influenciaram o desenvolvimento dessa síntese enzimática.The organic synthesis catalyzed by enzymes is a complex function of substrate concentration, water concentration in the liquid phase, enzyme and organic solvent properties. In this work the influence of some parameters on the esterification of butanol with butyric acid was investigated, using a commercial lipase preparation. The polarity and nature of the solvent and also the substrate mole ratios played an important role in the performance of this enzymatic synthesis.

  9. The possibility of determining the activity coefficients of individual ions from acid-base titration data

    Science.gov (United States)

    Jano, I.; Hardcastle, J. E.

    1998-07-01

    A method is described for obtaining the activity coefficients of individual ions from experimental titration data. For this purpose, a general polyprotic acid-base-titration-curve equation is derived. The equation allows obtaining the dissociation equilibrium constants of the acid and the ratio of the activity coefficient of each ion to the activity coefficient of the undissociated acid directly from the titration data. Results obtained are compared with coefficients calculated using Debye-Hückel equation. A general equation relating the ionic strength to the pH of the titration medium is also established. Une méthode pour l'obtention des coefficients d'activité des ions individuels à partir des données expérimentales de titrage est établie. À ce but, une équation générale est dérivée pour représenter la courbe de titrage d'un acide avec une base. Cette équation permet d'obtenir les constants d'équilibre de dissociation de l'acide et le rapport de coefficient d'activité de chaque ion au coefficient d'activité de l'acide non-dissocié à partir des données de titrage. Les résultats ainsi obtenus sont comparés avec les coefficients calculés à l'aide de l'équation de Debye-Hückel. Une équation liant la force ionique au pH du milieu est établie aussi.

  10. Comparative effect of orally administered sodium butyrate before or after weaning on growth and several indices of gastrointestinal biology of piglets

    DEFF Research Database (Denmark)

    Le Gall, Maud; Gallois, Mélanie; Sève, Bernard

    2009-01-01

    Sodium butyrate (SB) provided orally favours body growth and maturation of the gastrointestinal tract (GIT) in milk-fed pigs. In weaned pigs, conflicting results have been obtained. Therefore, we hypothesised that the effects of SB (3 g/kg DM intake) depend on the period (before v. after weaning...... efficient to stimulate body growth and feed intake after weaning, by reducing gastric emptying and intestinal mucosa weight and by increasing feed digestibility....

  11. Sodium butyrate into the insular cortex during conditioned taste-aversion acquisition delays aversive taste memory extinction.

    Science.gov (United States)

    Núñez-Jaramillo, Luis; Reyes-López, Julian; Miranda, María Isabel

    2014-04-16

    Histone acetylation is one mechanism that promotes gene expression, and it increases during learning of various tasks. Specifically, novel taste consumption produces an increased acetylation of histone lysine residues in the insular cortex (IC), where protein synthesis is crucial during memory consolidation of conditioned taste aversion (CTA). However, the role of this elevated histone acetylation during CTA learning has not been examined directly. Thus, the present study investigated the effects of sodium butyrate (NaBu), a histone deacetylase inhibitor, injected into the IC during CTA acquisition. Male Wistar rats, IC bilaterally implanted, were injected 60 min before saccharine presentation, with a total volume of 0.5 µl of NaBu solution (100, 500, and 10 µg/0.5 µl) or saline; 30 min later animals were injected intraperitoneally with lithium chloride, a malaise-inducing drug. The next day, CTA retrieval was tested. No effects of NaBu were observed during acquisition or retrieval, but during extinction trials, a significant delay in aversive memory extinction was observed in the group injected with the lowest NaBu dose. This result indicates that NaBu in the IC strengthens CTA and delays aversive memory extinction, and suggests that histone acetylation could increase long-term taste-aversive memory strength.

  12. Mechanical and thermal properties of eco-friendly poly(propylene carbonate)/cellulose acetate butyrate blends.

    Science.gov (United States)

    Xing, Chenyang; Wang, Hengti; Hu, Qiaoqiao; Xu, Fenfen; Cao, Xiaojun; You, Jichun; Li, Yongjin

    2013-02-15

    The eco-friendly poly(propylene carbonate) (PPC)/cellulose acetate butyrate (CAB) blends were prepared by melt-blending in a batch mixer for the first time. PPC and CAB were partially miscible because of the drastically shifted glass transition temperatures of both PPC and CAB, which originated from the specific interactions between carbonyl groups and hydroxyl groups. The incorporation of CAB into PPC matrix enhanced not only tensile strength and modulus of PPC dramatically, but also improved heat resistance and thermal stability of PPC significantly. The tensile strength and the modulus of PPC/CAB=50/50 blend are 27.7 MPa and 1.24 GPa, which are 21 times and 28 times higher than those of the unmodified PPC, respectively. Moreover, the elongation at break of PPC/CAB=50/50 blend is as high as 117%. In addition, the obtained blends exhibited good transparency, which is very important for the package materials. The results in this work pave new possibility for the massive application of eco-friendly polymer materials. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Study of the levels of beta hydroxy butyrate, glucose, protein and albumin in Holstein cows with subclinical ketosis

    Directory of Open Access Journals (Sweden)

    B Amouoghli Tabrizi

    2007-08-01

    Full Text Available The objective of this study was to comparatively evaluate the levels of beta hydroxy butyrate (BHB, glucose, protein and albumin in serum of healthy Holstein cows and those with subclinical ketosis. In this survey, blood samples were collected at two stages from cows selected at 7 dairy farms in Shahriar province of Tehran. Five to 7 ml of blood were taken from the coccygeal vein of 100 cows during the last week of pregnancy when the animals were dry and once again 2 months after parturition from the same cows, their sera separated and the amounts of BHB, glucose, protein and albumin determined by enzymatic techniques and commercially available kits. With the cut point of BHB at 1.2, 1.4 and 1.7 mmol/lit, the percentage of cows affected with subclinical ketosis were 18, 14 and 4 percent, respectively. Mean levels of BHB in ketotic cows was significantly higher than healthy cows before and after parturition while mean levels of glucose, protein and albumin was significantly lower during the same periods (P

  14. Biodegradation improvement of poly(3-hydroxy-butyrate) films by entomopathogenic fungi and UV-assisted surface functionalization.

    Science.gov (United States)

    Kessler, Felipe; Marconatto, Leticia; Rodrigues, Roberta da Silva Bussamara; Lando, Gabriela Albara; Schrank, Augusto; Vainstein, Marilene Henning; Weibel, Daniel Eduardo

    2014-01-05

    Ultraviolet (UV)-assisted surface modification in the presence of oxygen was used as initial step to achieve controlled degradation of poly(3-hydroxy-butyrate), PHB, films by entomopathogenic fungi. Treated surfaces were investigated by surface analysis techniques (water contact angle, Fourier Transformed Infrared Spectroscopy in Attenuated Total Reflectance mode, X-ray Photoelectron Spectroscopy, Near-edge X-ray Absorption Fine Structure, Gel Permeation Chromatography, Optical Microscopy, Scanning Electron Microscopy, and weight loss). After the UV-assisted treatments, new carbonyl groups in new chemical environments were detected by XPS and NEXAFS spectroscopy. The oxidizing atmosphere did not allow the formation of CC bonds, indicating that Norrish Type II mechanism is suppressed during or by the treatments. The higher hydrophilicity and concentration of oxygenated functional groups at the surface of the treated films possibly improved the biodegradation of the films. It was observed a clear increase in the growth of this fungus when oxygenated groups were grafted on the polymers surfaces. This simple methodology can be used to improve and control the degradation rate of PHB films in applications that require a controllable degradation rate. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. The Effects of Orientation on the Mechanical and Morphological Properties of Woven Kenaf-reinforced Poly Vinyl Butyral Film

    Directory of Open Access Journals (Sweden)

    Suhad D. Salman

    2015-12-01

    Full Text Available Kenaf is one of the important plants cultivated for natural fibres globally and is regarded as an industrial crop in Malaysia for various applications. This study was conducted to determine the effects of orientation on the tensile and flexural strengths, Charpy impact test, and morphological properties of kenaf fibre-reinforced poly vinyl butyral (PVB composites. Laminates of 40% fibre weight fraction were manufactured using the hot press manufacturing technique at 0˚/90˚ and 45˚/−45˚ orientations, and eight specimens were prepared for each test. The mechanical properties of the composites were variably affected by the fibre orientation angle. The results showed that the composites at 0o/90o had the highest tensile strength, flexural strength, and flexural modulus, while the elongation at break was almost the same. Additionally, tests were carried out on the composites to determine their impact energy and impact strength. The results revealed that impact properties were affected in markedly different ways by different orientations. The composite at 45˚/−45˚ offered better impact properties than the composites at 0˚/90˚. In addition, scanning electron microscopy for impact specimens was employed to demonstrate the different failures in the fracture surfaces.

  16. Analytical study of fatty acids in bioreactor of an anaerobic treatment of distillery effluent

    International Nuclear Information System (INIS)

    Shah, F.A.; Pathan, M.I.

    2005-01-01

    An anaerobic digestion in bioreactors, offers a two-fold benefit: pollution potential reduction and biogas production. In this study, fatty acids in an anaerobic reactor are studied. The reactor exhibits a notable variation at different corks (1-6). The concentrations for both acetic acid and propionic acid are at maximum range at cork 2 and 5. For isobutyric acid; it is maximum at 1 and 2 corks. Butyric acid is maximum at 5; isovaleric acid is maximum at cork-2. This shows that cork-2 location has its maximum activity for fatty acids. Being nearest to the agitator this location has maximum agitation and resulted more formation of the fatty acids. This acidic effect will ultimately affect the reactor output for Biogas generation. (author)

  17. Synergistic Effect of Sodium Butyrate and Thalidomide in the Induction of Fetal Hemoglobin Expression in Erythroid Progenitors Derived from Cord Blood CD133 + Cells

    Directory of Open Access Journals (Sweden)

    Ali Dehghanifard

    2012-07-01

    Full Text Available Background: The use of drugs with the ability to induce production of fetal hemoglobin as a novel therapeutic approach in treating β-Hemoglobinopathies is considered. γ-globin gene expression inducer drugs including sodium butyrate and thalidomide can reduce additional α-globin chains accumulation in erythroid precursors. Materials and Methods: In this experimental study, MACS kit was used to isolate CD133+ cells of umbilical cord blood. Further, the effect of two drugs of thalidomide and sodium butyrate were separately and combined studied on the induction of quantitative expression of β-globin and γ-globin genes in erythroid precursor cells derived from CD133+ stem cells in-vitro. For this purpose, the technique SYBR green Real-time PCR was used.Results: Flow cytometry results showed that approximately 95% of purified cells were CD133+. Real-time PCR results also showed the increased levels of γ-globin mRNA in the cell groups treated with thalidomide, sodium butyrate and combination of drugs as 2.6 and 1.2 and 3.5 times respectively, and for β-globin gene, it is respectively 1.4 and 1.3 and 1.6 times compared with the control group (p<0.05.Conclusion: The study results showed that the mentioned drug combination can act as a pharmaceutical composition affecting the induction of fetal hemoglobin expression in erythroid precursor cells derived from CD133 + cells.

  18. Isolation and Partial Characterization of Bacteria in an Anaerobic Consortium That Mineralizes 3-Chlorobenzoic Acid

    OpenAIRE

    Shelton, Daniel R.; Tiedje, James M.

    1984-01-01

    A methanogenic consortium able to use 3-chlorobenzoic acid as its sole energy and carbon source was enriched from anaerobic sewage sludge. Seven bacteria were isolated from the consortium in mono- or coculture. They included: one dechlorinating bacterium (strain DCB-1), one benzoate-oxidizing bacterium (strain BZ-2), two butyrate-oxidizing bacteria (strains SF-1 and NSF-2), two H2-consuming methanogens (Methanospirillum hungatei PM-1 and Methanobacterium sp. strain PM-2), and a sulfate-reduci...

  19. Predicting the combinatorial effects of water activity, pH and organic acids on Listeria growth in media and complex food matrices.

    Science.gov (United States)

    Nyhan, L; Begley, M; Mutel, A; Qu, Y; Johnson, N; Callanan, M

    2018-09-01

    The aim of this study was to develop a model to predict growth of Listeria in complex food matrices as a function of pH, water activity and undissociated acetic and propionic acid concentration i.e. common food hurdles. Experimental growth curves of Listeria in food products and broth media were collected from ComBase, the literature and industry sources from which a bespoke secondary gamma model was constructed. Model performance was evaluated by comparing predictions to measured growth rates in growth media (BHI broth) and two adjusted food matrices (zucchini purée and béarnaise sauce). In general, observed growth rates were higher in broth than in the food matrices which resulted in the model over-estimating growth in the adjusted food matrices. In addition, model outputs were more accurate for conditions without acids, indicating that the organic acid component of the model was a source of inaccuracy. In summary, a new predictive growth model for innovating or renovating food products that rely on multi-hurdle technology was created. This study is the first to report on modelling of propionic acid as an inhibitor of Listeria in combination with other hurdles. Our findings provide valuable insights into predictive model design and performance and highlight the importance of experimental validation of models in real food matrices rather than laboratory media alone. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Model for conductometric detection of carbohydrates and alcohols as complexes with boric acid and borate ion in high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Bertrand, G.L.; Armstrong, D.W.

    1989-01-01

    In recent articles, Okada has demonstrated the utility of indirect conductometric detection of electrically neutral sugars and alcohols through their complexes in boric acid solution. The use of a boric acid eluent provides a highly sensitive means of detection for monosaccharides, lactose, and sugar alcohols but not for polysaccharides (other than lactose) and simple alcohols. Addition of sorbitol, mannitol, or fructose to the boric acid eluent allows detection of the polysaccharides and simple alcohols, as well as lactose, glucose, fructose, and presumably other monosaccharides and sugar alcohols. These results were interpreted in terms of the ability of an analyte to form either dissociated or undissociated complexes with boric acid. This interpretation was quantified with a mathematical description of the complexation equilibria and the conductivity due to ionic species. Unfortunately, the mathematical model contains some incorrect assumptions that severely limit the utility of the derived equations and may prevent optimization of this potentially important technique. We present here a more general mathematical model that does not suffer from these limitations

  1. Effet de l'acide indole butyrique, de l'acide gibbérellique et d'un inhibiteur d'éthylène sur la fructification et la qualité des fruits du piment cultivé sous serre froide

    Directory of Open Access Journals (Sweden)

    Dridi, B.

    2005-01-01

    Full Text Available Effect of Indole Butyric Acid, Gibberellic Acid and an Ethylene Inhibitor on Fructification and Fruit Quality of Pepper Grown under Unheated Plastic House. The yield and fruit quality of pepper grown under unheated plastic house are usually negatively affected by low night temperature occurring during four to five months, this disrupt the local market supply and restrict the export possibilities. The effect of indole butyric acid (AIB, gibberellic acid (GA3 and an ethylene inhibitor (AgNO3 on fructification and fruit quality of two hot and two sweet pepper varieties grown under unheated plastic house, was studied. These substances, sprayed once per week just before flower initiation of the first four bifurcations, stimulated flower initiation and development; AgNO3 produced a significant increase in flower buds (98% more than the control and reduced the buds abortion. Treatments did not affect bud flower and flower abortion, but increased fruit characteristics; treatment with AIB produced the longest fruits and the highest number of seed per fruit. On Beldi, hot pepper variety, gibberellic acid and indole butyric acid treatment increased fruit soluble solid content, citric acid, ascorbic acid concentration and chlorophyll a content, while AgNO3 treatment increased chlorophyll b concentration.

