WorldWideScience

Sample records for undifferentiated myeloid cells

  1. Promoter DNA hypermethylation and gene repression in undifferentiated Arabidopsis cells.

    Directory of Open Access Journals (Sweden)

    María Berdasco

    Full Text Available Maintaining and acquiring the pluripotent cell state in plants is critical to tissue regeneration and vegetative multiplication. Histone-based epigenetic mechanisms are important for regulating this undifferentiated state. Here we report the use of genetic and pharmacological experimental approaches to show that Arabidopsis cell suspensions and calluses specifically repress some genes as a result of promoter DNA hypermethylation. We found that promoters of the MAPK12, GSTU10 and BXL1 genes become hypermethylated in callus cells and that hypermethylation also affects the TTG1, GSTF5, SUVH8, fimbrin and CCD7 genes in cell suspensions. Promoter hypermethylation in undifferentiated cells was associated with histone hypoacetylation and primarily occurred at CpG sites. Accordingly, we found that the process specifically depends on MET1 and DRM2 methyltransferases, as demonstrated with DNA methyltransferase mutants. Our results suggest that promoter DNA methylation may be another important epigenetic mechanism for the establishment and/or maintenance of the undifferentiated state in plant cells.

  2. Cytomegalovirus immune evasion of myeloid lineage cells.

    Science.gov (United States)

    Brinkmann, Melanie M; Dağ, Franziska; Hengel, Hartmut; Messerle, Martin; Kalinke, Ulrich; Čičin-Šain, Luka

    2015-06-01

    Cytomegalovirus (CMV) evades the immune system in many different ways, allowing the virus to grow and its progeny to spread in the face of an adverse environment. Mounting evidence about the antiviral role of myeloid immune cells has prompted the research of CMV immune evasion mechanisms targeting these cells. Several cells of the myeloid lineage, such as monocytes, dendritic cells and macrophages, play a role in viral control, but are also permissive for CMV and are naturally infected by it. Therefore, CMV evasion of myeloid cells involves mechanisms that qualitatively differ from the evasion of non-CMV-permissive immune cells of the lymphoid lineage. The evasion of myeloid cells includes effects in cis, where the virus modulates the immune signaling pathways within the infected myeloid cell, and those in trans, where the virus affects somatic cells targeted by cytokines released from myeloid cells. This review presents an overview of CMV strategies to modulate and evade the antiviral activity of myeloid cells in cis and in trans.

  3. Spindle and Giant Cell Type Undifferentiated Carcinoma of the Proximal Bile Duct

    OpenAIRE

    Ide, Takao; Miyoshi, Atsushi; Kitahara, Kenji; Kai, Keita; Noshiro, Hirokazu

    2012-01-01

    Undifferentiated spindle and giant cell carcinoma is an extremely rare malignant neoplasm arising in the extrahepatic bile duct. We herein present the case of a 67-year-old male who developed an undifferentiated spindle and giant cell carcinoma of the proximal bile duct. A nodular infiltrating tumor was located at the proximal bile duct, resulting in obstructive jaundice. Histologically, the tumor was composed of mainly spindle-shaped and giant cells and showed positive immunoreactivity for b...

  4. Silencing of HMGA2 reverses retardance of cell differentiation in human myeloid leukaemia.

    Science.gov (United States)

    Tan, Li; Xu, Hongfa; Chen, Guoshu; Wei, Xiaoping; Yu, Baodan; Ye, Jingmei; Xu, Lihua; Tan, Huo

    2018-02-06

    High-mobility group AT-hook 2 (HMGA2) may serve as an architectural transcription factor, and it can regulate a range of normal biological processes including proliferation and differentiation. Upregulation of HMGA2 expression is correlated to the undifferentiated phenotype of immature leukaemic cells. However, the underlying mechanism of HMGA2-dependent myeloid differentiation blockage in leukaemia is unknown. To reveal the role and mechanism of HMGA2 in differentiation arrest of myeloid leukaemia cells, the quantitative expression of HMGA2 and homeobox A9 (HOXA9) was analysed by real-time PCR (qRT-PCR). The regulatory function of HMGA2 in blockage of differentiation in human myeloid leukaemia was investigated through in vitro assays (XTT assay, May-Grünwald-Giemsa, flow cytometry analysis and western blot). We found that the expression of HMGA2 and HOXA9 was reduced during the process of granulo-monocytic maturation of acute myeloid leukaemia (AML) cells, knockdown of HMGA2 promotes terminal (granulocytic and monocytic) differentiation of myeloid leukaemia primary blasts and cell lines, and HOXA9 was significantly downregulated in leukaemic cells with knockdown of HMGA2. Downregulation of HOXA9 in myeloid leukaemia cells led to increased differentiation capacity in vitro. Our data suggest that increased expression of HMGA2 represents a possible new mechanism of myeloid differentiation blockage of leukaemia. Aberrant expression of HMGA2 may enhance HOXA9-dependent leukaemogenesis and myeloid leukaemia phenotype. Disturbance of the HMGA2-HOXA9 pathway is probably a therapeutic strategy in myeloid leukaemia.

  5. Characterization of the translocation breakpoint sequences of two DEK-CAN fusion genes present in t(6;9) acute myeloid leukemia and a SET-CAN fusion gene found in a case of acute undifferentiated leukemia

    NARCIS (Netherlands)

    von Lindern, M.; Breems, D.; van Baal, S.; Adriaansen, H.; Grosveld, G.

    1992-01-01

    The t(6;9) associated with a subtype of acute myeloid leukemia (AML) was shown to generate a fusion between the 3' part of the CAN gene on chromosome 9 and the 5' part of the DEK gene on chromosome 6. The same part of the CAN gene appeared to be involved in a case of acute undifferentiated leukemia

  6. Undifferentiated Embryonic Cell Transcription Factor 1 Regulates ESC Chromatin Organization and Gene Expression

    NARCIS (Netherlands)

    Kooistra, Susanne M.; van den Boom, Vincent; Thummer, Rajkumar P.; Johannes, Frank; Wardenaar, Rene; Tesson, Bruno M.; Veenhoff, Liesbeth M.; Fusetti, Fabrizia; O'Neill, Laura P.; Turner, Bryan M.; de Haan, Gerald; Eggen, Bart J. L.; O’Neill, Laura P.

    2010-01-01

    Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES

  7. Rho GTPase expression in human myeloid cells.

    Directory of Open Access Journals (Sweden)

    Suzanne F G van Helden

    Full Text Available Myeloid cells are critical for innate immunity and the initiation of adaptive immunity. Strict regulation of the adhesive and migratory behavior is essential for proper functioning of these cells. Rho GTPases are important regulators of adhesion and migration; however, it is unknown which Rho GTPases are expressed in different myeloid cells. Here, we use a qPCR-based approach to investigate Rho GTPase expression in myeloid cells.We found that the mRNAs encoding Cdc42, RhoQ, Rac1, Rac2, RhoA and RhoC are the most abundant. In addition, RhoG, RhoB, RhoF and RhoV are expressed at low levels or only in specific cell types. More differentiated cells along the monocyte-lineage display lower levels of Cdc42 and RhoV, while RhoC mRNA is more abundant. In addition, the Rho GTPase expression profile changes during dendritic cell maturation with Rac1 being upregulated and Rac2 downregulated. Finally, GM-CSF stimulation, during macrophage and osteoclast differentiation, leads to high expression of Rac2, while M-CSF induces high levels of RhoA, showing that these cytokines induce a distinct pattern. Our data uncover cell type specific modulation of the Rho GTPase expression profile in hematopoietic stem cells and in more differentiated cells of the myeloid lineage.

  8. Enhanced expression of extracellular calcium sensing receptor in monocyte-differentiated versus undifferentiated HL-60 cells: potential role in regulation of a nonselective cation channel.

    Science.gov (United States)

    Yamaguchi, T; Ye, C; Chattopadhyay, N; Sanders, J L; Vassilev, P M; Brown, E M

    2000-05-01

    Human promyelocytic leukemia cells (HL-60) have been used widely as a model for studying the differentiation of hematopoietic progenitor cells in vitro. After treatment with phorbol-12-myristate-13-acetate (PMA) or 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], HL-60 cells differentiate into cells with the phenotype of monocytes/macrophages. We previously showed that peripheral blood monocytes and the murine J774 monocytic cell line express the CaR, and myeloid progenitors in the bone marrow and myeloid cells in peripheral blood other than monocytes express lower levels of the CaR. Therefore, we investigated whether undifferentiated HL-60 cells express a functional G protein-coupled, extracellular calcium (Ca(2+)(o))-sensing receptor (CaR) and if the expression of the CaR increases as these cells differentiate along the monocytic lineage. The use of reverse transcription-polymerase chain reaction (RT-PCR) with CaR-specific primers, followed by sequencing of the amplified products, identified an authentic CaR transcript in undifferentiated HL-60 cells. Both immunocytochemistry and Western blot analysis using a CaR-specific antiserum detected low levels of CaR protein expression in undifferentiated HL-60 cells. The levels of CaR protein increased considerably following treatment of the cells with PMA (50 nM) or 1,25(OH)(2)D(3) (100 nM) for 5 days. Northern analysis using a CaR-specific riboprobe identified CaR transcripts in undifferentiated HL-60 cells, but CaR mRNA levels did not change appreciably after treatment with either agent, suggesting that upregulation of CaR protein occurs at a translational level. PMA-treated HL-60 cells expressed a nonselective cation channel (NCC), and the calcimimetic CaR activator, NPS R-467, but not its less active stereoisomer, NPS S-467, as well as the polycationic CaR agonist, neomycin, activated this NCC, demonstrating that the CaR expressed in these cells is functionally active. Therefore, HL-60 cells exhibit an increase in Ca

  9. Possibility of Undifferentiated Human Thigh Adipose Stem Cells Differentiating into Functional Hepatocytes

    Directory of Open Access Journals (Sweden)

    Jong Hoon Lee

    2012-11-01

    Full Text Available BackgroundThis study aimed to investigate the possibility of isolating mesenchymal stem cells (MSCs from human thigh adipose tissue and the ability of human thigh adipose stem cells (HTASCs to differentiate into hepatocytes.MethodsThe adipose-derived stem cells (ADSCs were isolated from thigh adipose tissue. Growth factors, cytokines, and hormones were added to the collagen coated dishes to induce the undifferentiated HTASCs to differentiate into hepatocyte-like cells. To confirm the experimental results, the expression of hepatocyte-specific markers on undifferentiated and differentiated HTASCs was analyzed using reverse transcription polymerase chain reaction and immunocytochemical staining. Differentiation efficiency was evaluated using functional tests such as periodic acid schiff (PAS staining and detection of the albumin secretion level using enzyme-linked immunosorbent assay (ELISA.ResultsThe majority of the undifferentiated HTASCs were changed into a more polygonal shape showing tight interactions between the cells. The differentiated HTASCs up-regulated mRNA of hepatocyte markers. Immunocytochemical analysis showed that they were intensely stained with anti-albumin antibody compared with undifferentiated HTASCs. PAS staining showed that HTASCs submitted to the hepatocyte differentiation protocol were able to more specifically store glycogen than undifferentiated HTASCs, displaying a purple color in the cytoplasm of the differentiated HTASCs. ELISA analyses showed that differentiated HTASCs could secrete albumin, which is one of the hepatocyte markers.ConclusionsMSCs were islolated from human thigh adipose tissue differentiate to heapatocytes. The source of ADSCs is not only abundant abdominal adipose tissue, but also thigh adipose tissue for cell therapy in liver regeneration and tissue regeneration.

  10. A monoclonal antibody recognizes undifferentiation-specific carbohydrate moieties expressed on cell surface of the human dental pulp cells.

    Science.gov (United States)

    Kang, Kyung-Jung; Ko, Seon-Yle; Ryu, Chun-Jeih; Jang, Young-Joo

    2017-05-01

    Human dental pulp cells are obtained from dental pulp tissue, and have the ability to form dentin and a pulp-like complex. Although adult stem cells have been identified from the primary culture by using specific cell surface markers, the identity of surface markers for the purification of stem cells within the dental pulp population are still unclear. Previously, we had constructed monoclonal antibodies against the undifferentiated cell-specific surface markers of human dental pulp cells (hDPCs) by performing decoy immunization. Among them, a monoclonal antibody against the cell surface antigen of the undifferentiated hDPCs (named UPSA-1) was purified and its heavy and light chain consensus regions were analyzed. The cell surface binding affinity of UPSA-1 mAb on the undifferentiated hDPCs was stronger than that on the differentiated cells. When tunicamycin was applied to hDPSCs during culture, the cell surface binding affinity of the antibody was dramatically decreased, and dentinogenic differentiation was reduced. The purified UPSA-1 antigen band resulting from immunoprecipitation disappeared or shifted down on the SDS-PAGE by deglycosylation. These data suggested that glycosylation on the cell surface might be a marker of an undifferentiated state, and that UPSA-1 mAb might be useful for identifying the carbohydrate moiety on the cell surface of undifferentiated pulp cells. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Expression of Neural Markers by Undifferentiated Mesenchymal-Like Stem Cells from Different Sources

    Directory of Open Access Journals (Sweden)

    Dana Foudah

    2014-01-01

    Full Text Available The spontaneous expression of neural markers, already demonstrated in bone marrow (BM mesenchymal stem cells (MSCs, has been considered as evidence of the MSCs’ predisposition to differentiate toward neural lineages, supporting their use in stem cell-based therapy for neural repair. In this study we have evaluated, by immunocytochemistry, immunoblotting, and flow cytometry experiments, the expression of neural markers in undifferentiated MSCs from different sources: human adipose stem cells (hASCs, human skin-derived mesenchymal stem cells (hS-MSCs, human periodontal ligament stem cells (hPDLSCs, and human dental pulp stem cells (hDPSCs. Our results demonstrate that the neuronal markers βIII-tubulin and NeuN, unlike other evaluated markers, are spontaneously expressed by a very high percentage of undifferentiated hASCs, hS-MSCs, hPDLSCs, and hDPSCs. Conversely, the neural progenitor marker nestin is expressed only by a high percentage of undifferentiated hPDLSCs and hDPSCs. Our results suggest that the expression of βIII-tubulin and NeuN could be a common feature of stem cells and not exclusive to neuronal cells. This could result in a reassessment of the use of βIII-tubulin and NeuN as the only evidence proving neuronal differentiation. Further studies will be necessary to elucidate the relevance of the spontaneous expression of these markers in stem cells.

  12. Undifferentiated salivary gland carcinomas

    DEFF Research Database (Denmark)

    Herbst, H.; Hamilton-Dutoit, S.; Jakel, K.T.

    2004-01-01

    Undifferentiated salivary gland carcinomas may be divided into small cell and large cell types. Among large cell undifferentiated carcinomas, lymphoepithelial carcinomas have to be distinguished, the latter of which are endemic in the Arctic regions and southern China where virtually all cases of...... at other primary sites, particularly when expressing the thyroid transcription factor-1 (TTF-1) Udgivelsesdato: 2004...

  13. Primary CNS anaplastic diffuse large B-cell lymphoma mimicking undifferentiated metastatic tumors: a case report.

    Science.gov (United States)

    Yang, Tianyu; Belverud, Shawn; Yeh, Albert Y; Bandovic, Jela; Farmer, Peter; Woldenberg, Rona F; Demopoulos, Alexis; Schulder, Michael; Li, Jian Yi

    2010-02-01

    Primary central nervous system lymphoma (PCNSL) is a rare intracranial tumor, with an annual incidence of six per million population. Anaplastic variant of primary CNS diffuse large B-cell lymphoma is less common; to our knowledge, there is only one other case report in the world literature. We describe a 71 year old immunocompetent female without significant past medical history who presented with confusion and a homogeneously enhancing midline mass. The patient underwent craniotomy for tumor biopsy, followed by high-dose methotrexate-based chemotherapy despite a remarkably low performance status. Histologically, this tumor was composed of undifferentiated polymorphic tumor cells, multi-nucleated giant cells, extensive necrosis, and conspicuous mitotic activity, mimicking undifferentiated metastatic tumors. Immunohistochemical stains demonstrated immunopositivity of tumor cells for CD20, MUM-1, and BCL-6, and negative staining for CD3, CD10, and CD30. The clinical course, diagnostic workup, pathologic correlates, and treatment outcomes are described.

  14. [Myeloid/natural killer cell precursor and myeloid/natural killer cell acute leukemia].

    Science.gov (United States)

    Ni, Ming; Chen, Bao-An

    2014-04-01

    With the popularity of flow cytometry, the classification of leukemia become more detailed. Myeloid/natural killer cell precursor acute leukemia and myeloid/natural killer cell acute leukemias are generally recognized as two kinds of rare leukemias and have poor prognosis. The cells expressed both myeloid and lymphatic antigens in these two leukemia and can not be diagnosed by morphology. The only basis to make a definite diagnosis is their unique Immunophenotyping. The role of CD7 and CD56 in these two leukemia are compelling, in the other hand, as the progress of cell differentiation research, there are many new awareness of NK cell differentiation. In this article, the biological origin, clinical manifestation, diagnosis, treatment and the role of CD7 and CD56 in these two leukemia are briefly summarized.

  15. Tunneling Nanotubes: Intimate Communication between Myeloid Cells

    Directory of Open Access Journals (Sweden)

    Maeva Dupont

    2018-01-01

    Full Text Available Tunneling nanotubes (TNT are dynamic connections between cells, which represent a novel route for cell-to-cell communication. A growing body of evidence points TNT towards a role for intercellular exchanges of signals, molecules, organelles, and pathogens, involving them in a diverse array of functions. TNT form among several cell types, including neuronal cells, epithelial cells, and almost all immune cells. In myeloid cells (e.g., macrophages, dendritic cells, and osteoclasts, intercellular communication via TNT contributes to their differentiation and immune functions. Importantly, TNT enable myeloid cells to communicate with a targeted neighboring or distant cell, as well as with other cell types, therefore creating a complex variety of cellular exchanges. TNT also contribute to pathogen spread as they serve as “corridors” from a cell to another. Herein, we addressed the complexity of the definition and in vitro characterization of TNT in innate immune cells, the different processes involved in their formation, and their relevance in vivo. We also assess our current understanding of how TNT participate in immune surveillance and the spread of pathogens, with a particular interest for HIV-1. Overall, despite recent progress in this growing research field, we highlight that further investigation is needed to better unveil the role of TNT in both physiological and pathological conditions.

  16. Sustained levels of FGF2 maintain undifferentiated stem cell cultures with biweekly feeding.

    Directory of Open Access Journals (Sweden)

    Steven Lotz

    Full Text Available An essential aspect of stem cell culture is the successful maintenance of the undifferentiated state. Many types of stem cells are FGF2 dependent, and pluripotent stem cells are maintained by replacing FGF2-containing media daily, while tissue-specific stem cells are typically fed every 3rd day. Frequent feeding, however, results in significant variation in growth factor levels due to FGF2 instability, which limits effective maintenance due to spontaneous differentiation. We report that stabilization of FGF2 levels using controlled release PLGA microspheres improves expression of stem cell markers, increases stem cell numbers and decreases spontaneous differentiation. The controlled release FGF2 additive reduces the frequency of media changes needed to maintain stem cell cultures, so that human embryonic stem cells and induced pluripotent stem cells can be maintained successfully with biweekly feedings.

  17. Can Villin be Used to Identify Malignant and Undifferentiated Normal Digestive Epithelial Cells?

    Science.gov (United States)

    Robine, S.; Huet, C.; Moll, R.; Sahuquillo-Merino, C.; Coudrier, E.; Zweibaum, A.; Louvard, D.

    1985-12-01

    We have investigated the presence of villin (a Ca2+-regulated actin binding protein) in various tissues (normal or malignant) and in established cell lines by using sensitive immunochemical techniques on cell extracts and immunofluorescence analysis on frozen sections. Our results show that villin is a marker that can be used to distinguish normal differentiated epithelial cells from the simple epithelia lining the gastrointestinal tract and renal tubules. Villin is found in the absorptive cells of the small and large intestines, in the duct cells of pancreas and biliary system, and in the cells of kidney proximal tubules. Furthermore, undifferentiated normal and tumoral cells of intestinal origin in vivo and in cell culture express villin. Therefore, expression of villin is seen in cells that do not necessarily display the morphological features characteristic of their terminally differentiated state, such as the microvilli-lined brush border. We suggest the possible clinical implications of using villin as a marker in the diagnosis of metastatic adenocarcinomas.

  18. Undifferentiated embryonic cell transcription factor 1 regulates ESC chromatin organization and gene expression

    DEFF Research Database (Denmark)

    Kooistra, Susanne M; van den Boom, Vincent; Thummer, Rajkumar P

    2010-01-01

    Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES...... cell chromatin structure. Using chromatin immunoprecipitation-on-chip analysis, we identified >1,700 UTF1 target genes that significantly overlap with previously identified Nanog, Oct4, Klf-4, c-Myc, and Rex1 targets. Gene expression profiling showed that UTF1 knock down results in increased expression...... of a large set of genes, including a significant number of UTF1 targets. UTF1 knock down (KD) ES cells are, irrespective of the increased expression of several self-renewal genes, Leukemia inhibitory factor (LIF) dependent. However, UTF1 KD ES cells are perturbed in their differentiation in response...

  19. Genetically Modified T-cell Immunotherapy in Treating Patients With Relapsed/Refractory Acute Myeloid Leukemia and Persistent/Recurrent Blastic Plasmacytoid Dendritic Cell Neoplasm

    Science.gov (United States)

    2018-03-02

    Adult Acute Myeloid Leukemia in Remission; Acute Biphenotypic Leukemia; Early Relapse of Acute Myeloid Leukemia; Late Relapse of Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Blastic Plasmacytoid Dendritic Cell Neoplasm; Acute Myeloid Leukemia; Adult Acute Lymphoblastic Leukemia; Interleukin-3 Receptor Subunit Alpha Positive; Minimal Residual Disease; Refractory Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  20. Cytokine Networks between Innate Lymphoid Cells and Myeloid Cells

    Directory of Open Access Journals (Sweden)

    Arthur Mortha

    2018-02-01

    Full Text Available Innate lymphoid cells (ILCs are an essential component of the innate immune system in vertebrates. They are developmentally rooted in the lymphoid lineage and can diverge into at least three transcriptionally distinct lineages. ILCs seed both lymphoid and non-lymphoid tissues and are locally self-maintained in tissue-resident pools. Tissue-resident ILCs execute important effector functions making them key regulator in tissue homeostasis, repair, remodeling, microbial defense, and anti-tumor immunity. Similar to T lymphocytes, ILCs possess only few sensory elements for the recognition of non-self and thus depend on extrinsic cellular sensory elements residing within the tissue. Myeloid cells, including mononuclear phagocytes (MNPs, are key sentinels of the tissue and are able to translate environmental cues into an effector profile that instructs lymphocyte responses. The adaptation of myeloid cells to the tissue state thus influences the effector program of ILCs and serves as an example of how environmental signals are integrated into the function of ILCs via a tissue-resident immune cell cross talks. This review summarizes our current knowledge on the role of myeloid cells in regulating ILC functions and discusses how feedback communication between ILCs and myeloid cells contribute to stabilize immune homeostasis in order to maintain the healthy state of an organ.

  1. Intensive combined modality therapy of small round cell and undifferentiated sarcomas in children and young adults

    International Nuclear Information System (INIS)

    Bader, J.L.; Dewan, R.; Watkins, E.; Kinsella, T.J.; Glatstein, E.; STeinberg, S.M.

    1989-01-01

    Seventy-five patients (ages 4-35 years) with the following small round cell tumors and undifferentiated sarcoma were treated at the National Cancer Institute: Ewing's sarcome (n=32), peripheral neuroepithelioma (n=14), rhabdomyosarcoma (n=24), undifferentiated sarcoma (n=5). Most patients had poor prognostic features including 36 (48%) with metastatic disease, and 42 (56%) with central (truncal) tumors (22 in the pelvis). Treatment included 5 cycles of intensive induction chemotherapy with vincristine, cyclophosphamide and adriamycin, plus aggressive local radiation therapy using simulation and computerized treatment planning for all patients. Thereafter, complete clinical responses were consolidated with intensive chemotherapy, total body irradiation and autologous bone marrow transplantation. There were three local only failures, 10 local plus distant failures, 36 distant only failures, 3 treatment-related deaths, and one intercurrent death. Overall actuarial survival and event-free survival at 4 years are 49 and 29%, respectively. Actuarial freedom from local progression was seen in 74% of patients at 4 years, quite remarkable considering the bulk and location of most of these tumors. Without aggressive surgery, many of these high risk patients had satisfactory outcomes, but better systemic treatments are still needed.(author). 44 refs.; 8 figs.; 6 tabs

  2. Proteomic analysis of plasma membranes isolated from undifferentiated and differentiated HepaRG cells

    Directory of Open Access Journals (Sweden)

    Sokolowska Izabela

    2012-08-01

    Full Text Available Abstract Liver infection with hepatitis B virus (HBV, a DNA virus of the Hepadnaviridae family, leads to severe disease, such as fibrosis, cirrhosis and hepatocellular carcinoma. The early steps of the viral life cycle are largely obscure and the host cell plasma membrane receptors are not known. HepaRG is the only proliferating cell line supporting HBV infection in vitro, following specific differentiation, allowing for investigation of new host host-cell factors involved in viral entry, within a more robust and reproducible environment. Viral infection generally begins with receptor recognition at the host cell surface, following highly specific cell-virus interactions. Most of these interactions are expected to take place at the plasma membrane of the HepaRG cells. In the present study, we used this cell line to explore changes between the plasma membrane of undifferentiated (− and differentiated (+ cells and to identify differentially-regulated proteins or signaling networks that might potentially be involved in HBV entry. Our initial study identified a series of proteins that are differentially expressed in the plasma membrane of (− and (+ cells and are good candidates for potential cell-virus interactions. To our knowledge, this is the first study using functional proteomics to study plasma membrane proteins from HepaRG cells, providing a platform for future experiments that will allow us to understand the cell-virus interaction and mechanism of HBV viral infection.

  3. Undifferentiated and differentiated PC12 cells protected by huprines against injury induced by hydrogen peroxide.

    Directory of Open Access Journals (Sweden)

    Marta Pera

    Full Text Available Oxidative stress is implicated in the pathogenesis of neurodegenerative disorders and hydrogen peroxide (H2O2 plays a central role in the stress. Huprines, a group of potent acetylcholinesterase inhibitors (AChEIs, have shown a broad cholinergic pharmacological profile. Recently, it has been observed that huprine X (HX improves cognition in non transgenic middle aged mice and shows a neuroprotective activity (increased synaptophysin expression in 3xTg-AD mice. Consequently, in the present experiments the potential neuroprotective effect of huprines (HX, HY, HZ has been analyzed in two different in vitro conditions: undifferentiated and NGF-differentiated PC12 cells. Cells were subjected to oxidative insult (H2O2, 200 µM and the protective effects of HX, HY and HZ (0.01 µM-1 µM were analyzed after a pre-incubation period of 24 and 48 hours. All huprines showed protective effects in both undifferentiated and NGF-differentiated cells, however only in differentiated cells the effect was dependent on cholinergic receptors as atropine (muscarinic antagonist, 0.1 µM and mecamylamine (nicotinic antagonist, 100 µM reverted the neuroprotection action of huprines. The decrease in SOD activity observed after oxidative insult was overcome in the presence of huprines and this effect was not mediated by muscarinic or nicotinic receptors. In conclusion, huprines displayed neuroprotective properties as previously observed in in vivo studies. In addition, these effects were mediated by cholinergic receptors only in differentiated cells. However, a non-cholinergic mechanism, probably through an increase in SOD activity, seems to be also involved in the neuroprotective effects of huprines.

  4. Undifferentiated and Differentiated PC12 Cells Protected by Huprines Against Injury Induced by Hydrogen Peroxide

    Science.gov (United States)

    Pera, Marta; Camps, Pelayo; Muñoz-Torrero, Diego; Perez, Belen; Badia, Albert; Clos Guillen, M Victoria

    2013-01-01

    Oxidative stress is implicated in the pathogenesis of neurodegenerative disorders and hydrogen peroxide (H2O2) plays a central role in the stress. Huprines, a group of potent acetylcholinesterase inhibitors (AChEIs), have shown a broad cholinergic pharmacological profile. Recently, it has been observed that huprine X (HX) improves cognition in non transgenic middle aged mice and shows a neuroprotective activity (increased synaptophysin expression) in 3xTg-AD mice. Consequently, in the present experiments the potential neuroprotective effect of huprines (HX, HY, HZ) has been analyzed in two different in vitro conditions: undifferentiated and NGF-differentiated PC12 cells. Cells were subjected to oxidative insult (H2O2, 200 µM) and the protective effects of HX, HY and HZ (0.01 µM–1 µM) were analyzed after a pre-incubation period of 24 and 48 hours. All huprines showed protective effects in both undifferentiated and NGF-differentiated cells, however only in differentiated cells the effect was dependent on cholinergic receptors as atropine (muscarinic antagonist, 0.1 µM) and mecamylamine (nicotinic antagonist, 100 µM) reverted the neuroprotection action of huprines. The decrease in SOD activity observed after oxidative insult was overcome in the presence of huprines and this effect was not mediated by muscarinic or nicotinic receptors. In conclusion, huprines displayed neuroprotective properties as previously observed in in vivo studies. In addition, these effects were mediated by cholinergic receptors only in differentiated cells. However, a non-cholinergic mechanism, probably through an increase in SOD activity, seems to be also involved in the neuroprotective effects of huprines. PMID:24086337

  5. Herpes Simplex Virus 1 Interaction with Myeloid Cells In Vivo.

    Science.gov (United States)

    Shivkumar, Maitreyi; Lawler, Clara; Milho, Ricardo; Stevenson, Philip G

    2016-10-01

    Herpes simplex virus 1 (HSV-1) enters mice via olfactory epithelial cells and then colonizes the trigeminal ganglia (TG). Most TG nerve endings are subepithelial, so this colonization implies subepithelial viral spread, where myeloid cells provide an important line of defense. The outcome of infection of myeloid cells by HSV-1 in vitro depends on their differentiation state; the outcome in vivo is unknown. Epithelial HSV-1 commonly infected myeloid cells, and Cre-Lox virus marking showed nose and lung infections passing through LysM-positive (LysM(+)) and CD11c(+) cells. In contrast, subcapsular sinus macrophages (SSMs) exposed to lymph-borne HSV-1 were permissive only when type I interferon (IFN-I) signaling was blocked; normally, their infection was suppressed. Thus, the outcome of myeloid cell infection helped to determine the HSV-1 distribution: subepithelial myeloid cells provided a route of spread from the olfactory epithelium to TG neurons, while SSMs blocked systemic spread. Herpes simplex virus 1 (HSV-1) infects most people and can cause severe disease. This reflects its persistence in nerve cells that connect to the mouth, nose, eye, and face. Established infection seems impossible to clear. Therefore, we must understand how it starts. This is difficult in humans, but mice show HSV-1 entry via the nose and then spread to its preferred nerve cells. We show that this spread proceeds in part via myeloid cells, which normally function in host defense. Myeloid infection was productive in some settings but was efficiently suppressed by interferon in others. Therefore, interferon acting on myeloid cells can stop HSV-1 spread, and enhancing this defense offers a way to improve infection control. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Conditionally replicating adenovirus prevents pluripotent stem cell–derived teratoma by specifically eliminating undifferentiated cells

    Directory of Open Access Journals (Sweden)

    Kaoru Mitsui

    Full Text Available Incomplete abolition of tumorigenicity creates potential safety concerns in clinical trials of regenerative medicine based on human pluripotent stem cells (hPSCs. Here, we demonstrate that conditionally replicating adenoviruses that specifically target cancers using multiple factors (m-CRAs, originally developed as anticancer drugs, may also be useful as novel antitumorigenic agents in hPSC-based therapy. The survivin promoter was more active in undifferentiated hPSCs than the telomerase reverse transcriptase (TERT promoter, whereas both promoters were minimally active in differentiated normal cells. Accordingly, survivin-responsive m-CRA (Surv.m-CRA killed undifferentiated hPSCs more efficiently than TERT-responsive m-CRAs (Tert.m-CRA; both m-CRAs exhibited efficient viral replication and cytotoxicity in undifferentiated hPSCs, but not in cocultured differentiated normal cells. Pre-infection of hPSCs with Surv.m-CRA or Tert.m-CRA abolished in vivo teratoma formation in a dose-dependent manner following hPSC implantation into mice. Thus, m-CRAs, and in particular Surv.m-CRAs, represent novel antitumorigenic agents that could facilitate safe clinical applications of hPSC-based regenerative medicine.

  7. CD133-expressing thyroid cancer cells are undifferentiated, radioresistant and survive radioiodide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Chien-Chih [National Yang Ming University, Institute of Clinical Medicine, Taipei (China); Liu, Ren-Shyan [National Yang Ming University, Institute of Clinical Medicine, Taipei (China); NRPGM, Molecular and Genetic Imaging Core, Taipei (China); National Yang-Ming University, School of Medicine, Taipei (China); Taipei Veterans General Hospital, National PET/Cyclotron Center, Taipei (China); National Yang-Ming University, Department of Biomedical Imaging and Radiological Sciences, Taipei (China); Yang, An-Hang [Taipei Veterans General Hospital, Department of Pathology and Laboratory Medicine, Taipei (China); National Yang-Ming University, Department of Pathology, School of Medicine, Taipei (China); Liu, Ching-Sheng [National Yang-Ming University Medical School, Department of Nuclear Medicine, School of Medicine, Taipei (China); Chi, Chin-Wen [National Yang-Ming University, Institute of Pharmacology, School of Medicine, Taipei (China); Taipei Veterans General Hospital, Department of Medical Research and Education, Taipei (China); Tseng, Ling-Ming [National Yang Ming University, Institute of Clinical Medicine, Taipei (China); Taipei Veterans General Hospital, Department of Surgery, Taipei (China); Tsai, Yi-Fan [Taipei Veterans General Hospital, Department of Surgery, Taipei (China); Ho, Jennifer H. [Taipei Medical University, Graduate Institute of Clinical Medicine, Taipei (China); Taipei Medical University-Wan Fang Medical Center, Department of Ophthalmology, Taipei (China); Taipei Medical University-Wan Fang Medical Center, Center for Stem Cell Research, Taipei (China); Lee, Chen-Hsen [NRPGM, Molecular and Genetic Imaging Core, Taipei (China); National Yang-Ming University, School of Medicine, Taipei (China); Taipei Veterans General Hospital, Department of Surgery, Taipei (China); Lee, Oscar K. [Taipei Veterans General Hospital, Department of Orthopedics, Taipei (China); National Yang-Ming University, Stem Cell Research Center, Taipei (China); Taipei Veterans General Hospital, Department of Medical Research and Education, Taipei (China)

    2013-01-15

    {sup 131}I therapy is regularly used following surgery as a part of thyroid cancer management. Despite an overall relatively good prognosis, recurrent or metastatic thyroid cancer is not rare. CD133-expressing cells have been shown to mark thyroid cancer stem cells that possess the characteristics of stem cells and have the ability to initiate tumours. However, no studies have addressed the influence of CD133-expressing cells on radioiodide therapy of the thyroid cancer. The aim of this study was to investigate whether CD133{sup +} cells contribute to the radioresistance of thyroid cancer and thus potentiate future recurrence and metastasis. Thyroid cancer cell lines were analysed for CD133 expression, radiosensitivity and gene expression. The anaplastic thyroid cancer cell line ARO showed a higher percentage of CD133{sup +} cells and higher radioresistance. After {gamma}-irradiation of the cells, the CD133{sup +} population was enriched due to the higher apoptotic rate of CD133{sup -} cells. In vivo {sup 131}I treatment of ARO tumour resulted in an elevated expression of CD133, Oct4, Nanog, Lin28 and Glut1 genes. After isolation, CD133{sup +} cells exhibited higher radioresistance and higher expression of Oct4, Nanog, Sox2, Lin28 and Glut1 in the cell line or primarily cultured papillary thyroid cancer cells, and lower expression of various thyroid-specific genes, namely NIS, Tg, TPO, TSHR, TTF1 and Pax8. This study demonstrates the existence of CD133-expressing thyroid cancer cells which show a higher radioresistance and are in an undifferentiated status. These cells possess a greater potential to survive radiotherapy and may contribute to the recurrence of thyroid cancer. A future therapeutic approach for radioresistant thyroid cancer may focus on the selective eradication of CD133{sup +} cells. (orig.)

  8. Radiation-induced apoptosis in undifferentiated cells of the developing brain as a biological defense mechanism

    International Nuclear Information System (INIS)

    Inouye, Minioru; Tamaru, Masao.

    1994-01-01

    Undifferentiated neural (UN) cells of the developing mammalian brain are highly sensitive to the lethal effects of ionizing radiation. Nuclear and cytoplasmic condensation, transglutaminase activation, and internucleosomal DNA cleavage reveal radiation-induced cell death in the ventricular zone of the cerebral mantle and external granular layer of the cerebellum to be due to apoptosis. A statistically significant increase of cell mortality can be induced by 0.03 Gy X-irradiation, and the mortality increases linearly with increasing doses. It is not changed by split doses, probably because of the very slow repair of cellular damage and a lack of adaptive response. Although extensive apoptosis in the UN cell population results in microcephaly and mental retardation, it possesses the ability to recover from a considerable cell loss and to form the normal structure of the central nervous system. The number of cell deaths needed to induce tissue adnormalities in the adult murine brain rises in the range of 15-25% of the germinal cell population; with the threshold doses at about 0.3 Gy for cerebral anomalies and 1 Gy for cerebellar abnormalities. Threshold level is similarly suggested in prenatally exposed A-bomb survivors. High radiosensitivity of UN cells is assumed to be a manifestation of the ability of the cell to commit suicide when injured. Repeated replication of DNA and extensive gene expression are required in future proliferation and differentiation. Once an abnormality in DNA was induced and fixed in the UN cell, it would be greatly amplified and prove a danger in producing malformations and tumors. These cells would thus commit suicide for the benefit of the individual to eliminate their acquired genetic abnormalities rather than make DNA repair. UN cells in the developing brain are highly radiosensitive and readily involved in apoptosis. Paradoxically, however, this may be to protect individuals against teratogenesis and tumorigenesis. (J.P.N.)

  9. Inhibition by pectic oligosaccharides of the invasion of undifferentiated and differentiated Caco-2 cells by Campylobacter jejuni

    Science.gov (United States)

    The ability of pectic oligosaccharides (POS) to inhibit adherence to and invasion of undifferentiated (UC) and differentiated (DC) Caco-2 cells by Campylobacter jejuni (C. jejuni) was investigated. It was observed that both adherence and invasion were significantly higher in UC than in DC. POS (2.5 ...

  10. Myeloid-derived cells in tumors: effects of radiation.

    Science.gov (United States)

    Vatner, Ralph E; Formenti, Silvia C

    2015-01-01

    The discrepancy between the in vitro and in vivo response to radiation is readily explained by the fact that tumors do not exist independently of the host organism; cancer cells grow in the context of a complex microenvironment composed of stromal cells, vasculature, and elements of the immune system. As the antitumor effect of radiotherapy depends in part on the immune system, and myeloid-derived cells in the tumor microenvironment modulate the immune response to tumors, it follows that understanding the effect of radiation on myeloid cells in the tumor is likely to be essential for comprehending the antitumor effects of radiotherapy. In this review, we describe the phenotype and function of these myeloid-derived cells, and stress the complexity of studying this important cell compartment owing to its intrinsic plasticity. With regard to the response to radiation of myeloid cells in the tumor, evidence has emerged demonstrating that it is both model and dose dependent. Deciphering the effects of myeloid-derived cells in tumors, particularly in irradiated tumors, is key for attempting to pharmacologically modulate their actions in the clinic as part of cancer therapy. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Dynamics of myeloid cell populations during relapse-preventive immunotherapy in acute myeloid leukemia.

    Science.gov (United States)

    Rydström, Anna; Hallner, Alexander; Aurelius, Johan; Sander, Frida Ewald; Bernson, Elin; Kiffin, Roberta; Thoren, Fredrik Bergh; Hellstrand, Kristoffer; Martner, Anna

    2017-08-01

    Relapse of leukemia in the postchemotherapy phase contributes to the poor prognosis and survival in patients with acute myeloid leukemia (AML). In an international phase IV trial (ClinicalTrials.gov; NCT01347996), 84 patients with AML in first complete remission who had not undergone transplantation received immunotherapy with histamine dihydrochloride (HDC) and low-dose IL-2 with the aim of preventing relapse. The dynamics of myeloid cell counts and expression of activation markers was assessed before and after cycles of immunotherapy and correlated with clinical outcome in terms of relapse risk and survival. During cycles, a pronounced increase in blood eosinophil counts was observed along with a reduction in monocyte and neutrophil counts. A strong reduction of blood monocyte counts during the first HDC/IL-2 treatment cycle predicted leukemia-free survival. The HDC component of the immunotherapy exerts agonist activity at histamine type 2 receptors (H2Rs) that are expressed by myeloid cells. It was observed that the density of H 2 R expression in blood monocytes increased during cycles of immunotherapy and that high monocyte H 2 R expression implied reduced relapse risk and improved overall survival. Several other activation markers, including HLA-DR, CD86, and CD40, were induced in monocytes and dendritic cells during immunotherapy but did not predict clinical outcome. In addition, expression of HLA-ABC increased in all myeloid populations during therapy. A low expression of HLA-ABC was associated with reduced relapse risk. These results suggest that aspects of myeloid cell biology may impact clinical benefit of relapse-preventive immunotherapy in AML. © Society for Leukocyte Biology.

  12. Heterogeneous leukemia stem cells in myeloid blast phase chronic myeloid leukemia

    Science.gov (United States)

    Goardon, Nicolas; Morrison, Heather; Hamblin, Mike; Robinson, Lisa; Clark, Richard E.

    2016-01-01

    Chronic myeloid leukemia (CML) is an excellent model of the multistep processes in cancer. Initiating BCR-ABL mutations are required for the initial phase of the disease (chronic phase, CP-CML). Some CP-CML patients acquire additional mutation(s) that transforms CP-CML to poor prognosis, hard to treat, acute myeloid or lymphoid leukemia or blast phase CML (BP-CML). It is unclear where in the hemopoietic hierarchy additional mutations are acquired in BP-CML, how the hemopoietic hierarchy is altered as a consequence, and the cellular identity of the resulting leukemia-propagating stem cell (LSC) populations. Here, we show that myeloid BP-CML is associated with expanded populations that have the immunophenotype of normal progenitor populations that vary between patients. Serial transplantation in immunodeficient mice demonstrated functional LSCs reside in multiple populations with the immunophenotype of normal progenitor as well as stem cells. Multicolor fluorescence in situ hybridization detected serial acquisition of cytogenetic abnormalities of chromosome 17, associated with transformation to BP-CML, that is detected with equal frequency in all functional LSC compartments. New effective myeloid BP-CML therapies will likely have to target all these LSC populations. PMID:29296933

  13. Squamous cell carcinoma and undifferentiated carcinoma of the inner nose and the paranasal sinuses

    International Nuclear Information System (INIS)

    Wustrow, J.; Rudert, H.; Diercks, M.; Beigel, A.

    1989-01-01

    272 patients with tumours of the nasal cavity and paranasal sinuses were followed up from 1949 until 1982. 53% of the tumours were classified as squamous cell or undifferentiated carcinomata. The most common site of squamous cell carcinoma is the maxillary sinus (50%). Distant metastases and regional lymph node metastases are rarely seen at presentation regardless of the size of the primary tumour. Metastases usually indicate a tumour dependent death in the near future. The main prognostic indicators are the size of the tumour (significantly worse prognosis for T4 in comparison to T2 or T3 tumours) and the localisation (significantly better prognosis for tumours of the floor of the nasal cavity or the nasal septum compared to tumours of the paranasal sinuses). The age of the patient or the degree of differentiation of the tumour did not influence on the survival rate. Tumour dependent deaths rarely occur after more than five years. Patients were assigned to two treatment groups and matched according to the tumour stage. One group received surgery only, whereas the second group received a combined treatment of surgery with subsequent radiotherapy. There was a significant difference between the two groups in favour of the surgical treatment. According to these data we recommend surgical excision without postoperative irradiation in cases where complete removal of the tumor has been histologically proven. (orig./MG) [de

  14. ARG1 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight

    Science.gov (United States)

    Zupanska, Agata K.; Schultz, Eric R.; Yao, JiQiang; Sng, Natasha J.; Zhou, Mingqi; Callaham, Jordan B.; Ferl, Robert J.; Paul, Anna-Lisa

    2017-11-01

    Scientific access to spaceflight and especially the International Space Station has revealed that physiological adaptation to spaceflight is accompanied or enabled by changes in gene expression that significantly alter the transcriptome of cells in spaceflight. A wide range of experiments have shown that plant physiological adaptation to spaceflight involves gene expression changes that alter cell wall and other metabolisms. However, while transcriptome profiling aptly illuminates changes in gene expression that accompany spaceflight adaptation, mutation analysis is required to illuminate key elements required for that adaptation. Here we report how transcriptome profiling was used to gain insight into the spaceflight adaptation role of Altered response to gravity 1 (Arg1), a gene known to affect gravity responses in plants on Earth. The study compared expression profiles of cultured lines of Arabidopsis thaliana derived from wild-type (WT) cultivar Col-0 to profiles from a knock-out line deficient in the gene encoding ARG1 (ARG1 KO), both on the ground and in space. The cell lines were launched on SpaceX CRS-2 as part of the Cellular Expression Logic (CEL) experiment of the BRIC-17 spaceflight mission. The cultured cell lines were grown within 60 mm Petri plates in Petri Dish Fixation Units (PDFUs) that were housed within the Biological Research In Canisters (BRIC) hardware. Spaceflight samples were fixed on orbit. Differentially expressed genes were identified between the two environments (spaceflight and comparable ground controls) and the two genotypes (WT and ARG1 KO). Each genotype engaged unique genes during physiological adaptation to the spaceflight environment, with little overlap. Most of the genes altered in expression in spaceflight in WT cells were found to be Arg1-dependent, suggesting a major role for that gene in the physiological adaptation of undifferentiated cells to spaceflight.

  15. Transcription profiling by array of the response of Arabidopsis cultivar Columbia etiolated seedlings and undifferentiated tissue culture cells to the spaceflight environment

    Data.gov (United States)

    National Aeronautics and Space Administration — We address a key baseline question of whether gene expression changes are induced by the orbital environment and then we ask whether undifferentiated cells cells...

  16. Extramedullary Myeloid Cell Tumour Presenting As Leukaemia Cutis

    Directory of Open Access Journals (Sweden)

    Thappa Devinder Mohan

    2002-01-01

    Full Text Available We herewith report a case of extramedullary myeloid cell tumour presenting as leukaemia cutis for its rarity. It occurred in a 50 year old male patient who presented to us with a 40 days history of painless raised solid skin swellings over the trunk. Histopathological examination of the skin biopsy and bone marrow biopsy showed features suggestive of non-Hodgkin’s lymphoma. Immunophenotyping on skin biopsy specimens and bone marrow biopsy found tumour cells expressing CD43 and Tdt but were negative for CD3 and CD20. These features were consistent with extramedullary myeloid cell tumour involving skin and subcutis (cutaneous manifestation of acute myeloid leukaemia.

  17. Transcription factor, promoter, and enhancer utilization in human myeloid cells

    NARCIS (Netherlands)

    Joshi, Anagha; Pooley, Christopher; Freeman, Tom C.; Lennartsson, Andreas; Babina, Magda; Schmidl, Christian; Geijtenbeek, Teunis; Michoel, Tom; Severin, Jessica; Itoh, Masayoshi; Lassmann, Timo; Kawaji, Hideya; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R. R.; Rehli, Michael; Hume, David A.

    2015-01-01

    The generation of myeloid cells from their progenitors is regulated at the level of transcription by combinatorial control of key transcription factors influencing cell-fate choice. To unravel the global dynamics of this process at the transcript level, we generated transcription profiles for 91

  18. Comparison of the gene expression profile of undifferentiated human embryonic stem cell lines and differentiating embryoid bodies

    Directory of Open Access Journals (Sweden)

    Rao Mahendra S

    2005-10-01

    Full Text Available Abstract Background The identification of molecular pathways of differentiation of embryonic stem cells (hESC is critical for the development of stem cell based medical therapies. In order to identify biomarkers and potential regulators of the process of differentiation, a high quality microarray containing 16,659 seventy base pair oligonucleotides was used to compare gene expression profiles of undifferentiated hESC lines and differentiating embryoid bodies. Results Previously identified "stemness" genes in undifferentiated hESC lines showed down modulation in differentiated cells while expression of several genes was induced as cells differentiated. In addition, a subset of 194 genes showed overexpression of greater than ≥ 3 folds in human embryoid bodies (hEB. These included 37 novel and 157 known genes. Gene expression was validated by a variety of techniques including another large scale array, reverse transcription polymerase chain reaction, focused cDNA microarrays, massively parallel signature sequencing (MPSS analysis and immunocytochemisty. Several novel hEB specific expressed sequence tags (ESTs were mapped to the human genome database and their expression profile characterized. A hierarchical clustering analysis clearly depicted a distinct difference in gene expression profile among undifferentiated and differentiated hESC and confirmed that microarray analysis could readily distinguish them. Conclusion These results present a detailed characterization of a unique set of genes, which can be used to assess the hESC differentiation.

  19. Comparison of the gene expression profile of undifferentiated human embryonic stem cell lines and differentiating embryoid bodies.

    Science.gov (United States)

    Bhattacharya, Bhaskar; Cai, Jingli; Luo, Youngquan; Miura, Takumi; Mejido, Josef; Brimble, Sandii N; Zeng, Xianmin; Schulz, Thomas C; Rao, Mahendra S; Puri, Raj K

    2005-10-05

    The identification of molecular pathways of differentiation of embryonic stem cells (hESC) is critical for the development of stem cell based medical therapies. In order to identify biomarkers and potential regulators of the process of differentiation, a high quality microarray containing 16,659 seventy base pair oligonucleotides was used to compare gene expression profiles of undifferentiated hESC lines and differentiating embryoid bodies. Previously identified "stemness" genes in undifferentiated hESC lines showed down modulation in differentiated cells while expression of several genes was induced as cells differentiated. In addition, a subset of 194 genes showed overexpression of greater than > or = 3 folds in human embryoid bodies (hEB). These included 37 novel and 157 known genes. Gene expression was validated by a variety of techniques including another large scale array, reverse transcription polymerase chain reaction, focused cDNA microarrays, massively parallel signature sequencing (MPSS) analysis and immunocytochemisty. Several novel hEB specific expressed sequence tags (ESTs) were mapped to the human genome database and their expression profile characterized. A hierarchical clustering analysis clearly depicted a distinct difference in gene expression profile among undifferentiated and differentiated hESC and confirmed that microarray analysis could readily distinguish them. These results present a detailed characterization of a unique set of genes, which can be used to assess the hESC differentiation.

  20. Soluble Triggering Receptor Expressed on Myeloid Cells-1 as a ...

    African Journals Online (AJOL)

    Soluble Triggering Receptor Expressed on Myeloid Cells-1 as a marker to differentiate septic from aseptic meningitis in children: comparison with procalcitonin and ... Procalcitonin (PCT) was suggested by many researchers as a sensitive marker for early diagnosis of septic meningitis but with varying discriminative power.

  1. Expression of the chitinase family glycoprotein YKL-40 in undifferentiated, differentiated and trans-differentiated mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Daniel J Hoover

    Full Text Available The glycoprotein YKL-40 (CHI3L1 is a secreted chitinase family protein that induces angiogenesis, cell survival, and cell proliferation, and plays roles in tissue remodeling and immune regulation. It is expressed primarily in cells of mesenchymal origin, is overexpressed in numerous aggressive carcinomas and sarcomas, but is rarely expressed in normal ectodermal tissues. Bone marrow-derived mesenchymal stem cells (MSCs can be induced to differentiate into various mesenchymal tissues and trans-differentiate into some non-mesenchymal cell types. Since YKL-40 has been used as a mesenchymal marker, we followed YKL-40 expression as undifferentiated MSCs were induced to differentiate into bone, cartilage, and neural phenotypes. Undifferentiated MSCs contain significant levels of YKL-40 mRNA but do not synthesize detectable levels of YKL-40 protein. MSCs induced to differentiate into chondrocytes and osteocytes soon began to express and secrete YKL-40 protein, as do ex vivo cultured chondrocytes and primary osteocytes. In contrast, MSCs induced to trans-differentiate into neurons did not synthesize YKL-40 protein, consistent with the general absence of YKL-40 protein in normal CNS parenchyma. However, these trans-differentiated neurons retained significant levels of YKL-40 mRNA, suggesting the mechanisms which prevented YKL-40 translation in undifferentiated MSCs remained in place, and that these trans-differentiated neurons differ in at least this way from neurons derived from neuronal stem cells. Utilization of a differentiation protocol containing β-mercaptoethanol resulted in cells that expressed significant amounts of intracellular YKL-40 protein that was not secreted, which is not seen in normal cells. Thus the synthesis of YKL-40 protein is a marker for MSC differentiation into mature mesenchymal phenotypes, and the presence of untranslated YKL-40 mRNA in non-mesenchymal cells derived from MSCs reflects differences between differentiated and

  2. Myeloid derived suppressor cells as therapeutic target in hematological malignancies

    Directory of Open Access Journals (Sweden)

    Kim eDe Veirman

    2014-12-01

    Full Text Available Myeloid derived suppressor cells (MDSC are a heterogeneous population of immature myeloid cells that accumulate during pathological conditions such as cancer and are associated with a poor clinical outcome. MDSC expansion hampers the host anti-tumor immune response by inhibition of T cell proliferation, cytokine secretion and recruitment of regulatory T cells. In addition, MDSC exert non-immunological functions including the promotion of angiogenesis, tumor invasion and metastasis. Recent years, MDSC are considered as a potential target in solid tumors and hematological malignancies to enhance the effects of currently used immune modulating agents. This review focuses on the characteristics, distribution, functions, cell-cell interactions and targeting of MDSC in hematological malignancies including multiple myeloma, lymphoma and leukemia.

  3. Myeloid-Derived Suppressor Cells and Therapeutic Strategies in Cancer

    Directory of Open Access Journals (Sweden)

    Hiroshi Katoh

    2015-01-01

    Full Text Available Development of solid cancer depends on escape from host immunosurveillance. Various types of immune cells contribute to tumor-induced immune suppression, including tumor associated macrophages, regulatory T cells, type 2 NKT cells, and myeloid-derived suppressor cells (MDSCs. Growing body of evidences shows that MDSCs play pivotal roles among these immunosuppressive cells in multiple steps of cancer progression. MDSCs are immature myeloid cells that arise from myeloid progenitor cells and comprise a heterogeneous immune cell population. MDSCs are characterized by the ability to suppress both adaptive and innate immunities mainly through direct inhibition of the cytotoxic functions of T cells and NK cells. In clinical settings, the number of circulating MDSCs is associated with clinical stages and response to treatment in several cancers. Moreover, MDSCs are reported to contribute to chemoresistant phenotype. Collectively, targeting MDSCs could potentially provide a rationale for novel treatment strategies in cancer. This review summarizes recent understandings of MDSCs in cancer and discusses promissing clinical approaches in cancer patients.

  4. Dendritic Cell-Based Immunotherapy for Myeloid Leukemias

    Science.gov (United States)

    Schürch, Christian M.; Riether, Carsten; Ochsenbein, Adrian F.

    2013-01-01

    Acute and chronic myeloid leukemia (AML, CML) are hematologic malignancies arising from oncogene-transformed hematopoietic stem/progenitor cells known as leukemia stem cells (LSCs). LSCs are selectively resistant to various forms of therapy including irradiation or cytotoxic drugs. The introduction of tyrosine kinase inhibitors has dramatically improved disease outcome in patients with CML. For AML, however, prognosis is still quite dismal. Standard treatments have been established more than 20 years ago with only limited advances ever since. Durable remission is achieved in less than 30% of patients. Minimal residual disease (MRD), reflected by the persistence of LSCs below the detection limit by conventional methods, causes a high rate of disease relapses. Therefore, the ultimate goal in the treatment of myeloid leukemia must be the eradication of LSCs. Active immunotherapy, aiming at the generation of leukemia-specific cytotoxic T cells (CTLs), may represent a powerful approach to target LSCs in the MRD situation. To fully activate CTLs, leukemia antigens have to be successfully captured, processed, and presented by mature dendritic cells (DCs). Myeloid progenitors are a prominent source of DCs under homeostatic conditions, and it is now well established that LSCs and leukemic blasts can give rise to “malignant” DCs. These leukemia-derived DCs can express leukemia antigens and may either induce anti-leukemic T cell responses or favor tolerance to the leukemia, depending on co-stimulatory or -inhibitory molecules and cytokines. This review will concentrate on the role of DCs in myeloid leukemia immunotherapy with a special focus on their generation, application, and function and how they could be improved in order to generate highly effective and specific anti-leukemic CTL responses. In addition, we discuss how DC-based immunotherapy may be successfully integrated into current treatment strategies to promote remission and potentially cure myeloid leukemias

  5. An Immature Myeloid/Myeloid-Suppressor Cell Response Associated with Necrotizing Inflammation Mediates Lethal Pulmonary Tularemia.

    Directory of Open Access Journals (Sweden)

    Sivakumar Periasamy

    2016-03-01

    Full Text Available Inhalation of Francisella tularensis (Ft causes acute and fatal pneumonia. The lung cytokine milieu favors exponential Ft replication, but the mechanisms underlying acute pathogenesis and death remain unknown. Evaluation of the sequential and systemic host immune response in pulmonary tularemia reveals that in contrast to overwhelming bacterial burden or cytokine production, an overt innate cellular response to Ft drives tissue pathology and host mortality. Lethal infection with Ft elicits medullary and extra-medullary myelopoiesis supporting recruitment of large numbers of immature myeloid cells and MDSC to the lungs. These cells fail to mature and die, leading to subsequent necrotic lung damage, loss of pulmonary function, and host death that is partially dependent upon immature Ly6G+ cells. Acceleration of this process may account for the rapid lethality seen with Ft SchuS4. In contrast, during sub-lethal infection with Ft LVS the pulmonary cellular response is characterized by a predominance of mature neutrophils and monocytes required for protection, suggesting a required threshold for lethal bacterial infection. Further, eliciting a mature phagocyte response provides transient, but dramatic, innate protection against Ft SchuS4. This study reveals that the nature of the myeloid cell response may be the primary determinant of host mortality versus survival following Francisella infection.

  6. Highly sensitive in vitro methods for detection of residual undifferentiated cells in retinal pigment epithelial cells derived from human iPS cells.

    Directory of Open Access Journals (Sweden)

    Takuya Kuroda

    Full Text Available Human induced pluripotent stem cells (hiPSCs possess the capabilities of self-renewal and differentiation into multiple cell types, and they are free of the ethical problems associated with human embryonic stem cells (hESCs. These characteristics make hiPSCs a promising choice for future regenerative medicine research. There are significant obstacles, however, preventing the clinical use of hiPSCs. One of the most obvious safety issues is the presence of residual undifferentiated cells that have tumorigenic potential. To locate residual undifferentiated cells, in vivo teratoma formation assays have been performed with immunodeficient animals, which is both costly and time-consuming. Here, we examined three in vitro assay methods to detect undifferentiated cells (designated an in vitro tumorigenicity assay: soft agar colony formation assay, flow cytometry assay and quantitative real-time polymerase chain reaction assay (qRT-PCR. Although the soft agar colony formation assay was unable to detect hiPSCs even in the presence of a ROCK inhibitor that permits survival of dissociated hiPSCs/hESCs, the flow cytometry assay using anti-TRA-1-60 antibody detected 0.1% undifferentiated hiPSCs that were spiked in primary retinal pigment epithelial (RPE cells. Moreover, qRT-PCR with a specific probe and primers was found to detect a trace amount of Lin28 mRNA, which is equivalent to that present in a mixture of a single hiPSC and 5.0×10⁴ RPE cells. Our findings provide highly sensitive and quantitative in vitro assays essential for facilitating safety profiling of hiPSC-derived products for future regenerative medicine research.

  7. Identification of Reprogrammed Myeloid Cell Transcriptomes in NSCLC.

    Directory of Open Access Journals (Sweden)

    Anna Durrans

    Full Text Available Lung cancer is the leading cause of cancer related mortality worldwide, with non-small cell lung cancer (NSCLC as the most prevalent form. Despite advances in treatment options including minimally invasive surgery, CT-guided radiation, novel chemotherapeutic regimens, and targeted therapeutics, prognosis remains dismal. Therefore, further molecular analysis of NSCLC is necessary to identify novel molecular targets that impact prognosis and the design of new-targeted therapies. In recent years, tumor "activated/reprogrammed" stromal cells that promote carcinogenesis have emerged as potential therapeutic targets. However, the contribution of stromal cells to NSCLC is poorly understood. Here, we show increased numbers of bone marrow (BM-derived hematopoietic cells in the tumor parenchyma of NSCLC patients compared with matched adjacent non-neoplastic lung tissue. By sorting specific cellular fractions from lung cancer patients, we compared the transcriptomes of intratumoral myeloid compartments within the tumor bed with their counterparts within adjacent non-neoplastic tissue from NSCLC patients. The RNA sequencing of specific myeloid compartments (immature monocytic myeloid cells and polymorphonuclear neutrophils identified differentially regulated genes and mRNA isoforms, which were inconspicuous in whole tumor analysis. Genes encoding secreted factors, including osteopontin (OPN, chemokine (C-C motif ligand 7 (CCL7 and thrombospondin 1 (TSP1 were identified, which enhanced tumorigenic properties of lung cancer cells indicative of their potential as targets for therapy. This study demonstrates that analysis of homogeneous stromal populations isolated directly from fresh clinical specimens can detect important stromal genes of therapeutic value.

  8. Expansion on stromal cells preserves the undifferentiated state of human hematopoietic stem cells despite compromised reconstitution ability.

    Science.gov (United States)

    Magnusson, Mattias; Sierra, Maria I; Sasidharan, Rajkumar; Prashad, Sacha L; Romero, Melissa; Saarikoski, Pamela; Van Handel, Ben; Huang, Andy; Li, Xinmin; Mikkola, Hanna K A

    2013-01-01

    Lack of HLA-matched hematopoietic stem cells (HSC) limits the number of patients with life-threatening blood disorders that can be treated by HSC transplantation. So far, insufficient understanding of the regulatory mechanisms governing human HSC has precluded the development of effective protocols for culturing HSC for therapeutic use and molecular studies. We defined a culture system using OP9M2 mesenchymal stem cell (MSC) stroma that protects human hematopoietic stem/progenitor cells (HSPC) from differentiation and apoptosis. In addition, it facilitates a dramatic expansion of multipotent progenitors that retain the immunophenotype (CD34+CD38-CD90+) characteristic of human HSPC and proliferative potential over several weeks in culture. In contrast, transplantable HSC could be maintained, but not significantly expanded, during 2-week culture. Temporal analysis of the transcriptome of the ex vivo expanded CD34+CD38-CD90+ cells documented remarkable stability of most transcriptional regulators known to govern the undifferentiated HSC state. Nevertheless, it revealed dynamic fluctuations in transcriptional programs that associate with HSC behavior and may compromise HSC function, such as dysregulation of PBX1 regulated genetic networks. This culture system serves now as a platform for modeling human multilineage hematopoietic stem/progenitor cell hierarchy and studying the complex regulation of HSC identity and function required for successful ex vivo expansion of transplantable HSC.

  9. Expansion on stromal cells preserves the undifferentiated state of human hematopoietic stem cells despite compromised reconstitution ability.

    Directory of Open Access Journals (Sweden)

    Mattias Magnusson

    Full Text Available Lack of HLA-matched hematopoietic stem cells (HSC limits the number of patients with life-threatening blood disorders that can be treated by HSC transplantation. So far, insufficient understanding of the regulatory mechanisms governing human HSC has precluded the development of effective protocols for culturing HSC for therapeutic use and molecular studies. We defined a culture system using OP9M2 mesenchymal stem cell (MSC stroma that protects human hematopoietic stem/progenitor cells (HSPC from differentiation and apoptosis. In addition, it facilitates a dramatic expansion of multipotent progenitors that retain the immunophenotype (CD34+CD38-CD90+ characteristic of human HSPC and proliferative potential over several weeks in culture. In contrast, transplantable HSC could be maintained, but not significantly expanded, during 2-week culture. Temporal analysis of the transcriptome of the ex vivo expanded CD34+CD38-CD90+ cells documented remarkable stability of most transcriptional regulators known to govern the undifferentiated HSC state. Nevertheless, it revealed dynamic fluctuations in transcriptional programs that associate with HSC behavior and may compromise HSC function, such as dysregulation of PBX1 regulated genetic networks. This culture system serves now as a platform for modeling human multilineage hematopoietic stem/progenitor cell hierarchy and studying the complex regulation of HSC identity and function required for successful ex vivo expansion of transplantable HSC.

  10. HA-1 T TCR T Cell Immunotherapy for the Treating of Patients With Relapsed or Refractory Acute Leukemia After Donor Stem Cell Transplant

    Science.gov (United States)

    2018-03-26

    HLA-A*0201 HA-1 Positive Cells Present; Minimal Residual Disease; Recurrent Acute Biphenotypic Leukemia; Recurrent Acute Undifferentiated Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Acute Myeloid Leukemia; Refractory Adult Acute Lymphoblastic Leukemia; Refractory Childhood Acute Lymphoblastic Leukemia

  11. Allogeneic stem cell transplantation in acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Natasha Ali

    2012-11-01

    Full Text Available We report a case series of 12 patients with acute myeloid leukemia who underwent allogeneic stem cell transplant with a matched related donor. Male to female ratio was 1:1. The main complication post-transplant was graft-versus-host disease (n=7 patients. Transplant-related mortality involved one patient; cause of death was multi-organ failure. After a median follow up of 36.0±11.3 months, overall survival was 16%.

  12. Long term culture of mesenchymal stem cells in hypoxia promotes a genetic program maintaining their undifferentiated and multipotent status

    Directory of Open Access Journals (Sweden)

    de Carvalho Marcelo

    2011-03-01

    Full Text Available Abstract Background In the bone marrow, hematopietic and mesenchymal stem cells form a unique niche in which the oxygen tension is low. Hypoxia may have a role in maintaining stem cell fate, self renewal and multipotency. However, whereas most studies addressed the effect of transient in vitro exposure of MSC to hypoxia, permanent culture under hypoxia should reflect the better physiological conditions. Results Morphologic studies, differentiation and transcriptional profiling experiments were performed on MSC cultured in normoxia (21% O2 versus hypoxia (5% O2 for up to passage 2. Cells at passage 0 and at passage 2 were compared, and those at passage 0 in hypoxia generated fewer and smaller colonies than in normoxia. In parallel, MSC displayed (>4 fold inhibition of genes involved in DNA metabolism, cell cycle progression and chromosome cohesion whereas transcripts involved in adhesion and metabolism (CD93, ESAM, VWF, PLVAP, ANGPT2, LEP, TCF1 were stimulated. Compared to normoxic cells, hypoxic cells were morphologically undifferentiated and contained less mitochondrias. After this lag phase, cells at passage 2 in hypoxia outgrew the cells cultured in normoxia and displayed an enhanced expression of genes (4-60 fold involved in extracellular matrix assembly (SMOC2, neural and muscle development (NOG, GPR56, SNTG2, LAMA and epithelial development (DMKN. This group described herein for the first time was assigned by the Gene Ontology program to "plasticity". Conclusion The duration of hypoxemia is a critical parameter in the differentiation capacity of MSC. Even in growth promoting conditions, hypoxia enhanced a genetic program that maintained the cells undifferentiated and multipotent. This condition may better reflect the in vivo gene signature of MSC, with potential implications in regenerative medicine.

  13. Expression profile of CREB knockdown in myeloid leukemia cells

    International Nuclear Information System (INIS)

    Pellegrini, Matteo; Cheng, Jerry C; Voutila, Jon; Judelson, Dejah; Taylor, Julie; Nelson, Stanley F; Sakamoto, Kathleen M

    2008-01-01

    The cAMP Response Element Binding Protein, CREB, is a transcription factor that regulates cell proliferation, differentiation, and survival in several model systems, including neuronal and hematopoietic cells. We demonstrated that CREB is overexpressed in acute myeloid and leukemia cells compared to normal hematopoietic stem cells. CREB knockdown inhibits leukemic cell proliferation in vitro and in vivo, but does not affect long-term hematopoietic reconstitution. To understand downstream pathways regulating CREB, we performed expression profiling with RNA from the K562 myeloid leukemia cell line transduced with CREB shRNA. By combining our expression data from CREB knockdown cells with prior ChIP data on CREB binding we were able to identify a list of putative CREB regulated genes. We performed extensive analyses on the top genes in this list as high confidence CREB targets. We found that this list is enriched for genes involved in cancer, and unexpectedly, highly enriched for histone genes. Furthermore, histone genes regulated by CREB were more likely to be specifically expressed in hematopoietic lineages. Decreased expression of specific histone genes was validated in K562, TF-1, and primary AML cells transduced with CREB shRNA. We have identified a high confidence list of CREB targets in K562 cells. These genes allow us to begin to understand the mechanisms by which CREB contributes to acute leukemia. We speculate that regulation of histone genes may play an important role by possibly altering the regulation of DNA replication during the cell cycle

  14. Impact of peripheral myeloid cells on amyloid-β pathology in Alzheimer's disease-like mice.

    Science.gov (United States)

    Prokop, Stefan; Miller, Kelly R; Drost, Natalia; Handrick, Susann; Mathur, Vidhu; Luo, Jian; Wegner, Anja; Wyss-Coray, Tony; Heppner, Frank L

    2015-10-19

    Although central nervous system-resident microglia are believed to be ineffective at phagocytosing and clearing amyloid-β (Aβ), a major pathological hallmark of Alzheimer's disease (AD), it has been suggested that peripheral myeloid cells constitute a heterogeneous cell population with greater Aβ-clearing capabilities. Here, we demonstrate that the conditional ablation of resident microglia in CD11b-HSVTK (TK) mice is followed by a rapid repopulation of the brain by peripherally derived myeloid cells. We used this system to directly assess the ability of peripheral macrophages to reduce Aβ plaque pathology and therefore depleted and replaced the pool of resident microglia with peripherally derived myeloid cells in Aβ-carrying APPPS1 mice crossed to TK mice (APPPS1;TK). Despite a nearly complete exchange of resident microglia with peripheral myeloid cells, there was no significant change in Aβ burden or APP processing in APPPS1;TK mice. Importantly, however, newly recruited peripheral myeloid cells failed to cluster around Aβ deposits. Even additional anti-Aβ antibody treatment aimed at engaging myeloid cells with amyloid plaques neither directed peripherally derived myeloid cells to amyloid plaques nor altered Aβ burden. These data demonstrate that mere recruitment of peripheral myeloid cells to the brain is insufficient in substantially clearing Aβ burden and suggest that specific additional triggers appear to be required to exploit the full potential of myeloid cell-based therapies for AD. © 2015 Prokop et al.

  15. In Vivo and In Vitro Dynamics of Undifferentiated Embryonic Cell Transcription Factor 1

    Directory of Open Access Journals (Sweden)

    Christina Galonska

    2014-03-01

    Full Text Available Pluripotent stem cells retain the ability to differentiate into the three germ layers and germline. As a result, there is a major interest in characterizing regulators that establish and maintain pluripotency. The network of transcription factors continues to expand in complexity, and one factor, undifferentiated embryonic cell transcription factor 1 (UTF1, has recently moved more into the limelight. To facilitate the study of UTF1, we report the generation and characterization of two reporter lines that enable efficient tracking, mapping, and purification of endogenous UTF1. In particular, we include a built-in biotinylation system in our targeted locus that allows efficient and reliable pulldown. We also use this reporter to show the dynamic regulation of Utf1 in distinct stem cell conditions and demonstrate its utility for reprogramming studies. The multipurpose design of the reporter lines enables many directions of future study and should lead to a better understanding of UTF1’s diverse roles.

  16. Targeting DNA vaccines to myeloid cells using a small peptide.

    Science.gov (United States)

    Ye, Chunting; Choi, Jang Gi; Abraham, Sojan; Shankar, Premlata; Manjunath, N

    2015-01-01

    Targeting DNA vaccines to dendritic cells (DCs) greatly enhances immunity. Although several approaches have been used to target protein Ags to DCs, currently there is no method that targets DNA vaccines directly to DCs. Here, we show that a small peptide derived from the rabies virus glycoprotein fused to protamine residues (RVG-P) can target DNA to myeloid cells, including DCs, which results in enhanced humoral and T-cell responses. DCs targeted with a DNA vaccine encoding the immunodominant vaccinia B8R gene via RVG-P were able to restimulate vaccinia-specific memory T cells in vitro. Importantly, a single i.v. injection of B8R gene bound to RVG-P was able to prime a vaccinia-specific T-cell response that was able to rapidly clear a subsequent vaccinia challenge in mice. Moreover, delivery of DNA in DCs was enough to induce DC maturation and efficient Ag presentation without the need for adjuvants. Finally, immunization of mice with a DNA-vaccine encoding West Nile virus (WNV) prM and E proteins via RVG-P elicited high titers of WNV-neutralizing Abs that protected mice from lethal WNV challenge. Thus, RVG-P provides a reagent to target DNA vaccines to myeloid cells and elicit robust T-cell and humoral immune responses. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Biology and relevance of human acute myeloid leukemia stem cells.

    Science.gov (United States)

    Thomas, Daniel; Majeti, Ravindra

    2017-03-23

    Evidence of human acute myeloid leukemia stem cells (AML LSCs) was first reported nearly 2 decades ago through the identification of rare subpopulations of engrafting cells in xenotransplantation assays. These AML LSCs were shown to reside at the apex of a cellular hierarchy that initiates and maintains the disease, exhibiting properties of self-renewal, cell cycle quiescence, and chemoresistance. This cancer stem cell model offers an explanation for chemotherapy resistance and disease relapse and implies that approaches to treatment must eradicate LSCs for cure. More recently, a number of studies have both refined and expanded our understanding of LSCs and intrapatient heterogeneity in AML using improved xenotransplant models, genome-scale analyses, and experimental manipulation of primary patient cells. Here, we review these studies with a focus on the immunophenotype, biological properties, epigenetics, genetics, and clinical associations of human AML LSCs and discuss critical questions that need to be addressed in future research. © 2017 by The American Society of Hematology.

  18. Tissue type plasminogen activator regulates myeloid-cell dependent neoangiogenesis during tissue regeneration

    DEFF Research Database (Denmark)

    Ohki, Makiko; Ohki, Yuichi; Ishihara, Makoto

    2010-01-01

    tissue regeneration is not well understood. Bone marrow (BM)-derived myeloid cells facilitate angiogenesis during tissue regeneration. Here, we report that a serpin-resistant form of tPA by activating the extracellular proteases matrix metalloproteinase-9 and plasmin expands the myeloid cell pool...

  19. Alantolactone selectively ablates acute myeloid leukemia stem and progenitor cells

    Directory of Open Access Journals (Sweden)

    Yahui Ding

    2016-09-01

    Full Text Available Abstract Background The poor outcomes for patients diagnosed with acute myeloid leukemia (AML are largely attributed to leukemia stem cells (LSCs which are difficult to eliminate with conventional therapy and responsible for relapse. Thus, new therapeutic strategies which could selectively target LSCs in clinical leukemia treatment and avoid drug resistance are urgently needed. However, only a few small molecules have been reported to show anti-LSCs activity. Methods The aim of the present study was to identify alantolactone as novel agent that can ablate acute myeloid leukemia stem and progenitor cells from AML patient specimens and evaluate the anticancer activity of alantolactone in vitro and in vivo. Results The present study is the first to demonstrate that alantolactone, a prominent eudesmane-type sesquiterpene lactone, could specifically ablate LSCs from AML patient specimens. Furthermore, in comparison to the conventional chemotherapy drug, cytosine arabinoside (Ara-C, alantolactone showed superior effects of leukemia cytotoxicity while sparing normal hematopoietic cells. Alantolactone induced apoptosis with a dose-dependent manner by suppression of NF-kB and its downstream target proteins. DMA-alantolactone, a water-soluble prodrug of alantolactone, could suppress tumor growth in vivo. Conclusions Based on these results, we propose that alantolactone may represent a novel LSCs-targeted therapy and eudesmane-type sesquiterpene lactones offer a new scaffold for drug discovery towards anti-LSCs agents.

  20. Drafting the proteome landscape of myeloid-derived suppressor cells.

    Science.gov (United States)

    Gato, María; Blanco-Luquin, Idoia; Zudaire, Maribel; de Morentin, Xabier Martínez; Perez-Valderrama, Estela; Zabaleta, Aintzane; Kochan, Grazyna; Escors, David; Fernandez-Irigoyen, Joaquín; Santamaría, Enrique

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that are defined by their myeloid origin, immature state, and ability to potently suppress T-cell responses. They regulate immune responses and the population significantly increases in the tumor microenvironment of patients with glioma and other malignant tumors. For their study, MDSCs are usually isolated from the spleen or directly of tumors from a large number of tumor-bearing mice although promising ex vivo differentiated MDSC production systems have been recently developed. During the last years, proteomics has emerged as a powerful approach to analyze MDSCs proteomes using shotgun-based mass spectrometry (MS), providing functional information about cellular homeostasis and metabolic state at a global level. Here, we will revise recent proteome profiling studies performed in MDSCs from different origins. Moreover, we will perform an integrative functional analysis of the protein compilation derived from these large-scale proteomic studies in order to obtain a comprehensive view of MDSCs biology. Finally, we will also discuss the potential application of high-throughput proteomic approaches to study global proteome dynamics and post-translational modifications (PTMs) during the differentiation process of MDSCs that will greatly boost the identification of novel MDSC-specific therapeutic targets to apply in cancer immunotherapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. IFN regulatory factor 8 represses GM-CSF expression in T cells to affect myeloid cell lineage differentiation.

    Science.gov (United States)

    Paschall, Amy V; Zhang, Ruihua; Qi, Chen-Feng; Bardhan, Kankana; Peng, Liang; Lu, Geming; Yang, Jianjun; Merad, Miriam; McGaha, Tracy; Zhou, Gang; Mellor, Andrew; Abrams, Scott I; Morse, Herbert C; Ozato, Keiko; Xiong, Huabao; Liu, Kebin

    2015-03-01

    During hematopoiesis, hematopoietic stem cells constantly differentiate into granulocytes and macrophages via a distinct differentiation program that is tightly controlled by myeloid lineage-specific transcription factors. Mice with a null mutation of IFN regulatory factor 8 (IRF8) accumulate CD11b(+)Gr1(+) myeloid cells that phenotypically and functionally resemble tumor-induced myeloid-derived suppressor cells (MDSCs), indicating an essential role of IRF8 in myeloid cell lineage differentiation. However, IRF8 is expressed in various types of immune cells, and whether IRF8 functions intrinsically or extrinsically in regulation of myeloid cell lineage differentiation is not fully understood. In this study, we report an intriguing finding that, although IRF8-deficient mice exhibit deregulated myeloid cell differentiation and resultant accumulation of CD11b(+)Gr1(+) MDSCs, surprisingly, mice with IRF8 deficiency only in myeloid cells exhibit no abnormal myeloid cell lineage differentiation. Instead, mice with IRF8 deficiency only in T cells exhibited deregulated myeloid cell differentiation and MDSC accumulation. We further demonstrated that IRF8-deficient T cells exhibit elevated GM-CSF expression and secretion. Treatment of mice with GM-CSF increased MDSC accumulation, and adoptive transfer of IRF8-deficient T cells, but not GM-CSF-deficient T cells, increased MDSC accumulation in the recipient chimeric mice. Moreover, overexpression of IRF8 decreased GM-CSF expression in T cells. Our data determine that, in addition to its intrinsic function as an apoptosis regulator in myeloid cells, IRF8 also acts extrinsically to repress GM-CSF expression in T cells to control myeloid cell lineage differentiation, revealing a novel mechanism that the adaptive immune component of the immune system regulates the innate immune cell myelopoiesis in vivo. Copyright © 2015 by The American Association of Immunologists, Inc.

