WorldWideScience

Sample records for undifferentiated pc12 cells

  1. Subcellular Distribution of S-Nitrosylated H-Ras in Differentiated and Undifferentiated PC12 Cells during Hypoxia.

    Science.gov (United States)

    Barbakadze, Tamar; Goloshvili, Galina; Narmania, Nana; Zhuravliova, Elene; Mikeladze, David

    2017-10-01

    Hypoxia or exposure to excessive reactive oxygen or nitrogen species could induce S-nitrosylation of various target proteins, including GTPases of the Ras-superfamily. Under hypoxic conditions, the Ras-protein is translocated to the cytosol and interacts with the Golgi complex, endoplasmic reticulum, mitochondria. The mobility/translocation of Ras depend on the cells oxidative status. However, the importance of relocated Snitrosylated- H-Ras (NO-H-Ras) in proliferation/differentiation processes is not completely understood. We have determined the content of soluble- and membrane-bound-NO-HRas in differentiated (D) and undifferentiated (ND) rat pheochromocytoma (PC12) cells under hypoxic and normoxic conditions. In our experimental study, we analyzed NO-H-Ras levels under hypoxic/normoxic conditions in membrane and soluble fractions of ND and D PC12 cells with/without nitric oxide donor, sodium nitroprusside (SNP) treatment. Cells were analyzed by the S-nitrosylated kit, immunoprecipitation, and Western blot. We assessed the action of NO-H-Ras on oxidative metabolism of isolated mitochondria by determining mitochondrial hydrogen peroxide generation via the scopoletin oxidation method and ATPproduction as estimated by the luminometric method. Hypoxia did not influence nitrosylation of soluble H-Ras in ND PC12 cells. Under hypoxic conditions, the nitrosylation of soluble-H-Ras greatly decreased in D PC12 cells. SNP didn't change the levels of nitrosylation of soluble-H-Ras, in either hypoxic or normoxic conditions. On the other hand, hypoxia, per se, did not affect the nitrosylation of membrane-bound-H-Ras in D and ND PC12 cells. SNP-dependent nitrosylation of membrane-bound-H-Ras greatly increased in D PC12 cells. Both unmodified normal and mutated H-Ras enhanced the mitochondrial synthesis of ATP, whereas the stimulatory effects on ATP synthesis were eliminated after S-nitrosylation of H-Ras. According to the results, it may be proposed that hypoxia can decrease S

  2. Studying neuroprotective effect of Atorvastatin as a small molecule drug on high glucose-induced neurotoxicity in undifferentiated PC12 cells: role of NADPH oxidase.

    Science.gov (United States)

    Rayegan, Samira; Dehpour, Ahmad Reza; Sharifi, Ali Mohammad

    2017-02-01

    Overproduction of reactive oxygen species (ROS) by NADPH oxidase (NOX) activation has been considered the essential mechanism induced by hyperglycemia in various tissues. However, there is no comprehensive study on the role of NOXs in high glucose (HG)-induced toxic effect in neural tissues. Recently, a therapeutic strategy in oxidative related pathologies has been introduced by blocking the undesirable actions of NOX enzymes by small molecules. The protective roles of Statins in ameliorating oxidative stress by NOX inhibition have been shown in some tissues except neural. We hypothesized then, that different NOXs may have role in HG-induced neural cell injury. Furthermore, we postulate that Atorvastatin as a small molecule may modulate this NOXs activity to protect neural cells. Undifferentiated PC12 cells were treated with HG (140 mM/24 h) in the presence and absence of Atorvastatin (1 μM/96 h). The cell viability was measured by MTT assay and the gene and protein expressions profile of NOX (1-4) were determined by RT-PCR and western blotting, respectively. Levels of ROS and malondialdehyde (MDA) were also evaluated. Gene and protein expression levels of NOX (1-4) and consequently ROS and MDA levels were elevated in HG-treated PC12 cells. Atorvastatin could significantly decrease HG-induced NOXs, ROS and MDA elevation and improve impaired cell viability. It can be concluded that HG could elevate NOXs activity, ROS and MDA levels in neural tissues and Atorvastatin as a small molecule NOX inhibitor drug may prevent and delay diabetic complications, particularly neuropathy.

  3. Glycosaminoglycan composition of PC12 pheochromocytoma cells: a comparison with PC12D cells, a new subline of PC12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Katoh-Semba, R.; Oohira, A.; Sano, M.; Watanabe, K.; Kitajima, S.; Kashiwamata, S.

    1989-03-01

    PC12D cells, a new subline of conventional PC12 cells, respond not only to nerve growth factor but also to cyclic AMP by extending their neurites. These cells are flat in shape and are similar in appearance to PC12 cells that have been treated with nerve growth factor for a few days. In both cell lines, we have characterized the glycosaminoglycans, the polysaccharide moieties of proteoglycans, which are believed to play an important role in cell adhesion and in cell morphology. Under the present culture conditions, only chondroitin sulfate was detected in the media from PC12 and PC12D cells, whereas both chondroitin sulfate and heparan sulfate were found in the cell layers. The levels of cell-associated heparan sulfate and chondroitin sulfate were about twofold and fourfold higher in PC12D cells than in PC12 cells, respectively. Compared to PC12 cells, the amounts of (/sup 35/S)sulfate incorporated for 48 h into chondroitin sulfate were twofold lower but those into heparan sulfate were 35% higher in PC12D cells. The amount of chondroitin sulfate released by PC12D cells into the medium was about a half of that released by PC12 cells. The ratio of (/sup 35/S)sulfate-labeled heparan sulfate to chondroitin sulfate was 6.2 in PC12D cells and 2.2 in PC12 cells. These results suggest that there may be some correlation between the increase in content of glycosaminoglycans and the change in cell morphology, which is followed by neurite outgrowth.

  4. Differentiation of PC12 Cells Results in Enhanced VIP Expression and Prolonged Rhythmic Expression of Clock Genes

    DEFF Research Database (Denmark)

    Pretzmann, C.P.; Fahrenkrug, J.; Georg, B.

    2008-01-01

    To examine for circadian rhythmicity, the messenger RNA (mRNA) amount of the clock genes Per1 and Per2 was measured in undifferentiated and nerve-growth-factor-differentiated PC12 cells harvested every fourth hour. Serum shock was needed to induce circadian oscillations, which in undifferentiated...... PC12 cultures lasted only one 24-h period, while in differentiated cultures, the rhythms continued for at least 3 days. Thus, neuronal differentiation provided PC12 cells the ability to maintain rhythmicity for an extended period. Both vasoactive intestinal polypeptide (VIP) and its receptor VPAC(2...

  5. Aspartame-induced apoptosis in PC12 cells

    OpenAIRE

    Horio, Yukari; Sun, Yongkun; Liu, Chuang; Saito, Takeshi; Kurasaki, Masaaki

    2014-01-01

    Aspartame is an artificial sweetner added to many low-calorie foods. The safety of aspartame remains controversial even though there are many studies on its risks. In this study, to understand the physiological effects of trace amounts of artificial sweetners on cells, the effects of aspartame on apoptosis were investigated using a PC12 cell system. In addition, the mechanism of apoptosis induced by aspartame in PC12 cells and effects on apoptotic factors such as cytochrome c, apoptosis-induc...

  6. Manganese oxidation state mediates toxicity in PC12 cells

    International Nuclear Information System (INIS)

    Reaney, S.H.; Smith, D.R.

    2005-01-01

    The role of the manganese (Mn) oxidation state on cellular Mn uptake and toxicity is not well understood. Therefore, undifferentiated PC12 cells were exposed to 0-200 μM Mn(II)-chloride or Mn(III)-pyrophosphate for 24 h, after which cellular manganese levels were measured along with measures of cell viability, function, and cytotoxicity (trypan blue exclusion, medium lactate dehydrogenase (LDH), 8-isoprostanes, cellular ATP, dopamine, serotonin, H-ferritin, transferrin receptor (TfR), Mn-superoxide dismutase (MnSOD), and copper-zinc superoxide dismutase (CuZnSOD) protein levels). Exposures to Mn(III) >10 μM produced 2- to 5-fold higher cellular manganese levels than equimolar exposures to Mn(II). Cell viability and ATP levels both decreased at the highest Mn(II) and Mn(III) exposures (150-200 μM), while Mn(III) exposures produced increases in LDH activity at lower exposures (≥50 μM) than did Mn(II) (200 μM only). Mn(II) reduced cellular dopamine levels more than Mn(III), especially at the highest exposures (50% reduced at 200 μM Mn(II)). In contrast, Mn(III) produced a >70% reduction in cellular serotonin at all exposures compared to Mn(II). Different cellular responses to Mn(II) exposures compared to Mn(III) were also observed for H-ferritin, TfR, and MnSOD protein levels. Notably, these differential effects of Mn(II) versus Mn(III) exposures on cellular toxicity could not simply be accounted for by the different cellular levels of manganese. These results suggest that the oxidation state of manganese exposures plays an important role in mediating manganese cytotoxicity

  7. Aspartame-induced apoptosis in PC12 cells.

    Science.gov (United States)

    Horio, Yukari; Sun, Yongkun; Liu, Chuang; Saito, Takeshi; Kurasaki, Masaaki

    2014-01-01

    Aspartame is an artificial sweetner added to many low-calorie foods. The safety of aspartame remains controversial even though there are many studies on its risks. In this study, to understand the physiological effects of trace amounts of artificial sweetners on cells, the effects of aspartame on apoptosis were investigated using a PC12 cell system. In addition, the mechanism of apoptosis induced by aspartame in PC12 cells and effects on apoptotic factors such as cytochrome c, apoptosis-inducing factor, and caspase family proteins were studied by Western blotting and RT-PCR. Aspartame-induced apoptosis in PC12 cells in a dose-dependent manner. In addition, aspartame exposure increased the expressions of caspases 8 and 9, and cytochrome c. These results indicate that aspartame induces apoptosis mainly via mitochondrial pathway involved in apoptosis due to oxigen toxicity. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Induction of cytoprotective autophagy in PC-12 cells by cadmium

    International Nuclear Information System (INIS)

    Wang, Qiwen; Zhu, Jiaqiao; Zhang, Kangbao; Jiang, Chenyang; Wang, Yi; Yuan, Yan; Bian, Jianchun; Liu, Xuezhong; Gu, Jianhong; Liu, Zongping

    2013-01-01

    Highlights: •Cadmium can promote early upregulation of autophagy in PC-12 cells. •Autophagy precedes apoptosis in cadmium-treated PC-12 cells. •Cadmium-induced autophagy is cytoprotective in PC-12 cells. •Class III PI3K/beclin-1/Bcl-2 signaling pathway plays a positive role in cadmium-triggered autophagy. -- Abstract: Laboratory data have demonstrated that cadmium (Cd) may induce neuronal apoptosis. However, little is known about the role of autophagy in neurons. In this study, cell viability decreased in a dose- and time-dependent manner after treatment with Cd in PC-12 cells. As cells were exposed to Cd, the levels of LC3-II proteins became elevated, specific punctate distribution of endogenous LC3-II increased, and numerous autophagosomes appeared, which suggest that Cd induced a high level of autophagy. In the late stages of autophagy, an increase in the apoptosis ratio was observed. Likewise, pre-treatment with chloroquine (an autophagic inhibitor) and rapamycin (an autophagic inducer) resulted in an increased and decreased percentage of apoptosis in contrast to other Cd-treated groups, respectively. The results indicate that autophagy delayed apoptosis in Cd-treated PC-12 cells. Furthermore, co-treatment of cells with chloroquine reduced autophagy and cell activity. However, rapamycin had an opposite effect on autophagy and cell activity. Moreover, class III PI3 K/beclin-1/Bcl-2 signaling pathways served a function in Cd-induced autophagy. The findings suggest that Cd can induce cytoprotective autophagy by activating class III PI3 K/beclin-1/Bcl-2 signaling pathways. In sum, this study strongly suggests that autophagy may serve a positive function in the reduction of Cd-induced cytotoxicity

  9. Quantal release of ATP from clusters of PC12 cells.

    Science.gov (United States)

    Fabbro, Alessandra; Skorinkin, Andrei; Grandolfo, Micaela; Nistri, Andrea; Giniatullin, Rashid

    2004-10-15

    Although ATP is important for intercellular communication, little is known about the mechanism of endogenous ATP release due to a dearth of suitable models. Using PC12 cells known to express the P2X2 subtype of ATP receptors and to store ATP with catecholamines inside dense-core vesicles, we found that clusters of PC12 cells cultured for 3-7 days generated small transient inward currents (STICs) after an inward current elicited by exogenous ATP. The amplitude of STICs in individual cells correlated with the peak amplitude of ATP-induced currents. STICs appeared as asynchronous responses (approximately 20 pA average amplitude) for 1-20 s and were investigated with a combination of patch clamping, Ca2+ imaging, biochemistry and electron microscopy. Comparable STICs were produced by focal KCl pulses and were dependent on extracellular Ca2+. STICs were abolished by the P2X antagonist PPADS and potentiated by Zn2+, suggesting they were mediated by P2X2 receptor activation. The highest probability of observing STICs was after the peak of intracellular Ca2+ increase caused by KCl. Biochemical measurements indicated that KCl application induced a significant release of ATP from PC12 cells. Electron microscopy studies showed narrow clefts without 'synaptic-like' densities between clustered cells. Our data suggest that STICs were caused by quantal release of endogenous ATP by depolarized PC12 cells in close juxtaposition to the recorded cell. Thus, STICs may be a new experimental model to characterize the physiology of vesicular release of ATP and to study the kinetics and pharmacology of P2X2 receptor-mediated quantal currents.

  10. Bifenthrin inhibits neurite outgrowth in differentiating PC12 cells.

    Science.gov (United States)

    Tran, Van; Hoffman, Natalie; Mofunanaya, Adaobi; Pryor, Stephen C; Ojugbele, Olutosin; McLaughlin, Ashlea; Gibson, Lydia; Bonventre, Josephine A; Flynn, Katherine; Weeks, Benjamin S

    2006-02-01

    Bifenthrin is a third generation member of the synthetic pyrethroid family of insecticides. As a new pesticide within a relatively new class of pesticides, bifenthrin is considered relatively safe. Here, we used the PC12 neuronal cell line to examine the effect of bifenthrin on the formation of neurites and the potential developmental neurotoxicity of this pesticide. PC12 cells were exposed to varying concentrations of technical grade bifenthrin or Ortho Home Defense. Cell viability was determined using the AlmarBlue Toxicity Assay. Nontoxic concentrations of these chemicals were concomitantly with nerve growth factor and neurite outgrowth was assessed. Ortho Home Defense preparation reduced PC12 cell viability by approximately 50% and 70% at dilutions that correlate to bifenthrin concentrations of 10(-5) M and 10(-4) M, respectively. In contrast, technical grade bifenthrin, was not toxic to PC12 cells at 10(-3) M, which was the highest concentration tested that was soluble. At "nontoxic" concentrations of 10(-7) M and 10(-6) M, the Ortho Home Defense inhibited nerve growth factor-mediated neurite outgrowth by 30% and 55% respectively. Furthermore the nontoxic concentrations of technical grade bifenthrin of 10(-6) M and 10(-3) M inhibited neurite outgrowth by approximately 35% and 75% respectively. These data suggest that the toxicity of the Ortho Home Defense preparation was due to the "inert" additives in the preparation and not the bifenthrin itself. Further, these data suggest that, even in the absence of overt toxicity, bifenthrin may have deleterious effects to developing nervous system.

  11. Pheochromocytoma (PC12 Cell Response on Mechanobactericidal Titanium Surfaces

    Directory of Open Access Journals (Sweden)

    Jason V. Wandiyanto

    2018-04-01

    Full Text Available Titanium is a biocompatible material that is frequently used for making implantable medical devices. Nanoengineering of the surface is the common method for increasing material biocompatibility, and while the nanostructured materials are well-known to represent attractive substrata for eukaryotic cells, very little information has been documented about the interaction between mammalian cells and bactericidal nanostructured surfaces. In this study, we investigated the effect of bactericidal titanium nanostructures on PC12 cell attachment and differentiation—a cell line which has become a widely used in vitro model to study neuronal differentiation. The effects of the nanostructures on the cells were then compared to effects observed when the cells were placed in contact with non-structured titanium. It was found that bactericidal nanostructured surfaces enhanced the attachment of neuron-like cells. In addition, the PC12 cells were able to differentiate on nanostructured surfaces, while the cells on non-structured surfaces were not able to do so. These promising results demonstrate the potential application of bactericidal nanostructured surfaces in biomedical applications such as cochlear and neuronal implants.

  12. Characterization of RNA interference in rat PC12 cells

    DEFF Research Database (Denmark)

    Thonberg, Håkan; Schéele, Camilla C; Dahlgren, Cecilia

    2004-01-01

    strand of the siRNA guides a multi-protein complex, RNA-induced silencing complex (RISC), to cleave target mRNA. Although the exact function and composition of RISC is still unclear, it has been shown to include several proteins of the Argonaute protein family. Here we report of a robust system...... of the rat Golgi-ER protein 95 kDa (GERp95), an Argonaute family protein, by siRNA methodology. After GERp95-ablation, sequential knockdown of NPY by siRNA was shown to be impaired. Thus, we report that the GERp95 protein is functionally required for RNAi targeting NPY in rat PC12 cells....

  13. CHLORPYRIFOS DEVELOPMENTAL NEUROTOXICITY: INTERACTION WITH GLUCOCORTICOIDS IN PC12 CELLS

    Science.gov (United States)

    Slotkin, Theodore A.; Card, Jennifer; Seidler, Frederic J.

    2012-01-01

    Prenatal coexposures to glucocorticoids and organophosphate pesticides are widespread. Glucocorticoids are elevated by maternal stress and are commonly given in preterm labor; organophosphate exposures are virtually ubiquitous. We used PC12 cells undergoing neurodifferentiation in order to assess whether dexamethasone enhances the developmental neurotoxicity of chlorpyrifos, focusing on concentrations relevant to human exposures. By themselves, each agent reduced the number of cells and the combined exposure elicited a correspondingly greater effect than with either agent alone. There was no general cytotoxicity, as cell growth was actually enhanced, and again, the combined treatment evoked greater cellular hypertrophy than with the individual compounds. The effects on neurodifferentiation were more complex. Chlorpyrifos alone had a promotional effect on neuri to genesis whereas dexamethasone impaired it; combined treatment showed an overall impairment greater than that seen with dexamethasone alone. The effect of chlorpyrifos on differentiation into specific neurotransmitter phenotypes was shifted by dexamethasone. Either agent alone promoted differentiation into the dopaminergic phenotype at the expense of the cholinergic phenotype. However, in dexamethasone-primed cells, chlorpyrifos actually enhanced cholinergic neurodifferentiation instead of suppressing this phenotype. Our results indicate that developmental exposure to glucocorticoids, either in the context of stress or the therapy of preterm labor, could enhance the developmental neurotoxicity of organophosphates and potentially of other neurotoxicants, as well as producing neurobehavioral outcomes distinct from those seen with either individual agent. PMID:22796634

  14. Effect of spermidine in PC12 cells on the cell apoptosis induced by enriched uranium

    International Nuclear Information System (INIS)

    Gu Guixiong; Zhu Shoupeng; Wang Liuyi; Yang Shuqin; Zhu Lingli

    2003-01-01

    This is a study on injurious effects of cellular spermidine to PC12 cells irradiated by enriched uranium. PC12 cells were cultured in DMEM/F12 medium with enriched uranium, and the exposure doses were calculated. The contents of free spermidine PC12 cells were examined with Dansyl-chloride reaction and thin-layer chromatography. Viability of the cells treated with enriched uranium reduced rapidly and DNA strand break increased significantly with increasing time of the irradiation. Autoradiographic tracks showed that the radionuclide located in the nucleus predominantly. The content of free spermidine in PC12 cells could markedly decrease as the irradiation time increased. The results suggested that PC12 cells exposured to enriched uranium were apoptotic and the free spermidine in cells might play some role in this process

  15. KCl stimulation increases norepinephrine transporter function in PC12 cells.

    Science.gov (United States)

    Mandela, Prashant; Ordway, Gregory A

    2006-09-01

    The norepinephrine transporter (NET) plays a pivotal role in terminating noradrenergic signaling and conserving norepinephrine (NE) through the process of re-uptake. Recent evidence suggests a close association between NE release and regulation of NET function. The present study evaluated the relationship between release and uptake, and the cellular mechanisms that govern these processes. KCl stimulation of PC12 cells robustly increased [3H]NE uptake via the NET and simultaneously increased [3H]NE release. KCl-stimulated increases in uptake and release were dependent on Ca2+. Treatment of cells with phorbol-12-myristate-13-acetate (PMA) or okadaic acid decreased [3H]NE uptake but did not block KCl-stimulated increases in [3H]NE uptake. In contrast, PMA increased [3H]NE release and augmented KCl-stimulated release, while okadaic acid had no effects on release. Inhibition of Ca2+-activated signaling cascades with KN93 (a Ca2+ calmodulin-dependent kinase inhibitor), or ML7 and ML9 (myosin light chain kinase inhibitors), reduced [3H]NE uptake and blocked KCl-stimulated increases in uptake. In contrast, KN93, ML7 and ML9 had no effect on KCl-stimulated [3H]NE release. KCl-stimulated increases in [3H]NE uptake were independent of transporter trafficking to the plasma membrane. While increases in both NE release and uptake mediated by KCl stimulation require Ca2+, different intracellular mechanisms mediate these two events.

  16. Model of Oxygen and Glucose Deprivation in PC12 Cells and Detection of HSP70 Protein

    Science.gov (United States)

    He, Jinting; Yang, Le; Shao, Yankun

    2018-01-01

    Objective: PC12 cell was used to set up a ischemia model by OGD and detected HSP70 protein. Methods: Use of PC12 cells induced by NGF stimulation into nerve cells, oxygen and glucose deprivation to build the nerve cells of oxygen and glucose deprivation model; using Western blot analysis of PC12 cells into neuron-like cells and oxygen-glucose deprivation model established. Results: The application of a final concentration of 50 ng / ml of NGF in DMEM complete mediumPC12 cells showed a typical neuronal morphology with the increase in cell culture time. NGF culture time showed a positive correlation, the establishment of oxygen and glucose deprivation (OGD) training environment, the OGD after nerve element appears different degrees of damage, OGD can effectively induce the expression of HSP70. Conclusion: PC12 cell transformed into cells by NGF; the cell model of OGD was established.

  17. Cytoprotective effects of fisetin against hypoxia-induced cell death in PC12 cells.

    Science.gov (United States)

    Chen, Pei-Yi; Ho, Yi-Ru; Wu, Ming-Jiuan; Huang, Shun-Ping; Chen, Po-Kong; Tai, Mi-Hsueh; Ho, Chi-Tang; Yen, Jui-Hung

    2015-01-01

    Fisetin (3,7,3',4'-tetrahydroxyflavone), a flavonol compound of flavonoids, exhibits a broad spectrum of biological activities including anti-oxidant, anti-inflammatory, anti-cancer and neuroprotective effects. The aim of this study is to investigate the cytoprotective effect of fisetin and the underlying molecular mechanism against hypoxia-induced cell death in PC12 cells. The results of this study showed that fisetin significantly restored the cell viability of PC12 cells under both cobalt chloride (CoCl₂)- and low oxygen-induced hypoxic conditions. Treatment with fisetin successfully reduced the CoCl₂-mediated reactive oxygen species (ROS) production, which was accompanied by an increase in the cell viability of PC12 cells. Furthermore, we found that treatment of PC12 cells with fisetin markedly upregulated hypoxia-inducible factor 1α (HIF-1α), its nuclear accumulation and the hypoxia-response element (HRE)-driven transcriptional activation. The fisetin-mediated cytoprotection during CoCl₂ exposure was significantly attenuated through the administration of HIF-1α siRNA. Moreover, we demonstrated that MAPK/ERK kinase 1/2 (MEK1/2), p38 MAPK and phosphatidylinositol 3-kinase (PI3 K) inhibitors significantly blocked the increase in cell survival that was induced by fisetin treatment under hypoxic conditions. Consistently, increased phosphorylation of ERK, p38 and Akt proteins was observed in PC12 cells treated with fisetin. However, the fisetin-induced HRE-driven transcription was not affected by inhibition of these kinase signaling pathways. Current results reveal for the first time that fisetin promotes cell survival and protects against hypoxia-induced cell death through ROS scavenging and the activation of HIF1α-, MAPK/ERK-, p38 MAPK- and PI3 K/Akt-dependent signaling pathways in PC12 cells.

  18. Protective Effect of Quercetin against Oxidative Stress-Induced Cytotoxicity in Rat Pheochromocytoma (PC-12 Cells

    Directory of Open Access Journals (Sweden)

    Dengke Bao

    2017-07-01

    Full Text Available Oxidative stress has been implicated in the pathogenesis of many kinds of neurodegenerative disorders, particularly Parkinson’s disease. Quercetin is a bioflavonoid found ubiquitously in fruits and vegetables, and has antioxidative activity. However, the underlying mechanism of the antioxidative effect of quercetin in neurodegenerative diseases has not been well explored. Here, we investigated the antioxidative effect and underlying molecular mechanisms of quercetin on PC-12 cells. We found that PC-12 cells pretreated with quercetin exhibited an increased cell viability and reduced lactate dehydrogenase (LDH release when exposed to hydrogen peroxide (H2O2. The significantly-alleviated intracellular reactive oxygen species (ROS, malondialdehyde (MDA, and lipoperoxidation of the cell membrane of PC-12 cells induced by H2O2 were observed in the quercetin pretreated group. Furthermore, quercetin pretreatment markedly reduced the apoptosis of PC-12 cells and hippocampal neurons. The inductions of antioxidant enzyme catalase (CAT, superoxide dismutase (SOD, and glutathione peroxidase (GSH-Px in PC-12 cells exposed to H2O2 were significantly reduced by preatment with quercetin. In addition, quercetin pretreatment significantly increased Bcl-2 expression, and reduced Bax, cleaved caspase-3 and p53 expressions. In conclusion, this study demonstrated that quercetin exhibited a protective effect against oxidative stress-induced apoptosis in PC-12 cells. Our findings suggested that quercetin may be developed as a novel therapeutic agent for neurodegenerative diseases induced by oxidative stress.

  19. Protective Effect of Quercetin against Oxidative Stress-Induced Cytotoxicity in Rat Pheochromocytoma (PC-12) Cells.

    Science.gov (United States)

    Bao, Dengke; Wang, Jingkai; Pang, Xiaobin; Liu, Hongliang

    2017-07-06

    Oxidative stress has been implicated in the pathogenesis of many kinds of neurodegenerative disorders, particularly Parkinson's disease. Quercetin is a bioflavonoid found ubiquitously in fruits and vegetables, and has antioxidative activity. However, the underlying mechanism of the antioxidative effect of quercetin in neurodegenerative diseases has not been well explored. Here, we investigated the antioxidative effect and underlying molecular mechanisms of quercetin on PC-12 cells. We found that PC-12 cells pretreated with quercetin exhibited an increased cell viability and reduced lactate dehydrogenase (LDH) release when exposed to hydrogen peroxide (H₂O₂). The significantly-alleviated intracellular reactive oxygen species (ROS), malondialdehyde (MDA), and lipoperoxidation of the cell membrane of PC-12 cells induced by H₂O₂ were observed in the quercetin pretreated group. Furthermore, quercetin pretreatment markedly reduced the apoptosis of PC-12 cells and hippocampal neurons. The inductions of antioxidant enzyme catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) in PC-12 cells exposed to H₂O₂ were significantly reduced by preatment with quercetin. In addition, quercetin pretreatment significantly increased Bcl-2 expression, and reduced Bax, cleaved caspase-3 and p53 expressions. In conclusion, this study demonstrated that quercetin exhibited a protective effect against oxidative stress-induced apoptosis in PC-12 cells. Our findings suggested that quercetin may be developed as a novel therapeutic agent for neurodegenerative diseases induced by oxidative stress.

  20. Effects of epigallocatechin gallate on ultra-violet-induced cell death in PC12 cells

    International Nuclear Information System (INIS)

    Takahashi, Hideo; Seki, Sakiko; Sakamoto, Naotaka; Nakagawa, Shigeki

    2002-01-01

    We examined the effects of catechin on ultra-violet-induced cell death in PC12 cells. PC12 cells were irradiated by ultra-violet C (254 nm) (UVC). We found that the lactate dehydrogenase (LDH) activities in culture media and lipid peroxide in PC12 cells, which indicate cell death and cell membrane damage, respectively, were increased by UVC irradiation in a time-dependent manner. Cell death was gradually stimulated for 9 hours of cultivation after a UVC irradiation period of 10 or 30 min. Epigallocatechin gallate (EGCG), which is one of the main catechins found in green tea, suppressed the increase in LDH activity in culture medium and also inhibited the formation of lipid peroxide. IκB, a member of the cell death signaling system, was phosphorylated at 1 hour after 10 min of UVC irradiation. Stimulation of phosphorylation of IκB by UVC was suppressed by the addition of EGCG. We concluded that EGCG protects the PC12 cell from cell damage caused by UVC irradiation. (author)

  1. AMP-activated kinase mediates adipose stem cell-stimulated neuritogenesis of PC12 cells.

    Science.gov (United States)

    Tan, B; Luan, Z; Wei, X; He, Y; Wei, G; Johnstone, B H; Farlow, M; Du, Y

    2011-05-05

    Adipose tissue stroma contains a population of mesenchymal stem cells, which support repair of damaged tissues through the protective effects of secreted trophic factors. Neurotrophic factors, including nerve growth factor (NGF) have been identified in media collected from cultured adipose-derived stem cells (ASC). We previously demonstrated that administration of cell-free ASC conditioned medium (ASC-CM) at 24 h after injury reduced lesion volume and promoted functional recovery in a rat model of neonatal brain hypoxic-ischemic (HI) injury. The timing of administration well after the peak in neural cell apoptosis in the affected region suggests that regeneration of lost neurons is promoted by factors in ASC-CM. In this study, we determined which of the factors in ASC-CM could induce neurogenesis by testing the ability of the mixture, either whole or after inactivating specific components, to stimulate neurite outgrowth in vitro using the neurogenic cell line PC12. Neuritogenesis in PC12 cells treated with ASC-CM was observed at a level comparable to that observed with purified recombinant NGF. It was observed that NGF in ASC-CM was mainly responsible for inducing PC12 cell neuritogenesis. Interestingly, both ASC-CM and NGF induced PC12 cell neuritogenesis through activation of the AMP-activated kinase (AMPK) pathway which is the central protein involved in controlling many critical functions in response to changes in the cellular energy status. Pharmacological and genetic inhibition of AMPK activity greatly reduced neuritogenesis in PC12 cells. These results suggest that, in addition to possessing neuroprotective properties, ASC-CM mediates repair of damaged tissues through inducing neuronal differentiation via NGF-induced AMPK activation. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Phase II enzyme induction by a carotenoid, lutein, in a PC12D neuronal cell line

    International Nuclear Information System (INIS)

    Miyake, Seiji; Kobayashi, Saori; Tsubota, Kazuo; Ozawa, Yoko

    2014-01-01

    Highlights: • Lutein reduced ROS levels in a PC12D neuronal cell line. • Lutein induced mRNAs of phase II antioxidative enzymes in PC12D neuronal cells. • Lutein increased protein levels of HO-1, SOD2, and NQO-1 in PC12D neuronal cells. • Lutein had no effect on intranuclear Nrf2 levels in PC12D neuronal cells. • Lutein did not activate potential upstream Nrf2 nuclear translocation pathways. - Abstract: The mechanism by which lutein, a carotenoid, acts as an antioxidant in retinal cells is still not fully understood. Here, lutein treatment of a neuronal cell line (PC12D) immediately resulted in reduced intracellular ROS levels, implying that it has a direct role in ROS scavenging. Significantly, lutein treatment also induced phase II antioxidative enzyme expression, probably via a nuclear factor-like 2 (Nrf2) independent pathway. This latter mechanism could explain why lutein acts diversely to protect against oxidative/cytotoxic stress, and why it is physiologically involved in the human neural tissue, such as the retina

  3. Phase II enzyme induction by a carotenoid, lutein, in a PC12D neuronal cell line

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Seiji [Laboratory of Retinal Cell Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Wakasa Seikatsu Co., Ltd., 134 Chudoujiminami-cho, Shimogyo-ku, Kyoto 600-8813 (Japan); Kobayashi, Saori [Wakasa Seikatsu Co., Ltd., 134 Chudoujiminami-cho, Shimogyo-ku, Kyoto 600-8813 (Japan); Tsubota, Kazuo [Laboratory of Retinal Cell Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Ozawa, Yoko, E-mail: ozawa@a5.keio.jp [Laboratory of Retinal Cell Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan)

    2014-04-04

    Highlights: • Lutein reduced ROS levels in a PC12D neuronal cell line. • Lutein induced mRNAs of phase II antioxidative enzymes in PC12D neuronal cells. • Lutein increased protein levels of HO-1, SOD2, and NQO-1 in PC12D neuronal cells. • Lutein had no effect on intranuclear Nrf2 levels in PC12D neuronal cells. • Lutein did not activate potential upstream Nrf2 nuclear translocation pathways. - Abstract: The mechanism by which lutein, a carotenoid, acts as an antioxidant in retinal cells is still not fully understood. Here, lutein treatment of a neuronal cell line (PC12D) immediately resulted in reduced intracellular ROS levels, implying that it has a direct role in ROS scavenging. Significantly, lutein treatment also induced phase II antioxidative enzyme expression, probably via a nuclear factor-like 2 (Nrf2) independent pathway. This latter mechanism could explain why lutein acts diversely to protect against oxidative/cytotoxic stress, and why it is physiologically involved in the human neural tissue, such as the retina.

  4. Modulation of vesicular catecholamine release from rat PC12 cells

    NARCIS (Netherlands)

    Westerink, R.H.S.

    2002-01-01

    Intercellular communication is of vital importance for the nervous system, since the nervous system is the main coordinating system in animals. Nerve cell communication is initiated by the release of chemical messengers, neurotransmitters, from the presynaptic nerve cell. The neurotransmitters, such

  5. Proteomic analysis of PC12 cell differentiation induced by ionizing radiation

    International Nuclear Information System (INIS)

    Zhang Junquan; Gao Ronglian; Chen Xiaohua; Wang Zhidong; Dong Bo; Rao Yalan; Hou Lili; Zhang Hao; Mao Bingzhi

    2005-01-01

    Objective: To explore the molecular mechanism of PC12 cell differentiation induced by ionizing radiation and screen the molecular target of nervous system injured by irradiation. Methods: PC12 cells were irradiated with 16 Gy 60 Co γ ray. Total proteins of normal and irradiated cells were prepared 48 hours after irradiation and separated with two dimensional gel electrophoresis. Some differential expressed proteins were characterized with mass spectrometry. Results: 876 differential expressed proteins were observed. Up-regulated expression of ubiquitin carboxyl-terminal hydratase L1 was found. Down-regulated expression of new protein similar to HP1α was found. Conclusion: The characterization of some differential expressed proteins through proteomic analysis would benefit the research of molecular mechanism of PC12 cell differentiation induced by ionizing radiation. (authors)

  6. DA-9801 promotes neurite outgrowth via ERK1/2-CREB pathway in PC12 cells.

    Science.gov (United States)

    Won, Jong Hoon; Ahn, Kyong Hoon; Back, Moon Jung; Ha, Hae Chan; Jang, Ji Min; Kim, Ha Hyung; Choi, Sang-Zin; Son, Miwon; Kim, Dae Kyong

    2015-01-01

    In the present study, we examined the mechanisms underlying the effect of DA-9801 on neurite outgrowth. We found that DA-9801 elicits its effects via the mitogen-activated protein kinase (MEK) extracellular signal-regulated kinase (ERK)1/2-cAMP response element-binding protein (CREB) pathway. DA-9801, an extract from a mixture of Dioscorea japonica and Dioscorea nipponica, was reported to promote neurite outgrowth in PC12 cells. The effects of DA-9801 on cell viability and expression of neuronal markers were evaluated in PC12 cells. To investigate DA-9801 action, specific inhibitors targeting the ERK signaling cascade were used. No cytotoxicity was observed in PC12 cells at DA-9801 concentrations of less than 30 µg/mL. In the presence of nerve growth factor (NGF, 2 ng/mL), DA-9801 promoted neurite outgrowth and increased the relative mRNA levels of neurofilament-L (NF-L), a marker of neuronal differentiation. The Raf-1 inhibitor GW5074 and MEK inhibitor PD98059 significantly attenuated DA-9801-induced neurite outgrowth. Additionally, the MEK1 and MEK2 inhibitor SL327 significantly attenuated the increase in the percentage of neurite-bearing PC12 cells induced by DA-9801 treatment. Conversely, the selective p38 mitogen-activated protein kinase inhibitor SB203580 did not attenuate the DA-9801 treatment-induced increase in the percentage of neurite-bearing PC12 cells. DA-9801 enhanced the phosphorylation of ERK1/2 and CREB in PC12 cells incubated with and without NGF. Pretreatment with PD98059 blocked the DA-9801-induced phosphorylation of ERK1/2 and CREB. In conclusion, DA-9801 induces neurite outgrowth by affecting the ERK1/2-CREB signaling pathway. Insights into the mechanism underlying this effect of DA-9801 may suggest novel potential strategies for the treatment of peripheral neuropathy.

  7. Cell metabolomics reveals the neurotoxicity mechanism of cadmium in PC12 cells.

    Science.gov (United States)

    Zong, Li; Xing, Junpeng; Liu, Shu; Liu, Zhiqiang; Song, Fengrui

    2018-01-01

    The heavy metals such as cadmium (Cd) can induce neurotoxicity. Extensive studies about the effects of Cd on human health have been reported, however, a systematic investigation on the molecular mechanisms of the effects of Cd on central nervous system is still needed. In this paper, the neuronal PC-12 cells were treated with a series of concentrations of CdCl 2 for 48h. Then the cytotoxicity was evaluated by MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. The IC 15 value (15% inhibiting concentration) was selected for further mechanism studies. After PC-12 cells incubated with CdCl 2 at a dose of IC 15 for 48h, the intracellular and extracellular metabolites were profiled using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS)-based cell metabolomics approach. As found, the effects of the heavy metal Cd produced on the PC-12 cell viability were dose-dependent. The metabolic changes were involved in the glycolysis and gluconeogenesis, biopterin metabolism, tryptophan metabolism, tyrosine metabolism, glycerophospholipid metabolism, and fatty acids beta-oxidation. These could cause the perturbation of cell membrane, redox balance, energy supply, cellular detoxification, further affecting the cellular proliferation and apoptosis and other cellular activities. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Curcumin Protects β-Lactoglobulin Fibril Formation and Fibril-Induced Neurotoxicity in PC12 Cells.

    Directory of Open Access Journals (Sweden)

    Mansooreh Mazaheri

    Full Text Available In this study the β-lactoglobulin fibrillation, in the presence or absence of lead ions, aflatoxin M1 and curcumin, was evaluated using ThT fluorescence, Circular dichroism spectroscopy and atomic force microscopy. To investigate the toxicity of the different form of β-Lg fibrils, in the presence or absence of above toxins and curcumin, we monitored changes in the level of reactive oxygen species and morphology of the differentiated neuron-like PC12 cells. The cell viability, cell body area, average neurite length, neurite width, number of primary neurites, percent of bipolar cells and node/primary neurite ratios were used to assess the growth and complexity of PC12 cells exposed to different form of β-Lg fibrils. Incubation of β-Lg with curcumin resulted in a significant decrease in ROS levels even in the presence of lead ions and aflatoxin M1. The β-Lg fibrils formed in the presence of lead ions and aflatoxin M1 attenuated the growth and complexity of PC12 cells compared with other form of β-Lg fibrils. However, the adverse effects of these toxins and protein fibrils were negated in the presence of curcumin. Furthermore, the antioxidant and inhibitory effects of curcumin protected PC12 cells against fibril neurotoxicity and enhanced their survival. Thus, curcumin may provide a protective effect toward β-Lg, and perhaps other protein, fibrils mediated neurotoxicity.

  9. Protective effects of red wine flavonols on 4-hydroxynonenal-induced apoptosis in PC12 cells.

    Science.gov (United States)

    Jang, Young Jin; Kang, Nam Joo; Lee, Ki Won; Lee, Hyong Joo

    2009-08-01

    There is accumulating evidence that a moderate consumption of red wine has health benefits, such as the inhibition of neurodegenerative diseases. Although this is generally attributed to resveratrol, the protective mechanisms and the active substance(s) remain unclear. We examined whether and how red wine extract (RWE) and red wine flavonols quercetin and myricetin inhibited 4-hydroxynonenal (HNE)-induced apoptosis of rat pheochromocytoma PC12 cells. RWE attenuated HNE-induced PC12 cell death in a dose-dependent manner. HNE induced cleavage of poly(ADP-ribose) polymerase, which is involved in DNA repair in the nucleus, and this was inhibited by RWE treatment. Treatment with RWE also inhibited HNE-induced nuclear condensation in PC12 cells. Data of 2',7'-dichlorofluorescin diacetate showed that RWE protected against apoptosis of PC12 cells by attenuating intracellular reactive oxygen species. The cytoprotective effects on HNE-induced cell death were stronger for quercetin and myricetin than for resveratrol. HNE-induced nuclear condensation was attenuated by quercetin and myricetin. These results suggest that the neuroprotective potential of red wine is attributable to flavonols rather than to resveratrol.

  10. Toluene-induced, Ca2+-dependent vesicular catecholamine release in rat PC12 cells

    NARCIS (Netherlands)

    Westerink, R.H.S.|info:eu-repo/dai/nl/239425952; Vijverberg, H.P.M.|info:eu-repo/dai/nl/068856474

    2002-01-01

    Acute effects of toluene on vesicular catecholamine release from intact PC12 phaeochromocytoma cells have been investigated using carbon fiber microelectrode amperometry. The frequency of vesicles released is low under basal conditions and is enhanced by depolarization. Toluene causes an increase in

  11. Ninjin'yoeito and ginseng extract prevent oxaliplatin-induced neurodegeneration in PC12 cells.

    Science.gov (United States)

    Suzuki, Toshiaki; Yamamoto, Ayano; Ohsawa, Masahiro; Motoo, Yoshiharu; Mizukami, Hajime; Makino, Toshiaki

    2015-10-01

    Ninjin'yoeito (NYT) is a formula of Japanese traditional kampo medicine composed of 12 crude drugs, and is designed to improve the decline in constitution after recovery from disease, fatigue, anemia, anorexia, perspiration during sleep, cold limbs, slight fever, chills, persistent cough, malaise, mental disequilibrium, insomnia, and constipation. Oxaliplatin (L-OHP) is a platinum-based anticancer drug used to treat colorectal, pancreatic, and stomach cancers. However, it often causes acute and chronic peripheral neuropathies including cold allodynia and mechanical hyperalgesia. In this study, we investigated the preventive effects of NYT on neuronal degeneration caused by L-OHP using PC12 cells, which are derived from the rat adrenal medulla and differentiate into nerve-like cells after exposure to nerve growth factor. L-OHP treatment decreased the elongation of neurite-like projection outgrowths in differentiated PC12 cells. When PC12 cells were treated with NYT hot water extract, neurodegeneration caused by L-OHP was significantly prevented in a concentration-dependent manner. Among the 12 crude drugs composing NYT, the extract of Ginseng (the root of Panax ginseng) exhibited the strongest preventive effects on neurodegeneration in differentiated PC12 cells. By activity-guided fractionation, we found that the fraction containing ginsenosides displayed preventive activity and, among several ginsenosides, ginsenoside F2 exhibited significant preventive effects on L-OHP-induced decreases in neurite-like outgrowths in differentiated PC12 cells. These results suggest that NYT and ginseng are promising agents for preventing L-OHP-induced neuropathies and present ginsenoside F2 as one of the active ingredients in ginseng.

  12. PKA activity exacerbates hypoxia-induced ROS formation and hypoxic injury in PC-12 cells.

    Science.gov (United States)

    Gozal, Evelyne; Metz, Cynthia J; Dematteis, Maurice; Sachleben, Leroy R; Schurr, Avital; Rane, Madhavi J

    2017-09-05

    Hypoxia is a primary factor in many pathological conditions. Hypoxic cell death is commonly attributed to metabolic failure and oxidative injury. cAMP-dependent protein kinase A (PKA) is activated in hypoxia and regulates multiple enzymes of the mitochondrial electron transport chain, thus may be implicated in cellular energy depletion and hypoxia-induced cell death. Wild type (WT) PC-12 cells and PKA activity-deficient 123.7 PC-12 cells were exposed to 3, 6, 12 and 24h hypoxia (0.1% or 5% O 2 ). Hypoxia, at 24h 0.1% O 2 , induced cell death and increased reactive oxygen species (ROS) in WT PC-12 cells. Despite lower ATP levels in normoxic 123.7 cells than in WT cells, hypoxia only decreased ATP levels in WT cells. However, menadione-induced oxidative stress similarly affected both cell types. While mitochondrial COX IV expression remained consistently higher in 123.7 cells, hypoxia decreased COX IV expression in both cell types. N-acetyl cysteine antioxidant treatment blocked hypoxia-induced WT cell death without preventing ATP depletion. Transient PKA catα expression in 123.7 cells partially restored hypoxia-induced ROS but did not alter ATP levels or COX IV expression. We conclude that PKA signaling contributes to hypoxic injury, by regulating oxidative stress rather than by depleting ATP levels. Therapeutic strategies targeting PKA signaling may improve cellular adaptation and recovery in hypoxic pathologies. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Acrolein-induced cell death in PC12 cells: role of mitochondria-mediated oxidative stress.

    Science.gov (United States)

    Luo, Jian; Robinson, J Paul; Shi, Riyi

    2005-12-01

    Oxidative stress has been implicated in acrolein cytotoxicity in various cell types, including mammalian spinal cord tissue. In this study we report that acrolein also decreases PC12 cell viability in a reactive oxygen species (ROS)-dependent manner. Specifically, acrolein-induced cell death, mainly necrosis, is accompanied by the accumulation of cellular ROS. Elevating ROS scavengers can alleviate acrolein-induced cell death. Furthermore, we show that exposure to acrolein leads to mitochondrial dysfunction, denoted by the loss of mitochondrial transmembrane potential, reduction of cellular oxygen consumption, and decrease of ATP level. This raises the possibility that the cellular accumulation of ROS could result from the increased production of ROS in the mitochondria of PC12 cells as a result of exposure to acrolein. The acrolein-induced significant decrease of ATP production in mitochondria may also explain why necrosis, not apoptosis, is the dominant type of cell death. In conclusion, our data suggest that one possible mechanism of acrolein-induced cell death could be through mitochondria as its initial target. The subsequent increase of ROS then inflicts cell death and further worsens mitochondria function. Such mechanism may play an important role in CNS trauma and neurodegenerative diseases.

  14. Protective effect of arctigenin on ethanol-induced neurotoxicity in PC12 cells.

    Science.gov (United States)

    Huang, Jia; Xiao, Lan; Wei, Jing-Xiang; Shu, Ya-Hai; Fang, Shi-Qi; Wang, Yong-Tang; Lu, Xiu-Min

    2017-04-01

    As a neurotropic substance, ethanol can damage nerve cells through an increase in the production of free radicals, interference of neurotrophic factor signaling pathways, activation of endogenous apoptotic signals and other molecular mechanisms. Previous studies have revealed that a number of natural drugs extracted from plants offer protection of nerve cells from damage. Among these, arctigenin (ATG) is a lignine extracted from Arctium lappa (L.), which has been found to exert a neuroprotective effect on scopolamine‑induced memory deficits in mice with Alzheimer's disease and glutamate-induced neurotoxicity in primary neurons. As a result, it may offer beneficial effects on ethanol-induced neurotoxicity. However, the effects of ATG on ethanol‑induced nerve damage remain to be elucidated. To address this issue, the present study used rat pheochromocytoma PC12 cells to investigate the neuroprotective effects of ATG on ethanol-induced cell damage by performing an MTT reduction assay, cell cycle analysis, Hoechst33342/propidium iodide fluorescence staining and flow cytometry to examine apoptosis. The results showed that 10 µM ATG effectively promoted the proliferation of damaged cells, and increased the distribution ratio of the cells at the G2/M and S phases (P<0.05). In addition, the apoptosis and necrosis of the PC12 cells were significantly decreased following treatment with ATG. Therefore, it was concluded that 10 µM ATG had a protective effect on ethanol‑induced injury in PC12 cells.

  15. Binding and internalization of nerve growth factor by PC12 cells

    International Nuclear Information System (INIS)

    Kasaian, M.T.

    1987-01-01

    The interaction of nerve growth factor (NGF) with its cell surface receptors has been studied using both fluorescent- and radio-labelled NGF. The fluorescence studies were done by flow cytometry, and gave information about the concentration dependence and time course of NGF binding to rat pheochromocytoma cells (PC12) and human melanoma cells (A875). 125 I-NGF was used to study the fate of NGF in PC12 cells following its association with cell surface receptors. Variations of the PC12 binding assay were used to distinguish ligand bound to fast and slowly dissociating receptors at the cell surface, internalized ligand, and cytoskeletally-associated NGF. Ligand uptake into each of these pools was followed in untreated cells, as well as in cells exposed to colchicine and/or cytochalasin B to disrupt the cytoskeleton. NGF degradation was also followed in these cells, and chloroquine was used to inhibit this process. In a separate project, NGF activity was assayed in samples of human amniotic fluid and cerebrospinal fluid (CSF). A range of activities was found in these samples, with the CSF samples containing somewhat more activity than the amniotic fluid samples

  16. Hydrogen gas alleviates oxygen toxicity by reducing hydroxyl radical levels in PC12 cells.

    Directory of Open Access Journals (Sweden)

    Junchao Yu

    Full Text Available Hyperbaric oxygen (HBO therapy through breathing oxygen at the pressure of above 1 atmosphere absolute (ATA is useful for varieties of clinical conditions, especially hypoxic-ischemic diseases. Because of generation of reactive oxygen species (ROS, breathing oxygen gas at high pressures can cause oxygen toxicity in the central nervous system, leading to multiple neurological dysfunction, which limits the use of HBO therapy. Studies have shown that Hydrogen gas (H2 can diminish oxidative stress and effectively reduce active ROS associated with diseases. However, the effect of H2 on ROS generated from HBO therapy remains unclear. In this study, we investigated the effect of H2 on ROS during HBO therapy using PC12 cells. PC12 cells cultured in medium were exposed to oxygen gas or mixed oxygen gas and H2 at 1 ATA or 5 ATA. Cells viability and oxidation products and ROS were determined. The data showed that H2 promoted the cell viability and inhibited the damage in the cell and mitochondria membrane, reduced the levels of lipid peroxidation and DNA oxidation, and selectively decreased the levels of •OH but not disturbing the levels of O2•-, H2O2, or NO• in PC12 cells during HBO therapy. These results indicated that H2 effectively reduced •OH, protected cells against oxygen toxicity resulting from HBO therapy, and had no effect on other ROS. Our data supported that H2 could be potentially used as an antioxidant during HBO therapy.

  17. Effects of Aroclor 1254 on dopamine and norepinephrine concentrations in pheochromocytoma (PC-12) cells

    International Nuclear Information System (INIS)

    Seegal, R.F.; Brosch, K.; Bush, B.; Ritz, M.; Shain, W.

    1990-01-01

    Pheochromocytoma (PC-12) cells synthesize, store, release and metabolize dopamine (DA) and norepinephrine (NE) in a manner analogous to that observed in the mammalian central nervous system. These cells were used to develop and validate an alternate method to animal testing to assess the effects of a complex environmental mixture of polychlorinated biphenyls (Aroclor 1254) on cellular catecholamine function. Aroclor 1254, at concentrations of 1 to 100 ppm, significantly decreased cellular catecholamine concentrations after 6 hrs. Exposure at 100 ppm for periods of less than an hr increased cellular catecholamine concentrations while longer exposure times (i.e., 1 to 24 hr) decreased cellular catecholamine concentrations. This in vitro depletion of catecholamines is similar to that seen in vivo. Thus, PC-12 cells may be useful for neurochemical evaluation of neurotoxicants with particular reference to effects on catecholaminergic systems

  18. Cholecystokinin-2 receptor mediated gene expression in neuronal PC12 cells

    DEFF Research Database (Denmark)

    Hansen, Thomas v O; Borup, Rehannah; Marstrand, Troels

    2007-01-01

    could be identified. Comparison with forskolin- and nerve growth factor (NGF)-treated PC12 cells showed that CCK induced a separate set of target genes. Taken together, we propose that neuronal CCK may have a role in the regulation of the circadian rhythm, the metabolism of cerebral cholesterol...... of neuronal CCK are incompletely understood. To identify genes regulated by neuronal CCK, we generated neuronal PC12 cells stably expressing the CCK-2 receptor (CCK-2R) and treated the cells with sulphated CCK-8 for 2-16 h, before the global expression profile was examined. The changes in gene expression...... peaked after 2 h, with 67 differentially expressed transcripts identified. A pathway analysis indicated that CCK was implicated in the regulation of the circadian clock system, the plasminogen system and cholesterol metabolism. But transcripts encoding proteins involved in dopamine signaling, ornithine...

  19. Oxidative stress-mediated cytotoxicity of zirconia nanoparticles on PC12 and N2a cells

    Energy Technology Data Exchange (ETDEWEB)

    Asadpour, Elham [Shiraz University of Medical Sciences, Anesthesiology and Critical Care Research Center (Iran, Islamic Republic of); Sadeghnia, Hamid R. [Mashhad University of Medical Sciences, Department of Pharmacology, Faculty of Medicine (Iran, Islamic Republic of); Ghorbani, Ahmad [Mashhad University of Medical Sciences, Pharmacological Research Center of Medicinal Plants (Iran, Islamic Republic of); Sedaghat, Mehran, E-mail: m-sedaghat81@yahoo.com [Mashhad University of Medical Sciences, Department of Neurosurgery (Iran, Islamic Republic of); Boroushaki, Mohammad T., E-mail: boroushakimt@mums.ac.ir [Mashhad University of Medical Sciences, Department of Pharmacology, Faculty of Medicine (Iran, Islamic Republic of)

    2016-01-15

    In recent years, there is a growing interest in the application of nanoparticles like zirconium dioxide (zirconia <100 nm), for many purposes. Since a comprehensive study on the toxic effects of zirconia has not been done, we decided to investigate the effects of zirconia nanoparticles on cultured PC12 and N2a cells. In this study, cytotoxic effect of different concentrations of zirconia nanoparticles at three different time intervals were evaluated using MTT and ROS (reactive oxygen species) assays. Also, Lipid peroxidation, glutathione (GSH) content changes, and DNA damage were measured. Zirconia nanoparticles caused a significant reduction in cell viability and GSH content of the cells, and induce a significant increase in intracellular ROS and MDA content of PC12 and N2a cells. Moreover, it increases the percentage of DNA tail of treated cells as compared with control group. Zirconia nanoparticles have cytotoxic and genotoxic effects in PC12 and N2a cells in a time and concentration-dependent manner in concentration more than 31 µg/mL.

  20. Resveratrol Protects PC12 Cell against 6-OHDA Damage via CXCR4 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2015-01-01

    Full Text Available Resveratrol, herbal nonflavonoid polyphenolic compound naturally derived from grapes, has long been acknowledged to possess extensive biological and pharmacological properties including antioxidant and anti-inflammatory ones and may exert a neuroprotective effect on neuronal damage in neurodegenerative diseases. However, the underlying molecular mechanisms remain undefined. In the present study, we intended to investigate the neuroprotective effects of resveratrol against 6-OHDA-induced neurotoxicity of PC12 cells and further explore the possible mechanisms involved. For this purpose, PC12 cells were exposed to 6-OHDA in the presence of resveratrol (0, 12.5, 25, and 50 μM. The results showed that resveratrol increased cell viability, alleviated the MMP reduction, and reduced the number of apoptotic cells as measured by MTT assay, JC-1 staining, and Hoechst/PI double staining (all p<0.01. Immunofluorescent staining and Western blotting revealed that resveratrol averts 6-OHDA induced CXCR4 upregulation (p<0.01. Our results demonstrated that resveratrol could effectively protect PC12 cells from 6-OHDA-induced oxidative stress and apoptosis via CXCR4 signaling pathway.

  1. Protective effect of cinnamaldehyde against glutamate-induced oxidative stress and apoptosis in PC12 cells.

    Science.gov (United States)

    Lv, Chao; Yuan, Xing; Zeng, Hua-Wu; Liu, Run-Hui; Zhang, Wei-Dong

    2017-11-15

    Cinnamaldehyde is a main ingredient of cinnamon oils from the stem bark of Cinnamomum cassia, which has been widely used in food and traditional herbal medicine in Asia. In the present study, the neuroprotective effects and the potential mechanisms of cinnamaldehyde against glutamate-induced oxidative stress in PC12 cells were investigated. Exposure to 4mM glutamate altered the GSH, MDA levels and SOD activity, caused the generation of reactive oxygen species, resulted in the induction of oxidative stress in PC12 cell, ultimately induced cell death. However, pretreatment with cinnamaldehyde at 5, 10 and 20μM significantly attenuated cell viability loss, reduced the generation of reactive oxygen species, stabilised mitochondrial membrane potential (MMP), decreased the release of cytochrome c and limited the activities of caspase-9 and -3. In addition, cinnamaldehyde also markedly increased Bcl-2 while inhibiting Bax expression,and decreased the LC3-II/LC3-I ratio. These results indicate that cinnamaldehyde exists a potential protective effect against glutamate-induced oxidative stress and apoptosis in PC12 cells. Copyright © 2017. Published by Elsevier B.V.

  2. Astroglia overexpressing heme oxygenase-1 predispose co-cultured PC12 cells to oxidative injury.

    Science.gov (United States)

    Song, Linyang; Song, Wei; Schipper, Hyman M

    2007-08-01

    The mechanisms responsible for the progressive degeneration of dopaminergic neurons and pathologic iron deposition in the substantia nigra pars compacta of patients with Parkinson's disease (PD) remain unclear. Heme oxygenase-1 (HO-1), the rate-limiting enzyme in the oxidative degradation of heme to ferrous iron, carbon monoxide, and biliverdin, is upregulated in affected PD astroglia and may contribute to abnormal mitochondrial iron sequestration in these cells. To determine whether glial HO-1 hyper-expression is toxic to neuronal compartments, we co-cultured dopaminergic PC12 cells atop monolayers of human (h) HO-1 transfected, sham-transfected, or non-transfected primary rat astroglia. We observed that PC12 cells grown atop hHO-1 transfected astrocytes, but not the astroglia themselves, were significantly more susceptible to dopamine (1 microM) + H(2)O(2) (1 microM)-induced death (assessed by nuclear ethidium monoazide bromide staining and anti-tyrosine hydroxylase immunofluorescence microscopy) relative to control preparations. In the experimental group, PC12 cell death was attenuated significantly by the administration of the HO inhibitor, SnMP (1.5 microM), the antioxidant, ascorbate (200 microM), or the iron chelators, deferoxamine (400 microM), and phenanthroline (100 microM). Exposure to conditioned media derived from HO-1 transfected astrocytes also augmented PC12 cell killing in response to dopamine (1 microM) + H(2)O(2) (1 microM) relative to control media. In PD brain, overexpression of HO-1 in nigral astroglia and accompanying iron liberation may facilitate the bioactivation of dopamine to neurotoxic free radical intermediates and predispose nearby neuronal constituents to oxidative damage. (c) 2007 Wiley-Liss, Inc.

  3. Curcumin-Protected PC12 Cells Against Glutamate-Induced Oxidative Toxicity

    Directory of Open Access Journals (Sweden)

    Chi-Huang Chang

    2014-01-01

    Full Text Available Glutamate is a major excitatory neurotransmitter present in the central nervous system. The glutamate/cystine antiporter system xc– connects the antioxidant defense with neurotransmission and behaviour. Overactivation of ionotropic glutamate receptors induces neuronal death, a pathway called excitotoxicity. Glutamate-induced oxidative stress is a major contributor to neurodegenerative diseases including cerebral ischemia, Alzheimer’s and Huntington’s disease. Curcuma has a wide spectrum of biological activities regarding neuroprotection and neurocognition. By reducing the oxidative damage, curcumin attenuates a spinal cord ischemia-reperfusion injury, seizures and hippocampal neuronal loss. The rat pheochromocytoma (PC12 cell line exhibits many characteristics useful for the study of the neuroprotection and neurocognition. This investigation was carried out to determine whether the neuroprotective effects of curcumin can be observed via the glutamate-PC12 cell model. Results indicate that glutamate (20 mM upregulated glutathione peroxidase 1, glutathione disulphide, Ca2+ influx, nitric oxide production, cytochrome c release, Bax/Bcl-2 ratio, caspase-3 activity, lactate dehydrogenase release, reactive oxygen species, H2O2, and malondialdehyde; and downregulated glutathione, glutathione reductase, superoxide dismutase and catalase, resulting in enhanced cell apoptosis. Curcumin alleviates all these adverse effects. Conclusively, curcumin can effectively protect PC12 cells against the glutamate-induced oxidative toxicity. Its mode of action involves two pathways: the glutathione-dependent nitric oxide-reactive oxygen species pathway and the mitochondria-dependent nitric oxide-reactive oxygen species pathway.

  4. Cocaine- and amphetamine-regulated transcript (CART) peptide specific binding in pheochromocytoma cells PC12

    Czech Academy of Sciences Publication Activity Database

    Maletínská, Lenka; Maixnerová, Jana; Matyšková, Resha; Haugvicová, Renata; Šloncová, Eva; Elbert, Tomáš; Slaninová, Jiřina; Železná, Blanka

    2007-01-01

    Roč. 559, 2/3 (2007), s. 109-114 ISSN 0014-2999 R&D Projects: GA ČR GA303/05/0614 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50520514; CEZ:AV0Z50200510 Keywords : radioligand binding * CART * PC12 cells * food intake Subject RIV: CE - Biochemistry Impact factor: 2.376, year: 2007

  5. Protective Effect of Quercetin against Oxidative Stress-Induced Cytotoxicity in Rat Pheochromocytoma (PC-12) Cells

    OpenAIRE

    Dengke Bao; Jingkai Wang; Xiaobin Pang; Hongliang Liu

    2017-01-01

    Oxidative stress has been implicated in the pathogenesis of many kinds of neurodegenerative disorders, particularly Parkinson’s disease. Quercetin is a bioflavonoid found ubiquitously in fruits and vegetables, and has antioxidative activity. However, the underlying mechanism of the antioxidative effect of quercetin in neurodegenerative diseases has not been well explored. Here, we investigated the antioxidative effect and underlying molecular mechanisms of quercetin on PC-12 cells. We found t...

  6. Nerve growth factor induced changes in the Golgi apparatus of PC-12 rat pheochromocytoma cells as studied by ligand endocytosis, cytochemical and morphometric methods.

    Science.gov (United States)

    Hickey, W F; Stieber, A; Hogue-Angeletti, R; Gonatas, J; GOnatas, N K

    1983-10-01

    Cells of the PC-12 rat pheochromocytoma cell line respond to nerve growth factor (NGF) by sprouting neurites and biochemically differentiating into sympathetic ganglion-like cells. NGF-stimulated ('differentiated') and unstimulated ('undifferentiated') cells were studied by cytochemical techniques for the localization of the enzymes acid phosphatase (ACPase) and thiamine pyrophosphatase (TPPase), and by a morphometric analysis of the distribution of endocytosed wheat-germ agglutinin labelled with horseradish peroxidase (WGA-HRP). Both cytochemical stains showed the enzymes to be distributed in lysosomes and certain cisternae of the Golgi apparatus in both NGF stimulated and unstimulated cells. ACPase was not confined to GERL (Golgi-endoplasmic reticulum-lysosome) as in certain other cells. The morphometric studies demonstrated that the reaction product of the internalized WGA-HRP occupied 4.7% of the cytoplasmic area in unstimulated cells and 4.5% in NGF-stimulated ones. Despite this similarity, the distribution of the WGA-HRP among the studied intracellular compartments in these two cell groups varied. In the NGF-stimulated cells 3.3% of the WGA-HRP reaction product was found in the innermost Golgi cisterna(e) while in unstimulated cells only 0.3% was seen in this compartment. Similarly, 4.3% of the WGA-HRP stain was found in small vesicles at the 'trans' aspect of the Golgi apparatus in stimulated cells, when only 0.3% of the stain occupied this compartment in 'undifferentiated' cells. The morphometric analysis also revealed that when the PC-12 cells were stimulated with NGF, the Golgi apparatus increased in area by approximately 70%. These findings are consistent with the hypothesis that NGF induced differentiation of PC-12 cells is coupled with enhanced endocytosis of WGA and probably of its 'receptor' to the innermost Golgi cisterna(e) and the closely associated vesicles.

  7. Effect of nerve growth factor on the synthesis of amino acids in PC12 cells

    International Nuclear Information System (INIS)

    Zielke, H.R.; Tildon, J.T.; Kauffman, F.C.; Baab, P.J.

    1989-01-01

    Radioactive short-chain fatty acids preferentially label glutamine relative to glutamate in brain due to compartmentation of glutamine and glutamate. To determine whether this phenomenon occurs in a single cell culture model, we examined the effect of fatty acid chain length on the synthesis as well as pool size of selected amino acids in rat pheochromocytoma PC12 cells, a cell culture model of the large glutamate compartment in neurons. Intracellular 14C-amino acids were quantitated by HPLC, and the incorporation of [U-14C]-glucose, [1-14C]-butyrate, [1-14C]-octanoate, and [1-14C]-palmitate into five amino acids was measured in native and NGF-treated PC12 cells. NGF pretreatment decreased the intracellular concentration of amino acids as did addition of fatty acids but these effects were not additive. Specific activities of amino acids in native cells labelled by 14C-octanoate were 1,300 DPM/nmol, 490 DPM/nmol, 200 DPM/nmol, and 110 DPM/nmol for glutamate, aspartate, glutamine, and serine, respectively. No radioactivity was detected in alanine. Similar specific activities were noted when 14C-butyrate was the precursor; however, there was at least 5-fold less if 14C-palmitate was the precursor. Pretreatment of cells with NGF decreased the specific activity of amino acids by 25-65%. Specific activities of amino acids synthesized from 14C-glucose decreased in the following order: glutamate, 1,640 DPM/nmol; aspartate, 1,210 DPM/nmol; alanine, 580 DPM/nmol; glutamine, 275 DPM/nmol; and serine, 80 DPM/nmol for native cells. NGF pretreatment decreased the specific activities of glutamate and glutamine, but not of the other 3 amino acids. The preferred precursor for glutamate synthesis in native PC12 cells was glucose followed by octanoate, butyrate and palmitate (16:6:3:1)

  8. Alpha7 nicotinic receptor mediated protection against ethanol-induced cytotoxicity in PC12 cells.

    Science.gov (United States)

    Li, Y; King, M A; Grimes, J; Smith, N; de Fiebre, C M; Meyer, E M

    1999-01-16

    Ethanol caused a concentration-dependent loss of PC12 cells over a 24 h interval, accompanied by an increase in intracellular calcium. The specific alpha7 nicotinic receptor partial agonist DMXB attenuated both of these ethanol-induced actions at a concentration (3 microM) found previously to protect against apoptotic and necrotic cell loss. The alpha7 nicotinic receptor antagonist methylylaconitine blocked the neuroprotective action of DMXB when applied with but not 30 min after the agonist. These results indicate that activation of alpha7 nicotinic receptors may be therapeutically useful in preventing ethanol-neurotoxicity. Copyright 1999 Elsevier Science B.V.

  9. A Dual Role of P53 in Regulating Colistin-Induced Autophagy in PC-12 Cells

    Directory of Open Access Journals (Sweden)

    Ziyin Lu

    2017-10-01

    Full Text Available This study aimed to investigate the mechanism of p53 in regulating colistin-induced autophagy in PC-12 cells. Importantly, cells were treated with 125 μg/ml colistin for 12 and 24 h after transfection with p53 siRNA or recombinant plasmid. The hallmarks of autophagy and apoptosis were examined by real-time PCR and western blot, fluorescence/immunofluorescence microscopy, and electron microscopy. The results showed that silencing of p53 leads to down-regulation of Atg5 and beclin1 for 12 h while up-regulation at 24 h and up-regulation of p62 noted. The ratio of LC3-II/I and autophagic vacuoles were significantly increased at 24 h, but autophagy flux was blocked. The cleavage of caspase3 and PARP (poly ADP-ribose polymerase were enhanced, while PC-12-sip53 cells exposed to 3-MA showed down-regulation of apoptosis. By contrast, the expression of autophagy-related genes and protein reduced in p53 overexpressing cells following a time dependent manner. Meanwhile, there was an increase in the expression of activated caspase3 and PARP, condensed and fragmented nuclei were evident. Conclusively, the data supported that silencing of p53 promotes impaired autophagy, which acts as a pro-apoptotic induction factor in PC-12 cells treated with colistin for 24 h, and overexpression of p53 inhibits autophagy and accelerates apoptosis. Hence, it has been suggested that p53 could not act as a neuro-protective target in colistin-induced neurotoxicity.

  10. Association of nerve growth factor receptors with the triton X-100 cytoskeleton of PC12 cells

    International Nuclear Information System (INIS)

    Vale, R.D.; Ignatius, M.J.; Shooter, E.M.

    1985-01-01

    Triton X-100 solubilizes membranes of PC12 cells and leaves behind a nucleus and an array of cytoskeletal filaments. Nerve growth factor (NGF) receptors are associated with this Triton X-100-insoluble residue. Two classes of NGF receptors are found on PC12 cells which display rapid and slow dissociating kinetics. Although rapidly dissociating binding is predominant (greater than 75%) in intact cells, the majority of binding to the Triton X-100 cytoskeleton is slowly dissociating (greater than 75%). Rapidly dissociating NGF binding on intact cells can be converted to a slowly dissociating form by the plant lectin wheat germ agglutinin (WGA). This lectin also increases the number of receptors which associate with the Triton X-100 cytoskeleton by more than 10-fold. 125 I-NGF bound to receptors can be visualized by light microscopy autoradiography in Triton X-100-insoluble residues of cell bodies, as well as growth cones and neurites. The WGA-induced association with the cytoskeleton, however, is not specific for the NGF receptor. Concentrations of WGA which change the Triton X-100 solubility of membrane glycoproteins are similar to those required to alter the kinetic state of the NGF receptor. Both events may be related to the crossbridging of cell surface proteins induced by this multivalent lectin

  11. Nanostructured Polyaniline Coating on ITO Glass Promotes the Neurite Outgrowth of PC 12 Cells by Electrical Stimulation.

    Science.gov (United States)

    Wang, Liping; Huang, Qianwei; Wang, Jin-Ye

    2015-11-10

    A conducting polymer polyaniline (PANI) with nanostructure was synthesized on indium tin oxide (ITO) glass. The effect of electrical stimulation on the proliferation and the length of neurites of PC 12 cells was investigated. The dynamic protein adsorption on PANI and ITO surfaces in a cell culture medium was also compared with and without electrical stimulation. The adsorbed proteins were characterized using SDS-PAGE. A PANI coating on ITO surface was shown with 30-50 nm spherical nanostructure. The number of PC 12 cells was significantly greater on the PANI/ITO surface than on ITO and plate surfaces after cell seeding for 24 and 36 h. This result confirmed that the PANI coating is nontoxic to PC 12 cells. The electrical stimulation for 1, 2, and 4 h significantly enhanced the cell numbers for both PANI and ITO conducting surfaces. Moreover, the application of electrical stimulation also improved the neurite outgrowth of PC 12 cells, and the number of PC 12 cells with longer neurite lengths increased obviously under electrical stimulation for the PANI surface. From the mechanism, the adsorption of DMEM proteins was found to be enhanced by electrical stimulation for both PANI/ITO and ITO surfaces. A new band 2 (around 37 kDa) was observed from the collected adsorbed proteins when PC 12 cells were cultured on these surfaces, and culturing PC 12 cells also seemed to increase the amount of band 1 (around 90 kDa). When immersing PANI/ITO and ITO surfaces in a DMEM medium without a cell culture, the number of band 3 (around 70 kDa) and band 4 (around 45 kDa) proteins decreased compared to that of PC 12 cell cultured surfaces. These results are valuable for the design and improvement of the material performance for neural regeneration.

  12. Protective Effects of Costunolide against Hydrogen Peroxide-Induced Injury in PC12 Cells

    Directory of Open Access Journals (Sweden)

    Chong-Un Cheong

    2016-07-01

    Full Text Available Oxidative stress-mediated cellular injury has been considered as a major cause of neurodegenerative diseases including Alzheimer’s and Parkinson’s diseases. The scavenging of reactive oxygen species (ROS mediated by antioxidants may be a potential strategy for retarding the diseases’ progression. Costunolide (CS is a well-known sesquiterpene lactone, used as a popular herbal remedy, which possesses anti-inflammatory and antioxidant activity. This study aimed to investigate the protective role of CS against the cytotoxicity induced by hydrogen peroxide (H2O2 and to elucidate potential protective mechanisms in PC12 cells. The results showed that the treatment of PC12 cells with CS prior to H2O2 exposure effectively increased the cell viability. Furthermore, it decreased the intracellular ROS, stabilized the mitochondria membrane potential (MMP, and reduced apoptosis-related protein such as caspase 3. In addition, CS treatment attenuated the cell injury by H2O2 through the inhibition of phosphorylation of p38 and the extracellular signal-regulated kinase (ERK. These results demonstrated that CS is promising as a potential therapeutic candidate for neurodegenerative diseases resulting from oxidative damage and further research on this topic should be encouraged.

  13. Green tea polyphenol epigallocatechin-3-gallate differentially modulates oxidative stress in PC12 cell compartments

    International Nuclear Information System (INIS)

    Raza, Haider; John, Annie

    2005-01-01

    Tea polyphenols have been reported to be potent antioxidants and beneficial in oxidative stress related diseases. Prooxidant effects of tea polyphenols have also been reported in cell culture systems. In the present study, we have studied oxidative stress in the subcellular compartments of PC12 cells after treatment with different concentrations of the green tea polyphenol, epigallocatechin-3-gallate (EGCG). We have demonstrated that EGCG has differentially affected the production of reactive oxygen species (ROS), glutathione (GSH) metabolism and cytochrome P450 2E1 activity in the different subcellular compartments in PC12 cells. Our results have shown that although the cell survival was not inhibited by EGCG, there was, however, an increased DNA breakdown and activation of apoptotic markers, caspase 3 and poly- (ADP-ribose) polymerase (PARP) at higher concentrations of EGCG treatment. Our results suggest that the differential effects of EGCG might be related to the alterations in oxidative stress, GSH pools and CYP2E1 activity in different cellular compartments. These results may have implications in determining the chemopreventive therapeutic use of tea polyphenols in vivo

  14. Cerebrosides from Sea Cucumber Protect Against Oxidative Stress in SAMP8 Mice and PC12 Cells.

    Science.gov (United States)

    Che, Hongxia; Du, Lei; Cong, Peixu; Tao, Suyuan; Ding, Ning; Wu, Fengjuan; Xue, Changhu; Xu, Jie; Wang, Yuming

    2017-04-01

    Alzheimer's disease (AD) is a neurodegenerative disorder. Emerging evidence implicates β-amyloid (Aβ) plays a critical role in the progression of AD. In this study, we investigated the protective effect of cerebrosides obtained from sea cucumber against senescence-accelerated mouse prone 8 (SAMP8) mice in vivo. We also studied the effect of cerebrosides on Aβ-induced cytotoxicity on the rat pheochromocytoma cell (PC12) and the underlying molecular mechanisms. Cerebrosides ameliorated learning and memory deficits and the Aβ accumulation in demented mice, decreased the content of malondialdehyde (MDA), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OHdG), 8-hydroxy-2'-deoxyguanosine (8-oxo-G), and nitric oxide (NO), and enhanced the superoxide dismutase (SOD) activity significantly. The neuroprotective effect of sea cucumber cerebrosides (SCC) was also verified in vitro: the cerebrosides increased the survival rate of PC12 cells, recovered the cellular morphology, downregulated the protein levels of Caspase-9, cleaved Caspase-3, total Caspase-3, and Bax, and upregulated the protein level of Bcl-2, revealing that cerebrosides could inhibit Aβ-induced cell apoptosis. The results showed the protective effect of SCC was regulated by the mitochondria-dependent apoptotic pathway. Our results provide a new approach to developing the marine organisms as functional foods for neuroprotection.

  15. Selective decreases of nicotinic acetylcholine receptors in PC12 cells exposed to fluoride

    International Nuclear Information System (INIS)

    Chen Jia; Shan, K.-R.; Long, Y.-G.; Wang, Y.-N.; Nordberg, Agneta; Guan, Z.-Z.

    2003-01-01

    In an attempt to elucidate the mechanism by which excessive fluoride damages the central nervous system, the effects of exposure of PC12 cells to different concentrations of fluoride for 48 h on nicotinic acetylcholine receptors (nAChRs) were characterized here. Significant reductions in the number of binding sites for both [ 3 H]epibatidine and [ 125 I]α-bungarotoxin, as well as a significant decrease in the B max value for the high-affinity of epibatidine binding site were observed in PC12 cells subjected to high levels of fluoride. On the protein level, the α3 and α7 subunits of nAChRs were also significantly decreased in the cells exposed to high concentrations of fluoride. In contrast, such exposure had no significant effect on the level of the β2 subunit. These findings suggest that selective decreases in the number of nAChRs may play an important role in the mechanism(s) by which fluoride causes dysfunction of the central nervous system

  16. Ketamine Metabolites Enantioselectively Decrease Intracellular D-Serine Concentrations in PC-12 Cells.

    Directory of Open Access Journals (Sweden)

    Nagendra S Singh

    Full Text Available D-Serine is an endogenous NMDA receptor co-agonist that activates synaptic NMDA receptors modulating neuronal networks in the cerebral cortex and plays a key role in long-term potentiation of synaptic transmission. D-serine is associated with NMDA receptor neurotoxicity and neurodegeneration and elevated D-serine concentrations have been associated with Alzheimer's and Parkinsons' diseases and amyotrophic lateral sclerosis. Previous studies have demonstrated that the ketamine metabolites (rac-dehydronorketamine and (2S,6S-hydroxynorketamine decrease intracellular D-serine concentrations in a concentration dependent manner in PC-12 cells. In the current study, PC-12 cells were incubated with a series of ketamine metabolites and the IC50 values associated with attenuated intracellular D-serine concentrations were determined. The results demonstrate that structural and stereochemical features of the studied compounds contribute to the magnitude of the inhibitory effect with (2S,6S-hydroxynorketamine and (2R,6R-hydroxynorketamine displaying the most potent inhibition with IC50 values of 0.18 ± 0.04 nM and 0.68 ± 0.09 nM. The data was utilized to construct a preliminary 3D-QSAR/pharmacophore model for use in the design of new and more efficient modulators of D-serine.