  2. Interaction of Dietary Fatty Acids with Tumour Necrosis Factor Family Cytokines during Colon Inflammation and Cancer

    Science.gov (United States)

    Straková, Nicol; Vaculová, Alena Hyršlová; Tylichová, Zuzana; Šafaříková, Barbora; Kozubík, Alois

    2014-01-01

    Intestinal homeostasis is precisely regulated by a number of endogenous regulatory molecules but significantly influenced by dietary compounds. Malfunction of this system may result in chronic inflammation and cancer. Dietary essential n-3 polyunsaturated fatty acids (PUFAs) and short-chain fatty acid butyrate produced from fibre display anti-inflammatory and anticancer activities. Both compounds were shown to modulate the production and activities of TNF family cytokines. Cytokines from the TNF family (TNF-α, TRAIL, and FasL) have potent inflammatory activities and can also regulate apoptosis, which plays an important role in cancer development. The results of our own research showed enhancement of apoptosis in colon cancer cells by a combination of either docosahexaenoic acid (DHA) or butyrate with TNF family cytokines, especially by promotion of the mitochondrial apoptotic pathway and modulation of NFκB activity. This review is focused mainly on the interaction of dietary PUFAs and butyrate with these cytokines during colon inflammation and cancer development. We summarised recent knowledge about the cellular and molecular mechanisms involved in such effects and outcomes for intestinal cell behaviour and pathologies. Finally, the possible application for the prevention and therapy of colon inflammation and cancer is also outlined. PMID:24876678

  3. Antibacterial activity of sphagnum acid and other phenolic compounds found in Sphagnum papillosum against food-borne bacteria.

    Science.gov (United States)

    Mellegård, H; Stalheim, T; Hormazabal, V; Granum, P E; Hardy, S P

    2009-07-01

    To identify the phenolic compounds in the leaves of Sphagnum papillosum and examine their antibacterial activity at pH appropriate for the undissociated forms. Bacterial counts of overnight cultures showed that whilst growth of Staphylococcus aureus 50084 was impaired in the presence of milled leaves, the phenol-free fraction of holocellulose of S. papillosum had no bacteriostatic effect. Liquid chromatography-mass spectrometry analysis of an acetone-methanol extract of the leaves detected eight phenolic compounds. Antibacterial activity of the four dominating phenols specific to Sphagnum leaves, when assessed in vitro as minimal inhibitory concentrations (MICs), were generally >2.5 mg ml(-1). MIC values of the Sphagnum-specific compound 'sphagnum acid' [p-hydroxy-beta-(carboxymethyl)-cinnamic acid] were >5 mg ml(-1). No synergistic or antagonistic effects of the four dominating phenols were detected in plate assays. Sphagnum-derived phenolics exhibit antibacterial activity in vitro only at concentrations far in excess of those found in the leaves. We have both identified the phenolic compounds in S. papillosum and assessed their antibacterial activity. Our data indicate that phenolic compounds in isolation are not potent antibacterial agents and we question their potency against food-borne pathogens.

  4. Specific substrate-driven changes in human faecal microbiota composition contrast with functional redundancy in short-chain fatty acid production.

    Science.gov (United States)

    Reichardt, Nicole; Vollmer, Maren; Holtrop, Grietje; Farquharson, Freda M; Wefers, Daniel; Bunzel, Mirko; Duncan, Sylvia H; Drew, Janice E; Williams, Lynda M; Milligan, Graeme; Preston, Thomas; Morrison, Douglas; Flint, Harry J; Louis, Petra

    2018-02-01

    The diet provides carbohydrates that are non-digestible in the upper gut and are major carbon and energy sources for the microbial community in the lower intestine, supporting a complex metabolic network. Fermentation produces the short-chain fatty acids (SCFAs) acetate, propionate and butyrate, which have health-promoting effects for the human host. Here we investigated microbial community changes and SCFA production during in vitro batch incubations of 15 different non-digestible carbohydrates, at two initial pH values with faecal microbiota from three different human donors. To investigate temporal stability and reproducibility, a further experiment was performed 1 year later with four of the carbohydrates. The lower pH (5.5) led to higher butyrate and the higher pH (6.5) to more propionate production. The strongest propionigenic effect was found with rhamnose, followed by galactomannans, whereas fructans and several α- and β-glucans led to higher butyrate production. 16S ribosomal RNA gene-based quantitative PCR analysis of 22 different microbial groups together with 454 sequencing revealed significant stimulation of specific bacteria in response to particular carbohydrates. Some changes were ascribed to metabolite cross-feeding, for example, utilisation by Eubacterium hallii of 1,2-propanediol produced from fermentation of rhamnose by Blautia spp. Despite marked inter-individual differences in microbiota composition, SCFA production was surprisingly reproducible for different carbohydrates, indicating a level of functional redundancy. Interestingly, butyrate formation was influenced not only by the overall % butyrate-producing bacteria in the community but also by the initial pH, consistent with a pH-dependent shift in the stoichiometry of butyrate production.

  5. The influence of stress conditions on the growth of selected lactic acid bacteria

    International Nuclear Information System (INIS)

    Bok, H.E.

    1985-01-01

    A study was undertaken to determine the effects of certain stress conditions on selected lactic acid bacteria. Where recontamination occurred, lactic acid bacteria was already the dominant bacterial group, with counts of higher than 10 6 /g in vacuum-packaged 'shelf stable' meat products after 1 week storage at 25 and 37 degrees Celsius respectively. Some of the isolates were capable of growing at a pH of 3,9. The minimum pH for growth of a specific culture was dependant on the type of acid that was used to lower the pH. Lactic and acetic acid had the highest inhibitory action. Hydrochloric and citric acid showed similar inhibitory effects, while the effects when using ascorbic acid or gluconic acid for lowering the pH were also fairly similar. Increase in the activity of certain lactic acid bacteria was noticed where the ratio of undissociated to dissociated citric acid in the medium was increased. After exceeding a concentration of 0,048 moles/l undissosiated citric acid in the medium, the activity of the majority of cultures was progressively inhibited. This phenomenon was also found with acetic acid for certain cultures. Selected lactic acid bacteria were resistant to an water activity (a (sub w)) of 0,94 in MRS broth, where NaCl or glycerol was used as a humectant. The minimum a (sub w) for growth was dependent on the type of humectant used. Concentrations of sodium benzoate and potassium sorbate were necessary to inhibit the majority of strains. The % inhibition by sodium benzoate and methyl paraben did not significantly change with a lowering in the pH of the growth medium. Except in the case of lactic acid, the different acids used to lower the pH of the medium did not have a significant effect on the % inhibition by the chemical preservatives. For the cocci, gamma D 10 values of between 0,82 and 1,29 kGy were recorded, whereas the lactobacilli were less resistant to gamma rays, with D 10 values of between 0,21 and 0,54 kGy

  6. TXNIP mediates the differential responses of A549 cells to sodium butyrate and sodium 4-phenylbutyrate treatment.

    Science.gov (United States)

    Jin, Xuefang; Wu, Nana; Dai, Juji; Li, Qiuxia; Xiao, XiaoQiang

    2017-02-01

    Sodium butyrate (NaBu) and sodium 4-phenylbutyrate (4PBA) have promising futures in cancer treatment; however, their underlying molecular mechanisms are not clearly understood. Here, we show A549 cell death induced by NaBu and 4PBA are not the same. NaBu treatment induces a significantly higher level of A549 cell death than 4PBA. A gene expression microarray identified more than 5000 transcripts that were altered (>1.5-fold) in NaBu-treated A549 cells, but fewer than 2000 transcripts that were altered in 4PBA. Moreover, more than 100 cell cycle-associated genes were greatly repressed by NaBu, but slightly repressed by 4PBA; few genes were significantly upregulated only in 4PBA-treated cells. Gene expression was further validated by other experiments. Additionally, A549 cells that were treated with these showed changes in glucose consumption, caspase 3/7 activation and histone modifications, as well as enhanced mitochondrial superoxide production. TXNIP was strongly induced by NaBu (30- to 40-fold mRNA) but was only slightly induced by 4PBA (two to fivefold) in A549 cells. TXNIP knockdown by shRNA in A549 cells significantly attenuated caspase 3/7 activation and restored cell viability, while TXNIP overexpression significantly increased caspase 3/7 activation and cell death only in NaBu-treated cells. Moreover, TXNIP also regulated NaBu- but not 4PBA-induced H4K5 acetylation and H3K4 trimethylation, possibly by increasing WDR5 expression. Finally, we demonstrated that 4PBA induced a mitochondrial superoxide-associated cell death, while NaBu did so mainly through a TXNIP-mediated pathway. The above data might benefit the future clinic application. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  7. Effects of β-hydroxy-β-methyl butyrate on working memory and cognitive flexibility in an animal model of aging.

    Science.gov (United States)

    Hankosky, Emily R; Sherrill, Luke K; Ruvola, Lauren A; Haake, Rachel M; Kim, Taehyeon; Hammerslag, Lindsey R; Kougias, Daniel G; Juraska, Janice M; Gulley, Joshua M

    2017-09-01

    Normal aging results in cognitive decline and nutritional interventions have been suggested as potential approaches for mitigating these deficits. Here, we used rats to investigate the effects of short- and long-term dietary supplementation with the leucine metabolite β-hydroxy-β-methyl butyrate (HMB) on working memory and cognitive flexibility. Beginning ∼12 months of age, male and female Long-Evans rats were given twice daily access to sipper tubes containing calcium HMB (450 mg/kg) or vehicle (285 mg/kg calcium lactate) in a sucrose solution (20% w/v). Supplementation continued for 1 or 7 months (middle- and old-age (OA) groups, respectively) before testing began. Working memory was assessed by requiring rats to respond on a previously sampled lever following various delays. Cognitive flexibility was assessed by training rats to earn food according to a visual strategy and then, once acquired, shifting to an egocentric response strategy. Treatment with HMB improved working memory performance in middle-age (MA) males and OA rats of both sexes. In the cognitive flexibility task, there was a significant age-dependent deficit in acquisition of the visual strategy that was not apparent in OA males treated with HMB. Furthermore, HMB ameliorated an apparent deficit in visual strategy acquisition in MA females. Together, these findings suggest that daily nutritional supplementation with HMB facilitates learning and improves working memory performance. As such, HMB supplementation may mitigate age-related cognitive deficits and may therefore be an effective tool to combat this undesirable feature of the aging process.

  8. Efficient derivation of functional hepatocytes from mouse induced pluripotent stem cells by a combination of cytokines and sodium butyrate

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qi; YANG Yang; ZHANG Jian; WANG Guo-ying; LIU Wei; QIU Dong-bo; HEI Zi-qing; YING Qi-long; CHEN Gui-hua

    2011-01-01

    Background Hepatocyte transplantation has been proposed as an alternative to whole-organ transplantation to support many forms of hepatic insufficiency.Unfortunately,the lack of donor livers makes it difficult to obtain enough viable human hepatocytes for hepatocyte-based therapies.Therefore,it is urgent to find new ways to provide ample hepatocytes.Induced pluripotent stem (iPS) cells,a breakthrough in stem cell research,may terminate these hinders for cell transplantation.For the promise of iPS cells to be realized in liver diseases,it is necessary to determine if and how efficient they can be differentiated into functional hepatocytes.Methods In this study,we directly compared the hepatic-differentiation capacity of mouse iPS cells and embryonic stem (ES) cells with three different induction approaches:conditions via embryonic body (EB) formation plus cytokines,conditions by combination of dimethyl sulfoxide and sodium butyrate and chemically defined,serum free monolayer conditions.Among these three induction conditions,more homogenous populations can be promoted under chemically defined,serum free conditions.The cells generated under these conditions exhibited hepatic functions in vitro,including glycogen storage,indocynine green (ICG) uptake and release as well as urea secretion.Although efficient hepatocytes differentiation from mouse iPS cells were observed,mouse iPS cells showed relatively lower hepatic induction efficiency compared with mouse ES cells.Results Mouse iPS cells would be efficiently differentiated into functional hepatocytes in vitro,which may be helpful in facilitating the development of hepatocytes for transplantation and for research on drug discovery.Conclusion We demonstrate that mouse iPS cells retain full potential for fetal liver development and describe procedures that facilitates the efficient generation of highly differentiated human hepatocyte-like cells from iPS cells in vitro.

  9. Polysaccharide utilization loci and nutritional specialization in a dominant group of butyrate-producing human colonic Firmicutes.

    Science.gov (United States)

    Sheridan, Paul O; Martin, Jennifer C; Lawley, Trevor D; Browne, Hilary P; Harris, Hugh M B; Bernalier-Donadille, Annick; Duncan, Sylvia H; O'Toole, Paul W; Scott, Karen P; Flint, Harry J

    2016-02-01

    Firmicutes and Bacteroidetes are the predominant bacterial phyla colonizing the healthy human large intestine. Whilst both ferment dietary fibre, genes responsible for this important activity have been analysed only in the Bacteroidetes , with very little known about the Firmicutes . This work investigates the carbohydrate-active enzymes (CAZymes) in a group of Firmicutes , Roseburia spp. and Eubacterium rectale , which play an important role in producing butyrate from dietary carbohydrates and in health maintenance. Genome sequences of 11 strains representing E. rectale and four Roseburia spp. were analysed for carbohydrate-active genes. Following assembly into a pan-genome, core, variable and unique genes were identified. The 1840 CAZyme genes identified in the pan-genome were assigned to 538 orthologous groups, of which only 26 were present in all strains, indicating considerable inter-strain variability. This analysis was used to categorize the 11 strains into four carbohydrate utilization ecotypes (CUEs), which were shown to correspond to utilization of different carbohydrates for growth. Many glycoside hydrolase genes were found linked to genes encoding oligosaccharide transporters and regulatory elements in the genomes of Roseburia spp. and E. rectale , forming distinct polysaccharide utilization loci (PULs). Whilst PULs are also a common feature in Bacteroidetes , key differences were noted in these Firmicutes , including the absence of close homologues of Bacteroides polysaccharide utilization genes, hence we refer to Gram-positive PULs (gpPULs). Most CAZyme genes in the Roseburia / E. rectale group are organized into gpPULs. Variation in gpPULs can explain the high degree of nutritional specialization at the species level within this group.

  10. Isoquercitrin Esters with Mono- or Dicarboxylic Acids: Enzymatic Preparation and Properties.

    Science.gov (United States)

    Vavříková, Eva; Langschwager, Fanny; Jezova-Kalachova, Lubica; Křenková, Alena; Mikulová, Barbora; Kuzma, Marek; Křen, Vladimír; Valentová, Kateřina

    2016-06-07

    A series of isoquercitrin (quercetin-3-O-β-d-glucopyranoside) esters with mono- or dicarboxylic acids was designed to modulate hydro- and lipophilicity and biological properties. Esterification of isoquercitrin was accomplished by direct chemoenzymatic reaction using Novozym 435 (lipase from Candida antarctica), which accepted C₅- to C12-dicarboxylic acids; the shorter ones, such as oxalic (C₂), malonic (C₃), succinic (C₄) and maleic (C₄) acids were not substrates of the lipase. Lipophilicity of monocarboxylic acid derivatives, measured as log P, increased with the chain length. Esters with glutaric and adipic acids exhibited hydrophilicity, and the dodecanedioic acid hemiester was more lipophilic. All derivatives were less able to reduce Folin-Ciocalteau reagent (FCR) and scavenge DPPH (1,1-diphenyl-2-picrylhydrazyl) than isoquercitrin; ABTS (2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)) radical-scavenging activity was comparable. Dodecanoate and palmitate were the least active in FCR and ABTS scavenging; dodecanoate and hemiglutarate were the strongest DPPH scavengers. In contrast, most derivatives were much better inhibitors of microsomal lipoperoxidation than isoquercitrin; butyrate and hexanoate were the most efficient. Anti-lipoperoxidant activity of monocarboxylic derivatives, except acetates, decreased with increasing aliphatic chain. The opposite trend was noted for dicarboxylic acid hemiesters, isoquercitrin hemidodecanedioate being the most active. Overall, IQ butyrate, hexanoate and hemidodecanedioate are the most promising candidates for further studies.

