WorldWideScience

Sample records for undesirable soil characteristics

  1. Role of Fault Attributions and Other Factors in Adults' Attitudes Toward Hypothetical Children With an Undesirable Characteristic.

    Science.gov (United States)

    Wadian, Taylor W; Sonnentag, Tammy L; Jones, Tucker L; Barnett, Mark A

    2018-01-01

    A total of 184 adults read descriptions of six hypothetical children with various undesirable characteristics (i.e., being extremely overweight, extremely aggressive, extremely shy, a poor student, a poor athlete, displaying symptoms of attention deficit hyperactivity disorder). Following each description, the participants were asked to rate how much they disagree or agree that the child, the child's parents, and the child's biological condition (i.e., "something wrong inside the child's body or brain") are at fault for the onset and the perpetuation of the undesirable characteristic. In addition, the participants were asked to rate their attitude toward each child using a 100-point "feeling thermometer." Analyses of the participants' various fault attribution ratings revealed that they tended to agree more strongly that a child's parents and his/her biological condition are at fault for the onset and the perpetuation of the child's undesirable characteristic than is the child him/herself. Despite the participants' reluctance to blame a hypothetical child for his/her undesirable characteristic, regression analyses revealed that, in general, the more they blamed the child for the onset of his/her undesirable characteristic, the more negative their attitude was toward the child. However, the participants' ratings of the extent to which the child's parents or biological condition are at fault for the onset and the perpetuation of the child's undesirable characteristic were not found to be associated with their attitude toward any of the children. Similarities and differences between the present findings and those reported in prior studies involving younger individuals are addressed.

  2. Children's Perceptions of Hypothetical Peers With Undesirable Characteristics: Role of the Peers' Desire to Change, Source of Effort to Change, and Outcome.

    Science.gov (United States)

    Barnett, Mark A; Sonnentag, Tammy L; Wadian, Taylor W; Jones, Tucker L; Langley, Courtney A

    2015-01-01

    The present study, involving sixth- to eighth-grade students, is an extension of a prior investigation (Barnett, Livengood, Sonnentag, Barlett, & Witham, 2010) that examined children's perceptions of hypothetical peers with various undesirable characteristics. Results indicate that children's perceptions of hypothetical peers with an undesirable characteristic are influenced by the peers' desire to change, the source of effort to change, and the peers' success or failure in changing the characteristic. The children anticipated responding more favorably to peers who were successful in overcoming an undesirable characteristic than peers who were unsuccessful. Regardless of the peers' outcome, the children anticipated responding more favorably to peers who tried to change than peers who relied on the effort of adult authorities to motivate change. The children perceived successful peers as experiencing more positive affect than their unsuccessful counterparts, especially if the success was presented as a fulfillment of the peers' desire to change their undesirable characteristic. Finally, the children's ratings reflected the belief that, among peers who failed to change their undesirable characteristic, lacking the desire to change increases the relative likelihood that the characteristic will be permanent.

  3. Soil shrinkage characteristics in swelling soils

    International Nuclear Information System (INIS)

    Taboada, M.A.

    2004-01-01

    The objectives of this presentation are to understand soil swelling and shrinkage mechanisms, and the development of desiccation cracks, to distinguish between soils having different magnitude of swelling, as well as the consequences on soil structural behaviour, to know methods to characterize soil swell/shrink potential and to construct soil shrinkage curves, and derive shrinkage indices, as well to apply them to assess soil management effects

  4. Effect of Biochar on Soil Physical Characteristics

    DEFF Research Database (Denmark)

    Sun, Zhencai; Møldrup, Per; Vendelboe, Anders Lindblad

    Biochar addition to agricultural soil has been reported to reduce climate gas emission, as well as improve soil fertility and crop productivity. Little, however, is known about biochar effects on soil structural characteristics. This study investigates if biochar-application changes soil structural...... characteristics, as indicated from water retention and gas transport measurements on intact soil samples. Soil was sampled from a field experiment on a sandy loam with four control plots (C) without biochar and four plots (B) with incorporated biochar at a rate of 20 tons per hectare (plot size, 6 x 8 m). The C...... and B plots were placed in a mixed sequence (C-B-C-B-C-B-C-B) and at the same time the eight plots formed a natural pH gradient ranging from pH 7.7 to 6.3. We determined bulk density, saturated hydraulic conductivity (K-sat), soil water retention characteristics, soil-air permeability, and soil...

  5. Parameterization of radiocaesium soil-plant transfer using soil characteristics

    International Nuclear Information System (INIS)

    Konoplev, A. V.; Drissner, J.; Klemt, E.; Konopleva, I. V.; Zibold, G.

    1996-01-01

    A model of radionuclide soil-plant transfer is proposed to parameterize the transfer factor by soil and soil solution characteristics. The model is tested with experimental data on the aggregated transfer factor T ag and soil parameters for 8 forest sites in Baden-Wuerttemberg. It is shown that the integral soil-plant transfer factor can be parameterized through radiocaesium exchangeability, capacity of selective sorption sites and ion composition of the soil solution or the water extract. A modified technique of (FES) measurement for soils with interlayer collapse is proposed. (author)

  6. Strength Characteristics of Reinforced Sandy Soil

    OpenAIRE

    S. N. Bannikov; Mahamed Al Fayez

    2005-01-01

    Laboratory tests on determination of reinforced sandy soil strength characteristics (angle of internal friction, specific cohesive force) have been carried out with the help of a specially designed instrument and proposed methodology. Analysis of the obtained results has revealed that cohesive forces are brought about in reinforced sandy soil and an angle of internal soil friction becomes larger in comparison with non-reinforced soil.

  7. morphological characteristics and classification of soils derived

    African Journals Online (AJOL)

    Prof. Ekwueme

    MORPHOLOGICAL CHARACTERISTICS AND CLASSIFICATION OF. SOILS DERIVED FROM DIVERSE PARENT MATERIALS IN CENTRAL. CROSS RIVER STATE, NIGERIA. 271. M. E. NSOR and I. J. IBANGA. (Received 5 October 2007; Revision Accepted 5 December 2007). ABSTRACT. Variation in soil characteristics ...

  8. Bioavailability of radiocaesium in soil: parameterization using soil characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Syssoeva, A.A.; Konopleva, I.V. [Russian Institute of Agricultural Radiology and Agroecology, Obninsk (Russian Federation)

    2004-07-01

    It has been shown that radiocaesium availability to plants strongly influenced by soil properties. For the best evaluation of TFs it necessary to use mechanistic models that predict radionuclide uptake by plants based on consideration of sorption-desorption and fixation-remobilization of the radionuclide in the soil as well as root uptake processes controlled by the plant. The aim of the research was to characterise typical Russian soils on the basis of the radiocaesium availability. The parameter of the radiocaesium availability in soils (A) has been developed which consist on radiocaesium exchangeability; CF -concentration factor which is the ratio of the radiocaesium in plant to that in soil solution; K{sub Dex} - exchangeable solid-liquid distribution coefficient of radiocaesium. The approach was tested for a wide range of Russian soils using radiocaesium uptake data from a barley pot trial and parameters of the radiocaesium bioavailability. Soils were collected from the arable horizons in different soil climatic zones of Russia and artificially contaminated by {sup 137}Cs. The classification of soils in terms of the radiocaesium availability corresponds quite well to observed linear relationship between {sup 137}Cs TF for barley and A. K{sub Dex} is related to the soil radiocaesium interception potential (RIP), which was found to be positively and strongly related to clay and physical clay (<0,01 mm) content. The {sup 137}Cs exchangeability were found to be in close relation to the soil vermiculite content, which was estimated by the method of Cs{sup +} fixation. It's shown radiocaesium availability to plants in soils under study can be parameterized through mineralogical soil characteristics: % clay and the soil vermiculite content. (author)

  9. Filtering Undesirable Flows in Networks

    NARCIS (Netherlands)

    Polevoy, G.; Trajanovski, S.; Grosso, P.; de Laat, C.; Gao, X.; Du, H.; Han, M.

    2017-01-01

    We study the problem of fully mitigating the effects of denial of service by filtering the minimum necessary set of the undesirable flows. First, we model this problem and then we concentrate on a subproblem where every good flow has a bottleneck. We prove that unless P=NP, this subproblem is

  10. Interventional radiology and undesirable effects

    International Nuclear Information System (INIS)

    Benderitter, M.

    2009-01-01

    As some procedures of interventional radiology are complex and long, doses received by patients can be high and cause undesired effects, notably on the skin or in underlying tissues (particularly in the brain as far as interventional neuroradiology is concerned and in lungs in the case of interventional cardiology). The author briefly discusses some deterministic effects in interventional radiology (influence of dose level, delay of appearance of effects, number of accidents). He briefly comments the diagnosis and treatment of severe radiological burns

  11. Geotechnical characteristics of some Iraqi gypseous soils

    Directory of Open Access Journals (Sweden)

    Schanz Tom

    2018-01-01

    Full Text Available In Iraq, especially in the last three decades, extensive developments have been evidenced in the regions of gypseous soils due to the need of construction of many numbers of strategic projects. Failure of different structures constructed on gypseous soil in various regions in Iraq have been noticed. For this purpose, three areas in northern Iraq were selected (Samarra, Tikrit and Baiji to study their geotechnical characteristics due to their high gypsum contents as well as many engineering problems are faced due to dissolution of gypsum. The experimental work involves testing of many properties such as: scanning electron microscopy (SEM, XRD, chemical, physical, compressibility, collapsibility, shear strength and suction. At low stress level, the test results revealed that, higher collapse potential (CP is recorded for Tikrit soil. While at low stress level, higher CP is obtained for Baiji soil indicating the increase in CP with decreasing gypsum content. Furthermore, the CP significantly increases with increasing stress level and soaking period at a particular stress level. According to severity classification of the collapse potential, Baiji soil is considered as moderate trouble to slight, while Tikrit soil is considered as trouble to moderate. After soaking, both soils become trouble. As well as, the results showed a reduction in Tikrit soil shear parameters ( φ and c after soaking period of 6 and 24 hrs as 12.2 to 9.2% in the internal friction angle and 91.5 to 94.2% in cohesion, respectively with respect to dry condition. Maximum total suction is measured for low consistency soils (liquid limit < 30% represented by Tikrit soil.

  12. Conservation agriculture effects on soil pore characteristics

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Abdollahi, Lotfollah

    ploughing to a depth of 20 cm (MP), harrowing to a depth of 8-10 cm (H) and direct drilling (D). Minimally disturbed core samples were taken at 4-8, 12-16 and 18-27 cm depths 11 years after experimental start. Water retention characteristics were measured for a range of matric potential ranging from -10......Conservation tillage in combination with crop rotation, residue management and cover crops are key components of conservation agriculture. A positive long-term effect of applying all components of conservation agriculture on soil structural quality is expected. However, there is a lack...... of quantitative knowledge to support this statement. This study examines the long-term effects of crop rotations, residue management and tillage on soil pore characteristics of two sandy loam soils in Denmark. Results are reported from a split plot field experiment rotation as main plot factor and tillage...

  13. WEED CONTROL EFFECTS ON SOIL CHEMICAL CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Lima e Silva

    2008-01-01

    Full Text Available The weed control procedures are known to affect the soil physical attributes and the nutrient amount taken up by weed roots. This work hypothesis is that weed control methods might also affect soil chemical attributes. Four experiments were carried out, three with maize (E-1, E-2 and E-3 and one with cotton (E-4, in randomized complete blocks design arranged in split-plots, with five replications. In E-1 experiment, the plots consisted of two weed control treatments: no-weed control and weed shovel-digging at 20 and 40 days after sowing; and the subplots consisted of six maize cultivars. In the three other experiments, the plots consisted of plant cultivars: four maize cultivars (E-2 and E-3 and four cotton cultivars (E-4. And, the subplots consisted of three weed control treatments: (1 no-weed control; (2 weed shovel-digging at 20 and 40 days after sowing; and (3 intercropping with cowpea (E-2 or Gliricidia sepium (Jacq. Walp. (E-3 and E-4. In all experiments, after harvest, eight soil samples were collected from each subplot (0-20 cm depth and composed in one sample. Soil chemical analysis results indicated that the weed control by shovel-digging or intercropping may increase or decrease some soil element concentrations and the alterations depend on the element and experiment considered. In E-2, the weed shovel-dug plots showed intermediate soil pH, lower S (sum of bases values and higher soil P concentrations than the other plots. In E-4, soil K and Na concentrations in plots without weed control did not differ from plots with intercropping, and in both, K and Na values were higher than in weed shovel-dug plots. Maize and cotton cultivars did not affect soil chemical characteristics.

  14. Modelling soil anaerobiosis from water retention characteristics and soil respiration

    NARCIS (Netherlands)

    Schurgers, G.; Dörsch, P.; Bakken, L.; Leffelaar, P.A.; Egil Haugen, L.

    2006-01-01

    Oxygen is a prerequisite for some and an inhibitor to other microbial functions in soils, hence the temporal and spatial distribution of oxygen within the soil matrix is crucial in soil biogeochemistry and soil biology. Various attempts have been made to model the anaerobic fraction of the soil

  15. Isotopic-tracer-aided studies on undesirable effects of heavy metals in the soil-plant system. Part of a coordinated programme on isotopic-tracer-aided studies of agrochemical residue - soil biota interactions

    International Nuclear Information System (INIS)

    Oberlaender, H.E.

    1982-07-01

    Uptake of isotopically labelled mercury (Hg-203), cadmium (Cd-115m) and zinc (Zn-65) from a calcareous chernozem and a podzolized brown earth by spring and winter varieties of wheat, rye and barley was investigated in pot experiments carried out until maturity of the plants. The labelled heavy metals, applied at concentrations innocuous to plant growth (0.5 ppm Hg or Cd, 50 ppm Zn) were determined radiometrically in the straw and in the grains of the harvested plants, as well as in the milling products (bran, semolina and flour) obtained by standard procedures of grain processing. Uptake of mercury was several hundred times smaller than the uptake of cadmium, if both metals were applied to the soil in equal amounts. Whereas the uptake of mercury from the acid soil was insignificant or not detectable, cadmium was taken up from this soil at a much higher rate than from the alkaline soil. Thus, not mercury, but cadmium imposes the greatest hazard on the food chain. Winter varieties of cereals took up more mercury and cadmium than did spring varieties. The content of heavy metals in the plants decreased considerably when plants approached maturity. During translocation through the plants the metals were gradually retained when passing from the stalks (''straw'') into the grains, and from the seed-cover (''bran'') into the endosperm (''flour''). The heavy metal contents of the grain fractions decreased in the order: bran > semolina > flour. Concentrations of heavy metals in flour were 3-8 times smaller than in straw, showing that flour is least affected by heavy metal pollution of cereals via the soil. The metal content of the various flour types was correlated with their percentage of bran and with their ash content. By adding an ion-exchanger to the soil the pattern of relative distribution of heavy metals in mature plants was not changed, but the cadmium content of all cereal products was considerably lowered

  16. Comparative study of soil physical characteristics of Jaipur district ...

    African Journals Online (AJOL)

    Vikram

    The present study was carried in Jaipur district of Rajasthan state to measure physical characteristics of the soil samples from different districts of Jaipur. Soils samples were taken at ..... Random field models in earth sciences. Academic. Press.

  17. Electrochemical characterization of corrosion in materials of grounding systems, simulating conditions of synthetic soils with characteristics of local soils

    Science.gov (United States)

    Salas, Y.; Guerrero, L.; Vera-Monroy, S. P.; Blanco, J.; Jimenez, C.