  17. Neuroprotective Effects of Exogenous Activin A on Oxygen-Glucose Deprivation in PC12 Cells

    Directory of Open Access Journals (Sweden)

    Zhong-Xin Xu

    2011-12-01

    Full Text Available Ischemic cerebrovascular disease is one of the most common causes of death in the World. Exogenous activin A (ActA protects neurons against toxicity and plays a central role in regulating the brain’s response to injury. In the present study, we investigated the mechanisms involved in the neuroprotective effects of ActA in a model of hypoxic-ischemic brain disease. We found that ActA could effectively increase the survival rate of PC12 cells and relieve oxygen-glucose deprivation (OGD damage. To clarify the neuroprotective mechanisms of ActA, the effects of ActA on the ActA/Smad pathway and on the up-regulation of inducible nitric oxide synthase (NOS and superoxide dismutase (SOD were investigated using OGD in PC12 cells. The results showed that ActA could increase the expression of activin receptor IIA (ActRIIA, Smad3 and Smad4 and that 50 ng/mL and 100 ng/mL of ActA could reduce NO levels and increase SOD activity by 78.9% and 79.9%, respectively. These results suggested that the neuroprotective effects of ActA in ischemia could be related to the activation of the ActA/Smad signaling pathway and to its anti-oxidant activities.

  18. Ultrasound-mediated piezoelectric differentiation of neuron-like PC12 cells on PVDF membranes.

    Science.gov (United States)

    Hoop, Marcus; Chen, Xiang-Zhong; Ferrari, Aldo; Mushtaq, Fajer; Ghazaryan, Gagik; Tervoort, Theo; Poulikakos, Dimos; Nelson, Bradley; Pané, Salvador

    2017-06-22

    Electrical and/or electromechanical stimulation has been shown to play a significant role in regenerating various functionalities in soft tissues, such as tendons, muscles, and nerves. In this work, we investigate the piezoelectric polymer polyvinylidene fluoride (PVDF) as a potential substrate for wireless neuronal differentiation. Piezoelectric PVDF enables generation of electrical charges on its surface upon acoustic stimulation, inducing neuritogenesis of PC12 cells. We demonstrate that the effect of pure piezoelectric stimulation on neurite generation in PC12 cells is comparable to the ones induced by neuronal growth factor (NGF). In inhibitor experiments, our results indicate that dynamic stimulation of PVDF by ultrasonic (US) waves activates calcium channels, thus inducing the generation of neurites via a cyclic adenosine monophosphate (cAMP)-dependent pathway. This mechanism is independent from the well-studied NGF induced mitogen-activated protein kinases/extracellular signal-regulated kinases (MAPK/ERK) pathway. The use of US, in combination with piezoelectric polymers, is advantageous since focused power transmission can occur deep into biological tissues, which holds great promise for the development of non-invasive neuroregenerative devices.

  19. Internalization and cellular pools of never growth factor in pheochromocytoma (PC12) cells

    International Nuclear Information System (INIS)

    Neet, K.E.; Kasaian, M.

    1987-01-01

    Nerve Growth Factor (NGF) binds to a cell surface receptor on responsive neuronal cells to initiate cell maintenance and/or differentiation regimes. The purpose of these studies was to define quantitatively the fate of NGF in PC12 cells with respect to various cellular compartments in a single series of biochemical experiments. Different binding methodologies were evaluated in suspension and on plates. 50 pM 125 I-NGF was bound to rat PC12 cells in suspension for 30 min at 37 0 , followed by various methods and combinations of methods to remove subsets of bound ligand. Distinction could be made between NGF bound to fast vs. slow cell surface receptors, NGF bound to slow receptors at the cell surface vs. cell interior, and detergent-soluble vs. cytoskeletally-attached NGF. These treatments defined the relative size of five pools, including the fast receptor (65%), two intracellular compartments (12% and 3%) susceptible to nonionic detergent, and a detergent-stable intracellular pool of ligand (16%). At 37 0 the cold chase stable and the acid stable pools were about the same size because of rapid internalization, but the slow receptor was measurable at 4 0 . Inhibitors were used to define the route of NGF through the cell from the plasma membrane to degradation. Chloroquine caused accumulation of NGF only in pools that were not associated with the cytoskeleton, implicating this compartment in supplying ligand to the lysosome. Results with cytochalasin B and colchicine and suggested both microfilament and microtubule pathways in NGF degradation. A model for the movement of NGF through the cell was developed based on these observations

  20. Single cell amperometry reveals curcuminoids modulate the release of neurotransmitters during exocytosis from PC12 cells

    Science.gov (United States)

    Li, Xianchan; Mohammadi, Amir Saeid; Ewing, Andrew G.

    2016-01-01

    We used single cell amperometry to examine whether curcumin and bisdemethoxycurcumin (BDMC), substances that are suggested to affect learning and memory, can modulate monoamine release from PC12 cells. Our results indicate both curcumin and BDMC need long-term treatment (72 h in this study) to influence exocytosis effectively. By analyzing the parameters calculated from single exocytosis events, it can be concluded that curcumin and BDMC affect exocytosis through different mechanisms. Curcumin accelerates the event dynamics with no significant change of the monoamine amount released from single exocytotic events, whereas BDMC attenuates the amount from single exocytotic event with no significant change of the event dynamics. This comparison of the effect of curcumin and BDMC on exocytosis at the single cell level brings insight into their different mechanisms, which might lead to different biological actions. The effect of curcumin and BDMC on the opening and closing of the exocytotic fusion pore were also investigated. These results might be helpful for understanding the improvement of learning and memory and the anti-depression properties of curcuminoids. PMID:28579928

  1. Inhibition by anandamide of 6-hydroxydopamine-induced cell death in PC12 cells.

    LENUS (Irish Health Repository)

    Mnich, Katarzyna

    2010-01-01

    6-hydroxydopamine (6-OHDA) is a selective neurotoxin that is widely used to investigate cell death and protective strategies in models of Parkinson\\'s disease. Here, we investigated the effects of the endogenous cannabinoid, anandamide, on 6-OHDA-induced toxicity in rat adrenal phaeochromocytoma PC12 cells. Morphological analysis and caspase-3 activity assay revealed that anandamide inhibited 6-OHDA-induced apoptosis. The protection was not affected by antagonists of either cannabinoid receptors (CB(1) or CB(2)) or the vanilloid receptor TRPV1. Anandamide-dependent protection was reduced by pretreatment with LY294002 (inhibitor of phosphatidylinositol 3-kinase, PI3K) and unaffected by U0126 (inhibitor of extracellularly-regulated kinase). Interestingly, phosphorylation of c-Jun-NH2-terminal kinase (JNK) in cells exposed to 6-OHDA was strongly reduced by anandamide pre-treatment. Furthermore, 6-OHDA induced c-Jun activation and increased Bim expression, both of which were inhibited by anandamide. Together, these data demonstrate antiapoptotic effects of anandamide and also suggest a role for activation of PI3K and inhibition of JNK signalling in anandamide-mediated protection against 6-OHDA.

  2. Knockdown of cytosolic NADP(+) -dependent isocitrate dehydrogenase enhances MPP(+) -induced oxidative injury in PC12 cells.

    Science.gov (United States)

    Yang, Eun Sun; Park, Jeen-Woo

    2011-05-01

    1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its toxic metabolite 1-methyl-4-phenylpyridium ion (MPP(+)) have been shown to induce Parkinson's disease-like symptoms as well as neurotoxicity in humans and animal species. Recently, we reported that maintenance of redox balance and cellular defense against oxidative damage are primary functions of the novel antioxidant enzyme cytosolic NADP(+) -dependent isocitrate dehydrogenase (IDPc). In this study, we examined the role of IDPc in cellular defense against MPP(+) -induced oxidative injury using PC12 cells transfected with IDPc small interfering RNA (siRNA). Our results demonstrate that MPP(+) -mediated disruption of cellular redox status, oxidative damage to cells, and apoptotic cell death were significantly enhanced by knockdown of IDPc.

  3. Developmental neurotoxicity of different pesticides in PC-12 cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Christen, Verena [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132, Muttenz (Switzerland); Rusconi, Manuel; Crettaz, Pierre [Federal Office of Public Health, Division Chemical Products, 3003 Bern (Switzerland); Fent, Karl, E-mail: karl.fent@bluewin.ch [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132, Muttenz (Switzerland); Swiss Federal Institute of Technology Zürich (ETH Zürich), Department of Environmental Systems Sciences, Institute of Biogeochemistry and Pollution Dynamics, CH-8092 Zürich (Switzerland)

    2017-06-15

    The detection of developmental neurotoxicity (DNT) of chemicals has high relevance for protection of human health. However, DNT of many pesticides is only little known. Furthermore, validated in vitro systems for assessment of DNT are not well established. Here we employed the rat phaeochromocytoma cell line PC-12 to evaluate DNT of 18 frequently used pesticides of different classes, including neonicotinoids, pyrethroids, organophosphates, organochlorines, as well as quaternary ammonium compounds, the organic compound used in pesticides, piperonyl butoxide, as well as the insect repellent diethyltoluamide (DEET). We determined the outgrowth of neurites in PC-12 cells co-treated with nerve growth factor and different concentrations of biocides for 5 days. Furthermore, we determined transcriptional alterations of selected genes that may be associated with DNT, such as camk2α and camk2β, gap-43, neurofilament-h, tubulin-α and tubulin-β. Strong and dose- dependent inhibition of neurite outgrowth was induced by azamethiphos and chlorpyrifos, and dieldrin and heptachlor, which was correlated with up-regulation of gap-43. No or only weak effects on neurite outgrowth and transcriptional alterations occurred for neonicotinoids acetamiprid, clothianidin, imidacloprid and thiamethoxam, the pyrethroids λ-cyhalothrin, cyfluthrin, deltamethrin, and permethrin, the biocidal disinfectants C12-C14-alkyl(ethylbenzyl)dimethylammonium (BAC), benzalkonium chloride and barquat (dimethyl benzyl ammonium chloride), and piperonyl butoxide and DEET. Our study confirms potential developmental neurotoxicity of some pesticides and provides first evidence that azamethiphos has the potential to act as a developmental neurotoxic compound. We also demonstrate that inhibition of neurite outgrowth and transcriptional alterations of gap-43 expression correlate, which suggests the employment of gap-43 expression as a biomarker for detection and initial evaluation of potential DNT of chemicals

  4. Developmental neurotoxicity of different pesticides in PC-12 cells in vitro

    International Nuclear Information System (INIS)

    Christen, Verena; Rusconi, Manuel; Crettaz, Pierre; Fent, Karl

    2017-01-01

    The detection of developmental neurotoxicity (DNT) of chemicals has high relevance for protection of human health. However, DNT of many pesticides is only little known. Furthermore, validated in vitro systems for assessment of DNT are not well established. Here we employed the rat phaeochromocytoma cell line PC-12 to evaluate DNT of 18 frequently used pesticides of different classes, including neonicotinoids, pyrethroids, organophosphates, organochlorines, as well as quaternary ammonium compounds, the organic compound used in pesticides, piperonyl butoxide, as well as the insect repellent diethyltoluamide (DEET). We determined the outgrowth of neurites in PC-12 cells co-treated with nerve growth factor and different concentrations of biocides for 5 days. Furthermore, we determined transcriptional alterations of selected genes that may be associated with DNT, such as camk2α and camk2β, gap-43, neurofilament-h, tubulin-α and tubulin-β. Strong and dose- dependent inhibition of neurite outgrowth was induced by azamethiphos and chlorpyrifos, and dieldrin and heptachlor, which was correlated with up-regulation of gap-43. No or only weak effects on neurite outgrowth and transcriptional alterations occurred for neonicotinoids acetamiprid, clothianidin, imidacloprid and thiamethoxam, the pyrethroids λ-cyhalothrin, cyfluthrin, deltamethrin, and permethrin, the biocidal disinfectants C12-C14-alkyl(ethylbenzyl)dimethylammonium (BAC), benzalkonium chloride and barquat (dimethyl benzyl ammonium chloride), and piperonyl butoxide and DEET. Our study confirms potential developmental neurotoxicity of some pesticides and provides first evidence that azamethiphos has the potential to act as a developmental neurotoxic compound. We also demonstrate that inhibition of neurite outgrowth and transcriptional alterations of gap-43 expression correlate, which suggests the employment of gap-43 expression as a biomarker for detection and initial evaluation of potential DNT of chemicals

  5. Protective effects of peony glycosides against corticosterone-induced cell death in PC12 cells through antioxidant action.

    Science.gov (United States)

    Mao, Qing-Qiu; Xian, Yan-Fang; Ip, Siu-Po; Tsai, Sam-Hip; Che, Chun-Tao

    2011-02-16

    Previous studies in our laboratory have shown that total glycosides of peony (TGP) produced antidepressant-like action in various mouse models of behavioral despair. However, the molecular mechanism by which TGP exerts antidepressant-like effect is not fully understood. This study examined the protective effects of TGP against corticosterone-induced neurotoxicity in rat pheochromocytoma (PC12) cells and ts possible mechanisms. The direct antioxidant effect of TGP was investigated by using a 2,2'-azinobis-(3-ethylbenzothiazoline- 6-sulphonic acid) (ABTS) radical cation-scavenging assay in a cell-free system. PC12 cells were treated with 200 μM of corticosterone in the absence or presence of TGP in varying concentrations for 48 h. Cell viability, lactate dehydrogenase (LDH) activity, intracellular reactive oxygen species (ROS) level, malondialdehyde (MDA) content, glutathione (GSH) content, superoxide dismutase (SOD) activity, and catalase (CAT) activity were then determined. TGP displayed antioxidant properties in the cell-free system, and the IC50 value in the ABTS radical cation-scavenging assay was 9.9 mg/L. TGP treatment at increasing doses (1-10 mg/L) protected against corticosterone-induced cytotoxicity in PC12 cells in a dose-dependent manner. The cytoprotection afforded by TGP treatment was associated with decreases in the intracellular ROS and MDA levels, and increases in the GSH level, SOD activity, and CAT activity in corticosterone-treated PC12 cells. The results suggest that TGP has a neuroprotective effect on corticosterone-induced neurotoxicity in PC12 cells, which may be related to its antioxidant action. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  6. Developmental neurotoxicity of different pesticides in PC-12 cells in vitro.

    Science.gov (United States)

    Christen, Verena; Rusconi, Manuel; Crettaz, Pierre; Fent, Karl

    2017-06-15

    The detection of developmental neurotoxicity (DNT) of chemicals has high relevance for protection of human health. However, DNT of many pesticides is only little known. Furthermore, validated in vitro systems for assessment of DNT are not well established. Here we employed the rat phaeochromocytoma cell line PC-12 to evaluate DNT of 18 frequently used pesticides of different classes, including neonicotinoids, pyrethroids, organophosphates, organochlorines, as well as quaternary ammonium compounds, the organic compound used in pesticides, piperonyl butoxide, as well as the insect repellent diethyltoluamide (DEET). We determined the outgrowth of neurites in PC-12 cells co-treated with nerve growth factor and different concentrations of biocides for 5days. Furthermore, we determined transcriptional alterations of selected genes that may be associated with DNT, such as camk2α and camk2β, gap-43, neurofilament-h, tubulin-α and tubulin-β. Strong and dose- dependent inhibition of neurite outgrowth was induced by azamethiphos and chlorpyrifos, and dieldrin and heptachlor, which was correlated with up-regulation of gap-43. No or only weak effects on neurite outgrowth and transcriptional alterations occurred for neonicotinoids acetamiprid, clothianidin, imidacloprid and thiamethoxam, the pyrethroids λ-cyhalothrin, cyfluthrin, deltamethrin, and permethrin, the biocidal disinfectants C12-C14-alkyl(ethylbenzyl)dimethylammonium (BAC), benzalkonium chloride and barquat (dimethyl benzyl ammonium chloride), and piperonyl butoxide and DEET. Our study confirms potential developmental neurotoxicity of some pesticides and provides first evidence that azamethiphos has the potential to act as a developmental neurotoxic compound. We also demonstrate that inhibition of neurite outgrowth and transcriptional alterations of gap-43 expression correlate, which suggests the employment of gap-43 expression as a biomarker for detection and initial evaluation of potential DNT of chemicals

  7. ER stress is the initial response to polyglutamine toxicity in PC12 cells

    International Nuclear Information System (INIS)

    Nakayama, Hitoshi; Hamada, Masashi; Fujikake, Nobuhiro; Nagai, Yoshitaka; Zhao, Jing; Hatano, Osamu; Shimoke, Koji; Isosaki, Minoru; Yoshizumi, Masanori; Ikeuchi, Toshihiko

    2008-01-01

    Persistent endoplasmic reticulum (ER) stress and impairment of the ubiquitin-proteasome system (UPS) cause neuronal cell death. However, the relationship between these two phenomena remains controversial. In our current study, we have utilized an expanded polyglutamine fusion protein (polyQ81) expression system in PC12 cells to further examine the involvement of ER stress and UPS impairment in cell death. The expression of polyQ81-induced ER stress and cell death. PolyQ81 also induced the activation of c-Jun N-terminal kinase (JNK) and caspase-3 and an increase in polyubiquitin immunoreactivity, suggesting UPS impairment. ER stress was induced prior to the accumulation of polyubiquitinated proteins. Low doses of lactacystin had almost similar effects on cell viability and on the activation of JNK and caspase-3 between normal cells and polyQ81-expressing cells. These results suggest that ER stress mediates polyglutamine toxicity prior to UPS impairment during the initial stages of these toxic effects.

  8. Taurine inhibits 2,5-hexanedione-induced oxidative stress and mitochondria-dependent apoptosis in PC12 cells.

    Science.gov (United States)

    Li, Shuangyue; Guan, Huai; Qian, Zhiqiang; Sun, Yijie; Gao, Chenxue; Li, Guixin; Yang, Yi; Piao, Fengyuan; Hu, Shuhai

    2017-04-07

    2,5-hexanedione (HD) is the ultimate neurotoxic metabolite of hexane, causing the progression of nerve diseases in human. It was reported that HD induced apoptosis and oxidative stress. Taurine has been shown to be a potent antioxidant. In the present study, we investigated the protection of taurine against HD-induced apoptosis in PC12 cells and the underlying mechanism. Our results showed the decreased viability and increased apoptosis in HD-exposed PC12 cells. HD also induced the disturbance of Bax and Bcl-2 expression, the loss of MMP, the release of mitochondrial cytochrome c and caspase-3 activation in PC12 cells. Moreover, HD resulted in an increase in reactive oxygen species (ROS) level and a decline in the activities of superoxidedismutase and catalase in PC12 cells. However, taurine pretreatment ameliorated the increased apoptosis and the alterations in key regulators of mitochondria-dependent pathway in PC12 exposed to HD. The increased ROS level and the decreased activities of the antioxidant enzymes in HD group were attenuated by taurine. These results indicate that pretreatment of taurine may, at least partly, prevent HD-induced apoptosis via inhibiting mitochondria-dependent pathway. It is also suggested that the potential of taurine against HD-induced apoptosis may benefit from its anti-oxidative property.

  9. Synergistic effect of topography, surface chemistry and conductivity of the electrospun nanofibrous scaffold on cellular response of PC12 cells.

    Science.gov (United States)

    Tian, Lingling; Prabhakaran, Molamma P; Hu, Jue; Chen, Menglin; Besenbacher, Flemming; Ramakrishna, Seeram

    2016-09-01

    Electrospun nanofibrous nerve implants is a promising therapy for peripheral nerve injury, and its performance can be tailored by chemical cues, topographical features as well as electrical properties. In this paper, a surface modified, electrically conductive, aligned nanofibrous scaffold composed of poly (lactic acid) (PLA) and polypyrrole (Ppy), referred to as o-PLAPpy_A, was fabricated for nerve regeneration. The morphology, surface chemistry and hydrophilicity of nanofibers were characterized by Scanning Electron Microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and water contact angle, respectively. The effects of these nanofibers on neuronal differentiation using PC12 cells were evaluated. A hydrophilic surface was created by Poly-ornithine coating, which was able to provide a better environment for cell attachment, and furthermore aligned fibers were proved to be able to guide PC12 cells grow along the fiber direction and be beneficial for neurite outgrowth. The cellular response of PC12 cells to pulsed electrical stimulation was evaluated by NF 200 and alpha tubulin expression, indicating that electrical stimulation with a voltage of 40mV could enhance the neurite outgrowth. The PC12 cells stimulated with electrical shock showed greater level of neurite outgrowth and smaller cell body size. Moreover, the PC12 cells under electrical stimulation showed better viability. In summary, the o-PLAPpy_A nanofibrous scaffold supported the attachment, proliferation and differentiation of PC12 cells in the absence of electrical stimulation, which could be potential candidate for nerve regeneration applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Cedrin identified from Cedrus deodara (Roxb.) G. Don protects PC12 cells against neurotoxicity induced by Aβ1-42.

    Science.gov (United States)

    Zhao, Zhiwei; Dong, Zhanfei; Ming, Jie; Liu, Yan

    2018-06-01

    Alzheimer's disease is a severe neurodegenerative disease affecting elder worldwide and closely related to the neurotoxicity induced by amyloid β. To find efficient therapeutics, we have investigated the protective effects of cedrin from Cedrus deodara (Roxb.) G. Don on PC12 cells against the neurotoxicity induced by amyloid β 1-42 . The results have shown the viability of PC12 cells injured by amyloid β 1-42 can be improved by cedrin. Cedrin can reduce reacrive oxygen species overproduction, increase the activity of superoxide dismutase and decrease malondialdehyde content. Meanwhile, the loss of mitochondrial membrane potential and mitochondrial permeability transition pore opening in PC12 cells, and elevated Caspase-3 activity, downregulated Bcl-2 and upregulated Bax are meliorated. These results demonstrate the protective effect of cedrin is related to the inhibition of oxidative stress, improvement of mitochondrial dysfunction and suppression of apoptosis. This investigation gives evidences for the application of cedrin in practice and further investigation in vivo.

  11. Protective effect of Hibiscus sabdariffa against serum/glucose deprivation-induced PC12 cells injury

    Science.gov (United States)

    Bakhtiari, Elham; Hosseini, Azar; Mousavi, Seyed Hadi

    2015-01-01

    Objectives: Findings natural products with antioxidant and antiapoptotic properties has been one of the interesting challenges in the search for the treatment of neurodegenerative diseases including ischemic stroke. Serum/glucose deprivation (SGD) has been used as a model for the understanding of the molecular mechanisms of neuronal damage during ischemia in vitro and for the expansion of neuroprotective drugs against ischemia-induced brain injury. Recent studies showed that Hibiscus sabdariffa exert pharmacological actions such as potent antioxidant. Therefore, in this study we investigated the protective effect of extract of H. sabdariffa against SGD-induced PC12 cells injury. Materials and Methods: Cells were pretreated with different concentrations of H. sabdariffa extract (HSE) for 2 hr, and then exposed to SGD condition for 6, 12 and 18 hr. Results: SGD caused a major reduction in cell viability after 6, 12, and 18 hr as compared with control cells (psabdariffa has the potential to be used as a new therapeutic approach for neurodegenerative disorders. PMID:26101756

  12. microRNA regulatory mechanism by which PLLA aligned nanofibers influence PC12 cell differentiation

    Science.gov (United States)

    Yu, Yadong; Lü, Xiaoying; Ding, Fei

    2015-08-01

    Objective. Aligned nanofibers (AFs) are regarded as promising biomaterials in nerve tissue engineering. However, a full understanding of the biocompatibility of AFs at the molecular level is still challenging. Therefore, the present study focused on identifying the microRNA (miRNA)-mediated regulatory mechanism by which poly-L-lactic acid (PLLA) AFs influence PC12 cell differentiation. Approach. Firstly, the effects of PLLA random nanofibers (RFs)/AFs and PLLA films (control) on the biological responses of PC12 cells that are associated with neuronal differentiation were examined. Then, SOLiD sequencing and cDNA microarray were employed to profile the expressions of miRNAs and mRNAs. The target genes of the misregulated miRNAs were predicted and compared with the mRNA profile data. Functions of the matched target genes (the intersection between the predicted target genes and the experimentally-determined, misregulated genes) were analyzed. Main results. The results revealed that neurites spread in various directions in control and RF groups. In the AF group, most neurites extended in parallel with each other. The glucose consumption and lactic acid production in the RF and AF groups were higher than those in the control group. Compared with the control group, 42 and 94 miRNAs were significantly dysregulated in the RF and AF groups, respectively. By comparing the predicted target genes with the mRNA profile data, five and 87 matched target genes were found in the RF and AF groups, respectively. Three of the matched target genes in the AF group were found to be associated with neuronal differentiation, whereas none had this association in the RF group. The PLLA AFs induced the dysregulation of miRNAs that regulate many biological functions, including axonal guidance, lipid metabolism and long-term potentiation. In particular, two miRNA-matched target gene-biological function modules associated with neuronal differentiation were identified as follows: (1) miR-23b, mi

  13. Protective effect of Nigella sativa extract and thymoquinone on serum/glucose deprivation-induced PC12 cells death.

    Science.gov (United States)

    Mousavi, S H; Tayarani-Najaran, Z; Asghari, M; Sadeghnia, H R

    2010-05-01

    The serum/glucose deprivation (SGD)-induced cell death in cultured PC12 cells represents a useful in vitro model for the study of brain ischemia and neurodegenerative disorders. Nigella sativa L. (family Ranunculaceae) and its active component thymoquinone (TQ) has been known as a source of antioxidants. In the present study, the protective effects of N. sativa and TQ on cell viability and reactive oxygen species (ROS) production in cultured PC12 cells were investigated under SGD conditions. PC12 cells were cultured in DMEM medium containing 10% (v/v) fetal bovine serum, 100 units/ml penicillin, and 100 microg/ml streptomycin. Cells were seeded overnight and then deprived of serum/glucose for 6 and 18 h. Cells were pretreated with different concentrations of N. sativa extract (15.62-250 microg/ml) and TQ (1.17-150 microM) for 2 h. Cell viability was quantitated by MTT assay. Intracellular ROS production was measured by flow cytometry using 2',7'-dichlorofluorescin diacetate (DCF-DA) as a probe. SGD induced significant cells toxicity after 6, 18, or 24 h (P < 0.001). Pretreatment with N. sativa (15.62-250 microg/ml) and TQ (1.17-37.5 microM) reduced SGD-induced cytotoxicity in PC12 cells after 6 and 18 h. A significant increase in intracellular ROS production was seen following SGD (P < 0.001). N. sativa (250 microg/ml, P < 0.01) and TQ (2.34, 4.68, 9.37 microM, P < 0.01) pretreatment reversed the increased ROS production following ischemic insult. The experimental results suggest that N. sativa extract and TQ protects the PC12 cells against SGD-induced cytotoxicity via antioxidant mechanisms. Our findings might raise the possibility of potential therapeutic application of N. sativa extract and TQ for managing cerebral ischemic and neurodegenerative disorders.

  14. Lead Intoxication Synergies of the Ethanol-Induced Toxic Responses in Neuronal Cells--PC12.

    Science.gov (United States)

    Kumar, V; Tripathi, V K; Jahan, S; Agrawal, M; Pandey, A; Khanna, V K; Pant, A B

    2015-12-01

    Lead (Pb)-induced neurodegeneration and its link with widespread neurobehavioral changes are well documented. Experimental evidences suggest that ethanol could enhance the absorption of metals in the body, and alcohol consumption may increase the susceptibility to metal intoxication in the brain. However, the underlying mechanism of ethanol action in affecting metal toxicity in brain cells is poorly understood. Thus, an attempt was made to investigate the modulatory effect of ethanol on Pb intoxication in PC12 cells, a rat pheochromocytoma. Cells were co-exposed to biological safe doses of Pb (10 μM) and ethanol (200 mM), and data were compared to the response of cells which received independent exposure to these chemicals at similar doses. Ethanol (200 mM) exposure significantly aggravated the Pb-induced alterations in the end points associated with oxidative stress and apoptosis. The finding confirms the involvement of reactive oxygen species (ROS)-mediated oxidative stress, and impairment of mitochondrial membrane potential, which subsequently facilitate the translocation of triggering proteins between cytoplasm and mitochondria. We further confirmed the apoptotic changes due to induction of mitochondria-mediated caspase cascade. These cellular changes were found to recover significantly, if the cells are exposed to N-acetyl cysteine (NAC), a known antioxidant. Our data suggest that ethanol may potentiate Pb-induced cellular damage in brain cells, but such damaging effects could be recovered by inhibition of ROS generation. These results open up further possibilities for the design of new therapeutics based on antioxidants to prevent neurodegeneration and associated health problems.

  15. Effect of acute millimeter wave exposure on dopamine metabolism of NGF-treated PC12 cells.

    Science.gov (United States)

    Haas, Alexis J; Le Page, Yann; Zhadobov, Maxim; Sauleau, Ronan; Dréan, Yves Le; Saligaut, Christian

    2017-07-01

    Several forthcoming wireless telecommunication systems will use electromagnetic frequencies at millimeter waves (MMWs), and technologies developed around the 60-GHz band will soon know a widespread distribution. Free nerve endings within the skin have been suggested to be the targets of MMW therapy which has been used in the former Soviet Union. So far, no studies have assessed the impact of MMW exposure on neuronal metabolism. Here, we investigated the effects of a 24-h MMW exposure at 60.4 GHz, with an incident power density (IPD) of 5 mW/cm², on the dopaminergic turnover of NGF-treated PC12 cells. After MMW exposure, both intracellular and extracellular contents of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) were studied using high performance liquid chromatography. Impact of exposure on the dopamine transporter (DAT) expression was also assessed by immunocytochemistry. We analyzed the dopamine turnover by assessing the ratio of DOPAC to DA, and measuring DOPAC accumulation in the medium. Neither dopamine turnover nor DAT protein expression level were impacted by MMW exposure. However, extracellular accumulation of DOPAC was found to be slightly increased, but not significantly. This result was related to the thermal effect, and overall, no evidence of non-thermal effects of MMW exposure were observed on dopamine metabolism. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  16. Protective effects of veskamide, enferamide, becatamide, and oretamide on H2O2-induced apoptosis of PC-12 cells

    Science.gov (United States)

    Veskamide, enferamide, becatamide, and oretamide are phenolic amides whose analogues are found in plants. In this study, the four amides were prepared by chemical synthesis and their protective effects on H(2)O(2)-induced apoptosis in PC-12 cells were investigated. The syntheses were relatively si...

  17. Neuroprotective activity of Leontice leontopetalum extract against H2O2-stimulated oxidative stress in PC12 cells

    Directory of Open Access Journals (Sweden)

    S. Sahranavard*

    2017-11-01

    Full Text Available Background and objectives: Neuronal toxicity can be induced by oxidative stress via free radicals production. In recent years, great interest has been expressed to the traditional and herbal medicines. The purpose of this study was to elucidate the neuroprotective activity of Leontice leontopetalum methanol extract against H2O2-stimulated oxidative stress in PC12 cells. Methods: The plantLeontice leontopetalum was selected based on the ethnobotanical approach, which is used traditionally for the treatment of diseases related to inflammation and pain in Turkmen Sahra, Iran. Cytotoxicity of different concentrations of the methanol extract against PC12 cells was evaluated by MTT assay. Then PC12 cells were exposed to H2O2 in the presence or absence of the extract. In the next step, the total protein concentration was measured via Bradford assay and cyclooxygenase inhibition was determined by a screening assay kit. Nitrite accumulated in culture medium of supernatant was measured by Griess reaction. Results: Our results indicated that the methanol extract of Leontice leontopetalum significantly inhibited cyclooxygenase activity in the presence of H2O2; however, it was not able to inhibit nitric oxide generation in the stimulated PC12 cells. Conclusion: The results suggested that Leontice leontopetalum may be useful in reducing risk of neurodegenerative related diseases such as Alzheimer Disease.

  18. MELATONIN-INDUCED SUPPRESSION OF PC12 CELL GROWTH IS MEDIATED BY ITS GI COUPLED TRANSMEMBRANE RECEPTORS. (R826248)

    Science.gov (United States)

    The effects of pertussis toxin, an uncoupler of Gi protein from adenylate cyclase, and luzindole, a competitive inhibitor of melatonin receptor binding, were examined for their ability to inhibit melatonin-induced suppression of PC12 cell growth. Both agents inhibited the mela...

  19. Pituitary adenylate cyclase activating polypeptide modulates catecholamine storage and exocytosis in PC12 cells.

    Directory of Open Access Journals (Sweden)

    Yan Dong

    Full Text Available A number of efforts have been made to understand how pituitary adenylate cyclase activating polypeptide (PACAP functions as a neurotrophic and neuroprotective factor in Parkinson's disease (PD. Recently its effects on neurotransmission and underlying mechanisms have generated interest. In the present study, we investigate the effects of PACAP on catecholamine storage and secretion in PC12 cells with amperometry and transmission electron microscopy (TEM. PACAP increases quantal release induced by high K+ without significantly regulating the frequency of vesicle fusion events. TEM data indicate that the increased volume of the vesicle is mainly the result of enlargement of the fluidic space around the dense core. Moreover, the number of docked vesicles isn't modulated by PACAP. When cells are acutely treated with L-DOPA, the vesicular volume and quantal release both increase dramatically. It is likely that the characteristics of amperometric spikes from L-DOPA treated cells are associated with increased volume of individual vesicles rather than a direct effect on the mechanics of exocytosis. Treatment with PACAP versus L-DOPA results in different profiles of the dynamics of exocytosis. Release via the fusion pore prior to full exocytosis was observed with the same frequency following treatment with PACAP and L-DOPA. However, release events have a shorter duration and higher average current after PACAP treatment compared to L-DOPA. Furthermore, PACAP reduced the proportion of spikes having rapid decay time and shortened the decay time of both fast and slow spikes. In contrast, the distributions of the amperometric spike decay for both fast and slow spikes were shifted to longer time following L-DOPA treatment. Compared to L-DOPA, PACAP may produce multiple favorable effects on dopaminergic neurons, including protecting dopaminergic neurons against neurodegeneration and potentially regulating dopamine storage and release, making it a promising

  20. Reactive oxygen species regulated mitochondria-mediated apoptosis in PC12 cells exposed to chlorpyrifos

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Eun [Department of Pharmacology, College of Medicine, Hanyang University, Seoul (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Park, Jae Hyeon [Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of); Shin, In Chul [Department of Pharmacology, College of Medicine, Hanyang University, Seoul (Korea, Republic of); Koh, Hyun Chul, E-mail: hckoh@hanyang.ac.kr [Department of Pharmacology, College of Medicine, Hanyang University, Seoul (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of)

    2012-09-01

    Reactive oxidative species (ROS) generated by environmental toxicants including pesticides could be one of the factors underlying the neuronal cell damage in neurodegenerative diseases. In this study we found that chlorpyrifos (CPF) induced apoptosis in dopaminergic neuronal components of PC12 cells as demonstrated by the activation of caspases and nuclear condensation. Furthermore, CPF also reduced the tyrosine hydroxylase-positive immunoreactivity in substantia nigra of the rat. In addition, CPF induced inhibition of mitochondrial complex I activity. Importantly, N-acetyl cysteine (NAC) treatment effectively blocked apoptosis via the caspase-9 and caspase-3 pathways while NAC attenuated the inhibition of mitochondrial complex I activity as well as the oxidative metabolism of dopamine (DA). These results demonstrated that CPF-induced apoptosis was involved in mitochondrial dysfunction through the production of ROS. In the response of cellular antioxidant systems to CPF, we found that CPF treatment increased HO-1 expression while the expression of CuZnSOD and MnSOD was reduced. In addition, we found that CPF treatment activated MAPK pathways, including ERK 1/2, the JNK, and the p38 MAP kinase in a time-dependent manner. NAC treatment abolished MAPK phosphorylation caused by CPF, indicating that ROS are upstream signals of MAPK. Interestingly, MAPK inhibitors abolished cytotoxicity and reduced ROS generation by CPF treatment. Our results demonstrate that CPF induced neuronal cell death in part through MAPK activation via ROS generation, suggesting its potential to generate oxidative stress via mitochondrial damage and its involvement in oxidative stress-related neurodegenerative disease. -- Highlights: ► Chlorpyrifos induces apoptosis. ► Chlorpyrifos inhibits mitochondrial complex I activity. ► ROS is involved in chlorpyrifos-induced apoptosis. ► Chlorpyrifos affects cellular antioxidant systems. ► Chlorpyrifos-induced apoptosis mediates activation of MAPK.

  1. Reactive oxygen species regulated mitochondria-mediated apoptosis in PC12 cells exposed to chlorpyrifos

    International Nuclear Information System (INIS)

    Lee, Jeong Eun; Park, Jae Hyeon; Shin, In Chul; Koh, Hyun Chul

    2012-01-01

    Reactive oxidative species (ROS) generated by environmental toxicants including pesticides could be one of the factors underlying the neuronal cell damage in neurodegenerative diseases. In this study we found that chlorpyrifos (CPF) induced apoptosis in dopaminergic neuronal components of PC12 cells as demonstrated by the activation of caspases and nuclear condensation. Furthermore, CPF also reduced the tyrosine hydroxylase-positive immunoreactivity in substantia nigra of the rat. In addition, CPF induced inhibition of mitochondrial complex I activity. Importantly, N-acetyl cysteine (NAC) treatment effectively blocked apoptosis via the caspase-9 and caspase-3 pathways while NAC attenuated the inhibition of mitochondrial complex I activity as well as the oxidative metabolism of dopamine (DA). These results demonstrated that CPF-induced apoptosis was involved in mitochondrial dysfunction through the production of ROS. In the response of cellular antioxidant systems to CPF, we found that CPF treatment increased HO-1 expression while the expression of CuZnSOD and MnSOD was reduced. In addition, we found that CPF treatment activated MAPK pathways, including ERK 1/2, the JNK, and the p38 MAP kinase in a time-dependent manner. NAC treatment abolished MAPK phosphorylation caused by CPF, indicating that ROS are upstream signals of MAPK. Interestingly, MAPK inhibitors abolished cytotoxicity and reduced ROS generation by CPF treatment. Our results demonstrate that CPF induced neuronal cell death in part through MAPK activation via ROS generation, suggesting its potential to generate oxidative stress via mitochondrial damage and its involvement in oxidative stress-related neurodegenerative disease. -- Highlights: ► Chlorpyrifos induces apoptosis. ► Chlorpyrifos inhibits mitochondrial complex I activity. ► ROS is involved in chlorpyrifos-induced apoptosis. ► Chlorpyrifos affects cellular antioxidant systems. ► Chlorpyrifos-induced apoptosis mediates activation of MAPK.

  2. The prescriptions from Shenghui soup enhanced neurite growth and GAP-43 expression level in PC12 cells.

    Science.gov (United States)

    Zhang, Qi; Zhang, Zi-Jian; Wang, Xing-Hua; Ma, Jie; Song, Yue-Han; Liang, Mi; Lin, Sen-Xiang; Zhao, Jie; Zhang, Ao-Zhe; Li, Feng; Hua, Qian

    2016-09-20

    Shenghui soup is a traditional Chinese herbal medicine used in clinic for the treatment of forgetfulness. In order to understanding the prescription principle, the effects of "tonifying qi and strengthening spleen" group (TQSS) including Poria cocos (Schw.) Wolf. and Panax ginseng C.A.Mey and "eliminating phlegm and strengthening intelligence" group (EPSI) composed of Polygala tenuifolia Willd., Acorus calamus L. and Sinapis alba L from the herb complex on neurite growth in PC12 cells, two disassembled prescriptions derived from Shenghui soup and their molecular mechanisms were investigated. Firstly, CCK-8 kit was used to detect the impact of the two prescriptions on PC12 cell viability; and Flow cytometry was performed to measure the cell apoptosis when PC12 cells were treated with these drugs. Secondly, the effect of the two prescriptions on the differentiation of PC12 cells was observed. Finally, the mRNA and protein expression levels of GAP-43 were analyzed by RT-PCR and western blot, respectively. "Tonifying qi and strengthening spleen" prescription decreased cell viability in a dose-dependent manner, but had no significant effect on cell apoptosis. Meanwhile, it could improve neurite growth and elevate the mRNA and protein expression level of GAP-43. "Eliminating phlegm and strengthening intelligence" prescription also exerted the similar effects on cell viability and apoptosis. Furthermore, it could also enhance cell neurite growth, with a higher expression level of GAP-43 mRNA and protein. "Tonifying qi and strengthening spleen" and "eliminating phlegm and strengthening intelligence" prescriptions from Shenghui soup have a positive effect on neurite growth. Their effects are related to the up-regulating expression of GAP-43.

  3. Caveolin-1 and glucose transporter 4 involved in the regulation of glucose-deprivation stress in PC12 cells.

    Science.gov (United States)

    Zhang, Qi-Qi; Huang, Liang; Han, Chao; Guan, Xin; Wang, Ya-Jun; Liu, Jing; Wan, Jing-Hua; Zou, Wei

    2015-08-25

    Recent evidence suggests that caveolin-1 (Cav-1), the major protein constituent of caveolae, plays a prominent role in neuronal nutritional availability with cellular fate regulation besides in several cellular processes such as cholesterol homeostasis, regulation of signal transduction, integrin signaling and cell growth. Here, we aimed to investigate the function of Cav-1 and glucose transporter 4 (GLUT4) upon glucose deprivation (GD) in PC12 cells. The results demonstrated firstly that both Cav-1 and GLUT4 were up-regulated by glucose withdrawal in PC12 cells by using Western blot and laser confocal technology. Also, we found that the cell death rate, mitochondrial membrane potential (MMP) and intracellular free Ca(2+) concentration ([Ca(2+)]i) were also respectively changed followed the GD stress tested by CCK8 and flow cytometry. After knocking down of Cav-1 in the cells by siRNA, the level of [Ca(2+)]i was increased, and MMP was reduced further in GD-treated PC12 cells. Knockdown of Cav-1 or methylated-β-Cyclodextrin (M-β-CD) treatment inhibited the expression of GLUT4 protein upon GD. Additionally, we found that GLUT4 could translocate from cytoplasm to cell membrane upon GD. These findings might suggest a neuroprotective role for Cav-1, through coordination of GLUT4 in GD.

  4. The effects of functional magnetic nanotubes with incorporated nerve growth factor in neuronal differentiation of PC12 cells

    International Nuclear Information System (INIS)

    Xie Jining; Chen Linfeng; Varadan, Vijay K; Yancey, Justin; Srivatsan, Malathi

    2008-01-01

    In this in vitro study the efficiency of magnetic nanotubes to bind with nerve growth factor (NGF) and the ability of NGF-incorporated magnetic nanotubes to release the bound NGF are investigated using rat pheochromocytoma cells (PC12 cells). It is found that functional magnetic nanotubes with NGF incorporation enabled the differentiation of PC12 cells into neurons exhibiting growth cones and neurite outgrowth. Microscope observations show that filopodia extending from neuron growth cones were in close proximity to the NGF-incorporated magnetic nanotubes, at times appearing to extend towards or into them. These results show that magnetic nanotubes can be used as a delivery vehicle for NGF and thus may be exploited in attempts to treat neurodegenerative disorders such as Parkinson's disease with neurotrophins. Further neurite outgrowth can be controlled by manipulating magnetic nanotubes with external magnetic fields, thus helping in directed regeneration

  5. High Glucose-Induced PC12 Cell Death by Increasing Glutamate Production and Decreasing Methyl Group Metabolism

    Directory of Open Access Journals (Sweden)

    Minjiang Chen

    2016-01-01

    Full Text Available Objective. High glucose- (HG- induced neuronal cell death is responsible for the development of diabetic neuropathy. However, the effect of HG on metabolism in neuronal cells is still unclear. Materials and Methods. The neural-crest derived PC12 cells were cultured for 72 h in the HG (75 mM or control (25 mM groups. We used NMR-based metabolomics to examine both intracellular and extracellular metabolic changes in HG-treated PC12 cells. Results. We found that the reduction in intracellular lactate may be due to excreting more lactate into the extracellular medium under HG condition. HG also induced the changes of other energy-related metabolites, such as an increased succinate and creatine phosphate. Our results also reveal that the synthesis of glutamate from the branched-chain amino acids (isoleucine and valine may be enhanced under HG. Increased levels of intracellular alanine, phenylalanine, myoinositol, and choline were observed in HG-treated PC12 cells. In addition, HG-induced decreases in intracellular dimethylamine, dimethylglycine, and 3-methylhistidine may indicate a downregulation of methyl group metabolism. Conclusions. Our metabolomic results suggest that HG-induced neuronal cell death may be attributed to a series of metabolic changes, involving energy metabolism, amino acids metabolism, osmoregulation and membrane metabolism, and methyl group metabolism.

  6. NGF-Dependent neurite outgrowth in PC12 cells overexpressing the Src homology 2-domain protein shb requires activation of the Rap1 pathway

    NARCIS (Netherlands)

    Lu, L.; Annerén, C.; Reedquist, K. A.; Bos, J. L.; Welsh, M.

    2000-01-01

    The Src homology 2 (SH2) domain adaptor protein Shb has been shown to transmit NGF- and FGF-2-dependent differentiation signals in PC12 cells. To study if this involves signaling through the small GTPase Rap1, Rap1 activity was assessed in Shb-overexpressing PC12 cells. We demonstrate that NGF and

  7. The Neuroprotective Properties of Hericium erinaceus in Glutamate-Damaged Differentiated PC12 Cells and an Alzheimer's Disease Mouse Model.

    Science.gov (United States)

    Zhang, Junrong; An, Shengshu; Hu, Wenji; Teng, Meiyu; Wang, Xue; Qu, Yidi; Liu, Yang; Yuan, Ye; Wang, Di

    2016-11-01

    Hericium erinaceus , an edible and medicinal mushroom, displays various pharmacological activities in the prevention of dementia in conditions such as Parkinson's and Alzheimer's disease. The present study explored the neuroprotective effects of H. erinaceus mycelium polysaccharide-enriched aqueous extract (HE) on an l-glutamic acid (l-Glu)-induced differentiated PC12 (DPC12) cellular apoptosis model and an AlCl₃ combined with d-galactose-induced Alzheimer's disease mouse model. The data revealed that HE successfully induced PC12 cell differentiation. A 3 h HE incubation at doses of 50 and 100 µg/mL before 25 mM of l-Glu effectively reversed the reduction of cell viability and the enhancement of the nuclear apoptosis rate in DPC12 cells. Compared with l-Glu-damaged cells, in PC12 cells, HE suppressed intracellular reactive oxygen species accumulation, blocked Ca 2+ overload and prevented mitochondrial membrane potential (MMP) depolarization. In the Alzheimer's disease mouse model, HE administration enhanced the horizontal and vertical movements in the autonomic activity test, improved the endurance time in the rotarod test, and decreased the escape latency time in the water maze test. It also improved the central cholinergic system function in the Alzheimer's mice, demonstrated by the fact that it dose-dependently enhanced the acetylcholine (Ach) and choline acetyltransferase (ChAT) concentrations in both the serum and the hypothalamus. Our findings provide experimental evidence that HE may provide neuroprotective candidates for treating or preventing neurodegenerative diseases.

  8. Endogenous protection derived from activin A/Smads transduction loop stimulated via ischemic injury in PC12 cells.

    Science.gov (United States)

    Mang, Jing; Mei, Chun-Li; Wang, Jiao-Qi; Li, Zong-Shu; Chu, Ting-Ting; He, Jin-Ting; Xu, Zhong-Xin

    2013-10-17

    Activin A (ActA), a member of transforming growth factor-beta (TGF-b) super- family, affects many cellular processes, including ischemic stroke. Though the neuroprotective effects of exogenous ActA on oxygen-glucose deprivation (OGD) injury have already been reported by us, the endogenous role of ActA remains poorly understood. To further define the role and mechanism of endogenous ActA and its signaling in response to acute ischemic damage, we used an OGD model in PC12 cells to simulate ischemic injury on neurons in vitro. Cells were pre-treated by monoclonal antibody against activin receptor type IIA (ActRII-Ab). We found that ActRII-Ab augments ischemic injury in PC12 cells. Further, the extracellular secretion of ActA as well as phosphorylation of smad3 in PC12 cells was also up-regulated by OGD, but suppressed by ActRII-Ab. Taken together, our results show that ActRII-Ab may augment ischemic injury via blocking of transmembrane signal transduction of ActA, which confirmed the existence of endogenous neuroprotective effects derived from the ActA/Smads pathway. ActRIIA plays an important role in transferring neuronal protective signals inside. It is highly possible that ActA transmembrance signaling is a part of the positive feed-back loop for extracellular ActA secretion.

  9. Endogenous Protection Derived from Activin A/Smads Transduction Loop Stimulated via Ischemic Injury in PC12 Cells

    Directory of Open Access Journals (Sweden)

    Zhong-Xin Xu

    2013-10-01

    Full Text Available Activin A (ActA, a member of transforming growth factor-beta (TGF-b super- family, affects many cellular processes, including ischemic stroke. Though the neuroprotective effects of exogenous ActA on oxygen-glucose deprivation (OGD injury have already been reported by us, the endogenous role of ActA remains poorly understood. To further define the role and mechanism of endogenous ActA and its signaling in response to acute ischemic damage, we used an OGD model in PC12 cells to simulate ischemic injury on neurons in vitro. Cells were pre-treated by monoclonal antibody against activin receptor type IIA (ActRII-Ab. We found that ActRII-Ab augments ischemic injury in PC12 cells. Further, the extracellular secretion of ActA as well as phosphorylation of smad3 in PC12 cells was also up-regulated by OGD, but suppressed by ActRII-Ab. Taken together, our results show that ActRII-Ab may augment ischemic injury via blocking of transmembrane signal transduction of ActA, which confirmed the existence of endogenous neuroprotective effects derived from the ActA/Smads pathway. ActRIIA plays an important role in transferring neuronal protective signals inside. It is highly possible that ActA transmembrance signaling is a part of the positive feed-back loop for extracellular ActA secretion.

  10. Stabilization of Nrf2 protein by D3T provides protection against ethanol-induced apoptosis in PC12 cells.

    Directory of Open Access Journals (Sweden)

    Jian Dong

    2011-02-01

    Full Text Available Previous studies have demonstrated that maternal ethanol exposure induces a moderate increase in Nrf2 protein expression in mouse embryos. Pretreatment with the Nrf2 inducer, 3H-1, 2-dithiole-3-thione (D3T, significantly increases the Nrf2 protein levels and prevents apoptosis in ethanol-exposed embryos. The present study, using PC12 cells, was designed to determine whether increased Nrf2 stability is a mechanism by which D3T enhances Nrf2 activation and subsequent antioxidant protection. Ethanol and D3T treatment resulted in a significant accumulation of Nrf2 protein in PC 12 cells. CHX chase analysis has shown that ethanol treatment delayed the degradation of Nrf2 protein in PC12 cells. A significantly greater decrease in Nrf2 protein degradation was observed in the cells treated with D3T alone or with both ethanol and D3T. In addition, D3T treatment significantly reduced ethanol-induced apoptosis. These results demonstrate that the stabilization of Nrf2 protein by D3T confers protection against ethanol-induced apoptosis.

  11. Rab3A Inhibition of Ca2+ -Dependent Dopamine Release From PC12 Cells Involves Interaction With Synaptotagmin I.

    Science.gov (United States)

    Dai, Zhipan; Tang, Xia; Chen, Jia; Tang, Xiaochao; Wang, Xianchun

    2017-11-01

    Rab3 and synaptotagmin have been suggested to play important roles in the regulation of neurotransmitter release and, however, the molecular mechanism has not been completely clear. Here, we studied the effects of Rab3A and synaptotagmin I (Syt I) on dopamine release using PC12 cells as a model system. Rab3A was demonstrated to have effects on both Ca 2+ -independent and Ca 2+ -dependent dopamine releases from the PC12 cells. Application of Rab3A (up to 2500 nM) gradually decreased the amount of Ca 2+ -dependently released dopamine, indicating that Rab3A is a negative modulator that was further supported by the increase in dopamine release caused by Rab3A knockdown. Syt I knockdown weakened the Ca 2+ -dependent dopamine release, suggesting that Syt I plays a positive regulatory role in the cellular process. Treatment of the Syt I-knocked down PC12 cells with Rab3A further decreased Ca 2+ -dependent dopamine release and, however, the decrease magnitude was significantly reduced compared with that before Syt I knockdown, thus for the first time demonstrating that the inhibitory effect of Rab3A on Ca 2+ -dependent dopamine release involves the interaction with Syt I. This work has shed new light on the molecular mechanism for Rab3 and synaptotamin regulation of neurotransmitter release. J. Cell. Biochem. 118: 3696-3705, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Overexpression of let-7a increases neurotoxicity in a PC12 cell model of Alzheimer's disease via regulating autophagy.

    Science.gov (United States)

    Gu, Huizi; Li, Lan; Cui, Chen; Zhao, Zihui; Song, Guijun

    2017-10-01

    Increased deposition of β-amyloid (Aβ) protein is one of the typical characteristics of Alzheimer's disease (AD). Recent evidence has demonstrated that the microRNA let-7 family, which is highly expressed in the central nervous system, participates in the regulation of pathologic processes of AD. In the present study, the effect of let-7a overexpression on Aβ1-40-induced neurotoxicity was evaluated in PC12 and SK-N-SH cells. The results indicated that overexpression of let-7a enhanced the neurotoxicity induced by Aβ1-40 in PC12 and SK-N-SH cells. In addition, the apoptosis induced by Aβ1-40 in PC12 and SK-N-SH cells was increased by let-7a overexpression. Furthermore, Aβ1-40 treatment increased the protein levels of microtubule-associated protein 1A/1B-light chain 3 (LC3) and beclin-1 and increased the LC3 II/I ratio. The mRNA expression levels of beclin-1, autophagy protein 5 (Atg-5) and Atg-7 were also increased by Aβ1-40 treatment in PC12 cells. Let-7a overexpression further upregulated the above autophagy-related markers. Furthermore, the protein level of p62 was increased by Aβ1-40 treatment, and this was further enhanced by let-7a overexpression. Finally, the present results demonstrated that the phosphoinositide-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway was involved in the autophagy regulation by let-7a. In conclusion, the present study demonstrates that the neurotoxicity induced by Aβ1-40 is augmented by let-7a overexpression via regulation of autophagy, and the PI3K/Akt/mTOR signaling pathway also serves a function in this process.

  13. Nerve growth factor enhances the CRE-dependent transcriptional activity activated by nobiletin in PC12 cells.

    Science.gov (United States)

    Takito, Jiro; Kimura, Junko; Kajima, Koji; Uozumi, Nobuyuki; Watanabe, Makoto; Yokosuka, Akihito; Mimaki, Yoshihiro; Nakamura, Masanori; Ohizumi, Yasushi

    2016-07-01

    Prevention and treatment of Alzheimer disease are urgent problems for elderly people in developed countries. We previously reported that nobiletin, a poly-methoxylated flavone from the citrus peel, improved the symptoms in various types of animal models of memory loss and activated the cAMP responsive element (CRE)-dependent transcription in PC12 cells. Nobiletin activated the cAMP/PKA/MEK/Erk/MAPK signaling pathway without using the TrkA signaling activated by nerve growth factor (NGF). Here, we examined the effect of combination of nobiletin and NGF on the CRE-dependent transcription in PC12 cells. Although NGF alone had little effect on the CRE-dependent transcription, NGF markedly enhanced the CRE-dependent transcription induced by nobiletin. The NGF-induced enhancement was neutralized by a TrkA antagonist, K252a. This effect of NGF was effective on the early signaling event elicited by nobiletin. These results suggested that there was crosstalk between NGF and nobiletin signaling in activating the CRE-dependent transcription in PC12 cells.

  14. Antineurodegenerative effect of phenolic extracts and caffeic acid derivatives in romaine lettuce on neuron-like PC-12 cells.

    Science.gov (United States)

    Im, Sung-Eun; Yoon, Hyungeun; Nam, Tae-Gyu; Heo, Ho Jin; Lee, Chang Yong; Kim, Dae-Ok

    2010-08-01

    In recent decades, romaine lettuce has been one of the fastest growing vegetables with respect to its consumption and production. An understanding is needed of the effect of major phenolic phytochemicals from romaine lettuce on biological protection for neuron-like PC-12 cells. Phenolics in fresh romaine lettuce were extracted, and then its total phenolics and total antioxidant capacity were measured spectrophotometrically. Neuroprotective effects of phenolic extract of romaine lettuce and its pure caffeic acid derivatives (caffeic, chicoric, chlorogenic, and isochlorogenic acids) in PC-12 cells were evaluated using two different in vitro methods: lactate dehydrogenase release and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assays. Total phenolics and total antioxidant capacity of 100 g of fresh romaine lettuce averaged 22.7 mg of gallic acid equivalents and 31.0 mg of vitamin C equivalents, respectively. The phenolic extract of romaine lettuce protected PC-12 cells against oxidative stress caused by H(2)O(2) in a dose-dependent manner. Isochlorogenic acid, one of the phenolics in romaine lettuce, showed stronger neuroprotection than the other three caffeic acid derivatives also found in the lettuce. Although romaine lettuce had lower levels of phenolics and antioxidant capacity compared to other common vegetables, its contribution to total antioxidant capacity and antineurodegenerative effect in human diets would be higher because of higher amounts of its daily per capita consumption compared to other common vegetables.

  15. Allicin protects against H2O2-induced apoptosis of PC12 cells via the mitochondrial pathway.

    Science.gov (United States)

    Lv, Runxiao; Du, Lili; Lu, Chunwen; Wu, Jinhui; Ding, Muchen; Wang, Chao; Mao, Ningfang; Shi, Zhicai

    2017-09-01

    Allicin is a major bioactive ingredient of garlic and has a broad range of biological activities. Allicin has been reported to protect against cell apoptosis induced by H 2 O 2 in human umbilical vein endothelial cells. The present study evaluated the neuroprotective effect of allicin on the H 2 O 2 -induced apoptosis of rat pheochromocytoma PC12 cells in vitro and explored the underlying mechanism involved. PC12 cells were incubated with increasing concentrations of allicin and the toxic effect of allicin was measured by MTT assay. The cells were pretreated for 24 h with low dose (L-), medium dose (M-) and high dose (H-) of allicin, followed by exposure to 200 µM H 2 O 2 for 2 h, and the cell viability was examined by MTT assay. In addition, cell apoptosis rate was analyzed by Annexin V-FITC/PI assay, while intracellular reactive oxygen species (ROS) and mitochondrial transmembrane potential (∆ψm) were measured by flow cytometry. Bcl-2, Bax, cleaved-caspase-3 and cytochrome c (Cyt C) in the mitochondria were also examined by western blotting. The results demonstrated that 0.01 µg/ml (L-allicin), 0.1 µg/ml (M-allicin) and 1 µg/ml (H-allicin) were non-toxic doses of allicin. Furthermore, H 2 O 2 reduced cell viability, promoted cell apoptosis, induced ROS production and decreased ∆ψm. However, allicin treatment reversed the effect of H 2 O 2 in a dose-dependent manner. It was also observed that H 2 O 2 exposure significantly decreased Bcl-2 and mitochondrial Cyt C, while it increased Bax and cleaved-caspase-3, which were attenuated by allicin pretreatment. The results revealed that allicin protected PC12 cells from H 2 O 2 -induced cell apoptosis via the mitochondrial pathway, suggesting the potential neuroprotective effect of allicin against neurological diseases.

  16. Culturing of PC12 Cells, Neuronal Cells, Astrocytes Cultures and Brain Slices in an Open Microfluidic System

    DEFF Research Database (Denmark)

    Al Atraktchi, Fatima Al-Zahraa; Bakmand, Tanya; Rømer Sørensen, Ane

    The brain is the center of the nervous system, where serious neurodegenerative diseases such as Parkinson’s, Alzheimer’s and Huntington’s are products of functional loss in the neural cells (1). Typical techniques used to investigate these diseases lack precise control of the cellular surroundings......, in addition to isolating the neural tissue from nutrient delivery and to creating unwanted gradients (2). This means that typical techniques used to investigate neurodegenerative diseases cannot mimic in vivo conditions, as closely as desired. We have developed a novel microfluidic system for culturing PC12...... cells, neuronal cells, astrocytes cultures and brain slices. The microfluidic system provides efficient nutrient delivery, waste removal, access to oxygen, fine control over the neurochemical environment and access to modern microscopy. Additionally, the setup consists of an in vitro culturing...

  17. Regulation of heme oxygenase-1 expression and MAPK pathways in response to kaempferol and rhamnocitrin in PC12 cells

    International Nuclear Information System (INIS)

    Hong, J.-T.; Yen, J.-H.; Wang Lisu; Lo, Y.-H.; Chen, Z.-T.; Wu, M.-J.

    2009-01-01

    Oxidative stress has been considered as a major cause of cellular injuries in a variety of clinical abnormalities, especially neural diseases. Our aim of research is to investigate the protective effects and mechanisms of kaempferol and rhamnocitrin (kaempferol-7-methyl ether) on oxidative damage in rat pheochromocytoma PC12 cells induced by a limited supply of serum and hydrogen peroxide (H 2 O 2 ). The current result demonstrated that kaempferol protected PC12 cells from serum deprivation-induced apoptosis. Pretreatment of cells with kaempferol also diminished intracellular generation of reactive oxygen species (ROS) in response to H 2 O 2 and strongly elevated cell viability. RT-Q-PCR and Western blotting revealed that kaempferol and rhamnocitrin significantly induced heme oxygenase (HO)-1 gene expression. Addition of zinc protoporphyrin (Znpp), a HO-1 competitive inhibitor, significantly attenuated their protective effects in H 2 O 2 -treated cells, indicating the vital role of HO-1 in cell resistance to oxidative injury. While investigating the signaling pathways responsible for HO-1 induction, we observed that kaempferol induced sustained extracellular signal-regulated protein kinase 1/2 (ERK1/2) in PC12 cells grown in low serum medium; while rhamnocitrin only stimulated transient ERK cascade. Addition of U0126, a highly selective inhibitor of MEK1/2, which is upstream of ERK1/2, had no effect on kaempferol- or rhamnocitrin-induced HO-1 mRNA expression, indicating no direct cross-talk between these two pathways. Furthermore, both kaempferol and rhamnocitrin were able to persistently attenuate p38 phosphorylation. Taking together, the above findings suggest that kaempferol and rhamnocitrin can augment cellular antioxidant defense capacity, at least in part, through regulation of HO-1 expression and MAPK signal transduction.

  18. Toxic effect of zinc nanoscale metal-organic frameworks on rat pheochromocytoma (PC12) cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Fei, E-mail: paper_mail@126.com [Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Yang, Baochun; Cai, Jing [Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Jiang, Yaodong [Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Xu, Jun [Department of Health Economy Administration, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Wang, Shan [Department of Pharmacy, Winthrop University Hospital, Mineola, NY 11501 (United States)

    2014-04-01

    Highlights: • Metal-organic frameworks (MOFs) represent a newborn family of hybrid materials. • MOFs have already shown promise in a number of biological applications. • The biological applications of MOFs raise concerns for potential cytotoxicity. • Substantial information about MOF's neurotoxicity is still quite scarce. • This study reveals for the first time the interaction of MOFs with neural cells. - Abstract: Metal-organic frameworks (MOFs) possess unique properties desirable for delivery of drugs and gaseous therapeutics, but their uncharacterized interactions with cells raise increasing concerns of their safety in such biomedical applications. We evaluated the adverse effects of zinc nanoscale MOFs on the cell morphology, cytoskeleton, cell viability and expression of neurotrophin signaling pathway-associated GAP-43 protein in rat pheochromocytoma PC12 cells. At the concentration of 25 μg/ml, zinc MOFs did not significantly affect morphology, viability and membrane integrity of the cells. But at higher concentrations (over 100 μg/ml), MOFs exhibited a time- and concentration-dependent cytotoxicity, indicating their entry into the cells via endocytosis where they release Zn{sup 2+} into the cytosol to cause increased intracellular concentration of Zn{sup 2+}. We demonstrated that the toxicity of MOFs was associated with a disrupted cellular zinc homeostasis and down-regulation of GAP-43 protein, which might be the underlying mechanism for the improved differentiation in PC12 cells. These findings highlight the importance of cytotoxic evaluation of the MOFs before their biomedical application.

  19. Toxic effect of zinc nanoscale metal-organic frameworks on rat pheochromocytoma (PC12) cells in vitro

    International Nuclear Information System (INIS)

    Ren, Fei; Yang, Baochun; Cai, Jing; Jiang, Yaodong; Xu, Jun; Wang, Shan

    2014-01-01

    Highlights: • Metal-organic frameworks (MOFs) represent a newborn family of hybrid materials. • MOFs have already shown promise in a number of biological applications. • The biological applications of MOFs raise concerns for potential cytotoxicity. • Substantial information about MOF's neurotoxicity is still quite scarce. • This study reveals for the first time the interaction of MOFs with neural cells. - Abstract: Metal-organic frameworks (MOFs) possess unique properties desirable for delivery of drugs and gaseous therapeutics, but their uncharacterized interactions with cells raise increasing concerns of their safety in such biomedical applications. We evaluated the adverse effects of zinc nanoscale MOFs on the cell morphology, cytoskeleton, cell viability and expression of neurotrophin signaling pathway-associated GAP-43 protein in rat pheochromocytoma PC12 cells. At the concentration of 25 μg/ml, zinc MOFs did not significantly affect morphology, viability and membrane integrity of the cells. But at higher concentrations (over 100 μg/ml), MOFs exhibited a time- and concentration-dependent cytotoxicity, indicating their entry into the cells via endocytosis where they release Zn 2+ into the cytosol to cause increased intracellular concentration of Zn 2+ . We demonstrated that the toxicity of MOFs was associated with a disrupted cellular zinc homeostasis and down-regulation of GAP-43 protein, which might be the underlying mechanism for the improved differentiation in PC12 cells. These findings highlight the importance of cytotoxic evaluation of the MOFs before their biomedical application

  20. Ameliorative effects of selenium on arsenic-induced cytotoxicity in PC12cells via modulating autophagy/apoptosis.

    Science.gov (United States)

    Rahman, Md Mostafizur; Uson-Lopez, Rachael A; Sikder, Md Tajuddin; Tan, Gongxun; Hosokawa, Toshiyuki; Saito, Takeshi; Kurasaki, Masaaki

    2018-04-01

    Arsenic is well known toxicant responsible for human diseases including cancers. On the other hand, selenium is an essential trace element with significant chemopreventive effects, anticancer potentials and antioxidant properties. Although previous studies have reported antagonism/synergism between arsenic and selenium in biological systems, the biomolecular mechanism/s is still inconclusive. Therefore, to elucidate the molecular phenomena in cellular level, we hypothesized that co-exposure of selenium with arsenic may have suppressive effects on arsenic-induced cytotoxicity. We found that selenium in co-exposure with arsenic increases cell viability, and suppresses oxidative stress induced by arsenic in PC12cells. Consequently, DNA fragmentation due to arsenic exposure was also reduced by arsenic and selenium co-exposure. Furthermore, western blot analyses revealed that simultaneous exposure of both metals significantly inhibited autophagy which further suppressed apoptosis through positively regulation of key proteins; p-mTOR, p-Akt, p-Foxo1A, p62, and expression of ubiquitin, Bax, Bcl2, NFкB, and caspases 3 and 9, although those are negatively regulated by arsenic. In addition, reverse transcriptase PCR analysis confirmed the involvement of caspase cascade in cell death process induced by arsenic and subsequent inhibition by co-exposure of selenium with arsenic. The cellular accumulation study of arsenic in presence/absence of selenium via inductively coupled plasma mass spectrometry confirmed that selenium effectively retarded the uptake of arsenic in PC12cells. Finally, these findings imply that selenium is capable to modulate arsenic-induced intrinsic apoptosis pathway via enhancement of mTOR/Akt autophagy signaling pathway through employing antioxidant potentials and through inhibiting the cellular accumulation of arsenic in PC12cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Lithium Improves Survival of PC12 Pheochromocytoma Cells in High-Density Cultures and after Exposure to Toxic Compounds

    Directory of Open Access Journals (Sweden)

    Cinzia Fabrizi

    2014-01-01

    Full Text Available Autophagy is an evolutionary conserved mechanism that allows for the degradation of long-lived proteins and entire organelles which are driven to lysosomes for digestion. Different kinds of stressful conditions such as starvation are able to induce autophagy. Lithium and rapamycin are potent autophagy inducers with different molecular targets. Lithium stimulates autophagy by decreasing the intracellular myo-inositol-1,4,5-triphosphate levels, while rapamycin acts through the inhibition of the mammalian target of rapamycin (mTOR. The correlation between autophagy and cell death is still a matter of debate especially in transformed cells. In fact, the execution of autophagy can protect cells from death by promptly removing damaged organelles such as mitochondria. Nevertheless, an excessive use of the autophagic machinery can drive cells to death via a sort of self-cannibalism. Our data show that lithium (used within its therapeutic window stimulates the overgrowth of the rat Pheochromocytoma cell line PC12. Besides, lithium and rapamycin protect PC12 cells from toxic compounds such as thapsigargin and trimethyltin. Taken together these data indicate that pharmacological activation of autophagy allows for the survival of Pheochromocytoma cells in stressful conditions such as high-density cultures and exposure to toxins.

  2. Efecto sobre la viabilidad celular de una nueva serie de espirosteroides sintéticos en células PC12 Effect of a new series of synthetic spiroteroids on the PC12 cell line viability

    Directory of Open Access Journals (Sweden)

    Laura García-Pupo

    2013-03-01

    Full Text Available Introducción: la diosgenina y sus derivados se han descrito como potentes inhibidores de la proliferación en varias líneas tumorales. Sin embargo otras moléculas relacionadas estructuralmente con dichos derivados, se han reportado como candidatos terapéuticos y otras de ellas se incluyen en alimentos de consumo humano. Objetivo: el presente trabajo evalúa el efecto sobre la viabilidad celular de una nueva serie de espiroesteroides sintéticos derivados de la diosgenina, en células tipo neurales PC12. Métodos: la viabilidad de los cultivos de PC12 se determinó mediante el ensayo de MTT y se calcularon descriptores moleculares teóricos como la lipofilicidad (logP virtual y la superficie de área polar (SAP, con el objetivo de establecer relaciones estructura-actividad. Resultados: nuestros resultados demuestran que solo el acido taurodesoxicólico disminuye de manera significativa la viabilidad celular. Más aun, dicha molécula presenta valores menores y mayores de logP virtual y SAP, respectivamente, respecto al resto de los esteroides de la serie. Conclusiones: los resultados anteriores avalan el estudio del acido taurodesoxicólico como potencial inhibidor de la proliferación celular y al resto de las moléculas de la serie como candidatos neuroprotectores a evaluar en esta misma línea celular y dosis de tratamiento.Introduction: diosgenin and its derivatives have been described as potent anti-proliferative compounds in several tumor cell lines. However, other structurally-related compounds are reported to exert neuroprotective activity and are also included in food for human consumption. Objective: to evaluate the effect of a novel series of diogesin-derived synthetic spirosteroids on cellular viability of neuron-like PC12 cell line. Methods: cellular viability was determined by the MTT assay along with some theorical molecular descriptors, such as lipophilicity and polar surface area, in order to establish the structure

  3. Evaluation of In-Situ Magnetic Signals from Iron Oxide Nanoparticle-Labeled PC12 Cells by Atomic Force Microscopy.

    Science.gov (United States)

    Wang, Lijun; Min, Yue; Wang, Zhigang; Riggio, Cristina; Calatayud, M Pilar; Pinkernelle, Josephine; Raffa, Vittoria; Goya, Gerardo F; Keilhoff, Gerburg; Cuschieri, Alfred

    2015-03-01

    The magnetic signals from magnetite nanoparticle-labeled PC12 cells were assessed by magnetic force microscopy by deploying a localized external magnetic field to magnetize the nanoparticles and the magnetic tip simultaneously so that the interaction between the tip and PC12 cell-associated Fe3O4 nanoparticles could be detected at lift heights (the distance between the tip and the sample) larger than 100 nm. The use of large lift heights during the raster scanning of the probe eliminates the non-magnetic interference from the complex and rugged cell surface and yet maintains the sufficient sensitivity for magnetic detection. The magnetic signals of the cell-bound nanoparticles were semi-quantified by analyzing cell surface roughness upon three-dimensional reconstruction generated by the phase shift of the cantilever oscillation. The obtained data can be used for the evaluation of the overall cellular magnetization as well as the maximum magnetic forces from magnetic nanoparticle-labeled cells which is crucial for the biomedical application of these nanomaterials.

  4. Lack of effects of typical and atypical antipsychotics in DARPP-32 and NCS-1 levels in PC12 cells overexpressing NCS-1

    Directory of Open Access Journals (Sweden)

    Reis Helton J

    2010-06-01

    Full Text Available Abstract Background Schizophrenia is the major psychiatry disorder, which the exact cause remains unknown. However, it is well known that dopamine-mediated neurotransmission imbalance is associated with this pathology and the main target of antipsychotics is the dopamine receptor D2. Recently, it was described alteration in levels of two dopamine signaling related proteins in schizophrenic prefrontal cortex (PFC: Neuronal Calcium Sensor-1 (NCS-1 and DARPP-32. NCS-1, which is upregulated in PFC of schizophrenics, inhibits D2 internalization. DARPP-32, which is decreased in PFC of schizophrenics, is a key downstream effector in transducing dopamine signaling. We previously demonstrated that antipsychotics do not change levels of both proteins in rat's brain. However, since NCS-1 and DARPP-32 levels are not altered in wild type rats, we treated wild type PC12 cells (PC12 WT and PC12 cells stably overexpressing NCS-1 (PC12 Clone with antipsychotics to investigate if NCS-1 upregulation modulates DARPP-32 expression in response to antipsychotics treatment. Results We chronically treated both PC12 WT and PC12 Clone cells with typical (Haloperidol or atypical (Clozapine and Risperidone antipsychotics for 14 days. Using western blot technique we observed that there is no change in NCS-1 and DARPP-32 protein levels in both PC12 WT and PC12 Clone cells after typical and atypical antipsychotic treatments. Conclusions Because we observed no alteration in NCS-1 and DARPP-32 levels in both PC12 WT and Clone cells treated with typical or atypical antipsychotics, we suggest that the alteration in levels of both proteins in schizophrenic's PFC is related to psychopathology but not with antipsychotic treatment.

  5. Endogenous Protection Derived from Activin A/Smads Transduction Loop Stimulated via Ischemic Injury in PC12 Cells

    OpenAIRE

    Mang, Jing; Mei, Chun-Li; Wang, Jiao-Qi; Li, Zong-Shu; Chu, Ting-Ting; He, Jin-Ting; Xu, Zhong-Xin

    2013-01-01

    Activin A (ActA), a member of transforming growth factor-beta (TGF-b) super- family, affects many cellular processes, including ischemic stroke. Though the neuroprotective effects of exogenous ActA on oxygen-glucose deprivation (OGD) injury have already been reported by us, the endogenous role of ActA remains poorly understood. To further define the role and mechanism of endogenous ActA and its signaling in response to acute ischemic damage, we used an OGD model in PC12 cells to simulate isch...

  6. Protective Effect of Diospyros kaki against Glucose-Oxygen-Serum Deprivation-Induced PC12 Cells Injury

    Directory of Open Access Journals (Sweden)

    Fatemeh Forouzanfar

    2016-01-01

    Full Text Available Ischemic cerebrovascular disease is one of the most common causes of death in the world. Recent interests have been focused on natural antioxidants and anti-inflammatory agents as potentially useful neuroprotective agents. Diospyros kaki (persimmon has been shown to exert anti-inflammatory, antioxidant, and antineoplastic effects. However, its effects on ischemic damage have not been evaluated. Here, we used an in vitro model of cerebral ischemia and studied the effects of hydroalcoholic extract of peel (PeHE and fruit pulp (PuHE of persimmon on cell viability and markers of oxidative damage mainly intracellular reactive oxygen species (ROS induced by glucose-oxygen-serum deprivation (GOSD in PC12 cells. GOSD for 6 h produced significant cell death which was accompanied by increased levels of ROS. Pretreatment with different concentrations of PeHE and PuHE (0–500 μg/mL for 2 and 24 h markedly restored these changes only at high concentrations. However, no significant differences were seen in the protection against ischemic insult between different extracts and the time of exposure. The experimental results suggest that persimmon protects the PC12 cells from GOSD-induced injury via antioxidant mechanisms. Our findings might raise the possibility of potential therapeutic application of persimmon for managing cerebral ischemic and other neurodegenerative disorders.

  7. Isorhynchophylline Protects PC12 Cells Against Beta-Amyloid-Induced Apoptosis via PI3K/Akt Signaling Pathway

    Science.gov (United States)

    Xian, Yan-Fang; Lin, Zhi-Xiu; Mao, Qing-Qiu; Chen, Jian-Nan; Su, Zi-Ren; Lai, Xiao-Ping; Ip, Paul Siu-Po

    2013-01-01

    The neurotoxicity of amyloid-β (Aβ) has been implicated as a critical cause of Alzheimer's disease. Isorhynchophylline (IRN), an oxindole alkaloid isolated from Uncaria rhynchophylla, exerts neuroprotective effect against Aβ 25–35-induced neurotoxicity in vitro. However, the exact mechanism for its neuroprotective effect is not well understood. The present study aimed to investigate the molecular mechanisms underlying the protective action of IRN against Aβ 25–35-induced neurotoxicity in cultured rat pheochromocytoma (PC12) cells. Pretreatment with IRN significantly increased the cell viability, inhibited the release of lactate dehydrogenase and the extent of DNA fragmentation in Aβ 25–35-treated cells. IRN treatment was able to enhance the protein levels of phosphorylated Akt (p-Akt) and glycogen synthase kinase-3β (p-GSK-3β). Lithium chloride blocked Aβ 25–35-induced cellular apoptosis in a similar manner as IRN, suggesting that GSK-3β inhibition was involved in neuroprotective action of IRN. Pretreatment with LY294002 completely abolished the protective effects of IRN. Furthermore, IRN reversed Aβ 25–35-induced attenuation in the level of phosphorylated cyclic AMP response element binding protein (p-CREB) and the effect of IRN could be blocked by the PI3K inhibitor. These experimental findings unambiguously suggested that the protective effect of IRN against Aβ 25–35-induced apoptosis in PC12 cells was associated with the enhancement of p-CREB expression via PI3K/Akt/GSK-3β signaling pathway. PMID:24319473

  8. Effects of ultrafine diesel exhaust particles on oxidative stress generation and dopamine metabolism in PC-12 cells.

    Science.gov (United States)

    Kim, Yong-Dae; Lantz-McPeak, Susan M; Ali, Syed F; Kleinman, Michael T; Choi, Young-Sook; Kim, Heon

    2014-05-01

    A major constituent of urban air pollution is diesel exhaust, a complex mixture of gases, chemicals, and particles. Recent evidence suggests that exposure to air pollution can increase the risk of a fatal stroke, cause cerebrovascular damage, and induce neuroinflammation and oxidative stress that may trigger neurodegenerative diseases, such as Parkinson's disease. The specific aim of this study was to determine whether ultrafine diesel exhaust particles (DEPs), the particle component of exhaust from diesel engines, can induce oxidative stress and effect dopamine metabolism in PC-12 cells. After 24 h exposure to DEPs of 200 nm or smaller, cell viability, ROS and nitric oxide (NO(2)) generation, and levels of dopamine (DA) and its metabolites, (dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA)), were evaluated. Results indicated cell viability was not significantly changed by DEP exposure. However, ROS showed dramatic dose-dependent changes after DEP exposure (2.4 fold increase compared to control at 200 μg/mL). NO(2) levels were also dose-dependently increased after DEP exposure. Although not in a dose-dependent manner, upon DEP exposure, intracellular DA levels were increased while DOPAC and HVA levels decreased when compared to control. Results suggest that ultrafine DEPs lead to dopamine accumulation in the cytoplasm of PC-12 cells, possibly contributing to ROS formation. Further studies are warranted to elucidate this mechanism. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Epidermal growth factor prevents thallium(I)- and thallium(III)-mediated rat pheochromocytoma (PC12) cell apoptosis.