  11. Use of hemicellulose hydrolate in the production of fatty acids. Udnyttelse af hemicellulosehydrolysat til fremstilling af fede syrer

    Energy Technology Data Exchange (ETDEWEB)

    Hamann Spendler, F.

    1988-06-15

    Cellulose fibers can be produced from straw by an organosolve process or similar week acid hydrolysis. The hydrolysate sugars can further be converted to volatile fatty acids by fermentation. The composition of the hydrolysate was analyzed. Xylose was predominant, but in a lower contration than expected from the overall COD-content. This study has shown that if the fermentation is carried out in a fixed film reactor, composition of the acid mixture in the broth yield and conversion speed are strongly dependent on pH and retention time. The production of the more valuable acids, such as lactic acid and butyric acid is favored by a pH around 6,0. Lactid acid should be produced at low retention times of app. 4 hours or less, whereas butyric acid requires retention times of 40 - 60 hours. Attempt to recover the acids by extraction with a solvent compose of tertiary amines and nonylphenol did not prove to be succesful. Other ways of recovering the acids reported in the litterature have been studied and are going to be tested out in the second phase of the project.

  12. Influence of pH on organic acid production by Clostridium sporogenes in test tube and fermentor cultures.

    Science.gov (United States)

    Montville, T J; Parris, N; Conway, L K

    1985-01-01

    The influence of pH on the growth parameters of and the organic acids produced by Clostridium sporogenes 3121 cultured in test tubes and fermentors at 35 degrees C was examined. Specific growth rates in the fermentor maintained at a constant pH ranged from 0.20 h-1 at pH 5.00 to 0.86 h-1 at pH 6.50. Acetic acid was the primary organic acid in supernatants of 24-h cultures; total organic acid levels were 2.0 to 22.0 mumol/ml. Supernatants from pH 5.00 and 5.50 cultures had total organic acid levels less than one-third of those found at pH 6.00 to 7.00. The specific growth rates of the test tube cultures ranged from 0.51 h-1 at pH 5.00 to 0.95 h-1 at pH 6.50. The pH of the medium did not affect the average total organic acid content (51.5 mumol/ml) but did affect the distribution of the organic acids, which included formic, acetic, propionic, butyric, 3-(p-hydroxyphenyl)propionic, and 3-phenylpropionic acids. Butyric acid levels were lower, but formic and propionic acid levels were higher, at pH 5.00 than at other pHs. PMID:4004207

  13. A Review of the Metabolic Origins of Milk Fatty Acids

    Directory of Open Access Journals (Sweden)

    Anamaria COZMA

    2013-08-01

    Full Text Available Milk fat and its fatty acid profile are important determinants of the technological, sensorial, and nutritional properties of milk and dairy products. The two major processes contributing to the presence of fatty acids in ruminant milk are the mammary lipogenesis and the lipid metabolism in the rumen. Among fatty acids, 4:0 to 12:0, almost all 14:0 and about a half of 16:0 in milk fat derive from de novo synthesis within the mammary gland. De novo synthesis utilizes as precursors acetate and butyrate produced through carbohydrates ruminal fermentation and involves acetyl-CoA carboxylase and fatty acid synthetase as key enzymes. The rest of 16:0 and all of the long-chain fatty acids derive from mammary uptake of circulating lipoproteins and nonesterified fatty acids that originate from digestive absorption of lipids and body fat mobilization. Further, long-chain fatty acids as well as medium-chain fatty acids entering the mammary gland can be desaturated via Δ-9 desaturase, an enzyme that acts by adding a cis-9-double bond on the fatty acid chain. Moreover, ruminal biohydrogenation of dietary unsaturated fatty acids results in the formation of numerous fatty acids available for incorporation into milk fat. Ruminal biohydrogenation is performed by rumen microbial population as a means of protection against the toxic effects of polyunsaturated fatty acids. Within the rumen microorganisms, bacteria are principally responsible for ruminal biohydrogenation when compared to protozoa and anaerobic fungi.

  14. Changes in short-chain fatty acid plasma profile incurred by dietary fiber composition

    DEFF Research Database (Denmark)

    Knudsen, Knud Erik Bach; Jørgensen, Henry Johs. Høgh; Theil, Peter Kappel

    2016-01-01

    Pigs were used as model for humans to study the impact of dietary fiber (DF), the main substrate for microbial fermentation, on plasma profile of short-chain fatty acids (SCFA; acetate, propionate, and butyrate). Six female pigs fitted with catheters in the portal vein and mesenteric artery and w...... higher net absorption of butyrate (2.4–4.0 vs. 1.6 mmol/h; P ...Pigs were used as model for humans to study the impact of dietary fiber (DF), the main substrate for microbial fermentation, on plasma profile of short-chain fatty acids (SCFA; acetate, propionate, and butyrate). Six female pigs fitted with catheters in the portal vein and mesenteric artery...... >> arabinoxylan >> β-glucan, whereas in the WWG, WAF, and RAF, diets it was arabinoxylan >> cellulose > β-glucan. The diets were fed to the pigs during 3 wk in a crossover design. Within an experimental week, WFL was supplied on Days 1 through 3 and WWG, WAF, or RAF was supplied during Days 4 through 7. Fasting...

  15. Safety and efficacy of 0.1% clobetasone butyrate eyedrops in the treatment of dry eye in Sjögren syndrome.

    Science.gov (United States)

    Aragona, Pasquale; Spinella, Rosaria; Rania, Laura; Postorino, Elisa; Sommario, Margherita S; Roszkowska, Anna M; Puzzolo, Domenico

    2013-01-01

    To study the effects of a low administration rate and low concentration (0.1%) of clobetasone butyrate eyedrops in patients with Sjögren syndrome (SS).
 This prospective, double-masked, randomized, placebo-controlled study included 40 subjects divided into 2 treatment groups: group 1 (2% polyvinylpyrrolidone eyedrops and placebo) and group 2 (2% polyvinylpyrrolidone and 0.1% clobetasone butyrate, 1 drop BID). The treatment lasted for 30 days, with visits at enrollment, baseline, day 15, day 30, and after 15 days of treatment discontinuation. At each visit, symptoms questionnaire, tear film break-up time, corneal fluorescein stain, lissamine green stain, conjunctival impression cytology for human leukocyte antigen-DR (HLA-DR) expression, intraocular pressure (IOP) measurement, and fundus examination were performed. 
 No changes in IOP or fundus examination were observed in either group at each time point. Group 1 patients showed at day 30 a statistically significant amelioration of symptoms and reduction of HLA-DR expression. No changes in other parameters were detected. Group 2 patients showed at day 15 a statistically significant improvement of corneal and conjunctival stain versus baseline values and group 1 at the same time; after 30 days the symptoms score was statistically significantly better than baseline values and group 1 at the same time. The HLA-DR expression and the epithelial cells area were statistically significantly reduced versus baseline and group 1 at the same time. 
 Anti-inflammatory therapy is critical for the treatment of SS dry eye. Clobetasone butyrate, at low dosage, proved to be safe and effective in treating this condition.

  16. Regulation of the Docosapentaenoic Acid/Docosahexaenoic Acid Ratio (DPA/DHA Ratio) in Schizochytrium limacinum B4D1.

    Science.gov (United States)

    Zhang, Ke; Li, Huidong; Chen, Wuxi; Zhao, Minli; Cui, Haiyang; Min, Qingsong; Wang, Haijun; Chen, Shulin; Li, Demao

    2017-05-01

    Docosapentaenoic acid/docosahexaenoic acid ratio (DPA/DHA ratio) in Schizochytrium was relatively stable. But ideally the ratio of DPA/DHA will vary according to the desired end use. This study reports several ways of modulating the DPA/DHA ratio. Incubation times changed the DPA/DHA ratio, and changes in this ratio were associated with the variations in the saturated fatty acid (SFAs) content. Propionic acid sharply increased the SFAs content in lipids, dramatically decreased the even-chain SFAs content, and reduced the DPA/DHA ratio. Pentanoic acid (C5:0) and heptanoic acid (C7:0) had similar effects as propionic acid, whereas butyric acid (C4:0), hexanoic acid (C6:0), and octanoic acid (C8:0) did not change the fatty acid profile and the DPA/DHA ratio. Transcription analyses show that β-oxidation might be responsible for this phenomenon. Iodoacetamide upregulated polyunsaturated fatty acid (PUFA) synthase genes, reduced the DHA content, and improved the DPA content, causing the DPA/DHA ratio to increase. These results present new insights into the regulation of the DPA/DHA ratio.

  17. Transcriptional Response to Lactic Acid Stress in the Hybrid Yeast Zygosaccharomyces parabailii.

    Science.gov (United States)

    Ortiz-Merino, Raúl A; Kuanyshev, Nurzhan; Byrne, Kevin P; Varela, Javier A; Morrissey, John P; Porro, Danilo; Wolfe, Kenneth H; Branduardi, Paola

    2018-03-01

    Lactic acid has a wide range of applications starting from its undissociated form, and its production using cell factories requires stress-tolerant microbial hosts. The interspecies hybrid yeast Zygosaccharomyces parabailii has great potential to be exploited as a novel host for lactic acid production, due to high organic acid tolerance at low pH and a fermentative metabolism with a high growth rate. Here we used mRNA sequencing (RNA-seq) to analyze Z. parabailii 's transcriptional response to lactic acid added exogenously, and we explore the biological mechanisms involved in tolerance. Z. parabailii contains two homeologous copies of most genes. Under lactic acid stress, the two genes in each homeolog pair tend to diverge in expression to a significantly greater extent than under control conditions, indicating that stress tolerance is facilitated by interactions between the two gene sets in the hybrid. Lactic acid induces downregulation of genes related to cell wall and plasma membrane functions, possibly altering the rate of diffusion of lactic acid into cells. Genes related to iron transport and redox processes were upregulated, suggesting an important role for respiratory functions and oxidative stress defense. We found differences in the expression profiles of genes putatively regulated by Haa1 and Aft1/Aft2, previously described as lactic acid responsive in Saccharomyces cerevisiae Furthermore, formate dehydrogenase ( FDH ) genes form a lactic acid-responsive gene family that has been specifically amplified in Z. parabailii in comparison to other closely related species. Our study provides a useful starting point for the engineering of Z. parabailii as a host for lactic acid production. IMPORTANCE Hybrid yeasts are important in biotechnology because of their tolerance to harsh industrial conditions. The molecular mechanisms of tolerance can be studied by analyzing differential gene expression under conditions of interest and relating gene expression patterns

  18. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass.

    Science.gov (United States)

    Wang, Jufang; Lin, Meng; Xu, Mengmeng; Yang, Shang-Tian

    Biomass represents an abundant carbon-neutral renewable resource which can be converted to bulk chemicals to replace petrochemicals. Carboxylic acids have wide applications in the chemical, food, and pharmaceutical industries. This chapter provides an overview of recent advances and challenges in the industrial production of various types of carboxylic acids, including short-chain fatty acids (acetic, propionic, butyric), hydroxy acids (lactic, 3-hydroxypropionic), dicarboxylic acids (succinic, malic, fumaric, itaconic, adipic, muconic, glucaric), and others (acrylic, citric, gluconic, pyruvic) by anaerobic fermentation. For economic production of these carboxylic acids as bulk chemicals, the fermentation process must have a sufficiently high product titer, productivity and yield, and low impurity acid byproducts to compete with their petrochemical counterparts. System metabolic engineering offers the tools needed to develop novel strains that can meet these process requirements for converting biomass feedstock to the desirable product.

  19. Alanine/epr pellet dosimeter using poly(vinyl butyral-co-vinyl alcohol-co-vinyl acetate) copolymer as a binder for radiation dosimetry

    International Nuclear Information System (INIS)

    Beshir, W.B.; Ezz El-Din, H.M.; Abdel-fatth, A.A.; Ebraheem, S.

    2005-01-01

    A new alanine pellet dosimeter was developed for gamma and electron beam radiation dosimetry. Alanine powder was mixed with a new binding material, poly(vinyl butyral-co-vinyl alcohol-co-vinyl acetate) copolymer. Pellets were prepared by pressing fine powder alanine with 60% copolymer binder by using hydraulic press and a specially designed pressing die. The radiation-formed stable free radicals were analysed by using electron paramagnetic resonance (EPR) spectroscopy. The useful dose range of these pellets was found to ranges from 1 to 80 kGy. The stability of the radiation- induced response was also studied

  20. Sodium butyrate affects the cytotoxic and mutagenic response of V79 Chinese hamster cells to the genotoxic agents, daunorubicin and U.V. radiation

    International Nuclear Information System (INIS)

    Pani, B.; Babudri, N.; Giancotti, V.; Russo, E.

    1984-01-01

    It has been suggested that conditions which lead to modifications in the chromatin structure could be responsible for an increased accessibility of DNA to genotoxic agents in eukaryotic cells. With this in mind, the cytotoxic and mutagenic activity of the anthracycline antibiotic, daunorubicin, and of UV radiation was assayed on V79 Chinese hamster cells pretreated or not with 5 mM sodium butyrate, an agent known to induce modifications in the chromatin structure: this treatment in fact proved to induce the hyperacetylation of the core histones, and moreover to enhance the cytotoxic response of the cells to both daunorubicin and UV radiation and the mutagenic response to daunorubicin. (orig.)

  1. Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate

    Energy Technology Data Exchange (ETDEWEB)

    Saldanha, Sabita N., E-mail: sabivan@uab.edu [Department of Biology, University of Alabama at Birmingham, 175 Campbell Hall, 1300 University Boulevard, Birmingham, AL 35294 (United States); Department of Biological Sciences, Alabama State University, Montgomery, AL 36104 (United States); Kala, Rishabh [Department of Biology, University of Alabama at Birmingham, 175 Campbell Hall, 1300 University Boulevard, Birmingham, AL 35294 (United States); Tollefsbol, Trygve O., E-mail: trygve@uab.edu [Department of Biology, University of Alabama at Birmingham, 175 Campbell Hall, 1300 University Boulevard, Birmingham, AL 35294 (United States); Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Comprehensive Diabetes Research Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States)

    2014-05-15

    Bioactive compounds are considered safe and have been shown to alter genetic and epigenetic profiles of tumor cells. However, many of these changes have been reported at molecular concentrations higher than physiologically achievable levels. We investigated the role of the combinatorial effects of epigallocatechin gallate (EGCG), a predominant polyphenol in green tea, and sodium butyrate (NaB), a dietary microbial fermentation product of fiber, in the regulation of survivin, which is an overexpressed anti-apoptotic protein in colon cancer cells. For the first time, our study showed that the combination treatment induced apoptosis and cell cycle arrest in RKO, HCT-116 and HT-29 colorectal cancer cells. This was found to be regulated by the decrease in HDAC1, DNMT1, survivin and HDAC activity in all three cell lines. A G2/M arrest was observed for RKO and HCT-116 cells, and G1 arrest for HT-29 colorectal cancer cells for combinatorial treatment. Further experimentation of the molecular mechanisms in RKO colorectal cancer (CRC) cells revealed a p53-dependent induction of p21 and an increase in nuclear factor kappa B (NF-κB)-p65. An increase in double strand breaks as determined by gamma-H2A histone family member X (γ-H2AX) protein levels and induction of histone H3 hyperacetylation was also observed with the combination treatment. Further, we observed a decrease in global CpG methylation. Taken together, these findings suggest that at low and physiologically achievable concentrations, combinatorial EGCG and NaB are effective in promoting apoptosis, inducing cell cycle arrest and DNA-damage in CRC cells. - Highlights: • EGCG and NaB as a combination inhibits colorectal cancer cell proliferation. • The combination treatment induces DNA damage, G2/M and G1 arrest and apoptosis. • Survivin is effectively down-regulated by the combination treatment. • p21 and p53 expressions are induced by the combination treatment. • Epigenetic proteins DNMT1 and HDAC1 are

  2. Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate

    International Nuclear Information System (INIS)

    Saldanha, Sabita N.; Kala, Rishabh; Tollefsbol, Trygve O.