    2017-12-01

    The integrity of structures buried in earthing becomes relevant when analysing maintenance and replacement costs of these systems, as the deterioration is mainly due to two factors, namely: the failures caused in the electrical systems, which are due to the system. Failure in earthing due to corrosion at the interface cause an alteration in the structure of the component material and generates an undesirable resistivity that cause malfunction in this type of protection systems. Two local soils were chosen that were categorized as sandy loam and clay loam type, whose chemical characteristics were simulated by means of an electrolyte corresponding to the amount of ions present determined by a soil characterization based on the CICE (effective cation exchange coefficient), which allows us to deduce the percentage of chloride and sulphate ions present for the different levels established in the experimental matrix. The interaction of these soils with grounding electrodes is a complex problem involving many factors to consider. In this study, the rates and corrosion currents of the different soils on two types of electrodes, one copper and the other AISI 304 stainless steel, were approximated by electrochemical techniques such as potentiodynamic curves and electrochemical impedance spectra. Considerably higher speeds were determined for copper-type electrodes when compared to those based on steel. However, from the Nyquist diagrams, it was noted that copper electrodes have better electrical performance than steel ones. The soil with the highest ionic activity turned out to be the sandy loam. The clay loam soil presents a tendency to water retention and this may be the reason for the different behaviour with respect to ionic mobility. The diffusion control in the steel seems to alter the ionic mobility because its corrosion rates proved to be very similar regardless of the type of soil chemistry. In general, corrosion rates fell since tenths of a millimetre every year to

  18. Revamping of entisol soil physical characteristics with compost treatment

    Science.gov (United States)

    Sumono; Loka, S. P.; Nasution, D. L. S.

    2018-02-01

    Physical characteristic of Entisol soil is an important factor for the growth of plant. The aim of this research was to know the effect of compost application on physical characteristics of Entisol soil. The research method used was experimental method with 6 (six) treatments and 3 replications of which K1 = 10 kg Entisol soil without compost, K2 = 9 Kg Entisol soil with 1 kg compost, K3 = 8 kg Entisol soil with 2 kg compost, K4 = 7 kg Entisol soilwith3 kg compost, K5 = 6 kg Entisol soil with 4 kg compost and K6 = 5 kg Entisol soil with 5 kg compost. The observed parameters were soil texture, soil organic matter, soil thickness, porosity, soil pore size, soil permeability and water availability. The results showed that the Entisol soil texture was loamy sand texture, the value of soil organic matter ranged from 0.74% to 4.69%, soil thickness ranged from 13.83 to 20.16 cm, porosity ranged from16% to 37%, soil pore size ranged from 2.859 to 5.493 µm, permeability ranged from 1.24 to 5.64 cm/hour and water availability ranged from 6.67% to 9.12% by each treatment.

  19. Soil texture classification algorithm using RGB characteristics of soil images

    Science.gov (United States)

    Soil texture has an important influence on agriculture, affecting crop selection, movement of nutrients and water, soil electrical conductivity, and crop growth. Soil texture has traditionally been determined in the laboratory using pipette and hydrometer methods that require a considerable amount o...

  20. CHARACTERISTICS AND CLASSIFICATION OF THE SOILS OF ...

    African Journals Online (AJOL)

    Preferred Customer

    Detailed soil survey (scale 1:25 000) was conducted to classify, characterise and determine status of the soils of ... and fauna and geological resources (Nievergelt et al., 1998). ...... suggesting a presence of downward movements of solutes.

  1. foundations on expansive soils introduction characteristic

    African Journals Online (AJOL)

    the swelling potential of expansive soils have been found to be: initial moisture content, .... behaviour of such huildin1?1>, it is difficult to give definite recommendations. ..... Structures in Black Cotton Soils, Central Building. Research Institute ...

  2. Physicochemical characteristics of communal rangeland soils along ...

    African Journals Online (AJOL)

    This study investigated the relative association of surface (0–20 cm) soil physicochemical properties, viz. electrical conductivity, cation exchange capacity (CEC), soil organic carbon, available phosphorus, particle size composition, soil aggregate stability and microbial respiration, along a toposequence in two vegetation ...

  3. Importance of soil physical characteristics for petroleum ...

    African Journals Online (AJOL)

    Public PCs

    interaction between the soil, plant and organisms (Zhang et al., 2010). .... only the diversity and abundance of the clay, minerals is an important ..... the main supplier of the essential water for plant growth. Soil water ... This also leads to inhibition of roots to ..... contaminated soil with pentachlorophenol and cadmium. Int. J.

  4. Soil classification basing on the spectral characteristics of topsoil samples

    Science.gov (United States)

    Liu, Huanjun; Zhang, Xiaokang; Zhang, Xinle

    2016-04-01

    Soil taxonomy plays an important role in soil utility and management, but China has only course soil map created based on 1980s data. New technology, e.g. spectroscopy, could simplify soil classification. The study try to classify soils basing on the spectral characteristics of topsoil samples. 148 topsoil samples of typical soils, including Black soil, Chernozem, Blown soil and Meadow soil, were collected from Songnen plain, Northeast China, and the room spectral reflectance in the visible and near infrared region (400-2500 nm) were processed with weighted moving average, resampling technique, and continuum removal. Spectral indices were extracted from soil spectral characteristics, including the second absorption positions of spectral curve, the first absorption vale's area, and slope of spectral curve at 500-600 nm and 1340-1360 nm. Then K-means clustering and decision tree were used respectively to build soil classification model. The results indicated that 1) the second absorption positions of Black soil and Chernozem were located at 610 nm and 650 nm respectively; 2) the spectral curve of the meadow is similar to its adjacent soil, which could be due to soil erosion; 3) decision tree model showed higher classification accuracy, and accuracy of Black soil, Chernozem, Blown soil and Meadow are 100%, 88%, 97%, 50% respectively, and the accuracy of Blown soil could be increased to 100% by adding one more spectral index (the first two vole's area) to the model, which showed that the model could be used for soil classification and soil map in near future.

  5. [Organic carbon and carbon mineralization characteristics in nature forestry soil].

    Science.gov (United States)

    Yang, Tian; Dai, Wei; An, Xiao-Juan; Pang, Huan; Zou, Jian-Mei; Zhang, Rui

    2014-03-01

    Through field investigation and indoor analysis, the organic carbon content and organic carbon mineralization characteristics of six kinds of natural forest soil were studied, including the pine forests, evergreen broad-leaved forest, deciduous broad-leaved forest, mixed needle leaf and Korean pine and Chinese pine forest. The results showed that the organic carbon content in the forest soil showed trends of gradual decrease with the increase of soil depth; Double exponential equation fitted well with the organic carbon mineralization process in natural forest soil, accurately reflecting the mineralization reaction characteristics of the natural forest soil. Natural forest soil in each layer had the same mineralization reaction trend, but different intensity. Among them, the reaction intensity in the 0-10 cm soil of the Korean pine forest was the highest, and the intensities of mineralization reaction in its lower layers were also significantly higher than those in the same layers of other natural forest soil; comparison of soil mineralization characteristics of the deciduous broad-leaved forest and coniferous and broad-leaved mixed forest found that the differences of litter species had a relatively strong impact on the active organic carbon content in soil, leading to different characteristics of mineralization reaction.

  6. Physicochemical characteristics of geophagic clayey soils from ...

    African Journals Online (AJOL)

    ONOS

    2010-09-06

    Sep 6, 2010 ... INTRODUCTION. The contamination of food with soil and clay materials .... These properties may dictate the inter-reactions between the ingested soil ... significant difference in the wt % of silt in geophagic .... Preference for these clayey ..... size on the flocculation behaviour of ultra-fine clays in salt solutions.

  7. Endovascular rescue method for undesirably stretched coil.

    Science.gov (United States)

    Cho, Jae Hoon

    2014-10-01

    Undesirable detachment or stretching of coils within the parent artery during aneurysm embolization can be related with thrombus formation, which can be caused occlusion of parent artery or embolic event(s). To escape from this situation, several rescue methods have been reported. A case with undesirably stretched coil in which another rescue method was used, is presented. When the stretched coil is still located in the coil delivery microcatheter, the stretched coil can be removed safely using a snare and a handmade monorail microcatheter. After a snare is lodged in the handmade monorail microcatheter, the snare is introduced over the coil delivery micorcatheter and located in the distal part of the stretched coil. After then, the handmade monorail microcatheter captures the stretched coil and the snare as one unit. This technique using a handmade monorail microcatheter and a snare can be a good rescue modality for the undesirably stretched coil, still remained within the coil delivery microcatheter.

  8. compressibility characteristics of black cotton soil admixed

    African Journals Online (AJOL)

    user

    The engineering properties of the soil are adversely affected by the extreme poor nature ..... seen from the figure that the shape of the curves for all mixed ratio appears .... [3] Purushothama, P. R. Ground Improvement. Techniques. New Delhi ...

  9. Physicochemical characteristics of geophagic clayey soils from ...

    African Journals Online (AJOL)

    ONOS

    2010-09-06

    Sep 6, 2010 ... 3School of Health Technology, Central University of Technology, Bloemfontein, Free State, Private Bag X20539. Bloemfontein 9300 .... Table 1. The collected clayey soil samples were air-dried and their physicochemical ...

  10. Assessing soil hydraulic characteristics using HYPROP and BEST: a comparison

    Science.gov (United States)

    Leitinger, Georg; Obojes, Nikolaus; Lassabatère, Laurent

    2015-04-01

    Knowledge of ecohydrological characteristics with high spatial resolution is a prerequisite for large-scale hydrological modelling. Data on soil hydraulic characteristics are of major importance, but measurements are often seen as time consuming and costly. In order to accurately model grassland productivity and in particular evapotranspiration, soil sampling and infiltration experiments at 25 grassland sites ranging from 900m to 2300m a.s.l. were conducted in the long term socio-ecological research (LTSER) site Stubai Valley, Tyrolean Alps, Austria, covering 265 km². Here we present a comparison of two methods to determine important hydrological properties of soils: (1) the evaporation method HYPROP (Hydraulic Property Analyzer; UMS Munich, 2010), and (2) the BEST-model (Beerkan Estimation of Soil Transfer Parameters; Lassabatère et al. (2006)), each determining the soil hydraulic characteristics and in particular the water retention curve. For the most abundant soil types we compared the pf-curves calculated from HYPROP data suing the Van Genuchten equation to the ones resulting from the comparatively time efficient BEST approach to find out if the latter is a suitable method to determine pf curves of alpine grassland soils. Except for the soil type Rendzina, the comparison of HYPROP and BEST showed slightly variations in the pF curves and resulting hydraulic characteristics. At the starting point BEST curves presented a slower dehydration, HYPROP a fast and continuous water loss. HYPROP analyses showed the highest variability in the measured values of Rendzina. Regarding BEST, the Alluvial Soils showed the highest variability. To assess equivalence between HYPROP and BEST we deduced several hydraulic characteristics from the pF curves, e.g. saturated water content, field capacity, permanent wilting point, pore size distribution, and minimum water retention. The comparison of HYPROP and BEST revealed that the results of soil water characteristics may depend on

  11. Evaluation of phosphorus sorption characteristics of soils from the ...

    African Journals Online (AJOL)

    The evaluation of phosphorus sorption characteristics of soils and their relation to soil properties from the Bambouto sequence of Baranka 1, Baranka 2, Femock 1 and Femock 2 has been studied. Phosphorus, an essential plant nutrient, is often not readily available to plants and this deficiency tends to limit plant growth.

  12. Prediction of characteristics of coastal plain soils using terrain ...

    African Journals Online (AJOL)

    The objective of this study was to model the characteristics of coastal plain sands using terrain attributes. Representative surface soil samples of upper, middle and lower slopes were collected from 10 locations and their properties determined using standard laboratory methods. Soil properties determined include depth, ...

  13. Upscaling soil saturated hydraulic conductivity from pore throat characteristics

    Science.gov (United States)

    Upscaling and/or estimating saturated hydraulic conductivity Ksat at the core scale from microscopic/macroscopic soil characteristics has been actively under investigation in the hydrology and soil physics communities for several decades. Numerous models have beendeveloped based on different approac...

  14. Risk sectors for undesirable behaviour and mobbing

    NARCIS (Netherlands)

    Hubert, A.B.; Veldhoven, M.J.P.M. van

    2001-01-01

    The aim of this short note was to get an impression of risk sectors for the prevalence of undesirable behaviour and mobbing in The Netherlands. Data were collected from 1995 to 1999 with the Questionnaire on The Assessment and Experience of Work (Vragenlijst Beleving en Beoordeling van de Arbeid;

  15. Effects of leachate on geotechnical characteristics of sandy clay soil

    Science.gov (United States)

    Harun, N. S.; Ali, Z. Rahman; Rahim, A. S.; Lihan, T.; Idris, R. M. W.

    2013-11-01

    Leachate is a hazardous liquid that poses negative impacts if leaks out into environments such as soil and ground water systems. The impact of leachate on the downgraded quality in terms of chemical characteristic is more concern rather than the physical or mechanical aspect. The effect of leachate on mechanical behaviour of contaminated soil is not well established and should be investigated. This paper presents the preliminary results of the effects of leachate on the Atterberg limit, compaction and shear strength of leachate-contaminated soil. The contaminated soil samples were prepared by mixing the leachate at ratiosbetween 0% and 20% leachate contents with soil samples. Base soil used was residual soil originated from granitic rock and classified as sandy clay soil (CS). Its specific gravity ranged between 2.5 and 2.64 with clay minerals of kaolinite, muscovite and quartz. The field strength of the studied soil ranged between 156 and 207 kN/m2. The effects of leachate on the Atterberg limit clearly indicated by the decrease in liquid and plastic limit values with the increase in the leachate content. Compaction tests on leachate-contaminated soil caused the dropped in maximum dry density, ρdry and increased in optimum moisture content, wopt when the amount of leachate was increased between 0% and 20%. The results suggested that leachate contamination capable to modify some geotechnical properties of the studied residual soils.

  16. Cycles of undesirable substances in the food chain

    International Nuclear Information System (INIS)

    2012-01-01

    The working group ''Carry over of undesirable substances in animal feed'' at the Federal Ministry of Food, Agriculture and Forestry (BMELV) in cooperation with the Institute of Animal Nutrition of the Friedrich-Loeffler-Institute (FLI) performed on 27 and 28 October 2011 in Braunschweig a workshop on ''cycles of undesirable substances in Food Chain ''. The aim of the workshop was to present the latest findings of research and Carry over Recommendations of the Carry over - Working Group on undesirable substances in feed and production processes of the feed industry, to evaluate and discuss about this with representatives from science, business and management and to work out the further research and action need. The focus of the considerations were the pathways, the carry over and the Exposure to dioxins and other halogenated hydrocarbons, the effects of Mycotoxins in feed and starting points for preventive measures, the soil contamination and the exposure of humans and animals by cadmium and case studies on Nitrite in feed, antibiotics in plants and residues of pesticides and radionuclides in feed. Furthermore the risks associated with specified manufacturing processes of feed are considered, especially the used materials that come into contact with animal feed, and the risks from nanotechnology. [de

  17. Dirt in cane removal influenced by soil characteristics

    International Nuclear Information System (INIS)

    Fernandes, E.A.N.