  2. Myeloid Sarcoma after Allogenic Stem Cell Transplantation for Acute Myeloid Leukemia: Successful Consolidation Treatment Approaches in Two Patients

    Directory of Open Access Journals (Sweden)

    Silje Johansen

    2018-01-01

    Full Text Available Myeloid sarcoma is an extramedullary (EM manifestation (i.e., manifestation outside the bone marrow of acute myeloid leukemia (AML; it is assumed to be relatively uncommon and can be the only manifestation of leukemia relapse after allogenic stem cell transplantation (allo-SCT. An EM sarcoma can manifest in any part of the body, although preferentially manifesting in immunological sanctuary sites as a single or multiple tumors. The development of myeloid sarcoma after allo-SCT is associated with certain cytogenetic abnormalities, developing of graft versus host disease (GVHD, and treatment with donor lymphocytes infusion (DLI. It is believed that posttransplant myeloid sarcomas develop because the EM sites evade immune surveillance. We present two patients with EM myeloid sarcoma in the breast and epipharynx, respectively, as the only manifestation of leukemia relapse. Both patients were treated with a combination of local and systemic therapy, with successfully longtime disease-free survival. Based on these two case reports, we give an updated review of the literature and discuss the pathogenesis, diagnosis, and treatment of EM sarcoma as the only manifestation of AML relapse after allo-SCT. There are no standard guidelines for the treatment of myeloid sarcomas in allotransplant recipients. In our opinion, the treatment of these patients needs to be individualized and should include local treatment (i.e., radiotherapy combined with systemic therapy (i.e., chemotherapy, immunotherapy, DLI, or retransplantation. The treatment has to consider both the need for sufficient antileukemic efficiency versus the risk of severe complications due to cumulative toxicity.

  3. Uncaria tomentosa stimulates the proliferation of myeloid progenitor cells.

    Science.gov (United States)

    Farias, Iria; do Carmo Araújo, Maria; Zimmermann, Estevan Sonego; Dalmora, Sergio Luiz; Benedetti, Aloisio Luiz; Alvarez-Silva, Marcio; Asbahr, Ana Carolina Cavazzin; Bertol, Gustavo; Farias, Júlia; Schetinger, Maria Rosa Chitolina

    2011-09-01

    The Asháninkas, indigenous people of Peru, use cat's claw (Uncaria tomentosa) to restore health. Uncaria tomentosa has antioxidant activity and works as an agent to repair DNA damage. It causes different effects on cell proliferation depending on the cell type involved; specifically, it can stimulate the proliferation of myeloid progenitors and cause apoptosis of neoplastic cells. Neutropenia is the most common collateral effect of chemotherapy. For patients undergoing cancer treatment, the administration of a drug that stimulates the proliferation of healthy hematopoietic tissue cells is very desirable. It is important to assess the acute effects of Uncaria tomentosa on granulocyte-macrophage colony-forming cells (CFU-GM) and in the recovery of neutrophils after chemotherapy-induced neutropenia, by establishing the correlation with filgrastim (rhG-CSF) treatment to evaluate its possible use in clinical oncology. The in vivo assay was performed in ifosfamide-treated mice receiving oral doses of 5 and 15 mg of Uncaria tomentosa and intraperitoneal doses of 3 and 9 μg of filgrastim, respectively, for four days. Colony-forming cell (CFC) assays were performed with human hematopoietic stem/precursor cells (hHSPCs) obtained from umbilical cord blood (UCB). Bioassays showed that treatment with Uncaria tomentosa significantly increased the neutrophil count, and a potency of 85.2% was calculated in relation to filgrastim at the corresponding doses tested. An in vitro CFC assay showed an increase in CFU-GM size and mixed colonies (CFU-GEMM) size at the final concentrations of 100 and 200 μg extract/mL. At the tested doses, Uncaria tomentosa had a positive effect on myeloid progenitor number and is promising for use with chemotherapy to minimize the adverse effects of this treatment. These results support the belief of the Asháninkas, who have classified Uncaria tomentosa as a 'powerful plant'. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Lysosomal disruption preferentially targets acute myeloid leukemia cells and progenitors

    Science.gov (United States)

    Sukhai, Mahadeo A.; Prabha, Swayam; Hurren, Rose; Rutledge, Angela C.; Lee, Anna Y.; Sriskanthadevan, Shrivani; Sun, Hong; Wang, Xiaoming; Skrtic, Marko; Seneviratne, Ayesh; Cusimano, Maria; Jhas, Bozhena; Gronda, Marcela; MacLean, Neil; Cho, Eunice E.; Spagnuolo, Paul A.; Sharmeen, Sumaiya; Gebbia, Marinella; Urbanus, Malene; Eppert, Kolja; Dissanayake, Dilan; Jonet, Alexia; Dassonville-Klimpt, Alexandra; Li, Xiaoming; Datti, Alessandro; Ohashi, Pamela S.; Wrana, Jeff; Rogers, Ian; Sonnet, Pascal; Ellis, William Y.; Corey, Seth J.; Eaves, Connie; Minden, Mark D.; Wang, Jean C.Y.; Dick, John E.; Nislow, Corey; Giaever, Guri; Schimmer, Aaron D.

    2012-01-01

    Despite efforts to understand and treat acute myeloid leukemia (AML), there remains a need for more comprehensive therapies to prevent AML-associated relapses. To identify new therapeutic strategies for AML, we screened a library of on- and off-patent drugs and identified the antimalarial agent mefloquine as a compound that selectively kills AML cells and AML stem cells in a panel of leukemia cell lines and in mice. Using a yeast genome-wide functional screen for mefloquine sensitizers, we identified genes associated with the yeast vacuole, the homolog of the mammalian lysosome. Consistent with this, we determined that mefloquine disrupts lysosomes, directly permeabilizes the lysosome membrane, and releases cathepsins into the cytosol. Knockdown of the lysosomal membrane proteins LAMP1 and LAMP2 resulted in decreased cell viability, as did treatment of AML cells with known lysosome disrupters. Highlighting a potential therapeutic rationale for this strategy, leukemic cells had significantly larger lysosomes compared with normal cells, and leukemia-initiating cells overexpressed lysosomal biogenesis genes. These results demonstrate that lysosomal disruption preferentially targets AML cells and AML progenitor cells, providing a rationale for testing lysosomal disruption as a novel therapeutic strategy for AML. PMID:23202731

  5. The rate of spontaneous mutations in human myeloid cells

    International Nuclear Information System (INIS)

    Araten, David J.; Krejci, Ondrej; DiTata, Kimberly; Wunderlich, Mark; Sanders, Katie J.; Zamechek, Leah; Mulloy, James C.

    2013-01-01

    Highlights: • We provide the first measurement of the mutation rate (μ) in human myeloid cells. • μ is measured to be 3.6–23 × 10 −7 per cell division. • The AML-ETO and MLL-AF9 fusions do not seem to increase μ. • Cooperating mutations in NRAS, FLT3 and p53 not seem to increase μ. • Hypermutability may be required to explain leukemogenesis. - Abstract: The mutation rate (μ) is likely to be a key parameter in leukemogenesis, but historically, it has been difficult to measure in humans. The PIG-A gene has some advantages for the detection of spontaneous mutations because it is X-linked, and therefore only one mutation is required to disrupt its function. Furthermore, the PIG-A-null phenotype is readily detected by flow cytometry. Using PIG-A, we have now provided the first in vitro measurement of μ in myeloid cells, using cultures of CD34+ cells that are transduced with either the AML-ETO or the MLL-AF9 fusion genes and expanded with cytokines. For the AML-ETO cultures, the median μ value was ∼9.4 × 10 −7 (range ∼3.6–23 × 10 −7 ) per cell division. In contrast, few spontaneous mutations were observed in the MLL-AF9 cultures. Knockdown of p53 or introduction of mutant NRAS or FLT3 alleles did not have much of an effect on μ. Based on these data, we provide a model to predict whether hypermutability must occur in the process of leukemogenesis

  6. Canthin-6-one induces cell death, cell cycle arrest and differentiation in human myeloid leukemia cells.

    Science.gov (United States)

    Vieira Torquato, Heron F; Ribeiro-Filho, Antonio C; Buri, Marcus V; Araújo Júnior, Roberto T; Pimenta, Renata; de Oliveira, José Salvador R; Filho, Valdir C; Macho, Antonio; Paredes-Gamero, Edgar J; de Oliveira Martins, Domingos T

    2017-04-01

    Canthin-6-one is a natural product isolated from various plant genera and from fungi with potential antitumor activity. In the present study, we evaluate the antitumor effects of canthin-6-one in human myeloid leukemia lineages. Kasumi-1 lineage was used as a model for acute myeloid leukemia. Cells were treated with canthin-6-one and cell death, cell cycle and differentiation were evaluated in both total cells (Lin + ) and leukemia stem cell population (CD34 + CD38 - Lin -/low ). Among the human lineages tested, Kasumi-1 was the most sensitive to canthin-6-one. Canthin-6-one induced cell death with apoptotic (caspase activation, decrease of mitochondrial potential) and necrotic (lysosomal permeabilization, double labeling of annexin V/propidium iodide) characteristics. Moreover, canthin-6-one induced cell cycle arrest at G 0 /G 1 (7μM) and G 2 (45μM) evidenced by DNA content, BrdU incorporation and cyclin B1/histone 3 quantification. Canthin-6-one also promoted differentiation of Kasumi-1, evidenced by an increase in the expression of myeloid markers (CD11b and CD15) and the transcription factor PU.1. Furthermore, a reduction of the leukemic stem cell population and clonogenic capability of stem cells were observed. These results show that canthin-6-one can affect Kasumi-1 cells by promoting cell death, cell cycle arrest and cell differentiation depending on concentration used. Canthin-6-one presents an interesting cytotoxic activity against leukemic cells and represents a promising scaffold for the development of molecules for anti-leukemic applications, especially by its anti-leukemic stem cell activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Lumbar Myeloid Cell Trafficking into Locomotor Networks after Thoracic Spinal Cord Injury

    Science.gov (United States)

    Hansen, Christopher N.; Norden, Diana M.; Faw, Timothy D.; Deibert, Rochelle; S.Wohleb, Eric; Sheridan, John F.; P.Godbout, Jonathan; Basso, D. Michele

    2016-01-01

    Spinal cord injury (SCI) promotes inflammation along the neuroaxis that jeopardizes plasticity, intrinsic repair and recovery. While inflammation at the injury site is well-established, less is known within remote spinal networks. The presence of bone marrow-derived immune (myeloid) cells in these areas may further impede functional recovery. Previously, high levels of the gelatinase, matrix metalloproteinase-9 (MMP-9) occurred within the lumbar enlargement after thoracic SCI and impeded activity-dependent recovery. Since SCI-induced MMP-9 potentially increases vascular permeability, myeloid cell infiltration may drive inflammatory toxicity in locomotor networks. Therefore, we examined neurovascular reactivity and myeloid cell infiltration in the lumbar cord after thoracic SCI. We show evidence of region-specific recruitment of myeloid cells into the lumbar but not cervical region. Myeloid infiltration occurred with concomitant increases in chemoattractants (CCL2) and cell adhesion molecules (ICAM-1) around lumbar vasculature 24 hours and 7 days post injury. Bone marrow GFP chimeric mice established robust infiltration of bone marrow-derived myeloid cells into the lumbar gray matter 24 hours after SCI. This cell infiltration occurred when the blood-spinal cord barrier was intact, suggesting active recruitment across the endothelium. Myeloid cells persisted as ramified macrophages at 7 days post injury in parallel with increased inhibitory GAD67 labeling. Importantly, macrophage infiltration required MMP-9. PMID:27191729

  8. CD117 expression on blast cells in acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Goryainova N.V.

    2015-09-01

    Full Text Available The aim of the present work was to analyze the frequency of CD117 (c-KIT antigen expression on the blast cells in acute myeloid leukemia (AML, evaluation of the presence of the relationship between the expression of the c-KIT and leukemia according to the FAB classification and definition of co-expression of the antigen CD117, antigens CD33 and CD34. The data of 47 patients with AML were diagnosed. M0 AML variant was established in 3 (6% patients, M1 – in 2 (4%, M2 – in 9 (20%, M4 – in 22 (47% and M5 – in 11 (23%. For immunophenotypic stu¬dies monoclonal antibodies (mAb that detect antigens of anti-CD34, anti-CD33 and anti-CD117 (Becton Dickinson, USA were used. The presence of the antigen CD117 was detected in 39 people, accounting for 83% of all surveyed. Antigen c-KIT was present in 48.117.0% cells on average: in all 3 cases – AML M0, in2 cases of AML M1, in 6 cases – AML M2, 20 of 22 cases – AML M4 and in 8 of 11 AML M5 cases. Average levels of CD117 in investigated leukemia cases statistically differed significantly (p=0.0067. Among 39 CD117- positive patients in 25 (53% co-expression of CD117+/CD34+ was revealed. Expression of CD117+/CD34- was observed in 14 cases (30%, CD117-/CD34+ – in 4 cases (8,5%, CD117-/CD34- – in 4 cases (8.5%. CD34 had of 64% of cells of myeloid origin. A high positive cor¬relation between expression of CD117 and CD34 (r=+0,5169 was determined, being statistically significant (p0,0067.

  9. Monocytic myeloid-derived suppressor cells as prognostic factor in chronic myeloid leukaemia patients treated with dasatinib.

    Science.gov (United States)

    Giallongo, Cesarina; Parrinello, Nunziatina L; La Cava, Piera; Camiolo, Giuseppina; Romano, Alessandra; Scalia, Marina; Stagno, Fabio; Palumbo, Giuseppe A; Avola, Roberto; Li Volti, Giovanni; Tibullo, Daniele; Di Raimondo, Francesco

    2018-02-01

    Myeloid suppressor cells are a heterogeneous group of myeloid cells that are increased in patients with chronic myeloid leukaemia (CML) inducing T cell tolerance. In this study, we found that therapy with tyrosine kinase inhibitors (TKI) decreased the percentage of granulocytic MDSC, but only patients treated with dasatinib showed a significant reduction in the monocytic subset (M-MDSC). Moreover, a positive correlation was observed between number of persistent M-MDSC and the value of major molecular response in dasatinib-treated patients. Serum and exosomes from patients with CML induced conversion of monocytes from healthy volunteers into immunosuppressive M-MDSC, suggesting a bidirectional crosstalk between CML cells and MDSC. Overall, we identified M-MDSC as prognostic factors in patients treated with dasatinib. It might be of interest to understand whether MDSC may be a candidate predictive markers of relapse risk following TKI discontinuation, suggesting their potential significance as practice of precision medicine. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  10. p75 neurotrophin receptor is involved in proliferation of undifferentiated mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Moscatelli, Ilana; Pierantozzi, Enrico; Camaioni, Antonella; Siracusa, Gregorio [Department of Public Health and Cell Biology, Section of Histology and Embryology, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome (Italy); Campagnolo, Luisa, E-mail: campagno@med.uniroma2.it [Department of Public Health and Cell Biology, Section of Histology and Embryology, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome (Italy)

    2009-11-01

    Neurotrophins and their receptors are known to play a role in the proliferation and survival of many different cell types of neuronal and non-neuronal lineages. In addition, there is much evidence in the literature showing that the p75 neurotrophin receptor (p75{sup NTR}), alone or in association with members of the family of Trk receptors, is expressed in a wide variety of stem cells, although its role in such cells has not been completely elucidated. In the present work we have investigated the expression of p75{sup NTR} and Trks in totipotent and pluripotent cells, the mouse pre-implantation embryo and embryonic stem and germ cells (ES and EG cells). p75{sup NTR} and TrkA can be first detected in the blastocyst from which ES cell lines are derived. Mouse ES cells retain p75{sup NTR}/TrkA expression. Nerve growth factor is the only neurotrophin able to stimulate ES cell growth in culture, without affecting the expression of stem cell markers, alkaline phosphatase, Oct4 and Nanog. Such proliferation effect was blocked by antagonizing either p75{sup NTR} or TrkA. Interestingly, immunoreactivity to anti-p75{sup NTR} antibodies is lost upon ES cell differentiation. The expression pattern of neurotrophin receptors in murine ES cells differs from human ES cells, that only express TrkB and C, and do not respond to NGF. In this paper we also show that, while primordial germ cells (PGC) do not express p75{sup NTR}, when they are made to revert to an ES-like phenotype, becoming EG cells, expression of p75{sup NTR} is turned on.

  11. Cytomegalovirus Replicates in Differentiated but not in Undifferentiated Human Embryonal Carcinoma Cells

    Science.gov (United States)

    Gonczol, Eva; Andrews, Peter W.; Plotkin, Stanley A.

    1984-04-01

    To study the mode of action of human cytomegalovirus, an important teratogenic agent in human populations, the susceptibility of a pluripotent human embryonal carcinoma cell line to the virus was investigated. Viral antigens were not expressed nor was infectious virus produced by human embryonal carcinoma cells after infection, although the virus was able to penetrate these cells. In contrast, retinoic acid-induced differentiated derivatives of embryonal carcinoma cells were permissive for antigen expression and infectious virus production. Replication of human cytomegalovirus in human teratocarcinoma cells may therefore depend on cellular functions associated with differentiation.

  12. VSTM-v1, a potential myeloid differentiation antigen that is downregulated in bone marrow cells from myeloid leukemia patients

    OpenAIRE

    Xie, Min; Li, Ting; Li, Ning; Li, Jinlan; Yao, Qiumei; Han, Wenling; Ruan, Guorui

    2015-01-01

    Leukocyte differentiation antigens often represent important markers for the diagnosis, classification, prognosis, and therapeutic targeting of myeloid leukemia. Herein, we report a potential leukocyte differentiation antigen gene VSTM1 (V-set and transmembrane domain-containing 1) that was downregulated in bone marrow cells from leukemia patients and exhibited a higher degree of promoter methylation. The expression level of its predominant encoded product, VSTM1-v1, was positively correlated...

  13. Can villin be used to identify malignant and undifferentiated normal digestive epithelial cells?

    OpenAIRE

    Robine, S; Huet, C; Moll, R; Sahuquillo-Merino, C; Coudrier, E; Zweibaum, A; Louvard, D

    1985-01-01

    We have investigated the presence of villin (a Ca2+-regulated actin binding protein) in various tissues (normal or malignant) and in established cell lines by using sensitive immunochemical techniques on cell extracts and immunofluorescence analysis on frozen sections. Our results show that villin is a marker that can be used to distinguish normal differentiated epithelial cells from the simple epithelia lining the gastrointestinal tract and renal tubules. Villin is found in the absorptive ce...

  14. Tissue engineering approaches to develop decellularized tendon matrices functionalized with progenitor cells cultured under undifferentiated and tenogenic conditions

    Directory of Open Access Journals (Sweden)

    Daniele D’Arrigo

    2017-11-01

    Full Text Available Tendon ruptures and retractions with an extensive tissue loss represent a major clinical problem and a great challenge in surgical reconstruction. Traditional approaches consist in autologous or allogeneic grafts, which still have some drawbacks. Hence, tissue engineering strategies aimed at developing functionalized tendon grafts. In this context, the use of xenogeneic tissues represents a promising perspective to obtain decellularized tendon grafts. This study is focused on the identification of suitable culture conditions for the generation of reseeded and functional decellularized constructs to be used as tendon grafts. Equine superficial digital flexor tendons were decellularized, reseeded with mesenchymal stem cells (MSCs from bone marrow and statically cultured in two different culture media to maintain undifferentiated cells (U-MSCs or to induce a terminal tenogenic differentiation (T-MSCs for 24 hours, 7 and 14 days. Cell viability, proliferation, morphology as well as matrix deposition and type I and III collagen production were assessed by means of histological, immunohistochemical and semi-quantitative analyses. Results showed that cell viability was not affected by any culture conditions and active proliferation was maintained 14 days after reseeding. However, seeded MSCs were not able to penetrate within the dense matrix of the decellularized tendons. Nevertheless, U-MSCs synthesized a greater amount of extracellular matrix rich in type I collagen compared to T-MSCs. In spite of the inability to deeply colonize the decellularized matrix in vitro, reseeding tendon matrices with U-MSCs could represent a suitable method for the functionalization of biological constructs, considering also any potential chemoattractant capability of the newly deposed extracellular matrix to recruit resident cells. This bioengineering approach can be exploited to produce functionalized tendon constructs for the substitution of large tendon defects.

  15. Developing Novel Therapeutics Targeting Undifferentiated and Castration-Resistant Prostate Cancer Stem Cells

    Science.gov (United States)

    2016-10-01

    display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE 2. REPORT TYPE Annual 3. DATES...cell numbers compared to the time-matched control LNCaP-GFP cells (Figure 1F). We further characterized LNCaP-GFP and LNCaP-MDV cells at crisis point...cadherin, SLUG , and vimentin), and CSCs (i.e., CD44, integrin α2β1, and ABCG2) [2-4, 20, 25-33] (Figure 3B; Supplementary Figure S3). Flow

  16. Developing Novel Therapeutics Targeting Undifferentiated and Castration-Resistant Prostate Cancer Stem Cells

    Science.gov (United States)

    2015-10-01

    in vivo cytotoxicities of the conjugated JRM2 peptide and finishing up screening and validating the kinase inhibitor library screening. 15. SUBJECT...cells were purified out and then lysed to infect bacteria K91, from which 960 and 704 tet/kan- resistant bacterial colonies were generated from GFP+ and...Figure 2A; data not shown). To determine whether JRM2 can preferentially bind to the PSA-/lo LNCaP cells, we made several versions of JRM2 conjugates

  17. Dual effect of LPS on murine myeloid leukemia cells: Pro-proliferation and anti-proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Lingling [Department of Pediatrics, Jingjiang People' s Hospital, Yangzhou University, Jingjiang 214500 (China); Noncoding RNA Center, Yangzhou University, Yangzhou 225001 (China); Zhao, Yingmin [Department of Pediatrics, Jingjiang People' s Hospital, Yangzhou University, Jingjiang 214500 (China); Gu, Xin; Wang, Jijun; Pang, Lei; Zhang, Yanqing; Li, Yaoyao; Jia, Xiaoqin; Wang, Xin [Noncoding RNA Center, Yangzhou University, Yangzhou 225001 (China); Gu, Jian [Department of Hematology, Yangzhou University School of Clinical Medicine, Yangzhou 225001 (China); Yu, Duonan, E-mail: duonan@yahoo.com [Department of Pediatrics, Jingjiang People' s Hospital, Yangzhou University, Jingjiang 214500 (China); Noncoding RNA Center, Yangzhou University, Yangzhou 225001 (China); Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou 225001 (China); Institute of Comparative Medicine, Yangzhou University, Yangzhou 225001 (China); Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou 225001 (China)

    2016-06-10

    Modification of the bone marrow microenvironment is considered as a promising strategy to control leukemic cell proliferation, diseases progression and relapse after treatment. However, due to the diversity and complexity of the cellular and molecular compartments in the leukemic microenvironment, it is extremely difficult to dissect the role of each individual molecule or cell type in vivo. Here we established an in vitro system to dissect the role of lipopolysaccharide (LPS), stromal cells and endothelial cells in the growth of mouse myeloid tumor cells and B-lymphoma cells. We found that either LPS or bone marrow stromal cells as a feeder layer in culture is required for the proliferation of myeloid tumor cells. Surprisingly, the growth of myeloid leukemic cells on stromal cells is strongly inhibited when coupled with LPS in culture. This opposing effect of LPS, a complete switch from pro-proliferation to antitumor growth is due, at least in part, to the rapidly increased production of interleukin 12, Fas ligand and tissue inhibitor of metalloproteinases-2 from stromal cells stimulated by LPS. These results demonstrate that LPS can either facilitate or attenuate tumor cell proliferation, thus changing the disease course of myeloid leukemias through its direct effect or modulation of the tumor microenvironment. - Highlights: • LPS alone in culture is required for the proliferation of murine myeloid tumor cells. • Bone marrow stromal cells as a feeder layer is also required for the proliferation of myeloid tumor cells. • However, the growth of myeloid tumor cells is inhibited when LPS and stromal cells are both available in culture. • Thus LPS can either facilitate or attenuate tumor growth through its direct effect or modulation of tumor microenvironment.

  18. Dual effect of LPS on murine myeloid leukemia cells: Pro-proliferation and anti-proliferation

    International Nuclear Information System (INIS)

    Yu, Lingling; Zhao, Yingmin; Gu, Xin; Wang, Jijun; Pang, Lei; Zhang, Yanqing; Li, Yaoyao; Jia, Xiaoqin; Wang, Xin; Gu, Jian; Yu, Duonan

    2016-01-01

    Modification of the bone marrow microenvironment is considered as a promising strategy to control leukemic cell proliferation, diseases progression and relapse after treatment. However, due to the diversity and complexity of the cellular and molecular compartments in the leukemic microenvironment, it is extremely difficult to dissect the role of each individual molecule or cell type in vivo. Here we established an in vitro system to dissect the role of lipopolysaccharide (LPS), stromal cells and endothelial cells in the growth of mouse myeloid tumor cells and B-lymphoma cells. We found that either LPS or bone marrow stromal cells as a feeder layer in culture is required for the proliferation of myeloid tumor cells. Surprisingly, the growth of myeloid leukemic cells on stromal cells is strongly inhibited when coupled with LPS in culture. This opposing effect of LPS, a complete switch from pro-proliferation to antitumor growth is due, at least in part, to the rapidly increased production of interleukin 12, Fas ligand and tissue inhibitor of metalloproteinases-2 from stromal cells stimulated by LPS. These results demonstrate that LPS can either facilitate or attenuate tumor cell proliferation, thus changing the disease course of myeloid leukemias through its direct effect or modulation of the tumor microenvironment. - Highlights: • LPS alone in culture is required for the proliferation of murine myeloid tumor cells. • Bone marrow stromal cells as a feeder layer is also required for the proliferation of myeloid tumor cells. • However, the growth of myeloid tumor cells is inhibited when LPS and stromal cells are both available in culture. • Thus LPS can either facilitate or attenuate tumor growth through its direct effect or modulation of tumor microenvironment.

  19. Rare myeloid sarcoma/acute myeloid leukemia with adrenal mass after allogeneic mobilization peripheral blood stem cell transplantation

    International Nuclear Information System (INIS)

    Wang, Ya-Fei; Li, Qian; Xu, Wen-Gui; Xiao, Jian-Yu; Pang, Qing-Song; Yang, Qing; Zhang, Yi-Zuo

    2013-01-01

    Myeloid sarcoma (MS) is a rare hematological neoplasm that develops either de novo or concurrently with acute myeloid leukemia (AML). This neoplasm can also be an initial manifestation of relapse in a previously treated AML that is in remission. A 44-year-old male patient was diagnosed with testis MS in a local hospital in August 2010. After one month, bone marrow biopsy and aspiration confirmed the diagnosis of AML. Allogeneic mobilization peripheral blood stem cell transplantation was performed, with the sister of the patient as donor, after complete remission (CR) was achieved by chemotherapy. Five months after treatment, an adrenal mass was detected by positron emission tomography-computed tomography (PET-CT). Radiotherapy was performed for the localized mass after a multidisciplinary team (MDT) discussion. The patient is still alive as of May 2013, with no evidence of recurrent MS or leukemia

  20. Hematopoietic Cell Transplantation Outcomes in Monosomal Karyotype Myeloid Malignancies.

    Science.gov (United States)

    Pasquini, Marcelo C; Zhang, Mei-Jie; Medeiros, Bruno C; Armand, Philippe; Hu, Zhen-Huan; Nishihori, Taiga; Aljurf, Mahmoud D; Akpek, Görgün; Cahn, Jean-Yves; Cairo, Mitchell S; Cerny, Jan; Copelan, Edward A; Deol, Abhinav; Freytes, César O; Gale, Robert Peter; Ganguly, Siddhartha; George, Biju; Gupta, Vikas; Hale, Gregory A; Kamble, Rammurti T; Klumpp, Thomas R; Lazarus, Hillard M; Luger, Selina M; Liesveld, Jane L; Litzow, Mark R; Marks, David I; Martino, Rodrigo; Norkin, Maxim; Olsson, Richard F; Oran, Betul; Pawarode, Attaphol; Pulsipher, Michael A; Ramanathan, Muthalagu; Reshef, Ran; Saad, Ayman A; Saber, Wael; Savani, Bipin N; Schouten, Harry C; Ringdén, Olle; Tallman, Martin S; Uy, Geoffrey L; Wood, William A; Wirk, Baldeep; Pérez, Waleska S; Batiwalla, Minoo; Weisdorf, Daniel J

    2016-02-01

    The presence of monosomal karyotype (MK+) in acute myeloid leukemia (AML) is associated with dismal outcomes. We evaluated the impact of MK+ in AML (MK+AML, n = 240) and in myelodysplastic syndrome (MDS) (MK+MDS, n = 221) on hematopoietic cell transplantation outcomes compared with other cytogenetically defined groups (AML, n = 3360; MDS, n = 1373) as reported to the Center for International Blood and Marrow Transplant Research from 1998 to 2011. MK+ AML was associated with higher disease relapse (hazard ratio, 1.98; P < .01), similar transplantation-related mortality (TRM) (hazard ratio, 1.01; P = .90), and worse survival (hazard ratio, 1.67; P < .01) compared with those outcomes for other cytogenetically defined AML. Among patients with MDS, MK+ MDS was associated with higher disease relapse (hazard ratio, 2.39; P < .01), higher TRM (hazard ratio, 1.80; P < .01), and worse survival (HR, 2.02; P < .01). Subset analyses comparing chromosome 7 abnormalities (del7/7q) with or without MK+ demonstrated higher mortality for MK+ disease in for both AML (hazard ratio, 1.72; P < .01) and MDS (hazard ratio, 1.79; P < .01). The strong negative impact of MK+ in myeloid malignancies was observed in all age groups and using either myeloablative or reduced-intensity conditioning regimens. Alternative approaches to mitigate disease relapse in this population are needed. Copyright © 2016 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  1. The Influence of Programmed Cell Death in Myeloid Cells on Host Resilience to Infection with Legionella pneumophila or Streptococcus pyogenes.

    Directory of Open Access Journals (Sweden)

    Pia Gamradt

    2016-12-01

    Full Text Available Pathogen clearance and host resilience/tolerance to infection are both important factors in surviving an infection. Cells of the myeloid lineage play important roles in both of these processes. Neutrophils, monocytes, macrophages, and dendritic cells all have important roles in initiation of the immune response and clearance of bacterial pathogens. If these cells are not properly regulated they can result in excessive inflammation and immunopathology leading to decreased host resilience. Programmed cell death (PCD is one possible mechanism that myeloid cells may use to prevent excessive inflammation. Myeloid cell subsets play roles in tissue repair, immune response resolution, and maintenance of homeostasis, so excessive PCD may also influence host resilience in this way. In addition, myeloid cell death is one mechanism used to control pathogen replication and dissemination. Many of these functions for PCD have been well defined in vitro, but the role in vivo is less well understood. We created a mouse that constitutively expresses the pro-survival B-cell lymphoma (bcl-2 protein in myeloid cells (CD68(bcl2tg, thus decreasing PCD specifically in myeloid cells. Using this mouse model we explored the impact that decreased cell death of these cells has on infection with two different bacterial pathogens, Legionella pneumophila and Streptococcus pyogenes. Both of these pathogens target multiple cell death pathways in myeloid cells, and the expression of bcl2 resulted in decreased PCD after infection. We examined both pathogen clearance and host resilience and found that myeloid cell death was crucial for host resilience. Surprisingly, the decreased myeloid PCD had minimal impact on pathogen clearance. These data indicate that the most important role of PCD during infection with these bacteria is to minimize inflammation and increase host resilience, not to aid in the clearance or prevent the spread of the pathogen.

  2. The Influence of Programmed Cell Death in Myeloid Cells on Host Resilience to Infection with Legionella pneumophila or Streptococcus pyogenes

    Science.gov (United States)

    Gamradt, Pia; Xu, Yun; Gratz, Nina; Duncan, Kellyanne; Kobzik, Lester; Högler, Sandra; Decker, Thomas

    2016-01-01

    Pathogen clearance and host resilience/tolerance to infection are both important factors in surviving an infection. Cells of the myeloid lineage play important roles in both of these processes. Neutrophils, monocytes, macrophages, and dendritic cells all have important roles in initiation of the immune response and clearance of bacterial pathogens. If these cells are not properly regulated they can result in excessive inflammation and immunopathology leading to decreased host resilience. Programmed cell death (PCD) is one possible mechanism that myeloid cells may use to prevent excessive inflammation. Myeloid cell subsets play roles in tissue repair, immune response resolution, and maintenance of homeostasis, so excessive PCD may also influence host resilience in this way. In addition, myeloid cell death is one mechanism used to control pathogen replication and dissemination. Many of these functions for PCD have been well defined in vitro, but the role in vivo is less well understood. We created a mouse that constitutively expresses the pro-survival B-cell lymphoma (bcl)-2 protein in myeloid cells (CD68(bcl2tg), thus decreasing PCD specifically in myeloid cells. Using this mouse model we explored the impact that decreased cell death of these cells has on infection with two different bacterial pathogens, Legionella pneumophila and Streptococcus pyogenes. Both of these pathogens target multiple cell death pathways in myeloid cells, and the expression of bcl2 resulted in decreased PCD after infection. We examined both pathogen clearance and host resilience and found that myeloid cell death was crucial for host resilience. Surprisingly, the decreased myeloid PCD had minimal impact on pathogen clearance. These data indicate that the most important role of PCD during infection with these bacteria is to minimize inflammation and increase host resilience, not to aid in the clearance or prevent the spread of the pathogen. PMID:27973535

  3. Efficient recovery of undifferentiated human embryonic stem cell cryopreserved with hydroxyethyl starch, dimethyl sulphoxide and serum replacement.

    Science.gov (United States)

    Orellana, Maristela Delgado; De Santis, Gil Cunha; Abraham, Kuruvilla Joseph; Fontes, Aparecida Maria; Magalhães, Danielle Aparecida Rosa; Oliveira, Viviane de Cássia; Costa, Everton de Brito Oliveira; Palma, Patrícia Vianna Bonini; Covas, Dimas Tadeu

    2015-08-01

    The therapeutic use of human embryonic stem cells (hESCs) is dependent on an efficient cryopreservation protocol for long-term storage. The aim of this study was to determine whether the combination of three cryoprotecting reagents using two freezing systems might improve hESC recovery rates with maintenance of hESC pluripotency properties for potential cell therapy application. Recovery rates of hESC colonies which were frozen in three cryoprotective solutions: Me2SO/HES/SR medium, Defined-medium® and Me2SO/SFB in medium solution were evaluated in ultra-slow programmable freezing system (USPF) and a slow-rate freezing system (SRF). The hESC pluripotency properties after freezing-thawing were evaluated. We estimated the distribution frequency of survival colonies and observed that independent of the freezing system used (USPF or SRF) the best results were obtained with Me2SO/HES/SR as cryopreservation medium. We showed a significant hESC recovery colonies rate after thawing in Me2SO/HES/SR medium were 3.88 and 2.9 in USPF and SRF, respectively. The recovery colonies rate with Defined-medium® were 1.05 and 1.07 however in classical Me2SO medium were 0.5 and 0.86 in USPF and SRF, respectively. We showed significant difference between Me2SO/HES/SR medium×Defined-medium® and between Me2SO/HES/SR medium×Me2SO medium, for two cryopreservation systems (Psystem which resulted in hESC colonies that remain undifferentiated, maintain their in vitro and in vivo pluripotency properties and genetic stability. This approach may be suitable for cell therapy studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Subcellular Distribution of S-Nitrosylated H-Ras in Differentiated and Undifferentiated PC12 Cells during Hypoxia.

    Science.gov (United States)

    Barbakadze, Tamar; Goloshvili, Galina; Narmania, Nana; Zhuravliova, Elene; Mikeladze, David

    2017-10-01

    Hypoxia or exposure to excessive reactive oxygen or nitrogen species could induce S-nitrosylation of various target proteins, including GTPases of the Ras-superfamily. Under hypoxic conditions, the Ras-protein is translocated to the cytosol and interacts with the Golgi complex, endoplasmic reticulum, mitochondria. The mobility/translocation of Ras depend on the cells oxidative status. However, the importance of relocated Snitrosylated- H-Ras (NO-H-Ras) in proliferation/differentiation processes is not completely understood. We have determined the content of soluble- and membrane-bound-NO-HRas in differentiated (D) and undifferentiated (ND) rat pheochromocytoma (PC12) cells under hypoxic and normoxic conditions. In our experimental study, we analyzed NO-H-Ras levels under hypoxic/normoxic conditions in membrane and soluble fractions of ND and D PC12 cells with/without nitric oxide donor, sodium nitroprusside (SNP) treatment. Cells were analyzed by the S-nitrosylated kit, immunoprecipitation, and Western blot. We assessed the action of NO-H-Ras on oxidative metabolism of isolated mitochondria by determining mitochondrial hydrogen peroxide generation via the scopoletin oxidation method and ATPproduction as estimated by the luminometric method. Hypoxia did not influence nitrosylation of soluble H-Ras in ND PC12 cells. Under hypoxic conditions, the nitrosylation of soluble-H-Ras greatly decreased in D PC12 cells. SNP didn't change the levels of nitrosylation of soluble-H-Ras, in either hypoxic or normoxic conditions. On the other hand, hypoxia, per se, did not affect the nitrosylation of membrane-bound-H-Ras in D and ND PC12 cells. SNP-dependent nitrosylation of membrane-bound-H-Ras greatly increased in D PC12 cells. Both unmodified normal and mutated H-Ras enhanced the mitochondrial synthesis of ATP, whereas the stimulatory effects on ATP synthesis were eliminated after S-nitrosylation of H-Ras. According to the results, it may be proposed that hypoxia can decrease S

  5. Deficiency of leptin receptor in myeloid cells disrupts hypothalamic metabolic circuits and causes body weight increase

    Directory of Open Access Journals (Sweden)

    Yuanqing Gao

    2018-01-01

    Conclusions: Myeloid cell leptin receptor deficient mice partially replicate the db/db phenotype. Leptin signaling in hypothalamic microglia is important for microglial function and a correct formation of the hypothalamic neuronal circuit regulating metabolism.

  6. Myeloid Dendritic Cells (DCs) of Mice Susceptible to Paracoccidioidomycosis Suppress T Cell Responses whereas Myeloid and Plasmacytoid DCs from Resistant Mice Induce Effector and Regulatory T Cells

    Science.gov (United States)

    Pina, Adriana; Frank de Araujo, Eliseu; Felonato, Maíra; Loures, Flávio V.; Feriotti, Claudia; Bernardino, Simone; Barbuto, José Alexandre M.

    2013-01-01

    The protective adaptive immune response in paracoccidioidomycosis, a mycosis endemic among humans, is mediated by T cell immunity, whereas impaired T cell responses are associated with severe, progressive disease. The early host response to Paracoccidioides brasiliensis infection is not known since the disease is diagnosed at later phases of infection. Our laboratory established a murine model of infection where susceptible mice reproduce the severe disease, while resistant mice develop a mild infection. This work aimed to characterize the influence of dendritic cells in the innate and adaptive immunity of susceptible and resistant mice. We verified that P. brasiliensis infection induced in bone marrow-derived dendritic cells (DCs) of susceptible mice a prevalent proinflammatory myeloid phenotype that secreted high levels of interleukin-12 (IL-12), tumor necrosis factor alpha, and IL-β, whereas in resistant mice, a mixed population of myeloid and plasmacytoid DCs secreting proinflammatory cytokines and expressing elevated levels of secreted and membrane-bound transforming growth factor β was observed. In proliferation assays, the proinflammatory DCs from B10.A mice induced anergy of naïve T cells, whereas the mixed DC subsets from resistant mice induced the concomitant proliferation of effector and regulatory T cells (Tregs). Equivalent results were observed during pulmonary infection. The susceptible mice displayed preferential expansion of proinflammatory myeloid DCs, resulting in impaired proliferation of effector T cells. Conversely, the resistant mice developed myeloid and plasmacytoid DCs that efficiently expanded gamma interferon-, IL-4-, and IL-17-positive effector T cells associated with increased development of Tregs. Our work highlights the deleterious effect of excessive innate proinflammatory reactions and provides new evidence for the importance of immunomodulation during pulmonary paracoccidioidomycosis. PMID:23340311

  7. Undifferentiated pulmonary adenocarcinoma of clear cells associated to hypertrophic osteopathy in a dog

    OpenAIRE

    Rossetto, Victor José Vieira [UNESP; Rahal, Sheila Canevese [UNESP; Pardini, Luciana Moura Campos [UNESP; Fabris, Viciany Erique [UNESP; Mamprim, Maria Jaqueline [UNESP; Ribeiro, Sergio Marrone [UNESP

    2015-01-01

    Background: Most of the primary pulmonary tumors in dogs are malignant and from epithelial origin, being bronchioalveolar tumors more prevalent. Adenocarcinoma of clear cells, however, is a very rare pulmonary tumor and its origin is still unknown. It is related to several clinical abnormalities, including hypertrophic osteopathy, an unusual paraneoplastic syndrome characterized by a periosteal reaction along the shaft of long bones. Because of the unusual presentation of the pulmonary adenoc...

  8. Myeloid-derived suppressor cells restrain Natural Killer cell activity in CVB3 myocarditis

    OpenAIRE

    Holz, Lisa Maria

    2017-01-01

    Murine models of coxsackievirus B3 (CVB3) induced myocarditis (with host specific outcomes), represent different outcome of myocarditis, ranging from virus elimination and complete recovery in resistant C57BL/6J mice to virus persistence and chronic myocarditis in susceptible A.BY/SnJ mice. In previous experiments, we found that Natural Killer cells (NK cells) positively influence the outcome of CVB3 myocarditis in mice. Myeloid-derived suppressor cells (MDSC) are potent inhibitors of the inn...

  9. Characterization of miRNomes in acute and chronic myeloid leukemia cell lines.

    Science.gov (United States)

    Xiong, Qian; Yang, Yadong; Wang, Hai; Li, Jie; Wang, Shaobin; Li, Yanming; Yang, Yaran; Cai, Kan; Ruan, Xiuyan; Yan, Jiangwei; Hu, Songnian; Fang, Xiangdong

    2014-04-01

    Myeloid leukemias are highly diverse diseases and have been shown to be associated with microRNA (miRNA) expression aberrations. The present study involved an in-depth miRNome analysis of two human acute myeloid leukemia (AML) cell lines, HL-60 and THP-1, and one human chronic myeloid leukemia (CML) cell line, K562, via massively parallel signature sequencing. mRNA expression profiles of these cell lines that were established previously in our lab facilitated an integrative analysis of miRNA and mRNA expression patterns. miRNA expression profiling followed by differential expression analysis and target prediction suggested numerous miRNA signatures in AML and CML cell lines. Some miRNAs may act as either tumor suppressors or oncomiRs in AML and CML by targeting key genes in AML and CML pathways. Expression patterns of cell type-specific miRNAs could partially reflect the characteristics of K562, HL-60 and THP-1 cell lines, such as actin filament-based processes, responsiveness to stimulus and phagocytic activity. miRNAs may also regulate myeloid differentiation, since they usually suppress differentiation regulators. Our study provides a resource to further investigate the employment of miRNAs in human leukemia subtyping, leukemogenesis and myeloid development. In addition, the distinctive miRNA signatures may be potential candidates for the clinical diagnosis, prognosis and treatment of myeloid leukemias. Copyright © 2014. Production and hosting by Elsevier Ltd.

  10. Hyaline globule-like structures in undifferentiated sarcoma cells of malignant müllerian mixed tumor of the fallopian tube.

    Science.gov (United States)

    Kuroda, Naoto; Inui, Yasunobu; Ohara, Masahiko; Hirouchi, Takashi; Mizuno, Keiko; Kubo, Ayumi; Hayashi, Yoshihiro; Enzan, Hideaki; Lee, Gang-Hong

    2007-03-01

    Malignant müllerian mixed tumors (MMMTs) of the fallopian tube are very rare neoplasms, and we present such a case with unusual findings here. A 57-year-old Japanese woman, after she received a medical checkup, underwent salpingo-oophorectomy on the suspicion of ovarian cancer. At the time of operation, the main tumor was present predominantly in the fallopian tube. Microscopically, the tumor consisted of carcinoma and sarcoma components. The carcinoma showed moderately to poorly differentiated adenocarcinoma. The sarcoma consisted of predominantly undifferentiated sarcoma and focally rhabdomyosarcomatous cells with abundant eosinophilic cytoplasm. Immunohistochemically, the differentiation toward rhabdomyosarcoma was confirmed. Interestingly, the cytoplasm of undifferentiated sarcoma cells contained hyaline globule-like structures. These structures showed a positive reaction for PAS, and these structures were not digested by the diastase pretreatment. Ultrastructurally, hyaline globule-like structures corresponded to lysosomes. Finally, pathologists should keep in mind that undifferentiated sarcoma cells in MMMT of the fallopian tube may contain hyaline globule-like structures in the cytoplasm.

  11. Targeting myeloid cells using nanoparticles to improve cancer immunotherapy.

    Science.gov (United States)

    Amoozgar, Zohreh; Goldberg, Michael S

    2015-08-30

    While nanoparticles have traditionally been used to deliver cytotoxic drugs directly to tumors to induce cancer cell death, emerging data suggest that nanoparticles are likely to generate a larger impact on oncology through the delivery of agents that can stimulate antitumor immunity. Tumor-targeted nanocarriers have generally been used to localize chemotherapeutics to tumors and thus decrease off-target toxicity while enhancing efficacy. Challengingly, tumor heterogeneity and evolution render tumor-intrinsic approaches likely to succumb to relapse. The immune system offers exquisite specificity, cytocidal potency, and long-term activity that leverage an adaptive memory response. For this reason, the ability to manipulate immune cell specificity and function would be desirable, and nanoparticles represent an exciting means by which to perform such manipulation. Dendritic cells and tumor-associated macrophages are cells of the myeloid lineage that function as natural phagocytes, so they naturally take up nanoparticles. Dendritic cells direct the specificity and potency of cellular immune responses that can be targeted for cancer vaccines. Herein, we discuss the specific criteria needed for efficient vaccine design, including but not limited to the route of administration, size, morphology, surface charge, targeting ligands, and nanoparticle composition. In contrast, tumor-associated macrophages are critical mediators of immunosuppression whose trans-migratory abilities can be exploited to localize therapeutics to the tumor core and which can be directly targeted for elimination or for repolarization to a tumor suppressive phenotype. It is likely that a combination of targeting dendritic cells to stimulate antitumor immunity and tumor-associated macrophages to reduce immune suppression will impart significant benefits and result in durable antitumor responses. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Resistance of human and mouse myeloid leukemia cells to UV radiation

    International Nuclear Information System (INIS)

    Poljak-Blazi, M.; Osmak, M.; Hadzija, M.

    1989-01-01

    Sensitivity of mouse bone marrow and myeloid leukemia cells and sensitivity of human myeloid leukemia cells to UV light was tested. Criteria were the in vivo colony-forming ability of UV exposed cells and the inhibition of DNA synthesis during post-irradiation incubation for 24 h in vitro. Mouse bone marrow cells irradiated with a small dose of UV light (5 J/m 2 ) and injected into x-irradiated animals did not form hemopoietic colonies on recipient's spleens, and recipients died. However, mouse leukemia cells, after irradiation with higher doses of UV light, retained the ability to form colonies on the spleens, and all recipient mice died with typical symptoms of leukemia. In vitro, mouse bone marrow cells exhibited high sensitivity to UV light compared to mouse myeloid leukemia cells. Human leukemia cells were also resistant to UV light, but more sensitive than mouse leukemia cells. (author)

  13. The effect of caffeine on p53-dependent radioresponses in undifferentiated mouse embryonal carcinoma cells after X-ray and UV-irradiations

    International Nuclear Information System (INIS)

    Taga, Masataka; Shiraishi, Kazunori; Shimura, Tsutomu; Uematsu, Norio; Kato, Tomohisa; Niwa, Ohtsura; Nishimune, Yoshitake; Aizawa, Shinichi; Oshimura, Mitsuo

    2000-01-01

    The effect of caffeine was studied on the radioresponses of undifferentiated mouse embryonal carcinoma cells (EC cells) with or without the functional p53. The radioresponses studied included radiosensitivity, the activation of p53, apoptosis with characteristic DNA ladder formation and cell cycle progression. An undifferentiated mouse EC cell line, ECA2, and a newly established p53-deficient EC cell line, p53δ, were used in the present study. The status of the p53 gene did not significantly affect the colony survivals of undifferentiated EC cells to X-rays and UV. Although a post-irradiation treatment with caffeine sensitized both lines to X-rays marginally, the sensitization was prominent for UV regardless of the p53 status of the cells. The activation of a p53 responsible lacZ reporter construct was observed in stably transfected ECA2 cells after X-ray and UV irradiations. Caffeine suppressed the X-ray induced activation of the lacZ reporter, while it drastically enhanced the activation after UV irradiation. X-rays and UV readily triggered the apoptosis of ECA2 cells with the characteristic DNA ladder. Although UV-induced DNA ladder formation was enhanced by caffeine, that induced by X-rays was unaffected. Therefore, the effects of caffeine on the p53-dependent radioresponses were found to be agent specific: suppression for the X-ray induced and augmentation for the UV induced. In contrast to p53-proficient ECA2 cells, smear-like DNA degradation was observed for irradiated p53δ cells, suggesting the presence of a mode of cell death without DNA ladder formation. UV induction of the smear-like DNA degradation was enhanced in the presence of caffeine. Regardless of the state of the p53 gene, G1/S arrest was not observed in X-ray and UV irradiated EC cells. X-rays induced G2/M arrest in both lines, which was abrogated by caffeine, while G2/M arrest after UV was unaffected by a caffeine treatment. These results indicate that the radioresponses of undifferentiated

  14. The transcription repressors Bach2 and Bach1 promote B cell development by repressing the myeloid program.

    Science.gov (United States)

    Itoh-Nakadai, Ari; Hikota, Reina; Muto, Akihiko; Kometani, Kohei; Watanabe-Matsui, Miki; Sato, Yuki; Kobayashi, Masahiro; Nakamura, Atsushi; Miura, Yuichi; Yano, Yoko; Tashiro, Satoshi; Sun, Jiying; Ikawa, Tomokatsu; Ochiai, Kyoko; Kurosaki, Tomohiro; Igarashi, Kazuhiko

    2014-12-01

    Mature lymphoid cells express the transcription repressor Bach2, which imposes regulation on humoral and cellular immunity. Here we found critical roles for Bach2 in the development of cells of the B lineage, commencing from the common lymphoid progenitor (CLP) stage, with Bach1 as an auxiliary. Overexpression of Bach2 in pre-pro-B cells deficient in the transcription factor EBF1 and single-cell analysis of CLPs revealed that Bach2 and Bach1 repressed the expression of genes important for myeloid cells ('myeloid genes'). Bach2 and Bach1 bound to presumptive regulatory regions of the myeloid genes. Bach2(hi) CLPs showed resistance to myeloid differentiation even when cultured under myeloid conditions. Our results suggest that Bach2 functions with Bach1 and EBF1 to promote B cell development by repressing myeloid genes in CLPs.

  15. Cutaneous myeloid sarcoma associated with chronic myeloid leukemia*

    OpenAIRE

    Vasconcelos, Erica Rodrigues de Araujo; Bauk, Alexander Richard; Rochael, Mayra Carrijo

    2017-01-01

    Abstract: Myeloid sarcoma is an extramedullary tumor of malignant myeloid cells often associated with acute myeloid leukemia, chronic myeloproliferative disorders and myelodysplastic syndromes. The skin is one of the most commonly affected sites. We report a rare case of cutaneous myeloid sarcoma associated with chronic myeloid leukemia.

  16. The Role and Potential Therapeutic Application of Myeloid-Derived Suppressor Cells in Allo- and Autoimmunity

    Directory of Open Access Journals (Sweden)

    Qi Zhang

    2015-01-01

    Full Text Available Myeloid-derived suppressor cells (MDSCs are a heterogeneous population of cells that consists of myeloid progenitor cells and immature myeloid cells. They have been identified as a cell population that may affect the activation of CD4+ and CD8+ T-cells to regulate the immune response negatively, which makes them attractive targets for the treatment of transplantation and autoimmune diseases. Several studies have suggested the potential suppressive effect of MDSCs on allo- and autoimmune responses. Conversely, MDSCs have also been found at various stages of differentiation, accumulating during pathological situations, not only during tumor development but also in a variety of inflammatory immune responses, bone marrow transplantation, and some autoimmune diseases. These findings appear to be contradictory. In this review, we summarize the roles of MDSCs in different transplantation and autoimmune diseases models as well as the potential to target these cells for therapeutic benefit.

  17. Overexpression of catalase in myeloid cells causes impaired postischemic neovascularization.

    Science.gov (United States)

    Hodara, Roberto; Weiss, Daiana; Joseph, Giji; Velasquez-Castano, Juan C; Landázuri, Natalia; Han, Ji Woong; Yoon, Young-sup; Taylor, W Robert

    2011-10-01

    Myeloid lineage cells (MLCs) such as macrophages are known to play a key role in postischemic neovascularization. However, the role of MLC-derived reactive oxygen species in this process and their specific chemical identity remain unknown. Transgenic mice with MLC-specific overexpression of catalase (Tg(Cat-MLC) mice) were created on a C57BL/6 background. Macrophage catalase activity was increased 3.4-fold compared with wild-type mice. After femoral artery ligation, laser Doppler perfusion imaging revealed impaired perfusion recovery in Tg(Cat-MLC) mice. This was associated with fewer collateral vessels, as assessed by microcomputed tomography angiography, and decreased capillary density. Impaired functional recovery of the ischemic limb was also evidenced by a 50% reduction in spontaneous running activity. The deficient neovascularization was associated with a blunted inflammatory response, characterized by decreased macrophage infiltration of ischemic tissues, and lower mRNA levels of inflammatory markers, such as tumor necrosis factor-α, osteopontin, and matrix mettaloproteinase-9. In vitro macrophage migration was impaired in Tg(Cat-MLC) mice, suggesting a role for H(2)O(2) in regulating the ability of macrophages to infiltrate ischemic tissues. MLC-derived H(2)O(2) plays a key role in promoting neovascularization in response to ischemia and is a necessary factor for the development of ischemia-induced inflammation.

  18. Chemical Activation of the Hypoxia-Inducible Factor Reversibly Reduces Tendon Stem Cell Proliferation, Inhibits Their Differentiation, and Maintains Cell Undifferentiation

    Directory of Open Access Journals (Sweden)

    Alessandra Menon

    2018-01-01

    Full Text Available Adult stem cell-based therapeutic approaches for tissue regeneration have been proposed for several years. However, adult stem cells are usually limited in number and difficult to be expanded in vitro, and they usually tend to quickly lose their potency with passages, as they differentiate and become senescent. Culturing stem cells under reduced oxygen tensions (below 21% has been proposed as a tool to increase cell proliferation, but many studies reported opposite effects. In particular, cell response to hypoxia seems to be very stem cell type specific. Nonetheless, it is clear that a major role in this process is played by the hypoxia inducible factor (HIF, the master regulator of cell response to oxygen deprivation, which affects cell metabolism and differentiation. Herein, we report that a chemical activation of HIF in human tendon stem cells reduces their proliferation and inhibits their differentiation in a reversible and dose-dependent manner. These results support the notion that hypoxia, by activating HIF, plays a crucial role in preserving stem cells in an undifferentiated state in the “hypoxic niches” present in the tissue in which they reside before migrating in more oxygenated areas to heal a damaged tissue.

  19. Immunodetection of myeloid and plasmacytoid dendritic cells in mammary carcinomas of female dogs

    Directory of Open Access Journals (Sweden)

    Mayara C. Rosolem

    2015-11-01

    Full Text Available ABSTRACT: Dendritic cells have attracted great interest from researchers as they may be used as targets of tumor immune evasion mechanisms. The main objective of this study was to evaluate the relationship between the dendritic cells (DCs subpopulation in simple type mammary carcinomas in female dogs. Two groups of samples were used: the control group consisted of 18 samples of mammary tissue without changes and the tumor group with 26 simple type mammary carcinomas. In these groups, we evaluated the immunodetection of immature and mature myeloid DCs, plasmacytoid DCs and MHC-II. In mammary tumor, mature myeloid DCs predominated in the peritumoral region, while immature myeloid DCs and plasmacytoid DCs were evident in the intratumoral region. Immunostaining of MHC-II was visualized in mammary acini (control group, in tumor cells and inflammatory infiltration associated with tumors. The comparison between the control and tumor groups showed a statistically significant difference between immature myeloid DCs, mature myeloid DCs and plasmacytoid DCs. The immunodetection of MHC-II was not significant when comparing the groups. The predominance of immature DCs in the tumor group is possibly related to an inefficient immune response, promoting the development and survival of tumor cells. The presence of plasmacytoid DCs in the same group suggests a worse prognosis for female dogs with mammary tumors. Therefore, the ability of differentiation of canine dendritic cells could be influenced by neoplastic cells and by the tumor microenvironment.

  20. Myeloid Cell Function in MRP-14 (S100A9) Null Mice

    Science.gov (United States)

    Hobbs, Josie A. R.; May, Richard; Tanousis, Kiki; McNeill, Eileen; Mathies, Margaret; Gebhardt, Christoffer; Henderson, Robert; Robinson, Matthew J.; Hogg, Nancy

    2003-01-01

    Myeloid-related protein 14 (MRP-14) and its heterodimeric partner, MRP-8, are cytosolic calcium-binding proteins, highly expressed in neutrophils and monocytes. To understand the function of MRP-14, we performed targeted disruption of the MRP-14 gene in mice. MRP-14−/− mice showed no obvious phenotype and were fertile. MRP-8 mRNA but not protein is present in the myeloid cells of these mice, suggesting that the stability of MRP-8 protein is dependent on MRP-14 expression. A compensatory increase in other proteins was not detected in cells lacking MRP-8 and MRP-14. Although the morphology of MRP-14−/− myeloid cells was not altered, they were significantly less dense. When Ca2+ responses were investigated, there was no change in the maximal response to the chemokine MIP-2. At lower concentrations, however, there was reduced responsiveness in MRP-14−/− compared with MRP-14+/+ neutrophils. This alteration in the ability to flux Ca2+ did not impair the ability of the MRP-14−/− neutrophils to respond chemotactically to MIP-2. In addition, the myeloid cell functions of phagocytosis, superoxide burst, and apoptosis were unaffected in MRP-14−/− cells. In an in vivo model of peritonitis, MRP-14−/− mice showed no difference from wild-type mice in induced inflammatory response. The data indicate that MRP-14 and MRP-8 are dispensable for many myeloid cell functions. PMID:12640137

  1. Radotinib Induces Apoptosis of CD11b+ Cells Differentiated from Acute Myeloid Leukemia Cells.

    Directory of Open Access Journals (Sweden)

    Sook-Kyoung Heo

    Full Text Available Radotinib, developed as a BCR/ABL tyrosine kinase inhibitor (TKI, is approved for the second-line treatment of chronic myeloid leukemia (CML in South Korea. However, therapeutic effects of radotinib in acute myeloid leukemia (AML are unknown. In the present study, we demonstrate that radotinib significantly decreases the viability of AML cells in a dose-dependent manner. Kasumi-1 cells were more sensitive to radotinib than NB4, HL60, or THP-1 cell lines. Furthermore, radotinib induced CD11b expression in NB4, THP-1, and Kasumi-1 cells either in presence or absence of all trans-retinoic acid (ATRA. We found that radotinib promoted differentiation and induced CD11b expression in AML cells by downregulating LYN. However, CD11b expression induced by ATRA in HL60 cells was decreased by radotinib through upregulation of LYN. Furthermore, radotinib mainly induced apoptosis of CD11b+ cells in the total population of AML cells. Radotinib also increased apoptosis of CD11b+ HL60 cells when they were differentiated by ATRA/dasatinib treatment. We show that radotinib induced apoptosis via caspase-3 activation and the loss of mitochondrial membrane potential (ΔΨm in CD11b+ cells differentiated from AML cells. Our results suggest that radotinib may be used as a candidate drug in AML or a chemosensitizer for treatment of AML by other therapeutics.

  2. Molecular Mechanisms of HIV Immune Evasion of the Innate Immune Response in Myeloid Cells

    Directory of Open Access Journals (Sweden)

    Mike Mashiba

    2012-12-01

    Full Text Available The expression of intrinsic antiviral factors by myeloid cells is a recently recognized mechanism of restricting lentiviral replication. Viruses that enter these cells must develop strategies to evade cellular antiviral factors to establish a productive infection. By studying the cellular targets of virally encoded proteins that are necessary to infect myeloid cells, a better understanding of cellular intrinsic antiviral strategies has now been achieved. Recent findings have provided insight into how the lentiviral accessory proteins, Vpx, Vpr and Vif counteract antiviral factors found in myeloid cells including SAMHD1, APOBEC3G, APOBEC3A, UNG2 and uracil. Here we review our current understanding of the molecular basis of how cellular antiviral factors function and the viral countermeasures that antagonize them to promote viral transmission and spread.

  3. Molecular mechanisms of HIV immune evasion of the innate immune response in myeloid cells.

    Science.gov (United States)

    Mashiba, Mike; Collins, Kathleen L

    2012-12-21

    The expression of intrinsic antiviral factors by myeloid cells is a recently recognized mechanism of restricting lentiviral replication. Viruses that enter these cells must develop strategies to evade cellular antiviral factors to establish a productive infection. By studying the cellular targets of virally encoded proteins that are necessary to infect myeloid cells, a better understanding of cellular intrinsic antiviral strategies has now been achieved. Recent findings have provided insight into how the lentiviral accessory proteins, Vpx, Vpr and Vif counteract antiviral factors found in myeloid cells including SAMHD1, APOBEC3G, APOBEC3A, UNG2 and uracil. Here we review our current understanding of the molecular basis of how cellular antiviral factors function and the viral countermeasures that antagonize them to promote viral transmission and spread.

  4. Myeloid Neoplasms.

    Science.gov (United States)

    Subtil, Antonio

    2017-09-01

    The classification of myeloid neoplasms has undergone major changes and currently relies heavily on genetic abnormalities. Cutaneous manifestations of myeloid neoplasms may be the presenting sign of underlying bone marrow disease. Dermal infiltration by neoplastic cells may occur in otherwise normal skin or in sites of cutaneous inflammation. Leukemia cutis occasionally precedes evidence of blood and/or bone marrow involvement (aleukemic leukemia cutis). Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Clinical impact of the immunome in lymphoid malignancies: the role of Myeloid-Derived Suppressor Cells

    Directory of Open Access Journals (Sweden)

    Calogero eVetro

    2015-05-01

    Full Text Available The better definition of the mutual sustainment between neoplastic cells and immune system has been translated from the bench to the bedside acquiring value as prognostic factor. Additionally, it represents a promising tool for improving therapeutic strategies. In this context, myeloid-derived suppressor cells have gained a central role in tumor developing with consequent therapeutic implications. In this review, we will focus on the biological and clinical impact of the study of myeloid-derived suppressor cells in the settings of lymphoid malignancies.

  6. Functional exhaustion of CD4+T cells induced by co-stimulatory signals from myeloid leukaemia cells.

    Science.gov (United States)

    Ozkazanc, Didem; Yoyen-Ermis, Digdem; Tavukcuoglu, Ece; Buyukasik, Yahya; Esendagli, Gunes

    2016-12-01

    To cope with immune responses, tumour cells implement elaborate strategies such as adaptive resistance and induction of T-cell exhaustion. T-cell exhaustion has been identified as a state of hyporesponsiveness that arises under continuous antigenic stimulus. Nevertheless, contribution of co-stimulatory molecules to T-cell exhaustion in cancer remains to be better defined. This study explores the role of myeloid leukaemia-derived co-stimulatory signals on CD4 + T helper (Th) cell exhaustion, which may limit anti-tumour immunity. Here, CD86 and inducible T-cell co-stimulator ligand (ICOS-LG) co-stimulatory molecules that are found on myeloid leukaemia cells supported Th cell activation and proliferation. However, under continuous stimulation, T cells co-cultured with leukaemia cells, but not with peripheral blood monocytes, became functionally exhausted. These in vitro-generated exhausted Th cells were defined by up-regulation of programmed cell death 1 (PD-1), cytotoxic T-lymphocyte antigen 4 (CTLA-4), lymphocyte activation gene 3 (LAG3) and T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) inhibitory receptors. They were reluctant to proliferate upon re-stimulation and produced reduced amounts of interleukin-2 (IL-2), tumour necrosis factor-α (TNF-α) and interferon-γ (IFN-γ). Nonetheless, IL-2 supplementation restored the proliferation capacity of the exhausted Th cells. When the co-stimulation supplied by the myeloid leukaemia cells were blocked, the amount of exhausted Th cells was significantly decreased. Moreover, in the bone marrow aspirates from patients with acute myeloid leukaemia (AML) or myelodysplastic syndrome (MDS), a subpopulation of Th cells expressing PD-1, TIM-3 and/or LAG3 was identified together with CD86 + and/or ICOS-LG + myeloid blasts. Collectively, co-stimulatory signals derived from myeloid leukaemia cells possess the capacity to facilitate functional exhaustion in Th cells. © 2016 John Wiley & Sons Ltd.

  7. Arginase-1 mRNA expression correlates with myeloid-derived suppressor cell levels in peripheral blood of NSCLC patients

    NARCIS (Netherlands)

    Heuvers, Marlies E.; Muskens, Femke; Bezemer, Koen; Lambers, Margaretha; Dingemans, Anne-Marie C.; Groen, Harry J. M.; Smit, Egbert F.; Hoogsteden, Henk C.; Hegmans, Joost P. J. J.; Aerts, Joachim G. J. V.

    Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature and progenitor myeloid cells with immunosuppressive activity that are increased in cancer patients. Until now, the characterization of MDSC in humans was very challenging. The aim of this study was to determine the

  8. Tyrosine kinase inhibitor therapy can cure chronic myeloid leukemia without hitting leukemic stem cells

    Science.gov (United States)

    Lenaerts, Tom; Pacheco, Jorge M.; Traulsen, Arne; Dingli, David

    2010-01-01

    Background Tyrosine kinase inhibitors, such as imatinib, are not considered curative for chronic myeloid leukemia – regardless of the significant reduction of disease burden during treatment – since they do not affect the leukemic stem cells. However, the stochastic nature of hematopoiesis and recent clinical observations suggest that this view must be revisited. Design and Methods We studied the natural history of a large cohort of virtual patients with chronic myeloid leukemia under tyrosine kinase inhibitor therapy using a computational model of hematopoiesis and chronic myeloid leukemia that takes into account stochastic dynamics within the hematopoietic stem and early progenitor cell pool. Results We found that in the overwhelming majority of patients the leukemic stem cell population undergoes extinction before disease diagnosis. Hence leukemic progenitors, susceptible to tyrosine kinase inhibitor attack, are the natural target for chronic myeloid leukemia treatment. Response dynamics predicted by the model closely match data from clinical trials. We further predicted that early diagnosis together with administration of tyrosine kinase inhibitor opens the path to eradication of chronic myeloid leukemia, leading to the wash out of the aberrant progenitor cells, ameliorating the patient’s condition while lowering the risk of blast transformation and drug resistance. Conclusions Tyrosine kinase inhibitor therapy can cure chronic myeloid leukemia, although it may have to be prolonged. The depth of response increases with time in the vast majority of patients. These results illustrate the importance of stochastic effects on the dynamics of acquired hematopoietic stem cell disorders and have direct relevance for other hematopoietic stem cell-derived diseases. PMID:20007137

  9. Implantation of undifferentiated and pre-differentiated human neural stem cells in the R6/2 transgenic mouse model of Huntington’s disease

    Directory of Open Access Journals (Sweden)

    El-Akabawy Gehan

    2012-08-01

    Full Text Available Abstract Background Cell therapy is a potential therapeutic approach for several neurodegenetative disease, including Huntington Disease (HD. To evaluate the putative efficacy of cell therapy in HD, most studies have used excitotoxic animal models with only a few studies having been conducted in genetic animal models. Genetically modified animals should provide a more accurate representation of human HD, as they emulate the genetic basis of its etiology. Results In this study, we aimed to assess the therapeutic potential of a human striatal neural stem cell line (STROC05 implanted in the R6/2 transgenic mouse model of HD. As DARPP-32 GABAergic output neurons are predominately lost in HD, STROC05 cells were also pre-differentiated using purmorphamine, a hedgehog agonist, to yield a greater number of DARPP-32 cells. A bilateral injection of 4.5x105 cells of either undifferentiated or pre-differentiated DARPP-32 cells, however, did not affect outcome compared to a vehicle control injection. Both survival and neuronal differentiation remained poor with a mean of only 161 and 81 cells surviving in the undifferentiated and differentiated conditions respectively. Only a few cells expressed the neuronal marker Fox3. Conclusions Although the rapid brain atrophy and short life-span of the R6/2 model constitute adverse conditions to detect potentially delayed treatment effects, significant technical hurdles, such as poor cell survival and differentiation, were also sub-optimal. Further consideration of these aspects is therefore needed in more enduring transgenic HD models to provide a definite assessment of this cell line’s therapeutic relevance. However, a combination of treatments is likely needed to affect outcome in transgenic models of HD.

  10. Role of Triggering Receptor Expressed on Myeloid Cells in the Activation of Innate Immunity

    Directory of Open Access Journals (Sweden)

    V. G. Matveyeva

    2011-01-01

    Full Text Available The innate immune system plays a key role in triggering a systemic inflammatory response (SIR. The triggering receptor expressed on myeloid cells (TREM-1, which is located on neutrophils and monocytes, is involved in SIR, by regulating the effector mechanisms of innate immunity. Hyperproduction of proinflammatory cytokines is a pathogenetic component of the hyperergic phase of acute systemic inflammation. The simultaneous activation of Toll-like receptors and TREM-1 increases the production of cytokines manifold. This is compensatory and adaptive, however, resulting in damage to organs and tissues during excessive production of cytokines. Key words: triggering receptor expressed on myeloid cells, Toll-like receptors, cytokines, inflammation.

  11. Mesenchymal Stem Cells Modulate Differentiation of Myeloid Progenitor Cells During Inflammation.

    Science.gov (United States)

    Amouzegar, Afsaneh; Mittal, Sharad K; Sahu, Anuradha; Sahu, Srikant K; Chauhan, Sunil K

    2017-06-01

    Mesenchymal stem cells (MSCs) possess distinct immunomodulatory properties and have tremendous potential for use in therapeutic applications in various inflammatory diseases. MSCs have been shown to regulate pathogenic functions of mature myeloid inflammatory cells, such as macrophages and neutrophils. Intriguingly, the capacity of MSCs to modulate differentiation of myeloid progenitors (MPs) to mature inflammatory cells remains unknown to date. Here, we report the novel finding that MSCs inhibit the expression of differentiation markers on MPs under inflammatory conditions. We demonstrate that the inhibitory effect of MSCs is dependent on direct cell-cell contact and that this intercellular contact is mediated through interaction of CD200 expressed by MSCs and CD200R1 expressed by MPs. Furthermore, using an injury model of sterile inflammation, we show that MSCs promote MP frequencies and suppress infiltration of inflammatory cells in the inflamed tissue. We also find that downregulation of CD200 in MSCs correlates with abrogation of their immunoregulatory function. Collectively, our study provides unequivocal evidence that MSCs inhibit differentiation of MPs in the inflammatory environment via CD200-CD200R1 interaction. Stem Cells 2017;35:1532-1541. © 2017 AlphaMed Press.

  12. Impact of copper oxide nanomaterials on differentiated and undifferentiated Caco-2 intestinal epithelial cells; assessment of cytotoxicity, barrier integrity, cytokine production and nanomaterial penetration.

    Science.gov (United States)

    Ude, Victor C; Brown, David M; Viale, Luca; Kanase, Nilesh; Stone, Vicki; Johnston, Helinor J

    2017-08-23

    Copper oxide nanomaterials (CuO NMs) are exploited in a diverse array of products including antimicrobials, inks, cosmetics, textiles and food contact materials. There is therefore a need to assess the toxicity of CuO NMs to the gastrointestinal (GI) tract since exposure could occur via direct oral ingestion, mucocillary clearance (following inhalation) or hand to mouth contact. Undifferentiated Caco-2 intestinal cells were exposed to CuO NMs (10 nm) at concentrations ranging from 0.37 to 78.13 μg/cm 2 Cu (equivalent to 1.95 to 250 μg/ml) and cell viability assessed 24 h post exposure using the alamar blue assay. The benchmark dose (BMD 20), determined using PROAST software, was identified as 4.44 μg/cm 2 for CuO NMs, and 4.25 μg/cm 2 for copper sulphate (CuSO 4 ), which informed the selection of concentrations for further studies. The differentiation status of cells and the impact of CuO NMs and CuSO 4 on the integrity of the differentiated Caco-2 cell monolayer were assessed by measurement of trans-epithelial electrical resistance (TEER), staining for Zonula occludens-1 (ZO-1) and imaging of cell morphology using scanning electron microscopy (SEM). The impact of CuO NMs and CuSO 4 on the viability of differentiated cells was performed via assessment of cell number (DAPI staining), and visualisation of cell morphology (light microscopy). Interleukin-8 (IL-8) production by undifferentiated and differentiated Caco-2 cells following exposure to CuO NMs and CuSO 4 was determined using an ELISA. The copper concentration in the cell lysate, apical and basolateral compartments were measured with Inductive Coupled Plasma Optical Emission Spectrometry (ICP-OES) and used to calculate the apparent permeability coefficient (P app ); a measure of barrier permeability to CuO NMs. For all experiments, CuSO 4 was used as an ionic control. CuO NMs and CuSO 4 caused a concentration dependent decrease in cell viability in undifferentiated cells. CuO NMs and CuSO 4

  13. Mesenchymal Stem Cells (MSC Regulate Activation of Granulocyte-Like Myeloid Derived Suppressor Cells (G-MDSC in Chronic Myeloid Leukemia Patients.

    Directory of Open Access Journals (Sweden)

    Cesarina Giallongo

    Full Text Available It is well known that mesenchymal stem cells (MSC have a role in promotion of tumor growth, survival and drug-resistance in chronic myeloid leukemia (CML. Recent reports indicated that a subpopulation of myeloid cells, defined as granulocyte-like myeloid-derived suppressor cells (G-MDSC is increased in these patients. So far, the role of MSC in MDSC expansion and activation into the BM microenvironment remains unexplored. To address this question, here we use a specific experimental model in vitro, co-culturing MSC with peripheral blood mononucleated cells (PBMC from normal individuals, in order to generate MSC-educated G-MDSC. Although MSC of healthy donors (HD and CML patients were able to generate the same amount of MDSC, only CML-MSC-educated G-MDSC exhibited suppressive ability on autologous T lymphocytes. In addition, compared with HD-MSC, CML-MSC over-expressed some immunomodulatory factors including TGFβ, IL6 and IL10, that could be involved in MDSC activation. CML-MSC-educated G-MDSC expressed higher levels of ARG1, TNFα, IL1β, COX2 and IL6 than G-MDSC isolated from co-culture with HD-MSC. Our data provide evidence that CML-MSC may play a critical role in tumor microenvironment by orchestrating G-MDSC activation and regulating T lymphocytes-mediated leukemia surveillance, thus contributing to CML immune escape.

  14. Mesenchymal Stem Cells (MSC) Regulate Activation of Granulocyte-Like Myeloid Derived Suppressor Cells (G-MDSC) in Chronic Myeloid Leukemia Patients.

    Science.gov (United States)

    Giallongo, Cesarina; Romano, Alessandra; Parrinello, Nunziatina Laura; La Cava, Piera; Brundo, Maria Violetta; Bramanti, Vincenzo; Stagno, Fabio; Vigneri, Paolo; Chiarenza, Annalisa; Palumbo, Giuseppe Alberto; Tibullo, Daniele; Di Raimondo, Francesco

    2016-01-01

    It is well known that mesenchymal stem cells (MSC) have a role in promotion of tumor growth, survival and drug-resistance in chronic myeloid leukemia (CML). Recent reports indicated that a subpopulation of myeloid cells, defined as granulocyte-like myeloid-derived suppressor cells (G-MDSC) is increased in these patients. So far, the role of MSC in MDSC expansion and activation into the BM microenvironment remains unexplored. To address this question, here we use a specific experimental model in vitro, co-culturing MSC with peripheral blood mononucleated cells (PBMC) from normal individuals, in order to generate MSC-educated G-MDSC. Although MSC of healthy donors (HD) and CML patients were able to generate the same amount of MDSC, only CML-MSC-educated G-MDSC exhibited suppressive ability on autologous T lymphocytes. In addition, compared with HD-MSC, CML-MSC over-expressed some immunomodulatory factors including TGFβ, IL6 and IL10, that could be involved in MDSC activation. CML-MSC-educated G-MDSC expressed higher levels of ARG1, TNFα, IL1β, COX2 and IL6 than G-MDSC isolated from co-culture with HD-MSC. Our data provide evidence that CML-MSC may play a critical role in tumor microenvironment by orchestrating G-MDSC activation and regulating T lymphocytes-mediated leukemia surveillance, thus contributing to CML immune escape.

  15. Omega 3 fatty acids reduce myeloid progenitor cell frequency in the bone marrow of mice and promote progenitor cell differentiation

    Directory of Open Access Journals (Sweden)

    Sollars Vincent E

    2009-03-01

    Full Text Available Abstract Background Omega 3 fatty acids have been found to inhibit proliferation, induce apoptosis, and promote differentiation in various cell types. The processes of cell survival, expansion, and differentiation are of key importance in the regulation of hematopoiesis. We investigated the role of omega 3 fatty acids in controlling the frequency of various myeloid progenitor cells in the bone marrow of mice. Increased progenitor cell frequency and blocked differentiation are characteristics of hematopoietic disorders of the myeloid lineage, such as myeloproliferative diseases and myeloid leukemias. Results We found that increasing the proportion of omega 3 fatty acids relative to the proportion of omega 6 fatty acids in the diet caused increased differentiation and reduced the frequency of myeloid progenitor cells in the bone marrow of mice. Furthermore, this had no adverse effect on peripheral white blood cell counts. Conclusion Our results indicate that omega 3 fatty acids impact hematopoietic differentiation by reducing myeloid progenitor cell frequency in the bone marrow and promoting progenitor cell differentiation. Further exploration of this discovery could lead to the use of omega 3 fatty acids as a therapeutic option for patients that have various disorders of hematopoiesis.

  16. Effect of antibiotics against Mycoplasma sp. on human embryonic stem cells undifferentiated status, pluripotency, cell viability and growth.