    2014-01-01

    Bioactive compounds are considered safe and have been shown to alter genetic and epigenetic profiles of tumor cells. However, many of these changes have been reported at molecular concentrations higher than physiologically achievable levels. We investigated the role of the combinatorial effects of epigallocatechin gallate (EGCG), a predominant polyphenol in green tea, and sodium butyrate (NaB), a dietary microbial fermentation product of fiber, in the regulation of survivin, which is an overexpressed anti-apoptotic protein in colon cancer cells. For the first time, our study showed that the combination treatment induced apoptosis and cell cycle arrest in RKO, HCT-116 and HT-29 colorectal cancer cells. This was found to be regulated by the decrease in HDAC1, DNMT1, survivin and HDAC activity in all three cell lines. A G2/M arrest was observed for RKO and HCT-116 cells, and G1 arrest for HT-29 colorectal cancer cells for combinatorial treatment. Further experimentation of the molecular mechanisms in RKO colorectal cancer (CRC) cells revealed a p53-dependent induction of p21 and an increase in nuclear factor kappa B (NF-κB)-p65. An increase in double strand breaks as determined by gamma-H2A histone family member X (γ-H2AX) protein levels and induction of histone H3 hyperacetylation was also observed with the combination treatment. Further, we observed a decrease in global CpG methylation. Taken together, these findings suggest that at low and physiologically achievable concentrations, combinatorial EGCG and NaB are effective in promoting apoptosis, inducing cell cycle arrest and DNA-damage in CRC cells. - Highlights: • EGCG and NaB as a combination inhibits colorectal cancer cell proliferation. • The combination treatment induces DNA damage, G2/M and G1 arrest and apoptosis. • Survivin is effectively down-regulated by the combination treatment. • p21 and p53 expressions are induced by the combination treatment. • Epigenetic proteins DNMT1 and HDAC1 are

  3. Effects of volatile fatty acids on propionate metabolism and gluconeogenesis in caprine hepatocytes

    International Nuclear Information System (INIS)

    Aiello, R.J.; Armentano, L.E.

    1987-01-01

    Isolated caprine hepatocytes were incubated with fatty acids of various chain lengths. Short-chain fatty acids effects on rates of gluconeogenesis and oxidation from [2- 14 C] propionate were determined. Additions of glucose (2.5 mM) had no effect on hepatic [2- 14 C]-propionate metabolism in the presence and absence of amino acids. A complete mixture of amino acids increased label incorporation from [2- 14 C] propionate into [ 14 C] glucose by 22%. Butyrate inhibited [2- 14 C] propionate metabolism and increased the apparent Michaelis constant for [2- 14 C] propionate incorporation into [ 14 C] glucose from 2.4 +/- 1.5 to 5.6 +/- .9 mM. Butyrate's effects on propionate were similar in the presence and absence of L-carnitine (1 mM). Isobutyrate, 2-methylbutyrate, and valerate (1.25 mM) had no effect on [ 14 C] glucose production but decreased 14 CO 2 production to 57, 61, and 54% of the control [2- 14 C] propionate (1.25 mM). This inhibition on 14 CO 2 was not competitive. Isovalerate had no effect on either [2- 14 C] propionate incorporation into glucose of CO 2 . An increase in ratio of [ 14 C] glucose to 14 CO 2 from [2- 14 C]-propionate demonstrated that short-chain fatty acids other than butyrate do not inhibit gluconeogenesis from propionate. In addition, fatty acids that generate a net synthesis of intracellular oxaloacetate may partition propionate carbons toward gluconeogenic rather than oxidative pathways in goat hepatocytes

  4. Refractive index modulation in polymer film doped with diazo Meldrum's acid

    Science.gov (United States)

    Zanutta, Alessio; Villa, Filippo; Bertarelli, Chiara; Bianco, Andrea

    2016-08-01

    Diazo Meldrum's acid undergoes a photoreaction induced by UV light and it is used as photosensitizer in photoresists. Upon photoreaction, a change in refractive index occurs, which makes this system interesting for volume holography. We report on the sublimation effect at room temperature and the effect of photoirradiation on the refractive index in thin films of CAB (Cellulose acetate butyrate) doped with different amount of diazo Meldrum's acid. A net modulation of the refractive index of 0.01 is achieved with 40% of doping ratio together with a reduction of the film thickness.

  5. Influence of organic acids and organochlorinated insecticides on metabolism of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Pejin Dušanka J.

    2005-01-01

    Full Text Available Saccharomyces cerevisiae is exposed to different stress factors during the production: osmotic, temperature, oxidative. The response to these stresses is the adaptive mechanism of cells. The raw materials Saccharomyces cerevisiae is produced from, contain metabolism products of present microorganisms and protective agents used during the growth of sugar beet for example the influence of acetic and butyric acid and organochlorinated insecticides, lindan and heptachlor, on the metabolism of Saccharomyces cerevisiae was investigated and presented in this work. The mentioned compounds affect negatively the specific growth rate, yield, content of proteins, phosphorus, total ribonucleic acids. These compounds influence the increase of trechalose and glycogen content in the Saccharomyces cerevisiae cells.

  6. Effect of Wheat Dietary Fiber Particle Size during Digestion In Vitro on Bile Acid, Faecal Bacteria and Short-Chain Fatty Acid Content.

    Science.gov (United States)

    Dziedzic, Krzysztof; Szwengiel, Artur; Górecka, Danuta; Gujska, Elżbieta; Kaczkowska, Joanna; Drożdżyńska, Agnieszka; Walkowiak, Jarosław

    2016-06-01

    The influence of bile acid concentration on the growth of Bifidobacterium spp. and Lactobacillus spp. bacteria was demonstrated. Exposing these bacteria to the environment containing bile acid salts, and very poor in nutrients, leads to the disappearance of these microorganisms due to the toxic effect of bile acids. A multidimensional analysis of data in the form of principal component analysis indicated that lactic acid bacteria bind bile acids and show antagonistic effect on E. coli spp. bacteria. The growth in E. coli spp. population was accompanied by a decline in the population of Bifidobacterium spp. and Lactobacillus spp. with a simultaneous reduction in the concentration of bile acids. This is direct proof of acid binding ability of the tested lactic acid bacteria with respect to cholic acid, lithocholic acid and deoxycholic acid. This research demonstrated that the degree of fineness of wheat dietary fibre does not affect the sorption of bile acids and growth of some bacteria species; however, it has an impact on the profile of synthesized short-chained fatty acids. During the digestion of a very fine wheat fibre fraction (WF 90), an increase in the concentration of propionic and butyric acids, as compared with the wheat fiber fraction of larger particles - WF 500, was observed. Our study suggested that wheat fibre did not affect faecal bacteria growth, however, we observed binding of bile acids by Bifidobacterium spp. and Lactobacillus spp.

  7. Development of Quantitative Competitive PCR and Absolute Based Real-Time PCR Assays for Quantification of The Butyrate Producing Bacterium: Butyrivibrio fibrisolvens

    Directory of Open Access Journals (Sweden)

    Mojtaba Tahmoorespur

    2016-04-01

    Full Text Available Introduction Butyrivibrio fibrisolvens strains are presently recognized as the major butyrate-producing bacteria found in the rumen and digestive track of many animals and also in the human gut. In this study we reported the development of two DNA based techniques, quantitative competitive (QC PCR and absolute based Real-Time PCR, for enumerating Butyrivibrio fibrisolvens strains. Despite the recent introduction of real-time PCR method for the rapid quantification of the target DNA sequences, use of quantitative competitive PCR (QC-PCR technique continues to play an important role in nucleic acid quantification since it is more cost effective. The procedure relies on the co-amplification of the sequence of interest with a serially diluted synthetic DNA fragment of the known concentration (competitor, using the single set primers. A real-time polymerase chain reaction is a laboratory technique of molecular biology based on the polymerase chain reaction (PCR. It monitors the amplification of a targeted DNA molecule during the PCR. Materials and Methods At first reported species-specific primers targeting the 16S rDNA region of the bacterium Butyrivibrio fibrisolvens were used for amplifying a 213 bp fragment. A DNA competitor differing by 50 bp in length from the 213 bp fragment was constructed and cloned into pTZ57R/T vector. The competitor was quantified by NanoDrop spectrophotometer and serially diluted and co-amplified by PCR with total extracted DNA from rumen fluid samples. PCR products were quantified by photographing agarose gels and analyzed with Image J software and the amount of amplified target DNA was log plotted against the amount of amplified competitor. Coefficient of determination (R2 was used as a criterion of methodology precision. For developing the Real-time PCR technique, the 213 bp fragment was amplified and cloned into pTZ57R/T was used to draw a standard curve. Results and Discussion The specific primers of Butyrivibrio

  8. Organic [6,6]-phenyl-C61-butyric-acid-methyl-ester field effect transistors: Analysis of the contact properties by combined photoemission spectroscopy and electrical measurements

    Science.gov (United States)

    Scheinert, S.; Grobosch, M.; Sprogies, J.; Hörselmann, I.; Knupfer, M.; Paasch, G.

    2013-05-01

    Carrier injection barriers determined by photoemission spectroscopy for organic/metal interfaces are widely accepted to determine the performance of organic field-effect transistors (OFET), which strongly depends on this interface at the source/drain contacts. This assumption is checked here in detail, and a more sophisticated connection is presented. According to the preparation process described in our recently published article [S. Scheinert, J. Appl. Phys. 111, 064502 (2012)], we prepared PCBM/Au and PCBM/Al samples to characterize the interface by photoemission and electrical measurements of PCBM based OFETs with bottom and top (TOC) contacts, respectively. The larger drain currents for TOC OFETs indicate the presence of Schottky contacts at source/drain for both metals. The hole injection barrier as determined by photoemission is 1.8 eV for both Al and Au. Therefore, the electron injection barriers are also the same. In contrast, the drain currents are orders of magnitude larger for the transistors with the Al contacts than for those with the Au contacts. We show that indeed the injection is determined by two other properties measured also by photoemission, the (reduced) work functions, and the interface dipoles, which have different sign for each contact material. In addition, we demonstrate by core-level and valence band photoemission that the deposition of gold as top contact onto PCBM results in the growth of small gold clusters. With increasing gold coverage, the clusters grow inside and begin to form a metallic, but not uniform, closed film onto PCBM.

  9. Continuous fermentation and kinetic experiments for the conversion of crude glycerol derived from second-generation biodiesel into 1,3 propanediol and butyric acid

    DEFF Research Database (Denmark)

    Varrone, Cristiano; Floriotis, Georgis; Heggeset, Tonje M. B.

    2017-01-01

    (CSTR) were set up with different inoculum types and growth media. The distribution of metabolic products under variable operating conditions was determined. All MMC were characterized from a kinetic point of view and overall stoichiometric reactions were constructed. Changes in the microbial...

  10. Effect of different concentrations of indole butyric acid (IBA) and age of shoot on air layering of mango (Mangifera indica Linn.)

    International Nuclear Information System (INIS)

    Naz, S.; Aslam, M.

    2003-01-01

    The experiment was conducted at Faiz-e-Chamman Mango Orchard, Khanewal Road, Multan. The research was conducted to standardize the method of air layering in mango under climatic conditions of Multan. Different concentrations of IBA, 1000, 2000, 3000, 4000, 5000 ppm and control (0,000 ppm), were applied on one, two and three years old shoots of mango variety-Sindhri. The data were collected on number of roots and length of roots. The results showed maximum number of roots in two years old shoot treated with IBA concentration at the rate of 2000 ppm, whereas one year old shoot failed to produce roots with the application of different concentrations of IBA except 2000 ppm IBA concentration. There were no significant differences in length of roots among shoots treated with IBA concentrations of 1000, 2000, 3000 ppm and control, which produced maximum length of roots. Shoots treated with IBA concentration of 5000 ppm resulted in minimum length of roots.(author)

  11. Extraction and HPLC- UV Analysis of C60, C70, and [6,6]-phenyl C61-butyric acid methyl ester in Synthetic and Natural Waters

    Science.gov (United States)

    Studies have shown that C60 fullerene can form stable colloidal suspensions in water that result in C60 aqueous concentrations many orders of magnitude above C60's aqueous solubility; however, quantitative methods for the analysis of C60 and other fullerenes in environmental medi...

  12. EVALUATION OF THE CONCENTRATION OF THE ACETIC, BUTYRIC AND PROPIONIC ACIDS IN THE CO-CULTURE: ASPERGILLUS ORYZAE-BUTYRIVIBRIO FIBRISOLVENS

    OpenAIRE

    LARA MANTILLA, C.

    2008-01-01

    Se realizó un estudio en co-cultivo entre el hongo Aspergillus oryzae y la bacteria ruminal celulolítica Butyrivibrio fibrisolvens, cuyo objetivo fue determinar "in vitro" el efecto del hongo sobre la producción de los ácidos acético, propiónico y butírico por parte de la bacteria. El medio de cultivo se preparó utilizando líquido ruminal filtrado, centrifugado, autoclavado y diluído al 40% con agua, y 0,05 p/v de pastos Angleton (Dichamthium aristatum) (Córdoba, Colombia). Las condiciones de...

  13. Comparing the effects of different dietary organic acids on the growth, intestinal short-chain fatty acids, and liver histopathology of red hybrid tilapia (Oreochromis sp.) and potential use of these as preservatives.

    Science.gov (United States)

    Ebrahimi, Mahdi; Daeman, Nor Hafizah; Chong, Chou Min; Karami, Ali; Kumar, Vikas; Hoseinifar, Seyed Hossein; Romano, Nicholas

    2017-08-01

    Dietary organic acids are increasingly being investigated as a potential means of improving growth and nutrient utilization in aquatic animals. A 9-week study was performed to compare equal amounts (2%) of different organic acids (sodium butyrate, acetate, propionate, or formate) on the growth, muscle proximate composition, fatty acid composition, cholesterol and lipid peroxidation, differential cell counts, plasma biochemistry, intestinal short-chain fatty acid (SCFA) level, and liver histopathology to red hybrid tilapia (Oreochromis sp.) (initial mean weight of 2.87 g). A second experiment was performed to determine their effects on lipid peroxidation and trimethylamine (TMA) when added at 1% to tilapia meat and left out for 24 h. The results of the first experiment showed no treatment effect to growth, feeding efficiencies, or muscle fatty acid composition, but all dietary organic acids significantly decreased intestinal SCFA. Dietary butyrate and propionate significantly decreased muscle lipid peroxidation compared to the control group, but the dietary formate treatment had the lowest lipid peroxidation compared to all treatments. Muscle crude protein and lipid in tilapia fed the formate diet were significantly lower and higher, respectively, and showed evidence of stress based on the differential cell counts, significantly higher plasma glucose and liver glycogen, as well as inflammatory responses in the liver. Although a potential benefit of dietary organic acids was a reduction to lipid peroxidation, this could be accomplished post-harvest by direct additions to the meat. In addition, inclusions of butyrate and propionate to tilapia meat significantly decreased TMA, which might be a more cost-effective option to improve the shelf life of tilapia products.