    1997-01-01

    Dirt level in sugar cane consignments delivered to the factory is dependent on soil type, in association with harvesting system and weather conditions. Efforts for reducing soil in harvested cane have been made by sugar cane millers, especially improving the washing system installed before crushing. Instrumental neutron activation analysis has shown its potential for assessing dirt reductions in the washed material. Knowledge of elemental concentrations in the different soil fractions highlights the reliability of such measurements especially when taking into account the soil characteristics. (author)

  18. compaction and consolidation characteristics of lateritic soil

    African Journals Online (AJOL)

    user

    SOIL OF A SELECTED SITE IN IKOLE EKITI, SOUTHWEST NIGERIA. A. Bolarinwa1,*, J. B. ... various locally available materials for stabilization/ improvement of some .... attempted but futile as some of the clays were too sandy to stay in the ...

  19. Phosphate sorption characteristics of European alpine soils

    Czech Academy of Sciences Publication Activity Database

    Kaňa, Jiří; Kopáček, Jiří; Camarero, L.; Garcia-Pausas, J.

    2011-01-01

    Roč. 75, č. 3 (2011), s. 862-870 ISSN 0361-5995 R&D Projects: GA ČR(CZ) GA526/09/0567; GA AV ČR(CZ) KJB600960907 Grant - others:EU EMERGE(CZ) EVK1-CT-1999-00032 Institutional research plan: CEZ:AV0Z60170517 Keywords : phosphate sorption * alpine soil s * acidification Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.979, year: 2011

  20. Spectral Characteristics of Salinized Soils during Microbial Remediation Processes.

    Science.gov (United States)

    Ma, Chuang; Shen, Guang-rong; Zhi, Yue-e; Wang, Zi-jun; Zhu, Yun; Li, Xian-hua

    2015-09-01

    In this study, the spectral reflectance of saline soils, the associated soil salt content (SSC) and the concentrations of salt ions were measured and analysed by tracing the container microbial remediation experiments for saline soil (main salt is sodium chloride) of Dongying City, Shandong Province. The sensitive spectral reflectance bands of saline soils to SSC, Cl- and Na+ in the process of microbial remediation were analysed. The average-dimension reduction of these bands was conducted by using a combination of correlation coefficient and decision coefficient, and by gradually narrowing the sampling interval method. Results showed that the tendency and magnitude of the average spectral reflectance in all bands of saline soils during the total remediation processes were nearly consistent with SSC and with Cl- coocentration, respectively. The degree of salinity of the soil, including SSC and salt ion concentrations, had a significant positive correlation with the spectral reflectance of all bands, particularly in the near-infrared band. The optimal spectral bands of SSC were 1370 to 1445 nm and 1447 to 1608 nm, whereas the optimal spectral bands of Cl- and Na+ were 1336 to 1461 nm and 1471 to 1561 nm, respectively. The relationship model among SSC, soil salt ion concentrations (Cl- and Na+) and soil spectral reflectance of the corresponding optimal spectral band was established. The largest R2 of relationship model between SSC and the average reflectance of associated optimal band reached to 0.95, and RMSEC and RMSEP were 1.076 and 0.591, respectively. Significant statistical analysis of salt factors and soil reflectance for different microbial remediation processes indicated that the spectral response characteristics and sensitivity of SSC to soil reflectance, which implied the feasibility of high spectrum test on soil microbial remediation monitoring, also provided the basis for quick nondestructive monitoring soil bioremediation process by soil spectral

  1. Soil-Water Repellency Characteristic Curves for Soil Profiles with Organic Carbon Gradients

    DEFF Research Database (Denmark)

    Wijewardana, Nadeeka Senani; Muller, Karin; Moldrup, Per

    2016-01-01

    Soil water repellency (SWR) of soils is a property with significant consequences for agricultural water management, water infiltration, contaminant transport, and for soil erosion. It is caused by the presence of hydrophobic agents on mineral grain surfaces. Soils were samples in different depths......, and the sessile drop method (SDM). The aim to (i) compare the methods, (ii) characterize the soil-water repellency characteristic curves (SWRCC) being SWR as a function of the volumetric soil-water content (θ) or matric potential (ψ), and (iii) find relationships between SWRCC parameters and SOC content. The WDPT...... at three forest sites in Japan and three pasture sites in New Zealand, covering soil organic carbon (SOC) contents between 1 and 26%. The SWR was measured over a range of water contents by three common methods; the water drop penetration time (WDPT) test, the molarity of an ethanol droplet (MED) method...

  2. Tungstate adsorption onto Italian soils with different characteristics.

    Science.gov (United States)

    Petruzzelli, Gianniantonio; Pedron, Francesca

    2017-08-01

    The study of tungsten in the environment is currently of considerable interest because of the growing concerns resulting from its possible toxicity and carcinogenicity. Adsorption reactions are some of the fundamental processes governing the fate and transport of tungsten compounds in soil. This paper reports data on the adsorption of tungstate ions in three different Italian soils, which are characteristic of the Mediterranean region. The results show that pH is the most important factor governing the adsorption of tungstate in these soils. The data interpreted according to the Langmuir equation show that the maximum value of adsorption is approximately 30 mmol kg -1 for the most acidic soil (pH = 4.50) and approximately 9 mmol kg -1 for the most basic soil (pH = 7.40). In addition, soil organic matter is shown to play a fundamental role in adsorption processes, which are favored in soils with a higher organic matter content. The data could contribute to a better understanding of the behavior of tungsten compounds in Italian soils for which current knowledge is very scarce, also in view of environmental regulations, which are currently lacking.

  3. [Analysis of XRD spectral characteristics of soil clay mineral in two typical cultivated soils].

    Science.gov (United States)

    Zhang, Zhi-Dan; Luo, Xiang-Li; Jiang, Hai-Chao; Li, Qiao; Shen, Cong-Ying; Liu, Hang; Zhou, Ya-Juan; Zhao, Lan-Po; Wang, Ji-Hong

    2014-07-01

    The present paper took black soil and chernozem, the typical cultivated soil in major grain producing area of Northeast, as the study object, and determinated the soil particle composition characteristics of two cultivated soils under the same climate and location. Then XRD was used to study the composition and difference of clay mineral in two kinds of soil and the evolutionary mechanism was explored. The results showed that the two kinds of soil particles were composed mainly of the sand, followed by clay and silt. When the particle accumulation rate reached 50%, the central particle size was in the 15-130 microm interval. Except for black soil profile of Shengli Xiang, the content of clay showed converse sequence to the central particle in two soils. Clay accumulated under upper layer (18.82%) in black soil profile while under caliche layer (17.41%) in chernozem profile. Clay content was the least in parent material horizon except in black profile of Quanyanling. Analysis of clay XRD atlas showed that the difference lied in not only the strength of diffraction peak, but also in the mineral composition. The main contents of black soil and chernozem were both 2 : 1 clay, the composition of black soil was smectite/illite mixed layer-illite-vermiculite and that of chernozem was S/I mixture-illite-montmorillonite, and both of them contained little kaolinite, chlorite, quartz and other primary mineral. This paper used XRD to determine the characteristics of clay minerals comprehensively, and analyzed two kinds of typical cultivated soil comparatively, and it was a new perspective of soil minerals study.

  4. Response characteristics of soil fractal features to different land uses in typical purple soil watershed.

    Directory of Open Access Journals (Sweden)

    Bang-lin Luo

    Full Text Available As a fundamental characteristic of soil physical properties, the soil Particle Size Distribution (PSD is important in the research on soil moisture migration, solution transformation, and soil erosion. In this research, the PSD characteristics with distinct methods in different land uses are analyzed. The results show that the upper bound of the volume domain of the clay domain ranges from 5.743 μm to 5.749 μm for all land-use types. For the silt domain of purple soil, the value ranges among 286.852~286.966 μm. For all purple soil land-use types, the order of the volume domain fractal dimensions is D clayD silt(U>D sand (U>D sand and D silt>D silt(U>D sand>D sand(U, respectively. As it is compared with all Dvi, the D silt has the most significant correlativity to the soil texture and organic matter in different land uses of the typical purple soil watersheds. Therefore, Dsilt will be a potential indictor for evaluating the proportion of fine particles in the PSD, as well as a key measurement in soil quality and productivity studies.

  5. Soil Characteristics Driving Arbuscular Mycorrhizal Fungal Communities in Semiarid Mediterranean Soils.

    Science.gov (United States)

    Alguacil, Maria Del Mar; Torres, Maria Pilar; Montesinos-Navarro, Alicia; Roldán, Antonio

    2016-06-01

    We investigated communities of arbuscular mycorrhizal fungi (AMF) in the roots and the rhizosphere soil of Brachypodium retusum in six different natural soils under field conditions. We explored phylogenetic patterns of AMF composition using indicator species analyses to find AMF associated with a given habitat (root versus rhizosphere) or soil type. We tested whether the AMF characteristics of different habitats or contrasting soils were more closely related than expected by chance. Then we used principal-component analysis and multivariate analysis of variance to test for the relative contribution of each factor in explaining the variation in fungal community composition. Finally, we used redundancy analysis to identify the soil properties that significantly explained the differences in AMF communities across soil types. The results pointed out a tendency of AMF communities in roots to be closely related and different from those in the rhizosphere soil. The indicator species analyses revealed AMF associated with rhizosphere soil and the root habitat. Soil type also determined the distribution of AMF communities in soils, and this effect could not be attributed to a single soil characteristic, as at least three soil properties related to microbial activity, i.e., pH and levels of two micronutrients (Mn and Zn), played significant roles in triggering AMF populations. Communities of arbuscular mycorrhizal fungi (AMF) are main components of soil biota that can determine the productivity of ecosystems. These fungal assemblages vary across host plants and ecosystems, but the main ecological processes that shape the structures of these communities are still largely unknown. A field study in six different soil types from semiarid areas revealed that AMF communities are significantly influenced by habitat (soil versus roots) and soil type. In addition, three soil properties related to microbiological activity (i.e., pH and manganese and zinc levels) were the main factors

  6. Soil Characteristics Driving Arbuscular Mycorrhizal Fungal Communities in Semiarid Mediterranean Soils

    Science.gov (United States)

    Torres, Maria Pilar; Montesinos-Navarro, Alicia; Roldán, Antonio

    2016-01-01

    ABSTRACT We investigated communities of arbuscular mycorrhizal fungi (AMF) in the roots and the rhizosphere soil of Brachypodium retusum in six different natural soils under field conditions. We explored phylogenetic patterns of AMF composition using indicator species analyses to find AMF associated with a given habitat (root versus rhizosphere) or soil type. We tested whether the AMF characteristics of different habitats or contrasting soils were more closely related than expected by chance. Then we used principal-component analysis and multivariate analysis of variance to test for the relative contribution of each factor in explaining the variation in fungal community composition. Finally, we used redundancy analysis to identify the soil properties that significantly explained the differences in AMF communities across soil types. The results pointed out a tendency of AMF communities in roots to be closely related and different from those in the rhizosphere soil. The indicator species analyses revealed AMF associated with rhizosphere soil and the root habitat. Soil type also determined the distribution of AMF communities in soils, and this effect could not be attributed to a single soil characteristic, as at least three soil properties related to microbial activity, i.e., pH and levels of two micronutrients (Mn and Zn), played significant roles in triggering AMF populations. IMPORTANCE Communities of arbuscular mycorrhizal fungi (AMF) are main components of soil biota that can determine the productivity of ecosystems. These fungal assemblages vary across host plants and ecosystems, but the main ecological processes that shape the structures of these communities are still largely unknown. A field study in six different soil types from semiarid areas revealed that AMF communities are significantly influenced by habitat (soil versus roots) and soil type. In addition, three soil properties related to microbiological activity (i.e., pH and manganese and zinc levels

  7. prediction of characteristics of coastal plain soils using terrain ...

    African Journals Online (AJOL)

    clay, electrical and hydraulic conductivity, bulk density, pH, exchangeable calcium, magnesium, sodium, potassium and acidity ... significantly correlated with clay and pH (H2O), while SPI and CTI correlated significantly with clay, pH, organic carbon and ... Key words: coastal plain sands, DEM, soil characteristics, modelling.

  8. Soil Characteristics of Crusted outside and Subcanopy Areas of four ...

    African Journals Online (AJOL)

    The results on compaction, salinity, pH, water holding capacity, respiration and organic carbon supported the model. The crust:shrub ratio is crucial for the functioning and sustained productivity of the system. Keywords: Soil characteristics; shrub subcanopy; crust; sink-source, Negev desert [IJARD Vol.3 2002: 162-170] ...

  9. characteristics and classification of the soils of gonde

    African Journals Online (AJOL)

    preferred customer

    Nitisols occupied the rolling and undulating slopes marked with reddish, ... Variability in soil characteristics largely depended on drainage, topography and .... raphic patterns, representative pits were opened ... by ammonium acetate method at pH 7 (Jackson, ..... slope positions, respectively, and with steep ..... A Text Book.

  10. Some physico-chemical and biological characteristics of soil and ...

    African Journals Online (AJOL)

    Environmental conditions that influence biocorrosion in the Niger Delta area of Nigeria are investigated experimentally by analysing the physico-chemical and biological characteristics of four (4) soil samples and water samples taken from ten (10) selected river bodies in the region. Measured properties of the water ...

  11. Soil Characteristics, Microbial Compostion of Plot, Leaf Count and ...

    African Journals Online (AJOL)

    Soil Characteristics, Microbial Compostion of Plot, Leaf Count and Sprout Studies of Cocoyam ( Colocasia [Schott] and Xanthosoma [Schott], Araceae) Collected in Edo State, ... Science, Technology and Arts Research Journal ... Government Areas (LGA) in Edo state and describe them based on leaf count and sprout

  12. Geological and geotechnical characteristics of Metro Manila volcanic soils and their suitability for landfill soil liner

    Science.gov (United States)

    Mendoza, Edna Patricia; Catane, Sandra; Pascua, Chelo; Zarco, Mark Albert

    2010-05-01

    Due to the Philippines's island-arc setting, andesitic tuff and volcanic ash constitute two-thirds of the country's agricultural land. In situ weathering of these volcanic sediments produces volcanic soils. Metro Manila volcanic soils were studied to determine their suitability for landfill soil liner. The soils were analyzed using XRD and XRF, and were tested for geotechnical properties. The results show the presence of the smectite group, a swelling variety of clay. The smectite-type clays are weathering products of volcanic glasses which are dominant components of the parental rocks. The high amounts of Al2O3 indicate an Al-rich type of soil. The clay species is either di- or tri-octahedral type, which points to montmorillonite as the main clay species. Swelling clay lowers the permeability of soils and reduces the infiltration and lateral movement of leachates in the ground. Also, geotechnical tests revealed moderate to high plasticity indices and low hydraulic conductivity values. The study shows that the physicochemical characteristics of volcanic soils meet the criteria for a soil liner for future sanitary landfill projects as mandated by RA 9003, a recently ratified solid waste management act of the Philippines. Being widespread, volcanic soils can be viewed as an important resource of the country.

  13. Correlation between soil chemical characteristics and soil-borne mycoflora in cucumber tunnels

    International Nuclear Information System (INIS)

    Qudsia, H.; Javaid, A.; Mahmood, R.; Akhtar, N.