    Science.gov (United States)

    Pino, María Teresa Luján; Marotte, Clarisa; Verstraeten, Sandra Viviana

    2017-03-01

    We have reported recently that the proliferation of PC12 cells exposed to micromolar concentrations of Tl(I) or Tl(III) has different outcomes, depending on the absence (EGF - cells) or the presence (EGF + cells) of epidermal growth factor (EGF) added to the media. In the current work, we investigated whether EGF supplementation could also modulate the extent of Tl(I)- or Tl(III)-induced cell apoptosis. Tl(I) and Tl(III) (25-100 μM) decreased cell viability in EGF - but not in EGF + cells. In EGF - cells, Tl(I) decreased mitochondrial potential, enhanced H 2 O 2 generation, and activated mitochondrial-dependent apoptosis. In addition, Tl(III) increased nitric oxide production and caused a misbalance between the anti- and pro-apoptotic members of Bcl-2 family. Tl(I) increased ERK1/2, JNK, p38, and p53 phosphorylation in EGF - cells. In these cells, Tl(III) did not affect ERK1/2 and JNK phosphorylation but increased p53 phosphorylation that was related to the promotion of cell senescence. In addition, this cation significantly activated p38 in both EGF - and EGF + cells. The specific inhibition of ERK1/2, JNK, p38, or p53 abolished Tl(I)-mediated EGF - cell apoptosis. Only when p38 activity was inhibited, Tl(III)-mediated apoptosis was prevented in EGF - and EGF + cells. Together, current results indicate that EGF partially prevents the noxious effects of Tl by preventing the sustained activation of MAPKs signaling cascade that lead cells to apoptosis and point to p38 as a key mediator of Tl(III)-induced PC12 cell apoptosis.

  10. Schisandrin B protects PC12 cells by decreasing the expression of amyloid precursor protein and vacuolar protein sorting 35★

    Science.gov (United States)

    Yan, Mingmin; Mao, Shanping; Dong, Huimin; Liu, Baohui; Zhang, Qian; Pan, Gaofeng; Fu, Zhiping

    2012-01-01

    PC12 cell injury was induced using 20 μM amyloid β-protein 25–35 to establish a model of Alzheimer's disease. The cells were then treated with 5, 10, and 25 μM Schisandrin B. Methylthiazolyldiphenyl-tetrazolium bromide assays and Hoechst 33342 staining results showed that with increasing Schisandrin B concentration, the survival rate of PC12 cells injured by amyloid β-protein 25–35 gradually increased and the rate of apoptosis gradually decreased. Reverse transcription-PCR, immunocytochemical staining and western blot results showed that with increasing Schisandrin B concentration, the mRNA and protein expression of vacuolar protein sorting 35 and amyloid precursor protein were gradually decreased. Vacuolar protein sorting 35 and amyloid precursor protein showed a consistent trend for change. These findings suggest that 5, 10, and 25 μM Schisandrin B antagonizes the cellular injury induced by amyloid β-protein 25–35 in a dose-dependent manner. This may be caused by decreasing the expression of vacuolar protein sorting 35 and amyloid precursor protein. PMID:25745458

  11. Fatty Acid Mixtures from Nigella sativa Protects PC12 Cells from Oxidative Stress and Apoptosis Induced by Doxorubicin

    Directory of Open Access Journals (Sweden)

    Leila Hosseinzadeh

    2018-03-01

    Full Text Available Background: Fatty acids (FAs, the key structural elements of dietary lipids, are notable in the nutritional value of plants. Black cumin, a popular anti-inflammatory and antioxidant food seasoning, contains nonpolar constituents such as FAs. Methods: Seeds were extracted using hexane and their cytoprotective activity was assessed against doxorubicin (DOX-mediated oxidative stress and apoptosis in PC12 cell line. Results: In spite of the cellular death induced by DOX toward PC12 cells, bioassay-guided purification showed that pretreatment with FAs mixtures (24h attenuated DOX-mediated apoptosis, which could be attributed to the inhibited caspase 3 activity and enhanced mitochondrial membrane potential. Palmitic acid, caprylic acid and oleic acid each 1/3 in the mixture, also suppressed DOX-induced ROS generation. Conclusion: Our observation indicated that the subtoxic concentration of FAs from Nigella sativa could effectively protect the cells against oxidative stress, due to their antioxidant activity, and could be regarded as a dietary supplement.

  12. Icariin Prevents Amyloid Beta-Induced Apoptosis via the PI3K/Akt Pathway in PC-12 Cells

    Directory of Open Access Journals (Sweden)

    Dongdong Zhang

    2015-01-01

    Full Text Available Icariin is a prenylated flavonol glycoside derived from the Chinese herb Epimedium sagittatum that exerts a variety of pharmacological activities and shows promise in the treatment and prevention of Alzheimer’s disease. In this study, we investigated the neuroprotective effects of icariin against amyloid beta protein fragment 25–35 (Aβ25–35 induced neurotoxicity in cultured rat pheochromocytoma PC12 cells and explored potential underlying mechanisms. Our results showed that icariin dose-dependently increased cell viability and decreased Aβ25–35-induced apoptosis, as assessed by MTT assay and Annexin V/propidium iodide staining, respectively. Results of western blot analysis revealed that the selective phosphatidylinositol 3-kinase (PI3K inhibitor LY294002 suppressed icariin-induced Akt phosphorylation, suggesting that the protective effects of icariin are associated with activation of the PI3K/Akt signaling pathway. LY294002 also blocked the icariin-induced downregulation of proapoptotic factors Bax and caspase-3 and upregulation of antiapoptotic factor Bcl-2 in Aβ25–35-treated PC12 cells. These findings provide further evidence for the clinical efficacy of icariin in the treatment of Alzheimer’s disease.

  13. Protective effects of components of the Chinese herb grassleaf sweetflag rhizome on PC12 cells incubated with amyloid-beta42

    Directory of Open Access Journals (Sweden)

    Zi-hao Liang

    2015-01-01

    Full Text Available The major ingredients of grassleaf sweetflag rhizome are β-asarone and eugenol, which can cross the blood-brain barrier and protect neurons. This study aimed to observe the neuroprotective effects and mechanisms of β-asarone and eugenol, components of the Chinese herb grassleaf sweetflag rhizome, on PC12 cells. First, PC12 cells were cultured with different concentrations (between 1 × 10 -10 M and 1 × 10 -5 M of β-asarone and eugenol. Survival rates of PC12 cells were not significantly affected. Second, PC12 cells incubated with amyloid-beta42, which reduced cell survival, were cultured under the same conditions (1 × 10 -6 M β-asarone and eugenol. The survival rates of PC12 cells significantly increased, while expression levels of the mRNAs for the pro-apoptotic protein Bax decreased, and those for the anti-apoptotic protein Bcl mRNA increased. In addition, the combination of β-asarone with eugenol achieved better results than either component alone. Our experimental findings indicate that both β-asarone and eugenol protect PC12 cells through inhibiting apoptosis, and that the combination of the two is better than either alone.

  14. Three-dimensional, Computer-tomographic Analysis of Membrane Proteins (TrkA, caveolin, clathrin) in PC12 Cells

    International Nuclear Information System (INIS)

    Nishida, Tomoki; Arii, Tatsuo; Takaoka, Akio; Yoshimura, Ryoichi; Endo, Yasuhisa

    2007-01-01

    Signaling of nerve growth factor (NGF) and its receptor (TrkA) promotes neuronal differentiation, synapse formation and survival. It has been known that the complex of NGF and TrkA is internalized into the cytoplasm and transported for further signal transduction, but the ultrastructural information of this process is virtually unknown. In order to clarify the relationship between the internalization of TrkA and the membrane-associated proteins (caveolin and clathrin), the localization and three-dimensional structures of those proteins were examined with computer tomography of high voltage electron microscopy in PC12 cells. TrkA immunoreactivity was found only at definite areas in the plasma membrane, as ring and cluster structures. Its 3D image indicated that those cluster structures contained small pits, which did not appear to be typical caveolae in size and shape. 3D images of clathrin and caveolin-1 immunoreactivities indicated that the formation of those small pits was associated with clathrin, but not with caveolin-1. Caveolin-1 immunoreactivity was found as a mesh-like structure just beneath the plasma membrane. These results suggest that clathrin rather than caveolin is mainly involved in the process of TrkA internalization, at least in differentiated PC12 cells

  15. The effects of lead exposure on the expression of HMGB1 and HO-1 in rats and PC12 cells.

    Science.gov (United States)

    Yang, Meiyuan; Li, Yaobin; Wang, Ying; Cheng, Nuo; Zhang, Yi; Pang, Shimin; Shen, Qiwei; Zhao, Lijuan; Li, Guilin; Zhu, Gaochun

    2018-05-15

    Lead (Pb) is an environmental neurotoxic metal. Chronic exposure to Pb causes deficits of learning and memory in children and spatial learning deficits in developing rats. In this study we investigated the effects of Pb exposure on the expression of HMGB1 and HO-1 in rats and PC12 cells. The animals were randomly divided to three groups: control group; low lead exposure group; high lead exposure group; PC12 cells were divided into 3 groups: 0 μM (control group), 1 μM and 100 μM Pb acetate. The results showed that Pb levels in blood and brain of Pb exposed groups were significantly higher than that of the control group (p < 0.05). The expression of HMGB1 and HO-1 were increased in Pb exposed groups than that of the control group (p < 0.05). Moreover, we found that the up-regulation of HO-1 in Pb exposure environment inhibited the expression of HMGB1. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Is the PentaBDE replacement, tris (1,3-dichloro-2-propyl) phosphate (TDCPP), a developmental neurotoxicant? Studies in PC12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Dishaw, Laura V. [Nicholas School of the Environment, Duke University, Durham, NC 27708 (United States); Powers, Christina M. [Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710 (United States); Ryde, Ian T.; Roberts, Simon C. [Nicholas School of the Environment, Duke University, Durham, NC 27708 (United States); Seidler, Frederic J.; Slotkin, Theodore A. [Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710 (United States); Stapleton, Heather M., E-mail: heather.stapleton@duke.edu [Nicholas School of the Environment, Duke University, Durham, NC 27708 (United States)

    2011-11-15

    Organophosphate flame retardants (OPFRs) are used as replacements for the commercial PentaBDE mixture that was phased out in 2004. OPFRs are ubiquitous in the environment and detected at high concentrations in residential dust, suggesting widespread human exposure. OPFRs are structurally similar to neurotoxic organophosphate pesticides, raising concerns about exposure and toxicity to humans. This study evaluated the neurotoxicity of tris (1,3-dichloro-2-propyl) phosphate (TDCPP) compared to the organophosphate pesticide, chlorpyrifos (CPF), a known developmental neurotoxicant. We also tested the neurotoxicity of three structurally similar OPFRs, tris (2-chloroethyl) phosphate (TCEP), tris (1-chloropropyl) phosphate (TCPP), and tris (2,3-dibromopropyl) phosphate (TDBPP), and 2,2 Prime ,4,4 Prime -tetrabromodiphenyl ether (BDE-47), a major component of PentaBDE. Using undifferentiated and differentiating PC12 cells, changes in DNA synthesis, oxidative stress, differentiation into dopaminergic or cholinergic neurophenotypes, cell number, cell growth and neurite growth were assessed. TDCPP displayed concentration-dependent neurotoxicity, often with effects equivalent to or greater than equimolar concentrations of CPF. TDCPP inhibited DNA synthesis, and all OPFRs decreased cell number and altered neurodifferentiation. Although TDCPP elevated oxidative stress, there was no adverse effect on cell viability or growth. TDCPP and TDBPP promoted differentiation into both neuronal phenotypes, while TCEP and TCPP promoted only the cholinergic phenotype. BDE-47 had no effect on cell number, cell growth or neurite growth. Our results demonstrate that different OPFRs show divergent effects on neurodifferentiation, suggesting the participation of multiple mechanisms of toxicity. Additionally, these data suggest that OPFRs may affect neurodevelopment with similar or greater potency compared to known and suspected neurotoxicants.

  17. miR-146a down-regulation alleviates H2O2-induced cytotoxicity of PC12 cells by regulating MCL1/JAK/STAT pathway : miR-146a down-regulation relieves H2O2-induced PC12 cells cytotoxicity by MCL1/JAK/STAT.

    Science.gov (United States)

    Yang, Xuecheng; Mao, Xin; Ding, Xuemei; Guan, Fengju; Jia, Yuefeng; Luo, Lei; Li, Bin; Tan, Hailin; Cao, Caixia

    2018-02-26

    Oxidative stress and miRNAs have been confirmed to play an important role in neurological diseases. The study aimed to explore the underlying effect and mechanisms of miR-146a in H 2 O 2 -induced injury of PC12 cells. Here, PC12 cells were stimulated with 200 μM of H 2 O 2 to construct oxidative injury model. Cell injury was evaluated on the basis of the changes in cell viability, migration, invasion, apoptosis, and DNA damage. Results revealed that miR-146a expression was up-regulated in H 2 O 2 -induced PC12 cells. Functional analysis showed that down-regulation of miR-146a alleviated H 2 O 2 -induced cytotoxicity in PC12 cells. Dual-luciferase reporter and western blot assay verified that MCL1 was a direct target gene of miR-146a. Moreover, anti-miR-146a-mediated suppression on cell cytotoxicity was abated following MCL1 knockdown in H 2 O 2 -induced PC12 cells. Furthermore, MCL1 activated JAK/STAT signaling pathway and MCL1 overexpression attenuated H 2 O 2 -induced cytotoxicity in PC12 cells by JAK/STAT signaling pathway. In conclusion, this study suggested that suppression of miR-146a abated H 2 O 2 -induced cytotoxicity in PC12 cells via regulating MCL1/JAK/STAT pathway.

  18. Chitooligosaccharides suppress the level of protein expression and acetylcholinesterase activity induced by Abeta25-35 in PC12 cells.

    Science.gov (United States)

    Lee, Sang-Hoon; Park, Jin-Sook; Kim, Se-Kwon; Ahn, Chang-Bum; Je, Jae-Young

    2009-02-01

    Clinical applications of acetylcholinesterase (AChE) inhibitors are widespread in Alzheimer's sufferers in order to activate central cholinergic system and alleviate cognitive deficits by inhibiting the hydrolysis of acetylcholine. In this study, six kinds of chitooligosaccharides (COSs) with different molecular weight and degree of deacetylation were examined for their inhibitory effects against AChE. The 90-COSs exhibited potent AChE inhibitory activities compared to 50-COSs, while 90-MMWCOS (1000-5000 Da) in the 90-COSs showed the highest activity. Cell culture experiment revealed that 90-MMWCOS suppressed the level of AChE protein expression and AChE activity induced by Abeta(25-35) in PC12 cell lines.

  19. Involvement of PKCα in PMA-induced facilitation of exocytosis and vesicle fusion in PC12 cells

    International Nuclear Information System (INIS)

    Xue Renhao; Zhao Yanying; Chen Peng

    2009-01-01

    Phorbol-12-myristate-13-acetate, a stable analog of the important signaling membrane lipid diacylglycerol (DAG), is known to potentiate exocytosis and modulate vesicle fusion kinetics in neurons and endocrine cells. The exact mechanisms underlying the actions of PMA, however, is often not clear, largely because of the diversity of the DAG/PMA receptors involved in the exocytotic process, which include, most notably, various isoforms of protein kinase C (PKC). In this study, the roles of PKCα in PMA-mediated regulation of exocytosis were investigated by over-expressing wild-type PKCα (wt-PKCα) or dominant negative PKCα (dn-PKCα). Amperometric measurements based on carbon fiber microelectrodes demonstrated that PKCα has a key role in the PMA-mediated facilitation of exocytosis and vesicle fusion in neuroendocrine PC12 cells.

  20. Actin and dynamin recruitment and the lack thereof at exo- and endocytotic sites in PC12 cells.

    Science.gov (United States)

    Felmy, Felix

    2009-06-01

    Protein recruitment during endocytosis is well characterized in fibroblasts. Since fibroblasts do not engage in regulated exocytosis, only information about protein recruitment during constitutive endocytosis is provided. Furthermore, the cortical actin of fibroblasts is characterized by stress fibers rather than a thick cortical meshwork. A cell model, which differs in these features, could provide insight into the heterogeneity of protein recruitment to constitutive and exocytosis coupled endocytotic areas. Therefore, this study investigates the sequence of protein recruitment in PC12 cells, a well documented exocytotic cell model with thick actin cortex. Using real time total-internal-reflection fluorescence microscopy it was found that at the plasma membrane steady, but not transient, dynamin-1-EGFP or -mCherry fluorescence spots that rapidly dimmed coincided with markers for constitutive endocytotic such as clathrin-LC-dsRed and transferrin-receptor-pHluorin. Clathrin-LC-dsRed and dynamin-1-EGFP were further used to determine the temporal sequence of protein recruitment to areas of constitutive endocytosis. mCherry- and EGFP-beta-actin, Arp-3-EGFP and EGFP-mAbp1 were slowly recruited before the dynamin-1-mCherry fluorescence dimmed, but their fluorescence peaked after the loss of clathrin-LC-dsRed commenced. Furthermore, mCherry-beta-actin fluorescence increased before exocytosis, indicating redistribution prior to release. Also, no average dynamin-1-mCherry recruitment was observed within 50 s to regions of exocytosis marked by NPY-mGFP. This indicates that the temporal-spatial coupling between regulated exo-and endocytosis is rather limited in PC12 cells. Furthermore, the time course of the protein recruitment to constitutive endocytotic sites might depend on the subcellular morphology such as the size of the actin cortex.

  1. The small GTPase Cdc42 modulates the number of exocytosis-competent dense-core vesicles in PC12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Mai [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 (Japan); Kitaguchi, Tetsuya [Cell Signaling Group, Waseda Bioscience Research Institute in Singapore (WABOIS), Waseda University, 11 Biopolis Way, 05-01/02 Helios, Singapore 138667 (Singapore); Numano, Rika [The Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka, Tennpaku-cho, Toyohashi, Aichi 441-8580 (Japan); Ikematsu, Kazuya [Forensic Pathology and Science, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523 (Japan); Kakeyama, Masaki [Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Murata, Masayuki; Sato, Ken [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 (Japan); Tsuboi, Takashi, E-mail: takatsuboi@bio.c.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 (Japan)

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer Regulation of exocytosis by Rho GTPase Cdc42. Black-Right-Pointing-Pointer Cdc42 increases the number of fusion events from newly recruited vesicles. Black-Right-Pointing-Pointer Cdc42 increases the number of exocytosis-competent dense-core vesicles. -- Abstract: Although the small GTPase Rho family Cdc42 has been shown to facilitate exocytosis through increasing the amount of hormones released, the precise mechanisms regulating the quantity of hormones released on exocytosis are not well understood. Here we show by live cell imaging analysis under TIRF microscope and immunocytochemical analysis under confocal microscope that Cdc42 modulated the number of fusion events and the number of dense-core vesicles produced in the cells. Overexpression of a wild-type or constitutively-active form of Cdc42 strongly facilitated high-KCl-induced exocytosis from the newly recruited plasma membrane vesicles in PC12 cells. By contrast, a dominant-negative form of Cdc42 inhibited exocytosis from both the newly recruited and previously docked plasma membrane vesicles. The number of intracellular dense-core vesicles was increased by the overexpression of both a wild-type and constitutively-active form of Cdc42. Consistently, activation of Cdc42 by overexpression of Tuba, a Golgi-associated guanine nucleotide exchange factor for Cdc42 increased the number of intracellular dense-core vesicles, whereas inhibition of Cdc42 by overexpression of the Cdc42/Rac interactive binding domain of neuronal Wiskott-Aldrich syndrome protein decreased the number of them. These findings suggest that Cdc42 facilitates exocytosis by modulating both the number of exocytosis-competent dense-core vesicles and the production of dense-core vesicles in PC12 cells.

  2. The small GTPase Cdc42 modulates the number of exocytosis-competent dense-core vesicles in PC12 cells

    International Nuclear Information System (INIS)

    Sato, Mai; Kitaguchi, Tetsuya; Numano, Rika; Ikematsu, Kazuya; Kakeyama, Masaki; Murata, Masayuki; Sato, Ken; Tsuboi, Takashi

    2012-01-01

    Highlights: ► Regulation of exocytosis by Rho GTPase Cdc42. ► Cdc42 increases the number of fusion events from newly recruited vesicles. ► Cdc42 increases the number of exocytosis-competent dense-core vesicles. -- Abstract: Although the small GTPase Rho family Cdc42 has been shown to facilitate exocytosis through increasing the amount of hormones released, the precise mechanisms regulating the quantity of hormones released on exocytosis are not well understood. Here we show by live cell imaging analysis under TIRF microscope and immunocytochemical analysis under confocal microscope that Cdc42 modulated the number of fusion events and the number of dense-core vesicles produced in the cells. Overexpression of a wild-type or constitutively-active form of Cdc42 strongly facilitated high-KCl-induced exocytosis from the newly recruited plasma membrane vesicles in PC12 cells. By contrast, a dominant-negative form of Cdc42 inhibited exocytosis from both the newly recruited and previously docked plasma membrane vesicles. The number of intracellular dense-core vesicles was increased by the overexpression of both a wild-type and constitutively-active form of Cdc42. Consistently, activation of Cdc42 by overexpression of Tuba, a Golgi-associated guanine nucleotide exchange factor for Cdc42 increased the number of intracellular dense-core vesicles, whereas inhibition of Cdc42 by overexpression of the Cdc42/Rac interactive binding domain of neuronal Wiskott–Aldrich syndrome protein decreased the number of them. These findings suggest that Cdc42 facilitates exocytosis by modulating both the number of exocytosis-competent dense-core vesicles and the production of dense-core vesicles in PC12 cells.

  3. Isorhynchophylline Protects PC12 Cells Against Beta-Amyloid-Induced Apoptosis via PI3K/Akt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yan-Fang Xian

    2013-01-01

    Full Text Available The neurotoxicity of amyloid-β (Aβ has been implicated as a critical cause of Alzheimer’s disease. Isorhynchophylline (IRN, an oxindole alkaloid isolated from Uncaria rhynchophylla, exerts neuroprotective effect against Aβ25–35-induced neurotoxicity in vitro. However, the exact mechanism for its neuroprotective effect is not well understood. The present study aimed to investigate the molecular mechanisms underlying the protective action of IRN against Aβ25–35-induced neurotoxicity in cultured rat pheochromocytoma (PC12 cells. Pretreatment with IRN significantly increased the cell viability, inhibited the release of lactate dehydrogenase and the extent of DNA fragmentation in Aβ25–35-treated cells. IRN treatment was able to enhance the protein levels of phosphorylated Akt (p-Akt and glycogen synthase kinase-3β (p-GSK-3β. Lithium chloride blocked Aβ25–35-induced cellular apoptosis in a similar manner as IRN, suggesting that GSK-3β inhibition was involved in neuroprotective action of IRN. Pretreatment with LY294002 completely abolished the protective effects of IRN. Furthermore, IRN reversed Aβ25–35-induced attenuation in the level of phosphorylated cyclic AMP response element binding protein (p-CREB and the effect of IRN could be blocked by the PI3K inhibitor. These experimental findings unambiguously suggested that the protective effect of IRN against Aβ25–35-induced apoptosis in PC12 cells was associated with the enhancement of p-CREB expression via PI3K/Akt/GSK-3β signaling pathway.

  4. Protective effects of fractions from Artemisia biennis hydro-ethanolic extract against doxorubicin-induced oxidative stress and apoptosis in PC12 cells

    Directory of Open Access Journals (Sweden)

    Mahdi Mojarrab

    2016-05-01

    Full Text Available Objective(s: This study was designed to indicate whether different fractions from Artemisia biennis hydroethanolic extract could provide cytoprotection against oxidative stress and apoptosis induced by doxorubicin (DOX in rat pheochromocytoma cell line (PC12. Material and Methods:Cell viability was determined by MTT assay. Also, activation of caspase-3 and superoxide dismutase were evaluated by spectrophotometry. Detection of reactive oxygen species (ROS and measurement of mitochondrial membrane potential (MMP were performed by flowcytometry. Results:  Treatment of PC12 cells with DOX reduced viability dose dependently. For evaluation of the effect of fractions (A-G on DOX-induced cytotoxicity, PC12 cells were pretreated for 24 hr with the A. biennis fractions and then cells were treated with DOX.  The fractions C and D increased PC12 cells viability significantly compared to DOX treated cells.  Moreover, pretreatment with fractions C and D for 24 hr attenuated DOX-mediated apoptosis and the anti-apoptotic action of A. biennis fractions was partially dependent on inhibition of caspase 3 activity and also increasing the  mitochondrial membrane potential (MMP. Selected A. biennis fractions also suppressed the generation of ROS and increased superoxide dismutase (SOD activity. Conclusion: Taken together our observation indicated that subtoxic concentration of aforementioned fractions of A. biennis hydroetanolic extract has protective effect against apoptosis induced by DOX in PC12 cell. The results highlighted that fractions C and D may exert cytoprotective effects through their antioxidant actions.

  5. Protective effects of fractions from Artemisia biennis hydro-ethanolic extract against doxorubicin-induced oxidative stress and apoptosis in PC12 cells.

    Science.gov (United States)

    Mojarrab, Mahdi; Mehrabi, Mehran; Ahmadi, Farahnaz; Hosseinzadeh, Leila

    2016-05-01

    This study was designed to indicate whether different fractions from Artemisia biennis hydroethanolic extract could provide cytoprotection against oxidative stress and apoptosis induced by doxorubicin (DOX) in rat pheochromocytoma cell line (PC12). Cell viability was determined by MTT assay. Also, activation of caspase-3 and superoxide dismutase were evaluated by spectrophotometry. Detection of reactive oxygen species (ROS) and measurement of mitochondrial membrane potential (MMP) were performed by flowcytometry. Treatment of PC12 cells with DOX reduced viability dose dependently. For evaluation of the effect of fractions (A-G) on DOX-induced cytotoxicity, PC12 cells were pretreated for 24 hr with the A. biennis fractions and then cells were treated with DOX. The fractions C and D increased PC12 cells viability significantly compared to DOX treated cells. Moreover, pretreatment with fractions C and D for 24 hr attenuated DOX-mediated apoptosis and the anti-apoptotic action of A. biennis fractions was partially dependent on inhibition of caspase 3 activity and also increasing the mitochondrial membrane potential (MMP). Selected A. biennis fractions also suppressed the generation of ROS and increased superoxide dismutase (SOD) activity. Taken together our observation indicated that subtoxic concentration of aforementioned fractions of A. biennis hydroetanolic extract has protective effect against apoptosis induced by DOX in PC12 cell. The results highlighted that fractions C and D may exert cytoprotective effects through their antioxidant actions.

  6. Effects of Angelica Oil and the Isolated Butylphthalides on Glutamate-induced Neurotoxicity in PC12 Cells

    Directory of Open Access Journals (Sweden)

    Lu-Si Liu

    2017-03-01

    Full Text Available Angelica sinensis contains a large amount of essential oil (angelica oil, which is rich in phthalide derivatives with a lot of bioactivities. In vitro activity screening of angelica oil from the roots of A. sinensis found that it had concentration-dependent effect on glutamate-induced injury in PC12 cells. Further phytochemical investigation on this angelica oil led to the isolation of nine butylphthalides (1 –9 including two new compounds (1 and 2. Their structures were elucidated by extensive spectroscopic analyses. It is noteworthy that most of the isolated butylphthalides also displayed protective activity at low concentrations and cytotoxicity at high concentrations. These results imply that angelica oil and its main chemical components have protective effect for injured neurons only in appropriate concentration range.

  7. MiR-103 alleviates autophagy and apoptosis by regulating SOX2 in LPS-injured PC12 cells and SCI rats.

    Science.gov (United States)

    Li, Guowei; Chen, Tao; Zhu, Yingxian; Xiao, Xiaoyu; Bu, Juyuan; Huang, Zongwen

    2018-03-01

    Recent studies revealed that microRNAs (miRNAs) may play crucial roles in the responses and pathologic processes of spinal cord injury (SCI). This study aimed to investigate the effect and the molecular basis of miR-103 on LPS-induced injuries in PC12 cells in vitro and SCI rats in vivo . PC12 cells were exposed to LPS to induce cell injuries to mimic the in vitro model of SCI. The expression of miR-103 and SOX2 in PC12 cells were altered by transient transfections. Cell viability and apoptotic cell rate were measured by CCK-8 assay and flow cytometry assay. Furthermore, Western blot analysis was performed to detect the expression levels of apoptosis- and autophagy- related proteins, MAPK/ERK pathway- and JAK/STAT pathway-related proteins. In addition, we also assessed the effect of miR-103 agomir on SCI rats. LPS exposure induced cell injuries in PC12 cells. miR-103 overexpression significantly increased cell viability, reduced cell apoptosis and autophagy, and opposite results were observed in miR-103 inhibition. miR-103 attenuated LPS-induced injuries by indirect upregulation of SOX2. SOX2 overexpression protected PC12 cells against LPS-induced injuries, while SOX2 inhibition expedited LPS-induced cell injuries. Furthermore, miR-103 overexpression inhibited MAPK/ERK pathway and JAK/STAT pathway through upregulation of SOX2. We also found that miR-103 agomir inhibited cell apoptosis and autophagy in SCI rats. This study demonstrates that miR-103 may represent a protective effect against cell apoptosis and autophagy in LPS-injured PC12 cells and SCI rats by upregulation of SOX2 expression.

  8. Elevated expression of glutathione peroxidase in PC12 cells results in protection against methamphetamine but not MPTP toxicity.

    Science.gov (United States)

    Hom, D G; Jiang, D; Hong, E J; Mo, J Q; Andersen, J K

    1997-06-01

    In vivo administration of either 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or methamphetamine (MA) produces damage to the dopaminergic nervous system which may be due in part to the generation of reactive oxygen species (ROS). The resistance of superoxide dismutase (SOD) over-expressing transgenic mice to the effects of both MPTP and MA suggests the involvement of superoxide in the resulting neurotoxicity of both compounds. Superoxide can be converted by SOD to hydrogen peroxide, which itself can cause cellular degeneration by reacting with free iron to produce highly reactive hydroxyl radicals resulting in damage to proteins, nucleic acids and membrane phospholipids. Hydrogen peroxide has also been reported to be produced via inhibition of NADH dehydrogenase by MPP + formed during oxidation of MPTP by MAO-B and by dopamine auto-oxidation following MA-induced dopamine release from synaptic vesicles within nerve terminals. To test whether hydrogen peroxide is an important factor in the toxicity of either of these two neurotoxins, we created clonal PC12 lines expressing elevated levels of the hydrogen peroxide-reducing enzyme glutathione peroxidase (GSHPx). Elevation of GSHPx levels in PC12 was found to diminish the rise in ROS levels and lipid peroxidation resulting from MA but not MPTP treatment. Elevated levels of GSHPx also appeared to prevent decreases in transport-mediated dopamine uptake produced via MA administration as well as to attenuate toxin-induced cell loss as measured by either MTT reduction or LDH release. Our data, therefore, suggest that hydrogen peroxide production likely contributes to MA toxicity in dopaminergic neurons.

  9. p75NTR enhances PC12 cell tumor growth by a non-receptor mechanism involving downregulation of cyclin D2

    International Nuclear Information System (INIS)

    Fritz, Melinda D.; Mirnics, Zeljka K.; Nylander, Karen D.; Schor, Nina F.

    2006-01-01

    p75NTR is a member of the tumor necrosis superfamily of proteins which is variably associated with induction of apoptosis and proliferation. Cyclin D2 is one of the mediators of cellular progression through G1 phase of the cell cycle. The present study demonstrates the inverse relationship between expression of cyclin D2 and expression of p75NTR in PC12 cells. Induction of p75NTR expression in p75NTR-negative PC12 cells results in downregulation of cyclin D2; suppression of p75NTR expression with siRNA in native PC12 cells results in upregulation of cyclin D2. The effects of p75NTR on cyclin D2 expression are mimicked in p75NTR-negative cells by transfection with the intracellular domain of p75NTR. Cyclin-D2-positive PC12 cell cultures grow more slowly than cyclin-D2-negative cultures, and induction of expression of cyclin D2 slows the culture growth rate of cyclin-D2-negative cells. Finally, subcutaneous murine xenografts of cyclin-D2-negative, p75NTR-positive PC12 cells more frequently and more rapidly produce tumors than the analogous xenografts of cyclin-D2-positive, p75NTR-negative cells. These results suggest that p75NTR suppresses cyclin D2 expression in PC12 cells by a mechanism distinct from its function as a nerve growth factor receptor and that cyclin D2 expression decreases cell culture and xenografted tumor growth

  10. [The effect of edaravone on MAPKs signal pathway associated with Abeta(25-35) treatment in PC12 cells].

    Science.gov (United States)

    Zhang, Gui-lian; Guo, Ying-ying; Zhang, Lei; Li, Ting-ting; Du, Yun; Yao, Li; Zhang, Wang-gang; Wu, Hai-qin; Ma, Zhu-lin

    2015-03-01

    To explore whether edaravone protects cells damage via mitogen-activated protein kinases (MAPKs) signal pathway, and which procedure of p38 be affected so as to add theories for AD pathogenesis and treatments. According to different drugs treated, PC12 cells in vitro were divided into four groups. Negative control group: cells were treated with media alone. AD model group: cells were treated with 30 pmol/L Abeta(25-35). Inhibitor control group: cells were treated with 10 micromol/L SB203580 Cp38 mitogen-activated protein kinase (p38) inhibitor], 10 micromol/L SP600125 [c-Jun NH2 terminal kinase (JNK) inhibitor], or 10 micromol/L PD98059 extracelular signal regulated kinase (ERK) inhibitor]. Low-dose, middle-dose and high-dose edaravone group: cells plated for 24 hours treated with 30 micromol/L Abeta(25-35) and co-treated with 20, 40, 80 micromol/L edaravone 3 hours, respectively. The morphology of the treated cells were observed, the p-p38, p-JNK and p-ERK proteins in each group were tested by the Western blot. The p38 mRNA were tested in each group above (only add SB203580 10 micromol/L in third group) by the real time PCR. (1) The p-p38 protein was significantly increased in model control group compared with that in negative control group (Pedaravone groups was decreased significantly (Pedaravone groups compared with that in inhibiter control group (Pedaravone group was decreased compared with that in low-dose edaravone group (Pedaravone. Compared with three edaravone groups, the p-p38 protein was lower than it in high-dose edaravone & inhibiter group (P0.05 each). (4) Compared with negative control group, the p38 mRNA in model control group was significantly increased, and it was significantly decreased in inhibitor control group (Pedaravone groups, the p38 mRNA was significantly decreased compared with that in model control group, and it still was decreased compared with that in inhibitor control group (Pedaravone group was the lowest among three edaravone

  11. Edaravone protected PC12 cells against MPP(+)-cytoxicity via inhibiting oxidative stress and up-regulating heme oxygenase-1 expression.

    Science.gov (United States)

    Cheng, Baohua; Guo, Yunliang; Li, Chuangang; Ji, Bingyuan; Pan, Yanyou; Chen, Jing; Bai, Bo

    2014-08-15

    Oxidative stress is involved in the pathogenesis of Parkinson's disease (PD). Edaravone has been shown to have a neuroprotective effect. In the present work, we investigated the effect of edaravone on 1-methyl-4-phenylpyridinium (MPP(+))-treated PC12 cells. Edaravone inhibited the decrease of cell viability and apoptosis induced by MPP(+) in PC12 cells. In addition, edaravone alleviated intracellular reactive oxygen species (ROS) production. MPP(+) induced heme oxygenase-1 (HO-1) expression, which was further enhanced by edaravone. The inhibitor of HO-1 zinc protoporphyrin-IX attenuated the neuroprotection of edaravone. So edaravone protected PC12 cells against MPP(+)-cytoxicity via inhibiting oxidative stress and up-regulating HO-1 expression. The data showed that edaravone was neuroprotective and could be potentially therapeutics for PD in future. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Neuroprotective effects of overexpressed cyclophilin B against Aβ-induced neurotoxicity in PC12 cells.

    Science.gov (United States)

    Oh, Yoojung; Kim, Eun Young; Kim, Yeonghwan; Jin, Jizi; Jin, Byung Kwan; Jahng, Geon-Ho; Jung, Min Hyung; Park, Chan; Kang, Insug; Ha, Joohun; Choe, Wonchae

    2011-08-15

    Accumulated amyloid-β (Aβ) is a well-known cause of neuronal apoptosis in Alzheimer disease and functions in part by generating oxidative stress. Our previous work suggested that cyclophilin B (CypB) protects against endoplasmic reticulum (ER) stress. Therefore, in this study we examined the ability of CypB to protect against Aβ toxicity. CypB is present in the neurons of rat and mouse brains, and treating neural cells with Aβ(25-35) mediates apoptotic cell death. Aβ(25-35)-induced neuronal toxicity was inhibited by the overexpression of CypB as measured by cell viability, apoptotic morphology, sub-G1 cell population, intracellular reactive oxygen species accumulation, activated caspase-3, PARP cleavage, Bcl-2 proteins, mitogen-activated protein kinase (MAPK) activation, and phosphoinositide 3-kinase (PI-3-K) activation. CypB/R95A PPIase mutants did not reduce Aβ(25-35) toxicity. We showed that Aβ(25-35)-induced apoptosis is more severe in a CypB knockdown model, confirming that CypB protects against Aβ(25-35)-induced toxicity. Consequently, these findings suggest that CypB may protect against Aβ toxicity by its antioxidant properties, by regulating MAPK and PI-3-K signaling, and through the ER stress pathway. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Enantioselective Cytotoxicity Profile of o,p’-DDT in PC 12 Cells

    Science.gov (United States)

    Zhang, Chunlong; Wen, Yuezhong; Liu, Weiping

    2012-01-01

    Background The continued uses of dichlordiphenyltrichloroethane (DDT) for indoor vector control in some developing countries have recently fueled intensive debates toward the global ban of this persistent legacy contaminant. Current approaches for ecological and health risk assessment has ignored the chiral nature of DDT. In this study by employing an array of cytotoxicity related endpoints, we investigated the enantioselective cytotoxicity of o,p’-DDT. Principal Findings we demonstrated for the first time that R-(−)-o,p’-DDT caused more neuron cell death by inducing more severe oxidative stress, which selectively imbalanced the transcription of stress-related genes (SOD1, SOD2, HSP70) and enzyme (superoxide dismutase and lactate dehydrogenase) activities, and greater cellular apoptosis compared to its enantiomer S-(+)-o,p’-DDT at the level comparable to malaria area exposure (parts per million). We further elucidated enantioselective modes of action using microarray combined with enzyme-linked immunosorbent assay. The enantioselective apoptosis might involve three signaling pathways via caspase 3, tumor protein 53 (p53) and NFkB. Conclusions Based on DDT stereochemistry and results reported for other chiral pesticides, our results pointed to the same directional enantioselectivity of chiral DDT toward mammalian cells. We proposed that risk assessment on DDT should consider the enantiomer ratio and enantioselectivities. PMID:22937105

  14. [TRPM8 mediates PC-12 neuronal cell apoptosis induced by oxygen-glucose deprivation through cAMP-PKA/UCP4 signaling].

    Science.gov (United States)

    Li, Hong-Wei; Zhou, Bin; Zhang, Hai-Hong

    2016-08-20

    To explore the molecular mechanism responsible for apoptosis of PC-12 neuronal cells induced by oxygen-glucose deprivation (OGD). PC12 cells were exposed to OGD for 24 h to simulate ischemia-reperfusion injury. Flow cytometry was employed detect the cell apoptosis, and the expresions of TRPM8, UCP4, cAMP and PKA in the exposed cells were detected with RT-PCR and Western blotting. The changes in the expressions of Bax, Bcl-2, cAMP, PKA and UCP4 proteins were detected in the exposed cells in resposne to inhibition of TRPM8 and cAMP-PKA signal or over-expression of UCP4. OGD for 24 induced obvious apoptosis in PC-12 cells and caused TRPM8 over-expression and inhibition of UCP4 and cAMP-PKA signaling. Inhibiting TRPM8 expression reduced the cell apoptosis and up-regulated cAMP, p-PKA and UCP4 in the cells exposed to OGD. In cells exposed to OGD, inhibition of TRPM8 and cAMP-PKA signaling suppressed the expressio of UCP4 and increased the cell apoptosis. TRPM8 mediates OGD-induced PC12 cell apoptosis through cAMP-PKA/UCP4 signaling.

  15. Fisetin Protects PC12 Cells from Tunicamycin-Mediated Cell Death via Reactive Oxygen Species Scavenging and Modulation of Nrf2-Driven Gene Expression, SIRT1 and MAPK Signaling in PC12 Cells.

    Science.gov (United States)

    Yen, Jui-Hung; Wu, Pei-Shan; Chen, Shu-Fen; Wu, Ming-Jiuan

    2017-04-17

    Fisetin (3,7,3',4'-tetrahydroxyflavone) is a dietary flavonol and exhibits antioxidant, anti-inflammatory, and neuroprotective activities. However, high concentration of fisetin is reported to produce reactive oxygen species (ROS), induce endoplasmic reticulum (ER) stress and cause cytotoxicity in cancer cells. The aim of this study is to investigate the cytoprotective effects of low concentration of fisetin against tunicamycin (Tm)-mediated cytotoxicity in neuronal-like catecholaminergic PC12 cells. Cell viability was assayed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and apoptotic and autophagic markers were analyzed by Western blot. Gene expression of unfolded protein response (UPR) and Phase II enzymes was further investigated using RT-Q-PCR or Western blotting. Intracellular ROS level was measured using 2',7'-dichlorodihydrofluorescein diacetate (H₂DCFDA) by a fluorometer. The effects of fisetin on mitogen activated protein kinases (MAPKs) and SIRT1 (Sirtuin 1) signaling pathways were examined using Western blotting and specific inhibitors. Fisetin (<20 µM) restored cell viability and repressed apoptosis, autophagy and ROS production in Tm-treated cells. Fisetin attenuated Tm-mediated expression of ER stress genes, such as glucose-regulated proteins 78 (GRP78), C/EBP homologous protein (CHOP also known as GADD153) and Tribbles homolog 3 (TRB3), but induced the expression of nuclear E2 related factor (Nrf)2-targeted heme oxygenase (HO)-1, glutamate cysteine ligase (GCL) and cystine/glutamate transporter (xCT/SLC7A11), in both the presence and absence of Tm. Moreover, fisetin enhanced phosphorylation of ERK (extracellular signal-regulated kinase), JNK (c-JUN NH₂-terminal protein kinase), and p38 MAPK. Addition of JNK and p38 MAPK inhibitor significantly antagonized its cytoprotective activity and modulatory effects on UPR. Fisetin also restored Tm-inhibited SIRT1 expression and addition of sirtinol (SIRT1 activation inhibitor

  16. Evaluation of silicon nitride as a substrate for culture of PC12 cells: an interfacial model for functional studies in neurons.

    Directory of Open Access Journals (Sweden)

    Johan Jaime Medina Benavente

    Full Text Available Silicon nitride is a biocompatible material that is currently used as an interfacial surface between cells and large-scale integration devices incorporating ion-sensitive field-effect transistor technology. Here, we investigated whether a poly-L-lysine coated silicon nitride surface is suitable for the culture of PC12 cells, which are widely used as a model for neural differentiation, and we characterized their interaction based on cell behavior when seeded on the tested material. The coated surface was first examined in terms of wettability and topography using contact angle measurements and atomic force microscopy and then, conditioned silicon nitride surface was used as the substrate for the study of PC12 cell culture properties. We found that coating silicon nitride with poly-L-lysine increased surface hydrophilicity and that exposing this coated surface to an extracellular aqueous environment gradually decreased its roughness. When PC12 cells were cultured on a coated silicon nitride surface, adhesion and spreading were facilitated, and the cells showed enhanced morphological differentiation compared to those cultured on a plastic culture dish. A bromodeoxyuridine assay demonstrated that, on the coated silicon nitride surface, higher proportions of cells left the cell cycle, remained in a quiescent state and had longer survival times. Therefore, our study of the interaction of the silicon nitride surface with PC12 cells provides important information for the production of devices that need to have optimal cell culture-supporting properties in order to be used in the study of neuronal functions.

  17. Electrospun silk fibroin scaffolds coated with reduced graphene promote neurite outgrowth of PC-12 cells under electrical stimulation.

    Science.gov (United States)

    Aznar-Cervantes, Salvador; Pagán, Ana; Martínez, Jose G; Bernabeu-Esclapez, Antonia; Otero, Toribio F; Meseguer-Olmo, Luis; Paredes, Juan I; Cenis, Jose L

    2017-10-01

    Novel approaches to neural research require biocompatible materials capable to act as electrode structures or scaffolds for tissue engineering in order to stimulate or restore the functionality of damaged tissues. This work offers promising results that indicate the potential use of electrospun silk fibroin (SF) scaffolds coated with reduced graphene oxide (rGO) in this sense. The coated material becomes conductor and electroactive. A complete characterisation of SF/rGO scaffolds is provided in terms of electrochemistry, mechanical behaviour and chemical conformation of fibroin. The excellent biocompatibility of this novel material is proved with cultures of PC-12 cells. The coating with rGO improved the adhesion of cells in comparison with cells growing onto the surface of pure SF scaffolds. Also, the use of SF/rGO scaffolds combined with electrical stimulation promoted the differentiation into neural phenotypes reaching comparable or even superior levels to those obtained by means of the traditional treatment with neural growth factor (NGF). Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Early Decrease in Respiration and Uncoupling Event Independent of Cytochrome c Release in PC12 Cells Undergoing Apoptosis

    Science.gov (United States)

    Berghella, Libera; Ferraro, Elisabetta

    2012-01-01

    Cytochrome c is a key molecule in mitochondria-mediated apoptosis. It also plays a pivotal role in cell respiration. The switch between these two functions occurs at the moment of its release from mitochondria. This process is therefore extremely relevant for the fate of the cell. Since cytochrome c mediates respiration, we studied the changes in respiratory chain activity during the early stages of apoptosis in order to contribute to unravel the mechanisms of cytochrome c release. We found that, during staurosporine (STS)- induced apoptosis in PC12 cells, respiration is affected before the release of cytochrome c, as shown by a decrease in the endogenous uncoupled respiration and an uncoupling event, both occurring independently of cytochrome c release. The decline in the uncoupled respiration occurs also upon Bcl-2 overexpression (which inhibits cytochrome c release), while the uncoupling event is inhibited by Bcl-2. We also observed that the first stage of nuclear condensation during STS-induced apoptosis does not depend on the release of cytochrome c into the cytosol and is a reversibile event. These findings may contribute to understand the mechanisms affecting mitochondria during the early stages of apoptosis and priming them for the release of apoptogenic factors. PMID:22666257

  19. Novel fermented chickpea milk with enhanced level of γ-aminobutyric acid and neuroprotective effect on PC12 cells

    Directory of Open Access Journals (Sweden)

    Wen Li

    2016-08-01

    Full Text Available In this study, novel fermented chickpea milk with high γ -aminobutyric acid (GABA content and potential neuroprotective activity was developed. Fermentation starter that can produce GABA was selected from 377 strains of lactic acid bacteria isolated from traditional Chinese fermented foods. Among the screened strains, strain M-6 showed the highest GABA-producing capacity in De Man–Rogosa and Sharp (MRS broth and chickpea milk. M-6 was identified as Lactobacillus plantarum based on Gram staining, API carbohydrate fermentation pattern testing, and 16s rDNA sequencing. The complete gene encoding glutamate decarboxylase was cloned to confirm the presence of the gene in L. plantarum M-6. The fermentation condition was optimized by response surface methodology. Results demonstrated that L. plantarum M-6 produced the highest GABA content of 537.23 mg/L. The optimal condition included an inoculum concentration of 7%, presence of 0.2% (m/v monosodium glutamate and 55 µ M pyridoxal-5-phosphate, incubation temperature of 39 °C and fermentation time of 48 h . GABA-enriched chickpea milk exerted protective effects on PC12 cells against MnCl2 -induced injury. GABA-enriched chickpea milk improved cell viability and markedly attenuated the release of lactate dehydrogenase compared with the impaired cells.

  20. Protective effects of some medicinal plants from Lamiaceae family against beta-amyloid induced toxicity in PC12 cell

    Directory of Open Access Journals (Sweden)

    Balali P

    2012-10-01

    Full Text Available Background: Excessive accumulation of beta-amyliod peptide (Aβ, the major component of senile plaques in Alzheimer's disease (AD, causes neuronal cell death through induction of oxidative stress. Therefore, antioxidants may be of use in the treatment of AD. The medicinal plants from the Lamiaceae family have been widely used in Iranian traditional medicine. These plants contain compounds with antioxidant activity and some species in this family have been reported to have neuroprotective properties. In the present study, methanolic extract of seven plants from salvia and satureja species were evaluated for their protective effects against beta-amyloid induced neurotoxicity.Methods: Aerial parts of the plants were extracted with ethyl acetate and methanol, respectively, by percolation at room temperature and subsequently, methanolic extracts of the plants were prepared. PC12 cells were incubated with different concentrations of the extracts in culture medium 1h prior to incubation with Aβ. Cell toxicity was assessed 24h after addition of Aβ by MTT assay.Results: Satureja bachtiarica, Salvia officinalis and Salvia macrosiphon methanolic extracts exhibited high protective effects against Aβ induced toxicity (P<0.001. Protective effects of Satureja bachtiarica and Salvia officinalis were dose-dependent.Conclusion: The main constituents of these extracts are polyphenolic and flavonoid compounds such as rosmarinic acid, naringenin, apigenin and luteolin which have antioxidant properties and may have a role in neuroprotection. Based on neuroprotective effect of these plants against Aβ induced toxicity, we recommend greater attention to their use in the treatment of Alzheimer disease.

  1. Role of mitochondrial dysfunction in neurotoxicity of MPP+: partial protection of PC12 cells by acetyl-L-carnitine.

    Science.gov (United States)

    Virmani, Ashraf; Gaetani, Franco; Binienda, Zbigniew; Xu, Alex; Duhart, Helen; Ali, Syed F

    2004-10-01

    The damage to the central nervous system that is observed after administration of either methamphetamine (METH) or 1-methyl-4-phenylpyridinium (MPP+), the neurotoxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), is known to be linked to dopamine (DA). The underlying neurotoxicity mechanism for both METH and MPP+ seem to involve free radical formation and impaired mitochondrial function. The MPP+ is thought to selectively kill nigrostriatal dopaminergic neurons by inhibiting mitochondrial complex I, with cell death being attributed to oxidative stress damage to these vulnerable DA neurons. In the present study, MPP+ was shown to significantly inhibit the response to MTT by cultured PC12 cells. This inhibitory action of MPP+ could be partially reversed by the co-incubation of the cells with the acetylated form of carnitine, acetyl-L-carnitine (ALC). Since at least part of the toxic action of MPP+ is related to mitochondrial inhibition, the partial reversal of the inhibition of MTT response by ALC could involve a partial restoration of mitochondrial function. The role carnitine derivatives, such as ALC, play in attenuating MPP+ and METH-evoked toxicity is still under investigation to elucidate the contribution of mitochondrial dysfunction in mechanisms of neurotoxicity.

  2. Novel fermented chickpea milk with enhanced level of γ-aminobutyric acid and neuroprotective effect on PC12 cells.

    Science.gov (United States)

    Li, Wen; Wei, Mingming; Wu, Junjun; Rui, Xin; Dong, Mingsheng

    2016-01-01

    In this study, novel fermented chickpea milk with high γ -aminobutyric acid (GABA) content and potential neuroprotective activity was developed. Fermentation starter that can produce GABA was selected from 377 strains of lactic acid bacteria isolated from traditional Chinese fermented foods. Among the screened strains, strain M-6 showed the highest GABA-producing capacity in De Man-Rogosa and Sharp (MRS) broth and chickpea milk. M-6 was identified as Lactobacillus plantarum based on Gram staining, API carbohydrate fermentation pattern testing, and 16s rDNA sequencing. The complete gene encoding glutamate decarboxylase was cloned to confirm the presence of the gene in L. plantarum M-6. The fermentation condition was optimized by response surface methodology. Results demonstrated that L. plantarum M-6 produced the highest GABA content of 537.23 mg/L. The optimal condition included an inoculum concentration of 7%, presence of 0.2% (m/v) monosodium glutamate and 55 µ M pyridoxal-5-phosphate, incubation temperature of 39 °C and fermentation time of 48 h . GABA-enriched chickpea milk exerted protective effects on PC12 cells against MnCl2 -induced injury. GABA-enriched chickpea milk improved cell viability and markedly attenuated the release of lactate dehydrogenase compared with the impaired cells.

  3. BDE99 (2,2',4,4',5-pentabromodiphenyl ether) suppresses differentiation into neurotransmitter phenotypes in PC12 cells.

    Science.gov (United States)

    Slotkin, Theodore A; Card, Jennifer; Infante, Alice; Seidler, Frederic J

    2013-01-01

    Early-life exposures to brominated diphenyl ethers (BDEs) lead to neurobehavioral abnormalities later in life. Although these agents are thyroid disruptors, it is not clear whether this mechanism alone accounts for the adverse effects. We evaluated the impact of 2,2',4,4',5-pentabromodiphenyl ether (BDE99) on PC12 cells undergoing neurodifferentiation, contrasting the effects with chlorpyrifos, a known developmental neurotoxicant. BDE99 elicited decrements in the number of cells, evidenced by a reduction in DNA levels, to a lesser extent than did chlorpyrifos. This did not reflect cytotoxicity from oxidative stress, since cell enlargement, monitored by the total protein/DNA ratio, was not only unimpaired by BDE99, but was actually enhanced. Importantly, BDE99 impaired neurodifferentiation into both the dopamine and acetylcholine neurotransmitter phenotypes. The cholinergic phenotype was affected to a greater extent, so that neurotransmitter fate was diverted away from acetylcholine and toward dopamine. Chlorpyrifos produced the same imbalance, but through a different underlying mechanism, promoting dopaminergic development at the expense of cholinergic development. In our earlier work, we did not find these effects with BDE47, a BDE that has greater endocrine disrupting and cytotoxic effects than BDE99. Thus, our results point to interference with neurodifferentiation by specific BDE congeners, distinct from cytotoxic or endocrine mechanisms. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Protective Effects of Mouse Bone Marrow Mesenchymal Stem Cell Soup on Staurosporine Induced Cell Death in PC12 and U87 Cell Lines

    Directory of Open Access Journals (Sweden)

    Hossein Zhaleh

    2016-11-01

    Full Text Available Mouse bone marrow mesenchymal stem cells (mBMSCs soup is promising tool for the treatment of neurodegenerative diseases. mBMSCs soup is easily obtained and is capable of transplantation without rejection. We investigated the effects of mBMSC soup on staurosporine-induced cell death in PC12 and U87 cells lines. The percentage of cell viability, cell death, NO concentration, total neurite length (TNL and fraction of cell differentiation (f% were assessed. Viability assay showed that mBM soup (24 and 48h in time dependent were increased cell viability (p<0.05 and also cell death assay showed that cell death in time dependent were decreased, respectively (p<0.05. TNL and fraction of cell differentiation significantly were increased compared with treatment1 (p<0.05. Our data showed that mBM Soup protects cells, increases cell viability, suppresses cell death and improvement the neurite elongation. We concluded that Mouse bone marrow mesenchymal stem cell soup plays an important protective role in staurosporine-induced cell death in PC12 and U87 cell lines.

  5. Elevated hydrostatic pressures induce apoptosis and oxidative stress through mitochondrial membrane depolarization in PC12 neuronal cells: A cell culture model of glaucoma.

    Science.gov (United States)

    Tök, Levent; Nazıroğlu, Mustafa; Uğuz, Abdülhadi Cihangir; Tök, Ozlem

    2014-10-01

    Despite the importance of oxidative stress and apoptosis through mitochondrial depolarization in neurodegenerative diseases, their roles in etiology of glaucoma are poorly understood. We aimed to investigate whether oxidative stress and apoptosis formation are altered in rat pheochromocytoma-derived cell line-12 (PC12) neuronal cell cultures exposed to elevated different hydrostatic pressures as a cell culture model of glaucoma. Cultured PC12 cells were subjected to 0, 15 and 70 mmHg hydrostatic pressure for 1 and 24 h. Then, the following values were analyzed: (a) cell viability; (b) lipid peroxidation and intracellular reactive oxygen species production; (c) mitochondrial membrane depolarization; (d) cell apoptosis; (e) caspase-3 and caspase-9 activities; (f) reduced glutathione (GSH) and glutathione peroxidase (GSH-Px). The hydrostatic pressures (15 and 70 mmHg) increased oxidative cell damage through a decrease of GSH and GSH-Px values, and increasing mitochondrial membrane potential. Additionally, 70 mmHg hydrostatic pressure for 24 h indicated highest apoptotic effects, as demonstrated by plate reader analyses of apoptosis, caspase-3 and -9 values. The present data indicated oxidative stress, apoptosis and mitochondrial changes in PC12 cell line during different hydrostatic pressure as a cell culture model of glaucoma. This findings support the view that mitochondrial oxidative injury contributes early to glaucomatous optic neuropathy.

  6. Overexpression of the human ubiquitin E3 ligase CUL4A alleviates hypoxia–reoxygenation injury in pheochromocytoma (PC12) cells

    International Nuclear Information System (INIS)

    Tan, Can; Zhang, Li-Yang; Chen, Hong; Xiao, Ling; Liu, Xian-Peng; Zhang, Jian-Xiang

    2011-01-01

    Highlights: ► Overexpression of human CUL4A (hCUL4A) in PC12 cells. ► The effects of hCUL4A on hypoxia–reoxygenation injury were investigated. ► hCUL4A suppresses apoptosis and DNA damage and thus promotes cell survival. ► hCUL4A regulates apoptosis-related proteins and cell cycle regulators. -- Abstract: The ubiquitin E3 ligase CUL4A plays important roles in diverse cellular processes including carcinogenesis and proliferation. It has been reported that the expression of CUL4A can be induced by hypoxic-ischemic injury. However, the effect of elevated expression of CUL4A on hypoxia–reoxygenation injury is currently unclear. In this study, human CUL4A (hCUL4A) was expressed in rat pheochromocytoma (PC12) cells using adenoviral vector-mediated gene transfer, and the effects of hCUL4A expression on hypoxia–reoxygenation injury were investigated. In PC12 cells subjected to hypoxia and reoxygenation, we found that hCUL4A suppresses apoptosis and DNA damage by regulating apoptosis-related proteins and cell cycle regulators (Bcl-2, caspase-3, p53 and p27); consequently, hCUL4A promotes cell survival. Taken together, our results reveal the beneficial effects of hCUL4A in PC12 cells upon hypoxia–reoxygenation injury.

  7. Overexpression of the human ubiquitin E3 ligase CUL4A alleviates hypoxia-reoxygenation injury in pheochromocytoma (PC12) cells

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Can [Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, 172 Tong Zipo Road, Changsha 410013 (China); Zhang, Li-Yang [Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, 110 Xiang Ya Road, Changsha 410078 (China); Chen, Hong [Department of Developmental Biology, School of Biological Science and Technology, Central South University, 172 Tong Zipo Road, Changsha 410013 (China); Xiao, Ling [Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, 172 Tong Zipo Road, Changsha 410013 (China); Liu, Xian-Peng, E-mail: xliu@lsuhsc.edu [Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932 (United States); Zhang, Jian-Xiang, E-mail: jianxiangzhang@yahoo.cn [Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, 172 Tong Zipo Road, Changsha 410013 (China); Department of Developmental Biology, School of Biological Science and Technology, Central South University, 172 Tong Zipo Road, Changsha 410013 (China)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Overexpression of human CUL4A (hCUL4A) in PC12 cells. Black-Right-Pointing-Pointer The effects of hCUL4A on hypoxia-reoxygenation injury were investigated. Black-Right-Pointing-Pointer hCUL4A suppresses apoptosis and DNA damage and thus promotes cell survival. Black-Right-Pointing-Pointer hCUL4A regulates apoptosis-related proteins and cell cycle regulators. -- Abstract: The ubiquitin E3 ligase CUL4A plays important roles in diverse cellular processes including carcinogenesis and proliferation. It has been reported that the expression of CUL4A can be induced by hypoxic-ischemic injury. However, the effect of elevated expression of CUL4A on hypoxia-reoxygenation injury is currently unclear. In this study, human CUL4A (hCUL4A) was expressed in rat pheochromocytoma (PC12) cells using adenoviral vector-mediated gene transfer, and the effects of hCUL4A expression on hypoxia-reoxygenation injury were investigated. In PC12 cells subjected to hypoxia and reoxygenation, we found that hCUL4A suppresses apoptosis and DNA damage by regulating apoptosis-related proteins and cell cycle regulators (Bcl-2, caspase-3, p53 and p27); consequently, hCUL4A promotes cell survival. Taken together, our results reveal the beneficial effects of hCUL4A in PC12 cells upon hypoxia-reoxygenation injury.

  8. Synthesis of Functional Polyester Based on Polylactic Acid and Its Effect on PC12 Cells after Coupling with Small Peptides

    Directory of Open Access Journals (Sweden)

    Na Qiang

    2016-01-01

    Full Text Available Polyesters containing functional groups are a suitable candidate matrix for cell culture in tissue engineering. Three types of semicrystalline copolymer poly(L-lactide-co-β-malic acid [P(LA-co-BMD] with pendent carboxyl groups were synthesized in this study. The functional monomer 3(S-[(benzyloxycarbonylmethyl]-1,4-dioxane-2,5-dione (BMD was synthesized using L-aspartic acid. The copolymer P(LA-co-BMD was then synthesized through ring-opening copolymerization of L-LA and BMD, with dodecanol as initiator and stannous octoate as catalyst. Copolymer structure was characterized by 1H nuclear magnetic resonance (1H NMR, gel permeation chromatography (GPC, and differential scanning calorimetry (DSC analyses. Results of 1H NMR and GPC analyses showed that the copolymers were synthesized successfully. DSC curves showed that the crystal melting peak and enthalpy decreased with increased BMD. The crystallinity of the copolymer was destroyed by the presence of the functional monomer. After deprotection, carboxyl groups were coupled with the isoleucine-lysine-valine-alanine-valine peptide through N-hydroxysuccinimide/dicyclohexylcarbodiimide method. The small peptide was beneficial to the axon growth of PC12 cells.

  9. Administration of Ketamine Causes Autophagy and Apoptosis in the Rat Fetal Hippocampus and in PC12 Cells

    Directory of Open Access Journals (Sweden)

    Xinran Li

    2018-02-01

    Full Text Available Drug abuse during pregnancy is a serious problem. Like alcohol, anticonvulsants, sedatives, and anesthetics, such as ketamine, can pass through the placental barrier and affect the growing fetus. However, the mechanism by which ketamine causes damage to fetal rats is not well understood. Therefore, in this study, we anesthetized pregnant rats with ketamine and evaluated the Total Antioxidant Capacity (T-AOC, Reactive Oxygen Species (ROS, and Malondialdehyde (MDA. Moreover, we determined changes in the levels of Cleaved-Caspase-3 (C-Caspase-3, Beclin-1, B-cell lymphoma-2 (Bcl-2, Bcl-2 Associated X Protein (Bax, Autophagy-related gene 4 (Atg4, Atg5, p62 (SQSTM1, and marker of autophagy Light Chain 3 (LC3. In addition, we cultured PC12 cells in vitro to determine the relationship between ROS, autophagy, and apoptosis following ketamine treatment. The results showed that ketamine induced changes in autophagy- and apoptosis-related proteins, reduced T-AOC, and generated excessive levels of ROS and MDA. In vitro experiments showed similar results, indicating that apoptosis levels can be inhibited by 3-MA. We also found that autophagy and apoptosis can be inhibited by N-acetyl-L-cysteine (Nac. Thus, anesthesia with ketamine in pregnant rats may increase the rate of autophagy and apoptosis in the fetal hippocampus and the mechanism may be through inhibition of antioxidant activity and ROS accumulation.

  10. Proteomic Dissection of Nanotopography-Sensitive Mechanotransductive Signaling Hubs that Foster Neuronal Differentiation in PC12 Cells

    Directory of Open Access Journals (Sweden)

    Elisa Maffioli

    2018-01-01

    Full Text Available Neuronal cells are competent in precisely sensing nanotopographical features of their microenvironment. The perceived microenvironmental information will be “interpreted” by mechanotransductive processes and impacts on neuronal functioning and differentiation. Attempts to influence neuronal differentiation by engineering substrates that mimic appropriate extracellular matrix (ECM topographies are hampered by the fact that profound details of mechanosensing/-transduction complexity remain elusive. Introducing omics methods into these biomaterial approaches has the potential to provide a deeper insight into the molecular processes and signaling cascades underlying mechanosensing/-transduction but their exigence in cellular material is often opposed by technical limitations of major substrate top-down fabrication methods. Supersonic cluster beam deposition (SCBD allows instead the bottom-up fabrication of nanostructured substrates over large areas characterized by a quantitatively controllable ECM-like nanoroughness that has been recently shown to foster neuron differentiation and maturation. Exploiting this capacity of SCBD, we challenged mechanosensing/-transduction and differentiative behavior of neuron-like PC12 cells with diverse nanotopographies and/or changes of their biomechanical status, and analyzed their phosphoproteomic profiles in these settings. Versatile proteins that can be associated to significant processes along the mechanotransductive signal sequence, i.e., cell/cell interaction, glycocalyx and ECM, membrane/f-actin linkage and integrin activation, cell/substrate interaction, integrin adhesion complex, actomyosin organization/cellular mechanics, nuclear organization, and transcriptional regulation, were affected. The phosphoproteomic data suggested furthermore an involvement of ILK, mTOR, Wnt, and calcium signaling in these nanotopography- and/or cell mechanics-related processes. Altogether, potential nanotopography

  11. Non-cytotoxic Concentration of Cisplatin Decreases Neuroplasticity-Related Proteins and Neurite Outgrowth Without Affecting the Expression of NGF in PC12 Cells.

    Science.gov (United States)

    Ferreira, Rafaela Scalco; Dos Santos, Neife Aparecida Guinaim; Martins, Nádia Maria; Fernandes, Laís Silva; Dos Santos, Antonio Cardozo

    2016-11-01

    Cisplatin is the most effective and neurotoxic platinum chemotherapeutic agent. It induces a peripheral neuropathy characterized by distal axonal degeneration that might progress to degeneration of cell bodies and apoptosis. Most symptoms occur nearby distal axonal branches and axonal degeneration might induce peripheral neuropathy regardless neuronal apoptosis. The toxic mechanism of cisplatin has been mainly associated with DNA damage, but cisplatin might also affect neurite outgrowth. Nevertheless, the neurotoxic mechanism of cisplatin remains unclear. We investigated the early effects of cisplatin on axonal plasticity by using non-cytotoxic concentrations of cisplatin and PC12 cells as a model of neurite outgrowth and differentiation. PC12 cells express NGF-receptors (trkA) and respond to NGF by forming neurites, branches and synaptic vesicles. For comparison, we used a neuronal model (SH-SY5Y cells) that does not express trkA nor responds to NGF. Cisplatin did not change NGF expression in PC12 cells and decreased neurite outgrowth in both models, suggesting a NGF/trkA independent mechanism. It also reduced axonal growth (GAP-43) and synaptic (synapsin I and synaptophysin) proteins in PC12 cells, without inducing mitochondrial damage or apoptosis. Therefore, cisplatin might affect axonal plasticity before DNA damage, NGF/trkA down-regulation, mitochondrial damage or neuronal apoptosis. This is the first study to show that neuroplasticity-related proteins might be early targets of the neurotoxic action of cisplatin and their role on cisplatin-induced peripheral neuropathy should be investigated in vivo.

  12. Metformin-induced protection against oxidative stress is associated with AKT/mTOR restoration in PC12 cells.

    Science.gov (United States)

    Khallaghi, Behzad; Safarian, Fatemeh; Nasoohi, Sanaz; Ahmadiani, Abolhassan; Dargahi, Leila

    2016-03-01

    Reactive oxygen species have been recognized to impair cell function through suppressing Akt the well-known pro-survival molecule. Pile of concrete evidence imply metformin as an Insulin sensitizer may enhance Akt/mTOR activity however the significance of Akt/mTOR recruitment has not yet been revealed in metformin induced neuroprotection against oxidative stress. In the current study using H2O2 induced injury in PC12 cells; we first examined metformin impact on cell death by MTT assay and visual assessment. Metformin pretreated cells were then subjected to immunoblotting as well as real time PCR to find PI3K, Akt, mTOR and S6K concurrent transcriptional and post-transcriptional changes. The proportions of phosphorylated to non-phosphorylated constituents of PI3K/Akt/mTOR/S6K were determined to address their activation upon metformin treatment. According to cells morphology and MTT data metformin led to significant protection against H2O2 induced injury in 0.1 and 0.5mM concentrations. Metformin induced protection concurred with elevated PI3K/Akt/mTOR/S6K activity as well as enhanced GSH levels. These changes paralleled with a profound decline in the corresponding transcripts as determined by real time PCR. Taken together our experimentation supports the hypothesis that Akt/mTOR/S6K cascade may contribute to metformin alleviating effect. The present work while highlighting metformin anti-oxidant characteristics, concludes that Akt/mTOR signaling might be central to the drug's alleviating effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Metabolomic study of corticosterone-induced cytotoxicity in PC12 cells by ultra performance liquid chromatography-quadrupole/time-of-flight mass spectrometry.

    Science.gov (United States)

    Zhang, Hongye; Zheng, Hua; Zhao, Gan; Tang, Chaoling; Lu, Shiyin; Cheng, Bang; Wu, Fang; Wei, Jinbin; Liang, Yonghong; Ruan, Junxiang; Song, Hui; Su, Zhiheng

    2016-03-01

    Glucocorticoids (GCs) have been proved to be an important pathogenic factor of some neuropsychiatric disorders. Usually, a classical injury model based on corticosterone-induced cytotoxicity of differentiated rat pheochromocytoma (PC12) cells was used to stimulate the state of GC damage of hippocampal neurons and investigate its potential mechanisms involved. However, up to now, the mechanism of corticosterone-induced cytotoxicity in PC12 cells was still looking forward to further elucidation. In this work, the metabolomic study of the biochemical changes caused by corticosterone-induced cytotoxicity in differentiated PC12 cells with different corticosterone concentrations was performed for the first time, using the ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF MS). Partial least squares-discriminate analysis (PLS-DA) indicated that metabolic profiles of different corticosterone treatment groups deviated from the control group. A total of fifteen metabolites were characterized as potential biomarkers involved in corticosterone-induced cytotoxicity, which were corresponding to the dysfunctions of five pathways including glycerophospholipid metabolism, sphingolipid metabolism, oxidation of fatty acids, glycerolipid metabolism and sterol lipid metabolism. This study indicated that the rapid and holistic cell metabolomics approach might be a powerful tool to further study the pathogenesis mechanism of corticosterone-induced cytotoxicity in PC12 cells.

  14. Song Bu Li Decoction, a Traditional Uyghur Medicine, Protects Cell Death by Regulation of Oxidative Stress and Differentiation in Cultured PC12 Cells

    Directory of Open Access Journals (Sweden)

    Maitinuer Maiwulanjiang

    2013-01-01

    Full Text Available Song Bu Li decoction (SBL is a traditional Uyghur medicinal herbal preparation, containing Nardostachyos Radix et Rhizoma. Recently, SBL is being used to treat neurological disorders (insomnia and neurasthenia and heart disorders (arrhythmia and palpitation. Although this herbal extract has been used for many years, there is no scientific basis about its effectiveness. Here, we aimed to evaluate the protective and differentiating activities of SBL in cultured PC12 cells. The pretreatment of SBL protected the cell against tBHP-induced cell death in a dose-dependent manner. In parallel, SBL suppressed intracellular reactive oxygen species (ROS formation. The transcriptional activity of antioxidant response element (ARE, as well as the key antioxidative stress proteins, was induced in dose-dependent manner by SBL in the cultures. In cultured PC12 cells, the expression of neurofilament, a protein marker for neuronal differentiation, was markedly induced by applied herbal extract. Moreover, the nerve growth factor- (NGF- induced neurite outgrowth in cultured PC12 cells was significantly potentiated by the cotreatment of SBL. In accord, the expression of neurofilament was increased in the treatment of SBL. These results therefore suggested a possible role of SBL by its effect on neuron differentiation and protection against oxidative stress.

  15. Puerarin protects differentiated PC12 cells from H₂O₂-induced apoptosis through the PI3K/Akt signalling pathway.

    Science.gov (United States)

    Zhang, Qin; Huang, Wei-Dong; Lv, Xue-Ying; Yang, Yun-Mei

    2012-05-01

    Oxidative stress has been implicated as a major mechanism underlying the pathogenesis of neurodegenerative disorders. ROS (reactive oxygen species) can cause cell death via apoptosis. NGF (nerve growth factor) differentiated rat PC12 cells have been extensively used to study the differentiation and apoptosis of neurons. This study has investigated the protective effects of puerarin in H2O2-induced apoptosis of differentiated PC12 cells, and the possible molecular mechanisms involved. Differentiated PC12 cells were incubated with 700 μM H2O2 in the absence or presence of different doses of puerarin (4, 8 and 16 μM). Apoptosis was assessed by MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay, TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling) analysis and Annexin V-PI (propidium iodide) double staining flow cytometry. Protein levels of phospho-Akt and phospho-BAD (Bcl-2/Bcl-XL-antagonist, causing cell death) were assayed by Western blotting. After stimulation with H2O2 for 18 h, the viability of differentiated PC12 cells decreased significantly and a large number of cells underwent apoptosis. Differentiated PC12 cells were rescued from H2O2-induced apoptosis at different concentrations of puerarin in a dose-dependent manner. This was through increased production of phospho-Akt and phospho-BAD, an effect that could be reversed by wortmannin, an inhibitor of PI3K (phosphoinositide 3-kinase). The results suggest that puerarin may have neuroprotective effect through activation of the PI3K/Akt signalling pathway.

  16. Clivorine, an otonecine pyrrolizidine alkaloid from Ligularia species, impairs neuronal differentiation via NGF-induced signaling pathway in cultured PC12 cells.

    Science.gov (United States)

    Xiong, Aizhen; Yan, Artemis Lu; Bi, Cathy W C; Lam, Kelly Y C; Chan, Gallant K L; Lau, Kitty K M; Dong, Tina T X; Lin, Huangquan; Yang, Li; Wang, Zhengtao; Tsim, Karl W K

    2016-08-15

    Pyrrolizidine alkaloids (PAs) are commonly found in many plants including those used in medical therapeutics. The hepatotoxicities of PAs have been demonstrated both in vivo and in vitro; however, the neurotoxicities of PAs are rarely mentioned. In this study, we aimed to investigate in vitro neurotoxicities of clivorine, one of the PAs found in various Ligularia species, in cultured PC12 cells. PC12 cell line was employed to first elucidate the neurotoxicity and the underlying mechanism of clivorine, including cell viability and morphology change, neuronal differentiation marker and signaling pathway. PC12 cells were challenged with series concentrations of clivorine and/or nerve growth factor (NGF). The cell lysates were collected for MTT assay, trypan blue staining, immunocytofluorescent staining, qRT-PCR and western blotting. Clivorine inhibited cell proliferation and neuronal differentiation evidenced by MTT assay and dose-dependently reducing neurite outgrowth, respectively. In addition, clivorine decreased the level of mRNAs encoding for neuronal differentiation markers, e.g. neurofilaments and TrkA (NGF receptor). Furthermore, clivorine reduced the NGF-induced the phosphorylations of TrkA, protein kinase B and cAMP response element-binding protein in cultured PC12 cells. Taken together, our results suggest that clivorine might possess neurotoxicities in PC12 cells via down-regulating the NGF/TrkA/Akt signaling pathway. PAs not only damage the liver, but also possess neurotoxicities, which could possibly result in brain disorders, such as depression. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. CART (cocaine- and amphetamine-regulated transcript) peptide specific binding sites in PC12 cells have characteristics of CART peptide receptors

    Czech Academy of Sciences Publication Activity Database

    Nagelová, Veronika; Pirnik, Z.; Železná, Blanka; Maletínská, Lenka

    2014-01-01

    Roč. 1547, Feb 14 (2014), s. 16-24 ISSN 0006-8993 R&D Projects: GA ČR GAP303/10/1368 Institutional support: RVO:61388963 Keywords : CART peptide * PC12 cell * differentiation * binding * signaling * c-Jun Subject RIV: CE - Biochemistry Impact factor: 2.843, year: 2014

  18. Modification of HSP proteins and Ca2+ are responsible for the NO-derived peroxynitrite mediated neurological damage in PC12 cell.

    Science.gov (United States)

    Wen, Jun; Li, Hua; Zhang, Yudan; Li, Xia; Liu, Fang

    2015-01-01

    Peroxynitrite as one crucial metabolite of NO-derived agents has been well multi-investigated to inspect its potential role and sought to define its concrete mechanism underlying the memory loss and impaired cognition involved in pathological processes. In this investigation, the cell viability was assessed by the MTT assay. The neurotoxicity of peroxynitrite was analyzed by using immunohistochemical measurements in cultured PC12 cells to explore the underlying mechanisms. The generation of ROS was evaluated by a fluorometry assay by a fluorometry assay. Apoptosis was assayed by annexin V-FITC and PI staining with flow cytometry. [Ca2+]i was examined by using the microspectrofluorometer. Hsp70 was detected by western blot assay. The results revealed that PC12 cells were inhibited by peroxynitrite both in a dose-dependent and time-dependent manner. The level of ROS in PC12 cells exposed to SIN-1 was increased in a dose-dependent manner. The result indicated that the SIN-1 induced apoptosis of PC12 cells in a dose-dependent manner. Quercetin inhibited the viability of PC12 cells in a concentration-dependent manner. [Ca2+]i was increased gradually when cells treated with quercetin alone and also increased with treatment of dantrolene-containing. Hsp70 was significantly decreased in SIN-1-treated group compared with that of control group (P<0.01). In conclusion, Ca2+ homeostasis and chaperone Hsp70 were critically involved in peroxynitrite induced nitrosative stress as protective. Peroxynitrite acts as the pathological agent in learning and memory defects in CNS disorders associated with challenge.

  19. Dual actions of lindane (γ-hexachlorocyclohexane) on calcium homeostasis and exocytosis in rat PC12 cells

    International Nuclear Information System (INIS)

    Heusinkveld, Harm J.; Thomas, Gareth O.; Lamot, Ischa; Berg, Martin van den; Kroese, Alfons B.A.; Westerink, Remco H.S.