  14. Growth of Synthrophomonas wolfei on unsaturated short chain fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Amos, D.A.; McInerney, M.J. (Univ. of Oklahoma, Norman, OK (United States))

    1990-01-01

    The anaerobic fatty acid-degrading syntrophic bacterium, Syntrophomonas wolfei, was grown in pure culture with either trans-2-pentenoate, trans-2-hexenoate, trans-3-hexenoate, or trans, trans-2, 4-hexadienoate as the substrate. Trans-2-pentenoate was fermented to acetate, propionate, butyrate, and valerate. Acetate, butyrate and hexanoate were produced from the six-carbon mono- and di-unsaturated acids. Propionate was also product from the trans, trans-2, 4-hexadienoate which suggested that compound was degraded by another pathway in addition to [beta]-oxidation. The transient production of trans-2-hexenoate from trans-3-hexenoate suggested that the position of the double bound shifted from carbon-3 to carbon-2 prior to [beta]-oxidation. The specific growth rate decreased with increasing carbon length and degree of unsaturation. Molar growth yields ranged from 8.4 to 17.5 mg (dry wt.) per mmol and suggested that energy was conserved not only from substrate-level phosphorylation, but also from the reduction of unsaturated substrate.

  15. A 9-vinyladenine-based molecularly imprinted polymeric membrane for the efficient recognition of plant hormone 1H-indole-3-acetic acid

    International Nuclear Information System (INIS)

    Chen Changbao; Chen Yanjun; Zhou Jie; Wu Chunhui

    2006-01-01

    9-Vinyladenine was synthesized as a novel functional monomer for molecular imprinting techniques and its structure was established with elemental analysis and 1 H NMR spectroscopy. The binding mechanism between this functional monomer 9-vinyladenine and the plant hormone 1 H-indole-3-acetic acid in acetonitrile was studied with UV-vis spectrophotometry. Based on this study, using 1 H-indole-3-acetic acid as a template molecule, a specific 9-vinyladenine-based molecularly imprinted polymeric membrane was prepared. Then, the resultant polymeric membrane morphologies were visualized with scanning electron microscopy, and the membrane permselectivity for 1 H-indole-3-acetic acid, 1 H-indole-3-butyric acid and kinetin was tested with separate experiments and competitive diffusion experiments. These results showed that the imprinted polymeric membrane prepared with 9-vinyladenine exhibited higher transport selectivity for the template molecule 1 H-indole-3-acetic acid than 1 H-indole-3-butyric acid or kinetin. The membrane prepared with 9-vinyladenine also took on higher permselectivity for 1 H-indole-3-acetic acid in comparison with the imprinted membrane made with methacrylic acid. It is predicted that the 9-vinyladenine-based molecularly imprinted membrane may be applicable to the assay of 1 H-indole-3-acetic acid or for the preparation of a molecularly imprinted polymer sensor for the analysis of 1 H-indole-3-acetic acid in plant samples

  16. Extraterrestrial Amino Acids in the Almahata Sitta Meteorite

    Science.gov (United States)

    Glavin, Daniel P.; Aubrey, Andrew D.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.; Parker, Eric T.; Bada, Jeffrey L.

    2010-01-01

    Amino acid analysis of a meteorite fragment of asteroid 2008 TC3 called Almahata Sitta was carried out using reverse-phase liquid chromatography coupled with UV fluorescence detection and time-of-flight mass spectrometry (LC-FD/ToF-MS) as part of a sample analysis consortium. LC-FD/ToF-MS analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to seven-carbon aliphatic amino acids and one- to three-carbon amines with abundances ranging from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, R-amino-n-butyric acid (beta-ABA), 2-amino-2-methylbutanoic acid (isovaline), and 2-aminopentanoic acid (norvaline) in the meteorite were racemic (D/L approximately 1), indicating that these amino acids are indigenous to the meteorite and not terrestrial contaminants. Several other non-protein amino acids were also identified in the meteorite above background levels including alpha-aminoisobutyric acid (alpha-AIB), 4-amino-2- methylbutanoic acid, 4-amino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. The total abundances of isovaline and alpha-AIB in Almahata Sitta are 1000 times lower than the abundances of these amino acids found in the CM carbonaceous chondrite Murchison. The extremely low abundances and unusual distribution of five carbon amino acids in Almahata Sitta compared to Cl, CM, and CR carbonaceous chondrites may reflect extensive thermal alteration of amino acids on the parent asteroid by partial melting during formation or subsequent impact shock heating. It is also possible that amino acids were synthesized by catalytic reactions on the parent body after asteroid 2008 TC3 cooled to lower temperatures.

  17. Production of polyhydroxy alkanoates by Ralstonia eutropha from volatile fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Jung Hyun; Sawant, Shailesh S.; Kim, Beom Soo [Chungbuk National University, Cheongju (Korea, Republic of)

    2013-12-15

    Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible thermoplastics that can be synthesized in various microorganisms. Volatile fatty acids (VFAs) are produced by anaerobic treatment of organic wastes that can be utilized as inexpensive substrates for PHA synthesis. In this study, several Ralstonia eutropha strains were grown on the mixture of VFAs (acetic, propionic, and butyric acid) as its carbon and energy source for growth and PHA synthesis. R. eutropha KCTC 2658 accumulated PHAs up to 50% of dry cell weight from total 5 g/L of mixed VFAs (acetic acid : propionic acid : butyric acid=1 : 2 : 2). In batch culture of R. eutropha KCTC2658 in a 5 L fermentor, a homopolymer of poly(3-hydroxybutyrate) [P(3HB)] was produced from 20 g/L glucose as a sole carbon source with dry cell weight of 8.4 g/L and PHA content of 30%. In fed-batch culture, two feeding strategies, pulse or pH-stat, were applied to add VFAs to the fermentor. When VFAs were fed using pH-stat feeding strategy after 40 h, a copolymer of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] was produced with dry cell weight of 8.1 g/L, PHA content of 50%, and 3HV fraction of 20 mol%.

  18. Production of polyhydroxy alkanoates by Ralstonia eutropha from volatile fatty acids

    International Nuclear Information System (INIS)

    Yun, Jung Hyun; Sawant, Shailesh S.; Kim, Beom Soo

    2013-01-01

    Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible thermoplastics that can be synthesized in various microorganisms. Volatile fatty acids (VFAs) are produced by anaerobic treatment of organic wastes that can be utilized as inexpensive substrates for PHA synthesis. In this study, several Ralstonia eutropha strains were grown on the mixture of VFAs (acetic, propionic, and butyric acid) as its carbon and energy source for growth and PHA synthesis. R. eutropha KCTC 2658 accumulated PHAs up to 50% of dry cell weight from total 5 g/L of mixed VFAs (acetic acid : propionic acid : butyric acid=1 : 2 : 2). In batch culture of R. eutropha KCTC2658 in a 5 L fermentor, a homopolymer of poly(3-hydroxybutyrate) [P(3HB)] was produced from 20 g/L glucose as a sole carbon source with dry cell weight of 8.4 g/L and PHA content of 30%. In fed-batch culture, two feeding strategies, pulse or pH-stat, were applied to add VFAs to the fermentor. When VFAs were fed using pH-stat feeding strategy after 40 h, a copolymer of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] was produced with dry cell weight of 8.1 g/L, PHA content of 50%, and 3HV fraction of 20 mol%

  19. Reciprocal effects of 5-(tetradecyloxy)-2-furoic acid on fatty acid oxidation.

    Science.gov (United States)

    Otto, D A; Chatzidakis, C; Kasziba, E; Cook, G A

    1985-10-01

    Under certain incubation conditions 5-(tetradecyloxy)-2-furoic acid (TOFA) stimulated the oxidation of palmitate by hepatocytes, as observed by others. A decrease in malonyl-CoA concentration accompanied the stimulation of oxidation. Under other conditions, however, TOFA inhibited fatty acid oxidation. The observed effects of TOFA depended on the TOFA and fatty acid concentrations, the cell concentration, the time of TOFA addition relative to the addition of fatty acid, and the nutritional state of the animal (fed or starved). The data indicate that only under limited incubation conditions may TOFA be used as an inhibitor of fatty acid synthesis without inhibition of fatty acid oxidation. When rat liver mitochondria were preincubated with TOFA, ketogenesis from palmitate was slightly inhibited (up to 20%) at TOFA concentrations that were less than that of CoA, but the inhibition became almost complete (up to 90%) when TOFA was greater than or equal to the CoA concentration. TOFA had only slight or no inhibitory effects on the oxidation of palmitoyl-CoA, palmitoyl(-)carnitine, or butyrate. Since TOFA can be converted to TOFyl-CoA, the data suggest that the inhibition of fatty acid oxidation from palmitate results from the decreased availability of CoA for extramitochondrial activation of fatty acids. These data, along with previous data of others, indicate that inhibition of fatty acid oxidation by CoA sequestration is a common mechanism of a group of carboxylic acid inhibitors. A general caution is appropriate with regard to the interpretation of results when using TOFA in studies of fatty acid oxidation.

  20. 16-Cyclopentadienyl tricarbonyl 99mTc 16-oxo-hexadecanoic acid: synthesis and evaluation of fatty acid metabolism in mouse myocardium.

    Science.gov (United States)

    Lee, Byung Chul; Kim, Dong Hyun; Lee, Iljung; Choe, Yearn Seong; Chi, Dae Yoon; Lee, Kyung-Han; Choi, Yong; Kim, Byung-Tae

    2008-06-26

    We synthesized 16-cyclopentadienyl tricarbonyl 99mTc 16-oxo-hexadecanoic acid (99mTc-CpTT-16-oxo-HDA, 1) and investigated its potential as a radiotracer for evaluating fatty acid metabolism in myocardium. Radiotracer 1 was synthesized in 22.6 +/- 6.3% decay-corrected yield by a double ligand transfer reaction between the ferrocene adduct of methyl hexadecanoate ( 2) and Na99mTcO 4 in the presence of Cr(CO)6 and CrCl3, followed by hydrolysis of the methyl ester group. Radiotracer 1 was found to be chemically stable (99% at 6 h) when incubated in human serum. A tissue distribution study in mice showed that high radioactivity accumulated in heart (9.03%ID/g at 1 min and 5.41%ID/g at 5 min postinjection) with rapid clearance and that heart to blood uptake ratios increased with time (2.13 at 5 min and 3.76 at 30 min postinjection). Metabolite analysis of the heart tissues using a simple extraction method showed that 99mTc-CpTT-4-oxo-butyric acid was detected as the major radioactive metabolite by HPLC, suggesting that 1 is metabolized to 99mTc-CpTT-4-oxo-butyric acid via beta-oxidation in myocardium.

  1. Aspartic acid

    Science.gov (United States)

    ... we eat. Aspartic acid is also called asparaginic acid. Aspartic acid helps every cell in the body work. It ... release Normal nervous system function Plant sources of aspartic acid include: avocado, asparagus, and molasses. Animal sources of ...

  2. Fatty acid composition and phospholipid types used in infant formulas modifies the establishment of human gut bacteria in germ-free mice

    DEFF Research Database (Denmark)

    Bennike, Rikke Mette Guldhammer; Licht, Tine Rask; Hellgren, Lars

    2017-01-01

    -rich emulsions were characterized by high relative abundances of Bacteroidaceae and Desulfovibrionaceae, while LCFA-rich emulsions caused higher abundances of Enterobacteriaceae, Erysipelotrichaceae, Coriobacteriaceae and Enterococcaceae. Consumption of SL-emulsified lipids skewed the community towards more...... Enterococcaceae and Enterobacteriaceae, while MPL increased Bacteroidaceae, Desulfovibrionaceae, Rikkenellaceae and Porphyromonadaceae. Intake of SL increased cecal concentrations of iso-valeric and iso-butyric acids. This suggests that fat-type and emulsifiers applied in infant formula may have distinct effects...

  3. Genome-wide ChIP-seq mapping and analysis of butyrate-induced H3K9 and H3K27 acetylation and epigenomic landscape alteration in bovine cells

    Science.gov (United States)

    Utilizing next-generation sequencing technology, combined with ChIP (Chromatin Immunoprecipitation) technology, we analyzed histone modification (acetylation) induced by butyrate and the large-scale mapping of the epigenomic landscape of normal histone H3 and acetylated histone H3K9 and H3K27. To d...

  4. Transfer of carbon from 14C-labeled volatile fatty acids to other metabolites in the rumen epithelial slices of cattle

    International Nuclear Information System (INIS)

    Shoji, Yoshio; Tsuda, Tsuneyuki

    1979-01-01

    Incorporation of 1- 14 C-acetate, 1- 14 C-propionate and 1- 14 C-butyrate into various metabolite fractions in incubated bovine rumen epithelial slices was investigated in vitro. After 3 hours of in vitro incubation, the metabolites were fractionated into CO 2 , total organic acid, total lipid, non-lipid and residual fractions, and some of these fractions were fractionated further. 1- 14 C-acetate was less oxidized than 1- 14 C-propionate and 1- 14 C-butyrate in both Krebs-Ringer phosphate (KRP) and Krebs-Ringer bicarbonate (KRB) buffer solutions, and the oxidation rate of 1- 14 C-propionate was markedly higher in the KRB buffer than in the KRP buffer. As for organic acids examined, 1- 14 C-acetate was mainly incorporated into lactic, β-hydroxybutyric and pyruvic acids, 1- 14 C-propionate into lactic and succinic acids, and 1- 14 C-butyrate into β-hydroxybutyric and lactic acids, though substantial portions of all 3 volatile fatty acids (VFA) were incorporated into some other organic acids. Interconversion among these VFA was also observed in small amounts. Considerable amounts of these VFA were incorporated into lipid fraction, mainly into phospho-lipids and free higher fatty acids, and considerable amounts into some other lipids. About 10% of these 3 VFA added as substrates were incorporated into non-lipid fraction, mainly into the neutral fraction, but none of them into the cation fraction (amino acid fraction). Less than 1% of these 3 VFA were incorporated into the residual fraction which was considered to be tissue protein. (Kaihara, S.)

  5. Patterns of indole alkaloids synthesis in response to heat shock, 5-azacytidine and Na-butyrate treatment of cultured catharanthus roseus mesophyll protoplasts

    International Nuclear Information System (INIS)

    Saleem, M.; Cutler, A.J.

    1986-01-01

    Alkaloids of C. roseus are in high demand for therapeutic and other reasons. Cultured Catharanthus cells can produce limited quantities of these alkaloids. The authors have found that cultured mesophyll protoplasts in the presence of 14 C-Tryptamine are capable of synthesizing alkaloids. The pattern of alkaloids synthesis changes when protoplasts are subjected to a heat shock at 37 0 C. The heat shocked protoplasts incorporated 33% more 14 C-Tryptamine and produced 3 new types of alkaloids. Treatment of protoplasts with 5-azacytidine, a DNA hypomethylating agent and Na-butyrate which induces hyperacetylation of histones produced qualitative and quantitative changes in the alkaloid pattern. Four new alkaloids following the above treatments were detected by TLC and HPLC of the extracts. It is suggested that the alkaloid pattern of the cultured protoplasts can be altered by treatment with compounds known as regulators of gene expression. Work is in progress to isolate and identify these new alkaloids

  6. Ultraviolet and infrared spectral analysis of poly(vinyl)butyral films: correlation and possible application for high-dose radiation dosimetry

    International Nuclear Information System (INIS)

    Ebraheem, S.; El-Kelany, M.; Beshir, W.; Abdel-Fattah, A.A.