    2017-01-01

    Twelve soil samples were collected from fields of cucumber (Cucumis sativus L.) tunnels from various localities of Lahore and Shekhupura districts, Pakistan. Soil samples were analyzed for various characteristics viz. pH, EC/sub e/, organic matter, nitrogen (N), phosphorus (P) and potassium (K). Soil mycoflora was isolated using dilution plate method. Soil pH, EC/sub e/, organic matter, N, P and K were in the range of 7.42-8.13, 107-2520 (meu S cm-1), 0.98-1.40%, 0.039-0.070%, 7-357 mg kg/sup -1/ and 88-946 mg kg/sup -1/ in different soil samples, respectively. A total of 18 fungal species belonging to 10 genera viz. Aspergillus, Alternaria, Cladosporium, Drechslera, Emericella, Fusarium, Mortierella, Mucor, Penicillium and Sclerotium were isolated from various soil samples. Saprophytic fungi were more prevalent than pathogenic ones. Number of colonies of saprophytic fungi ranged from 360-2754 g/sup -1/ soil in different samples. In contrast, number of pathogenic fungal colonies were limited to 1-234 g/sup -1/ soil. Number of colonies of pathogenic fungi were positively and significantly correlated with soil organic matter and nitrogen contents. This study concludes that high nitrogen and organic matter in cucumber tunnels favour population of pathogenic fungi. (author)

  14. The undesirable effects of neuromuscular blocking drugs

    DEFF Research Database (Denmark)

    Claudius, C; Garvey, L H; Viby-Mogensen, J

    2009-01-01

    Neuromuscular blocking drugs are designed to bind to the nicotinic receptor at the neuromuscular junction. However, they also interact with other acetylcholine receptors in the body. Binding to these receptors causes adverse effects that vary with the specificity for the cholinergic receptor...... in question. Moreover, all neuromuscular blocking drugs may cause hypersensitivity reactions. Often the symptoms are mild and self-limiting but massive histamine release can cause systematic reactions with circulatory and respiratory symptoms and signs. At the end of anaesthesia, no residual effect...... of a neuromuscular blocking drug should be present. However, the huge variability in response to neuromuscular blocking drugs makes it impossible to predict which patient will suffer postoperative residual curarization. This article discusses the undesirable effects of the currently available neuromuscular blocking...

  15. Prediction of the Soil Water Characteristic from Soil Particle Volume Fractions

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Møldrup, Per; Tuller, Markus

    2012-01-01

    Modelling water distribution and flow in partially saturated soils requires knowledge of the soil-water characteristic (SWC). However, measurement of the SWC is challenging and time-consuming, and in some cases not feasible. This study introduces two predictive models (Xw-model and Xw......*-model) for the SWC, derived from readily available soil properties such as texture and bulk density. A total of 46 soils from different horizons at 15 locations across Denmark were used for models evaluation. The Xw-model predicts the volumetric water content as a function of volumetric fines content (organic matter...... (organic matter, clay, silt, fine and coarse sand), variably included in the model depending on the pF value. The volumetric content of a particular soil particle size fraction was included in the model if it was assumed to contribute to the pore size fraction still occupied with water at the given p...

  16. Soil physical characteristics after EDTA washing and amendment with inorganic and organic additives

    International Nuclear Information System (INIS)

    Zupanc, Vesna; Kastelec, Damijana; Lestan, Domen; Grcman, Helena

    2014-01-01

    Soil washing has been established as suitable remediation technology, with most research focused on metal removing efficiency and toxic effect on plants, less on the influence on soil physical characteristics, which was the focus of this study. In soil column experiment highly contaminated soil and soil washed with EDTA, mixed with additives (gypsum, hydrogel, manure, peat) were tested. White clover was used as a soil cover. Yield, metal concentration in soil and plant, aggregate fractionation and stability, saturated hydraulic conductivity and soil water retention of the soil were measured. Soil washing decreased metal concentration in soil and plants, but yield of white clover on remediated soil was significantly lower compared to the original soil. Significant differences in water retention characteristics, aggregate fractionation and stability between original and remediated soil have been determined. Gypsum, hydrogel and peat increased plant available water, manure and peat increased yield on remediated soil. -- Highlights: • Clover yield on washed soil was significantly lower than on original soil. • Organic additives increased yield on remediated soils. • Soil washing changed soil water retention and soil structure. • Hydrogen, gypsum and peat increased plant available water of remediated soil. -- The study critically examines yield, plant metal uptake and possible changes in soil physical characteristics as a consequence of soil washing procedure for metal pollution remediation

  17. The physical properties and compaction characteristics of swelling soils

    International Nuclear Information System (INIS)

    Komine, Hideo; Ogata, Nobuhide

    1990-01-01

    Expansive soils have recently attracted increasing attention as the back filling material for the repositories of high level nuclear wastes or as the material for improving extremely soft grounds. However, since very little has been known concerning the physical and mechanical properties of such materials, it is necessary to clarify the swelling, compaction and thermal characteristics of expansive soils. For this purpose, various kinds of index tests and a series of static compaction tests were performed using several kinds of swelling soils in order to investigate the relationship between the fundamental physical properties and the compaction characteristics. Since the ordinary testing method stipulated in JIS is difficult to perform for such expansive soils, the new method was proposed to obtained the reliable values of specific gravity, grain size distribution and liquid/plastic limits. By this method, some representative values were presented for various kinds of clay including bentonite. As the results of static compaction tests, the compaction characteristics of clay were strongly dependent on the plastic limit of clay. The maximum dry density and optimum water content were strongly dependent on both plastic limit and compaction pressure. (K.I.)

  18. Experimental research on creep characteristics of Nansha soft soil.

    Science.gov (United States)

    Luo, Qingzi; Chen, Xiaoping

    2014-01-01

    A series of tests were performed to investigate the creep characteristics of soil in interactive marine and terrestrial deposit of Pearl River Delta. The secondary consolidation test results show that the influence of consolidation pressure on coefficient of secondary consolidation is conditional, which is decided by the consolidation state. The ratio of coefficient of secondary consolidation and coefficient of compressibility (Ca/Cc) is almost a constant, and the value is 0.03. In the shear-box test, the direct sheer creep failure of soil is mainly controlled by shear stress rather than the accumulation of shear strain. The triaxial creep features are closely associated with the drainage conditions, and consolidation can weaken the effect of creep. When the soft soil has triaxial creep damage, the strain rate will increase sharply.

  19. Experimental Research on Creep Characteristics of Nansha Soft Soil

    Directory of Open Access Journals (Sweden)

    Qingzi Luo

    2014-01-01

    Full Text Available A series of tests were performed to investigate the creep characteristics of soil in interactive marine and terrestrial deposit of Pearl River Delta. The secondary consolidation test results show that the influence of consolidation pressure on coefficient of secondary consolidation is conditional, which is decided by the consolidation state. The ratio of coefficient of secondary consolidation and coefficient of compressibility Ca/Cc is almost a constant, and the value is 0.03. In the shear-box test, the direct sheer creep failure of soil is mainly controlled by shear stress rather than the accumulation of shear strain. The triaxial creep features are closely associated with the drainage conditions, and consolidation can weaken the effect of creep. When the soft soil has triaxial creep damage, the strain rate will increase sharply.

  20. Experimental Research on Creep Characteristics of Nansha Soft Soil

    Science.gov (United States)

    Luo, Qingzi; Chen, Xiaoping

    2014-01-01

    A series of tests were performed to investigate the creep characteristics of soil in interactive marine and terrestrial deposit of Pearl River Delta. The secondary consolidation test results show that the influence of consolidation pressure on coefficient of secondary consolidation is conditional, which is decided by the consolidation state. The ratio of coefficient of secondary consolidation and coefficient of compressibility C a/C c is almost a constant, and the value is 0.03. In the shear-box test, the direct sheer creep failure of soil is mainly controlled by shear stress rather than the accumulation of shear strain. The triaxial creep features are closely associated with the drainage conditions, and consolidation can weaken the effect of creep. When the soft soil has triaxial creep damage, the strain rate will increase sharply. PMID:24526925

  1. Soil and water characteristics of a young surface mine wetland

    Science.gov (United States)

    Andrew Cole, C.; Lefebvre, Eugene A.

    1991-05-01

    Coal companies are reluctant to include wetland development in reclamation plans partly due to a lack of information on the resulting characteristics of such sites. It is easier for coal companies to recreate terrestrial habitats than to attempt experimental methods and possibly face significant regulatory disapproval. Therefore, we studied a young (10 years) wetland on a reclaimed surface coal mine in southern Illinois so as to ascertain soil and water characteristics such that the site might serve as a model for wetland development on surface mines. Water pH was not measured because of equipment problems, but evidence (plant life, fish, herpetofauna) suggests suitable pH levels. Other water parameters (conductivity, salinity, alkalinity, chloride, copper, total hardness, iron, manganese, nitrate, nitrite, phosphate, and sulfate) were measured, and only copper was seen in potentially high concentrations (but with no obvious toxic effects). Soil variables measured included pH, nitrate, nitrite, ammonia, potassium, calcium, magnesium, manganese, aluminum, iron, sulfate, chloride, and percent organic matter. Soils were slightly alkaline and most parameters fell within levels reported for other studies on both natural and manmade wetlands. Aluminum was high, but this might be indicative more of large amounts complexed with soils and therefore unavailable, than amounts actually accessible to plants. Organic matter was moderate, somewhat surprising given the age of the system.

  2. High Energy Moisture Characteristics: Linking Between Soil Physical Processes and Structure Stability

    Science.gov (United States)

    Water storage and flow in soils is usually complicated by the intricate nature of and changes in soil pore size distribution (PSD) due to modifications in soil structure following changes in agricultural management. The paper presents the Soil High Energy Moisture Characteristic (Soil-HEMC) method f...

  3. Soil crusting regulator characteristics of some allic humid tropical soils from Colombia

    International Nuclear Information System (INIS)

    Arias, Dora M; Madero E E; Amezquita E

    2001-01-01

    It was collected soil samples within 5 cm of the surface from Amazonia soils in Caqueta (Macagual); Orinoquia in Meta (Carimagua), Casanare (Matazul) and Vichada (La Primavera); and in Andean region in Cauca (San Isidro) and Valle (CIAT, Palmira). In each of those sites, the International Center for Tropical Agriculture (CIAT) has many experiments to know the impact of land husbandry, leguminous associations and rotations and mulches on natural system. After evaluating weighed particle size, sand particle size, soil organic matter, iron, aluminum and silicon oxides, and fertility, it could cluster in three groups according to those characteristics and their importance in governing soil hazard crusting: la Primavera and Carimagua (high organic matter, oxides and fine sand but low in clay); Matazul and Macagual (low in organic matter, oxides and clay but variable sand values); and San Isidro (the greatest in Al 2 O 3 concentrations, high in Fe 2 O 3 clay and fine sand but the poorest in soil organic matter). Soil organic matter contents were significantly associated with the kind of management

  4. Determining soil hydrologic characteristics on a remote forest watershed by continuous monitoring of soil water pressures, rainfall and runoff.

    Science.gov (United States)

    L.R. Ahuja; S. A. El-Swaify

    1979-01-01

    Continuous monitoring of soil-water pressures, rainfall and runoff under natural conditions was tested as a technique for determining soil hydrologic characteristics of a remote forest watershed plot. A completely battery-powered (and thus portable) pressure transducer–scanner–recorder system was assembled for monitoring of soil-water pressures in...

  5. Thermokarst dynamics and soil organic matter characteristics controlling initial carbon release from permafrost soils in the Siberian Yedoma region

    DEFF Research Database (Denmark)

    Weiss, Niels; Blok, Daan; Elberling, Bo

    2016-01-01

    This study relates soil organic matter (SOM) characteristics to initial soil incubation carbon release from upper permafrost samples in Yedoma region soils of northeastern Siberia, Russia. Carbon (C) and nitrogen (N) content, carbon to nitrogen ratios (C:N), δ13C and δ15N values show clear trends...

  6. Soil-Water Characteristic Curves of Red Clay treated by Ionic Soil Stabilizer

    Science.gov (United States)

    Cui, D.; Xiang, W.

    2009-12-01

    The relationship of red clay particle with water is an important factor to produce geological disaster and environmental damage. In order to reduce the role of adsorbed water of red clay in WuHan, Ionic Soil Stabilizer (ISS) was used to treat the red clay. Soil Moisture Equipment made in U.S.A was used to measure soil-water characteristic curve of red clay both in natural and stabilized conditions in the suction range of 0-500kPa. The SWCC results were used to interpret the red clay behavior due to stabilizer treatment. In addition, relationship were compared between the basic soil and stabilizer properties such as water content, dry density, liquid limit, plastic limit, moisture absorption rate and stabilizer dosages. The analysis showed that the particle density and specific surface area increase, the dehydration rate slows and the thickness of water film thins after treatment with Ionic Soil Stabilizer. After treatment with the ISS, the geological disasters caused by the adsorbed water of red clay can be effectively inhibited.

  7. Comparison of class and continuous pedotransfer functions to generate soil hydraulic characteristics

    NARCIS (Netherlands)

    Wösten, J.H.M.; Finke, P.A.; Jansen, M.J.W.

    1995-01-01

    Class pedotransfer functions (PTF) and continuous PTFs were used to generate soil hydraulic characteristics. Both approaches were used to predict the soil physical input data to calculate five functional aspects of soil behaviour: number of workable days, number of days with adequate soil aeration,

  8. Adsorption and desorption characteristics of lindane, carbofuran and methyl parathion on various Indian soils

    International Nuclear Information System (INIS)

    Rama Krishna, K.; Philip, Ligy

    2008-01-01

    Adsorption and desorption characteristics of three insecticides on four Indian soils were studied. Insecticides used were representative of organochlorine, organophosphate, and carbomate groups. The order of adsorption of pesticides on soils was: lindane > methyl parathion > carbofuran. Compost soil had shown the maximum adsorption capacity. The order of adsorption capacity of various soils were: compost soil > clayey soil > red soil > sandy soil. Adsorption isotherms were better fitted to Freundlich model and K f values increased with increase in organic matter content of the soils. Thermodynamic parameters indicated favorable adsorption of all the three pesticides in four different soils. Adsorption was exothermic in nature. Distilled water desorbed 30-60% of adsorbed pesticides whereas; organic solvents were able to affect 50-80% of sorbed pesticides. Clay content and organic matter played a significant role in pesticide adsorption and desorption processes. Hysteresis effect was observed in red, clayey and compost soils. Hysteresis effect increased with increase in organic matter and clay content of the soils

  9. Characteristics and management options of crusting soils in a ...

    African Journals Online (AJOL)

    water infiltration and accelerated soil erosion resulting from soil crusting ... in a smallholder farming area of the Zambezi metamorphic belt in northern Zimbabwe ...... beans (Ricinus communi L.) in the northeastern region of Brazil. Soil and ...

  10. Effect of biochar on soil structural characteristics: water retention and gas transport

    DEFF Research Database (Denmark)

    Sun, Zhencai; Møldrup, Per; Vendelboe, Anders Lindblad

    Biochar addition to agricultural soil has been reported to reduce climate gas emission, as well as improve soil fertility and crop productivity. Little, however, is known about biochar effects on soil structural characteristics. This study investigates if biochar-application changes soil structural...... characteristics, as indicated from water retention and gas transport measurements on intact soil samples. Soil was sampled from a field experiment on a sandy loam with four control plots (C) without biochar and four plots (B) with incorporated biochar at a rate of 20 tons per hectare (plot size, 6 x 8 m). The C......-gas diffusivity on intact 100cm3 soil samples (5 replicates in each plot). We found that biochar application significantly decreased soil bulk density, hereby creating higher porosity. At the same soil-water matric potential, all the soil-gas phase parameters (air-filled porosity, air permeability and gas...

  11. Effect of Pulp mill sludge on soil characteristics, microbial diversity and vegetal production of Lollium perene

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, F.; Cea, M.; Diez, M. C.