    Directory of Open Access Journals (Sweden)

    Leonardo Romorini

    Full Text Available Human embryonic stem cells (hESCs are self-renewing pluripotent cells that can differentiate into specialized cells and hold great promise as models for human development and disease studies, cell-replacement therapies, drug discovery and in vitro cytotoxicity tests. The culture and differentiation of these cells are both complex and expensive, so it is essential to extreme aseptic conditions. hESCs are susceptible to Mycoplasma sp. infection, which is hard to detect and alters stem cell-associated properties. The purpose of this work was to evaluate the efficacy and cytotoxic effect of Plasmocin(TM and ciprofloxacin (specific antibiotics used for Mycoplasma sp. eradication on hESCs. Mycoplasma sp. infected HUES-5 884 (H5 884, stable hESCs H5-brachyury promoter-GFP line cells were effectively cured with a 14 days Plasmocin(TM 25 µg/ml treatment (curative treatment while maintaining stemness characteristic features. Furthermore, cured H5 884 cells exhibit the same karyotype as the parental H5 line and expressed GFP, through up-regulation of brachyury promoter, at day 4 of differentiation onset. Moreover, H5 cells treated with ciprofloxacin 10 µg/ml for 14 days (mimic of curative treatment and H5 and WA09 (H9 hESCs treated with Plasmocin(TM 5 µg/ml (prophylactic treatment for 5 passages retained hESCs features, as judged by the expression of stemness-related genes (TRA1-60, TRA1-81, SSEA-4, Oct-4, Nanog at mRNA and protein levels. In addition, the presence of specific markers of the three germ layers (brachyury, Nkx2.5 and cTnT: mesoderm; AFP: endoderm; nestin and Pax-6: ectoderm was verified in in vitro differentiated antibiotic-treated hESCs. In conclusion, we found that Plasmocin(TM and ciprofloxacin do not affect hESCs stemness and pluripotency nor cell viability. However, curative treatments slightly diminished cell growth rate. This cytotoxic effect was reversible as cells regained normal growth rate upon antibiotic withdrawal.

  17. Effect of antibiotics against Mycoplasma sp. on human embryonic stem cells undifferentiated status, pluripotency, cell viability and growth.

    Science.gov (United States)

    Romorini, Leonardo; Riva, Diego Ariel; Blüguermann, Carolina; Videla Richardson, Guillermo Agustin; Scassa, Maria Elida; Sevlever, Gustavo Emilio; Miriuka, Santiago Gabriel

    2013-01-01

    Human embryonic stem cells (hESCs) are self-renewing pluripotent cells that can differentiate into specialized cells and hold great promise as models for human development and disease studies, cell-replacement therapies, drug discovery and in vitro cytotoxicity tests. The culture and differentiation of these cells are both complex and expensive, so it is essential to extreme aseptic conditions. hESCs are susceptible to Mycoplasma sp. infection, which is hard to detect and alters stem cell-associated properties. The purpose of this work was to evaluate the efficacy and cytotoxic effect of Plasmocin(TM) and ciprofloxacin (specific antibiotics used for Mycoplasma sp. eradication) on hESCs. Mycoplasma sp. infected HUES-5 884 (H5 884, stable hESCs H5-brachyury promoter-GFP line) cells were effectively cured with a 14 days Plasmocin(TM) 25 µg/ml treatment (curative treatment) while maintaining stemness characteristic features. Furthermore, cured H5 884 cells exhibit the same karyotype as the parental H5 line and expressed GFP, through up-regulation of brachyury promoter, at day 4 of differentiation onset. Moreover, H5 cells treated with ciprofloxacin 10 µg/ml for 14 days (mimic of curative treatment) and H5 and WA09 (H9) hESCs treated with Plasmocin(TM) 5 µg/ml (prophylactic treatment) for 5 passages retained hESCs features, as judged by the expression of stemness-related genes (TRA1-60, TRA1-81, SSEA-4, Oct-4, Nanog) at mRNA and protein levels. In addition, the presence of specific markers of the three germ layers (brachyury, Nkx2.5 and cTnT: mesoderm; AFP: endoderm; nestin and Pax-6: ectoderm) was verified in in vitro differentiated antibiotic-treated hESCs. In conclusion, we found that Plasmocin(TM) and ciprofloxacin do not affect hESCs stemness and pluripotency nor cell viability. However, curative treatments slightly diminished cell growth rate. This cytotoxic effect was reversible as cells regained normal growth rate upon antibiotic withdrawal.

  18. Biological Therapy in Treating Patients With Advanced Myelodysplastic Syndrome, Acute or Chronic Myeloid Leukemia, or Acute Lymphoblastic Leukemia Who Are Undergoing Stem Cell Transplantation

    Science.gov (United States)

    2017-03-27

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; Essential Thrombocythemia; Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  19. HLA-DRB1*16-restricted recognition of myeloid cells, including CD34+ CML progenitor cells

    NARCIS (Netherlands)

    Ebeling, Saskia B.; Ivanov, Roman; Hol, Samantha; Aarts, Tineke I.; Hagenbeek, Anton; Verdonck, Leo F.; Petersen, Eefke J.

    2003-01-01

    The therapeutic effect of a human leucocyte antigen (HLA)-identical allogeneic stem cell transplantation (allo-SCT) for the treatment of haematological malignancies is mediated partly by the allogeneic T cells that are administered together with the stem cell graft. Chronic myeloid leukaemia (CML)

  20. Myeloid and lymphoid contribution to non-haematopoietic lineages through irradiation-induced heterotypic cell fusion

    DEFF Research Database (Denmark)

    Nygren, J.M.; Liuba, K.; Breitbach, M.

    2008-01-01

    is induced by organ-specific injuries or whole-body irradiation, which has been used in previous studies to condition recipients of bone marrow transplants. Our findings demonstrate that blood cells of the lymphoid and myeloid lineages contribute to various non-haematopoietic tissues by forming rare fusion...

  1. Soluble triggering receptor expressed on myeloid cells 1: a biomarker for bacterial meningitis

    NARCIS (Netherlands)

    Determann, Rogier M.; Weisfelt, Martijn; de Gans, Jan; van der Ende, Arie; Schultz, Marcus J.; van de Beek, Diederik

    2006-01-01

    OBJECTIVE: To evaluate whether soluble triggering receptor expressed on myeloid cells 1 (sTREM-1) in CSF can serve as a biomarker for the presence of bacterial meningitis and outcome in patients with this disease. DESIGN: Retrospective study of diagnostic accuracy. SETTING AND PATIENTS: CSF was

  2. Myeloid derived suppressor cells-An overview of combat strategies to increase immunotherapy efficacy

    NARCIS (Netherlands)

    Draghiciu, Oana; Lubbers, Joyce; Nijman, Hans W.; Daemen, Toos

    2015-01-01

    Myeloid-derived suppressor cells (MDSCs) contribute to tumor-mediated immune escape and negatively correlate with overall survival of cancer patients. Nowadays, a variety of methods to target MDSCs are being investigated. Based on the intervention stage of MDSCs, namely development, expansion and

  3. Modeling of C/EBPalpha mutant acute myeloid leukemia reveals a common expression signature of committed myeloid leukemia-initiating cells

    DEFF Research Database (Denmark)

    Kirstetter, Peggy; Schuster, Mikkel B; Bereshchenko, Oksana

    2008-01-01

    Mutations in the CEBPA gene are present in 7%-10% of human patients with acute myeloid leukemia (AML). However, no genetic models exist that demonstrate their etiological relevance. To mimic the most common mutations affecting CEBPA-that is, those leading to loss of the 42 kDa C/EBPalpha isoform (p...... penetrance. p42-deficient leukemia could be transferred by a Mac1+c-Kit+ population that gave rise only to myeloid cells in recipient mice. Expression profiling of this population against normal Mac1+c-Kit+ progenitors revealed a signature shared with MLL-AF9-transformed AML....

  4. TrkAIII Promotes Microtubule Nucleation and Assembly at the Centrosome in SH-SY5Y Neuroblastoma Cells, Contributing to an Undifferentiated Anaplastic Phenotype

    Science.gov (United States)

    Farina, Antonietta R.; Di Ianni, Natalia; Cappabianca, Lucia; Ruggeri, Pierdomenico; Ragone, Marzia; Ianni, Giulia; Gulino, Alberto; Mackay, Andrew R.

    2013-01-01

    The alternative TrkAIII splice variant is expressed by advanced stage human neuroblastomas (NBs) and exhibits oncogenic activity in NB models. In the present study, employing stable transfected cell lines and assays of indirect immunofluorescence, immunoprecipitation, Western blotting, microtubule regrowth, tubulin kinase, and tubulin polymerisation, we report that TrkAIII binds α-tubulin and promotes MT nucleation and assembly at the centrosome. This effect depends upon spontaneous TrkAIII activity, TrkAIII localisation to the centrosome and pericentrosomal area, and the capacity of TrkAIII to bind, phosphorylate, and polymerise tubulin. We propose that this novel role for TrkAIII contributes to MT involvement in the promotion and maintenance of an undifferentiated anaplastic NB cell morphology by restricting and augmenting MT nucleation and assembly at the centrosomal MTOC. PMID:23841091

  5. TrkAIII Promotes Microtubule Nucleation and Assembly at the Centrosome in SH-SY5Y Neuroblastoma Cells, Contributing to an Undifferentiated Anaplastic Phenotype

    Directory of Open Access Journals (Sweden)

    Antonietta R. Farina

    2013-01-01

    Full Text Available The alternative TrkAIII splice variant is expressed by advanced stage human neuroblastomas (NBs and exhibits oncogenic activity in NB models. In the present study, employing stable transfected cell lines and assays of indirect immunofluorescence, immunoprecipitation, Western blotting, microtubule regrowth, tubulin kinase, and tubulin polymerisation, we report that TrkAIII binds α-tubulin and promotes MT nucleation and assembly at the centrosome. This effect depends upon spontaneous TrkAIII activity, TrkAIII localisation to the centrosome and pericentrosomal area, and the capacity of TrkAIII to bind, phosphorylate, and polymerise tubulin. We propose that this novel role for TrkAIII contributes to MT involvement in the promotion and maintenance of an undifferentiated anaplastic NB cell morphology by restricting and augmenting MT nucleation and assembly at the centrosomal MTOC.

  6. Technical Advance: Transcription factor, promoter, and enhancer utilization in human myeloid cells.

    Science.gov (United States)

    Joshi, Anagha; Pooley, Christopher; Freeman, Tom C; Lennartsson, Andreas; Babina, Magda; Schmidl, Christian; Geijtenbeek, Teunis; Michoel, Tom; Severin, Jessica; Itoh, Masayoshi; Lassmann, Timo; Kawaji, Hideya; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R R; Rehli, Michael; Hume, David A

    2015-05-01

    The generation of myeloid cells from their progenitors is regulated at the level of transcription by combinatorial control of key transcription factors influencing cell-fate choice. To unravel the global dynamics of this process at the transcript level, we generated transcription profiles for 91 human cell types of myeloid origin by use of CAGE profiling. The CAGE sequencing of these samples has allowed us to investigate diverse aspects of transcription control during myelopoiesis, such as identification of novel transcription factors, miRNAs, and noncoding RNAs specific to the myeloid lineage. We further reconstructed a transcription regulatory network by clustering coexpressed transcripts and associating them with enriched cis-regulatory motifs. With the use of the bidirectional expression as a proxy for enhancers, we predicted over 2000 novel enhancers, including an enhancer 38 kb downstream of IRF8 and an intronic enhancer in the KIT gene locus. Finally, we highlighted relevance of these data to dissect transcription dynamics during progressive maturation of granulocyte precursors. A multifaceted analysis of the myeloid transcriptome is made available (www.myeloidome.roslin.ed.ac.uk). This high-quality dataset provides a powerful resource to study transcriptional regulation during myelopoiesis and to infer the likely functions of unannotated genes in human innate immunity. © The Author(s).

  7. CAR-T cells targeting CLL-1 as an approach to treat acute myeloid leukemia.

    Science.gov (United States)

    Wang, Jinghua; Chen, Siyu; Xiao, Wei; Li, Wende; Wang, Liang; Yang, Shuo; Wang, Weida; Xu, Liping; Liao, Shuangye; Liu, Wenjian; Wang, Yang; Liu, Nawei; Zhang, Jianeng; Xia, Xiaojun; Kang, Tiebang; Chen, Gong; Cai, Xiuyu; Yang, Han; Zhang, Xing; Lu, Yue; Zhou, Penghui

    2018-01-10

    Acute myeloid leukemia (AML) is one of the most common types of adult acute leukemia. Standard chemotherapies can induce complete remission in selected patients; however, a majority of patients eventually relapse and succumb to the disease. Thus, the development of novel therapeutics for AML is urgently needed. Human C-type lectin-like molecule-1 (CLL-1) is a type II transmembrane glycoprotein, and its expression is restricted to myeloid cells and the majority of AML blasts. Moreover, CLL-1 is expressed in leukemia stem cells (LSCs), but absent in hematopoietic stem cells (HSCs), which may provide a potential therapeutic target for AML treatment. We tested the expression of CLL-1 antigen on peripheral blood cells and bone marrow cells in healthy donor and AML patients. Then, we developed a chimeric antigen receptor (CAR) containing a CLL1-specific single-chain variable fragment, in combination with CD28, 4-1BB costimulatory domains, and CD3-ζ signaling domain. We further investigate the function of CLL-1 CAR-T cells. The CLL-1 CAR-T cells specifically lysed CLL-1 + cell lines as well as primary AML patient samples in vitro. Strong anti-leukemic activity was observed in vivo by using a xenograft model of disseminated AML. Importantly, CLL-1 + myeloid progenitor cells and mature myeloid cells were specifically eliminated by CLL-1 CAR-T cells, while normal HSCs were not targeted due to the lack of CLL-1 expression. CLL-1 CAR-T represents a promising immunotherapy for the treatment of AML.

  8. Differential contribution of complement receptor C5aR in myeloid and non-myeloid cells in chronic ethanol-induced liver injury in mice.

    Science.gov (United States)

    McCullough, Rebecca L; McMullen, Megan R; Das, Dola; Roychowdhury, Sanjoy; Strainic, Michael G; Medof, M Edward; Nagy, Laura E

    2016-07-01

    Complement is implicated in the development of alcoholic liver disease. C3 and C5 contribute to ethanol-induced liver injury; however, the role of C5a receptor (C5aR) on myeloid and non-myeloid cells to progression of injury is not known. C57BL/6 (WT), global C5aR-/-, myeloid-specific C5aR-/-, and non-myeloid-specific C5aR-/- mice were fed a Lieber-DeCarli diet (32%kcal EtOH) for 25 days. Cultured hepatocytes were challenged with ethanol, TNFα, and C5a. Chronic ethanol feeding increased expression of pro-inflammatory mediators in livers of WT mice; this response was completely blunted in C5aR-/- mice. However, C5aR-/- mice were not protected from other measures of hepatocellular damage, including ethanol-induced increases in hepatic triglycerides, plasma alanine aminotransferase and hepatocyte apoptosis. CYP2E1 and 4-hydroxynonenal protein adducts were induced in WT and C5aR-/- mice. Myeloid-specific C5aR-/- mice were protected from ethanol-induced increases in hepatic TNFα, whereas non-myeloid-specific C5aR-/- displayed increased hepatocyte apoptosis and inflammation after chronic ethanol feeding. In cultured hepatocytes, cytotoxicity induced by challenge with ethanol and TNFα was completely eliminated by treatment with C5a in cells from WT, but not C5aR-/- mice. Further, treatment with C5a enhanced activation of pro-survival signal AKT in hepatocytes challenged with ethanol and TNFα. Taken together, these data reveal a differential role for C5aR during ethanol-induced liver inflammation and injury, with C5aR on myeloid cells contributing to ethanol-induced inflammatory cytokine expression, while non-myeloid C5aR protects hepatocytes from death after chronic ethanol feeding. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Murine Th9 cells promote the survival of myeloid dendritic cells in cancer immunotherapy.

    Science.gov (United States)

    Park, Jungsun; Li, Haiyan; Zhang, Mingjun; Lu, Yong; Hong, Bangxing; Zheng, Yuhuan; He, Jin; Yang, Jing; Qian, Jianfei; Yi, Qing

    2014-08-01

    Dendritic cells (DCs) are professional antigen-presenting cells to initiate immune responses, and DC survival time is important for affecting the strength of T-cell responses. Interleukin (IL)-9-producing T-helper (Th)-9 cells play an important role in anti-tumor immunity. However, it is unclear how Th9 cells communicate with DCs. In this study, we investigated whether murine Th9 cells affected the survival of myeloid DCs. DCs derived from bone marrow of C57BL/6 mice were cocultured with Th9 cells from OT-II mice using transwell, and the survival of DCs was examined. DCs cocultured with Th9 cells had longer survival and fewer apoptotic cells than DCs cultured alone in vitro. In melanoma B16-OVA tumor-bearing mice, DCs conditioned by Th9 cells lived longer and induced stronger anti-tumor response than control DCs did in vivo. Mechanistic studies revealed that IL-3 but not IL-9 secreted by Th9 cells was responsible for the prolonged survival of DCs. IL-3 upregulated the expression of anti-apoptotic protein Bcl-xL and activated p38, ERK and STAT5 signaling pathways in DCs. Taken together, our data provide the first evidence that Th9 cells can promote the survival of DCs through IL-3, and will be helpful for designing Th9 cell immunotherapy and more effective DC vaccine for human cancers.

  10. Alloreactive natural killer cells for the treatment of acute myeloid leukemia: from stem cell transplantation to adoptive immunotherapy

    Directory of Open Access Journals (Sweden)

    Loredana eRuggeri

    2015-10-01

    Full Text Available Natural killer cells express activating and inhibitory receptors which recognize MHC class I alleles, termed Killer cell Immunoglobulin-like Receptors (KIRs. Preclinical and clinical data from haploidentical T-cell depleted stem cell transplantation have demonstrated that alloreactive KIR-L mismatched natural killer cells play a major role as effectors against acute myeloid leukemia. Outside the transplantation setting, several reports have proven the safety and feasibility of natural killer cell infusion in acute myeloid leukemia patients and, in some cases, provided evidence that transferred NK cells are functionally alloreactive and may have a role in disease control. Aim of the present work is to briefly summarize the most recent advances in the field by moving from the first preclinical and clinical demonstration of donor NK alloreactivity in the transplantation setting to the most recent attempts of exploiting the use of alloreactive NK cell infusion as a means of adoptive immunotherapy against acute myeloid leukemia. Altogether, these data highlight the pivotal role of NK cells for the development of novel immunological approaches in the clinical management of acute myeloid leukemia.

  11. Radiation response of mouse lymphoid and myeloid cell lines. Pt. 1

    International Nuclear Information System (INIS)

    Radford, I.R.

    1994-01-01

    The sensitivity of 10 mouse lymphoid or myeloid cell lines to γ-ray- and DNA-associated 125 I-decay-induced clonogenic cell killing have been compared with their rate of loss of viability (membrane integrity) and with their putative cell type of origin. The increased sensitivity of haematopoietic cell lines to killing by DNA dsb may be related to their mode of death (apoptosis versus necrosis). Mode of cell death may thus be an important factor in determining the 'inherent radiosensitivity' of normal cells/tissues. Haematopoietic cell lines that undergo rapid interphase apoptotic death showed extreme sensitivity to DNA dsb. (author)

  12. The role of Lin28b in myeloid and mast cell differentiation and mast cell malignancy.

    Science.gov (United States)

    Wang, L D; Rao, T N; Rowe, R G; Nguyen, P T; Sullivan, J L; Pearson, D S; Doulatov, S; Wu, L; Lindsley, R C; Zhu, H; DeAngelo, D J; Daley, G Q; Wagers, A J

    2015-06-01

    Mast cells (MCs) are critical components of the innate immune system and important for host defense, allergy, autoimmunity, tissue regeneration and tumor progression. Dysregulated MC development leads to systemic mastocytosis (SM), a clinically variable but often devastating family of hematologic disorders. Here we report that induced expression of Lin28, a heterochronic gene and pluripotency factor implicated in driving a fetal hematopoietic program, caused MC accumulation in adult mice in target organs such as the skin and peritoneal cavity. In vitro assays revealed a skewing of myeloid commitment in LIN28B-expressing hematopoietic progenitors, with increased levels of LIN28B in common myeloid and basophil-MC progenitors altering gene expression patterns to favor cell fate choices that enhanced MC specification. In addition, LIN28B-induced MCs appeared phenotypically and functionally immature, and in vitro assays suggested a slowing of MC terminal differentiation in the context of LIN28B upregulation. Finally, interrogation of human MC leukemia samples revealed upregulation of LIN28B in abnormal MCs from patients with SM. This work identifies Lin28 as a novel regulator of innate immune function and a new protein of interest in MC disease.

  13. Repair of Torn Avascular Meniscal Cartilage Using Undifferentiated Autologous Mesenchymal Stem Cells: From In Vitro Optimization to a First‐in‐Human Study

    Science.gov (United States)

    Whitehouse, Michael R.; Howells, Nicholas R.; Parry, Michael C.; Austin, Eric; Kafienah, Wael; Brady, Kyla; Goodship, Allen E.; Eldridge, Jonathan D.; Blom, Ashley W.

    2016-01-01

    Abstract Meniscal cartilage tears are common and predispose to osteoarthritis (OA). Most occur in the avascular portion of the meniscus where current repair techniques usually fail. We described previously the use of undifferentiated autologous mesenchymal stem cells (MSCs) seeded onto a collagen scaffold (MSC/collagen‐scaffold) to integrate meniscal tissues in vitro. Our objective was to translate this method into a cell therapy for patients with torn meniscus, with the long‐term goal of delaying or preventing the onset of OA. After in vitro optimization, we tested an ovine‐MSC/collagen‐scaffold in a sheep meniscal cartilage tear model with promising results after 13 weeks, although repair was not sustained over 6 months. We then conducted a single center, prospective, open‐label first‐in‐human safety study of patients with an avascular meniscal tear. Autologous MSCs were isolated from an iliac crest bone marrow biopsy, expanded and seeded into the collagen scaffold. The resulting human‐MSC/collagen‐scaffold implant was placed into the meniscal tear prior to repair with vertical mattress sutures and the patients were followed for 2 years. Five patients were treated and there was significant clinical improvement on repeated measures analysis. Three were asymptomatic at 24 months with no magnetic resonance imaging evidence of recurrent tear and clinical improvement in knee function scores. Two required subsequent meniscectomy due to retear or nonhealing of the meniscal tear at approximately 15 months after implantation. No other adverse events occurred. We conclude that undifferentiated MSCs could provide a safe way to augment avascular meniscal repair in some patients. Registration: EU Clinical Trials Register, 2010‐024162‐22. Stem Cells Translational Medicine 2017;6:1237–1248 PMID:28186682

  14. Drug screen in patient cells suggests quinacrine to be repositioned for treatment of acute myeloid leukemia

    International Nuclear Information System (INIS)

    Eriksson, A; Österroos, A; Hassan, S; Gullbo, J; Rickardson, L; Jarvius, M; Nygren, P; Fryknäs, M; Höglund, M; Larsson, R

    2015-01-01

    To find drugs suitable for repositioning for use against leukemia, samples from patients with chronic lymphocytic, acute myeloid and lymphocytic leukemias as well as peripheral blood mononuclear cells (PBMC) were tested in response to 1266 compounds from the LOPAC 1280 library (Sigma). Twenty-five compounds were defined as hits with activity in all leukemia subgroups (<50% cell survival compared with control) at 10 μM drug concentration. Only one of these compounds, quinacrine, showed low activity in normal PBMCs and was therefore selected for further preclinical evaluation. Mining the NCI-60 and the NextBio databases demonstrated leukemia sensitivity and the ability of quinacrine to reverse myeloid leukemia gene expression. Mechanistic exploration was performed using the NextBio bioinformatic software using gene expression analysis of drug exposed acute myeloid leukemia cultures (HL-60) in the database. Analysis of gene enrichment and drug correlations revealed strong connections to ribosomal biogenesis nucleoli and translation initiation. The highest drug–drug correlation was to ellipticine, a known RNA polymerase I inhibitor. These results were validated by additional gene expression analysis performed in-house. Quinacrine induced early inhibition of protein synthesis supporting these predictions. The results suggest that quinacrine have repositioning potential for treatment of acute myeloid leukemia by targeting of ribosomal biogenesis

  15. Deletion of the Mineralocorticoid Receptor in Myeloid Cells Attenuates Central Nervous System Autoimmunity

    Directory of Open Access Journals (Sweden)

    Elena Montes-Cobos

    2017-10-01

    Full Text Available Myeloid cells play an important role in the pathogenesis of multiple sclerosis (MS and its animal model experimental autoimmune encephalomyelitis (EAE. Monocytes, macrophages, and microglia can adopt two distinct phenotypes, with M1-polarized cells being more related to inflammation and autoimmunity while M2-polarized cells contribute to tissue repair and anti-inflammatory processes. Here, we show that deletion of the mineralocorticoid receptor (MR in bone marrow-derived macrophages and peritoneal macrophages caused their polarization toward the M2 phenotype with its distinct gene expression, altered phagocytic and migratory properties, and dampened NO production. After induction of EAE, mice that are selectively devoid of the MR in their myeloid cells (MRlysM mice showed diminished clinical symptoms and ameliorated histological hallmarks of neuroinflammation. T cells in peripheral lymphoid organs of these mice produced less pro-inflammatory cytokines while their proliferation and the abundance of regulatory T cells were unaltered. The numbers of inflammatory monocytes and reactive microglia in the central nervous system (CNS in MRlysM mice were significantly lower and they adopted an M2-polarized phenotype based on their gene expression profile, presumably explaining the ameliorated neuroinflammation. Our results indicate that the MR in myeloid cells plays a critical role for CNS autoimmunity, providing a rational to interfere with diseases such as MS by pharmacologically targeting this receptor.

  16. Requirement for Interactions of Natural Killer T Cells and Myeloid Derived Suppressor Cells for Transplantation Tolerance

    Science.gov (United States)

    Hongo, David; Tang, Xiaobin; Baker, Jeanette; Engleman, Edgar G.; Strober, Samuel

    2014-01-01

    The goal of the study was to elucidate the cellular and molecular mechanisms by which a clinically applicable immune tolerance regimen of combined bone marrow and heart transplants in mice results in mixed chimerism and graft acceptance. The conditioning regimen of lymphoid irradiation and anti-T cell antibodies changed the balance of cells in the lymphoid tissues to create a tolerogenic microenvironment favoring the increase of natural killer T (NKT) cells, CD4+CD25+ Tregs, and Gr-1+CD11b+ myeloid derived suppressor cells (MDSCs), over conventional T cells. The depletion of MDSCs abrogated chimerism and tolerance, and add back of these purified cells was restorative. The conditioning regimen activated the MDSCs as judged by the increased expression of arginase-1, IL-4Rα, and PDL1, and the activated cells gained the capacity to suppress the proliferation of conventional T cells to alloantigens in the mixed leukocyte reaction. MDSC activation was dependent on the presence of host invariant NKT cells. The conditioning regimen polarized the host invariant NKT cells toward IL-4 secretion, and MDSC activation was dependent on IL-4. In conclusion, there was a requirement for MDSCs for chimerism and tolerance, and their suppressive function was dependent on their interactions with NKT cells and IL-4. PMID:25311657

  17. Deregulated expression of Cdc6 as BCR/ABL-dependent survival factor in chronic myeloid leukemia cells.

    Science.gov (United States)

    Zhang, Jia-Hua; He, Yan-Li; Zhu, Rui; Du, Wen; Xiao, Jun-Hua

    2017-06-01

    Chronic myeloid leukemia is characterized by the presence of the reciprocal translocation t(9;22) and the BCR/ABL oncogene. The BCR/ABL oncogene activates multiple signaling pathways and involves the dysregulation of oncogenes during the progression of chronic myeloid leukemia. The cell division cycle protein 6, an essential regulator of DNA replication, is elevated in some human cancer cells. However, the expression of cell division cycle protein 6 in chronic myeloid leukemia and the underlying regulatory mechanism remain to be elucidated. In this study, our data showed that cell division cycle protein 6 expression was significantly upregulated in primary chronic myeloid leukemia cells and the chronic myeloid leukemia cell line K562 cells, as compared to the normal bone marrow mononuclear cells. BCR/ABL kinase inhibitor STI571 or BCR/ABL small interfering RNA could significantly downregulate cell division cycle protein 6 messenger RNA expression in K562 cells. Moreover, phosphoinositide 3-kinase/AKT pathway inhibitor LY294002 and Janus kinase/signal transducer and activator of transcription pathway inhibitor AG490 could downregulate cell division cycle protein 6 expression in K562 cells, but not RAS/mitogen-activated protein kinase pathway inhibitor PD98059 had such effect. Cell division cycle protein 6 gene silencing by small interfering RNA effectively resulted in decrease of proliferation, increase of apoptosis, and arrest of cell cycle in K562 cells. These findings have demonstrated that cell division cycle protein 6 overexpression may contribute to the high proliferation and low apoptosis in chronic myeloid leukemia cells and can be regulated by BCR/ABL signal transduction through downstream phosphoinositide 3-kinase/Akt and Janus kinase/signal transducer and activator of transcription pathways, suggesting cell division cycle protein 6 as a potential therapeutic target in chronic myeloid leukemia.

  18. Nucleosome repositioning during differentiation of a human myeloid leukemia cell line

    OpenAIRE

    Teif, Vladimir B.; Mallm, Jan-Philipp; Sharma, Tanvi; Mark Welch, David B.; Rippe, Karsten; Eils, Roland; Langowski, J?rg; Olins, Ada L.; Olins, Donald E.

    2017-01-01

    ABSTRACT Cell differentiation is associated with changes in chromatin organization and gene expression. In this study, we examine chromatin structure following differentiation of the human myeloid leukemia cell line (HL-60/S4) into granulocytes with retinoic acid (RA) or into macrophage with phorbol ester (TPA). We performed ChIP-seq of histone H3 and its modifications, analyzing changes in nucleosome occupancy, nucleosome repeat length, eu-/heterochromatin redistribution and properties of ep...

  19. Clinical Impact of the Immunome in Lymphoid Malignancies: The Role of Myeloid-Derived Suppressor Cells

    Science.gov (United States)

    Vetro, Calogero; Romano, Alessandra; Ancora, Flavia; Coppolino, Francesco; Brundo, Maria V.; Raccuia, Salvatore A.; Puglisi, Fabrizio; Tibullo, Daniele; La Cava, Piera; Giallongo, Cesarina; Parrinello, Nunziatina L.

    2015-01-01

    The better definition of the mutual sustainment between neoplastic cells and immune system has been translated from the bench to the bedside acquiring value as prognostic factor. Additionally, it represents a promising tool for improving therapeutic strategies. In this context, myeloid-derived suppressor cells (MDSCs) have gained a central role in tumor developing with consequent therapeutic implications. In this review, we will focus on the biological and clinical impact of the study of MDSCs in the settings of lymphoid malignancies. PMID:26052505

  20. Successful hematopoietic cell transplantation in a patient with X-linked agammaglobulinemia and acute myeloid leukemia.

    Science.gov (United States)

    Abu-Arja, Rolla F; Chernin, Leah R; Abusin, Ghada; Auletta, Jeffery; Cabral, Linda; Egler, Rachel; Ochs, Hans D; Torgerson, Troy R; Lopez-Guisa, Jesus; Hostoffer, Robert W; Tcheurekdjian, Haig; Cooke, Kenneth R

    2015-09-01

    X-linked agammaglobulinemia (XLA) is a primary immunodeficiency characterized by marked reduction in all classes of serum immunoglobulins and the near absence of mature CD19(+) B-cells. Although malignancy has been observed in patients with XLA, we present the first reported case of acute myeloid leukemia (AML) in a patient with XLA. We also demonstrate the complete correction of the XLA phenotype following allogeneic hematopoietic cell transplantation for treatment of the patient's leukemia. © 2015 Wiley Periodicals, Inc.

  1. Generation of Human Immunosuppressive Myeloid Cell Populations in Human Interleukin-6 Transgenic NOG Mice

    Directory of Open Access Journals (Sweden)

    Asami Hanazawa

    2018-02-01

    Full Text Available The tumor microenvironment contains unique immune cells, termed myeloid-derived suppressor cells (MDSCs, and tumor-associated macrophages (TAMs that suppress host anti-tumor immunity and promote tumor angiogenesis and metastasis. Although these cells are considered a key target of cancer immune therapy, in vivo animal models allowing differentiation of human immunosuppressive myeloid cells have yet to be established, hampering the development of novel cancer therapies. In this study, we established a novel humanized transgenic (Tg mouse strain, human interleukin (hIL-6-expressing NOG mice (NOG-hIL-6 transgenic mice. After transplantation of human hematopoietic stem cells (HSCs, the HSC-transplanted NOG-hIL-6 Tg mice (HSC-NOG-hIL-6 Tg mice showed enhanced human monocyte/macrophage differentiation. A significant number of human monocytes were negative for HLA-DR expression and resembled immature myeloid cells in the spleen and peripheral blood from HSC-NOG-hIL-6 Tg mice, but not from HSC-NOG non-Tg mice. Engraftment of HSC4 cells, a human head and neck squamous cell carcinoma-derived cell line producing various factors including IL-6, IL-1β, macrophage colony-stimulating factor (M-CSF, and vascular endothelial growth factor (VEGF, into HSC-NOG-hIL-6 Tg mice induced a significant number of TAM-like cells, but few were induced in HSC-NOG non-Tg mice. The tumor-infiltrating macrophages in HSC-NOG-hIL-6 Tg mice expressed a high level of CD163, a marker of immunoregulatory myeloid cells, and produced immunosuppressive molecules such as arginase-1 (Arg-1, IL-10, and VEGF. Such cells from HSC-NOG-hIL-6 Tg mice, but not HSC-NOG non-Tg mice, suppressed human T cell proliferation in response to antigen stimulation in in vitro cultures. These results suggest that functional human TAMs can be developed in NOG-hIL-6 Tg mice. This mouse model will contribute to the development of novel cancer immune therapies targeting immunoregulatory

  2. High expression of lnc-CRNDE presents as a biomarker for acute myeloid leukemia and promotes the malignant progression in acute myeloid leukemia cell line U937.

    Science.gov (United States)

    Wang, Y; Zhou, Q; Ma, J-J

    2018-02-01

    To detect the expression of long non-coding RNA-CRNDE in patients with acute myeloid leukemia and its effect on proliferation and apoptosis in acute myeloid leukemia cell line U937. 81 cases of newly diagnosed acute myeloid leukemia (AML) were enrolled, and 35 non-malignant hematological patients were selected as controls. Quantitative RT-PCR (qRT-PCR) was performed to detect the expression of lncRNA-CRNDE in the bone marrow specimens of the subjects, and the difference between the two groups was also compared. The correlation between the expression of lncRNA-CRNDE and the sex, age, classification and total survival of clinical patients was analyzed according to the clinical data. U937 cells and monocytes isolated from normal people were cultured, and the expression of lncRNA-CRNDE in acute myeloid leukemia cell line U937 and normal monocytes was compared. SiRNA-CRNDE and pcDNA-CRNDE were transfected into U937 cells, and cell counting kit-8 (CCK-8) assay was performed to detect proliferation of U937 cells, Annexin V/PI flow cytometry was carried out to detect cell apoptosis. Cell cycle was measured by flow cytometry. The expression of lncRNA-CRNDE in patients with AML and U937 cells was significantly higher than that in non-malignant hematological controls. Results of clinical data showed that the expression of lncRNA-CRNDE was associated with the classification and total survival of myeloid leukemia in clinical patients. After transfection of siRNA-CRNDE, the proliferation and cloning ability of U937 cells decreased, while the apoptosis increased (p < 0.01) and cells were arrested in G0-G1 phase. Meanwhile, after transfection of pcDNA-CRNDE, the proliferation ability of U937 cells increased significantly, which indicated that the expression of lncRNA-CRNDE might play an essential role in promoting the proliferation of U937 cells. LncRNA-CRNDE is highly expressed in the bone marrow tissues of AML patients, and the expression level is negatively correlated with the

  3. Targeting acute myeloid leukemia stem cells: a review and principles for the development of clinical trials.

    Science.gov (United States)

    Pollyea, Daniel A; Gutman, Jonathan A; Gore, Lia; Smith, Clayton A; Jordan, Craig T

    2014-08-01

    Despite an increasingly rich understanding of its pathogenesis, acute myeloid leukemia remains a disease with poor outcomes, overwhelmingly due to disease relapse. In recent years, work to characterize the leukemia stem cell population, the disease compartment most difficult to eliminate with conventional therapy and most responsible for relapse, has been undertaken. This, in conjunction with advances in drug development that have allowed for increasingly targeted therapies to be engineered, raises the hope that we are entering an era in which the leukemia stem cell population can be eliminated, resulting in therapeutic cures for acute myeloid leukemia patients. For these therapies to become available, they must be tested in the setting of clinical trials. A long-established clinical trials infrastructure has been employed to shepherd new therapies from proof-of-concept to approval. However, due to the unique features of leukemia stem cells, drugs that are designed to specifically eliminate this population may not be adequately tested when applied to this model. Therefore, in this review article, we seek to identify the relevant features of acute myeloid leukemia stem cells for clinical trialists, discuss potential strategies to target leukemia stem cells, and propose a set of guidelines outlining the necessary elements of clinical trials to allow for the successful testing of stem cell-directed therapies. Copyright© Ferrata Storti Foundation.

  4. Stromal cells expressing hedgehog-interacting protein regulate the proliferation of myeloid neoplasms

    International Nuclear Information System (INIS)

    Kobune, M; Iyama, S; Kikuchi, S; Horiguchi, H; Sato, T; Murase, K; Kawano, Y; Takada, K; Ono, K; Kamihara, Y; Hayashi, T; Miyanishi, K; Sato, Y; Takimoto, R; Kato, J

    2012-01-01

    Aberrant reactivation of hedgehog (Hh) signaling has been described in a wide variety of human cancers including cancer stem cells. However, involvement of the Hh-signaling system in the bone marrow (BM) microenvironment during the development of myeloid neoplasms is unknown. In this study, we assessed the expression of Hh-related genes in primary human CD34 + cells, CD34 + blastic cells and BM stromal cells. Both Indian Hh (Ihh) and its signal transducer, smoothened (SMO), were expressed in CD34 + acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS)-derived cells. However, Ihh expression was relatively low in BM stromal cells. Remarkably, expression of the intrinsic Hh-signaling inhibitor, human Hh-interacting protein (HHIP) in AML/MDS-derived stromal cells was markedly lower than in healthy donor-derived stromal cells. Moreover, HHIP expression levels in BM stromal cells highly correlated with their supporting activity for SMO + leukemic cells. Knockdown of HHIP gene in stromal cells increased their supporting activity although control cells marginally supported SMO + leukemic cell proliferation. The demethylating agent, 5-aza-2′-deoxycytidine rescued HHIP expression via demethylation of HHIP gene and reduced the leukemic cell-supporting activity of AML/MDS-derived stromal cells. This indicates that suppression of stromal HHIP could be associated with the proliferation of AML/MDS cells

  5. Regulatory Lymphoid and Myeloid Cells Determine the Cardiac Immunopathogenesis of Trypanosoma cruzi Infection

    Directory of Open Access Journals (Sweden)

    Manuel Fresno

    2018-03-01

    Full Text Available Chagas disease is a multisystemic disorder caused by the protozoan parasite Trypanosoma cruzi, which affects ~8 million people in Latin America, killing 7,000 people annually. Chagas disease is one of the main causes of death in the endemic area and the leading cause of infectious myocarditis in the world. T. cruzi infection induces two phases, acute and chronic, where the infection is initially asymptomatic and the majority of patients will remain clinically indeterminate for life. However, over a period of 10–30 years, ~30% of infected individuals will develop irreversible, potentially fatal cardiac syndromes (chronic chagasic cardiomyopathy [CCC], and/or dilatation of the gastro-intestinal tract (megacolon or megaesophagus. Myocarditis is the most serious and frequent manifestation of chronic Chagas heart disease and appears in about 30% of infected individuals several years after infection occurs. Myocarditis is characterized by a mononuclear cell infiltrate that includes different types of myeloid and lymphoid cells and it can occur also in the acute phase. T. cruzi infects and replicates in macrophages and cardiomyocytes as well as in other nucleated cells. The pathogenesis of the chronic phase is thought to be dependent on an immune-inflammatory reaction to a low-grade replicative infection. It is known that cytokines produced by type 1 helper CD4+ T cells are able to control infection. However, the role that infiltrating lymphoid and myeloid cells may play in experimental and natural Chagas disease pathogenesis has not been completely elucidated, and several reports indicate that it depends on the mouse genetic background and parasite strain and/or inoculum. Here, we review the role that T cell CD4+ subsets, myeloid subclasses including myeloid-derived suppressor cells may play in the immunopathogenesis of Chagas disease with special focus on myocarditis, by comparing results obtained with different experimental animal models.

  6. M27 Expressed by Cytomegalovirus Counteracts Effective Type I Interferon Induction of Myeloid Cells but Not of Plasmacytoid Dendritic Cells

    Science.gov (United States)

    Döring, Marius; Lessin, Irina; Frenz, Theresa; Spanier, Julia; Kessler, Annett; Tegtmeyer, Pia; Dağ, Franziska; Thiel, Nadine; Trilling, Mirko; Lienenklaus, Stefan; Weiss, Siegfried; Scheu, Stefanie; Messerle, Martin; Cicin-Sain, Luka; Hengel, Hartmut

    2014-01-01

    ABSTRACT In healthy individuals, the functional immune system effectively confines human cytomegalovirus (CMV) replication, while viral immune evasion and persistence preclude sterile immunity. Mouse CMV (MCMV) is a well-established model to study the delicate CMV-host balance. Effective control of MCMV infection depends on the induction of protective type I interferon (IFN-I) responses. Nevertheless, it is unclear whether in professional antigen-presenting cell subsets MCMV-encoded evasins inhibit the induction of IFN-I responses. Upon MCMV treatment, enhanced expression of MCMV immediate-early and early proteins was detected in bone marrow cultures of macrophages and myeloid dendritic cells compared with plasmacytoid dendritic cell cultures, whereas plasmacytoid dendritic cells mounted more vigorous IFN-I responses. Experiments with Toll-like receptor (TLR)- and/or RIG-I like helicase (RLH)-deficient cell subsets revealed that upon MCMV treatment of myeloid cells, IFN-I responses were triggered independently of TLR and RLH signaling, whereas in plasmacytoid dendritic cells, IFN-I induction was strictly TLR dependent. Macrophages and myeloid dendritic cells treated with either UV-inactivated MCMV or live MCMV that lacked the STAT2 antagonist M27 mounted significantly higher IFN-I responses than cells treated with live wild-type MCMV. In contrast, plasmacytoid dendritic cells responded similarly to UV-inactivated and live MCMV. These experiments illustrated that M27 not only inhibited IFN-I-mediated receptor signaling, but also evaded the induction of IFN responses in myeloid dendritic cells. Furthermore, we found that additional MCMV-encoded evasins were needed to efficiently shut off IFN-I responses of macrophages, but not of myeloid dendritic cells, thus further elucidating the subtle adjustment of the host-pathogen balance. IMPORTANCE MCMV may induce IFN-I responses in fibroblasts and epithelial cells, as well as in antigen-presenting cell subsets. We focused

  7. Cyclophosphamide-induced myeloid-derived suppressor cell population is immunosuppressive but not identical to myeloid-derived suppressor cells induced by growing TC-1 tumors

    Czech Academy of Sciences Publication Activity Database

    Mikyšková, Romana; Indrová, Marie; Polláková, Veronika; Bieblová, Jana; Šímová, Jana; Reiniš, Milan

    2012-01-01

    Roč. 35, č. 5 (2012), s. 374-384 ISSN 1524-9557 R&D Projects: GA ČR(CZ) GPP301/11/P220; GA ČR GA301/09/1024; GA ČR GA301/07/1410 EU Projects: European Commission(XE) 18933 - CLINIGENE Institutional research plan: CEZ:AV0Z50520514 Institutional support: RVO:68378050 Keywords : myeloid-derived suppressor cells * cyclophosphamide * all-trans-retinoic acid * IL-12 * HPV16 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.463, year: 2012

  8. Inhibiting HSP90 prevents the induction of myeloid-derived suppressor cells by melanoma cells.

    Science.gov (United States)

    Janssen, Nicole; Speigl, Lisa; Pawelec, Graham; Niessner, Heike; Shipp, Christopher

    2018-02-21

    Metastatic melanoma is the most dangerous form of skin cancer, with an ever-increasing incidence worldwide. Despite encouraging results with immunotherapeutic approaches, long-term survival is still poor. This is likely partly due to tumour-induced immune suppression mediated by myeloid-derived suppressor cells (MDSCs), which were shown to be associated with response to therapy and survival. Thus, identifying pathways responsible for MDSC differentiation may provide new therapeutic targets and improve efficacy of existing immunotherapies. Therefore, we've analysed mechanisms by which tumour cells contribute to the induction of MDSCs. Established melanoma cell lines were pre-treated with inhibitors of different pathways and tested for their capacity to alleviate T cell suppression via MDSC differentiation in vitro. Targeting HSP70/90 in melanoma cells resulted in reduced induction of immune suppressive cells on a phenotypic and functional basis, for which a more potent effect was observed when HSP90 was inhibited under hypoxic conditions. This initial study suggests a novel mechanism in tumour cells responsible for the induction of MDSC in melanoma. Copyright © 2018. Published by Elsevier Inc.

  9. Myeloid infection links epithelial and B cell tropisms of Murid Herpesvirus-4.

    Science.gov (United States)

    Frederico, Bruno; Milho, Ricardo; May, Janet S; Gillet, Laurent; Stevenson, Philip G

    2012-09-01

    Gamma-herpesviruses persist in lymphocytes and cause disease by driving their proliferation. Lymphocyte infection is therefore a key pathogenetic event. Murid Herpesvirus-4 (MuHV-4) is a rhadinovirus that like the related Kaposi's Sarcoma-associated Herpesvirus persists in B cells in vivo yet infects them poorly in vitro. Here we used MuHV-4 to understand how virion tropism sets the path to lymphocyte colonization. Virions that were highly infectious in vivo showed a severe post-binding block to B cell infection. Host entry was accordingly an epithelial infection and B cell infection a secondary event. Macrophage infection by cell-free virions was also poor, but improved markedly when virion binding improved or when macrophages were co-cultured with infected fibroblasts. Under the same conditions B cell infection remained poor; it improved only when virions came from macrophages. This reflected better cell penetration and correlated with antigenic changes in the virion fusion complex. Macrophages were seen to contact acutely infected epithelial cells, and cre/lox-based virus tagging showed that almost all the virus recovered from lymphoid tissue had passed through lysM(+) and CD11c(+) myeloid cells. Thus MuHV-4 reached B cells in 3 distinct stages: incoming virions infected epithelial cells; infection then passed to myeloid cells; glycoprotein changes then allowed B cell infection. These data identify new complexity in rhadinovirus infection and potentially also new vulnerability to intervention.

  10. Autologous Stem Cell Transplantation in Patients with Acute Myeloid Leukemia: a Single-Centre Experience

    Directory of Open Access Journals (Sweden)

    Kakucs Enikő

    2013-04-01

    Full Text Available Introduction: Autologous haemopoietic stem cell transplantation (SCT is an important treatment modality for patients with acute myeloid leukemia with low and intermediate risk disease. It has served advantages over allogenic transplantation, because it does not need a matched donor, there is no graft versus host disease, there are less complications and a faster immune reconstitution than in the allo-setting. The disadvantage is the lack of the graft versus leukaemia effect.

  11. A20 (Tnfaip3 deficiency in myeloid cells protects against influenza A virus infection.

    Directory of Open Access Journals (Sweden)

    Jonathan Maelfait

    Full Text Available The innate immune response provides the first line of defense against viruses and other pathogens by responding to specific microbial molecules. Influenza A virus (IAV produces double-stranded RNA as an intermediate during the replication life cycle, which activates the intracellular pathogen recognition receptor RIG-I and induces the production of proinflammatory cytokines and antiviral interferon. Understanding the mechanisms that regulate innate immune responses to IAV and other viruses is of key importance to develop novel therapeutic strategies. Here we used myeloid cell specific A20 knockout mice to examine the role of the ubiquitin-editing protein A20 in the response of myeloid cells to IAV infection. A20 deficient macrophages were hyperresponsive to double stranded RNA and IAV infection, as illustrated by enhanced NF-κB and IRF3 activation, concomitant with increased production of proinflammatory cytokines, chemokines and type I interferon. In vivo this was associated with an increased number of alveolar macrophages and neutrophils in the lungs of IAV infected mice. Surprisingly, myeloid cell specific A20 knockout mice are protected against lethal IAV infection. These results challenge the general belief that an excessive host proinflammatory response is associated with IAV-induced lethality, and suggest that under certain conditions inhibition of A20 might be of interest in the management of IAV infections.

  12. Myeloid cells in circulation and tumor microenvironment of breast cancer patients.

    Science.gov (United States)

    Toor, Salman M; Syed Khaja, Azharuddin Sajid; El Salhat, Haytham; Faour, Issam; Kanbar, Jihad; Quadri, Asif A; Albashir, Mohamed; Elkord, Eyad

    2017-06-01

    Pathological conditions including cancers lead to accumulation of a morphological mixture of highly immunosuppressive cells termed as myeloid-derived suppressor cells (MDSC). The lack of conclusive markers to identify human MDSC, due to their heterogeneous nature and close phenotypical and functional proximity with other cell subsets, made it challenging to identify these cells. Nevertheless, expansion of MDSC has been reported in periphery and tumor microenvironment of various cancers. The majority of studies on breast cancers were performed on murine models and hence limited literature is available on the relation of MDSC accumulation with clinical settings in breast cancer patients. The aim of this study was to investigate levels and phenotypes of myeloid cells in peripheral blood (n = 23) and tumor microenvironment of primary breast cancer patients (n = 7), compared with blood from healthy donors (n = 21) and paired non-tumor normal breast tissues from the same patients (n = 7). Using multicolor flow cytometric assays, we found that breast cancer patients had significantly higher levels of tumor-infiltrating myeloid cells, which comprised of granulocytes (P = 0.022) and immature cells that lack the expression of markers for fully differentiated monocytes or granulocytes (P = 0.016). Importantly, this expansion was not reflected in the peripheral blood. The immunosuppressive potential of these cells was confirmed by expression of Arginase 1 (ARG1), which is pivotal for T-cell suppression. These findings are important for developing therapeutic modalities to target mechanisms employed by immunosuppressive cells that generate an immune-permissive environment for the progression of cancer.

  13. The role of myeloid-derived suppressor cells in immune ontogeny

    Directory of Open Access Journals (Sweden)

    Soren eGantt

    2014-08-01

    Full Text Available Myeloid derived suppressor cells (MDSC are a heterogeneous population of granulocytic or monocytic cells that suppress innate as well as adaptive immune responses. In healthy adults, immature myeloid cells differentiate into macrophages, dendritic cells, and granulocytes in the bone marrow, and MDSC are rarely detected in peripheral blood. However, in certain pathologies, in particular malignancies and chronic infection, differentiation of these cells is altered resulting in accumulation of circulating suppressive myeloid cells. MDSC express suppressive factors such as arginase-1, reactive oxygen species, and inducible nitric oxide synthase, which have the ability to inhibit T cell proliferation and cytoxicity, induce the expansion of regulatory T cells, and block natural killer cell activation. It is increasingly recognized that MDSC alter the immune response to several cancers, and perhaps chronic viral infections, in clinically important ways. In this review, we outline the potential contribution of MDSC to the generation of feto-maternal tolerance and to the ineffective immune responses to many infections and vaccines observed in early post-natal life. Granulocytic MDSC are present in large numbers in pregnant women and in cord blood, and wane rapidly during infancy. Furthermore, cord blood MDSC suppress in vitro T cell and NK responses, suggesting that they may play a significant role in human immune ontogeny. However, there are currently no data that demonstrate in vivo effects of MDSC on feto-maternal tolerance or immune ontogeny. Studies are ongoing to evaluate the functional importance of MDSC, including their effects on control of infection and response to vaccination in infancy. Importantly, several pharmacologic interventions have the potential to reverse MDSC function. Understanding the role of MDSC in infant ontogeny and their mechanisms of action could lead to interventions that reduce mortality due to early-life infections.

  14. Cancer Stem Cell-Secreted Macrophage Migration Inhibitory Factor Stimulates Myeloid Derived Suppressor Cell Function and Facilitates Glioblastoma Immune Evasion

    DEFF Research Database (Denmark)

    Otvos, Balint; Silver, Daniel J; Mulkearns-Hubert, Erin E

    2016-01-01

    populations, including myeloid-derived suppressor cells (MDSCs), which serve to suppress immune system function. We have identified immune-suppressive MDSCs in the brains of GBM patients and found that they were in close proximity to self-renewing cancer stem cells (CSCs). MDSCs were selectively depleted...... that MIF is primarily an indirect promoter of GBM progression, working to suppress immune rejection by activating and protecting immune suppressive MDSCs within the GBM tumor microenvironment. Stem Cells 2016;34:2026-2039....

  15. The osteogenic response of undifferentiated human mesenchymal stem cells (hMSCs) to mechanical strain is inversely related to body mass index of the donor.

    Science.gov (United States)

    Friedl, Gerald; Windhager, Reinhard; Schmidt, Helena; Aigner, Reingard

    2009-08-01

    While the importance of physical factors in the maintenance and regeneration of bone tissue has been recognized for many years and the mechano-sensitivity of bone cells is well established, there is increasing evidence that body fat constitutes an independent risk factor for complications in bone fracture healing and aseptic loosening of implants. Although mechanical causes have been widely suggested, we hypothesized that the osteogenic mechano-response of human mesenchymal stem cells (hMSCs) may be altered in obese patients. We determined the phenotypic and genotypic response of undifferentiated hMSCs of 10 donors to cyclic tensile strain (CTS) under controlled in vitro conditions and analyzed the potential relationship relevant to the donor's anthropomorphometric and biochemical parameters related to donor's fat and bone metabolism. The osteogenic marker genes were all statistically significantly upregulated by CTS, which was accompanied by a significant increase in cell-based ALP activity. Linear correlation analysis revealed that there was a significant correlation between phenotypic CTS response and the body mass index of the donor (r = -0.91, p < 0.001) and phenotypic CTS response was also significantly related to leptin levels (r = -0.68) and estradiol levels (r = 0.67) within the bone marrow microenvironment of the donor. Such an upstream imprinting process mediated by factors tightly related to the donor's fat metabolism, which hampers the mechanosensitivity of hMSCs in obese patients, may be of pathogenetic relevance for the complications associated with obesity that are seen in orthopedic surgery.

  16. Concise Review: Chronic Myeloid Leukemia: Stem Cell Niche and Response to Pharmacologic Treatment

    Science.gov (United States)

    Arrigoni, Elena; Del Re, Marzia; Galimberti, Sara; Restante, Giuliana; Rofi, Eleonora; Crucitta, Stefania; Baratè, Claudia; Petrini, Mario; Di Paolo, Antonello

    2018-01-01

    Abstract Nowadays, more than 90% of patients affected by chronic myeloid leukemia (CML) survive with a good quality of life, thanks to the clinical efficacy of tyrosine kinase inhibitors (TKIs). Nevertheless, point mutations of the ABL1 pocket occurring during treatment may reduce binding of TKIs, being responsible of about 20% of cases of resistance among CML patients. In addition, the presence of leukemic stem cells (LSCs) represents the most important event in leukemia progression related to TKI resistance. LSCs express stem cell markers, including active efflux pumps and genetic and epigenetic alterations together with deregulated cell signaling pathways involved in self‐renewal, such as Wnt/β‐catenin, Notch, and Hedgehog. Moreover, the interaction with the bone marrow microenvironment, also known as hematopoietic niche, may influence the phenotype of surrounding cells, which evade mechanisms controlling cell proliferation and are less sensitive or frankly resistant to TKIs. This Review focuses on the role of LSCs and stem cell niche in relation to response to pharmacological treatments. A literature search from PubMed database was performed until April 30, 2017, and it has been analyzed according to keywords such as chronic myeloid leukemia, stem cell, leukemic stem cells, hematopoietic niche, tyrosine kinase inhibitors, and drug resistance. Stem Cells Translational Medicine 2018;7:305–314 PMID:29418079

  17. C-type lectin-like molecule-1: a novel myeloid cell surface marker associated with acute myeloid leukemia

    NARCIS (Netherlands)

    Bakker, Alexander B. H.; van den Oudenrijn, Sonja; Bakker, Arjen Q.; Feller, Nicole; van Meijer, Marja; Bia, Judith A.; Jongeneelen, Mandy A. C.; Visser, Therese J.; Bijl, Nora; Geuijen, Cecilia A. W.; Marissen, Wilfred E.; Radosevic, Katarina; Throsby, Mark; Schuurhuis, Gerrit Jan; Ossenkoppele, Gert J.; de Kruif, John; Goudsmit, Jaap; Kruisbeek, Ada M.

    2004-01-01

    Acute myeloid leukemia (AML) has a poor prognosis due to treatment-resistant relapses. A humanized anti-CD33 antibody (Mylotarg) showed a limited response rate in relapsed AML. To discover novel AML antibody targets, we selected a panel of single chain Fv fragments using phage display technology

  18. Crosstalk between glucocorticoids and IL-4 modulates Ym1 expression in alternatively activated myeloid cells.

    Science.gov (United States)

    Ng Kuet Leong, Nathalie; Brombacher, Frank; Dalpke, Alexander H; Weitnauer, Michael

    2017-05-01

    Airway epithelial cells induce a tolerogenic microenvironment by modulating immune cells in the lung. We recently showed that the supernatant of airway epithelial cells induces two marker genes of alternative activation, Ym1 and Ms4a8a, in respiratory myeloid cells. This induction was partially mediated by glucocorticoids, secreted by airway epithelial cells. In this study, we further investigated Ym1 and Ms4a8a regulation in alternatively activated myeloid cells in the presence of the T H 2 cytokines IL-4 and IL-13. We show that Ym1 expression is boosted upon co-stimulation with airway epithelial cell supernatant and IL-4/IL-13, whereas Ms4a8a expression is down-regulated. This suggests that a crosstalk between IL-4/IL-13 and glucocorticoid signaling exists. Blocking protein synthesis indicated that dexamethasone-induced de novo protein synthesis is required for the interaction between glucocorticoid and IL-4 signaling regarding Ym1 regulation. Using reporter gene constructs, we demonstrate that the important regulatory region within the Ym1 promoter is found between -602bp and -969bp upstream of the start of translation. Bioinformatic analysis identified several glucocorticoid response elements (GREs) in this region. Further analysis identified overlapping but functionally active glucocorticoid receptor and STAT-6 binding sites, supporting the cooperative effect of glucocorticoids and IL-4 in the regulation of Ym1. These findings further prove the plasticity and complexity of alternatively activated myeloid cells and the importance of the local microenvironment. We believe that this regulation is of special importance in the pulmonary system, since both factors, glucocorticoids and IL-4/13, play a role in airway diseases such as asthma. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Myeloid derived suppressor cells (MDSCs are increased and exert immunosuppressive activity together with polymorphonuclear leukocytes (PMNs in chronic myeloid leukemia patients.

    Directory of Open Access Journals (Sweden)

    Cesarina Giallongo

    Full Text Available Tumor immune tolerance can derive from the recruitment of suppressor cell population, including myeloid derived suppressor cells (MDSCs, able to inhibit T cells activity. We identified a significantly expanded MDSCs population in chronic myeloid leukemia (CML patients at diagnosis that decreased to normal levels after imatinib therapy. In addition, expression of arginase 1 (Arg1 that depletes microenvironment of arginine, an essential aminoacid for T cell function, resulted in an increase in patients at diagnosis. Purified CML CD11b+CD33+CD14-HLADR- cells markedly suppressed normal donor T cell proliferation in vitro. Comparing CML Gr-MDSCs to autologous polymorphonuclear leukocytes (PMNs we observed a higher Arg1 expression and activity in PMNs, together with an inhibitory effect on T cells in vitro. Our data indicate that CML cells create an immuno-tolerant environment associated to MDSCs expansion with immunosuppressive capacity mediated by Arg1. In addition, we demonstrated for the first time also an immunosuppressive activity of CML PMNs, suggesting a strong potential immune escape mechanism created by CML cells, which control the anti-tumor reactive T cells. MDSCs should be monitored in imatinib discontinuation trials to understand their importance in relapsing patients.

  20. Donor lung derived myeloid and plasmacytoid dendritic cells differentially regulate T cell proliferation and cytokine production

    Directory of Open Access Journals (Sweden)

    Benson Heather L

    2012-03-01

    Full Text Available Abstract Background Direct allorecognition, i.e., donor lung-derived dendritic cells (DCs stimulating recipient-derived T lymphocytes, is believed to be the key mechanism of lung allograft rejection. Myeloid (cDCs and plasmacytoid (pDCs are believed to have differential effects on T cell activation. However, the roles of each DC type on T cell activation and rejection pathology post lung transplantation are unknown. Methods Using transgenic mice and antibody depletion techniques, either or both cell types were depleted in lungs of donor BALB/c mice (H-2d prior to transplanting into C57BL/6 mice (H-2b, followed by an assessment of rejection pathology, and pDC or cDC-induced proliferation and cytokine production in C57BL/6-derived mediastinal lymph node T cells (CD3+. Results Depleting either DC type had modest effect on rejection pathology and T cell proliferation. In contrast, T cells from mice that received grafts depleted of both DCs did not proliferate and this was associated with significantly reduced acute rejection scores compared to all other groups. cDCs were potent inducers of IFNγ, whereas both cDCs and pDCs induced IL-10. Both cell types had variable effects on IL-17A production. Conclusion Collectively, the data show that direct allorecognition by donor lung pDCs and cDCs have differential effects on T cell proliferation and cytokine production. Depletion of both donor lung cDC and pDC could prevent the severity of acute rejection episodes.

  1. Protective Role of Hypothermia Against Heat Stress in Differentiated and Undifferentiated Human Neural Precursor Cells: A Differential Approach for the Treatment of Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar Vishwakarma

    2017-11-01

    Conclusion: Mild-hypothermia treatment induces attenuated heat shock response against heat stress resulting in induced HSP-70 expression that significantly improves structure and function of both undifferentiated human NPCs and differentiated neurons.

  2. Dasatinib accelerates valproic acid-induced acute myeloid leukemia cell death by regulation of differentiation capacity.

    Directory of Open Access Journals (Sweden)

    Sook-Kyoung Heo

    Full Text Available Dasatinib is a compound developed for chronic myeloid leukemia as a multi-targeted kinase inhibitor against wild-type BCR-ABL and SRC family kinases. Valproic acid (VPA is an anti-epileptic drug that also acts as a class I histone deacetylase inhibitor. The aim of this research was to determine the anti-leukemic effects of dasatinib and VPA in combination and to identify their mechanism of action in acute myeloid leukemia (AML cells. Dasatinib was found to exert potent synergistic inhibitory effects on VPA-treated AML cells in association with G1 phase cell cycle arrest and apoptosis induction involving the cleavage of poly (ADP-ribose polymerase and caspase-3, -7 and -9. Dasatinib/VPA-induced cell death thus occurred via caspase-dependent apoptosis. Moreover, MEK/ERK and p38 MAPK inhibitors efficiently inhibited dasatinib/VPA-induced apoptosis. The combined effect of dasatinib and VPA on the differentiation capacity of AML cells was more powerful than the effect of each drug alone, being sufficiently strong to promote AML cell death through G1 cell cycle arrest and caspase-dependent apoptosis. MEK/ERK and p38 MAPK were found to control dasatinib/VPA-induced apoptosis as upstream regulators, and co-treatment with dasatinib and VPA to contribute to AML cell death through the regulation of differentiation capacity. Taken together, these results indicate that combined dasatinib and VPA treatment has a potential role in anti-leukemic therapy.

  3. Modeling chronic myeloid leukemia in immunodeficient mice reveals expansion of aberrant mast cells and accumulation of pre-B cells

    International Nuclear Information System (INIS)

    Askmyr, M; Ågerstam, H; Lilljebjörn, H; Hansen, N; Karlsson, C; Palffy, S von; Landberg, N; Högberg, C; Lassen, C; Rissler, M; Richter, J; Ehinger, M; Järås, M; Fioretos, T

    2014-01-01

    Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm that, if not treated, will progress into blast crisis (BC) of either myeloid or B lymphoid phenotype. The BCR-ABL1 fusion gene, encoding a constitutively active tyrosine kinase, is thought to be sufficient to cause chronic phase (CP) CML, whereas additional genetic lesions are needed for progression into CML BC. To generate a humanized CML model, we retrovirally expressed BCR-ABL1 in the cord blood CD34 + cells and transplanted these into NOD-SCID (non-obese diabetic/severe-combined immunodeficient) interleukin-2-receptor γ-deficient mice. In primary mice, BCR-ABL1 expression induced an inflammatory-like state in the bone marrow and spleen, and mast cells were the only myeloid lineage specifically expanded by BCR-ABL1. Upon secondary transplantation, the pronounced inflammatory phenotype was lost and mainly human mast cells and macrophages were found in the bone marrow. Moreover, a striking block at the pre-B-cell stage was observed in primary mice, resulting in an accumulation of pre-B cells. A similar block in B-cell differentiation could be confirmed in primary cells from CML patients. Hence, this humanized mouse model of CML reveals previously unexplored features of CP CML and should be useful for further studies to understand the disease pathogenesis of CML

  4. Identification of a myeloid-derived suppressor cell cystatin-like protein that inhibits metastasis

    Science.gov (United States)

    Boutté, Angela M.; Friedman, David B.; Bogyo, Matthew; Min, Yongfen; Yang, Li; Lin, P. Charles

    2011-01-01

    Myeloid-derived suppressor cells (MDSCs) are significantly increased in cancer patients and tumor bearing-animals. MDSCs infiltrate into tumors and promote tumor invasion and metastasis. To identify the mediator responsible for the prometastatic property of MDSCs, we used proteomics. We found neutrophilic granule protein (NGP) was decreased >2-fold in MDSCs from metastatic 4T1 tumor-bearing mice compared to nonmetastatic 67NR controls. NGP mRNA levels were decreased in bone marrow and in tumor-infiltrating MDSCs by 45 and 66%, respectively, in 4T1 tumor-bearing mice compared to 67NR controls. Interestingly, 4T1-conditioned medium reduced myeloid cell NGP expression by ∼40%, suggesting that a secreted factor mediates gene reduction. Sequence analysis shows a putative cystatin domain in NGP, and biochemical analysis confirms NGP a novel cathepsin inhibitor. It inhibited cathepsin B activity by nearly 40% in vitro. NGP expression in 4T1 tumor cells suppressed cell invasion, delayed primary tumor growth, and greatly reduced lung metastasis in vivo. A 2.8-fold reduction of cathepsin activity was found in tumors expressing NGP compared to controls. NGP significantly reduced tumor angiogenesis to 12.6 from 19.6 and lymphangiogenesis to 4.6 from 9.1 vessels/field. Necrosis was detectable only in NGP-expressing tumors, and the number of apoptotic cells increased to 22.4 from 8.3 in controls. Taken together, this study identifies a negative regulator of tumor metastasis in MDSCs, NGP, which is down-regulated in metastatic conditions. The finding suggests that malignant tumors promote invasion/metastasis not only through up-regulation of proteases but also down-regulation of protease inhibitors.—Boutté, A. M., Friedman, D. B., Bogyo, M., Min, Y., Yang, L., Lin, P. C. Identification of a myeloid-derived suppressor cell cystatin-like protein that inhibits metastasis. PMID:21518852

  5. Immortalized myeloid suppressor cells trigger apoptosis in antigen-activated T lymphocytes.

    Science.gov (United States)

    Apolloni, E; Bronte, V; Mazzoni, A; Serafini, P; Cabrelle, A; Segal, D M; Young, H A; Zanovello, P

    2000-12-15

    We described a generalized suppression of CTL anamnestic responses that occurred in mice bearing large tumor nodules or immunized with powerful recombinant viral immunogens. Immune suppression entirely depended on GM-CSF-driven accumulation of CD11b(+)/Gr-1(+) myeloid suppressor cells (MSC) in secondary lymphoid organs. To further investigate the nature and properties of MSC, we immortalized CD11b(+)/Gr-1(+) cells isolated from the spleens of immunosuppressed mice, using a retrovirus encoding the v-myc and v-raf oncogenes. Immortalized cells expressed monocyte/macrophage markers (CD11b, F4/80, CD86, CD11c), but they differed from previously characterized macrophage lines in their capacities to inhibit T lymphocyte activation. Two MSC lines, MSC-1 and MSC-2, were selected based upon their abilities to inhibit Ag-specific proliferative and functional CTL responses. MSC-1 line was constitutively inhibitory, while suppressive functions of MSC-2 line were stimulated by exposure to the cytokine IL-4. Both MSC lines triggered the apoptotic cascade in Ag-activated T lymphocytes by a mechanism requiring cell-cell contact. Some well-known membrane molecules involved in the activation of apoptotic pathways (e.g., TNF-related apoptosis-inducing ligand, Fas ligand, TNF-alpha) were ruled out as candidate effectors for the suppression mechanism. The immortalized myeloid lines represent a novel, useful tool to shed light on the molecules involved in the differentiation of myeloid-related suppressors as well as in the inhibitory pathway they use to control T lymphocyte activation.

  6. Oncogenic STAT5 signaling promotes oxidative stress in chronic myeloid leukemia cells by repressing antioxidant defenses.

    Science.gov (United States)

    Bourgeais, Jerome; Ishac, Nicole; Medrzycki, Magdalena; Brachet-Botineau, Marie; Desbourdes, Laura; Gouilleux-Gruart, Valerie; Pecnard, Emmanuel; Rouleux-Bonnin, Florence; Gyan, Emmanuel; Domenech, Jorge; Mazurier, Frederic; Moriggl, Richard; Bunting, Kevin D; Herault, Olivier; Gouilleux, Fabrice

    2017-06-27

    STAT5 transcription factors are frequently activated in hematopoietic neoplasms and are targets of various tyrosine kinase oncogenes. Evidences for a crosstalk between STAT5 and reactive oxygen species (ROS) metabolism have recently emerged but mechanisms involved in STAT5-mediated regulation of ROS still remain elusive. We demonstrate that sustained activation of STAT5 induced by Bcr-Abl in chronic myeloid leukemia (CML) cells promotes ROS production by repressing expression of two antioxidant enzymes, catalase and glutaredoxin-1(Glrx1). Downregulation of catalase and Glrx1 expression was also observed in primary cells from CML patients. Catalase was shown not only to reduce ROS levels but also, to induce quiescence in Bcr-Abl-positive leukemia cells. Furthermore, reduction of STAT5 phosphorylation and upregulation of catalase and Glrx1 were also evidenced in leukemia cells co-cultured with bone marrow stromal cells to mimic a leukemic niche. This caused downregulation of ROS levels and enhancement of leukemic cell quiescence. These data support a role of persistent STAT5 signaling in the regulation of ROS production in myeloid leukemias and highlight the repression of antioxidant defenses as an important regulatory mechanism.

  7. Derivation of a myeloid cell-binding adenovirus for gene therapy of inflammation.

    Directory of Open Access Journals (Sweden)

    Michael O Alberti

    Full Text Available The gene therapy field is currently limited by the lack of vehicles that permit efficient gene delivery to specific cell or tissue subsets. Native viral vector tropisms offer a powerful platform for transgene delivery but remain nonspecific, requiring elevated viral doses to achieve efficacy. In order to improve upon these strategies, our group has focused on genetically engineering targeting domains into viral capsid proteins, particularly those based on adenovirus serotype 5 (Ad5. Our primary strategy is based on deletion of the fiber knob domain, to eliminate broad tissue specificity through the human coxsackie-and-adenovirus receptor (hCAR, with seamless incorporation of ligands to re-direct Ad tropism to cell types that express the cognate receptors. Previously, our group and others have demonstrated successful implementation of this strategy in order to specifically target Ad to a number of surface molecules expressed on immortalized cell lines. Here, we utilized phage biopanning to identify a myeloid cell-binding peptide (MBP, with the sequence WTLDRGY, and demonstrated that MBP can be successfully incorporated into a knob-deleted Ad5. The resulting virus, Ad.MBP, results in specific binding to primary myeloid cell types, as well as significantly higher transduction of these target populations ex vivo, compared to unmodified Ad5. These data are the first step in demonstrating Ad targeting to cell types associated with inflammatory disease.

  8. Human myeloid dendritic cells are refractory to tryptophan metabolites.

    Science.gov (United States)

    von Bubnoff, Dagmar; Wilms, Helene; Scheler, Marina; Brenk, Manuela; Koch, Susanne; Bieber, Thomas

    2011-10-01

    The enzyme indoleamine 2,3-dioxygenase (IDO) degrades the essential amino acid tryptophan and is expressed, among other cell types, in immune cells such as dendritic cells (DCs), monocytes, and macrophages. It has been shown that the activity of IDO has a broad regulatory function in the immune system by inhibiting effector T-cell responses, inducing regulatory T cells and facilitating the development of regulatory DCs. The degradation of tryptophan has 2 consequences, both of which have been postulated to be physiologically relevant, namely the reduction of tryptophan levels and the accumulation of tryptophan catabolites. Recently, we have shown that DCs that had differentiated under low-tryptophan conditions acquire a tolerogenic phenotype with increased expression of the inhibitory receptors immunoglobulin-like transcript 2 (ILT2), ILT3, and ILT4. In the present study, we investigated the effect of distinct tryptophan catabolites on the function of human DCs and the expression of ILT2, ILT3, and ILT4 on these cells. We show that, in contrast to low tryptophan levels alone, the combination of several metabolites along the tryptophan-kynurenine degradation pathway during DC differentiation does not induce ILT2, ILT3, or ILT4 on these DCs and does not reduce the T-cell stimulatory capacity of these DCs. Copyright © 2011 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  9. Interferon regulatory factor 8 regulates pathways for antigen presentation in myeloid cells and during tuberculosis.

    Directory of Open Access Journals (Sweden)

    Jean-François Marquis

    2011-06-01

    Full Text Available IRF8 (Interferon Regulatory Factor 8 plays an important role in defenses against intracellular pathogens, including several aspects of myeloid cells function. It is required for ontogeny and maturation of macrophages and dendritic cells, for activation of anti-microbial defenses, and for production of the Th1-polarizing cytokine interleukin-12 (IL-12 in response to interferon gamma (IFNγ and protection against infection with Mycobacterium tuberculosis. The transcriptional programs and cellular pathways that are regulated by IRF8 in response to IFNγ and that are important for defenses against M. tuberculosis are poorly understood. These were investigated by transcript profiling and chromatin immunoprecipitation on microarrays (ChIP-chip. Studies in primary macrophages identified 368 genes that are regulated by IRF8 in response to IFNγ/CpG and that behave as stably segregating expression signatures (eQTLs in F2 mice fixed for a wild-type or mutant allele at IRF8. A total of 319 IRF8 binding sites were identified on promoters genome-wide (ChIP-chip in macrophages treated with IFNγ/CpG, defining a functional G/AGAAnTGAAA motif. An analysis of the genes bearing a functional IRF8 binding site, and showing regulation by IFNγ/CpG in macrophages and/or in M. tuberculosis-infected lungs, revealed a striking enrichment for the pathways of antigen processing and presentation, including multiple structural and enzymatic components of the Class I and Class II MHC (major histocompatibility complex antigen presentation machinery. Also significantly enriched as IRF8 targets are the group of endomembrane- and phagosome-associated small GTPases of the IRG (immunity-related GTPases and GBP (guanylate binding proteins families. These results identify IRF8 as a key regulator of early response pathways in myeloid cells, including phagosome maturation, antigen processing, and antigen presentation by myeloid cells.

  10. Glycoprotein B cleavage is important for murid herpesvirus 4 to infect myeloid cells.

    Science.gov (United States)

    Glauser, Daniel L; Milho, Ricardo; Frederico, Bruno; May, Janet S; Kratz, Anne-Sophie; Gillet, Laurent; Stevenson, Philip G

    2013-10-01

    Glycoprotein B (gB) is a conserved herpesvirus virion component implicated in membrane fusion. As with many-but not all-herpesviruses, the gB of murid herpesvirus 4 (MuHV-4) is cleaved into disulfide-linked subunits, apparently by furin. Preventing gB cleavage for some herpesviruses causes minor infection deficits in vitro, but what the cleavage contributes to host colonization has been unclear. To address this, we mutated the furin cleavage site (R-R-K-R) of the MuHV-4 gB. Abolishing gB cleavage did not affect its expression levels, glycosylation, or antigenic conformation. In vitro, mutant viruses entered fibroblasts and epithelial cells normally but had a significant entry deficit in myeloid cells such as macrophages and bone marrow-derived dendritic cells. The deficit in myeloid cells was not due to reduced virion binding or endocytosis, suggesting that gB cleavage promotes infection at a postendocytic entry step, presumably viral membrane fusion. In vivo, viruses lacking gB cleavage showed reduced lytic spread in the lungs. Alveolar epithelial cell infection was normal, but alveolar macrophage infection was significantly reduced. Normal long-term latency in lymphoid tissue was established nonetheless.

  11. FOXM1 Transcription Factor: A New Component of Chronic Myeloid Leukemia Stem Cell Proliferation Advantage.

    Science.gov (United States)

    Mancini, Manuela; Castagnetti, Fausto; Soverini, Simona; Leo, Elisa; De Benedittis, Caterina; Gugliotta, Gabriele; Rosti, Gianantonio; Bavaro, Luana; De Santis, Sara; Monaldi, Cecilia; Martelli, Margherita; Santucci, Maria Alessandra; Cavo, Michele; Martinelli, Giovanni

    2017-11-01

    FOXM1 transcription factor is a central component of tumor initiation, growth, and progression due to its multiple effects on cell cycle, DNA repair, angiogenesis and invasion, chromatin, protein anabolism, and cell adhesion. Moreover, FOXM1 interacts with β-catenin promoting its nuclear import and transcriptional activation. Here, we show that FOXM1 is involved in the advantage of chronic myeloid leukemia hematopoiesis over the normal counterpart. FOXM1 hyper-activation associated with BCR-ABL1 results from phosphorylation by the fusion protein kinase-dependent activation of Polo-like kinase 1. FOXM1 phosphorylation lets its binding with β-catenin and β-catenin transcriptional activation, a key event for persistence of the leukemic stem cell compartment under tyrosine kinase inhibitor therapy. Polo-like kinase 1 inhibitor BI6727, already advanced for clinical use, breaks β-catenin interaction with FOXM1, hence hampering FOXM1 phosphorylation, β-catenin binding, nuclear import, and downstream signaling. In conclusion, our results support Polo-like kinase 1/FOXM1 axis as a complementary target to eradicate leukemic early progenitor/stem cell compartment in chronic myeloid leukemia. J. Cell. Biochem. 118: 3968-3975, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Macrophage colony-stimulating factor receptor marks and regulates a fetal myeloid-primed B-cell progenitor in mice.