    2010-01-01

    The persistent organochlorine pesticide lindane is still abundantly found in the environment and in human and animal tissue samples. Lindane induces a wide range of adverse health effects, which are at least partially mediated via the known inhibition of GABA A and glycine receptors. Additionally, lindane has been reported to increase the basal intracellular Ca 2+ concentration ([Ca 2+ ] i ). As Ca 2+ triggers many cellular processes, including cell death and vesicular neurotransmitter release (exocytosis), we investigated whether lindane affects exocytosis, Ca 2+ homeostasis, production of reactive oxygen species (ROS) and cytotoxicity in neuroendocrine PC12 cells. Amperometric recordings and [Ca 2+ ] i imaging experiments with fura-2 demonstrated that lindane (≥ 10 μM) rapidly increases basal exocytosis and basal [Ca 2+ ] i . Additional imaging and electrophysiological recordings revealed that this increase was largely due to a lindane-induced membrane depolarization and subsequent opening of N- and P/Q-type voltage-gated Ca 2+ channels (VGCC). On the other hand, lindane (≥ 3 μM) induced a concentration-dependent but non-specific inhibition of VGCCs, thereby limiting the lindane-induced increase in basal [Ca 2+ ] i and exocytosis. Importantly, the non-specific inhibition of VGCCs also reduced stimulation-evoked exocytosis and Ca 2+ influx. Though lindane exposure concentration-dependently increased ROS production, cell viability was not affected indicating that the used concentrations were not acute cytotoxic. These combined findings indicate that lindane has two, partly counteracting effects. Lindane causes membrane depolarization, thereby increasing basal [Ca 2+ ] i and exocytosis. In parallel, lindane inhibits VGCCs, thereby limiting the basal effects and reducing stimulation-evoked [Ca 2+ ] i and exocytosis. This study further underlines the need to consider presynaptic, non-receptor-mediated effects in human risk assessment.

  20. The selective and inducible activation of endogenous PI 3-kinase in PC12 cells results in efficient NGF-mediated survival but defective neurite outgrowth.

    Science.gov (United States)

    Ashcroft, M; Stephens, R M; Hallberg, B; Downward, J; Kaplan, D R

    1999-08-12

    The Trk/Nerve Growth Factor receptor mediates the rapid activation of a number of intracellular signaling proteins, including phosphatidylinositol 3-kinase (PI 3-kinase). Here, we describe a novel, NGF-inducible system that we used to specifically address the signaling potential of endogenous PI 3-kinase in NGF-mediated neuronal survival and differentiation processes. This system utilizes a Trk receptor mutant (Trk(def)) lacking sequences Y490, Y785 and KFG important for the activation of the major Trk targets; SHC, PLC-gammal, Ras, PI 3-kinase and SNT. Trk(def) was kinase active but defective for NGF-induced responses when stably expressed in PC12nnr5 cells (which lack detectable levels of TrkA and are non-responsive to NGF). The PI 3-kinase consensus binding site, YxxM (YVPM), was introduced into the insert region within the kinase domain of Trk(def). NGF-stimulated tyrosine phosphorylation of the Trk(def)+PI 3-kinase addback receptor, resulted in the direct association and selective activation of PI 3-kinase in vitro and the production of PI(3,4)P2 and PI(3,4,5)P3 in vivo (comparable to wild-type). PC12nnr5 cells stably expressing Trk(def) + PI 3-kinase, initiated neurite outgrowth but failed to stably extend and maintain these neurites in response to NGF as compared to PC12 parental cells, or PC12nnr5 cells overexpressing wild-type Trk. However, Trk(def) + PI 3-kinase was fully competent in mediating NGF-induced survival processes. We propose that while endogenous PI 3-kinase can contribute in part to neurite initiation processes, its selective activation and subsequent signaling to downstream effectors such as Akt, functions mainly to promote cell survival in the PC12 system.

  1. Enantioselective effect of bifenthrin on antioxidant enzyme gene expression and stress protein response in PC12 cells.

    Science.gov (United States)

    Lu, Xianting

    2013-07-01

    Enantioselectivity in toxicology and the health risk of chiral xenobiotics have become frontier topics interfacing chemistry and toxicology. Our previous results showed that cis-bifenthrin (cis-BF) induced cytotoxicity and apoptosis in vitro in an enantioselective manner. However, the exact molecular mechanisms of synthetic pyrethroid-induced enantioselective apoptosis and cytotoxicity have so far received limited research attention. In the present study, the expression patterns of different genes encoding heat shock protein and antioxidant enzymes were investigated by real-time quantitative PCR in rat adrenal pheochromocytoma (PC12) cells after exposure to cis-BF and its enantiomers. The results showed that exposure to 1S-cis-BF resulted in increased transcription of HSP90, HSP70, HSP60, Cu-Zn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione-s-transferase at a concentration of 5 µm and above, while exposure to 1R-cis-BF and rac-cis-BF exhibited these effects to lesser degrees. In addition, induction of antioxidant enzyme gene expression produced by 1S-cis-BF might occur, at least in part, through activation of p38 mitogen-activated protein kinases (MAPK) and extracellular regulated kinases, while increase in stress protein response produced by 1S-cis-BF might occur through the p38 MAPK signaling pathway. The results not only suggest that enantioselectivity should be considered in evaluating the ecotoxicological effects and health risk of chiral contaminants, but also will improve the understanding of molecular mechanism for chiral chemical-induced cytotoxicity. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Preconditioning with Gua Lou Gui Zhi decoction enhances H2O2-induced Nrf2/HO-1 activation in PC12 cells

    Science.gov (United States)

    MAO, JINGJIE; LI, ZUANFANG; LIN, RUHUI; ZHU, XIAOQIN; LIN, JIUMAO; PENG, JUN; CHEN, LIDIAN

    2015-01-01

    Spasticity is common in various central neurological conditions, including after a stroke. Such spasticity may cause additional problems, and often becomes a primary concern for afflicted individuals. A number of studies have identified nuclear factor (erythroid-derived 2)-like 2 (Nrf2) as a key regulator in the adaptive survival response to oxidative stress. Elevated expression of Nrf2, combined with heme oxygenase 1 (HO-1) resistance, in the central nervous system is known to elicit key internal and external oxidation protection. Gua Lou Gui Zhi decoction (GLGZD) is a popular traditional Chinese formula with a long history of clinical use in China for the treatment of muscular spasticity following a stroke, epilepsy or a spinal cord injury. However, the mechanism underlying the efficacy of the medicine remains unclear. In the present study, the antioxidative effects of GLGZD were evaluated and the underlying molecular mechanisms were investigated, using hydrogen peroxide (H2O2)-induced rat pheochromocytoma cells (PC12 cells) as an in vitro oxidative stress model of neural cells. Upon application of different concentrations of GLGZD, a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay and ATP measurement were conducted to assess the impact on PC12 cell proliferation. In addition, inverted microscopy observations, and the MTT and ATP assessments, revealed that GLGZD attenuated H2O2-induced oxidative damage and signaling repression in PC12 cells. Furthermore, the mRNA and protein expression levels of Nrf2 and HO-1, which are associated with oxidative stress, were analyzed using reverse transcription quantitative polymerase chain reaction (PCR) and confocal microscopy. Confocal microscopy observations, as well as the quantitative PCR assay, revealed that GLGZD exerted a neuroprotective function against H2O2-induced oxidative damage in PC12 cells. Therefore, the results demonstrated that GLGZD protected PC12 cells injured by H2O2, which may be

  3. Tanshinone IIA protects PC12 cells from β-amyloid(25-35)-induced apoptosis via PI3K/Akt signaling pathway.

    Science.gov (United States)

    Dong, Huimin; Mao, Shanping; Mao, Shanpin; Wei, Jiajun; Liu, Baohui; Zhang, Zhaohui; Zhang, Qian; Yan, Mingmin

    2012-06-01

    For the aging populations of any nation, Dementia is becoming a primary problem and Alzheimer’s dementia (AD) is the most common type. However, until now, there is no effective treatment for AD. Tanshinone IIA (Tan IIA) has been reported for neuroprotective potential to against amyloid β peptides (Aβ)-induced cytotoxicity in the rat pheochromocytoma cell line PC-12, which is widely used as AD research model, but the mechanism still remains unclear. To investigate the effect of Tan IIA and the possible molecular mechanism in the apoptosis of PC12 cells, we induced apoptosis in PC12 cells with β-amyloid(25-35), and treated cells with Tan IIA. After 24 h treatment, we found that Tan IIA increased the cell viability and reduced the number of apoptotic cells induced by Aβ(25-35). However, neuroprotection of Tan IIA was abolished by PI3K inhibitor LY294002. Meanwhile, Treatment with lithium chloride, a phosphorylation inhibitor of GSK3β, which is a downstream target of PI3K/Akt, can block Aβ(25-35)-induced cell apoptosis in a Tan IIA-like manner. Our findings suggest that Tan IIA is an effective neuroprotective agent and a viable candidate in AD therapy and PI3K/Akt activation and GSK3β phosphorylation are involved in the neuroprotection of Tan IIA.

  4. Cucurbitacin B inhibits proliferation, induces G2/M cycle arrest and autophagy without affecting apoptosis but enhances MTT reduction in PC12 cells

    Directory of Open Access Journals (Sweden)

    Chuanhong Wu

    2016-03-01

    Full Text Available In the present study, the effect of cucurbitacin B (a natural product with anti-cancer effect was studied on PC12 cells. It significantly reduced the cell number, changed cell morphology and inhibited colony formation while MTT results showed increased cell viability. Cucurbitacin B treatment increased activity of succinode hydrogenase. No alteration in the integrity of mem-brane, the release of lactic dehydrogenase, the mitochondrial membrane potential, and the expression of apoptotic proteins suggested that cucurbitacin B did not induce apoptosis. The cell cycle was remarkably arrested at G2/M phase. Furthermore, cucurbitacin B induced autophagy as evidence by accumulation of autophagic vacuoles and the increase of LC3II. In addition, cucurbitacin B up-regulated the expression of p-beclin-1, p-ULK1, p-Wee1, p21 and down-regulated p-mTOR, p-p70S6K, CDC25C, CDK1, Cyclin B1. In conclusion, cucurbitacin B inhibited PC12 proliferation but caused MTT pitfall. Cucurbitacin B induced G2/M cell cycle arrest, autophagy, but not the apoptosis in PC12 cells.

  5. BDE99 (2,2′,4,4′,5-PENTABROMODIPHENYL ETHER) SUPPRESSES DIFFERENTIATION INTO NEUROTRANSMITTER PHENOTYPES IN PC12 CELLS

    OpenAIRE

    Slotkin, Theodore A.; Card, Jennifer; Infante, Alice; Seidler, Frederic J.

    2013-01-01

    Early-life exposures to brominated diphenyl ethers (BDEs) lead to neurobehavioral abnormalities later in life. Although these agents are thyroid disruptors, it is not clear whether this mechanism alone accounts for the adverse effects. We evaluated the impact of 2,2′,4,4′,5-pentabromodiphenyl ether (BDE99) on PC12 cells undergoing neurodifferentiation, contrasting the effects with chlorpyrifos, a known developmental neurotoxicant. BDE99 elicited decrements in the number of cells, evidenced by...

  6. Antioxidant Properties and PC12 Cell Protective Effects of a Novel Curcumin Analogue (2E,6E-2,6-Bis(3,5- dimethoxybenzylidenecyclohexanone (MCH

    Directory of Open Access Journals (Sweden)

    Gui-Zhen Ao

    2014-03-01

    Full Text Available The antioxidative properties of a novel curcumin analogue (2E,6E-2,6-bis(3,5-dimethoxybenzylidenecyclohexanone (MCH were assessed by several in vitro models, including superoxide anion, hydroxyl radical and 1,1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging and PC12 cell protection from H2O2 damage. MCH displayed superior O2•− quenching abilities compared to curcumin and vitamin C. In vitro stability of MCH was also improved compared with curcumin. Exposure of PC12 cells to 150 µM H2O2 caused a decrease of antioxidant enzyme activities, glutathione (GSH loss, an increase in malondialdehyde (MDA level, and leakage of lactate dehydrogenase (LDH, cell apoptosis and reduction in cell viability. Pretreatment of the cells with MCH at 0.63–5.00 µM before H2O2 exposure significantly attenuated those changes in a dose-dependent manner. MCH enhanced cellular expression of transcription factor NF-E2-related factor 2 (Nrf2 at the transcriptional level. Moreover, MCH could mitigate intracellular accumulation of reactive oxygen species (ROS, the loss of mitochondrial membrane potential (MMP, and the increase of cleaved caspase-3 activity induced by H2O2. These results show that MCH protects PC12 cells from H2O2 injury by modulating endogenous antioxidant enzymes, scavenging ROS, activating the Nrf2 cytoprotective pathway and prevention of apoptosis.

  7. Potentiation of lead-induced cell death in PC12 cells by glutamate: Protection by N-acetylcysteine amide (NACA), a novel thiol antioxidant

    International Nuclear Information System (INIS)

    Penugonda, Suman; Mare, Suneetha; Lutz, P.; Banks, William A.; Ercal, Nuran

    2006-01-01

    Oxidative stress has been implicated as an important factor in many neurological diseases. Oxidative toxicity in a number of these conditions is induced by excessive glutamate release and subsequent glutamatergic neuronal stimulation. This, in turn, causes increased generation of reactive oxygen species (ROS), oxidative stress, excitotoxicity, and neuronal damage. Recent studies indicate that the glutamatergic neurotransmitter system is involved in lead-induced neurotoxicity. Therefore, this study aimed to (1) investigate the potential effects of glutamate on lead-induced PC12 cell death and (2) elucidate whether the novel thiol antioxidant N-acetylcysteine amide (NACA) had any protective abilities against such cytotoxicity. Our results suggest that glutamate (1 mM) potentiates lead-induced cytotoxicity by increased generation of ROS, decreased proliferation (MTS), decreased glutathione (GSH) levels, and depletion of cellular adenosine-triphosphate (ATP). Consistent with its ability to decrease ATP levels and induce cell death, lead also increased caspase-3 activity, an effect potentiated by glutamate. Exposure to glutamate and lead elevated the cellular malondialdehyde (MDA) levels and phospholipase-A 2 (PLA 2 ) activity and diminished the glutamine synthetase (GS) activity. NACA protected PC12 cells from the cytotoxic effects of glutamate plus lead, as evaluated by MTS assay. NACA reduced the decrease in the cellular ATP levels and restored the intracellular GSH levels. The increased levels of ROS and MDA in glutamate-lead treated cells were significantly decreased by NACA. In conclusion, our data showed that glutamate potentiated the effects of lead-induced PC12 cell death by a mechanism involving mitochondrial dysfunction (ATP depletion) and oxidative stress. NACA had a protective role against the combined toxic effects of glutamate and lead by inhibiting lipid peroxidation and scavenging ROS, thus preserving intracellular GSH

  8. Extracellular Bio-imaging of Acetylcholine-stimulated PC12 Cells Using a Calcium and Potassium Multi-ion Image Sensor.

    Science.gov (United States)

    Matsuba, Sota; Kato, Ryo; Okumura, Koichi; Sawada, Kazuaki; Hattori, Toshiaki

    2018-01-01

    In biochemistry, Ca 2+ and K + play essential roles to control signal transduction. Much interest has been focused on ion-imaging, which facilitates understanding of their ion flux dynamics. In this paper, we report a calcium and potassium multi-ion image sensor and its application to living cells (PC12). The multi-ion sensor had two selective plasticized poly(vinyl chloride) membranes containing ionophores. Each region on the sensor responded to only the corresponding ion. The multi-ion sensor has many advantages including not only label-free and real-time measurement but also simultaneous detection of Ca 2+ and K + . Cultured PC12 cells treated with nerve growth factor were prepared, and a practical observation for the cells was conducted with the sensor. After the PC12 cells were stimulated by acetylcholine, only the extracellular Ca 2+ concentration increased while there was no increase in the extracellular K + concentration. Through the practical observation, we demonstrated that the sensor was helpful for analyzing the cell events with changing Ca 2+ and/or K + concentration.

  9. Protective effects of 2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone to PC12 cells against cytotoxicity induced by hydrogen peroxide.

    Science.gov (United States)

    Su, Ming-Yuan; Huang, Hai-Ya; Li, Lin; Lu, Yan-Hua

    2011-01-26

    Oxidative stress has been considered as a major cause of cellular injuries in various clinical abnormalities. One of the possible ways to prevent reactive oxygen species (ROS)-mediated cellular injury is dietary or pharmaceutical therapies to augment the endogenous antioxidant defense capacity. The present study found that 2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone (DMC), a chalcone isolated from the buds of Cleistocalyx operculatus, possessed cytoprotective activity in PC12 cells treated with H(2)O(2). The results showed that DMC could effectively increase cell viability [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) reduction], decrease the cell apoptotic percentage [annexin V/propidium iodide (AV/PI) assay], prevent the membrane from damage [lactate dehydrogenase (LDH) release], scavenge ROS formation, reduce caspase-3 activity, and attenuate the decrease of mitochondrial membrane potential (MMP) in PC12 cells treated with H(2)O(2). Meanwhile, DMC increased the catalytic activity of superoxide dismutase (SOD) and the cellular amount of glutathione (GSH), decreased the cellular amount of malondialdehyde (MDA), and decreased the production of lipid peroxidation in PC12 cells treated with H(2)O(2).

  10. NAD+-Carrying Mesoporous Silica Nanoparticles Can Prevent Oxidative Stress-Induced Energy Failures of Both Rodent Astrocytes and PC12 Cells

    Science.gov (United States)

    Chen, Heyu; Wang, Yao; Zhang, Jixi; Ma, Yingxin; Wang, Caixia; Zhou, Ying; Gu, Hongchen; Ying, Weihai

    2013-01-01

    Aim To test the hypothesis that NAD+-carrying mesoporous silica nanoparticles (M-MSNs@NAD+) can effectively deliver NAD+ into cells to produce cytoprotective effects. Methods & Materials NAD+ was incorporated into M-MSNs. Primary rat astrocyte cultures and PC12 cells were treated with H2O2, followed by post-treatment with M-MSNs@NAD+. After various durations of the post-treatment, intracellular NAD+ levels, intracellular ATP levels and lactate dehydrogenase (LDH) release were determined. Results & Discussion M-MSNs can be effectively loaded with NAD+. The M-MSNs@NAD+ can significantly attenuate H2O2-induced NAD+ and ATP decreases in both astrocyte cultures and PC12 cells. M-MSNs@NAD+ can also partially prevent the H2O2-induced LDH release from both astrocyte cultures and PC12 cells. In contrast, the NAD+ that is spontaneously released from the M-MSNs@NAD+ is insufficient to prevent the H2O2-induced damage. Conclusions Our study has suggested the first approach that can effectively deliver NAD+ into cells, which provides an important basis both for elucidating the roles of intracellular NAD+ in biological functions and for therapeutic applications of NAD+. Our study has also provided the first direct evidence demonstrating a key role of NAD+ depletion in oxidative stress-induced ATP decreases. PMID:24040179

  11. Regulation of the MAP kinase cascade in PC12 cells: B-Raf activates MEK-1 (MAP kinase or ERK kinase) and is inhibited by cAMP

    DEFF Research Database (Denmark)

    Peraldi, P; Frödin, M; Barnier, J V

    1995-01-01

    AMP inhibits B-Raf autokinase activity as well as its ability to phosphorylate and activate MEK-1. This inhibition is likely to be due to a direct effect since we found that PKA phosphorylates B-Raf in vitro. Further, we show that B-Raf binds to p21ras, but more important, this binding to p21ras is virtually...... abolished with B-Raf from PC12 cells treated with CPT-cAMP. Hence, these data indicate that the PKA-mediated phosphorylation of B-Raf hampers its interaction with p21ras, which is responsible for the PKA-mediated decrease in B-Raf activity. Finally, our work suggests that in PC12 cells, cAMP stimulates MAP...

  12. Alpha-ketoglutarate and N-acetyl cysteine protect PC12 cells from cyanide-induced cytotoxicity and altered energy metabolism.

    Science.gov (United States)

    Satpute, R M; Hariharakrishnan, J; Bhattacharya, R

    2008-01-01

    Cyanide is a rapidly acting neurotoxin that inhibits cellular respiration and energy metabolism leading to histotoxic hypoxia. This results in the dissipation of mitochondrial membrane potential (MMP) accompanied by decreased cellular ATP content which in turn is responsible for increased levels of intracellular calcium ions ([Ca(2+)](i)) and total lactic acid content of the cells. Rat pheochromocytoma (PC12) cells possess much of the biochemical machinery associated with synaptic neurons. In the present study, we evaluated the cytoprotective effects of alpha-ketoglutarate (A-KG) and N-acetylcysteine (NAC) against cyanide-induced cytotoxicity and altered energy metabolism in PC12 cells. Cyanide-antagonism by A-KG is attributed to cyanohydrin formation whereas NAC is known for its antioxidant properties. Data on leakage of intracellular lactate dehydrogenase and mitochondrial function (MTT assay) revealed that simultaneous treatment of A-KG (0.5 mM) and NAC (0.25 mM) significantly prevented the cytotoxicity of cyanide. Also, cellular ATP content was found to improve, followed by restoration of MMP, intracellular calcium [Ca(2+)](i) and lactic acid levels. Treatment with A-KG and NAC also attenuated the levels of peroxides generated by cyanide. The study indicates that combined administration of A-KG and NAC protected the cyanide-challenged PC12 cells by resolving the altered energy metabolism. The results have implications in the development of new treatment regimen for cyanide poisoning.

  13. The transcription factors CREB and c-Fos play key roles in NCAM-mediated neuritogenesis in PC12-E2 cells

    DEFF Research Database (Denmark)

    Jessen, U; Novitskaya, V; Pedersen, N

    2001-01-01

    The neural cell adhesion molecule (NCAM) stimulates axonal outgrowth by activation of the Ras-mitogen activated protein kinase (MAPK) pathway and by generation of arachidonic acid. We investigated whether the transcription factors, cyclic-AMP response-element binding protein (CREB) and c-Fos play...... roles in this process by estimating NCAM-dependent neurite outgrowth from PC12-E2 cells grown in co-culture with NCAM-negative or NCAM-positive fibroblasts. PC12-E2 cells were transiently transfected with expression plasmids encoding wild-type or dominant negative forms of CREB and c-Fos or an activated...... form of the MAPK kinase, MEK2. Alternatively, PC12-E2 cells were treated with arachidonic acid, the cAMP analogue dBcAMP, or protein kinase A (PKA) inhibitors. The negative forms of CREB and c-Fos inhibited neurite outgrowth mediated by NCAM, arachidonic acid, dBcAMP, or MEK2. Neither CREB nor c...

  14. Protective effect of lavender oil on scopolamine induced cognitive deficits in mice and H2O2 induced cytotoxicity in PC12 cells.

    Science.gov (United States)

    Xu, Pan; Wang, Kezhu; Lu, Cong; Dong, Liming; Gao, Li; Yan, Ming; Aibai, Silafu; Liu, Xinmin

    2016-12-04

    Lavender essential oil (LO), an aromatic liquid extracted from Lavandula angustifolia Mill., has been traditionally used in the treatments of many nervous system diseases, and recently LO also reported to be effective for the Alzheimer's disease (AD). The improvement effect of lavender oil (LO) on the scopolamine-induced cognitive deficits in mice and H 2 O 2 induced cytotoxicity in PC12 cells have been evaluated. The relevant mechanism was also researched from the perspective of antioxidant effect and cholinergic system modulation. Cognitive deficits were induced in C57BL/6J mice treated with scopolamine (1mg/kg, i.p.) and were assessed by Morris water maze (MWM) and step-through passive avoidance tests. Then their hippocampus were removed for biochemical assays (acetylcholinesterase (AChE), superoxide dismutase (SOD), glutathione peroxidase (GPX) and malondialdehyde (MDA)). In vitro, the cytotoxicity were induced by 4h exposure to H 2 O 2 in PC12 and evaluated by cell viability (MTT), lactate dehydrogenase (LDH) level, nitric oxide (NO) release, reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP). The results demonstrated that LO (100mg/kg) could improve the cognitive performance of scopolamine induced mice in behavioral tests. Meanwhile, it significantly decreased the AChE activity, MDA level, and increase SOD and GPX activities of the model. Moreover, LO (12μg/mL) protected PC12 cells from H 2 O 2 induced cytotoxicity by reducing LDH, NO release, intracellular ROS accumulation and MMP loss. It was suggested that LO could show neuroprotective effect in AD model in vivo (scopolamine-treated mice) and in vitro (H 2 O 2 induced PC12 cells) via modulating oxidative stress and AChE activity. Copyright © 2016. Published by Elsevier Ireland Ltd.

  15. Structure of the gene encoding VGF, a nervous system-specific mRNA that is rapidly and selectively induced by nerve growth factor in PC12 cells.

    Science.gov (United States)

    Salton, S R; Fischberg, D J; Dong, K W

    1991-05-01

    Nerve growth factor (NGF) plays a critical role in the development and survival of neurons in the peripheral nervous system. Following treatment with NGF but not epidermal growth factor, rat pheochromocytoma (PC12) cells undergo neural differentiation. We have cloned a nervous system-specific mRNA, NGF33.1, that is rapidly and relatively selectively induced by treatment of PC12 cells with NGF and basic fibroblast growth factor in comparison with epidermal growth factor. Analysis of the nucleic acid and predicted amino acid sequences of the NGF33.1 cDNA clone suggested that this clone corresponded to the NGF-inducible mRNA called VGF (A. Levi, J. D. Eldridge, and B. M. Paterson, Science 229:393-395, 1985; R. Possenti, J. D. Eldridge, B. M. Paterson, A. Grasso, and A. Levi, EMBO J. 8:2217-2223, 1989). We have used the NGF33.1 cDNA clone to isolate and characterize the VGF gene, and in this paper we report the complete sequence of the VGF gene, including 853 bases of 5' flank revealed TATAA and CCAAT elements, several GC boxes, and a consensus cyclic AMP response element-binding protein binding site. The VGF promoter contains sequences homologous to other NGF-inducible, neuronal promoters. We further show that VGF mRNA is induced in PC12 cells to a greater extent by depolarization and by phorbol-12-myristate-13-acetate treatment than by 8-bromo-cyclic AMP treatment. By Northern (RNA) and RNase protection analysis, VGF mRNA is detectable in embryonic and postnatal central and peripheral nervous tissues but not in a number of nonneural tissues. In the cascade of events which ultimately leads to the neural differentiation of NGF-treated PC12 cells, the VGF gene encodes the most rapidly and selectively regulated, nervous-system specific mRNA yet identified.

  16. Protective effect of Nelumbo nucifera extracts on beta amyloid protein induced apoptosis in PC12 cells, in vitro model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Alaganandam Kumaran

    2018-01-01

    Full Text Available Alzheimer's disease (AD is the most common cause of dementia in the elderly. β-Amyloid (Aβ has been proposed to play a role in the pathogenesis of AD. Deposits of insoluble Aβ are found in the brains of patients with AD and are one of the pathological hallmarks of the disease, but the underlying signaling pathways are poorly understood. In order to develop antidementia agents with potential therapeutic value, we examined the inhibitory effect of the Nelumbo nucifera seed embryo extracts on to the aggregated amyloid β peptide (agg Aβ1–40-induced damage of differentiated PC-12 cells (dPC-12, a well-known cell model for AD. In the present study, seed embryos of N. nucifera were extracted with 70% methanol in water and then separated into hexane, ethyl acetate, n-butanol, and water layers. Among them, only the n-butanol layer showed strong activity and was therefore subjected to separation on Sephadex LH-20 chromatography. Two fractions showing potent activity were found to significantly inhibit Aβ1–40 toxicity on dPC-12 cells in increasing order of concentration (10–50 μg/mL. Further purification and characterization of these active fractions identified them to be flavonoids such as rutin, orientin, isoorientin, isoquercetrin, and hyperoside. 2,2-Diphenyl-1-picrylhydrazyl hydrate scavenging activity of the extracts was also carried out to ascertain the possible mechanism of the activity.

  17. In vitro protective effects of Withania somnifera (L.) dunal root extract against hydrogen peroxide and β-amyloid(1-42)-induced cytotoxicity in differentiated PC12 cells.

    Science.gov (United States)

    Kumar, S; Seal, C J; Howes, M J R; Kite, G C; Okello, E J

    2010-10-01

    Withania somnifera L. Dunal (Solanaceae), also known as 'ashwagandha' in Sanskrit and as 'Indian ginseng', is used widely in Ayurvedic medicine as a nerve tonic and memory enhancer, with antiaging, antistress, immunomodulatory and antioxidant properties. There is a paucity of data on the potential neuroprotective effects of W. somnifera root, as traditionally used, against H(2)O(2)- and Aβ((1-42))-induced cytotoxicity which are current targets for novel approaches to treat dementia, especially dementia of the Alzheimer's type (AD). In this study, an aqueous extract prepared from the dried roots of W. somnifera was assessed for potential protective effects against H(2)O(2)- and Aβ((1-42))-aggregated fibril cytotoxicity by an MTT assay using a differentiated rat pheochromocytoma PC12 cell line. The results suggest that pretreatments of differentiated PC12 cells with aqueous extracts of W. somnifera root significantly protect differentiated PC12 cells against both H(2)O(2)- and Aβ((1-42))-induced cytotoxicity, in a concentration dependent manner. To investigate the compounds that could explain the observed effects, the W. somnifera extract was analysed by liquid chromatography-serial mass spectrometry and numerous withanolide derivatives, including withaferin A, were detected. These results demonstrate the neuroprotective properties of an aqueous extract of W. somnifera root and may provide some explanation for the putative ethnopharmacological uses of W. somnifera for cognitive and other neurodegenerative disorders that are associated with oxidative stress. Copyright © 2010 John Wiley & Sons, Ltd.

  18. Asarone from Acori Tatarinowii Rhizoma Potentiates the Nerve Growth Factor-Induced Neuronal Differentiation in Cultured PC12 Cells: A Signaling Mediated by Protein Kinase A.

    Directory of Open Access Journals (Sweden)

    Kelly Y C Lam

    Full Text Available Acori Tatarinowii Rhizoma (ATR, the rhizome of Acorus tatarinowii Schott, is being used clinically to treat neurological disorders. The volatile oil of ATR is being considered as an active ingredient. Here, α-asarone and β-asarone, accounting about 95% of ATR oil, were evaluated for its function in stimulating neurogenesis. In cultured PC12 cells, application of ATR volatile oil, α-asarone or β-asarone, stimulated the expression of neurofilaments, a bio-marker for neurite outgrowth, in a concentration-dependent manner. The co-treatment of ATR volatile oil, α-asarone or β-asarone, with low concentration of nerve growth factor (NGF potentiated the NGF-induced neuronal differentiation in cultured PC12 cells. In addition, application of protein kinase A inhibitors, H89 and KT5720, in cultures blocked the ATR-induced neurofilament expression, as well as the phosphorylation of cAMP-responsive element binding protein (CREB. In the potentiation of NGF-induced signaling in cultured PC12 cells, α-asarone and β-asarone showed synergistic effects. These results proposed the neurite-promoting asarone, or ATR volatile oil, could be useful in finding potential drugs for treating various neurodegenerative diseases, in which neurotrophin deficiency is normally involved.

  19. Insulin like growth factor-1 prevents 1-mentyl-4-phenylphyridinium-induced apoptosis in PC12 cells through activation of glycogen synthase kinase-3beta

    International Nuclear Information System (INIS)

    Sun, Xin; Huang, Luqi; Zhang, Min; Sun, Shenggang; Wu, Yan

    2010-01-01

    Dopaminergic neurons are lost mainly through apoptosis in Parkinson's disease. Insulin like growth factor-1 (IGF-1) inhibits apoptosis in a wide variety of tissues. Here we have shown that IGF-1 protects PC12 cells from toxic effects of 1-methyl-4-phenylpyridiniumion (MPP + ). Treatment of PC12 cells with recombinant human IGF-1 significantly decreased apoptosis caused by MPP + as measured by acridine orange/ethidium bromide staining. IGF-1 treatment induced sustained phosphorylation of glycogen synthase kinase-3beta (GSK-3beta) as shown by western blot analysis. The anti-apoptotic effect of IGF-1 was abrogated by LY294002, which indirectly inhibits phosphorylation of GSK-3beta. Lithium chloride (LiCl), a known inhibitor of GSK-3beta, also blocked MPP + -induced apoptosis. Finally, although IGF-1 enhanced phosphorylation of extracellular signal-regulated kinases ERK1 and 2 (ERK1/2), PD98059, a specific inhibitor of ERK1/2, did not alter the survival effect of IGF-1. Thus, our findings indicate that IGF-1 protects PC12 cells exposed to MPP + from apoptosis via the GSK-3beta signaling pathway.

  20. A superoxide anion-scavenger, 1,3-selenazolidin-4-one suppresses serum deprivation-induced apoptosis in PC12 cells by activating MAP kinase

    International Nuclear Information System (INIS)

    Nishina, Atsuyoshi; Kimura, Hirokazu; Kozawa, Kunihisa; Sommen, Geoffroy; Nakamura, Takao; Heimgartner, Heinz; Koketsu, Mamoru; Furukawa, Shoei

    2011-01-01

    Synthetic organic selenium compounds, such as ebselen, may show glutathione peroxidase-like antioxidant activity and have a neurotrophic effect. We synthesized 1,3-selenazolidin-4-ones, new types of synthetic organic selenium compounds (five-member ring compounds), to study their possible applications as antioxidants or neurotrophic-like molecules. Their superoxide radical scavenging effects were assessed using the quantitative, highly sensitive method of real-time kinetic chemiluminescence. At 166 μM, the O 2 − scavenging activity of 1,3-selenazolidin-4-ones ranged from 0 to 66.2%. 2-[3-(4-Methoxyphenyl)-4-oxo-1,3-selenazolidin-2-ylidene]malononitrile (compound b) showed the strongest superoxide anion-scavenging activity among the 6 kinds of 2-methylene-1,3-selenazolidin-4-ones examined. Compound b had a 50% inhibitory concentration (IC 50 ) at 92.4 μM and acted as an effective and potentially useful O 2 − scavenger in vitro. The effect of compound b on rat pheochromocytome cell line PC12 cells was compared with that of ebselen or nerve growth factor (NGF) by use of the MTT [3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide] assay. When ebselen was added at 100 μM or more, toxicity toward PC12 cells was evident. On the contrary, compound b suppressed serum deprivation-induced apoptosis in PC12 cells more effectively at a concentration of 100 μM. The activity of compound b to phosphorylate mitogen-activated protein kinase/extracellular signal-regulated protein kinase (ERK) 1/2 (MAP kinase) in PC12 cells was higher than that of ebselen, and the former at 100 μM induced the phosphorylation of MAP kinase to a degree similar to that induced by NGF. From these results, we conclude that this superoxide anion-scavenger, compound b, suppressed serum deprivation-induced apoptosis by promoting the phosphorylation of MAP kinase. -- Highlights: ► We newly synthesized 1,3-selenazolidin-4-ones to study their possible applications. ► Among new

  1. A superoxide anion-scavenger, 1,3-selenazolidin-4-one suppresses serum deprivation-induced apoptosis in PC12 cells by activating MAP kinase

    Energy Technology Data Exchange (ETDEWEB)

    Nishina, Atsuyoshi, E-mail: nishina@yone.ac.jp [Yonezawa Women' s Junior College, 6-15-1 Tohrimachi, Yonezawa, Yamagata 992-0025 (Japan); Kimura, Hirokazu; Kozawa, Kunihisa [Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki, Maebashi, Gunma 371-0052 (Japan); Sommen, Geoffroy [Lonza Braine SA, Chaussee de Tubize 297, B-1420 Braine l' Alleud (Belgium); Nakamura, Takao [Department of Biomedical Information Engineering, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585 (Japan); Heimgartner, Heinz [University of Zuerich, Institut of Organic Chemistry, Winterthurerstrasse 190, CH-8057 Zuerich (Switzerland); Koketsu, Mamoru [Department of Materials Science and Technology, Faculty of Engineering, Gifu University, Gifu 501-1193 (Japan); Furukawa, Shoei [Laboratory of Molecular Biology, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585 (Japan)

    2011-12-15

    Synthetic organic selenium compounds, such as ebselen, may show glutathione peroxidase-like antioxidant activity and have a neurotrophic effect. We synthesized 1,3-selenazolidin-4-ones, new types of synthetic organic selenium compounds (five-member ring compounds), to study their possible applications as antioxidants or neurotrophic-like molecules. Their superoxide radical scavenging effects were assessed using the quantitative, highly sensitive method of real-time kinetic chemiluminescence. At 166 {mu}M, the O{sub 2}{sup -} scavenging activity of 1,3-selenazolidin-4-ones ranged from 0 to 66.2%. 2-[3-(4-Methoxyphenyl)-4-oxo-1,3-selenazolidin-2-ylidene]malononitrile (compound b) showed the strongest superoxide anion-scavenging activity among the 6 kinds of 2-methylene-1,3-selenazolidin-4-ones examined. Compound b had a 50% inhibitory concentration (IC{sub 50}) at 92.4 {mu}M and acted as an effective and potentially useful O{sub 2}{sup -} scavenger in vitro. The effect of compound b on rat pheochromocytome cell line PC12 cells was compared with that of ebselen or nerve growth factor (NGF) by use of the MTT [3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide] assay. When ebselen was added at 100 {mu}M or more, toxicity toward PC12 cells was evident. On the contrary, compound b suppressed serum deprivation-induced apoptosis in PC12 cells more effectively at a concentration of 100 {mu}M. The activity of compound b to phosphorylate mitogen-activated protein kinase/extracellular signal-regulated protein kinase (ERK) 1/2 (MAP kinase) in PC12 cells was higher than that of ebselen, and the former at 100 {mu}M induced the phosphorylation of MAP kinase to a degree similar to that induced by NGF. From these results, we conclude that this superoxide anion-scavenger, compound b, suppressed serum deprivation-induced apoptosis by promoting the phosphorylation of MAP kinase. -- Highlights: Black-Right-Pointing-Pointer We newly synthesized 1,3-selenazolidin-4-ones to

  2. Shikonin protects dopaminergic cell line PC12 against 6-hydroxydopamine-mediated neurotoxicity via both glutathione-dependent and independent pathways and by inhibiting apoptosis.

    Science.gov (United States)

    Esmaeilzadeh, Emran; Gardaneh, Mossa; Gharib, Ehsan; Sabouni, Farzaneh

    2013-08-01

    We have investigated the mechanism of shikonin function on protection of dopaminergic neurons against 6-OHDA-induced neurotoxicity. Treatment of rat pheochromocytoma cell line PC12 by serial dilutions of shikonin determined 10 μM of the compound as its optimum concentration for protection saving nearly 70 % of the cells against toxicity. Reverse transcription-PCR analysis of shikonin-treated cells showed threefold increase in mRNA levels of glutathione peroxidase-1 (GPX-1) as a representative component of the intracellular anti-oxidant defense system. To elucidate shikonin-GPX1 relationships and maximize protection, we transduced PC12 cells using recombinant lentivirus vectors that harbored GPX-1 coding sequence. This change upregulated GPX-1 expression, increased peroxidase activity and made neuronal cells resistant to 6-OHDA-mediated toxicity. More importantly, addition of shikonin to GPX1-overexpressing PC12 cells augmented GPX-1 protein content by eightfold leading to fivefold increase of enzymatic activity, 91 % cell survival against neurotoxicity and concomitant increases in intracellular glutathione (GSH) levels. Depletion of intracellular GSH rendered all cell groups highly susceptible to toxicity; however, shikonin was capable of partially saving them. Subsequently, GSH-independent superoxide dismutase mRNA was found upregulated by shikonin. As signs of apoptosis inhibition, the compound upregulated Bcl-2, downregulated Bax, and prevented cell nuclei from undergoing morphological changes typical of apoptosis. Also, a co-staining method demonstrated GPX-1 overexpression significantly increases the percent of live cells that is maximized by shikonin treatment. Our data indicate that shikonin as an antioxidant compound protects dopaminergic neurons against 6-OHDA toxicity and enhances their survival via both glutathione-dependent and direct anti-apoptotic pathways.

  3. Antioxidant and neuroprotector effect of Lepidium meyenii (maca) methanol leaf extract against 6-hydroxy dopamine (6-OHDA)-induced toxicity in PC12 cells.

    Science.gov (United States)

    Rodríguez-Huamán, Ángel; Casimiro-Gonzales, Sandra; Chávez-Pérez, Jorge Antonio; Gonzales-Arimborgo, Carla; Cisneros-Fernández, Richard; Aguilar-Mendoza, Luis Ángel; Gonzales, Gustavo F

    2017-05-01

    Reactive oxygen species (ROS) are normally produced during cell metabolism, there is strong evidence to suggest that ROS produced in excess impair the cell and may be etiologically related to various neurodegenerative diseases. This study was undertaken to examine the effects of Lepidium meyenii (MACA) methanol leaf extract on neurotoxicity in PC12 cell exposed to 6-hydroxydopamine (6-OHDA). Fresh samples of "maca" leaves were processed in order to obtain foliar extracts and to evaluate the neurobiological activity on PC12 cells, subjected to the cytotoxic effect of 6-OHDA through the determination of the capacity antioxidant, cell viability and cytotoxicity assays on PC12 cells. The results of the tests of antioxidant activity, showed maximum values of 2262.37 and 1305.36 expressed in Trolox equivalents (TEAC), for the methanolic and aqueous fractions respectively. Cell viability assays at a dose of 10 μg extract showed an increase of 31% and 60% at 6 and 12 h of pretreatment, respectively. Cytotoxicity assays at the same dose and exposure time showed a 31.4% and 47.8% reduction in lactate dehydrogenase (LDH) activity and an increase in superoxide dismutase (SOD) activity. The results allow us to affirm that the methanolic foliar extract of "maca" presents in vitro neurobiological activity of antioxidant protection, increase in cell viability and reduction of cytotoxicity against oxidative stress generated by 6-OHDA. In conclusion, the present study shows a protective role for Lepidium meyenii leaf extract on 6-OHDA-induced toxicity by an antioxidant effect.

  4. Effect of activation of canonical Wnt signaling by the Wnt-3a protein on the susceptibility of PC12 cells to oxidative and apoptotic insults

    International Nuclear Information System (INIS)

    Kawamoto, E.M.; Gleichmann, M.; Yshii, L.M.; Sá Lima, L. de; Mattson, M.P.; Scavone, C.

    2011-01-01

    Wnt proteins are involved in tissue development and their signaling pathways play an important role during embryogenesis. Wnt signaling can promote cell survival, which is beneficial for neurons, but could also lead to tumor development in different tissues. The present study investigated the effects of a Wnt protein on the susceptibility of a neural tumor cell line (PC12 cells) to the cytotoxic compounds ferrous sulfate (10 mM), staurosporine (100 and 500 nM), 3-nitropropionic acid (5 mM), and amyloid β-peptide (Aβ 25-35 ; 50 µM). Cells (1 × 10 6 cells/mL) were treated with the Wnt-3a recombinant peptide (200 ng/mL) for 24 h before exposure to toxic insults. The Wnt-3a protein partially protected PC12 cells, with a 6-15% increase in cell viability in the presence of toxic agents, similar to the effect measured using the MTT and lactate dehydrogenase cell viability assays. The Wnt-3a protein increased protein expression of β-catenin by 52% compared to control. These findings suggest that Wnt signaling can protect neural cells against apoptosis induced by toxic agents, which are relevant to the pathogenesis of Alzheimer's and Huntington's diseases

  5. Spirulina maxima extract prevents cell death through BDNF activation against amyloid beta 1-42 (Aβ1-42) induced neurotoxicity in PC12 cells.

    Science.gov (United States)

    Koh, Eun-Jeong; Kim, Kui-Jin; Choi, Jia; Kang, Do-Hyung; Lee, Boo-Yong

    2018-04-23

    Spirulina maxima is a blue-green micro alga that contains abundant amounts of proteins (60-70%), vitamins, chlorophyll a, and C-phycocyanin (C-PC). It has been shown to reduce oxidative stress, and prevent diabetes and non-alcoholic fatty liver disease. However, it is unclear whether Spirulina maxima 70% ethanol extract (SM70EE), chlorophyll a, and C-PC prevent Aβ 1-42 -induced neurotoxicity in PC12 cells. The aim of this study was to investigate whether SM70EE, chlorophyll a, and C-PC prevent Aβ 1-42 -induced cell death. SM70EE, chlorophyll a, and C-PC suppressed the Aβ 1-42 -induced increase in poly-ADP ribose polymerase-1 (PARP-1) cleavage and reduced Aβ 1-42 -induced decreases in glutathione and its associated factors. The level of brain-derived neurotrophic factor (BDNF), which plays a critical role in neuronal survival and neuroprotection, was increased by SM70EE, chlorophyll a, and C-PC in Aβ 1-42 -treated cells. SM70EE treatment decreased oxidative stress and cell death in response to Aβ 1-42 treatment, while simultaneously suppressing PARP cleavage and increasing the levels of glutathione (GSH) and its associated factors. Moreover, SM70EE lowered the levels of APP and BACE1, two major factors involved in APP processing, and increased BDNF expression during Aβ 1-42 -induced neurotoxicity in PC12 cells. We suggest that SM70EE prevents cell death caused by Aβ 1-42 -induced neurotoxicity via the activation of BDNF signaling. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Constitutive Overexpression of the Basic Helix-Loop-Helix Nex1/MATH-2 Transcription Factor Promotes Neuronal Differentiation of PC12 Cells and Neurite Regeneration

    Science.gov (United States)

    Uittenbogaard, Martine; Chiaramello, Anne

    2009-01-01

    Elucidation of the intricate transcriptional pathways leading to neural differentiation and the establishment of neuronal identity is critical to the understanding and design of therapeutic approaches. Among the important players, the basic helix-loop-helix (bHLH) transcription factors have been found to be pivotal regulators of neurogenesis. In this study, we investigate the role of the bHLH differentiation factor Nex1/MATH-2 in conjunction with the nerve growth factor (NGF) signaling pathway using the rat phenochromocytoma PC12 cell line. We report that the expression of Nex1 protein is induced after 5 hr of NGF treatment and reaches maximal levels at 24 hr, when very few PC12 cells have begun extending neurites and ceased cell division. Furthermore, our study demonstrates that Nex1 has the ability to trigger neuronal differentiation of PC12 cells in the absence of neurotrophic factor. We show that Nex1 plays an important role in neurite outgrowth and has the capacity to regenerate neurite outgrowth in the absence of NGF. These results are corroborated by the fact that Nex1 targets a repertoire of distinct types of genes associated with neuronal differentiation, such as GAP-43, βIII-tubulin, and NeuroD. In addition, our findings show that Nex1 up-regulates the expression of the mitotic inhibitor p21WAF1, thus linking neuronal differentiation to cell cycle withdrawal. Finally, our studies show that overexpression of a Nex1 mutant has the ability to block the execution of NGF-induced differentiation program, suggesting that Nex1 may be an important effector of the NGF signaling pathway. PMID:11782967

  7. The Neuroprotective Properties of Hericium erinaceus in Glutamate-Damaged Differentiated PC12 Cells and an Alzheimer’s Disease Mouse Model

    Directory of Open Access Journals (Sweden)

    Junrong Zhang

    2016-11-01

    Full Text Available Hericium erinaceus, an edible and medicinal mushroom, displays various pharmacological activities in the prevention of dementia in conditions such as Parkinson’s and Alzheimer’s disease. The present study explored the neuroprotective effects of H. erinaceus mycelium polysaccharide-enriched aqueous extract (HE on an l-glutamic acid (l-Glu-induced differentiated PC12 (DPC12 cellular apoptosis model and an AlCl3 combined with d-galactose-induced Alzheimer’s disease mouse model. The data revealed that HE successfully induced PC12 cell differentiation. A 3 h HE incubation at doses of 50 and 100 µg/mL before 25 mM of l-Glu effectively reversed the reduction of cell viability and the enhancement of the nuclear apoptosis rate in DPC12 cells. Compared with l-Glu-damaged cells, in PC12 cells, HE suppressed intracellular reactive oxygen species accumulation, blocked Ca2+ overload and prevented mitochondrial membrane potential (MMP depolarization. In the Alzheimer’s disease mouse model, HE administration enhanced the horizontal and vertical movements in the autonomic activity test, improved the endurance time in the rotarod test, and decreased the escape latency time in the water maze test. It also improved the central cholinergic system function in the Alzheimer’s mice, demonstrated by the fact that it dose-dependently enhanced the acetylcholine (Ach and choline acetyltransferase (ChAT concentrations in both the serum and the hypothalamus. Our findings provide experimental evidence that HE may provide neuroprotective candidates for treating or preventing neurodegenerative diseases.

  8. The Neuroprotective Properties of Hericium erinaceus in Glutamate-Damaged Differentiated PC12 Cells and an Alzheimer’s Disease Mouse Model

    Science.gov (United States)

    Zhang, Junrong; An, Shengshu; Hu, Wenji; Teng, Meiyu; Wang, Xue; Qu, Yidi; Liu, Yang; Yuan, Ye; Wang, Di

    2016-01-01

    Hericium erinaceus, an edible and medicinal mushroom, displays various pharmacological activities in the prevention of dementia in conditions such as Parkinson’s and Alzheimer’s disease. The present study explored the neuroprotective effects of H. erinaceus mycelium polysaccharide-enriched aqueous extract (HE) on an l-glutamic acid (l-Glu)-induced differentiated PC12 (DPC12) cellular apoptosis model and an AlCl3 combined with d-galactose-induced Alzheimer’s disease mouse model. The data revealed that HE successfully induced PC12 cell differentiation. A 3 h HE incubation at doses of 50 and 100 µg/mL before 25 mM of l-Glu effectively reversed the reduction of cell viability and the enhancement of the nuclear apoptosis rate in DPC12 cells. Compared with l-Glu-damaged cells, in PC12 cells, HE suppressed intracellular reactive oxygen species accumulation, blocked Ca2+ overload and prevented mitochondrial membrane potential (MMP) depolarization. In the Alzheimer’s disease mouse model, HE administration enhanced the horizontal and vertical movements in the autonomic activity test, improved the endurance time in the rotarod test, and decreased the escape latency time in the water maze test. It also improved the central cholinergic system function in the Alzheimer’s mice, demonstrated by the fact that it dose-dependently enhanced the acetylcholine (Ach) and choline acetyltransferase (ChAT) concentrations in both the serum and the hypothalamus. Our findings provide experimental evidence that HE may provide neuroprotective candidates for treating or preventing neurodegenerative diseases. PMID:27809277

  9. Human adipose tissue-derived multilineage progenitor cells exposed to oxidative stress induce neurite outgrowth in PC12 cells through p38 MAPK signaling

    Directory of Open Access Journals (Sweden)

    Moriyama Mariko

    2012-08-01

    Full Text Available Abstract Background Adipose tissues contain populations of pluripotent mesenchymal stem cells that also secrete various cytokines and growth factors to support repair of damaged tissues. In this study, we examined the role of oxidative stress on human adipose-derived multilineage progenitor cells (hADMPCs in neurite outgrowth in cells of the rat pheochromocytoma cell line (PC12. Results We found that glutathione depletion in hADMPCs, caused by treatment with buthionine sulfoximine (BSO, resulted in the promotion of neurite outgrowth in PC12 cells through upregulation of bone morphogenetic protein 2 (BMP2 and fibroblast growth factor 2 (FGF2 transcription in, and secretion from, hADMPCs. Addition of N-acetylcysteine, a precursor of the intracellular antioxidant glutathione, suppressed the BSO-mediated upregulation of BMP2 and FGF2. Moreover, BSO treatment caused phosphorylation of p38 MAPK in hADMPCs. Inhibition of p38 MAPK was sufficient to suppress BMP2 and FGF2 expression, while this expression was significantly upregulated by overexpression of a constitutively active form of MKK6, which is an upstream molecule from p38 MAPK. Conclusions Our results clearly suggest that glutathione depletion, followed by accumulation of reactive oxygen species, stimulates the activation of p38 MAPK and subsequent expression of BMP2 and FGF2 in hADMPCs. Thus, transplantation of hADMPCs into neurodegenerative lesions such as stroke and Parkinson’s disease, in which the transplanted hADMPCs are exposed to oxidative stress, can be the basis for simple and safe therapies.

  10. Phycocyanobilin promotes PC12 cell survival and modulates immune and inflammatory genes and oxidative stress markers in acute cerebral hypoperfusion in rats

    Energy Technology Data Exchange (ETDEWEB)

    Marín-Prida, Javier [Centre for Research and Biological Evaluations (CEIEB), Institute of Pharmacy and Food, University of Havana, Ave. 23 e/ 214 y 222, La Lisa, PO Box: 430, Havana (Cuba); Pavón-Fuentes, Nancy [International Centre for Neurological Restoration (CIREN), Ave. 25 e/ 158 y 160, Playa, PO Box: 11300, Havana (Cuba); Llópiz-Arzuaga, Alexey; Fernández-Massó, Julio R. [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba); Delgado-Roche, Liván [Centre for Research and Biological Evaluations (CEIEB), Institute of Pharmacy and Food, University of Havana, Ave. 23 e/ 214 y 222, La Lisa, PO Box: 430, Havana (Cuba); Mendoza-Marí, Yssel; Santana, Seydi Pedroso; Cruz-Ramírez, Alieski; Valenzuela-Silva, Carmen; Nazábal-Gálvez, Marcelo; Cintado-Benítez, Alberto [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba); Pardo-Andreu, Gilberto L. [Centre for Research and Biological Evaluations (CEIEB), Institute of Pharmacy and Food, University of Havana, Ave. 23 e/ 214 y 222, La Lisa, PO Box: 430, Havana (Cuba); Polentarutti, Nadia [Istituto Clinico Humanitas (IRCCS), Rozzano (Italy); Riva, Federica [Department of Veterinary Science and Public Health (DIVET), University of Milano (Italy); Pentón-Arias, Eduardo [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba); Pentón-Rol, Giselle [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba)

    2013-10-01

    Since the inflammatory response and oxidative stress are involved in the stroke cascade, we evaluated here the effects of Phycocyanobilin (PCB, the C-Phycocyanin linked tetrapyrrole) on PC12 cell survival, the gene expression and the oxidative status of hypoperfused rat brain. After the permanent bilateral common carotid arteries occlusion (BCCAo), the animals were treated with saline or PCB, taking samples 24 h post-surgery. Global gene expression was analyzed with GeneChip Rat Gene ST 1.1 from Affymetrix; the expression of particular genes was assessed by the Fast SYBR Green RT-PCR Master Mix and Bioplex methods; and redox markers (MDA, PP, CAT, SOD) were evaluated spectrophotometrically. The PCB treatment prevented the H{sub 2}O{sub 2} and glutamate induced PC12 cell injury assessed by the MTT assay, and modulated 190 genes (93 up- and 97 down-regulated) associated to several immunological and inflammatory processes in BCCAo rats. Furthermore, PCB positively modulated 19 genes mostly related to a detrimental pro-inflammatory environment and counteracted the oxidative imbalance in the treated BCCAo animals. Our results support the view of an effective influence of PCB on major inflammatory mediators in acute cerebral hypoperfusion. These results suggest that PCB has a potential to be a treatment for ischemic stroke for which further studies are needed. - Highlights: • Phycocyanobilin (PCB) prevents H{sub 2}O{sub 2} and glutamate induced PC12 cell viability loss. • Anterior cortex and striatum are highly vulnerable to cerebral hypoperfusion (CH). • PCB modulates 190 genes associated to inflammation in acute CH. • PCB regulates 19 genes mostly related to a detrimental pro-inflammatory environment. • PCB restores redox and immune balances showing promise as potential stroke therapy.

  11. Phycocyanobilin promotes PC12 cell survival and modulates immune and inflammatory genes and oxidative stress markers in acute cerebral hypoperfusion in rats

    International Nuclear Information System (INIS)

    Marín-Prida, Javier; Pavón-Fuentes, Nancy; Llópiz-Arzuaga, Alexey; Fernández-Massó, Julio R.; Delgado-Roche, Liván; Mendoza-Marí, Yssel; Santana, Seydi Pedroso; Cruz-Ramírez, Alieski; Valenzuela-Silva, Carmen; Nazábal-Gálvez, Marcelo; Cintado-Benítez, Alberto; Pardo-Andreu, Gilberto L.; Polentarutti, Nadia; Riva, Federica; Pentón-Arias, Eduardo; Pentón-Rol, Giselle

    2013-01-01

    Since the inflammatory response and oxidative stress are involved in the stroke cascade, we evaluated here the effects of Phycocyanobilin (PCB, the C-Phycocyanin linked tetrapyrrole) on PC12 cell survival, the gene expression and the oxidative status of hypoperfused rat brain. After the permanent bilateral common carotid arteries occlusion (BCCAo), the animals were treated with saline or PCB, taking samples 24 h post-surgery. Global gene expression was analyzed with GeneChip Rat Gene ST 1.1 from Affymetrix; the expression of particular genes was assessed by the Fast SYBR Green RT-PCR Master Mix and Bioplex methods; and redox markers (MDA, PP, CAT, SOD) were evaluated spectrophotometrically. The PCB treatment prevented the H 2 O 2 and glutamate induced PC12 cell injury assessed by the MTT assay, and modulated 190 genes (93 up- and 97 down-regulated) associated to several immunological and inflammatory processes in BCCAo rats. Furthermore, PCB positively modulated 19 genes mostly related to a detrimental pro-inflammatory environment and counteracted the oxidative imbalance in the treated BCCAo animals. Our results support the view of an effective influence of PCB on major inflammatory mediators in acute cerebral hypoperfusion. These results suggest that PCB has a potential to be a treatment for ischemic stroke for which further studies are needed. - Highlights: • Phycocyanobilin (PCB) prevents H 2 O 2 and glutamate induced PC12 cell viability loss. • Anterior cortex and striatum are highly vulnerable to cerebral hypoperfusion (CH). • PCB modulates 190 genes associated to inflammation in acute CH. • PCB regulates 19 genes mostly related to a detrimental pro-inflammatory environment. • PCB restores redox and immune balances showing promise as potential stroke therapy

  12. Effects of huperzine A on secretion of nerve growth factor in cultured rat cortical astrocytes and neurite outgrowth in rat PC12 cells.

    Science.gov (United States)

    Tang, Li-li; Wang, Rui; Tang, Xi-can

    2005-06-01

    To study the effects of huperzine A (HupA) on neuritogenic activity and the expression of nerve growth factor (NGF). After being treated with 10 micromol/L HupA, neurite outgrowth of PC12 cells was observed and counted under phase-contrast microscopy. Mitogenic activity was assayed by [3H]thymidine incorporation. Cell cytotoxicity was evaluated by lactate dehydrogenase (LDH) release. AChE activity, mRNA and protein expression were measured by the Ellman method, RT-PCR, and Western blot, respectively. NGF mRNA and protein levels were determined by RT-PCR and ELISA assays. Treatment of PC12 cells with 10 micromol/L HupA for 48 h markedly increased the number of neurite-bearing cells, but caused no significant alteration in cell viability or other signs of cytotoxicity. In addition to inhibiting AChE activity, 10 micromol/L HupA also increased the mRNA and protein levels of this enzyme. In addition, following 2 h exposure of the astrocytes to 10 micromol/L HupA, there was a significant up-regulation of mRNA for NGF and P75 low-affinity NGF receptor. The protein level of NGF was also increased after 24 h treatment with HupA. Our findings demonstrate for the first time that HupA has a direct or indirect neurotrophic activity, which might be beneficial in treatment of neurodegenerative disorders such as Alzheimer disease.

  13. Buyang Huanwu Decoction Vigorously Rescues PC12 Cells Against 6-OHDA-Induced Neurotoxicity via Akt/GSK3β Pathway Based on Serum Pharmacology Methodology.

    Science.gov (United States)

    Li, Zeyan; Wang, Hui; Wang, Qian; Sun, Jinhao

    2016-12-01

    Buyang Huanwu decoction (BYHWD), as a popular traditional Chinese medicine formula, was widely used for treating ischemic diseases. However, in the area of neurodegenerative diseases, the researches focused on BYHWD are rare but promising, and molecular mechanisms underlying are largely elusive. 6-Hydroxydopamine (6-OHDA), a dopaminergic-specific neurotoxin, is extensively used to establish neurotoxic model in vivo and in vitro. In our present study, we prepared drug-containing serum of BYHWD (Buyang Huanwu drug-containing serum [BYHWS]) based on serum pharmacology methodology. Neurotoxic model in vitro was established in PC12 cells, and innovative experimental grouping method was adopted to investigate neuroprotective effects of BYHWS on neurotoxicity induced by 6-OHDA exposure. Remarkably, BYHWS vigorously rescued PC12 cells from 6-OHDA-induced neurotoxicity even to surpass 100% in cell viability. Moreover, Hoechst/propidium iodide (PI) staining revealed that cell apoptotic rate was reduced significantly after incubation of BYHWS. Besides, BYHWS effectively restored the disruption of mitochondrial membrane potential and attenuated the elevation of intracellular reactive oxygen species level caused by 6-OHDA insult. Furthermore, BYHWS remarkably reversed the dephosphorylation of Akt (protein kinase B) and glycogen synthase kinase-3β (GSK3β) evoked by 6-OHDA. The above protective effects were attenuated by coculturing with Akt inhibitor LY294002. In summary, we concluded that the BYHWS vigorously blocked 6-OHDA-induced neurotoxicity via Akt/GSK3β pathway and provided a novel insight into roles of BYHWD in the clinical practices on neurodegenerative diseases.

  14. Poly(Dimethylsiloxane) (PDMS) Affects Gene Expression in PC12 Cells Differentiating into Neuronal-Like Cells

    DEFF Research Database (Denmark)

    Lopacinska, Joanna M.; Emnéus, Jenny; Dufva, Martin

    2013-01-01

    Introduction: Microfluidics systems usually consist of materials like PMMA - poly(methyl methacrylate) and PDMS - poly(dimethylsiloxane) and not polystyrene (PS), which is usually used for cell culture. Cellular and molecular responses in cells grown on PS are well characterized due to decades...

  15. The Fruits of Wampee Inhibit H2O2-Induced Apoptosis in PC12 Cells via the NF-κB Pathway and Regulation of Cellular Redox Status

    Directory of Open Access Journals (Sweden)

    Xiaobin Zeng

    2014-06-01

    Full Text Available Wampee (Clausena lansium fruits (CLS, whose pulp can be used to prepare fruit cups, desserts, jam, or jelly, can be eaten along with the peel. In this study, a PC12 cell model was built to observe the protective effect of CLS against H2O2-induced oxidative stress. We found that pretreatment with CLS increased cell viability and inhibited cytotoxicity, caspase-3 activity and DNA condensation. CLS also attenuated the increase in ROS production and MMP reduction. Moreover, we attempted to determine whether CLS suppressed the expression and phosphorylation of NF-κB. Western blot and immunostaining assay revealed that CLS inhibited H2O2-induced up-regulation of NF-κB p65 and pNF-κB p65. And CLS significantly suppressed the translocation of NF-κB p65 and pNF-κB p65 from cytoplasm to nuclear. Also, seven major compounds including a new flavanoid, luteolin-4'-O-β-d-gluco-pyranoside (3 and six known compounds 1,2, 4–7 were isolated and identified from CLS. Their antioxidative and H2O2-induced PC12 cell apoptosis-reversing activity were determined. These findings suggest that CLS and its major constituents (flavanoids may be potential antioxidant agents and should encourage further research into their use as a functional food for neurodegenerative diseases.

  16. Cooperative cytotoxic activity of Zn and Cu in bovine serum albumin-conjugated ZnS/CuS nano-composites in PC12 cancer cells

    International Nuclear Information System (INIS)

    Wang, Hua-Jie; Yu, Xue-Hong; Wang, Cai-Feng; Cao, Ying

    2013-01-01

    Series of self-assembled and mono-dispersed bovine serum albumin (BSA)-conjugated ZnS/CuS nano-composites with different Zn/Cu ratios had been successfully synthesized by a combination method of the biomimetic synthesis and ion-exchange strategy under the gentle conditions. High-resolution transmission electron microscopy observation, Fourier transform infrared spectra and zeta potential analysis demonstrated that BSA-conjugated ZnS/CuS nano-composites with well dispersity had the hierarchical structure and BSA was a key factor to control the morphology and surface electro-negativity of final products. The real-time monitoring by atomic absorption spectroscopy and powder X-ray diffraction revealed that the Zn/Cu ratio of nano-composites could be controlled by adjusting the ion-exchange time. In addition, the metabolic and morphological assays indicated that the metabolic proliferation and spread of rat pheochromocytoma (PC12) cells could be inhibited by nano-composites, with the high anti-cancer activity at a low concentration (4 ppm). What were more important, Zn and Cu in nano-composites exhibited a positive cooperativity at inhibiting cancer cell functions. The microscope observation and biochemical marker analysis clearly revealed that the nano-composites-included lipid peroxidation and disintegration of membrane led to the death of PC12 cells. Summarily, the present study substantiated the potential of BSA-conjugated ZnS/CuS nano-composites as anti-cancer drug

  17. Effects of Long-term exposure of Gelatinated and Non-gelatinated Cadmium Telluride Quantum Dots on Differentiated PC12 cells

    LENUS (Irish Health Repository)

    Prasad, Babu R

    2012-01-20

    Abstract Background The inherent toxicity of unmodified Quantum Dots (QDs) is a major hindrance to their use in biological applications. To make them more potent as neuroprosthetic and neurotherapeutic agents, thioglycolic acid (TGA) capped CdTe QDs, were coated with a gelatine layer and investigated in this study with differentiated pheochromocytoma 12 (PC12) cells. The QD - cell interactions were investigated after incubation periods of up to 17 days by MTT and APOTOX-Glo Triplex assays along with using confocal microscopy. Results Long term exposure (up to 17 days) to gelatinated TGA-capped CdTe QDs of PC12 cells in the course of differentiation and after neurites were grown resulted in dramatically reduced cytotoxicity compared to non-gelatinated TGA-capped CdTe QDs. Conclusion The toxicity mechanism of QDs was identified as caspase-mediated apoptosis as a result of cadmium leaking from the core of QDs. It was therefore concluded that the gelatine capping on the surface of QDs acts as a barrier towards the leaking of toxic ions from the core QDs in the long term (up to 17 days).

  18. Cooperative cytotoxic activity of Zn and Cu in bovine serum albumin-conjugated ZnS/CuS nano-composites in PC12 cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hua-Jie, E-mail: wanghuajie972001@163.com; Yu, Xue-Hong; Wang, Cai-Feng; Cao, Ying, E-mail: caoying1130@sina.com [Henan Normal University, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, College of Chemistry and Chemical Engineering (China)

    2013-11-15

    Series of self-assembled and mono-dispersed bovine serum albumin (BSA)-conjugated ZnS/CuS nano-composites with different Zn/Cu ratios had been successfully synthesized by a combination method of the biomimetic synthesis and ion-exchange strategy under the gentle conditions. High-resolution transmission electron microscopy observation, Fourier transform infrared spectra and zeta potential analysis demonstrated that BSA-conjugated ZnS/CuS nano-composites with well dispersity had the hierarchical structure and BSA was a key factor to control the morphology and surface electro-negativity of final products. The real-time monitoring by atomic absorption spectroscopy and powder X-ray diffraction revealed that the Zn/Cu ratio of nano-composites could be controlled by adjusting the ion-exchange time. In addition, the metabolic and morphological assays indicated that the metabolic proliferation and spread of rat pheochromocytoma (PC12) cells could be inhibited by nano-composites, with the high anti-cancer activity at a low concentration (4 ppm). What were more important, Zn and Cu in nano-composites exhibited a positive cooperativity at inhibiting cancer cell functions. The microscope observation and biochemical marker analysis clearly revealed that the nano-composites-included lipid peroxidation and disintegration of membrane led to the death of PC12 cells. Summarily, the present study substantiated the potential of BSA-conjugated ZnS/CuS nano-composites as anti-cancer drug.

  19. A Modified Chinese Herbal Decoction (Kai-Xin-San Promotes NGF-Induced Neuronal Differentiation in PC12 Cells via Up-Regulating Trk A Signaling

    Directory of Open Access Journals (Sweden)

    Lu Yan

    2017-12-01

    Full Text Available Kai-Xin-San (KXS, a Chinese herbal decoction, has been applied to medical care of depression for thousands of years. It is composed of two functional paired-herbs: Ginseng Radix et Rhizoma (GR-Polygalae Radix (PR and Acori Tatarinowii Rhizoma (ATR-Poria (PO. The compatibility of the paired-herbs has been frequently changed to meet the criteria of syndrome differentiation and treatment variation. Currently, a modified KXS (namely KXS2012 was prepared by optimizing the combinations of GR-PR and ATR-PO: the new herbal formula was shown to be very effective in animal studies. However, the cellular mechanism of KXS2012 against depression has not been fully investigated. Here, the study on KXS2012-induced neuronal differentiation in cultured PC12 cells was analyzed. In PC12 cultures, single application of KXS2012 showed no effect on the neuronal differentiation, but which showed robust effects in potentiating nerve growth factor (NGF-induced neurite outgrowth and neurofilament expression. The potentiating effect of KXS2012 was mediated through NGF receptor, tropomyosin receptor kinase (Trk A: because the receptor expression and activity was markedly up-regulated in the presence of KXS2012, and the potentiating effect was blocked by k252a, an inhibitor of Trk A. Our current results in cell cultures fully support the therapeutic efficacy of KXS2012 against depression.

  20. Thalidomide induces apoptosis in undifferentiated human induced pluripotent stem cells.

    Science.gov (United States)

    Tachikawa, Saoko; Nishimura, Toshinobu; Nakauchi, Hiromitsu; Ohnuma, Kiyoshi

    2017-10-01

    Thalidomide, which was formerly available commercially to control the symptoms of morning sickness, is a strong teratogen that causes fetal abnormalities. However, the mechanism of thalidomide teratogenicity is not fully understood; thalidomide toxicity is not apparent in rodents, and the use of human embryos is ethically and technically untenable. In this study, we designed an experimental system featuring human-induced pluripotent stem cells (hiPSCs) to investigate the effects of thalidomide. These cells exhibit the same characteristics as those of epiblasts originating from implanted fertilized ova, which give rise to the fetus. Therefore, theoretically, thalidomide exposure during hiPSC differentiation is equivalent to that in the human fetus. We examined the effects of thalidomide on undifferentiated hiPSCs and early-differentiated hiPSCs cultured in media containing bone morphogenetic protein-4, which correspond, respectively, to epiblast (future fetus) and trophoblast (future extra-embryonic tissue). We found that only the number of undifferentiated cells was reduced. In undifferentiated cells, application of thalidomide increased the number of apoptotic and dead cells at day 2 but not day 4. Application of thalidomide did not affect the cell cycle. Furthermore, immunostaining and flow cytometric analysis revealed that thalidomide exposure had no effect on the expression of specific markers of undifferentiated and early trophectodermal differentiated cells. These results suggest that the effect of thalidomide was successfully detected in our experimental system and that thalidomide eliminated a subpopulation of undifferentiated hiPSCs. This study may help to elucidate the mechanisms underlying thalidomide teratogenicity and reveal potential strategies for safely prescribing this drug to pregnant women.

  1. Minocycline attenuates both OGD-induced HMGB1 release and HMGB1-induced cell death in ischemic neuronal injury in PC12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Kiyoshi [Division of Laboratory and Vascular Medicine, Field of Cardiovascular and Respiratory Disorders, Department of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Department of Neurosurgery, Omuta City General Hospital, 2-19-1 Takarazaka, Omuta-City, Fukuoka 836-8567 (Japan); Kawahara, Ko-ichi; Biswas, Kamal Krishna; Ito, Takashi [Division of Laboratory and Vascular Medicine, Field of Cardiovascular and Respiratory Disorders, Department of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Tancharoen, Salunya [Department of Pharmacology, Faculty of Dentistry, Mahidol University, 6 Yothe Rd., Rajthevee Bangkok 10400 (Thailand); Morimoto, Yoko [Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Matsuda, Fumiyo [Division of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8560 (Japan); Oyama, Yoko; Takenouchi, Kazunori [Division of Laboratory and Vascular Medicine, Field of Cardiovascular and Respiratory Disorders, Department of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Miura, Naoki [Laboratory of Veterinary Diagnostic Imaging, Department of Veterinary Medicine, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065 (Japan); Arimura, Noboru; Nawa, Yuko; Meng, Xiaojie; Shrestha, Binita; Arimura, Shinichiro [Division of Laboratory and Vascular Medicine, Field of Cardiovascular and Respiratory Disorders, Department of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); and others

    2009-07-24

    High mobility group box-1 (HMGB1), a non-histone DNA-binding protein, is massively released into the extracellular space from neuronal cells after ischemic insult and exacerbates brain tissue damage in rats. Minocycline is a semisynthetic second-generation tetracycline antibiotic which has recently been shown to be a promising neuroprotective agent. In this study, we found that minocycline inhibited HMGB1 release in oxygen-glucose deprivation (OGD)-treated PC12 cells and triggered the activation of p38mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK1/2). The ERK kinase (MEK)1/2 inhibitor U-0126 and p38MAPK inhibitor SB203580 blocked HMGB1 release in response to OGD. Furthermore, HMGB1 triggered cell death in a dose-dependent fashion. Minocycline significantly rescued HMGB1-induced cell death in a dose-dependent manner. In light of recent observations as well as the good safety profile of minocycline in humans, we propose that minocycline might play a potent neuroprotective role through the inhibition of HMGB1-induced neuronal cell death in cerebral infarction.

  2. Minocycline attenuates both OGD-induced HMGB1 release and HMGB1-induced cell death in ischemic neuronal injury in PC12 cells

    International Nuclear Information System (INIS)

    Kikuchi, Kiyoshi; Kawahara, Ko-ichi; Biswas, Kamal Krishna; Ito, Takashi; Tancharoen, Salunya; Morimoto, Yoko; Matsuda, Fumiyo; Oyama, Yoko; Takenouchi, Kazunori; Miura, Naoki; Arimura, Noboru; Nawa, Yuko; Meng, Xiaojie; Shrestha, Binita; Arimura, Shinichiro

    2009-01-01

    High mobility group box-1 (HMGB1), a non-histone DNA-binding protein, is massively released into the extracellular space from neuronal cells after ischemic insult and exacerbates brain tissue damage in rats. Minocycline is a semisynthetic second-generation tetracycline antibiotic which has recently been shown to be a promising neuroprotective agent. In this study, we found that minocycline inhibited HMGB1 release in oxygen-glucose deprivation (OGD)-treated PC12 cells and triggered the activation of p38mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK1/2). The ERK kinase (MEK)1/2 inhibitor U-0126 and p38MAPK inhibitor SB203580 blocked HMGB1 release in response to OGD. Furthermore, HMGB1 triggered cell death in a dose-dependent fashion. Minocycline significantly rescued HMGB1-induced cell death in a dose-dependent manner. In light of recent observations as well as the good safety profile of minocycline in humans, we propose that minocycline might play a potent neuroprotective role through the inhibition of HMGB1-induced neuronal cell death in cerebral infarction.

  3. Hydrogen sulfide protects against chemical hypoxia-induced injury by inhibiting ROS-activated ERK1/2 and p38MAPK signaling pathways in PC12 cells.

    Directory of Open Access Journals (Sweden)

    Aiping Lan

    Full Text Available Hydrogen sulfide (H(2S has been proposed as a novel neuromodulator and neuroprotective agent. Cobalt chloride (CoCl(2 is a well-known hypoxia mimetic agent. We have demonstrated that H(2S protects against CoCl(2-induced injuries in PC12 cells. However, whether the members of mitogen-activated protein kinases (MAPK, in particular, extracellular signal-regulated kinase1/2(ERK1/2 and p38MAPK are involved in the neuroprotection of H(2S against chemical hypoxia-induced injuries of PC12 cells is not understood. We observed that CoCl(2 induced expression of transcriptional factor hypoxia-inducible factor-1 alpha (HIF-1α, decreased cystathionine-β synthase (CBS, a synthase of H(2S expression, and increased generation of reactive oxygen species (ROS, leading to injuries of the cells, evidenced by decrease in cell viability, dissipation of mitochondrial membrane potential (MMP , caspase-3 activation and apoptosis, which were attenuated by pretreatment with NaHS (a donor of H(2S or N-acetyl-L cystein (NAC, a ROS scavenger. CoCl(2 rapidly activated ERK1/2, p38MAPK and C-Jun N-terminal kinase (JNK. Inhibition of ERK1/2 or p38MAPK or JNK with kinase inhibitors (U0126 or SB203580 or SP600125, respectively or genetic silencing of ERK1/2 or p38MAPK by RNAi (Si-ERK1/2 or Si-p38MAPK significantly prevented CoCl(2-induced injuries. Pretreatment with NaHS or NAC inhibited not only CoCl(2-induced ROS production, but also phosphorylation of ERK1/2 and p38MAPK. Thus, we demonstrated that a concurrent activation of ERK1/2, p38MAPK and JNK participates in CoCl(2-induced injuries and that H(2S protects PC12 cells against chemical hypoxia-induced injuries by inhibition of ROS-activated ERK1/2 and p38MAPK pathways. Our results suggest that inhibitors of ERK1/2, p38MAPK and JNK or antioxidants may be useful for preventing and treating hypoxia-induced neuronal injury.

  4. Propofol prevents autophagic cell death following oxygen and glucose deprivation in PC12 cells and cerebral ischemia-reperfusion injury in rats.

    Directory of Open Access Journals (Sweden)

    Derong Cui

    Full Text Available Propofol exerts protective effects on neuronal cells, in part through the inhibition of programmed cell death. Autophagic cell death is a type of programmed cell death that plays elusive roles in controlling neuronal damage and metabolic homeostasis. We therefore studied whether propofol could attenuate the formation of autophagosomes, and if so, whether the inhibition of autophagic cell death mediates the neuroprotective effects observed with propofol.The cell model was established by depriving the cells of oxygen and glucose (OGD for 6 hours, and the rat model of ischemia was introduced by a transient two-vessel occlusion for 10 minutes. Transmission electron microscopy (TEM revealed that the formation of autophagosomes and autolysosomes in both neuronal PC12 cells and pyramidal rat hippocampal neurons after respective OGD and ischemia/reperfusion (I/R insults. A western blot analysis revealed that the autophagy-related proteins, such as microtubule-associated protein 1 light chain 3 (LC3-II, Beclin-1 and class III PI3K, were also increased accordingly, but cytoprotective Bcl-2 protein was decreased. The negative effects of OGD and I/R, including the formation of autophagosomes and autolysosomes, the increase in LC3-II, Beclin-1 and class III PI3K expression and the decline in Bcl-2 production were all inhibited by propofol and specific inhibitors of autophagy, such as 3-methyladenine (3-MA, LY294002 and Bafilomycin A1 (Baf,. Furthermore, in vitro OGD cultures and in vivo I/R rats showed an increase in cell survival following the administration of propofol, as assessed by an MTT assay or histochemical analyses.Our data suggest that propofol can markedly attenuate autophagic processes via the decreased expression of autophagy-related proteins in vitro and in vivo. This inhibition improves cell survival, which provides a novel explanation for the pleiotropic effects of propofol that benefit the nervous system.