    2009-07-01

    The Chemical properties of the sludge (High organic matter content, pH, buffer capacity, nitrogen and phosphorous level, and low concentration of trace heavy metals and organic pollutants) suggest that this material may represent a valuable resource as soil amendment, improving soil characteristics, microbial diversity and vegetal production of mill sludge addition to volcanic soil (Andisol) on soil characteristics, microbial diversity and vegetal production of Lollium perenne, in field assays. (Author)

  12. Characteristics of Soil Fauna Communities and Habitat in Small- Holder Cocoa Plantation in South Konawe

    OpenAIRE

    Laode Muhammad Harjoni Kilowasid; Tati Suryati Syamsudin; Franciscus Xaverius Susilo; Endah Sulistyawati; Hasbullah Syaf

    2013-01-01

    The composition of the soil fauna community have played an important role in regulating decomposition and nutrient cycling in agro-ecosystems (include cocoa plantation). Changes in food availability and conditions in the soil habitat can affected the abundance and diversity of soil fauna. This study aimed: (i) to analyze the pattern of changes in soil fauna community composition and characteristic of soil habitat based on the age increasing of cocoa plantation, and (ii) to identify taxa of so...

  13. EFFECT OF DIFFERENT LEVELS AGROECOLOGICAL LOADS ON BIOCHEMICAL CHARACTERISTICS OF SOIL

    OpenAIRE

    A. V. Shchur; D. V. Vinogradov; V. P. Valckho

    2016-01-01

    Aim. To study the effect of different levels of agri-environmental loads on the enzymatic activity of the soil.Methods. Isolation of soil fauna was conducted by thermogradient. Ecological characteristics of soil biota community was determined by ecological indices. The enzymatic activity of soil under different crops and at different levels of agri-environmental loads in our experiments was determined by methods proven in the laboratory soil enzymology Institute of Experimental Botany name V....

  14. Horizontal variation in trace elements and soil characteristics at ...

    African Journals Online (AJOL)

    2016-10-04

    Oct 4, 2016 ... Soil indicators – pH, soil organic matter (SOM) and soil water retention (SWR) – were also ... The determination of total extractable trace element concen- ..... Tshipise soil. Factor 1. Factor 2. Factor 1. Factor 2. Li. −0.497. 0.176 ..... KABANDA TA (2003) Climate in A first synthesis of the environmental, bio-.

  15. Plant tolerance to diesel minimizes its impact on soil microbial characteristics during rhizoremediation of diesel-contaminated soils

    International Nuclear Information System (INIS)

    Barrutia, O.; Garbisu, C.; Epelde, L.; Sampedro, M.C.; Goicolea, M.A.; Becerril, J.M.

    2011-01-01

    Soil contamination due to petroleum-derived products is an important environmental problem. We assessed the impacts of diesel oil on plants (Trifolium repens and Lolium perenne) and soil microbial community characteristics within the context of the rhizoremediation of contaminated soils. For this purpose, a diesel fuel spill on a grassland soil was simulated under pot conditions at a dose of 12,000 mg diesel kg -1 DW soil. Thirty days after diesel addition, T. repens (white clover) and L. perenne (perennial ryegrass) were sown in the pots and grown under greenhouse conditions (temperature 25/18 o C day/night, relative humidity 60/80% day/night and a photosynthetic photon flux density of 400 μmol photon m -2 s -1 ) for 5 months. A parallel set of unplanted pots was also included. Concentrations of n-alkanes in soil were determined as an indicator of diesel degradation. Seedling germination, plant growth, maximal photochemical efficiency of photosystem II (F v /F m ), pigment composition and lipophylic antioxidant content were determined to assess the impacts of diesel on the studied plants. Soil microbial community characteristics, such as enzyme and community-level physiological profiles, were also determined and used to calculate the soil quality index (SQI). The presence of plants had a stimulatory effect on soil microbial activity. L. perenne was far more tolerant to diesel contamination than T. repens. Diesel contamination affected soil microbial characteristics, although its impact was less pronounced in the rhizosphere of L. perenne. Rhizoremediation with T. repens and L. perenne resulted in a similar reduction of total n-alkanes concentration. However, values of the soil microbial parameters and the SQI showed that the more tolerant species (L. perenne) was able to better maintain its rhizosphere characteristics when growing in diesel-contaminated soil, suggesting a better soil health. We concluded that plant tolerance is of crucial importance for the

  16. Measurement and characteristics of microbial biomass in forest soils

    International Nuclear Information System (INIS)

    Vance, E.D.

    1986-01-01

    The soil microbial biomass is the primary agent responsible for the breakdown and mineralization of soil organic matter and plays a major role in regulating nutrient availability to plants. In this study, methods for measuring biomass in soil were compared and tested in forest soils ranging in pH from 3.2 to 7.2. A good relationship between biomass C measured using the chloroform fumigation-incubation method and soil ATP or microbial biomass C by direct microscopy was found in soils at or above pH 4.2. The fumigation-incubation method consistently underestimated biomass C in soils below pH 4.2, however. Hypotheses for the breakdown of the fumigation-incubation method in strongly acid soils were tested by using an alterative fumigant, measuring the proportion of added 14 C labelled fungi and bacteria decomposed in fumigated soils (k/sub C/), and by studying the effect of large, non-fumigated soil inocula on the flush of respiration following fumigation. These studies indicated that the failure of the method in strongly acid soils was due to inhibited decomposition of non-microbial soil organic matter by the microbial recolonizing population following fumigation. A modified method for measuring biomass C by fumigation-incubation in acid soils is proposed

  17. BOREAS TF-01 SSA-OA Soil Characteristics Data

    Data.gov (United States)

    National Aeronautics and Space Administration — Data collected in support of the effort to characterize and interpret soil information at the SSA-OA tower site in 1994. Data collected include soil respiration,...

  18. BOREAS TF-01 SSA-OA Soil Characteristics Data

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Data collected in support of the effort to characterize and interpret soil information at the SSA-OA tower site in 1994. Data collected include soil...

  19. Effects of soil amendment on soil characteristics and maize yield in Horqin Sandy Land

    Science.gov (United States)

    Zhou, L.; Liu, J. H.; Zhao, B. P.; Xue, A.; Hao, G. C.

    2016-08-01

    A 4-year experiment was conducted to investigate the inter-annual effects of sandy soil amendment on maize yield, soil water storage and soil enzymatic activities in sandy soil in Northeast China in 2010 to 2014. We applied the sandy soil amendment in different year, and investigated the different effects of sandy soil amendment in 2014. There were six treatments including: (1) no sandy soil amendment application (CK); (2) one year after applying sandy soil amendment (T1); (3) two years after applying sandy soil amendment(T2); (4) three years after applying sandy soil amendment(T3); (5)four years after applying sandy soil amendment(T4); (6) five years after applying sandy soil amendment (T5). T refers to treatment, and the number refers to the year after application of the sandy soil amendment. Comparing with CK, sandy soil amendments improved the soil water storage, soil urease, invertase, and catalase activity in different growth stages and soil layers, the order of soil water storage in all treatments roughly performed: T3 > T5 > T4 > T2 > T1 > CK. the order of soil urease, invertase, and catalase activity in all treatments roughly performed: T5 > T3 > T4 > T2 > T1 > CK. Soil application of sandy soil amendment significantly (p≤⃒0.05) increased the grain yield and biomass yield by 22.75%-41.42% and 29.92%-45.45% respectively, and maize yield gradually increased with the years go by in the following five years. Sandy soil amendment used in poor sandy soil had a positive effect on soil water storage, soil enzymatic activities and maize yield, after five years applied sandy soil amendment (T5) showed the best effects among all the treatments, and deserves further research.

  20. Characteristics of water infiltration in layered water repellent soils

    Science.gov (United States)

    Hydrophobic soil can influence soil water infiltration, but information regarding the impacts of different levels of hydrophobicity within a layered soil profile is limited. An infiltration study was conducted to determine the effects of different levels of hydrophobicity and the position of the hyd...

  1. Characteristics and management options of crusting soils in a ...

    African Journals Online (AJOL)

    ... to control the crusting. The relationship between crust thickness and soil physical and chemical properties and management practices were assessed using stepwise regression analysis. Soil crusting was largely related to soil aggregation, infiltration, fine sand fraction, cotton monocropping and crop residue incorporation.

  2. Improvement of strength characteristics of lateritic sub-grade soil ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management ... Abstract. This paper presents the results of investigation of the behavior of pavement subgrade soil stabilized with shredded polyethylene waste. ... Keywords: Lateritic soil, High density polyethylene (HDPE) waste, Pavement thickness, Sub-grade soil ...

  3. Links between matrix bulk density, macropore characteristics and hydraulic behavior of soils

    DEFF Research Database (Denmark)

    Katuwal, Sheela; Møldrup, Per; Lamandé, Mathieu

    2013-01-01

    characteristics on soil hydraulic functions has rarely been studied. With the objective of studying the links between these parameters we quantified macropore characteristics of intact soil columns (19 cm diameter x 20 cm high) from two agricultural field sites (Silstrup and Faardrup) in Denmark using coarse...... resolution X-ray CT and linked them with laboratory measurements of air permeability and leaching experiment. In addition to macropore characteristics, we also quantified the CT-number of the matrix as a measure of the bulk density of the matrix, i.e., excluding macropores in the soil. Soils from the two...

  4. Study on Characteristics of Soil Elements Bio-availability and Their Interrelationship in Black Soil Area of Jilin Province

    Science.gov (United States)

    Wang, D. Y.

    2015-12-01

    Abstract: Based on systematic field investigation and surface soil(0-20cm) sampling in the middle part of Jilin province where the soil type mainly consists of black soil and chernozem, soil total content and bio-available content of Fe, Fe, Ca, Mg, K, P, Cu, Zn, Ni, Cr, B, Cd, As were tested. This paper summarizes the geochemical characteristics of the soil elements and takes the ratio of bio-available content to total content as the bio-availability characteristic of each element in soil and studies the interrelationship between their geochemical characteristics of bio-availability by PCA and correlation analysis. Cd、Cr、Ni、Zn、P、Ca are selected out by PCA due to the similar impact under 4 principal components. And their correlation analysis results indicate: the correlation coefficients between heavy metal elements(Cr, Cd, Zn, Ni) bio-availability are significant positive, i.e., the same spatial variation trends are found between them in study area; the same relationships are also found between the bioavailability of P and 4 heavy metal elements (Cr, Cd, Zn, Ni), the promotion of the bioavailability of heavy metal elements goes with P; However, the correlation coefficients between heavy metal(Cr, Cd, Zn, Ni) bio-availability and Ca are mostly significant negative and the adverse spatial variation trends are found between them. The promotion of the bioavailability of heavy metal elements goes against Ca. Key words: soil geochemistry; soil heavy metals; elements interaction; bio-availability

  5. Effects of Surfactant on Geotechnical Characteristics of Silty Soil

    International Nuclear Information System (INIS)

    Rahman, Z.A.; Sahibin, A.R.; Lihan, T.; Idris, W.M.R.; Sakina, M.

    2013-01-01

    Surfactants are often used as a cleaning agent for restoration of oil-contaminated soil. However the effect of surfactant on the geotechnical properties of soil is not clearly understood. In this study, the effects of surfactant on silty soil were investigated for consistency index, compaction, permeability and shear strength. Sodium dodecyl sulfate (SDS) was used in this study to prepare the surfactant-treated soil. Our results showed that the soil with added surfactant exhibited a decrease in liquid and plastic limit values. Maximum dry densities increased and optimum moisture contents decreased as contents of added surfactant were increased. The presence of surfactant assists the soil to achieve maximum density at lower water content. The addition of surfactant decreased the permeability of soil from 6.29 x 10 -4 to 1.15 x 10 -4 ms -1 . The shear strength of soil with added surfactant was examined using the undrained unconsolidated triaxial tests. The results showed that the undrained shear strength, Cu was significantly affected, decreased from 319 kPa to 50 kPa for soil with 20 % of added surfactant. The results of this study showed that the presence of surfactant in soil can modify the mechanical behaviour of the soil. (author)

  6. [Spatial characteristics of soil organic carbon and nitrogen storages in Songnen Plain maize belt].

    Science.gov (United States)

    Zhang, Chun-Hua; Wang, Zong-Ming; Ren, Chun-Ying; Song, Kai-Shan; Zhang, Bai; Liu, Dian-Wei

    2010-03-01

    By using the data of 382 typical soil profiles from the second soil survey at national and county levels, and in combining with 1:500000 digital soil maps, a spatial database of soil profiles was established. Based on this, the one meter depth soil organic carbon and nitrogen storage in Songnen Plain maize belt of China was estimated, with the spatial characteristics of the soil organic carbon and nitrogen densities as well as the relationships between the soil organic carbon and nitrogen densities and the soil types and land use types analyzed. The soil organic carbon and nitrogen storage in the maize belt was (163.12 +/- 26.48) Tg and (9.53 +/- 1.75) Tg, respectively, mainly concentrated in meadow soil, chernozem, and black soil. The soil organic carbon and nitrogen densities were 5.51-25.25 and 0.37-0.80 kg x m(-2), respectively, and the C/N ratio was about 7.90 -12.67. The eastern and northern parts of the belt had much higher carbon and nitrogen densities than the other parts of the belt, and upland soils had the highest organic carbon density [(19.07 +/- 2.44) kg x m(-2)], forest soils had the highest nitrogen density [(0.82 +/- 0.25) kg x m(-2)], while lowland soils had the lower organic carbon and nitrogen densities.

  7. [Soil infiltration characteristics under main vegetation types in Anji County of Zhejiang Province].

    Science.gov (United States)

    Liu, Dao-Ping; Chen, San-Xiong; Zhang, Jin-Chi; Xie, Li; Jiang, Jiang

    2007-03-01

    The study on the soil infiltration under different main vegetation types in Anji County of Zhejiang Province showed that the characteristics of soil infiltration differed significantly with land use type, and the test eight vegetation types could be classified into four groups, based on soil infiltration capability. The first group, deciduous broadleaved forest, had the strongest soil infiltration capability, and the second group with a stronger soil infiltration capability was composed of grass, pine forest, shrub community and tea bush. Bamboo and evergreen broadleaved forest were classified into the third group with a relatively strong soil infiltration capability, while bare land belonged to the fourth group because of the bad soil structure and poorest soil infiltration capability. The comprehensive parameters of soil infiltration (alpha) and root (beta) were obtained by principal component analysis, and the regression model of alpha and beta could be described as alpha = 0. 1708ebeta -0. 3122. Soil infiltration capability was greatly affected by soil physical and chemical characteristics and root system. Fine roots (soil physical and chemical properties, and the increase of soil infiltration capability was closely related to the amount of the fine roots.

  8. Characteristics of soil water retention curve at macro-scale

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Scale adaptable hydrological models have attracted more and more attentions in the hydrological modeling research community, and the constitutive relationship at the macro-scale is one of the most important issues, upon which there are not enough research activities yet. Taking the constitutive relationships of soil water movement--soil water retention curve (SWRC) as an example, this study extends the definition of SWRC at the micro-scale to that at the macro-scale, and aided by Monte Carlo method we demonstrate that soil property and the spatial distribution of soil moisture will affect the features of SWRC greatly. Furthermore, we assume that the spatial distribution of soil moisture is the result of self-organization of climate, soil, ground water and soil water movement under the specific boundary conditions, and we also carry out numerical experiments of soil water movement at the vertical direction in order to explore the relationship between SWRC at the macro-scale and the combinations of climate, soil, and groundwater. The results show that SWRCs at the macro-scale and micro-scale presents totally different features, e.g., the essential hysteresis phenomenon which is exaggerated with increasing aridity index and rising groundwater table. Soil property plays an important role in the shape of SWRC which will even lead to a rectangular shape under drier conditions, and power function form of SWRC widely adopted in hydrological model might be revised for most situations at the macro-scale.