    1999-01-01

    A detailed study was performed to develop the dosimetric characteristics of poly(vinyl)butyral film (PVB), to be used as a film dosimeter for high-dose gamma radiation dosimetry. The useful dose range of this polymeric film extends up to 350 kGy. Correlations were established between the absorbed dose of gamma radiation and the radiation-induced changes in PVB measured by means of ultraviolet (UV) and Fourier Transform Infrared (FTIR) spectrophotometry. The results showed a significant dependence of the response on the selected readout tool of measurements whether FTIR (at 1738 and 3400 cm -1 ) or UV (at 275 and 230 nm), as well as on the quantity used for calculation. The effect of relative humidity during irradiation on dosimeter performance as well as the post-irradiation stability at different storage conditions are also discussed. (author)

  7. Short-chain fatty acid level and field cancerization show opposing associations with enteroendocrine cell number and neuropilin expression in patients with colorectal adenoma

    Directory of Open Access Journals (Sweden)

    Staton Carolyn A

    2011-03-01

    Full Text Available Abstract Background Previous reports have suggested that the VEGF receptor neuropilin-1 (NRP-1 is expressed in a singly dispersed subpopulation of cells in the normal colonic epithelium, but that expression becomes dysregulated during colorectal carcinogenesis, with higher levels in tumour suggestive of a poor prognosis. We noted that the spatial distribution and morphology if NRP-1 expressing cells resembles that of enteroendocrine cells (EEC which are altered in response to disease state including cancer and irritable bowel syndrome (IBS. We have shown that NRP-1 is down-regulated by butyrate in colon cancer cell lines in vitro and we hypothesized that butyrate produced in the lumen would have an analogous effect on the colon mucosa in vivo. Therefore we sought to investigate whether NRP-1 is expressed in EEC and how NRP-1 and EEC respond to butyrate and other short-chain fatty acids (SCFA - principally acetate and propionate. Additionally we sought to assess whether there is a field effect around adenomas. Methodology Biopsies were collected at the mid-sigmoid, at the adenoma and at the contralateral wall (field of 28 subjects during endoscopy. Samples were fixed for IHC and stained for either NRP-1 or for chromogranin A (CgA, a marker of EEC. Stool sampling was undertaken to assess individuals' butyrate, acetate and propionate levels. Result NRP-1 expression was inversely related to SCFA concentration at the colon landmark (mid-sigmoid, but expression was lower and not related to SCFA concentration at the field. Likewise CgA+ cell number was also inversely related to SCFA at the landmark, but was lower and unresponsive at the field. Crypt cellularity was unaltered by field effect. A colocalisation analysis showed only a small subset of NRP-1 localised with CgA. Adenomas showed extensive, weaker staining for NRP-1 which contrastingly correlated positively with butyrate level. Field effects cause this relationship to be lost. Adenoma tissue

  8. Effect of sodium lauryl sulfate-fumaric Acid coupled addition on the in vitro rumen fermentation with special regard to methanogenesis.

    Science.gov (United States)

    Abdl-Rahman, M A; Sawiress, F A R; Abd El-Aty, A M

    2010-01-01

    The aim of the current study was to evaluate the effect of sodium lauryl sulfate-fumaric acid coupled addition on in vitro methangenesis and rumen fermentation. Evaluation was carried out using in vitro gas production technique. Ruminal contents were collected from five steers immediately after slaughtering and used for preparation of inoculums of mixed rumen microorganisms. Rumen fluid was then mixed with the basal diet of steers and used to generate four treatments, negative control (no additives), sodium lauryl sulfate (SLS) treated, fumaric acid treated, and SLS-fumaric acid coupled addition treated. The results revealed that, relative to control, efficiency in reduction of methanogenesis was as follows: coupled addition > SLS-addition > fumaric acid addition. Both SLS-addition and SLS-fumaric acid coupled addition demonstrated a decremental effect on ammonia nitrogen (NH(3)-N), total short chain volatile fatty acids (SCVFAs) concentrations and the amount of substrate degraded, and an increment effect on microbial mass and microbial yield (Y(ATP)). Nevertheless, fumaric acid did not alter any of the previously mentioned parameters but induced a decremental effect on NH(3)-N. Furthermore, both fumaric acid and SLS-fumaric acid coupled addition increased propionate at the expense of acetate and butyrate, while, defaunation increased acetate at the expense of propionate and butyrate. The pH value was decreased by all treatments relative to control, while, cellulase activity did not differ by different treatments. The current study can be promising strategies for suppressing ruminal methane emissions and improving ruminants feed efficiency.

  9. Relationship Between the Plasma Methionine {sup 14}C Activity and the Level of Some Other Essential Amino Acids

    Energy Technology Data Exchange (ETDEWEB)

    Boldizsar, H.; Pethes, G.; Kemeny, A. [Radioisotope Laboratory, Department of Physiology, University of Veterinary Science, Budapest (Hungary)

    1968-07-01

    At present there exists no sufficiently accurate and rapid method of determining the limiting order of amino acids. Labelled amino acid was used as an index to measure the rate of protein synthesis. Twenty-six leghorn cocks were used: 50 {mu}Ci {sup 14}C-methionine was injected, and 30 min later 200 mg of lysine, glycine, valine, alpha-amino-butyric-acid, and a mixture of lysine, tryptophane, methionine and phenylalanine, were added by injection. The total activity of plasma, the activity of the protein fraction, the fat- and water-soluble fractions, and that of urine, were determined. Between the 60th and 120th minutes, after the labelled methionine was injected, the total plasma- and protein-bound activity increased as follows: glycine (38%), the mixture (34%), lysine (31%), alpha-amino- butyric-acid (28%), but decreased in the case of valine (11%). In accordance with these, the free methionine activity in the plasma decreased proportionally. The extent of the changes depended on the place of the respective amino acids in the limiting order. On the basis of results the authors discuss a method that would be suitable for quantitative and rapid measurements of the insufficiency of essential amino acids in foodstuffs. (author)

  10. 3-pyrazolone analogues of the 3-isoxazolol metabotropic excitatory amino acid receptor agonist homo-AMPA. Synthesis and pharmacological testing

    DEFF Research Database (Denmark)

    Zimmermann, D.; Janin, Y.L.; Brehm, L.

    1999-01-01

    the terminal carboxyl group has been replaced by various bioisosteric groups, such as phosphonic acid or 3-isoxazolol groups, have been shown to interact selectively with different subtypes of mGlu receptors. In this paper we report the synthesis of the 3-pyrazolone bioisosteres of a-AA, compounds (RS)-2-amino......-4-(1,2-dihydro-5-methyl-3-oxo-3H-pyrazol-4-yl)butyric acid (1) and (RS)-2-amino-4-(1,2-dihydro-1,5-dimethyl-3-oxo-3H-pyrazol-4-yl)butyric acid (2). At a number of steps in the reaction sequences used, the reactions took unexpected courses and provided products which could not be transformed......We have previously shown that the higher homologue of (S)-glutamic acid [(S)-Glu], (S)-a-aminoadipic acid [(S)-a-AA] is selectively recognized by the mGlu and mGlu subtypes of the family of metabotropic glutamic acid (mGlu) receptors. Furthermore, a number of analogues of (S)-a-AA, in which...

  11. Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate.

    Science.gov (United States)

    Jiang, Jianguo; Zhang, Yujing; Li, Kaimin; Wang, Quan; Gong, Changxiu; Li, Menglu

    2013-09-01

    The effects of pH, temperature, and organic loading rate (OLR) on the acidogenesis of food waste have been determined. The present study investigated their effects on soluble chemical oxygen demand (SCOD), volatile fatty acids (VFAs), volatile solids (VS), and ammonia nitrogen (NH4(+)-N). Both the concentration and yield of VFAs were highest at pH 6.0, acetate and butyrate accounted for 77% of total VFAs. VFAs concentration and the VFA/SCOD ratio were highest, and VS levels were lowest, at 45 °C, but the differences compared to the values at 35 °C were slight. The concentrations of VFAs, SCOD, and NH4(+)-N increased as OLR increased, whereas the yield of VFAs decreased from 0.504 at 5 g/Ld to 0.306 at 16 g/Ld. Acetate and butyrate accounted for 60% of total VFAs. The percentage of acetate and valerate increased as OLR increased, whereas a high OLR produced a lower percentage of propionate and butyrate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Separation of aliphatic carboxylic acids and benzenecarboxylic acids by ion-exclusion chromatography with various cation-exchange resin columns and sulfuric acid as eluent.

    Science.gov (United States)

    Ohta, Kazutoku; Ohashi, Masayoshi; Jin, Ji-Ye; Takeuchi, Toyohide; Fujimoto, Chuzo; Choi, Seong-Ho; Ryoo, Jae-Jeong; Lee, Kwang-Pill

    2003-05-16

    The application of various hydrophilic cation-exchange resins for high-performance liquid chromatography (sulfonated silica gel: TSKgel SP-2SW, carboxylated silica gel: TSKgel CM-2SW, sulfonated polymethacrylate resin: TSKgel SP-5PW, carboxylated polymethacrylate resins: TSKgel CM-5PW and TSKgel OA-Pak A) as stationary phases in ion-exclusion chromatography for C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, butyric, isovaleric, valeric, isocaproic, caproic, 2-methylhexanoic and heptanoic acids) and benzenecarboxylic acids (pyromellitic, trimellitic, hemimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic, salicylic acids and phenol) was carried out using diluted sulfuric acid as the eluent. Silica-based cation-exchange resins (TSKgel SP-2SW and TSKgel CM-2SW) were very suitable for the ion-exclusion chromatographic separation of these benzenecarboxylic acids. Excellent simultaneous separation of these benzenecarboxylic acids was achieved on a TSKgel SP-2SW column (150 x 6 mm I.D.) in 17 min using a 2.5 mM sulfuric acid at pH 2.4 as the eluent. Polymethacrylate-based cation-exchange resins (TSKgel SP-5PW, TSKgel CM-5PW and TSKgel OA-Pak A) acted as advanced stationary phases for the ion-exclusion chromatographic separation of these C1-C7 aliphatic carboxylic acids. Excellent simultaneous separation of these C1-C7 acids was achieved on a TSKgel CM-5PW column (150 x 6 mm I.D.) in 32 min using a 0.05 mM sulfuric acid at pH 4.0 as the eluent.

  13. Comparison of three experimental protocols in pre clinical studies for thyroid cancer treatment using sodium butyrate in combination with boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Perona, M; Rodriguez, C; Carpano, M; Majdalani E; Nievas, S; Olivera, M; Pisarev, M; Cabrini, R; Juvenal, G; Dagrosa A

    2012-01-01

    Background: We have shown that boron neutron capture therapy (BNCT) could be an alternative for the treatment of poorly differentiated (PDTC) and undifferentiated thyroid carcinoma (UTC). However new strategies are being assayed in order to optimize its application. Histone de acetylase inhibitors (HDAC-I) like sodium butyrate (NaB), are emerging as a new class of chemotherapeutic agents which target the epigenome. Since histone hyper acetylation mediates changes in chromatin conformation, HDAC-I are involved in different epigenetically controlled activities like apoptosis, proliferation, cell differentiation, induction of cell cycle arrest and motility. The purpose of the present studies was to analyze different treatment regimens of combination of NaB and boronophenylalanine (BPA) uptake in animals bearing transplants of a human thyroid carcinoma Methods: NIH nude mice of 6-8 weeks were implanted (s.c.) with 10 6 of human follicular thyroid carcinoma cells (WRO). Three regimens were evaluated in 48 animals after 15 days when tumors had a size between 50 and 100 mm 3 . Group 1 (n=10): BPA and NaB (50 mM) via i.p. at a dose of 110 mg/kg b.w. 24 h before boron compound administration; group 2 (n=10): BPA and NaB 3.4% in the water ad libitum during a month after 15 days post-implantation; group 3 (n=10): BPA alone. In all the groups BPA was injected at a dose of 350 mg/Kg b.w. (i.p.) and the animals were sacrificed at 2 h post-administration. Boron measurements in tissues and blood were performed by ICP-OES. A control group without NaB (n=6) for each regimen was included. The tumor growth and the body weight were determined twice a week during a month. Results: The administration of NaB 3.4% during a month previous to BNCT did not modify the body weight of the mice and decreased the tumor growth compared to its control group (p<0.01). The biodistribution studies showed a tumor boron concentration of 32.6 ± 1.4 ppm for group 1 (NaB 50 mM plus BPA), of 16.9 ± 3.7 ppm

  14. One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production: Progress report, February 1, 1987-February 1, 1988

    International Nuclear Information System (INIS)

    Zeikus, J.G.; Shen, Gwo-Jenn.

    1988-01-01

    These studies concern the fundamental biochemical mechanisms that control carbon and electron flow in anaerobic bacteria that conserve energy when coupling hydrogen consumption to the production of acetic, propionic, or butyric acids. Two acidogens, Propionispira arboris and Butyribacterium methylotrophicum were chosen as model systems to understand the function of oxidoreductases and electron carriers in the regulation of hydrogen metabolism and single carbon metabolism. In P. arboris, H 2 consumption was linked to the inhibition of CO 2 production and an increase in the propionate/acetate rate; whereas, H 2 consumption was linked to a stimulation of CO 2 consumption and an increase in the butyrate/acetate ratio in B. methylotrophicum. We report studies on the enzymes involved in the regulation of singe carbon metabolism, the enzyme activities and pathways responsible for conversion of multicarbon components to acetate and propionate or butyrate, and how low pH inhibits H 2 and acetic acid production in Sarcina ventriculi as a consequence of hydrogenase regulation. 9 refs

  15. Comparison of the effect of benzoic acid addition on the fermentation process quality with untreated silages

    Directory of Open Access Journals (Sweden)

    Petr Doležal

    2004-01-01

    Full Text Available The influence of benzoic acid and formic acid (positive control of ensilaged maize and pressed sugar beet pulp on quality fermentation processes was studied in a laboratory experiment. The effect of additive on the quality of fermentation process during maize ensiling was studied in a first model experiment. Preservatives such as formic acid and benzoic acid were added to ensiled maize at the concentration of 1L/t and 1 kg/t, respectively. When benzoic acid was used as a preservative, the pH and the N-NH3/ N total ratio decreased statistically (PSugar beet pulp silages with benzoic acid or formic acid after 32 days of storage had a better sensuous evaluation than the control silage. The most intensive decrease of pH value was observed after formic acid addition as compared with control silage. The statistically significantly (P<0.05 highest lactic acid content (49.64 ± 0.28 as well as the highest ratio of LA/VFA were found in the sugar beet pulp silage with benzoic acid. Lactic acid constituted the highest percentage (P<0.05 of all fermentation acids in the silage with benzoic acid additive (65.12 ± 0.80. Undesirable butyric acid (BA was not found in any variant of silages. The positive correlation between the titration acidity and acids sum in dry matter of silage conserved with formic acid was found. The additive of organic acids reduced significantly TA and fermentation acids content. Between the pH value and lactic acid content, no correlation was found.

  16. Acid Rain

    Science.gov (United States)

    Bricker, Owen P.; Rice, Karen C.

    1995-01-01

    Although acid rain is fading as a political issue in the United States and funds for research in this area have largely disappeared, the acidity of rain in the Eastern United States has not changed significantly over the last decade, and it continues to be a serious environmental problem. Acid deposition (commonly called acid rain) is a term applied to all forms of atmospheric deposition of acidic substances - rain, snow, fog, acidic dry particulates, aerosols, and acid-forming gases. Water in the atmosphere reacts with certain atmospheric gases to become acidic. For example, water reacts with carbon dioxide in the atmosphere to produce a solution with a pH of about 5.6. Gases that produce acids in the presence of water in the atmosphere include carbon dioxide (which converts to carbonic acid), oxides of sulfur and nitrogen (which convert to sulfuric and nitric acids}, and hydrogen chloride (which converts to hydrochloric acid). These acid-producing gases are released to the atmosphere through natural processes, such as volcanic emissions, lightning, forest fires, and decay of organic matter. Accordingly, precipitation is slightly acidic, with a pH of 5.0 to 5.7 even in undeveloped areas. In industrialized areas, most of the acid-producing gases are released to the atmosphere from burning fossil fuels. Major emitters of acid-producing gases include power plants, industrial operations, and motor vehicles. Acid-producing gases can be transported through the atmosphere for hundreds of miles before being converted to acids and deposited as acid rain. Because acids tend to build up in the atmosphere between storms, the most acidic rain falls at the beginning of a storm, and as the rain continues, the acids "wash out" of the atmosphere.