  5. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells--possible relevance to autism spectrum disorders.

    Directory of Open Access Journals (Sweden)

    Bistra B Nankova

    Full Text Available Alterations in gut microbiome composition have an emerging role in health and disease including brain function and behavior. Short chain fatty acids (SCFA like propionic (PPA, and butyric acid (BA, which are present in diet and are fermentation products of many gastrointestinal bacteria, are showing increasing importance in host health, but also may be environmental contributors in neurodevelopmental disorders including autism spectrum disorders (ASD. Further to this we have shown SCFA administration to rodents over a variety of routes (intracerebroventricular, subcutaneous, intraperitoneal or developmental time periods can elicit behavioral, electrophysiological, neuropathological and biochemical effects consistent with findings in ASD patients. SCFA are capable of altering host gene expression, partly due to their histone deacetylase inhibitor activity. We have previously shown BA can regulate tyrosine hydroxylase (TH mRNA levels in a PC12 cell model. Since monoamine concentration is known to be elevated in the brain and blood of ASD patients and in many ASD animal models, we hypothesized that SCFA may directly influence brain monoaminergic pathways. When PC12 cells were transiently transfected with plasmids having a luciferase reporter gene under the control of the TH promoter, PPA was found to induce reporter gene activity over a wide concentration range. CREB transcription factor(s was necessary for the transcriptional activation of TH gene by PPA. At lower concentrations PPA also caused accumulation of TH mRNA and protein, indicative of increased cell capacity to produce catecholamines. PPA and BA induced broad alterations in gene expression including neurotransmitter systems, neuronal cell adhesion molecules, inflammation, oxidative stress, lipid metabolism and mitochondrial function, all of which have been implicated in ASD. In conclusion, our data are consistent with a molecular mechanism through which gut related environmental signals

  6. PC12 polarity on biopolymer nanogratings

    International Nuclear Information System (INIS)

    Cecchini, M; Ferrari, A; Beltram, F

    2008-01-01

    Cell differentiation properties are strongly entangled with the morphology and physical properties of the extracellular environment. A complete understanding of this interaction needs artificial scaffolds with controlled nano-/micro-topography. We induced specific topographies by nanoimprint lithography (NIL) on tissue culture polystyrene (TCPS) dishes substrates and, using light microscopy and high-magnification scanning-electron-microscopy, quantitatively compared the changes in PC12 differentiation phenotype induced by the periodicity of the nanopatterns. This analysis revealed that nanogratings reduce the number of neurites produced by PC12 cells upon treatment with NGF and that neuronal bipolarity correlated with an increased stretching of the cell body and a reduced length of the cell neuronal protrusions

  7. Systemic Screening of Strains of the Lion's Mane Medicinal Mushroom Hericium erinaceus (Higher Basidiomycetes) and Its Protective Effects on Aβ-Triggered Neurotoxicity in PC12 Cells.

    Science.gov (United States)

    Liu, Zongying; Wang, Qinglong; Cui, Jian; Wang, Lili; Xiong, Lili; Wang, Wei; Li, Diqiang; Liu, Na; Wu, Yiran; Mao, Canquan

    2015-01-01

    Hericium erinaceus possesses multiple medicinal values. To date, however, there have been few studies of the systemic screening of H. erinaceus strains, and the neuroprotective effects of H. erinaceus prepared from homogenized, fresh fruiting bodies are not fully understood. In this study, 4 random primers were selected and used in random amplified polymorphic DNA (RAPD) polymerase chain reaction (PCR) to screen and evaluate the genetic diversity of 19 commercial strains of H. erinaceus from different localities in China. A total of 66 bands were obtained, and the percentage of polymorphic loci reached 80.30%. Five dendrograms were constructed based on RAPD by Jaccard cluster and within-group linkage analysis. Primer S20 as well as all 4 primers had great potential as specific primers for RAPD-PCR molecular identification and differentiation of H. erinaceus strains. Based on the results of submerged culture and fruiting body cultivation, strains HT-N, HT-J1, HT-C, and HT-M were identified as superior among the 19 H. erinaceus strains. Further study showed that the oral preparation of homogenized, fresh fruiting bodies of H. erinaceus could attenuate the Aβ25-35-triggered damage in PC12 cells by significantly increasing cell viability and by decreasing the release of lactate dehydrogenase. In conclusion, RAPD-PCR combined with liquid and solid cultures can be used well in the screening and identification of H. erinaceus strains, and products prepared from homogenized, fresh fruiting bodies of H. erinaceus had neuroprotective effects on PC12 cells.

  8. Endothelin-2/Vasoactive Intestinal Contractor: Regulation of Expression via Reactive Oxygen Species Induced by CoCl22, and Biological Activities Including Neurite Outgrowth in PC12 Cells

    Directory of Open Access Journals (Sweden)

    Eiichi Kotake-Nara

    2006-01-01

    Full Text Available This paper reviews the local hormone endothelin-2 (ET-2, or vasoactive intestinal contractor (VIC, a member of the vasoconstrictor ET peptide family, where ET-2 is the human orthologous peptide of the murine VIC. While ET-2/VIC gene expression has been observed in some normal tissues, ET-2 recently has been reported to act as a tumor marker and as a hypoxia-induced autocrine survival factor in tumor cells. A recently published study reported that the hypoxic mimetic agent CoCl2 at 200 µM increased expression of the ET-2/VIC gene, decreased expression of the ET-1 gene, and induced intracellular reactive oxygen species (ROS increase and neurite outgrowth in neuronal model PC12 cells. The ROS was generated by addition of CoCl2 to the culture medium, and the CoCl2-induced effects were completely inhibited by the antioxidant N-acetyl cysteine. Furthermore, interleukin-6 (IL-6 gene expression was up-regulated upon the differentiation induced by CoCl2. These results suggest that expression of ET-2/VIC and ET-1 mediated by CoCl2-induced ROS may be associated with neuronal differentiation through the regulation of IL-6 expression. CoCl2 acts as a pro-oxidant, as do Fe(II, III and Cu(II. However, some biological activities have been reported for CoCl2 that have not been observed for other metal salts such as FeCl3, CuSO4, and NiCl2. The characteristic actions of CoCl2 may be associated with the differentiation of PC12 cells. Further elucidation of the mechanism of neurite outgrowth and regulation of ET-2/VIC expression by CoCl2 may lead to the development of treatments for neuronal disorders.

  9. TRPC6 channel-mediated neurite outgrowth in PC12 cells and hippocampal neurons involves activation of RAS/MEK/ERK, PI3K, and CAMKIV signaling.

    Science.gov (United States)

    Heiser, Jeanine H; Schuwald, Anita M; Sillani, Giacomo; Ye, Lian; Müller, Walter E; Leuner, Kristina

    2013-11-01

    The non-selective cationic transient receptor canonical 6 (TRPC6) channels are involved in synaptic plasticity changes ranging from dendritic growth, spine morphology changes and increase in excitatory synapses. We previously showed that the TRPC6 activator hyperforin, the active antidepressant component of St. John's wort, induces neuritic outgrowth and spine morphology changes in PC12 cells and hippocampal CA1 neurons. However, the signaling cascade that transmits the hyperforin-induced transient rise in intracellular calcium into neuritic outgrowth is not yet fully understood. Several signaling pathways are involved in calcium transient-mediated changes in synaptic plasticity, ranging from calmodulin-mediated Ras-induced signaling cascades comprising the mitogen-activated protein kinase, PI3K signal transduction pathways as well as Ca(2+) /calmodulin-dependent protein kinase II (CAMKII) and CAMKIV. We show that several mechanisms are involved in TRPC6-mediated synaptic plasticity changes in PC12 cells and primary hippocampal neurons. Influx of calcium via TRPC6 channels activates different pathways including Ras/mitogen-activated protein kinase/extracellular signal-regulated kinases, phosphatidylinositide 3-kinase/protein kinase B, and CAMKIV in both cell types, leading to cAMP-response element binding protein phosphorylation. These findings are interesting not only in terms of the downstream targets of TRPC6 channels but also because of their potential to facilitate further understanding of St. John's wort extract-mediated antidepressant activity. Alterations in synaptic plasticity are considered to play an important role in the pathogenesis of depression. Beside several other proteins, TRPC6 channels regulate synaptic plasticity. This study demonstrates that different pathways including Ras/MEK/ERK, PI3K/Akt, and CAMKIV are involved in the improvement of synaptic plasticity by the TRPC6 activator hyperforin, the antidepressant active constituent of St. John

  10. The Traditional Japanese Herbal Medicine Hachimijiogan Elicits Neurite Outgrowth Effects in PC12 Cells and Improves Cognitive in AD Model Rats via Phosphorylation of CREB

    Directory of Open Access Journals (Sweden)

    Kaori Kubota

    2017-11-01

    Full Text Available Hachimijiogan (HJG is a traditional herbal medicine that improves anxiety disorders in patients with dementia. In this study, we tested the hypothesis that HJG exerts neurotrophic factor-like effects to ameliorate memory impairment in Alzheimer disease (AD model rats. First, we describe that HJG acts to induce neurite outgrowth in PC12 cells (a rat pheochromocytoma cell line like nerve growth factor (NGF in a concentration-dependent manner (3 μg/ml HJG, p < 0.05; 10–500 μg/ml HJG, p < 0.001. While six herbal constituents of HJG, Rehmannia root, Dioscorea rhizome, Rhizoma Alismatis, Poria sclerotium, Moutan bark, and Cinnamon bark, could induce neurite outgrowth effects, the effect was strongest with HJG (500 μg/ml. Second, we demonstrated that HJG-induced neurite outgrowth was blocked by an inhibitor of cAMP response element binding protein (CREB, KG-501 (10 μM, p < 0.001. Moreover, HJG was observed to induce CREB phosphorylation 20–90 min after treatment (20 min, 2.50 ± 0.58-fold and CRE-mediated transcription in cultured PC12 cells (500 μg/ml, p < 0.01; 1000 μg/ml, p < 0.001. These results suggest a CREB-dependent mechanism underlies the neurotrophic effects of HJG. Finally, we examined improvements of memory impairment following HJG treatment using a Morris water maze in AD model animals (CI + Aβ rats. Repeated oral administration of HJG improved memory impairment (300 mg/kg, p < 0.05; 1000 mg/kg, p < 0.001 and induced CREB phosphorylation within the hippocampus (1000 mg/kg, p < 0.01. Together, our results suggest that HJG possesses neurotrophic effects similar to those of NGF, and can ameliorate cognitive dysfunction in a rat dementia model via CREB activation. Thus, HJG could potentially be a substitute for neurotrophic factors as a treatment for dementia.

  11. Promoter DNA hypermethylation and gene repression in undifferentiated Arabidopsis cells.

    Directory of Open Access Journals (Sweden)

    María Berdasco

    Full Text Available Maintaining and acquiring the pluripotent cell state in plants is critical to tissue regeneration and vegetative multiplication. Histone-based epigenetic mechanisms are important for regulating this undifferentiated state. Here we report the use of genetic and pharmacological experimental approaches to show that Arabidopsis cell suspensions and calluses specifically repress some genes as a result of promoter DNA hypermethylation. We found that promoters of the MAPK12, GSTU10 and BXL1 genes become hypermethylated in callus cells and that hypermethylation also affects the TTG1, GSTF5, SUVH8, fimbrin and CCD7 genes in cell suspensions. Promoter hypermethylation in undifferentiated cells was associated with histone hypoacetylation and primarily occurred at CpG sites. Accordingly, we found that the process specifically depends on MET1 and DRM2 methyltransferases, as demonstrated with DNA methyltransferase mutants. Our results suggest that promoter DNA methylation may be another important epigenetic mechanism for the establishment and/or maintenance of the undifferentiated state in plant cells.

  12. Bioactive Profiles, Antioxidant Activities, Nitrite Scavenging Capacities and Protective Effects on H2O2-Injured PC12 Cells of Glycyrrhiza Glabra L. Leaf and Root Extracts

    Directory of Open Access Journals (Sweden)

    Yi Dong

    2014-06-01

    Full Text Available This study compared the total flavonoid content of Glycyrrhiza glabra L. leaf and root extracts. Results suggested that the total flavonoid content in the leaf extract was obviously higher than that in the root extract. Pinocembrin, the main compound in the leaf extract after purification by column chromatography, showed good antioxidant activity and nitrite scavenging capacity, but moderate inhibitory effect on mushroom tyrosinase. Liquiritin was the main compound in root extract and possessed strong inhibitory effect on mushroom tyrosinase. Both compounds exhibited significant protection effect on H2O2-injured PC12 cells at a low concentration. These results indicate that Glycyrrhiza glabra L. leaf is potential as an important raw material for functional food.

  13. Genistein, a Phytoestrogen in Soybean, Induces the Expression of Acetylcholinesterase via G Protein-Coupled Receptor 30 in PC12 Cells

    Directory of Open Access Journals (Sweden)

    Etta Y. L. Liu

    2018-02-01

    Full Text Available Genistein, 4′,5,7-trihydroxyisoflavone, is a major isoflavone in soybean, which is known as phytestrogen having known benefit to brain functions. Being a common phytestrogen, the possible role of genistein in the brain protection needs to be further explored. In cultured PC12 cells, application of genistein significantly induced the expression of neurofilaments (NFs, markers for neuronal differentiation. In parallel, the expression of tetrameric form of proline-rich membrane anchor (PRiMA-linked acetyl-cholinesterase (G4 AChE, a key enzyme to hydrolyze acetylcholine in cholinergic synapses, was induced in a dose-dependent manner: this induction included the associated protein PRiMA. The genistein-induced AChE expression was fully blocked by the pre-treatment of H89 (an inhibitor of protein kinase A, PKA and G15 (a selective G protein-coupled receptor 30 (GPR30 antagonist, which suggested a direct involvement of a membrane-bound estrogen receptor (ER, named as GPR30 in the cultures. In parallel, the estrogen-induced activation of GPR30 induced AChE expression in a dose-dependent manner. The genistein/estrogen-induced AChE expression was triggered by a cyclic AMP responding element (CRE located on the ACHE gene promoter. The binding of this CRE site by cAMP response element-binding protein (CREB induced ACHE gene transcription. In parallel, increased expression levels of miR132 and miR212 were found when cultured PC12 cells were treated with genistein or G1. Thus, a balance between production and destruction of AChE by the activation of GPR30 was reported here. We have shown for the first time that the activation of GPR30 could be one way for estrogen or flavonoids, possessing estrogenic properties, to enhance cholinergic functions in the brain, which could be a good candidate for possible treatment of neurodegenerative diseases.

  14. Light induces Fos expression via extracellular signal-regulated kinases 1/2 in melanopsin-expressing PC12 cells

    DEFF Research Database (Denmark)

    Moldrup, Marie-Louise Bülow; Georg, Birgitte; Falktoft, Birgitte

    2010-01-01

    The photopigment melanopsin is expressed in a subtype of mammalian ganglion cells in the retina that project to the circadian clock in the hypothalamic suprachiasmatic nucleus to mediate non-visual light information. Melanopsin renders these retinal ganglion cells intrinsically photosensitive...

  15. ERKs and mitochondria-related pathways are essential for glycyrrhizic acid-mediated neuroprotection against glutamate-induced toxicity in differentiated PC12 cells

    International Nuclear Information System (INIS)

    Wang, D.; Guo, T.Q.; Wang, Z.Y.; Lu, J.H.; Liu, D.P.; Meng, Q.F.; Xie, J.; Zhang, X.L.; Liu, Y.; Teng, L.S.

    2014-01-01

    The present study focuses on the neuroprotective effect of glycyrrhizic acid (GA, a major compound separated from Glycyrrhiza Radix, which is a crude Chinese traditional drug) against glutamate-induced cytotoxicity in differentiated PC12 (DPC12) cells. The results showed that GA treatment improved cell viability and ameliorated abnormal glutamate-induced alterations in mitochondria in DPC12 cells. GA reversed glutamate-suppressed B-cell lymphoma 2 levels, inhibited glutamate-enhanced expressions of Bax and cleaved caspase 3, and reduced cytochrome C (Cyto C) release. Exposure to glutamate strongly inhibited phosphorylation of AKT (protein kinase B) and extracellular signal-regulated kinases (ERKs); however, GA pretreatment enhanced activation of ERKs but not AKT. The presence of PD98059 (a mitogen-activated protein/extracellular signal-regulated kinase kinase [MEK] inhibitor) but not LY294002 (a phosphoinositide 3-kinase [PI3K] inhibitor) diminished the potency of GA for improving viability of glutamate-exposed DPC12 cells. These results indicated that ERKs and mitochondria-related pathways are essential for the neuroprotective effect of GA against glutamate-induced toxicity in DPC12 cells. The present study provides experimental evidence supporting GA as a potential therapeutic agent for use in the treatment of neurodegenerative diseases

  16. ERKs and mitochondria-related pathways are essential for glycyrrhizic acid-mediated neuroprotection against glutamate-induced toxicity in differentiated PC12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D. [School of Life Sciences, Jilin University, Changchun (China); The State Engineering Laboratory of AIDS Vaccine, Jilin University, Changchun (China); Guo, T.Q. [School of Life Sciences, Jilin University, Changchun (China); Wang, Z.Y. [State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun (China); Lu, J.H.; Liu, D.P.; Meng, Q.F.; Xie, J. [School of Life Sciences, Jilin University, Changchun (China); Zhang, X.L. [Faculty of ScienceNational University of Singapore (Singapore); Liu, Y. [School of Life Sciences, Jilin University, Changchun (China); Teng, L.S. [School of Life Sciences, Jilin University, Changchun (China); The State Engineering Laboratory of AIDS Vaccine, Jilin University, Changchun (China)

    2014-07-25

    The present study focuses on the neuroprotective effect of glycyrrhizic acid (GA, a major compound separated from Glycyrrhiza Radix, which is a crude Chinese traditional drug) against glutamate-induced cytotoxicity in differentiated PC12 (DPC12) cells. The results showed that GA treatment improved cell viability and ameliorated abnormal glutamate-induced alterations in mitochondria in DPC12 cells. GA reversed glutamate-suppressed B-cell lymphoma 2 levels, inhibited glutamate-enhanced expressions of Bax and cleaved caspase 3, and reduced cytochrome C (Cyto C) release. Exposure to glutamate strongly inhibited phosphorylation of AKT (protein kinase B) and extracellular signal-regulated kinases (ERKs); however, GA pretreatment enhanced activation of ERKs but not AKT. The presence of PD98059 (a mitogen-activated protein/extracellular signal-regulated kinase kinase [MEK] inhibitor) but not LY294002 (a phosphoinositide 3-kinase [PI3K] inhibitor) diminished the potency of GA for improving viability of glutamate-exposed DPC12 cells. These results indicated that ERKs and mitochondria-related pathways are essential for the neuroprotective effect of GA against glutamate-induced toxicity in DPC12 cells. The present study provides experimental evidence supporting GA as a potential therapeutic agent for use in the treatment of neurodegenerative diseases.

  17. Chemical constituents from Hericium erinaceus and their ability to stimulate NGF-mediated neurite outgrowth on PC12 cells.

    Science.gov (United States)

    Zhang, Cheng-Chen; Yin, Xia; Cao, Chen-Yu; Wei, Jing; Zhang, Qiang; Gao, Jin-Ming

    2015-11-15

    One new meroterpenoid, named hericenone K (11), along with 10 known compounds (1-10), ergosterol peroxide (1), cerevisterol (2), 3β,5α,9α-trihydroxy-ergosta-7,22-dien-6-one (3), inoterpene A (4), astradoric acid C (5), betulin (6), oleanolic acid (7), ursolic acid (8), hemisceramide (9), and 3,4-dihydro-5-methoxy-2-methyl-2-(4'-methyl-2'-oxo-3'-pentenyl)-9(7H)-oxo-2H-furo[3,4-h]benzopyran (10), was isolated from the fruiting bodies of the mushroom Hericium erinaceus. Their structures were characterized on the basis of spectroscopic methods, as well as through comparison with previously reported data. Compounds 3-6, 8, and 9 were isolated from Hericium species for the first time. Compounds 10 and 11 was suggested to be racemic by the CD spectrum data and specific rotations, which ware resolved by chiral HPLC into respective enantiomers. Compounds 1-3, (±)-10, (-)-10 and (+)-10 in the presence of NGF (20 ng/mL) exerted a significant increase in neurite-bearing cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Potent effects of alkaloid-rich extract from Huperzia selago against sodium nitroprusside-evoked PC12 cells damage via attenuation of oxidative stress and apoptosis

    Directory of Open Access Journals (Sweden)

    Anna Magdalena Lenkiewicz

    2016-06-01

    Full Text Available Imbalance between production and scavenging of free radicals and other reactive oxygen species (ROS is a component of many diseases, but it is especially important in aging-related diseases of the central nervous system. Oxidative stress-induced neuronal dysfunction plays an important role in the pathomechanism of neurodegenerative disorders, including Alzheimer’s and Parkinson’s disease. Experimental data showed that free radical scavengers may protect the brain against oxidative modifications. The need for efficient and safe antioxidants with therapeutic potential stimulated the rise of interest in the medicinal plant products, which are a rich source of phytochemicals possessing biological activity. In our studies we focused on alkaloid fractions (AFs isolated from club moss, Huperzia selago and Diphasiastrum complanatum, due to their beneficial activity and exclusive chemical structure. Our previous study demonstrated that selected alkaloids from Huperzia selago effectively protect macromolecules from oxidative damage. Therefore, in the present study we investigated the effects and mechanisms of action of AFs isolated from Huperzia selago and Diphasiastrum complanatum against sodium nitroprusside (SNP-induced oxidative injury in PC12 cells. The results demonstrated that the selected AFs via reduction of nitric oxide (NO liberation protected cells against oxidative stress, DNA and mitochondrial damage, as well as apoptosis caused by SNP. Selected AF notably decreased SNP-evoked mitochondrial polymerase γ (Polg up-regulation. Furthermore, AF which contains Lycopodine, Serratidine, Lycoposerramine-G and (probably Cermizine B completely inhibited the SNP-induced expression of interferon-γ (Ifng and cyclooxygenase 2 (Ptgs2 as well as significantly down-regulated the expression of 12/15-lipoxygenase (Alox12 and tended to decrease the mRNA level of interleukin-6 gene (Il6. In conclusion, these results suggest that the AFs from Huperzia selago

  19. Induction of dopamine biosynthesis by l-DOPA in PC12 cells: implications of L-DOPA influx and cyclic AMP.

    Science.gov (United States)

    Jin, Chun Mei; Yang, Yoo Jung; Huang, Hai Shan; Lim, Sung Cil; Kai, Masaaki; Lee, Myung Koo

    2008-09-04

    The effects of 3,4-dihydroxyphenylalanine (l-DOPA) on dopamine biosynthesis and cytotoxicity were investigated in PC12 cells. l-DOPA treatment (20-200 microM) increased the levels of dopamine by 226%-504% after 3-6 h of treatment and enhanced the activities of tyrosine hydroxylase (TH) and aromatic l-amino acid decarboxylase (AADC). l-DOPA (20-200 muM) treatment led to a 562%-937% increase in l-DOPA influx at 1 h, which inhibited the activity of TH, but not AADC, during the same period. The extracellular releases of dopamine were also increased by 231%-570% after treatment with 20 and 200 microM l-DOPA for 0.5-3 h. l-DOPA at a concentration of 100-200 microM, but not 20 microM, exerted apoptotic cytotoxicity towards PC12 cells for 24-48 h. l-DOPA (20-200 microM) increased the intracellular cyclic AMP levels by 318%-557% after 0.5-1 h in a concentration-dependent manner. However, the elevated cyclic AMP levels by l-DOPA could not protect against l-DOPA (100-200 microM)-induced cytotoxicity after 24-48 h. In addition, l-DOPA (20-200 microM)-induced increases in cyclic AMP and dopamine were significantly reduced by treatment with SCH23390 (dopamine D(1) receptor antagonist). The increased levels of dopamine by l-DOPA were also reduced by H89 (protein kinase A, PKA, inhibitor) and GF109203X (protein kinase C inhibitor); however, the reduction by GF109203X was not significant. l-DOPA at 20-200 microM stimulated the phosphorylation of PKA and cyclic AMP-response element binding protein and induced the biosynthesis of the TH protein. These results indicate that 20-200 microM l-DOPA induces dopamine biosynthesis by two pathways. One pathway involves l-DOPA directly entering the cells to convert dopamine through AADC activity (l-DOPA decarboxylation). The other pathway involves l-DOPA and/or released dopamine activating TH to enhance dopamine biosynthesis by the dopamine D(1) receptor-cyclic AMP-PKA signaling system (dopamine biosynthesis by TH).

  20. Light-Mediated Kinetic Control Reveals the Temporal Effect of the Raf/MEK/ERK Pathway in PC12 Cell Neurite Outgrowth

    Science.gov (United States)

    Zhang, Kai; Duan, Liting; Ong, Qunxiang; Lin, Ziliang; Varman, Pooja Mahendra; Sung, Kijung; Cui, Bianxiao

    2014-01-01

    It has been proposed that differential activation kinetics allows cells to use a common set of signaling pathways to specify distinct cellular outcomes. For example, nerve growth factor (NGF) and epidermal growth factor (EGF) induce different activation kinetics of the Raf/MEK/ERK signaling pathway and result in differentiation and proliferation, respectively. However, a direct and quantitative linkage between the temporal profile of Raf/MEK/ERK activation and the cellular outputs has not been established due to a lack of means to precisely perturb its signaling kinetics. Here, we construct a light-gated protein-protein interaction system to regulate the activation pattern of the Raf/MEK/ERK signaling pathway. Light-induced activation of the Raf/MEK/ERK cascade leads to significant neurite outgrowth in rat PC12 pheochromocytoma cell lines in the absence of growth factors. Compared with NGF stimulation, light stimulation induces longer but fewer neurites. Intermittent on/off illumination reveals that cells achieve maximum neurite outgrowth if the off-time duration per cycle is shorter than 45 min. Overall, light-mediated kinetic control enables precise dissection of the temporal dimension within the intracellular signal transduction network. PMID:24667437

  1. Neurite outgrowth stimulatory effects of myco­synthesized AuNPs from Hericium erinaceus (Bull.: Fr. Pers. on pheochromocytoma (PC-12 cells

    Directory of Open Access Journals (Sweden)

    Raman J

    2015-09-01

    Full Text Available Jegadeesh Raman,1 Hariprasath Lakshmanan,1 Priscilla A John,1,2 Chan Zhijian,3 Vengadesh Periasamy,3 Pamela David,1,4 Murali Naidu,1,4 Vikineswary Sabaratnam1,2 1Mushroom Research Centre, 2Institute of Biological Sciences, Faculty of Science, University of Malaya, 3Low Dimensional Materials Research Center (LDMRC, Department of Physics, Faculty of Science, 4Department of Anatomy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia Background: Hericium erinaceus has been reported to have a wide range of medicinal properties such as stimulation of neurite outgrowth, promotion of functional recovery of axonotmetic peroneal nerve injury, antioxidant, antihypertensive, and antidiabetic properties. In recent years, the green synthesis of gold nanoparticles (AuNPs has attracted intense interest due to the potential use in biomedical applications. The aim of this study was to investigate the effects of AuNPs from aqueous extract of H. erinaceus on neurite outgrowth of rat pheochromocytoma (PC-12 cells. Methods: The formation of AuNPs was characterized by UV–visible spectrum, energy dispersive X-ray (EDX, field-emission scanning electron microscope (FESEM, transmission electron microscopy (TEM, particle size distribution, and Fourier transform-infrared spectroscopy (FTIR. Furthermore, the neurite extension study of synthesized AuNPs was evaluated by in vitro assay. Results: The AuNPs exhibited maximum absorbance between 510 and 600 nm in UV–visible spectrum. FESEM and TEM images showed the existence of nanoparticles with sizes of 20–40 nm. FTIR measurements were carried out to identify the possible biomolecules responsible for capping and efficient stabilization of the nanoparticles. The purity and the crystalline properties were confirmed by EDX diffraction analysis, which showed strong signals with energy peaks in the range of 2–2.4 keV, indicating the existence of gold atoms. The synthesized AuNPs showed significant neurite

  2. Pomegranate seed oil: Effect on 3-nitropropionic acid-induced neurotoxicity in PC12 cells and elucidation of unsaturated fatty acids composition.

    Science.gov (United States)

    Al-Sabahi, Bushra N; Fatope, Majekodunmi O; Essa, Musthafa Mohamed; Subash, Selvaraju; Al-Busafi, Saleh N; Al-Kusaibi, Fatma S M; Manivasagam, Thamilarasan

    2017-01-01

    Seed oils are used as cosmetics or topical treatment for wounds, allergy, dandruff, and other purposes. Natural antioxidants from plants were recently reported to delay the onset or progress of various neurodegenerative conditions. Over one thousand cultivars of Punica granatum (Punicaceae) are known and some are traditionally used to treat various ailments. The effect of pomegranate oil on 3-nitropropionic acid- (3-NP) induced cytotoxicity in rat pheochromocytoma (PC12) neuronal cells was analyzed in this study. Furthermore, the analysis of unsaturated fatty acid composition of the seed oil of pomegranate by gas chromatography-electron impact mass spectrometry (GC-MS) was done. GC-MS study showed the presence of 6,9-octadecadiynoic acid (C18:2(6,9)) as a major component (60%) as 4,4-dimethyloxazoline derivative. The total extractable oil with light petroleum ether by Soxhlet from the dry seed of P. granatum was 4-6%. The oil analyzed for 48.90 ± 1.50 mg gallic acid equivalents/g of oil, and demonstrated radical-scavenging-linked antioxidant activities in various in vitro assays like the DPPH (2,2-diphenyl-l-picrylhydrazyl, % IP = 35.2 ± 0.9%), ABTS (2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid), % IP 2.2 ± 0.1%), and β-carotene bleaching assay (% IP = 26 ± 3%), respectively, which could be due the possible role of one methylene interrupted diynoic acid system for its radical-scavenging/antioxidant properties of oil. The oil also reduced lipid peroxidation, suppressed reactive oxygen species, extracellular nitric oxide, lactate/pyruvate ratio, and lactase dehydrogenase generated by 3-NP- (100 mM) induced neurotoxicity in PC12 cells, and enhanced the levels of enzymatic and non-enzymatic antioxidants at 40 μg of gallic acid equivalents. The protective effect of pomegranate seed oil might be due to the ability of an oil to neutralize ROS or enhance the expression of antioxidant gene and the exact mechanism of action yet to be elucidated.

  3. Neurite outgrowth stimulatory effects of myco synthesized AuNPs from Hericium erinaceus (Bull.: Fr.) Pers. on pheochromocytoma (PC-12) cells.

    Science.gov (United States)

    Raman, Jegadeesh; Lakshmanan, Hariprasath; John, Priscilla A; Zhijian, Chan; Periasamy, Vengadesh; David, Pamela; Naidu, Murali; Sabaratnam, Vikineswary

    2015-01-01

    Hericium erinaceus has been reported to have a wide range of medicinal properties such as stimulation of neurite outgrowth, promotion of functional recovery of axonotmetic peroneal nerve injury, antioxidant, antihypertensive, and antidiabetic properties. In recent years, the green synthesis of gold nanoparticles (AuNPs) has attracted intense interest due to the potential use in biomedical applications. The aim of this study was to investigate the effects of AuNPs from aqueous extract of H. erinaceus on neurite outgrowth of rat pheochromocytoma (PC-12) cells. The formation of AuNPs was characterized by UV-visible spectrum, energy dispersive X-ray (EDX), field-emission scanning electron microscope (FESEM), transmission electron microscopy (TEM), particle size distribution, and Fourier transform-infrared spectroscopy (FTIR). Furthermore, the neurite extension study of synthesized AuNPs was evaluated by in vitro assay. The AuNPs exhibited maximum absorbance between 510 and 600 nm in UV-visible spectrum. FESEM and TEM images showed the existence of nanoparticles with sizes of 20-40 nm. FTIR measurements were carried out to identify the possible biomolecules responsible for capping and efficient stabilization of the nanoparticles. The purity and the crystalline properties were confirmed by EDX diffraction analysis, which showed strong signals with energy peaks in the range of 2-2.4 keV, indicating the existence of gold atoms. The synthesized AuNPs showed significant neurite extension on PC-12 cells. Nerve growth factor 50 ng/mL was used as a positive control. Treatment with different concentrations (nanograms) of AuNPs resulted in neuronal differentiation and neuronal elongation. AuNPs induced maximum neurite outgrowth of 13% at 600 ng/mL concentration. In this study, the AuNPs synthesis was achieved by a simple, low-cost, and rapid bioreduction approach. AuNPs were shown to have potential neuronal differentiation and stimulated neurite outgrowth. The water

  4. Dimercaprol is an acrolein scavenger that mitigates acrolein-mediated PC-12 cells toxicity and reduces acrolein in rat following spinal cord injury.

    Science.gov (United States)

    Tian, Ran; Shi, Riyi

    2017-06-01

    Acrolein is one of the most toxic byproducts of lipid peroxidation, and it has been shown to be associated with multiple pathological processes in trauma and diseases, including spinal cord injury, multiple sclerosis, and Alzheimer's disease. Therefore, suppressing acrolein using acrolein scavengers has been suggested as a novel strategy of neuroprotection. In an effort to identify effective acrolein scavengers, we have confirmed that dimercaprol, which possesses thiol functional groups, could bind and trap acrolein. We demonstrated the reaction between acrolein and dimercaprol in an abiotic condition by nuclear magnetic resonance spectroscopy. Specifically, dimercaprol is able to bind to both the carbon double bond and aldehyde group of acrolein. Its acrolein scavenging capability was further demonstrated by in vitro results that showed that dimercaprol could significantly protect PC-12 cells from acrolein-mediated cell death in a dose-dependent manner. Furthermore, dimercaprol, when applied systemically through intraperitoneal injection, could significantly reduce acrolein contents in spinal cord tissue following a spinal cord contusion injury in rats, a condition known to have elevated acrolein concentration. Taken together, dimercaprol may be an effective acrolein scavenger and a viable candidate for acrolein detoxification. © 2017 International Society for Neurochemistry.

  5. Dynamin-Related Protein 1 Inhibitors Protect against Ischemic Toxicity through Attenuating Mitochondrial Ca2+ Uptake from Endoplasmic Reticulum Store in PC12 Cells

    Directory of Open Access Journals (Sweden)

    Ye Tian

    2014-02-01

    Full Text Available Intracellular calcium homeostasis disorder and mitochondrial dysfunction are involved in many acute and chronic brain diseases, including ischemic brain injury. An imbalance in mitochondrial fission and fusion is one of the most important structural abnormalities found in a large number of mitochondrial dysfunction related diseases. Here, we investigated the effects of mitochondrial division inhibitor A (mdivi A and mdivi B, two small molecule inhibitors of mitochondrial fission protein dunamin-related protein 1 (Drp-1, in neuronal injury induced by oxygen-glucose deprivation (OGD in PC12 cells. We found that mdivi A and mdivi B inhibited OGD-induced neuronal injury through attenuating apoptotic cell death. These two inhibitors also preserved mitochondrial function, as evidenced by reduced reactive oxygen species (ROS generation and cytochrome c release, as well as prevented loss of mitochondrial membrane potential (MMP. Moreover, mdivi A and mdivi B significantly suppressed mitochondrial Ca2+ uptake, but had no effect on cytoplasmic Ca2+ after OGD injury. The results of calcium imaging and immunofluorescence staining showed that Drp-1 inhibitors attenuated endoplasmic reticulum (ER Ca2+ release and prevented ER morphological changes induced by OGD. These results demonstrate that Drp-1 inhibitors protect against ischemic neuronal injury through inhibiting mitochondrial Ca2+ uptake from the ER store and attenuating mitochondrial dysfunction.

  6. Up-regulation of cytosolic phospholipase A2α expression by N,N-diethyldithiocarbamate in PC12 cells; involvement of reactive oxygen species and nitric oxide

    International Nuclear Information System (INIS)

    Akiyama, Nobuteru; Nabemoto, Maiko; Hatori, Yoshio; Nakamura, Hiroyuki; Hirabayashi, Tetsuya; Fujino, Hiromichi; Saito, Takeshi; Murayama, Toshihiko

    2006-01-01

    Disulfiram (an alcohol-aversive drug) and related compounds are known to provoke several side effects involving behavioral and neurological complications. N,N-diethyldithiocarbamate (DDC) is considered as one of the main toxic species of disulfiram and acts as an inhibitor of superoxide dismutase. Since arachidonic acid (AA) formation is regulated by reactive oxygen species (ROS) and related to toxicity in neuronal cells, we investigated the effects of DDC on AA release and expression of the α type of cytosolic phospholipase A 2 (cPLA 2 α) in PC12 cells. Treatment with 80-120 μM DDC that causes a moderate increase in ROS levels without cell toxicity stimulated cPLA 2 α mRNA and its protein expression. The expression was mediated by extracellular-signal-regulated kinase (ERK1/2), one of the mitogen-activated protein kinases. Treatment with N G nitro-L-arginine methyl ester (an inhibitor of nitric oxide synthase, 1 mM) and oxy-hemoglobin (a scavenger of nitric oxide, 2 mg/mL) abolished the DDC-induced responses (ERK1/2 phosphorylation and cPLA 2 α expression). We also showed DDC-induced up-regulation of the mRNA expression of lipocortin 1, an inhibitor of PLA 2 . Furthermore, DDC treatment of the cells enhanced Ca 2+ -ionophore-induced AA release in 30 min, although the effect was limited. Changes in AA metabolism in DDC-treated cells may have a potential role in mediating neurotoxic actions of disulfiram. In this study, we show the first to demonstrate the up-regulation of cPLA 2 α expression by DDC treatment in neuronal cells

  7. Beneficial Effects of Ethanolic and Hexanic Rice Bran Extract on Mitochondrial Function in PC12 Cells and the Search for Bioactive Components

    Directory of Open Access Journals (Sweden)

    Stephanie Hagl

    2015-09-01

    Full Text Available Mitochondria are involved in the aging processes that ultimately lead to neurodegeneration and the development of Alzheimer’s disease (AD. A healthy lifestyle, including a diet rich in antioxidants and polyphenols, represents one strategy to protect the brain and to prevent neurodegeneration. We recently reported that a stabilized hexanic rice bran extract (RBE rich in vitamin E and polyphenols (but unsuitable for human consumption has beneficial effects on mitochondrial function in vitro and in vivo (doi:10.1016/j.phrs.2013.06.008, 10.3233/JAD-132084. To enable the use of RBE as food additive, a stabilized ethanolic extract has been produced. Here, we compare the vitamin E profiles of both extracts and their effects on mitochondrial function (ATP concentrations, mitochondrial membrane potential, mitochondrial respiration and mitochondrial biogenesis in PC12 cells. We found that vitamin E contents and the effects of both RBE on mitochondrial function were similar. Furthermore, we aimed to identify components responsible for the mitochondria-protective effects of RBE, but could not achieve a conclusive result. α-Tocotrienol and possibly also γ-tocotrienol, α-tocopherol and δ-tocopherol might be involved, but hitherto unknown components of RBE or a synergistic effect of various components might also play a role in mediating RBE’s beneficial effects on mitochondrial function.

  8. Potentiation of nerve growth factor-induced neurite outgrowth in PC12 cells by ifenprodil: the role of sigma-1 and IP3 receptors.

    Directory of Open Access Journals (Sweden)

    Tamaki Ishima

    Full Text Available In addition to both the α1 adrenergic receptor and N-methyl-D-aspartate (NMDA receptor antagonists, ifenprodil binds to the sigma receptor subtypes 1 and 2. In this study, we examined the effects of ifenprodil on nerve growth factor (NGF-induced neurite outgrowth in PC12 cells. Ifenprodil significantly potentiated NGF-induced neurite outgrowth, in a concentration-dependent manner. In contrast, the α1 adrenergic receptor antagonist, prazosin and the NMDA receptor NR2B antagonist, Ro 25-6981 did not alter NGF-induced neurite outgrowth. Potentiation of NGF-induced neurite outgrowth mediated by ifenprodil was significantly antagonized by co-administration of the selective sigma-1 receptor antagonist, NE-100, but not the sigma-2 receptor antagonist, SM-21. Similarly, ifenprodil enhanced NGF-induced neurite outgrowth was again significantly reduced by the inositol 1,4,5-triphosphate (IP(3 receptor antagonists, xestospongin C and 2-aminoethoxydiphenyl borate (2-APB treatment. Furthermore, BAPTA-AM, a chelator of intracellular Ca(2+, blocked the effects of ifenprodil on NGF-induced neurite outgrowth, indicating the role of intracellular Ca(2+ in the neurite outgrowth. These findings suggest that activation at sigma-1 receptors and subsequent interaction with IP(3 receptors may mediate the pharmacological effects of ifenprodil on neurite outgrowth.

  9. Onjisaponin B derived from Radix Polygalae enhances autophagy and accelerates the degradation of mutant α-synuclein and huntingtin in PC-12 cells.

    Science.gov (United States)

    Wu, An-Guo; Wong, Vincent Kam-Wai; Xu, Su-Wei; Chan, Wai-Kit; Ng, Choi-In; Liu, Liang; Law, Betty Yuen-Kwan

    2013-11-15

    Emerging evidence indicates important protective roles being played by autophagy in neurodegenerative disorders through clearance of aggregate-prone or mutant proteins. In the current study, we aimed to identify autophagy inducers from Chinese medicinal herbs as a potential neuroprotective agent that enhances the clearance of mutant huntingtin and α-synuclein in PC-12 cells. Through intensive screening using the green fluorescent protein-light chain 3 (GFP-LC3) autophagy detection platform, we found that the ethanol extracts of Radix Polygalae (Yuan Zhi) were capable of inducing autophagy. Further investigation showed that among three single components derived from Radix Polygalae--i.e., polygalacic acid, senegenin and onjisaponin B--onjisaponin B was able to induce autophagy and accelerate both the removal of mutant huntingtin and A53T α-synuclein, which are highly associated with Huntington disease and Parkinson disease, respectively. Our study further demonstrated that onjisaponin B induces autophagy via the AMPK-mTOR signaling pathway. Therefore, findings in the current study provide detailed insights into the protective mechanism of a novel autophagy inducer, which is valuable for further investigation as a new candidate agent for modulating neurodegenerative disorders through the reduction of toxicity and clearance of mutant proteins in the cellular level.

  10. Simultaneous determination of amino acid and monoamine neurotransmitters in PC12 cells and rats models of Parkinson's disease using a sensitizing derivatization reagent by UHPLC-MS/MS.

    Science.gov (United States)

    Zhao, Xian-En; Zhu, Shuyun; Yang, Hongmei; You, Jinmao; Song, Fengrui; Liu, Zhiqiang; Liu, Shuying

    2015-07-15

    Multi-analytes simultaneous monitoring of amino acid and monoamine neurotransmitters (NTs) has important scientific significance for their related pathology, physiology and drug screening. In this work, in virtue of a mass spectrometry sensitizing reagent 10-ethyl-acridone-3-sulfonyl chloride (EASC) as derivatization reagent, an Ultra High Performance Liquid Chromatography-Tandem Mass Spectrometry (UHPLC-MS/MS) method was developed and validated for simultaneous determination of six amino acid NTs, two monoamine ones and its one metabolite. The simple and rapid derivatization reaction was innovatively combined with plasma preparation by using EASC acetonitrile solution as protein precipitant. This interesting combination brought the advantages of speediness, simpleness and high-throughput in a cost-effective way. Under the optimized conditions, LODs (0.004-3.80nM) and LOQs (0.014-13.3nM) of EASC derivatized-NTs were calculated and found to be significantly lower than those of direct UHPLC-MS/MS detection about 11.5-275.0 and 14.4-371.4 times, respectively. Moreover, EASC derivatization significantly improved chromatographic resolution and matrix effect when compared with direct UPLC-MS/MS detection method without derivatization. Meanwhile, it also brought acceptable precision (3.0-13.0%, peak area CVs%), accuracy (86.4-112.9%), recovery (88.3-107.8%) and stability (3.8-8.5%, peak area CVs%) results. This method was successfully applied for the antiparkinsonian effect evaluation of levodopa and Ginsenoside Rg1 using PC12 cells and rats models by measuring multiple NTs. This provided a new method for the NTs related studies in the future. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Lithium protects against methamphetamine-induced neurotoxicity in PC12 cells via Akt/GSK3β/mTOR pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jintao; Zhu, Dexiao; Zhang, Jing; Li, Guibao [Department of Anatomy, School of Medicine, Shandong University, Jinan, Shandong, 250012 (China); Liu, Zengxun [Department of Psychiatry, School of Medicine, Shandong University, Jinan, Shandong, 250012 China (China); Sun, Jinhao, E-mail: sunjinhao@gmail.com [Department of Anatomy, School of Medicine, Shandong University, Jinan, Shandong, 250012 (China)

    2015-09-25

    Methamphetamine (MA) is neurotoxic, especially in dopaminergic neurons. Long-lasting exposure to MA causes psychosis and increases the risk of Parkinson's disease. Lithium (Li) is a known mood stabilizer and has neuroprotective effects. Previous studies suggest that MA exposure decreases the phosphorylation of Akt/GSK3β pathway in vivo, whereas Li facilitates the phosphorylation of Akt/GSK3β pathway. Moreover, GSK3β and mTOR are implicated in the locomotor sensitization induced by psychostimulants and mTOR plays a critical role in MA induced toxicity. However, the effect of MA on Akt/GSK3β/mTOR pathway has not been fully investigated in vitro. Here, we found that MA exposure significantly dephosphorylated Akt/GSK3β/mTOR pathway in PC12 cells. In addition, Li remarkably attenuated the dephosphorylation effect of MA exposure on Akt/GSK3β/mTOR pathway. Furthermore, Li showed obvious protective effects against MA toxicity and LY294002 (Akt inhibitor) suppressed the protective effects of Li. Together, MA exposure dephosphorylates Akt/GSK3β/mTOR pathway in vitro, while lithium protects against MA-induced neurotoxicity via phosphorylation of Akt/GSK3β/mTOR pathway. - Highlights: • Lithium protects against methamphetamine-induced neurotoxicity in vitro. • Methamphetamine exposure dephosphorylates Akt/GSK3β/mTOR pathway. • Lithium attenuates methamphetamine-induced toxicity via phosphorylating Akt/GSK3β/mTOR pathway.

  12. Lithium protects against methamphetamine-induced neurotoxicity in PC12 cells via Akt/GSK3β/mTOR pathway

    International Nuclear Information System (INIS)

    Wu, Jintao; Zhu, Dexiao; Zhang, Jing; Li, Guibao; Liu, Zengxun; Sun, Jinhao

    2015-01-01

    Methamphetamine (MA) is neurotoxic, especially in dopaminergic neurons. Long-lasting exposure to MA causes psychosis and increases the risk of Parkinson's disease. Lithium (Li) is a known mood stabilizer and has neuroprotective effects. Previous studies suggest that MA exposure decreases the phosphorylation of Akt/GSK3β pathway in vivo, whereas Li facilitates the phosphorylation of Akt/GSK3β pathway. Moreover, GSK3β and mTOR are implicated in the locomotor sensitization induced by psychostimulants and mTOR plays a critical role in MA induced toxicity. However, the effect of MA on Akt/GSK3β/mTOR pathway has not been fully investigated in vitro. Here, we found that MA exposure significantly dephosphorylated Akt/GSK3β/mTOR pathway in PC12 cells. In addition, Li remarkably attenuated the dephosphorylation effect of MA exposure on Akt/GSK3β/mTOR pathway. Furthermore, Li showed obvious protective effects against MA toxicity and LY294002 (Akt inhibitor) suppressed the protective effects of Li. Together, MA exposure dephosphorylates Akt/GSK3β/mTOR pathway in vitro, while lithium protects against MA-induced neurotoxicity via phosphorylation of Akt/GSK3β/mTOR pathway. - Highlights: • Lithium protects against methamphetamine-induced neurotoxicity in vitro. • Methamphetamine exposure dephosphorylates Akt/GSK3β/mTOR pathway. • Lithium attenuates methamphetamine-induced toxicity via phosphorylating Akt/GSK3β/mTOR pathway

  13. Phosphomimetic mutation of cysteine string protein-α increases the rate of regulated exocytosis by modulating fusion pore dynamics in PC12 cells.

    Directory of Open Access Journals (Sweden)

    Ning Chiang

    Full Text Available BACKGROUND: Cysteine string protein-α (CSPα is a chaperone to ensure protein folding. Loss of CSPα function associates with many neurological diseases. However, its function in modulating regulated exocytosis remains elusive. Although cspα-knockouts exhibit impaired synaptic transmission, overexpression of CSPα in neuroendocrine cells inhibits secretion. These seemingly conflicting results lead to a hypothesis that CSPα may undergo a modification that switches its function in regulating neurotransmitter and hormone secretion. Previous studies implied that CSPα undergoes phosphorylation at Ser10 that may influence exocytosis by altering fusion pore dynamics. However, direct evidence is missing up to date. METHODOLOGY/PRINCIPAL FINDINGS: Using amperometry, we investigated how phosphorylation at Ser10 of CSPα (CSPα-Ser10 modulates regulated exocytosis and if this modulation involves regulating a specific kinetic step of fusion pore dynamics. The real-time exocytosis of single vesicles was detected in PC12 cells overexpressing control vector, wild-type CSPα (WT, the CSPα phosphodeficient mutant (S10A, or the CSPα phosphomimetic mutants (S10D and S10E. The shapes of amperometric signals were used to distinguish the full-fusion events (i.e., prespike feet followed by spikes and the kiss-and-run events (i.e., square-shaped flickers. We found that the secretion rate was significantly increased in cells overexpressing S10D or S10E compared to WT or S10A. Further analysis showed that overexpression of S10D or S10E prolonged fusion pore lifetime compared to WT or S10A. The fraction of kiss-and-run events was significantly lower but the frequency of full-fusion events was higher in cells overexpressing S10D or S10E compared to WT or S10A. Advanced kinetic analysis suggests that overexpression of S10D or S10E may stabilize open fusion pores mainly by inhibiting them from closing. CONCLUSIONS/SIGNIFICANCE: CSPα may modulate fusion pore dynamics

  14. Influence of Magnesium Alloy Degradation on Undifferentiated Human Cells.

    Science.gov (United States)

    Cecchinato, Francesca; Agha, Nezha Ahmad; Martinez-Sanchez, Adela Helvia; Luthringer, Berengere Julie Christine; Feyerabend, Frank; Jimbo, Ryo; Willumeit-Römer, Regine; Wennerberg, Ann

    2015-01-01

    Magnesium alloys are of particular interest in medical science since they provide compatible mechanical properties with those of the cortical bone and, depending on the alloying elements, they have the capability to tailor the degradation rate in physiological conditions, providing alternative bioresorbable materials for bone applications. The present study investigates the in vitro short-term response of human undifferentiated cells on three magnesium alloys and high-purity magnesium (Mg). The degradation parameters of magnesium-silver (Mg2Ag), magnesium-gadolinium (Mg10Gd) and magnesium-rare-earth (Mg4Y3RE) alloys were analysed after 1, 2, and 3 days of incubation in cell culture medium under cell culture condition. Changes in cell viability and cell adhesion were evaluated by culturing human umbilical cord perivascular cells on corroded Mg materials to examine how the degradation influences the cellular development. The pH and osmolality of the medium increased with increasing degradation rate and it was found to be most pronounced for Mg4Y3RE alloy. The biological observations showed that HUCPV exhibited a more homogeneous cell growth on Mg alloys compared to high-purity Mg, where they showed a clustered morphology. Moreover, cells exhibited a slightly higher density on Mg2Ag and Mg10Gd in comparison to Mg4Y3RE, due to the lower alkalinisation and osmolality of the incubation medium. However, cells grown on Mg10Gd and Mg4Y3RE generated more developed and healthy cellular structures that allowed them to better adhere to the surface. This can be attributable to a more stable and homogeneous degradation of the outer surface with respect to the incubation time.

  15. Influence of Magnesium Alloy Degradation on Undifferentiated Human Cells.

    Directory of Open Access Journals (Sweden)

    Francesca Cecchinato

    Full Text Available Magnesium alloys are of particular interest in medical science since they provide compatible mechanical properties with those of the cortical bone and, depending on the alloying elements, they have the capability to tailor the degradation rate in physiological conditions, providing alternative bioresorbable materials for bone applications. The present study investigates the in vitro short-term response of human undifferentiated cells on three magnesium alloys and high-purity magnesium (Mg.The degradation parameters of magnesium-silver (Mg2Ag, magnesium-gadolinium (Mg10Gd and magnesium-rare-earth (Mg4Y3RE alloys were analysed after 1, 2, and 3 days of incubation in cell culture medium under cell culture condition. Changes in cell viability and cell adhesion were evaluated by culturing human umbilical cord perivascular cells on corroded Mg materials to examine how the degradation influences the cellular development.The pH and osmolality of the medium increased with increasing degradation rate and it was found to be most pronounced for Mg4Y3RE alloy. The biological observations showed that HUCPV exhibited a more homogeneous cell growth on Mg alloys compared to high-purity Mg, where they showed a clustered morphology. Moreover, cells exhibited a slightly higher density on Mg2Ag and Mg10Gd in comparison to Mg4Y3RE, due to the lower alkalinisation and osmolality of the incubation medium. However, cells grown on Mg10Gd and Mg4Y3RE generated more developed and healthy cellular structures that allowed them to better adhere to the surface. This can be attributable to a more stable and homogeneous degradation of the outer surface with respect to the incubation time.

  16. Simultaneous determination of reactive oxygen and nitrogen species in mitochondrial compartments of apoptotic HepG2 cells and PC12 cells based on microchip electrophoresis-laser-induced fluorescence.

    Science.gov (United States)

    Chen, Zhenzhen; Li, Qingling; Sun, Qianqian; Chen, Hao; Wang, Xu; Li, Na; Yin, Miao; Xie, Yanxia; Li, Hongmin; Tang, Bo

    2012-06-05

    Determination of intracellular bioactive species will afford beneficial information related to cell metabolism, signal transduction, cell function, and disease treatment. In this study, the first application of a microchip electrophoresis-laser-induced fluorescence (MCE-LIF) method for concurrent determination of reactive oxygen species (ROS) and reactive nitrogen species (RNS), i.e., superoxide (O(2)(-•)) and nitric oxide (NO) in mitochondria, was developed using fluorescent probes 2-chloro-1,3-dibenzothiazolinecyclohexene (DBZTC) and 3-amino,4-aminomethyl-2',7'-difluorescein (DAF-FM), respectively. Potential interference of intracellular dehydroascorbic acid (DHA) and ascorbic acid (AA) for NO detection with DAF-FM was eliminated through oxidation of AA with the addition of ascorbate oxidase, followed by subsequent MCE separation. Fluorescent products of O(2)(-•) and NO, DBZTC oxide (DBO), and DAF-FM triazole (DAF-FMT) showed excellent baseline separation within 1 min with a running buffer of 40 mM Tris solution (pH 7.4) and a separating electric field of 500 V/cm. The levels of DBO and DAF-FMT in mitochondria isolated from normal HepG2 cells and PC12 cells were evaluated using this method. Furthermore, the changes of DBO and DAF-FMT levels in mitochondria isolated from apoptotic HepG2 cells and PC12 cells could also be detected. The current approach was proved to be simple, fast, reproducible, and efficient. Measurement of the two species with the method will be beneficial to understand ROS/RNS distinctive functions. In addition, it will provide new insights into the role that both species play in biological systems.

  17. Proteomic characterization of an isolated fraction of synthetic proteasome inhibitor (PSI-induced inclusions in PC12 cells might offer clues to aggresomes as a cellular defensive response against proteasome inhibition by PSI

    Directory of Open Access Journals (Sweden)

    Li Xing'an

    2010-08-01

    Full Text Available Abstract Background Cooperation of constituents of the ubiquitin proteasome system (UPS with chaperone proteins in degrading proteins mediate a wide range of cellular processes, such as synaptic function and neurotransmission, gene transcription, protein trafficking, mitochondrial function and metabolism, antioxidant defence mechanisms, and apoptotic signal transduction. It is supposed that constituents of the UPS and chaperone proteins are recruited into aggresomes where aberrant and potentially cytotoxic proteins may be sequestered in an inactive form. Results To determinate the proteomic pattern of synthetic proteasome inhibitor (PSI-induced inclusions in PC12 cells after proteasome inhibition by PSI, we analyzed a fraction of PSI-induced inclusions. A proteomic feature of the isolated fraction was characterized by identification of fifty six proteins including twenty previously reported protein components of Lewy bodies, twenty eight newly identified proteins and eight unknown proteins. These proteins, most of which were recognized as a profile of proteins within cellular processes mediated by the UPS, a profile of constituents of the UPS and a profile of chaperone proteins, are classed into at least nine accepted categories. In addition, prolyl-4-hydroxylase beta polypeptide, an endoplasmic reticulum member of the protein disulfide isomerase family, was validated in the developmental process of PSI-induced inclusions in the cells. Conclusions It is speculated that proteomic characterization of an isolated fraction of PSI-induced inclusions in PC12 cells might offer clues to appearance of aggresomes serving as a cellular defensive response against proteasome inhibition.

  18. Subcellular localization of SV2 and other secretory vesicle components in PC12 cells by an efficient method of preembedding EM immunocytochemistry for cell cultures

    DEFF Research Database (Denmark)

    Tanner, V A; Ploug, Thorkil; Tao-Cheng, J H

    1996-01-01

    substantially improved the efficiency of the preembedding EM ICC procedures for cell cultures. The advantages and related caveats of this method are discussed. SV2 was distinctly localized on dusters of synaptic vesicles and large dense-cored vesicles (LDCV). The distribution of SV2 on these two types...... of secretory vesicles was compared quantitatively to that of another secretory vesicle-associated transmembrane protein, synaptophysin. In cultures under similar experimental conditions, the ratio of SV2 vs synaptophysin ICC staining on synaptic vesicle dusters was about 1:1, whereas it was about 9:1 on LDCV...

  19. Undifferentiated Embryonic Cell Transcription Factor 1 Regulates ESC Chromatin Organization and Gene Expression

    NARCIS (Netherlands)

    Kooistra, Susanne M.; van den Boom, Vincent; Thummer, Rajkumar P.; Johannes, Frank; Wardenaar, Rene; Tesson, Bruno M.; Veenhoff, Liesbeth M.; Fusetti, Fabrizia; O'Neill, Laura P.; Turner, Bryan M.; de Haan, Gerald; Eggen, Bart J. L.; O’Neill, Laura P.

    2010-01-01

    Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES

  20. Acrylamide-induced oxidative stress and inflammatory response are alleviated by N-acetylcysteine in PC12 cells: Involvement of the crosstalk between Nrf2 and NF-κB pathways regulated by MAPKs.

    Science.gov (United States)

    Pan, Xiaoqi; Wu, Xu; Yan, Dandan; Peng, Cheng; Rao, Chaolong; Yan, Hong

    2018-05-15

    Acrylamide (ACR) is a classic neurotoxin in animals and humans. However, the mechanism underlying ACR neurotoxicity remains controversial, and effective prevention and treatment measures against this condition are scarce. This study focused on clarifying the crosstalk between the involved signaling pathways in ACR-induced oxidative stress and inflammatory response and investigating the protective effect of antioxidant N-acetylcysteine (NAC) against ACR in PC12 cells. Results revealed that ACR exposure led to oxidative stress characterized by significant increase in reactive oxygen species (ROS) and malondialdehyde (MDA) levels and glutathione (GSH) consumption. Inflammatory response was observed based on the dose-dependently increased levels of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6). NAC attenuated ACR-induced enhancement of MDA and ROS levels and TNF-α generation. In addition, ACR activated nuclear transcription factor E2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB) signaling pathways. Knockdown of Nrf2 by siRNA significantly blocked the increased NF-κB p65 protein expression in ACR-treated PC12 cells. Down-regulation of NF-κB by specific inhibitor BAY11-7082 similarly reduced ACR-induced increase in Nrf2 protein expression. NAC treatment increased Nrf2 expression and suppressed NF-κB p65 expression to ameliorate oxidative stress and inflammatory response caused by ACR. Further results showed that mitogen-activated protein kinases (MAPKs) pathway was activated prior to the activation of Nrf2 and NF-κB pathways. Inhibition of MAPKs blocked Nrf2 and NF-κB pathways. Collectively, ACR activated Nrf2 and NF-κB pathways which were regulated by MAPKs. A crosstalk between Nrf2 and NF-κB pathways existed in ACR-induced cell damage. NAC protected against oxidative damage and inflammatory response induced by ACR by activating Nrf2 and inhibiting NF-κB pathways in PC12 cells. Copyright © 2018 Elsevier B

  1. Establishment and characterization of a human uterine endometrial undifferentiated carcinoma cell line, TMG-L.

    Science.gov (United States)

    Hasegawa, Kiyoshi; Suzuki, Machiko; Ishikawa, Kunimi; Yasue, Akira; Kato, Rina; Nakamura, Azumi; Kuroki, Jun; Udagawa, Yasuhiro

    2003-03-01

    A new cell line of human uterine endometrial undifferentiated carcinoma, designated as TMG-L, was established from the metastatic lymph node of 56-year-old patient TMG-L cells have been cultured with Ham's F-12 medium supplemented with 10% FCS and grew as a loosely adherent monolayer with polygonal or spindle-shaped cells exhibiting poor cell-cell contact and piled up against each other, showing a tendency to grow as floating cells. The doubling time of this cell line was about 48 hours, and chromosomal analysis revealed aneuploidy at passage 25. The cells formed tumors in SCID mouse, the histology of which was similar to that of undifferentiated carcinoma component of primary tumor. TMG-L cells showed the loss of expression and membranous localization of either E-cadherin or alpha-catenin, implied corresponding loss of their adhesive function. And this dysfunction implicated the biological aggressive behavior of uterine endometrial undifferentiated carcinoma. This cell line appears to provide a useful system for studying uterine undifferentiated carcinoma in vivo and in vitro.

  2. Blood-brain barrier permeability and neuroprotective effects of three main alkaloids from the fruits of Euodia rutaecarpa with MDCK-pHaMDR cell monolayer and PC12 cell line.

    Science.gov (United States)

    Zhang, Yi-Nan; Yang, Yan-Fang; Yang, Xiu-Wei

    2018-02-01

    The fruits of Euodia rutaecarpa (Euodiae Fructus, EF), the widely used traditional Chinese medicine, have various central nervous system effects. Alkaloids following as evodiamine (EDM), rutaecarpine (RCP) and dehydroevodiamine (DEDM) are the major substances in EF. The MDCK-pHaMDR cell monolayer model was utilized as a blood-brain barrier (BBB) surrogate model to study their BBB permeability. The transport samples were analyzed by high performance liquid chromatography and the apparent permeability coefficients (P app ) were calculated. EDM and RCP showed high permeability through BBB by passive diffusion, while DEDM showed moderate permeability with efflux mechanism related to P-glycoprotein (P-gp). EDM and RCP could also reduce the efflux of DEDM probably by inhibiting P-gp. The neuroprotective effects of the three alkaloids were then studied on the PC12 cell line injured by 1-methyl-4-phenylpyridinium ion (MPP + ) or hydrogen peroxide (H 2 O 2 ). EDM could significantly reduce MPP + or H 2 O 2 -induced cell injury dose-dependently. RCP could increase the cell viability in MPP + treated group while DEDM showed a protective effect against H 2 O 2 injury. This study predicted the permeability of EDM, RCP and DEDM through BBB and discovered the neuroprotective substance basis of EF as a potential encephalopathy drug. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Spermatogonial multiplication in the Chinese hamster. II. Cell cycle properties of undifferentiated spermatogonia

    NARCIS (Netherlands)

    Lok, D.; Jansen, M. T.; de rooij, D. G.

    1983-01-01

    The cell cycle properties of undifferentiated spermatogonia in the Chinese hamster were analysed by the fraction of labelled mitoses technique (FLM) in whole mounted seminiferous tubules. The minimum cell cycle time (Tc) was found to be c. 90 hr for the As and 87 hr for the Apr and Aal

  4. Undifferentiated pleomorphic sarcoma with osteoclast-like giant cells of the female breast

    Directory of Open Access Journals (Sweden)

    Balbi Giancarlo

    2013-01-01

    Full Text Available Abstract The authors describe a case of undifferentiated pleomorphic sarcoma of the breast occurring in a 50-year-old woman who presented with a palpable mass in her right breast. She first noticed the mass one month previously. Core needle biopsy showed connective tissue including epithelioid and spindle cells. The patient underwent total mastectomy without axillary lymph node dissection. Based on examination of the excised tumor, the initial pathologic diagnosis was atypical spindle-shaped and ovoid cells with uncertain malignant potential. Histological findings with immunomarkers led to the final diagnosis of undifferentiated pleomorphic sarcoma. This case highlights a rare and interesting variant of primary breast sarcoma and the important role of immunohistochemistry in defining histological type and differential diagnosis. Hence, undifferentiated pleomorphic sarcoma has been a diagnosis of exclusion performed through sampling and critical use of ancillary diagnostic techniques.

  5. Plasma membrane Ca2+-ATPase isoforms composition regulates cellular pH homeostasis in differentiating PC12 cells in a manner dependent on cytosolic Ca2+ elevations

    DEFF Research Database (Denmark)

    Boczek, Tomasz; Lisek, Malwina; Ferenc, Bozena

    2014-01-01

    isoforms (PMCA1-4) but only PMCA2 and PMCA3, due to their unique localization and features, perform more specialized function. Using differentiated PC12 cells we assessed the role of PMCA2 and PMCA3 in the regulation of intracellular pH in steady-state conditions and during Ca2+ overload evoked by 59 m....... In steady-state conditions, higher TMRE uptake in PMCA2-knockdown line was driven by plasma membrane potential (Ψp). Nonetheless, mitochondrial membrane potential (Ψm) in this line was dissipated during Ca2+ overload. Cyclosporin and bongkrekic acid prevented Ψm loss suggesting the involvement of Ca2......+-driven opening of mitochondrial permeability transition pore as putative underlying mechanism. The findings presented here demonstrate a crucial role of PMCA2 and PMCA3 in regulation of cellular pH and indicate PMCA membrane composition important for preservation of electrochemical gradient...

  6. Possibility of Undifferentiated Human Thigh Adipose Stem Cells Differentiating into Functional Hepatocytes

    Directory of Open Access Journals (Sweden)

    Jong Hoon Lee

    2012-11-01

    Full Text Available BackgroundThis study aimed to investigate the possibility of isolating mesenchymal stem cells (MSCs from human thigh adipose tissue and the ability of human thigh adipose stem cells (HTASCs to differentiate into hepatocytes.MethodsThe adipose-derived stem cells (ADSCs were isolated from thigh adipose tissue. Growth factors, cytokines, and hormones were added to the collagen coated dishes to induce the undifferentiated HTASCs to differentiate into hepatocyte-like cells. To confirm the experimental results, the expression of hepatocyte-specific markers on undifferentiated and differentiated HTASCs was analyzed using reverse transcription polymerase chain reaction and immunocytochemical staining. Differentiation efficiency was evaluated using functional tests such as periodic acid schiff (PAS staining and detection of the albumin secretion level using enzyme-linked immunosorbent assay (ELISA.ResultsThe majority of the undifferentiated HTASCs were changed into a more polygonal shape showing tight interactions between the cells. The differentiated HTASCs up-regulated mRNA of hepatocyte markers. Immunocytochemical analysis showed that they were intensely stained with anti-albumin antibody compared with undifferentiated HTASCs. PAS staining showed that HTASCs submitted to the hepatocyte differentiation protocol were able to more specifically store glycogen than undifferentiated HTASCs, displaying a purple color in the cytoplasm of the differentiated HTASCs. ELISA analyses showed that differentiated HTASCs could secrete albumin, which is one of the hepatocyte markers.ConclusionsMSCs were islolated from human thigh adipose tissue differentiate to heapatocytes. The source of ADSCs is not only abundant abdominal adipose tissue, but also thigh adipose tissue for cell therapy in liver regeneration and tissue regeneration.

  7. Design and fabrication of a microplatform for the proximity effect study of localized ELF-EMF on the growth of in vitro HeLa and PC-12 cells

    International Nuclear Information System (INIS)

    Chen, Y C; Chen, C C; Cheng, Y T; Tu, W; Tseng, F G

    2010-01-01

    This paper presents a platform technology with experimental results that show the scientists and biologists a way to rapidly investigate and analyze the biological effects of localized extremely low frequency (ELF) electromagnetic field (EMF) on living cells. The proximity effect of the localized ELF-EMF on living cells is revealed using the bio-compatible microplatform on which an on-glass inductive coil array, the source of the localized ELF-EMF in micro scale, is designed, fabricated and operated with a field strength of 1.2 ± 0.1 mT at 60 Hz for cell culturing study. After a 72 h ELF-EMF exposure, HeLa (human cervical cancer) and PC-12 (rat pheochromocytoma) cells exhibit about 18.4% and 12.9% cell proliferation rate reduction, respectively. Furthermore, according to the presented dynamic model, the reduction of the proliferation can be attributed to the interference of signal transduction processes due to the tangential currents induced around the cells

  8. MiR-203 involves in neuropathic pain development and represses Rap1a expression in nerve growth factor differentiated neuronal PC12 cells.

    Science.gov (United States)

    Li, Haixia; Huang, Yuguang; Ma, Chao; Yu, Xuerong; Zhang, Zhiyong; Shen, Le

    2015-01-01

    Although microRNAs (miRNAs) have been shown to play a role in numerous biological processes, their function in neuropathic pain is not clear. The rat bilateral sciatic nerve chronic constriction injury (bCCI) is an established model of neuropathic pain, so we examined miRNA expression and function in the spinal dorsal horn in bCCI rats. Microarray and real-time polymerase chain reaction were used to examine the expression of miRNA in nerve system of bCCI rats, and the targets of miRNA were predicted by bioinformatic approaches. The function of specific miRNA was estimated through the methods of gene engineering. This study revealed substantially (∼10-fold) decreased miR-203 expression in the spinal dorsal horns but not the dorsal root ganglions, hippocampus, or anterior cingulate cortexes of bCCI rats. Rap1a protein expression was upregulated in bCCI rat spinal dorsal horns. We further verified that miR-203 directly targeted the 3'-untranslated region of the rap1a gene, thereby decreasing rap1a protein expression in neuron-like cells. Rap1a has diverse neuronal functions and their perturbation is responsible for several mental disorders. For example, Rap1a/MEK/ERK is involved in peripheral sensitization. These data suggest a potential role for miR-203 in regulating neuropathic pain development, and Rap1a is a validated target gene in vitro. Results from our study and others indicate the possibility that Rap1a may be involved in pain. We hope that these results can provide support for future research into miR-203 in gene therapy for neuropathic pain.

  9. Trisomy 4 in a case of acute undifferentiated myeloblastic leukemia with hand-mirror cells.

    Science.gov (United States)

    Kao, Y S; McCormick, C; Vial, R

    1990-04-01

    A case of acute undifferentiated myelocytic leukemic with trisomy 4 is described. The patient is a 61-year-old woman who developed leukemia 4 1/2 years after receiving radiation therapy for uterine carcinoma. Many leukemic cells exhibited hand-mirror configuration after the bone marrow aspirate was left at room temperature overnight. The relationship between trisomy 4 and hand-mirror cells in acute myelocytic leukemia is unknown.

  10. Neuroprotective effects of Arctium lappa L. roots against glutamate-induced oxidative stress by inhibiting phosphorylation of p38, JNK and ERK 1/2 MAPKs in PC12 cells.

    Science.gov (United States)

    Tian, Xing; Sui, Shuang; Huang, Jin; Bai, Jun-Peng; Ren, Tian-Shu; Zhao, Qing-Chun

    2014-07-01

    Many studies have shown that glutamate-induced oxidative stress can lead to neuronal cell death involved in the development of neurodegenerative diseases. In this work, protective effects of ethyl acetate extract (EAE) of Arctium lappa L. roots against glutamate-induced oxidative stress in PC12 cells were evaluated. Also, the effects of EAE on antioxidant system, mitochondrial pathway, and signal transduction pathway were explored. Pretreatment with EAE significantly increased cell viability, activities of GSH-Px and SOD, mitochondrial membrane potential and reduced LDH leakage, ROS formation, and nuclear condensation in a dose-dependent manner. Furthermore, western blot results revealed that EAE increased the Bcl-2/Bax ratio, and inhibited the up-regulation of caspase-3, release of cytochrome c, phosphorylation of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase 1/2 (ERK 1/2). Therefore, our results indicate that EAE may be a promising neuroprotective agent for the prevention and treatment of neurodegenerative diseases implicated with oxidative stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. The neuroprotection of cannabidiol against MPP⁺-induced toxicity in PC12 cells involves trkA receptors, upregulation of axonal and synaptic proteins, neuritogenesis, and might be relevant to Parkinson's disease.

    Science.gov (United States)

    Santos, Neife Aparecida Guinaim; Martins, Nádia Maria; Sisti, Flávia Malvestio; Fernandes, Laís Silva; Ferreira, Rafaela Scalco; Queiroz, Regina Helena Costa; Santos, Antônio Cardozo

    2015-12-25

    Cannabidiol (CBD) is a non-psychoactive constituent of Cannabis sativa with potential to treat neurodegenerative diseases. Its neuroprotection has been mainly associated with anti-inflammatory and antioxidant events; however, other mechanisms might be involved. We investigated the involvement of neuritogenesis, NGF receptors (trkA), NGF, and neuronal proteins in the mechanism of neuroprotection of CBD against MPP(+) toxicity in PC12 cells. CBD increased cell viability, differentiation, and the expression of axonal (GAP-43) and synaptic (synaptophysin and synapsin I) proteins. Its neuritogenic effect was not dependent or additive to NGF, but it was inhibited by K252a (trkA inhibitor). CBD did not increase the expression of NGF, but protected against its decrease induced by MPP(+), probably by an indirect mechanism. We also evaluated the neuritogenesis in SH-SY5Y cells, which do not express trkA receptors. CBD did not induce neuritogenesis in this cellular model, which supports the involvement of trkA receptors. This is the first study to report the involvement of neuronal proteins and trkA in the neuroprotection of CBD. Our findings suggest that CBD has a neurorestorative potential independent of NGF that might contribute to its neuroprotection against MPP(+), a neurotoxin relevant to Parkinson's disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Protosappanin B protects PC12 cells against oxygen-glucose deprivation-induced neuronal death by maintaining mitochondrial homeostasis via induction of ubiquitin-dependent p53 protein degradation.

    Science.gov (United States)

    Zeng, Ke-Wu; Liao, Li-Xi; Zhao, Ming-Bo; Song, Fang-Jiao; Yu, Qian; Jiang, Yong; Tu, Peng-Fei

    2015-03-15

    Protosappanin B (PTB) is a bioactive dibenzoxocin derivative isolated from Caesalpinia sappan L. Here, we investigated the neuroprotective effects and the potential mechanisms of PTB on oxygen-glucose deprivation (OGD)-injured PC12 cells. Results showed that PTB significantly increased cell viability, inhibited cell apoptosis and up-regulated the expression of growth-associated protein 43 (a marker of neural outgrowth). Moreover, our study revealed that PTB effectively maintained mitochondrial homeostasis by up-regulation of mitochondrial membrane potential (MMP), inhibition of cytochrome c release from mitochondria and inactivation of mitochondrial caspase-9/3 apoptosis pathway. Further study showed that PTB significantly promoted cytoplasmic component degradation of p53 protein, a key negative regulator for mitochondrial function, resulting in a release of Bcl-2 from p53-Bcl-2 complex and an enhancing translocation of Bcl-2 to mitochondrial outer membrane. Finally, we found the degradation of p53 protein was induced by PTB via activation of a MDM2-dependent ubiquitination process. Taken together, our findings provided a new viewpoint of neuronal protection strategy for anoxia and ischemic injury with natural small molecular dibenzoxocin derivative by activating ubiquitin-dependent p53 protein degradation as well as increasing mitochondrial function. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. FMR1 epigenetic silencing commonly occurs in undifferentiated fragile X-affected embryonic stem cells.

    Science.gov (United States)

    Avitzour, Michal; Mor-Shaked, Hagar; Yanovsky-Dagan, Shira; Aharoni, Shira; Altarescu, Gheona; Renbaum, Paul; Eldar-Geva, Talia; Schonberger, Oshrat; Levy-Lahad, Ephrat; Epsztejn-Litman, Silvina; Eiges, Rachel

    2014-11-11

    Fragile X syndrome (FXS) is the most common heritable form of cognitive impairment. It results from epigenetic silencing of the X-linked FMR1 gene by a CGG expansion in its 5'-untranslated region. Taking advantage of a large set of FXS-affected human embryonic stem cell (HESC) lines and isogenic subclones derived from them, we show that FMR1 hypermethylation commonly occurs in the undifferentiated state (six of nine lines, ranging from 24% to 65%). In addition, we demonstrate that hypermethylation is tightly linked with FMR1 transcriptional inactivation in undifferentiated cells, coincides with loss of H3K4me2 and gain of H3K9me3, and is unrelated to CTCF binding. Taken together, these results demonstrate that FMR1 epigenetic gene silencing takes place in FXS HESCs and clearly highlights the importance of examining multiple cell lines when investigating FXS and most likely other epigenetically regulated diseases.

  14. FMR1 Epigenetic Silencing Commonly Occurs in Undifferentiated Fragile X-Affected Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Michal Avitzour

    2014-11-01

    Full Text Available Fragile X syndrome (FXS is the most common heritable form of cognitive impairment. It results from epigenetic silencing of the X-linked FMR1 gene by a CGG expansion in its 5′-untranslated region. Taking advantage of a large set of FXS-affected human embryonic stem cell (HESC lines and isogenic subclones derived from them, we show that FMR1 hypermethylation commonly occurs in the undifferentiated state (six of nine lines, ranging from 24% to 65%. In addition, we demonstrate that hypermethylation is tightly linked with FMR1 transcriptional inactivation in undifferentiated cells, coincides with loss of H3K4me2 and gain of H3K9me3, and is unrelated to CTCF binding. Taken together, these results demonstrate that FMR1 epigenetic gene silencing takes place in FXS HESCs and clearly highlights the importance of examining multiple cell lines when investigating FXS and most likely other epigenetically regulated diseases.

  15. Identification of distinct topographical surface microstructures favoring either undifferentiated expansion or differentiation of murine embryonic stem cells.