    Science.gov (United States)

    Zriwil, Alya; Böiers, Charlotta; Wittmann, Lilian; Green, Joanna C A; Woll, Petter S; Jacobsen, Sten Eirik W; Sitnicka, Ewa

    2016-07-14

    Although it is well established that unique B-cell lineages develop through distinct regulatory mechanisms during embryonic development, much less is understood about the differences between embryonic and adult B-cell progenitor cells, likely to underpin the genetics and biology of infant and childhood PreB acute lymphoblastic leukemia (PreB-ALL), initiated by distinct leukemia-initiating translocations during embryonic development. Herein, we establish that a distinct subset of the earliest CD19(+) B-cell progenitors emerging in the E13.5 mouse fetal liver express the colony-stimulating factor-1 receptor (CSF1R), previously thought to be expressed, and play a lineage-restricted role in development of myeloid lineages, and macrophages in particular. These early embryonic CSF1R(+)CD19(+) ProB cells also express multiple other myeloid genes and, in line with this, possess residual myeloid as well as B-cell, but not T-cell lineage potential. Notably, these CSF1R(+) myeloid-primed ProB cells are uniquely present in a narrow window of embryonic fetal liver hematopoiesis and do not persist in adult bone marrow. Moreover, analysis of CSF1R-deficient mice establishes a distinct role of CSF1R in fetal B-lymphopoiesis. CSF1R(+) myeloid-primed embryonic ProB cells are relevant for infant and childhood PreB-ALLs, which frequently have a bi-phenotypic B-myeloid phenotype, and in which CSF1R-rearrangements have recently been reported. © 2016 by The American Society of Hematology.

  13. Hepatic ischemia and reperfusion injury in the absence of myeloid cell-derived COX-2 in mice.

    Directory of Open Access Journals (Sweden)

    Sergio Duarte

    Full Text Available Cyclooxygenase-2 (COX-2 is a mediator of hepatic ischemia and reperfusion injury (IRI. While both global COX-2 deletion and pharmacologic COX-2 inhibition ameliorate liver IRI, the clinical use of COX-2 inhibitors has been linked to increased risks of heart attack and stroke. Therefore, a better understanding of the role of COX-2 in different cell types may lead to improved therapeutic strategies for hepatic IRI. Macrophages of myeloid origin are currently considered to be important sources of the COX-2 in damaged livers. Here, we used a Cox-2flox conditional knockout mouse (COX-2-M/-M to examine the function of COX-2 expression in myeloid cells during liver IRI. COX-2-M/-M mice and their WT control littermates were subjected to partial liver ischemia followed by reperfusion. COX-2-M/-M macrophages did not express COX-2 upon lipopolysaccharide stimulation and COX-2-M/-M livers showed reduced levels of COX-2 protein post-IRI. Nevertheless, selective deletion of myeloid cell-derived COX-2 failed to ameliorate liver IRI; serum transaminases and histology were comparable in both COX-2-M/-M and WT mice. COX-2-M/-M livers, like WT livers, developed extensive necrosis, vascular congestion, leukocyte infiltration and matrix metalloproteinase-9 (MMP-9 expression post-reperfusion. In addition, myeloid COX-2 deletion led to a transient increase in IL-6 levels after hepatic reperfusion, when compared to controls. Administration of celecoxib, a selective COX-2 inhibitor, resulted in significantly improved liver function and histology in both COX-2-M/-M and WT mice post-reperfusion, providing evidence that COX-2-mediated liver IRI is caused by COX-2 derived from a source(s other than myeloid cells. In conclusion, these results support the view that myeloid COX-2, including myeloid-macrophage COX-2, is not responsible for the hepatic IRI phenotype.

  14. Myeloid cells are capable of synthesizing aldosterone to exacerbate damage in muscular dystrophy.

    Science.gov (United States)

    Chadwick, Jessica A; Swager, Sarah A; Lowe, Jeovanna; Welc, Steven S; Tidball, James G; Gomez-Sanchez, Celso E; Gomez-Sanchez, Elise P; Rafael-Fortney, Jill A

    2016-12-01

    FDA-approved mineralocorticoid receptor (MR) antagonists are used to treat heart failure. We have recently demonstrated efficacy of MR antagonists for skeletal muscles in addition to heart in Duchenne muscular dystrophy mouse models and that mineralocorticoid receptors are present and functional in skeletal muscles. The goal of this study was to elucidate the underlying mechanisms of MR antagonist efficacy on dystrophic skeletal muscles. We demonstrate for the first time that infiltrating myeloid cells clustered in damaged areas of dystrophic skeletal muscles have the capacity to produce the natural ligand of MR, aldosterone, which in excess is known to exacerbate tissue damage. Aldosterone synthase protein levels are increased in leukocytes isolated from dystrophic muscles compared with controls and local aldosterone levels in dystrophic skeletal muscles are increased, despite normal circulating levels. All genes encoding enzymes in the pathway for aldosterone synthesis are expressed in muscle-derived leukocytes. 11β-HSD2, the enzyme that inactivates glucocorticoids to increase MR selectivity for aldosterone, is also increased in dystrophic muscle tissues. These results, together with the demonstrated preclinical efficacy of antagonists, suggest MR activation is in excess of physiological need and likely contributes to the pathology of muscular dystrophy. This study provides new mechanistic insight into the known contribution of myeloid cells to muscular dystrophy pathology. This first report of myeloid cells having the capacity to produce aldosterone may have implications for a wide variety of acute injuries and chronic diseases with inflammation where MR antagonists may be therapeutic. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Improved FRET Biosensor for the Measurement of BCR-ABL Activity in Chronic Myeloid Leukemia Cells.

    Science.gov (United States)

    Horiguchi, Mika; Fujioka, Mari; Kondo, Takeshi; Fujioka, Yoichiro; Li, Xinxin; Horiuchi, Kosui; O Satoh, Aya; Nepal, Prabha; Nishide, Shinya; Nanbo, Asuka; Teshima, Takanori; Ohba, Yusuke

    2017-02-02

    Although the co-development of companion diagnostics with molecular targeted drugs is desirable, truly efficient diagnostics are limited to diseases in which chromosomal translocations or overt mutations are clearly correlated with drug efficacy. Moreover, even for such diseases, few methods are available to predict whether drug administration is effective for each individual patient whose disease is expected to respond to the drug(s). We have previously developed a biosensor based on the principle of Förster resonance energy transfer to measure the activity of the tyrosine kinase BCR-ABL and its response to drug treatment in patient-derived chronic myeloid leukemia cells. The biosensor harbors CrkL, one of the major substrates of BCR-ABL, and is therefore named Pickles after phosphorylation indicator of CrkL en substrate. The efficacy of this technique as a clinical test has been demonstrated, but the number of cells available for analysis is limited in a case-dependent manner, owing to the cleavage of the biosensor in patient-derived leukemia cells. Here, we describe an improved biosensor with an amino acid substitution and a nuclear export signal being introduced. Of the two predicted cleavage positions in CrkL, the mutations inhibited one cleavage completely and the other cleavage partially, thus collectively increasing the number of cells available for drug evaluation. This improved version of the biosensor holds promise in the future development of companion diagnostics to predict responses to tyrosine kinase inhibitors in patients with chronic myeloid leukemia.

  16. Myeloid-derived suppressor cells: paradoxical roles in infection and immunity.

    Science.gov (United States)

    Dai, Jun; El Gazzar, Mohamed; Li, Guang Y; Moorman, Jonathan P; Yao, Zhi Q

    2015-01-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature suppressor cells that are generated due to aberrant myelopoiesis under pathological conditions. Although MDSCs have been recognized for more than 20 years under the guise of different monikers, these particular populations of myeloid cells gained more attention recently due to their immunosuppressive properties, which halt host immune responses to growing cancers or overwhelming infections. While MDSCs may contribute to immune homeostasis after infection or tissue injury by limiting excessive inflammatory processes, their expansion may be at the expense of pathogen elimination and thus may lead to disease persistence. Therefore, MDSCs may be either damaging or obliging to the host by attenuating, for example, antitumor or anti-infectious immune responses. In this review, we recapitulate the biological and immunological aspects of MDSCs, including their generation, distribution, trafficking and the factors involved in their activation, expansion, suppressive functions, and interplay between MDSCs and regulatory T cells, with a focus on the perspectives of infection and inflammation. © 2014 S. Karger AG, Basel.

  17. The role of Inositol Phosphoglycan as a possible mediator of the radiation effects on undifferentiated thyroid carcinoma (UTC) cells

    International Nuclear Information System (INIS)

    Dagrosa, Maria A.; Crivello, M.; Perona, Marina; Thorp, Silvia; Pozzi, Emiliano; Juvenal, Guillermo J.; Pisarev, Mario A.; Krawiec, Leon

    2007-01-01

    Full text: In our laboratory we demonstrated that the Inositol Phosphoglycan (IPG) inhibits thyroperoxidase (TPO) activity and other oxidoreductases in normal bovine thyroid gland cultures, thus increasing the H 2 O 2 levels. On the other hand, when a cell is irradiated, damage is caused either by an increase of free radicals (H 2 O 2 and other reactive oxygen species (ROS)) or by the direct ionization of molecules, depending on the radiation quality. With the purpose to establish if the IPG participates in damage mechanisms by radiation, UTC cells of the tumoral line (ARO) in proliferation, were exposed to high and low LET radiation: gamma, neutrons, He and 7 Li nucleus (the lasts ones produced through Boron Neutron Capture Reaction). In each group, the total physical absorbed doses were 3 and 8 Gy (Ra-3 reactor neutrons flux = 7.5 109 n/cm 2 s). The results show a significant increase in the IPG activity in cells irradiated with gamma and neutrons in comparison with control cultures (p 2 O 2 levels (p [es

  18. IKKα Promotes Intestinal Tumorigenesis by Limiting Recruitment of M1-like Polarized Myeloid Cells

    Directory of Open Access Journals (Sweden)

    Serkan I. Göktuna

    2014-06-01

    Full Text Available The recruitment of immune cells into solid tumors is an essential prerequisite of tumor development. Depending on the prevailing polarization profile of these infiltrating leucocytes, tumorigenesis is either promoted or blocked. Here, we identify IκB kinase α (IKKα as a central regulator of a tumoricidal microenvironment during intestinal carcinogenesis. Mice deficient in IKKα kinase activity are largely protected from intestinal tumor development that is dependent on the enhanced recruitment of interferon γ (IFNγ-expressing M1-like myeloid cells. In IKKα mutant mice, M1-like polarization is not controlled in a cell-autonomous manner but, rather, depends on the interplay of both IKKα mutant tumor epithelia and immune cells. Because therapies aiming at the tumor microenvironment rather than directly at the mutated cancer cell may circumvent resistance development, we suggest IKKα as a promising target for colorectal cancer (CRC therapy.

  19. Increased peroxisome proliferator-activated receptor γ activity reduces imatinib uptake and efficacy in chronic myeloid leukemia mononuclear cells.

    Science.gov (United States)

    Wang, Jueqiong; Lu, Liu; Kok, Chung H; Saunders, Verity A; Goyne, Jarrad M; Dang, Phuong; Leclercq, Tamara M; Hughes, Timothy P; White, Deborah L

    2017-05-01

    Imatinib is actively transported by organic cation transporter-1 (OCT-1) influx transporter, and low OCT-1 activity in diagnostic chronic myeloid leukemia blood mononuclear cells is significantly associated with poor molecular response to imatinib. Herein we report that, in diagnostic chronic myeloid leukemia mononuclear cells and BCR-ABL1 + cell lines, peroxisome proliferator-activated receptor γ agonists (GW1929, rosiglitazone, pioglitazone) significantly decrease OCT-1 activity; conversely, peroxisome proliferator-activated receptor γ antagonists (GW9662, T0070907) increase OCT-1 activity. Importantly, these effects can lead to corresponding changes in sensitivity to BCR-ABL kinase inhibition. Results were confirmed in peroxisome proliferator-activated receptor γ-transduced K562 cells. Furthermore, we identified a strong negative correlation between OCT-1 activity and peroxisome proliferator-activated receptor γ transcriptional activity in diagnostic chronic myeloid leukemia patients (n=84; P chronic myeloid leukemia stem cell pool. Our findings suggest that peroxisome proliferator-activated receptor γ ligands have differential effects on circulating mononuclear cells compared to stem cells. Since the effect of peroxisome proliferator-activated receptor γ activation on imatinib uptake in mononuclear cells may counteract the clinical benefit of this activation in stem cells, caution should be applied when combining these therapies, especially in patients with high peroxisome proliferator-activated receptor γ transcriptional activity. Copyright© Ferrata Storti Foundation.

  20. Excess circulating alternatively activated myeloid (M2 cells accelerate ALS progression while inhibiting experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Ilan Vaknin

    Full Text Available Circulating immune cells including autoreactive T cells and monocytes have been documented as key players in maintaining, protecting and repairing the central nervous system (CNS in health and disease. Here, we hypothesized that neurodegenerative diseases might be associated, similarly to tumors, with increased levels of circulating peripheral myeloid derived suppressor cells (MDSCs, representing a subset of suppressor cells that often expand under pathological conditions and inhibit possible recruitment of helper T cells needed for fighting off the disease.We tested this working hypothesis in amyotrophic lateral sclerosis (ALS and its mouse model, which are characterized by a rapid progression once clinical symptoms are evident. Adaptive transfer of alternatively activated myeloid (M2 cells, which homed to the spleen and exhibited immune suppressive activity in G93A mutant superoxide dismutase-1 (mSOD1 mice at a stage before emergence of disease symptoms, resulted in earlier appearance of disease symptoms and shorter life expectancy. The same protocol mitigated the inflammation-induced disease model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE, which requires circulating T cells for disease induction. Analysis of whole peripheral blood samples obtained from 28 patients suffering from sporadic ALS (sALS, revealed a two-fold increase in the percentage of circulating MDSCs (LIN(-/LowHLA-DR(-CD33(+ compared to controls.Taken together, these results emphasize the distinct requirements for fighting the inflammatory neurodegenerative disease, multiple sclerosis, and the neurodegenerative disease, ALS, though both share a local inflammatory component. Moreover, the increased levels of circulating MDSCs in ALS patients indicates the operation of systemic mechanisms that might lead to an impairment of T cell reactivity needed to overcome the disease conditions within the CNS. This high level of suppressive immune cells might

  1. Over-Expression of Catalase in Myeloid Cells Confers Acute Protection Following Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    E. Bernadette Cabigas

    2014-05-01

    Full Text Available Cardiovascular disease is the leading cause of death in the United States and new treatment options are greatly needed. Oxidative stress is increased following myocardial infarction and levels of antioxidants decrease, causing imbalance that leads to dysfunction. Therapy involving catalase, the endogenous scavenger of hydrogen peroxide (H2O2, has been met with mixed results. When over-expressed in cardiomyocytes from birth, catalase improves function following injury. When expressed in the same cells in an inducible manner, catalase showed a time-dependent response with no acute benefit, but a chronic benefit due to altered remodeling. In myeloid cells, catalase over-expression reduced angiogenesis during hindlimb ischemia and prevented monocyte migration. In the present study, due to the large inflammatory response following infarction, we examined myeloid-specific catalase over-expression on post-infarct healing. We found a significant increase in catalase levels following infarction that led to a decrease in H2O2 levels, leading to improved acute function. This increase in function could be attributed to reduced infarct size and improved angiogenesis. Despite these initial improvements, there was no improvement in chronic function, likely due to increased fibrosis. These data combined with what has been previously shown underscore the need for temporal, cell-specific catalase delivery as a potential therapeutic option.

  2. Chimeric antigen receptors for adoptive T cell therapy in acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Mingxue Fan

    2017-08-01

    Full Text Available Abstract Currently, conventional therapies for acute myeloid leukemia (AML have high failure and relapse rates. Thus, developing new strategies is crucial for improving the treatment of AML. With the clinical success of anti-CD19 chimeric antigen receptor (CAR T cell therapies against B-lineage malignancies, many studies have attempted to translate the success of CAR T cell therapy to other malignancies, including AML. This review summarizes the current advances in CAR T cell therapy against AML, including preclinical studies and clinical trials, and discusses the potential AML-associated surface markers that could be used for further CAR technology. Finally, we describe strategies that might address the current issues of employing CAR T cell therapy in AML.

  3. Immune checkpoint inhibitors enhance cytotoxicity of cytokine-induced killer cells against human myeloid leukaemic blasts.

    Science.gov (United States)

    Poh, Su Li; Linn, Yeh Ching

    2016-05-01

    We studied whether blockade of inhibitory receptors on cytokine-induced killer (CIK) cells by immune checkpoint inhibitors could increase its anti-tumour potency against haematological malignancies. CIK cultures were generated from seven normal donors and nine patients with acute myeloid leukaemia (AML), acute lymphoblastic leukaemia (ALL) or multiple myeloma (MM). The inhibitory receptors B and T lymphocyte attenuator, CD200 receptor, lymphocyte activation gene-3 (LAG-3) and T cell immunoglobulin and mucin-domain-containing-3 (TIM-3) were present at variable percentages in most CIK cultures, while cytotoxic T lymphocyte-associated protein 4 (CTLA-4), programmed death-1 (PD-1) and killer cell immunoglobulin-like receptors (KIR2DL1/2/3) were expressed at low level in most cultures. Without blockade, myeloid leukaemia cells were susceptible to autologous and allogeneic CIK-mediated cytotoxicity. Blockade of KIR, LAG-3, PD-1 and TIM-3 but not CTLA-4 resulted in remarkable increase in killing against these targets, even in those with poor baseline cytotoxicity. ALL and MM targets were resistant to CIK-mediated cytotoxicity, and blockade of receptors did not increase cytotoxicity to a meaningful extent. Combination of inhibitors against two receptors did not further increase cytotoxicity. Interestingly, potentiation of CIK killing by blocking antibodies was not predicted by expression of receptors on CIK and their respective ligands on the targets. Compared to un-activated T and NK cells, blockade potentiated the cytotoxicity of CIK cells to a greater degree and at a lower E:T ratio, but without significant increase in cytotoxicity against normal white cell. Our findings provide the basis for clinical trial combining autologous CIK cells with checkpoint inhibitors for patients with AML.

  4. Persistence of donor-derived protein in host myeloid cells after induced rejection of engrafted allogeneic bone marrow cells

    Science.gov (United States)

    Saito, Toshiki I.; Fujisaki, Joji; Carlson, Alicia L.; Lin, Charles P.; Sykes, Megan

    2014-01-01

    Objective In recipients of allogeneic hematopoietic stem cell transplantation to treat hematologic malignancies, we have unexpectedly observed anti-tumor effects in association with donor cell rejection in both mice and humans. Host-type CD8 T cells were shown to be required for these anti-tumor effects in the murine model. Since sustained host CD8 T cell activation was observed in the murine bone marrow following the disappearance of donor chimerism in the peripheral blood, we hypothesized that donor antigen presentation in the bone marrow might be prolonged. Materials and Methods To assess this hypothesis, we established mixed chimerism with green fluorescence protein (GFP)-positive allogeneic bone marrow cells, induced rejection of the donor cells by giving recipient leukocyte infusions (RLI), and utilized in vivo microscopy to follow GFP-positive cells. Results After peripheral donor leukocytes disappeared, GFP persisted within host myeloid cells surrounding the blood vessels in the bone marrow, suggesting that the host myeloid cells captured donor-derived GFP protein. Conclusions Since the host-versus-graft reaction promotes the induction of anti-tumor responses in this model, this retention of donor-derived protein may play a role in the efficacy of RLI as an anti-tumor therapy. PMID:20167247

  5. Del(20q) in patients with chronic lymphocytic leukemia: a therapy-related abnormality involving lymphoid or myeloid cells.

    Science.gov (United States)

    Yin, C Cameron; Tang, Guilin; Lu, Gary; Feng, Xiaoli; Keating, Michael J; Medeiros, L Jeffrey; Abruzzo, Lynne V

    2015-08-01

    Deletion 20q (Del(20q)), a common cytogenetic abnormality in myeloid neoplasms, is rare in chronic lymphocytic leukemia. We report 64 patients with chronic lymphocytic leukemia and del(20q), as the sole abnormality in 40, a stemline abnormality in 21, and a secondary abnormality in 3 cases. Fluorescence in situ hybridization (FISH) analysis revealed an additional high-risk abnormality, del(11q) or del(17p), in 25/64 (39%) cases. In most cases, the leukemic cells showed atypical cytologic features, unmutated IGHV (immunoglobulin heavy-chain variable region) genes, and ZAP70 positivity. The del(20q) was detected only after chemotherapy in all 27 cases with initial karyotypes available. With a median follow-up of 90 months, 30 patients (47%) died, most as a direct consequence of chronic lymphocytic leukemia. Eight patients developed a therapy-related myeloid neoplasm, seven with a complex karyotype. Combined morphologic and FISH analysis for del(20q) performed in 12 cases without morphologic evidence of a myeloid neoplasm localized the del(20q) to the chronic lymphocytic leukemia cells in 5 (42%) cases, and to myeloid/erythroid cells in 7 (58)% cases. The del(20q) was detected in myeloid cells in all 4 cases of myelodysplastic syndrome. In aggregate, these data indicate that chronic lymphocytic leukemia with del(20q) acquired after therapy is heterogeneous. In cases with morphologic evidence of dysplasia, the del(20q) likely resides in the myeloid lineage. However, in cases without morphologic evidence of dysplasia, the del(20q) may represent clonal evolution and disease progression. Combining morphologic analysis with FISH for del(20q) or performing FISH on immunomagnetically selected sub-populations to localize the cell population with this abnormality may help guide patient management.

  6. Residency and Activation of Myeloid Cells During Remodeling of the Prepartum Murine Cervix1

    Science.gov (United States)

    Payne, Kimberly J.; Clyde, Lindsey A.; Weldon, Abby J.; Milford, Terry-Ann; Yellon, Steven M.

    2012-01-01

    ABSTRACT Remodeling of the cervix is a critical early component of parturition and resembles an inflammatory process. Infiltration and activation of myeloid immune cells along with production of proinflammatory mediators and proteolytic enzymes are hypothesized to regulate cervical remodeling as pregnancy nears term. The present study standardized an approach to assess resident populations of immune cells and phenotypic markers of functional activities related to the mechanism of extracellular matrix degradation in the cervix in preparation for birth. Analysis of cells from the dispersed cervix of mice that were nonpregnant or pregnant (Days 15 and 18 postbreeding) by multicolor flow cytometry indicated increased total cell numbers with pregnancy as well as increased numbers of macrophages, the predominant myeloid cell, by Day 18, the day before birth. The number of activated macrophages involved in matrix metalloproteinase induction (CD147) and signaling for matrix adhesion (CD169) significantly increased by the day before birth. Expression of the adhesion markers CD54 and CD11b by macrophages decreased in the cervix by Day 18 versus that on Day 15 or in nonpregnant mice. The census of cells that expressed the migration marker CD62L was unaffected by pregnancy. The data suggest that remodeling of the cervix at term in mice is associated with recruitment and selective activation of macrophages that promote extracellular matrix degradation. Indices of immigration and activities by macrophages may thus serve as markers for local immune cell activity that is critical for ripening of the cervix in the final common mechanism for parturition at term. PMID:22914314

  7. In vitro evaluation of triazenes: DNA cleavage, antibacterial activity and cytotoxicity against acute myeloid leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Domingues, Vanessa O.; Hoerner, Rosmari; Reetz, Luiz G.B.; Kuhn, Fabio, E-mail: rosmari.ufsm@gmail.co [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Dept. de Analises Clinicas e Toxicologicas; Coser, Virginia M.; Rodrigues, Jacqueline N.; Bauchspiess, Rita; Pereira, Waldir V. [Hospital Universitario de Santa Maria, RS (Brazil). Dept. de Hematologia-Oncologia; Paraginski, Gustavo L.; Locatelli, Aline; Fank, Juliana de O.; Giglio, Vinicius F.; Hoerner, Manfredo, E-mail: hoerner.manfredo@gmail.co [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Dept. de Quimica

    2010-07-01

    The asymmetric diazoamines 1-(2-chlorophenyl)-3-(4-carboxyphenyl)triazene (1), 1-(2-fluorophenyl)-3-(4-carboxyphenyl)triazene (2) and 1-(2-fluorophenyl)-3-(4-amidophenyl) triazene (3) were evaluated for their ability to cleave pUC18 and pBSKII plasmid DNA, antibacterial activity and in vitro cytotoxicity against acute myeloid leukemia cells and normal leukocytes using the bioassay of reduction of 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The triazenes showed ability to cleave the two types of plasmid DNA: triazene 1 at pH 8.0 and 50 deg C; triazene 2 at pH 6.5 and 37 and 50 deg C; triazene 3 at pH 6.5 and 37 deg C. The compounds presented cytotoxic activity against myeloid leukemia cells. Compound 1 showed high activity against B. cereus (MIC = 32 {mu}g mL{sup -1}). The observation of intermolecular hydrogen bonding in the solid state of compound 3, based on the structural analysis by X-ray crystallography, as well as the results of IR and UV-Vis spectroscopic analyses of compounds 1, 2 and 3 are discussed in the present work. (author)

  8. Undifferentiated Pleomorphic Sarcoma and the Importance of Considering the Oncogenic and Immune-Suppressant Role of the Human T-Cell Lymphotropic Virus Type 1: A Case Report

    Directory of Open Access Journals (Sweden)

    Sergio Lupo

    2017-05-01

    Full Text Available IntroductionSoft-tissue sarcomas account for 0.7% of all malignant tumors, with an incidence rate of 3 per 100,000 persons/year. The undifferentiated pleomorphic sarcoma (UPS with giant cells, a high grade tumor of soft tissue, is very unusual, especially in young adults before the age of 40. Human T-cell lymphotropic virus type 1 (HTLV-1 is a human retrovirus, classified as group 1 human carcinogens by The International Agency for Research on Cancer, that causes an aggressive malignancy known as adult T-cell lymphoma/leukemia and a progressive chronic inflammatory neurological disease named HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP. HTLV-1 causes accumulation of genetic mutations in the host genome that could contribute to cellular transformation, one of the oncogenic features of HTLV-1.Case reportWe describe a case of a young woman with UPS who suffered from HAM/TSP with 3 years of evolution. In 2013, the patient started with neurological symptoms: weakness in the legs and bladder dysfunction. One year later, the patient developed a mild paraparesis in both extremities, anti-HTLV-1 antibodies were detected in plasma and in cerebrospinal fluid, and HAM/TSP was confirmed. In November 2015, a benign ganglion cyst was first suspected without intervention and by March 2016 a sarcoma was diagnosed. Three weeks after surgical resection, the tumor aroused in deep tissue and behaved aggressively, implicating a curative wide resection of the fibula, joint reconstruction, and soft-tissue graft. Histopathological examination confirmed UPS with giant cells.Concluding remarksThe unapparent subclinical immunodeficiency state due to HTLV-1 infection deserves to be considered in order to carefully monitor the possibility of developing any type of cancer. Besides, reaching an accurate and timely diagnosis of UPS can be challenging due to the difficulty in diagnosis/classification and delayed consultation. In this particular case

  9. Histamine Promotes the Development of Monocyte-Derived Dendritic Cells and Reduces Tumor Growth by Targeting the Myeloid NADPH Oxidase

    Science.gov (United States)

    Wiktorin, Hanna G.; Lenox, Brianna; Ewald Sander, Frida; Aydin, Ebru; Aurelius, Johan; Thorén, Fredrik B.; Ståhlberg, Anders; Hermodsson, Svante; Hellstrand, Kristoffer

    2015-01-01

    The efficiency of immune-mediated clearance of cancer cells is hampered by immunosuppressive mediators in the malignant microenvironment, including NADPH oxidase–derived reactive oxygen species. We aimed at defining the effects of histamine, an inhibitor of the myeloid NADPH oxidase/NOX2, on the development of Ag-presenting dendritic cells (DCs) from myeloid precursors and the impact of these mechanisms for tumor growth. Histamine was found to promote the maturation of human DCs from monocytes by increasing the expression of HLA-DR and costimulatory molecules, which resulted in improved induction of Th cells with Th0 polarity. Experiments using wild-type and NOX2-deficient myelomonoblastic cells showed that histamine facilitated myeloid cell maturation only in cells capable of generating reactive oxygen species. Treatment of mice with histamine reduced the growth of murine EL-4 lymphomas in parallel with an increment of tumor-infiltrating DCs in NOX2-sufficient mice but not in NOX2-deficient (gp91phox−/−) mice. We propose that strategies to target the myeloid NADPH oxidase may facilitate the development of endogenous DCs in cancer. PMID:25870245

  10. Pam2 lipopeptides systemically increase myeloid-derived suppressor cells through TLR2 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Akira; Shime, Hiroaki, E-mail: shime@med.hokudai.ac.jp; Takeda, Yohei; Azuma, Masahiro; Matsumoto, Misako; Seya, Tsukasa, E-mail: seya-tu@pop.med.hokudai.ac.jp

    2015-02-13

    Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that exhibit potent immunosuppressive activity. They are increased in tumor-bearing hosts and contribute to tumor development. Toll-like receptors (TLRs) on MDSCs may modulate the tumor-supporting properties of MDSCs through pattern-recognition. Pam2 lipopeptides represented by Pam2CSK4 serve as a TLR2 agonist to exert anti-tumor function by dendritic cell (DC)-priming that leads to NK cell activation and cytotoxic T cell proliferation. On the other hand, TLR2 enhances tumor cell progression/invasion by activating tumor-infiltrating macrophages. How MDSCs respond to TLR2 agonists has not yet been determined. In this study, we found intravenous administration of Pam2CSK4 systemically up-regulated the frequency of MDSCs in EG7 tumor-bearing mice. The frequency of tumor-infiltrating MDSCs was accordingly increased in response to Pam2CSK4. MDSCs were not increased by Pam2CSK4 stimuli in TLR2 knockout (KO) mice. Adoptive transfer experiments using CFSE-labeled MDSCs revealed that the TLR2-positive MDSCs survived long in tumor-bearing mice in response to Pam2CSK4 treatment. Since the increased MDSC population sustained immune-suppressive properties, our study suggests that Pam2CSK4-triggered TLR2 activation enhances the MDSC potential and suppress antitumor immune response in tumor microenvironment. - Highlights: • Pam2CSK4 administration induces systemic accumulation of CD11b{sup +}Gr1{sup +} MDSCs. • TLR2 is essential for Pam2CSK4-induced accumulation of CD11b{sup +}Gr1{sup +} MDSCs. • Pam2CSK4 supports survival of CD11b{sup +}Gr1{sup +} MDSCs in vivo.

  11. Myeloid derived suppressor cells in multiple myeloma: preclinical research and translational opportunities

    Directory of Open Access Journals (Sweden)

    Cirino eBotta

    2014-12-01

    Full Text Available Immunosuppressive cells have been reported to play an important role in tumor progression mainly because of their capability to promote immune-escape, angiogenesis and metastasis. Among them, myeloid derived suppressor cells (MDSCs have been recently identified as immature myeloid cells, induced by tumor-associated inflammation, able to impair both innate and adaptive immunity. While murine MDSCs are usually identified by the expression of CD11b and Gr-1, human MDSCs represent a more heterogeneous population characterized by the expression of CD33 and CD11b, low or no HLA-DR and variable CD14 and CD15. In particular, the last two may alternatively identify monocyte-like or granulocyte-like MDSC subsets with different immunosuppressive properties. Recently, a substantial increase of MDSCs has been found in peripheral blood and bone marrow (BM of multiple myeloma (MM patients with a role in disease progression and/or drug resistance. Preclinical models recapitulating the complexity of the MM-related BM microenvironment (BMM are major tools for the study of the interactions between MM cells and cells of the BMM (including MDSCs and for the development of new agents targeting MM-associated immune suppressive cells.This review will focus on current strategies for human MDSCs generation and investigation of their immunosuppressive function in vitro and in vivo, taking into account the relevant relationship occurring within the MM-BMM. We will then provide trends in MDSC-associated research and suggest potential application for the treatment of MM.

  12. Modulating glioma-mediated myeloid-derived suppressor cell development with sulforaphane.

    Directory of Open Access Journals (Sweden)

    Ravi Kumar

    Full Text Available Glioblastoma is the most common primary tumor of the brain and has few long-term survivors. The local and systemic immunosuppressive environment created by glioblastoma allows it to evade immunosurveillance. Myeloid-derived suppressor cells (MDSCs are a critical component of this immunosuppression. Understanding mechanisms of MDSC formation and function are key to developing effective immunotherapies. In this study, we developed a novel model to reliably generate human MDSCs from healthy-donor CD14+ monocytes by culture in human glioma-conditioned media. Monocytic MDSC frequency was assessed by flow cytometry and confocal microscopy. The resulting MDSCs robustly inhibited T cell proliferation. A cytokine array identified multiple components of the GCM potentially contributing to MDSC generation, including Monocyte Chemoattractive Protein-1, interleukin-6, interleukin-8, and Macrophage Migration Inhibitory Factor (MIF. Of these, Macrophage Migration Inhibitory Factor is a particularly attractive therapeutic target as sulforaphane, a naturally occurring MIF inhibitor derived from broccoli sprouts, has excellent oral bioavailability. Sulforaphane inhibits the transformation of normal monocytes to MDSCs by glioma-conditioned media in vitro at pharmacologically relevant concentrations that are non-toxic to normal leukocytes. This is associated with a corresponding increase in mature dendritic cells. Interestingly, sulforaphane treatment had similar pro-inflammatory effects on normal monocytes in fresh media but specifically increased immature dendritic cells. Thus, we have used a simple in vitro model system to identify a novel contributor to glioblastoma immunosuppression for which a natural inhibitor exists that increases mature dendritic cell development at the expense of myeloid-derived suppressor cells when normal monocytes are exposed to glioma conditioned media.

  13. CD11b+Ly6G− myeloid cells mediate mechanical inflammatory pain hypersensitivity

    Science.gov (United States)

    Ghasemlou, Nader; Chiu, Isaac M.; Julien, Jean-Pierre; Woolf, Clifford J.

    2015-01-01

    Pain hypersensitivity at the site of inflammation as a result of chronic immune diseases, pathogenic infection, and tissue injury is a common medical condition. However, the specific contributions of the innate and adaptive immune system to the generation of pain during inflammation have not been systematically elucidated. We therefore set out to characterize the cellular and molecular immune response in two widely used preclinical models of inflammatory pain: (i) intraplantar injection of complete Freund’s adjuvant (CFA) as a model of adjuvant- and pathogen-based inflammation and (ii) a plantar incisional wound as a model of tissue injury-based inflammation. Our findings reveal differences in temporal patterns of immune cell recruitment and activation states, cytokine production, and pain in these two models, with CFA causing a nonresolving granulomatous inflammatory response whereas tissue incision induced resolving immune and pain responses. These findings highlight the significant differences and potential clinical relevance of the incisional wound model compared with the CFA model. By using various cell-depletion strategies, we find that, whereas lymphocyte antigen 6 complex locus G (Ly)6G+CD11b+ neutrophils and T-cell receptor (TCR) β+ T cells do not contribute to the development of thermal or mechanical pain hypersensitivity in either model, proliferating CD11b+Ly6G− myeloid cells were necessary for mechanical hypersensitivity during incisional pain, and, to a lesser extent, CFA-induced inflammation. However, inflammatory (CCR2+Ly6Chi) monocytes were not responsible for these effects. The finding that a population of proliferating CD11b+Ly6G− myeloid cells contribute to mechanical inflammatory pain provides a potential cellular target for its treatment in wound inflammation. PMID:26598697

  14. Elevated presence of myeloid dendritic cells in nasal polyps of patients with chronic rhinosinusitis

    Science.gov (United States)

    Poposki, Julie A.; Peterson, Sarah; Welch, Kate; Schleimer, Robert P.; Hulse, Kathryn E.; Peters, Anju T.; Norton, James; Suh, Lydia A.; Carter, Roderick; Harris, Kathleen E.; Grammer, Leslie C.; Tan, Bruce K.; Chandra, Rakesh K.; Conley, David B.; Kern, Robert C.; Kato, Atsushi

    2015-01-01

    Background Although chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by Th2 inflammation, the mechanism underlying the onset and amplification of this inflammation has not been fully elucidated. Dendritic cells (DCs) are major antigen presenting cells, central inducers of adaptive immunity and critical regulators of many inflammatory diseases. However, the presence of DCs in CRS, especially in nasal polyps (NPs), has not been extensively studied. Objective The objective of this study was to characterize DC subsets in CRS. Methods We used real-time PCR to assess the expression of mRNA for markers of myeloid DCs (mDCs; CD1c), plasmacytoid DCs (pDCs; CD303) and Langerhans cells (LCs; CD1a, CD207) in uncinate tissue (UT) from controls and patients with CRS as well as in NP. We assayed the presence of DCs by immunohistochemistry and flow cytometry. Results Compared to UT from control subjects (n=15) and patients with CRS without NP (CRSsNP) (n=16) and CRSwNP (n=17), mRNAs for CD1a and CD1c were significantly elevated in NPs (n=29). In contrast, CD207 mRNA was not elevated in NPs. Immunohistochemistry showed that CD1c+ cells but not CD303+ cells were significantly elevated in NPs compared to control subjects or patients with CRSsNP. Flow cytometric analysis showed that CD1a+ cells in NPs might be a subset of mDC1s, and that CD45+CD19-CD1c+CD11c+CD141-CD303-HLA-DR+ mDC1s and CD45+CD19-CD11c+CD1c-CD141high mDC2s were significantly elevated in NPs compared to UT from controls and CRSsNP, but CD45+CD11c-CD303+HLA-DR+ pDCs were only elevated in NPs compared to control UT. Conclusion & Clinical Relevance Myeloid DCs are elevated in CRSwNP, especially in NPs. Myeloid DCs thus may indirectly contribute to the inflammation observed in CRSwNP. PMID:25469646

  15. STAT3 expression by myeloid cells is detrimental for the T- cell-mediated control of infection with Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Yu Gao

    2018-01-01

    Full Text Available STAT3 is a master regulator of the immune responses. Here we show that M. tuberculosis-infected stat3fl/fl lysm cre mice, defective for STAT3 in myeloid cells, contained lower bacterial load in lungs and spleens, reduced granuloma extension but higher levels of pulmonary neutrophils. STAT3-deficient macrophages showed no improved control of intracellular mycobacterial growth. Instead, protection associated to elevated ability of stat3fl/fl lysm cre antigen-presenting cells (APCs to release IL-6 and IL-23 and to stimulate IL-17 secretion by mycobacteria-specific T cells. The increased IL-17 secretion accounted for the improved control of infection since neutralization of IL-17 receptor A in stat3fl/fl lysm cre mice hampered bacterial control. APCs lacking SOCS3, which inhibits STAT3 activation via several cytokine receptors, were poor inducers of priming and of the IL-17 production by mycobacteria-specific T cells. In agreement, socs3fl/fl cd11c cre mice deficient of SOCS3 in DCs showed increased susceptibility to M. tuberculosis infection. While STAT3 in APCs hampered IL-17 responses, STAT3 in mycobacteria-specific T cells was critical for IL-17 secretion, while SOCS3 in T cells impeded IL-17 secretion. Altogether, STAT3 signalling in myeloid cells is deleterious in the control of infection with M. tuberculosis.

  16. FcγRIIb on myeloid cells rather than on B cells protects from collagen-induced arthritis.

    Science.gov (United States)

    Yilmaz-Elis, A Seda; Ramirez, Javier Martin; Asmawidjaja, Patrick; van der Kaa, Jos; Mus, Anne-Marie; Brem, Maarten D; Claassens, Jill W C; Breukel, Cor; Brouwers, Conny; Mangsbo, Sara M; Boross, Peter; Lubberts, Erik; Verbeek, J Sjef

    2014-06-15

    Extensive analysis of a variety of arthritis models in germline KO mice has revealed that all four receptors for the Fc part of IgG (FcγR) play a role in the disease process. However, their precise cell type-specific contribution is still unclear. In this study, we analyzed the specific role of the inhibiting FcγRIIb on B lymphocytes (using CD19Cre mice) and in the myeloid cell compartment (using C/EBPαCre mice) in the development of arthritis induced by immunization with either bovine or chicken collagen type II. Despite their comparable anti-mouse collagen autoantibody titers, full FcγRIIb knockout (KO), but not B cell-specific FcγRIIb KO, mice showed a significantly increased incidence and severity of disease compared with wild-type control mice when immunized with bovine collagen. When immunized with chicken collagen, disease incidence was significantly increased in pan-myeloid and full FcγRIIb KO mice, but not in B cell-specific KO mice, whereas disease severity was only significantly increased in full FcγRIIb KO mice compared with incidence and severity in wild-type control mice. We conclude that, although anti-mouse collagen autoantibodies are a prerequisite for the development of collagen-induced arthritis, their presence is insufficient for disease development. FcγRIIb on myeloid effector cells, as a modulator of the threshold for downstream Ab effector pathways, plays a dominant role in the susceptibility to collagen-induced arthritis, whereas FcγRIIb on B cells, as a regulator of Ab production, has a minor effect on disease susceptibility. Copyright © 2014 by The American Association of Immunologists, Inc.

  17. Radotinib induces high cytotoxicity in c-KIT positive acute myeloid leukemia cells.

    Science.gov (United States)

    Heo, Sook-Kyoung; Noh, Eui-Kyu; Kim, Jeong Yi; Jo, Jae-Cheol; Choi, Yunsuk; Koh, SuJin; Baek, Jin Ho; Min, Young Joo; Kim, Hawk

    2017-06-05

    Previously, we reported that radotinib, a BCR-ABL1 tyrosine kinase inhibitor, induced cytotoxicity in acute myeloid leukemia (AML) cells. However, the effects of radotinib in the subpopulation of c-KIT-positive AML cells were unclear. We observed that low-concentration radotinib had more potent cytotoxicity in c-KIT-positive cells than c-KIT-negative cells from AML patients. To address this issue, cell lines with high c-KIT expression, HEL92.1.7, and moderate c-KIT expression, H209, were selected. HEL92.1.7 cells were grouped into intermediate and high c-KIT expression populations. The cytotoxicity of radotinib against the HEL92.1.7 cell population with intermediate c-KIT expression was not different from that of the population with high c-KIT expression. When H209 cells were grouped into c-KIT expression-negative and c-KIT expression-positive populations, radotinib induced cytotoxicity in the c-KIT-positive population, but not the c-KIT-negative population. Thus, radotinib induces cytotoxicity in c-KIT-positive cells, regardless of the c-KIT expression intensity. Therefore, radotinib induces significant cytotoxicity in c-KIT-positive AML cells, suggesting that radotinib is a potential target agent for the treatment of c-KIT-positive malignancies including AML. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Restoration of TLR3-activated myeloid dendritic cell activity leads to improved natural killer cell function in chronic hepatitis B virus infection

    NARCIS (Netherlands)

    E.T.T.L. Tjwa (Eric); G.W. van Oord (Gertine); P.J. Biesta (Paula); P.A. Boonstra (André); H.L.A. Janssen (Harry); A.M. Woltman (Andrea)

    2012-01-01

    textabstractThere is increasing evidence that the function of NK cells in patients with chronic hepatitis B (CHB) infection is impaired. The underlying mechanism for the impaired NK cell function is still unknown. Since myeloid dendritic cells (mDC) are potent inducers of NK cells, we investigated

  19. Reduced hematopoietic stem cell frequency predicts outcome in acute myeloid leukemia

    Science.gov (United States)

    Wang, Wenwen; Stiehl, Thomas; Raffel, Simon; Hoang, Van T.; Hoffmann, Isabel; Poisa-Beiro, Laura; Saeed, Borhan R.; Blume, Rachel; Manta, Linda; Eckstein, Volker; Bochtler, Tilmann; Wuchter, Patrick; Essers, Marieke; Jauch, Anna; Trumpp, Andreas; Marciniak-Czochra, Anna; Ho, Anthony D.; Lutz, Christoph

    2017-01-01

    In patients with acute myeloid leukemia and low percentages of aldehyde-dehydrogenase-positive cells, non-leukemic hematopoietic stem cells can be separated from leukemic cells. By relating hematopoietic stem cell frequencies to outcome we detected poor overall- and disease-free survival of patients with low hematopoietic stem cell frequencies. Serial analysis of matched diagnostic and follow-up samples further demonstrated that hematopoietic stem cells increased after chemotherapy in patients who achieved durable remissions. However, in patients who eventually relapsed, hematopoietic stem cell numbers decreased dramatically at the time of molecular relapse demonstrating that hematopoietic stem cell levels represent an indirect marker of minimal residual disease, which heralds leukemic relapse. Upon transplantation in immune-deficient mice cases with low percentages of hematopoietic stem cells of our cohort gave rise to leukemic or no engraftment, whereas cases with normal hematopoietic stem cell levels mostly resulted in multi-lineage engraftment. Based on our experimental data, we propose that leukemic stem cells have increased niche affinity in cases with low percentages of hematopoietic stem cells. To validate this hypothesis, we developed new mathematical models describing the dynamics of healthy and leukemic cells under different regulatory scenarios. These models suggest that the mechanism leading to decreases in hematopoietic stem cell frequencies before leukemic relapse must be based on expansion of leukemic stem cells with high niche affinity and the ability to dislodge hematopoietic stem cells. Thus, our data suggest that decreasing numbers of hematopoietic stem cells indicate leukemic stem cell persistence and the emergence of leukemic relapse. PMID:28550184

  20. Retroviruses As Myeloid Cell Riders: What Natural Human Siglec-1 “Knockouts” Tell Us About Pathogenesis

    Directory of Open Access Journals (Sweden)

    Javier Martinez-Picado

    2017-11-01

    Full Text Available Myeloid cells initiate immune responses and are crucial to control infections. In the case of retroviruses, however, myeloid cells also promote pathogenesis by enabling viral dissemination; a process extensively studied in vitro using human immunodeficiency virus type 1 (HIV-1. This viral hijacking mechanism does not rely on productive myeloid cell infection but requires HIV-1 capture via Siglec-1/CD169, a receptor expressed on myeloid cells that facilitates the infection of bystander target cells. Murine retroviruses are also recognized by Siglec-1, and this interaction is required for robust retroviral infection in vivo. Yet, the relative contribution of Siglec-1-mediated viral dissemination to HIV-1 disease progression remains unclear. The identification of human null individuals lacking working copies of a particular gene enables studying how this loss affects disease progression. Moreover, it can reveal novel antiviral targets whose blockade might be therapeutically effective and safe, since finding null individuals in natura uncovers dispensable functions. We previously described a loss-of-function variant in SIGLEC-1. Analysis of a large cohort of HIV-1-infected individuals identified homozygous and heterozygous subjects, whose cells were functionally null or partially defective for Siglec-1 activity in HIV-1 capture and transmission ex vivo. Nonetheless, analysis of the effect of Siglec-1 truncation on progression to AIDS was not conclusive due to the limited cohort size, the lack of complete clinical records, and the restriction to study only off-therapy periods. Here, we review how the study of loss-of-function variants might serve to illuminate the role of myeloid cells in viral pathogenesis in vivo and the challenges ahead.

  1. Loss of C/EBP alpha cell cycle control increases myeloid progenitor proliferation and transforms the neutrophil granulocyte lineage

    DEFF Research Database (Denmark)

    Porse, Bo T; Bryder, David; Theilgaard-Mönch, Kim

    2005-01-01

    dissociate the ability of C/EBP alpha to block cell cycle progression through E2F inhibition from its function as a transcriptional activator impair the in vivo development of the neutrophil granulocyte and adipose lineages. We now show that such mutations increase the capacity of bone marrow (BM) myeloid...... progenitors to proliferate, and predispose mice to a granulocytic myeloproliferative disorder and transformation of the myeloid compartment of the BM. Both of these phenotypes were transplantable into lethally irradiated recipients. BM transformation was characterized by a block in granulocyte differentiation...

  2. FcγRIIa cross-talk with TLRs, IL-1R, and IFNγR selectively modulates cytokine production in human myeloid cells

    NARCIS (Netherlands)

    Vogelpoel, Lisa T. C.; Hansen, Ivo S.; Visser, Marijke W.; Nagelkerke, Sietse Q.; Kuijpers, Taco W.; Kapsenberg, Martien L.; de Jong, Esther C.; den Dunnen, Jeroen

    2015-01-01

    Myeloid antigen-presenting cells (APCs) tailor immune responses to the pathogen involved through the production of specific pro- and anti-inflammatory cytokines. It is becoming increasingly clear that the ultimate cytokine profile produced by myeloid APCs crucially depends on interaction between

  3. Myeloid-derived suppressor cells mediate immune suppression in spinal cord injury.

    Science.gov (United States)

    Wang, Lei; Yu, Wei-bo; Tao, Lian-yuan; Xu, Qing

    2016-01-15

    Spinal cord injury (SCI) is characterized by the loss of motor and sensory functions in areas below the level of the lesion and numerous accompanying deficits. Previous studies have suggested that myeloid-derived suppressor cell (MDSC)-induced immune depression may play a pivotal role in the course of SCI. However, the concrete mechanism of these changes regarding immune suppression remains unknown. Here, we created an SCI mouse model to gain further evidence regarding the relationship between MDSCs following SCI and T lymphocyte suppression. We showed that in the SCI mouse model, the expanding MDSCs have the capacity to suppress T cell proliferation, and this suppression could be reversed by blocking the arginase. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. DACH1 regulates cell cycle progression of myeloid cells through the control of cyclin D, Cdk 4/6 and p21{sup Cip1}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Woong; Kim, Hyeng-Soo; Kim, Seonggon; Hwang, Junmo; Kim, Young Hun; Lim, Ga Young [School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Sohn, Wern-Joo [Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu 700-412 (Korea, Republic of); Yoon, Suk-Ran [Cell Therapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Kim, Jae-Young [Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu 700-412 (Korea, Republic of); Park, Tae Sung [Department of Laboratory Medicine, Kyung Hee University School of Medicine, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-702 (Korea, Republic of); Park, Kwon Moo [Department of Anatomy, Kyungpook National University School of Medicine, Daegu 700-422 (Korea, Republic of); Ryoo, Zae Young [School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Lee, Sanggyu, E-mail: slee@knu.ac.kr [School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer DACH1 increases cyclin D, F and Cdk 1, 4, 6 in mouse myeloid progenitor cells. Black-Right-Pointing-Pointer The knockdown of DACH1 blocked the cell cycle progression of HL-60 cells. Black-Right-Pointing-Pointer The novel effect of DACH1 related with cell cycle regulation and leukemogenesis. -- Abstract: The cell-fate determination factor Dachshund, a component of the Retinal Determination Gene Network (RDGN), has a role in breast tumor proliferation through the repression of cyclin D1 and several key regulators of embryonic stem cell function, such as Nanog and Sox2. However, little is known about the role of DACH1 in a myeloid lineage as a cell cycle regulator. Here, we identified the differential expression levels of extensive cell cycle regulators controlled by DACH1 in myeloid progenitor cells. The forced expression of DACH1 induced p27{sup Kip1} and repressed p21{sup Cip1}, which is a pivotal characteristic of the myeloid progenitor. Furthermore, DACH1 significantly increased the expression of cyclin D1, D3, F, and Cdk 1, 4, and 6 in myeloid progenitor cells. The knockdown of DACH1 blocked the cell cycle progression of HL-60 promyeloblastic cells through the decrease of cyclin D1, D3, F, and Cdk 1, 4, and 6 and increase in p21{sup Cip1}, which in turn decreased the phosphorylation of the Rb protein. The expression of Sox2, Oct4, and Klf4 was significantly up-regulated by the forced expression of DACH1 in mouse myeloid progenitor cells.

  5. Effects of stem cell factor on hypoxia-inducible factor 1 alpha accumulation in human acute myeloid leukaemia and LAD2 mast cells.

    Directory of Open Access Journals (Sweden)

    Bernhard F Gibbs

    Full Text Available Stem cell factor (SCF is a hematopoietic growth factor that exerts its activity by signalling through the tyrosine kinase receptor known as Kit or CD117. SCF-Kit signalling is crucial for the survival, proliferation and differentiation of hematopoietic cells of myeloid lineage. Furthermore, since myeloid leukaemia cells express the Kit receptor, SCF may play an important role in myeloid leukaemia progression too. However, the mechanisms of this pathophysiological effect remain unclear. Recent evidence shows that SCF triggers accumulation of the inducible alpha subunit of hypoxia-inducible factor 1 (HIF-1 in hematopoietic cells--a transcription complex that plays a pivotal role in cellular adaptation to low oxygen availability. However, it is unknown how SCF impacts on HIF-1α accumulation in human myeloid leukaemia and mast cells. Here we show that SCF induces HIF-1α accumulation in THP-1 human myeloid leukaemia cells but not in LAD2 mast cells. We demonstrated that LAD2 cells have a more robust glutathione (GSH-dependent antioxidative system compared to THP-1 cells and are therefore protected against the actions of ROS generated in an SCF-dependent manner. BSO-induced GSH depletion led to a significant decrease in HIF-1α prolyl hydroxylase (PHD activity in THP-1 cells and to near attenuation of it in LAD2 cells. In THP-1 cells, SCF-induced HIF-1α accumulation is controlled via ERK, PI3 kinase/PKC-δ/mTOR-dependent and to a certain extent by redox-dependent mechanisms. These results demonstrate for the first time an important cross-talk of signalling pathways associated with HIF-1 activation--an important stage of the myeloid leukaemia cell life cycle.

  6. Distinct protein signatures of acute myeloid leukemia bone marrow-derived stromal cells are prognostic for patient survival.

    Science.gov (United States)

    Kornblau, Steven M; Ruvolo, Peter P; Wang, Rui-Yu; Battula, V Lokesh; Shpall, Elisabeth J; Ruvolo, Vivian R; McQueen, Teresa; Qui, YiHua; Zeng, Zhihong; Pierce, Sherry; Jacamo, Rodrigo; Yoo, Suk-Young; Le, Phuong M; Sun, Jeffery; Hail, Numsen; Konopleva, Marina; Andreeff, Michael

    2018-03-15

    Mesenchymal stromal cells support acute myeloid leukemia cell survival in the bone marrow microenvironment. Protein expression profiles of acute myeloid leukemia-derived mesenchymal stromal cells are unknown. Reverse phase protein array analysis was performed to compare expression of 151 proteins from acute myeloid leukemia mesenchymal stromal cells (n = 106) with mesenchymal stromal cells from healthy donors (n = 71). Protein expression differed significantly between the two groups with nineteen proteins overexpressed in leukemia stromal cells and nine overexpressed in normal stromal cells. Unbiased hierarchical clustering analysis of the samples using these twenty-eight proteins revealed three protein constellations whose variation in expression defined four mesenchymal stromal cells protein expression signatures: Class 1, Class 2, Class 3, and Class 4. These cells populations appear to have clinical relevance. Specifically, patients with Class 3 cells have longer survival and remission duration compared to other groups. Comparison of leukemia mesenchymal stromal cells at first diagnosis with those obtained at salvage (i.e., relapse/refractory) showed differential expression of nine proteins reflecting a shift toward osteogenic differentiation. Leukemia mesenchymal stromal cells are more senescent compared to their normal counterparts, possibly due to the over expressed p53/p21 axis as confirmed by high β-galactosidase staining. In addition, over expression of BCL-XL in leukemia mesenchymal stromal cells might accord survival advantage under conditions of senescence or stress and over-expressed galectin-3 exerts profound immunosuppression. Together, our findings suggest that the identification of specific populations of mesenchymal stromal cells in acute myeloid leukemia patients may be an important determinant of therapeutic response. Copyright © 2018, Ferrata Storti Foundation.

  7. The histone deacetylase inhibitor valproic acid potently augments gemtuzumab ozogamicin-induced apoptosis in acute myeloid leukemic cells

    NARCIS (Netherlands)

    ten Cate, B.; Samplonius, D. F.; Bijma, T.; de Leij, L. F. M. H.; Helfrich, W.; Bremer, E.

    Gemtuzumab ozogamicin ( GO) is a calicheamicin-conjugated antibody directed against CD33, an antigen highly expressed on acute myeloid leukemic (AML) cells. CD33-specific binding triggers internalization of GO and subsequent hydrolytic release of calicheamicin. Calicheamicin then translocates to the

  8. The Role of Myeloid-Derived Suppressor Cells in the Immunotherapy of HER2/neu-Positive Breast Carcinomas

    Science.gov (United States)

    2009-10-01

    applications beyond cancer immunotherapy, since increased MDSC have also been seen in some para- sitic infections such as Trypanosoma cruzi [17] and in cases...during acute Trypanosoma cruzi infection: involvement of Ly6G (Gr1(+))CD11b(+)immature myeloid suppressor cells. Int Immu- nol 14(10):1125–1134 18. Guy

  9. Tet2 facilitates the derepression of myeloid target genes during CEBPα-induced transdifferentiation of pre-B cells

    DEFF Research Database (Denmark)

    Kallin, Eric M; Rodríguez-Ubreva, Javier; Christensen, Jesper Aagaard

    2012-01-01

    The methylcytosine hydroxylase Tet2 has been implicated in hematopoietic differentiation and the formation of myeloid malignancies when mutated. An ideal system to study the role of Tet2 in myelopoeisis is CEBPα-induced transdifferentiation of pre-B cells into macrophages. Here we found that CEBP...

  10. l-Asparaginase-mediated downregulation of c-Myc promotes 1,25(OH)2 D3 -induced myeloid differentiation in acute myeloid leukemia cells.

    Science.gov (United States)

    Song, Ju Han; Park, Eunchong; Kim, Myun Soo; Cho, Kyung-Min; Park, Su-Ho; Lee, Arim; Song, Jiseon; Kim, Hyeoung-Joon; Koh, Jeong-Tae; Kim, Tae Sung

    2017-05-15

    Treatment of acute myeloid leukemia (AML) largely depends on chemotherapy, but current regimens have been unsatisfactory for long-term remission. Although differentiation induction therapy utilizing 1,25(OH) 2 D 3 (VD3) has shown great promise for the improvement of AML treatment efficacy, severe side effects caused by its supraphysiological dose limit its clinical application. Here we investigated the combinatorial effect of l-asparaginase (ASNase)-mediated amino acid depletion and the latent alternation of VD3 activity on the induction of myeloid differentiation. ASNase treatment enhanced VD3-driven phenotypic and functional differentiation of three-different AML cell lines into monocyte/macrophages, along with c-Myc downregulation. Using gene silencing with shRNA and a chemical blocker, we found that reduced c-Myc is a critical factor for improving VD3 efficacy. c-Myc-dependent inhibition of mTORC1 signaling and induction of autophagy were involved in the enhanced AML cell differentiation. In addition, in a postculture of AML cells after each treatment, ASNase supports the antileukemic effect of VD3 by inhibiting cell growth and inducing apoptosis. Finally, we confirmed that the administration of ASNase significantly improved VD3 efficacy in the prolongation of survival time in mice bearing tumor xenograft. Our results are the first to demonstrate the extended application of ASNase, which is currently used for acute lymphoid leukemia, in VD3-mediated differentiation induction therapy for AML, and suggest that this drug combination may be a promising novel strategy for curing AML. © 2017 UICC.

  11. Screening microarrays of novel monoclonal antibodies for binding to T-, B- and myeloid leukaemia cells.

    Science.gov (United States)

    Belov, Larissa; Huang, Pauline; Chrisp, Jeremy S; Mulligan, Stephen P; Christopherson, Richard I

    2005-10-20

    We have developed a microarray (DotScan) that enables rapid immunophenotyping and classification of leukaemias and lymphomas by measuring the capture of cells by immobilized dots of 82 CD antibodies [Belov, L., de la Vega, O., dos Remedios, C.G., Mulligan, S.P., 2001. Immunophenotyping of leukemia using a cluster of differentiation antibody microarray. Cancer Res. 61, 4483; Belov, L., Huang, P., Barber, N., Mulligan, S.P., Christopherson, R.I., 2003. Identification of repertoires of surface antigens on leukemias using an antibody microarray. Proteomics 3, 2147]. The DotScan technology has been used to investigate the properties of 498 new antibodies submitted to the HLDA8 Workshop. These antibodies have been applied as 10 nl dots to a film of nitrocellulose on a microscope slide to make an HLDA8 microarray. After blocking the remaining nitrocellulose surface, individual arrays were incubated with each of 7 cell types from a human leukaemia cell panel consisting of three cell lines, CCRF-CEM (a T-cell acute lymphocytic leukaemia), MEC-1 (derived from B-cell chronic lymphocytic leukaemia) and HL-60 (a promyelocytic leukaemia), and four leukaemias from patients: a T-cell prolymphocytic leukaemia, a B-cell chronic lymphocytic leukaemia, and two acute myeloid leukaemias. Leukaemia cells were captured by those immobilized antibodies for which they expressed the corresponding surface molecule. Unbound cells were gently washed off, bound cells were fixed to the arrays and dot patterns were recorded using a DotScan array reader and quantified using DotScan data analysis software. The data obtained show the unique expression profiles of the 7 cell types in the leukaemia cell panel obtained with the DotScan microarray, and the differential capture patterns for these 7 cell types screened against the 498 antibodies in the HLDA8 microarray constructed for this study.

  12. Synergistic interaction of Smac mimetic and IFNα to trigger apoptosis in acute myeloid leukemia cells.

    Science.gov (United States)

    Bake, Vanessa; Roesler, Stefanie; Eckhardt, Ines; Belz, Katharina; Fulda, Simone

    2014-12-28

    Therapeutic targeting of inhibitor of apoptosis (IAP) proteins by small-molecule inhibitors such as Smac mimetic is considered as a promising anticancer strategy to elicit apoptosis. Recent advances have renewed the interest in exploiting the antileukemic activity of interferon (IFN)α for the treatment of acute myeloid leukemia (AML). Here, we identify a novel synergistic interaction of the Smac mimetic BV6 and IFNα to trigger cell death in AML cells. Calculation of combination index (CI) confirms the synergism of BV6 and IFNα. In contrast to AML cells, no synergistic toxicity of BV6 and IFNα at equimolar concentrations is found against normal peripheral blood lymphocytes. BV6 and IFNα act in concert to stimulate expression of tumor necrosis factor (TNF)α and its secretion into the supernatant, thereby initiating an autocrine/paracrine TNFα/TNF receptor 1 (TNFR1) loop that drives cell death by BV6 and IFNα. Consistently, pharmacological inhibition of TNFα by the TNFα-blocking antibody Enbrel or genetic silencing of TNFR1 significantly reduces BV6/IFNα-induced cell death. In addition, BV6/IFNα-induced cell death depends on interferon regulatory factor (IRF)1, since RNA interference-imposed knockdown of IRF1 significantly rescues cell death. In conclusion, the identification of a novel synergistic antileukemic combination of Smac mimetic and IFNα has important implications for the development of innovative treatment strategies in AML. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. HLA-G expression on blasts and tolerogenic cells in patients affected by acute myeloid leukemia.

    Science.gov (United States)

    Locafaro, Grazia; Amodio, Giada; Tomasoni, Daniela; Tresoldi, Cristina; Ciceri, Fabio; Gregori, Silvia

    2014-01-01

    Human Leukocyte Antigen-G (HLA-G) contributes to cancer cell immune escape from host antitumor responses. The clinical relevance of HLA-G in several malignancies has been reported. However, the role of HLA-G expression and functions in Acute Myeloid Leukemia (AML) is still controversial. Our group identified a subset of tolerogenic dendritic cells, DC-10 that express HLA-G and secrete IL-10. DC-10 are present in the peripheral blood and are essential in promoting and maintaining tolerance via the induction of adaptive T regulatory (Treg) cells. We investigated HLA-G expression on blasts and the presence of HLA-G-expressing DC-10 and CD4(+) T cells in the peripheral blood of AML patients at diagnosis. Moreover, we explored the possible influence of the 3' untranslated region (3'UTR) of HLA-G, which has been associated with HLA-G expression, on AML susceptibility. Results showed that HLA-G-expressing DC-10 and CD4(+) T cells are highly represented in AML patients with HLA-G positive blasts. None of the HLA-G variation sites evaluated was associated with AML susceptibility. This is the first report describing HLA-G-expressing DC-10 and CD4(+) T cells in AML patients, suggesting that they may represent a strategy by which leukemic cells escape the host's immune system. Further studies on larger populations are required to verify our findings.

  14. HLA-G Expression on Blasts and Tolerogenic Cells in Patients Affected by Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Grazia Locafaro

    2014-01-01

    Full Text Available Human Leukocyte Antigen-G (HLA-G contributes to cancer cell immune escape from host antitumor responses. The clinical relevance of HLA-G in several malignancies has been reported. However, the role of HLA-G expression and functions in Acute Myeloid Leukemia (AML is still controversial. Our group identified a subset of tolerogenic dendritic cells, DC-10 that express HLA-G and secrete IL-10. DC-10 are present in the peripheral blood and are essential in promoting and maintaining tolerance via the induction of adaptive T regulatory (Treg cells. We investigated HLA-G expression on blasts and the presence of HLA-G-expressing DC-10 and CD4+ T cells in the peripheral blood of AML patients at diagnosis. Moreover, we explored the possible influence of the 3′ untranslated region (3′UTR of HLA-G, which has been associated with HLA-G expression, on AML susceptibility. Results showed that HLA-G-expressing DC-10 and CD4+ T cells are highly represented in AML patients with HLA-G positive blasts. None of the HLA-G variation sites evaluated was associated with AML susceptibility. This is the first report describing HLA-G-expressing DC-10 and CD4+ T cells in AML patients, suggesting that they may represent a strategy by which leukemic cells escape the host’s immune system. Further studies on larger populations are required to verify our findings.

  15. Spred2 is involved in imatinib-induced cytotoxicity in chronic myeloid leukemia cells

    International Nuclear Information System (INIS)

    Liu, Xiao-Yun; Yang, Yue-Feng; Wu, Chu-Tse; Xiao, Feng-Jun; Zhang, Qun-Wei; Ma, Xiao-Ni; Li, Qing-Fang; Yan, Jun; Wang, Hua; Wang, Li-Sheng

    2010-01-01

    Spreds, a recently established class of negative regulators of the Ras-ERK (extracellular signal-regulated kinase) pathway, are involved in hematogenesises, allergic disorders and tumourigenesis. However, their role in hematologic neoplasms is largely unknown. Possible effects of Spreds on other signal pathways closely related to Ras-ERK have been poorly investigated. In this study, we investigated the in vitro effects of Spred2 on chronic myeloid leukemia (CML) cells. In addition to inhibiting the well-established Ras-ERK cascade, adenovirus-mediated Spred2 over-expression inhibits constitutive and stem cell factor (SCF)-stimulated sphingosine kinase-1 (SPHK1) and Mcl-1 expression, as well as inhibiting proliferation and inducing apoptosis in CML cells. In K562 cells and primary CML cells, imatinib induces endogenous Spred2 expression. Spred2 silencing by stable RNA interference partly protects K562 cells against imatinib-induced apoptosis. Together, these data implicate Spred2 in imatinib-induced cytotoxicity in CML cells, possibly by inhibiting the Ras-ERK cascade and the pro-survival signaling molecules SPHK1 and Mcl-1. These findings reveal potential targets for selective therapy of CML.

  16. Spred2 is involved in imatinib-induced cytotoxicity in chronic myeloid leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiao-Yun; Yang, Yue-Feng; Wu, Chu-Tse; Xiao, Feng-Jun; Zhang, Qun-Wei [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Ma, Xiao-Ni [Lanzhou University of Technology, Lanzhou 730050 (China); Li, Qing-Fang; Yan, Jun [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Wang, Hua, E-mail: wanghualjh@gmail.com [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Wang, Li-Sheng, E-mail: wangls@nic.bmi.ac.cn [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China)

    2010-03-19

    Spreds, a recently established class of negative regulators of the Ras-ERK (extracellular signal-regulated kinase) pathway, are involved in hematogenesises, allergic disorders and tumourigenesis. However, their role in hematologic neoplasms is largely unknown. Possible effects of Spreds on other signal pathways closely related to Ras-ERK have been poorly investigated. In this study, we investigated the in vitro effects of Spred2 on chronic myeloid leukemia (CML) cells. In addition to inhibiting the well-established Ras-ERK cascade, adenovirus-mediated Spred2 over-expression inhibits constitutive and stem cell factor (SCF)-stimulated sphingosine kinase-1 (SPHK1) and Mcl-1 expression, as well as inhibiting proliferation and inducing apoptosis in CML cells. In K562 cells and primary CML cells, imatinib induces endogenous Spred2 expression. Spred2 silencing by stable RNA interference partly protects K562 cells against imatinib-induced apoptosis. Together, these data implicate Spred2 in imatinib-induced cytotoxicity in CML cells, possibly by inhibiting the Ras-ERK cascade and the pro-survival signaling molecules SPHK1 and Mcl-1. These findings reveal potential targets for selective therapy of CML.

  17. NK-, NKT- and CD8-Derived IFNγ Drives Myeloid Cell Activation and Erythrophagocytosis, Resulting in Trypanosomosis-Associated Acute Anemia.

    Directory of Open Access Journals (Sweden)

    Jennifer Cnops

    2015-06-01

    Full Text Available African trypanosomes are the causative agents of Human African Trypanosomosis (HAT/Sleeping Sickness and Animal African Trypanosomosis (AAT/Nagana. A common hallmark of African trypanosome infections is inflammation. In murine trypanosomosis, the onset of inflammation occurs rapidly after infection and is manifested by an influx of myeloid cells in both liver and spleen, accompanied by a burst of serum pro-inflammatory cytokines. Within 48 hours after reaching peak parasitemia, acute anemia develops and the percentage of red blood cells drops by 50%. Using a newly developed in vivo erythrophagocytosis assay, we recently demonstrated that activated cells of the myeloid phagocytic system display enhanced erythrophagocytosis causing acute anemia. Here, we aimed to elucidate the mechanism and immune pathway behind this phenomenon in a murine model for trypanosomosis. Results indicate that IFNγ plays a crucial role in the recruitment and activation of erythrophagocytic myeloid cells, as mice lacking the IFNγ receptor were partially protected against trypanosomosis-associated inflammation and acute anemia. NK and NKT cells were the earliest source of IFNγ during T. b. brucei infection. Later in infection, CD8+ and to a lesser extent CD4+ T cells become the main IFNγ producers. Cell depletion and transfer experiments indicated that during infection the absence of NK, NKT and CD8+ T cells, but not CD4+ T cells, resulted in a reduced anemic phenotype similar to trypanosome infected IFNγR-/- mice. Collectively, this study shows that NK, NKT and CD8+ T cell-derived IFNγ is a critical mediator in trypanosomosis-associated pathology, driving enhanced erythrophagocytosis by myeloid phagocytic cells and the induction of acute inflammation-associated anemia.

  18. Radiation-induced chromosome aberrations in bone marrow cells leading to acute myeloid leukemia in mouse

    International Nuclear Information System (INIS)

    Nobuhiko Ban; Tomoko Kusama

    1996-01-01

    It is well known that radiation-induced acute myeloid leukemia (RI-AML) in mice is charaterized by deletion and/or rearrangement of chromosome 2. While chromosome 2 has been suspected to be a target of RI-AML, radiation-sensitive site of the chromosome might be implicated in the leukemogenesis. There were few cytogenetical studies, however, focusing on chromosomal rearrangements shortly after irradiation, and little was known about the frequency and pattern of chromosome 2 aberrations during the early period. In this study, metaphase samples were prepared from whole-body irradiated mice 24 hours after irradiation, most of the cells considered to be in the first mitotic stage. Distribution of chromosomal breakpoints on the metaphase samples were analyzed to study the relationship between chromosome aberrations and RI-AML. (author)

  19. Myeloid clusters are associated with a pro-metastatic environment and poor prognosis in smoking-related early stage non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Wang Zhang

    Full Text Available This study aimed to understand the role of myeloid cell clusters in uninvolved regional lymph nodes from early stage non-small cell lung cancer patients.Uninvolved regional lymph node sections from 67 patients with stage I-III resected non-small cell lung cancer were immunostained to detect myeloid clusters, STAT3 activity and occult metastasis. Anthracosis intensity, myeloid cluster infiltration associated with anthracosis and pSTAT3 level were scored and correlated with patient survival. Multivariate Cox regression analysis was performed with prognostic variables. Human macrophages were used for in vitro nicotine treatment.CD68+ myeloid clusters associated with anthracosis and with an immunosuppressive and metastasis-promoting phenotype and elevated overall STAT3 activity were observed in uninvolved lymph nodes. In patients with a smoking history, myeloid cluster score significantly correlated with anthracosis intensity and pSTAT3 level (P<0.01. Nicotine activated STAT3 in macrophages in long-term culture. CD68+ myeloid clusters correlated and colocalized with occult metastasis. Myeloid cluster score was an independent prognostic factor (P = 0.049 and was associated with survival by Kaplan-Maier estimate in patients with a history of smoking (P = 0.055. The combination of myeloid cluster score with either lymph node stage or pSTAT3 level defined two populations with a significant difference in survival (P = 0.024 and P = 0.004, respectively.Myeloid clusters facilitate a pro-metastatic microenvironment in uninvolved regional lymph nodes and associate with occult metastasis in early stage non-small cell lung cancer. Myeloid cluster score is an independent prognostic factor for survival in patients with a history of smoking, and may present a novel method to inform therapy choices in the adjuvant setting. Further validation studies are warranted.

  20. MYC oncogene in myeloid neoplasias.

    Science.gov (United States)

    Delgado, M Dolores; Albajar, Marta; Gomez-Casares, M Teresa; Batlle, Ana; León, Javier

    2013-02-01

    MYC is a transcription factor that regulates many critical genes for cell proliferation, differentiation, and biomass accumulation. MYC is one of the most prevalent oncogenes found to be altered in human cancer, being deregulated in about 50 % of tumors. Although MYC deregulation has been more frequently associated to lymphoma and lymphoblastic leukemia than to myeloid malignancies, a body of evidence has been gathered showing that MYC plays a relevant role in malignancies derived from the myeloid compartment. The myeloid leukemogenic activity of MYC has been demonstrated in different murine models. Not surprisingly, MYC has been found to be amplified or/and deregulated in the three major types of myeloid neoplasms: acute myeloid leukemia, myelodysplastic syndromes, and myeloproliferative neoplasms, including chronic myeloid leukemia. Here, we review the recent literature describing the involvement of MYC in myeloid tumors.

  1. Molecular analysis of the apoptotic effects of BPA in acute myeloid leukemia cells

    Directory of Open Access Journals (Sweden)

    Del Pozzo Giovanna

    2009-06-01

    Full Text Available Abstract Background: BPA (bisphenol A or 2,2-bis(4-hydroxy-phenolpropane is present in the manufacture of polycarbonate plastic and epoxy resins, which can be used in impact-resistant safety equipment and baby bottles, as protective coatings inside metal food containers, and as composites and sealants in dentistry. Recently, attention has focused on the estrogen-like and carcinogenic adverse effects of BPA. Thus, it is necessary to investigate the cytotoxicity and apoptosis-inducing activity of this compound. Methods: Cell cycle, apoptosis and differentiation analyses; western blots. Results: BPA is able to induce cell cycle arrest and apoptosis in three different acute myeloid leukemias. Although some granulocytic differentiation concomitantly occurred in NB4 cells upon BPA treatment, the major action was the induction of apoptosis. BPA mediated apoptosis was caspase dependent and occurred by activation of extrinsic and intrinsic cell death pathways modulating both FAS and TRAIL and by inducing BAD phosphorylation in NB4 cells. Finally, also non genomic actions such as the early decrease of both ERK and AKT phosphorylation were induced by BPA thus indicating that a complex intersection of regulations occur for the apoptotic action of BPA. Conclusion: BPA is able to induce apoptosis in leukemia cells via caspase activation and involvement of both intrinsic and extrinsic pathways of apoptosis.

  2. Cytomegalovirus induces HLA-class-II-restricted alloreactivity in an acute myeloid leukemia cell line.

    Directory of Open Access Journals (Sweden)

    Michael Koldehoff

    Full Text Available Cytomegalovirus (HCMV reactivation is found frequently after allogeneic hematopoietic stem cell transplantation (alloSCT and is associated with an increased treatment-related mortality. Recent reports suggest a link between HCMV and a reduced risk of cancer progression in patients with acute leukemia or lymphoma after alloSCT. Here we show that HCMV can inhibit the proliferation of the acute myeloid leukemia cell line Kasumi-1 and the promyeloid leukemia cell line NB4. HCMV induced a significant up-regulation of HLA-class-II-molecules, especially HLA-DR expression and an increase of apoptosis, granzyme B, perforin and IFN-γ secretion in Kasumi-1 cells cocultured with peripheral blood mononuclear cells (PBMCs. Indolamin-2,3-dioxygenase on the other hand led only to a significant dose-dependent effect on IFN-γ secretion without effects on proliferation. The addition of CpG-rich oligonucleotides and ganciclovir reversed those antiproliferative effects. We conclude that HCMV can enhance alloreactivity of PBMCs against Kasumi-1 and NB4 cells in vitro. To determine if this phenomenon may be clinically relevant further investigations will be required.

  3. Hepatic Ischemia and Reperfusion Injury in the Absence of Myeloid Cell-Derived COX-2 in Mice

    Science.gov (United States)

    Duarte, Sergio; Kato, Hiroyuki; Kuriyama, Naohisa; Suko, Kathryn; Ishikawa, Tomo-o; Busuttil, Ronald W.; Herschman, Harvey R.; Coito, Ana J.

    2014-01-01

    Cyclooxygenase-2 (COX-2) is a mediator of hepatic ischemia and reperfusion injury (IRI). While both global COX-2 deletion and pharmacologic COX-2 inhibition ameliorate liver IRI, the clinical use of COX-2 inhibitors has been linked to increased risks of heart attack and stroke. Therefore, a better understanding of the role of COX-2 in different cell types may lead to improved therapeutic strategies for hepatic IRI. Macrophages of myeloid origin are currently considered to be important sources of the COX-2 in damaged livers. Here, we used a Cox-2flox conditional knockout mouse (COX-2−M/−M) to examine the function of COX-2 expression in myeloid cells during liver IRI. COX-2−M/−M mice and their WT control littermates were subjected to partial liver ischemia followed by reperfusion. COX-2−M/−M macrophages did not express COX-2 upon lipopolysaccharide stimulation and COX-2−M/−M livers showed reduced levels of COX-2 protein post-IRI. Nevertheless, selective deletion of myeloid cell-derived COX-2 failed to ameliorate liver IRI; serum transaminases and histology were comparable in both COX-2−M/−M and WT mice. COX-2−M/−M livers, like WT livers, developed extensive necrosis, vascular congestion, leukocyte infiltration and matrix metalloproteinase-9 (MMP-9) expression post-reperfusion. In addition, myeloid COX-2 deletion led to a transient increase in IL-6 levels after hepatic reperfusion, when compared to controls. Administration of celecoxib, a selective COX-2 inhibitor, resulted in significantly improved liver function and histology in both COX-2−M/−M and WT mice post-reperfusion, providing evidence that COX-2-mediated liver IRI is caused by COX-2 derived from a source(s) other than myeloid cells. In conclusion, these results support the view that myeloid COX-2, including myeloid-macrophage COX-2, is not responsible for the hepatic IRI phenotype. PMID:24819536

  4. E2a/Pbx1 oncogene inhibits terminal differentiation but not myeloid potential of pro-T cells.

    Science.gov (United States)

    Bourette, R P; Grasset, M-F; Mouchiroud, G

    2007-01-11

    E2a/Pbx1 is a fusion oncoprotein resulting from the t(1;19) translocation found in human pre-B acute lymphocytic leukemia and in a small number of acute T-lymphoid and myeloid leukemias. It was previously suggested that E2a/Pbx1 could cooperate with normal or oncogenic signaling pathways to immortalize myeloid and lymphoid progenitor cells. To address this question, we introduced the receptor of the macrophage-colony-stimulating factor (M-CSF-R) in pro-T cells immortalized by a conditional, estradiol-dependent, E2a/Pbx1-protein, and continuously proliferating in response to stem cell factor and interleukin-7. We asked whether M-CSF-R would be functional in an early T progenitor cell and influence the fate of E2a/Pbx1-immortalized cells. E2a-Pbx1 immortalized pro-T cells could proliferate and shifted from lymphoid to myeloid lineage after signaling through exogenously expressed M-CSF-R, irrespective of the presence of estradiol. However, terminal macrophage differentiation of the cells was obtained only when estradiol was withdrawn from cultures. This demonstrated that M-CSF-R is functional for proliferation and differentiation signaling in a T-lymphoid progenitor cell, which, in addition, unveiled myeloid potential of pro-T progenitors. Moreover, the block of differentiation induced by the E2a/Pbx1 oncogene could be modulated by hematopoietic cytokines such as M-CSF, suggesting plasticity of leukemic progenitor cells. Finally, additional experiments suggested that PU.1 and eight twenty-one transcriptional regulators might be implicated in the mechanisms of oncogenesis by E2a/Pbx1.