  9. Effects of Near Soil Surface Characteristics on the Soil Detachment Process in a Chronological Series of Vegetation Restoration

    Science.gov (United States)

    Wang, Bing

    2017-04-01

    The effects of near soil surface characteristics on the soil detachment process might be different at different stages of vegetation restoration. This study was performed to investigate the effects of the near soil surface factors of plant litter, biological soil crusts (BSCs), dead roots and live roots on the soil detachment process by overland flow at different stages of restoration. Soil samples (1 m long, 0.1 m wide, and 0.05 m high) under four treatment conditions were collected from 1-yr-old and 24-yr-old natural grasslands and subjected to flow scouring under five different shear stresses ranging from 5.3 to 14.6 Pa. The results indicated that the effects of near soil surface characteristics on soil detachment were substantial during the process of vegetation restoration. The total reduction in the soil detachment capacity of the 1-yr-old grassland was 98.1%, and of this total, 7.9%, 30.0% and 60.2% was attributed to the litter, BSCs and plant roots, respectively. In the 24-yr-old grassland, the soil detachment capacity decreased by 99.0%, of which 13.2%, 23.5% and 62.3% was caused by the litter, BSCs and plant roots, respectively. Combined with the previously published data of a 7-yr-old grassland, the influence of plant litter on soil detachment was demonstrated to increase with restoration time, but soil detachment was also affected by the litter type and composition. The role of BSCs was greater than that of plant litter in reducing soil detachment during the early stages of vegetation recovery. However, its contribution weakened with time since restoration. The influence of plant roots accounted for at least half or up to two-thirds of the total near soil surface factors, of which more than 72.6% was attributed to the physical binding effects of the roots. The chemical bonding effect of the roots increased with time since restoration and was greater than the effect of the litter on soil detachment in the late stages of vegetation restoration. The

  10. Site geological and geotechnical studies, determination of soil characteristics and soil response studies

    International Nuclear Information System (INIS)

    1985-08-01

    RFS or Regles Fondamentales de Surete (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety, while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the Service Central de Surete des Installations Nucleaires, or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary, any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The purpose of this RFS is to specify the soil characteristics to be determined and the soil response studies to be performed as part of site geological and geotechnical studies

  11. Predicting radiocaesium sorption characteristics with soil chemical properties for Japanese soils.

    Science.gov (United States)

    Uematsu, Shinichiro; Smolders, Erik; Sweeck, Lieve; Wannijn, Jean; Van Hees, May; Vandenhove, Hildegarde

    2015-08-15

    The high variability of the soil-to-plant transfer factor of radiocaesium (RCs) compels a detailed analysis of the radiocaesium interception potential (RIP) of soil, which is one of the specific factors ruling the RCs transfer. The range of the RIP values for agricultural soils in the Fukushima accident affected area has not yet been fully surveyed. Here, the RIP and other major soil chemical properties were characterised for 51 representative topsoils collected in the vicinity of the Fukushima contaminated area. The RIP ranged a factor of 50 among the soils and RIP values were lower for Andosols compared to other soils, suggesting a role of soil mineralogy. Correlation analysis revealed that the RIP was most strongly and negatively correlated to soil organic matter content and oxalate extractable aluminium. The RIP correlated weakly but positively to soil clay content. The slope of the correlation between RIP and clay content showed that the RIP per unit clay was only 4.8 mmol g(-1) clay, about threefold lower than that for clays of European soils, suggesting more amorphous minerals and less micaceous minerals in the clay fraction of Japanese soils. The negative correlation between RIP and soil organic matter may indicate that organic matter can mask highly selective sorption sites to RCs. Multiple regression analysis with soil organic matter and cation exchange capacity explained the soil RIP (R(2)=0.64), allowing us to map soil RIP based on existing soil map information. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Improvement of CBR and compaction characteristics of bauxite rich dispersive soils available in pakistan: a case study of khushab soil

    International Nuclear Information System (INIS)

    Batool, S.

    2016-01-01

    Dispersion of dispersive soil occurs when it comes in contact with water and clay particles deflocculate and disperse away from each other. Thus dispersive soils undergo erosion under low seepage velocity leading to instability problems of slopes and earth retaining structures. The amount of dispersion depends upon the mineralogy and geochemistry of clayey soil as well as the dissolved salts of the pore fluid. The dispersivity of the soil mainly depends on the amount of exchangeable sodium present in its formation. Under saturated conditions, the attractive forces are less than the repulsive forces and this will help the particles to disperse and go into colloidal suspension. The use of chemical stabilizers such as lime and cement to bind the clay particles and reduce the dispersivity of soil and to improve the compaction and CBR characteristics of bauxite rich dispersive soil present in Khushab district have been studied in this research. Soil behavior was studied after addition of 2%, 4%, 6% and 8% Lime and Cement, at optimum level of 6% for Lime and Cement; it has been observed that the CBR and compaction characteristics of Khushab soil have been improved. (author)

  13. Effect of Lime on characteristics of consolidation, strength, swelling and plasticity of fine grained soil

    Science.gov (United States)

    Estabragh, A. R.; Bordbar, A. T.; Parsaee, B.; Eskandari, Gh.

    2009-04-01

    Using Lime as an additive material to clayey soil is one of the best effective technique in building the soil structures to get some purposes such as soil stabilization, soil reinforcement and decreasing soil swelling. In this research the effect of Lime on geotechnical characteristics of a clayey soil was investigated. Soil specimen types used in this study were consisted of clayey soil as the control treatment and clay mixed with different weight fractions of lime, 4, 6, 8 & 10 percent. Some experiments such as CBR, atterburg limits, compaction, consolidation and swelling was conducted on specimens. Results revealed that adding lime to soil would change its physical and mechanical properties. Adding lime increase the compression strength and consolidation coefficient and decrease swelling potential and maximum dry density. According to the results, Atterburg experiments show that presence of lime in soil increase the liquid limit of low plasticity soil and decrease the liquid limit of high plasticity soil, but totally it decreases the plasticity index of soils. Key words: soil stabilization, lime, compression strength, swelling, atterburg limits, compaction

  14. EFFECT OF DIFFERENT LEVELS AGROECOLOGICAL LOADS ON BIOCHEMICAL CHARACTERISTICS OF SOIL

    Directory of Open Access Journals (Sweden)

    A. V. Shchur

    2016-01-01

    Full Text Available Aim. To study the effect of different levels of agri-environmental loads on the enzymatic activity of the soil.Methods. Isolation of soil fauna was conducted by thermogradient. Ecological characteristics of soil biota community was determined by ecological indices. The enzymatic activity of soil under different crops and at different levels of agri-environmental loads in our experiments was determined by methods proven in the laboratory soil enzymology Institute of Experimental Botany name V.F. Kuprevich and Belorussian Research Institute for Soil Science and Agricultural Chemistry.Results. Community soil biota is polydominant character, as evidenced by the values of environmental indices. It does not set a significant impact on the community agrotechnological loads of soil micro and mesofauna. Absolute figures soil phosphatase activity averaged over all embodiments without recourse formation were higher by 63% compared with plowing. Invertase and catalase activity was much higher in stubble on all variants of the experiment and selection of terms. The content of peroxidase lower under pure steam. The laws have taken place in respect of peroxidase activity, marked for polifenoloksidase activity.Main conclusion. There was no major change in the ecological characteristics of soil biota. In the enzymatic activity of soil influenced by sampling time, fertilizer system, soil tillage methods and cultivated crops.

  15. Characteristics and Classification of Soils Developed Over Coastal ...

    African Journals Online (AJOL)

    A semi-detailed soil survey of the land of Ikwuano Local Government Area Abia State South East Nigeria was made with the aid of the digitized map. Pedons in the identified mapping units were sampled and studied for their morphology, physical and chemical properties (e.g. soil colour, texture, pH, CEC, %OC, base ...

  16. Physicochemical Characteristics and Heavy Metal Levels in Soil ...

    African Journals Online (AJOL)

    ADOWIE PERE

    weathering of mineral; the anthropogenic sources are associated mainly with ... al., 2013 reported high levels of Cd, Zn, Ni, Cr and. Pb from soil .... Determination of trace elements (Zn and Mn): 5 g of the dried ..... vehicles constitute principal source of Pb. Lead ..... Interaction between metals and soil organic matter in various.

  17. Chemical, physical and biological characteristics of urban soils. Chapter 7

    Science.gov (United States)

    Richard V. Pouyat; Katalin Szlavecz; Ian D. Yesilonis; Peter M. Groffman; Kirsten. Schwarz

    2010-01-01

    Urban soils provide an array of ecosystem services to inhabitants of cities and towns. Urbanization affects soils and their capacity to provide ecosystem services directly through disturbance and management (e.g., irrigation) and indirectly through changes in the environment (e.g., heat island effect and pollution). Both direct and indirect effects contribute to form a...

  18. Undesirable compounds in oils and fats: analysis and regulation

    Directory of Open Access Journals (Sweden)

    Lacoste Florence

    2003-03-01

    Full Text Available The aim of this paper is to present, for some undesirable compounds representative of the major origins, a comparison between the efficiency of the analytical methods used (sensitivity, precision and existing regulations. An idea of the different origins of the presence of undesirable compounds in oils and fats is given. Then a focus is done on guidelines on contaminant analysis provided by European directives or Codex Alimentarius. The reliability of some existing test methods compared to regulations is also examined: lead, hexane, polycyclic aromatic hydrocarbons, and pesticide residues.

  19. A safety control device for detecting undesirable conditions

    Energy Technology Data Exchange (ETDEWEB)

    1974-09-26

    The invention relates to safety control devices. It deals with a device adapted to transmit a warning signal and to the detection of an undesirable condition in an associated apparatus, said device comprising switching means comprising transistors mounted in a reaction path, feeding means for opening the switching means whenever an undesirable condition has been detected by sensors, whereby an oscillator is caused to stop oscillating, and an outlet device controlled by the oscillator stoppage. This can be applied to the supervision of nuclear reactor.

  20. Improvement of clayey soil characteristics by using activated carbon

    Directory of Open Access Journals (Sweden)

    Al-Soudany Kawther

    2018-01-01

    Full Text Available The clay soil is weak and unable to carry the applied loads as a result of the weight of buildings or vehicles on the load performing on the soil. In this research, clay soil was grained and mixed with different percentages of activated carbon additives to investigate its performance. One type of clay soil from Al-Taji city was used. The percentages of activated carbon 3, 5, 7 and 9% were added to the soil and the influence of the admixture was observed by comparing the results with the untreated soil. The selected properties for this comparison were specific gravity, consistency limits, compaction, static compaction, CBR, consolidation, swelling and unconfined compressive strength. The results showed that the plasticity index, maximum dry weight and specific gravity decreased as the percentage of additives increased. The unconfined compressive strength increased as the percentage of additives and curing periods (1, 7, 14 and 28days increased. The amount of increase in soil strength was even more than 100% for the 9% activatedcarbon. The results showed that the addition of activated carbon has a positive effect to the geotechnical properties.

  1. Experimental research on the structural characteristics of high organic soft soil in different deposition ages

    Science.gov (United States)

    Liu, Fei; Lin, Guo-he

    2018-03-01

    High organic soft soil, which is distributed at Ji Lin province in China, has been studied by a lot of scholars. In the paper, structural characteristics with different deposition ages have been researched by experimental tests. Firstly, the characteristics of deposition age, degree of decompositon, high-pressure consolidation and microstructure have been measured by a series of tests. Secondly, structural strengths which were deposited in different ages, have been carried out to test the significant differences of stress-strain relations between remoulded and undisturbed high organic soft soil samples. Results showed that high organic soft soil which is deposited at different ages will influence its structural characteristics.

  2. Noninvasive Monitoring of Soil Static Characteristics and Dynamic States

    DEFF Research Database (Denmark)

    Cassiani, Giorgio; Ursino, Nadia; Deiana, Rita

    2012-01-01

    of possible climatic changes. We used long-term electromagnetic induction (EMI) time lapse monitoring and short-term irrigation experiments monitored using electrical resistivity tomography (ERT) and EMI, supported by time domain reflectometry (TDR) soil moisture measurements. Mapping of natural ?-ray...... emission, texture analysis, and laboratory calibration of an electrical constitutive relationship on soil samples complete the dataset. We observe that the growth of vegetation, with the associated below-ground allocation of biomass, has a significant impact on the soil moisture dynamics. It is well known...

  3. Free-Will and the Undesirability of Moral Education

    Science.gov (United States)

    Gordon, David

    1975-01-01

    This paper makes two arguments: (1) that education does not imply determinism; and (2) that if one takes the libertarian position with regard to the free-will/determinism issue, one is forced to the conclusion that moral education is undesirable. (RC)

  4. Associations between soil texture, soil water characteristics and earthworm populations of grassland

    DEFF Research Database (Denmark)

    Holmstrup, Martin; Lamandé, Mathieu; Torp, Søren Bent

    2011-01-01

    ) was not causally associated with the soil parameters studied. This indicates that there must be other causal factors associated with the abundance (and composition) of anecic worms that are not among the soil texture and structure parameters studied. On the other hand, soil texture (Coarse sand) was associated...

  5. Physicochemical Characteristics of Soil from Selected Solid Waste ...

    African Journals Online (AJOL)

    ADOWIE PERE

    size distribution indicated an average of 83% sand, 11% clay and 5% silt, while the soil ... of his food, including water and even the air he ... wrong applications, utilization and consumption ... from municipal, domestic and industrial sources and.

  6. Soil water characteristics of Middle Pleistocene paleosol layers on ...

    African Journals Online (AJOL)

    Administrator

    2011-09-14

    Sep 14, 2011 ... models to be fitted to the SWCC data, the van Genuchten model was applicable .... There is some risk that ... optimal model for the eight paleosol samples. ..... Code for Quantifying the Hydraulic Functions of Unsaturated Soils.

  7. Comparative study of soil physical characteristics of Jaipur district ...

    African Journals Online (AJOL)

    Journal Home > Vol 11, No 1 (2017) > ... resulted into huge erosion of the top fertile soil and leaving the land unproductive for agriculture production. ... the variation of physical properties and thus to better planning to work in agricultural field.

  8. Correlation of Cadmium Distribution Coefficients to Soil Characteristics

    DEFF Research Database (Denmark)

    Holm, Peter Engelund; Rootzen, Helle; Borggaard, Ole K.

    2003-01-01

    on whole soil samples have shown that pH is the main parameter controlling the distribution. To identify further the components that are important for Cd binding in soil we measured Cd distribution coefficients (K-d) at two fixed pH values and at low Cd loadings for 49 soils sampled in Denmark. The Kd...... values for Cd ranged from 5 to 3000 L kg(-1). The soils were described pedologically and characterized in detail (22 parameters) including determination of contents of the various minerals in the clay fraction. Correlating parameters were grouped and step-wise regression analysis revealed...... interlayered clay minerals [HIM], chlorite, quartz, microcline, plagioclase) were significant in explaining the Cd distribution coefficient....