    Science.gov (United States)

    Markert, Lotte D'Andrea; Lovmand, Jette; Foss, Morten; Lauridsen, Rune Hoff; Lovmand, Michael; Füchtbauer, Ernst-Martin; Füchtbauer, Annette; Wertz, Karin; Besenbacher, Flemming; Pedersen, Finn Skou; Duch, Mogens

    2009-11-01

    The potential of embryonic stem (ES) cells for both self-renewal and differentiation into cells of all three germ layers has generated immense interest in utilizing these cells for tissue engineering or cell-based therapies. However, the ability to culture undifferentiated ES cells without the use of feeder cells as well as means to obtain homogeneous, differentiated cell populations devoid of residual pluripotent ES cells still remain major challenges. Here we have applied murine ES cells to topographically microstructured surface libraries, BioSurface Structure Arrays (BSSA), and investigated whether these could be used to (i) identify topographically microstructured growth supports alleviating the need for feeder cells for expansion of undifferentiated ES cells and (ii) identify specific types of microstructures enforcing differentiation of ES cells. The BSSA surfaces arrays consisted of 504 different topographical microstructures each located in a tester field of 3 x 3 mm. The murine ES cell lines CJ7 and KH2 were seeded upon the BSSA libraries and specific topographical structures facilitating either undifferentiated ES cell growth or enhancing spreading indicative of differentiation of the ES cells were identified. Secondly serial passage of undifferentiated CJ7 ES cells on selected microstructures, identified in the screening of these BSSA libraries, showed that these cells had retained germ-line potential. These results indicate that one specific type of topographical surface microstructures, identified by the BSSA technology, can substitute for feeder cells and that another subset may be used to eliminate undifferentiated ES cells from a population of differentiated ES cells.

  16. Sustained levels of FGF2 maintain undifferentiated stem cell cultures with biweekly feeding.

    Directory of Open Access Journals (Sweden)

    Steven Lotz

    Full Text Available An essential aspect of stem cell culture is the successful maintenance of the undifferentiated state. Many types of stem cells are FGF2 dependent, and pluripotent stem cells are maintained by replacing FGF2-containing media daily, while tissue-specific stem cells are typically fed every 3rd day. Frequent feeding, however, results in significant variation in growth factor levels due to FGF2 instability, which limits effective maintenance due to spontaneous differentiation. We report that stabilization of FGF2 levels using controlled release PLGA microspheres improves expression of stem cell markers, increases stem cell numbers and decreases spontaneous differentiation. The controlled release FGF2 additive reduces the frequency of media changes needed to maintain stem cell cultures, so that human embryonic stem cells and induced pluripotent stem cells can be maintained successfully with biweekly feedings.

  17. Imidacloprid, a neonicotinoid insecticide, facilitates tyrosine hydroxylase transcription and phenylethanolamine N-methyltransferase mRNA expression to enhance catecholamine synthesis and its nicotine-evoked elevation in PC12D cells.

    Science.gov (United States)

    Kawahata, Ichiro; Yamakuni, Tohru

    2018-02-01

    Imidacloprid is a neonicotinoid insecticide acting as an agonist of nicotinic acetylcholine receptors (nAChRs) in the target insects. However, questions about the safety to mammals, including human have emerged. Overactivation of mammalian peripheral catecholaminergic systems leads to onset of tachycardia, hypertension, vomiting, etc., which have been observed in acutely imidacloprid-poisoned patients as well. Physiological activation of the nAChRs is known to drive catecholamine biosynthesis and secretion in mammalian adrenal chromaffin cells. Yet, the impacts of imidacloprid on the catecholaminergic function of the chromaffin cells remain to be evaluated. In this study using PC12D cells, a catecholaminergic cell line derived from the medulla chromaffin-cell tumors of rat adrenal gland, we examined whether imidacloprid itself could impact the catecholamine-synthesizing ability. Imidacloprid alone did facilitate tyrosine hydroxylase (TH) transcription via activation of α3β4 nAChR and the α7 subunit-comprising receptor. The insecticide showed the TH transcription-facilitating ability at the concentrations of 3 and 30 μM, at which acetylcholine is known to produce physiological responses, including catecholamine secretion through the nAChRs in adrenal chromaffin cells. The insecticide-facilitated TH transcription was also dependent on PKA- and RhoA-mediated signaling pathways. The insecticide coincidentally raised levels of TH and phenylethanolamine N-methyltransferase (PNMT) mRNA, and as a consequence, increased catecholamine production, although the efficacy of the neonicotinoid was lesser than that of nicotine, indicating its partial agonist-like action. Intriguingly, in cultured rat adrenal chromaffin cells, imidacloprid did increase levels of TH and PNMT protein. When the chromaffin cells were treated with nicotine in the presence of the insecticide, nicotine-elevated adrenaline production was enhanced due to facilitation of nicotine-increased TH and PNMT

  18. Undifferentiated embryonic cell transcription factor 1 regulates ESC chromatin organization and gene expression

    DEFF Research Database (Denmark)

    Kooistra, Susanne M; van den Boom, Vincent; Thummer, Rajkumar P

    2010-01-01

    Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES...... cell chromatin structure. Using chromatin immunoprecipitation-on-chip analysis, we identified >1,700 UTF1 target genes that significantly overlap with previously identified Nanog, Oct4, Klf-4, c-Myc, and Rex1 targets. Gene expression profiling showed that UTF1 knock down results in increased expression...... of a large set of genes, including a significant number of UTF1 targets. UTF1 knock down (KD) ES cells are, irrespective of the increased expression of several self-renewal genes, Leukemia inhibitory factor (LIF) dependent. However, UTF1 KD ES cells are perturbed in their differentiation in response...

  19. Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells

    International Nuclear Information System (INIS)

    Miyazaki, Takamichi; Futaki, Sugiko; Hasegawa, Kouichi; Kawasaki, Miwa; Sanzen, Noriko; Hayashi, Maria; Kawase, Eihachiro; Sekiguchi, Kiyotoshi; Nakatsuji, Norio; Suemori, Hirofumi

    2008-01-01

    Human embryonic stem cells (hESCs) are thought to be a promising cell source for cell transplantation therapy. For such a clinical application, the hESCs should be manipulated using appropriate and qualified materials. In this study, we examined the efficacy of recombinant human laminin (rhLM) isoforms on the undifferentiated growth of hESCs. We first determined the major integrins expressed on the hESCs to reveal the preference of the hESCs for rhLMs, and found that the hESCs mainly expressed integrin α6β1, which binds predominantly to laminin-111, -332 and -511/-521. When the hESCs were seeded onto rhLMs, the cells indeed adhered markedly to rhLM-332, and to rhLM-511 and rhLM-111 to a lesser extent. The hESCs proliferated on these three rhLMs for several passages while preserving their pluripotency. These results show that rhLM-111, -332, and -511 are good substrates to expand undifferentiated hESCs due to their high affinity to integrin α6β1 expressed on hESCs

  20. NGF-mediated transcriptional targets of p53 in PC12 neuronal differentiation

    Directory of Open Access Journals (Sweden)

    Labhart Paul

    2007-05-01

    Full Text Available Abstract Background p53 is recognized as a critical regulator of the cell cycle and apoptosis. Mounting evidence also suggests a role for p53 in differentiation of cells including neuronal precursors. We studied the transcriptional role of p53 during nerve growth factor-induced differentiation of the PC12 line into neuron-like cells. We hypothesized that p53 contributed to PC12 differentiation through the regulation of gene targets distinct from its known transcriptional targets for apoptosis or DNA repair. Results Using a genome-wide chromatin immunoprecipitation cloning technique, we identified and validated 14 novel p53-regulated genes following NGF treatment. The data show p53 protein was transcriptionally activated and contributed to NGF-mediated neurite outgrowth during differentiation of PC12 cells. Furthermore, we describe stimulus-specific regulation of a subset of these target genes by p53. The most salient differentiation-relevant target genes included wnt7b involved in dendritic extension and the tfcp2l4/grhl3 grainyhead homolog implicated in ectodermal development. Additional targets included brk, sdk2, sesn3, txnl2, dusp5, pon3, lect1, pkcbpb15 and other genes. Conclusion Within the PC12 neuronal context, putative p53-occupied genomic loci spanned the entire Rattus norvegicus genome upon NGF treatment. We conclude that receptor-mediated p53 transcriptional activity is involved in PC12 differentiation and may suggest a contributory role for p53 in neuronal development.

  1. Intensive combined modality therapy of small round cell and undifferentiated sarcomas in children and young adults

    International Nuclear Information System (INIS)

    Bader, J.L.; Dewan, R.; Watkins, E.; Kinsella, T.J.; Glatstein, E.; STeinberg, S.M.

    1989-01-01

    Seventy-five patients (ages 4-35 years) with the following small round cell tumors and undifferentiated sarcoma were treated at the National Cancer Institute: Ewing's sarcome (n=32), peripheral neuroepithelioma (n=14), rhabdomyosarcoma (n=24), undifferentiated sarcoma (n=5). Most patients had poor prognostic features including 36 (48%) with metastatic disease, and 42 (56%) with central (truncal) tumors (22 in the pelvis). Treatment included 5 cycles of intensive induction chemotherapy with vincristine, cyclophosphamide and adriamycin, plus aggressive local radiation therapy using simulation and computerized treatment planning for all patients. Thereafter, complete clinical responses were consolidated with intensive chemotherapy, total body irradiation and autologous bone marrow transplantation. There were three local only failures, 10 local plus distant failures, 36 distant only failures, 3 treatment-related deaths, and one intercurrent death. Overall actuarial survival and event-free survival at 4 years are 49 and 29%, respectively. Actuarial freedom from local progression was seen in 74% of patients at 4 years, quite remarkable considering the bulk and location of most of these tumors. Without aggressive surgery, many of these high risk patients had satisfactory outcomes, but better systemic treatments are still needed.(author). 44 refs.; 8 figs.; 6 tabs

  2. A Simple and Robust Method for Culturing Human-Induced Pluripotent Stem Cells in an Undifferentiated State Using Botulinum Hemagglutinin.

    Science.gov (United States)

    Kim, Mee-Hae; Matsubara, Yoshifumi; Fujinaga, Yukako; Kino-Oka, Masahiro

    2018-02-01

    Clinical and industrial applications of human-induced pluripotent stem cells (hiPSCs) is hindered by the lack of robust culture strategies capable of sustaining a culture in an undifferentiated state. Here, a simple and robust hiPSC-culture-propagation strategy incorporating botulinum hemagglutinin (HA)-mediated selective removal of cells deviating from an undifferentiated state is developed. After HA treatment, cell-cell adhesion is disrupted, and deviated cells detached from the central region of the colony to subsequently form tight monolayer colonies following prolonged incubation. The authors find that the temporal and dose-dependent activity of HA regulated deviated-cell removal and recoverability after disruption of cell-cell adhesion in hiPSC colonies. The effects of HA are confirmed under all culture conditions examined, regardless of hiPSC line and feeder-dependent or -free culture conditions. After routine application of our HA-treatment paradigm for serial passages, hiPSCs maintains expression of pluripotent markers and readily forms embryoid bodies expressing markers for all three germ-cell layers. This method enables highly efficient culturing of hiPSCs and use of entire undifferentiated portions without having to pick deviated cells manually. This simple and readily reproducible culture strategy is a potentially useful tool for improving the robust and scalable maintenance of undifferentiated hiPSC cultures. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Dual effects exerted in vitro by micromolar concentrations of deoxynivalenol on undifferentiated caco-2 cells.

    Science.gov (United States)

    Manda, Gina; Mocanu, Mihaela Andreea; Marin, Daniela Eliza; Taranu, Ionelia

    2015-02-16

    Contamination of crops used for food and feed production with Fusarium mycotoxins, such as deoxynivalenol (DON), raise important health and economic issues all along the food chain. Acute exposure to high DON concentrations can alter the intestinal barrier, while chronic exposure to lower doses may exert more subtle effects on signal transduction pathways, leading to disturbances in cellular homeostasis. Using real-time cellular impedance measurements, we studied the effects exerted in vitro by low concentrations of DON (0.37-1.50 μM), relevant for mycotoxin-contaminated food, on the proliferation of undifferentiated Caco-2 cells presenting a tumorigenic phenotype. A 1.5 μM concentration of DON maintained cell adherence of non-proliferating Caco-2 cells, whilst arresting the growth of actively proliferating cells compared with control Caco-2 cells in vitro. At 0.37 μM, DON enhanced Caco-2 cell metabolism, thereby triggering a moderate increase in cell proliferation. The results of the current study suggested that low concentrations of DON commonly detected in food may either limit or sustain the proliferation of colon cancer cells, depending on their proliferation status and on DON concentration. Soluble factors released by Lactobacillus strains can partially counteract the inhibitory action of DON on actively proliferating colon cancer cells. The study also emphasized that real-time cellular impedance measurements were a valuable tool for investigating the dynamics of cellular responses to xenobiotics.

  4. Dual Effects Exerted in Vitro by Micromolar Concentrations of Deoxynivalenol on Undifferentiated Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Gina Manda

    2015-02-01

    Full Text Available Contamination of crops used for food and feed production with Fusarium mycotoxins, such as deoxynivalenol (DON, raise important health and economic issues all along the food chain. Acute exposure to high DON concentrations can alter the intestinal barrier, while chronic exposure to lower doses may exert more subtle effects on signal transduction pathways, leading to disturbances in cellular homeostasis. Using real-time cellular impedance measurements, we studied the effects exerted in vitro by low concentrations of DON (0.37–1.50 μM, relevant for mycotoxin-contaminated food, on the proliferation of undifferentiated Caco-2 cells presenting a tumorigenic phenotype. A 1.5 μM concentration of DON maintained cell adherence of non-proliferating Caco-2 cells, whilst arresting the growth of actively proliferating cells compared with control Caco-2 cells in vitro. At 0.37 μM, DON enhanced Caco-2 cell metabolism, thereby triggering a moderate increase in cell proliferation. The results of the current study suggested that low concentrations of DON commonly detected in food may either limit or sustain the proliferation of colon cancer cells, depending on their proliferation status and on DON concentration. Soluble factors released by Lactobacillus strains can partially counteract the inhibitory action of DON on actively proliferating colon cancer cells. The study also emphasized that real-time cellular impedance measurements were a valuable tool for investigating the dynamics of cellular responses to xenobiotics.

  5. Conditionally replicating adenovirus prevents pluripotent stem cell–derived teratoma by specifically eliminating undifferentiated cells

    Directory of Open Access Journals (Sweden)

    Kaoru Mitsui

    Full Text Available Incomplete abolition of tumorigenicity creates potential safety concerns in clinical trials of regenerative medicine based on human pluripotent stem cells (hPSCs. Here, we demonstrate that conditionally replicating adenoviruses that specifically target cancers using multiple factors (m-CRAs, originally developed as anticancer drugs, may also be useful as novel antitumorigenic agents in hPSC-based therapy. The survivin promoter was more active in undifferentiated hPSCs than the telomerase reverse transcriptase (TERT promoter, whereas both promoters were minimally active in differentiated normal cells. Accordingly, survivin-responsive m-CRA (Surv.m-CRA killed undifferentiated hPSCs more efficiently than TERT-responsive m-CRAs (Tert.m-CRA; both m-CRAs exhibited efficient viral replication and cytotoxicity in undifferentiated hPSCs, but not in cocultured differentiated normal cells. Pre-infection of hPSCs with Surv.m-CRA or Tert.m-CRA abolished in vivo teratoma formation in a dose-dependent manner following hPSC implantation into mice. Thus, m-CRAs, and in particular Surv.m-CRAs, represent novel antitumorigenic agents that could facilitate safe clinical applications of hPSC-based regenerative medicine.

  6. The role of undifferentiated adipose-derived stem cells in peripheral nerve repair.

    Science.gov (United States)

    Zhang, Rui; Rosen, Joseph M

    2018-05-01

    Peripheral nerve injuries impose significant health and economic consequences, yet no surgical repair can deliver a complete recovery of sensory or motor function. Traditional methods of repair are less than ideal: direct coaptation can only be performed when tension-free repair is possible, and transplantation of nerve autograft can cause donor-site morbidity and neuroma formation. Cell-based therapy delivered via nerve conduits has thus been explored as an alternative method of nerve repair in recent years. Stem cells are promising sources of the regenerative core material in a nerve conduit because stem cells are multipotent in function, abundant in supply, and more accessible than the myelinating Schwann cells. Among different types of stem cells, undifferentiated adipose-derived stem cell (uASC), which can be processed from adipose tissue in less than two hours, is a promising yet underexplored cell type. Studies of uASC have emerged in the past decade and have shown that autologous uASCs are non-immunogenic, easy to access, abundant in supply, and efficacious at promoting nerve regeneration. Two theories have been proposed as the primary regenerative mechanisms of uASC: in situ trans-differentiation towards Schwann cells, and secretion of trophic and anti-inflammatory factors. Future studies need to fully elucidate the mechanisms, side effects, and efficacy of uASC-based nerve regeneration so that uASCs can be utilized in clinical settings.

  7. CD133-expressing thyroid cancer cells are undifferentiated, radioresistant and survive radioiodide therapy

    International Nuclear Information System (INIS)

    Ke, Chien-Chih; Liu, Ren-Shyan; Yang, An-Hang; Liu, Ching-Sheng; Chi, Chin-Wen; Tseng, Ling-Ming; Tsai, Yi-Fan; Ho, Jennifer H.; Lee, Chen-Hsen; Lee, Oscar K.

    2013-01-01

    131 I therapy is regularly used following surgery as a part of thyroid cancer management. Despite an overall relatively good prognosis, recurrent or metastatic thyroid cancer is not rare. CD133-expressing cells have been shown to mark thyroid cancer stem cells that possess the characteristics of stem cells and have the ability to initiate tumours. However, no studies have addressed the influence of CD133-expressing cells on radioiodide therapy of the thyroid cancer. The aim of this study was to investigate whether CD133 + cells contribute to the radioresistance of thyroid cancer and thus potentiate future recurrence and metastasis. Thyroid cancer cell lines were analysed for CD133 expression, radiosensitivity and gene expression. The anaplastic thyroid cancer cell line ARO showed a higher percentage of CD133 + cells and higher radioresistance. After γ-irradiation of the cells, the CD133 + population was enriched due to the higher apoptotic rate of CD133 - cells. In vivo 131 I treatment of ARO tumour resulted in an elevated expression of CD133, Oct4, Nanog, Lin28 and Glut1 genes. After isolation, CD133 + cells exhibited higher radioresistance and higher expression of Oct4, Nanog, Sox2, Lin28 and Glut1 in the cell line or primarily cultured papillary thyroid cancer cells, and lower expression of various thyroid-specific genes, namely NIS, Tg, TPO, TSHR, TTF1 and Pax8. This study demonstrates the existence of CD133-expressing thyroid cancer cells which show a higher radioresistance and are in an undifferentiated status. These cells possess a greater potential to survive radiotherapy and may contribute to the recurrence of thyroid cancer. A future therapeutic approach for radioresistant thyroid cancer may focus on the selective eradication of CD133 + cells. (orig.)

  8. Synthesis of glycosaminoglycans by undifferentiated and differentiated HT29 human colonic cancer cells.

    Science.gov (United States)

    Simon-Assmann, P; Bouziges, F; Daviaud, D; Haffen, K; Kedinger, M

    1987-08-15

    Among the extracellular matrix components which have been suggested to be involved in developmental and neoplastic changes are glycosaminoglycans (GAGs). To try to correlate their amount and nature with the process of enterocytic differentiation, we studied glycosaminoglycan synthesis of human colonic adenocarcinoma cells (HT29 cell line) by [3H]glucosamine and [35S]sulfate incorporation. Enterocytic differentiation of the cells obtained in a sugar-free medium (for review, see A. Zweibaum et al. In: Handbook of Physiology. Intestinal Transport of the Gastrointestinal System, in press, 1987) resulted in a marked increase in total incorporation of labeled precursors (20-fold for [3H]glucosamine, 4.5-fold for [35S]sulfate) as well as in uronic acid content (5-fold); most of the synthesized GAGs were found associated with the cell pellet. Chromatographic and electrophoretic analysis of the labeled GAGs revealed that undifferentiated cells synthesized and secreted hyaluronic acid, heparan sulfate, and one class of chondroitin sulfate. Differentiation of HT29 cells because associated with the synthesis of an additional class of chondroitin sulfate (CS4) concomitant to a decrease in heparan sulfate which is no longer found secreted in the medium. Furthermore, the charge density of this latter GAG component varied as assessed by a shift of its affinity on ion-exchange chromatography.

  9. Radiation-induced apoptosis in undifferentiated cells of the developing brain as a biological defense mechanism

    International Nuclear Information System (INIS)

    Inouye, Minioru; Tamaru, Masao.

    1994-01-01

    Undifferentiated neural (UN) cells of the developing mammalian brain are highly sensitive to the lethal effects of ionizing radiation. Nuclear and cytoplasmic condensation, transglutaminase activation, and internucleosomal DNA cleavage reveal radiation-induced cell death in the ventricular zone of the cerebral mantle and external granular layer of the cerebellum to be due to apoptosis. A statistically significant increase of cell mortality can be induced by 0.03 Gy X-irradiation, and the mortality increases linearly with increasing doses. It is not changed by split doses, probably because of the very slow repair of cellular damage and a lack of adaptive response. Although extensive apoptosis in the UN cell population results in microcephaly and mental retardation, it possesses the ability to recover from a considerable cell loss and to form the normal structure of the central nervous system. The number of cell deaths needed to induce tissue adnormalities in the adult murine brain rises in the range of 15-25% of the germinal cell population; with the threshold doses at about 0.3 Gy for cerebral anomalies and 1 Gy for cerebellar abnormalities. Threshold level is similarly suggested in prenatally exposed A-bomb survivors. High radiosensitivity of UN cells is assumed to be a manifestation of the ability of the cell to commit suicide when injured. Repeated replication of DNA and extensive gene expression are required in future proliferation and differentiation. Once an abnormality in DNA was induced and fixed in the UN cell, it would be greatly amplified and prove a danger in producing malformations and tumors. These cells would thus commit suicide for the benefit of the individual to eliminate their acquired genetic abnormalities rather than make DNA repair. UN cells in the developing brain are highly radiosensitive and readily involved in apoptosis. Paradoxically, however, this may be to protect individuals against teratogenesis and tumorigenesis. (J.P.N.)

  10. Radiation-induced apoptosis in undifferentiated cells of the developing brain as a biological defense mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Inouye, Minioru [Nagoya Univ. (Japan). Research Inst. of Environmental Medicine; Tamaru, Masao

    1994-12-31

    Undifferentiated neural (UN) cells of the developing mammalian brain are highly sensitive to the lethal effects of ionizing radiation. Nuclear and cytoplasmic condensation, transglutaminase activation, and internucleosomal DNA cleavage reveal radiation-induced cell death in the ventricular zone of the cerebral mantle and external granular layer of the cerebellum to be due to apoptosis. A statistically significant increase of cell mortality can be induced by 0.03 Gy X-irradiation, and the mortality increases linearly with increasing doses. It is not changed by split doses, probably because of the very slow repair of cellular damage and a lack of adaptive response. Although extensive apoptosis in the UN cell population results in microcephaly and mental retardation, it possesses the ability to recover from a considerable cell loss and to form the normal structure of the central nervous system. The number of cell deaths needed to induce tissue adnormalities in the adult murine brain rises in the range of 15-25% of the germinal cell population; with the threshold doses at about 0.3 Gy for cerebral anomalies and 1 Gy for cerebellar abnormalities. Threshold level is similarly suggested in prenatally exposed A-bomb survivors. High radiosensitivity of UN cells is assumed to be a manifestation of the ability of the cell to commit suicide when injured. Repeated replication of DNA and extensive gene expression are required in future proliferation and differentiation. Once an abnormality in DNA was induced and fixed in the UN cell, it would be greatly amplified and prove a danger in producing malformations and tumors. These cells would thus commit suicide for the benefit of the individual to eliminate their acquired genetic abnormalities rather than make DNA repair. UN cells in the developing brain are highly radiosensitive and readily involved in apoptosis. Paradoxically, however, this may be to protect individuals against teratogenesis and tumorigenesis. (J.P.N.).

  11. Role of Notch-1 signaling in ethanol induced PC12 apoptosis

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-04-17

    Apr 17, 2012 ... Key words: Neuronal PC12 cell, neurodegenerative disease, ethanol, Notch-1. INTRODUCTION. Neurodegenerative disorders (ND) such as Alzheimer's disease (AD) and Parkinson's disease (PD) are pro- gressive, age-dependent neurodegenerative disorder affecting the cortex and hippocampus, and ...

  12. Radioiodine uptake of undifferentiated thyroid cancer cells by adenovirus-mediated Na+/ I- symporter gene transfer

    Energy Technology Data Exchange (ETDEWEB)

    So, Y.; Lee, Y. J.; Shin, J. H.; Oh, H. J.; Chung, J. K.; Lee, M. C.; Cho, B. Y. [College of Medicine, Univ. of Seoul National, Seoul (Korea, Republic of); Lee, K. H. [Samsung Medical Center, Seoul (Korea, Republic of)

    2003-07-01

    To increase radioiodine uptake on undifferentiated thyroid cancer cell (ARO cells) by adenovirus-mediated human Na+/I- symporter (hNIS) gene transfer. Recombinant adenovirus Ad-hNIS was manufactured successfully. After transfecting Ad-hNIS on ARO cells, in vitro I-125 uptake and efflux studies were performed. For in vivo studies, 1.510'8 p.f.u. (50 1) of Ad-hNIS was injected into xenograft ARO tumors on the R thigh of BALB/c nu/nu mice (n=12), and same amount of normal saline was injected into xenograft ARO tumors on the L thigh. Two, 3, 4 and 6 days after intratumoral injection of Ad-hNIS, I-131 images (3 mice per day) were taken and xenograft tumors on both thighs were all excised. Total RNA was extracted from each tumor tissue and RT-PCR was performed to confirm the hNIS expression of Ad-hNIS injected xenograft ARO tumors. I-125 uptake of Ad-hNIS transfected ARO cells was increased up to 233 folds at 120 minutes in vitro. I-125 efflux study revealed rapid washout of I-125 from Ad-hNIS transfected ARO cells. On dynamic image, I-131 uptake of Ad-hNIS injected ARO tumor was continuously increased until 60 minutes. Mean count ratios of xenograft ARO tumors (R/L) of 60 minutes I-131 images at 2, 3, 4 and 6 days after Ad-hNIS injection were 2.85, 2.54, 2.31, and 2.18, each. On RT-PCR, hNIS expression of Ad-hNIS transfected ARO xenograft tumors was confirmed. Radioiodine uptake was successfully increased in ARO cells by adenovirus-mediated hNIs gene transfer both in vitro and in vivo.

  13. ARG1 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight

    Science.gov (United States)

    Zupanska, Agata K.; Schultz, Eric R.; Yao, JiQiang; Sng, Natasha J.; Zhou, Mingqi; Callaham, Jordan B.; Ferl, Robert J.; Paul, Anna-Lisa

    2017-11-01

    Scientific access to spaceflight and especially the International Space Station has revealed that physiological adaptation to spaceflight is accompanied or enabled by changes in gene expression that significantly alter the transcriptome of cells in spaceflight. A wide range of experiments have shown that plant physiological adaptation to spaceflight involves gene expression changes that alter cell wall and other metabolisms. However, while transcriptome profiling aptly illuminates changes in gene expression that accompany spaceflight adaptation, mutation analysis is required to illuminate key elements required for that adaptation. Here we report how transcriptome profiling was used to gain insight into the spaceflight adaptation role of Altered response to gravity 1 (Arg1), a gene known to affect gravity responses in plants on Earth. The study compared expression profiles of cultured lines of Arabidopsis thaliana derived from wild-type (WT) cultivar Col-0 to profiles from a knock-out line deficient in the gene encoding ARG1 (ARG1 KO), both on the ground and in space. The cell lines were launched on SpaceX CRS-2 as part of the Cellular Expression Logic (CEL) experiment of the BRIC-17 spaceflight mission. The cultured cell lines were grown within 60 mm Petri plates in Petri Dish Fixation Units (PDFUs) that were housed within the Biological Research In Canisters (BRIC) hardware. Spaceflight samples were fixed on orbit. Differentially expressed genes were identified between the two environments (spaceflight and comparable ground controls) and the two genotypes (WT and ARG1 KO). Each genotype engaged unique genes during physiological adaptation to the spaceflight environment, with little overlap. Most of the genes altered in expression in spaceflight in WT cells were found to be Arg1-dependent, suggesting a major role for that gene in the physiological adaptation of undifferentiated cells to spaceflight.

  14. Transcription profiling by array of the response of Arabidopsis cultivar Columbia etiolated seedlings and undifferentiated tissue culture cells to the spaceflight environment

    Data.gov (United States)

    National Aeronautics and Space Administration — We address a key baseline question of whether gene expression changes are induced by the orbital environment and then we ask whether undifferentiated cells cells...

  15. Differential Expression of Tyrosine Hydroxylase Protein and Apoptosis-Related Genes in Differentiated and Undifferentiated SH-SY5Y Neuroblastoma Cells Treated with MPP+

    OpenAIRE

    Khwanraj, Kawinthra; Phruksaniyom, Chareerut; Madlah, Suriyat; Dharmasaroja, Permphan

    2015-01-01

    The human neuroblastoma SH-SY5Y cell line has been used as a dopaminergic cell model for Parkinson's disease research. Whether undifferentiated or differentiated SH-SY5Y cells are more suitable remains controversial. This study aims to evaluate the expression of apoptosis-related mRNAs activated by MPP+ and evaluate the differential expression of tyrosine hydroxylase (TH) in undifferentiated and retinoic acid- (RA-) induced differentiated cells. The western blot results showed a gradual decre...

  16. Unravelling the Long Non-Coding RNA Profile of Undifferentiated Large Cell Lung Carcinoma.

    Science.gov (United States)

    Shukla, Sudhanshu

    2018-02-05

    Undifferentiated large cell lung carcinoma (LCLC) accounts for 2.9-9% of total lung cancers. Recently, RNA-seq based studies have revealed major genomic aberrations in LCLC. In this study, we aim to identify long non-coding RNAs (LncRNAs) expression pattern specific to LCLC. The RNA-seq profile of LCLC and other non-small cell lung carcinoma (NSCLC) was downloaded from Gene Expression Omnibus (GEO) and analyzed. Using 10 LCLC samples, we found that 18% of all the annotated LncRNAs are expressed in LCLC samples. Among 1794 expressed LncRNAs, 11 were overexpressed and 14 were downregulated in LCLC compared to normal samples. Based on receiver operating characteristic (ROC) analysis, we showed that the top five differentially expressed LncRNAs were able to differentiate between LCLC and normal samples with high sensitivity and specificity. Guilt by association analysis using genes correlating with differentially expressed LncRNAs identified several cancer-associated pathways, suggesting the role of these deregulated LncRNA in LCLC biology. We also identified the LncRNA differentially expressed in LCLC compared to lung squamous carcinoma (LUSC) and Lung-adenocarcinoma (LUAD). We found that LCLC sample showed more deregulated LncRNA in LUSC than LUAD. Interestingly, LCLC had more downregulated LncRNA compared to LUAD and LUSC. Our study provides novel insight into LncRNA deregulation in LCLC. This study also finds tools to diagnose LCLC and differentiate LCLC with other Non-Small Cell Lung Cancer.

  17. A novel in vitro method for detecting undifferentiated human pluripotent stem cells as impurities in cell therapy products using a highly efficient culture system.

    Directory of Open Access Journals (Sweden)

    Keiko Tano

    Full Text Available Innovative applications of cell therapy products (CTPs derived from human pluripotent stem cells (hPSCs in regenerative medicine are currently being developed. The presence of residual undifferentiated hPSCs in CTPs is a quality concern associated with tumorigencity. However, no simple in vitro method for direct detection of undifferentiated hPSCs that contaminate CTPs has been developed. Here, we show a novel approach for direct and sensitive detection of a trace amount of undifferentiated human induced pluripotent stem cells (hiPSCs using a highly efficient amplification method in combination with laminin-521 and Essential 8 medium. Essential 8 medium better facilitated the growth of hiPSCs dissociated into single cells on laminin-521 than in mTeSR1 medium. hiPSCs cultured on laminin-521 in Essential 8 medium were maintained in an undifferentiated state and they maintained the ability to differentiate into various cell types. Essential 8 medium allowed robust hiPSC proliferation plated on laminin-521 at low cell density, whereas mTeSR1 did not enhance the cell growth. The highly efficient culture system using laminin-521 and Essential 8 medium detected hiPSCs spiked into primary human mesenchymal stem cells (hMSCs or human neurons at the ratio of 0.001%-0.01% as formed colonies. Moreover, this assay method was demonstrated to detect residual undifferentiated hiPSCs in cell preparations during the process of hMSC differentiation from hiPSCs. These results indicate that our highly efficient amplification system using a combination of laminin-521 and Essential 8 medium is able to detect a trace amount of undifferentiated hPSCs contained as impurities in CTPs and would contribute to quality assessment of hPSC-derived CTPs during the manufacturing process.

  18. Expression of the chitinase family glycoprotein YKL-40 in undifferentiated, differentiated and trans-differentiated mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Daniel J Hoover

    Full Text Available The glycoprotein YKL-40 (CHI3L1 is a secreted chitinase family protein that induces angiogenesis, cell survival, and cell proliferation, and plays roles in tissue remodeling and immune regulation. It is expressed primarily in cells of mesenchymal origin, is overexpressed in numerous aggressive carcinomas and sarcomas, but is rarely expressed in normal ectodermal tissues. Bone marrow-derived mesenchymal stem cells (MSCs can be induced to differentiate into various mesenchymal tissues and trans-differentiate into some non-mesenchymal cell types. Since YKL-40 has been used as a mesenchymal marker, we followed YKL-40 expression as undifferentiated MSCs were induced to differentiate into bone, cartilage, and neural phenotypes. Undifferentiated MSCs contain significant levels of YKL-40 mRNA but do not synthesize detectable levels of YKL-40 protein. MSCs induced to differentiate into chondrocytes and osteocytes soon began to express and secrete YKL-40 protein, as do ex vivo cultured chondrocytes and primary osteocytes. In contrast, MSCs induced to trans-differentiate into neurons did not synthesize YKL-40 protein, consistent with the general absence of YKL-40 protein in normal CNS parenchyma. However, these trans-differentiated neurons retained significant levels of YKL-40 mRNA, suggesting the mechanisms which prevented YKL-40 translation in undifferentiated MSCs remained in place, and that these trans-differentiated neurons differ in at least this way from neurons derived from neuronal stem cells. Utilization of a differentiation protocol containing β-mercaptoethanol resulted in cells that expressed significant amounts of intracellular YKL-40 protein that was not secreted, which is not seen in normal cells. Thus the synthesis of YKL-40 protein is a marker for MSC differentiation into mature mesenchymal phenotypes, and the presence of untranslated YKL-40 mRNA in non-mesenchymal cells derived from MSCs reflects differences between differentiated and

  19. Differential Expression of Tyrosine Hydroxylase Protein and Apoptosis-Related Genes in Differentiated and Undifferentiated SH-SY5Y Neuroblastoma Cells Treated with MPP+

    Directory of Open Access Journals (Sweden)

    Kawinthra Khwanraj

    2015-01-01

    Full Text Available The human neuroblastoma SH-SY5Y cell line has been used as a dopaminergic cell model for Parkinson’s disease research. Whether undifferentiated or differentiated SH-SY5Y cells are more suitable remains controversial. This study aims to evaluate the expression of apoptosis-related mRNAs activated by MPP+ and evaluate the differential expression of tyrosine hydroxylase (TH in undifferentiated and retinoic acid- (RA- induced differentiated cells. The western blot results showed a gradual decrease in TH in undifferentiated cells and a gradual increase in TH in differentiated cells from days 4 to 10 after cell plating. Immunostaining revealed a gradual increase in TH along with neuritic outgrowth in differentiated cells on days 4 and 7 of RA treatment. For the study on cell susceptibility to MPP+ and the expression of apoptosis-related genes, MTT assay showed a decrease in cell viability to approximately 50% requiring 500 and 1000 μM of MPP+ for undifferentiated and RA-differentiated cells, respectively. Using real-time RT-PCR, treatment with 500 μM MPP+ led to significant increases in the Bax/Bcl-2 ratio, p53, and caspase-3 in undifferentiated cells but was without significance in differentiated cells. In conclusion, differentiated cells may be more suitable, and the shorter duration of RA differentiation may make the SH-SY5Y cell model more accessible.

  20. Undifferentiated Connective Tissue Disease

    Science.gov (United States)

    ... Home Conditions Undifferentiated Connective Tissue Disease (UCTD) Undifferentiated Connective Tissue Disease (UCTD) Make an Appointment Find a Doctor ... by Barbara Goldstein, MD (February 01, 2016) Undifferentiated connective tissue disease (UCTD) is a systemic autoimmune disease. This ...

  1. Highly sensitive in vitro methods for detection of residual undifferentiated cells in retinal pigment epithelial cells derived from human iPS cells.

    Directory of Open Access Journals (Sweden)

    Takuya Kuroda

    Full Text Available Human induced pluripotent stem cells (hiPSCs possess the capabilities of self-renewal and differentiation into multiple cell types, and they are free of the ethical problems associated with human embryonic stem cells (hESCs. These characteristics make hiPSCs a promising choice for future regenerative medicine research. There are significant obstacles, however, preventing the clinical use of hiPSCs. One of the most obvious safety issues is the presence of residual undifferentiated cells that have tumorigenic potential. To locate residual undifferentiated cells, in vivo teratoma formation assays have been performed with immunodeficient animals, which is both costly and time-consuming. Here, we examined three in vitro assay methods to detect undifferentiated cells (designated an in vitro tumorigenicity assay: soft agar colony formation assay, flow cytometry assay and quantitative real-time polymerase chain reaction assay (qRT-PCR. Although the soft agar colony formation assay was unable to detect hiPSCs even in the presence of a ROCK inhibitor that permits survival of dissociated hiPSCs/hESCs, the flow cytometry assay using anti-TRA-1-60 antibody detected 0.1% undifferentiated hiPSCs that were spiked in primary retinal pigment epithelial (RPE cells. Moreover, qRT-PCR with a specific probe and primers was found to detect a trace amount of Lin28 mRNA, which is equivalent to that present in a mixture of a single hiPSC and 5.0×10⁴ RPE cells. Our findings provide highly sensitive and quantitative in vitro assays essential for facilitating safety profiling of hiPSC-derived products for future regenerative medicine research.

  2. Transplant of Hepatocytes, Undifferentiated Mesenchymal Stem Cells, and In Vitro Hepatocyte-Differentiated Mesenchymal Stem Cells in a Chronic Liver Failure Experimental Model: A Comparative Study.

    Science.gov (United States)

    El Baz, Hanan; Demerdash, Zeinab; Kamel, Manal; Atta, Shimaa; Salah, Faten; Hassan, Salwa; Hammam, Olfat; Khalil, Heba; Meshaal, Safa; Raafat, Inas

    2018-02-01

    Liver transplant is the cornerstone line of treatment for chronic liver diseases; however, the long list of complications and obstacles stand against this operation. Searching for new modalities for treatment of chronic liver illness is a must. In the present research, we aimed to compare the effects of transplant of undifferentiated human mesenchymal stem cells, in vitro differentiated mesenchymal stem cells, and adult hepatocytes in an experimental model of chronic liver failure. Undifferentiated human cord blood mesenchymal stem cells were isolated, pro-pagated, and characterized by morphology, gene expression analysis, and flow cytometry of surface markers and in vitro differentiated into hepatocyte-like cells. Rat hepatocytes were isolated by double perfusion technique. An animal model of chronic liver failure was developed, and undifferentiated human cord blood mesenchymal stem cells, in vitro hepato-genically differentiated mesenchymal stem cells, or freshly isolated rat hepatocytes were transplanted into a CCL4 cirrhotic experimental model. Animals were killed 3 months after transplant, and liver functions and histopathology were assessed. Compared with the cirrhotic control group, the 3 cell-treated groups showed improved alanine aminotransferase, aspartate aminotransferase, albumin, and bilirubin levels, with best results shown in the hepatocyte-treated group. Histopathologic examination of the treated groups showed improved fibrosis, with best results obtained in the undifferentiated mesenchymal stem cell-treated group. Both adult hepatocytes and cord blood mesenchymal stem cells proved to be promising candidates for cell-based therapy in liver regeneration on an experimental level. Improved liver function was evident in the hepatocyte-treated group, and fibrosis control was more evident in the undifferentiated mesenchymal stem cell-treated group.

  3. Expansion on stromal cells preserves the undifferentiated state of human hematopoietic stem cells despite compromised reconstitution ability.

    Science.gov (United States)

    Magnusson, Mattias; Sierra, Maria I; Sasidharan, Rajkumar; Prashad, Sacha L; Romero, Melissa; Saarikoski, Pamela; Van Handel, Ben; Huang, Andy; Li, Xinmin; Mikkola, Hanna K A

    2013-01-01

    Lack of HLA-matched hematopoietic stem cells (HSC) limits the number of patients with life-threatening blood disorders that can be treated by HSC transplantation. So far, insufficient understanding of the regulatory mechanisms governing human HSC has precluded the development of effective protocols for culturing HSC for therapeutic use and molecular studies. We defined a culture system using OP9M2 mesenchymal stem cell (MSC) stroma that protects human hematopoietic stem/progenitor cells (HSPC) from differentiation and apoptosis. In addition, it facilitates a dramatic expansion of multipotent progenitors that retain the immunophenotype (CD34+CD38-CD90+) characteristic of human HSPC and proliferative potential over several weeks in culture. In contrast, transplantable HSC could be maintained, but not significantly expanded, during 2-week culture. Temporal analysis of the transcriptome of the ex vivo expanded CD34+CD38-CD90+ cells documented remarkable stability of most transcriptional regulators known to govern the undifferentiated HSC state. Nevertheless, it revealed dynamic fluctuations in transcriptional programs that associate with HSC behavior and may compromise HSC function, such as dysregulation of PBX1 regulated genetic networks. This culture system serves now as a platform for modeling human multilineage hematopoietic stem/progenitor cell hierarchy and studying the complex regulation of HSC identity and function required for successful ex vivo expansion of transplantable HSC.

  4. Expansion on stromal cells preserves the undifferentiated state of human hematopoietic stem cells despite compromised reconstitution ability.

    Directory of Open Access Journals (Sweden)

    Mattias Magnusson

    Full Text Available Lack of HLA-matched hematopoietic stem cells (HSC limits the number of patients with life-threatening blood disorders that can be treated by HSC transplantation. So far, insufficient understanding of the regulatory mechanisms governing human HSC has precluded the development of effective protocols for culturing HSC for therapeutic use and molecular studies. We defined a culture system using OP9M2 mesenchymal stem cell (MSC stroma that protects human hematopoietic stem/progenitor cells (HSPC from differentiation and apoptosis. In addition, it facilitates a dramatic expansion of multipotent progenitors that retain the immunophenotype (CD34+CD38-CD90+ characteristic of human HSPC and proliferative potential over several weeks in culture. In contrast, transplantable HSC could be maintained, but not significantly expanded, during 2-week culture. Temporal analysis of the transcriptome of the ex vivo expanded CD34+CD38-CD90+ cells documented remarkable stability of most transcriptional regulators known to govern the undifferentiated HSC state. Nevertheless, it revealed dynamic fluctuations in transcriptional programs that associate with HSC behavior and may compromise HSC function, such as dysregulation of PBX1 regulated genetic networks. This culture system serves now as a platform for modeling human multilineage hematopoietic stem/progenitor cell hierarchy and studying the complex regulation of HSC identity and function required for successful ex vivo expansion of transplantable HSC.

  5. Ultrastructural characteristics of three undifferentiated mouse embryonic stem cell lines and their differentiated three-dimensional derivatives: a comparative study.

    Science.gov (United States)

    Alharbi, Suzan; Elsafadi, Mona; Mobarak, Mohammed; Alrwili, Ali; Vishnubalaji, Radhakrishnan; Manikandan, Muthurangan; Al-Qudsi, Fatma; Karim, Saleh; Al-Nabaheen, May; Aldahmash, Abdullah; Mahmood, Amer

    2014-04-01

    The fine structures of mouse embryonic stem cells (mESCs) grown as colonies and differentiated in three-dimensional (3D) culture as embryoid bodies (EBs) were analyzed by transmission electron microscopy. Undifferentiated mESCs expressed markers that proved their pluripotency. Differentiated EBs expressed different differentiation marker proteins from the three germ layers. The ultrastructure of mESCs revealed the presence of microvilli on the cell surfaces, large and deep infolded nuclei, low cytoplasm-to-nuclear ratios, frequent lipid droplets, nonprominent Golgi apparatus, and smooth endoplasmic reticulum. In addition, we found prominent juvenile mitochondria and free ribosomes-rich cytoplasm in mESCs. Ultrastructure of the differentiated mESCs as EBs showed different cell arrangements, which indicate the different stages of EB development and differentiation. The morphologies of BALB/c and 129 W9.5 EBs were very similar at day 4, whereas C57BL/6 EBs were distinct from the others at day 4. This finding suggested that differentiation of EBs from different cell lines occurs in the same pattern but not at the same rate. Conversely, the ultrastructure results of BALB/c and 129 W9.5 ESCs revealed differentiating features, such as the dilated profile of a rough endoplasmic reticulum. In addition, we found low expression levels of undifferentiated markers on the outer cells of BALB/c and 129 W9.5 mESC colonies, which suggests a faster differentiation potential.

  6. Dedifferentiated giant-cell tumor of bone with an undifferentiated round cell mesenchymal component

    Directory of Open Access Journals (Sweden)

    Eréndira G. Estrada-Villaseñor

    2014-08-01

    Full Text Available The dedifferentiated giant-cell tumor of the bone is a very rare variant of the giant-cell tumor (GCT. We report the clinical, radiographic and histological findings of a dedifferentiated GCT in which the dedifferentiated component consisted of small round cells. We also comment on previously reported cases of dedifferentiated GCT, discuss the clinical implications of this dual histology, and analyze the information published about the coexistence of similar genetic abnormalities in GCT and small round cell tumors of the bone.

  7. Functional-dependent and size-dependent uptake of nanoparticles in PC12

    International Nuclear Information System (INIS)

    Sakai, N; Matsui, Y; Nakayama, A; Yoneda, M; Tsuda, A

    2011-01-01

    It is suggested that the uptake of nanoparticles is changed by the particle size or the surface modification. In this study, we quantified the uptake of nanoparticles in PC12 cells exposed Quantum Dots with different surface modification or fluorescent polystyrene particles with different particle size. The PC12 cells were exposed three types of the Quantum Dots (carboxyl base-functionalized, amino base-functionalized or non-base-functionalized) or three types of the fluorescent particles (22 nm, 100 nm or 1000 nm) for 3 hours. The uptake of the nanoparticles was quantified with a spectrofluorophotometer. The carboxyl base-functionalized Quantum Dots were considerably taken up by the cells than the non-base-functionalized Quantum Dots. Conversely, the amino base-functionalized Quantum Dots were taken up by the cells less frequently than the non-base-functionalized Quantum Dots. The particle number of the 22 nm-nanoparticles taken up by the cells was about 53 times higher than the 100 nm-particles. However, the particle weight of the 100 nm-particles taken up by the cells was higher than that of the 22 nm-nanoparticles. The 1000 nm-particles were adhered to the cell membrane, but they were little taken up by the cells. We concluded that nanoparticles can be taken up nerve cells in functional-dependent and size-dependent manners.

  8. Utilization of human amniotic mesenchymal cells as feeder layers to sustain propagation of human embryonic stem cells in the undifferentiated state.

    Science.gov (United States)

    Zhang, Kehua; Cai, Zhe; Li, Yang; Shu, Jun; Pan, Lin; Wan, Fang; Li, Hong; Huang, Xiaojie; He, Chun; Liu, Yanqiu; Cui, Xiaohui; Xu, Yang; Gao, Yan; Wu, Liqun; Cao, Shanxia; Li, Lingsong

    2011-08-01

    Human embryonic stem (ES) cells are usually maintained in the undifferentiated state by culturing on feeder cells layers of mouse embryonic fibroblasts (MEFs). However, MEFs are not suitable to support human ES cells used for clinical purpose because of risk of zoonosis from animal cells. Therefore, human tissue-based feeder layers need to be developed for human ES cells for clinical purpose. Hereof we report that human amniotic mesenchymal cells (hAMCs) could act as feeder cells for human ES cells, because they are easily obtained and relatively exempt from ethical problem. Like MEFs, hAMCs could act as feeder cells for human ES cells to grow well on. The self-renewal rate of human ES cells cultured on hAMCs feeders was higher than that on MEFs and human amniotic epithelial cells determined by measurement of colonial diameters and growth curve as well as cell cycle analysis. Both immunofluorescence staining and immunoblotting showed that human ES cells cultured on hAMCs expressed stem cell markers such as Oct-3/4, Sox2, and NANOG. Verified by embryoid body formation in vitro and teratoma formation in vivo, we found out that after 20 passages of culture, human ES cells grown on hAMCs feeders could still retain the potency of differentiating into three germ layers. Taken together, our data suggested hAMCs may be safe feeder cells to sustain the propagation of human ES cells in undifferentiated state for future therapeutic use.

  9. Alcohol-Enhanced Differentiation of PC 12 Cells

    National Research Council Canada - National Science Library

    Brenner, Dora

    1994-01-01

    The ingestion of alcohol during pregnancy can lead to a number of disturbances in growth and development of the fetus with very consistent manifestations termed Fetal Alcohol Syndrome (FAS) (Jones et al., 1973...

  10. METHYLMERCURY EFFECTS ON NEUROTROPHIN SIGNALING IN PC12 CELLS.

    Science.gov (United States)

    Exposure to methylmercury (CH 3 Hg) can cause disruption in the development of the nervous system but the underlying mechanism of action is unclear. Previous in vivo studies in our laboratory have shown that developmental exposure to CH 3 Hg resulted in changes in neurotrophic fa...

  11. Disruption of sorting nexin 5 causes respiratory failure associated with undifferentiated alveolar epithelial type I cells in mice.

    Directory of Open Access Journals (Sweden)

    Sun-Kyoung Im

    Full Text Available Sorting nexin 5 (Snx5 has been posited to regulate the degradation of epidermal growth factor receptor and the retrograde trafficking of cation-independent mannose 6-phosphate receptor/insulin-like growth factor II receptor. Snx5 has also been suggested to interact with Mind bomb-1, an E3 ubiquitin ligase that regulates the activation of Notch signaling. However, the in vivo functions of Snx5 are largely unknown. Here, we report that disruption of the Snx5 gene in mice (Snx5(-/- mice resulted in partial perinatal lethality; 40% of Snx5(-/- mice died shortly after birth due to cyanosis, reduced air space in the lungs, and respiratory failure. Histological analysis revealed that Snx5(-/- mice exhibited thickened alveolar walls associated with undifferentiated alveolar epithelial type I cells. In contrast, alveolar epithelial type II cells were intact, exhibiting normal surfactant synthesis and secretion. Although the expression levels of surfactant proteins and saturated phosphatidylcholine in the lungs of Snx5(-/- mice were comparable to those of Snx5(+/+ mice, the expression levels of T1α, Aqp5, and Rage, markers for distal alveolar epithelial type I cells, were significantly decreased in Snx5 (-/- mice. These results demonstrate that Snx5 is necessary for the differentiation of alveolar epithelial type I cells, which may underlie the adaptation to air breathing at birth.

  12. Rhabdoid and Undifferentiated Phenotype in Renal Cell Carcinoma: Analysis of 32 Cases Indicating a Distinctive Common Pathway of Dedifferentiation Frequently Associated With SWI/SNF Complex Deficiency.

    Science.gov (United States)

    Agaimy, Abbas; Cheng, Liang; Egevad, Lars; Feyerabend, Bernd; Hes, Ondřej; Keck, Bastian; Pizzolitto, Stefano; Sioletic, Stefano; Wullich, Bernd; Hartmann, Arndt

    2017-02-01

    Undifferentiated (anaplastic) and rhabdoid cell features are increasingly recognized as adverse prognostic findings in renal cell carcinoma (RCC), but their molecular pathogenesis has not been studied sufficiently. Recent studies identified alterations in the Switch Sucrose nonfermentable (SWI/SNF) chromatin remodeling complex as molecular mechanisms underlying dedifferentiation and rhabdoid features in carcinomas of different organs. We herein have analyzed 32 undifferentiated RCCs having in common an undifferentiated (anaplastic) phenotype, prominent rhabdoid features, or both, irrespective of the presence or absence of conventional RCC component. Cases were stained with 6 SWI/SNF pathway members (SMARCB1, SMARCA2, SMARCA4, ARID1A, SMARCC1, and SMARCC2) in addition to conventional RCC markers. Patients were 20 males and 12 females aged 32 to 85 years (mean, 59). A total of 22/27 patients with known stage presented with ≥pT3. A differentiated component varying from microscopic to major component was detected in 20/32 cases (16 clear cell and 2 cases each chromophobe and papillary RCC). The undifferentiated component varied from rhabdoid dyscohesive cells to large epithelioid to small monotonous anaplastic cells. Variable loss of at least 1 SWI/SNF complex subunit was noted in the undifferentiated/rhabdoid component of 21/32 cases (65%) compared with intact or reduced expression in the differentiated component. A total of 15/17 patients (88%) with follow-up died of metastatic disease (mostly within 1 y). Only 2 patients were disease free at last follow-up (1 and 6 y). No difference in survival, age distribution, or sex was observed between the SWI/SNF-deficient and the SWI/SNF-intact group. This is the first study exploring the role of SWI/SNF deficiency as a potential mechanism underlying undifferentiated and rhabdoid phenotype in RCC. Our results highlight the association between the aggressive rhabdoid phenotype and the SWI/SNF complex deficiency, consistent

  13. L1TD1 Is a Marker for Undifferentiated Human Embryonic Stem Cells

    OpenAIRE

    Wong, Raymond Ching-Bong; Ibrahim, Abel; Fong, Helen; Thompson, Noelle; Lock, Leslie F.; Donovan, Peter J.

    2011-01-01

    Background Human embryonic stem cells (hESC) are stem cells capable of differentiating into cells representative of the three primary embryonic germ layers. There has been considerable interest in understanding the mechanisms regulating stem cell pluripotency, which will ultimately lead to development of more efficient methods to derive and culture hESC. In particular, Oct4, Sox2 and Nanog are transcription factors known to be important in maintenance of hESC. However, many of the downstream ...

  14. p75 neurotrophin receptor is involved in proliferation of undifferentiated mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Moscatelli, Ilana; Pierantozzi, Enrico; Camaioni, Antonella; Siracusa, Gregorio [Department of Public Health and Cell Biology, Section of Histology and Embryology, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome (Italy); Campagnolo, Luisa, E-mail: campagno@med.uniroma2.it [Department of Public Health and Cell Biology, Section of Histology and Embryology, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome (Italy)

    2009-11-01

    Neurotrophins and their receptors are known to play a role in the proliferation and survival of many different cell types of neuronal and non-neuronal lineages. In addition, there is much evidence in the literature showing that the p75 neurotrophin receptor (p75{sup NTR}), alone or in association with members of the family of Trk receptors, is expressed in a wide variety of stem cells, although its role in such cells has not been completely elucidated. In the present work we have investigated the expression of p75{sup NTR} and Trks in totipotent and pluripotent cells, the mouse pre-implantation embryo and embryonic stem and germ cells (ES and EG cells). p75{sup NTR} and TrkA can be first detected in the blastocyst from which ES cell lines are derived. Mouse ES cells retain p75{sup NTR}/TrkA expression. Nerve growth factor is the only neurotrophin able to stimulate ES cell growth in culture, without affecting the expression of stem cell markers, alkaline phosphatase, Oct4 and Nanog. Such proliferation effect was blocked by antagonizing either p75{sup NTR} or TrkA. Interestingly, immunoreactivity to anti-p75{sup NTR} antibodies is lost upon ES cell differentiation. The expression pattern of neurotrophin receptors in murine ES cells differs from human ES cells, that only express TrkB and C, and do not respond to NGF. In this paper we also show that, while primordial germ cells (PGC) do not express p75{sup NTR}, when they are made to revert to an ES-like phenotype, becoming EG cells, expression of p75{sup NTR} is turned on.

  15. p75 neurotrophin receptor is involved in proliferation of undifferentiated mouse embryonic stem cells

    International Nuclear Information System (INIS)

    Moscatelli, Ilana; Pierantozzi, Enrico; Camaioni, Antonella; Siracusa, Gregorio; Campagnolo, Luisa

    2009-01-01

    Neurotrophins and their receptors are known to play a role in the proliferation and survival of many different cell types of neuronal and non-neuronal lineages. In addition, there is much evidence in the literature showing that the p75 neurotrophin receptor (p75 NTR ), alone or in association with members of the family of Trk receptors, is expressed in a wide variety of stem cells, although its role in such cells has not been completely elucidated. In the present work we have investigated the expression of p75 NTR and Trks in totipotent and pluripotent cells, the mouse pre-implantation embryo and embryonic stem and germ cells (ES and EG cells). p75 NTR and TrkA can be first detected in the blastocyst from which ES cell lines are derived. Mouse ES cells retain p75 NTR /TrkA expression. Nerve growth factor is the only neurotrophin able to stimulate ES cell growth in culture, without affecting the expression of stem cell markers, alkaline phosphatase, Oct4 and Nanog. Such proliferation effect was blocked by antagonizing either p75 NTR or TrkA. Interestingly, immunoreactivity to anti-p75 NTR antibodies is lost upon ES cell differentiation. The expression pattern of neurotrophin receptors in murine ES cells differs from human ES cells, that only express TrkB and C, and do not respond to NGF. In this paper we also show that, while primordial germ cells (PGC) do not express p75 NTR , when they are made to revert to an ES-like phenotype, becoming EG cells, expression of p75 NTR is turned on.

  16. Superficial EWSR1-negative undifferentiated small round cell sarcoma with CIC/DUX4 gene fusion: a new variant of Ewing-like tumors with locoregional lymph node metastasis.

    Science.gov (United States)

    Machado, Isidro; Cruz, Julia; Lavernia, Javier; Rubio, Luis; Campos, Jorge; Barrios, María; Grison, Camille; Chene, Virginie; Pierron, Gaelle; Delattre, Olivier; Llombart-Bosch, Antonio

    2013-12-01

    The present study describes a new case of EWSR1-negative undifferentiated sarcoma with CIC/DUX4 gene fusion. This case is similar to tumors described as primitive undifferentiated round cell sarcomas that occur mainly in the trunk and display an aggressive behavior. To our knowledge, this is the first report of such a tumor presenting locoregional lymph node metastasis. In view of previous studies that prove the existence of a particular variant of undifferentiated sarcoma with Ewing-like morphology and CIC/DUX-4 gene fusion, a search for this gene fusion in all undifferentiated round cell sarcomas should be considered if a conclusive diagnosis cannot be reached following other conventional studies. Although additional cases with more extensive follow-up studies are needed, we believe that EWSR1-negative undifferentiated small round cell sarcoma with CIC/DUX4 gene fusion should be added to the list of new sarcoma variants with the possibility of lymph node metastasis.

  17. Tissue engineering approaches to develop decellularized tendon matrices functionalized with progenitor cells cultured under undifferentiated and tenogenic conditions

    Directory of Open Access Journals (Sweden)

    Daniele D’Arrigo

    2017-11-01

    Full Text Available Tendon ruptures and retractions with an extensive tissue loss represent a major clinical problem and a great challenge in surgical reconstruction. Traditional approaches consist in autologous or allogeneic grafts, which still have some drawbacks. Hence, tissue engineering strategies aimed at developing functionalized tendon grafts. In this context, the use of xenogeneic tissues represents a promising perspective to obtain decellularized tendon grafts. This study is focused on the identification of suitable culture conditions for the generation of reseeded and functional decellularized constructs to be used as tendon grafts. Equine superficial digital flexor tendons were decellularized, reseeded with mesenchymal stem cells (MSCs from bone marrow and statically cultured in two different culture media to maintain undifferentiated cells (U-MSCs or to induce a terminal tenogenic differentiation (T-MSCs for 24 hours, 7 and 14 days. Cell viability, proliferation, morphology as well as matrix deposition and type I and III collagen production were assessed by means of histological, immunohistochemical and semi-quantitative analyses. Results showed that cell viability was not affected by any culture conditions and active proliferation was maintained 14 days after reseeding. However, seeded MSCs were not able to penetrate within the dense matrix of the decellularized tendons. Nevertheless, U-MSCs synthesized a greater amount of extracellular matrix rich in type I collagen compared to T-MSCs. In spite of the inability to deeply colonize the decellularized matrix in vitro, reseeding tendon matrices with U-MSCs could represent a suitable method for the functionalization of biological constructs, considering also any potential chemoattractant capability of the newly deposed extracellular matrix to recruit resident cells. This bioengineering approach can be exploited to produce functionalized tendon constructs for the substitution of large tendon defects.

  18. Functional cooperativity between two TPA responsive elements in undifferentiated F9 embryonic stem cells.

    Science.gov (United States)

    Okuda, A; Imagawa, M; Sakai, M; Muramatsu, M

    1990-01-01

    We have recently identified an enhancer, termed GPEI, in the 5'-flanking region of the rat glutathione transferase P gene, that is composed of two imperfect TPA (phorbol 12-O-tetradecanoate 13-acetate) responsive elements (TREs). Unlike other TRE-containing enhancers, GPEI exhibits a strong transcriptional enhancing activity in F9 embryonic stem cells. Mutational analyses have revealed that the high activity of GPEI is mediated by two imperfect TREs. Each TRE-like sequence has no activity by itself but acts synergistically to form a strong enhancer which is active even in the very low level of AP-1 activity in F9 cells. Furthermore, we show that synthetic DNAs containing two perfect TREs in certain arrangements have strong transcriptional enhancing activities in F9 cells and the activity is greatly influenced by the relative orientation and the distance of two TREs. Images Fig. 1. Fig. 2. Fig. 3. PMID:2323334

  19. Postradiation recovery of the bone marrow of man and morphodynamics of the pool of undifferentiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Suvorova, L.A.; Vyalova, N.A.; Barabanova, A.V.; Gruzdev, G.P.

    1981-01-01

    Peculiarities of postradiation recovery of bone marrow parenchyma and stroma in persons who have been exposed to uniform gamma irradiation and nonuniform gamma-neutron irradiation at doses of 2-5 and more than 5 Gy are described on the basis of quantitive characteristics of bone marrow trepanates which have been investigated in different periods of acute radiation sickness (from 2 to 43 days). A special attention is paid to the description of the behaviour of clones composed of nondifferentiated cells that appear in bone marrow of the 4th - 6th day of sickness and participate in its repair. The obtained results attest that clone-forming nondifferentiated cells are the basis for hemopoetic parenchyma recovery. The number of trunk hemopoetic cells in this or that area of bone marrow exposed to the irradiation at different doses can be determined with a high degree of probability by the number of clones.

  20. Developing Novel Therapeutics Targeting Undifferentiated and Castration-Resistant Prostate Cancer Stem Cells

    Science.gov (United States)

    2016-10-01

    2009;106:268-73. 41. Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S, Arora VK, Le C, Koutcher J, Scher H, Scardino PT... Rosen N, Sawyers CL. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN- deficient prostate cancer. Cancer Cell. 2011;19

  1. Functional cooperativity between two TPA responsive elements in undifferentiated F9 embryonic stem cells.

    OpenAIRE

    Okuda, A; Imagawa, M; Sakai, M; Muramatsu, M

    1990-01-01

    We have recently identified an enhancer, termed GPEI, in the 5'-flanking region of the rat glutathione transferase P gene, that is composed of two imperfect TPA (phorbol 12-O-tetradecanoate 13-acetate) responsive elements (TREs). Unlike other TRE-containing enhancers, GPEI exhibits a strong transcriptional enhancing activity in F9 embryonic stem cells. Mutational analyses have revealed that the high activity of GPEI is mediated by two imperfect TREs. Each TRE-like sequence has no activity by ...

  2. Postradiation recovery of human bone marrow, and morphological dynamics of undifferentiated cell pool

    Energy Technology Data Exchange (ETDEWEB)

    Suvorova, L.A.; Vyalova, N.A.; Barabanova, A.V.; Gruzdev, G.P.

    1981-09-01

    The results of clinical follow-up of a group of subjects who had been exposed to uncontrolled radiation in accident situations were published in the Soviet literature: 1 patient was exposed to relative uniform gamma radiation, 8 to nonuniform gamma-neutron radiation in doses of the order of 2-5 Gy or more. Summarized are the hematological data referable to the same clinical observations and details on histological structural distinctions of bone marrow, using quantitative characteristics to describe the behavior of different hemopoietic stem cells.

  3. The effect of caffeine on p53-dependent radioresponses in undifferentiated mouse embryonal carcinoma cells after X-ray and UV-irradiations

    International Nuclear Information System (INIS)

    Taga, Masataka; Shiraishi, Kazunori; Shimura, Tsutomu; Uematsu, Norio; Kato, Tomohisa; Niwa, Ohtsura; Nishimune, Yoshitake; Aizawa, Shinichi; Oshimura, Mitsuo

    2000-01-01

    The effect of caffeine was studied on the radioresponses of undifferentiated mouse embryonal carcinoma cells (EC cells) with or without the functional p53. The radioresponses studied included radiosensitivity, the activation of p53, apoptosis with characteristic DNA ladder formation and cell cycle progression. An undifferentiated mouse EC cell line, ECA2, and a newly established p53-deficient EC cell line, p53δ, were used in the present study. The status of the p53 gene did not significantly affect the colony survivals of undifferentiated EC cells to X-rays and UV. Although a post-irradiation treatment with caffeine sensitized both lines to X-rays marginally, the sensitization was prominent for UV regardless of the p53 status of the cells. The activation of a p53 responsible lacZ reporter construct was observed in stably transfected ECA2 cells after X-ray and UV irradiations. Caffeine suppressed the X-ray induced activation of the lacZ reporter, while it drastically enhanced the activation after UV irradiation. X-rays and UV readily triggered the apoptosis of ECA2 cells with the characteristic DNA ladder. Although UV-induced DNA ladder formation was enhanced by caffeine, that induced by X-rays was unaffected. Therefore, the effects of caffeine on the p53-dependent radioresponses were found to be agent specific: suppression for the X-ray induced and augmentation for the UV induced. In contrast to p53-proficient ECA2 cells, smear-like DNA degradation was observed for irradiated p53δ cells, suggesting the presence of a mode of cell death without DNA ladder formation. UV induction of the smear-like DNA degradation was enhanced in the presence of caffeine. Regardless of the state of the p53 gene, G1/S arrest was not observed in X-ray and UV irradiated EC cells. X-rays induced G2/M arrest in both lines, which was abrogated by caffeine, while G2/M arrest after UV was unaffected by a caffeine treatment. These results indicate that the radioresponses of undifferentiated

  4. The effect of caffeine on p53-dependent radioresponses in undifferentiated mouse embryonal carcinoma cells after X-ray and UV-irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Taga, Masataka; Shiraishi, Kazunori; Shimura, Tsutomu; Uematsu, Norio; Kato, Tomohisa; Niwa, Ohtsura [Kyoto Univ. (Japan). Radiation Biology Center; Nishimune, Yoshitake; Aizawa, Shinichi; Oshimura, Mitsuo

    2000-09-01

    The effect of caffeine was studied on the radioresponses of undifferentiated mouse embryonal carcinoma cells (EC cells) with or without the functional p53. The radioresponses studied included radiosensitivity, the activation of p53, apoptosis with characteristic DNA ladder formation and cell cycle progression. An undifferentiated mouse EC cell line, ECA2, and a newly established p53-deficient EC cell line, p53{delta}, were used in the present study. The status of the p53 gene did not significantly affect the colony survivals of undifferentiated EC cells to X-rays and UV. Although a post-irradiation treatment with caffeine sensitized both lines to X-rays marginally, the sensitization was prominent for UV regardless of the p53 status of the cells. The activation of a p53 responsible lacZ reporter construct was observed in stably transfected ECA2 cells after X-ray and UV irradiations. Caffeine suppressed the X-ray induced activation of the lacZ reporter, while it drastically enhanced the activation after UV irradiation. X-rays and UV readily triggered the apoptosis of ECA2 cells with the characteristic DNA ladder. Although UV-induced DNA ladder formation was enhanced by caffeine, that induced by X-rays was unaffected. Therefore, the effects of caffeine on the p53-dependent radioresponses were found to be agent specific: suppression for the X-ray induced and augmentation for the UV induced. In contrast to p53-proficient ECA2 cells, smear-like DNA degradation was observed for irradiated p53{delta} cells, suggesting the presence of a mode of cell death without DNA ladder formation. UV induction of the smear-like DNA degradation was enhanced in the presence of caffeine. Regardless of the state of the p53 gene, G1/S arrest was not observed in X-ray and UV irradiated EC cells. X-rays induced G2/M arrest in both lines, which was abrogated by caffeine, while G2/M arrest after UV was unaffected by a caffeine treatment. These results indicate that the radioresponses of

  5. Chemical Activation of the Hypoxia-Inducible Factor Reversibly Reduces Tendon Stem Cell Proliferation, Inhibits Their Differentiation, and Maintains Cell Undifferentiation.

    Science.gov (United States)

    Menon, Alessandra; Creo, Pasquale; Piccoli, Marco; Bergante, Sonia; Conforti, Erika; Banfi, Giuseppe; Randelli, Pietro; Anastasia, Luigi

    2018-01-01

    Adult stem cell-based therapeutic approaches for tissue regeneration have been proposed for several years. However, adult stem cells are usually limited in number and difficult to be expanded in vitro, and they usually tend to quickly lose their potency with passages, as they differentiate and become senescent. Culturing stem cells under reduced oxygen tensions (below 21%) has been proposed as a tool to increase cell proliferation, but many studies reported opposite effects. In particular, cell response to hypoxia seems to be very stem cell type specific. Nonetheless, it is clear that a major role in this process is played by the hypoxia inducible factor (HIF), the master regulator of cell response to oxygen deprivation, which affects cell metabolism and differentiation. Herein, we report that a chemical activation of HIF in human tendon stem cells reduces their proliferation and inhibits their differentiation in a reversible and dose-dependent manner. These results support the notion that hypoxia, by activating HIF, plays a crucial role in preserving stem cells in an undifferentiated state in the "hypoxic niches" present in the tissue in which they reside before migrating in more oxygenated areas to heal a damaged tissue.

  6. Chemical Activation of the Hypoxia-Inducible Factor Reversibly Reduces Tendon Stem Cell Proliferation, Inhibits Their Differentiation, and Maintains Cell Undifferentiation

    Directory of Open Access Journals (Sweden)

    Alessandra Menon

    2018-01-01

    Full Text Available Adult stem cell-based therapeutic approaches for tissue regeneration have been proposed for several years. However, adult stem cells are usually limited in number and difficult to be expanded in vitro, and they usually tend to quickly lose their potency with passages, as they differentiate and become senescent. Culturing stem cells under reduced oxygen tensions (below 21% has been proposed as a tool to increase cell proliferation, but many studies reported opposite effects. In particular, cell response to hypoxia seems to be very stem cell type specific. Nonetheless, it is clear that a major role in this process is played by the hypoxia inducible factor (HIF, the master regulator of cell response to oxygen deprivation, which affects cell metabolism and differentiation. Herein, we report that a chemical activation of HIF in human tendon stem cells reduces their proliferation and inhibits their differentiation in a reversible and dose-dependent manner. These results support the notion that hypoxia, by activating HIF, plays a crucial role in preserving stem cells in an undifferentiated state in the “hypoxic niches” present in the tissue in which they reside before migrating in more oxygenated areas to heal a damaged tissue.

  7. Undifferentiated embryonic cell transcription factor 1 (UTF1) and deleted in azoospermia-like (DAZL) expression in the testes of donkeys.

    Science.gov (United States)

    Lee, Y S; Jung, H J; Yoon, M J

    2017-04-01

    Putative markers for each specific germ cell stage can be a useful tool to study the fate and functions of these cells. Undifferentiated embryonic cell transcription factor 1 (UTF1) is a putative marker for undifferentiated spermatogonia in humans, rats and horses. The deleted in azoospermia-like (DAZL) protein is also expressed by differentiated spermatogonia and primary spermatocytes in several species. However, whether the expression patterns of these molecular markers are identical and applicable to donkeys remains to be elucidated. The objective of this study was to investigate the expression patterns of UTF1 and DAZL in donkey testicular tissue, using immunohistochemistry (IHC). Testicular samples were collected from routine field castration of donkeys in Korea. The reproductive stages (pre- or post-puberty) of the testes were determined from the morphological characteristics of cross-sections of the seminiferous tubules. For IHC, the UTF1 and DAZL primary antibodies were diluted at 1:100 and 1:200, respectively. The immunolabelling revealed that UTF1 was expressed in approximately 50% of spermatogonia in the pre-pubertal stage, whereas its expression was limited to an early subset of spermatogonia in the post-pubertal stage. DAZL was expressed in some, but not all, spermatogonia in the pre-pubertal spermatogonia, and interestingly, its expression was also observed in spermatogonia and primary spermatocytes in the post-pubertal stage. Co-immunolabelling of the germ cells with both UTF1 and DAZL revealed three types of protein expression patterns at both reproductive stages, namely UTF1 only, DAZL only and both UTF1 and DAZL. These protein molecules were not expressed in Sertoli and Leydig cells. In conclusion, a co-immunolabelling system with UTF1 and DAZL antibodies may be used to identify undifferentiated (UTF1 only), differentiating (UTF1 and DAZL), and differentiated spermatogonia (DAZL only) in donkey testes. © 2017 Blackwell Verlag GmbH.

  8. Effects of titanium dioxide nanoparticles exposure on parkinsonism in zebrafish larvae and PC12.

    Science.gov (United States)

    Hu, Qinglian; Guo, Fengliang; Zhao, Fenghui; Fu, Zhengwei

    2017-04-01

    Nanomaterials hold significant potential for industrial and biomedical application these years. Therefore, the relationship between nanoparticles and neurodegenerative disease is of enormous interest. In this contribution, zebrafish embryos and PC12 cell lines were selected for studying neurotoxicity of titanium dioxide nanoparticles (TiO 2 NPs). After exposure of different concentrations of TiO 2 NPs to embryos from fertilization to 96 hpf, the hatching time of zebrafish was decreased, accompanied by an increase in malformation rate. However, no significant increases in mortality relative to control were observed. These results indicated that TiO 2 NPs exposure hold a risk for premature of zebrafish embryos, but not fatal. The further investigation confirmed that TiO 2 NPs could accumulate in the brain of zebrafish larvae, resulting in reactive oxygen species (ROS) generation and cell death of hypothalamus. Meanwhile, q-PCR analysis showed that TiO 2 NPs exposure increased the pink1, parkin, α-syn and uchl1 gene expression, which are related with the formation of Lewy bodies. We also observed loss of dopaminergic neurons in zebrafish and in vitro. These remarkable hallmarks are all linked to these Parkinson's disease (PD) symptoms. Our results indicate that TiO 2 NPs exposure induces neurotoxicity in vivo and in vitro, which poses a significant risk factor for the development of PD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Establishment and characterization of a new cell line, FPS-1, derived from human undifferentiated pleomorphic sarcoma, overexpressing epidermal growth factor receptor and cyclooxygenase-2.

    Science.gov (United States)

    Hakozaki, Michiyuki; Hojo, Hiroshi; Sato, Michiko; Tajino, Takahiro; Yamada, Hitoshi; Kikuchi, Shinichi; Abe, Masafumi

    2006-01-01

    Undifferentiated pleomorphic sarcoma (UPS) is among the most common soft tissue sarcomas in adults. In order to improve its aggressive course or prognosis and establish new therapeutic methods, molecular genetic and biological characterizations of UPS are required. A new human UPS cell line (FPS-1) was established from UPS of the upper arm of a 79-year-old man. The cell line has been maintained for over 14 months with more than 60 passages. FPS-1 cells were characterized using molecular biological methods. FPS-1 cells showed the same morphological and immunophenotypical characteristics as the primary tumor. Cytogenetic and molecular analyses revealed a nonsense mutation in exon 6 of the p53 gene. Epidermal growth factor receptor (EGFR) and cyclooxygenase-2 (COX-2) were expressed in FPS-1 cells. FPS-1 cells might be useful for investigating biological behavior and developing new molecular targeting antitumor drugs for UPS with EGFR or COX-2 expression.

  10. Mitomycin-treated undifferentiated embryonic stem cells as a safe and effective therapeutic strategy in a mouse model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Mariana eAcquarone

    2015-04-01

    Full Text Available Parkinson’s disease (PD is an incurable progressive neurodegenerative disorder. Clinical presentation of PD stems largely from the loss of dopaminergic neurons in the nigrostriatal dopaminergic pathway, motivating experimental strategies aimed at replacing dopaminergic innervation by cellular therapy. Transplantation of dopaminergic neurons derived from embryonic stem cells significantly improves motor functions in rodent and non-human primate models of PD. However, protocols to generate dopaminergic neurons from embryonic stem cells generally meet with low efficacy and high risk of teratoma development upon transplantation. To address these issues, we have pre-treated undifferentiated mouse embryonic stem cells (mESCs with the DNA alkylating agent mitomycin C (MMC before transplantation. MMC treatment of cultures prevented tumor formation in a 12-week follow-up after mESCs were injected in nude mice. In 6-OH-dopamine-lesioned mice, intrastriatal injection of MMC-treated mESCs markedly improved motor function without tumor formation for as long as 15 months. Furthermore, we show that halting mitotic activity of undifferentiated mESCs induces a four-fold increase in dopamine release following in vitro differentiation. Our findings indicate that treating mESCs with mitomycin C prior to intrastriatal transplant is an effective strategy that could be further investigated as a novel alternative for treatment of Parkinson's disease.

  11. A novel chemical-defined medium with bFGF and N2B27 supplements supports undifferentiated growth in human embryonic stem cells

    International Nuclear Information System (INIS)

    Liu Yanxia; Song Zhihua; Zhao Yang; Qin Han; Cai Jun; Zhang Hong; Yu Tianxin; Jiang Siming; Wang Guangwen; Ding Mingxiao; Deng Hongkui

    2006-01-01

    Traditionally, undifferentiated human embryonic stem cells (hESCs) are maintained on mouse embryonic fibroblast (MEF) cells or on matrigel with an MEF-conditioned medium (CM), which hampers the clinical applications of hESCs due to the contamination by animal pathogens. Here we report a novel chemical-defined medium using DMEM/F12 supplemented with N2, B27, and basic fibroblast growth factor (bFGF) [termed NBF]. This medium can support prolonged self-renewal of hESCs. hESCs cultured in NBF maintain an undifferentiated state and normal karyotype, are able to form embryoid bodies in vitro, and differentiate into three germ layers and extraembryonic cells. Furthermore, we find that hESCs cultured in NBF possess a low apoptosis rate and a high proliferation rate compared with those cultured in MEF-CM. Our findings provide a novel, simplified chemical-defined culture medium suitable for further therapeutic applications and developmental studies of hESCs

  12. Impact of copper oxide nanomaterials on differentiated and undifferentiated Caco-2 intestinal epithelial cells; assessment of cytotoxicity, barrier integrity, cytokine production and nanomaterial penetration.