  5. High salt drives Th17 responses in experimental autoimmune encephalomyelitis without impacting myeloid dendritic cells.

    Science.gov (United States)

    Jörg, Stefanie; Kissel, Jan; Manzel, Arndt; Kleinewietfeld, Markus; Haghikia, Aiden; Gold, Ralf; Müller, Dominik N; Linker, Ralf A

    2016-05-01

    Recently, we have shown that high dietary salt intake aggravates T helper cell (Th) 17 responses and neuroinflammation. Here, we employed in vitro assays for myeloid dendritic cell (mDC) maturation, DC cytokine production, T cell activation and ex vivo analyses in murine experimental autoimmune encephalomyelitis (EAE) to investigate whether the salt effect on Th17 cells is further mediated through DCs in vivo. In cell culture, an excess of 40mM sodium chloride did neither affect the generation, maturation nor the function of DCs, but, in different assays, significantly increased Th17 differentiation. During the initiation phase of MOG35-55 EAE, we did not observe altered DC frequencies or co-stimulatory capacities in lymphoid organs, while IL-17A production and Th17 cells in the spleen were significantly increased. Complementary ex vivo analyses of the spinal cord during the effector phase of EAE showed increased frequencies of Th17 cells, but did not reveal differences in phenotypes of CNS invading DCs. Finally, adaption of transgenic mice harboring a MOG specific T cell receptor to a high-salt diet led to aggravated clinical disease only after active immunization. Wild-type mice adapted to a high-salt diet in the effector phase of EAE, bypassing the priming phase of T cells, only displayed mildly aggravated disease. In summary, our data argue for a direct effect of NaCl on Th17 cells in neuroinflammation rather than an effect primarily exerted via DCs. These data may further fuel our understanding on the dietary impact on different immune cell subsets in autoimmune diseases, such as multiple sclerosis. Copyright © 2016. Published by Elsevier Inc.

  6. Differentiation status of primary chronic myeloid leukemia cells affects sensitivity to BCR-ABL1 inhibitors.

    Science.gov (United States)

    Pietarinen, Paavo O; Eide, Christopher A; Ayuda-Durán, Pilar; Potdar, Swapnil; Kuusanmäki, Heikki; Andersson, Emma I; Mpindi, John P; Pemovska, Tea; Kontro, Mika; Heckman, Caroline A; Kallioniemi, Olli; Wennerberg, Krister; Hjorth-Hansen, Henrik; Druker, Brian J; Enserink, Jorrit M; Tyner, Jeffrey W; Mustjoki, Satu; Porkka, Kimmo

    2017-04-04

    Tyrosine kinase inhibitors (TKI) are the mainstay treatment of BCR-ABL1-positive leukemia and virtually all patients with chronic myeloid leukemia in chronic phase (CP CML) respond to TKI therapy. However, there is limited information on the cellular mechanisms of response and particularly on the effect of cell differentiation state to TKI sensitivity in vivo and ex vivo/in vitro. We used multiple, independent high-throughput drug sensitivity and resistance testing platforms that collectively evaluated 295 oncology compounds to characterize ex vivo drug response profiles of primary cells freshly collected from newly-diagnosed patients with BCR-ABL1-positive leukemia (n = 40) and healthy controls (n = 12). In contrast to the highly TKI-sensitive cells from blast phase CML and Philadelphia chromosome-positive acute lymphoblastic leukemia, primary CP CML cells were insensitive to TKI therapy ex vivo. Despite maintaining potent BCR-ABL1 inhibitory activity, ex vivo viability of cells was unaffected by TKIs. These findings were validated in two independent patient cohorts and analysis platforms. All CP CML patients under study responded to TKI therapy in vivo. When CP CML cells were sorted based on CD34 expression, the CD34-positive progenitor cells showed good sensitivity to TKIs, whereas the more mature CD34-negative cells were markedly less sensitive. Thus in CP CML, TKIs predominantly target the progenitor cell population while the differentiated leukemic cells (mostly cells from granulocytic series) are insensitive to BCR-ABL1 inhibition. These findings have implications for drug discovery in CP CML and indicate a fundamental biological difference between CP CML and advanced forms of BCR-ABL1-positive leukemia.

  7. Myeloid-Derived Suppressor Cells: Possible Link Between Chronic Obstrucive Pulmonary Disease and Lung Cancer.

    Science.gov (United States)

    Scrimini, Sergio; Pons, Jaume; Sauleda, Jaume

    2016-01-01

    Chronic obstructive pulmonary disease (COPD) and lung cancer (LC) are prevalent diseases and are a leading cause of morbidity and mortality worldwide. There is strong evidence to show that COPD is an independent risk factor for LC. Chronic inflammation plays a significant pathogenic role in COPD comorbidities, particularly in LC. On the one hand, cellular and molecular inflammatory mediators promote carcinogenesis and, on the other, chronic inflammation impairs the capacity of the immune system to identify and destroy pre-malignant and malignant cells, a process known as tumor immune surveillance. This altered antitumor immunity is due in part to the expansion of myeloid-derived suppressor cells (MDSC), which are characterized by an ability to suppress the antitumor activity of T-cells by down-regulation of the T-cell receptor ζ chain (TCRζ) through the catabolism of L-arginine. COPD and LC patients share a common pattern of expansion and activation of circulating MDSC associated with TCRζ downregulation and impaired peripheral T-cell function. The objectives of this study were to review the evidence on the association between COPD and LC and to analyze how MDSC accumulation may alter tumor immune surveillance in COPD, and therefore, promote LC development. Copyright © 2015 SEPAR. Published by Elsevier Espana. All rights reserved.

  8. Myeloid-derived suppressor cells mediate tolerance induction in autoimmune disease.

    Science.gov (United States)

    Wegner, Anja; Verhagen, Johan; Wraith, David C

    2017-05-01

    In multiple sclerosis (MS) T cells aberrantly recognize self-peptides of the myelin sheath and attack the central nervous system (CNS). Antigen-specific peptide immunotherapy, which aims to restore tolerance while avoiding the use of non-specific immunosuppressive drugs, is a promising approach to combat autoimmune disease, but the cellular mechanisms behind successful therapy remain poorly understood. Myeloid-derived suppressor cells (MDSCs) have been studied intensively in the field of cancer and to a lesser extent in autoimmunity. Because of their suppressive effect on the immune system in cancer, we hypothesized that the development of MDSCs and their interaction with CD4 + T cells could be beneficial for antigen-specific immunotherapy. Hence, changes in the quantity, phenotype and function of MDSCs during tolerance induction in our model of MS were evaluated. We reveal, for the first time, an involvement of a subset of MDSCs, known as polymorphonuclear (PMN)-MDSCs, in the process of tolerance induction. PMN-MDSCs were shown to adopt a more suppressive phenotype during peptide immunotherapy and inhibit CD4 + T-cell proliferation in a cell-contact-dependent manner, mediated by arginase-1. Moreover, increased numbers of tolerogenic PMN-MDSCs, such as observed over the course of peptide immunotherapy, were demonstrated to provide protection from disease in a model of experimental autoimmune encephalomyelitis. © 2017 John Wiley & Sons Ltd.

  9. Inhibition of SRC family kinases reduces myeloid-derived suppressor cells in head and neck cancer.

    Science.gov (United States)

    Mao, Liang; Deng, Wei-Wei; Yu, Guang-Tao; Bu, Lin-Lin; Liu, Jian-Feng; Ma, Si-Rui; Wu, Lei; Kulkarni, Ashok B; Zhang, Wen-Feng; Sun, Zhi-Jun

    2017-03-01

    SRC family kinases (SFKs), a group of nonreceptor tyrosine kinases, modulate multiple cellular functions, such as cell proliferation, differentiation and metabolism. SFKs display aberrant activity in progressive stages of human cancers. However, the precise role of SFKs in the head and neck squamous cell carcinoma (HNSCC) signaling network is far from clear. In this study, we found that the inhibition of SFKs activity by dasatinib effectively reduced the tumor size and population of MDSCs in the HNSCC mouse model. Molecular analysis indicates that phosphorylation of LYN, rather than SRC, was inhibited by dasatinib treatment. Next, we analyzed LYN expression by immunostaining and found that it was overexpressed in the human HNSCC specimens. Moreover, LYN expression in stromal cells positively correlated with myeloid-derived suppressor cells (MDSCs) makers CD11b and CD33 in human HNSCC. The dual positive expression of LYN in epithelial and stromal cells (EPI + SRT + ) was associated with unfavorable overall survival of HNSCC patients. These findings indicate that SFKs may be a potential target for an effective immunotherapy of HNSCC by decreasing MDSCs and moreover, LYN will have an impact on such therapeutic strategy. © 2016 UICC.

  10. Myeloid-Derived Suppressor Cells Ameliorate Cyclosporine A-Induced Hypertension in Mice.

    Science.gov (United States)

    Chiasson, Valorie L; Bounds, Kelsey R; Chatterjee, Piyali; Manandhar, Lochana; Pakanati, Abhinandan R; Hernandez, Marcos; Aziz, Bilal; Mitchell, Brett M

    2018-01-01

    The calcineurin inhibitor cyclosporine A (CsA) suppresses the immune system but promotes hypertension, vascular dysfunction, and renal damage. CsA decreases regulatory T cells and this contributes to the development of hypertension. However, CsA's effects on another important regulatory immune cell subset, myeloid-derived suppressor cells (MDSCs), is unknown. We hypothesized that augmenting MDSCs would ameliorate the CsA-induced hypertension and vascular and renal injury and dysfunction and that CsA reduces MDSCs in mice. Daily interleukin-33 treatment, which increased MDSC levels, completely prevented CsA-induced hypertension and vascular and renal toxicity. Adoptive transfer of MDSCs from control mice into CsA-treated mice after hypertension was established dose-dependently reduced blood pressure and vascular and glomerular injury. CsA treatment of aortas and kidneys isolated from control mice for 24 hours decreased relaxation responses and increased inflammation, respectively, and these effects were prevented by the presence of MDSCs. MDSCs also prevented the CsA-induced increase in fibronectin in microvascular and glomerular endothelial cells. Last, CsA dose-dependently reduced the number of MDSCs by inhibiting calcineurin and preventing cell proliferation, as other direct calcineurin signaling pathway inhibitors had the same dose-dependent effect. These data suggest that augmenting MDSCs can reduce the cardiovascular and renal toxicity and hypertension caused by CsA. © 2017 American Heart Association, Inc.

  11. Eltrombopag modulates reactive oxygen species and decreases acute myeloid leukemia cell survival.

    Directory of Open Access Journals (Sweden)

    Anna Kalota

    Full Text Available Previous studies have demonstrated that the small molecule thrombopoietin (TPO mimetic, eltrombopag (E, induces apoptosis in acute myeloid leukemia (AML cells. Here, we sought to define the mechanism of the anti-leukemic effect of eltrombopag. Our studies demonstrate that, at a concentration of 5 μM E in 2% serum, E induces apoptosis in leukemia cells by triggering PARP cleavage and activation of caspase cascades within 2-6 hours. The induction of apoptotic enzymes is critically dependent on drug concentration and the concentration of serum. This effect is not associated with an alteration in mitochondrial potential but is associated with a rapid decrease in a reactive oxygen species (ROS in particular hydrogen peroxide (H2O2. Interestingly, E also decreases mitochondrial maximal and spare respiratory capacities suggesting an induced mitochondrial dysfunction that may not be readily apparent under basal conditions but becomes manifest only under stress. Co-treatment of MOLM14 AML cells with E plus Tempol or H2O2 provides a partial rescue of cell toxicity. Ferric ammonioum citrate (FAC also antagonized the E induced toxicity, by inducing notable increase in ROS level. Overall, we propose that E dramatically decreases ROS levels leading to a disruption of AML intracellular metabolism and rapid cell death.

  12. Vorinostat induces reactive oxygen species and DNA damage in acute myeloid leukemia cells.

    Directory of Open Access Journals (Sweden)

    Luca A Petruccelli

    Full Text Available Histone deacetylase inhibitors (HDACi are promising anti-cancer agents, however, their mechanisms of action remain unclear. In acute myeloid leukemia (AML cells, HDACi have been reported to arrest growth and induce apoptosis. In this study, we elucidate details of the DNA damage induced by the HDACi vorinostat in AML cells. At clinically relevant concentrations, vorinostat induces double-strand breaks and oxidative DNA damage in AML cell lines. Additionally, AML patient blasts treated with vorinostat display increased DNA damage, followed by an increase in caspase-3/7 activity and a reduction in cell viability. Vorinostat-induced DNA damage is followed by a G2-M arrest and eventually apoptosis. We found that pre-treatment with the antioxidant N-acetyl cysteine (NAC reduces vorinostat-induced DNA double strand breaks, G2-M arrest and apoptosis. These data implicate DNA damage as an important mechanism in vorinostat-induced growth arrest and apoptosis in both AML cell lines and patient-derived blasts. This supports the continued study and development of vorinostat in AMLs that may be sensitive to DNA-damaging agents and as a combination therapy with ionizing radiation and/or other DNA damaging agents.

  13. Vorinostat Induces Reactive Oxygen Species and DNA Damage in Acute Myeloid Leukemia Cells

    Science.gov (United States)

    Pettersson, Filippa; Retrouvey, Hélène; Skoulikas, Sophia; Miller, Wilson H.

    2011-01-01

    Histone deacetylase inhibitors (HDACi) are promising anti-cancer agents, however, their mechanisms of action remain unclear. In acute myeloid leukemia (AML) cells, HDACi have been reported to arrest growth and induce apoptosis. In this study, we elucidate details of the DNA damage induced by the HDACi vorinostat in AML cells. At clinically relevant concentrations, vorinostat induces double-strand breaks and oxidative DNA damage in AML cell lines. Additionally, AML patient blasts treated with vorinostat display increased DNA damage, followed by an increase in caspase-3/7 activity and a reduction in cell viability. Vorinostat-induced DNA damage is followed by a G2-M arrest and eventually apoptosis. We found that pre-treatment with the antioxidant N-acetyl cysteine (NAC) reduces vorinostat-induced DNA double strand breaks, G2-M arrest and apoptosis. These data implicate DNA damage as an important mechanism in vorinostat-induced growth arrest and apoptosis in both AML cell lines and patient-derived blasts. This supports the continued study and development of vorinostat in AMLs that may be sensitive to DNA-damaging agents and as a combination therapy with ionizing radiation and/or other DNA damaging agents. PMID:21695163

  14. Expression profiling of CD34+ hematopoietic stem/ progenitor cells reveals distinct subtypes of therapy-related acute myeloid leukemia

    OpenAIRE

    Qian, Zhijian; Fernald, Anthony A.; Godley, Lucy A.; Larson, Richard A.; Le Beau, Michelle M.

    2002-01-01

    One of the most serious consequences of cytotoxic cancer therapy is the development of therapy-related acute myeloid leukemia (t-AML), a neoplastic disorder arising from a multipotential hematopoietic stem cell. To gain insights into the molecular basis of this disease, we performed gene expression profiling of CD34+ hematopoietic progenitor cells from t-AML patients. Our analysis revealed that there are distinct subtypes of t-AML that have a characteristic gene expression pattern. Common to ...

  15. A Rapid Culture Technique Produces Functional Dendritic-Like Cells from Human Acute Myeloid Leukemia Cell Lines

    Directory of Open Access Journals (Sweden)

    Jian Ning

    2011-01-01

    Full Text Available Most anti-cancer immunotherapeutic strategies involving dendritic cells (DC as vaccines rely upon the adoptive transfer of DC loaded with exogenous tumour-peptides. This study utilized human acute myeloid leukemia (AML cells as progenitors from which functional dendritic-like antigen presenting cells (DLC were generated, that constitutively express tumour antigens for recognition by CD8+ T cells. DLC were generated from AML cell lines KG-1 and MUTZ-3 using rapid culture techniques and appropriate cytokines. DLC were evaluated for their cell-surface phenotype, antigen uptake and ability to stimulate allogeneic responder cell proliferation, and production of IFN-γ; compared with DC derived from normal human PBMC donors. KG-1 and MUTZ-3 DLC increased expression of CD80, CD83, CD86, and HLA-DR, and MUTZ-3 DLC downregulated CD14 and expressed CD1a. Importantly, both KG-1 and MUTZ-3-derived DLC promoted proliferation of allogeneic responder cells more efficiently than unmodified cells; neither cells incorporated FITC-labeled dextran, but both stimulated IFN-γ production from responding allogeneic CD8+ T cells. Control DC produced from PBMC using the FastDC culture also expressed high levels of critical cell surface ligands and demonstrated good APC function. This paper indicates that functional DLC can be cultured from the AML cell lines KG-1 and MUTZ-3, and FastDC culture generates functional KG-1 DLC.

  16. Transformation of bone marrow stem-cells and radiation-induced myeloid leukemia in mice

    International Nuclear Information System (INIS)

    Hirashima, K.; Bessho, M.; Hayata, I.; Nara, N.; Kawase, Y.; Ohtani, M.

    1982-01-01

    After a single whole-body X-irradiation of 300R to male RFM/MsNrs strain mice, the occurrence of myeloid leukemia initiated since four months and ceased at eleven months after irradiation. The cumulative incidence reached 24.5%. A time course study on the kinetics of pluripotential stem-cells (CFU-S) and granuloid committed stem-cells (CFU-C) in the marrow after 300R was also performed. The repopulation of CFU-S was accomplished within one month whereas that of CFU-C needed 210 days after irradiation. The incidence of leukemia was very rare after the complete repopulation of CFU-C. Simultaneously, collected spleen cells from the irradiated mice without overt leukemia were transplanted into 300-600R irradiated recipients of another sex. Three months thereafter, recipients were sacrificed to detect leukemic changes and the origin of leukemic cells by chromosome analysis. The results revealed that leukemic cell transformation of donor cells began 18 days after irradiation and on an average, 37.1% of the irradiated mice carried potentially leukemic cells for seven months after exposure, whereas none of the unirradiated mice carried leukemic cells at 7 months after irradiation. To investigate host factor(s) contributing to the proliferation of leukemic cells, the suppression of cellular immunity after 300R was measured by GVH mortality assay. However, the recovery of cellular immunity was observed until three months after irradiation and the role of cellular immunity to proliferation of leukemic cells after three months was negligible. (author)

  17. Use of deferasirox, an iron chelator, to overcome imatinib resistance of chronic myeloid leukemia cells.

    Science.gov (United States)

    Kim, Dae Sik; Na, Yoo Jin; Kang, Myoung Hee; Yoon, Soo-Young; Choi, Chul Won

    2016-03-01

    The treatment of chronic myeloid leukemia (CML) has achieved impressive success since the development of the Bcr-Abl tyrosine kinase inhibitor, imatinib mesylate. Nevertheless, resistance to imatinib has been observed, and a substantial number of patients need alternative treatment strategies. We have evaluated the effects of deferasirox, an orally active iron chelator, and imatinib on K562 and KU812 human CML cell lines. Imatinib-resistant CML cell lines were created by exposing cells to gradually increasing concentrations of imatinib. Co-treatment of cells with deferasirox and imatinib induced a synergistic dose-dependent inhibition of proliferation of both CML cell lines. Cell cycle analysis showed an accumulation of cells in the subG1 phase. Western blot analysis of apoptotic proteins showed that co-treatment with deferasirox and imatinib induced an increased expression of apoptotic proteins. These tendencies were clearly identified in imatinib-resistant CML cell lines. The results also showed that co-treatment with deferasirox and imatinib reduced the expression of BcrAbl, phosphorylated Bcr-Abl, nuclear factor-κB (NF-κB) and β-catenin. We observed synergistic effects of deferasirox and imatinib on both imatinib-resistant and imatinib-sensitive cell lines. These effects were due to induction of apoptosis and cell cycle arrest by down-regulated expression of NF-κB and β-catenin levels. Based on these results, we suggest that a combination treatment of deferasirox and imatinib could be considered as an alternative treatment option for imatinib-resistant CML.

  18. Use of deferasirox, an iron chelator, to overcome imatinib resistance of chronic myeloid leukemia cells

    Science.gov (United States)

    Kim, Dae Sik; Na, Yoo Jin; Kang, Myoung Hee; Yoon, Soo-Young; Choi, Chul Won

    2016-01-01

    Background/Aims: The treatment of chronic myeloid leukemia (CML) has achieved impressive success since the development of the Bcr-Abl tyrosine kinase inhibitor, imatinib mesylate. Nevertheless, resistance to imatinib has been observed, and a substantial number of patients need alternative treatment strategies. Methods: We have evaluated the effects of deferasirox, an orally active iron chelator, and imatinib on K562 and KU812 human CML cell lines. Imatinib-resistant CML cell lines were created by exposing cells to gradually increasing concentrations of imatinib. Results: Co-treatment of cells with deferasirox and imatinib induced a synergistic dose-dependent inhibition of proliferation of both CML cell lines. Cell cycle analysis showed an accumulation of cells in the subG1 phase. Western blot analysis of apoptotic proteins showed that co-treatment with deferasirox and imatinib induced an increased expression of apoptotic proteins. These tendencies were clearly identified in imatinib-resistant CML cell lines. The results also showed that co-treatment with deferasirox and imatinib reduced the expression of BcrAbl, phosphorylated Bcr-Abl, nuclear factor-κB (NF-κB) and β-catenin. Conclusions: We observed synergistic effects of deferasirox and imatinib on both imatinib-resistant and imatinib-sensitive cell lines. These effects were due to induction of apoptosis and cell cycle arrest by down-regulated expression of NF-κB and β-catenin levels. Based on these results, we suggest that a combination treatment of deferasirox and imatinib could be considered as an alternative treatment option for imatinib-resistant CML. PMID:26874514

  19. T-cell/myeloid mixed-phenotype acute leukemia with monocytic differentiation and isolated 17p deletion

    Directory of Open Access Journals (Sweden)

    Germison Silva Lopes

    2014-07-01

    Full Text Available Mixed phenotype acute leukemia is a rare subtype of leukemia that probably arises from a hematopoietic pluripotent stem cell. The co-expression of two of myeloid, B- or T-lymphoid antigens is the hallmark of this disease. Herein, the case of a 28-year-old female patient is reported who presented with hemoglobin of 5.8 g/dL, white blood cell count of 138 × 109/L and platelet count of 12 × 109/L. The differential count of peripheral blood revealed 96% of blasts. Moreover, the patient presented with lymphadenopathy, splenomegaly and bone marrow infiltration by monocytoid blasts characterized as 7% positivity by Sudan Black cytochemical staining. Immunophenotyping revealed the involvement of blasts of both T- and monocytic lineages. The cytogenetic analysis showed an isolated 17p deletion. Thus, the diagnosis of T-cell/myeloid mixed phenotype acute leukemia was made with two particular rare features, that is, the monocytic differentiation and the 17p deletion as unique cytogenetic abnormalities. The possibility of concomitant expressions of T-cell and monocytic differentiation antigens in the same blast population is hard to explain using the classical model of hematopoiesis. However, recent studies have suggested that myeloid potential persists even when the lineage branches segregate toward B- and T-cells. The role of an isolated 17p deletion in the pathogenesis of this condition is unclear. At present, the patient is in complete remission after an allogeneic stem cell transplantation procedure.

  20. Misfolded N-CoR is Linked to the Ectopic Reactivation of CD34/Flt3-Based Stem-Cell Phenotype in Promyelocytic and Monocytic Acute Myeloid Leukemia.

    Science.gov (United States)

    Nin, Dawn Sijin; Li, Feng; Visvanathan, Sridevi; Khan, Matiullah

    2015-01-01

    Nuclear receptor co-repressor (N-CoR) is the key component of generic co-repressor complex essential for the transcriptional control of genes involved in cellular hemostasis. We have recently reported that N-CoR actively represses Flt3, a key factor of hematopoietic stem cells (HSC) self-renewal and growth, and that de-repression of Flt3 by the misfolded N-CoR plays an important role in the pathogenesis of promyelocytic and monocytic acute myeloid leukemia (AML). The leukemic cells derived from the promyelocytic and monocytic AML are distinctly characterized by the ectopic reactivation of stem cell phenotypes in relatively committed myeloid compartment. However, the molecular mechanism underlying this phenomenon is not known. Here, we report that N-CoR function is essential for the commitment of primitive hematopoietic cells to the cells of myeloid lineage and that loss of N-CoR function due to misfolding is linked to the ectopic reactivation of generic stem cell phenotypes in promyelocytic and monocytic AML. Analysis of N-CoR and Flt3 transcripts in mouse hematopoietic cells revealed a positive correlation between N-CoR level and the commitment of myeloid cells and an inverse correlation between N-CoR and Flt3 levels in primitive as well as committed myeloid cells. Enforced N-CoR expression in mouse HSCs inhibited their growth and self-renewal potentials and promoted maturation toward cells of myeloid lineage, suggesting a role of N-CoR in the commitment of cells of myeloid lineage. In contrast to AML cells with natively folded N-CoR, primary and secondary promyelocytic and monocytic AML cells harboring the misfolded N-CoR were highly positive for Flt3 and myeloid antigen-based HSC marker CD34. Genetic and therapeutic restoration of N-CoR conformation significantly down-regulated the CD34 levels in monocytic AML cells, suggesting an important role of N-CoR in the suppression of CD34-based HSC phenotypes. These findings collectively suggest that N-CoR is crucial

  1. Cellular Plasticity of Inflammatory Myeloid Cells in the Peritoneal Foreign Body Response

    Science.gov (United States)

    Mooney, Jane E.; Rolfe, Barbara E.; Osborne, Geoffrey W.; Sester, David P.; van Rooijen, Nico; Campbell, Gordon R.; Hume, David A.; Campbell, Julie H.

    2010-01-01

    Implantation of sterile foreign objects in the peritoneal cavity of an animal initiates an inflammatory response and results in encapsulation of the objects by bone marrow-derived cells. Over time, a multilayered tissue capsule develops with abundant myofibroblasts embedded in extracellular matrix. The present study used the transgenic MacGreen mouse to characterize the time-dependent accumulation of monocyte subsets and neutrophilic granulocytes in the inflammatory infiltrate and within the tissue capsule by their differential expression of the csf1r-EGFP transgene, F4/80, and Ly6C. As the tissue capsule developed, enhanced green fluorescent protein-positive cells changed from rounded to spindle-shaped morphology and began to co-express the myofibroblast marker α-smooth muscle actin. Expression increased with time: at day 14, 11.13 ± 0.67% of tissue capsule cells co-expressed these markers, compared with 50.77 ± 12.85% of cells at day 28. The importance of monocyte/macrophages in tissue capsule development was confirmed by clodronate-encapsulated liposome removal, which resulted in almost complete abrogation of capsule development. These results confirm the importance of monocyte/macrophages in the tissue response to sterile foreign objects implanted in the peritoneal cavity. In addition, the in vivo plasticity of peritoneal macrophages and their ability to transdifferentiate from a myeloid to mesenchymal phenotype is demonstrated. PMID:20008135

  2. Active hexose-correlated compound enhances extrinsic-pathway-mediated apoptosis of Acute Myeloid Leukemic cells.

    Directory of Open Access Journals (Sweden)

    Kavin Fatehchand

    Full Text Available Active Hexose Correlated Compound (AHCC has been shown to have many immunostimulatory and anti-cancer activities in mice and in humans. As a natural product, AHCC has potential to create safer adjuvant therapies in cancer patients. Acute Myeloid Leukemia (AML is the least curable and second-most common leukemia in adults. AML is especially terminal to those over 60 years old, where median survival is only 5 to 10 months, due to inability to receive intensive chemotherapy. Hence, the purpose of this study was to investigate the effects of AHCC on AML cells both in vitro and in vivo. Results showed that AHCC induced Caspase-3-dependent apoptosis in AML cell lines as well as in primary AML leukopheresis samples. Additionally, AHCC induced Caspase-8 cleavage as well as Fas and TRAIL upregulation, suggesting involvement of the extrinsic apoptotic pathway. In contrast, monocytes from healthy donors showed suppressed Caspase-3 cleavage and lower cell death. When tested in a murine engraftment model of AML, AHCC led to significantly increased survival time and decreased blast counts. These results uncover a mechanism by which AHCC leads to AML-cell specific death, and also lend support for the further investigation of AHCC as a potential adjuvant for the treatment of AML.

  3. Clonal architecture of secondary acute myeloid leukemia defined by single-cell sequencing.

    Directory of Open Access Journals (Sweden)

    Andrew E O Hughes

    2014-07-01

    Full Text Available Next-generation sequencing has been used to infer the clonality of heterogeneous tumor samples. These analyses yield specific predictions-the population frequency of individual clones, their genetic composition, and their evolutionary relationships-which we set out to test by sequencing individual cells from three subjects diagnosed with secondary acute myeloid leukemia, each of whom had been previously characterized by whole genome sequencing of unfractionated tumor samples. Single-cell mutation profiling strongly supported the clonal architecture implied by the analysis of bulk material. In addition, it resolved the clonal assignment of single nucleotide variants that had been initially ambiguous and identified areas of previously unappreciated complexity. Accordingly, we find that many of the key assumptions underlying the analysis of tumor clonality by deep sequencing of unfractionated material are valid. Furthermore, we illustrate a single-cell sequencing strategy for interrogating the clonal relationships among known variants that is cost-effective, scalable, and adaptable to the analysis of both hematopoietic and solid tumors, or any heterogeneous population of cells.

  4. Myeloid-Derived Suppressor Cells in the Tumor Microenvironment: Current Knowledge and Future Perspectives.

    Science.gov (United States)

    Ibáñez-Vea, Maria; Zuazo, Miren; Gato, Maria; Arasanz, Hugo; Fernández-Hinojal, Gonzalo; Escors, David; Kochan, Grazyna

    2018-04-01

    The current knowledge on tumor-infiltrating myeloid-derived suppressor cells (MDSCs) is based mainly on the extensive work performed in murine models. Data obtained for human counterparts are generated on the basis of tumor analysis from patient samples. Both sources of information led to determination of the main suppressive mechanisms used by these cell subsets in tumor-bearing hosts. As a result of the identification of protein targets responsible for MDSCs suppressive activity, different therapeutics agents have been used to eliminate/reduce their adverse effect. In the present work, we review the current knowledge on suppressive mechanisms of MDSCs and therapeutic treatments that interfere with their differentiation, expansion or activity. Based on the accumulation of new evidences supporting their importance for tumor progression and metastasis, the interest in these cell types is increasing. We revise the methods of MDSC generation/differentiation ex vivo that may help in overcoming problems associated with limited numbers of cells available from animals and patients for their study.

  5. Feedback mechanisms control coexistence in a stem cell model of acute myeloid leukaemia.

    Science.gov (United States)

    Crowell, Helena L; MacLean, Adam L; Stumpf, Michael P H

    2016-07-21

    Haematopoietic stem cell dynamics regulate healthy blood cell production and are disrupted during leukaemia. Competition models of cellular species help to elucidate stem cell dynamics in the bone marrow microenvironment (or niche), and to determine how these dynamics impact leukaemia progression. Here we develop two models that target acute myeloid leukaemia with particular focus on the mechanisms that control proliferation via feedback signalling. It is within regions of parameter space permissive of coexistence that the effects of competition are most subtle and the clinical outcome least certain. Steady state and linear stability analyses identify parameter regions that allow for coexistence to occur, and allow us to characterise behaviour near critical points. Where analytical expressions are no longer informative, we proceed statistically and sample parameter space over a coexistence region. We find that the rates of proliferation and differentiation of healthy progenitors exert key control over coexistence. We also show that inclusion of a regulatory feedback onto progenitor cells promotes healthy haematopoiesis at the expense of leukaemia, and that - somewhat paradoxically - within the coexistence region feedback increases the sensitivity of the system to dominance by one lineage over another. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Sustained TL1A (TNFSF15) expression on both lymphoid and myeloid cells leads to mild spontaneous intestinal inflammation and fibrosis

    Science.gov (United States)

    Zheng, Libo; Zhang, Xiaolan; Chen, Jeremy; Ichikawa, Ryan; Wallace, Kori; Pothoulakis, Charalabos; Koon, Hon Wai

    2013-01-01

    TL1A is a member of the TNF superfamily, and its expression is increased in the mucosa of inflammatory bowel disease patients. Moreover, patients with certain TNFSF15 variants over-express TL1A and have a higher risk of developing strictures in the small intestine. Consistently, mice with sustained Tl1a expression in either lymphoid or myeloid cells develop spontaneous ileitis and increased intestinal collagen deposition. Transgenic (Tg) mice with constitutive Tl1a expression in both lymphoid and myeloid cells were generated to assess their in vivo consequence. Constitutive expression of Tl1a in both lymphoid and myeloid cells showed increased spontaneous ileitis and collagen deposition than WT mice. T cells with constitutive expression of Tl1a in both lymphoid and myeloid cells were found to have a more activated phenotype, increased gut homing marker CCR9 expression, and enhanced Th1 and Th17 cytokine activity than WT mice. Although no differences in T cell activation marker, Th1 or Th17 cytokine activity, ileitis, or collagen deposition were found between constitutive Tl1a expression in lymphoid only, myeloid only, or combined lymphoid and myeloid cells. Double hemizygous Tl1a-Tg mice appeared to have worsened ileitis and intestinal fibrosis. Our findings confirm that TL1A–DR3 interaction is involved in T cell-dependent ileitis and fibrosis. PMID:23638306

  7. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal.

    Science.gov (United States)

    Pietras, Eric M; Mirantes-Barbeito, Cristina; Fong, Sarah; Loeffler, Dirk; Kovtonyuk, Larisa V; Zhang, SiYi; Lakshminarasimhan, Ranjani; Chin, Chih Peng; Techner, José-Marc; Will, Britta; Nerlov, Claus; Steidl, Ulrich; Manz, Markus G; Schroeder, Timm; Passegué, Emmanuelle

    2016-06-01

    Haematopoietic stem cells (HSCs) maintain lifelong blood production and increase blood cell numbers in response to chronic and acute injury. However, the mechanism(s) by which inflammatory insults are communicated to HSCs and their consequences for HSC activity remain largely unknown. Here, we demonstrate that interleukin-1 (IL-1), which functions as a key pro-inflammatory 'emergency' signal, directly accelerates cell division and myeloid differentiation of HSCs through precocious activation of a PU.1-dependent gene program. Although this effect is essential for rapid myeloid recovery following acute injury to the bone marrow, chronic IL-1 exposure restricts HSC lineage output, severely erodes HSC self-renewal capacity, and primes IL-1-exposed HSCs to fail massive replicative challenges such as transplantation. Importantly, these damaging effects are transient and fully reversible on IL-1 withdrawal. Our results identify a critical regulatory circuit that tailors HSC responses to acute needs, and is likely to underlie deregulated blood homeostasis in chronic inflammation conditions.

  8. Deficient Surveillance and Phagocytic Activity of Myeloid Cells Within Demyelinated Lesions in Aging Mice Visualized byEx VivoLive Multiphoton Imaging.

    Science.gov (United States)

    Rawji, Khalil S; Kappen, Janson; Tang, Weiwen; Teo, Wulin; Plemel, Jason R; Stys, Peter K; Yong, V Wee

    2018-02-21

    Aging impairs regenerative processes including remyelination, the synthesis of a new myelin sheath. Microglia and other infiltrating myeloid cells such as macrophages are essential for remyelination through mechanisms that include the clearance of inhibitory molecules within the lesion. Prior studies have shown that the quantity of myeloid cells and the clearance of inhibitory myelin debris are deficient in aging, contributing to the decline in remyelination efficiency with senescence. It is unknown, however, whether the impaired clearance of debris is simply the result of the reduced number of phagocytes or if the dynamic activity of myeloid cells within the demyelinating plaque also declines with aging and this question is relevant to the proper design of therapeutics to mobilize myeloid cells for repair. Herein, we describe a high-resolution multiphoton ex vivo live imaging protocol that visualizes individual myelinated/demyelinated axons and lipid-containing myeloid cells to investigate the demyelinated lesion of aging female mice. We found that aging lesions have fewer myeloid cells and that these have reduced phagocytosis of myelin. Although the myeloid cells are actively migratory within the lesion of young mice and have protrusions that seem to survey the environment, this motility and surveillance is significantly reduced in aging mice. Our results emphasize the necessity of not only increasing the number of phagocytes, but also enhancing their activity once they are within demyelinated lesions. The high-resolution live imaging of demyelinated lesions can serve as a platform with which to discover pharmacological agents that rejuvenate intralesional remodeling that promotes the repair of plaques. SIGNIFICANCE STATEMENT The repair of myelin after injury depends on myeloid cells that clear debris and release growth factors. As organisms age, remyelination becomes less efficient correspondent with fewer myeloid cells that populate the lesions. It is unknown

  9. The Transcriptional Network Structure of a Myeloid Cell: A Computational Approach

    Directory of Open Access Journals (Sweden)

    Jesús Espinal-Enríquez

    2017-01-01

    Full Text Available Understanding the general principles underlying genetic regulation in eukaryotes is an incomplete and challenging endeavor. The lack of experimental information regarding the regulation of the whole set of transcription factors and their targets in different cell types is one of the main reasons to this incompleteness. So far, there is a small set of curated known interactions between transcription factors and their downstream genes. Here, we built a transcription factor network for human monocytic THP-1 myeloid cells based on the experimentally curated FANTOM4 database where nodes are genes and the experimental interactions correspond to links. We present the topological parameters which define the network as well as some global structural features and introduce a relative inuence parameter to quantify the relevance of a transcription factor in the context of induction of a phenotype. Genes like ZHX2, ADNP, or SMAD6 seem to be highly regulated to avoid an avalanche transcription event. We compare these results with those of RegulonDB, a highly curated transcriptional network for the prokaryotic organism E. coli, finding similarities between general hallmarks on both transcriptional programs. We believe that an approach, such as the one shown here, could help to understand the one regulation of transcription in eukaryotic cells.

  10. Molecular pathway activation features of pediatric acute myeloid leukemia (AML) and acute lymphoblast leukemia (ALL) cells.

    Science.gov (United States)

    Petrov, Ivan; Suntsova, Maria; Mutorova, Olga; Sorokin, Maxim; Garazha, Andrew; Ilnitskaya, Elena; Spirin, Pavel; Larin, Sergey; Kovalchuk, Olga; Prassolov, Vladimir; Zhavoronkov, Alex; Roumiantsev, Alexander; Buzdin, Anton

    2016-11-19

    Acute lymphoblast leukemia (ALL) is characterized by overproduction of immature white blood cells in the bone marrow. ALL is most common in the childhood and has high (>80%) cure rate. In contrast, acute myeloid leukemia (AML) has far greater mortality rate than the ALL and is most commonly affecting older adults. However, AML is a leading cause of childhood cancer mortality. In this study, we compare gene expression and molecular pathway activation patterns in three normal blood, seven pediatric ALL and seven pediatric AML bone marrow samples. We identified 172/94 and 148/31 characteristic gene expression/pathway activation signatures, clearly distinguishing pediatric ALL and AML cells, respectively, from the normal blood. The pediatric AML and ALL cells differed by 139/34 gene expression/pathway activation biomarkers. For the adult 30 AML and 17 normal blood samples, we found 132/33 gene expression/pathway AML-specific features, of which only 7/2 were common for the adult and pediatric AML and, therefore, age-independent. At the pathway level, we found more differences than similarities between the adult and pediatric forms. These findings suggest that the adult and pediatric AMLs may require different treatment strategies.

  11. Prognostic value of regulatory T cells in newly diagnosed chronic myeloid leukemia patients.

    Science.gov (United States)

    Zahran, Asmaa M; Badrawy, Hosny; Ibrahim, Abeer

    2014-08-01

    Chronic myeloid leukemia (CML) is a clonal disease, characterized by a reciprocal t(9, 22) that results in a chimeric BCR/ABL fusion gene. Regulatory T cells (Tregs) constitute the main cell population that enables cancer cells to evade immune surveillance. The purpose of our study was to investigate the level of Tregs in newly diagnosed CML patients and to correlate it with the patients' clinical, laboratory and molecular data. We also aimed to assess the effect of treatment using tyrosine kinase inhibitor (TKI) on Treg levels. Tregs were characterized and quantified by flow cytometry in 63 newly diagnosed CML patients and 40 healthy controls. TKI was used in 45 patients with chronic phase CML, and the response to therapy was correlated with baseline Treg levels. The percentages of Tregs were significantly increased in CML patients compared to the controls. Treg numbers were significantly lower in patients with chronic phase CML versus the accelerated and blast phases, and were significantly lower in patients with complete molecular remission (CMR) compared to those patients without CMR. Tregs may play a role in the maintenance of CML. Moreover, the decrease of their levels in patients with CMR suggests that Tregs might have a clinical value in evaluating the effects of therapy.

  12. Myeloid-derived suppressor cells in cancer cachexia syndrome: a new explanation for an old problem.

    Science.gov (United States)

    Winfield, Robert D; Delano, Matthew J; Pande, Kalyan; Scumpia, Philip O; Laface, Drake; Moldawer, Lyle L

    2008-01-01

    Cachexia accompanies many chronic inflammatory diseases, including cancer. Lean tissue wasting is only one component of the cancer cachexia response, which also includes anemia, anorexia, a hepatic acute phase protein response, and increased susceptibility to secondary infections. The etiologies of cancer cachexia are multifactorial and include an overproduction of inflammatory mediators, including cytokines produced by inappropriate activation of innate immunity. However, anticytokine therapies have generally not been seriously considered for cancer cachexia, in large part because of the overlapping activities of several inflammatory cytokines and the inability to prospectively identify the contributions of individual mediators. In contrast, recent evidence has focused on an immature myeloid cell population that expands dramatically in the tumors and secondary lymphoid organs of animals with some actively growing tumors. These immature GR-1(+)CD11b(+) cells are metabolically active and secrete large quantities of inflammatory cytokines and chemokines with the potential to produce cachexia. Their expansion is temporally associated with the development of cachexia. Future studies are required to determine whether therapeutic efforts intended to block the expansion of these cells can prevent the lean tissue wasting that accompanies active tumor growth.

  13. GATA Factor-Dependent Positive-Feedback Circuit in Acute Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Koichi R. Katsumura

    2016-08-01

    Full Text Available The master regulatory transcription factor GATA-2 triggers hematopoietic stem and progenitor cell generation. GATA2 haploinsufficiency is implicated in myelodysplastic syndrome (MDS and acute myeloid leukemia (AML, and GATA2 overexpression portends a poor prognosis for AML. However, the constituents of the GATA-2-dependent genetic network mediating pathogenesis are unknown. We described a p38-dependent mechanism that phosphorylates GATA-2 and increases GATA-2 target gene activation. We demonstrate that this mechanism establishes a growth-promoting chemokine/cytokine circuit in AML cells. p38/ERK-dependent GATA-2 phosphorylation facilitated positive autoregulation of GATA2 transcription and expression of target genes, including IL1B and CXCL2. IL-1β and CXCL2 enhanced GATA-2 phosphorylation, which increased GATA-2-mediated transcriptional activation. p38/ERK-GATA-2 stimulated AML cell proliferation via CXCL2 induction. As GATA2 mRNA correlated with IL1B and CXCL2 mRNAs in AML-M5 and high expression of these genes predicted poor prognosis of cytogenetically normal AML, we propose that the circuit is functionally important in specific AML contexts.

  14. Circulating endothelial cells are increased in chronic myeloid leukemia blast crisis

    Directory of Open Access Journals (Sweden)

    C.R.T. Godoy

    2015-06-01

    Full Text Available We measured circulating endothelial precursor cells (EPCs, activated circulating endothelial cells (aCECs, and mature circulating endothelial cells (mCECs using four-color multiparametric flow cytometry in the peripheral blood of 84 chronic myeloid leukemia (CML patients and 65 healthy controls; and vascular endothelial growth factor (VEGF by quantitative real-time PCR in 50 CML patients and 32 healthy controls. Because of an increase in mCECs, the median percentage of CECs in CML blast crisis (0.0146% was significantly higher than in healthy subjects (0.0059%, P0.05. In addition, VEGF gene expression was significantly higher in all phases of CML: 0.245 in blast crisis, 0.320 in the active phase, and 0.330 in chronic phase patients than it was in healthy subjects (0.145. In conclusion, CML in blast crisis had increased levels of CECs and VEGF gene expression, which may serve as markers of disease progression and may become targets for the management of CML.

  15. Factors Influencing the Differentiation of Human Monocytic Myeloid-Derived Suppressor Cells Into Inflammatory Macrophages

    Directory of Open Access Journals (Sweden)

    Defne Bayik

    2018-03-01

    Full Text Available Monocytic myeloid-derived suppressor cells (mMDSC accumulate within tumors where they create an immunosuppressive milieu that inhibits the activity of cytotoxic T and NK cells thereby allowing cancers to evade immune elimination. The toll-like receptors 7/8 agonist R848 induces human mMDSC to mature into inflammatory macrophage (MACinflam. This work demonstrates that TNFα, IL-6, and IL-10 produced by maturing mMDSC are critical to the generation of MACinflam. Neutralizing any one of these cytokines significantly inhibits R848-dependent mMDSC differentiation. mMDSC cultured in pro-inflammatory cytokine IFNγ or the combination of TNFα plus IL-6 differentiate into MACinflam more efficiently than those treated with R848. These mMDSC-derived macrophages exert anti-tumor activity by killing cancer cells. RNA-Seq analysis of the genes expressed when mMDSC differentiate into MACinflam indicates that TNFα and the transcription factors NF-κB and STAT4 are major hubs regulating this process. These findings support the clinical evaluation of R848, IFNγ, and/or TNFα plus IL-6 for intratumoral therapy of established cancers.

  16. LMP1-mediated glycolysis induces myeloid-derived suppressor cell expansion in nasopharyngeal carcinoma

    Science.gov (United States)

    Cai, Ting-Ting; Ye, Shu-Biao; Liu, Yi-Na; He, Jia; Chen, Qiu-Yan; Mai, Hai-Qiang; Zhang, Chuan-Xia; Cui, Jun; Zhang, Xiao-Shi; Zeng, Yi-Xin

    2017-01-01

    Myeloid-derived suppressor cells (MDSCs) are expanded in tumor microenvironments, including that of Epstein–Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC). The link between MDSC expansion and EBV infection in NPC is unclear. Here, we show that EBV latent membrane protein 1 (LMP1) promotes MDSC expansion in the tumor microenvironment by promoting extra-mitochondrial glycolysis in malignant cells, which is a scenario for immune escape initially suggested by the frequent, concomitant detection of abundant LMP1, glucose transporter 1 (GLUT1) and CD33+ MDSCs in tumor sections. The full process has been reconstituted in vitro. LMP1 promotes the expression of multiple glycolytic genes, including GLUT1. This metabolic reprogramming results in increased expression of the Nod-like receptor family protein 3 (NLRP3) inflammasome, COX-2 and P-p65 and, consequently, increased production of IL-1β, IL-6 and GM-CSF. Finally, these changes in the environment of malignant cells result in enhanced NPC-derived MDSC induction. One key step is the physical interaction of LMP1 with GLUT1 to stabilize the GLUT1 protein by blocking its K48-ubiquitination and p62-dependent autolysosomal degradation. This work indicates that LMP1-mediated glycolysis regulates IL-1β, IL-6 and GM-CSF production through the NLRP3 inflammasome, COX-2 and P-p65 signaling pathways to enhance tumor-associated MDSC expansion, which leads to tumor immunosuppression in NPC. PMID:28732079

  17. The N-terminus of CD14 acts to bind apoptotic cells and confers rapid-tethering capabilities on non-myeloid cells.

    Directory of Open Access Journals (Sweden)

    Leanne Thomas

    Full Text Available Cell death and removal of cell corpses in a timely manner is a key event in both physiological and pathological situations including tissue homeostasis and the resolution of inflammation. Phagocytic clearance of cells dying by apoptosis is a complex sequential process comprising attraction, recognition, tethering, signalling and ultimately phagocytosis and degradation of cell corpses. A wide range of molecules acting as apoptotic cell-associated ligands, phagocyte-associated receptors or soluble bridging molecules have been implicated within this process. The role of myeloid cell CD14 in mediating apoptotic cell interactions with macrophages has long been known though key molecules and residues involved have not been defined. Here we sought to further dissect the function of CD14 in apoptotic cell clearance. A novel panel of THP-1 cell-derived phagocytes was employed to demonstrate that CD14 mediates effective apoptotic cell interactions with macrophages in the absence of detectable TLR4 whilst binding and responsiveness to LPS requires TLR4. Using a targeted series of CD14 point mutants expressed in non-myeloid cells we reveal CD14 residue 11 as key in the binding of apoptotic cells whilst other residues are reported as key for LPS binding. Importantly we note that expression of CD14 in non-myeloid cells confers the ability to bind rapidly to apoptotic cells. Analysis of a panel of epithelial cells reveals that a number naturally express CD14 and that this is competent to mediate apoptotic cell clearance. Taken together these data suggest that CD14 relies on residue 11 for apoptotic cell tethering and it may be an important tethering molecule on so called 'non-professional' phagocytes thus contributing to apoptotic cell clearance in a non-myeloid setting. Furthermore these data establish CD14 as a rapid-acting tethering molecule, expressed in monocytes, which may thus confer responsiveness of circulating monocytes to apoptotic cell derived

  18. CBL family E3 ubiquitin ligases control JAK2 ubiquitination and stability in hematopoietic stem cells and myeloid malignancies.

    Science.gov (United States)

    Lv, Kaosheng; Jiang, Jing; Donaghy, Ryan; Riling, Christopher R; Cheng, Ying; Chandra, Vemika; Rozenova, Krasimira; An, Wei; Mohapatra, Bhopal C; Goetz, Benjamin T; Pillai, Vinodh; Han, Xu; Todd, Emily A; Jeschke, Grace R; Langdon, Wallace Y; Kumar, Suresh; Hexner, Elizabeth O; Band, Hamid; Tong, Wei

    2017-05-15

    Janus kinase 2 (JAK2) is a central kinase in hematopoietic stem/progenitor cells (HSPCs), and its uncontrolled activation is a prominent oncogenic driver of hematopoietic neoplasms. However, molecular mechanisms underlying the regulation of JAK2 have remained elusive. Here we report that the Casitas B-cell lymphoma (CBL) family E3 ubiquitin ligases down-regulate JAK2 stability and signaling via the adaptor protein LNK/SH2B3. We demonstrated that depletion of CBL/CBL-B or LNK abrogated JAK2 ubiquitination, extended JAK2 half-life, and enhanced JAK2 signaling and cell growth in human cell lines as well as primary murine HSPCs. Built on these findings, we showed that JAK inhibitor (JAKi) significantly reduced aberrant HSPCs and mitigated leukemia development in a mouse model of aggressive myeloid leukemia driven by loss of Cbl and Cbl-b Importantly, primary human CBL mutated ( CBL mut ) leukemias exhibited increased JAK2 protein levels and signaling and were hypersensitive to JAKi. Loss-of-function mutations in CBL E3 ubiquitin ligases are found in a wide range of myeloid malignancies, which are diseases without effective treatment options. Hence, our studies reveal a novel signaling axis that regulates JAK2 in normal and malignant HSPCs and suggest new therapeutic strategies for treating CBL mut myeloid malignancies. © 2017 Lv et al.; Published by Cold Spring Harbor Laboratory Press.

  19. Cyanobacteria from Terrestrial and Marine Sources Contain Apoptogens Able to Overcome Chemoresistance in Acute Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Liwei Liu

    2014-04-01

    Full Text Available In this study, we investigated forty cyanobacterial isolates from biofilms, gastropods, brackish water and symbiotic lichen habitats. Their aqueous and organic extracts were used to screen for apoptosis-inducing activity against acute myeloid leukemia cells. A total of 28 extracts showed cytotoxicity against rat acute myeloid leukemia (IPC-81 cells. The design of the screen made it possible to eliminate known toxins, such as microcystins and nodularin, or known metabolites with anti-leukemic activity, such as adenosine and its analogs. A cytotoxicity test on human embryonic kidney (HEK293T fibroblasts indicated that 21 of the 28 extracts containing anti-acute myeloid leukemia (AML activity showed selectivity in favor of leukemia cells. Extracts L26-O and L30-O were able to partly overcome the chemotherapy resistance induced by the oncogenic protein Bcl-2, whereas extract L1-O overcame protection from the deletion of the tumor suppressor protein p53. In conclusion, cyanobacteria are a prolific resource for anti-leukemia compounds that have potential for pharmaceutical applications. Based on the variety of cellular responses, we also conclude that the different anti-leukemic compounds in the cyanobacterial extracts target different elements of the death machinery of mammalian cells.

  20. MicroRNA-126-mediated control of cell fate in B-cell myeloid progenitors as a potential alternative to transcriptional factors.

    Science.gov (United States)

    Okuyama, Kazuki; Ikawa, Tomokatsu; Gentner, Bernhard; Hozumi, Katsuto; Harnprasopwat, Ratanakanit; Lu, Jun; Yamashita, Riu; Ha, Daon; Toyoshima, Takae; Chanda, Bidisha; Kawamata, Toyotaka; Yokoyama, Kazuaki; Wang, Shusheng; Ando, Kiyoshi; Lodish, Harvey F; Tojo, Arinobu; Kawamoto, Hiroshi; Kotani, Ai

    2013-08-13

    Lineage specification is thought to be largely regulated at the level of transcription, where lineage-specific transcription factors drive specific cell fates. MicroRNAs (miR), vital to many cell functions, act posttranscriptionally to decrease the expression of target mRNAs. MLL-AF4 acute lymphocytic leukemia exhibits both myeloid and B-cell surface markers, suggesting that the transformed cells are B-cell myeloid progenitor cells. Through gain- and loss-of-function experiments, we demonstrated that microRNA 126 (miR-126) drives B-cell myeloid biphenotypic leukemia differentiation toward B cells without changing expression of E2A immunoglobulin enhancer-binding factor E12/E47 (E2A), early B-cell factor 1 (EBF1), or paired box protein 5, which are critical transcription factors in B-lymphopoiesis. Similar induction of B-cell differentiation by miR-126 was observed in normal hematopoietic cells in vitro and in vivo in uncommitted murine c-Kit(+)Sca1(+)Lineage(-) cells, with insulin regulatory subunit-1 acting as a target of miR-126. Importantly, in EBF1-deficient hematopoietic progenitor cells, which fail to differentiate into B cells, miR-126 significantly up-regulated B220, and induced the expression of B-cell genes, including recombination activating genes-1/2 and CD79a/b. These data suggest that miR-126 can at least partly rescue B-cell development independently of EBF1. These experiments show that miR-126 regulates myeloid vs. B-cell fate through an alternative machinery, establishing the critical role of miRNAs in the lineage specification of multipotent mammalian cells.

  1. Hypoxia selects bortezomib-resistant stem cells of chronic myeloid leukemia.

    Directory of Open Access Journals (Sweden)

    Michele Tanturli

    Full Text Available We previously demonstrated that severe hypoxia inhibits growth of Chronic Myeloid Leukemia (CML cells and selects stem cells where BCR/Abl(protein is suppressed, although mRNA is not, so that hypoxia-selected stem cells, while remaining leukemic, are independent of BCR/Abl signaling and thereby refractory to Imatinib-mesylate. The main target of this study was to address the effects of the proteasome inhibitor Bortezomib (BZ on the maintenance of stem or progenitor cells in hypoxic primary cultures (LC1, by determining the capacity of LC1 cells to repopulate normoxic secondary cultures (LC2 and the kinetics of this repopulation. Unselected K562 cells from day-2 hypoxic LC1 repopulated LC2 with rapid, progenitor-type kinetics; this repopulation was suppressed by BZ addition to LC1 at time 0, but completely resistant to day-1 BZ, indicating that progenitors require some time to adapt to stand hypoxia. K562 cells selected in hypoxic day-7 LC1 repopulated LC2 with stem-type kinetics, which was largely resistant to BZ added at either time 0 or day 1, indicating that hypoxia-selectable stem cells are BZ-resistant per se, i.e. before their selection. Furthermore, these cells were completely resistant to day-6 BZ, i.e. after selection. On the other hand, hypoxia-selected stem cells from CD34-positive cells of blast-crisis CML patients appeared completely resistant to either time-0 or day-1 BZ. To exploit in vitro the capacity of CML cells to adapt to hypoxia enabled to detect a subset of BZ-resistant leukemia stem cells, a finding of particular relevance in light of the fact that our experimental system mimics the physiologically hypoxic environment of bone marrow niches where leukemia stem cells most likely home and sustain minimal residual disease in vivo. This suggests the use of BZ as an enhanced strategy to control CML. in particular to prevent relapse of disease, to be considered with caution and to need further deepening.

  2. Targeting of the BLT2 in chronic myeloid leukemia inhibits leukemia stem/progenitor cell function

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Meifang; Ai, Hongmei; Li, Tao [Department of Laboratory Medicine, JingZhou Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Jingzhou (China); Rajoria, Pasupati; Shahu, Prakash [Department of Clinical Medicine, Medical School of Yangtze University, Jingzhou (China); Li, Xiansong, E-mail: lixiansongjz@hotmail.com [Department of Neurosurgery, JingZhou Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Jingzhou (China)

    2016-04-15

    Imatinib, a tyrosine kinase inhibitor (TKI) has significantly improved clinical outcome for chronic myeloid leukemia (CML) patients. However, patients develop resistance when the disease progresses to the blast phase (BP) and the mechanisms are not well understood. Here we show that BCR-ABL activates BLT2 in hematopoietic stem/progenitor cells to promote leukemogenesis and this involves the p53 signaling pathway. Compared to normal bone marrow (NBM), the mRNA and protein levels of BLT2 are significantly increased in BP-CML CD34{sup +} stem/progenitor cells. This is correlated with increasing BCR-ABL expression. In contrast, knockdown of BCR-ABL or inhibition of its tyrosine kinase activity decreases Blt2 protein level. BLT2 inhibition induces apoptosis, inhibits proliferation, colony formation and self-renewal capacity of CD34{sup +} cells from TKI-resistant BP-CML patients. Importantly, the inhibitory effects of BCR-ABL TKI on CML stem/progenitor cells are further enhanced upon combination with BLT2 inhibition. We further show that BLT2 activation selectively suppresses p53 but not Wnt or BMP-mediated luciferase activity and transcription. Our results demonstrate that BLT2 is a novel pathway activated by BCR-ABL and critically involved in the resistance of BP-CML CD34{sup +} stem/progenitors to TKIs treatment. Our findings suggest that BLT2 and p53 can serve as therapeutic targets for CML treatment. - Highlights: • BCR-ABL regulates BLT2 expression to promote leukemogenesis. • BLT2 is essential to maintain CML cell function. • Activation of BLT2 suppresses p53 signaling pathway in CML cells. • Inhibition of BLT2 and BCR-ABL synergize in eliminating CML CD34{sup +} stem/progenitors.

  3. Histamine downregulates the Th1-associated chemokine IP-10 in monocytes and myeloid dendritic cells.

    Science.gov (United States)

    Glatzer, Franziska; Mommert, Susanne; Köther, Brigitta; Gschwandtner, Maria; Stark, Holger; Werfel, Thomas; Gutzmer, Ralf

    2014-01-01

    Histamine is an important mediator of allergic diseases. It modulates the cytokine expression of various subtypes of antigen-presenting cells by four known receptors, H1R-H4R. The effects of histamine on myeloid dendritic cells (mDC) are unclear. Monocytes and mDC were isolated from human PBMC. Histamine receptor expression was evaluated by real-time PCR. Cells were stimulated with histamine and histamine receptor ligands, and restimulated with polyinosinic-polycytidylic acid (poly I:C), and supernatants were analyzed by protein array and ELISA. Monocytes and mDC express H1R and H2R without significant differences between the two cell types, whereas H4R mRNA was significantly higher in mDC compared with monocytes and H3R mRNA was not detected in any cell type. Prestimulation with histamine caused a significant decrease in poly I:C-induced expression of interferon-γ-induced protein (IP-10) in mDC and monocytes. Stimulation with specific H1R, H2R and H4R agonists and antagonists showed that the observed effect was mediated via H2R and H4R in monocytes and mDC. Monocytes and mDC have similar histamine receptor repertoires with regard to H1R, H2R and H3R, but H4R expression is higher on mDC. Histamine stimulation shows similar functional effects on both cell types, i.e., downregulation of TLR3-induced IP-10 production. This might be a new mechanism how histamine fosters a Th2 milieu. © 2013 S. Karger AG, Basel.

  4. Targeting of the BLT2 in chronic myeloid leukemia inhibits leukemia stem/progenitor cell function

    International Nuclear Information System (INIS)

    Xiao, Meifang; Ai, Hongmei; Li, Tao; Rajoria, Pasupati; Shahu, Prakash; Li, Xiansong

    2016-01-01

    Imatinib, a tyrosine kinase inhibitor (TKI) has significantly improved clinical outcome for chronic myeloid leukemia (CML) patients. However, patients develop resistance when the disease progresses to the blast phase (BP) and the mechanisms are not well understood. Here we show that BCR-ABL activates BLT2 in hematopoietic stem/progenitor cells to promote leukemogenesis and this involves the p53 signaling pathway. Compared to normal bone marrow (NBM), the mRNA and protein levels of BLT2 are significantly increased in BP-CML CD34 + stem/progenitor cells. This is correlated with increasing BCR-ABL expression. In contrast, knockdown of BCR-ABL or inhibition of its tyrosine kinase activity decreases Blt2 protein level. BLT2 inhibition induces apoptosis, inhibits proliferation, colony formation and self-renewal capacity of CD34 + cells from TKI-resistant BP-CML patients. Importantly, the inhibitory effects of BCR-ABL TKI on CML stem/progenitor cells are further enhanced upon combination with BLT2 inhibition. We further show that BLT2 activation selectively suppresses p53 but not Wnt or BMP-mediated luciferase activity and transcription. Our results demonstrate that BLT2 is a novel pathway activated by BCR-ABL and critically involved in the resistance of BP-CML CD34 + stem/progenitors to TKIs treatment. Our findings suggest that BLT2 and p53 can serve as therapeutic targets for CML treatment. - Highlights: • BCR-ABL regulates BLT2 expression to promote leukemogenesis. • BLT2 is essential to maintain CML cell function. • Activation of BLT2 suppresses p53 signaling pathway in CML cells. • Inhibition of BLT2 and BCR-ABL synergize in eliminating CML CD34 + stem/progenitors.

  5. Silibinin inhibits accumulation of myeloid-derived suppressor cells and tumor growth of murine breast cancer

    International Nuclear Information System (INIS)

    Forghani, Parvin; Khorramizadeh, Mohammad R; Waller, Edmund K

    2014-01-01

    Myeloid-derived suppressor cells (MDSC)s increase in blood and accumulate in the tumor microenvironment of tumor-bearing animals, contributing to immune suppression in cancer. Silibinin, a natural flavonoid from the seeds of milk thistle, has been developed as an anti-inflammatory agent and supportive care agent to reduce the toxicity of cancer chemotherapy. The goals of this study were to evaluate the effect of silibinin on MDSCs in tumor-bearing mice and antitumor activity of silibinin in a mouse model of breast cancer. 4T1 luciferase-transfected mammary carcinoma cells were injected into in the mammary fat pad female BALB/c mice, and female CB17-Prkdc Scid/J mice. Silibinin treatment started on day 4 or day 14 after tumor inoculation continued every other day. Tumor growth was monitored by bioluminescent imaging (BLI) measuring total photon flux. Flow cytometry measured total leukocytes, CD11b + Gr-1 + MDSC, and T cells in the blood and tumors of tumor-bearing mice. The effects of silibinin on 4T1 cell viability in vitro were measured by BLI. Treatment with silibinin increased overall survival in mice harboring tumors derived from the 4T1-luciferase breast cancer cell line, and reduced tumor volumes and numbers of CD11b + Gr-1 + MDSCs in the blood and tumor, and increased the content of T cells in the tumor microenvironment. Silibinin failed to inhibit tumor growth in immunocompromised severe combined immunodeficiency mice, supporting the hypothesis that anticancer effect of silibinin is immune-mediated. The antitumor activity of silibinin requires an intact host immune system and is associated with decreased accumulation of blood and tumor-associated MDSCs

  6. The novel compound OSI-461 induces apoptosis and growth arrest in human acute myeloid leukemia cells.

    Science.gov (United States)

    Singh, Raminder; Fröbel, Julia; Cadeddu, Ron-Patrick; Bruns, Ingmar; Schroeder, Thomas; Brünnert, Daniela; Wilk, Christian Matthias; Zerbini, Luiz Fernando; Haas, Rainer; Czibere, Akos

    2012-02-01

    Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy. Treatment of patients suffering from high-risk AML as defined by clinical parameters, cytogenetics, and/or molecular analyses is often unsuccessful. OSI-461 is a pro-apoptotic compound that has been proposed as a novel therapeutic option for patients suffering from solid tumors like prostate or colorectal carcinoma. But little is known about its anti-proliferative potential in AML. Hence, we treated bone marrow derived CD34(+) selected blast cells from 20 AML patients and the five AML cell lines KG-1a, THP-1, HL-60, U-937, and MV4-11 with the physiologically achievable concentration of 1 μM OSI-461 or equal amounts of DMSO as a control. Following incubation with OSI-461, we found a consistent induction of apoptosis and an accumulation of cells in the G2/M phase of the cell cycle. In addition, we demonstrate that the OSI-461 mediated anti-proliferative effects observed in AML are associated with the induction of the pro-apoptotic cytokine mda-7/IL-24 and activation of the growth arrest and DNA-damage inducible genes (GADD) 45α and 45γ. Furthermore, OSI-461 treated leukemia cells did not regain their proliferative potential for up to 8 days after cessation of treatment following the initial 48 h treatment period with 1 μM OSI-461. This indicates sufficient targeting of the leukemia-initiating cells in our in vitro experiments through OSI-461. The AML samples tested in this study included samples from patients who were resistant to conventional chemotherapy and/or had FLT3-ITD mutations demonstrating the high potential of OSI-461 in human AML.

  7. Kinetics of rebounding of lymphoid and myeloid cells in mouse peripheral blood, spleen and bone marrow after treatment with cyclophosphamide

    OpenAIRE

    Salem, Mohamed L.; Al-Khami, Amir A.; El-Nagaar, Sabry A.; Zidan, Abdel-Aziz A.; Al-Sharkawi, Ismail M.; Díaz-Montero, C. Marcela; Cole, David J.

    2012-01-01

    Recently, we showed that post cyclophosphamide (CTX) microenvironment benefits the function of transferred T cells. Analysis of the kinetics of cellular recovery after CTX treatment showed that a single 4 mg/mouse CTX treatment decreased the absolute number of leukocytes in the peripheral blood (PBL) at days 3-15, and in the spleen and bone marrow (BM) at days 3-6. The absolute numbers of CD11c+CD11b− and CD11c+CD11b+ dendritic cells (DCs), CD11b+ and Ly6G+ myeloid cells, T and B cells, CD4+C...

  8. Myeloid-derived suppressor cells as a Trojan horse: A cellular vehicle for the delivery of oncolytic viruses.

    Science.gov (United States)

    Pan, Ping-Ying; Chen, Hui-Ming; Chen, Shu-Hsia

    2013-08-01

    We have recently demonstrated that oncolytic vesicular stomatitis viruses can be efficiently and selectively delivered to neoplastic lesions by myeloid-derived suppressor cells (MDSCs). Importantly, the loading of viruses onto MDSCs inhibited their immunosuppressive properties and endowed them with immunostimulatory and tumoricidal functions. Our study demonstrates the potential use of MDSCs as a Trojan horse for the tumor-targeted delivery of various anticancer therapeutics.

  9. Antileukemic Potential of Momordica charantia Seed Extracts on Human Myeloid Leukemic HL60 Cells

    Science.gov (United States)

    Soundararajan, Ramani; Prabha, Punit; Rai, Umesh; Dixit, Aparna

    2012-01-01

    Momordica charantia (bitter gourd) has been used in the traditional system of medicine for the treatment of various diseases. Anticancer activity of M. charantia extracts has been demonstrated by numerous in vitro and in vivo studies. In the present study, we investigated the differentiation inducing potential of fractionated M. charantia seed extracts in human myeloid HL60 cells. We found that the HL60 cells treated with the fractionated seed extracts differentiated into granulocytic lineage as characterized by NBT staining, CD11b expression, and specific esterase activity. The differentiation inducing principle was found to be heat-stable, and organic in nature. The differentiation was accompanied by a downregulation of c-myc transcript, indicating the involvement of c-myc pathway, at least in part, in differentiation. Taken together these results indicate that fractionated extracts of M. charantia seeds possess differentiation inducing activity and therefore can be evaluated for their potential use in differentiation therapy for leukemia in combination with other inducers of differentiation. PMID:22654956

  10. Antileukemic Potential of Momordica charantia Seed Extracts on Human Myeloid Leukemic HL60 Cells

    Directory of Open Access Journals (Sweden)

    Ramani Soundararajan

    2012-01-01

    Full Text Available Momordica charantia (bitter gourd has been used in the traditional system of medicine for the treatment of various diseases. Anticancer activity of M. charantia extracts has been demonstrated by numerous in vitro and in vivo studies. In the present study, we investigated the differentiation inducing potential of fractionated M. charantia seed extracts in human myeloid HL60 cells. We found that the HL60 cells treated with the fractionated seed extracts differentiated into granulocytic lineage as characterized by NBT staining, CD11b expression, and specific esterase activity. The differentiation inducing principle was found to be heat-stable, and organic in nature. The differentiation was accompanied by a downregulation of c-myc transcript, indicating the involvement of c-myc pathway, at least in part, in differentiation. Taken together these results indicate that fractionated extracts of M. charantia seeds possess differentiation inducing activity and therefore can be evaluated for their potential use in differentiation therapy for leukemia in combination with other inducers of differentiation.

  11. Expansion of monocytic myeloid-derived suppressor cells in endometriosis patients: A pilot study.

    Science.gov (United States)

    Chen, Haiwen; Qin, Shuang; Lei, Aihua; Li, Xing; Gao, Qi; Dong, Jingyin; Xiao, Qing; Zhou, Jie

    2017-06-01

    Endometriosis is a chronic inflammation disease and is closely associated with immune dysregulation. Myeloid-derived suppressor cells (MDSCs) are a negative regulator of the immune system. The aim of this study was to evaluate the possible role of MDSCs in endometriosis patients. We collected the peripheral blood and peritoneal fluid from endometriosis patients and controls and analyzed M-MDSCs level using specific monoclonal antibodies recognizing HLA-DR, CD33, CD11b, CD14 markers by flow cytometry. We found that there existed abnormal expansion of monocytic MDSCs (M-MDSCs) (HLA-DR -/low CD33 + CD11b + CD14 + ) in peripheral blood and peritoneal fluid of patients with endometriosis. Functional studies revealed that M-MDSCs from endometriosis patients significantly suppressed T-cell responses and produced high level of reactive oxygen species (ROS). The elevation of M-MDSCs from endometriosis patients may contribute to the disease progression. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The Thoc1 encoded ribonucleoprotein is required for myeloid progenitor cell homeostasis in the adult mouse.

    Directory of Open Access Journals (Sweden)

    Laura Pitzonka

    Full Text Available Co-transcriptionally assembled ribonucleoprotein (RNP complexes are critical for RNA processing and nuclear export. RNPs have been hypothesized to contribute to the regulation of coordinated gene expression, and defects in RNP biogenesis contribute to genome instability and disease. Despite the large number of RNPs and the importance of the molecular processes they mediate, the requirements for individual RNP complexes in mammalian development and tissue homeostasis are not well characterized. THO is an evolutionarily conserved, nuclear RNP complex that physically links nascent transcripts with the nuclear export apparatus. THO is essential for early mouse embryonic development, limiting characterization of the requirements for THO in adult tissues. To address this shortcoming, a mouse strain has been generated allowing inducible deletion of the Thoc1 gene which encodes an essential protein subunit of THO. Bone marrow reconstitution was used to generate mice in which Thoc1 deletion could be induced specifically in the hematopoietic system. We find that granulocyte macrophage progenitors have a cell autonomous requirement for Thoc1 to maintain cell growth and viability. Lymphoid lineages are not detectably affected by Thoc1 loss under the homeostatic conditions tested. Myeloid lineages may be more sensitive to Thoc1 loss due to their relatively high rate of proliferation and turnover.

  13. Regulatory T cells-derived IL-35 promotes the growth of adult acute myeloid leukemia blasts.

    Science.gov (United States)

    Tao, Qianshan; Pan, Ying; Wang, Yiping; Wang, Huiping; Xiong, Shudao; Li, Qing; Wang, Jia; Tao, Lili; Wang, Zhitao; Wu, Fan; Zhang, Rui; Zhai, Zhimin

    2015-11-15

    Tumor immune escape mechanism mediated by CD4+CD25+regulatory T cells (Tregs) is a key factor in the pathogenesis of acute myeloid leukemia (AML). IL-35, as a novel inhibitory cytokine, is produced by Tregs specially and regulates functions of Tregs in murine. However, IL-35 expression of Tregs in human is still disputed, and its role in AML is yet to be elucidated. In this study, we found that IL-35 was expressed highly in peripheral blood plasma of adult patients with AML and significantly correlated with the clinical stages of malignancy. Tregs-derived from adult AML patients produced IL-35 in a stimulation-dependent manner. IL-35 promoted AML blasts immune escape by expanding Tregs and inhibiting CD4+CD25-effector T cells (Teffs). Furthermore, IL-35 directly promoted the proliferation of AML blasts and reduced the apoptosis of AML blasts. Together, our study demonstrates that IL-35-derived from Tregs promotes the growth of adult AML blasts, suggesting that IL-35 has an important role in the pathogenesis of AML. © 2015 UICC.

  14. Plasmacytoma with aberrant expression of myeloid markers, T-cell markers, and cytokeratin.

    Science.gov (United States)

    Shin, J S; Stopyra, G A; Warhol, M J; Multhaupt, H A

    2001-06-01

    Plasmacytomas are localized neoplastic proliferations of monoclonal plasma cells. When multifocal, the process is referred to as multiple myeloma. These lesions exhibit a pattern of antigen expression and cytomorphology that usually leads to a ready diagnosis. However, potentially troublesome variations in immunophenotype occur. We describe a case of a plasmacytoma from a patient who presented with sudden onset of pain and a lytic lesion of the left proximal humerus. Hematoxylin and eosin-stained sections showed a lymphoproliferative lesion composed of large lymphoid cells, some with plasmacytoid and immunoblastic features. The lesion also showed significant mitotic activity. Immunohistochemical staining was positive for CD45 (LCA), CD56 (N-CAM), CD43 (MT1), and cytokeratin CAM5.2. There was also clonal staining for lambda light chains. In addition, flow cytometric analysis showed positivity for myeloid markers such as CD13, CD33, CD38, and CD138. Significant negative markers include CD20 (L26), CD45RO (UCHL-1), and CD79alpha. The unusual phenotypic features of this plasmacytoma illustrate potential diagnostic pitfalls. It is important to fully study such lesions to correctly classify them, because this has significant impact on prognosis and management.

  15. Expansion of Myeloid-Derived Suppressor Cells in Patients with Acute Coronary Syndrome

    Directory of Open Access Journals (Sweden)

    Yan-ge Wang

    2015-01-01

    Full Text Available Aim: The aim of this study was to explore whether the circulating frequency and function of myeloid-derived suppressor cells (MDSCs are altered in patients with acute coronary syndrome (ACS. Methods: The frequency of MDSCs in peripheral blood was determined by flow cytometry, and mRNA expression in purified MDSCs was analyzed by real-time reverse transcription polymerase chain reaction (RT-PCR. The suppressive function of MDSCs isolated from different groups was also determined. The plasma levels of certain cytokines were determined using Bio-Plex Pro™ Human Cytokine Assays. Results: The frequency of circulating CD14+HLA-DR-/low MDSCs; arginase-1 (Arg-1 expression; and plasma levels of interleukin (IL-1β, IL-6, tumor necrosis factor (TNF-α, and IL-33 were markedly increased in ACS patients compared to stable angina (SA or control patients. Furthermore, MDSCs from ACS patients were more potent suppressors of T-cell proliferation and IFN-γ production than those from the SA or control groups at ratios of 1:4 and 1:2; this effect was partially mediated by Arg-1. In addition, the frequency of MDSCs was positively correlated with plasma levels of IL-6, IL-33, and TNF-α. Conclusions: We observed an increased frequency and suppressive function of MDSCs in ACS patients, a result that may provide insights into the mechanisms involved in ACS.

  16. Impact of repeated abdominal surgery on wound healing and myeloid cell dynamics.

    Science.gov (United States)

    Esendagli, Gunes; Yoyen-Ermis, Digdem; Guseinov, Emil; Aras, Cigdem; Aydin, Cisel; Uner, Aysegul; Hamaloglu, Erhan; Karakoc, Derya

    2018-03-01

    Even though wound dehiscence is a surgical complication, under certain medical conditions, repetition of the laparotomy (LT) (relaparotomy) can become inevitable. In addition to the risks associated with this surgical operation, relaparotomy can interfere with the tissue healing and contribute to the development of chronic wounds. In an experimental relaparotomy wounding model, this study investigated the impact of repeated surgery on wound healing and on the immune cells of myeloid origin. The first repeat of the LT triggered fibrosis and marginally interfered with the wound healing; however, the second operation completely abrogated the healing process. Splenomegaly was observed as an indicator of the chronic inflammation and the systemic effect of repeated laparotomies. In the blood stream, the spleen, and the liver, these repeated surgeries exhibited a major impact on the CD11b + Ly6C + Ly6G - monocytes. On the other hand, especially, whespecially the second relaparotomy resulted in a massive purging of neutrophil granulocytes into the circulation. These CD11b + Ly6C + Ly6G + neutrophils that were disseminated on repeated abdominal laparotomies had a proinflammatory character that positively influenced T cell proliferation and displayed a high capacity for production of reactive oxygen species. The repetition of abdominal LT not only interferes with the wound healing but also contributes to the development of imperfectly healing wounds which have systemic impact on immune compartments. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Soluble Triggering Receptor Expressed on Myeloid Cells-1 as a Novel Marker for Abdominal Sepsis.