  9. Evaluation of Physicochemical Characteristics of Water and Soil ...

    African Journals Online (AJOL)

    PROF HORSFALL

    analysis of the Soil and water samples shows traces of heavy metals when compared ... The research thus point out the need for environmental Education and proper ..... Macro invertebrate community pattems and diversity in relation to water ...

  10. Incorporation of Biochar Carbon into Stable Soil Aggregates: The Role of Clay Mineralogy and Other Soil Characteristics

    Institute of Scientific and Technical Information of China (English)

    Charlene N.KELLY; Joseph BENJAMIN; Francisco C.CALDER(O)N; Maysoon M.MIKHA; David W.RUTHERFORD; Colleen E.ROSTAD

    2017-01-01

    Aggregation and structure plav key roles in water-holding capacity and stability of soils.In this study,the incorporation of carbon (C) from switchgrass biochar into stable aggregate size fractions was assessed in an Aridisol (from Colorado,USA) dominated by 2:1 clays and an Alfisol (from Virginia,USA) containing weathered mixed 1∶1 and 2∶1 mineralogy,to evaluate the effect of biochar addition on soil characteristics.The biochar was applied at 4 levels,0,25,50,and 100 g kg-1,to the soils grown with wheat in a growth chamber experiment.The changes in soil strength and water-holding capacity using water release curves were measured.In the Colorado soil,the proportion of soil occurring in large aggregates decreased,with concomitant increases in small size fractions.No changes in aggregate size fractions occurred in the Virginia soil.In the Colorado soil,C content increased from 3.3 to 16.8 g kg-1,whereas in the < 53 μm fraction C content increased from 5.7 to 22.6 g kg-1 with 100 g kg-1 biochar addition.In the Virginia soil,C content within aggregate size fractions increased for each size fraction,except the > 2 000 μm fraction.The greatest increase (from 6.2 to 22.0 g kg-1) occurred in the 53-250 μm fraction.The results indicated that C was incorporated into larger aggregates in the Virginia soil,but remained largely unassociated to soil particles in the Colorado soil.Biochar addition had no significant effect on water-holding capacity or strength measurements.Adding biochar to more weathered soils with high native soil organic content may result in greater stabilization of incorporated C and result in less loss because of erosion and transport,compared with the soils dominated by 2∶1 clays and low native soil organic content.

  11. Characteristics of heavy metal pollution on roadside soil along highway

    Science.gov (United States)

    Zheng, Chaocheng

    2017-10-01

    Highway traffic is the main source of heavy metal pollution. Due to limited cropland, it is very common to plant crops along the highways. So, in view of agricultural products safety, heavy metal pollution by highway traffic to soils along highway is widely concerned. Therefore, to study distribution traits, accumulative laws and influence factors of heavy metals in agricultural soils could provide scientific evidence and theoretical basis for environmental protection along express way.

  12. Effect of flaming on wild mustard (Sinapis arvensis L. soil seed bank, soil micro organisms and physicochemical characteristics

    Directory of Open Access Journals (Sweden)

    H. Salimi

    2016-05-01

    Full Text Available In order to study the effect of flaming on seed viability of Sinapis arvensis L., changes in microorganisms population and physicochemical characteristics of soil after canola (Brassica napus L. harvesting, an experiment was carried out based on randomized complete block design with four replications and eight treatments at Karaj Research Center, Iran, during 2005- 2006. After harvesting canola at the end of spring, wild mustard seeds were distributed evenly on the surface of the soil. In some plots, canola stubbles were left on the ground and in some plots canola stubbles were taken off. Under this condition, the following treatments were applied: Flaming under wet and dry soil condition, burning stubbles under wet and dry soil condition. In other plots canola stubbles were taken off the plots and then flaming was applied under wet and dry soil conditions. Check plots did not receive any treatment. Results indicated that all treatments reduced seed viability, and the highest loss in seedling density occurred in the flaming treatment on dry-soil. Flaming did not have any serious affect on soil microorganisms or on its other physiochemical aspects, however dry-soil treatments proved the safest.

  13. Soil organic matter distribution and microaggregate characteristics as affected by agricultural management and earthworm activity

    OpenAIRE

    Pulleman, M M; Six, J; van Breemen, N; Jongmans, A G

    2005-01-01

    Stable microaggregates can physically protect occluded soil organic matter (SOM) against decomposition. We studied the effects of agricultural management on the amount and characteristics of microaggregates and on SOM distribution in a marine loam soil in the Netherlands. Three long-term farming systems were compared: a permanent pasture, a conventional-arable system and an organic-arable system. Whole soil samples were separated into microaggregates (53-250 mu m), 20-53 mu m and 20 mu m) ve...

  14. Adsorption and desorption characteristics of lindane, carbofuran and methyl parathion on various Indian soils

    Energy Technology Data Exchange (ETDEWEB)

    Rama Krishna, K. [Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036 (India)], E-mail: ramakrishnaiitm@gmail.com; Philip, Ligy [Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036 (India)], E-mail: ligy@iitm.ac.in

    2008-12-30

    Adsorption and desorption characteristics of three insecticides on four Indian soils were studied. Insecticides used were representative of organochlorine, organophosphate, and carbomate groups. The order of adsorption of pesticides on soils was: lindane > methyl parathion > carbofuran. Compost soil had shown the maximum adsorption capacity. The order of adsorption capacity of various soils were: compost soil > clayey soil > red soil > sandy soil. Adsorption isotherms were better fitted to Freundlich model and K{sub f} values increased with increase in organic matter content of the soils. Thermodynamic parameters indicated favorable adsorption of all the three pesticides in four different soils. Adsorption was exothermic in nature. Distilled water desorbed 30-60% of adsorbed pesticides whereas; organic solvents were able to affect 50-80% of sorbed pesticides. Clay content and organic matter played a significant role in pesticide adsorption and desorption processes. Hysteresis effect was observed in red, clayey and compost soils. Hysteresis effect increased with increase in organic matter and clay content of the soils.

  15. Linking soil type and rainfall characteristics towards estimation of surface evaporative capacitance

    Science.gov (United States)

    Or, D.; Bickel, S.; Lehmann, P.

    2017-12-01

    Separation of evapotranspiration (ET) to evaporation (E) and transpiration (T) components for attribution of surface fluxes or for assessment of isotope fractionation in groundwater remains a challenge. Regional estimates of soil evaporation often rely on plant-based (Penman-Monteith) ET estimates where is E is obtained as a residual or a fraction of potential evaporation. We propose a novel method for estimating E from soil-specific properties, regional rainfall characteristics and considering concurrent internal drainage that shelters soil water from evaporation. A soil-dependent evaporative characteristic length defines a depth below which soil water cannot be pulled to the surface by capillarity; this depth determines the maximal soil evaporative capacitance (SEC). The SEC is recharged by rainfall and subsequently emptied by competition between drainage and surface evaporation (considering canopy interception evaporation). We show that E is strongly dependent on rainfall characteristics (mean annual, number of storms) and soil textural type, with up to 50% of rainfall lost to evaporation in loamy soil. The SEC concept applied to different soil types and climatic regions offers direct bounds on regional surface evaporation independent of plant-based parameterization or energy balance calculations.

  16. Soil hydraulic characteristics and its influence on the design of soak ...

    African Journals Online (AJOL)

    The hydraulic characteristics of the soil profile in a plot of land designated for a residential purpose were studied to obtain dependable data for the design of efficient septic- soak-away system in the estate. In situ infiltration tests on three horizons above 400 cm depth were conducted, and soil samples taken from the same ...

  17. Infiltration characteristics of non-aqueous phase liquids in undisturbed loessal soil cores

    Institute of Scientific and Technical Information of China (English)

    WANG Yunqiang; SHAO Ming'an

    2009-01-01

    The widespread contamination of soils and aquifers by non-aqueous phase liquids (NAPL), such as crude oil, poses serious environmental and health hazards globally. Understanding the infiltration characteristics of NAPL in soil is crucial in mitigating or remediating soil contamination. The infiltration characteristics of crude and diesel oils into undisturbed loessal soil cores, collected in polymethyl methacrylate cylindrical columns, were investigated under a constant fluid head (3 cm) of either crude oil or diesel oil. The infiltration rate of both crude and diesel oils decreased exponentially as wetting depth increased with time. Soil core size and bulk density both had a significant effect on NAPL infiltration through the undisturbed soil cores; a smaller core size or a greater bulk density both reduced oil penetration to depth. Compacting soil in areas susceptible to oil spills may be an effective way to reduce contamination. The infiltration of NAPL into soil cores was spatially anisotropic and heterogeneous, thus recording the data at four points on the soil core is a good way to improve the accuracy of experimental results. Our results provided information about crude and diesel oils, rather than their components, and may have practical value for remediation of contaminated loessal soils.

  18. Infiltration characteristics of non-aqueous phase liquids in undisturbed loessal soil cores.

    Science.gov (United States)

    Wang, Yunqiang; Shao, Ming'an

    2009-01-01

    The widespread contamination of soils and aquifers by non-aqueous phase liquids (NAPL), such as crude oil, poses serious environmental and health hazards globally. Understanding the infiltration characteristics of NAPL in soil is crucial in mitigating or remediating soil contamination. The infiltration characteristics of crude and diesel oils into undisturbed loessal soil cores, collected in polymethyl methacrylate cylindrical columns, were investigated under a constant fluid head (3 cm) of either crude oil or diesel oil. The infiltration rate of both crude and diesel oils decreased exponentially as wetting depth increased with time. Soil core size and bulk density both had significant effects on NAPL infiltration through the undisturbed soil cores; a smaller core size or a greater bulk density could reduce oil penetration to depth. Compacting soil in areas susceptible to oil spills may be an effective stratage to reduce contamination. The infiltration of NAPL into soil cores was spatially anisotropic and heterogeneous, thus recording the data at four points on the soil core is a good stratage to improve the accuracy of experimental results. Our results revealed that crude and diesel oils, rather than their components, have a practical value for remediation of contaminated loessal soils.

  19. The soil-water characteristic curve at low soil-water contents: Relationships with soil specific surface area and texture

    DEFF Research Database (Denmark)

    Resurreccion, A C; Møldrup, Per; Tuller, M

    2011-01-01

    dominate over capillary forces, have also been used to estimate soil specific surface area (SA). In the present study, the dry end of the SWRC was measured with a chilled-mirror dew point psychrometer for 41 Danish soils covering a wide range of clay (CL) and organic carbon (OC) contents. The 41 soils were...

  20. Comparative mineralogical characteristics of red soils from South Bulgaria

    Directory of Open Access Journals (Sweden)

    Marlena Yaneva

    2015-01-01

    Full Text Available The present study aims to compare mineralogical composition of red soils, formed on marbles in South Bulgaria. We used mineralogical analysis of heavy and light mineral fraction in immersion under polarizing microscope and X-ray diffraction analysis of bulk sample and clay fraction. Three test polygons, located in South Bulgaria were examined: Petrovo, Nova Lovcha and Dobrostan, which are characterized with different latitude, altitude, and exposition. Three or more sites from each polygon were sampled and analyzed. The red soils are formed on white and gray calcite and calcite-dolomite marbles, impure silicate-rich marbles and only in one site – on marble breccias. We determined the following mineral phases in red soils: calcite, dolomite, quarts, and feldspars, mica, illite-type mica, illite, smectite, vermiculite-smectite, and kaolinite. Heavy minerals are represented by amphibole, titanite and epidote, and minor amounts of zircon, garnet, tourmaline, rutile, pyroxene, andalusite, kyanite, sillimanite and apatite. Opaque minerals are predominantly goethite and hematite. Plant tissue is abundant in light fraction from the uppermost soil horizons. Analyses of heavy mineral fraction show presence of metamorphic and igneous minerals which indicate participation of weathering products from other rock types in the nearby area. The types of heavy minerals in soils depend more on composition of parent rocks and geomorphic position than on climate type. Soils from Nova Lovcha show similar composition, but the quantity of goethite and hematite significantly increase in soil from plain. Typical high-metamorphic minerals as andalusite, kyanite and sillimanite present only in Nova Lovcha, while garnet dominates in Petrovo and opaque minerals - in Dobrostan. Red soils, formed on slopes, where erosion prevails over accumulation, contain more illite, smectite and vermiculite-smectite, and very few or no kaolinite, whereas the kaolinite is dominant in soils

  1. [Characteristics of soil organic carbon and enzyme activities in soil aggregates under different vegetation zones on the Loess Plateau].

    Science.gov (United States)

    Li, Xin; Ma, Rui-ping; An, Shao-shan; Zeng, Quan-chao; Li, Ya-yun

    2015-08-01

    In order to explore the distribution characteristics of organic carbon of different forms and the active enzymes in soil aggregates with different particle sizes, soil samples were chosen from forest zone, forest-grass zone and grass zone in the Yanhe watershed of Loess Plateau to study the content of organic carbon, easily oxidized carbon, and humus carbon, and the activities of cellulase, β-D-glucosidase, sucrose, urease and peroxidase, as well as the relations between the soil aggregates carbon and its components with the active soil enzymes were also analyzed. It was showed that the content of organic carbon and its components were in order of forest zone > grass zone > forest-grass zone, and the contents of three forms of organic carbon were the highest in the diameter group of 0.25-2 mm. The content of organic carbon and its components, as well as the activities of soil enzymes were higher in the soil layer of 0-10 cm than those in the 10-20 cm soil layer of different vegetation zones. The activities of cellulase, β-D-glucosidase, sucrose and urease were in order of forest zone > grass zone > forest-grass zone. The peroxidase activity was in order of forest zone > forest-grass zone > grass zone. The activities of various soil enzymes increased with the decreasing soil particle diameter in the three vegetation zones. The activities of cellulose, peroxidase, sucrose and urease had significant positive correlations with the contents of various forms of organic carbon in the soil aggregates.

  2. Effects of soil management in vineyard on soil physical and chemical characteristics

    Directory of Open Access Journals (Sweden)

    Linares Rubén

    2014-01-01

    Full Text Available Cover crops in Mediterranean vineyards are scarcely used due to water competition between the cover crop and the grapevine; however, bare soil management through tillage or herbicides tends to have negative effects on the soil over time (organic matter decrease, soil structure and soil fertility degradation, compaction, etc. The objective of this study was to understand how soil management affects soil fertility, compaction and infiltration over time. To this end, two bare soil techniques were compared, tillage (TT and total herbicide (HT with two cover crops; annual cereal (CT and annual grass (AGT, established for 8 years. CT treatment showed the highest organic matter content, having the biggest amount of biomass incorporated into the soil. The annual adventitious vegetation in TT treatment (568 kg dry matter ha-1 that was incorporated into the soil, kept the organic matter content higher than HT levels and close to AGT level, in spite of the greater aboveground annual biomass production of this treatment (3632 kg dry matter ha-1 whereas only its roots were incorporated into the soil. TT presented the highest bulk density under the tractor track lines and a greatest resistance to penetration (at 0.2 m depth. AGT presented bulk density values (upper 0.4 m lower than TT and penetration resistance in CT lower (at 0.20 m depth than TT too. The HT decreased water infiltration due to a superficial crust generated for this treatment. These results indicate that the use of annual grass cover can be a good choice of soil management in Mediterranean climate due to soil quality improvement, with low competition and simple management.

  3. [Characteristics of soil phosphorous loss under different ecological planting patterns in hilly red soil regions of southern Hunan Province, China].