    Science.gov (United States)

    Ude, Victor C; Brown, David M; Viale, Luca; Kanase, Nilesh; Stone, Vicki; Johnston, Helinor J

    2017-08-23

    Copper oxide nanomaterials (CuO NMs) are exploited in a diverse array of products including antimicrobials, inks, cosmetics, textiles and food contact materials. There is therefore a need to assess the toxicity of CuO NMs to the gastrointestinal (GI) tract since exposure could occur via direct oral ingestion, mucocillary clearance (following inhalation) or hand to mouth contact. Undifferentiated Caco-2 intestinal cells were exposed to CuO NMs (10 nm) at concentrations ranging from 0.37 to 78.13 μg/cm 2 Cu (equivalent to 1.95 to 250 μg/ml) and cell viability assessed 24 h post exposure using the alamar blue assay. The benchmark dose (BMD 20), determined using PROAST software, was identified as 4.44 μg/cm 2 for CuO NMs, and 4.25 μg/cm 2 for copper sulphate (CuSO 4 ), which informed the selection of concentrations for further studies. The differentiation status of cells and the impact of CuO NMs and CuSO 4 on the integrity of the differentiated Caco-2 cell monolayer were assessed by measurement of trans-epithelial electrical resistance (TEER), staining for Zonula occludens-1 (ZO-1) and imaging of cell morphology using scanning electron microscopy (SEM). The impact of CuO NMs and CuSO 4 on the viability of differentiated cells was performed via assessment of cell number (DAPI staining), and visualisation of cell morphology (light microscopy). Interleukin-8 (IL-8) production by undifferentiated and differentiated Caco-2 cells following exposure to CuO NMs and CuSO 4 was determined using an ELISA. The copper concentration in the cell lysate, apical and basolateral compartments were measured with Inductive Coupled Plasma Optical Emission Spectrometry (ICP-OES) and used to calculate the apparent permeability coefficient (P app ); a measure of barrier permeability to CuO NMs. For all experiments, CuSO 4 was used as an ionic control. CuO NMs and CuSO 4 caused a concentration dependent decrease in cell viability in undifferentiated cells. CuO NMs and CuSO 4

  13. A feeder-free culture using autogeneic conditioned medium for undifferentiated growth of human embryonic stem cells: Comparative expression profiles of mRNAs, microRNAs and proteins among different feeders and conditioned media

    Directory of Open Access Journals (Sweden)

    Chou Chi-Hsien

    2010-10-01

    Full Text Available Abstract Background Human embryonic stem (hES cell lines were derived from the inner cell mass of human blastocysts, and were cultured on mouse embryonic fibroblast (MEF feeder to maintain undifferentiated growth, extensive renewal capacity, and pluripotency. The hES-T3 cell line with normal female karyotype was previously used to differentiate into autogeneic fibroblast-like cells (T3HDF as feeder to support the undifferentiated growth of hES-T3 cells (T3/HDF for 14 passages. Results A feeder-free culture on Matrigel in hES medium conditioned by the autogeneic feeder cells (T3HDF was established to maintain the undifferentiated growth of hES-T3 cells (T3/CMHDF for 8 passages in this investigation. The gene expression profiles of mRNAs, microRNAs and proteins between the undifferentiated T3/HDF and T3/CMHDF cells were shown to be very similar, and their expression profiles were also found to be similar to those of T3/MEF and T3/CMMEF cells grown on MEF feeder and feeder-free Matrigel in MEF-conditioned medium, respectively. The undifferentiated state of T3/HDF and T3/CMHDF as well as T3/MEF andT3/CMMEF cells was evidenced by the very high expression levels of "stemness" genes and low expression levels of differentiation markers of ectoderm, mesoderm and endoderm in addition to the strong staining of OCT4 and NANOG. Conclusion The T3HDF feeder and T3HDF-conditioned medium were able to support the undifferentiated growth of hES cells, and they would be useful for drug development and toxicity testing in addition to the reduced risks of xenogeneic pathogens when used for medical applications such as cell therapies.

  14. 75 FR 8473 - Airworthiness Directives; PILATUS AIRCRAFT LTD. Model PC-12/47E Airplanes

    Science.gov (United States)

    2010-02-25

    .... 11 to PC-12/47E Pilot's Operating Handbook, Report No. 02277, dated March 18, 2009, listed in this AD... Docket Management Facility, U.S. Department of Transportation, Docket Operations, M-30, West Building... implemented during production. You may obtain further information by examining the MCAI in the AD docket...

  15. TrkAIII Promotes Microtubule Nucleation and Assembly at the Centrosome in SH-SY5Y Neuroblastoma Cells, Contributing to an Undifferentiated Anaplastic Phenotype

    Directory of Open Access Journals (Sweden)

    Antonietta R. Farina

    2013-01-01

    Full Text Available The alternative TrkAIII splice variant is expressed by advanced stage human neuroblastomas (NBs and exhibits oncogenic activity in NB models. In the present study, employing stable transfected cell lines and assays of indirect immunofluorescence, immunoprecipitation, Western blotting, microtubule regrowth, tubulin kinase, and tubulin polymerisation, we report that TrkAIII binds α-tubulin and promotes MT nucleation and assembly at the centrosome. This effect depends upon spontaneous TrkAIII activity, TrkAIII localisation to the centrosome and pericentrosomal area, and the capacity of TrkAIII to bind, phosphorylate, and polymerise tubulin. We propose that this novel role for TrkAIII contributes to MT involvement in the promotion and maintenance of an undifferentiated anaplastic NB cell morphology by restricting and augmenting MT nucleation and assembly at the centrosomal MTOC.

  16. N-glycosylation profile of undifferentiated and adipogenically differentiated human bone marrow mesenchymal stem cells: towards a next generation of stem cell markers.

    Science.gov (United States)

    Hamouda, Houda; Ullah, Mujib; Berger, Markus; Sittinger, Michael; Tauber, Rudolf; Ringe, Jochen; Blanchard, Véronique

    2013-12-01

    Mesenchymal stem cells (MSCs) are multipotent cells that are easy to isolate and expand, develop into several tissues, including fat, migrate to diseased organs, have immunosuppressive properties and secrete regenerative factors. This makes MSCs ideal for regenerative medicine. For application and regulatory purposes, knowledge of (bio)markers characterizing MSCs and their development stages is of paramount importance. The cell surface is coated with glycans that possess lineage-specific nature, which makes glycans to be promising candidate markers. In the context of soft tissue generation, we aimed to identify glycans that could be markers for MSCs and their adipogenically differentiated progeny. MSCs were isolated from human bone marrow, adipogenically stimulated for 15 days and adipogenesis was verified by staining the lipid droplets and quantitative real time polymerase chain reaction of the marker genes peroxisome proliferator-activated receptor gamma (PPARG) and fatty acid binding protein-4 (FABP4). Using matrix-assisted laser desorption-ionization-time of flight mass spectrometry combined with exoglycosidase digestions, we report for the first time the N-glycome of MSCs during adipogenic differentiation. We were able to detect more than 100 different N-glycans, including high-mannose, hybrid, and complex N-glycans, as well as poly-N-acetyllactosamine chains. Adipogenesis was accompanied by an increased amount of biantennary fucosylated structures, decreased amount of fucosylated, afucosylated tri- and tetraantennary structures and increased sialylation. N-glycans H6N5F1 and H7N6F1 were significantly overexpressed in undifferentiated MSCs while H3N4F1 and H5N4F3 were upregulated in adipogenically differentiated MSCs. These glycan structures are promising candidate markers to detect and distinguish MSCs and their adipogenic progeny.

  17. AMP N1-Oxide, a Unique Compound of Royal Jelly, Induces Neurite Outgrowth from PC12 Vells via Signaling by Protein Kinase A Independent of that by Mitogen-Activated Protein Kinase

    Directory of Open Access Journals (Sweden)

    Noriko Hattori

    2010-01-01

    Full Text Available Earlier we identified adenosine monophosphate (AMP N1-oxide as a unique compound of royal jelly (RJ that induces neurite outgrowth (neuritegenesis from cultured rat pheochromocytoma PC12 cells via the adenosine A2A receptor. Now, we found that AMP N1-oxide stimulated the phosphorylation of not only mitogen-activated protein kinase (MAPK but also that of cAMP/calcium-response element-binding protein (CREB in a dose-dependent manner. Inhibition of MAPK activation by a MEK inhibitor, PD98059, did not influence the AMP N1-oxide-induced neuritegenesis, whereas that of protein kinase A (PKA by a selective inhibitor, KT5720, significantly reduced neurite outgrowth. AMP N1-oxide also had the activity of suppressing the growth of PC12 cells, which correlated well with the neurite outgrowth-promoting activity. KT5720 restored the growth of AMP N1-oxide-treated PC12 cells. It is well known that nerve growth factor suppresses proliferation of PC12 cells before causing stimulation of neuronal differentiation. Thus, AMP N1-oxide elicited neuronal differentiation of PC12 cells, as evidenced by generation of neurites, and inhibited cell growth through adenosine A2A receptor-mediated PKA signaling, which may be responsible for characteristic actions of RJ.

  18. Peptid CART (cocaine- and amphetamine- regulated transcript) v signalizaci buněk PC12

    Czech Academy of Sciences Publication Activity Database

    Nagelová, Veronika; Železná, Blanka; Maletínská, Lenka

    2014-01-01

    Roč. 108, č. 5 (2014), s. 543 ISSN 0009-2770. [Mezioborové setkání mladých biologů, biochemiků a chemiků /14./. 13.05.2014-16.05.2014, Milovy] R&D Projects: GA ČR GAP303/10/1368 Institutional support: RVO:61388963 Keywords : peptide CART * PC12 * c-Jun * SAPK/JNK Subject RIV: CE - Biochemistry

  19. The osteogenic response of undifferentiated human mesenchymal stem cells (hMSCs) to mechanical strain is inversely related to body mass index of the donor.

    Science.gov (United States)

    Friedl, Gerald; Windhager, Reinhard; Schmidt, Helena; Aigner, Reingard

    2009-08-01

    While the importance of physical factors in the maintenance and regeneration of bone tissue has been recognized for many years and the mechano-sensitivity of bone cells is well established, there is increasing evidence that body fat constitutes an independent risk factor for complications in bone fracture healing and aseptic loosening of implants. Although mechanical causes have been widely suggested, we hypothesized that the osteogenic mechano-response of human mesenchymal stem cells (hMSCs) may be altered in obese patients. We determined the phenotypic and genotypic response of undifferentiated hMSCs of 10 donors to cyclic tensile strain (CTS) under controlled in vitro conditions and analyzed the potential relationship relevant to the donor's anthropomorphometric and biochemical parameters related to donor's fat and bone metabolism. The osteogenic marker genes were all statistically significantly upregulated by CTS, which was accompanied by a significant increase in cell-based ALP activity. Linear correlation analysis revealed that there was a significant correlation between phenotypic CTS response and the body mass index of the donor (r = -0.91, p < 0.001) and phenotypic CTS response was also significantly related to leptin levels (r = -0.68) and estradiol levels (r = 0.67) within the bone marrow microenvironment of the donor. Such an upstream imprinting process mediated by factors tightly related to the donor's fat metabolism, which hampers the mechanosensitivity of hMSCs in obese patients, may be of pathogenetic relevance for the complications associated with obesity that are seen in orthopedic surgery.

  20. Assessment of T Regulatory Cells and Expanded Profiling of Autoantibodies May Offer Novel Biomarkers for the Clinical Management of Systemic Sclerosis and Undifferentiated Connective Tissue Disease

    Directory of Open Access Journals (Sweden)

    Paola Cordiali-Fei

    2013-01-01

    Full Text Available In order to identify disease biomarkers for the clinical and therapeutic management of autoimmune diseases such as systemic sclerosis (SSc and undifferentiated connective tissue disease (UCTD, we have explored the setting of peripheral T regulatory (T reg cells and assessed an expanded profile of autoantibodies in patients with SSc, including either limited (lcSSc or diffuse (dcSSc disease, and in patients presenting with clinical signs and symptoms of UCTD. A large panel of serum antibodies directed towards nuclear, nucleolar, and cytoplasmic antigens, including well-recognized molecules as well as less frequently tested antigens, was assessed in order to determine whether different antibody profiles might be associated with distinct clinical settings. Beside the well-recognized association between lcSSc and anti-centromeric or dcSSC and anti-topoisomerase-I antibodies, we found a significative association between dcSSc and anti-SRP or anti-PL-7/12 antibodies. In addition, two distinct groups emerged on the basis of anti-RNP or anti-PM-Scl 75/100 antibody production among UCTD patients. The levels of T reg cells were significantly lower in patients with SSc as compared to patients with UCTD or to healthy controls; in patients with lcSSc, T reg cells were inversely correlated to disease duration, suggesting that their levels may represent a marker of disease progression.

  1. Long-term exposure of CdTe quantum dots on PC12 cellular activity and the determination of optimum non-toxic concentrations for biological use

    Directory of Open Access Journals (Sweden)

    Gérard Valérie A

    2010-03-01

    Full Text Available Abstract Background The unique and tuneable photonic properties of Quantum Dots (QDs have made them potentially useful tools for imaging biological entities. However, QDs though attractive diagnostic and therapeutic tools, have a major disadvantage due to their inherent cytotoxic nature. The cellular interaction, uptake and resultant toxic influence of CdTe QDs (gelatinised and non-gelatinised Thioglycolic acid (TGA capped have been investigated with pheochromocytoma 12 (PC12 cells. In conjunction to their analysis by confocal microscopy, the QD - cell interplay was explored as the QD concentrations were varied over extended (up to 72 hours co-incubation times. Coupled to this investigation, cell viability, DNA quantification and cell proliferation assays were also performed to compare and contrast the various factors leading to cell stress and ultimately death. Results Thioglycolic acid (TGA stabilised CdTe QDs (gel and non - gel were co-incubated with PC12 cells and investigated as to how their presence influenced cell behaviour and function. Cell morphology was analysed as the QD concentrations were varied over co-incubations up to 72 hours. The QDs were found to be excellent fluorophores, illuminating the cytoplasm of the cells and no deleterious effects were witnessed at concentrations of ~10-9 M. Three assays were utilised to probe how individual cell functions (viability, DNA quantification and proliferation were affected by the presence of the QDs at various concentrations and incubation times. Cell response was found to not only be concentration dependant but also influenced by the surface environment of the QDs. Gelatine capping on the surface acts as a barrier towards the leaking of toxic atoms, thus reducing the negative impact of the QDs. Conclusion This study has shown that under the correct conditions, QDs can be routinely used for the imaging of PC12 cells with minimal adverse effects. We have found that PC12 cells are highly

  2. Long-term exposure of CdTe quantum dots on PC12 cellular activity and the determination of optimum non-toxic concentrations for biological use

    LENUS (Irish Health Repository)

    Prasad, Babu R

    2010-03-25

    Abstract Background The unique and tuneable photonic properties of Quantum Dots (QDs) have made them potentially useful tools for imaging biological entities. However, QDs though attractive diagnostic and therapeutic tools, have a major disadvantage due to their inherent cytotoxic nature. The cellular interaction, uptake and resultant toxic influence of CdTe QDs (gelatinised and non-gelatinised Thioglycolic acid (TGA) capped) have been investigated with pheochromocytoma 12 (PC12) cells. In conjunction to their analysis by confocal microscopy, the QD - cell interplay was explored as the QD concentrations were varied over extended (up to 72 hours) co-incubation times. Coupled to this investigation, cell viability, DNA quantification and cell proliferation assays were also performed to compare and contrast the various factors leading to cell stress and ultimately death. Results Thioglycolic acid (TGA) stabilised CdTe QDs (gel and non - gel) were co-incubated with PC12 cells and investigated as to how their presence influenced cell behaviour and function. Cell morphology was analysed as the QD concentrations were varied over co-incubations up to 72 hours. The QDs were found to be excellent fluorophores, illuminating the cytoplasm of the cells and no deleterious effects were witnessed at concentrations of ~10-9 M. Three assays were utilised to probe how individual cell functions (viability, DNA quantification and proliferation) were affected by the presence of the QDs at various concentrations and incubation times. Cell response was found to not only be concentration dependant but also influenced by the surface environment of the QDs. Gelatine capping on the surface acts as a barrier towards the leaking of toxic atoms, thus reducing the negative impact of the QDs. Conclusion This study has shown that under the correct conditions, QDs can be routinely used for the imaging of PC12 cells with minimal adverse effects. We have found that PC12 cells are highly susceptible to

  3. X-radiation-induced differentiation of xenotransplanted human undifferentiated rhabdomyosarcoma

    International Nuclear Information System (INIS)

    Takizawa, T.; Matsui, T.; Maeda, Y.

    1989-01-01

    A serially xenotransplantable strain of undifferentiated embryonal rhabdomyosarcoma originating from the nasal cavity of a 42-year-old woman has been established in our laboratory. After radiotherapy for the tumor donor, distinct rhabdomyoblastic differentiation of the undifferentiated sarcoma cells appeared in the primary lesion, and it is a reasonable assumption that X-irradiation has a certain potentiality to induce morphologic differentiation of tumor cells. To study this possibility, tissue fragments of undifferentiated embryonal rhabdomyosarcoma that had grown to more than 10 mm after being transplanted to nude mice were selectively irradiated in situ. The degree of rhabdomyoblastic differentiation according to radiation dose was evaluated by light and electron microscopy and by immunostainability for myoglobin, creatine phosphokinase-MM, and desmin. Distinct morphologic differentiation of undifferentiated sarcoma cells could be induced by repeated X-irradiations at several-week intervals

  4. The role of Inositol Phosphoglycan as a possible mediator of the radiation effects on undifferentiated thyroid carcinoma (UTC) cells

    International Nuclear Information System (INIS)

    Dagrosa, Maria A.; Crivello, M.; Perona, Marina; Thorp, Silvia; Pozzi, Emiliano; Juvenal, Guillermo J.; Pisarev, Mario A.; Krawiec, Leon

    2007-01-01

    Full text: In our laboratory we demonstrated that the Inositol Phosphoglycan (IPG) inhibits thyroperoxidase (TPO) activity and other oxidoreductases in normal bovine thyroid gland cultures, thus increasing the H 2 O 2 levels. On the other hand, when a cell is irradiated, damage is caused either by an increase of free radicals (H 2 O 2 and other reactive oxygen species (ROS)) or by the direct ionization of molecules, depending on the radiation quality. With the purpose to establish if the IPG participates in damage mechanisms by radiation, UTC cells of the tumoral line (ARO) in proliferation, were exposed to high and low LET radiation: gamma, neutrons, He and 7 Li nucleus (the lasts ones produced through Boron Neutron Capture Reaction). In each group, the total physical absorbed doses were 3 and 8 Gy (Ra-3 reactor neutrons flux = 7.5 109 n/cm 2 s). The results show a significant increase in the IPG activity in cells irradiated with gamma and neutrons in comparison with control cultures (p 2 O 2 levels (p [es

  5. New gene targets for glucagon-like peptide-1 during embryonic development and in undifferentiated pluripotent cells.

    Science.gov (United States)

    Sanz, Carmen; Blázquez, Enrique

    2011-09-01

    In humans, glucagon-like peptide (GLP-1) functions during adult life as an incretin hormone with anorexigenic and antidiabetogenic properties. Also, the therapeutic potential of GLP-1 in preventing the adipocyte hyperplasia associated with obesity and in bolstering the maintenance of human mesenchymal stem cell (hMSC) stores by promoting the proliferation and cytoprotection of hMSC seems to be relevant. Since these observations suggest a role for GLP-1 during developmental processes, the aim of the present work was to characterize GLP-1 in early development as well as its gene targets in mouse embryonic stem (mES) cells. Mouse embryos E6, E8, and E10.5 and pluripotent mES were used for the inmunodetection of GLP-1 and GLP-1 receptor. Quantitative real-time PCR was used to determine the expression levels of GLP-1R in several tissues from E12.5 mouse embryos. Additionally, GLP-1 gene targets were studied in mES by multiple gene expression analyses. GLP-1 and its receptors were identified in mES and during embryonic development. In pluripotent mES, GLP-1 modified the expression of endodermal, ectodermal, and mesodermal gene markers as well as sonic hedgehog, noggin, members of the fibroblast and hepatic growth factor families, and others involved in pancreatic development. Additionally, GLP-1 promoted the expression of the antiapoptotic gene bcl2 and at the same time reduced proapoptotic caspase genes. Our results indicate that apart from the effects and therapeutic benefits of GLP-1 in adulthood, it may have additional gene targets in mES cells during embryonic life. Furthermore, the pathophysiological implications of GLP-1 imbalance in adulthood may have a counterpart during development.

  6. Effect of graphene oxide on undifferentiated and retinoic acid-differentiated SH-SY5Y cells line

    Science.gov (United States)

    Lv, Min; Zhang, Yujie; Liang, Le; Wei, Min; Hu, Wenbing; Li, Xiaoming; Huang, Qing

    2012-06-01

    Graphene oxide (GO), has created an unprecedented opportunity for development and application in biology, due to its abundant functional groups and well water solubility. Recently, the potential toxicity of GO in the environment and in humans has garnered more and more attention. In this paper, we systematically studied the cytotoxicity of GO nanosheets via examining the effect of GO on the morphology, viability and differentiation of a human neuroblastoma SH-SY5Y cell line, which was an ideal model used to study neuronal disease in vitro. The results suggested that GO had no obvious cytotoxicity at low concentration (cells exhibited dose- and time-dependent decreases at high concentration (>=80 μg mL-1). Moreover, GO did not induce apoptosis. Very interestingly, GO significantly enhanced the differentiation of SH-SY5Y induced-retinoic acid (RA) by evaluating neurite length and the expression of neuronal marker MAP2. These data provide a promising application for neurodegenerative diseases.

  7. Heterogeneity in acute undifferentiated leukemia.

    Science.gov (United States)

    LeMaistre, A; Childs, C C; Hirsch-Ginsberg, C; Reuben, J; Cork, A; Trujillo, J M; Andersson, B; McCredie, K B; Freireich, E; Stass, S A

    1988-01-01

    From January 1985 to May 1987, we studied 256 adults with newly diagnosed acute leukemia. Acute undifferentiated leukemia (AUL) was diagnosed in 12 of the 256 (4.6%) cases when lineage could not be delineated by light microscopy and light cytochemistry. To further characterize the blasts, immunophenotyping, ultrastructural myeloperoxidase (UMPO), and ultrastructural platelet peroxidase parameters were examined in 10, 11, and 6 of the 12 cases, respectively. Five cases demonstrated UMPO and were reclassified as acute myeloblastic leukemia (AML). Of the six UMPO-negative cases, three had a myeloid and one had a mixed immunophenotype. One UMPO-negative patient with a myeloid immunophenotype was probed for the immunoglobulin heavy chain gene (JH) and the beta chain of the T-cell receptor gene (Tcr beta) with no evidence of rearrangement. Six cases were treated with standard acute lymphoblastic leukemia (ALL) chemotherapy and failed to achieve complete remission (CR). Various AML chemotherapeutic regimens produced CR in only 3 of the 12 cases. One case was treated with gamma interferon and the other 2 with high-dose Ara-C. Our findings indicate a myeloid lineage can be detected by UMPO (5/12) in some cases of AUL. A germline configuration with JH and Tcr beta in one case as well as a myeloid immunophenotype in 3 UMPO-negative cases raises the possibility that myeloid lineage commitment may occur in the absence of myeloid peroxidase (MPO) cytochemical positivity.

  8. Bioactivity-guided isolation of chemical constituents against H2O2-induced neurotoxicity on PC12 from Cimicifuga dahurica (Turcz.) Maxim.

    Science.gov (United States)

    Lv, Chongning; Yang, Fan; Qin, Rulan; Qi, Zheyuan; Zhou, Wanrong; Lu, Jincai

    2017-08-01

    Three new compounds (1, 6, 9), with six known compounds (2-5, 7-8) were obtained from water-soluble extract of Cimicifuga dahurica (Turcz.) Maxim. by bioactivity-guided isolation. Their structures were elucidated by chemical and spectral analysis, including 1D, 2D NMR data and HRESIMS. H 2 O 2 -induced neurotoxicity on PC12 cells model were conducted to evaluate the neuro-protective capability of these compounds. The piscidic acid derivatives compounds 4-7 showed marked neuro-protective effect at certain concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Undifferentiated Pleomorphic Sarcoma and the Importance of Considering the Oncogenic and Immune-Suppressant Role of the Human T-Cell Lymphotropic Virus Type 1: A Case Report

    Directory of Open Access Journals (Sweden)

    Sergio Lupo

    2017-05-01

    Full Text Available IntroductionSoft-tissue sarcomas account for 0.7% of all malignant tumors, with an incidence rate of 3 per 100,000 persons/year. The undifferentiated pleomorphic sarcoma (UPS with giant cells, a high grade tumor of soft tissue, is very unusual, especially in young adults before the age of 40. Human T-cell lymphotropic virus type 1 (HTLV-1 is a human retrovirus, classified as group 1 human carcinogens by The International Agency for Research on Cancer, that causes an aggressive malignancy known as adult T-cell lymphoma/leukemia and a progressive chronic inflammatory neurological disease named HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP. HTLV-1 causes accumulation of genetic mutations in the host genome that could contribute to cellular transformation, one of the oncogenic features of HTLV-1.Case reportWe describe a case of a young woman with UPS who suffered from HAM/TSP with 3 years of evolution. In 2013, the patient started with neurological symptoms: weakness in the legs and bladder dysfunction. One year later, the patient developed a mild paraparesis in both extremities, anti-HTLV-1 antibodies were detected in plasma and in cerebrospinal fluid, and HAM/TSP was confirmed. In November 2015, a benign ganglion cyst was first suspected without intervention and by March 2016 a sarcoma was diagnosed. Three weeks after surgical resection, the tumor aroused in deep tissue and behaved aggressively, implicating a curative wide resection of the fibula, joint reconstruction, and soft-tissue graft. Histopathological examination confirmed UPS with giant cells.Concluding remarksThe unapparent subclinical immunodeficiency state due to HTLV-1 infection deserves to be considered in order to carefully monitor the possibility of developing any type of cancer. Besides, reaching an accurate and timely diagnosis of UPS can be challenging due to the difficulty in diagnosis/classification and delayed consultation. In this particular case

  10. Akt phosphorylation is essential for nuclear translocation and retention in NGF-stimulated PC12 cells

    International Nuclear Information System (INIS)

    Truong Le Xuan Nguyen; Choi, Joung Woo; Lee, Sang Bae; Ye, Keqiang; Woo, Soo-Dong; Lee, Kyung-Hoon; Ahn, Jee-Yin

    2006-01-01

    Nerve growth factor (NGF) elicits Akt translocation into the nucleus, where it phosphorylates nuclear targets. Here, we describe that Akt phosphorylation can promote the nuclear translocation of Akt and is necessary for its nuclear retention. Overexpression of Akt-K179A, T308A, S473A-mutant failed to show either nuclear translocation or nuclear Akt phosphorylation, whereas expression of wild-type counterpart elicited profound Akt phosphorylation and induced nuclear translocation under NGF stimulation. Employing the PI3K inhibitor and a variety of mutants PI3K, we showed that nuclear translocation of Akt was mediated by activation of PI3K, and Akt phosphorylation status in the nucleus required PI3K activity. Thus the activity of PI3K might contribute to the nuclear translocation of Akt, and that Akt phosphorylation is essential for its nuclear retention under NGF stimulation conditions

  11. (PC12) cell lines to oxidized multi-walled carbon nanotubes

    African Journals Online (AJOL)

    Background: The applications of oxidized carbon nanotubes (o-CNTs) have shown potentials in novel drug delivery including the brain which is usually a challenge. This underscores the importance to study its potential toxic effect in animals. Despite being a promising tool for biomedical applications little is known about the ...

  12. (PC12) cell lines to oxidized multi-walled carbon nanotubes

    African Journals Online (AJOL)

    EB

    Methods: The pristine multi-walled carbon nanotubes (p-MWCNTs) were ... characterize the MWCNTs. ..... South Africa and NRF Focus Area, Nanotechnology ... of carbon nanotubes in drug delivery. Current. Opinion in Chemical Biology, 2005 ...

  13. Elimination of remaining undifferentiated induced pluripotent stem cells in the process of human cardiac cell sheet fabrication using a methionine-free culture condition.

    Science.gov (United States)

    Matsuura, Katsuhisa; Kodama, Fumiko; Sugiyama, Kasumi; Shimizu, Tatsuya; Hagiwara, Nobuhisa; Okano, Teruo

    2015-03-01

    Cardiac tissue engineering is a promising method for regenerative medicine. Although we have developed human cardiac cell sheets by integration of cell sheet-based tissue engineering and scalable bioreactor culture, the risk of contamination by induced pluripotent stem (iPS) cells in cardiac cell sheets remains unresolved. In the present study, we established a novel culture method to fabricate human cardiac cell sheets with a decreased risk of iPS cell contamination while maintaining viabilities of iPS cell-derived cells, including cardiomyocytes and fibroblasts, using a methionine-free culture condition. When cultured in the methionine-free condition, human iPS cells did not survive without feeder cells and could not proliferate or form colonies on feeder cells or in coculture with cells for cardiac cell sheet fabrication. When iPS cell-derived cells after the cardiac differentiation were transiently cultured in the methionine-free condition, gene expression of OCT3/4 and NANOG was downregulated significantly compared with that in the standard culture condition. Furthermore, in fabricated cardiac cell sheets, spontaneous and synchronous beating was observed in the whole area while maintaining or upregulating the expression of various cardiac and extracellular matrix genes. These findings suggest that human iPS cells are methionine dependent and a methionine-free culture condition for cardiac cell sheet fabrication might reduce the risk of iPS cell contamination.

  14. Bone metastasis of undifferentiated pulmonary adenocarcinoma in a cat

    International Nuclear Information System (INIS)

    Jensen, H.E.; Arnbjerg, J.

    1986-01-01

    In the cat, metastases from primary lung tumors (PLT) to distal bones have been described by Moore & Middleton (differentiated adenocarcinoma) and Pool et al. (squamous cell carcinoma) (16 22). This paper describes the radiological and pathological findings in a cat with metastatic undifferentiated papillary adenocarcinoma. The involvement of the toes was the initial sign leading to veterinary consultation

  15. Can magnetic resonance imaging differentiate undifferentiated arthritis?

    DEFF Research Database (Denmark)

    Østergaard, Mikkel; Duer, Anne; Hørslev-Petersen, K

    2005-01-01

    A high sensitivity for the detection of inflammatory and destructive changes in inflammatory joint diseases makes magnetic resonance imaging potentially useful for assigning specific diagnoses, such as rheumatoid arthritis and psoriatic arthritis in arthritides, that remain undifferentiated after...... conventional clinical, biochemical and radiographic examinations. With recent data as the starting point, the present paper describes the current knowledge on magnetic resonance imaging in the differential diagnosis of undifferentiated arthritis....

  16. Role of Notch-1 signaling in ethanol induced PC12 apoptosis | Li ...

    African Journals Online (AJOL)

    Chronic alcoholic dementia has crucial role in progress of neurodegenerative disease and affects a large portion of our aging population. Neuronal cell apoptosis may be a contributing factor of neurodegenerative disease (ND) and Alzheimer's disease (AD). Previous researches have indicated that Notch-1 signaling ...

  17. Low oxygen atmosphere facilitates proliferation and maintains undifferentiated state of umbilical cord mesenchymal stem cells in an hypoxia inducible factor-dependent manner.

    Science.gov (United States)

    Drela, Katarzyna; Sarnowska, Anna; Siedlecka, Patrycja; Szablowska-Gadomska, Ilona; Wielgos, Miroslaw; Jurga, Marcin; Lukomska, Barbara; Domanska-Janik, Krystyna

    2014-07-01

    As we approach the era of mesenchymal stem cell (MSC) application in the medical clinic, the standarization of their culture conditions are of the particular importance. We re-evaluated the influences of oxygens concentration on proliferation, stemness and differentiation of human umbilical cord Wharton Jelly-derived MSCs (WJ-MSCs). Primary cultures growing in 21% oxygen were either transferred into 5% O2 or continued to grow under standard 21% oxygen conditions. Cell expansion was estimated by WST1/enzyme-linked immunosorbent assay or cell counting. After 2 or 4 weeks of culture, cell phenotypes were evaluated using microscopic, immunocytochemical, fluorescence-activated cell-sorting and molecular methods. Genes and proteins typical of mesenchymal cells, committed neural cells or more primitive stem/progenitors (Oct4A, Nanog, Rex1, Sox2) and hypoxia inducible factor (HIF)-1α-3α were evaluated. Lowering O2 concentration from 21% to the physiologically relevant 5% level substantially affected cell characteristics, with induction of stemness-related-transcription-factor and stimulation of cell proliferative capacity, with increased colony-forming unit fibroblasts (CFU-F) centers exerting OCT4A, NANOG and HIF-1α and HIF-2α immunoreactivity. Moreover, the spontaneous and time-dependent ability of WJ-MSCs to differentiate into neural lineage under 21% O2 culture was blocked in the reduced oxygen condition. Importantly, treatment with trichostatin A (TSA, a histone deacetylase inhibitor) suppressed HIF-1α and HIF-2α expression, in addition to blockading the cellular effects of reduced oxygen concentration. A physiologically relevant microenvironment of 5% O2 rejuvenates WJ-MSC culture toward less-differentiated, more primitive and faster-growing phenotypes with involvement of HIF-1α and HIF-2α-mediated and TSA-sensitive chromatin modification mechanisms. These observations add to the understanding of MSC responses to defined culture conditions, which is the most

  18. Transient fluctuations of intracellular zinc ions in cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan [Division of Human Nutrition, Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX 77555 (United States); Maret, Wolfgang, E-mail: womaret@utmb.edu [Division of Human Nutrition, Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX 77555 (United States); Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX 77555 (United States)

    2009-08-15

    Zinc is essential for cell proliferation, differentiation, and viability. When zinc becomes limited for cultured cells, DNA synthesis ceases and the cell cycle is arrested. The molecular mechanisms of actions of zinc are believed to involve changes in the availability of zinc(II) ions (Zn{sup 2+}). By employing a fluorescent Zn{sup 2+} probe, FluoZin-3 acetoxymethyl ester, intracellular Zn{sup 2+} concentrations were measured in undifferentiated and in nerve growth factor (NGF)-differentiated rat pheochromocytoma (PC12) cells. Intracellular Zn{sup 2+} concentrations are pico- to nanomolar in PC12 cells and are higher in the differentiated than in the undifferentiated cells. When following cellular Zn{sup 2+} concentrations for 48 h after the removal of serum, a condition that is known to cause cell cycle arrest, Zn{sup 2+} concentrations decrease after 30 min but, remarkably, increase after 1 h, and then decrease again to about one half of the initial concentration. Cell proliferation, measured by an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, decreases after both serum starvation and zinc chelation. Two peaks of Zn{sup 2+} concentrations occur within one cell cycle: one early in the G1 phase and the other in the late G1/S phase. Thus, fluctuations of intracellular Zn{sup 2+} concentrations and established modulation of phosphorylation signaling, via an inhibition of protein tyrosine phosphatases at commensurately low Zn{sup 2+} concentrations, suggest a role for Zn{sup 2+} in the control of the cell cycle. Interventions targeted at these picomolar Zn{sup 2+} fluctuations may be a way of controlling cell growth in hyperplasia, neoplasia, and diseases associated with aberrant differentiation.

  19. Long-term culture of undifferentiated spermatogonia isolated from immature and adult bovine testes.

    Science.gov (United States)

    Suyatno; Kitamura, Yuka; Ikeda, Shuntaro; Minami, Naojiro; Yamada, Masayasu; Imai, Hiroshi

    2018-03-01

    Undifferentiated spermatogonia eventually differentiate in the testis to produce haploid sperm. Within this cell population, there is a small number of spermatogonial stem cells (SSCs). SSCs are rare cells in the testis, and their cellular characteristics are poorly understood. Establishment of undifferentiated cell line would provide an indispensable tool for studying their biological nature and spermiogenesis/spermatogenesis in vitro. However, there have been few reports on the long-term culture of undifferentiated spermatogonia in species other than rodents. Here, we report the derivation and long-term in vitro culture of undifferentiated spermatogonia cell lines from immature and adult bovine testes. Cell lines from immature testes were maintained in serum-free culture conditions in the presence of glial-cell-line-derived neurotropic factor (GDNF) and bovine leukemia inhibitory factor (bLIF). These cell lines have embryonic stem (ES)-like cell morphology, express pluripotent-stem-cell-specific and germ-cell-specific markers at the protein and mRNA levels, and contributed to the inner cell mass (ICM) of embryos in the blastocyst stage. Meanwhile, cell lines established from adult testes were maintained in low-serum media in the presence of 6-bromoindirubin-3'-oxime (BIO). These cell lines have characteristics resembling those of previously reported male mouse germ cell lines as confirmed by their botryoidally aggregated morphology, as well as the expression of germ-cell-specific markers and pluripotent stem cell markers. These findings could be useful for the development of long-term culture of undifferentiated spermatogonia, which could aid in conservation of species and improvement of livestock production through genome editing technology. © 2018 Wiley Periodicals, Inc.

  20. Acute erythroblastic leukemia presenting as acute undifferentiated leukemia: a report of two cases with ultrastructural features.

    Science.gov (United States)

    Reiffers, J; Bernard, P; Larrue, J; Dachary, D; David, B; Boisseau, M; Broustet, A

    1985-01-01

    This report describes two elderly patients with acute leukemia in which blast cells were undifferentiated with conventional light microscopy (L.M.) and cytochemistry. Blast cells were identified as belonging to the erythroblastic line by their ultrastructural features: glycogen deposits, lipidic vacuoles, cytoplasmic ferritin molecules and rhopheocytotic invagination. Moreover, blast cells were surrounding a central macrophage. Thus, these two patients had acute erythroblastic leukemia which differs from erythroleukemia (M6 of FAB classification) in which blast cells present myeloblastic characteristics.

  1. Undifferentiated carcinoma of the esophagus: a clinicopathological study of 16 cases☆

    Science.gov (United States)

    Singhi, Aatur D.; Seethala, Raja R.; Nason, Katie; Foxwell, Tyler J.; Roche, Robyn L.; McGrath, Kevin M.; Levy, Ryan M.; Luketich, James D.; Davison, Jon M.

    2015-01-01

    Summary Undifferentiated carcinoma of the esophagus is a rare histologic variant of esophageal carcinoma. Using criteria based on studies of undifferentiated carcinomas arising at other sites, we have collected 16 cases of resected esophageal undifferentiated carcinomas. Patients ranged in age from 39 to 84 years (mean, 65.5 years) and were predominantly male (94%). The tumors were characterized by an expansile growth pattern of neoplastic cells organized in solid sheets and without significant glandular, squamous, or neuroendocrine differentiation. The neoplastic cells had a syncytial-like appearance, little intervening stroma, and patchy tumor necrosis. In a subset of cases, the tumor cells adopted a sarcomatoid (n = 2), rhabdoid (n = 1), or minor component (esophagus. Consistent with the epithelial nature of these neoplasms, cytokeratin positivity was identified in all cases. In addition, SALL4 expression was present in 8 (67%) of 12 cases. Follow-up information was available for 15 (94%) of 16 patients, all of whom were deceased. Survival after surgery ranged from 1 to 50 months (mean, 11.9 months). Before death, 67% patients had documented locoregional recurrence and/or distant organ metastases. In summary, esophageal undifferentiated carcinomas are aggressive neoplasms and associated with a high incidence of recurrence and/or metastases and a dismal prognosis. PMID:25582499

  2. Efecto sobre la viabilidad celular de una nueva serie de espirosteroides sintéticos en células PC12

    Directory of Open Access Journals (Sweden)

    Laura García-Pupo

    2013-03-01

    Full Text Available Introducción: la diosgenina y sus derivados se han descrito como potentes inhibidores de la proliferación en varias líneas tumorales. Sin embargo otras moléculas relacionadas estructuralmente con dichos derivados, se han reportado como candidatos terapéuticos y otras de ellas se incluyen en alimentos de consumo humano. Objetivo: el presente trabajo evalúa el efecto sobre la viabilidad celular de una nueva serie de espiroesteroides sintéticos derivados de la diosgenina, en células tipo neurales PC12. Métodos: la viabilidad de los cultivos de PC12 se determinó mediante el ensayo de MTT y se calcularon descriptores moleculares teóricos como la lipofilicidad (logP virtual y la superficie de área polar (SAP, con el objetivo de establecer relaciones estructura-actividad. Resultados: nuestros resultados demuestran que solo el acido taurodesoxicólico disminuye de manera significativa la viabilidad celular. Más aun, dicha molécula presenta valores menores y mayores de logP virtual y SAP, respectivamente, respecto al resto de los esteroides de la serie. Conclusiones: los resultados anteriores avalan el estudio del acido taurodesoxicólico como potencial inhibidor de la proliferación celular y al resto de las moléculas de la serie como candidatos neuroprotectores a evaluar en esta misma línea celular y dosis de tratamiento.

  3. BCNT studies for application to the undifferentiated thyroid carcinoma

    International Nuclear Information System (INIS)

    Dagrosa, Maria A.; Viaggi, Mabel E.; Cabrini, Romulo L.; Juvenal, Guillermo J.; Pisarev, Mario A.; Garavaglia, Ricardo N.; Farias, Silvia S.; Belli, Carolina; Larripa, Irene; Gangitano, David

    2000-01-01

    Undifferentiated thyroid carcinoma (UTC) lacks an effective treatment. Boron neutron capture therapy (BNCT) is based on the selective uptake of 10 B-boronated compounds by some tumours, followed by irradiation with an appropriate neutron beam. The radioactive boron originated ( 11 B) decays releasing 7 Li, gamma rays and alpha particles, and these latter will destroy the tumour. In order to explore the possibility of applying BNCT to UTC we have studied the biodistribution of BPA. Animal Model: To develop an animal model of undifferentiated thyroid carcinoma (UTC), which may be useful to study of BNCT. The UTC human cell line ARO was implanted into the back of the nude mice. We performed successive passages in mouse after tumor culturing in order to obtain an animal model similar to the human tumor. We studied the kinetics and the tumoral histology, the capability to induce metastasis, the biokinetics of in vitro growth, as well as cytogenetic and molecular aspects. Histological specimens of tumor showed extensive viability with high mitotic activity. At 117 days, the tumors reached a size of 1700 mm 3 and showed a central necrotic portion with a thin layer of viable cells presence of micro metastasis could be observed in the lung. The kinetics of growth both in vivo and in vitro showed that when the number of passages in mouse increases the growth rate decreases. The cytogenetic and molecular studies did not show differences between the original line and the sublines that could explain this phenotypic change. Moreover, the cytogenetic studies proved that the ARO cell line and its sublines showed a complex clonal karyotype including structural alterations with deletions and translocations involving chromosomes 5, 7, 8, 9p, 11p, 17q 19p, and 20q that were consistent with earlier reported data in UTC. In vivo BNCT studies: ARO cells were transplanted into the scapular region of NIH nude mice, and after 2 weeks BPA (350 or 600 mg/kg bw) was injected via i.p. The

  4. Entomophagy and coprophagy in undifferentiated schizophrenia.

    Science.gov (United States)

    Lingeswaran, Anand; Vijayakumar, Vinayak; Dinesh, John

    2009-01-01

    Coprophagia or the ingestion of feces, considered to be a variant of pica, has been associated with medical disorders like seizure disorders, cerebral atrophy, and tumors and with psychiatric disorders like mental retardation, alcoholism, depression, obsessive compulsive disorder, schizophrenia, schizoaffective disorder, fetishes, delirium, and dementia. But entomophagy or the practice of eating live or dead insects as food by humans has only been reported as part of eating habits by some cultures in the world and not in association with any medical or neuropsychiatric disorders. Till date, there is no report in medical literature of entomophagy as an association with any neuropsychiatric or medical illnesses. Coprophagy and entomophagy has not been together reported as well. We describe the first ever case report of a 19-year- old male patient diagnosed with undifferentiated schizophrenia and associated with both entomophagy and coprophagy. His schizophrenic symptoms, the entomophagic, coprophagic behaviors improved with olanzapine therapy. Entomophagy and coprophagy, two very unusual human behaviors, can be seen in association with schizophrenia.

  5. Menadione inhibits MIBG uptake in two neuroendocrine cell lines

    NARCIS (Netherlands)

    Cornelissen, J.; Tytgat, G. A.; van den Brug, M.; van Kuilenburg, A. B.; Voûte, P. A.; van Gennip, A. H.

    1997-01-01

    In this paper we report on our studies of the effect of menadione on the uptake of MIBG in the neuroendocrine cell lines PC12 and SK-N-SH. Menadione inhibits the uptake of MIBG in both cell lines in a dose-dependent manner. Inhibition of MIBG uptake is most pronounced in the PC12 cell line.

  6. Marked change in microRNA expression during neuronal differentiation of human teratocarcinoma NTera2D1 and mouse embryonal carcinoma P19 cells

    International Nuclear Information System (INIS)

    Hohjoh, Hirohiko; Fukushima, Tatsunobu

    2007-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs, with a length of 19-23 nucleotides, which appear to be involved in the regulation of gene expression by inhibiting the translation of messenger RNAs carrying partially or nearly complementary sequences to the miRNAs in their 3' untranslated regions. Expression analysis of miRNAs is necessary to understand their complex role in the regulation of gene expression during the development, differentiation and proliferation of cells. Here we report on the expression profile analysis of miRNAs in human teratocarcinoma NTere2D1, mouse embryonic carcinoma P19, mouse neuroblastoma Neuro2a and rat pheochromocytoma PC12D cells, which can be induced into differentiated cells with long neuritic processes, i.e., after cell differentiation, such that the resultant cells look similar to neuronal cells. The data presented here indicate marked changes in the expression of miRNAs, as well as genes related to neuronal development, occurred in the differentiation of NTera2D1 and P19 cells. Significant changes in miRNA expression were not observed in Neuro2a and PC12D cells, although they showed apparent morphologic change between undifferentiated and differentiated cells. Of the miRNAs investigated, the expression of miRNAs belonging to the miR-302 cluster, which is known to be specifically expressed in embryonic stem cells, and of miR-124a specific to the brain, appeared to be markedly changed. The miR-302 cluster was potently expressed in undifferentiated NTera2D1 and P19 cells, but hardly in differentiated cells, such that miR-124a showed an opposite expression pattern to the miR-302 cluster. Based on these observations, it is suggested that the miR-302 cluster and miR-124a may be useful molecular indicators in the assessment of degree of undifferentiation and/or differentiation in the course of neuronal differentiation

  7. Undifferentiated nasopharyngeal cancer (UCNT): current diagnostic and therapeutic aspects

    International Nuclear Information System (INIS)

    Altun, M.; Fandi, A.; Dupuis, O.; Cvitkovic, E.; Krajina, Z.; Eschwege, F.

    1995-01-01

    Undifferentiated carcinoma of the nasopharynx (UCNT) is a particular head and neck epidermoid lineage tumor related to the Epstein Barr Virus (EBV). It has geographically selective endemic epidemiologic features, without relation to external carcinogens. Its systemic aggressiveness is the source of most disease-related demises, because radiotherapy achieves excellent local control and a significant percentage of cure in patients with exclusive locoregional disease. Differences in the staging systems currently in use, the recent changes in imaging and radiotherapy technology, and the lack of distinction between UCNT and squamous cell carcinoma (SCC) of the nasopharynx in Western literature reports make for some difficulty in therapeutic results evaluation when analyzing available literature. Its chemosensitivity is a relatively recent acknowledged fact, and its use in metastatic patients results in a high percentage of objective responses, many of long duration. Neoadjuvant cisplatin-based chemotherapy seems to be of benefit, but outstanding controversies in this regard will be soon answered through ongoing phase III trials. After a review of the current literature of all the above-mentioned aspects of this fascinating nosologic entity, our own experience, both in metastatic and locoregional disease patients is analyzed

  8. Optimization of the application of BNCT to undifferentiated thyroid cancer

    International Nuclear Information System (INIS)

    Dagrosa, M.A.; Thomasz, L.; Longhino, J.

    2006-01-01

    The possible increase in BNCT efficacy for undifferentiated thyroid carcinoma (UTC) using BPA plus BOPP and nicotinamide (NA) as a radiosensitizer on the BNCT reaction was analyzed. In these studies nude mice were transplanted with the ARO cells and after 14 days they were treated as follows: 1) Control; 2) NCT (neutrons alone); 3) NCT plus NA (100 mg/kg bw/day for 3 days); 4) BPA (350 mg/kg bw) + neutrons; 5) BPA+ NA+ neutrons; 6) BPA+BOPP (60 mg/kg bw) + neutrons. The flux of hyperthermal neutrons was 2.8 10 8 during 85 min. Neutrons alone or with NA caused some tumor growth delay, while in the BPA, BPA+NA and BPA+BOPP groups a 100% halt of tumor growth was observed. When the initial tumor volume was 50 mm 3 or less a complete cure was found in BPA+NA (2/2); BPA (1/4); BPA+BOPP (7/7). After 90 days of complete regression, recurrence of tumor was observed in 2/2 BPA/NA (2/2) and BPA+BOPP (1/7). Caspase 3 activity was increased in BPA+NA (p<0.05 vs controls). BPA plus NA increased tumor apoptosis but only the combination of BPA+BOPP increased significantly BNCT efficiency. (author)

  9. Undifferentiated-type gastric adenocarcinoma: prognostic impact of three histological types

    Directory of Open Access Journals (Sweden)

    Lee Han

    2012-11-01

    Full Text Available Abstract Background The prognostic value of the three constituents of undifferentiated-type gastric adenocarcinoma remains unclear. The present study assessed the clinicopathological characteristics and prognosis of undifferentiated-type mucinous adenocarcinoma (uMAC and signet ring cell carcinoma (SRC compared with those of poorly differentiated adenocarcinoma (PDAC. Methods In total, 1,376 patients with undifferentiated-type gastric adenocarcinoma were included, consisting of 1,002 patients diagnosed with PDAC, 54 with uMAC and 320 with SRC. Clinicopathological factors and survival rates were compared among the three histological types. Results Significant differences in the distribution of pathological stages were observed among the groups. Patients with SRC had a significantly better survival rate than those with PDAC or uMAC, in both the all patients including non-curative resected patients and curative-resected groups. In addition, there was significant difference in survival between the PDAC and uMAC groups. Multivariate analysis suggested that age, gender, tumor depth, lymph node metastasis and curability significantly affected survival. Histological type was not an independent prognostic factor. There was no significant difference in the pattern of recurrence among the three groups. Conclusions The uMAC and SRC had worse and favorable prognosis compared with PDCA, respectively. However, there were no differences in survival by pathological stage, thus histological type was not an independent predictor of prognosis.

  10. NUTM1 Gene Fusions Characterize a Subset of Undifferentiated Soft Tissue and Visceral Tumors.

    Science.gov (United States)

    Dickson, Brendan C; Sung, Yun-Shao; Rosenblum, Marc K; Reuter, Victor E; Harb, Mohammed; Wunder, Jay S; Swanson, David; Antonescu, Cristina R

    2018-05-01

    NUT midline carcinoma is an aggressive tumor that occurs mainly in the head and neck and, less frequently, the mediastinum and lung. Following identification of an index case of a NUTM1 fusion positive undifferentiated soft tissue tumor, we interrogated additional cases of primary undifferentiated soft tissue and visceral tumors for NUTM1 abnormalities. Targeted next-generation sequencing was performed on RNA extracted from formalin-fixed paraffin-embedded tissue, and results validated by fluorescence in situ hybridization using custom bacterial artificial chromosome probes. Six patients were identified: mean age of 42 years (range, 3 to 71 y); equal sex distribution; and, tumors involved the extremity soft tissues (N=2), kidney (N=2), stomach, and brain. On systemic work-up at presentation all patients lacked a distant primary tumor. Morphologically, the tumors were heterogenous, with undifferentiated round-epithelioid-rhabdoid cells arranged in solid sheets, nests, and cords. Mitotic activity was generally brisk. Four cases expressed pancytokeratin, but in only 2 cases was this diffuse. Next-generation sequencing demonstrated the following fusions: BRD4-NUTM1 (3 cases), BRD3-NUTM1, MXD1-NUTM1, and BCORL1-NUTM1. Independent testing by fluorescence in situ hybridization confirmed the presence of NUTM1 and partner gene rearrangement. This study establishes that NUT-associated tumors transgress the midline and account for a subset of primitive neoplasms occurring in soft tissue and viscera. Tumors harboring NUTM1 gene fusions are presumably underrecognized, and the extent to which they account for undifferentiated mesenchymal, neuroendocrine, and/or epithelial neoplasms is unclear. Moreover, the relationship, if any, between NUT-associated tumors in soft tissue and/or viscera, and conventional NUT carcinoma, remains to be elucidated.

  11. Radiation therapy for primary undifferentiated carcinoma of the esophagus

    International Nuclear Information System (INIS)

    Ohno, Tatsuya; Yamakawa, Michitaka; Shiojima, Kazumi; Hasegawa, Masatoshi; Akimoto, Tetsuo; Nakayama, Yuko; Kitamoto, Yoshizumi; Mitsuhashi, Norio; Niibe, Hideo

    1996-01-01

    Eight patients with undifferentiated carcinoma of the esophagus were treated by radiation therapy. Loco-regional control was easily achieved by radiation therapy alone and no loco-regional recurrence was observed for six patients treated with total dose of more than 30 Gy. However four patients developed distant metastases and died of tumor. Median survival was 3.5 months with a range of 0 to 48 months. Only one patient is alive with no evidence of tumor for 48 months. Combination chemotherapy should be recommended for primary undifferentiated carcinoma of the esophagus because of having a high incidence of distant metastases. (author)

  12. [Undifferentiated cutaneous angiosarcoma of the head: identification by the endothelial marker Ulex europaeus agglutinin I].

    Science.gov (United States)

    Bork, K; Fries, J; Hoede, N; Korting, G W; Dienes, P

    1985-06-01

    Cutaneous angiosarcoma of the head is a rare tumor of the elderly and can occur in an undifferentiated form without any clinical or histological signs of the vascular origin of this tumor. In these cases, the tumor can be identified by using endothelial cell markers, such as factor-VIII-related antigen and ulex europaeus agglutinin I, in an immunofluorescence technique or a peroxidase-antiperoxidase method. A 78-year-old patient is described who died within 18 months from such a tumor, which was diagnosed using the endothelial cell marker, ulex europaeus agglutinin I.

  13. Myeloblastic and lymphoblastic markers in acute undifferentiated leukemia and chronic myelogenous leukemia in blast crisis.

    Science.gov (United States)

    Shumak, K H; Baker, M A; Taub, R N; Coleman, M S

    1980-11-01

    Blast cells were obtained from 17 patients with acute undifferentiated leukemia and 13 patients with chronic myelogenous leukemia in blast crisis. The blasts were tested with anti-i serum in cytotoxicity tests and with antisera to myeloblastic leukemia-associated antigens in immunofluorescence tests. The terminal deoxynucleotidyl transferase (TDT) content of the blasts was also measured. Lymphoblasts react strongly with anti-i, do not react with anti-myeloblast serum, and have high levels of TDT; myeloblasts react weakly with anti-i, do not react with anti-myeloblast serum, and have very low levels of TDT. Of the 17 patients with acute undifferentiated leukemia, there were six with blasts which reacted like lymphoblasts, six with blasts which reacted like myeloblasts, and five with blasts bearing different combinations of these lymphoblastic and myeloblastic markers. Eight of the 11 patients with lymphoblastic or mixed lymphoblastic-myeloblastic markers, but only one of the six with myeloblastic markers, achieved complete or partial remission in response to therapy. Thus, in acute undifferentiated leukemia, classification of blasts with these markers may be of prognostic value. Of the 13 patients with chronic myelogenous leukemia in blast crises, the markers were concordant (for myeloblasts) in only two cases. Three of the 13 patients had TDT-positive blasts, but the reactions of these cells with anti-i and with anti-myeloblast serum differed from those seen with lymphoblasts from patients with acute lymphoblastic leukemia. Although the cell involved in "lymphoid" blast crisis of chronic myelogenous leukemia is similar in many respects to that involved in acute lymphoblastic leukemia, these cells are not identical.

  14. Noun-Verb Ambiguity in Chronic Undifferentiated Schizophrenia

    Science.gov (United States)

    Goldfarb, Robert; Bekker, Natalie

    2009-01-01

    This study investigated noun-verb retrieval patterns of 30 adults with chronic undifferentiated schizophrenia and 67 typical adults, to determine if schizophrenia affected nouns (associated with temporal lobe function) differently from verbs (associated with frontal lobe function). Stimuli were homophonic homographic homonyms, balanced according…

  15. Doxorubicin and vincristine affect undifferentiated rat spermatogonia

    NARCIS (Netherlands)

    Beaud, Hermance; van Pelt, Ans; Delbes, Geraldine

    2017-01-01

    Anticancer drugs, such as alkylating agents, can affect male fertility by targeting the DNA of proliferative spermatogonial stem cells (SSC). Therefore, to reduce such side effects, other chemotherapeutics are used. However, less is known about their potential genotoxicity on SSC. Moreover, DNA

  16. Characterization of acute undifferentiated leukemia by combined analysis of plasma membrane-associated gamma-glutamyltranspeptidase and soluble terminal transferase.

    Science.gov (United States)

    Heumann, D; Losa, G; Barras, C; Morell, A; von Fliedner, V

    1985-08-01

    gamma-Glutamyltranspeptidase (gamma-GT) is a plasma membrane-associated enzyme present in blasts of certain acute leukemias. We analyzed 90 cases of undifferentiated and differentiated acute leukemias for gamma-GT, using a colorimetric assay. Blasts of all patients with common acute lymphoblastic leukemia (ALL) and T-ALL were negative for gamma-GT (less than 5 units). In contrast, gamma-GT was significantly elevated in acute myeloblastic or monoblastic leukemia blasts (P less than .001). In 16 cases of acute undifferentiated leukemia (AUL) studied, the levels of gamma-GT ranged from 0 to 93 units; in eight cases, gamma-GT was positive (greater than 5 units), and six of these had 2% to 5% Sudan black-positive leukemic cells in the blast-enriched suspension. Combined gamma-GT/TdT analysis revealed that both enzyme markers were mutually exclusive in 75% of AUL cases, suggesting that gamma-GT+/TdT-blasts are of nonlymphoid origin, and gamma-GT-/TdT+ blasts are of lymphoid origin. Two cases were devoid of both enzyme activities and could represent truly undifferentiated leukemia. Thus, combined gamma-GT/TdT analysis underlines the heterogeneity of AUL and appears to be useful in defining the lineage commitment of undifferentiated leukemic blasts.

  17. Case of Six-Year Disease-Free Survival with Undifferentiated Carcinoma of the Pancreas

    Directory of Open Access Journals (Sweden)

    Hiroyuki Saito

    2016-08-01

    Full Text Available Undifferentiated carcinoma of the pancreas (UDC is rare and has a dismal prognosis. Here, we report a case of 6-year disease-free survival with a mixed type of UDC and UDC with osteoclast-like giant cells, with a high mitotic index as well as perineural, lymphatic, vessel, and diaphragmatic invasion. The patient underwent radical distal pancreatectomy and was subsequently treated with adjuvant chemotherapy using gemcitabine plus S-1 followed by maintenance chemotherapy with oral tegafur-uracil. The patient has been doing well with no evidence of recurrence for more than 6 years after surgery.

  18. Promoted neuronal differentiation after activation of alpha4/beta2 nicotinic acetylcholine receptors in undifferentiated neural progenitors.

    Directory of Open Access Journals (Sweden)

    Takeshi Takarada

    Full Text Available BACKGROUND: Neural progenitor is a generic term used for undifferentiated cell populations of neural stem, neuronal progenitor and glial progenitor cells with abilities for proliferation and differentiation. We have shown functional expression of ionotropic N-methyl-D-aspartate (NMDA and gamma-aminobutyrate type-A receptors endowed to positively and negatively regulate subsequent neuronal differentiation in undifferentiated neural progenitors, respectively. In this study, we attempted to evaluate the possible functional expression of nicotinic acetylcholine receptor (nAChR by undifferentiated neural progenitors prepared from neocortex of embryonic rodent brains. METHODOLOGY/PRINCIPAL FINDINGS: Reverse transcription polymerase chain reaction analysis revealed mRNA expression of particular nAChR subunits in undifferentiated rat and mouse progenitors prepared before and after the culture with epidermal growth factor under floating conditions. Sustained exposure to nicotine significantly inhibited the formation of neurospheres composed of clustered proliferating cells and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide reduction activity at a concentration range of 1 µM to 1 mM without affecting cell survival. In these rodent progenitors previously exposed to nicotine, marked promotion was invariably seen for subsequent differentiation into cells immunoreactive for a neuronal marker protein following the culture of dispersed cells under adherent conditions. Both effects of nicotine were significantly prevented by the heteromeric α4β2 nAChR subtype antagonists dihydro-β-erythroidine and 4-(5-ethoxy-3-pyridinyl-N-methyl-(3E-3-buten-1-amine, but not by the homomeric α7 nAChR subtype antagonist methyllycaconitine, in murine progenitors. Sustained exposure to nicotine preferentially increased the expression of Math1 among different basic helix-loop-helix proneural genes examined. In undifferentiated progenitors from embryonic mice

  19. [Undifferentiated (embryonal) liver sarcoma: reviaew of 6 cases in National Cancer Institute, Lima, Peru. Review of the literature].

    Science.gov (United States)

    Dueñas, Daniela; Huanca, Lourdes; Cordero, Mónica; Webb, Patricia; Ruiz, Eloy

    2016-01-01

    Undifferentiated (embryonal) liver sarcoma is a rare tumor about 2% of all malignant liver tumors with a poor prognosis and usually occurs in children, this review aims to assess cases of primary embryonal sarcoma of the liver presented at our institution the past 8 years and improve recognition of its variants and evaluate immunohistochemical characteristics that help differentiated it from other tumors. Six cases of undifferentiated liver sarcoma were histologically evaluated and investigated by immunohistochemistry with a panel of antibodies using the equipment “Autostainer Link 48”. Usually masses were on average more than 20 cm, with solid, cystic, mucinous areas. The microscopic features include cells of spindle cell appearance, oval, starry, epithelioid and multinucleated cells densely arranged in a myxoid matrix. Trapped bile ducts and hepatic cords often present in the periphery of tumors. Intracellular and extracellular PAS positive hyaline globules. Immunohistochemistry showed very divergent differentiation.

  20. PDGFRa amplification in multiple skin lesions of undifferentiated pleomorphic sarcoma: A clue for intimal sarcoma metastases.

    Science.gov (United States)

    Osio, Amélie; Vignon-Pennamen, Marie-Dominique; Pedeutour, Florence; Le Maignan, Christine; Koskas, Fabien; Lebbé, Célèste; Janin, Anne; Battistella, Maxime

    2017-05-01

    A 62-year-old human immunodeficiency virus-positive man was admitted for multiple cutaneous and subcutaneous nodules on his lower limbs, corresponding to an undifferentiated proliferation of spindle and pleomorphic cells, with irregular nuclei and numerous mitoses. The tumor cells were negative for a large panel of immunohistochemical markers, except CD10. MDM2 immunohistochemical staining was also negative, leading to the diagnosis of Fédération Nationale des Centres de Lutte contre le Cancer grade III undifferentiated pleomorphic sarcoma (UPS). Array-comparative genomic hybridization showed a highly complex karyotype, with amplification of the 4q12 region, an area that contains only the platelet-derived growth factor receptor α (PDGFRa) gene. This amplification of PDFGRa, molecular hallmark of intimal sarcoma (IS), led to the diagnosis of skin IS metastasis. A positron emission tomography showed a hypermetabolic mass protruding in the preaortic area, consistent with the diagnosis of aortic IS. Our study shows that a rare differential diagnosis in peripheral UPS can be IS skin metastasis, and underlines the importance of molecular analyses in UPS. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Acute disturbance of calcium homeostasis in PC12 cells as a novel mechanism of action for (sub)micromolar concentrations of organophosphate insecticides

    NARCIS (Netherlands)

    Meijer, Marieke; Hamers, Timo; Westerink, Remco H S

    Organophosphates (OPs) and carbamates are widely used insecticides that exert their neurotoxicity via inhibition of acetylcholine esterase (AChE) and subsequent overexcitation. OPs can induce additional neurotoxic effects at concentrations below those for inhibition of AChE, indicating other

  2. Salvianolic acid B, an antioxidant from Salvia miltiorrhiza, prevents A beta(25-35)-induced reduction in BPRP in PC12 cells

    NARCIS (Netherlands)

    Lin, Yan-Hua; Liu, Ai-Hua; Wu, Hong-Li; Westenbroek, Christel; Song, Qian-Liu; Yu, He-Ming; Ter Horst, Gert J.; Li, Xue-Jun; Li, Xiang-yi

    2006-01-01

    Several lines of evidence support that beta-amyloid (A beta)-induced neurotoxicity is mediated through the generation of reactive oxygen species (ROS) and elevation of intracellular calcium. Salvianolic acid B (Sal B), the major and most active anti-oxidant from Salvia miltiorrhiza. protects diverse

  3. Transcription factor KLF7 regulates differentiation of neuroectodermal and mesodermal cell lineages

    International Nuclear Information System (INIS)

    Caiazzo, Massimiliano; Colucci-D'Amato, Luca; Esposito, Maria T.; Parisi, Silvia; Stifani, Stefano; Ramirez, Francesco; Porzio, Umberto di

    2010-01-01

    Previous gene targeting studies in mice have implicated the nuclear protein Krueppel-like factor 7 (KLF7) in nervous system development while cell culture assays have documented its involvement in cell cycle regulation. By employing short hairpin RNA (shRNA)-mediated gene silencing, here we demonstrate that murine Klf7 gene expression is required for in vitro differentiation of neuroectodermal and mesodermal cells. Specifically, we show a correlation of Klf7 silencing with down-regulation of the neuronal marker microtubule-associated protein 2 (Map2) and the nerve growth factor (NGF) tyrosine kinase receptor A (TrkA) using the PC12 neuronal cell line. Similarly, KLF7 inactivation in Klf7-null mice decreases the expression of the neurogenic marker brain lipid-binding protein/fatty acid-binding protein 7 (BLBP/FABP7) in neural stem cells (NSCs). We also report that Klf7 silencing is detrimental to neuronal and cardiomyocytic differentiation of embryonic stem cells (ESCs), in addition to altering the adipogenic and osteogenic potential of mouse embryonic fibroblasts (MEFs). Finally, our results suggest that genes that are key for self-renewal of undifferentiated ESCs repress Klf7 expression in ESCs. Together with previous findings, these results provide evidence that KLF7 has a broad spectrum of regulatory functions, which reflect the discrete cellular and molecular contexts in which this transcription factor operates.

  4. Transcription factor KLF7 regulates differentiation of neuroectodermal and mesodermal cell lineages

    Energy Technology Data Exchange (ETDEWEB)

    Caiazzo, Massimiliano, E-mail: caiazzo@igb.cnr.it [Institute of Genetics and Biophysics ' A. Buzzati-Traverso,' CNR, 80131 Naples (Italy); Istituto di diagnosi e cura ' Hermitage Capodimonte,' 80131 Naples (Italy); Colucci-D' Amato, Luca, E-mail: luca.colucci@unina2.it [Institute of Genetics and Biophysics ' A. Buzzati-Traverso,' CNR, 80131 Naples (Italy); Dipartimento di Scienze della Vita, Seconda Universita di Napoli, 81100 Caserta (Italy); Esposito, Maria T., E-mail: maria_teresa.esposito@kcl.ac.uk [CEINGE Biotecnologie Avanzate, 80145 Naples (Italy); Parisi, Silvia, E-mail: parisi@ceinge.unina.it [CEINGE Biotecnologie Avanzate, 80145 Naples (Italy); Stifani, Stefano, E-mail: stefano.stifani@mcgill.ca [Centre for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4 (Canada); Ramirez, Francesco, E-mail: francesco.ramirez@mssm.edu [Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029 (United States); Porzio, Umberto di, E-mail: diporzio@igb.cnr.it [Institute of Genetics and Biophysics ' A. Buzzati-Traverso,' CNR, 80131 Naples (Italy)

    2010-08-15

    Previous gene targeting studies in mice have implicated the nuclear protein Krueppel-like factor 7 (KLF7) in nervous system development while cell culture assays have documented its involvement in cell cycle regulation. By employing short hairpin RNA (shRNA)-mediated gene silencing, here we demonstrate that murine Klf7 gene expression is required for in vitro differentiation of neuroectodermal and mesodermal cells. Specifically, we show a correlation of Klf7 silencing with down-regulation of the neuronal marker microtubule-associated protein 2 (Map2) and the nerve growth factor (NGF) tyrosine kinase receptor A (TrkA) using the PC12 neuronal cell line. Similarly, KLF7 inactivation in Klf7-null mice decreases the expression of the neurogenic marker brain lipid-binding protein/fatty acid-binding protein 7 (BLBP/FABP7) in neural stem cells (NSCs). We also report that Klf7 silencing is detrimental to neuronal and cardiomyocytic differentiation of embryonic stem cells (ESCs), in addition to altering the adipogenic and osteogenic potential of mouse embryonic fibroblasts (MEFs). Finally, our results suggest that genes that are key for self-renewal of undifferentiated ESCs repress Klf7 expression in ESCs. Together with previous findings, these results provide evidence that KLF7 has a broad spectrum of regulatory functions, which reflect the discrete cellular and molecular contexts in which this transcription factor operates.

  5. Is undifferentiated spondyloarthritis a discrete entity? A debate.

    Science.gov (United States)

    Deodhar, Atul; Miossec, Pierre; Baraliakos, Xenofon

    2018-01-01

    The concept of undifferentiated spondyloarthritis has been introduced recently to describe a clinical setting where the classical features of spondyloarthritis (SpA) are not fully present. Whether this is a discrete entity was the basis of a debate during the 4th International Congress on Controversies in Rheumatology & Autoimmunity held in Bologna, Italy 9-11 March 2017. The pro and con aspects of the debate are presented. The implications of the debate are important ranging from diagnostic aspects to consequences for the society and the payers. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Primary renal undifferentiated sarcoma as an infiltrative mass in a 12 year old boy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Hee; Kim, Myung Joon; Lee, Mi Jung [Dept. of Radiology and Research Institute of Radiological Science, Severance Children' s Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); Kim, Se Hwa [Dept. of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2015-09-15

    Undifferentiated sarcomas are rare tumors not classified into any sarcoma subtype. Due to their rarity, imaging findings of undifferentiated sarcomas are poorly characterized. The purpose of this report was to present imaging findings of a pathologically confirmed undifferentiated sarcoma originated from the left kidney of a 12-year-old boy. The mass was infiltrative involving the renal pelvis. It mimicked massive hilar lymphadenopathy with a preserved renal contour visible by both ultrasonography and CT. Renal vein thrombosis was also observed. Although undifferentiated sarcomas are rare, they should be considered in differential diagnosis of infiltrative renal masses with renal pelvis invasion in children.

  7. Primary renal undifferentiated sarcoma as an infiltrative mass in a 12 year old boy

    International Nuclear Information System (INIS)

    Kim, Yong Hee; Kim, Myung Joon; Lee, Mi Jung; Kim, Se Hwa

    2015-01-01

    Undifferentiated sarcomas are rare tumors not classified into any sarcoma subtype. Due to their rarity, imaging findings of undifferentiated sarcomas are poorly characterized. The purpose of this report was to present imaging findings of a pathologically confirmed undifferentiated sarcoma originated from the left kidney of a 12-year-old boy. The mass was infiltrative involving the renal pelvis. It mimicked massive hilar lymphadenopathy with a preserved renal contour visible by both ultrasonography and CT. Renal vein thrombosis was also observed. Although undifferentiated sarcomas are rare, they should be considered in differential diagnosis of infiltrative renal masses with renal pelvis invasion in children

  8. Total Artificial Heart Implantation After Undifferentiated High-Grade Sarcoma Excision.

    Science.gov (United States)

    Kremer, Jamila; Farag, Mina; Arif, Rawa; Brcic, Andreas; Sabashnikov, Anton; Schmack, Bastian; Popov, Aron-Frederik; Karck, Matthias; Dohmen, Pascal M; Ruhparwar, Arjang; Weymann, Alexander

    2016-11-02

    BACKGROUND Total artificial heart (TAH) implantation in patients with aggressive tumor infiltration of the heart can be challenging. CASE REPORT We report on a patient with a rare primary undifferentiated high-grade spindle cell sarcoma of the mitral valve and in the left atrium, first diagnosed in 2014. The referring center did a first resection in 2014. In the course of 17 months, computer tomography (CT) scan again showed massive invasion of the mitral valve and left atrium. Partial resection and mitral valve replacement was not an option. We did a subtotal heart excision with total artificial heart implantation. In this report we discuss complications, risk factors, and perioperative management of this patient. CONCLUSIONS Patients with aggressive tumors of the heart can be considered for TAH implantation.

  9. Tumor-targeting Salmonella typhimurium A1-R is a highly effective general therapeutic for undifferentiated soft tissue sarcoma patient-derived orthotopic xenograft nude-mouse models.

    Science.gov (United States)

    Igarashi, Kentaro; Kawaguchi, Kei; Kiyuna, Tasuku; Miyake, Kentaro; Miyake, Masuyo; Singh, Arun S; Eckardt, Mark A; Nelson, Scott D; Russell, Tara A; Dry, Sarah M; Li, Yunfeng; Yamamoto, Norio; Hayashi, Katsuhiro; Kimura, Hiroaki; Miwa, Shinji; Tsuchiya, Hiroyuki; Singh, Shree Ram; Eilber, Fritz C; Hoffman, Robert M

    2018-03-18

    Undifferentiated soft tissue sarcoma (USTS) is a recalcitrant and heterogeneous subgroup of soft tissue sarcoma with high risk of metastasis and recurrence. Due to heterogeneity of USTS, there is no reliably effective first-line therapy. We have generated tumor-targeting Salmonella typhimurium A1-R (S. typhimurium A1-R), which previously showed strong efficacy on single patient-derived orthotopic xenograft (PDOX) models of Ewing's sarcoma and follicular dendritic cell sarcoma. In the present study, tumor resected from 4 patients with a biopsy-proven USTS (2 undifferentiated pleomorphic sarcoma [UPS], 1 undifferentiated sarcoma not otherwise specified [NOS] and 1 undifferentiated spindle cell sarcoma [USS]) were grown orthotopically in the biceps femoris muscle of mice to establish PDOX models. One USS model and one UPS model were doxorubicin (DOX) resistant. One UPS and the NOS model were partially sensitive to DOX. DOX is first-line therapy for these diseases. S. typhimurium A1-R arrested tumor growth all 4 models. In addition to arresting tumor growth in each case, S. typhimurium A1-R was significantly more efficacious than DOX in each case, thereby surpassing first-line therapy. These results suggest that S. typhimurium A1-R can be a general therapeutic for USTS and possibly sarcoma in general. Published by Elsevier Inc.

  10. Clinical and Endoscopic Features of Undifferentiated Gastric Cancer in Patients with Severe Atrophic Gastritis.

    Science.gov (United States)

    Kishino, Maiko; Nakamura, Shinichi; Shiratori, Keiko

    2016-01-01

    Differentiated gastric cancer generally develops in the atrophic gastric mucosa, although undifferentiated cancer is sometimes encountered in patients with severe atrophic gastritis. We characterized the endoscopic features of undifferentiated gastric cancer in patients with severe atrophic gastritis. Stage IA early gastric cancer was diagnosed in 501 patients who were admitted to our hospital between April 2003 and March 2012. The endoscopic and pathological findings were compared among 29 patients with undifferentiated cancer and severe atrophic gastritis, 104 patients with undifferentiated cancer and mild/moderate atrophic gastritis and 223 patients with well-differentiated cancer and severe atrophic gastritis. Endoscopic atrophic gastritis was classified according to the Kimura-Takemoto classification as no gastritis, C-1 and C-2 (mild), C-3 and O-1 (moderate) or O-2 and O-3 (severe). The tumors were larger and showed deeper mural invasion in the patients with undifferentiated cancer and severe atrophic gastritis than in those with well-differentiated cancer and severe gastritis or undifferentiated cancer and mild/moderate gastritis. On endoscopy, undifferentiated cancer associated with severe gastritis was often red in color. It is often difficult to diagnose early undifferentiated gastric cancer, especially in patients with severe atrophic gastritis. The present study characterized the important endoscopic features of such tumors.

  11. Bem Sex Role Inventory Undifferentiated Score: A Comparison of Sexual Dysfunction Patients with Sexual Offenders.

    Science.gov (United States)

    Dwyer, Margretta; And Others

    1988-01-01

    Examined Bem Sex Role undifferentiated scores on 93 male sex offenders as compared with 50 male sexually dysfunctional patients. Chi-square analyses revealed significant difference: offenders obtained undifferentiated scores more often than did sexual dysfunctional population. Concluded that Bem Sex Role Inventory is useful in identifying sexual…

  12. Newly Characterized Murine Undifferentiated Sarcoma Models Sensitive to Virotherapy with Oncolytic HSV-1 M002

    Directory of Open Access Journals (Sweden)

    Eric K. Ring

    2017-12-01

    Full Text Available Despite advances in conventional chemotherapy, surgical techniques, and radiation, outcomes for patients with relapsed, refractory, or metastatic soft tissue sarcomas are dismal. Survivors often suffer from lasting morbidity from current treatments. New targeted therapies with less toxicity, such as those that harness the immune system, and immunocompetent murine sarcoma models to test these therapies are greatly needed. We characterized two new serendipitous murine models of undifferentiated sarcoma (SARC-28 and SARC-45 and tested their sensitivity to virotherapy with oncolytic herpes simplex virus 1 (HSV-1. Both models expressed high levels of the primary HSV entry molecule nectin-1 (CD111 and were susceptible to killing by interleukin-12 (IL-12 producing HSV-1 M002 in vitro and in vivo. M002 resulted in a significant intratumoral increase in effector CD4+ and CD8+ T cells and activated monocytes, and a decrease in myeloid-derived suppressor cells (MDSCs in immunocompetent mice. Compared to parent virus R3659 (no IL-12 production, M002 resulted in higher CD8:MDSC and CD8:T regulatory cell (Treg ratios, suggesting that M002 creates a more favorable immune tumor microenvironment. These data provide support for clinical trials targeting sarcomas with oncolytic HSV-1. These models provide an exciting opportunity to explore combination therapies for soft tissue sarcomas that rely on an intact immune system to reach full therapeutic potential.

  13. Proteomic Profiling of Neuroblastoma Cells Adhesion on Hyaluronic Acid-Based Surface for Neural Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Ming-Hui Yang

    2016-01-01

    Full Text Available The microenvironment of neuron cells plays a crucial role in regulating neural development and regeneration. Hyaluronic acid (HA biomaterial has been applied in a wide range of medical and biological fields and plays important roles in neural regeneration. PC12 cells have been reported to be capable of endogenous NGF synthesis and secretion. The purpose of this research was to assess the effect of HA biomaterial combining with PC12 cells conditioned media (PC12 CM in neural regeneration. Using SH-SY5Y cells as an experimental model, we found that supporting with PC12 CM enhanced HA function in SH-SY5Y cell proliferation and adhesion. Through RP-nano-UPLC-ESI-MS/MS analyses, we identified increased expression of HSP60 and RanBP2 in SH-SY5Y cells grown on HA-modified surface with cotreatment of PC12 CM. Moreover, we also identified factors that were secreted from PC12 cells and may promote SH-SY5Y cell proliferation and adhesion. Here, we proposed a biomaterial surface enriched with neurotrophic factors for nerve regeneration application.