    Science.gov (United States)

    Song, Xiaofei; Song, Yucheng; Zhang, Xuedong; Xue, Huanzhou

    2017-07-01

    The aim of the study was to investigate the concentration and diagnostic significance of soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) in acute abdominal conditions. Plasma specimens were obtained from 68 patients with abdominal sepsis, 60 patients with systemic inflammatory response syndrome (SIRS), and 60 healthy individuals. The sepsis group was divided into the survival and death groups according to the 28-d outcome. Plasma sTREM-1, procalcitonin (PCT), C-reactive protein (CRP), and white blood cell (WBC) count were measured. A receiver operating characteristic curve (ROC) was used to compare the diagnostic values of sTREM-1, PCT, CRP, and WBC count. In addition, the correlation between plasma sTREM-1 and the Acute Physiology and Chronic Health Evaluation (APACHE) II score in the sepsis group was assessed by Spearman correlation analysis. The plasma concentration of sTREM-1 in the sepsis group was significantly higher than that in the SIRS and healthy groups (both p sepsis vs. SIRS showed that the area under the curve of sTREM-1 (0.82) was greater than that of PCT (0.77), CRP (0.72), and WBC count (0.70). Additionally, in the sepsis group, the plasma sTREM-1 concentration correlated positively with the APACHE II score (r = 0.41; p sepsis.

  18. AMPK Protects Leukemia-Initiating Cells in Myeloid Leukemias from Metabolic Stress in the Bone Marrow.

    Science.gov (United States)

    Saito, Yusuke; Chapple, Richard H; Lin, Angelique; Kitano, Ayumi; Nakada, Daisuke

    2015-11-05

    How cancer cells adapt to metabolically adverse conditions in patients and strive to proliferate is a fundamental question in cancer biology. Here we show that AMP-activated protein kinase (AMPK), a metabolic checkpoint kinase, confers metabolic stress resistance to leukemia-initiating cells (LICs) and promotes leukemogenesis. Upon dietary restriction, MLL-AF9-induced murine acute myeloid leukemia (AML) activated AMPK and maintained leukemogenic potential. AMPK deletion significantly delayed leukemogenesis and depleted LICs by reducing the expression of glucose transporter 1 (Glut1), compromising glucose flux, and increasing oxidative stress and DNA damage. LICs were particularly dependent on AMPK to suppress oxidative stress in the hypoglycemic bone marrow environment. Strikingly, AMPK inhibition synergized with physiological metabolic stress caused by dietary restriction and profoundly suppressed leukemogenesis. Our results indicate that AMPK protects LICs from metabolic stress and that combining AMPK inhibition with physiological metabolic stress potently suppresses AML by inducing oxidative stress and DNA damage. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Clonal evolution of pre-leukemic hematopoietic stem cells precedes human acute myeloid leukemia.

    Science.gov (United States)

    Majeti, Ravindra

    2014-01-01

    Massively parallel DNA sequencing has uncovered recurrent mutations in many human cancers. In acute myeloid leukemia (AML), cancer genome/exome resequencing has identified numerous recurrently mutated genes with an average of 5 mutations in each case of de novo AML. In order for these multiple mutations to accumulate in a single lineage of cells, they are serially acquired in clones of self-renewing hematopoietic stem cells (HSC), termed pre-leukemic HSC. Isolation and characterization of pre-leukemic HSC have shown that their mutations are enriched in genes involved in regulating DNA methylation, chromatin modifications, and the cohesin complex. On the other hand, genes involved in regulating activated signaling are generally absent. Pre-leukemic HSC have been found to persist in clinical remission and may ultimately give rise to relapsed disease through the acquisition of novel mutations. Thus, pre-leukemic HSC may constitute a key cellular reservoir that must be eradicated for long-term cures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Concurrent targeting Akt and sphingosine kinase 1 by A-674563 in acute myeloid leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Lin [Xiangya Hospital, Central South University, Changsha (China); Shaoyang Central Hospital, Hunan Province (China); Zhang, Yanan; Gao, Meng [The Third Xiangya Hospital, Central South University, Changsha, 410013 (China); Wang, Guangping, E-mail: wangguangping45@sina.com [Xiangya Hospital, Central South University, Changsha (China); Fu, Yunfeng, E-mail: fuyunfeng33163@163.com [The Third Xiangya Hospital, Central South University, Changsha, 410013 (China)

    2016-04-15

    Akt signaling plays a pivotal role in acute myeloid leukemia (AML) development and progression. In the present study, we evaluated the potential anti-AML activity by a novel Akt kinase inhibitor A-674563. Our results showed that A-674563 dose-dependently inhibited survival and proliferation of U937 AML cells and six lines of human AML progenitor cells, yet sparing human peripheral blood mononuclear leukocytes (PBMCs). A-674563 activated caspase-3/9 and apoptosis in the AML cells. Reversely, the pan-caspase inhibitor z-VAD-CHO dramatically alleviated A-674563-induced AML cell apoptosis and cytotoxicity. For the molecular study, we showed that A-674563 blocked Akt activation in U937 cells and human AML progenitor cells. Further, A-674563 decreased sphingosine kinase 1 (SphK1) activity in above AML cells to deplete pro-survival sphingosine-1-phosphate (S1P) and boost pro-apoptotic ceramide production. Such an effect on SphK1 signaling by A-674563 appeared independent of Akt blockage. Significantly, K6PC-5, a novel SphK1 activator, or supplement with S1P attenuated A-674563-induced ceramide production, and subsequent U937 cell death and apoptosis. Importantly, intraperitoneal injection of A-674563 at well-tolerated doses suppressed U937 leukemic xenograft tumor growth in nude mice, whiling significantly improving the animal survival. The results of the current study demonstrate that A-674563 exerts potent anti-leukemic activity in vitro and in vivo, possibly via concurrent targeting Akt and SphK1 signalings. - Highlights: • A-674563 is cytotoxic and anti-proliferative in U937 and AML progenitor cells. • A-674563 activates caspase-3/9 and apoptosis in U937 and AML progenitor cells. • Whiling blocking Akt, A-674563 manipulates other signalings in AML cells. • A-674563 inhibits SphK1 activity in AML cells, independent of Akt blockage. • A-674563 injection inhibits U937 xenograft in vivo growth, and improves mice survival.

  1. Oncogenic RAS enables DNA damage- and p53-dependent differentiation of acute myeloid leukemia cells in response to chemotherapy.

    Directory of Open Access Journals (Sweden)

    Mona Meyer

    Full Text Available Acute myeloid leukemia (AML is a clonal disease originating from myeloid progenitor cells with a heterogeneous genetic background. High-dose cytarabine is used as the standard consolidation chemotherapy. Oncogenic RAS mutations are frequently observed in AML, and are associated with beneficial response to cytarabine. Why AML-patients with oncogenic RAS benefit most from high-dose cytarabine post-remission therapy is not well understood. Here we used bone marrow cells expressing a conditional MLL-ENL-ER oncogene to investigate the interaction of oncogenic RAS and chemotherapeutic agents. We show that oncogenic RAS synergizes with cytotoxic agents such as cytarabine in activation of DNA damage checkpoints, resulting in a p53-dependent genetic program that reduces clonogenicity and increases myeloid differentiation. Our data can explain the beneficial effects observed for AML patients with oncogenic RAS treated with higher dosages of cytarabine and suggest that induction of p53-dependent differentiation, e.g. by interfering with Mdm2-mediated degradation, may be a rational approach to increase cure rate in response to chemotherapy. The data also support the notion that the therapeutic success of cytotoxic drugs may depend on their ability to promote the differentiation of tumor-initiating cells.

  2. Indoleamine 2,3-dioxygenase and regulatory T cells in acute myeloid leukemia.

    Science.gov (United States)

    Mansour, Iman; Zayed, Rania A; Said, Fadwa; Latif, Lamyaa Abdel

    2016-09-01

    The microenvironment of acute myeloid leukemia (AML) is suppressive for immune cells. Regulatory T cells (Tregs) have been recognized to play a role in helping leukemic cells to evade immunesurveillance. The mesenchymal stem cells (MSCs) are essential contributors in immunomodulation of the microenvironment as they can promote differentiation of Tregs via the indoleamine 2,3-dioxygenase (IDO) pathway. The aim of the present work was to evaluate the expression of IDO in bone marrow derived MSCs and to study its correlation to percentage of Tregs. Thirty-seven adult bone marrow samples were cultured in appropriate culture medium to isolate MSCs. Successful harvest of MSCs was determined by plastic adherence, morphology, and positive expression of CD271 and CD105; negative expression of CD34 and CD45 using flowcytometry. MSCs were examined for IDO expression by immunocytochemistry using anti-IDO monoclonal antibody. CD4+ CD25+ cells (Tregs) were measured in bone marrow samples by flowcytometry. MSCs were successfully isolated from 20 of the 37 bone marrow samples cultured. MSCs showed higher expression of IDO and Tregs percentage was higher in AML patients compared to control subjects (P = 0.002 and P < 0.001, respectively). A positive correlation was found between IDO expression and Tregs percentage (P value = 0.012, r = 0.5). In this study, we revealed an association between high IDO expression in MSCs and elevated levels of Tregs which could have an important role in the pathogenesis of AML, providing immunosuppressive microenvironment.

  3. Activated NKT cells facilitated functional switch of myeloid-derived suppressor cells at inflammation sites in fulminant hepatitis mice.

    Science.gov (United States)

    Wu, Danxiao; Shi, Yu; Wang, Cheng; Chen, Hanwen; Liu, Qiaoyun; Liu, Jianhua; Zhang, Lihuang; Wu, Yihua; Xia, Dajing

    2017-02-01

    Myeloid-derived suppressor cells (MDSCs) confer immunosuppressive properties, but their roles in fulminant hepatitis have not been well defined. In this study, we systematically examined the distribution of MDSCs in bone marrow (BM), liver and spleen, and their functional and differentiation status in an acute fulminant hepatitis mouse model induced by lipopolysaccharide and D-galactosamine (LPS-GalN). Moreover, the interaction between NKT cells and MDSCs was determined. Our study revealed that BM contained the largest pool of MDSCs during pathogenesis of fulminant hepatitis compared with liver and spleen. MDSCs in liver/spleen expressed higher levels of chemokine receptors such as CCR2, CX3CR1 and CXCR2. At inflamed tissues such as liver or spleen, activated NKT cells induced differentiation of MDSCs through cell-cell interaction, which markedly dampened the immunosuppressive effects and promoted MDSCs to produce pro-inflammatory cytokines and activate inflammatory cells. Our findings thus demonstrated an unexpected pro-inflammatory state for MDSCs, which was mediated by the activated NKT cells that precipitated the differentiation and functional evolution of these MDSCs at sites of inflammation. Copyright © 2016. Published by Elsevier GmbH.

  4. Role of regulatory T cells in acute myeloid leukemia patients undergoing relapse-preventive immunotherapy.

    Science.gov (United States)

    Sander, Frida Ewald; Nilsson, Malin; Rydström, Anna; Aurelius, Johan; Riise, Rebecca E; Movitz, Charlotta; Bernson, Elin; Kiffin, Roberta; Ståhlberg, Anders; Brune, Mats; Foà, Robin; Hellstrand, Kristoffer; Thorén, Fredrik B; Martner, Anna

    2017-11-01

    Regulatory T cells (T regs ) have been proposed to dampen functions of anti-neoplastic immune cells and thus promote cancer progression. In a phase IV trial (Re:Mission Trial, NCT01347996, http://www.clinicaltrials.gov ) 84 patients (age 18-79) with acute myeloid leukemia (AML) in first complete remission (CR) received ten consecutive 3-week cycles of immunotherapy with histamine dihydrochloride (HDC) and low-dose interleukin-2 (IL-2) to prevent relapse of leukemia in the post-consolidation phase. This study aimed at defining the features, function and dynamics of Foxp3 + CD25 high CD4 + T regs during immunotherapy and to determine the potential impact of T regs on relapse risk and survival. We observed a pronounced increase in T reg counts in peripheral blood during initial cycles of HDC/IL-2. The accumulating T regs resembled thymic-derived natural T regs (nT regs ), showed augmented expression of CTLA-4 and suppressed the cell cycle proliferation of conventional T cells ex vivo. Relapse of AML was not prognosticated by T reg counts at onset of treatment or after the first cycle of immunotherapy. However, the magnitude of T reg induction was diminished in subsequent treatment cycles. Exploratory analyses implied that a reduced expansion of T regs in later treatment cycles and a short T reg telomere length were significantly associated with a favorable clinical outcome. Our results suggest that immunotherapy with HDC/IL-2 in AML entails induction of immunosuppressive T regs that may be targeted for improved anti-leukemic efficiency.

  5. SAMHD1 restricts HIV-1 replication and regulates interferon production in mouse myeloid cells.

    Directory of Open Access Journals (Sweden)

    Ruonan Zhang

    Full Text Available SAMHD1 restricts the replication of HIV-1 and other retroviruses in human myeloid and resting CD4(+ T cells and that is counteracted in SIV and HIV-2 by the Vpx accessory protein. The protein is a phosphohydrolase that lowers the concentration of deoxynucleoside triphosphates (dNTP, blocking reverse transcription of the viral RNA genome. Polymorphisms in the gene encoding SAMHD1 are associated with Aicardi-Goutières Syndrome, a neurological disorder characterized by increased type-I interferon production. SAMHD1 is conserved in mammals but its role in restricting virus replication and controlling interferon production in non-primate species is not well understood. We show that SAMHD1 is catalytically active and expressed at high levels in mouse spleen, lymph nodes, thymus and lung. siRNA knock-down of SAMHD1 in bone marrow-derived macrophages increased their susceptibility to HIV-1 infection. shRNA knock-down of SAMHD1 in the murine monocytic cell-line RAW264.7 increased its susceptibility to HIV-1 and murine leukemia virus and increased the levels of the dNTP pool. In addition, SAMHD1 knock-down in RAW264.7 cells induced the production of type-I interferon and several interferon-stimulated genes, modeling the situation in Aicardi-Goutières Syndrome. Our findings suggest that the role of SAMHD1 in restricting viruses is conserved in the mouse. The RAW264.7 cell-line serves as a useful tool to study the antiviral and innate immune response functions of SAMHD1.

  6. Myeloid-derived suppressor cells contribute to Staphylococcus aureus orthopedic biofilm infection.

    Science.gov (United States)

    Heim, Cortney E; Vidlak, Debbie; Scherr, Tyler D; Kozel, Jessica A; Holzapfel, Melissa; Muirhead, David E; Kielian, Tammy

    2014-04-15

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature monocytes and granulocytes that are potent inhibitors of T cell activation. A role for MDSCs in bacterial infections has only recently emerged, and nothing is known about MDSC function in the context of Staphylococcus aureus infection. Because S. aureus biofilms are capable of subverting immune-mediated clearance, we examined whether MDSCs could play a role in this process. CD11b(+)Gr-1(+) MDSCs represented the main cellular infiltrate during S. aureus orthopedic biofilm infection, accounting for >75% of the CD45+ population. Biofilm-associated MDSCs inhibited T cell proliferation and cytokine production, which correlated with a paucity of T cell infiltrates at the infection site. Analysis of FACS-purified MDSCs recovered from S. aureus biofilms revealed increased arginase-1, inducible NO synthase, and IL-10 expression, key mediators of MDSC suppressive activity. Targeted depletion of MDSCs and neutrophils using the mAb 1A8 (anti-Ly6G) improved bacterial clearance by enhancing the intrinsic proinflammatory attributes of infiltrating monocytes and macrophages. Furthermore, the ability of monocytes/macrophages to promote biofilm clearance in the absence of MDSC action was revealed with RB6-C85 (anti-Gr-1 or anti-Ly6G/Ly6C) administration, which resulted in significantly increased S. aureus burdens both locally and in the periphery, because effector Ly 6C monocytes and, by extension, mature macrophages were also depleted. Collectively, these results demonstrate that MDSCs are key contributors to the chronicity of S. aureus biofilm infection, as their immunosuppressive function prevents monocyte/macrophage proinflammatory activity, which facilitates biofilm persistence.

  7. Myeloid-derived suppressor cells (MDSCs) contribute to S. aureus orthopedic biofilm infection

    Science.gov (United States)

    Heim, Cortney E.; Vidlak, Debbie; Scherr, Tyler D.; Kozel, Jessica A.; Holzapfel, Melissa; Muirhead, David E.; Kielian, Tammy

    2014-01-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature monocytes and granulocytes that are potent inhibitors of T cell activation. A role for MDSCs in bacterial infections has only recently emerged and nothing is known about MDSC function in the context of Staphylococcus aureus (S. aureus) infection. Since S. aureus biofilms are capable of subverting immune-mediated clearance, we examined whether MDSCs could play a role in this process. CD11b+Gr-1+ MDSCs represented the main cellular infiltrate during S. aureus orthopedic biofilm infection, accounting for over 75% of the CD45+ population. Biofilm-associated MDSCs inhibited T cell proliferation and cytokine production, which correlated with a paucity of T cell infiltrates at the infection site. Analysis of FACS-purified MDSCs recovered from S. aureus biofilms revealed increased Arg-1, iNOS, and IL-10 expression, key mediators of MDSC suppressive activity. Targeted depletion of MDSCs and neutrophils using the mAb 1A8 (anti-Ly6G) improved bacterial clearance by enhancing the intrinsic pro-inflammatory attributes of infiltrating monocytes and macrophages. Furthermore, the ability of monocytes/macrophages to promote biofilm clearance in the absence of MDSC action was revealed with RB6-C85 (anti-Gr-1 or anti-Ly6G/Ly6C) administration, which resulted in significantly increased S. aureus burdens both locally and in the periphery, since effector Ly-6C monocytes and by extension, mature macrophages, were also depleted. Collectively, these results are the first to demonstrate that MDSCs are key contributors to the chronicity of S. aureus biofilm infection, as their immunosuppressive function prevents monocyte/macrophage proinflammatory activity, which facilitates biofilm persistence. PMID:24646737

  8. Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein

    DEFF Research Database (Denmark)

    Järås, Marcus; Johnels, Petra; Hansen, Nils Gunder

    2010-01-01

    Chronic myeloid leukemia (CML) is genetically characterized by the Philadelphia (Ph) chromosome, formed through a reciprocal translocation between chromosomes 9 and 22 and giving rise to the constitutively active tyrosine kinase P210 BCR/ABL1. Therapeutic strategies aiming for a cure of CML...... will require full eradication of Ph chromosome-positive (Ph(+)) CML stem cells. Here we used gene-expression profiling to identify IL-1 receptor accessory protein (IL1RAP) as up-regulated in CML CD34(+) cells and also in cord blood CD34(+) cells as a consequence of retroviral BCR/ABL1 expression. To test...

  9. Dehydrocostus Lactone Suppresses Proliferation of Human Chronic Myeloid Leukemia Cells Through Bcr/Abl-JAK/STAT Signaling Pathways.

    Science.gov (United States)

    Cai, Hong; Qin, Xiaosong; Yang, Chunhui

    2017-10-01

    This study evaluates the anticancer effects of dehydrocostus lactone, a plant-derived sesquiterpene lactone, on human chronic myeloid leukemia cells. Dehydrocostus lactone significantly inhibits cell proliferation by inducing cells to undergo cell cycle arrest, apoptosis, and differentiation. Dehydrocostus lactone suppresses the expression of cyclin B1, cyclin A, cyclin E, cyclin-dependent kinase 2 (CDK2), and cyclin-dependent kinase 1 (CDK1) and increases p21 expression, resulting in S-G2/M phase arrest in K562 cells. Dehydrocostus lactone also induces apoptosis by increasing the generation of reactive oxygen species (ROS), disruption of mitochondrial membrane potential (MMP), and modulating the protein levels of Bcl-2 family members. We also found that dehydrocostus lactone significantly inhibits the phosphorylation expression of Bcr/Abl, STAT5, JAK2, and STAT3 and downstream molecules including p-CrkL, Mcl-1, Bcl-XL, and Bcl-2 proteins in K562 cells. At a low concentration, dehydrocostus lactone significantly increased CD11b and CD14 expression on the surface of K562 cells, and induced cells to differentiate into monocytes or mature macrophages. Taken together, this study provides new insight into the molecular mechanisms of dehydrocostus lactone actions that may contribute to the chemoprevention of chronic myeloid leukemia. J. Cell. Biochem. 118: 3381-3390, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Cell-to-Cell Contact and Nectin-4 Govern Spread of Measles Virus from Primary Human Myeloid Cells to Primary Human Airway Epithelial Cells

    Science.gov (United States)

    Singh, Brajesh K.; Li, Ni; Mark, Anna C.; Mateo, Mathieu; Cattaneo, Roberto

    2016-01-01

    ABSTRACT Measles is a highly contagious, acute viral illness. Immune cells within the airways are likely first targets of infection, and these cells traffic measles virus (MeV) to lymph nodes for amplification and subsequent systemic dissemination. Infected immune cells are thought to return MeV to the airways; however, the mechanisms responsible for virus transfer to pulmonary epithelial cells are poorly understood. To investigate this process, we collected blood from human donors and generated primary myeloid cells, specifically, monocyte-derived macrophages (MDMs) and dendritic cells (DCs). MDMs and DCs were infected with MeV and then applied to primary cultures of well-differentiated airway epithelial cells from human donors (HAE). Consistent with previous results obtained with free virus, infected MDMs or DCs were incapable of transferring MeV to HAE when applied to the apical surface. Likewise, infected MDMs or DCs applied to the basolateral surface of HAE grown on small-pore (0.4-μm) support membranes did not transfer virus. In contrast, infected MDMs and DCs applied to the basolateral surface of HAE grown on large-pore (3.0-μm) membranes successfully transferred MeV. Confocal microscopy demonstrated that MDMs and DCs are capable of penetrating large-pore membranes but not small-pore membranes. Further, by using a nectin-4 blocking antibody or recombinant MeV unable to enter cells through nectin-4, we demonstrated formally that transfer from immune cells to HAE occurs in a nectin-4-dependent manner. Thus, both infected MDMs and DCs rely on cell-to-cell contacts and nectin-4 to efficiently deliver MeV to the basolateral surface of HAE. IMPORTANCE Measles virus spreads rapidly and efficiently in human airway epithelial cells. This rapid spread is based on cell-to-cell contact rather than on particle release and reentry. Here we posit that MeV transfer from infected immune cells to epithelial cells also occurs by cell-to-cell contact rather than through cell

  11. Ubiquitin Conjugation Probed by Inflammation in Myeloid-Derived Suppressor Cell Extracellular Vesicles.

    Science.gov (United States)

    Adams, Katherine R; Chauhan, Sitara; Patel, Divya B; Clements, Virginia K; Wang, Yan; Jay, Steven M; Edwards, Nathan J; Ostrand-Rosenberg, Suzanne; Fenselau, Catherine

    2018-01-05

    Ubiquitinated proteins carried by the extracellular vesicles (EV) released by myeloid-derived suppressor cells (MDSC) have been investigated using proteomic strategies to examine the effect of tumor-associated inflammation. EV were collected from MDSC directly following isolation from tumor-bearing mice with low and high inflammation. Among the 1092 proteins (high inflammation) and 925 proteins (low inflammation) identified, more than 50% were observed as ubiquitinated proteoforms. More than three ubiquitin-attachment sites were characterized per ubiquitinated protein, on average. Multiple ubiquitination sites were identified in the pro-inflammatory proteins S100 A8 and S100 A9, characteristic of MDSC and in histones and transcription regulators among other proteins. Spectral counting and pathway analysis suggest that ubiquitination occurs independently of inflammation. Some ubiquitinated proteins were shown to cause the migration of MDSC, which has been previously connected with immune suppression and tumor progression. Finally, MDSC EV are found collectively to carry all the enzymes required to catalyze ubiquitination, and the hypothesis is presented that a portion of the ubiquitinated proteins are produced in situ.

  12. Hematopoietic cell crisis: An early stage of evolving myeloid leukemia following radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Seed, T.M.

    1990-01-01

    Under select radiological conditions, chronic radiation exposure elicits a high incidence of myeloproliferative disease, principally myeloid leukemia (ML), in beagles. Previously we demonstrated that for full ML expression, a four-stage preclinical sequence is required, namely (1) suppression, (2) recovery, (3) accommodation, and (4) preleukemic transition. Within this pathological sequence, a critical early event has been identified as the acquisition of radioresistance by hematopoietic progenitors that serves to mediate a newfound regenerative hematopoietic capacity. As such, this event sets the stage'' for preleukemic progression by initiating progression from preclinical phase 1 to 2. Due to the nature of target cell suppression, the induction of crisis, and the outgrowth of progenitors with altered phenotypes, this preleukemic event resembles the immortalization'' step of the in vitro transformation sequence following induction with either physical and chemical carcinogens. The radiological, temporal, and biological dictates governing this event have been extensively evaluated and will be discussed in light of their role in the induction and progression of chronic radiation leukemia. 35 refs., 2 tabs.

  13. Hematopoietic cell crisis: An early stage of evolving myeloid leukemia following radiation exposure

    International Nuclear Information System (INIS)

    Seed, T.M.

    1990-01-01

    Under select radiological conditions, chronic radiation exposure elicits a high incidence of myeloproliferative disease, principally myeloid leukemia (ML), in beagles. Previously we demonstrated that for full ML expression, a four-stage preclinical sequence is required, namely (1) suppression, (2) recovery, (3) accommodation, and (4) preleukemic transition. Within this pathological sequence, a critical early event has been identified as the acquisition of radioresistance by hematopoietic progenitors that serves to mediate a newfound regenerative hematopoietic capacity. As such, this event ''sets the stage'' for preleukemic progression by initiating progression from preclinical phase 1 to 2. Due to the nature of target cell suppression, the induction of crisis, and the outgrowth of progenitors with altered phenotypes, this preleukemic event resembles the ''immortalization'' step of the in vitro transformation sequence following induction with either physical and chemical carcinogens. The radiological, temporal, and biological dictates governing this event have been extensively evaluated and will be discussed in light of their role in the induction and progression of chronic radiation leukemia. 35 refs., 2 tabs

  14. miR-34a expands myeloid-derived suppressor cells via apoptosis inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Anfei, E-mail: huang_anfei@163.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Zhang, Haitao, E-mail: zhanghtjp@126.com [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215021, Jiangsu Province (China); Chen, Si, E-mail: chensisdyxb@126.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Xia, Fei, E-mail: xiafei87@gmail.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Yang, Yi, E-mail: 602744364@qq.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Dong, Fulu, E-mail: adiok0903@126.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Sun, Di, E-mail: dongfl@suda.edu.cn [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Xiong, Sidong, E-mail: sdxiong@suda.edu.cn [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Zhang, Jinping, E-mail: j_pzhang@suda.edu.cn [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China)

    2014-08-15

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population and show significant expansion under pathological conditions. microRNA plays important roles in many biological processes, whether microRNAs have a function in the expansion of MDSCs is still not very clear. In this study, miR-34a overexpression can induce the expansion of MDSCs in bone marrow chimera and transgenic mice model. The experimental results suggest that miR-34a inhibited the apoptosis of MDSCs but did not affect the proliferation of MDSCs. The distinct mRNA microarray profiles of MDSCs of wild type and miR-34a over-expressing MDSCs combined with the target prediction of miR-34a suggest that miR-34a may target genes such as p2rx7, Tia1, and plekhf1 to inhibit the apoptosis of MDSCs. Taken together, miR-34a contributes to the expansion of MDSCs by inhibiting the apoptosis of MDSCs. - Highlights: • Over-expression of miR-34a increases the number of MDSCs. • miR-34a inhibits the apoptosis of MDSCs, but does not affects their proliferation. • miR-34a may inhibit the apoptosis of MDSCs via targeting the p2rx7, Tia1 and plekhf1.

  15. A clinical and biological perspective of human myeloid-derived suppressor cells in cancer.

    Science.gov (United States)

    Shipp, Christopher; Speigl, Lisa; Janssen, Nicole; Martens, Alexander; Pawelec, Graham

    2016-11-01

    Considering the large number of studies focused on myeloid-derived suppressor cells (MDSCs) to date, only a handful of well-defined relationships in human cancer have been established. The difficulty of assessing the impact of MDSCs in human cancer is partly due to the relatively small number of studies performed in humans. This is compounded in the literature by a common lack of clear indication of which species is being referred to for each characteristic described. These aspects may result in inappropriate extrapolation of animal studies to those in the human setting. This is especially the case for studies focused on investigating therapies which can be used to target MDSCs or those aimed at understanding their mechanism. Here, we attempt to rectify this by reviewing only studies on MDSC performed in humans. We survey studies which explore (1) whether MDSC levels are altered in cancer patients and if this is correlated with patient survival, (2) the so far identified mechanisms employed by MDSC to exert immune suppression, and (3) whether therapeutic agents can be used to target MDSCs by either altering their level, influencing their differentiation or inhibiting their suppressive function. Despite the fact that these studies clearly show that MDSCs are important in human cancer, the clinical employment of agents intended to target them has not yet been accomplished. We identify factors which have contributed to this and propose steps which may facilitate the translation of these therapies to the clinic in future.

  16. Diagnostic value of soluble triggering receptor expressed on myeloid cells in paediatric sepsis: a systematic review.

    Science.gov (United States)

    Pontrelli, Giuseppe; De Crescenzo, Franco; Buzzetti, Roberto; Calò Carducci, Francesca; Jenkner, Alessandro; Amodio, Donato; De Luca, Maia; Chiurchiù, Sara; Davies, Elin Haf; Simonetti, Alessandra; Ferretti, Elena; Della Corte, Martina; Gramatica, Luca; Livadiotti, Susanna; Rossi, Paolo

    2016-04-27

    Differential diagnosis between sepsis and non-infectious inflammatory disorders demands improved biomarkers. Soluble Triggering Receptor Expression on Myeloid cells (sTREM-1) is an activating receptor whose role has been studied throughout the last decade. We performed a systematic review to evaluate the accuracy of plasma sTREM-1 levels in the diagnosis of sepsis in children with Systemic Inflammatory Response Syndrome (SIRS). A literature search of PubMed, Cochrane Central Register of Controlled Trials, Cumulative Index to Nursing and Allied Health Literature (CINAHL) and ISI Web of Knowledge databases was performed using specific search terms. Studies were included if they assessed the diagnostic accuracy of plasma sTREM-1 for sepsis in paediatric patients with SIRS. Data on sensitivity, specificity, positive predictive value, negative predictive value, area under receiver operating characteristic curve were extracted. The methodological quality of each study was assessed using a checklist based on the Quality Assessment Tool for Diagnostic Accuracy Studies. Nine studies comprising 961 patients were included, four of which were in newborns, three in children and two in children with febrile neutropenia. Some data from single studies support a role of sTREM-1 as a diagnostic tool in pediatric sepsis, but cannot be considered conclusive, because a quantitative synthesis was not possible, due to heterogeneity in studies design. This systematic review suggests that available data are insufficient to support a role for sTREM in the diagnosis and follow-up of paediatric sepsis.

  17. Applications of myeloid-specific promoters in transgenic mice support in vivo imaging and functional genomics but do not support the concept of distinct macrophage and dendritic cell lineages or roles in immunity.

    Science.gov (United States)

    Hume, David A

    2011-04-01

    Myeloid lineage cells contribute to innate and acquired immunity, homeostasis, wound repair, and inflammation. There is considerable interest in manipulation of their function in transgenic mice using myeloid-specific promoters. This review considers the applications and specificity of some of the most widely studied transgenes, driven by promoter elements of the lysM, csf1r, CD11c, CD68, macrophage SRA, and CD11b genes, as well as several others. Transgenes have been used in mice to generate myeloid lineage-specific cell ablation, expression of genes of interest, including fluorescent reporters, or deletion via recombination. In general, the specificity of such transgenes has been overinterpreted, and none of them provide well-documented, reliable, differential expression in any specific myeloid cell subset, macrophages, granulocytes, or myeloid DCs. Nevertheless, they have proved valuable in cell isolation, functional genomics, and live imaging of myeloid cell behavior in many different pathologies.

  18. Recruitment of myeloid and plasmacytoid dendritic cells in cervical mucosa during Chlamydia trachomatis infection.

    Science.gov (United States)

    Agrawal, T; Vats, V; Wallace, P K; Singh, A; Salhan, S; Mittal, A

    2009-01-01

    The mobilization of myeloid dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs) to the cervix during chlamydial infection is not fully understood, and the role of these cells in immunopathogenesis is largely unknown. As an effective vaccine to control chlamydial infection is currently unavailable, understanding the regulation of the local immune response becomes a necessity. Therefore, mDC and pDC populations were analysed in peripheral blood and cervical samples of controls and Chlamydia-positive women, with or without mucopurulent cervicitis (MPC). Cervical cytokines and C-reactive protein levels in serum were quantified by ELISA and the chlamydial infectious load by culture. Chlamydia trachomatis infection mobilized both mDCs and pDCs to the cervical mucosa. pDCs were recruited more often in women with MPC (p cervical interleukin-8 (IL-8) levels. Upregulation of surface expression of co-stimulatory molecules (CD80, CD83 and CD86) on cervical mDCs and pDCs was observed during chlamydial infection but was significant only for mDCs. Significantly higher levels of IL-1 beta, IL-6 and IL-8 were observed in Chlamydia-positive women with MPC; however, after therapy, IL-8 levels decreased significantly. Median numbers of mDCs after therapy were significantly higher in the cervix and blood of infected women as compared to the numbers of pDCs, which were found to be lower in the cervix after therapy. These results thus suggest that during chlamydial infection, both mDCs and pDCs are recruited to the cervix, but their number and possible immunological functions may differ with the pathological condition. pDCs were associated more often with MPC and inflammatory factors, suggesting that they may possibly be involved in the immunopathogenesis of infections due to Chlamydia.

  19. Persistent Reduction of Circulating Myeloid Calcifying Cells in Acromegaly: Relevance to the Bone-Vascular Axis.

    Science.gov (United States)

    Fadini, Gian Paolo; Dassie, Francesca; Cappellari, Roberta; Persano, Mariasara; Vigili de Kreutzenberg, Saula; Martini, Chiara; Parolin, Matteo; Avogaro, Angelo; Vettor, Roberto; Maffei, Pietro

    2017-06-01

    Acromegaly is a systemic disease characterized by persistent bone pathology and excess cardiovascular mortality. Despite multiple concomitant risk factors, atherosclerosis does not seem to be accelerated in acromegaly. To compare the levels of circulating myeloid calcifying cells (MCCs), which promote ectopic calcification and inhibit angiogenesis, in individuals with and without acromegaly. Cross-sectional case-control study. Tertiary ambulatory referral endocrinology center. 44 acromegalic patients (25 active; 19 inactive), 44 control subjects matched by age, sex, risk factors, and medications, and 8 patients cured of acromegaly. MCCs were measured using flow cytometry based on the expression of osteocalcin (OC) and bone alkaline phosphatase (BAP) on monocytes and circulating CD34+ stem cells. Differences in MCCs between patients and controls. OC+BAP+ MCCs were severely reduced in acromegalic compared with control patients (0.17% ± 0.02% vs 1.00% ± 0.24%; P < 0.001), as were the total OC+ and BAP+ monocytic cells. Patients with inactive acromegaly and those cured of acromegaly displayed persistently reduced levels of MCCs. In the controls, but not acromegalic patients, MCCs were increased in the presence of diabetes or cardiovascular disease. A direct correlation was noted between MCCs and parathyroid hormone (r = 0.61; P < 0.0001), supporting a link between bone biology and MCCs. In patients with acromegaly, the levels of MCCs are reduced and remain low, even years after a complete cure. This finding might be related to low atherosclerotic calcification and the persistence of bone pathology after acromegaly remission or cure. Copyright © 2017 Endocrine Society

  20. Identification of myeloid derived suppressor cells in the peripheral blood of tumor bearing dogs.

    Science.gov (United States)

    Sherger, Matthew; Kisseberth, William; London, Cheryl; Olivo-Marston, Susan; Papenfuss, Tracey L

    2012-10-31

    Myeloid derived suppressor cells (MDSCs) are a recently described population of immune cells that significantly contribute to the immunosuppression seen in cancer patients. MDSCs are one of the most important factors that limit the efficacy of cancer immunotherapy (e.g. cancer vaccines) and MDSC levels are increased in cancer in multiple species. Identifying and targeting MDSCs is actively being investigated in the field of human oncology and is increasingly being investigated in veterinary oncology. The treatment of canine cancer not only benefits dogs, but is being used for translational studies evaluating and modifying candidate therapies for use in humans. Thus, it is necessary to understand the immune alterations seen in canine cancer patients which, to date, have been relatively limited. This study investigates the use of commercially available canine antibodies to detect an immunosuppressive (CD11b low/CADO48 low) cell population that is increased in the peripheral blood of tumor-bearing dogs. Commercially available canine antibodies CD11b and CADO48A were used to evaluate white blood cells from the peripheral blood cells of forty healthy control dogs and forty untreated, tumor-bearing dogs. Tumor-bearing dogs had a statistically significant increase in CD11b low/CADO48A low cells (7.9%) as compared to the control dogs (3.6%). Additionally, sorted CD11b low/CADO48A low generated in vitro suppressed the proliferation of canine lymphocytes. The purpose of this study was aimed at identifying potential canine specific markers for identifying MDSCs in the peripheral blood circulation of dogs. This study demonstrates an increase in a unique CD11b low/CADO48A low cell population in tumor-bearing dogs. This immunophenotype is consistent with described phenotypes of MDSCs in other species (i.e. mice) and utilizes commercially available canine-specific antibodies. Importantly, CD11b low/CADO48A low from a tumor environment suppress the proliferation of lymphocytes

  1. Mesenchymal Transition of High-Grade Breast Carcinomas Depends on Extracellular Matrix Control of Myeloid Suppressor Cell Activity.

    Science.gov (United States)

    Sangaletti, Sabina; Tripodo, Claudio; Santangelo, Alessandra; Castioni, Nadia; Portararo, Paola; Gulino, Alessandro; Botti, Laura; Parenza, Mariella; Cappetti, Barbara; Orlandi, Rosaria; Tagliabue, Elda; Chiodoni, Claudia; Colombo, Mario P

    2016-09-27

    The extracellular matrix (ECM) contributes to the biological and clinical heterogeneity of breast cancer, and different prognostic groups can be identified according to specific ECM signatures. In high-grade, but not low-grade, tumors, an ECM signature characterized by high SPARC expression (ECM3) identifies tumors with increased epithelial-to-mesenchymal transition (EMT), reduced treatment response, and poor prognosis. To better understand how this ECM3 signature is contributing to tumorigenesis, we expressed SPARC in isogenic cell lines and found that SPARC overexpression in tumor cells reduces their growth rate and induces EMT. SPARC expression also results in the formation of a highly immunosuppressive microenvironment, composed by infiltrating T regulatory cells, mast cells, and myeloid-derived suppressor cells (MDSCs). The ability of SPARC to induce EMT depended on the localization and suppressive function of myeloid cells, and inhibition of the suppressive function MDSCs by administration of aminobisphosphonates could revert EMT, rendering SPARC-overexpressing tumor cells sensitive to Doxil. We conclude that that SPARC is regulating the interplay between MDSCs and the ECM to drive the induction of EMT in tumor cells. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Undifferentiated embryonal sarcoma of liver

    Directory of Open Access Journals (Sweden)

    Avyakta Kallam

    2015-12-01

    Full Text Available Undifferentiated embryonal sarcoma of the liver (UESL is a rare malignant hepatic tumor. A 47 year old male presented with symptoms of sour taste in his mouth, occasional nausea, indigestion and 15-pound weight loss over two months. He had an unremarkable upper gastrointestinal endoscopy. Imaging showed a large liver mass in the left hepatic lobe that was resected and then reported as UESL. He went on to develop lung metastases and was initially treated with doxorubicin and ifosfamide followed by switching of therapy to gemcitabine and docetaxel due to progression of disease. He had a good response after two cycles and went on to receive four more cycles, achieving stable disease. We can therefore conclude that the combination of gemcitabine and docetaxel is a potential therapeutic option for patients with UESL.

  3. Undifferentiated Embryonal Sarcoma of Liver.

    Science.gov (United States)

    Kallam, Avyakta; Krishnamurthy, Jairam; Kozel, Jessica; Shonka, Nicole

    2015-12-29

    Undifferentiated embryonal sarcoma of the liver (UESL) is a rare malignant hepatic tumor. A 47 year old male presented with symptoms of sour taste in his mouth, occasional nausea, indigestion and 15-pound weight loss over two months. He had an unremarkable upper gastrointestinal endoscopy. Imaging showed a large liver mass in the left hepatic lobe that was resected and then reported as UESL. He went on to develop lung metastases and was initially treated with doxorubicin and ifosfamide followed by switching of therapy to gemcitabine and docetaxel due to progression of disease. He had a good response after two cycles and went on to receive four more cycles, achieving stable disease. We can therefore conclude that the combination of gemcitabine and docetaxel is a potential therapeutic option for patients with UESL.

  4. The Past, Present and Future Subclassification of Patients with Acute Myeloid Leukemia.

    Science.gov (United States)

    Forthun, Rakel B; Hinrichs, Carina; Dowling, Tara H; Bruserud, Øystein; Selheim, Frode

    2016-01-01

    Acute myeloid leukemia (AML) is characterized as a heterogeneous disease where the patients are sub grouped according to several classification systems and mutational analyses. Diagnosis of AML is based on identification of the specific myeloid cell initiating the disease, quantification of immature blasts in bone marrow and peripheral blood, as well as detection of mutations and translocations. The heterogeneity of AML is caused by a block in differentiation that may occur in any of the different myeloid cell populations. These undifferentiated cells also harbor an increased proliferation potential that leads to accumulation of immature leukemic cells. The current development of more sensitive and less labor intensive analysis methods has led classification of patients from being a system based on morphology of the leukemic cells to being more sophisticated, detecting translocations and small mutations found in the whole leukemic clone or in a minor subclone. This review aims to describe the most common classification systems of AML, including frequently occurring translocations, mutations and epigenetic alterations, as well as describe traditional and novel methods for diagnosis and analysis of these patients.

  5. Control of Both Myeloid Cell Infiltration and Angiogenesis by CCR1 Promotes Liver Cancer Metastasis Development in Mice

    Directory of Open Access Journals (Sweden)

    Mathieu Paul Rodero

    2013-06-01

    Full Text Available Expression of the CC chemokine receptor 1 (CCR1 by tumor cells has been associated with protumoral activity; however, its role in nontumoral cells during tumor development remains elusive. Here, we investigated the role of CCR1 deletion on stromal and hematopoietic cells in a liver metastasis tumor model. Metastasis development was strongly impaired in CCR1-deficient mice compared to control mice and was associated with reduced liver monocyte infiltration. To decipher the role of myeloid cells, sublethally irradiated mice were reconstituted with CCR1-deficient bone marrow (BM and showed better survival rates than the control reconstituted mice. These results point toward the involvement of CCR1 myeloid cell infiltration in the promotion of tumor burden. In addition, survival rates were extended in CCR1-deficient mice receiving either control or CCR1-deficient BM, indicating that host CCR1 expression on nonhematopoietic cells also supports tumor growth. Finally, we found defective tumor-induced neoangiogenesis (in vitro and in vivo in CCR1-deficient mice. Overall, our results indicate that CCR1 expression by both hematopoietic and nonhematopoietic cells favors tumor aggressiveness. We propose CCR1 as a potential therapeutical target for liver metastasis therapy.

  6. Apoptosis in chronic myeloid leukaemia: normal responses by progenitor cells to growth factor deprivation, X-irradiation and glucocorticoids

    Energy Technology Data Exchange (ETDEWEB)

    Amos, T.A.S.; Lewis, J.L.; Grand, F.H.; Gooding, R.P.; Goldman, J.M.; Gordon, M.Y. [Royal Postgraduate Medical School, London (United Kingdom)

    1995-10-01

    Inhibition of apoptosis (genetically programmed active cell death) by p210 BCR-ABL expression is a mechanism that might contribute to clonal expansion in chronic myeloid leukaemia (CML). Since cell death following exposure to ionizing radiation and many chemotherapeutic agents can occur by the apoptotic pathway, inhibition of apoptosis would be expected to confer a relative resistance to these treatments. Similarly, cells deprived of growth factors in vitro die by apoptosis, and inhibition of apoptosis would therefore be expected to allow cells to survive better in growth factor-deprived conditions. We found that the survival of normal and CML myeloid progenitors was the same after in vitro incubation in deprived conditions and after treatment with X-irradiation or glucocorticoids. We also found that mature cells in colonies produced by CML progenitors (CFU-GM) did not survive better than those produced by normal progenitor cells. Flow cytometric analysis of propidium iodide-stained cells provided a direct indication that the degree of apoptosis may correspond to the degree of deprivation. These results suggest that inhibition of apoptosis may not be the primary mechanism whereby BCR-ABL influences the expansion of the malignant clone in CML. (Author).

  7. Transfer of multidrug resistance among acute myeloid leukemia cells via extracellular vesicles and their microRNA cargo.

    Science.gov (United States)

    Bouvy, Céline; Wannez, Adeline; Laloy, Julie; Chatelain, Christian; Dogné, Jean-Michel

    2017-11-01

    The treatment of acute leukemia is still challenging due in part to the development of resistance and relapse. This chemotherapeutics resistance is established by clonal selection of resistant variants of the cancer cells. Recently, a horizontal transfer of chemo-resistance among cancer cells via extracellular vesicles (EVs) has been suggested. The aim of this research was to investigate the role of EVs in chemo-resistance in acute myeloid leukemia. For this purpose, the sensitive strain of the promyelocytic leukemia HL60 cell line was studied along with its multi-resistant strain, HL60/AR that overexpresses the multidrug resistance protein 1 (MRP-1). A chemo-resistance transfer between the two strains was established by treating HL60 cells with EVs generated by HL60/AR. This study reveals that EVs from HL60/AR can interact with HL60 cells and transfer at least partially, their chemo-resistance. EVs-treated cells begin to express MRP-1 probably due to a direct transfer of MRP-1 and nucleic acids transported by EVs. In this context, two microRNAs were highlighted for their high differential expression in EVs related to sensitive or chemo-resistant cells: miR-19b and miR-20a. Because circulating microRNAs are found in all biological fluids, these results bring out their potential clinical use as chemo-resistance biomarkers in acute myeloid leukemia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Apoptosis in chronic myeloid leukaemia: normal responses by progenitor cells to growth factor deprivation, X-irradiation and glucocorticoids

    International Nuclear Information System (INIS)

    Amos, T.A.S.; Lewis, J.L.; Grand, F.H.; Gooding, R.P.; Goldman, J.M.; Gordon, M.Y.

    1995-01-01

    Inhibition of apoptosis (genetically programmed active cell death) by p210 BCR-ABL expression is a mechanism that might contribute to clonal expansion in chronic myeloid leukaemia (CML). Since cell death following exposure to ionizing radiation and many chemotherapeutic agents can occur by the apoptotic pathway, inhibition of apoptosis would be expected to confer a relative resistance to these treatments. Similarly, cells deprived of growth factors in vitro die by apoptosis, and inhibition of apoptosis would therefore be expected to allow cells to survive better in growth factor-deprived conditions. We found that the survival of normal and CML myeloid progenitors was the same after in vitro incubation in deprived conditions and after treatment with X-irradiation or glucocorticoids. We also found that mature cells in colonies produced by CML progenitors (CFU-GM) did not survive better than those produced by normal progenitor cells. Flow cytometric analysis of propidium iodide-stained cells provided a direct indication that the degree of apoptosis may correspond to the degree of deprivation. These results suggest that inhibition of apoptosis may not be the primary mechanism whereby BCR-ABL influences the expansion of the malignant clone in CML. (Author)

  9. Targeting myeloid-derived suppressor cells augments antitumor activity against lung cancer

    Directory of Open Access Journals (Sweden)

    Srivastava MK

    2012-10-01

    Full Text Available Minu K Srivastava,1,2 Li Zhu,1,2 Marni Harris-White,2 Min Huang,1–3 Maie St John,1,3 Jay M Lee,1,3 Ravi Salgia,4 Robert B Cameron,1,3,5 Robert Strieter,6 Steven Dubinett,1–3 Sherven Sharma1–31Department of Medicine, UCLA Lung Cancer Research Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, 2Molecular Gene Medicine Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, 3Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 4Department of Medicine, University of Chicago, Chicago, IL, 5Department of Surgery, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, 6Department of Medicine, University of Virginia, Charlottesville, VA, USAAbstract: Lung cancer evades host immune surveillance by dysregulating inflammation. Tumors and their surrounding stromata produce growth factors, cytokines, and chemokines that recruit, expand, and/or activate myeloid-derived suppressor cells (MDSCs. MDSCs regulate immune responses and are frequently found in malignancy. In this review the authors discuss tumor-MDSC interactions that suppress host antitumor activities and the authors' recent findings regarding MDSC depletion that led to improved therapeutic vaccination responses against lung cancer. Despite the identification of a repertoire of tumor antigens, hurdles persist for immune-based anticancer therapies. It is likely that combined therapies that address the multiple immune deficits in cancer patients will be required for effective therapy. MDSCs play a major role in the suppression of T-cell activation and they sustain tumor growth, proliferation, and metastases. Regulation of MDSC recruitment, differentiation or expansion, and inhibition of the MDSC suppressive function with pharmacologic agents will be useful in the control of cancer growth and progression. Pharmacologic agents that regulate MDSCs may be more effective when combined with

  10. No evidence that genetic variation in the myeloid-derived suppressor cell pathway influences ovarian cancer survival

    DEFF Research Database (Denmark)

    Sucheston-Campbell, Lara E; Cannioto, Rikki; Clay, Alyssa I

    2017-01-01

    BACKGROUND: The precise mechanism by which the immune system is adversely affected in cancer patients remains poorly understood, but the accumulation of immune suppressive/pro-tumorigenic myeloid-derived suppressor cells (MDSCs) is thought to be one prominent mechanism contributing to immunologic...... tolerance of malignant cells in epithelial ovarian cancer (EOC). To this end, we hypothesized genetic variation in MDSC pathway genes would be associated with survival after EOC diagnoses. METHODS: We measured the hazard of death due to EOC within 10 years of diagnosis, overall and by invasive subtype...

  11. Azacitidine augments expansion of regulatory T cells after allogeneic stem cell transplantation in patients with acute myeloid leukemia (AML).

    Science.gov (United States)

    Goodyear, Oliver C; Dennis, Mike; Jilani, Nadira Y; Loke, Justin; Siddique, Shamyla; Ryan, Gordon; Nunnick, Jane; Khanum, Rahela; Raghavan, Manoj; Cook, Mark; Snowden, John A; Griffiths, Mike; Russell, Nigel; Yin, John; Crawley, Charles; Cook, Gordon; Vyas, Paresh; Moss, Paul; Malladi, Ram; Craddock, Charles F

    2012-04-05

    Strategies that augment a GVL effect without increasing the risk of GVHD are required to improve the outcome after allogeneic stem cell transplantation (SCT). Azacitidine (AZA) up-regulates the expression of tumor Ags on leukemic blasts in vitro and expands the numbers of immunomodulatory T regulatory cells (Tregs) in animal models. Reasoning that AZA might selectively augment a GVL effect, we studied the immunologic sequelae of AZA administration after allogeneic SCT. Twenty-seven patients who had undergone a reduced intensity allogeneic transplantation for acute myeloid leukemia were treated with monthly courses of AZA, and CD8(+) T-cell responses to candidate tumor Ags and circulating Tregs were measured. AZA after transplantation was well tolerated, and its administration was associated with a low incidence of GVHD. Administration of AZA increased the number of Tregs within the first 3 months after transplantation compared with a control population (P = .0127). AZA administration also induced a cytotoxic CD8(+) T-cell response to several tumor Ags, including melanoma-associated Ag 1, B melanoma antigen 1, and Wilm tumor Ag 1. These data support the further examination of AZA after transplantation as a mechanism of augmenting a GVL effect without a concomitant increase in GVHD.

  12. Elevated Th22 Cells Correlated with Th17 Cells in Peripheral Blood of Patients with Acute Myeloid Leukemia

    Science.gov (United States)

    Yu, Shuang; Liu, Chuanfang; Zhang, Lei; Shan, Baozhong; Tian, Tian; Hu, Yu; Shao, Linlin; Sun, Yuanxin; Ji, Chunyan; Ma, Daoxin

    2014-01-01

    Acute myeloid leukemia (AML) is a hematological tumor in which progress T helper (Th) subsets including Th22, Th17, and Th1 cells play a pivotal role. However, the role of T helper (Th) subsets in the immune pathogenesis of AML remains unclear. Here, we investigated frequencies of Th22, Th17, pure Th17, and Th1 cells in the peripheral blood (PB) of AML patients. We demonstrated that Th22, Th17, and pure Th17 in newly-diagnosed (ND) and non-complete remission (Non-CR) AML patients and plasma IL-22 in ND AML patients were significantly increased. Retinoid-related orphan receptor C (RORC) expression was significantly elevated in CR and Non-CR AML patients. However, Th1 in ND AML patients and IL-17 in ND, Non-CR or CR AML patients was significantly decreased compared with controls. Moreover, Th22 and IL-22 showed positive correlation with pure Th17, but Th22 showed negative correlation with Th1 in ND AML patients. RORC showed positive correlation with Th22 and approximately positive correlation with pure Th17 in Non-CR patients. PB blast cell showed positive correlation with Th22 and negative correlation with Th1 in ND AML patients. Our results indicate that Th22 and pure Th17 cells conjointly contribute to the pathogenesis of AML and might be promising novel clinical index for AML. PMID:24473142

  13. Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Hematologic Malignancies

    Science.gov (United States)

    2017-12-11

    Acute Biphenotypic Leukemia; Acute Erythroid Leukemia in Remission; Acute Leukemia in Remission; Acute Megakaryoblastic Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia in Remission; Acute Myeloid Leukemia With FLT3/ITD Mutation; Acute Myeloid Leukemia With Inv(3) (q21.3;q26.2) or t(3;3) (q21.3;q26.2); GATA2, MECOM; Acute Myeloid Leukemia With Inv(3) (q21.3;q26.2); GATA2, MECOM; Acute Myeloid Leukemia With Multilineage Dysplasia; Acute Myeloid Leukemia With t(6;9) (p23;q34.1); DEK-NUP214; Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Complete Remission; B Acute Lymphoblastic Leukemia With t(1;19)(q23;p13.3); E2A-PBX1 (TCF3-PBX1); B Acute Lymphoblastic Leukemia With t(9;22)(q34.1;q11.2); BCR-ABL1; Burkitt Lymphoma; Childhood Acute Lymphoblastic Leukemia in Complete Remission; DS Stage II Plasma Cell Myeloma; DS Stage III Plasma Cell Myeloma; Myelodysplastic Syndrome; Recurrent Anaplastic Large Cell Lymphoma; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Follicular Lymphoma; Recurrent Hodgkin Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Plasma Cell Myeloma; Refractory Plasma Cell Myeloma; Secondary Acute Myeloid Leukemia; T Lymphoblastic Lymphoma

  14. Donor Umbilical Cord Blood Transplant With or Without Ex-vivo Expanded Cord Blood Progenitor Cells in Treating Patients With Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Chronic Myelogenous Leukemia, or Myelodysplastic Syndromes

    Science.gov (United States)

    2018-03-05

    Acute Biphenotypic Leukemia; Acute Erythroid Leukemia; Acute Lymphoblastic Leukemia in Remission; Acute Megakaryoblastic Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia in Remission; Blasts Under 10 Percent of Bone Marrow Nucleated Cells; Blasts Under 5 Percent of Bone Marrow Nucleated Cells; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Mixed Phenotype Acute Leukemia; Myelodysplastic Syndrome; Myelodysplastic Syndrome With Excess Blasts; Pancytopenia; Refractory Anemia; Secondary Acute Myeloid Leukemia

  15. Expression profiling of CD34+ hematopoietic stem/ progenitor cells reveals distinct subtypes of therapy-related acute myeloid leukemia.

    Science.gov (United States)

    Qian, Zhijian; Fernald, Anthony A; Godley, Lucy A; Larson, Richard A; Le Beau, Michelle M

    2002-11-12

    One of the most serious consequences of cytotoxic cancer therapy is the development of therapy-related acute myeloid leukemia (t-AML), a neoplastic disorder arising from a multipotential hematopoietic stem cell. To gain insights into the molecular basis of this disease, we performed gene expression profiling of CD34(+) hematopoietic progenitor cells from t-AML patients. Our analysis revealed that there are distinct subtypes of t-AML that have a characteristic gene expression pattern. Common to each of the subgroups are gene expression patterns typical of arrested differentiation in early progenitor cells. Leukemias with a -5/del(5q) have a higher expression of genes involved in cell cycle control (CCNA2, CCNE2, CDC2), checkpoints (BUB1), or growth (MYC), and loss of expression of the gene encoding IFN consensus sequence-binding protein (ICSBP). A second subgroup of t-AML is characterized by down-regulation of transcription factors involved in early hematopoiesis (TAL1, GATA1, and EKLF) and overexpression of proteins involved in signaling pathways in myeloid cells (FLT3) and cell survival (BCL2). Establishing the molecular pathways involved in t-AML may facilitate the identification of selectively expressed genes that can be exploited for the development of urgently needed targeted therapies.

  16. Inflammation- and tumor-induced anorexia and weight loss require MyD88 in hematopoietic/myeloid cells but not in brain endothelial or neural cells.

    Science.gov (United States)

    Ruud, Johan; Wilhelms, Daniel Björk; Nilsson, Anna; Eskilsson, Anna; Tang, Yan-Juan; Ströhle, Peter; Caesar, Robert; Schwaninger, Markus; Wunderlich, Thomas; Bäckhed, Fredrik; Engblom, David; Blomqvist, Anders

    2013-05-01

    Loss of appetite is a hallmark of inflammatory diseases. The underlying mechanisms remain undefined, but it is known that myeloid differentiation primary response gene 88 (MyD88), an adaptor protein critical for Toll-like and IL-1 receptor family signaling, is involved. Here we addressed the question of determining in which cells the MyD88 signaling that results in anorexia development occurs by using chimeric mice and animals with cell-specific deletions. We found that MyD88-knockout mice, which are resistant to bacterial lipopolysaccharide (LPS)-induced anorexia, displayed anorexia when transplanted with wild-type bone marrow cells. Furthermore, mice with a targeted deletion of MyD88 in hematopoietic or myeloid cells were largely protected against LPS-induced anorexia and displayed attenuated weight loss, whereas mice with MyD88 deletion in hepatocytes or in neural cells or the cerebrovascular endothelium developed anorexia and weight loss of similar magnitude as wild-type mice. Furthermore, in a model for cancer-induced anorexia-cachexia, deletion of MyD88 in hematopoietic cells attenuated the anorexia and protected against body weight loss. These findings demonstrate that MyD88-dependent signaling within the brain is not required for eliciting inflammation-induced anorexia. Instead, we identify MyD88 signaling in hematopoietic/myeloid cells as a critical component for acute inflammatory-driven anorexia, as well as for chronic anorexia and weight loss associated with malignant disease.

  17. Bortezomib sensitivity of acute myeloid leukemia CD34(+) cells can be enhanced by targeting the persisting activity of NF-kappa B and the accumulation of MCL-1

    NARCIS (Netherlands)

    Bosman, Matthieu Cornelis Johannes; Schuringa, Jan Jacob; Quax, Wilhelmus Johannes; Vellenga, Edo

    Sustained NF-kappa B activation is often observed in acute myeloid leukemia (AML); therefore, proteasome inhibition has been proposed to efficiently target AML cells. In this study, we questioned whether leukemic stem cell-enriched CD34(+) cells are sensitive to the proteasome inhibitor bortezomib.

  18. Production and Functional Characterization of Murine Osteoclasts Differentiated from ER-Hoxb8-Immortalized Myeloid Progenitor Cells.

    Directory of Open Access Journals (Sweden)

    Frank Zach

    Full Text Available In vitro differentiation into functional osteoclasts is routinely achieved by incubation of embryonic stem cells, induced pluripotent stem cells, or primary as well as cryopreserved spleen and bone marrow-derived cells with soluble receptor activator of nuclear factor kappa-B ligand and macrophage colony-stimulating factor. Additionally, osteoclasts can be derived from co-cultures with osteoblasts or by direct administration of soluble receptor activator of nuclear factor kappa-B ligand to RAW 264.7 macrophage lineage cells. However, despite their benefits for osteoclast-associated research, these different methods have several drawbacks with respect to differentiation yields, time and animal consumption, storage life of progenitor cells or the limited potential for genetic manipulation of osteoclast precursors. In the present study, we therefore established a novel protocol for the differentiation of osteoclasts from murine ER-Hoxb8-immortalized myeloid stem cells. We isolated and immortalized bone marrow cells from wild type and genetically manipulated mouse lines, optimized protocols for osteoclast differentiation and compared these cells to osteoclasts derived from conventional sources. In vitro generated ER-Hoxb8 osteoclasts displayed typical osteoclast characteristics such as multi-nucleation, tartrate-resistant acid phosphatase staining of supernatants and cells, F-actin ring formation and bone resorption activity. Furthermore, the osteoclast differentiation time course was traced on a gene expression level. Increased expression of osteoclast-specific genes and decreased expression of stem cell marker genes during differentiation of osteoclasts from ER-Hoxb8-immortalized myeloid progenitor cells were detected by gene array and confirmed by semi-quantitative and quantitative RT-PCR approaches. In summary, we established a novel method for the quantitative production of murine bona fide osteoclasts from ER-Hoxb8 stem cells generated from

  19. An AML1-ETO/miR-29b-1 regulatory circuit modulates phenotypic properties of acute myeloid leukemia cells.

    Science.gov (United States)

    Zaidi, Sayyed K; Perez, Andrew W; White, Elizabeth S; Lian, Jane B; Stein, Janet L; Stein, Gary S

    2017-06-20

    Acute myeloid leukemia (AML) is characterized by an aggressive clinical course and frequent cytogenetic abnormalities that include specific chromosomal translocations. The 8;21 chromosomal rearrangement disrupts the key hematopoietic RUNX1 transcription factor, and contributes to leukemia through recruitment of co-repressor complexes to RUNX1 target genes, altered subnuclear localization, and deregulation of the myeloid gene regulatory program. However, a role of non-coding microRNAs (miRs) in t(8;21)-mediated leukemogenesis is minimally understood. We present evidence of an interplay between the tumor suppressor miR-29b-1 and the AML1-ETO (also designated RUNX1-RUNX1T1) oncogene that is encoded by the t(8;21). We find that AML1-ETO and corepressor NCoR co-occupy the miR-29a/b-1 locus and downregulate its expression in leukemia cells. Conversely, re-introduction of miR-29b-1 in leukemia cells expressing AML1-ETO causes significant downregulation at the protein level through direct targeting of the 3' untranslated region of the chimeric transcript. Restoration of miR-29b-1 expression in leukemia cells results in decreased cell growth and increased apoptosis. The AML1-ETO-dependent differentiation block and transcriptional program are partially reversed by miR-29b-1. Our findings establish a novel regulatory circuit between the tumor-suppressive miR-29b-1 and the oncogenic AML1-ETO that controls the leukemic phenotype in t(8;21)-carrying acute myeloid leukemia.

  20. Transcriptomic analysis comparing tumor-associated neutrophils with granulocytic myeloid-derived suppressor cells and normal neutrophils.

    Directory of Open Access Journals (Sweden)

    Zvi G Fridlender

    Full Text Available The role of myeloid cells in supporting cancer growth is well established. Most work has focused on myeloid-derived suppressor cells (MDSC that accumulate in tumor-bearing animals, but tumor-associated neutrophils (TAN are also known to be capable of augmenting tumor growth. However, little is known about their evolution, phenotype, and relationship to naïve neutrophils (NN and to the granulocytic fraction of MDSC (G-MDSC.In the current study, a transcriptomics approach was used in mice to compare these cell types. Our data show that the three populations of neutrophils are significantly different in their mRNA profiles with NN and G-MDSC being more closely related to each other than to TAN. Structural genes and genes related to cell-cytotoxicity (i.e. respiratory burst were significantly down-regulated in TAN. In contrast, many immune-related genes and pathways, including genes related to the antigen presenting complex (e.g. all six MHC-II complex genes, and cytokines (e.g. TNF-α, IL-1-α/β, were up-regulated in G-MDSC, and further up-regulated in TAN. Thirteen of the 25 chemokines tested were markedly up-regulated in TAN compared to NN, including striking up-regulation of chemoattractants for T/B-cells, neutrophils and macrophages.This study characterizes different populations of neutrophils related to cancer, pointing out the major differences between TAN and the other neutrophil populations.

  1. Hypothyroidism following allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia.

    Science.gov (United States)

    Medinger, Michael; Zeiter, Deborah; Heim, Dominik; Halter, Jörg; Gerull, Sabine; Tichelli, André; Passweg, Jakob; Nigro, Nicole

    2017-07-01

    Hypothyroidism may complicate allogeneic hematopoietic stem cell transplantation (allo-HSCT); we therefore analyzed risk factors in this study. We studied 229 patients with acute myeloid leukemia (AML) who underwent an allo-HSCT between 2003 and 2013 with different conditioning regimens (myeloablative, reduced-intensity, chemotherapy-based, or total body irradiation-based). Thyroid-stimulating hormone (TSH) and free thyroxine levels (fT4) were available in 104 patients before and after allo-HSCT. The median age at transplantation (n=104) was 47 (IQR 40-59)], 37 (35.6%) patients were female, and the overall mortality was 34.6% (n=36). After a median follow-up period of 47 (IQR 25-84) months, overt hypothyroidism (basal TSH>4.49mIU/l, FT4hypothyroidism (basal TSH>4.49mIU/l, normal fT4) was observed in 20 patients (19.2%). Positive thyroperoxidase (TPO) antibodies were found in 5 (4.8%) patients. A total of 13 patients (12.5%) were treated with thyroid hormone replacement. Acute graft-versus-host disease (aGvHD) ≥grade 2 occurred in 55 (52.9%) and chronic GvHD (cGvHD) in 74 (71.2%) of the patients. The risk of developing hypothyroidism was higher in the patients with repeated allo-HSCTs (P=0.024) and with positive TPO antibodies (P=0.045). Furthermore, the development of overt hypothyroidism was inversely proportional to age (P=0.043). No correlation was found with GvHD, HLA-mismatch, total body irradiation, and gender. After allo-HSCT, a significant number of patients experience thyroid dysfunction, including subclinical and overt hypothyroidism. Long-term and continuous follow-up for thyroid function after HSCT is important to provide timely and appropriate treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Increased expression of PcG protein YY1 negatively regulates B cell development while allowing accumulation of myeloid cells and LT-HSC cells.

    Directory of Open Access Journals (Sweden)

    Xuan Pan

    Full Text Available Ying Yang 1 (YY1 is a multifunctional Polycomb Group (PcG transcription factor that binds to multiple enhancer binding sites in the immunoglobulin (Ig loci and plays vital roles in early B cell development. PcG proteins have important functions in hematopoietic stem cell renewal and YY1 is the only mammalian PcG protein with DNA binding specificity. Conditional knock-out of YY1 in the mouse B cell lineage results in arrest at the pro-B cell stage, and dosage effects have been observed at various YY1 expression levels. To investigate the impact of elevated YY1 expression on hematopoetic development, we utilized a mouse in vivo bone marrow reconstitution system. We found that mouse bone marrow cells expressing elevated levels of YY1 exhibited a selective disadvantage as they progressed from hematopoietic stem/progenitor cells to pro-B, pre-B, immature B and re-circulating B cell stages, but no disadvantage of YY1 over-expression was observed in myeloid lineage cells. Furthermore, mouse bone marrow cells expressing elevated levels of YY1 displayed enrichment for cells with surface markers characteristic of long-term hematopoietic stem cells (HSC. YY1 expression induced apoptosis in mouse B cell lines in vitro, and resulted in down-regulated expression of anti-apoptotic genes Bcl-xl and NFκB2, while no impact was observed in a mouse myeloid line. B cell apoptosis and LT-HSC enrichment induced by YY1 suggest that novel strategies to induce YY1 expression could have beneficial effects in the treatment of B lineage malignancies while preserving normal HSCs.

  3. Cytogenetic Evolution in Myeloid Neoplasms at Relapse after Allogeneic Hematopoietic Cell Transplantation: Association with Previous Chemotherapy and Effect on Survival.

    Science.gov (United States)

    Ertz-Archambault, Natalie; Kosiorek, Heidi; Slack, James L; Lonzo, Melissa L; Greipp, Patricia T; Khera, Nandita; Kelemen, Katalin

    2017-05-01

    Cytogenetic evolution (CGE) in patients with myeloid neoplasms who relapsed after an allogeneic (allo) hematopoietic cell transplantation (HCT) has been evaluated by only few studies. The effect of the CGE on survival of relapsed allo-HCT recipients is not clear. The effect of previously received chemotherapy to induce CGE in this patient population has not been studied. The aims of our study are to (1) characterize the patterns of cytogenetic change in patients with myeloid neoplasms who relapsed after an allo-HCT, (2) evaluate the effect of CGE on survival, and (3) explore the association of CGE with previous chemotherapy (including the lines of salvage therapy, type of induction, and conditioning therapy). Of 49 patients with a myeloid malignancy (27 acute myeloid leukemia [AML], 19 myelodysplastic syndrome [MDS]/myeloproliferative neoplasm [MPN], and 3 chronic myelogenous leukemia) who relapsed after an allo-HCT, CGE was observed in 25 (51%), whereas 24 patients had unchanged cytogenetic findings at relapse. The CGE group carried more cytogenetic abnormalities at original diagnosis. The most frequent cytogenetic change was the acquisition of 3 or more new chromosomal abnormalities followed by acquisition of unbalanced abnormalities, aneuploidy, and emergence of apparently new clones unrelated to the original clone. The CGE cohort had higher proportion of MDS and MPN and fewer patients with de novo AML. Disease risk assessment category showed a trend to higher frequency of high-risk patients in the CGE group, though the difference was not statistically significant. Time from diagnosis to transplantation and time from transplantation to relapse were not different between the CGE and non-CGE groups. CGE and non-CGE cohorts had similar exposures to salvage therapy and to induction chemotherapy, as well as similar conditioning regimens; thus, no particular type of chemotherapy emerged as a predisposing factor to CGE. CGE was associated with significantly shortened

  4. MicroRNA-183 promotes cell proliferation via regulating programmed cell death 6 in pediatric acute myeloid leukemia.

    Science.gov (United States)

    Wang, Xiang; Zuo, Dongjian; Yuan, Yufang; Yang, Xiaochun; Hong, Ze; Zhang, Rongrong

    2017-01-01

    The aim of this study was to investigate roles of microRNA (miR)-183 in pediatric acute myeloid leukemia (AML). miR-183 expression in bone marrow and patients' sera of childhood AML was detected by real-time quantitative PCR. Functions of miR-183 in malignant phenotypes of two leukemia cell lines were then evaluated. Additionally, putative targets of miR-183 were predicted using three miRNA target prediction algorithms and validated by luciferase reporter assay. Clinical relevance of miR-183 and its target gene were further determined. miR-183 expression in bone marrow and patients' sera of childhood AML was both significantly higher than those in the corresponding normal controls (both P leukemia cells. Bioinformatics prediction and luciferase reporter assay identified programmed cell death 6 (PDCD6) as a direct target gene of miR-183. Moreover, high serum miR-183 combined with low serum PDCD6 mRNA was significantly associated with French-American-British classification subtype M7 (P = 0.01) and unfavorable karyotypes (P = 0.006). Further multivariate analysis identified the combination of serum miR-183 and PDCD6 levels as an independent prognostic factor for both relapse-free and overall survivals. Functionally, re-introduction of PDCD6 markedly reversed the effects of miR-183 in cell cycle, proliferation and apoptosis of two leukemia cell lines. Combined serum miR-183 and PDCD6 mRNA may serve as a novel prognostic biomarker for pediatric AML. Interestingly, miR-183 may function as an oncogene and may enhance cell proliferation by targeting PDCD6, implying a potential therapeutic target for this malignancy.

  5. Impact of graft-versus-host disease after reduced-intensity conditioning allogeneic stem cell transplantation for acute myeloid leukemia

    DEFF Research Database (Denmark)

    Baron, F; Labopin, M; Niederwieser, D

    2012-01-01

    This report investigated the impact of graft-versus-host disease (GVHD) on transplantation outcomes in 1859 acute myeloid leukemia patients given allogeneic peripheral blood stem cells after reduced-intensity conditioning (RIC allo-SCT). Grade I acute GVHD was associated with a lower risk of rela...... of relapse (hazards ratio (HR)=0.7, P=0.02) translating into a trend for better overall survival (OS; HR=1.3; P=0.07). Grade II acute GVHD had no net impact on OS, while grade III-IV acute GVHD was associated with a worse OS (HR=0.4, P...

  6. Systemic agonistic anti-CD40 treatment of tumor bearing mice modulates hepatic myeloid suppressive cells and causes immune-mediated liver damage

    Science.gov (United States)

    Medina-Echeverz, José; Ma, Chi; Duffy, Austin; Eggert, Tobias; Hawk, Nga; Kleiner, David E.; Korangy, Firouzeh; Greten, Tim F.

    2015-01-01

    Immune stimulatory monoclonal antibodies are currently evaluated as anti tumor agents. Although overall toxicity appears to be moderate, liver toxicities have been reported and are not completely understood. We studied the effect of systemic CD40 antibody treatment on myeloid cells in spleen and liver. Naïve and tumor-bearing mice were treated systemically with agonistic anti-CD40 antibody. Immune cell subsets in liver and spleen, serum transaminases and liver histologies were analyzed after antibody administration. Nox2−/−, Cd40−/− as well as bone marrow chimeric mice were used to study the mechanism by which agonistic anti-CD40 mediates its effects in vivo. Suppressor function of murine and human tumor-induced myeloid derived suppressive cells was studied upon CD40 ligation. Agonistic CD40 antibody caused liver damage within 24 hours after injection in two unrelated tumor models and mice strains. Using bone marrow chimeras we demonstrated that CD40 antibody-induced hepatitis in tumor-bearing mice was dependent on the presence of CD40-expressing hematopoietic cells. Agonistic CD40 ligation-dependent liver damage was induced by the generation of reactive oxygen species. Furthermore, agonistic CD40 antibody resulted in increased CD80 and CD40 positive liver CD11b+Gr-1+ immature myeloid cells. CD40 ligation on tumor-induced murine and human CD14+HLA-DRlow PBMC from cancer patients reduced their immune suppressor function. Collectively, agonistic CD40 antibody treatment activated tumor-induced, myeloid cells, caused myeloid dependent hepatotoxicity and ameliorated the suppressor function of murine and human MDSC. Collectively, our data suggests that CD40 may mature immunosuppressive myeloid cells and thereby cause liver damage in mice with an accumulation of tumor-induced hepatic MDSC. PMID:25637366

  7. Combined Loss of Tet1 and Tet2 Promotes B Cell, but Not Myeloid Malignancies, in Mice

    Directory of Open Access Journals (Sweden)

    Zhigang Zhao

    2015-11-01

    Full Text Available TET1/2/3 are methylcytosine dioxygenases that regulate cytosine hydroxymethylation. Tet1/2 are abundantly expressed in HSC/HPCs and are implicated in hematological malignancies. Tet2 deletion in mice causes myeloid malignancies, while Tet1-null mice develop B cell lymphoma after an extended period of latency. Interestingly, TET1/2 are often concomitantly downregulated in acute B-lymphocytic leukemia. Here, we investigated the overlapping and non-redundant functions of Tet1/2 using Tet1/2 double-knockout (DKO mice. DKO and Tet2−/− HSC/HPCs show overlapping and unique 5hmC and 5mC profiles. DKO mice exhibit strikingly decreased incidence and delayed onset of myeloid malignancies in comparison to Tet2−/− mice and in contrast develop lethal B cell malignancies. Transcriptome analysis of DKO tumors reveals expression changes in many genes dysregulated in human B cell malignancies, including LMO2, BCL6, and MYC. These results highlight the critical roles of TET1/2 individually and together in the pathogenesis of hematological malignancies.

  8. Does occupational exposure to formaldehyde cause hematotoxicity and leukemia-specific chromosome changes in cultured myeloid progenitor cells?

    Science.gov (United States)

    Mundt, Kenneth A; Gallagher, Alexa E; Dell, Linda D; Natelson, Ethan A; Boffetta, Paolo; Gentry, P Robinan

    2017-08-01

    Several cross-sectional studies of a single population of workers exposed to formaldehyde at one of two factories using or producing formaldehyde-melamine resins in China have concluded that formaldehyde exposure induces damage to hematopoietic cells that originate in the bone marrow. Moreover, the investigators interpret observed differences between groups as evidence that formaldehyde induces myeloid leukemias, although the mechanisms for inducing these diseases are not obvious and recently published scientific findings do not support causation. Our objective was to evaluate hematological parameters and aneuploidy in relation to quantitative exposure measures of formaldehyde. We obtained the study data for the original study (Zhang et al. 2010 ) and performed linear regression analyses. Results showed that differences in white blood cell, granulocyte, platelet, and red blood cell counts are not exposure dependent. Among formaldehyde-exposed workers, no association was observed between individual average formaldehyde exposure estimates and frequency of aneuploidy, suggested by the original study authors to be indicators of myeloid leukemia risk.

  9. Translocation of microfilament-associated inhibitory guanine-nucleotide-binding proteins to the plasma membrane in myeloid differentiated human leukemia (HL-60) cells

    NARCIS (Netherlands)

    Meyer zu Heringdorf, D.; Liedel, K.; Kaldenberg-Stasch, S.; Michel, M. C.; Jakobs, K. H.; Wieland, T.

    1996-01-01

    The cytoskeletal localization of inhibitory guanine-nucleotide-binding (Gi) proteins and the coupling of these proteins to formyl peptide receptors were studied in myeloid differentiated human leukemia (HL-60) cells. Treatment of HL-60 cells with cytochalasin B or botulinum C2 toxin, which leads to

  10. KIR2DS5 is associated with leukemia free survival after HLA identical stem cell transplantation in chronic myeloid leukemia patients.

    NARCIS (Netherlands)

    Meer, A. van der; Schaap, N.P.M.; Schattenberg, A.V.M.B.; Cranenbroek, B. van; Tijssen, H.J.; Joosten, I.

    2008-01-01

    BACKGROUND: Alloreactive NK cells play a role in tumor eradication after allogeneic HLA mismatched stem cell transplantation (SCT). The effect of NK alloreactivity in HLA identical SCT is still under debate and in particular in transplantation for chronic myeloid leukemia (CML) the data are very

  11. Human CD1d-Restricted Natural Killer T (NKT) Cell Cytotoxicity Against Myeloid Cells

    National Research Council Canada - National Science Library

    Chen, Xiuxu; Gumperz, Jenny E

    2006-01-01

    CD1d-restricted natural killer T cells (NKT cells) are a unique subpopulation of T lymphocytes that have been shown to be able to promote potent anti-tumor responses in a number of different murine (mouse...