  17. Atherogenicity index and health-related fatty acids in different stages of lactation from Friesian, Jersey and Friesian×Jersey cross cow milk under a pasture-based dairy system.

    Science.gov (United States)

    Nantapo, C T W; Muchenje, V; Hugo, A

    2014-03-01

    The objective of the study was to investigate the effect of stage of lactation on the fatty acid profiles of milk from Friesian, Jersey and Friesian×Jersey cows. Linoleic acid in pastures was highest in the second phase which coincided with mid-lactation days (p<0.05). Highest milk moisture content and lowest fat free dry matter content was seen in early lactation (p<0.05). Higher fat content was observed in late lactation than early lactation. Highest butyric, caproic, linoleic, omega-6 and polyunsaturated fatty acids were observed for milk from Friesian cows. Highest conjugated fatty acids, α-linolenic acid, linoleic acid, saturated fatty acids, polyunsaturated fatty acids, omega-6, and omega-3 were observed in early lactation. Atherogenicity index and desaturase activity indices were highest in late lactation. In conclusion, stage of lactation and genotype affected milk health-related fatty acid profiles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Sensitization of human colon cancer cells to sodium butyrate-induced apoptosis by modulation of sphingosine kinase 2 and protein kinase D

    International Nuclear Information System (INIS)

    Xiao, Min; Liu, Yungang; Zou, Fei

    2012-01-01

    Sphingosine kinases (SphKs) have been recognized as important proteins regulating cell proliferation and apoptosis. Of the two isoforms of SphK (SphK1 and SphK2), little is known about the functions of SphK2. Sodium butyrate (NaBT) has been established as a promising chemotherapeutic agent, but the precise mechanism for its effects is unknown. In this study, we investigated the role of SphK2 in NaBT-induced apoptosis of HCT116 colon cancer cells. The results indicated that following NaBT treatment SphK2 was translocated from the nucleus to the cytoplasm, leading to its accumulation in the cytoplasm; in the meantime, only mild apoptosis occurred. However, downregulation of SphK2 resulted in sensitized apoptosis, and overexpression of SphK2 led to even lighter apoptosis; these strongly indicate an inhibitory role of SphK2 in cell apoptosis induced by NaBT. After knocking down protein kinase D (PKD), another protein reported to be critical in cell proliferation/apoptosis process, by using siRNA, blockage of cytoplasmic accumulation of SphK2 and sensitized apoptosis following NaBT treatment were observed. The present study suggests that PKD and SphK2 may form a mechanism for the resistance of cancer cells to tumor chemotherapies, such as HCT116 colon cancer cells to NaBT, and these two proteins may become molecular targets for designation of new tumor-therapeutic drugs. -- Highlights: ► In the present study sodium butyrate (10 mM) induced mild apoptosis of cancer cells. ► The apoptosis was negatively regulated by cytoplasmic Sphingosine Kinase 2 (SphK2). ► Translocation of SphK2 from nucleus to cytoplasm was mediated by protein kinase D. ► Downregulation of SphK2 or protein kinase D leads to sensitized cell apoptosis.

  19. Functionalization of glassy carbon surface by means of aliphatic and aromatic amino acids. An experimental and theoretical integrated approach

    International Nuclear Information System (INIS)

    Vanossi, Davide; Benassi, Rois; Parenti, Francesca; Tassinari, Francesco; Giovanardi, Roberto; Florini, Nicola; De Renzi, Valentina; Arnaud, Gaelle; Fontanesi, Claudio

    2012-01-01

    Highlights: ► Glassy carbon is functionalized via electrochemical assisted grafting of amino acids. ► The grafting mechanism is suggested to involve the “zwitterionic” species. ► DFT calculations allowed to determine the electroactive species. ► An original grafting mechanism is proposed. - Abstract: Glassy carbon (GC) electrode surfaces are functionalized through electrochemical assisted grafting, in oxidation regime, of six amino acids (AA): β-alanine (β-Ala), L-aspartic acid (Asp), 11-aminoundecanoic acid (UA), 4-aminobenzoic acid (PABA), 4-(4-amino-phenyl)-butyric acid (PFB), 3-(4-amino-phenyl)-propionic acid (PFP). Thus, a GC/AA interface is produced featuring carboxylic groups facing the solution. Electrochemical (cyclic voltammetry and electrochemical impedance spectroscopy) and XPS techniques are used to experimentally characterize the grafting process and the surface state. The theoretical results are compared with the experimental evidence to determine, at a molecular level, the overall grafting mechanism. Ionization potentials, standard oxidation potentials, HOMO and electron spin distributions are calculated at the CCD/6-31G* level of the theory. The comparison of experimental and theoretical data suggests that the main electroactive species is the “zwitterionic” form for the three aliphatic amino acids, while the amino acids featuring the amino group bound to the phenyl aromatic moiety show a different behaviour. The comparison between experimental and theoretical results suggests that both the neutral and the zwitterionic forms are present in the acetonitrile solution in the case of 4-(4-amino-phenyl)-butyric acid (PFB) and 3-(4-amino-phenyl)-propionic acid.

  20. Recovery of carboxylic acids produced during dark fermentation of food waste by adsorption on Amberlite IRA-67 and activated carbon.

    Science.gov (United States)

    Yousuf, Ahasa; Bonk, Fabian; Bastidas-Oyanedel, Juan-Rodrigo; Schmidt, Jens Ejbye

    2016-10-01

    Amberlite IRA-67 and activated carbon were tested as promising candidates for carboxylic acid recovery by adsorption. Dark fermentation was performed without pH control and without addition of external inoculum at 37°C in batch mode. Lactic, acetic and butyric acids, were obtained, after 7days of fermentation. The maximum acid removal, 74%, from the Amberlite IRA-67 and 63% from activated carbon was obtained from clarified fermentation broth using 200gadsorbent/Lbroth at pH 3.3. The pH has significant effect and pH below the carboxylic acids pKa showed to be beneficial for both the adsorbents. The un-controlled pH fermentation creates acidic environment, aiding in adsorption by eliminating use of chemicals for efficient removal. This study proposes simple and easy valorization of waste to valuable chemicals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Oleaginous yeast Yarrowia lipolytica culture with synthetic and food waste-derived volatile fatty acids for lipid production.

    Science.gov (United States)

    Gao, Ruiling; Li, Zifu; Zhou, Xiaoqin; Cheng, Shikun; Zheng, Lei

    2017-01-01

    The sustainability of microbial lipids production from traditional carbon sources, such as glucose or glycerol, is problematic given the high price of raw materials. Considerable efforts have been directed to minimize the cost and find new alternative carbon sources. Volatile fatty acids (VFAs) are especially attractive raw materials, because they can be produced from a variety of organic wastes fermentation. Therefore, the use of volatile fatty acids as carbon sources seems to be a feasible strategy for cost-effective microbial lipid production. Lipid accumulation in Y. lipolytica using synthetic and food waste-derived VFAs as substrates was systematically compared and evaluated in batch cultures. The highest lipid content obtained with acetic, butyric, and propionic acids reached 31.62 ± 0.91, 28.36 ± 0.74, and 28.91 ± 0.66%, respectively. High concentrations of VFA inhibited cell growth in the following order: butyric acid > propionic acid > acetic acid. Within a 30-day experimental period, Y. lipolytica could adapt up to 20 g/L acetic acid, whereas the corresponding concentration of propionic acid and butyric acid were 10 and 5 g/L, respectively. Cultures on a VFA mixture showed that the utilization of different types of VFA by Y. lipolytica was not synchronized but rather performed in a step-wise manner. Although yeast fermentation is an exothermic process, and the addition of VFA will directly affect the pH of the system by increasing environmental acidity, cultures at a cultivation temperature of 38 °C and uncontrolled pH demonstrated that Y. lipolytica had high tolerance in the high temperature and acidic environment when a low concentration (2.5 g/L) of either synthetic or food waste-derived VFA was used. However, batch cultures fed with food fermentate yielded lower lipid content (18.23 ± 1.12%) and lipid productivity (0.12 ± 0.02 g/L/day). The lipid composition obtained with synthetic and food waste-derived VFA was similar to

  2. The chemistry of sour taste and the strategy to reduce the sour taste of beer.

    Science.gov (United States)

    Li, Hong; Liu, Fang

    2015-10-15

    The contributions of free hydrogen ions, undissociated hydrogen ions in protonated acid species, and anionic acid species to sour taste were studied through sensory experiments. According to tasting results, it can be inferred that the basic substance producing a sour taste is the hydrogen ion, including free hydrogen ions and undissociated hydrogen ions. The intensity of a sour taste is determined by the total concentration of free hydrogen ions and undissociated hydrogen ions. The anionic acid species (without hydrogen ions) does not produce a sour taste but can intensify or weaken the intensity of a sour taste. It seems that hydroxyl or conjugated groups in anionic acid species can intensify the sour taste produced by hydrogen ions. The following strategy to reduce the sensory sourness is advanced: not only reduce free hydrogen ions, namely elevate pH value, but also reduce the undissociated hydrogen ions contained in protonated acid species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Extremely flexible, transparent, and strain-sensitive electroluminescent device based on ZnS:Cu-polyvinyl butyral composite and silver nanowires

    Science.gov (United States)

    Jun, Sungwoo; Kim, Youngmin; Ju, Byeong-Kwon; Kim, Jong-Woong

    2018-01-01

    A multifunctional alternate current electroluminescent device (ACEL) was achieved by compositing ZnS:Cu particles in polyvinyl butyral (PVB) with two layers of percolated silver nanowire (AgNW) electrodes. The strong hydrogen bonding interactions and entanglement of PVB chains considerably strengthened the PVB, and thus, the cured mixture of ZnS:Cu particles and freestanding PVB required no additional support. The device was fabricated by embedding AgNWs on both sides of the ZnS:Cu-PVB composite film using an inverted layer process and intense-pulsed-light treatment. The strong affinity of PVB to the polyvinyl pyrrolidone (PVP) layer, which capped the AgNWs, mechanically stabilized the device to such an extent that it could resist 10,000 bending cycles under a curvature radius of 500 μm. Using AgNW networks in both the top and bottom electrodes made a double-sided light-emitting device that could be applied to wearable lightings or flexible digital signage. The capacitance formed in the device sensitively varied with the applied bending and unfolding, thus demonstrating that the device can also be used as a deformation sensor.

  4. The combination effect of sodium butyrate and 5-Aza-2'-deoxycytidine on radiosensitivity in RKO colorectal cancer and MCF-7 breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Oh Seong

    2009-05-01

    Full Text Available Abstract Background The overall level of chromatin compaction is an important mechanism of radiosensitivity, and modification of DNA methylation and histone deacetylation may increase radiosensitivity by altering chromatin compaction. In this study, we investigated the effect of a demethylating agent, a histone deacetylase(HDAC inhibitor, and the two agents combined on radiosensitivity in human colon and breast cancer cell lines. Methods In this study, we used RKO colorectal cancer cell line and MCF-7 breast cancer cell lines and normal colon cell lines. On each of the cell lines, we used three different agents: the HDAC inhibitor sodium butyrate(SB, the demethylating agent 5-Aza-2'-deoxycytidine(5-aza-DC, and radiation. We then estimated the percentage of the cell survival using the XTT method and experimented to determine if there was an augmentation in the therapeutic effect by using different combinations of the two or three of the treatment methods. Results After treatment of each cell lines with 5-aza-DC, SB and 6 grays of radiation, we observed that the survival fraction was lower after the treatment with 5-aza-DC or SB than with radiation alone in RKO and MCF-7 cell lines(p Conclusion In conclusion, 5-aza-DC and SB can enhance radiosensitivity in both MCF-7 and RKO cell lines. The combination effect of a demethylating agent and an HDAC inhibitor is more effective than that of single agent treatment in both breast and colon cancer cell lines.

  5. HDAC inhibitors TSA and sodium butyrate enhanced the human IL-5 expression by altering histone acetylation status at its promoter region.

    Science.gov (United States)

    Han, Songyan; Lu, Jun; Zhang, Yu; Cheng, Cao; Li, Lin; Han, Liping; Huang, Baiqu

    2007-02-15

    The expression of IL-5 correlated tightly with the maturation and differentiation of eosinophils, and is considered as a cytokine responsible for allergic inflammation. We report here that inhibition of HDAC activity by Trichostatin A (TSA) and sodium butyrate (NaBu), the two specific HDAC inhibitors, resulted in the elevation of both endogenous and exogenous activity of IL-5 promoter. We demonstrated that both the mRNA expression and protein production of IL-5 were stimulated by TSA and NaBu treatments. ChIP assays showed that treatments of TSA and NaBu caused hyperacetylation of histones H3 and H4 on IL-5 promoter in Jurkat cells, which consequently promoted the exogenous luciferase activity driven by this promoter. Moreover, site-directed mutagenesis studies showed that the binding sites for transcription factors NFAT, GATA3 and YY1 on IL-5 promoter were critical for the effects of TSA and NaBu, suggesting that the transcriptional activation of IL-5 gene by these inhibitors was achieved by affecting HDAC function on IL-5 promoter via transcription factors. These data will contribute to elucidating the unique mechanism of IL-5 transcriptional control and to the therapy of allergic disorders related to IL-5.

  6. Effects of the differentiating agents sodium butyrate and N-methylformamide on the oxygen enhancement ratio of human colon tumor cells

    International Nuclear Information System (INIS)

    Hallows, K.R.; Bliven, S.F.; Leith, J.T.

    1988-01-01

    We have previously shown that chronic adaptation of human tumor cells to the differentiation-inducing agents N-methylformamide (NMF) and sodium butyrate (NAB) increases the sensitivity of oxic cells to graded single doses of X rays. These studies were carried out to define the sensitivity of hypoxic cells after adaptation. Clone A colon tumor cells were grown for three passages in medium containing 170 mM NMF or 2 mM NAB and irradiated in suspension culture, after gassing with either oxygen (60 min) or ultrapure nitrogen (90 min), and complete survival curves were generated. Using the linear-quadratic equation to describe the data, it was found that NMF and NAB produced increased X-ray killing of hypoxic cells. At the 10% level of survival, the dose-modifying factors were about 1.20 and 1.25 for NMF- and NAB-adapted hypoxic cells, respectively, as compared to hypoxic control cells. However, since both oxic and hypoxic cells exhibited increased sensitivity after NMF and NAB adaptation, there was no major change in the oxygen enhancement ratio

  7. Density, refraction index and vapor–liquid equilibria of N-methyl-2-hydroxyethylammonium butyrate plus (methyl acetate or ethyl acetate or propyl acetate) at several temperatures

    International Nuclear Information System (INIS)

    Alvarez, V.H.; Mattedi, S.; Aznar, M.