  14. Stem cells and the future of regenerative medicine

    National Research Council Canada - National Science Library

    National Research Council, Committee on the Biological and Biomedical Applications of Stem Cell Research; Commission on Life Sciences; National Research Council; Board on Life Sciences; Board on Neuroscience and Behavioral Health; Division on Earth and Life Studies; Institute of Medicine

    2002-01-01

    .... Stem Cells and the Future of Regenerative Medicine provides a deeper exploration of the biological, ethical, and funding questions prompted by the therapeutic potential of undifferentiated human cells...

  15. Biodistribution of p-borophenylalanine (BPA) in dogs with spontaneous undifferentiated thyroid carcinoma (UTC)

    International Nuclear Information System (INIS)

    Dagrosa, M.A.; Viaggi, M.; Rebagliati, R. Jimenez; Castillo, V.A.; Batistoni, D.; Cabrini, R.L.; Castiglia, S.; Juvenal, G.J.; Pisarev, M.A.

    2004-01-01

    Human undifferentiated thyroid carcinoma (UTC) is a very aggressive tumor which lacks an adequate treatment. The UTC human cell line ARO has a selective uptake of BPA in vitro and after transplanting into nude mice. Applications of boron neutron capture therapy (BNCT) to mice showed a 100% control of growth and a 50% histological cure of tumors with an initial volume of 50 mm 3 or less. As a further step towards the potential application in humans we have performed the present studies. Four dogs with diagnosis of spontaneous UTC were studied. A BPA-fructose solution was infused during 60 min and dogs were submitted to thyroidectomy. Samples of blood and from different areas of the tumors (and in one dog from normal thyroid) were obtained and the boron was determined by ICP-OES. Selective BPA uptake by the tumor was found in all animals, the tumor/blood ratios ranged between 2.02 and 3.76, while the tumor/normal thyroid ratio was 6.78. Individual samples had tumor/blood ratios between 8.36 and 0.33. These ratios were related to the two histological patterns observed: homogeneous and heterogeneous tumors. We confirm the selective uptake of BPA by spontaneous UTC in dogs and plan to apply BNCT in the future

  16. MR imaging of myxofibrosarcoma and undifferentiated sarcoma with emphasis on tail sign; diagnostic and prognostic value

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hye Jin; Hong, Sung Hwan; Kang, Yusuhn; Choi, Ja-Young; Yi, Minkyong [Seoul National University College of Medicine, Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Moon, Kyung Chul [Seoul National University College of Medicine, Seoul National University Hospital, Department of Pathology, Seoul (Korea, Republic of); Kim, Han-Soo; Han, Ilkyu [Seoul National University College of Medicine, Seoul National University Hospital, Department of Orthopedic Surgery, Seoul (Korea, Republic of); Kang, Heung Sik [Seoul National University Bundang Hospital, Department of Radiology, Seongnam-City, Gyeongi-Do (Korea, Republic of)

    2014-08-15

    To assess the prevalence of the tail sign in soft tissue sarcomas and determine whether the local recurrence rate differed based on the presence of the tail sign. In our retrospective study, myxofibrosarcoma (MFS, n = 25) and undifferentiated sarcoma (US, n = 38) comprised group 1, and the remaining tumours (n = 115) were assigned to group 2. Location, size, and imaging features of the tumours were assessed on MRI. The radiological-pathological correlation of the tail sign was analysed. The tail sign, thick fascial enhancement extending from the tumour margin, was more common and significantly thicker in group 1. In the subgroup analysis between MFS and US, there was no significant difference in the presence of a tail sign. Histological examination revealed extensive tumour cell infiltrations along the deep fascia from the main mass. Patients with a tail sign had a worse local recurrence-free survival than patients without it, not only in all tumours (p < 0.01), but also in group 1 (p = 0.019) The tail sign was a common MRI feature of both MFS and US, and was also associated with worse local recurrence-free survival. Radiologists should be aware of these MRI findings and inform the surgeon preoperatively in order to obtain a sufficient surgical margin to minimise the risk of local tumour recurrence. (orig.)

  17. Biodistribution of p-borophenylalanine (BPA) in dogs with spontaneous undifferentiated thyroid carcinoma (UTC)

    Energy Technology Data Exchange (ETDEWEB)

    Dagrosa, M.A. E-mail: aledagrosa@fibertel.com.ar; Viaggi, M.; Rebagliati, R. Jimenez; Castillo, V.A.; Batistoni, D.; Cabrini, R.L.; Castiglia, S.; Juvenal, G.J.; Pisarev, M.A

    2004-11-01

    Human undifferentiated thyroid carcinoma (UTC) is a very aggressive tumor which lacks an adequate treatment. The UTC human cell line ARO has a selective uptake of BPA in vitro and after transplanting into nude mice. Applications of boron neutron capture therapy (BNCT) to mice showed a 100% control of growth and a 50% histological cure of tumors with an initial volume of 50 mm{sup 3} or less. As a further step towards the potential application in humans we have performed the present studies. Four dogs with diagnosis of spontaneous UTC were studied. A BPA-fructose solution was infused during 60 min and dogs were submitted to thyroidectomy. Samples of blood and from different areas of the tumors (and in one dog from normal thyroid) were obtained and the boron was determined by ICP-OES. Selective BPA uptake by the tumor was found in all animals, the tumor/blood ratios ranged between 2.02 and 3.76, while the tumor/normal thyroid ratio was 6.78. Individual samples had tumor/blood ratios between 8.36 and 0.33. These ratios were related to the two histological patterns observed: homogeneous and heterogeneous tumors. We confirm the selective uptake of BPA by spontaneous UTC in dogs and plan to apply BNCT in the future.

  18. Primary undifferentiated sarcoma of the meninges: A case report and comprehensive review of the literature.

    Science.gov (United States)

    Wapshott, Taylor; Schammel, Christine M G; Schammel, David P; Rezeanu, Luminita; Lynn, Michael

    2018-05-21

    Sarcomas make up 1% of all cases of adult cancer, with 5-10% of those classified as undifferentiated pleomorphic sarcomas (UPS/PUS) and 0.1-4.3% primary intracranial sarcomas. Intracranial undifferentiated sarcoma is characterized by an earlier age of onset and generally poorer prognosis compared to extracranial undifferentiated sarcomas. Current therapies involve surgical excision with wide margins and radiotherapy, with minimal data available regarding the efficacy of chemotherapy. A 79-year-old man with a history of remote superficial bladder cancer presented with a large frontal scalp lesion. A biopsy was initially attempted by a dermatologist in the outpatient setting, but a follow-up CT scan revealed a skull-eroding, enhancing soft tissue lesion. Neurosurgical treatment revealed an undifferentiated sarcoma. The patient underwent adjuvant radiation therapy of 59.4 Gy fractionated over 45 days following surgery. Follow-up brain MRIs at 1-, 6-, 9-, 12-, 15-, 21-, and 27 months after surgery have not shown any indications of local recurrence or tumor metastasis. Despite the high propensity that undifferentiated sarcomas have for recurrence and metastasis and the patient's advanced age, this patient remains uniquely disease-free. We provide a description of an unusual case and comprehensive literature review of UPS to clarify the hallmarks of the disease, identify the difficulties in diagnosis, and provide a summary of therapies employed in the literature with their corresponding patient outcomes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. FEATURES OF CLINICAL COURSE OF GASTROESOPHAGEAL REFLUX DISEASE IN NEWLY RECRUITED WITH CONNECTIVE TISSUE UNDIFFERENTIATED DYSPLASIA SYNDROME

    Directory of Open Access Journals (Sweden)

    E.I. Kashkina

    2008-12-01

    Full Text Available The presence of connective tissue undifferentiated dysplasia syndrome against a background of psychological stress at newly recruited can promote the risk of gastroesophageal reflux disease occurrence. To the utmost, correlation between the gastroesophageal reflux disease and such manifestations of connective tissue undifferentiated dysplasia syndrome as asthenic constitution, chest deformation, Gothic palate and hypermobility of joints was found

  20. Undifferentiated Gender Role Orientation, Drinking Motives, and Increased Alcohol Use in Men and Women.

    Science.gov (United States)

    Fugitt, Jessica L; Ham, Lindsay S; Bridges, Ana J

    2017-05-12

    Alcohol misuse has historically affected men more than women. However, the differences in drinking behaviors across sex have steadily decreased over time and accumulating research suggests that gender role orientation, or culturally scripted gender-specific characteristics, and negative reinforcement drinking motives may better explain risk for alcohol use and related problems than sex. The current study tested a mediational model of the undifferentiated orientation (low masculinity and low femininity), an oft neglected orientation despite evidence that it could carry much weight in drinking behaviors, versus the other three gender role orientations, coping and conformity drinking motives, and hazardous alcohol use. Participants were 426 current drinkers over age 21 (41% men; 77.8% Caucasian; M age = 34.5, range = 21-73) residing across the United States who completed an online survey. Structural equation modeling analyses suggested that individuals with an undifferentiated orientation (n = 99), compared to masculine (high masculinity, low femininity; n = 102), feminine (high femininity, low masculinity; n = 113), or androgynous (high masculinity, high femininity; n = 112) orientations, reported higher coping drinking motives, which were positively associated with levels of hazardous alcohol use. Although analyses suggested that undifferentiated individuals reported drinking for conformity motives more often than masculine and androgynous individuals, conformity motives were not associated with increased use. Conclusions/Importance: An undifferentiated gender role orientation may contribute a unique risk for alcohol use and related problems by increasing frequency of drinking to cope, a motive specifically associated with hazardous use trajectories.

  1. Imaging features of undifferentiated embryonal sarcoma of the liver: a series of 15 children

    Energy Technology Data Exchange (ETDEWEB)

    Gabor, Flaviu; Franchi-Abella, Stephanie; Pariente, Daniele [Bicetre Hospital, Department of Pediatric Radiology, Le Kremlin-Bicetre (France); Merli, Laura [Bambino Gesu Children' s Hospital, Unit of Hepato-Biliary and Transplant Surgery, Department of Surgery and Transplantation Centre, Rome (Italy); Adamsbaum, Catherine [Bicetre Hospital, Department of Pediatric Radiology, Le Kremlin-Bicetre (France); Paris Sud University, Faculty of Medicine, Le Kremlin-Bicetre (France); Universite Paris-Saclay, LTCI, CNRS, Telecom Paris Tech, Paris (France)

    2016-11-15

    Undifferentiated embryonal sarcoma of the liver is a rare malignant mesenchymal tumour occurring mostly in children ages 6-10 years. The discrepancy between its solid appearance on US and cystic-like appearance on CT has been described. To study the imaging particularities and similarities among our cases of undifferentiated embryonal sarcoma and to report the errors in initial diagnoses. We conducted a retrospective study of 15 children with undifferentiated embryonal sarcoma diagnosed or referred to our hospital during 1997-2015 and analysed the clinical, biological and imaging data. We identified eight boys and seven girls ages 9 months to 14 years. Ten children presented with abdominal pain. Alpha-fetoprotein was slightly increased in one. Initial US and CT had been performed for all, while additional MRI had been done in two children. Initial CT demonstrated a hypoattenuated mass in all. Rupture was seen in five and intratumoural bleeding in seven children. Tumour volumes reduced during neoadjuvant chemotherapy in 10 children. Undifferentiated embryonal sarcoma might be suggested in a non-secreting unifocal tumour with well-defined borders, fluid-filled spaces on US, hypoattenuation and serpiginous vessels on CT, and if there are signs of internal bleeding or rupture on CT or MRI. (orig.)

  2. Acute undifferentiated fever in Binh Thuan province, Vietnam: imprecise clinical diagnosis and irrational pharmaco-therapy

    NARCIS (Netherlands)

    Phuong, Hoang L.; de Vries, Peter J.; Nagelkerke, Nico; Giao, Phan T.; Hung, Le Q.; Binh, Tran Q.; Nga, Tran T. Thanh; Nam, Nguyen V.; Kager, Piet A.

    2006-01-01

    OBJECTIVES: To describe the characteristics of patients consulting commune primary healthcare posts for acute undifferentiated fever not being malaria (AUF), and to explore the diagnostic and therapeutic responses of the healthcare workers. METHODS: All patients presenting with AUF at 12 commune

  3. Viral respiratory tract infections among patients with acute undifferentiated fever in Vietnam

    NARCIS (Netherlands)

    Phuong, Hoang Lan; Nga, Tran T. T.; van Doornum, Gerard J.; Groen, Jan; Binh, Tran Q.; Giao, Phan T.; Hung, Le Q.; Nams, Nguyen V.; Kager, P. A.; de Vries, Peter J.

    2010-01-01

    To investigate the proportion of viral respiratory tract infections among acute undifferentiated fevers (AUFs) at primary health facilities in southern Vietnam during 2001-2005, patients with AUF not caused by malaria were enrolled at twelve primary health facilities and a clinic for malaria control

  4. Imaging features of undifferentiated embryonal sarcoma of the liver: a series of 15 children

    International Nuclear Information System (INIS)

    Gabor, Flaviu; Franchi-Abella, Stephanie; Pariente, Daniele; Merli, Laura; Adamsbaum, Catherine

    2016-01-01

    Undifferentiated embryonal sarcoma of the liver is a rare malignant mesenchymal tumour occurring mostly in children ages 6-10 years. The discrepancy between its solid appearance on US and cystic-like appearance on CT has been described. To study the imaging particularities and similarities among our cases of undifferentiated embryonal sarcoma and to report the errors in initial diagnoses. We conducted a retrospective study of 15 children with undifferentiated embryonal sarcoma diagnosed or referred to our hospital during 1997-2015 and analysed the clinical, biological and imaging data. We identified eight boys and seven girls ages 9 months to 14 years. Ten children presented with abdominal pain. Alpha-fetoprotein was slightly increased in one. Initial US and CT had been performed for all, while additional MRI had been done in two children. Initial CT demonstrated a hypoattenuated mass in all. Rupture was seen in five and intratumoural bleeding in seven children. Tumour volumes reduced during neoadjuvant chemotherapy in 10 children. Undifferentiated embryonal sarcoma might be suggested in a non-secreting unifocal tumour with well-defined borders, fluid-filled spaces on US, hypoattenuation and serpiginous vessels on CT, and if there are signs of internal bleeding or rupture on CT or MRI. (orig.)

  5. [Nailfold capillaroscopy in the evaluation of Raynaud's phenomenon and undifferentiated connective tissue disease].

    Science.gov (United States)

    Cortes, Sara; Clemente-Coelho, Paulo

    2008-01-01

    Microvascular abnormalities involved in the pathogenic mechanism of several connective tissue disorders can be detected by nailfold capillaroscopy. Evaluation of the interest of nailfold capillaroscopy results in patients with Raynaud s phenomenon or undifferentiated connective tissue disease and their correlation with diagnostic and therapeutical evolution. Selection of capillaroscopic and laboratory results of patients with the diagnosis of Raynaud s phenomenon (without defined connective tissue disease) or undifferentiated connective tissue disease. Evaluation of the present diagnosis and treatment comparing with the ones existed at the time of capillaroscopy performance. 80 patients were enrolled with an age of 51.4+/-14.3 years (mean+/-SD) 78 females (97.5%) with Raynaud s phenomenon and undifferentiated connective tissue disease 27 patients (33.8%); Raynaud s Phenomenon 46 patients (57.5%); undifferentiated connective tissue disease 7 patients (8.7%). The capillaroscopic results were normal 30 patients (37.5%); minor changes tortuosity enlargement 16 patients (20.0%) major changes 34 patients (42.5%) hemorrhages 25 patients (31.3%) megacapillaries 26 patients (32.5%) avascular areas 3 patients (3.8%). The introduction of new treatments after the capillaroscopy occurred in 32 patients (40.0%) and a new diagnosis was done in 39 patients (48.8%). Major changes in capillaroscopy correlated with the change of diagnosis and the introduction of a new treatment (pNailfold capillaroscopy performed in patients with isolated Raynaud s phenomenon or undifferentiated connective tissue disease has a role in the prognostic evaluation related to the possibility of an evolution of the diagnosis or to the need of the introduction of new treatments.

  6. ZEB1 overexpression associated with E-cadherin and microRNA-200 downregulation is characteristic of undifferentiated endometrial carcinoma.

    Science.gov (United States)

    Romero-Pérez, Laura; López-García, M Ángeles; Díaz-Martín, Juan; Biscuola, Michele; Castilla, M Ángeles; Tafe, Laura J; Garg, Karuna; Oliva, Esther; Matias-Guiu, Xavier; Soslow, Robert A; Palacios, José

    2013-11-01

    Undifferentiated endometrial carcinomas are very aggressive high-grade endometrial carcinomas that are frequently under-recognized. This study aimed to analyze the molecular alterations underlying the development of these endometrial carcinomas, focusing on those related to dedifferentiation. We assessed a series of 120 tumors: 57 grade 1 and 2 endometrioid endometrial carcinomas, 15 grade 3 endometrioid endometrial carcinomas, 27 endometrial serous carcinomas, and 21 undifferentiated endometrial carcinomas. We found a high frequency of DNA mismatch repair deficiency (38%) and moderate rate of p53 overexpression (∼33%) in undifferentiated carcinomas. In contrast to the characteristic endometrioid phenotype, there was a dramatic downregulation of E-cadherin expression in the undifferentiated subtype. Quantitative methylation studies dismissed CDH1 promoter hypermethylation as the mechanism responsible for this change in gene expression, while immunohistochemistry revealed that the E-cadherin repressor ZEB1 was frequently overexpressed (62%) in undifferentiated endometrial carcinomas. This finding was accompanied by a sharp downregulation in the expression of the miR-200 family of microRNAs, well-known targets of ZEB1. Furthermore, there was enhanced expression of epithelial-to-mesenchymal transition markers in undifferentiated endometrial carcinomas, such as N-cadherin, cytoplasmic p120, and osteonectin. In addition, HMGA2, a regulator of epithelial-to-mesenchymal transition that is expressed in aggressive endometrial tumors, such as endometrial serous carcinomas and carcinosarcomas, was expressed in >20% of undifferentiated carcinomas. These results suggest that ZEB1 overexpression, associated with E-cadherin and miR-200s downregulation, and the expression of mesenchymal markers might enhance the metastatic potential of undifferentiated endometrial carcinomas, leading to a poor prognosis. In addition, our observations suggest that the immnohistochemical analysis

  7. A canine chimeric monoclonal antibody targeting PD-L1 and its clinical efficacy in canine oral malignant melanoma or undifferentiated sarcoma.

    Science.gov (United States)

    Maekawa, Naoya; Konnai, Satoru; Takagi, Satoshi; Kagawa, Yumiko; Okagawa, Tomohiro; Nishimori, Asami; Ikebuchi, Ryoyo; Izumi, Yusuke; Deguchi, Tatsuya; Nakajima, Chie; Kato, Yukinari; Yamamoto, Keiichi; Uemura, Hidetoshi; Suzuki, Yasuhiko; Murata, Shiro; Ohashi, Kazuhiko

    2017-08-21

    Immunotherapy targeting immune checkpoint molecules, programmed cell death 1 (PD-1) and PD-ligand 1 (PD-L1), using therapeutic antibodies has been widely used for some human malignancies in the last 5 years. A costimulatory receptor, PD-1, is expressed on T cells and suppresses effector functions when it binds to its ligand, PD-L1. Aberrant PD-L1 expression is reported in various human cancers and is considered an immune escape mechanism. Antibodies blocking the PD-1/PD-L1 axis induce antitumour responses in patients with malignant melanoma and other cancers. In dogs, no such clinical studies have been performed to date because of the lack of therapeutic antibodies that can be used in dogs. In this study, the immunomodulatory effects of c4G12, a canine-chimerised anti-PD-L1 monoclonal antibody, were evaluated in vitro, demonstrating significantly enhanced cytokine production and proliferation of dog peripheral blood mononuclear cells. A pilot clinical study was performed on seven dogs with oral malignant melanoma (OMM) and two with undifferentiated sarcoma. Objective antitumour responses were observed in one dog with OMM (14.3%, 1/7) and one with undifferentiated sarcoma (50.0%, 1/2) when c4G12 was given at 2 or 5 mg/kg, every 2 weeks. c4G12 could be a safe and effective treatment option for canine cancers.

  8. Risk factors for the occurrence of undifferentiated carcinoma of nasopharyngeal type: A case-control study

    OpenAIRE

    Nešić Vladimir; Šipetić Sandra; Vlajinac Hristina; Stošić-Divjak Svetlana; Ješić Snežana

    2010-01-01

    Introduction. The incidence rate of nasopharyngeal carcinoma in Serbia is less than one per 100,000 citizens, which classifies it as a region with low incidence for this disease. Objective. The aim of this study was to test some hypotheses of the risk factors for undifferentiated carcinoma of nasopharyngeal type (UCNT) in the low incidence population. Methods. A case-control study was used for the research. The study included 45 cases with histopathological diagnosis of UCNT and 90 controls. ...

  9. Cell membrane damage by iron nanoparticles: an invitro study

    Directory of Open Access Journals (Sweden)

    Gelare Hajsalimi

    2016-12-01

    Full Text Available Application of nanotechnology in medicinal and biological fields has attracted a great interest in the recent yeras. In this paper the cell membrane leakage induced by iron nanoparticles (Fe-NP against PC12 cell line which is known as a model of nervous system cell line was investigated by the lactate dehydrogenase (LDH test. Therefore, PC12 cells were incubated with different concentration of Fe-NP and test was performed after 48h of incubation of the cells with Fe-NP. The resulting data showed that the Fe-NP induced the damage of PC12 cell membrane in a concentration dependent manner. Hence, it may be concluded that the different cytotoxicty effect of NPs may be referred to the concentration of NPs, type of the NPs and the cells. Indeed, the kind of cytotoxic impacts of NPs on the cells can be reduced by the considering of above-mentioned parameters. The resulting data showed that the Fe-NP induced the damage of PC12 cell membrane in a concentration dependent manner. Hence, it may be concluded that the different cytotoxicty effect of NPs may be referred to the concentration of NPs, type of the NPs and the cells. Indeed, the kind of cytotoxic impacts of NPs on the cells can be reduced by the considering of above-mentioned parameters.

  10. Application of the boron neutron capture therapy to undifferentiated thyroid cancer using two boron compounds (BPA and BOPP)

    International Nuclear Information System (INIS)

    Viaggi, Mabel; Dagrosa, Maria A.; Juvenal, Guillermo J.; Pisarev, Mario A.; Longhino, Juan M.; Blaumann, Hernan R.; Calzetta Larrieu, Osvaldo A.; Kahl, Stephen B.

    2004-01-01

    We have shown the selective uptake of boronophenylalanine (BPA) by undifferentiated thyroid cancer (UTC) human cell line ARO, both in vitro and in vivo. Moreover, a 50% histologic cure of mice bearing the tumor was observed when the complete boron neutron capture therapy was applied. More recently we have analyzed the biodistribution of BOPP (tetrakis-carborane carboxylate ester of 2,4-bis-(ba-dihydroxyethyl)-deutero-porphyrin IX) and showed that when BOPP was injected 5 days before BPA, and the animals were sacrificed 60 min after the ip injection of BPA, a significant increase in boron uptake by the tumor was found (38-45ppm with both compounds Vs. 20 ppm with BPA alone). Five days post the ip BOPP injection and 1 hr after BPA, the ratios were: tumor/blood 3,75; tumor /distal skin 2. Other important ratios were tumor/thyroid 6,65 and tumor/lung 3,8. The present studies were performed in mice transplanted with ARO cells and injected with BOPP and BPA. Only in mice treated with the neutron beam and injected with the boronated compounds we observed a 100% control of tumor growth. Two groups of mice received different total absorbed doses: 3.00 and 6.01 Gy, but no further improvement in the outcome was found compared to the previous results using BPA alone (4.3 Gy). (author)

  11. Isolation and quantification of major chlorogenic acids in three major instant coffee brands and their potential effects on H2O2-induced mitochondrial membrane depolarization and apoptosis in PC-12 cells

    Science.gov (United States)

    Coffee is a most consumed drink worldwide. In this paper, from three commercially available instant coffees, major chlorogenic acids were isolated and quantified using HPLC and NMR spectroscopic methods. Also, their anti-oxidant and anti-inflammatory activities were determined using DPPH-radical sca...

  12. Polymer encapsulated dopaminergic cell lines as "alternative neural grafts".

    Science.gov (United States)

    Jaeger, C B; Greene, L A; Tresco, P A; Winn, S R; Aebischer, P

    1990-01-01

    Our preliminary findings (Jaeger et al., 1988; Aebischer et al., 1989; Tresco et al., 1989) and the studies in progress show that encapsulated dopaminergic cell lines survive enclosure within a semi-permeable membrane. The encapsulated cells remained viable for extended time periods when maintained in vitro. Moreover, encapsulated PC12 and T28 cells have the potential to survive following their implantation into the forebrain of rats. Cell lines are essentially "immortal" because they continue to divide indefinitely. This property allows perpetual "self-renewal" of a given cell population. However, the capacity of continuous uncontrolled cell division may also lead to tumor formation. This in fact is the case for unencapsulated PC12 cell implants placed into the brain of young Sprague Dawley rats (Jaeger, 1985). Cell line encapsulation has the potential to prevent tumor growth (Jaeger et al., 1988). Survival for 6 months in vitro suggests that encapsulation does not preclude long-term maintenance of an homogeneous cell line like PC12 cells. The presence of mitotic figures in the capsules further supports the likelihood of propagation and self renewal of the encapsulated population. Another significant property of cell lines is that they consist of a single, genetically homogeneous cell type. They do not require specific synaptic interactions for their survival. In the case of PC12 and T28 lines, the cells synthesize and release neurotransmitters. Our data show that PC12 and T28 cells continue to release dopamine spontaneously and to express specific transmitters and enzymes following encapsulation. Thus, cell lines such as these may constitute relatively simple "neural implants" exerting their function via humoral release.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Treatment of refractory undifferentiated acute myelogenous leukemia with all-trans-retinoic acid.

    Science.gov (United States)

    Griggs, J J; Henley, S E; Rowe, J M

    1994-02-01

    A patient is described with undifferentiated acute myeloblastic leukemia refractory to two courses of daunorubicin and cytosine arabinoside. Because some the myeloblasts developed morphologic features of promyelocytes, the patient was treated with all-trans-retinoic acid (ATRA) in an attempt to promote maturation. Cytogenetic studies and sensitive molecular analysis did not reveal any abnormality classically associated with acute promyelocytic leukemia. Serial bone marrow biopsies demonstrated myeloid maturation, and the patient uneventfully went into a sustained complete remission. A review of the literature confirms this to be an apparently hitherto undescribed response to ATRA that may have therapeutic implications in similar patients.

  14. Effect of tryptophan hydroxylase gene polymorphism on aggression in major depressive disorder and undifferentiated somatoform disorder.

    Science.gov (United States)

    Koh, Kyung Bong; Kim, Chan Hyung; Choi, Eun Hee; Lee, Young-joon; Seo, Won Youl

    2012-05-01

    Aggression and anger have been linked with depression, and anger suppression has been linked with somatic symptoms of somatoform disorders. However, the relationship between aggression or anger and genes in patients with depression and somatoform disorders has not been clearly elucidated. The objective of this study was to examine the effect of serotonin-related gene polymorphism on aggression in depressive disorders and somatoform disorders. A serotonin-related polymorphic marker was assessed by using single nucleotide polymorphism (SNP) genotyping. 106 outpatients with major depressive disorder (MDD), 102 outpatients with undifferentiated somatoform disorder, and 133 healthy subjects were enrolled between October 2005 and May 2008. Diagnoses were made according to the Korean version of the Structured Clinical Interview Schedule for DSM-IV. The allele and genotype frequencies of tryptophan hydroxylase-1 (TPH1) A218C were compared between groups. The Hamilton Depression Rating Scale and the Aggression Questionnaire were used for psychological assessment. Each of the 2 disorder groups scored significantly higher on all the Aggression Questionnaire subscales and on the total Aggression Questionnaire score than the healthy subjects (P sex and age. However, no significant differences were found in TPH1 C allele and CC homozygote frequencies between the undifferentiated somatoform disorder patients and the healthy subjects. TPH1 CC homozygote in the MDD group scored significantly higher in terms of verbal aggression (P = .03) and total Aggression Questionnaire score (P = .04) than A-carrier genotypes, regardless of sex and age. However, no significant differences were found in the scores of all the Aggression Questionnaire subscales and the total Aggression Questionnaire score between TPH1 CC homozygote and A-carrier genotypes in the undifferentiated somatoform disorder group and the control group, respectively. Aggression in MDD patients is more susceptible to an

  15. Undifferentiated pleomorphic sarcoma: indolent, tail-like recurrence of a high-grade tumor

    Energy Technology Data Exchange (ETDEWEB)

    Alpert, Justin S. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Boland, Patrick [Memorial Sloan Kettering Cancer Center, Division of Orthopaedic Surgery, Department of Surgery, New York, NY (United States); Weill Medical College of Cornell University, New York, NY (United States); Hameed, Meera [Memorial Sloan Kettering Cancer Center, Department of Pathology, New York, NY (United States); Panicek, David M. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Weill Medical College of Cornell University, New York, NY (United States)

    2018-01-15

    Recurrence of a soft tissue sarcoma typically manifests as a round or oval mass at imaging, and recurrent high-grade soft tissue sarcomas generally enlarge relatively rapidly. We present a case of high-grade undifferentiated pleomorphic sarcoma in the calf of a 48-year-old male that recurred as a thin, curvilinear ''tail'' of enhancing tissue at magnetic resonance imaging (MRI), with extremely indolent growth over a 7-year period. The unusual imaging finding of a slowly enlarging ''tail'' should not be dismissed as postoperative changes, even for a high-grade soft tissue sarcoma. (orig.)

  16. CT findings of primary undifferentiated pleomorphic sarcoma in the small bowel: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youe Ree; Lee, Young Hwan; Yoon, Kwon Ha; Yun, Ki Jung [Wonkwang University School of Medicine and Hospital, Institute of Wonkwang Medical Science, Iksan (Korea, Republic of)

    2015-11-15

    Undifferentiated pleomorphic sarcoma (UPS), previously known as malignant fibrous histiocytoma, is a soft tissue sarcoma arising from mesenchymal tissue of the body. UPS of the gastrointestinal tract is known to be rare and only a few cases have been reported in the literature. Based on our case and review of the other relevant literature, the CT findings of primary UPS of the small bowel included nodular bowel wall thickening with homogeneous enhancement. It presents as a rapidly growing tumor without bowel obstruction, and it may be accompanied by distant metastasis.

  17. [Cynomorium songaricum improves sperm count and motility and serum testosterone level and promotes proliferation of undifferentiated spermatogonia in oligoasthenospermia rats].

    Science.gov (United States)

    Cao, Yi-Juan; Li, Zhen-Bei; Qi, Yu-Juan; Liu, Ying; Gu, Juan; Hu, Fang-Fang; Zhang, Wen-da; Hao, Lin; Hou, Jian-Quan; Han, Cong-Hui

    2016-12-01

    To investigate the effects of cynomorium songaricum (CS) decoction on the testis weight, serum testosterone level, and sperm parameters of rats with oligoasthenospermia (OAS), explore its action mechanism of improving the proliferation of undifferentiated spermatogonial cells, and provide some experimental and theoretical evidence for the development of new Chinese drugs for OAS. Thirty 8-week-old male SD rats were randomly divided into five groups of equal number: blank control, model control, high-dose CS, medium-dose CS, and low-dose CS. OAS models were established by intraperitoneal injection of cyclophosphamide and, a month later, treated intragastrically with normal saline or CS at 2, 1, and 0.5 g per kg of the body weight per day, all for 4 weeks. Then, the testes of the animals were harvested to obtain the testicular weight, sperm concentration and motility, and the level of serum testosterone (T), detect the expressions of the transcription factor 1 (Oct4), Thy-1 cell surface antigen (Thy1), promyelocytic leukemia zinc finger (PLZF), KIT proto-oncogene receptor tyrosine kinase (C-kit) and glial cell-derived neurotrophic factor (GDNF) in the testis tissue of the rats in the low-dose CS group by real-time PCR. The testis weights in the blank control, model control, high-dose CS, medium-dose CS, and low-dose CS groups were (1.52±0.06), (1.55±0.06), (1.43±0.30), (1.35±0.40) and (1.34±0.04) g, respectively, not significantly different in the blank and model controls from those in the CS groups (P>0.05). The visual field sperm count per 10 HP was significantly increased in the high-, medium-, and low-dose CS groups (202±20, 196±5 and 216±25) as compared with the blank and model controls (200±15 and 134±30) (P0.05). The visual field sperm motility per 10 HP was markedly increased in the blank control ([52.1±5.5]%), model control ([38.1±2.5]%), high-dose CS ([59.1±9.5]%), medium-dose CS ([58.7±9.5]%), and low-dose CS ([49.6±1.0

  18. [Clinical and cytological differences in adult acute lymphatic and acute undifferentiated leukemia].

    Science.gov (United States)

    Abbrederis, K; Schmalzl, F

    1976-01-01

    The usefulness for clinical purposes of the distinction of acute undifferentiated (AUL) and acute lymphocytic leukemia (ALL) is suggested by the following observations: 1. Maturation from AUL to ALL has not been observed. Transformation of ALL to AUL has been reported i.e. less of cytoplasmic polysaccharides; however this seems rather to be the effect of cytotoxic therapy and not a real change of the cytological type. 2. Significant differences among ALL and AUL can be noted as far as the therapeutic response is concerned: All of the 9 patients with ALL but only 2 out of 9 patients with AUL went into remission. The mean survival of the cases with ALL amounts to 34, that of AUL only to 4 months. Out of the patients with ALL 4 patients are still alive in persistant first remission after 77, 57, 36 and 28 months. 3. ALL occurs most frequently in young adults (mean age of 21 patients: 31.7 years): AUL is more frequent in elderly patients (Mean age of 18 patients: 57.6 years). 4. In our material ALL did never occur consequent to a typical preluekemic stage, which was followed either by myeloblastic, monocytic, erythroleukemic or undifferentiated leukemias.

  19. Prevalence of undifferentiated fever in adults of Rawalpindi having primary dengue fever

    International Nuclear Information System (INIS)

    Zafar, H.; Hayyat, A.; Akhtar, N.

    2013-01-01

    The objectives of the study were to highlight early subclinical presentation of dengue viral infection (DVI) as an undifferentiated febrile illness. The descriptive cross-sectional study was carried out at Microbiology Department, Rawalpindi Medical College from March to September 2009. Stratified random sampling was used to select subjects from various urban and rural areas of Rawalpindi, and Serum IgG anti-dengue antibodies were detected by using 3rd generation enzyme-linked immunosorbent assay (ELISA). Out of the total 240 subjects, 69 (28.75%) were found to be positive for anti-dengue IgG antibodies. Of the positive cases, 41 (59.4%) - comprising 31 (44.9%) urban residents - and 10 (14.4%) rural residents presented with a previous history of undifferentiated fever (p<0.05). It was concluded that primary DVI can present as subclinical form in healthy population residing in rural and urban areas of Rawalpindi, which is an alarming situation indicating the spread of disease in the study area. (author)

  20. Directed Secretion by Bone Cells of a Factor that Attracts Breast Cancer Cells

    National Research Council Canada - National Science Library

    Gay, Carol

    2001-01-01

    The hFOB osteoblast cell line was cultured in both undifferentiated and differentiated states and tested for the capacity of the cell layers to occlude fluorescent-tagged dextrans of 4-, 20- and 40 kD molecular weight...

  1. Heterogeneity of the cytokinome in undifferentiated arthritis progressing to rheumatoid arthritis and its change in the course of therapy. Move toward personalized medicine.

    Science.gov (United States)

    Brzustewicz, Edyta; Bzoma, Izabella; Daca, Agnieszka; Szarecka, Maria; Bykowska, Malgorzata Sochocka; Witkowski, Jacek M; Bryl, Ewa

    2017-09-01

    To conduct a comprehensive analysis of cytokine concentrations in sera and mononuclear cell supernatants in order to examine inter- and intra-individual cytokine variations in undifferentiated arthritis progressing to rheumatoid arthritis and healthy control groups. Patients with UA (undifferentiated arthritis) developing RA (rheumatoid arthritis) (UA→RA) (n=16) and healthy controls (n=16) were enrolled into the study. UA→RA patients were followed up for six months since the final RA diagnosis. Cytokines IFN-γ, IL-10, TNF, IL-17A, IL-6, IL-1β, IL-2 in sera and mononuclear cell supernatants in 72h and 120h culture variants with- and without anti-CD3 stimulations were assayed using flow cytometric bead array. The cytokine profile of UA→RA differs from the healthy individual cytokine profile. It is possible to observe specific cytokine pattern characterizing each patient, which alters during course of disease. Specifically, we can distinguish three UA→RA cohorts: the group of patients susceptible to the therapy, characterized by the drop of cytokine levels between 1st and 3rd visit with visible decrease of cytokines in 2nd visit and then secondary slighter increase in 3rd visit; the group of patients refractory or clinically worsening on the therapy, characterized by the highest cytokine levels at 2nd visit with secondary decrease in 3rd visit; and the group of patients with variable responses to the therapy without any specific common cytokine pattern. The cytokine patterns in supernatants of PBMC stimulated anti-CD3 for 72h and 120h are very similar. The personal profile including multiplexed cytokine patterns in serum and supernatant may be potentially used for optimization of therapy introduction and monitoring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. New strategies for the treatment of undifferentiated thyroid cancer and poorly differentiated thyroid cancer

    International Nuclear Information System (INIS)

    Juvenal, Guillermo J.

    2006-01-01

    Undifferentiated thyroid cancer, which accounts for about 5-10% of thyroid cancer cases, is a very aggressive tumor with no effective treatment, since it lacks iodine uptake and does not respond to radio or chemotherapy. The prognosis of these patients is bad, due to the rapid growth of the tumor and the early development of metastasis. Oncogenes and tumor suppressor genes are involved in the genetic changes that underlie thyroid cancer, as all kinds of tumors. The characterization of these proteins is being exploited to delineate new therapeutic strategies for the treatment of this cancer. This work is focused on those compounds or therapeutic approaches that are being used in clinical essays or in animal models. (author) [es

  3. MFH classification: differentiating undifferentiated pleomorphic sarcoma in the 21st Century.

    Science.gov (United States)

    Matushansky, Igor; Charytonowicz, Elizabeth; Mills, Joslyn; Siddiqi, Sara; Hricik, Todd; Cordon-Cardo, Carlos

    2009-08-01

    The essence and origin of malignant fibrous histiocytoma (MFH) have been debated for now close to five decades. Originally characterized as a morphologically unique soft-tissue sarcoma subtype of unclear etiology in 1963, with a following 15 years of research only to conclude that "the issue of histogenesis [of MFH] is largely unresolvable"; it is "now regarded as synonymous with [high grade] undifferentiated pleomorphic sarcoma and essentially represents a diagnosis of exclusion". Yet despite this apparent lack of progress, the first decade of the 21st century has seen some significant progress in terms of defining the origins of MFH. Perhaps more importantly these origins might also pave the way for novel therapies. This manuscript will highlight MFH's troubled history, discuss recent advances, and comment as to what the coming years may promise and what further needs to be done to make sure that progress continues.

  4. Arg1 functions in the physiological adaptation of undifferentiated plant cells to spaceflight

    Data.gov (United States)

    National Aeronautics and Space Administration — In this study transcriptome profiling was used to gain insight into the spaceflight adaptation role of Altered response to gravity-1 (Arg1) a gene known to affect...

  5. Rare case of undifferentiated uterine sarcoma with neuroectodermal differentiation and osteoclast-like giant cells

    Directory of Open Access Journals (Sweden)

    Chiu-Hsuan Cheng

    2018-06-01

    Conclusion: UUSs are rare high-grade tumors observed in elderly women. These women typically present with postmenopausal bleeding and extrauterine diseases and have a poor prognosis. Neuroectodermal differentiation in UUSs has a müllerian origin. The presence of OGCs may suggest a poor prognosis; however, further studies are necessary to determine the exact nature of such neoplasms.

  6. Etiologies of Acute Undifferentiated Fever and Clinical Prediction of Scrub Typhus in a Non-Tropical Endemic Area

    Science.gov (United States)

    Jung, Ho-Chul; Chon, Sung-Bin; Oh, Won Sup; Lee, Dong-Hyun; Lee, Ho-Jin

    2015-01-01

    Scrub typhus usually presents as acute undifferentiated fever. This cross-sectional study included adult patients presenting with acute undifferentiated fever defined as any febrile illness for ≤ 14 days without evidence of localized infection. Scrub typhus cases were defined by an antibody titer of a ≥ fourfold increase in paired sera, a ≥ 1:160 in a single serum using indirect immunofluorescence assay, or a positive result of the immunochromatographic test. Multiple regression analysis identified predictors associated with scrub typhus to develop a prediction rule. Of 250 cases with known etiology of acute undifferentiated fever, influenza (28.0%), hepatitis A (25.2%), and scrub typhus (16.4%) were major causes. A prediction rule for identifying suspected cases of scrub typhus consisted of age ≥ 65 years (two points), recent fieldwork/outdoor activities (one point), onset of illness during an outbreak period (two points), myalgia (one point), and eschar (two points). The c statistic was 0.977 (95% confidence interval = 0.960–0.994). At a cutoff value ≥ 4, the sensitivity and specificity were 92.7% (79.0–98.1%) and 90.9% (86.0–94.3%), respectively. Scrub typhus, the third leading cause of acute undifferentiated fever in our region, can be identified early using the prediction rule. PMID:25448236

  7. Indistinguishable genomic profiles and shared prognostic markers in undifferentiated pleomorphic sarcoma and leiomyosarcoma: different sides of a single coin?

    DEFF Research Database (Denmark)

    Carneiro, Ana; Francis, Princy; Bendahl, Pär-Ola

    2009-01-01

    Soft tissue sarcoma (STS) diagnostics and prognostics are challenging, particularly in highly malignant and pleomorphic subtypes such as undifferentiated pleomorphic sarcoma (UPS) and leiomyosarcoma (LMS). We applied 32K BAC arrays and gene expression profiling to 18 extremity soft tissue LMS and...

  8. Attenuation of oxidative neuronal cell death by coffee phenolic phytochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Eun Sun; Jang, Young Jin [Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Hwang, Mun Kyung; Kang, Nam Joo [Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701 (Korea, Republic of); Lee, Ki Won [Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701 (Korea, Republic of)], E-mail: kiwon@konkuk.ac.kr; Lee, Hyong Joo [Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of)], E-mail: leehyjo@snu.ac.kr

    2009-02-10

    Neurodegenerative disorders such as Alzheimer's disease (AD) are strongly associated with oxidative stress, which is induced by reactive oxygen species (ROS) including hydrogen peroxide (H{sub 2}O{sub 2}). Recent studies suggest that moderate coffee consumption may reduce the risk of neurodegenerative diseases such as AD, but the molecular mechanisms underlying this effect remain to be clarified. In this study, we investigated the protective effects of chlorogenic acid (5-O-caffeoylquinic acid; CGA), a major phenolic phytochemical found in instant decaffeinated coffee (IDC), and IDC against oxidative PC12 neuronal cell death. IDC (1 and 5 {mu}g/ml) or CGA (1 and 5 {mu}M) attenuated H{sub 2}O{sub 2}-induced PC12 cell death. H{sub 2}O{sub 2}-induced nuclear condensation and DNA fragmentation were strongly inhibited by pretreatment with IDC or CGA. Pretreatment with IDC or CGA also inhibited the H{sub 2}O{sub 2}-induced cleavage of poly(ADP-ribose) polymerase (PARP), and downregulation of Bcl-X{sub L} and caspase-3. The accumulation of intracellular ROS in H{sub 2}O{sub 2}-treated PC12 cells was dose-dependently diminished by IDC or CGA. The activation of c-Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) by H{sub 2}O{sub 2} in PC12 cells was also inhibited by IDC or CGA. Collectively, these results indicate that IDC and CGA protect PC12 cells from H{sub 2}O{sub 2}-induced apoptosis by blocking the accumulation of intracellular ROS and the activation of MAPKs.

  9. Attenuation of oxidative neuronal cell death by coffee phenolic phytochemicals

    International Nuclear Information System (INIS)

    Cho, Eun Sun; Jang, Young Jin; Hwang, Mun Kyung; Kang, Nam Joo; Lee, Ki Won; Lee, Hyong Joo

    2009-01-01

    Neurodegenerative disorders such as Alzheimer's disease (AD) are strongly associated with oxidative stress, which is induced by reactive oxygen species (ROS) including hydrogen peroxide (H 2 O 2 ). Recent studies suggest that moderate coffee consumption may reduce the risk of neurodegenerative diseases such as AD, but the molecular mechanisms underlying this effect remain to be clarified. In this study, we investigated the protective effects of chlorogenic acid (5-O-caffeoylquinic acid; CGA), a major phenolic phytochemical found in instant decaffeinated coffee (IDC), and IDC against oxidative PC12 neuronal cell death. IDC (1 and 5 μg/ml) or CGA (1 and 5 μM) attenuated H 2 O 2 -induced PC12 cell death. H 2 O 2 -induced nuclear condensation and DNA fragmentation were strongly inhibited by pretreatment with IDC or CGA. Pretreatment with IDC or CGA also inhibited the H 2 O 2 -induced cleavage of poly(ADP-ribose) polymerase (PARP), and downregulation of Bcl-X L and caspase-3. The accumulation of intracellular ROS in H 2 O 2 -treated PC12 cells was dose-dependently diminished by IDC or CGA. The activation of c-Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) by H 2 O 2 in PC12 cells was also inhibited by IDC or CGA. Collectively, these results indicate that IDC and CGA protect PC12 cells from H 2 O 2 -induced apoptosis by blocking the accumulation of intracellular ROS and the activation of MAPKs

  10. Expression of angiogenic switch, cachexia and inflammation factors at the crossroad in undifferentiated thyroid carcinoma with BRAF(V600E).

    Science.gov (United States)

    Husain, Amjad; Hu, Nina; Sadow, Peter M; Nucera, Carmelo

    2016-10-01

    Cachexia is the result of complex metabolic alterations which cause morbidity and mortality in patients with advanced cancers including undifferentiated (anaplastic) thyroid carcinoma (ATC). ATC is a lethal disease with limited therapeutic options and unclear etiology for cachexia. We hypothesize that the BRAF(V600E) oncoprotein triggers microvascular endothelial cell tubule formation (in vitro angiogenesis) by means of factors which play a crucial role in angiogenic switch, inflammation/immune response and cachexia. We use human ATC cells and applied multiplex ELISA assay to screen for and measure angiogenic/cachectic and pro-inflammatory factors in the ATC-derived secretome. We find that vemurafenib anti-BRAF(V600E) therapy significantly reduces secreted VEGFA, VEGFC and IL6 protein levels compared to vehicle-treated ATC cells. As a result, the secretome from vemurafenib-treated ATC cells inhibits microvascular endothelial cell-related in vitro angiogenesis. Furthermore, ATC clinical samples express VEGFA, VEGFC and IL6 proteins. Our results suggest that angiogenic/cachectic and pro-inflammatory/immune response factors could play a crucial role in BRAF(V600E)-positive human ATC aggressiveness. Understanding the extent to which microenvironment-associated angiogenic factors participate in cachexia and cancer metabolism in advanced thyroid cancers will reveal new biomarkers and foster novel therapeutic approaches. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Acute undifferentiated febrile illness in patients presenting to a Tertiary Care Hospital in South India: clinical spectrum and outcome

    Directory of Open Access Journals (Sweden)

    Kundavaram Paul Prabhakar Abhilash

    2016-01-01

    Full Text Available Background: Acute undifferentiated febrile illness (AUFI may have similar clinical presentation, and the etiology is varied and region specific. Materials and Methods: This prospective observational study was conducted in a tertiary hospital in South India. All adult patients presenting with AUFI of 3-14 days duration were evaluated for etiology, and the differences in presentation and outcome were analyzed. Results: The study cohort included 1258 patients. A microbiological cause was identified in 82.5% of our patients. Scrub typhus was the most common cause of AUFI (35.9% followed by dengue (30.6%, malaria (10.4%, enteric fever (3.7%, and leptospirosis (0.6%. Both scrub typhus and dengue fever peaked during the monsoon season and the cooler months, whereas no seasonality was observed with enteric fever and malaria. The mean time to presentation was longer in enteric fever (9.9 [4.7] days and scrub typhus (8.2 [3.2] days. Bleeding manifestations were seen in 7.7% of patients, mostly associated with dengue (14%, scrub typhus (4.2%, and malaria (4.6%. The requirement of supplemental oxygen, invasive ventilation, and inotropes was higher in scrub typhus, leptospirosis, and malaria. The overall mortality rate was 3.3% and was highest with scrub typhus (4.6% followed by dengue fever (2.3%. Significant clinical predictors of scrub typhus were breathlessness (odds ratio [OR]: 4.96; 95% confidence interval [CI]: 3.38-7.3, total whole blood cell count >10,000 cells/mm 3 (OR: 2.31; 95% CI: 1.64-3.24, serum albumin <3.5 g % (OR: 2.32; 95% CI: 1.68-3.2. Overt bleeding manifestations (OR: 2.98; 95% CI: 1.84-4.84, and a platelet count of <150,000 cells/mm 3 (OR: 2.09; 95% CI: 1.47-2.98 were independent predictors of dengue fever. Conclusion: The similarity in clinical presentation and diversity of etiological agents demonstrates the complexity of diagnosis and treatment of AUFI in South India. The etiological profile will be of use in the development of

  12. Undifferentiated seronegative spondyloarthritis with inflammatory bowel disease and a family history of psoriasis. Sicca syndrome

    Directory of Open Access Journals (Sweden)

    Norma Marigliano

    2013-04-01

    Full Text Available Background: Seronegative spondyloarthritis is characterized by the presence of subcutaneous nodules, asymmetrical peripheral arthritis, sacroileitis with or without spondylitis, and rheumatoid-factor negativity. Other common clinical manifestations include oral ulcers, conjunctivitis, and cutaneous lesions such as psoriasis. Familial aggregation has also been described. According to the 1986 classification, corresponding clinical entities include ankylosing spondylitis, psoriatic arthritis, Reiter’s syndrome, arthritis associated with inflammatory bowel disease (IBD, and undifferentiated spondyloarthritis. The disease is also frequently associated with the HLA B27 antigen. From the clinical point of view, there are often incomplete forms of spondyloarthritis, such as reactive arthritis triggered by asymptomatic infections, psoriatic arthritis without psoriasis itself, initial phases of specific forms of spondyloarthritis or the phase of ankylosing spondylitis characterized by sacroiliac lesions, and all forms that remain undifferentiated for long periods of time. Moreover, there are close relations between arthropathy and IBDs, such as Crohn’s disease, ulcerative colitis, and Whipple’s syndrome. Recently, microscopic inflammatory bowel lesions and psoriatic arthritis have been described. Case report: A 30-year-old man (HLA B27-negative who had been vaccinated against TBC and HBV presented with a 6-year history of recurrent episodes of predominantly left-sided sciatica. The pain was worse at night and during rest. He was suffering from bilateral sacroileitis without spondylitis. Three to five times a day, usually after eating, he passed watery feces containing mucous and small amounts of bright red blood. Colonoscopy revealed pancolitis with histological evidence of chronic inflammation interspersed with areas of acute inflammation, edema, hyperemia, and glandular distortion. One year later, the clinical manifestations and histological

  13. Longitudinal analysis of quality of life in patients with undifferentiated connective tissue diseases

    Directory of Open Access Journals (Sweden)

    Iudici M

    2017-02-01

    Full Text Available Michele Iudici, Rosaria Irace, Antonella Riccardi, Giovanna Cuomo, Serena Vettori, Gabriele Valentini Rheumatology Section, Department of Clinical and Experimental Medicine, Second University of Naples, Naples, Italy Introduction/objectives: To prospectively assess the quality of life (QoL of patients affected by undifferentiated connective tissue diseases (UCTDs and to identify factors associated with changes over time.Patients and methods: A total of 46 consecutive UCTD patients completed the Short-Form 36 (SF-36 questionnaire at presentation and then yearly. At each 6-month visit, all patients underwent a detailed history taking and a laboratory and physical assessment, in order to follow the evolution of the disease over time and to assess the the co-existence of fibromyalgia.Results: At presentation, scores lower than the average of the general population were detected in 34 (74% and 41 (89% patients in the physical and mental domains, respectively. No difference between patients with and without Raynaud’s phenomenon was detected. Fibromyalgia was the only independent variable associated with an impaired physical component summary score (p = 0.0009. No patient feature was found to be associated with the basal mental component summary score. During 24 months of follow-up, a significant improvement (ie, a change ≥5 from baseline in physical component summary and mental component summary scores was observed in 14 (33.3% and 20 (43.4% patients, respectively. Patients who significantly improved in the physical domain more frequently had a history of glucocorticoids intake (p < 0.001, while those who improved in the mental component more frequently had a history of either glucocorticoids (p = 0.043 or immunosuppressors (p = 0.037 intake during follow-up.Conclusion: UCTD patients perceive a worse QoL, regardless of Raynaud’s phenomenon Fibromyalgia is one of the major contributors of physical QoL, whereas no factor influencing

  14. Comparative study of two boron compounds (BPA and BOPP) for the application of BNCT to an animal model of undifferentiated thyroid cancer

    International Nuclear Information System (INIS)

    Dagrosa, Maria A.; Viaggi, Mabel; Juvenal, Guillermo; Pisarev, Mario A.

    2003-01-01

    Boron neutron capture therapy (BNCT) is based on the selective uptake of certain boron compounds by tumors. Once the uptake, relative to normal tissues, is equal of greater than 3, the tumoral area is irradiated with an appropriate neutron beam. The 10 B is then converted into 11 B and this decays releasing an atom of Li, gamma rays and alpha particles. These latter have a high linear energy transfer (LET) and will cause local damage, eventually killing the tumoral cells. At the present time several clinical trials are being conducted in different countries to treat patients with glioblastoma multiform and melanomas. So far the results obtained, specially with this last disease, are quite encouraging. Undifferentiated thyroid cancer (UTC) is a very aggressive tumor which does not respond to the therapies available at the present. Usually it has a very bad prognosis with a very short survival period. We have previously shown that the human UTC cell line ARO has an uptake of borophenylanine (BPA) significantly greater than normal thyroid or than human follicular adenoma cells in culture. Moreover, an animal model for UTC was developed in our laboratory by transplanting the human ARO cells into nude mice. This model closely resembles the evolution of human disease and even produces lung metastasis, like the human. In the present studies we have compared the uptake of two boron compounds: BPA and boronated porphyrin (BOPP). BPA was administered via ip in a dose of 600 mg/kg body weight, while BOPP was given either ip or iv, in doses of 10 and 100 mg/kg body weight. The animals were sacrificed at different times after the injection: up to 150 min for BPA and after 24 h with BOPP. The concentration of boron was determined by ICP-AES. The results obtained showed that the uptake of BPA was significantly greater in the tumoral area and in the infiltrated surrounding skin than in the other organs examined (liver, kidney, lung, mice thyroid, blood, spleen and distal skin

  15. Relationship of HS CRP and Sacroiliac Joint Inflammation in Undifferentiated Spondyloarthritis.

    Science.gov (United States)

    Liu, Te-Jung; Chang, Cheng-Chiang; Chen, Liang-Cheng; Chu, Heng-Yi; Hsu, Chun-Sheng; Chang, Shin-Tsu

    2018-01-01

    Elevation of serum high sensitivity C-reactive protein (hs-CRP) level has been demonstrated as a risk factor for varying diseases, as well as a biomarker for predicting recovery after operation of lumber disc herniation. Our objective was to investigate the relationship between serum hs-CRP and sacroiliac (SI) joint inflammation in patients with undifferentiated spondyloarthritis (uSpA). In this retrospective study, we enrolled patients with uSpA who underwent hs-CRP testing between January 2007 and September 2013. Serum hs-CRP was analyzed at our central laboratory. All enrolled patients underwent skeletal scintigraphic scan with quantitative sacroiliac measurement. A total of 29 patients were enrolled with mean age 32.27 years and female:male ratio of 6:23. Pearson's correlation coefficient showed a significant difference between hs-CRP in serum and SI/S ratio in uSpA, particularly the middle part of the sacroiliac joint, either right side or left side. The significantly high concentration of serum hs-CRP might indicate a systemic inflammatory response to flare-up of the SI joint and might be an indicator of SI inflammation in uSpA.

  16. Histologic and Genetic Advances in Refining the Diagnosis of “Undifferentiated Pleomorphic Sarcoma”

    International Nuclear Information System (INIS)

    Kelleher, Fergal C.; Viterbo, Antonella

    2013-01-01

    Undifferentiated pleomorphic sarcoma (UPS) is an inclusive term used for sarcomas that defy formal sub-classification. The frequency with which this diagnosis is assigned has decreased in the last twenty years. This is because when implemented, careful histologic assessment, immunohistochemistry, and ultra-structural evaluation can often determine lineage of differentiation. Further attrition in the diagnostic frequency of UPS may arise by using array-comparative genomic hybridization. Gene expression arrays are also of potential use as they permit hierarchical gene clustering. Appraisal of the literature is difficult due to a historical perspective in which specific molecular diagnostic methods were previously unavailable. The American Joint Committee on Cancer (AJCC) classification has changed with different inclusion criteria. Taxonomy challenges also exist with the older term “malignant fibrous histiocytoma” being replaced by “UPS”. In 2010 an analysis of multiple sarcoma expression databases using a 170-gene predictor, re-classified most MFH and “not-otherwise-specified” (NOS) tumors as liposarcomas, leiomyosarcomas or fibrosarcomas. Interestingly, some of the classifier genes are potential molecular therapeutic targets including Insulin-like growth factor 1 (IGF-1), Peroxisome proliferator-activated receptor γ (PPARγ), Nerve growth factor β (NGF β) and Fibroblast growth factor receptor (FGFR)

  17. Risk factors for the occurrence of undifferentiated carcinoma of nasopharyngeal type: A case-control study

    Directory of Open Access Journals (Sweden)

    Nešić Vladimir

    2010-01-01

    Full Text Available Introduction. The incidence rate of nasopharyngeal carcinoma in Serbia is less than one per 100,000 citizens, which classifies it as a region with low incidence for this disease. Objective. The aim of this study was to test some hypotheses of the risk factors for undifferentiated carcinoma of nasopharyngeal type (UCNT in the low incidence population. Methods. A case-control study was used for the research. The study included 45 cases with histopathological diagnosis of UCNT and 90 controls. Cases and the controls were individually matched by sex, age (±3 years, and place of residence (city-village. Data were gathered about sociodemographic characteristics, occupational exposure to harmful agents, habits, diet, personal history, and family history. In the analysis of the data, conditional univariate and multivariate logistic regression analyses were applied. Results. According to the results of multivariate logistic regression analysis UCNT was significantly positively associated with 'passive smoking' of tobacco in the family during childhood, frequent consumption of industrially manufactured food additives for enhancing flavour and frequent consumption of white bread. UCNT was significantly negatively associated with frequent consumption of margarine, olive oil and cornbread. Conclusion. In our low incidence population, an independent risk factor for the occurrence of UCNT was 'passive smoking' of tobacco in the family during childhood, use of industrially manufactured food with additives for enhancing flavour and consumption of white bread. Multicentric study enrolling a greater number of cases would be desirable.

  18. False Positive Radioiodinated Metaiodobenzylguanidine (123I-MIBG Uptake in Undifferentiated Adrenal Malignant Tumor

    Directory of Open Access Journals (Sweden)

    Hee Soo Jung

    2015-01-01

    Full Text Available 123I-Metaiodobenzylguanidine (123I-MIBG scintigraphy is a widely used functional imaging tool with a high degree of sensitivity and specificity in diagnosis of pheochromocytoma. However, rare cases of false positive reactions have been reported. A 67-year-old male patient was admitted with epigastric pain. Abdominal computed tomography (CT revealed a heterogeneous left adrenal mass 6 cm in diameter; following hormone testing, 123I-MIBG scintigraphy was performed to determine the presence of pheochromocytoma, which confirmed eccentric uptake by a large left adrenal gland mass. Chest CT and PET-CT confirmed metastatic lymphadenopathy; therefore, endobronchial ultrasound transbronchial needle aspiration was performed. Metastatic carcinoma of unknown origin was suspected from a lymph node biopsy, and surgical resection was performed for definitive diagnosis and correction of excess hormonal secretion. A final diagnosis of undifferentiated adrenal malignant tumor was rendered, instead of histologically malignant pheochromocytoma, despite the uptake of 123I-MIBG demonstrated by scintigraphy.

  19. Undifferentiated tropical febrile illness in Cordoba, Colombia: Not everything is dengue

    Directory of Open Access Journals (Sweden)

    Salim Mattar

    2017-09-01

    Full Text Available Summary: In Colombia, undifferentiated tropical febrile illness (UTFI are frequent and of considerable concern. They also share many clinical features. Between 2012 and 2013 in an endemic tropical area of Cordoba, Colombia, we conducted a prospective study to establish an etiological diagnosis of UTFI. Using diagnostic tests for dengue, leptospirosis, hantavirus, malaria, rickettsia, brucellosis, hepatitis A and B on 100 patients recruited for the study. We identified 69 patients with presumed UTFI: leptospirosis (n = 27, dengue (n = 26, hantavirus infection (n = 4, malaria (n = 4, rickettsial infection (n = 2, hepatitis A (n = 1, and brucellosis (n = 1; no hepatitis B cases were detected. Co-infections with malaria and leptospirosis (n = 1, hepatitis A and dengue (n = 1, hantavirus and dengue (n = 1, hantavirus, dengue, and leptospirosis (n = 1 were also identified. No etiologic agent was identified for 31 patients. We conclude that other etiologic agents besides dengue virus deserve greater attention by physicians and public health authorities in tropical area of Colombia. Keywords: Leptospirosis, Hantaviruses, Malaria, Vector-borne diseases, Zoonotic diseases

  20. Histologic and Genetic Advances in Refining the Diagnosis of “Undifferentiated Pleomorphic Sarcoma”

    Energy Technology Data Exchange (ETDEWEB)

    Kelleher, Fergal C., E-mail: fergalkelleher@hotmail.com [Sarcoma Service, Department of Medical Oncology, Peter Mac Callum Cancer Centre, Melbourne, Victoria, VIC8006 (Australia); Department of Medical Oncology, St. Vincent’s University Hospital, Dublin 4 (Ireland); Viterbo, Antonella [Department of Medical Oncology, St. Vincent’s University Hospital, Dublin 4 (Ireland); St. Andrea University Hospital, Rome 000189 (Italy)

    2013-02-22

    Undifferentiated pleomorphic sarcoma (UPS) is an inclusive term used for sarcomas that defy formal sub-classification. The frequency with which this diagnosis is assigned has decreased in the last twenty years. This is because when implemented, careful histologic assessment, immunohistochemistry, and ultra-structural evaluation can often determine lineage of differentiation. Further attrition in the diagnostic frequency of UPS may arise by using array-comparative genomic hybridization. Gene expression arrays are also of potential use as they permit hierarchical gene clustering. Appraisal of the literature is difficult due to a historical perspective in which specific molecular diagnostic methods were previously unavailable. The American Joint Committee on Cancer (AJCC) classification has changed with different inclusion criteria. Taxonomy challenges also exist with the older term “malignant fibrous histiocytoma” being replaced by “UPS”. In 2010 an analysis of multiple sarcoma expression databases using a 170-gene predictor, re-classified most MFH and “not-otherwise-specified” (NOS) tumors as liposarcomas, leiomyosarcomas or fibrosarcomas. Interestingly, some of the classifier genes are potential molecular therapeutic targets including Insulin-like growth factor 1 (IGF-1), Peroxisome proliferator-activated receptor γ (PPARγ), Nerve growth factor β (NGF β) and Fibroblast growth factor receptor (FGFR)

  1. Application of a prediction model for the progression of rheumatoid arthritis in patients with undifferentiated arthritis.

    Science.gov (United States)

    Arana-Guajardo, Ana; Pérez-Barbosa, Lorena; Vega-Morales, David; Riega-Torres, Janett; Esquivel-Valerio, Jorge; Garza-Elizondo, Mario

    2014-01-01

    Different prediction rules have been applied to patients with undifferentiated arthritis (UA) to identify those that progress to rheumatoid arthritis (RA). The Leiden Prediction Rule (LPR) has proven useful in different UA cohorts. To apply the LPR to a cohort of patients with UA of northeastern Mexico. We included 47 patients with UA, LPR was applied at baseline. They were evaluated and then classified after one year of follow-up into two groups: those who progressed to RA (according to ACR 1987) and those who did not. 43% of the AI patients developed RA. In the RA group, 56% of patients obtained a score ≤ 6 and only 15% ≥ 8. 70% who did not progress to RA had a score between 6 and ≤ 8. There was no difference in median score of LPR between groups, p=0.940. Most patients who progressed to RA scored less than 6 points in the LPR. Unlike what was observed in other cohorts, the model in our population did not allow us to predict the progression of the disease. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  2. Undifferentiated (embryonal) liver sarcoma: synchronous and metachronous occurrence with neoplasms other than mesenchymal liver hamartoma.

    Science.gov (United States)

    Gasljevic, Gorana; Lamovec, Janez; Jancar, Janez

    2011-08-01

    Undifferentiated (embryonal) liver sarcoma (UELS) is a rare tumor that typically occurs in children. The association of UELS with neoplasm other than mesenchymal liver hamartoma is exceedingly rare. The aim of the study was to report 3 cases of UELS, 2 of them being interesting because of their association with another neoplasm, vaginal embryonal rhabdomyosarcoma in a teenage girl and B-acute lymphoblastic leukemia in a middle-aged woman. Besides, one of our cases of UELS, in a 58-year-old woman, is an extremely rare presentation of such a tumor in a middle-aged adult. The patient's clinical features, therapy, and pathologic results were reviewed; immunohistochemical analysis and, in 2 cases, electron microscopy were performed. In this study, all 3 patients were females aged 13, 13, and 58 years. Histopathologic evaluation of resected liver tumors confirmed the diagnosis of UELS in all of them. In 2 of the cases, metachronous occurrence of UELS with vaginal embryonal rhabdomyosarcoma in a teenage girl and B-acute lymphoblastic leukemia in a middle-aged woman is described. Careful clinical analysis, histologic studies, and immunohistochemistry are mandatory to distinguish UELS from other hepatic malignancies with similar or overlapping features and to exclude the possibility of other tumors that may be considered in the differential diagnosis. The association of UELS with another neoplasm is exceedingly rare. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Relationship of HS CRP and Sacroiliac Joint Inflammation in Undifferentiated Spondyloarthritis

    Science.gov (United States)

    Liu, Te-Jung; Chang, Cheng-Chiang; Chen, Liang-Cheng; Chu, Heng-Yi; Hsu, Chun-Sheng; Chang, Shin-Tsu

    2018-01-01

    Abstract Objective Elevation of serum high sensitivity C-reactive protein (hs-CRP) level has been demonstrated as a risk factor for varying diseases, as well as a biomarker for predicting recovery after operation of lumber disc herniation. Our objective was to investigate the relationship between serum hs-CRP and sacroiliac (SI) joint inflammation in patients with undifferentiated spondyloarthritis (uSpA). Methods In this retrospective study, we enrolled patients with uSpA who underwent hs-CRP testing between January 2007 and September 2013. Serum hs-CRP was analyzed at our central laboratory. All enrolled patients underwent skeletal scintigraphic scan with quantitative sacroiliac measurement. Results A total of 29 patients were enrolled with mean age 32.27 years and female:male ratio of 6:23. Pearson’s correlation coefficient showed a significant difference between hs-CRP in serum and SI/S ratio in uSpA, particularly the middle part of the sacroiliac joint, either right side or left side. The significantly high concentration of serum hs-CRP might indicate a systemic inflammatory response to flare-up of the SI joint and might be an indicator of SI inflammation in uSpA. PMID:29785410

  4. Isolation of a primate embryonic stem cell line.

    OpenAIRE

    Thomson, J A; Kalishman, J; Golos, T G; Durning, M; Harris, C P; Becker, R A; Hearn, J P

    1995-01-01

    Embryonic stem cells have the ability to remain undifferentiated and proliferate indefinitely in vitro while maintaining the potential to differentiate into derivatives of all three embryonic germ layers. Here we report the derivation of a cloned cell line (R278.5) from a rhesus monkey blastocyst that remains undifferentiated in continuous passage for > 1 year, maintains a normal XY karyotype, and expresses the cell surface markers (alkaline phosphatase, stage-specific embryonic antigen 3, st...

  5. Multicenter validation of the value of BASFI and BASDAI in Chinese ankylosing spondylitis and undifferentiated spondyloarthropathy patients

    OpenAIRE

    Lin, Zhiming; Gu, Jieruo; He, Peigen; Gao, Jiesheng; Zuo, Xiaoxia; Ye, Zhizhong; Shao, Fengmin; Zhan, Feng; Lin, Jinying; Li, Li; Wei, Yanlin; Xu, Manlong; Liao, Zetao; Lin, Qu

    2009-01-01

    The objectives of this study were to evaluate the reliability of Bath ankylosing spondylitis functional index (BASFI) and Bath ankylosing spondylitis disease activity index (BASDAI) in Chinese ankylosing spondylitis (AS) and undifferentiated spondyloarthropathy (USpA) patients. 664 AS patients by the revised New York criteria for AS and 252 USpA patients by the European Spondyloarthropathy Study Group criteria were enrolled. BASDAI and BASFI questionnaires were translated into Chinese. Partic...

  6. The problem of gastroptosis as a manifestation of undifferentiated connective tissue dysplasia in the clinical practice of pediatric gastroenterologist

    Directory of Open Access Journals (Sweden)

    O.M. Shulhai

    2018-04-01

    Full Text Available In the article, the authors describe a clinical case of undifferentiated connective tissue dysplasia in 10- and 15-year-old girls. This pathology is common because it has a lot of clinical, morphological and visceral manifestations, but it is hard to diagnose. Many chronic diseases have been formed based on this pathology. Clinical cases in this article describe confirmed gastroptosis (greater curvature of the stomach is displaced downwards, below the level of the iliac crests in standing position as one of the visceral manifestations of undifferentiated connective tissue dysplasia, laboratory and instrumental findings that help to diagnose this syndrome. Gastroptosis occurs in children with asthenic type of constitution (elongated limbs, thin body, small chest, narrow shoulders, hypermobility of the joints. It comes from weak development of muscle and connective tissues so they can not endure overload, resulting is many problems, including the gastroptosis, visceroptosis etc. There are many causes of gastroptosis: congenital anomalies of the ligamentous apparatus structure, maternal disease during pregnancy, surgical intervention, sharp decrease in body weight, vitamin and proteins deficiency, irrational nutrition, lengthening the mesentery of an organ such as large intestine. If we know clinical manifestations and features of undifferentiated connective tissue dysplasia, it will allow diagnosing this pathology in a timely manner and will help more fully provide medical care to such patients, carry out their rehabilitation, psychological ada­ptation, and prevent early development of disability.

  7. A Predictive Model to Classify Undifferentiated Fever Cases Based on Twenty-Four-Hour Continuous Tympanic Temperature Recording

    Directory of Open Access Journals (Sweden)

    Pradeepa H. Dakappa

    2017-01-01

    Full Text Available Diagnosis of undifferentiated fever is a major challenging task to the physician which often remains undiagnosed and delays the treatment. The aim of the study was to record and analyze a 24-hour continuous tympanic temperature and evaluate its utility in the diagnosis of undifferentiated fevers. This was an observational study conducted in the Kasturba Medical College and Hospitals, Mangaluru, India. A total of ninety-six (n=96 patients were presented with undifferentiated fever. Their tympanic temperature was recorded continuously for 24 hours. Temperature data were preprocessed and various signal characteristic features were extracted and trained in classification machine learning algorithms using MATLAB software. The quadratic support vector machine algorithm yielded an overall accuracy of 71.9% in differentiating the fevers into four major categories, namely, tuberculosis, intracellular bacterial infections, dengue fever, and noninfectious diseases. The area under ROC curve for tuberculosis, intracellular bacterial infections, dengue fever, and noninfectious diseases was found to be 0.961, 0.801, 0.815, and 0.818, respectively. Good agreement was observed [kappa = 0.618 (p<0.001, 95% CI (0.498–0.737] between the actual diagnosis of cases and the quadratic support vector machine learning algorithm. The 24-hour continuous tympanic temperature recording with supervised machine learning algorithm appears to be a promising noninvasive and reliable diagnostic tool.

  8. Clinical and biochemical manifestations of undifferentiated forms of connective tissue dysplasia in pregnant women with varicose veins of small pelvis

    Directory of Open Access Journals (Sweden)

    N.M. Shibelgut

    2010-03-01

    Full Text Available Research objective is to define the pathogenesis of varicous veins of small pelvis in women. at Ultrasonic investigation of venous system of small pelvis has been carried out in 290 pregnant women. It revealed 190 patients with varicose veins of small pelvis (VVSP. By means of V.M. Jakovleva's technique phenotypic menifestation of connective tissue dysplasia was determined in all pregnant women. Biochemical manifestations of connective tissue dysplasia were identified by sialic acid level in blood serum, daily excretion of glycosaminoglycans and oxyproline. High frequency of clinical and biochemical manifestations of undifferentiated forms of connective tissue dysplasia was revealed in pregnant women with VVSP. Patients with VVSP developed tooth and jaw, facial and locomotor damages. Patients with VVSP characterized by visceral undifferentiated forms of connective tissue dysplasia demonstrated by refraction involvement, ventral hernias, flat feet, varicous veins of lower extremities, hypermobile syndrome, mitral valve prolapse of different degree. Biochemical manifestations of undifferentiated forms of connective tissue dysplasia in pregnant women with VVSP were insignificant

  9. Vegetative status characteristics in children with neurological pathology on the background of undifferentiated connective tissue dysplasia

    Directory of Open Access Journals (Sweden)

    Tyazka O.V.

    2016-03-01

    Full Text Available Background. Disorders of the autonomic nervous system are the most common pathological conditions detected in 20% - 85% of children and adolescents according to different authors' data. Assessment of the vegetative status in the period of intensive growth and differentiation of organs and tissues that is characteristic of childhood is of great practical importance. Identification of vegetative dysregulation is an important diagnostic measure in children's health status evaluation especially in patients with undifferentiated connective tissue dysplasia (UNDCT taking into account its genetic determinism and debut in childhood. Genetically determined biochemical disorders in the connective tissue followed by formation of characteristic pathological substrates cause dysregulation of sympathoadrenal system and correlate with UNDCT severity degree. Material and methods. There were 100 children aged from 5 to 16 years engaged in the investigation. All of them were treated in the neurological department of the City clinical hospital №4. All patients were divided into two groups: basic group, which included 50 children with neurological disorders and UNDC, and control one, which consisted of 50 children with neurological disorders without UNDCT. The survey included obstetric history analysis, anthropometry to determine the ratio of longitudinal and transverse dimensions (the index of Vervica; clinical and neurological examination (study of reflex&motor areas, sensory function, coordination; laboratory methods (clinical blood count and biochemical blood tests to determine the level of potassium and calcium ions, instrumental methods (electroencephalography, rheoencephalography, magnetic resonance imaging of the brain. Osokina's table was used for baseline autonomic tone assessment. The evaluation was conducted by counting the number of signs. Subsequently was performed the summation of the scores with the determination of the percentage of predominant

  10. Undifferentiated connective tissue disease and interstitial lung disease: Trying to define patterns.

    Science.gov (United States)

    Alberti, María Laura; Paulin, Francisco; Toledo, Heidegger Mateos; Fernández, Martín Eduardo; Caro, Fabián Matías; Rojas-Serrano, Jorge; Mejía, Mayra Edith

    To identify clinical or immunological features in patients with undifferentiated connective tissue disease (UCTD) associated interstitial lung disease (ILD), in order to group them and recognize different functional and high resolution computed tomography (HRCT) behavior. Retrospective cohort study. Patients meeting Kinder criteria for UCTD were included. We defined the following predictive variables: 'highly specific' connective tissue disease (CTD) manifestations (Raynaud's phenomenon, dry eyes or arthritis), high antinuclear antibody (ANA) titer (above 1: 320), and 'specific' ANA staining patterns (centromere, cytoplasmic and nucleolar patterns). We evaluated the following outcomes: change in the percentage of the predicted forced vital capacity (FVC%) during the follow-up period, and HRCT pattern. Sixty-six patients were included. Twenty-nine (43.94%) showed at least one 'highly specific' CTD manifestation, 16 (28.57%) had a 'specific' ANA staining pattern and 29 (43.94%) high ANA titer. Patients with 'highly specific' CTD manifestations were younger (mean [SD] 52 years [14.58] vs 62.08 years [9.46], P<.001), were more likely men (10.34% vs 48.65%, P<.001) and showed a smaller decline of the FVC% (median [interquartile range] 1% [-1 to 10] vs -6% [-16 to -4], P<.006). In the multivariate analysis, the presence of highly specific manifestations was associated with improvement in the FVC% (B coefficient of 13.25 [95% confidence interval, 2.41 to 24.09]). No association was observed in relation to the HRCT pattern. The presence of 'highly specific' CTD manifestations was associated with female sex, younger age and better functional behavior. These findings highlight the impact of the clinical features in the outcome of patients with UCTD ILD. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  11. Undifferentiated myxoid lipoblastoma with PLAG1-HAS2 fusion in an infant; morphologically mimicking primitive myxoid mesenchymal tumor of infancy (PMMTI)--diagnostic importance of cytogenetic and molecular testing and literature review.

    Science.gov (United States)

    Warren, Mikako; Turpin, Brian K; Mark, Melissa; Smolarek, Teresa A; Li, Xia

    2016-01-01

    Lipoblastoma is a benign myxoid neoplasm arising in young children that typically demonstrates adipose differentiation. It is often morphologically indistinguishable from primitive myxoid mesenchymal tumor of infancy (PMMTI), which is characterized by a well-circumscribed myxoid mass with a proliferation of primitive mesenchymal cells with mild cytologic atypia. PMMTI occurs in the first year of life and is known to have locally aggressive behavior. No specific genetic rearrangements have been reported to date. In contrast, the presence of PLAG1 (Pleomorphic Adenoma Gene 1) rearrangement is diagnostic for lipoblastoma. We hereby demonstrate the combined application of multiple approaches to tackle the diagnostic challenges of a rapidly growing neck tumor in a 3-month-old female. An incisional tumor biopsy had features of an undifferentiated, myxoid mesenchymal neoplasm mimicking PMMTI. However, tumor cells showed diffuse nuclear expression by immunohistochemical (IHC) stain. Conventional cytogenetic and fluorescence in situ hybridization (FISH) analyses as well as next generation sequencing (NGS) demonstrated evidence of PLAG1 rearrangement, confirming the diagnosis of lipoblastoma. This experience warrants that undifferentiated myxoid lipoblastoma can mimic PMMTI, and the combination of cytogenetic and molecular approaches is essential to distinguish these two myxoid neoplasms. Literature on lipoblastomas with relevant molecular and cytogenetic findings is summarized. Our case is the first lipoblastoma diagnosed with a PLAG1 fusion defined by NGS technolog