  12. The MHC-II transactivator CIITA inhibits Tat function and HIV-1 replication in human myeloid cells.

    Science.gov (United States)

    Forlani, Greta; Turrini, Filippo; Ghezzi, Silvia; Tedeschi, Alessandra; Poli, Guido; Accolla, Roberto S; Tosi, Giovanna

    2016-04-18

    We previously demonstrated that the HLA class II transactivator CIITA inhibits HIV-1 replication in T cells by competing with the viral transactivator Tat for the binding to Cyclin T1 subunit of the P-TEFb complex. Here, we analyzed the anti-viral function of CIITA in myeloid cells, another relevant HIV-1 target cell type. We sinvestigated clones of the U937 promonocytic cell line, either permissive (Plus) or non-permissive (Minus) to HIV-1 replication. This different phenotype has been associated with the expression of TRIM22 in U937 Minus but not in Plus cells. U937 Plus cells stably expressing CIITA were generated and HLA-II positive clones were selected by cell sorting and cloning. HLA and CIITA proteins were analyzed by cytofluorometry and western blotting, respectively. HLA-II DR and CIITA mRNAs were quantified by qRT-PCR. Tat-dependent transactivation was assessed by performing the HIV-1 LTR luciferase gene reporter assay. Cells were infected with HIV-1 and viral replication was evaluated by measuring the RT activity in culture supernatants. CIITA was expressed only in HLA-II-positive U937 Minus cells, and this was strictly correlated with inhibition of Tat-dependent HIV-1 LTR transactivation in Minus but not in Plus cells. Overexpression of CIITA in Plus cells restored the suppression of Tat transactivation, confirming the inhibitory role of CIITA. Importantly, HIV-1 replication was significantly reduced in Plus-CIITA cells with respect to Plus parental cells. This effect was independent of TRIM22 as CIITA did not induce TRIM22 expression in Plus-CIITA cells. U937 Plus and Minus cells represent an interesting model to study the role of CIITA in HIV-1 restriction in the monocytic/macrophage cell lineage. The differential expression of CIITA in CIITA-negative Plus and CIITA-positive Minus cells correlated with their capacity to support or not HIV-1 replication, respectively. In Minus cells CIITA targeted the viral transactivator Tat to inhibit HIV-1

  13. NUP98/11p15 translocations affect CD34+ cells in myeloid and T lymphoid leukemias.

    Science.gov (United States)

    Crescenzi, Barbara; Nofrini, Valeria; Barba, Gianluca; Matteucci, Caterina; Di Giacomo, Danika; Gorello, Paolo; Beverloo, Berna; Vitale, Antonella; Wlodarska, Iwona; Vandenberghe, Peter; La Starza, Roberta; Mecucci, Cristina

    2015-07-01

    We assessed lineage involvement by NUP98 translocations in myelodysplastic syndromes (MDS), acute myeloid leukaemia (AML), and T-cell acute lymphoblastic leukaemia (T-ALL). Single cell analysis by FICTION (Fluorescence Immunophenotype and Interphase Cytogenetics as a Tool for Investigation of Neoplasms) showed that, despite diverse partners, i.e. NSD1, DDX10, RAP1GDS1, and LNP1, NUP98 translocations always affected a CD34+/CD133+ hematopoietic precursor. Interestingly the abnormal clone included myelomonocytes, erythroid cells, B- and T- lymphocytes in MDS/AML and only CD7+/CD3+ cells in T-ALL. The NUP98-RAP1GDS1 affected different hematopoietic lineages in AML and T-ALL. Additional specific genomic events, were identified, namely FLT3 and CEBPA mutations in MDS/AML, and NOTCH1 mutations and MYB duplication in T-ALL. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Peripheral Motor and Sensory Nerve Conduction following Transplantation of Undifferentiated Autologous Adipose Tissue-Derived Stem Cells in a Biodegradable U.S. Food and Drug Administration-Approved Nerve Conduit.

    Science.gov (United States)

    Klein, Silvan M; Vykoukal, Jody; Li, De-Pei; Pan, Hui-Lin; Zeitler, Katharina; Alt, Eckhard; Geis, Sebastian; Felthaus, Oliver; Prantl, Lukas

    2016-07-01

    Conduits preseeded with either Schwann cells or stem cells differentiated into Schwann cells demonstrated promising results for the outcome of nerve regeneration in nerve defects. The concept of this trial combines nerve repair by means of a commercially available nerve guidance conduit and preseeding with autologous, undifferentiated, adipose tissue-derived stem cells. Adipose tissue-derived stem cells were harvested from rats and subsequently seeded onto a U.S. Food and Drug Administration-approved type I collagen conduit. Sciatic nerve gaps 10 mm in length were created, and nerve repair was performed by the transplantation of either conduits preseeded with autologous adipose tissue-derived stem cells or acellular (control group) conduits. After 6 months, the motor and sensory nerve conduction velocity were assessed. Nerves were removed and examined by hematoxylin and eosin, van Gieson, and immunohistochemistry (S100 protein) staining for the quality of axonal regeneration. Nerve gaps treated with adipose tissue-derived stem cells showed superior nerve regeneration, reflected by higher motor and sensory nerve conduction velocity values. The motor and sensory nerve conduction velocity were significantly greater in nerves treated with conduits preseeded with adipose tissue-derived stem cells than in nerves treated with conduits alone (p adipose tissue-derived stem cell group. In this group, axon arrangement inside the conduits was more organized. Transplantation of adipose tissue-derived stem cells significantly improves motor and sensory nerve conduction velocity in peripheral nerve gaps. Preseeded conduits showed a more organized axon arrangement inside the conduit in comparison with nerve conduits alone. The approach used here could readily be translated into a clinical therapy. Therapeutic, V.

  15. Participation of Tumor-Associated Myeloid Cells in Progression of Amelanotic Melanoma (RMM Tumor Line) in F344 Rats, with Particular Reference to MHC Class II- and CD163-Expressing Cells.

    Science.gov (United States)

    Bondoc, A; Golbar, H M; Pervin, M; Katou-Ichikawa, C; Tanaka, M; Izawa, T; Kuwamura, M; Yamate, J

    2017-12-01

    Tumor progression is often influenced by infiltration of myeloid cells; depending on the M1- or M2-like activation status, these cells may have either inhibitory or promoting effects on tumor growth. We investigated the properties of tumor-associated myeloid cells in a previously established homotransplantable amelanotic melanoma (RMM tumor line) in F344 rats. RMM tumor nodules were allowed to reach the sizes of 0.5, 1, 2 and 3 cm, respectively. Immunohistochemistry and flow cytometry was performed for macrophage markers CD68 and CD163, and for the antigen-presenting cell marker, MHC class II. Although no significant change was observed in the number of CD68 + and CD163 + macrophages during RMM progression, the number of MHC class II + antigen-presenting cells was reduced in 3 cm nodules. Real-time RT-PCR of laser microdissection samples obtained from RMM regions rich in MHC class II + cells demonstrated high expressions of M1-like factors: IFN-γ, GM-CSF and IL-12a. Furthermore, fluorescence-activated cell sorting, followed by real-time RT-PCR for CD11b + MHC class II + (myeloid antigen-presenting cells), CD11b + CD163 + (M2 type myeloid cells), CD11b + CD80 + (M1 type myeloid cells) and CD11b + CD11c + (dendritic cells) cells was performed. Based on the levels of inflammation- and tumor progression-related factors, MHC class II + antigen-presenting cells showed polarization towards M1, while CD163 + macrophages, towards M2. CD80 + and CD11c + myeloid cells did not show clear functional polarization. Our results provide novel information on tumor-associated myeloid cells in amelanotic melanoma, and may become useful in further research on melanoma immunity.

  16. No evidence that soluble TACI induces signalling via membrane-expressed BAFF and APRIL in myeloid cells.

    Directory of Open Access Journals (Sweden)

    Josquin Nys

    Full Text Available Myeloid cells express the TNF family ligands BAFF/BLyS and APRIL, which exert their effects on B cells at different stages of differentiation via the receptors BAFFR, TACI (Transmembrane Activator and CAML-Interactor and/or BCMA (B Cell Maturation Antigen. BAFF and APRIL are proteins expressed at the cell membrane, with both extracellular and intracellular domains. Therefore, receptor/ligand engagement may also result in signals in ligand-expressing cells via so-called "reverse signalling". In order to understand how TACI-Fc (atacicept technically may mediate immune stimulation instead of suppression, we investigated its potential to activate reverse signalling through BAFF and APRIL. BAFFR-Fc and TACI-Fc, but not Fn14-Fc, reproducibly stimulated the ERK and other signalling pathways in bone marrow-derived mouse macrophages. However, these effects were independent of BAFF or APRIL since the same activation profile was observed with BAFF- or APRIL-deficient cells. Instead, cell activation correlated with the presence of high molecular mass forms of BAFFR-Fc and TACI-Fc and was strongly impaired in macrophages deficient for Fc receptor gamma chain. Moreover, a TACI-Fc defective for Fc receptor binding elicited no detectable signal. Although these results do not formally rule out the existence of BAFF or APRIL reverse signalling (via pathways not tested in this study, they provide no evidence in support of reverse signalling and point to the importance of using appropriate specificity controls when working with Fc receptor-expressing myeloid cells.

  17. Ultrastructural localization of Leu M1 in Reed-Sternberg cells and normal myeloid cells.

    Science.gov (United States)

    Warhol, M J; Pinkus, G S; Said, J W

    1987-08-01

    An antigen Leu M1 has been localized to myelomonocytic cells and Reed-Sternberg cells by light microscopic immunocytochemical studies. We used both pre- and post-embedding immunoelectron microscopy to define the ultrastructural distribution of this antigen. Post-embedding techniques heavily labeled the granules of polymorphonuclear leukocytes and the nonspecific granules of eosinophils. At high concentrations there was labeling of the specific granules of the eosinophil. The antibody consistently labeled the perinuclear granules and vesicles of Reed-Sternberg cells. Some Reed-Sternberg cells also exhibited labeling of the endoplasmic reticulum, suggesting that these cells have the capacity to synthesize this antigen. Although plasma membranes were labeled with the post-embedding technique, these structures were most heavily labeled with the pre-embedding method. These results indicate that Leu M1 is synthesized and packaged by Reed-Sternberg cells and represents an integral structural component of these cells.

  18. NUP98-HOXA9 bearing therapy-related myeloid neoplasm involves myeloid-committed cell and induces HOXA5, EVI1, FLT3, and MEIS1 expression.

    Science.gov (United States)

    Burillo-Sanz, S; Morales-Camacho, R M; Caballero-Velázquez, T; Vargas, M T; García-Lozano, J R; Falantes, J F; Prats-Martín, C; Bernal, R; Pérez-Simón, J A

    2016-02-01

    Chromosomal rearrangements involving NUP98 gene have been associated with human leukemias such as de novo AML, therapy-related AML (t-AML), myelodysplastic syndrome (MDS), and chronic myeloid leukemia (CML). Genetic fusion NUP98-HOXA9, caused by t(7;11)(p15;p15), is a recurrent cytogenetic alteration in de novo acute myeloid leukemia (AML) usually found in young Asian patients and its description in therapy-related myeloid neoplasms (t-MN) is rare. Only one Asian case with molecular demonstration of the NUP98-HOXA9 fusion has been reported in therapy-related leukemia. NUP98-HOXA9 leukemogenic mechanism is derived from the transcription factor activity of the chimeric protein, which enhances the expression of genes related to cellular differentiation arrest and proliferation. We studied a Caucasian woman with a therapy-related acute myeloid leukemia after Ewing's sarcoma. Molecular demonstration of the genetic fusion NUP98-HOXA9 was performed by RT-PCR, and gene expression was analyzed by real-time PCR, including four AML patients with MLL rearrangements for comparative analysis. Cytologic and flow cytometric analysis was also carried out. After cytologic and flow cytometric analysis diagnostics was therapy-related myeloid neoplasm (t-MN). The major component of blasts in the acute leukemia was with neutrophilic differentiation, but 13% erythroid lineage blasts were also found. Cytogenetic and FISH analysis revealed t(7;11)(p15;p15) and NUP98-HOXA9 fusion gene was demonstrated. Gene expression analysis showed upregulation of EVI1 and MEIS1 in the index patient, both of them previously related to a worst outcome. In this work, we include a detailed molecular, clinical, cytological, and cytometric study of the second t-AML bearing NUP98-HOXA9 genetic fusion. © 2015 John Wiley & Sons Ltd.

  19. Myeloid Conditioning with c-kit-Targeted CAR-T Cells Enables Donor Stem Cell Engraftment.

    Science.gov (United States)

    Arai, Yasuyuki; Choi, Uimook; Corsino, Cristina I; Koontz, Sherry M; Tajima, Masaki; Sweeney, Colin L; Black, Mary A; Feldman, Steven A; Dinauer, Mary C; Malech, Harry L

    2018-03-10

    We report a novel approach to bone marrow (BM) conditioning using c-kit-targeted chimeric antigen receptor T (c-kit CAR-T) cells in mice. Previous reports using anti-c-kit or anti-CD45 antibody linked to a toxin such as saporin have been promising. We developed a distinctly different approach using c-kit CAR-T cells. Initial studies demonstrated in vitro killing of hematopoietic stem cells by c-kit CAR-T cells but poor expansion in vivo and poor migration of CAR-T cells into BM. Pre-treatment of recipient mice with low-dose cyclophosphamide (125 mg/kg) together with CXCR4 transduction in the CAR-T cells enhanced trafficking to and expansion in BM (CAR-T cells were used in the Thy1.2-recipient mice, anti-Thy1.1 antibody could be used to deplete CAR-T cells in vivo before donor BM transplant. This achieved 20%-40% multilineage engraftment. We applied this conditioning to achieve an average of 28% correction of chronic granulomatous disease mice by wild-type BM transplant. Our findings provide a proof of concept that c-kit CAR-T cells can achieve effective BM conditioning without chemo-/radiotherapy. Our work also demonstrates that co-expression of a trafficking receptor can enhance targeting of CAR-T cells to a designated tissue. Published by Elsevier Inc.

  20. Can magnetic resonance imaging differentiate undifferentiated arthritis?

    DEFF Research Database (Denmark)

    Østergaard, Mikkel; Duer, Anne; Hørslev-Petersen, K

    2005-01-01

    A high sensitivity for the detection of inflammatory and destructive changes in inflammatory joint diseases makes magnetic resonance imaging potentially useful for assigning specific diagnoses, such as rheumatoid arthritis and psoriatic arthritis in arthritides, that remain undifferentiated after...... conventional clinical, biochemical and radiographic examinations. With recent data as the starting point, the present paper describes the current knowledge on magnetic resonance imaging in the differential diagnosis of undifferentiated arthritis....

  1. Allogeneic Stem Cell Transplant for Acute Myeloid Leukemia: Evolution of an Effective Strategy in India

    Directory of Open Access Journals (Sweden)

    Abhijeet Ganapule

    2017-12-01

    Full Text Available Purpose: There are limited data from developing countries on the role and cost-effectiveness of allogeneic stem cell transplantation (allo-SCT for patients with acute myeloid leukemia (AML. Patients and Methods: We undertook a retrospective descriptive study of all patients with AML who underwent allo-SCT from 1994 to 2013 at our center to evaluate the clinical outcomes and cost-effectiveness of this therapeutic modality. Results: Two hundred fifty-four consecutive patients, median age 34 years, who underwent allo-SCT at our center were included in this study. There were 161 males (63.4%. The 5-year overall survival (OS and event-free survival for the entire cohort was 40.1 ± 3.5% and 38.7 ± 3.4%, respectively. The 5-year OS for patients in first (CR1, second, and third complete remission and with disease/refractory AML was 53.1 ± 5.2%, 48.2 ± 8.3%, 31.2 ± 17.8%, and 16.0 ± 4.4%, respectively (P < .001. From 2007, reduced intensity conditioning (RIC with fludarabine and melphalan (Flu/Mel was used in a majority of patients in CR1 (n = 67. Clinical outcomes were compared with historical conventional myeloablative conditioning regimens (n = 38. Use of Flu/Mel was associated with lower treatment-related mortality at 1 year, higher incidence of chronic graft-versus-host-disease, and comparable relapse rates. The 5-year OS and event-free survival for Flu/Mel and myeloablative conditioning group was 67.2 ± 6.6% versus 38.1 ± 8.1% (P = .003 and 63.8 ± 6.4% versus 32.3 ± 7.9% (P = .002, respectively. Preliminary cost analysis suggests that in our medical cost payment system, RIC allo-SCT in CR1 was likely the most cost-effective strategy in the management of AML. Conclusion: In a resource-constrained environment, Flu/Mel RIC allo-SCT for AML CR1 is likely the most efficacious and cost-effective approach in a subset of newly diagnosed young adult patients.

  2. Early myeloid dendritic cell dysregulation is predictive of disease progression in simian immunodeficiency virus infection.

    Directory of Open Access Journals (Sweden)

    Viskam Wijewardana

    2010-12-01

    Full Text Available Myeloid dendritic cells (mDC are lost from blood in individuals with human immunodeficiency virus (HIV infection but the mechanism for this loss and its relationship to disease progression are not known. We studied the mDC response in blood and lymph nodes of simian immunodeficiency virus (SIV-infected rhesus macaques with different disease outcomes. Early changes in blood mDC number were inversely correlated with virus load and reflective of eventual disease outcome, as animals with stable infection that remained disease-free for more than one year had average increases in blood mDC of 200% over preinfection levels at virus set-point, whereas animals that progressed rapidly to AIDS had significant loss of mDC at this time. Short term antiretroviral therapy (ART transiently reversed mDC loss in progressor animals, whereas discontinuation of ART resulted in a 3.5-fold increase in mDC over preinfection levels only in stable animals, approaching 10-fold in some cases. Progressive SIV infection was associated with increased CCR7 expression on blood mDC and an 8-fold increase in expression of CCL19 mRNA in lymph nodes, consistent with increased mDC recruitment. Paradoxically, lymph node mDC did not accumulate in progressive infection but rather died from caspase-8-dependent apoptosis that was reduced by ART, indicating that increased recruitment is offset by increased death. Lymph node mDC from both stable and progressor animals remained responsive to exogenous stimulation with a TLR7/8 agonist. These data suggest that mDC are mobilized in SIV infection but that an increase in the CCR7-CCL19 chemokine axis associated with high virus burden in progressive infection promotes exodus of activated mDC from blood into lymph nodes where they die from apoptosis. We suggest that inflamed lymph nodes serve as a sink for mDC through recruitment, activation and death that contributes to AIDS pathogenesis.

  3. Mathematical modeling of tumor-induced immunosuppression by myeloid-derived suppressor cells: Implications for therapeutic targeting strategies.

    Science.gov (United States)

    Shariatpanahi, Seyed Peyman; Shariatpanahi, Seyed Pooya; Madjidzadeh, Keivan; Hassan, Moustapha; Abedi-Valugerdi, Manuchehr

    2018-04-07

    Myeloid-derived suppressor cells (MDSCs) belong to immature myeloid cells that are generated and accumulated during the tumor development. MDSCs strongly suppress the anti-tumor immunity and provide conditions for tumor progression and metastasis. In this study, we present a mathematical model based on ordinary differential equations (ODE) to describe tumor-induced immunosuppression caused by MDSCs. The model consists of four equations and incorporates tumor cells, cytotoxic T cells (CTLs), natural killer (NK) cells and MDSCs. We also provide simulation models that evaluate or predict the effects of anti-MDSC drugs (e.g., l-arginine and 5-Fluorouracil (5-FU)) on the tumor growth and the restoration of anti-tumor immunity. The simulated results obtained using our model were in good agreement with the corresponding experimental findings on the expansion of splenic MDSCs, immunosuppressive effects of these cells at the tumor site and effectiveness of l-arginine and 5-FU on the re-establishment of antitumor immunity. Regarding this latter issue, our predictive simulation results demonstrated that intermittent therapy with low-dose 5-FU alone could eradicate the tumors irrespective of their origins and types. Furthermore, at the time of tumor eradication, the number of CTLs prevailed over that of cancer cells and the number of splenic MDSCs returned to the normal levels. Finally, our predictive simulation results also showed that the addition of l-arginine supplementation to the intermittent 5-FU therapy reduced the time of the tumor eradication and the number of iterations for 5-FU treatment. Thus, the present mathematical model provides important implications for designing new therapeutic strategies that aim to restore antitumor immunity by targeting MDSCs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Regulation of tumor necrosis factor gene expression by ionizing radiation in human myeloid leukemia cells and peripheral blood monocytes

    International Nuclear Information System (INIS)

    Sherman, M.L.; Datta, R.; Hallahan, D.E.; Weichselbaum, R.R.; Kufe, D.W.

    1991-01-01

    Previous studies have demonstrated that ionizing radiation induces the expression of certain cytokines, such as TNF alpha/cachectin. However, there is presently no available information regarding the molecular mechanisms responsible for the regulation of cytokine gene expression by ionizing radiation. In this report, we describe the regulation of the TNF gene by ionizing radiation in human myeloid leukemia cells. The increase in TNF transcripts by x rays was both time- and dose-dependent as determined by Northern blot analysis. Similar findings were obtained in human peripheral blood monocytes. Transcriptional run-on analyses have demonstrated that ionizing radiation stimulates the rate of TNF gene transcription. Furthermore, induction of TNF mRNA was increased in the absence of protein synthesis. In contrast, ionizing radiation had little effect on the half-life of TNF transcripts. These findings indicate that the increase in TNF mRNA observed after irradiation is regulated by transcriptional mechanisms and suggest that production of this cytokine by myeloid cells may play a role in the pathophysiologic effects of ionizing radiation

  5. ChIP-seq Analysis of Human Chronic Myeloid Leukemia Cells.

    Science.gov (United States)

    Anders, Lars; Li, Zhaodong

    2016-01-01

    Many transcription factors, chromatin-associated proteins and regulatory DNA elements are genetically and/or epigenetically altered in cancer, including Chronic Myeloid Leukemia (CML). This leads to deregulation of transcription that is often causally linked to the tumorigenic state. Chromatin-immunoprecipitation coupled with massively parallel DNA sequencing (ChIP-seq) is the key technology to study transcription as it allows in vivo whole-genome mapping of epigenetic modifications and interactions of proteins with DNA or chromatin. However, numerous DNA/chromatin-binding proteins, including EZH2, remain difficult to "ChIP," thus yielding genome-wide binding maps of only suboptimal quality. Here, we describe a ChIP-seq protocol optimized for high-quality protein-genome binding maps that have proven especially useful for studying difficult to 'ChIP' transcription regulatory factors in Chronic Myeloid Leukemia (CML) and related malignancies.

  6. Outcome after intensive reinduction therapy and allogeneic stem cell transplant in paediatric relapsed acute myeloid leukaemia

    DEFF Research Database (Denmark)

    Karlsson, Lene; Forestier, Erik; Hasle, Henrik

    2017-01-01

    Given that 30-40% of children with acute myeloid leukaemia (AML) relapse after primary therapy it is important to define prognostic factors and identify optimal therapy. From 1993 to 2012, 543 children from the Nordic countries were treated according to two consecutive protocols: 208 children rel...... receiving SCT as part of relapse therapy. Our data show that intensive re-induction followed by SCT can give cure rates of 40% in children with relapsed AML....

  7. Rac2-MRC-cIII-generated ROS cause genomic instability in chronic myeloid leukemia stem cells and primitive progenitors.

    Science.gov (United States)

    Nieborowska-Skorska, Margaret; Kopinski, Piotr K; Ray, Regina; Hoser, Grazyna; Ngaba, Danielle; Flis, Sylwia; Cramer, Kimberly; Reddy, Mamatha M; Koptyra, Mateusz; Penserga, Tyrone; Glodkowska-Mrowka, Eliza; Bolton, Elisabeth; Holyoake, Tessa L; Eaves, Connie J; Cerny-Reiterer, Sabine; Valent, Peter; Hochhaus, Andreas; Hughes, Timothy P; van der Kuip, Heiko; Sattler, Martin; Wiktor-Jedrzejczak, Wieslaw; Richardson, Christine; Dorrance, Adrienne; Stoklosa, Tomasz; Williams, David A; Skorski, Tomasz

    2012-05-03

    Chronic myeloid leukemia in chronic phase (CML-CP) is induced by BCR-ABL1 oncogenic tyrosine kinase. Tyrosine kinase inhibitors eliminate the bulk of CML-CP cells, but fail to eradicate leukemia stem cells (LSCs) and leukemia progenitor cells (LPCs) displaying innate and acquired resistance, respectively. These cells may accumulate genomic instability, leading to disease relapse and/or malignant progression to a fatal blast phase. In the present study, we show that Rac2 GTPase alters mitochondrial membrane potential and electron flow through the mitochondrial respiratory chain complex III (MRC-cIII), thereby generating high levels of reactive oxygen species (ROS) in CML-CP LSCs and primitive LPCs. MRC-cIII-generated ROS promote oxidative DNA damage to trigger genomic instability, resulting in an accumulation of chromosomal aberrations and tyrosine kinase inhibitor-resistant BCR-ABL1 mutants. JAK2(V617F) and FLT3(ITD)-positive polycythemia vera cells and acute myeloid leukemia cells also produce ROS via MRC-cIII. In the present study, inhibition of Rac2 by genetic deletion or a small-molecule inhibitor and down-regulation of mitochondrial ROS by disruption of MRC-cIII, expression of mitochondria-targeted catalase, or addition of ROS-scavenging mitochondria-targeted peptide aptamer reduced genomic instability. We postulate that the Rac2-MRC-cIII pathway triggers ROS-mediated genomic instability in LSCs and primitive LPCs, which could be targeted to prevent the relapse and malignant progression of CML.

  8. Absence of Notch1 in murine myeloid cells attenuates the development of experimental autoimmune encephalomyelitis by affecting Th1 and Th17 priming.

    Science.gov (United States)

    Fernández, Miriam; Monsalve, Eva M; López-López, Susana; Ruiz-García, Almudena; Mellado, Susana; Caminos, Elena; García-Ramírez, José Javier; Laborda, Jorge; Tranque, Pedro; Díaz-Guerra, María José M

    2017-12-01

    Inhibition of Notch signalling in T cells attenuates the development of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. Growing evidence indicates that myeloid cells are also key players in autoimmune processes. Thus, the present study evaluates the role of the Notch1 receptor in myeloid cells on the progression of myelin oligodendrocyte glycoprotein (MOG) 35-55 -induced EAE, using mice with a myeloid-specific deletion of the Notch1 gene (MyeNotch1KO). We found that EAE progression was less severe in the absence of Notch1 in myeloid cells. Thus, histopathological analysis revealed reduced pathology in the spinal cord of MyeNotch1KO mice, with decreased microglia/astrocyte activation, demyelination and infiltration of CD4 + T cells. Moreover, these mice showed lower Th1 and Th17 cell infiltration and expression of IFN-γ and IL-17 mRNA in the spinal cord. Accordingly, splenocytes from MyeNotch1KO mice reactivated in vitro presented reduced Th1 and Th17 activation, and lower expression of IL-12, IL-23, TNF-α, IL-6, and CD86. Moreover, reactivated wild-type splenocytes showed increased Notch1 expression, arguing for a specific involvement of this receptor in autoimmune T cell activation in secondary lymphoid tissues. In summary, our results reveal a key role of the Notch1 receptor in myeloid cells for the initiation and progression of EAE. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Non-myeloid Cells are Major Contributors to Innate Immune Responses via Production of Monocyte Chemoattractant Protein- 1(MCP-1/CCL2

    Directory of Open Access Journals (Sweden)

    Teizo eYoshimura

    2014-01-01

    Full Text Available Monocyte chemoattractant protein-1 (MCP-1/CCL2 is a chemokine regulating the recruitment of monocytes into sites of inflammation and cancer. MCP-1 can be produced by a variety of cell types, such as macrophages, neutrophils, fibroblasts, endothelial cells and epithelial cells. Notably, macrophages produce high levels of MCP-1 in response to proinflammatory stimuli in vitro, leading to the hypothesis that macrophages are the major source of MCP-1 during inflammatory responses in vivo. In stark contrast to the hypothesis, however, there was no significant reduction in MCP-1 protein or the number of infiltrating macrophages in the peritoneal inflammatory exudates of myeloid cell-specific MCP-1-deficient mice in response to i.p injection of thioglycollate or zymosan A. Furthermore, injection of LPS into skin air pouch also had no effect on local MCP-1 production in myeloid-specific MCP-1-deficient mice. Finally, myeloid-specific MCP-1-deficiency did not reduce MCP-1 mRNA expression or macrophage infiltration in LPS-induced lung injury. These results indicate that non-myeloid cells, in response to a variety of stimulants, play a previously unappreciated role in innate immune responses as the primary source of MCP-1.

  10. Specific Inhibition of the VEGFR-3 Tyrosine Kinase by SAR131675 Reduces Peripheral and Tumor Associated Immunosuppressive Myeloid Cells

    Energy Technology Data Exchange (ETDEWEB)

    Espagnolle, Nicolas [UMR5273 INSERM U1031/CNRS/EFS StromaLab, Toulouse 31432 (France); Barron, Pauline; Mandron, Marie; Blanc, Isabelle; Bonnin, Jacques [Sanofi Recherche et Développement, Early to Candidate DPU, Toulouse 31036 (France); Agnel, Magali; Kerbelec, Erwan [Molecular Biology Unit, Biologics Department, Sanofi, Vitry-sur-Seine 94400 (France); Herault, Jean Pascal; Savi, Pierre; Bono, Françoise; Alam, Antoine, E-mail: antoine.alam@sanofi.com [Sanofi Recherche et Développement, Early to Candidate DPU, Toulouse 31036 (France)

    2014-02-28

    Myeloid derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) represent prominent components in cancer progression. We previously showed that inhibition of the VEGFR-3 pathway by SAR131675 leads to reduction of TAM infiltration and tumor growth. Here, we found that treatment with SAR131675 prevents the accumulation of immunosuppressive blood and splenic MDSCs which express VEGFR-3, in 4T1 tumor bearing mice. Moreover we showed that soluble factors secreted by tumor cells promote MDSCs proliferation and differentiation into M2 polarized F4/80+ macrophages. In addition, cell sorting and transcriptomic analysis of tumor infiltrating myeloid cells revealed the presence of a heterogeneous population that could be divided into 3 subpopulations: (i) immature cells with a MDSC phenotype (GR1+/CD11b+/F4/80{sup −}); (ii) “immuno-incompetent” macrophages (F4/80{sup high}/CD86{sup neg}/MHCII{sup Low}) strongly expressing M2 markers such as Legumain, CD206 and Mgl1/2 and (iii) “immuno-competent”-M1 like macrophages (F4/80{sup Low}/CD86{sup +}/MHCII{sup High}). SAR131675 treatment reduced MDSCs in lymphoid organs as well as F4/80{sup High} populations in tumors. Interestingly, in the tumor SAR131675 was able to increase the immunocompetent M1 like population (F4/80{sup low}). Altogether these results demonstrate that the specific VEGFR-3 inhibitor SAR131675 exerts its anti tumoral activity by acting on different players that orchestrate immunosuppression and cancer progression in a tumoral context: MDSCs in peripheral lymphoid organs and TAMs infiltrating the tumor.

  11. Indoleamine 2,3-dioxygenase-expressing myeloid dendritic cells and macrophages in infectious and noninfectious cutaneous granulomas.

    Science.gov (United States)

    von Bubnoff, Dagmar; Scheler, Marina; Wilms, Helene; Wenzel, Jörg; von Bubnoff, Nikolas; Häcker, Georg; Schultze, Joachim; Popov, Alexey; Racz, Paul; Bieber, Thomas; Wickenhauser, Claudia

    2011-10-01

    The enzyme indoleamine 2,3-dioxygenase (IDO) degrades the essential amino acid tryptophan, and this degradation is an immunosuppressive mechanism that is mainly used by antigen-presenting cells. IDO-expressing dendritic cells and macrophages have previously been identified as components of lymph node granulomas after Listeria monocytogenes infection. In this study we undertook an analysis of IDO expression in granulomas of infectious and noninfectious origin in the human skin. Lesional skin biopsy specimens (n = 22) from different granulomatous skin disorders (lupus vulgaris, sarcoidosis, granuloma annulare, leprosy) were analyzed. Immunohistochemistry was performed to identify and locate the enzyme IDO within the inflammatory granulomatous infiltrate (IDO, CD11c, CD68, S100, CD3, Foxp3). Two-color immunofluorescence of IDO in combination with multiple markers was applied to characterize the IDO-expressing cells. Cutaneous granulomas of different origin strongly express IDO, mainly in the center and in the ring wall of the granulomas. We demonstrate that in infectious, but also in noninfectious human cutaneous granulomas the large myeloid CD11c(+)S100(+)CD68(-) dendritic cells and the CD68(+) macrophages express IDO. This study was limited by the lack of details about the exact stage or maturity of granuloma formation in the specimens investigated. These findings reveal that IDO expression in myeloid dendritic cells and macrophages is part of an integrated response of granuloma formation, which may be a unifying feature of granulomatous reactions in the skin. Copyright © 2010 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  12. Calreticulin Fragment 39-272 Promotes B16 Melanoma Malignancy through Myeloid-Derived Suppressor Cells In Vivo

    Directory of Open Access Journals (Sweden)

    Xiao-Yan He

    2017-10-01

    Full Text Available Calreticulin (CRT, a multifunctional Ca2+-binding glycoprotein mainly located in the endoplasmic reticulum, is a tumor-associated antigen that has been shown to play protective roles in angiogenesis suppression and anti-tumor immunity. We previously reported that soluble CRT (sCRT was functionally similar to heat shock proteins or damage-associated molecular patterns in terms of ability to activate myeloid cells and elicit strong inflammatory cytokine production. In the present study, B16 melanoma cell lines expressing recombinant CRT fragment 39-272 (sCRT/39-272 in secreted form (B16-CRT, or recombinant enhanced green fluorescence protein (rEGFP (B16-EGFP, were constructed for investigation on the roles of sCRT in tumor development. When s.c. inoculated into C57BL/6 mice, the B16-CRT cells were significantly more aggressive (in terms of solid tumor growth rate than B16-EGFP controls in a TLR4- and myeloid-derived suppressor cells (MDSC-dependent manner. The B16-CRT-bearing mice showed increased Gr1+ MDSC infiltration in tumor tissues, accelerated proliferation of CD11b+Ly6G+Ly6Clow (G-MDSC precursors in bone marrow, and higher percentages of G-MDSCs in spleen and blood, which was mirrored by decreased percentage of dendritic cells (DC in periphery. In in vitro studies, recombinant sCRT/39-272 was able to promote migration and survival of tumor-derived MDSCs via interaction with TLR4, inhibit MDSC differentiation into DC, and also elicit expression of inflammatory proteins S100A8 and S100A9 which are essential for functional maturation and chemotactic migration of MDSCs. Our data provide solid evidence for CRT as a double-edged sword in tumor development.

  13. When should patients receive consolidation chemotherapy before allogeneic hematopoietic cell transplantation for acute myeloid leukemia in first complete remission?

    Science.gov (United States)

    Yeshurun, Moshe; Wolach, Ofir

    2018-03-01

    Allogeneic hematopoietic cell transplantation (alloHCT) is a potentially curative therapy for patients with acute myeloid leukemia. Despite the associated graft-versus-leukemia effect, leukemia relapse remains the most common cause of treatment failure after alloHCT. Here, we review the available data on whether there is an advantage in providing pretransplant consolidation chemotherapy prior to alloHCT. Randomized controlled studies are lacking. Data derive largely from four large retrospective registry studies. These analyses are consistent in demonstrating the lack of any survival benefit for pretransplant consolidation chemotherapy once a patient achieves a complete remission and a donor is readily available. These results are valid across conditioning regimen intensities, donor sources, and doses of cytarabine administered during consolidation. Available evidence suggests that patients with acute myeloid leukemia in first complete remission for whom a suitable donor is readily available should not be given pretransplant consolidation before proceeding to alloHCT, regardless of conditioning regimen intensity and that transplantation should be offered promptly at the time remission is achieved without undue delay. Nevertheless, patients for whom a suitable donor is not readily available after achieving first remission, should probably receive 'bridging' consolidation chemotherapy while waiting for a donor to be identified in an attempt to decrease the risk of early disease recurrence before transplantation. The role of minimal residual disease and genetic markers in directing consolidation choices are unclear to date.

  14. Lack of autophagy in the hematopoietic system leads to loss of hematopoietic stem cell function and dysregulated myeloid proliferation.

    Science.gov (United States)

    Mortensen, Monika; Watson, Alexander Scarth; Simon, Anna Katharina

    2011-09-01

    The regulated lysosomal degradation pathway of autophagy prevents cellular damage and thus protects from malignant transformation. Autophagy is also required for the maturation of various hematopoietic lineages, namely the erythroid and lymphoid ones, yet its role in adult hematopoietic stem cells (HSCs) remained unexplored. While normal HSCs sustain life-long hematopoiesis, malignant transformation of HSCs or early progenitors leads to leukemia. Mechanisms protecting HSCs from cellular damage are therefore essential to prevent hematopoietic malignancies. By conditionally deleting the essential autophagy gene Atg7 in the hematopoietic system, we found that autophagy is required for the maintenance of true HSCs and therefore also of downstream hematopoietic progenitors. Loss of autophagy in HSCs leads to the expansion of a progenitor cell population in the bone marrow, giving rise to a severe, invasive myeloproliferation, which strongly resembles human acute myeloid leukemia (AML).

  15. Immunotherapy with natural killer cells: a possible approach for the treatment of Acute Myeloid Leukemia also in Brazil

    Directory of Open Access Journals (Sweden)

    Lúcia Silla

    Full Text Available SUMMARY The allogeneic hematopoietic stem cell transplantation (HSCT can cure intermediate and high-risk acute myeloid leukemia. Even with the development of strategies to reduce HSCT toxicity, this is still a complex treatment with high morbidity and mortality. Knowledge of the graft versus leukemia effect of HSCT has prepared the way for the development of Adoptive Immunotherapy or in vitro expansion of activated lymphocytes without alloreactivity, with subsequent intravenous infusion. The infusion of genetically modified T lymphocytes and haploidentical natural killer cells has been tested as an alternative to HSCT with very interesting results worldwide and in Brazil, as we not only have the technology of in vitro expansion of clinical grade lymphocytes available, but also do it according to the Good Manufacturing Practices that have been determined internationally.

  16. Gynecologic Cancer InterGroup (GCIG) consensus review for high-grade undifferentiated sarcomas of the uterus

    NARCIS (Netherlands)

    Pautier, Patricia; Nam, Eun Ji; Provencher, Diane M.; Hamilton, Anne L.; Mangili, Giorgia; Siddiqui, Nadeem Ahmad; Westermann, Anneke M.; Reed, Nicholas Simon; Harter, Philipp; Ray-Coquard, Isabelle

    2014-01-01

    High-grade undifferentiated sarcomas (HGUSs) are rare uterine malignancies arising from the endometrial stroma. They are poorly differentiated sarcomas composed of cells that do not resemble proliferative-phase endometrial stroma. High-grade undifferentiated sarcomas are characterized by aggressive

  17. Caffeine affects the biological responses of human hematopoietic cells of myeloid lineage via downregulation of the mTOR pathway and xanthine oxidase activity

    Science.gov (United States)

    Abooali, Maryam; Yasinska, Inna M.; Casely-Hayford, Maxwell A.; Berger, Steffen M.; Fasler-Kan, Elizaveta; Sumbayev, Vadim V.

    2015-01-01

    Correction of human myeloid cell function is crucial for the prevention of inflammatory and allergic reactions as well as leukaemia progression. Caffeine, a naturally occurring food component, is known to display anti-inflammatory effects which have previously been ascribed largely to its inhibitory actions on phosphodiesterase. However, more recent studies suggest an additional role in affecting the activity of the mammalian target of rapamycin (mTOR), a master regulator of myeloid cell translational pathways, although detailed molecular events underlying its mode of action have not been elucidated. Here, we report the cellular uptake of caffeine, without metabolisation, by healthy and malignant hematopoietic myeloid cells including monocytes, basophils and primary acute myeloid leukaemia mononuclear blasts. Unmodified caffeine downregulated mTOR signalling, which affected glycolysis and the release of pro-inflammatory/pro-angiogenic cytokines as well as other inflammatory mediators. In monocytes, the effects of caffeine were potentiated by its ability to inhibit xanthine oxidase, an enzyme which plays a central role in human purine catabolism by generating uric acid. In basophils, caffeine also increased intracellular cyclic adenosine monophosphate (cAMP) levels which further enhanced its inhibitory action on mTOR. These results demonstrate an important mode of pharmacological action of caffeine with potentially wide-ranging therapeutic impact for treating non-infectious disorders of the human immune system, where it could be applied directly to inflammatory cells. PMID:26384306

  18. ErbB2-Driven Breast Cancer Cell Invasion Depends on a Complex Signaling Network Activating Myeloid Zinc Finger-1-Dependent Cathepsin B Expression

    DEFF Research Database (Denmark)

    Rafn, Bo; Nielsen, Christian Thomas Friberg; Andersen, Sofie Hagel

    2012-01-01

    signaling network activates the transcription of cathepsin B gene (CTSB) via myeloid zinc finger-1 transcription factor that binds to an ErbB2-responsive enhancer element in the first intron of CTSB. This work provides a model system for ErbB2-induced breast cancer cell invasiveness, reveals a signaling...

  19. BCR-ABL transcripts are early predictors for hematological relapse in chronic myeloid leukemia after hematopoietic cell transplantation with reduced intensity conditioning

    NARCIS (Netherlands)

    Lange, T; Deininger, M; Brand, R; Hegenbart, U; Al-Ali, H; Krahl, R; Poenisch, W; Uharek, L; Leiblein, S; Gentilini, C; Petersdorf, E; Storb, RF; Niederwieser, D

    Kinetics of BCR-ABL transcript elimination and its prognostic implications on relapse were analyzed in patients with chronic myeloid leukemia (CML) after reduced intensity hematopoietic cell transplantation (HCT). In all, 19 CML patients were conditioned with 2Gy total-body irradiation in

  20. Allium compounds, dipropyl and dimethyl thiosulfinates as antiproliferative and differentiating agents of human acute myeloid leukemia cell lines

    Directory of Open Access Journals (Sweden)

    Faten Merhi

    2008-08-01

    Full Text Available Faten Merhi1, Jacques Auger2, Francine Rendu1, Brigitte Bauvois11UMR 7131 UPMC Paris Universitas/CNRS, Groupe Hospitalier Broussais-HEGP, Paris, France; 2University F. Rabelais, IRBI, UPRESA CNRS 6035, Tours, FranceAbstract: Epidemiologic studies support the premise that Allium vegetables may lower the risk of cancers. The beneficial effects appear related to the organosulfur products generated upon processing of Allium. Leukemia cells from patients with acute myeloid leukemia (AML display high proliferative capacity and have a reduced capacity of undergoing apoptosis and maturation. Whether the sulfur-containing molecules thiosulfinates (TS, diallyl TS (All2TS, dipropyl TS (Pr2TS and dimethyl TS (Me2TS, are able to exert chemopreventative activity against AML is presently unknown. The present study was an evaluation of proliferation, cytotoxicity, differentiation and secretion of AML cell lines (U937, NB4, HL-60, MonoMac-6 in response to treatment with these TS and their related sulfides (diallylsulfide, diallyl disulfide, dipropyl disulfide, dimethyl disulfide. As assessed by flow cytometry, ELISA, gelatin zymogaphy and RT-PCR, we showed that Pr2TS and Me2TS, but not All2TS and sulfides, 1 inhibited cell proliferation in dose- and time-dependent manner and this process was neither due to cytotoxicity nor apoptosis, 2 induced macrophage maturation, and 3 inhibited the levels of secreted MMP-9 (protein and activity and TNF-α protein, without altering mRNA levels. By establishing for the first time that Pr2TS and Me2TS affect proliferation, differentiation and secretion of leukemic cell lines, this study provides the opportunity to explore the potential efficiency of these molecules in AML.Keywords: acute myeloid leukemia, thiosulfinate, proliferation, differentiation, matrix metalloproteinase-9

  1. Acute Myeloid Leukemia in Childhood

    OpenAIRE

    Yöntem, Ahmet; Bayram, İbrahim

    2018-01-01

    Acute leukemia is basically divided intoacute lymphoblastic leukemia and acute myeloid leukemia. About 15-20% ofchildhood leukemia is caused by acute myeloid leukemia.AML is classified according to morphological, cytochemical and immunophenotypiccharacteristics. AML patients may present with various clinical signsand symptoms due to leukemic cell infiltration. Age, gender, race, structuralfeatures of the patient and cytogenetic abnormalities are important factorsaffecting prognosis in AML. Th...

  2. Intensive chemotherapy for acute myeloid leukemia differentially affects circulating TC1, TH1, TH17 and TREG cells

    Directory of Open Access Journals (Sweden)

    Gjertsen Bjørn

    2010-07-01

    Full Text Available Abstract Background Several observations suggest that immunological events early after chemotherapy, possibly during the period of severe treatment-induced cytopenia, are important for antileukemic immune reactivity in acute myeloid leukemia (AML. We therefore investigated the frequencies of various T cell subsets (TC1, TH1, TH17 and CD25+ FoxP3+ TREG cells in AML patients with untreated disease and following intensive chemotherapy. Results Relative levels of circulating TC1 and TH1 cells were decreased in patients with severe chemotherapy-induced cytopenia, whereas TH17 levels did not differ from healthy controls. Increased levels of regulatory CD25+ FoxP3+ T cells were detected in AML patients with untreated disease, during chemotherapy-induced cytopenia and during regeneration after treatment. TH17 and TH1 levels were significantly higher in healthy males than females, but this gender difference was not detected during chemotherapy-induced cytopenia. Finally, exogenous IL17-A usually had no or only minor effects on proliferation of primary human AML cells. Conclusions We conclude that the effect of intensive AML chemotherapy differ between circulating T cell subsets, relative frequencies of TH17 cells are not affected by chemotherapy and this subset may affect AML cells indirectly through their immunoregulatory effects but probably not through direct effects of IL17-A.

  3. Cyclooxygenase-2 (COX-2 Inhibition Constrains Indoleamine 2,3-Dioxygenase 1 (IDO1 Activity in Acute Myeloid Leukaemia Cells

    Directory of Open Access Journals (Sweden)

    Sergio Rutella

    2013-08-01

    Full Text Available Indoleamine 2,3-dioxygenase 1 (IDO1 metabolizes L-tryptophan to kynurenines (KYN, inducing T-cell suppression either directly or by altering antigen-presenting-cell function. Cyclooxygenase (COX-2, the rate-limiting enzyme in the synthesis of prostaglandins, is over-expressed by several tumours. We aimed at determining whether COX-2 inhibitors down-regulate the IFN-g-induced expression of IDO1 in acute myeloid leukaemia (AML cells. IFN-γ at 100 ng/mL up-regulated COX-2 and IDO1 in HL-60 AML cells, both at mRNA and protein level. The increased COX-2 and IDO1 expression correlated with heightened production of prostaglandin (PGE2 and kynurenines, respectively. Nimesulide, a preferential COX-2 inhibitor, down-regulated IDO1 mRNA/protein and attenuated kynurenine synthesis, suggesting that overall IDO inhibition resulted both from reduced IDO1 gene transcription and from inhibited IDO1 catalytic activity. From a functional standpoint, IFN-g-challenged HL-60 cells promoted the in vitro conversion of allogeneic CD4+CD25− T cells into bona fide CD4+CD25+FoxP3+ regulatory T cells, an effect that was significantly reduced by treatment of IFN-γ-activated HL-60 cells with nimesulide. Overall, these data point to COX-2 inhibition as a potential strategy to be pursued with the aim at circumventing leukaemia-induced, IDO-mediated immune dysfunction.

  4. HIV-1 Tat-induced microgliosis and synaptic damage via interactions between peripheral and central myeloid cells.

    Directory of Open Access Journals (Sweden)

    Shao-Ming Lu

    Full Text Available Despite the ability of combination antiretroviral treatment (cART to reduce viral burden to nearly undetectable levels in cerebrospinal fluid and serum, HIV-1 associated neurocognitive disorders (HAND continue to persist in as many as half the patients living with this disease. There is growing consensus that the actual substrate for HAND is destruction of normal synaptic architecture but the sequence of cellular events that leads to this outcome has never been resolved. To address whether central vs. peripheral myeloid lineage cells contribute to synaptic damage during acute neuroinflammation we injected a single dose of the HIV-1 transactivator of transcription protein (Tat or control vehicle into hippocampus of wild-type or chimeric C57Bl/6 mice genetically marked to distinguish infiltrating and resident immune cells. Between 8-24 hr after injection of Tat, invading CD11b(+ and/or myeloperoxidase-positive leukocytes with granulocyte characteristics were found to engulf both microglia and synaptic structures, and microglia reciprocally engulfed invading leukocytes. By 24 hr, microglial processes were also seen ensheathing dendrites, followed by inclusion of synaptic elements in microglia 7 d after Tat injection, with a durable microgliosis lasting at least 28 d. Thus, central nervous system (CNS exposure to Tat induces early activation of peripheral myeloid lineage cells with phagocytosis of synaptic elements and reciprocal microglial engulfment of peripheral leukocytes, and enduring microgliosis. Our data suggest that a single exposure to a foreign antigen such as HIV-1 Tat can lead to long-lasting disruption of normal neuroimmune homeostasis with deleterious consequences for synaptic architecture, and further suggest a possible mechanism for enduring neuroinflammation in the absence of productive viral replication in the CNS.

  5. High numbers of myeloid derived suppressor cells in peripheral blood and ascitic fluid of cirrhotic and HCC patients.

    Science.gov (United States)

    Elwan, Nadia; Salem, Mohamed Labib; Kobtan, Abdelrahman; El-Kalla, Ferial; Mansour, Loai; Yousef, Mohamed; Al-Sabbagh, Ashraf; Zidan, Abdel-Aziz A; Abd-Elsalam, Sherief

    2018-02-01

    Hepatocellular carcinoma (HCC) is the 3rd most common cause of cancer-related death worldwide. It has evolved different immune escape mechanisms, which might include emergence of lymphoid and myeloid regulatory cells. Aim of this work: To determine the numbers of Myeloid-derived suppressor cells (MDSCs) in peripheral blood and ascitic fluid in cirrhosis and HCC and their relation to IFN-γ and α-fetoprotein (α-FP). Sixty individuals were enrolled in this study; forty cirrhotic patients with ascites; twenty without HCC (Group I), and twenty with HCC (group II) as well as twenty healthy individuals as a control group (group III). The phenotype and numbers of MDSCs were analyzed in peripheral blood of all the individuals and ascitic fluid of the patients using flow cytometry. Intracellular IFN-γ and serum alfa-fetoprotein were measured. Significant increases in the relative and the mean number of peripheral blood MDSCs were found in the cirrhosis and HCC groups than in the control group, with the HCC group showing the highest number. MDSC count was negatively correlated with IFN-γ levels, while α-FP was positively correlated with MDSC% in the HCC group. MDSC count was low in ascitic fluid of both HCC and cirrhosis groups with no significant difference between the 2 groups. A high frequency of MDSCs was detected in the peripheral blood of cirrhotic and HCC patients, indicating presence of immunosuppressive arms. These cells could be targeted to develop a new effective immunotherapy or an adjuvant to current therapies.

  6. Myeloid cells expressing VEGF and arginase-1 following uptake of damaged retinal pigment epithelium suggests potential mechanism that drives the onset of choroidal angiogenesis in mice.

    Directory of Open Access Journals (Sweden)

    Jian Liu

    Full Text Available Whilst data recognise both myeloid cell accumulation during choroidal neovascularisation (CNV as well as complement activation, none of the data has presented a clear explanation for the angiogenic drive that promotes pathological angiogenesis. One possibility that is a pre-eminent drive is a specific and early conditioning and activation of the myeloid cell infiltrate. Using a laser-induced CNV murine model, we have identified that disruption of retinal pigment epithelium (RPE and Bruch's membrane resulted in an early recruitment of macrophages derived from monocytes and microglia, prior to angiogenesis and contemporaneous with lesional complement activation. Early recruited CD11b(+ cells expressed a definitive gene signature of selective inflammatory mediators particularly a pronounced Arg-1 expression. Accumulating macrophages from retina and peripheral blood were activated at the site of injury, displaying enhanced VEGF expression, and notably prior to exaggerated VEGF expression from RPE, or earliest stages of angiogenesis. All of these initial events, including distinct VEGF (+ Arg-1(+ myeloid cells, subsided when CNV was established and at the time RPE-VEGF expression was maximal. Depletion of inflammatory CCR2-positive monocytes confirmed origin of infiltrating monocyte Arg-1 expression, as following depletion Arg-1 signal was lost and CNV suppressed. Furthermore, our in vitro data supported a myeloid cell uptake of damaged RPE or its derivatives as a mechanism generating VEGF (+ Arg-1(+ phenotype in vivo. Our results reveal a potential early driver initiating angiogenesis via myeloid-derived VEGF drive following uptake of damaged RPE and deliver an explanation of why CNV develops during any of the stages of macular degeneration and can be explored further for therapeutic gain.

  7. The fundamental prevalence of chronic myeloid leukemia-generating clonogenic cells in the light of the neutrality theory of evolution.

    Science.gov (United States)

    Jankovic, G M; Pavlovic, M; Vukomanovic, D J; Colovic, M D; Lazarevic, V

    2001-01-01

    A variety of normal human tissues have been reported to harbor small cell populations carrying potentially oncogenic gene rearrangements. This backdrop of mutant cells may be present in the majority of healthy individuals and is apparently weakly selected against. This may provide empirical support for the concept of global neutrality, or near-neutrality (very weak selection), of many somatic mutations. Many healthy individuals, as well as patients with chronic myeloid leukemia, manifest the BCR-ABL fusion gene in blood cells. The presumed neutrality of the BCR-ABL rearrangement-carrying pluripotential hematopoietic stem cells and the relative uniformity of the incidence rate of CML worldwide were used to estimate the extent of the background of BCR-ABL-positive stem cells and the numerical size of the human pluripotential hematopoietic stem cell pool. Three different approaches (molecular-epidemiological, statistical, and population genetical) were employed. Each resulted in very similar estimates of the size of the stem cells carrying the BCR-ABL allele fusions (1.4 x 10(4) cells) and the size of the total human stem cell pool (1.6 x 10(9) cells per individual). The implication of these estimates in the context of the hierarchical nature of the stem cell pool is also considered. The presumptive smaller-sized population of CD34(-) stem cells could not be characterized by any of the approaches used as a "founding" population, representing an ultimate source of all hematopoietic progenitors, or as a subset of stem cells comprising a deeper "kinetic" segment of the total (10(9)-sized) stem cell compartment. (c)2001 Elsevier Science.

  8. Transforming Growth Factor-Beta and Matrix Metalloproteinases: Functional Interactions in Tumor Stroma-Infiltrating Myeloid Cells

    Directory of Open Access Journals (Sweden)

    Jelena Krstic

    2014-01-01

    Full Text Available Transforming growth factor-beta (TGF-β is a pleiotropic factor with several different roles in health and disease. In tumorigenesis, it may act as a protumorigenic factor and have a profound impact on the regulation of the immune system response. Matrix metalloproteinases (MMPs are a family that comprises more than 25 members, which have recently been proposed as important regulators acting in tumor stroma by regulating the response of noncellular and cellular microenvironment. Tumor stroma consists of several types of resident cells and infiltrating cells derived from bone marrow, which together play crucial roles in the promotion of tumor growth and metastasis. In cancer cells, TGF-β regulates MMPs expression, while MMPs, produced by either cancer cells or residents’ stroma cells, activate latent TGF-β in the extracellular matrix, together facilitating the enhancement of tumor progression. In this review we will focus on the compartment of myeloid stroma cells, such as tumor-associated macrophages, neutrophils, and dendritic and mast cells, which are potently regulated by TGF-β and produce large amounts of MMPs. Their interplay and mutual implications in the generation of pro-tumorigenic cancer microenvironment will be analyzed.

  9. Histological and immunohistochemical characteristics of undifferentiated small round cell sarcomas associated with CIC-DUX4 and BCOR-CCNB3 fusion genes.

    Science.gov (United States)

    Yamada, Yuichi; Kuda, Masaaki; Kohashi, Kenichi; Yamamoto, Hidetaka; Takemoto, Junkichi; Ishii, Takeaki; Iura, Kunio; Maekawa, Akira; Bekki, Hirofumi; Ito, Takamichi; Otsuka, Hiroshi; Kuroda, Makoto; Honda, Yumi; Sumiyoshi, Shinji; Inoue, Takeshi; Kinoshita, Naoe; Nishida, Atsushi; Yamashita, Kyoko; Ito, Ichiro; Komune, Shizuo; Taguchi, Tomoaki; Iwamoto, Yukihide; Oda, Yoshinao

    2017-04-01

    CIC-DUX4 and BCOR-CCNB3 fusion-gene-associated small round cell sarcomas account for a proportion of pediatric small round cell sarcomas, but their pathological features have not been sufficiently clarified. We reviewed a large number of soft tissue tumors registered at our institution, retrieved the cases of unclassified tumors with a small round cell component, and subjected them to histopathological, immunohistochemical, and gene profile analysis. We reviewed 164 cases of unclassified tumors with a small round cell component and analyzed them by RT-PCR and FISH. Tumors positive for a specific fusion-gene were also subjected to histopathological and immunohistochemical examinations. We identified 16 cases of BCOR-CCNB3/CIC-associated (CIC-DUX4 or CIC gene rearrangement-positive) sarcomas. These included seven BCOR-CCNB3 sarcomas and nine CIC-associated sarcomas. Heterogeneous elements included a myxoid spindle cell component in three BCOR-CCNB3 sarcomas and an epithelioid cell component in two CIC-associated sarcomas (one CIC-DUX4-positive and one CIC-DUX4-negative sarcomas). Mitotic activity was low in both heterogeneous components. By immunohistochemistry, in seven BCOR-CCNB3 sarcomas expression of EMA was positive in two cases, of p63 in three, of CD56 in six, of TLE1 in seven, of NKX2.2 in two, of CCNB3 in seven, and of BCOR in six cases (one case could not be tested for BCOR). In nine cases of CIC-associated sarcoma, CD56 was expressed in five, alpha-smooth muscle actin in one, ERG in three, and CD99, WT1 and TLE1 each in eight cases. Both sarcoma types showed not only a small round cell component, but also a myxoid/epithelioid component with low mitotic activity.

  10. Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice.

    Directory of Open Access Journals (Sweden)

    Noah Saederup

    2010-10-01

    Full Text Available Monocyte subpopulations distinguished by differential expression of chemokine receptors CCR2 and CX3CR1 are difficult to track in vivo, partly due to lack of CCR2 reagents.We created CCR2-red fluorescent protein (RFP knock-in mice and crossed them with CX3CR1-GFP mice to investigate monocyte subset trafficking. In mice with experimental autoimmune encephalomyelitis, CCR2 was critical for efficient intrathecal accumulation and localization of Ly6C(hi/CCR2(hi monocytes. Surprisingly, neutrophils, not Ly6C(lo monocytes, largely replaced Ly6C(hi cells in the central nervous system of these mice. CCR2-RFP expression allowed the first unequivocal distinction between infiltrating monocytes/macrophages from resident microglia.These results refine the concept of monocyte subsets, provide mechanistic insight about monocyte entry into the central nervous system, and present a novel model for imaging and quantifying inflammatory myeloid populations.

  11. Expression of triggering receptor on myeloid cell 1 and histocompatibility complex molecules in sepsis and major abdominal surgery.

    Science.gov (United States)

    González-Roldán, Nestor; Ferat-Osorio, Eduardo; Aduna-Vicente, Rosalía; Wong-Baeza, Isabel; Esquivel-Callejas, Noemí; Astudillo-de la Vega, Horacio; Sánchez-Fernández, Patricio; Arriaga-Pizano, Lourdes; Villasís-Keever, Miguel Angel; López-Macías, Constantino; Isibasi, Armando

    2005-12-21

    To evaluate the surface expression of triggering receptor on myeloid cell 1 (TREM-1), class II major histocompatibility complex molecules (HLA-DR), and the expression of the splicing variant (svTREM-1) of TREM-1 in septic patients and those subjected to major abdominal surgery. Using flow cytometry, we examined the surface expression of TREM-1 and HLA-DR in peripheral blood monocytes from 11 septic patients, 7 elective gastrointestinal surgical patients, and 10 healthy volunteers. svTREM-1 levels were analyzed by RT-PCR. Basal expression of TREM-1 and HLA-DR in healthy volunteers was 35.91+/-14.75 MFI and 75.8+/-18.3%, respectively. In septic patients, TREM-1 expression was 59.9+/-23.9 MFI and HLA-DR expression was 44.39+/-20.25%, with a significant difference between healthy and septic groups (PSIRS, CARS, and sepsis.

  12. Effective control of acute myeloid leukaemia and acute lymphoblastic leukaemia progression by telomerase specific adoptive T-cell therapy.

    Science.gov (United States)

    Sandri, Sara; De Sanctis, Francesco; Lamolinara, Alessia; Boschi, Federico; Poffe, Ornella; Trovato, Rosalinda; Fiore, Alessandra; Sartori, Sara; Sbarbati, Andrea; Bondanza, Attilio; Cesaro, Simone; Krampera, Mauro; Scupoli, Maria T; Nishimura, Michael I; Iezzi, Manuela; Sartoris, Silvia; Bronte, Vincenzo; Ugel, Stefano

    2017-10-20

    Telomerase (TERT) is a ribonucleoprotein enzyme that preserves the molecular organization at the ends of eukaryotic chromosomes. Since TERT deregulation is a common step in leukaemia, treatments targeting telomerase might be useful for the therapy of hematologic malignancies. Despite a large spectrum of potential drugs, their bench-to-bedside translation is quite limited, with only a therapeutic vaccine in the clinic and a telomerase inhibitor at late stage of preclinical validation. We recently demonstrated that the adoptive transfer of T cell transduced with an HLA-A2-restricted T-cell receptor (TCR), which recognize human TERT with high avidity, controls human B-cell chronic lymphocytic leukaemia (B-CLL) progression without severe side-effects in humanized mice. In the present report, we show the ability of our approach to limit the progression of more aggressive leukemic pathologies, such as acute myeloid leukaemia (AML) and B-cell acute lymphoblastic leukaemia (B-ALL). Together, our findings demonstrate that TERT-based adoptive cell therapy is a concrete platform of T cell-mediated immunotherapy for leukaemia treatment.

  13. Inhibition of serotonin receptor type 1 in acute myeloid leukemia impairs leukemia stem cell functionality: a promising novel therapeutic target.

    Science.gov (United States)

    Etxabe, A; Lara-Castillo, M C; Cornet-Masana, J M; Banús-Mulet, A; Nomdedeu, M; Torrente, M A; Pratcorona, M; Díaz-Beyá, M; Esteve, J; Risueño, R M

    2017-11-01

    Acute myeloid leukemia (AML) is a clinically and molecularly heterogeneous neoplasia with poor outcome, organized as a hierarchy initiated and maintained by a sub-population with differentiation and self-renewal capacities called leukemia stem cells (LSCs). Although currently used chemotherapy is capable of initially reducing the tumor burden producing a complete remission, most patients will ultimately relapse and will succumb to their disease. As such, new therapeutic strategies are needed. AML cells differentially expressed serotonin receptor type 1 (HTR1) compared with healthy blood cells and the most primitive hematopoietic fraction; in fact, HTR1B expression on AML patient samples correlated with clinical outcome. Inhibition of HTR1s activated the apoptosis program, induced differentiation and reduced the clonogenic capacity, while minimal effect was observed on healthy blood cells. In vivo regeneration capacity of primary AML samples was disrupted upon inhibition of HTR1. The self-renewal capacity remaining in AML cells upon in vivo treatment was severely reduced as demonstrated by serial transplantation. Thus, treatment with HTR1 antagonists showed antileukemia effect, especially anti-LSC activity while sparing healthy blood cells. Our results highlight the importance of HTR1 in leukemogenesis and LSC survival and identify this receptor family as a new target for therapy in AML with prognostic value.

  14. Inhibition of c-Myc overcomes cytotoxic drug resistance in acute myeloid leukemia cells by promoting differentiation.

    Directory of Open Access Journals (Sweden)

    Xiao-Na Pan

    Full Text Available Nowadays, drug resistance still represents a major obstacle to successful acute myeloid leukemia (AML treatment and the underlying mechanism is not fully elucidated. Here, we found that high expression of c-Myc was one of the cytogenetic characteristics in the drug-resistant leukemic cells. c-Myc over-expression in leukemic cells induced resistance to chemotherapeutic drugs, enhanced colony formation capacity and inhibited cell differentiation induced by all-trans retinoic acid (ATRA. Meanwhile, inhibition of c-Myc by shRNA or specific c-Myc inhibitor 10058-F4 rescued the sensitivity to cytotoxic drugs, restrained the colony formation ability and promoted differentiation. RT-PCR and western blotting analysis showed that down-regulation of C/EBPβ contributed to the poor differentiation state of leukemic cells induced by c-Myc over-expression. Importantly, over-expression of C/EBPβ could reverse c-Myc induced drug resistance. In primary AML cells, the c-Myc expression was negatively correlated with C/EBPβ. 10058-F4, displayed anti-proliferative activity and increased cellular differentiation with up-regulation of C/EBPβ in primary AML cells. Thus, our study indicated that c-Myc could be a novel target to overcome drug resistance, providing a new approach in AML therapy.

  15. In vivo and in vitro expression of myeloid antigens on B-lineage acute lymphoblastic leukemia cells.

    Science.gov (United States)

    Hara, J; Kawa-Ha, K; Yumura-Yagi, K; Kurahashi, H; Tawa, A; Ishihara, S; Inoue, M; Murayama, N; Okada, S

    1991-01-01

    The expression of myeloid antigens has been extensively examined using two-color analysis in 43 children with B-lineage acute lymphoblastic leukemia (ALL). On pre-culture cells, CD33 expression was frequently observed in CD19+, CD10- B-precursor ALL, and CD14 was expressed only on the cells from B-precursor ALL expressing CD19, CD10 and CD20, and B-ALL. After 2 or 3 days of culture without TPA, CD13 emerged on the cells from 21 of 29 patients irrespective of the presence or the absence of fetal calf serum in the culture. Of four patients with CD10+ B-precursor ALL, which showed no expression of CD13 after culture, two had T-cell associated antigens. Whereas the addition of TPA to the culture enhanced the expression of CD13 on the cells from acute non-lymphocytic leukemia (ANLL), TPA reduced the expression of this antigen on B-precursor cells. These findings suggest that the regulatory mechanism of CD13 expression may be different between B-precursor ALL and ANLL. Co-culture with cycloheximide mostly abrogated the induction of CD13, suggesting that CD13 expression was mainly dependent on de novo protein synthesis.

  16. Mast cell histamine promotes the immunoregulatory activity of myeloid-derived suppressor cells.

    Science.gov (United States)

    Martin, Rebecca K; Saleem, Sheinei J; Folgosa, Lauren; Zellner, Hannah B; Damle, Sheela R; Nguyen, Giang-Kim T; Ryan, John J; Bear, Harry D; Irani, Anne-Marie; Conrad, Daniel H

    2014-07-01

    It has been shown recently that MCs are required for differential regulation of the immune response by granulocytic versus monocytic MDSCs. Granulocytic MDSCs promoted parasite clearance, whereas monocytic MDSCs enhanced tumor progression; both activities were abrogated in MC-deficient mice. Herein, we demonstrate that the lack of MCs also influences MDSC trafficking. Preferential trafficking to the liver was not seen in MC-deficient mice. In addition, evidence that the MC mediator histamine was important in MDSC trafficking and activation is also shown. MDSCs express HR1-3. Blockade of these receptors by HR1 or HR2 antagonists reversed the histamine enhancement of MDSC survival and proliferation observed in cell culture. In addition, histamine differentially influenced Arg1 and iNOS gene expression in MDSCs and greatly enhanced IL-4 and IL-13 message, especially in granulocytic MDSCs. Evidence that histamine influenced activity seen in vitro translated to in vivo when HR1 and HR2 antagonists blocked the effect of MDSCs on parasite expulsion and tumor metastasis. All of these data support the MDSC-mediated promotion of Th2 immunity, leading to the suggestion that allergic-prone individuals would have elevated MDSC levels. This was directly demonstrated by looking at the relative MDSC levels in allergic versus control patients. Monocytic MDSCs trended higher, whereas granulocytic MDSCs were increased significantly in allergic patients. Taken together, our studies indicate that MCs and MC-released histamine are critical for MDSC-mediated immune regulation, and this interaction should be taken into consideration for therapeutic interventions that target MDSCs. © 2014 Society for Leukocyte Biology.

  17. The role of myeloid cell activation and arginine metabolism in the pathogenesis of virus-induced diseases

    Directory of Open Access Journals (Sweden)

    Kristina S. Burrack

    2014-09-01

    Full Text Available When an antiviral immune response is generated, a balance must be reached between two opposing pathways: the production of proinflammatory and cytotoxic effectors that drive a robust antiviral immune response to control the infection and regulators that function to limit or blunt an excessive immune response to minimize immune-mediated pathology and repair tissue damage. Myeloid cells, including monocytes and macrophages, play an important role in this balance, particularly through the activities of the arginine-hydrolyzing enzymes nitric oxide synthase 2 (Nos2; iNOS and arginase 1 (Arg1. Nitric oxide (NO production by iNOS is an important proinflammatory mediator, whereas Arg1-expressing macrophages contribute to the resolution of inflammation and wound repair. In the context of viral infections, expression of these enzymes can result in a variety of outcomes for the host. NO has direct antiviral properties against some viruses, whereas during other virus infections NO can mediate immunopathology and/or inhibit the antiviral immune response to promote chronic infection. Arg1 activity has important wound healing functions but can also inhibit the antiviral immune response during some viral infections. Thus, depending on the specific virus and the tissue(s involved, the activity of both of these arginine-hydrolyzing enzymes can either exacerbate or limit the severity of virus-induced disease. In this review, we will discuss a variety of viral infections, including HIV, SARS-CoV, LCMV, HCV, RSV, and others, where myeloid cells influence the control and clearance of the virus from the host, as well as the severity and resolution of tissue damage, via the activities of iNOS and/or Arg1. Clearly, monocyte/macrophage activation and arginine metabolism will continue to be important areas of investigation in the context of viral infections.

  18. Pathologic and protective roles for microglial subsets and bone marrow- and blood-derived myeloid cells in central nervous system inflammation.

    Directory of Open Access Journals (Sweden)

    Agnieszka eWlodarczyk

    2015-09-01

    Full Text Available Inflammation is a series of processes designed for eventual clearance of pathogens and repair of damaged tissue. In the context of autoimmune recognition inflammatory processes are usually considered to be pathological. This is also true for inflammatory responses in the central nervous system (CNS. However, as in other tissues, neuroinflammation can have beneficial as well as pathological outcomes. The complex role of encephalitogenic T cells in multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE may derive from heterogeneity of the myeloid cells with which these T cells interact within the CNS. Myeloid cells, including resident microglia and infiltrating bone marrow-derived cells such as dendritic cells (DC and monocytes/macrophages (BMDM, are highly heterogeneous populations that may be involved in neurotoxicity but also immunoregulation and regenerative processes. Better understanding and characterization of myeloid cell heterogeneity is essential for future development of treatments controlling inflammation and inducing neuroprotection and neuroregeneration in diseased CNS. Here we describe and compare three populations of myeloid cells: CD11c+ microglia, CD11c- microglia and CD11c+ blood-derived cells in terms of their pathological versus protective functions in the CNS of mice with EAE. Our data show that CNS-resident microglia include functionally distinct subsets that can be distinguished by their expression of CD11c. These subsets differ in their expression of Arg-1, YM1, iNOS, IL-10 and IGF-1. Moreover, in contrast to BMDM/DC both subsets of microglia express protective interferon-beta (IFNβ, high levels of colony-stimulating factor-1 receptor and do not express the Th1-associated transcription factor T-bet. Taken together, our data suggest that CD11c+ microglia, CD11c- microglia and infiltrating BMDM/DC represent separate and distinct populations and illustrate the heterogeneity of the CNS

  19. Pomolic acid-induced apoptosis in cells from patients with chronic myeloid leukemia exhibiting different drug resistance profile.

    Science.gov (United States)

    Vasconcelos, F C; Gattass, C R; Rumjanek, V M; Maia, R C

    2007-12-01

    Pomolic acid (PA) is a pentacyclic triterpene which has been previously described as active in inhibiting the growth of K562 cell line-originated from chronic myeloid leukemia (CML) in blast crisis-and its vincristine-resistant derivative K562-Lucena1. In this work, cells from CML patients were treated with PA and the apoptotic index was compared with the multidrug resistance (MDR) profile and clinical status of the patients. Our findings show that PA 12.5 microg/ml at 24 h (p = 0.000), at 48 h (p = 0.012) and at 72 h (p = 0.005) has a potent apoptotic index in CML cells as compared to mononuclear cells from healthy donors. PA was capable to induce apoptosis in cells from CML patients exhibiting functional MDR phenotype but not in P-glycoprotein expression. In addition, PA was effective in chronic as well as in blast phase of CML. Moreover, similar apoptotic index induced by PA was observed in low, intermediate and high-risk Sokal score as well as in samples from the group of patients with clinical resistance to interferon and/or imatinib and non-treated patients. These results suggest that PA may be an effective agent for the treatment of CML.

  20. The Tim-3-galectin-9 Secretory Pathway is Involved in the Immune Escape of Human Acute Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Isabel Gonçalves Silva

    2017-08-01

    Full Text Available Acute myeloid leukemia (AML is a severe and often fatal systemic malignancy. Malignant cells are capable of escaping host immune surveillance by inactivating cytotoxic lymphoid cells. In this work we discovered a fundamental molecular pathway, which includes ligand-dependent activation of ectopically expressed latrophilin 1 and possibly other G-protein coupled receptors leading to increased translation and exocytosis of the immune receptor Tim-3 and its ligand galectin-9. This occurs in a protein kinase C and mTOR (mammalian target of rapamycin-dependent manner. Tim-3 participates in galectin-9 secretion and is also released in a free soluble form. Galectin-9 impairs the anti-cancer activity of cytotoxic lymphoid cells including natural killer (NK cells. Soluble Tim-3 prevents secretion of interleukin-2 (IL-2 required for the activation of cytotoxic lymphoid cells. These results were validated in ex vivo experiments using primary samples from AML patients. This pathway provides reliable targets for both highly specific diagnosis and immune therapy of AML.

  1. The Effects of T4 and A3/R Bacteriophages on Differentiation of Human Myeloid Dendritic Cells

    Science.gov (United States)

    Bocian, Katarzyna; Borysowski, Jan; Zarzycki, Michał; Pacek, Magdalena; Weber-Dąbrowska, Beata; Machcińska, Maja; Korczak-Kowalska, Grażyna; Górski, Andrzej

    2016-01-01

    Bacteriophages (phages) are viruses of bacteria. Here we evaluated the effects of T4 and A3/R bacteriophages, as well as phage-generated bacterial lysates, on differentiation of human myeloid dendritic cells (DCs) from monocytes. Neither of the phages significantly reduced the expression of markers associated with differentiation of DCs and their role in the activation of T cells (CD40, CD80, CD83, CD86, CD1c, CD11c, MHC II, PD-L1, PD-L2, TLR2, TLR4, and CCR7) and phagocytosis receptors (CD64 and DEC-205). By contrast, bacterial lysate of T4 phage significantly decreased the percentages of DEC-205- and CD1c-positive cells. The percentage of DEC-205-positive cells was also significantly reduced in DCs differentiated in the presence of lysate of A3/R phage. Thus while bacteriophages do not substantially affect differentiation of DCs, some products of phage-induced lysis of bacterial cells may influence the differentiation and potentially also some functions of DCs. Our results have important implications for phage therapy of bacterial infections because during infections monocytes recruited to the site of inflammation are an important source of inflammatory DCs. PMID:27582733

  2. The farnesoid-X-receptor in myeloid cells controls CNS autoimmunity in an IL-10-dependent fashion.

    Science.gov (United States)

    Hucke, Stephanie; Herold, Martin; Liebmann, Marie; Freise, Nicole; Lindner, Maren; Fleck, Ann-Katrin; Zenker, Stefanie; Thiebes, Stephanie; Fernandez-Orth, Juncal; Buck, Dorothea; Luessi, Felix; Meuth, Sven G; Zipp, Frauke; Hemmer, Bernhard; Engel, Daniel Robert; Roth, Johannes; Kuhlmann, Tanja; Wiendl, Heinz; Klotz, Luisa

    2016-09-01

    Innate immune responses by myeloid cells decisively contribute to perpetuation of central nervous system (CNS) autoimmunity and their pharmacologic modulation represents a promising strategy to prevent disease progression in Multiple Sclerosis (MS). Based on our observation that peripheral immune cells from relapsing-remitting and primary progressive MS patients exhibited strongly decreased levels of the bile acid receptor FXR (farnesoid-X-receptor, NR1H4), we evaluated its potential relevance as therapeutic target for control of established CNS autoimmunity. Pharmacological FXR activation promoted generation of anti-inflammatory macrophages characterized by arginase-1, increased IL-10 production, and suppression of T cell responses. In mice, FXR activation ameliorated CNS autoimmunity in an IL-10-dependent fashion and even suppressed advanced clinical disease upon therapeutic administration. In analogy to rodents, pharmacological FXR activation in human monocytes from healthy controls and MS patients induced an anti-inflammatory phenotype with suppressive properties including control of effector T cell proliferation. We therefore, propose an important role of FXR in control of T cell-mediated autoimmunity by promoting anti-inflammatory macrophage responses.

  3. The Effects of T4 and A3/R Bacteriophages on Differentiation of Human Myeloid Dendritic Cells.

    Science.gov (United States)

    Bocian, Katarzyna; Borysowski, Jan; Zarzycki, Michał; Pacek, Magdalena; Weber-Dąbrowska, Beata; Machcińska, Maja; Korczak-Kowalska, Grażyna; Górski, Andrzej

    2016-01-01

    Bacteriophages (phages) are viruses of bacteria. Here we evaluated the effects of T4 and A3/R bacteriophages, as well as phage-generated bacterial lysates, on differentiation of human myeloid dendritic cells (DCs) from monocytes. Neither of the phages significantly reduced the expression of markers associated with differentiation of DCs and their role in the activation of T cells (CD40, CD80, CD83, CD86, CD1c, CD11c, MHC II, PD-L1, PD-L2, TLR2, TLR4, and CCR7) and phagocytosis receptors (CD64 and DEC-205). By contrast, bacterial lysate of T4 phage significantly decreased the percentages of DEC-205- and CD1c-positive cells. The percentage of DEC-205-positive cells was also significantly reduced in DCs differentiated in the presence of lysate of A3/R phage. Thus while bacteriophages do not substantially affect differentiation of DCs, some products of phage-induced lysis of bacterial cells may influence the differentiation and potentially also some functions of DCs. Our results have important implications for phage therapy of bacterial infections because during infections monocytes recruited to the site of inflammation are an important source of inflammatory DCs.

  4. The effects of T4 and A3R bacteriophages on differentiation of human myeloid dendritic cells

    Directory of Open Access Journals (Sweden)

    Katarzyna Bocian

    2016-08-01

    Full Text Available Bacteriophages (phages are viruses of bacteria. Here we evaluated the effects of T4 and A3R bacteriophages, as well as phage-generated bacterial lysates, on differentiation of human myeloid dendritic cells (DCs from monocytes. Neither of the phages significantly reduced the expression of markers associated with differentiation of DCs and their role in the activation of T cells (CD40, CD80, CD83, CD86, CD1c, CD11c, MHC II, PD-L1, PD-L2, TLR2, TLR4, and CCR7 and phagocytosis receptors (CD64 and DEC-205. By contrast, bacterial lysate of T4 phage significantly decreased the percentages of DEC-205- and CD1c-positive cells. The percentage of DEC-205-positive cells was also significantly reduced in DCs differentiated in the presence of lysate of A3R phage. Thus while bacteriophages do not substantially affect differentiation of DCs, some products of phage-induced lysis of bacterial cells may influence the differentiation and potentially also some functions of DCs. Our results have important implications for phage therapy of bacterial infections because during infections monocytes recruited to the site of inflammation are an important source of inflammatory DCs.