    2013-01-01

    Highlights: ► Densities, refraction indices and VLE were measured for ester + m-2-HEAB mixtures. ► V E , apparent molar volumes and thermal expansion coefficients were calculated. ► Peng–Robinson EoS + Wong–Sandler mixing rule + COSMO-SAC predicted the data. -- Abstract: This paper reports the densities, refraction indices, and vapor liquid equilibria for binary systems ester + N-methyl-2-hydroxyethylammonium butyrate (m-2-HEAB): methyl acetate (1) + m-2-HEAB (2), ethyl acetate (1) + m-2-HEAB and propyl acetate (1) + m-2-HEAB (2). The excess molar volumes, deviations in the refraction index, apparent molar volumes, and thermal expansion coefficients for the binary systems were fitted to polynomial equations. The Peng–Robinson equation of state, coupled with the Wong–Sandler mixing rule, is used to describe the experimental data. Since the predictive activity coefficient model COSMO-SAC is used in the Wong–Sandler mixing rule, the resulting thermodynamic model is a completely predictive one. The prediction results for the density and for the vapor–liquid equilibria have a deviation lower than 1.0% and 1.1%, respectively

  8. The relationship of endogenous plasma concentrations of β-Hydroxy β-Methyl Butyrate (HMB) to age and total appendicular lean mass in humans.

    Science.gov (United States)

    Kuriyan, Rebecca; Lokesh, Deepa P; Selvam, Sumithra; Jayakumar, J; Philip, Mamatha G; Shreeram, Sathyavageeswaran; Kurpad, Anura V

    2016-08-01

    The maintenance of muscle mass and muscle strength is important for reducing the risk of chronic diseases. The age- related loss of muscle mass and strength is associated with adverse outcomes of physical disability, frailty and death. β-Hydroxy β-Methyl Butyrate (HMB), a metabolite of leucine, has beneficial effects on muscle mass and strength under various catabolic conditions. The objectives of the present study were to determine if age- related differences existed in endogenous plasma HMB levels, and to assess if HMB levels correlated to total appendicular lean mass and forearm grip strength. Anthropometry, dietary and physical activity assessment, and the estimation of fasting plasma HMB concentrations and handgrip strength were performed on the 305 subjects (children, young adults and older adults). Lean mass, which serves as a surrogate for muscle mass was measured using dual energy X-ray absorptiometry (DEXA). Mean plasma HMB concentrations were significantly lower with increasing age groups, with children having highest mean HMB concentration (pHMB concentrations. A significant positive correlation between HMB concentrations and appendicular lean mass normalized for body weight (%), appendicular lean mass (r=0.37; pHMB concentrations in young adults (r=0.58; pHMB concentrations in humans and the HMB concentrations were positively correlated with appendicular lean mass and hand grip strength in young adults and older adults group. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Synthesis of Nm-PHB (nanomelanin-polyhydroxy butyrate) nanocomposite film and its protective effect against biofilm-forming multi drug resistant Staphylococcus aureus.

    Science.gov (United States)

    Kiran, George Seghal; Jackson, Stephen A; Priyadharsini, Sethu; Dobson, Alan D W; Selvin, Joseph

    2017-08-22

    Melanin is a dark brown ubiquitous photosynthetic pigment which have many varied and ever expanding applications in fabrication of radio-protective materials, food packaging, cosmetics and in medicine. In this study, melanin production in a Pseudomonas sp. which was isolated from the marine sponge Tetyrina citirna was optimized employing one-factor at a time experiments and characterized for chemical nature and stability. Following sonication nucleated nanomelanin (Nm) particles were formed and evaluated for antibacterial and antioxidant properties. Nanocomposite film was fabricated using combinations (% w/v) of polyhydroxy butyrate-nanomelanin (PHB:Nm) blended with 1% glycerol. The Nm was found to be spherical in shape with a diameter of 100-140 nm and showed strong antimicrobial activity against both Gram positive and Gram negative bacteria. The Nm-PHB nanocomposite film was homogeneous, smooth, without any cracks, and flexible. XRD and DSC data indicated that the film was crystalline in nature, and was thermostable up to 281.87 °C. This study represents the first report on the synthesis of Nm and fabrication of Nm-PHB nanocomposite film which show strong protective effect against multidrug resistant Staphyloccoccus aureus. Thus this Nm-PHB nanocomposite film may find utility as packaging material for food products by protecting the food products from oxidation and bacterial contamination.

  10. Sodium butyrate has an antimanic effect and protects the brain against oxidative stress in an animal model of mania induced by ouabain.

    Science.gov (United States)

    Valvassori, Samira S; Dal-Pont, Gustavo C; Steckert, Amanda V; Varela, Roger B; Lopes-Borges, Jéssica; Mariot, Edemilson; Resende, Wilson R; Arent, Camila O; Carvalho, André F; Quevedo, João

    2016-01-30

    Studies have consistently reported the participation of oxidative stress in bipolar disorder (BD). Evidence indicates that epigenetic regulations have been implicated in the pathophysiology of mood disorders. Considering these evidences, the present study aimed to investigate the effects of sodium butyrate (SB), a histone deacetylase (HDAC)inhibitor, on manic-like behavior and oxidative stress parameters (TBARS and protein carbonyl content and SOD and CAT activities) in frontal cortex and hippocampus of rats subjected to the animal model of mania induced by intracerebroventricular (ICV) ouabain administration.The results showed that SB reversed ouabain-induced hyperactivity, which represents a manic-like behavior in rats. In addition, the ouabain ICV administration induced oxidative damage to lipid and protein and alters antioxidant enzymes activity in all brain structures analyzed. The treatment with SB was able to reversesboth behavioral and oxidative stress parameters alteration induced by ouabain.In conclusion, we suggest that SB can be considered a potential new mood stabilizer by acts on manic-like behavior and regulatesthe antioxidant enzyme activities, protecting the brain against oxidative damage. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. The effect of terebinth (Pistacia terebinthus L.) coffee addition on the chemical and physical characteristics, colour values, organic acid profiles, mineral compositions and sensory properties of ice creams.

    Science.gov (United States)

    Yüksel, Arzu Kavaz; Şat, Ihsan Güngör; Yüksel, Mehmet

    2015-12-01

    The aim of this research was to evaluate the effect of terebinth (Pistacia terebinthus L.) coffee addition (0.5, 1 and 2 %) on the chemical and physical properties, colour values, organic acid profiles, mineral contents and sensory characteristics of ice creams. The total solids, fat, titratable acidity, viscosity, first dripping time and complete melting time values, a (*) and b (*) colour properties, citric, lactic, acetic and butyric acid levels and Ca, Cu, Mg, Fe, K, Zn and Na concentrations of ice creams showed an increase with the increment of terebinth coffee amount, while protein, pH, L (*), propionic acid and orotic acid values decreased. However, Al and malic acid were not detected in any of the samples. The overall acceptability scores of the sensory properties showed that the addition of 1 % terebinth coffee to the ice cream was more appreciated by the panellists.

  12. Amination of oxy acids in aqueous solution by gamma-irradiation

    International Nuclear Information System (INIS)

    Ema, Kimiko; Kato, Taizo; Shinagawa, Mutsuaki

    1978-01-01

    Alanin, β-alanine, glicine, and aspartic, α-amino-n-butyric, and γ-amino-n-butyric acids were obtained by γ-irradiation of aqueous ammonia solutions of lactic, β-oxypropionic, glycolic, malic, α-oxybutyric, and γ-oxybutyric acids, respectively. The yields of amino acids were examined for functions of radiation dose (0.75 - 3.55Mrad), concentrations of oxy acid (0.01 - 0.1M) and ammonia (0.1 - 15M), and substances added as radical (potassium iodide), and hydrated electron (nitrous oxide) scavengers. The maximum G-values were 0.6 for alanine in a solution of 0.1M lactic acid-4M ammonia and some nitrous oxide and 1.14 for β-alanine in a solution of 0.1M β-oxypropionic acid and 0.7M ammonia. The yield of alanine increased with increased concentrations of lactic acid and ammonia due to saturation of nitrous oxide but decreased when potassium iodide (0.03M) was added. The yield of β-alanine showed a maximum increase at ca. 0.7M ammonia and decreased when potassium iodide and nitrous oxide were added. Serine was obtained from G = 0.002 in a solution of β-oxypropionic acid and increased to G = 0.058 due to saturation of nitrous oxide. The manner of chemical amination due to radiation was studied from the above results. In general, oxy acids from which hydrogen has been abstracted by an H or OH radical react with ammonia to form amino acids. The effect of ammonia concentration on the yield of amino acids demonstrates that the NH 2 radical abstracts the α-hydrogen of lactic acid but does not react with the β-hydrogen of β-oxypropionic acid. The effect of nitrous oxide indicates that hydrated electrons interfere with alanine formation, contribute to β-alanine formation, react with the carboxyl group of lactic acids to form lactamide, and abstract the β-hydroxyl group of β-oxypropionic acids to form β-alanine. (Bell, E.)

  13. Amino acids

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002222.htm Amino acids To use the sharing features on this page, please enable JavaScript. Amino acids are organic compounds that combine to form proteins . ...

  14. Valproic Acid

    Science.gov (United States)

    ... acid is in a class of medications called anticonvulsants. It works by increasing the amount of a ... older (about 1 in 500 people) who took anticonvulsants such as valproic acid to treat various conditions ...

  15. Ascorbic Acid

    Science.gov (United States)

    Ascorbic acid is used to prevent and treat scurvy, a disease caused by a lack of vitamin C in ... Ascorbic acid comes in extended-release (long-acting) capsules and tablets, lozenges, syrup, chewable tablets, and liquid drops to ...

  16. Aminocaproic Acid

    Science.gov (United States)

    Aminocaproic acid is used to control bleeding that occurs when blood clots are broken down too quickly. This type ... the baby is ready to be born). Aminocaproic acid is also used to control bleeding in the ...

  17. Ethacrynic Acid

    Science.gov (United States)

    Ethacrynic acid, a 'water pill,' is used to treat swelling and fluid retention caused by various medical problems. It ... Ethacrynic acid comes as a tablet to take by mouth. It is usually taken once or twice a day ...

  18. Direct fermentation of sweet sorghum juice by Clostridium acetobutylicum and Clostridium tetanomorphum to produce bio-butanol and organic acids

    Directory of Open Access Journals (Sweden)

    B. Ndaba

    2015-06-01

    Full Text Available Single- and co-culture clostridial fermentation was conducted to obtain organic alcohols and acids from sweet sorghum juice as a low cost feedstock. Different inoculum concentrations of single cultures (3, 5, 10 v/v % as well as different ratios of C. acetobutylicum to C. tetanomorphum (3:10, 10:3, 6.5:6.5, 3:3, and 10:10 v/v %, respectively were utilized for the fermentation. The maximum butanol concentration of 6.49 g/L was obtained after 96 h fermentation with 10 % v/v C. acetobutylicum as a single culture. The fermentation with 10% v/v C. tetanomorphum resulted in more than 5 g/l butyric acid production. Major organic acid concentration (lactic acid of 2.7 g/L was produced when an inoculum ratio of 6.5: 6.5 %v/v C. acetobutylicum to C. tetanomorphum was used.

  19. Sodium butyrate attenuates soybean oil-based lipid emulsion-induced increase in intestinal permeability of lipopolysaccharide by modulation of P-glycoprotein in Caco-2 cells

    International Nuclear Information System (INIS)

    Yan, Jun-Kai; Gong, Zi-Zhen; Zhang, Tian; Cai, Wei

    2017-01-01

    Down-regulation of intestinal P-glycoprotein (P-gp) by soybean oil-based lipid emulsion (SOLE) may cause elevated intestinal permeability of lipopolysaccharide (LPS) in patients with total parenteral nutrition, but the appropriate preventative treatment is currently limited. Recently, sodium butyrate (NaBut) has been demonstrated to regulate the expression of P-gp. Therefore, this study aimed to address whether treatment with NaBut could attenuate SOLE-induced increase in intestinal permeability of LPS by modulation of P-gp in vitro. Caco-2 cells were exposed to SOLE with or without NaBut. SOLE-induced down-regulation of P-gp was significantly attenuated by co-incubation with NaBut. Nuclear recruitment of FOXO 3a in response to NaBut was involved in P-gp regulation. Transport studies revealed that SOLE-induced increase in permeability of LPS was significantly attenuated by co-incubation with NaBut. Collectively, our results suggested that NaBut may be a potentially useful medication to prevent SOLE-induced increase in intestinal permeability of LPS. - Highlights: • Caco-2 cells were used as models for studying parenteral nutrition in vitro. • NaBut restored SOLE-induced down-regulation of P-gp in Caco-2 cells. • Regulation of P-gp by NaBut was mediated via nuclear recruitment of FOXO 3a. • NaBut modulated the permeability of LPS by P-gp function, not barrier function.

  20. Epigenetic modulation of AR gene expression in prostate cancer DU145 cells with the combination of sodium butyrate and 5'-Aza-2'-deoxycytidine.

    Science.gov (United States)

    Fialova, Barbora; Luzna, Petra; Gursky, Jan; Langova, Katerina; Kolar, Zdenek; Trtkova, Katerina Smesny

    2016-10-01

    The androgen receptor (AR) plays an essential role in the development and progression of prostate cancer. Castration-resistant prostate cancer (CRPC) is a consequence of androgen deprivation therapy. Unchecked CRPC followed by metastasis is lethal. Some CRPCs show decreased AR gene expression due to epigenetic mechanisms such as DNA methylation and histone deacetylation. The aim of this study was to epigenetically modulate the methylated state of the AR gene leading to targeted demethylation and AR gene expression in androgen-independent human prostate cancer DU145 cell line, representing the CRPC model with very low or undetectable AR levels. The cell treatment was based on single and combined applications of two epigenetic inhibitors, sodium butyrate (NaB) as histone deacetylases inhibitor and 5'-Aza-2'-deoxycytidine (Aza-dC) as DNA methyltransferases inhibitor. We found that the Aza-dC in combination with NaB may help reduce the toxicity of higher NaB concentrations in cancer cells. In normal RWPE-1 cells and even stronger in cancer DU145 cells, the combined treatment induced both AR gene expression on the mRNA level and increased histone H4 acetylation in AR gene promoter. Also activation and maintenance of G2/M cell cycle arrest and better survival in normal RWPE-1 cells compared to cancer DU145 cells were observed after the treatments. These results imply the selective toxicity effect of both inhibitors used and their potentially more effective combined use in the epigenetic therapy of prostate cancer patients.

  1. SLC5A8 gene, a transporter of butyrate: a gut flora metabolite, is frequently methylated in African American colon adenomas.

    Directory of Open Access Journals (Sweden)

    Hassan Brim

    Full Text Available Colon cancer is one of the leading causes of cancer related deaths. Its impact on African Americans (AAs is higher than in the general population both in the incidence and mortality from the disease. Colon cancer aggressiveness in AAs as well as non-frequent check-ups and follow up in this population have been proposed as ways to explain the observed discrepancies. These facts made the detection of early carcinogenesis markers in this population a priority.Here, we analyzed 50 colon adenomas from AA patients for both microsatellite instability (MSI and the methylation status of SLC5A8 gene. This gene's product is involved in the transport of butyrate that has anti-proliferative properties through its effects on histone acetylation and gene expression. A proteomic analysis to check the expressed histones in adenoma and normal tissues was also performed.The analyzed samples displayed 82% (n = 41 methylation level of SLC5A8 gene in adenomas. The MSI-H (high adenoma were about 18% (n = 9 while the rest were mostly MSS (microsatellite stable with few MSI-L (Low. No association was found between SLC5A8 methylation and the MSI status. Also, there was no association between SLC5A8 methylation and the sex and age of the patients. However, there were more right sided adenomas with SLC5A8 methylation than the left sided ones. The proteomic analysis revealed distinct histone expression profiles between normal and adenoma tissues.SLC5A8 is highly methylated in AA colon adenomas which points to its potential use as a marker for early detection. The MSI rate is similar to that found in colon cancer tumors in AAs. These findings suggest that both processes stem from the same epigenetic and genetic events occurring at an early stage in colon carcinogenesis in AAs.

  2. Epidermal cell-shape regulation and subpopulation kinetics during butyrate-induced terminal maturation of normal and SV40-transformed human keratinoc