  5. Diabetes induces stable intrinsic changes to myeloid cells that contribute to chronic inflammation during wound healing in mice

    Directory of Open Access Journals (Sweden)

    Pauline Bannon

    2013-11-01

    Acute inflammation in response to injury is a tightly regulated process by which subsets of leukocytes are recruited to the injured tissue and undergo behavioural changes that are essential for effective tissue repair and regeneration. The diabetic wound environment is characterised by excessive and prolonged inflammation that is linked to poor progression of healing and, in humans, the development of diabetic foot ulcers. However, the underlying mechanisms contributing to excessive inflammation remain poorly understood. Here we show in a murine model that the diabetic environment induces stable intrinsic changes in haematopoietic cells. These changes lead to a hyper-responsive phenotype to both pro-inflammatory and anti-inflammatory stimuli, producing extreme M1 and M2 polarised cells. During early wound healing, myeloid cells in diabetic mice show hyperpolarisation towards both M1 and M2 phenotypes, whereas, at late stages of healing, when non-diabetic macrophages have transitioned to an M2 phenotype, diabetic wound macrophages continue to display an M1 phenotype. Intriguingly, we show that this population predominantly consists of Gr-1+ CD11b+ CD14+ cells that have been previously reported as ‘inflammatory macrophages’ recruited to injured tissue in the early stages of wound healing. Finally, we show that this phenomenon is directly relevant to human diabetic ulcers, for which M2 polarisation predicts healing outcome. Thus, treatments focused at targeting this inflammatory cell subset could prove beneficial for pathological tissue repair.

  6. Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia.

    Science.gov (United States)

    Pan, Rongqing; Hogdal, Leah J; Benito, Juliana M; Bucci, Donna; Han, Lina; Borthakur, Gautam; Cortes, Jorge; DeAngelo, Daniel J; Debose, Lakeisha; Mu, Hong; Döhner, Hartmut; Gaidzik, Verena I; Galinsky, Ilene; Golfman, Leonard S; Haferlach, Torsten; Harutyunyan, Karine G; Hu, Jianhua; Leverson, Joel D; Marcucci, Guido; Müschen, Markus; Newman, Rachel; Park, Eugene; Ruvolo, Peter P; Ruvolo, Vivian; Ryan, Jeremy; Schindela, Sonja; Zweidler-McKay, Patrick; Stone, Richard M; Kantarjian, Hagop; Andreeff, Michael; Konopleva, Marina; Letai, Anthony G

    2014-03-01

    B-cell leukemia/lymphoma 2 (BCL-2) prevents commitment to programmed cell death at the mitochondrion. It remains a challenge to identify those tumors that are best treated by inhibition of BCL-2. Here, we demonstrate that acute myeloid leukemia (AML) cell lines, primary patient samples, and murine primary xenografts are very sensitive to treatment with the selective BCL-2 antagonist ABT-199. In primary patient cells, the median IC50 was approximately 10 nmol/L, and cell death occurred within 2 hours. Our ex vivo sensitivity results compare favorably with those observed for chronic lymphocytic leukemia, a disease for which ABT-199 has demonstrated consistent activity in clinical trials. Moreover, mitochondrial studies using BH3 profiling demonstrate activity at the mitochondrion that correlates well with cytotoxicity, supporting an on-target mitochondrial mechanism of action. Our protein and BH3 profiling studies provide promising tools that can be tested as predictive biomarkers in any clinical trial of ABT-199 in AML.

  7. Myeloid cell leukemia-1 is a key molecular target for mithramycin A-induced apoptosis in androgen-independent prostate cancer cells and a tumor xenograft animal model.

    Science.gov (United States)

    Choi, Eun-Sun; Jung, Ji-Youn; Lee, Jin-Seok; Park, Jong-Hwan; Cho, Nam-Pyo; Cho, Sung-Dae

    2013-01-01

    Mithramycin A (Mith) is a natural polyketide that has been used in multiple areas of research including apoptosis of various cancer cells. Here, we examined the critical role of Mith in apoptosis and its molecular mechanism in DU145 and PC3 prostate cancer cells and tumor xenografts. Mith decreased cell growth and induced apoptosis in DU145 and PC-3 cells. Myeloid cell leukemia-1 (Mcl-1) was over-expressed in both cell lines compared to RWPE1 cells. Mith inhibited Mcl-1 protein expression in both cells, but only altered Mcl-1 mRNA levels in PC-3 cells. We also found that Mith reduced Mcl-1 protein levels through both proteasome-dependent protein degradation and the inhibition of protein synthesis in DU145 cells. Studies using siRNA confirmed that the knockdown of Mcl-1 induced apoptosis. Mith significantly suppressed TPA-induced neoplastic cell transformation through the down-regulation of the Mcl-1 protein in JB6 cells, and suppressed the transforming activity of both cell types. Mith also inhibited tumor growth and Mcl-1 levels, in addition to inducing apoptosis, in athymic nude mice bearing DU145 cell xenografts without affecting five normal organs. Therefore, Mith inhibits cell growth and induces apoptosis by suppressing Mcl-1 in both prostate cancer cells and xenograft tumors, and thus is a potent anticancer drug candidate for prostate cancer. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Distinct Dasatinib-Induced Mechanisms of Apoptotic Response and Exosome Release in Imatinib-Resistant Human Chronic Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Juan Liu

    2016-04-01

    Full Text Available Although dasatinib is effective in most imatinib mesylate (IMT-resistant chronic myeloid leukemia (CML patients, the underlying mechanism of its effectiveness in eliminating imatinib-resistant cells is only partially understood. This study investigated the effects of dasatinib on signaling mechanisms driving-resistance in imatinib-resistant CML cell line K562 (K562RIMT. Compared with K562 control cells, exsomal release, the phosphoinositide 3-kinase (PI3K/protein kinase B (Akt/ mammalian target of rapamycin (mTOR signaling and autophagic activity were increased significantly in K562RIMT cells and mTOR-independent beclin-1/Vps34 signaling was shown to be involved in exosomal release in these cells. We found that Notch1 activation-mediated reduction of phosphatase and tensin homolog (PTEN was responsible for the increased Akt/mTOR activities in K562RIMT cells and treatment with Notch1 γ-secretase inhibitor prevented activation of Akt/mTOR. In addition, suppression of mTOR activity by rapamycin decreased the level of activity of p70S6K, induced upregulation of p53 and caspase 3, and led to increase of apoptosis in K562RIMT cells. Inhibition of autophagy by spautin-1 or beclin-1 knockdown decreased exosomal release, but did not affect apoptosis in K562RIMT cells. In summary, in K562RIMT cells dasatinib promoted apoptosis through downregulation of Akt/mTOR activities, while preventing exosomal release and inhibiting autophagy by downregulating expression of beclin-1 and Vps34. Our findings reveal distinct dasatinib-induced mechanisms of apoptotic response and exosomal release in imatinib-resistant CML cells.

  9. Homoharringtonine suppresses imatinib resistance via the Bcl-6/p53 pathway in chronic myeloid leukemia cell lines.

    Science.gov (United States)

    Wang, Qian; Ding, Wei; Ding, Yihan; Ma, Jingjing; Qian, Zhaoye; Shao, Jingxian; Li, Yufeng

    2017-06-06

    The anti-leukemic mechanism of homoharringtonine (HHT) differs from that of IM, and HHT is one of the most useful agents for use in patients with IM resistance or intolerance. The Bcl-6/p53 pathway has been shown to regulate the sensitivity of tumor cells to antitumor drugs. We tested whether HHT blocked the Bcl-6/p53 pathway in order to promote the apoptosis of IM-resistant cells in vitro and in vivo. Ph+ acute lymphoblastic leukemia (ALL) cells and IM-resistant chronic myeloid leukemia (CML) cells showed high expression of Bcl-6 protein. Bcl-6 mediated the upregulation of p53, and and Bcl-6 induced growth inhibition of IM-resistant cells as well as its apoptosis by targeting p53. In addition, Bcl-6 was downregulated moderately after HHT treatment in different cells. The Bcl-6 expression was significantly increased in patients with CML when compared with healthy subjects. Furthermore, the expression of Bcl-6 was higher in patients with CML-blastic phase (CML-BP) than in those with CML-chronic phase (CML-CP). The inhibitory effect of drugs on cell growth was detected by Cell Counting Kit-8 (CCK-8), The apoptosis rate and the cell cycle were investigated by flow cytometry. The expression of Bcl-6, p53, Bcl-2, caspase9, and caspase3 proteins was assayed by western blot, Real- Time PCR (qPCR) detect Bcl-6 and p53 mRNA. HHT can suppress the growth and induce apoptosis of IM-resistant cells, the mechanism of which is associated with blocking of the Bcl-6/p53 pathway. Our results could offer a theoretical explanation for HHT use in patients with IM resistance or intolerance.

  10. Multiple helminth infection of the skin causes lymphocyte hypo-responsiveness mediated by Th2 conditioning of dermal myeloid cells.

    Directory of Open Access Journals (Sweden)

    Peter C Cook

    2011-03-01

    Full Text Available Infection of the mammalian host by schistosome larvae occurs via the skin, although nothing is known about the development of immune responses to multiple exposures of schistosome larvae, and/or their excretory/secretory (E/S products. Here, we show that multiple (4x exposures, prior to the onset of egg laying by adult worms, modulate the skin immune response and induce CD4(+ cell hypo-responsiveness in the draining lymph node, and even modulate the formation of hepatic egg-induced granulomas. Compared to mice exposed to a single infection (1x, dermal cells from multiply infected mice (4x, were less able to support lymph node cell proliferation. Analysis of dermal cells showed that the most abundant in 4x mice were eosinophils (F4/80(+MHC-II(-, but they did not impact the ability of antigen presenting cells (APC to support lymphocyte proliferation to parasite antigen in vitro. However, two other cell populations from the dermal site of infection appear to have a critical role. The first comprises arginase-1(+, Ym-1(+ alternatively activated macrophage-like cells, and the second are functionally compromised MHC-II(hi cells. Through the administration of exogenous IL-12 to multiply infected mice, we show that these suppressive myeloid cell phenotypes form as a consequence of events in the skin, most notably an enrichment of IL-4 and IL-13, likely resulting from an influx of RELMα-expressing eosinophils. We further illustrate that the development of these suppressive dermal cells is dependent upon IL-4Rα signalling. The development of immune hypo-responsiveness to schistosome larvae and their effect on the subsequent response to the immunopathogenic egg is important in appreciating how immune responses to helminth infections are modulated by repeated exposure to the infective early stages of development.

  11. Oral myeloid cells uptake allergoids coupled to mannan driving Th1/Treg responses upon sublingual delivery in mice.

    Science.gov (United States)

    Soria, I; López-Relaño, J; Viñuela, M; Tudela, J-I; Angelina, A; Benito-Villalvilla, C; Díez-Rivero, C M; Cases, B; Manzano, A I; Fernández-Caldas, E; Casanovas, M; Palomares, O; Subiza, J L

    2018-01-10

    Polymerized allergoids coupled to nonoxidized mannan (PM-allergoids) may represent novel vaccines targeting dendritic cells (DCs). PM-allergoids are better captured by DCs than native allergens and favor Th1/Treg cell responses upon subcutaneous injection. Herein we have studied in mice the in vivo immunogenicity of PM-allergoids administered sublingually in comparison with native allergens. Three immunization protocols (4-8 weeks long) were used in Balb/c mice. Serum antibody levels were tested by ELISA. Cell responses (proliferation, cytokines, and Tregs) were assayed by flow cytometry in spleen and lymph nodes (LNs). Allergen uptake was measured by flow cytometry in myeloid sublingual cells. A quick antibody response and higher IgG2a/IgE ratio were observed with PM-allergoids. Moreover, stronger specific proliferative responses were seen in both submandibular LNs and spleen cells assayed in vitro. This was accompanied by a higher IFNγ/IL-4 ratio with a quick IL-10 production by submandibular LN cells. An increase in CD4 + CD25 high FOXP3 + Treg cells was detected in LNs and spleen of mice treated with PM-allergoids. These allergoids were better captured than native allergens by antigen-presenting (CD45 + MHC-II + ) cells obtained from the sublingual mucosa, including DCs (CD11b + ) and macrophages (CD64 + ). Importantly, all the differential effects induced by PM-allergoids were abolished when using oxidized instead of nonoxidized PM-allergoids. Our results demonstrate for the first time that PM-allergoids administered through the sublingual route promote the generation of Th1 and FOXP3 + Treg cells in a greater extent than native allergens by mechanisms that might well involve their better uptake by oral antigen-presenting cells. © 2018 The Authors. Allergy Published by John Wiley & Sons Ltd.

  12. Characteristics of myeloid differentiation and maturation pathway derived from human hematopoietic stem cells exposed to different linear energy transfer radiation types.

    Science.gov (United States)

    Monzen, Satoru; Yoshino, Hironori; Kasai-Eguchi, Kiyomi; Kashiwakura, Ikuo

    2013-01-01

    Exposure of hematopoietic stem/progenitor cells (HSPCs) to ionizing radiation causes a marked suppression of mature functional blood cell production in a linear energy transfer (LET)- and/or dose-dependent manner. However, little information about LET effects on the proliferation and differentiation of HSPCs has been reported. With the aim of characterizing the effects of different types of LET radiations on human myeloid hematopoiesis, in vitro hematopoiesis in Human CD34(+) cells exposed to carbon-ion beams or X-rays was compared. Highly purified CD34(+) cells exposed to each form of radiation were plated onto semi-solid culture for a myeloid progenitor assay. The surviving fractions of total myeloid progenitors, colony-forming cells (CFC), exposed to carbon-ion beams were significantly lower than of those exposed to X-rays, indicating that CFCs are more sensitive to carbon-ion beams (D(0) = 0.65) than to X-rays (D(0) = 1.07). Similar sensitivities were observed in granulocyte-macrophage and erythroid progenitors, respectively. However, the sensitivities of mixed-type progenitors to both radiation types were similar. In liquid culture for 14 days, no significant difference in total numbers of mononuclear cells was observed between non-irradiated control culture and cells exposed to 0.5 Gy X-rays, whereas 0.5 Gy carbon-ion beams suppressed cell proliferation to 4.9% of the control, a level similar to that for cells exposed to 1.5 Gy X-rays. Cell surface antigens associated with terminal maturation, such as CD13, CD14, and CD15, on harvest from the culture of X-ray-exposed cells were almost the same as those from the non-irradiated control culture. X-rays increased the CD235a(+) erythroid-related fraction, whereas carbon-ion beams increased the CD34(+)CD38(-) primitive cell fraction and the CD13(+)CD14(+/-)CD15(-) fraction. These results suggest that carbon-ion beams inflict severe damage on the clonal growth of myeloid HSPCs, although the intensity of cell surface

  13. Blimp-1 impairs T cell function via upregulation of TIGIT and PD-1 in patients with acute myeloid leukemia.

    Science.gov (United States)

    Zhu, Liuluan; Kong, Yaxian; Zhang, Jianhong; Claxton, David F; Ehmann, W Christopher; Rybka, Witold B; Palmisiano, Neil D; Wang, Ming; Jia, Bei; Bayerl, Michael; Schell, Todd D; Hohl, Raymond J; Zeng, Hui; Zheng, Hong

    2017-06-19

    T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT) and programmed cell death protein 1 (PD-1) are important inhibitory receptors that associate with T cell exhaustion in acute myeloid leukemia (AML). In this study, we aimed to determine the underlying transcriptional mechanisms regulating these inhibitory pathways. Specifically, we investigated the role of transcription factor B lymphocyte-induced maturation protein 1 (Blimp-1) in T cell response and transcriptional regulation of TIGIT and PD-1 in AML. Peripheral blood samples collected from patients with AML were used in this study. Blimp-1 expression was examined by flow cytometry. The correlation of Blimp-1 expression to clinical characteristics of AML patients was analyzed. Phenotypic and functional studies of Blimp-1-expressing T cells were performed using flow cytometry-based assays. Luciferase reporter assays and ChIP assays were applied to assess direct binding and transcription activity of Blimp-1. Using siRNA to silence Blimp-1, we further elucidated the regulatory role of Blimp-1 in the TIGIT and PD-1 expression and T cell immune response. Blimp-1 expression is elevated in T cells from AML patients. Consistent with exhaustion, Blimp-1 + T cells upregulate multiple inhibitory receptors including PD-1 and TIGIT. In addition, they are functionally impaired manifested by low cytokine production and decreased cytotoxicity capacity. Importantly, the functional defect is reversed by inhibition of Blimp-1 via siRNA knockdown. Furthermore, Blimp-1 binds to the promoters of PD-1 and TIGIT and positively regulates their expression. Our study demonstrates an important inhibitory effect of Blimp-1 on T cell response in AML; thus, targeting Blimp-1 and its regulated molecules to improve the immune response may provide effective leukemia therapeutics.

  14. Blimp-1 impairs T cell function via upregulation of TIGIT and PD-1 in patients with acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Liuluan Zhu

    2017-06-01

    Full Text Available Abstract Background T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM domain (TIGIT and programmed cell death protein 1 (PD-1 are important inhibitory receptors that associate with T cell exhaustion in acute myeloid leukemia (AML. In this study, we aimed to determine the underlying transcriptional mechanisms regulating these inhibitory pathways. Specifically, we investigated the role of transcription factor B lymphocyte-induced maturation protein 1 (Blimp-1 in T cell response and transcriptional regulation of TIGIT and PD-1 in AML. Methods Peripheral blood samples collected from patients with AML were used in this study. Blimp-1 expression was examined by flow cytometry. The correlation of Blimp-1 expression to clinical characteristics of AML patients was analyzed. Phenotypic and functional studies of Blimp-1-expressing T cells were performed using flow cytometry-based assays. Luciferase reporter assays and ChIP assays were applied to assess direct binding and transcription activity of Blimp-1. Using siRNA to silence Blimp-1, we further elucidated the regulatory role of Blimp-1 in the TIGIT and PD-1 expression and T cell immune response. Results Blimp-1 expression is elevated in T cells from AML patients. Consistent with exhaustion, Blimp-1+ T cells upregulate multiple inhibitory receptors including PD-1 and TIGIT. In addition, they are functionally impaired manifested by low cytokine production and decreased cytotoxicity capacity. Importantly, the functional defect is reversed by inhibition of Blimp-1 via siRNA knockdown. Furthermore, Blimp-1 binds to the promoters of PD-1 and TIGIT and positively regulates their expression. Conclusions Our study demonstrates an important inhibitory effect of Blimp-1 on T cell response in AML; thus, targeting Blimp-1 and its regulated molecules to improve the immune response may provide effective leukemia therapeutics.

  15. Chemotherapy alters the increased numbers of myeloid-derived suppressor and regulatory T cells in children with acute lymphoblastic leukemia.

    Science.gov (United States)

    Salem, Mohamed Labib; El-Shanshory, Mohamed R; Abdou, Said H; Attia, Mohamed S; Sobhy, Shymaa M; Zidan, Mona F; Zidan, Abdel-Aziz A

    2018-04-01

    Acute lymphoblastic leukemia (ALL) is the most common cancer diagnosed in children. The precise mechanism behind the relapse in this disease is not clearly known. One possible mechanism could be the accumulation of immunosuppressive cells, including myeloid-derived suppressor cells (MDSCs) and T regulatory cells (T regs ) which we and others have reported to mediate suppression of anti-tumor immune responses. In this study, we aimed to analyze the numbers of these cells in a population of B-ALL pediatric patients. Peripheral blood samples withdrawn from B-ALL pediatric patients (n = 45 before, during and after the induction phase of chemotherapy. Using multi parametric flow cytometric analysis. MDSCs were identified as Lin - HLA-DR - CD33 + CD11b + ; and T reg cells were defined as CD4 + CD25 + CD127 -/low . Early diagnosed B-ALL patients showed significant increases in the numbers of MDSCs and T regs as compared to healthy volunteers. During induction of chemotherapy, however, the patients showed higher and lower numbers of MDSCs and T reg cells, respectively as compared to early diagnosed patients (i.e., before chemotherapy). After induction of chemotherapy, the numbers of MDSCs and T reg cells showed higher increases and decreases, respectively as compared to the numbers in patients during chemotherapy. Our results indicate that B-ALL patients harbor high numbers of both MDSCs and T regs cells. This pilot study opens a new avenue to investigate the mechanism mediating the emergence of these cells on larger number of B-ALL patients at different treatment stages.

  16. Genome-Wide CRISPR-Cas9 Screen Identifies MicroRNAs That Regulate Myeloid Leukemia Cell Growth.

    Directory of Open Access Journals (Sweden)

    Jared Wallace

    Full Text Available Mammalian microRNA expression is dysregulated in human cancer. However, the functional relevance of many microRNAs in the context of tumor biology remains unclear. Using CRISPR-Cas9 technology, we performed a global loss-of-function screen to simultaneously test the functions of individual microRNAs and protein-coding genes during the growth of a myeloid leukemia cell line. This approach identified evolutionarily conserved human microRNAs that suppress or promote cell growth, revealing that microRNAs are extensively integrated into the molecular networks that control tumor cell physiology. miR-155 was identified as a top microRNA candidate promoting cellular fitness, which we confirmed with two distinct miR-155-targeting CRISPR-Cas9 lentiviral constructs. Further, we performed anti-correlation functional profiling to predict relevant microRNA-tumor suppressor gene or microRNA-oncogene interactions in these cells. This analysis identified miR-150 targeting of p53, a connection that was experimentally validated. Taken together, our study describes a powerful genetic approach by which the function of individual microRNAs can be assessed on a global level, and its use will rapidly advance our understanding of how microRNAs contribute to human disease.

  17. HMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cells.

    Science.gov (United States)

    Parker, Katherine H; Sinha, Pratima; Horn, Lucas A; Clements, Virginia K; Yang, Huan; Li, Jianhua; Tracey, Kevin J; Ostrand-Rosenberg, Suzanne

    2014-10-15

    Chronic inflammation often precedes malignant transformation and later drives tumor progression. Likewise, subversion of the immune system plays a role in tumor progression, with tumoral immune escape now well recognized as a crucial hallmark of cancer. Myeloid-derived suppressor cells (MDSC) are elevated in most individuals with cancer, where their accumulation and suppressive activity are driven by inflammation. Thus, MDSCs may define an element of the pathogenic inflammatory processes that drives immune escape. The secreted alarmin HMGB1 is a proinflammatory partner, inducer, and chaperone for many proinflammatory molecules that MDSCs develop. Therefore, in this study, we examined HMGB1 as a potential regulator of MDSCs. In murine tumor systems, HMGB1 was ubiquitous in the tumor microenvironment, activating the NF-κB signal transduction pathway in MDSCs and regulating their quantity and quality. We found that HMGB1 promotes the development of MDSCs from bone marrow progenitor cells, contributing to their ability to suppress antigen-driven activation of CD4(+) and CD8(+) T cells. Furthermore, HMGB1 increased MDSC-mediated production of IL-10, enhanced crosstalk between MDSCs and macrophages, and facilitated the ability of MDSCs to downregulate expression of the T-cell homing receptor L-selectin. Overall, our results revealed a pivotal role for HMGB1 in the development and cancerous contributions of MDSCs. ©2014 American Association for Cancer Research.

  18. Phenotypically resembling myeloid derived suppressor cells are increased in children with HIV and exposed/infected with Mycobacterium tuberculosis.

    Science.gov (United States)

    Du Plessis, Nelita; Jacobs, Ruschca; Gutschmidt, Andrea; Fang, Zhuo; van Helden, Paul D; Lutz, Manfred B; Hesseling, Anneke C; Walzl, Gerhard

    2017-01-01

    Increased disease susceptibility during early life has been linked to immune immaturity, regulatory T-cell/TH2 immune biasing and hyporesponsiveness. The contribution of myeloid derived suppressor cells (MDSCs) remains uninvestigated. Here, we assessed peripheral MDSC in HIV-infected and -uninfected children with tuberculosis (TB) disease before, during and after TB treatment, along with matched household contacts (HHCs), HIV-exposed, -infected and -uninfected children without recent TB exposure. Serum analytes and enzymes associated with MDSC accumulation/activation/function were measured by colorimetric- and fluorescence arrays. Peripheral frequencies of cells phenotypically resembling MDSCs were significantly increased in HIV-exposed uninfected (HEU) and M.tb-infected children, but peaked in children with TB disease and remained high following treatment. MDSC in HIV-infected (HI) children were similar to unexposed uninfected controls; however, HAART-mediated MDSC restoration to control levels could not be disregarded. Increased MDSC frequencies in HHC coincided with enhanced indoleamine-pyrrole-2,3-dioxygenase (IDO), whereas increased MDSC in TB cases were linked to heightened IDO and arginase-1. Increased MDSC were paralleled by reduced plasma IP-10 and thrombospondin-2 levels in HEU and significantly increased plasma IL-6 in HI HHC. Current investigations into MDSC-targeted treatment strategies, together with functional analyses of MDSCs, could endorse these cells as novel innate immune regulatory mechanism of infant HIV/TB susceptibility. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Coexistence of chronic myeloid leukemia and diffuse large B-cell lymphoma with antecedent chronic lymphocytic leukemia: a case report and review of the literature.

    Science.gov (United States)

    Abuelgasim, Khadega A; Rehan, Hinna; Alsubaie, Maha; Al Atwi, Nasser; Al Balwi, Mohammed; Alshieban, Saeed; Almughairi, Areej

    2018-03-11

    Chronic lymphocytic leukemia and chronic myeloid leukemia are the most common types of adult leukemia. However, it is rare for the same patient to suffer from both. Richter's transformation to diffuse large B-cell lymphoma is frequently observed in chronic lymphocytic leukemia. Purine analog therapy and the presence of trisomy 12, and CCND1 gene rearrangement have been linked to increased risk of Richter's transformation. The coexistence of chronic myeloid leukemia and diffuse large B-cell lymphoma in the same patient is extremely rare, with only nine reported cases. Here, we describe the first reported case of concurrent chronic myeloid leukemia and diffuse large B-cell lymphoma in a background of chronic lymphocytic leukemia. A 60-year-old Saudi man known to have diabetes, hypertension, and chronic active hepatitis B was diagnosed as having Rai stage II chronic lymphocytic leukemia, with trisomy 12 and rearrangement of the CCND1 gene in December 2012. He required no therapy until January 2016 when he developed significant anemia, thrombocytopenia, and constitutional symptoms. He received six cycles of fludarabine, cyclophosphamide, and rituximab, after which he achieved complete remission. One month later, he presented with progressive leukocytosis (mostly neutrophilia) and splenomegaly. Fluorescence in situ hybridization from bone marrow aspirate was positive for translocation (9;22) and reverse transcription polymerase chain reaction detected BCR-ABL fusion gene consistent with chronic myeloid leukemia. He had no morphologic or immunophenotypic evidence of chronic lymphocytic leukemia at the time. Imatinib, a first-line tyrosine kinase inhibitor, was started. Eight months later, a screening imaging revealed new liver lesions, which were confirmed to be diffuse large B-cell lymphoma. In chronic lymphocytic leukemia, progressive leukocytosis and splenomegaly caused by emerging chronic myeloid leukemia can be easily overlooked. It is unlikely that chronic myeloid

  20. Identification of a subset of patients with acute myeloid leukemia characterized by long-term in vitro proliferation and altered cell cycle regulation of the leukemic cells.

    Science.gov (United States)

    Hatfield, Kimberley Joanne; Reikvam, Håkon; Bruserud, Øystein

    2014-11-01

    The malignant cell population of acute myeloid leukemia (AML) includes a small population of stem/progenitor cells with long-term in vitro proliferation. We wanted to compare long-term AML cell proliferation for unselected patients, investigate the influence of endothelial cells on AML cell proliferation and identify biological characteristics associated with clonogenic capacity. Cells were cultured in medium supplemented with recombinant growth factors FMS-like tyrosine kinase-3 ligand, stem cell factor, IL-3, G-CSF and thrombopoietin. The colony-forming unit assay was used to estimate the number of progenitors in AML cell populations after 35 days of culture, and microarray was used to study global gene expression profiles between AML patients. Long-term cell proliferation was observed in 7 of 31 patients, whereas 3 additional patients showed long-term proliferation after endothelial cell coculture. Patient-specific differences in constitutive cytokine release were maintained during cell culture. Patients with long-term proliferation showed altered expression in six cell cycle-related genes (HMMR, BUB1, NUSAP1, AURKB, CCNF, DLGAP5), two genes involved in DNA replication (TOP2A, RFC3) and one gene with unknown function (LHFPL2). We identified a subset of AML patients characterized by long-term in vitro cell proliferation and altered expression of cell cycle regulators that may be potential candidates for treatment of AML.

  1. Correlation between frequencies of blood monocytic myeloid-derived suppressor cells, regulatory T cells and negative prognostic markers in patients with castration-resistant metastatic prostate cancer

    DEFF Research Database (Denmark)

    Idorn, Manja; Køllgaard, Tania; Kongsted, Per

    2014-01-01

    in establishing an immune suppressive environment in patients with PC. Moreover, correlation of M-MDSC frequency with known prognostic markers and the observed impact on OS could reflect a possible role in tumor progression. Further insight into the generation and function of MDSC and their interplay with Tregs......Myeloid-derived suppressor cells (MDSC) are believed to play a role in immune suppression and subsequent failure of T cells to mount an efficient anti-tumor response, by employing both direct T-cell inhibition as well as induction of regulatory T cells (Tregs). Investigating the frequency...... with known negative prognostic markers in patients with PC including elevated levels of lactate dehydrogenase and prostate-specific antigen. Accordingly, high levels of M-MDSC were associated with a shorter median overall survival. Our data strongly suggest that M-MDSC, possibly along with Tregs, play a role...

  2. The Antiproliferative Activity of Kinase Inhibitors in Chronic Myeloid Leukemia Cells Is Mediated by FOXO Transcription Factors

    Science.gov (United States)

    Pellicano, Francesca; Scott, Mary T; Helgason, G Vignir; Hopcroft, Lisa E M; Allan, Elaine K; Aspinall-O'Dea, Mark; Copland, Mhairi; Pierce, Andrew; Huntly, Brian J P; Whetton, Anthony D; Holyoake, Tessa L

    2014-01-01

    Chronic myeloid leukemia (CML) is initiated and maintained by the tyrosine kinase BCR-ABL which activates a number of signal transduction pathways, including PI3K/AKT signaling and consequently inactivates FOXO transcription factors. ABL-specific tyrosine kinase inhibitors (TKIs) induce minimal apoptosis in CML progenitor cells, yet exert potent antiproliferative effects, through as yet poorly understood mechanisms. Here, we demonstrate that in CD34+ CML cells, FOXO1 and 3a are inactivated and relocalized to the cytoplasm by BCR-ABL activity. TKIs caused a decrease in phosphorylation of FOXOs, leading to their relocalization from cytoplasm (inactive) to nucleus (active), where they modulated the expression of key FOXO target genes, such as Cyclin D1, ATM, CDKN1C, and BCL6 and induced G1 arrest. Activation of FOXO1 and 3a and a decreased expression of their target gene Cyclin D1 were also observed after 6 days of in vivo treatment with dasatinib in a CML transgenic mouse model. The over-expression of FOXO3a in CML cells combined with TKIs to reduce proliferation, with similar results seen for inhibitors of PI3K/AKT/mTOR signaling. While stable expression of an active FOXO3a mutant induced a similar level of quiescence to TKIs alone, shRNA-mediated knockdown of FOXO3a drove CML cells into cell cycle and potentiated TKI-induced apoptosis. These data demonstrate that TKI-induced G1 arrest in CML cells is mediated through inhibition of the PI3K/AKT pathway and reactivation of FOXOs. This enhanced understanding of TKI activity and induced progenitor cell quiescence suggests that new therapeutic strategies for CML should focus on manipulation of this signaling network. Stem Cells 2014;32:2324–2337 PMID:24806995

  3. Long-term culture of undifferentiated spermatogonia isolated from immature and adult bovine testes.

    Science.gov (United States)

    Suyatno; Kitamura, Yuka; Ikeda, Shuntaro; Minami, Naojiro; Yamada, Masayasu; Imai, Hiroshi

    2018-03-01

    Undifferentiated spermatogonia eventually differentiate in the testis to produce haploid sperm. Within this cell population, there is a small number of spermatogonial stem cells (SSCs). SSCs are rare cells in the testis, and their cellular characteristics are poorly understood. Establishment of undifferentiated cell line would provide an indispensable tool for studying their biological nature and spermiogenesis/spermatogenesis in vitro. However, there have been few reports on the long-term culture of undifferentiated spermatogonia in species other than rodents. Here, we report the derivation and long-term in vitro culture of undifferentiated spermatogonia cell lines from immature and adult bovine testes. Cell lines from immature testes were maintained in serum-free culture conditions in the presence of glial-cell-line-derived neurotropic factor (GDNF) and bovine leukemia inhibitory factor (bLIF). These cell lines have embryonic stem (ES)-like cell morphology, express pluripotent-stem-cell-specific and germ-cell-specific markers at the protein and mRNA levels, and contributed to the inner cell mass (ICM) of embryos in the blastocyst stage. Meanwhile, cell lines established from adult testes were maintained in low-serum media in the presence of 6-bromoindirubin-3'-oxime (BIO). These cell lines have characteristics resembling those of previously reported male mouse germ cell lines as confirmed by their botryoidally aggregated morphology, as well as the expression of germ-cell-specific markers and pluripotent stem cell markers. These findings could be useful for the development of long-term culture of undifferentiated spermatogonia, which could aid in conservation of species and improvement of livestock production through genome editing technology. © 2018 Wiley Periodicals, Inc.

  4. Mesenchymal stromal cells from patients with acute myeloid leukemia have altered capacity to expand differentiated hematopoietic progenitors.

    Science.gov (United States)

    Chandran, Priya; Le, Yevgeniya; Li, Yuhua; Sabloff, Mitchell; Mehic, Jelica; Rosu-Myles, Michael; Allan, David S

    2015-04-01

    The bone marrow microenvironment may be permissive to the emergence and progression of acute myeloid leukemia (AML). Studying interactions between the microenvironment and leukemia cells should provide new insight for therapeutic advances. Mesenchymal stromal cells (MSCs) are central to the maintenance of the hematopoietic niche. Here we compared the functions and gene expression patterns of MSCs derived from bone marrow aspirates of healthy donors and patients with AML. MSCs expanded from AML patients had heterogeneous morphology and displayed a wide range of proliferation capacity compared to MSCs from healthy controls. The ability of AML-MSCs to support the expansion of committed hematopoietic progenitors from umbilical cord blood-derived CD34+ cells may be impaired while the expression of genes associated with maintaining hematopoietic quiescence appeared to be increased in AML-MSCs compared to healthy donors. These results highlight important potential differences in the biologic profile of MSCs from AML patients compared to healthy donors that may contribute to the emergence or progression of leukemia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Role of the mitochondrial amino acid pool in the differential sensitivity of erythroid and myeloid cells to chloramphenicol

    International Nuclear Information System (INIS)

    Abou-Khalil, S.; Abou-Khalil, W.H.; Whitney, P.L.; Yunis, A.A.

    1986-01-01

    Previous studies in the authors laboratory have suggested that mitochondrial amino acid (AA) pool is involved in the differential sensitivity of erythroid and myeloid cells to chloramphenicol (CAP). The present study examines the role of AA pool by analysis of its composition and testing the effects of its major components. The endogenous AA composition of isolated mitochondria protein was determined using a JEOL 5AH AA analyzer. L-( 14 C) leucine incorporation into mitochondrial protein was used to measure the rate of protein synthesis. Analysis of the endogenous pool in erythroleukemia (EM) and chloroleukemia (CM) mitochrondria showed similar total amount of AAs. However, some AAs were present in significantly higher or lower quantity within EM and CM (i.e. EM had about 2-fold higher glycine content). When compensating for each low AA addition of that particular acid to the reaction medium, only glycine and serine had significant effect. Thus, the addition of increasing concentrations of glycine or serine enhanced the sensitivity to CAP from 14% to 49-51% in CM but not in EM. Other AAs gave little or no effect. Since glycine is one of the first reactants in heme biosynthesis within mitochondria and is interconvertible with serine, it would appear that erythroid cells sensitivity to CAP is determined by the mitochondrial glycine-serine pool and may be somehow related of the pathway to heme biosynthesis in these cells

  6. Ebola Virus Replication and Disease Without Immunopathology in Mice Expressing Transgenes to Support Human Myeloid and Lymphoid Cell Engraftment.

    Science.gov (United States)

    Spengler, Jessica R; Lavender, Kerry J; Martellaro, Cynthia; Carmody, Aaron; Kurth, Andreas; Keck, James G; Saturday, Greg; Scott, Dana P; Nichol, Stuart T; Hasenkrug, Kim J; Spiropoulou, Christina F; Feldmann, Heinz; Prescott, Joseph

    2016-10-15

    The study of Ebola virus (EBOV) pathogenesis in vivo has been limited to nonhuman primate models or use of an adapted virus to cause disease in rodent models. Herein we describe wild-type EBOV (Makona variant) infection of mice engrafted with human hematopoietic CD34 + stem cells (Hu-NSG™-SGM3 mice; hereafter referred to as SGM3 HuMice). SGM3 HuMice support increased development of myeloid immune cells, which are primary EBOV targets. In SGM3 HuMice, EBOV replicated to high levels, and disease was observed following either intraperitoneal or intramuscular inoculation. Despite the high levels of viral antigen and inflammatory cell infiltration in the liver, the characteristic histopathology of Ebola virus disease was not observed, and this absence of severe immunopathology may have contributed to the recovery and survival of some of the animals. Future investigations into the underlying mechanisms of the atypical disease presentation in SGM3 HuMice will provide additional insights into the immunopathogenesis of severe EBOV disease. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  7. [Compound K suppresses myeloid-derived suppressor cells in a mouse model bearing CT26 colorectal cancer xenograft].

    Science.gov (United States)

    Wang, Rong; Li, Yalin; Wang, Wuzhou; Zhou, Meijuan; Cao, Zhaohui

    2015-05-01

    To investigate the effect of ginseng-derived compound K (C-K) on apoptosis, immunosuppressive activity, and pro-inflammatory cytokine production of myeloid-derived suppressor cells (MDSCs) from mice bearing colorectal cancer xenograft. Flow-sorted bone marrow MDSCs from Balb/c mice bearing CT26 tumor xenograft were treated with either C-K or PBS for 96 h and examined for apoptosis with Annexin V/7-AAD, Cox-2 and Arg-1 expressions using qRT-PCR, and supernatant IL-1β, IL-6, and IL-17 levels with ELISA. C-K- or PBS-treated MDSCs were subcutaneously implanted along with CT26 tumor cells in WT Balb/c mice, and the tumor size and morphology were evaluated 21 days later. C-K treatment significantly increased the percentages of early and late apoptotic MDSCs in vitro (Pimmunosuppresive effect of MDSCs to inhibit tumor cell proliferation in mice, which suggests a new strategy of tumor therapy by targeting MDSCs.

  8. Structure of a Myeloid cell leukemia-1 (Mcl-1) inhibitor bound to drug site 3 of Human Serum Albumin.

    Science.gov (United States)

    Zhao, Bin; Sensintaffar, John; Bian, Zhiguo; Belmar, Johannes; Lee, Taekyu; Olejniczak, Edward T; Fesik, Stephen W

    2017-06-15

    Amplification of the gene encoding Myeloid cell leukemia-1 (Mcl-1) is one of the most common genetic aberrations in human cancer and is associated with high tumor grade and poor survival. Recently, we reported on the discovery of high affinity Mcl-1 inhibitors that elicit mechanism-based cell activity. These inhibitors are lipophilic and contain an acidic functionality which is a common chemical profile for compounds that bind to albumin in plasma. Indeed, these Mcl-1 inhibitors exhibited reduced in vitro cell activity in the presence of serum. Here we describe the structure of a lead Mcl-1 inhibitor when bound to Human Serum Albumin (HSA). Unlike many acidic lipophilic compounds that bind to drug site 1 or 2, we found that this Mcl-1 inhibitor binds predominantly to drug site 3. Site 3 of HSA may be able to accommodate larger, more rigid compounds that do not fit into the smaller drug site 1 or 2. Structural studies of molecules that bind to this third site may provide insight into how some higher molecular weight compounds bind to albumin and could be used to aid in the design of compounds with reduced albumin binding. Copyright © 2017. Published by Elsevier Ltd.

  9. The receptor Slamf1 on the surface of myeloid lineage cells controls susceptibility to infection by Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Jossela Calderón

    Full Text Available Trypanosoma cruzi, the protozoan parasite responsible for Chagas' disease, causes severe myocarditis often resulting in death. Here, we report that Slamf1-/- mice, which lack the hematopoietic cell surface receptor Slamf1, are completely protected from an acute lethal parasite challenge. Cardiac damage was reduced in Slamf1-/- mice compared to wild type mice, infected with the same doses of parasites, as a result of a decrease of the number of parasites in the heart even the parasitemia was only marginally less. Both in vivo and in vitro experiments reveal that Slamf1-defIcient myeloid cells are impaired in their ability to replicate the parasite and show altered production of cytokines. Importantly, IFN-γ production in the heart of Slamf1 deficient mice was much lower than in the heart of wt mice even though the number of infiltrating dendritic cells, macrophages, CD4 and CD8 T lymphocytes were comparable. Administration of an anti-Slamf1 monoclonal antibody also reduced the number of parasites and IFN-γ in the heart. These observations not only explain the reduced susceptibility to in vivo infection by the parasite, but they also suggest human Slamf1 as a potential target for therapeutic target against T. cruzi infection.

  10. Cycloheximide Can Induce Bax/Bak Dependent Myeloid Cell Death Independently of Multiple BH3-Only Proteins.

    Directory of Open Access Journals (Sweden)

    Katharine J Goodall

    Full Text Available Apoptosis mediated by Bax or Bak is usually thought to be triggered by BH3-only members of the Bcl-2 protein family. BH3-only proteins can directly bind to and activate Bax or Bak, or indirectly activate them by binding to anti-apoptotic Bcl-2 family members, thereby relieving their inhibition of Bax and Bak. Here we describe a third way of activation of Bax/Bak dependent apoptosis that does not require triggering by multiple BH3-only proteins. In factor dependent myeloid (FDM cell lines, cycloheximide induced apoptosis by a Bax/Bak dependent mechanism, because Bax-/-Bak-/- lines were profoundly resistant, whereas FDM lines lacking one or more genes for BH3-only proteins remained highly sensitive. Addition of cycloheximide led to the rapid loss of Mcl-1 but did not affect the expression of other Bcl-2 family proteins. In support of these findings, similar results were observed by treating FDM cells with the CDK inhibitor, roscovitine. Roscovitine reduced Mcl-1 abundance and caused Bax/Bak dependent cell death, yet FDM lines lacking one or more genes for BH3-only proteins remained highly sensitive. Therefore Bax/Bak dependent apoptosis can be regulated by the abundance of anti-apoptotic Bcl-2 family members such as Mcl-1, independently of several known BH3-only proteins.

  11. Time-series analysis in imatinib-resistant chronic myeloid leukemia K562-cells under different drug treatments.

    Science.gov (United States)

    Zhao, Yan-Hong; Zhang, Xue-Fang; Zhao, Yan-Qiu; Bai, Fan; Qin, Fan; Sun, Jing; Dong, Ying

    2017-08-01

    Chronic myeloid leukemia (CML) is characterized by the accumulation of active BCR-ABL protein. Imatinib is the first-line treatment of CML; however, many patients are resistant to this drug. In this study, we aimed to compare the differences in expression patterns and functions of time-series genes in imatinib-resistant CML cells under different drug treatments. GSE24946 was downloaded from the GEO database, which included 17 samples of K562-r cells with (n=12) or without drug administration (n=5). Three drug treatment groups were considered for this study: arsenic trioxide (ATO), AMN107, and ATO+AMN107. Each group had one sample at each time point (3, 12, 24, and 48 h). Time-series genes with a ratio of standard deviation/average (coefficient of variation) >0.15 were screened, and their expression patterns were revealed based on Short Time-series Expression Miner (STEM). Then, the functional enrichment analysis of time-series genes in each group was performed using DAVID, and the genes enriched in the top ten functional categories were extracted to detect their expression patterns. Different time-series genes were identified in the three groups, and most of them were enriched in the ribosome and oxidative phosphorylation pathways. Time-series genes in the three treatment groups had different expression patterns and functions. Time-series genes in the ATO group (e.g. CCNA2 and DAB2) were significantly associated with cell adhesion, those in the AMN107 group were related to cellular carbohydrate metabolic process, while those in the ATO+AMN107 group (e.g. AP2M1) were significantly related to cell proliferation and antigen processing. In imatinib-resistant CML cells, ATO could influence genes related to cell adhesion, AMN107 might affect genes involved in cellular carbohydrate metabolism, and the combination therapy might regulate genes involved in cell proliferation.

  12. Glycolysis regulates the expansion of myeloid-derived suppressor cells in tumor-bearing hosts through prevention of ROS-mediated apoptosis

    Science.gov (United States)

    Jian, Shiou-Ling; Chen, Wei-Wei; Su, Yu-Chia; Su, Yu-Wen; Chuang, Tsung-Hsien; Hsu, Shu-Ching; Huang, Li-Rung

    2017-01-01

    Immunotherapy aiming to rescue or boost antitumor immunity is an emerging strategy for treatment of cancers. The efficacy of immunotherapy is strongly controlled by the immunological milieu of cancer patients. Myeloid-derived suppressor cells (MDSCs) are heterogeneous immature myeloid cell populations with immunosuppressive functions accumulating in individuals during tumor progression. The signaling mechanisms of MDSC activation have been well studied. However, there is little known about the metabolic status of MDSCs and the physiological role of their metabolic reprogramming. In this study, we discovered that myeloid cells upregulated their glycolytic genes when encountered with tumor-derived factors. MDSCs exhibited higher glycolytic rate than their normal cell compartment did, which contributed to the accumulation of the MDSCs in tumor-bearing hosts. Upregulation of glycolysis prevented excess reactive oxygen species (ROS) production by MDSCs, which protected MDSCs from apoptosis. Most importantly, we identified the glycolytic metabolite, phosphoenolpyruvate (PEP), as a vital antioxidant agent able to prevent excess ROS production and therefore contributed to the survival of MDSCs. These findings suggest that glycolytic metabolites have important roles in the modulation of fitness of MDSCs and could be potential targets for anti-MDSC strategy. Targeting MDSCs with analogs of specific glycolytic metabolites, for example, 2-phosphoglycerate or PEP may diminish the accumulation of MDSCs and reverse the immunosuppressive milieu in tumor-bearing individuals. PMID:28492541

  13. Vasoactive intestinal peptide induces CD14+HLA-DR‑/low myeloid-derived suppressor cells in gastric cancer.

    Science.gov (United States)

    Li, Gang; Wu, Ke; Tao, Kaixiong; Lu, Xiaoming; Ma, Jianhua; Mao, Zhengqiang; Li, Hang; Shi, Liang; Li, Jing; Niu, Yanfeng; Xiang, Fan; Wang, Guobin

    2015-07-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of cells, which have been revealed to inhibit T-cell responses in tumor-bearing mice. In addition, a number of immune suppressive mechanisms have linked MDSCs and the development of human cancer. However, the role of MDSCs in human gastric cancer tissue remains to be elucidated as specific markers are lacking. Therefore, the aim of the present study was to investigate the frequency and immune suppressive function of MDSCs denoted in the present study as cluster of differentiation 14 (CD14)+human leukocyte antigen (HLA)-DR-/low in gastric cancer patients. In the present study, MDSCs were directly isolated and characterized from the tumor and adjacent normal tissue of gastric cancer patients. Functional analysis of the CD14+HLA-DR-/low MDSCs co-cultured with allogeneic CD4+ T cells were performed and compared with controls. In addition, the interferon-γ (IFN-γ) and interleukin (IL)-2 production was compared in order to investigate the capacity of vasoactive intestinal peptide (VIP) to induce CD14+HLA-DR(-/low) MDSC-mediated CD4+ T-cell dysfunction and whether IL-10 secretion is involved in this mechanism. As a result, the quantity of CD14+HLA-DR(-/low) cells in tumor tissue from gastric cancer patients was significantly higher than that in the adjacent normal tissue. In addition, CD14+HLA-DR-/low MDSCs isolated from tumor tissue were observed to inhibit the CD4+ T-cells' immune responses in comparison with those from the adjacent normal tissue. Furthermore, VIP was able to induce the differentiation of CD14+ mononuclear cells isolated from healthy donor peripheral blood mononuclear cells into activated MDSC cells. Of note, the immunosuppressive effect of VIP-induced CD14+HLA-DR(-/low) MDSCs on CD4+ T cells was mediated by IL-10 secretion, which was demonstrated in the subsequent decrease of IFN-γ and IL-2 production. In conclusion, CD14+HLA-DR(-/low) cells were significantly increased in gastric

  14. Myeloid-Derived Suppressor Cells Associated With Disease Progression in Primary HIV Infection: PD-L1 Blockade Attenuates Inhibition.

    Science.gov (United States)

    Zhang, Zi-Ning; Yi, Nan; Zhang, Tong-Wei; Zhang, Le-Le; Wu, Xian; Liu, Mei; Fu, Ya-Jing; He, Si-Jia; Jiang, Yong-Jun; Ding, Hai-Bo; Chu, Zhen-Xing; Shang, Hong

    2017-10-01

    Events occurring during the initial phase of human immunodeficiency virus (HIV) infection are intriguing because of their dramatic impact on the subsequent course of the disease. In particular, the relationship between myeloid-derived suppressor cells (MDSCs) and HIV pathogenesis in primary infection remains unknown and the mechanism of MDSCs in HIV infection are incompletely defined. The frequency of MDSC expression in patients with primary HIV infection (PHI) and chronic HIV infection was measured, and the association with disease progression was studied. Programmed death-ligand 1 (PD-L1) and galectin-9 (Gal-9) expression on MDSCs was measured and in vitro blocking experiments were performed to study the role of PD-L1 in MDSCs' inhibition. We found increased levels of HLA-DRCD14CD33CD11b granulocytic(G)-MDSCs in PHI individuals compared with normal controls, which correlated with viral loads and was negatively related to CD4 T-cell levels. When cocultured with purified G-MDSCs, both proliferation and interferon-γ secretion by T cell receptor (TCR)-stimulated CD8 T cells from HIV-infected patients were significantly inhibited. We also demonstrated that PD-L1, but not Gal-9, expression on HLA-DRCD14CD33CD11b cells increased during HIV infection. The suppressive activity of G-MDSCs from HIV-infected patients was attenuated by PD-L1 blockade. We found a significant increase in G-MDSCs in PHI patients that was related to disease progression and PD-L1 was used by MDSCs to inhibit CD8 T cells in HIV infection. Our data improve the understanding of HIV pathogenesis in PHI.

  15. Interaction between the immune system and acute myeloid leukemia: A model incorporating promotion of regulatory T cell expansion by leukemic cells.

    Science.gov (United States)

    Nishiyama, Yoshiaki; Saikawa, Yutaka; Nishiyama, Nobuaki

    2018-03-01

    Population dynamics of regulatory T cells (Treg) are crucial for the underlying interplay between leukemic and immune cells in progression of acute myeloid leukemia (AML). The goal of this work is to elucidate the dynamics of a model that includes Treg, which can be qualitatively assessed by accumulating clinical findings on the impact of activated immune cell infusion after selective Treg depletion. We constructed an ordinary differential equation model to describe the dynamics of three components in AML: leukemic blast cells, mature regulatory T cells (Treg), and mature effective T cells (Teff), including cytotoxic T lymphocytes. The model includes promotion of Treg expansion by leukemic blast cells, leukemic stem cell and progenitor cell targeting by Teff, and Treg-mediated Teff suppression, and exhibits two coexisting, stable steady states, corresponding to high leukemic cell load at diagnosis or relapse, and to long-term complete remission. Our model is capable of explaining the clinical findings that the survival of patients with AML after allogeneic stem cell transplantation is influenced by the duration of complete remission, and that cut-off minimal residual disease thresholds associated with a 100% relapse rate are identified in AML. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Chronic but not acute virus infection induces sustained expansion of myeloid suppressor cell numbers that inhibit viral-specific T cell immunity.

    Science.gov (United States)

    Norris, Brian A; Uebelhoer, Luke S; Nakaya, Helder I; Price, Aryn A; Grakoui, Arash; Pulendran, Bali

    2013-02-21

    Resolution of acute and chronic viral infections requires activation of innate cells to initiate and maintain adaptive immune responses. Here we report that infection with acute Armstrong (ARM) or chronic Clone 13 (C13) strains of lymphocytic choriomeningitis virus (LCMV) led to two distinct phases of innate immune response. During the first 72 hr of infection, dendritic cells upregulated activation markers and stimulated antiviral CD8(+) T cells, independent of viral strain. Seven days after infection, there was an increase in Ly6C(hi) monocytic and Gr-1(hi) neutrophilic cells in lymphoid organs and blood. This expansion in cell numbers was enhanced and sustained in C13 infection, whereas it occurred only transiently with ARM infection. These cells resembled myeloid-derived suppressor cells and potently suppressed T cell proliferation. The reduction of monocytic cells in Ccr2(-/-) mice or after Gr-1 antibody depletion enhanced antiviral T cell function. Thus, innate cells have an important immunomodulatory role throughout chronic infection. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Reconstitution of the myeloid and lymphoid compartments after the transplantation of autologous and genetically modified CD34(+) bone marrow cells, following gamma irradiation in cynomolgus macaques

    Energy Technology Data Exchange (ETDEWEB)

    Derdouch, S.; Gay, W.; Prost, S.; Le Dantec, M.; Delache, B.; Auregan, G.; Andrieu, T.; Le Grand, R. [CEA, DSV, Serv Immunovirol, Inst Maladies Emergentes et Therapies Innovantes, Fontenay Aux Roses (France); Derdouch, S.; Gay, W.; Prost, S.; Le Dantec, M.; Delache, B.; Auregan, G.; Andrieu, T.; Le Grand, R. [Univ Paris 11, UMR E01, Orsay (France); Negre, D.; Cosset, F. [Univ Lyon, UCB Lyon 1, IFR 128, F-69007 Lyon (France); Negre, D.; Cosset, F. [INSERM, U758, F-69007 Lyon (France); Negre, D.; Cosset, F.L. [Ecole NormaleSuper Lyon, F-69007 Lyon (France); Leplat, J.J. [CEA, DSV, IRCM, SREIT, Lab Radiobiol, F-78352 Jouy En Josas (France); Leplat, J.J. [CEA, DSV, IRCM, SREIT, Etude Genome, F-78352 Jouy En Josas (France); Leplat, J.J. [INRA, DGA, Radiobiol Lab, F-78352 Jouy En Josas (France); Leplat, J.J. [INRA, DGA, Etude Genome, F-78352 Jouy En Josas (France)

    2008-07-01

    Prolonged, altered hematopoietic reconstitution is commonly observed in patients undergoing myelo-ablative conditioning and bone marrow and/or mobilized peripheral blood-derived stem cell transplantation. We studied the reconstitution of myeloid and lymphoid compartments after the transplantation of autologous CD34{sup +} bone marrow cells following gamma irradiation in cynomolgus macaques. The bone marrow cells were first transduced ex vivo with a lentiviral vector encoding eGFP, with a mean efficiency of 72% {+-} 4%. The vector used was derived from the simian immunodeficiency lentivirus SIVmac251, VSV-g pseudo-typed and encoded eGFP under the control of the phosphoglycerate kinase promoter. After myeloid differentiation, GFP was detected in colony-forming cells (37% {+-} 10%). A previous study showed that transduction rates did not differ significantly between colony-forming cells and immature cells capable of initiating long-term cultures, indicating that progenitor cells and highly immature hematopoietic cells were transduced with similar efficiency. Blood cells producing eGFP were detected as early as three days after transplantation,and eGFP-producing granulocyte and mononuclear cells persisted for more than one year in the periphery. Conclusion: The transplantation of CD34{sup +} bone marrow cells had beneficial effects for the ex vivo proliferation and differentiation of hematopoietic progenitors, favoring reconstitution of the T-and B-lymphocyte, thrombocyte and red blood cell compartments. (authors)

  18. Reduction of myeloid suppressor cell derived nitric oxide provides a mechanistic basis of lead enhancement of alloreactive CD4+ T cell proliferation

    International Nuclear Information System (INIS)

    Farrer, David G.; Hueber, Sara; Laiosa, Michael D.; Eckles, Kevin G.; McCabe, Michael J.

    2008-01-01

    The persistent environmental toxicant and immunomodulator, lead (Pb), has been proposed to directly target CD4 + T cells. However, our studies suggest that CD4 + T cells are an important functional, yet indirect target. In order to identify the direct target of Pb in the immune system and the potential mechanism of Pb-induced immunotoxicity, myeloid suppressor cells (MSCs) were evaluated for their ability to modulate CD4 + T cell proliferation after Pb exposure. Myeloid suppressor cells regulate the adaptive immune response, in part, by inhibiting the proliferation of CD4 + T cells. It is thought that the mechanism of MSC-dependent regulation involves the release of the bioactive gas, nitric oxide (NO), blocking cell signaling cascades downstream of the IL-2 receptor and thus preventing T cells from entering cell-cycle. In mixed lymphocyte culture (MLC), increasing numbers of MSCs suppressed T cell proliferation in a dose-dependent manner, and this suppression is strikingly abrogated with 5 μM lead (Pb) treatment. The Pb-sensitive MSC population is CD11b + , GR1 + and CD11c - and thus phenotypically consistent with MSCs described in other literature. Inhibition of NO-synthase (NOS), the enzyme responsible for the production of NO, enhanced alloreactive T cell proliferation in MLC. Moreover, Pb attenuated NO production in MLC, and exogenous replacement of NO restored suppression in the presence of Pb. Significantly, MSC from iNOS-/- mice were unable to suppress T cell proliferation. An MSC-derived cell line (MSC-1) also suppressed T cell proliferation in MLC, and Pb disrupted this suppression by attenuating NO production. Additionally, Pb disrupted NO production in MSC-1 cells in response to treatment with interferon-γ (IFN-γ) and LPS or in response to concanavalin A-stimulated splenocytes. However, neither the abundance of protein nor levels of mRNA for the inducible isoform of NOS (iNOS) were altered with Pb treatment. Taken together these data suggest that Pb

  19. Sustained TL1A (TNFSF15) expression on both lymphoid and myeloid cells leads to mild spontaneous intestinal inflammation and fibrosis

    OpenAIRE

    Zheng, Libo; Zhang, Xiaolan; Chen, Jeremy; Ichikawa, Ryan; Wallace, Kori; Pothoulakis, Charalabos; Koon, Hon Wai; Targan, Stephan R.; Shih, David Q.

    2013-01-01

    TL1A is a member of the TNF superfamily, and its expression is increased in the mucosa of inflammatory bowel disease patients. Moreover, patients with certain TNFSF15 variants over-express TL1A and have a higher risk of developing strictures in the small intestine. Consistently, mice with sustained Tl1a expression in either lymphoid or myeloid cells develop spontaneous ileitis and increased intestinal collagen deposition. Transgenic (Tg) mice with constitutive Tl1a expressio...

  20. Changes in the expression of FGFR3 in patients with chronic myeloid leukaemia receiving transplants of allogeneic peripheral blood stem cells

    Czech Academy of Sciences Publication Activity Database

    Dvořáková, D.; Krejčí, P.; Mayer, J.; Fajkus, Jiří; Hampl, Aleš; Dvořák, Petr

    2001-01-01

    Roč. 113, č. 3 (2001), s. 832-835 ISSN 0007-1048 R&D Projects: GA ČR GA312/97/0393; GA MŠk ME 198 Institutional research plan: CEZ:AV0Z5045916 Keywords : fibroblast growth factor receptor 3 * chronic myeloid leukaemia * stem cell transplantation Subject RIV: BO - Biophysics Impact factor: 2.815, year: 2001

  1. Automated identification of abnormal metaphase chromosome cells for the detection of chronic myeloid leukemia using microscopic images

    Science.gov (United States)

    Wang, Xingwei; Zheng, Bin; Li, Shibo; Mulvihill, John J.; Chen, Xiaodong; Liu, Hong

    2010-07-01

    Karyotyping is an important process to classify chromosomes into standard classes and the results are routinely used by the clinicians to diagnose cancers and genetic diseases. However, visual karyotyping using microscopic images is time-consuming and tedious, which reduces the diagnostic efficiency and accuracy. Although many efforts have been made to develop computerized schemes for automated karyotyping, no schemes can get be performed without substantial human intervention. Instead of developing a method to classify all chromosome classes, we develop an automatic scheme to detect abnormal metaphase cells by identifying a specific class of chromosomes (class 22) and prescreen for suspicious chronic myeloid leukemia (CML). The scheme includes three steps: (1) iteratively segment randomly distributed individual chromosomes, (2) process segmented chromosomes and compute image features to identify the candidates, and (3) apply an adaptive matching template to identify chromosomes of class 22. An image data set of 451 metaphase cells extracted from bone marrow specimens of 30 positive and 30 negative cases for CML is selected to test the scheme's performance. The overall case-based classification accuracy is 93.3% (100% sensitivity and 86.7% specificity). The results demonstrate the feasibility of applying an automated scheme to detect or prescreen the suspicious cancer cases.

  2. Hydrogen Sulfide Attenuates the Recruitment of CD11b+Gr-1+ Myeloid Cells and Regulates Bax/Bcl-2 Signaling in Myocardial Ischemia Injury

    Science.gov (United States)

    Zhang, Youen; Li, Hua; Zhao, Gang; Sun, Aijun; Zong, Nobel C.; Li, Zhaofeng; Zhu, Hongming; Zou, Yunzeng; Yang, Xiangdong; Ge, Junbo

    2014-01-01

    Hydrogen sulfide, an endogenous signaling molecule, plays an important role in the physiology and pathophysiology of the cardiovascular system. Using a mouse model of myocardial infarction, we investigated the anti-inflammatory and anti-apoptotic effects of the H2S donor sodium hydrosulfide (NaHS). The results demonstrated that the administration of NaHS improved survival, preserved left ventricular function, limited infarct size, and improved H2S levels in cardiac tissue to attenuate the recruitment of CD11b+Gr-1+ myeloid cells and to regulate the Bax/Bcl-2 pathway. Furthermore, the cardioprotective effects of NaHS were enhanced by inhibiting the migration of CD11b+Gr-1+ myeloid cells from the spleen into the blood and by attenuating post-infarction inflammation. These observations suggest that the novel mechanism underlying the cardioprotective function of H2S is secondary to a combination of attenuation the recruitment of CD11b+Gr-1+ myeloid cells and regulation of the Bax/Bcl-2 apoptotic signaling. PMID:24758901

  3. The interplay between surfaces and soluble factors define the immunologic and angiogenic properties of myeloid dendritic cells

    Directory of Open Access Journals (Sweden)

    Mansfield Kristen

    2011-06-01

    Full Text Available Abstract Background Dendritic cells (DCs are antigen presenting cells capable of inducing specific immune responses against microbial infections, transplant antigens, or tumors. Interestingly, microenvironment conditions such as those present in tumor settings might induce a DC phenotype that is poorly immunogenic and with the capability of promoting angiogenesis. We hypothesize that this plasticity may be caused not only by the action of specific cytokines or growth factors but also by the properties of the surfaces with which they interact, such as extracellular matrix (ECM components. Results Herewith we studied the effect of different surfaces and soluble factors on the biology of DCs. To accomplish this, we cultured murine myeloid(m DCs on surfaces coated with fibronectin, collagen I, gelatin, and Matrigel using poly-D-lysine and polystyrene as non-biological surfaces. Further, we cultured these cells in the presence of regular DC medium (RPMI 10% FBS or commercially available endothelial medium (EGM-2. We determined that mDCs could be kept in culture up to 3 weeks in these conditions, but only in the presence of GM-CSF. We were able to determine that long-term DC cultures produce an array of angiogenic factors, and that some of these cultures still retain the capability to induce T cell responses. Conclusions Altogether these data indicate that in order to design DC-based vaccines or treatments focused on changing the phenotype of DCs associated with diseases such as cancer or atherosclerosis, it becomes necessary to fully investigate the microenvironment in which these cells are present or will be delivered.

  4. Label-free imaging and identification of typical cells of acute myeloid leukaemia and myelodysplastic syndrome by Raman microspectroscopy.

    Science.gov (United States)

    Vanna, R; Ronchi, P; Lenferink, A T M; Tresoldi, C; Morasso, C; Mehn, D; Bedoni, M; Picciolini, S; Terstappen, L W M M; Ciceri, F; Otto, C; Gramatica, F

    2015-02-21

    In clinical practice, the diagnosis and classification of acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS) start from the manual examination of stained smears of bone marrow (BM) and peripheral blood (PB) by using an optical microscope. This step is subjective and scarcely reproducible. Therefore, the development of subjective and potentially automatable methods for the recognition of typical AML/MDS cells is necessary. Here we have used Raman spectroscopy for distinguishing myeloblasts, promyelocytes, abnormal promyelocytes and erhytroblasts, which have to be counted for a correct diagnosis and morphological classification of AML and MDS. BM samples from patients affected by four different AML subtypes, mostly characterized by the presence of the four subpopulations selected for this study, were analyzed. First, each cell was scanned by acquiring 4096 spectra, thus obtaining Raman images which demonstrate an accurate description of morphological features characteristic of each subpopulation. Raman imaging coupled with hierarchical cluster analysis permitted the automatic discrimination and localization of the nucleus, the cytoplasm, myeloperoxidase containing granules and haemoglobin. Second, the averaged Raman fingerprint of each cell was analysed by multivariate analysis (principal component analysis and linear discriminant analysis) in order to study the typical vibrational features of each subpopulation and also for the automatic recognition of cells. The leave-one-out cross validation of a Raman-based classification model demonstrated the correct classification of myeloblasts, promyelocytes (normal/abnormal) and erhytroblasts with an accuracy of 100%. Normal and abnormal promyelocytes were distinguished with 95% accuracy. The overall classification accuracy considering the four subpopulations was 98%. This proof-of-concept study shows that Raman micro-spectroscopy could be a valid approach for developing label-free, objective and automatic

  5. Immunosuppressive activity enhances central carbon metabolism and bioenergetics in myeloid-derived suppressor cells in vitro models

    Directory of Open Access Journals (Sweden)

    Hammami Ines

    2012-07-01

    Full Text Available Abstract Background The tumor microenvironment contains a vast array of pro- and anti-inflammatory cytokines that alter myelopoiesis and lead to the maturation of immunosuppressive cells known as myeloid-derived suppressor cells (MDSCs. Incubating bone marrow (BM precursors with a combination of granulocyte-macrophage colony-stimulating factor (GM-CSF and interleukin-6 (IL-6 generated a tumor-infiltrating MDSC-like population that impaired anti-tumor specific T-cell functions. This in vitro experimental approach was used to simulate MDSC maturation, and the cellular metabolic response was then monitored. A complementary experimental model that inhibited L-arginine (L-Arg metabolizing enzymes in MSC-1 cells, an immortalized cell line derived from primary MDSCs, was used to study the metabolic events related to immunosuppression. Results Exposure of BM cells to GM-CSF and IL-6 activated, within 24 h, L-Arg metabolizing enzymes which are responsible for the MDSCs immunosuppressive potential. This was accompanied by an increased uptake of L-glutamine (L-Gln and glucose, the latter being metabolized by anaerobic glycolysis. The up-regulation of nutrient uptake lead to the accumulation of TCA cycle intermediates and lactate as well as the endogenous synthesis of L-Arg and the production of energy-rich nucleotides. Moreover, inhibition of L-Arg metabolism in MSC-1 cells down-regulated central carbon metabolism activity, including glycolysis, glutaminolysis and TCA cycle activity, and led to a deterioration of cell bioenergetic status. The simultaneous increase of cell specific concentrations of ATP and a decrease in ATP-to-ADP ratio in BM-derived MDSCs suggested cells were metabolically active during maturation. Moreover, AMP-activated protein kinase (AMPK was activated during MDSC maturation in GM-CSF and IL-6–treated cultures, as revealed by the continuous increase of AMP-to-ATP ratios and the phosphorylation of AMPK. Likewise, AMPK activity was

  6. Pleiotropic effects of spongean alkaloids on mechanisms of cell death, cell cycle progression and DNA damage response (DDR) of acute myeloid leukemia (AML) cells.

    Science.gov (United States)

    Stuhldreier, Fabian; Kassel, Stefanie; Schumacher, Lena; Wesselborg, Sebastian; Proksch, Peter; Fritz, Gerhard

    2015-05-28

    We investigated cytotoxic mechanisms evoked by the spongean alkaloids aaptamine (Aa) and aeroplysinin-1 (Ap), applied alone and in combination with daunorubicin, employing acute myeloid leukemia (AML) cells. Aa and Ap reduced the viability of AML cells in a dose dependent manner with IC50 of 10-20 µM. Ap triggered apoptotic cell death more efficiently than Aa. Both alkaloids increased the protein level of S139-phosphorylated H2AX (γH2AX), which however was independent of the induction of DNA damage. Expression of the senescence markers p21 and p16 was increased, while the phosphorylation level of p-Chk-2 was reduced following Aa treatment. As a function of dose, Aa and Ap protected or sensitized AML cells against daunorubicin. Protection by Aa was paralleled by reduced formation of ROS and lower level of DNA damage. Both Aa and Ap attenuated daunorubicin-stimulated activation of the DNA damage response (DDR) as reflected on the levels of γH2AX, p-Kap-1 and p-Chk-1. Specifically Ap restored the decrease in S10 phosphorylation of histone H3 resulting from daunorubicin treatment. The cytoprotective effects of Aa and Ap were independent of daunorubicin import/export. Both Aa and Ap abrogated daunorubicin-induced accumulation of cells in S-phase. Inhibition of DNA synthesis was specific for Ap. The data show that Aa and Ap have both congruent and agent-specific pleiotropic effects that are preferential for anticancer drugs. Since Ap showed a broader spectrum of anticancer activities, this compound is suggested as novel lead compound for forthcoming in vivo studies elucidating the usefulness of spongean alkaloids in AML therapy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Aberrant Expression of CD19 and CD43 in a Patient With Therapy-Related Acute Myeloid Leukemia and a History of Mantle Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Yen-Chuan Hsieh

    2009-07-01

    Full Text Available Mantle cell lymphoma (MCL is an aggressive B cell lymphoma with frequent involvement of the gastrointestinal tract and peripheral blood (PB. In addition to the B cell markers, the neoplastic cells express CD5 and CD43. In patients with a prior history of MCL with PB involvement, the appearance of leukemic cells after chemotherapy usually heralds a relapse, particularly if the leukemic cells express B cell markers and CD43. We report a patient with MCL who presented with multiple lymphomatous polyposis of the intestine. The staging procedures revealed the involvement of lymph nodes, bone marrow and PB. Three years after chemotherapy, thrombocytopenia with the appearance of rare leukemic cells in the PB was noted. Leukemic cells obtained from bone marrow aspirate expressed CD19 and CD43, suggesting a relapse. Detailed cytomorphological and immunophenotypic studies unveiled the myeloid nature of these leukemic cells, and a diagnosis of therapy-related acute myeloid leukemia was made. This case illustrates the importance of morphologic examination and performing a complete antibody panel in the diagnosis of a suspected relapse in patients with a prior history of lymphoma.

  8. Prognostic Significance of Monocytes and Monocytic Myeloid-Derived Suppressor Cells in Diffuse Large B-Cell Lymphoma Treated with R-CHOP

    Directory of Open Access Journals (Sweden)

    Chongyang Wu

    2016-07-01

    Full Text Available Background/Aims: To evaluate the prognostic significance of monocytes and monocytic myeloid-derived suppressor cells (M-MDSCs for patients with diffuse large B-cell lymphoma (DLBCL under R-CHOP chemotherapy. Methods: Flow cytometry (FCM was applied to measure M-MDSCs (CD14+ HLA-DRlow/− M-MDSCs. Results: Analysis of 144 patients with DLBCL under R-CHOP treatment showed that the 5-year overall survival rate was 61.09% (95% CI: 43.72%-72.56% and the average survival time of patients with monocytes (% ≥ 8% was shorter than those with monocytes (% 2 (P = 0.0397, meanwhile, there was no significant difference in survival of patients with monocytes (% ≥ 8% compared to patients with monocytes (% Conclusion: Our results indicated that monocytes (% and M-MDSCs combined with R-IPI may be a simple and efficient immunological index to evaluate prognosis.

  9. In Vitro Pre-Clinical Validation of Suicide Gene Modified Anti-CD33 Redirected Chimeric Antigen Receptor T-Cells for Acute Myeloid Leukemia.

    Directory of Open Access Journals (Sweden)

    Kentaro Minagawa

    Full Text Available Approximately fifty percent of patients with acute myeloid leukemia can be cured with current therapeutic strategies which include, standard dose chemotherapy for patients at standard risk of relapse as assessed by cytogenetic and molecular analysis, or high-dose chemotherapy with allogeneic hematopoietic stem cell transplant for high-risk patients. Despite allogeneic hematopoietic stem cell transplant about 25% of patients still succumb to disease relapse, therefore, novel strategies are needed to improve the outcome of patients with acute myeloid leukemia.We developed an immunotherapeutic strategy targeting the CD33 myeloid antigen, expressed in ~ 85-90% of patients with acute myeloid leukemia, using chimeric antigen receptor redirected T-cells. Considering that administration of CAR T-cells has been associated with cytokine release syndrome and other potential off-tumor effects in patients, safety measures were here investigated and reported. We genetically modified human activated T-cells from healthy donors or patients with acute myeloid leukemia with retroviral supernatant encoding the inducible Caspase9 suicide gene, a ΔCD19 selectable marker, and a humanized third generation chimeric antigen receptor recognizing human CD33. ΔCD19 selected inducible Caspase9-CAR.CD33 T-cells had a 75±3.8% (average ± standard error of the mean chimeric antigen receptor expression, were able to specifically lyse CD33+ targets in vitro, including freshly isolated leukemic blasts from patients, produce significant amount of tumor-necrosis-factor-alpha and interferon-gamma, express the CD107a degranulation marker, and proliferate upon antigen specific stimulation. Challenging ΔCD19 selected inducible Caspase9-CAR.CD33 T-cells with programmed-death-ligand-1 enriched leukemia blasts resulted in significant killing like observed for the programmed-death-ligand-1 negative leukemic blasts fraction. Since the administration of 10 nanomolar of a non

  10. In Vitro Pre-Clinical Validation of Suicide Gene Modified Anti-CD33 Redirected Chimeric Antigen Receptor T-Cells for Acute Myeloid Leukemia.

    Science.gov (United States)

    Minagawa, Kentaro; Jamil, Muhammad O; Al-Obaidi, Mustafa; Pereboeva, Larisa; Salzman, Donna; Erba, Harry P; Lamb, Lawrence S; Bhatia, Ravi; Mineishi, Shin; Di Stasi, Antonio

    2016-01-01

    Approximately fifty percent of patients with acute myeloid leukemia can be cured with current therapeutic strategies which include, standard dose chemotherapy for patients at standard risk of relapse as assessed by cytogenetic and molecular analysis, or high-dose chemotherapy with allogeneic hematopoietic stem cell transplant for high-risk patients. Despite allogeneic hematopoietic stem cell transplant about 25% of patients still succumb to disease relapse, therefore, novel strategies are needed to improve the outcome of patients with acute myeloid leukemia. We developed an immunotherapeutic strategy targeting the CD33 myeloid antigen, expressed in ~ 85-90% of patients with acute myeloid leukemia, using chimeric antigen receptor redirected T-cells. Considering that administration of CAR T-cells has been associated with cytokine release syndrome and other potential off-tumor effects in patients, safety measures were here investigated and reported. We genetically modified human activated T-cells from healthy donors or patients with acute myeloid leukemia with retroviral supernatant encoding the inducible Caspase9 suicide gene, a ΔCD19 selectable marker, and a humanized third generation chimeric antigen receptor recognizing human CD33. ΔCD19 selected inducible Caspase9-CAR.CD33 T-cells had a 75±3.8% (average ± standard error of the mean) chimeric antigen receptor expression, were able to specifically lyse CD33+ targets in vitro, including freshly isolated leukemic blasts from patients, produce significant amount of tumor-necrosis-factor-alpha and interferon-gamma, express the CD107a degranulation marker, and proliferate upon antigen specific stimulation. Challenging ΔCD19 selected inducible Caspase9-CAR.CD33 T-cells with programmed-death-ligand-1 enriched leukemia blasts resulted in significant killing like observed for the programmed-death-ligand-1 negative leukemic blasts fraction. Since the administration of 10 nanomolar of a non-therapeutic dimerizer to

  11. Cryptotanshinone induces cell cycle arrest and apoptosis of multidrug resistant human chronic myeloid leukemia cells by inhibiting the activity of eukaryotic initiation factor 4E.

    Science.gov (United States)

    Ge, Yuqing; Cheng, Rubin; Zhou, Yuhong; Shen, Jianping; Peng, Laijun; Xu, Xiaofeng; Dai, Qun; Liu, Pei; Wang, Haibing; Ma, Xiaoqiong; Jia, Jia; Chen, Zhe

    2012-09-01

    Cryptotanshinone (CPT), a diterpene quinone isolated from Salvia miltiorrhiza, is recently reported to have obvious anticancer activities against diverse cancer cells. However, the effect and regulatory mechanism of CPT remain unclear in human chronic myeloid leukemia (CML) cells. In this study, we investigated the antiproliferative activity of CPT on the multidrug resistant CML cells K562/ADM. Our results demonstrated that CPT decreased the cell viability of K562/ADM cells by inducing cell cycle arrest and apoptosis through suppressing the expression of cyclin D1 and Bcl-2. Further studies indicated that CPT mainly functions at post-transcriptional levels, suggesting the involvement of eukaryotic initiation factor 4E (eIF4E). CPT significantly reduced the expression and activity of eIF4E in K562/ADM cells. Overexpression of eIF4E obvious conferred resistance to the CPT antiproliferation and proapoptotic activity as well as the cyclin D1 and Bcl-2 expressions. Knockdown of eIF4E significantly reduced the inhibitory effect of CPT in K562/ADM, confirming the participation of eIF4E during CPT function process. More importantly, the relative inhibitory efficiency of CPT positively correlated with the reductions on eIF4E in primary CML specimens. These results demonstrated that CPT played antitumor roles in K562/ADM cells by inhibiting the eIF4E regulatory system. Our results provide a novel anticancer mechanism of CPT in human CML cells.

  12. Toward harmonized phenotyping of human myeloid-derived suppressor cells by flow cytometry: results from an interim study.

    Science.gov (United States)

    Mandruzzato, Susanna; Brandau, Sven; Britten, Cedrik M; Bronte, Vincenzo; Damuzzo, Vera; Gouttefangeas, Cécile; Maurer, Dominik; Ottensmeier, Christian; van der Burg, Sjoerd H; Welters, Marij J P; Walter, Steffen

    2016-02-01

    There is an increasing interest for monitoring circulating myeloid-derived suppressor cells (MDSCs) in cancer patients, but there are also divergences in their phenotypic definition. To overcome this obstacle, the Cancer Immunoguiding Program under the umbrella of the Association of Cancer Immunotherapy is coordinating a proficiency panel program that aims at harmonizing MDSC phenotyping. After a consultation period, a two-sta