    Science.gov (United States)

    Yuan, Min; Wen, Shi-Lin; Xu, Ming-Gang; Dong, Chun-Hua; Qin, Lin; Zhang, Lu

    2013-11-01

    Taking a large standard runoff plot on a red soil slope in Qiyang County, southern Hunan Province as a case, this paper studied the surface soil phosphorus loss characteristics in the hilly red soil regions of southern Hunan under eight ecological planting patterns. The phosphorus loss from wasteland (T1) was most serious, followed by that from natural sloped cropping patterns (T2 and T3), while the phosphorus loss amount from terrace cropping patterns (T4-T8) was the least, only occupying 9.9%, 37%, 0.7%, 2.3%, and 1.9% of T1, respectively. The ecological planting patterns directly affected the forms of surface-lost soil phosphorus, with the particulate phosphorus (PP) as the main lost form. Under the condition of rainstorm (daily rainfall > 50 mm), rainfall had lesser effects on the phosphorus loss among different planting patterns. However, the phosphorus loss increased with increasing rain intensity. The surface soil phosphorus loss mainly occurred from June to September. Both the rainfall and the rain intensity were the factors directly affected the time distribution of surface soil phosphorus loss in hilly red soil regions of southern Hunan.

  4. Dynamic characteristics of soil respiration in Yellow River Delta wetlands, China

    Science.gov (United States)

    Wang, Xiao; Luo, Xianxiang; Jia, Hongli; Zheng, Hao

    2018-02-01

    The stable soil carbon (C) pool in coastal wetlands, referred to as "blue C", which has been extensively damaged by climate change and soil degradation, is of importance to maintain global C cycle. Therefore, to investigate the dynamic characteristics of soil respiration rate and evaluate C budgets in coastal wetlands are urgently. In this study, the diurnal and seasonal variation of soil respiration rate in the reed wetland land (RL) and the bare wetland land (BL) was measured in situ with the dynamic gas-infrared CO2 method in four seasons, and the factors impacted on the dynamic characteristics of soil respiration were investigated. The results showed that the diurnal variation of soil respiration rate consistently presented a "U" curve pattern in April, July, and September, with the maximum values at 12:00 a.m. and the minimum values at 6:00 a.m. In the same season, the diurnal soil respiration rate in RL was significantly greater than those in BL (P respiration rate was 0.14, 0.42, and 0.39 μmol m-2 s-1 in RL, 0.05, 0.22, 0.13, and 0.01 μmol m-2 s-1 in BL, respectively. Soil surface temperature was the primary factor that influenced soil respiration, which was confirmed by the exponential positive correlation between the soil respiration rate and soil surface temperature in BL and RL (P respiration, confirming by the significantly negative correlation between soil respiration rate and the content of soluble salt. These results will be useful for understanding the mechanisms underlying soil respiration and elevating C sequestration potential in the coastal wetlands.

  5. A two stage data envelopment analysis model with undesirable output

    Science.gov (United States)

    Shariff Adli Aminuddin, Adam; Izzati Jaini, Nur; Mat Kasim, Maznah; Nawawi, Mohd Kamal Mohd

    2017-09-01

    The dependent relationship among the decision making units (DMU) is usually assumed to be non-existent in the development of Data Envelopment Analysis (DEA) model. The dependency can be represented by the multi-stage DEA model, where the outputs from the precedent stage will be the inputs for the latter stage. The multi-stage DEA model evaluate both the efficiency score for each stages and the overall efficiency of the whole process. The existing multi stage DEA models do not focus on the integration with the undesirable output, in which the higher input will generate lower output unlike the normal desirable output. This research attempts to address the inclusion of such undesirable output and investigate the theoretical implication and potential application towards the development of multi-stage DEA model.

  6. A Case of Undesired Bleb Developed After Penetrating Injury

    Directory of Open Access Journals (Sweden)

    Cem Ozgonul

    2014-03-01

    Full Text Available Eighty-year-old male patient was admitted to our policlinic with stinging, burning and itching in both eyes. Ophthalmological examination revealed avascular undesired bleb that releated with anterior chamber at 2-3 hour quadrant nasal limbus with the surrounding corneal and conjunctival epithelium was vascularized and the dimension was 3x3x3 mm. Towards these findings, we questioned the patient again and we found that, 40 years ago, a broken part of the shaving razor had injured his eye. After penetrating injury of the eye, because of the sutured wound leakage, undesired bleb formations can be seen. We suggest that kind of patient shold be followed up to prevent late complications of penetrating injury.

  7. Worry and perceived threat of proximal and distal undesirable outcomes.

    Science.gov (United States)

    Bredemeier, Keith; Berenbaum, Howard; Spielberg, Jeffrey M

    2012-04-01

    Individuals who are prone to worry tend to overestimate the likelihoods and costs of future undesirable outcomes. However, it is unclear whether these relations vary as a function of the timeframe of the event in question. In the present study, 342 undergraduate students completed a self-report measure of worry and rated the perceived probabilities and costs of 40 undesirable outcomes. Specifically, each participant estimated the probability that each of these outcomes would occur within three different timeframes: the next month, the next year, and the next 10 years. We found that the strength of the association between worry and probability estimates was strongest for the most proximal timeframe. Probability estimates were more strongly associated with worry for participants with elevated cost estimates, and this interactive effect was strongest for the most distal timeframe. Implications of these findings for understanding the etiology and treatment of excessive worry are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. The influence of groundwater flow effect on changes of loess soil strength characteristics

    Directory of Open Access Journals (Sweden)

    Bida S.V.

    2015-09-01

    Full Text Available The problem of stability of slopes - one of the most topical at present. It is proved that the reliability of the slope stability assessment affects the accuracy of the strength characteristics of the soil. One of the most common methods is one-plane shifts method Established that processing of results of soil shift test in logarithmic coordinates can more accurately identify indicators of strength. Discovered that the magnitude of the strength characteristics of soil test results which is obtained on one plane shift depends on the vertical pressure during testing.

  9. compressibility characteristics of compacted black cotton soil treated

    African Journals Online (AJOL)

    eobe

    E-mail addresses: 1111 aeberemu@yahoo.com, 2222sadat1010@live.com. Abstract. One dimensional consolidation studies on compacted black cotton soil treated with up to 16% rice .... 80% of the organic matter of the husk is burnt off and.

  10. Microbial characteristics of soils on a latitudinal transect in Siberia

    Czech Academy of Sciences Publication Activity Database

    Šantrůčková, Hana; Bird, M. I.; Kalaschnikov, Y. N.; Grund, M.; Elhottová, Dana; Šimek, Miloslav; Grigoryev, S.; Gleixner, G.; Arneth, A.; Schulze, E.D.; Lloyd, J.

    2003-01-01

    Roč. 9, - (2003), s. 1106-1117 ISSN 1354-1013 R&D Projects: GA ČR GA526/99/P033 Institutional research plan: CEZ:AV0Z6066911 Keywords : latitudial transect * microbial net growth rate * soil microbial activity Subject RIV: EH - Ecology, Behaviour Impact factor: 4.152, year: 2003

  11. Effects of some physical and chemical characteristics of soil on ...

    African Journals Online (AJOL)

    ELO

    components (number of seeds per pod, number of pod per plant, grain yield, pod yield and weight of. 1000 seeds) ... INTRODUCTION. Legumes are ... Nigeria accounting for over 70% of the total world pro- ... complexes between metal ions associated with large clay ... Enhancement and maintenance of soil productivity.

  12. Physicochemical characteristics and heavy metal levels in soil ...

    African Journals Online (AJOL)

    Distribution pattern of heavy metals in petrol stations, abattoirs, mechanic workshops and hospital incinerator sites were Mn > Zn > Pb > Cd, while for dumpsites Zn > Mn > Pb > Cd. Pollution index indicated that soil qualities varied between slightly contaminated to severely polluted status. This showed that the heavy metal ...

  13. Soil characteristics as criteria for cathodic protection of a nuclear fuel production facility

    International Nuclear Information System (INIS)

    Jenkins, C.F.; Corbett, R.A.

    1987-01-01

    The fact that buried metallic structures corrode is well documented. It has been postulated that the extent and rate of attack is controlled predominantly by the characteristics of the surrounding soil. Therefore, prior to constructing a new facility designed to process accumulated nuclear waste, consideration was given to protecting its underground pipelines against corrosion. Leak frequency curves from other nearby plantsites, extensive soil resistivity surveys, and geochemical analyses, were used to evaluate the onsite soil characteristics for corrosion susceptibility. Analysis of the data collected over a three-year period indicated that although the soil is not overly aggressive, substantial heterogeneity existed so as to establish galvanic cells along pipe lengths passing through the soil. To limit the extent of corrosion on underground piping, the application of an impressed current cathodic protection system was recommended to supplement a high integrity, corrosion resistant coating and wrap system

  14. Characteristics of biomass ashes from different materials and their ameliorative effects on acid soils.

    Science.gov (United States)

    Shi, Renyong; Li, Jiuyu; Jiang, Jun; Mehmood, Khalid; Liu, Yuan; Xu, Renkou; Qian, Wei

    2017-05-01

    The chemical characteristics, element contents, mineral compositions, and the ameliorative effects on acid soils of five biomass ashes from different materials were analyzed. The chemical properties of the ashes varied depending on the source biomass material. An increase in the concrete shuttering contents in the biomass materials led to higher alkalinity, and higher Ca and Mg levels in biomass ashes, which made them particularly good at ameliorating effects on soil acidity. However, heavy metal contents, such as Cr, Cu, and Zn in the ashes, were relatively high. The incorporation of all ashes increased soil pH, exchangeable base cations, and available phosphorus, but decreased soil exchangeable acidity. The application of the ashes from biomass materials with a high concrete shuttering content increased the soil available heavy metal contents. Therefore, the biomass ashes from wood and crop residues with low concrete contents were the better acid soil amendments. Copyright © 2016. Published by Elsevier B.V.

  15. An analysis on remediation characteristics of soils contaminated with Co for in-situ application

    International Nuclear Information System (INIS)

    Kim, K. N.; Won, H. J.; Kweun, H. S.; Shon, J. S.; Oh, W. J.

    1999-01-01

    The solvent flushing apparatus for in-situ soil remediation was designed. After the soil around nuclear facilities was sampled and compulsorily contaminated by Co solution, the remediation characteristics by solvent flushing were analyzed. Meanwhile, the nonequilibrium sorption code was developed for modelling of the soil remediation by solvent flushing, and input parameters needed for modelling were measured by laboratory experiment. Experimental results are as follows: The soil around nuclear facilities belongs to Silt Loam including a lot of silt and sand. When water was used as a solvent, the higher was the hydraulic conductivity, the higher the efficiency of soil remediation was. The values calculated by the nonequilibrium sorption code agreed with experimental values more exactly than the values calculated by the equilibrium sorption code. When citric acid was used as a solvent, the soil remediation efficiency by citric acid showed 1.65 times that by water

  16. The role of curing period on the engineering characteristics of a cement-stabilized soil

    Directory of Open Access Journals (Sweden)

    Athanasopoulou Antonia

    2016-07-01

    Full Text Available Very often, pavements constructed in an economical manner or matching surface elevations of adjacent lanes cannot be designed for the soil conditions of the existing subgrade. Therefore, there is a need to stabilize the soil with an appropriate chemical substance in order to increase its strength to a satisfactory level. For the enhancement of subgrade soil strength characteristics, lime and cement are the most commonly used stabilizers. An experimental program was directed to the evaluation of a clayey soil and its mixtures with different cement contents performing tests on the index properties, the moisture-density relation, the unconfined compressive strength, and linear shrinkage. There is a definite improvement in strength. The time interval used to cure the prepared specimens affected positively both strength and plasticity features of the mixtures. A comparison with mixtures of the same soil with lime has been made, because of the wide use of lime in clay soil stabilization projects.

  17. Migration characteristics of cobalt-60 through sandy soil in high pH solution

    International Nuclear Information System (INIS)

    Ohnuki, Toshihiko

    1992-01-01

    Migration characteristics of 60 Co through sandy soil in high pH solution has been investigated by both column and batch techniques. The association of 60 Co with the sandy soil and its components were studied by sequential extraction techniques. The concentration profile of 60 Co in the sandy soil column was composed of two exponential curves showing that 60 Co would consist of immobile and mobile fractions. The immobile 60 Co was retained by the sandy soil and was distributed near the top. Though the mobile 60 Co was little sorbed by soil and migrated through the soil column, maximum concentration of 60 Co in the effluents decreased slightly with increasing path length of the soil column. The sequential extraction of 60 Co from the sandy soil and from its components showed that 60 Co was sorbed by both manganese oxide and clay minerals. And manganese oxide is one of the responsible soil components for the observed decrease in the maximum concentration of 60 Co in the effluents. Although the content of manganese oxide in the sandy soil was 0.13%, manganese oxide is the important component to prevent from the migration of 60 Co in the high pH solution. (author)

  18. Physicochemical characteristics of the rhizosphere soils of some cereal crops in Ambo Woreda, West Shoa, Ethiopia

    Directory of Open Access Journals (Sweden)

    Louis E. Attah

    2010-03-01

    Full Text Available In this study, physicochemical properties of rhizosphere soils of some cereal crops in Ambo Woreda, West Shoa in Ethiopia have been investigated. Soil samples were collected from four different localities, viz. Awaro, Senkele, Meja and Guder, and their edaphic characteristics are determined. The soils are dominated by clay (40.4-45.8% along with coarse particles of sand. Bulk density, organic carbon (1.52-1.81% and electrical conductivity (1.3-1.9 dSm are low in all the soil samples. The soils are acidic with pH varying from 6.2 to 6.7. There are similarities in the relatively low content of available phosphorus (1.4-2.4 mg kg-1 and high available nitrogen content (480-986 mg kg-1 in all the soil samples while available potassium content (240-496 mg kg-1 is found to be medium in Awaro soil but high in the other three soil samples. Deficiencies are observed in the levels of available micro-nutrients (Cu: 1.2-1.8 µg g-1, Zn: 1.2-1.8 µg g-1 and Mn: 3.2-3.8 µg g-1 while the Fe content is sufficient in all the soil samples (340-496 µg g-1. With proper soil management, the farmlands studied are recommended for the cultivation of cereal crops.

  19. Characteristics of soil seed bank in plantation forest in the rocky mountain region of Beijing, China

    Institute of Scientific and Technical Information of China (English)

    HU Zeng-hui; YANG Yang; LENG Ping-sheng; DOU De-quan; ZHANG Bo; HOU Bing-fei

    2013-01-01

    We investigated characteristics (scales and composition) of soil seed banks at eight study sites in the rocky mountain region of Beijing by seed identification and germination monitoring.We also surveyed the vegetation communities at the eight study sites to explore the role of soil seed banks in vegetation restoration.The storage capacity of soil seed banks at the eight sites ranked from 766.26 to 2461.92 seedsm-2.A total of 23 plant species were found in soil seed banks,of which 63-80%of seeds were herbs in various soil layers and 60% of seeds were located in the soil layer at 0-5 cm depth.Biodiversity indices indicated clear differences in species diversity of soil seed banks among different plant communities.The species composition of aboveground vegetation showed low similarity with that based on soil seed banks.In the aboveground plant community,the afforestation tree species showed high importance values.The plant species originating from soil seed banks represented natural regeneration,which also showed relatively high importance values.This study suggests that in the rocky mountain region of Beijing the soil seed banks played a key role in the transformation from pure plantation forest to near-natural forest,promoting natural ecological processes,and the role of the seed banks in vegetation restoration was important to the improvement of ecological restoration methods.

  20. [Periodic characteristics of soil CO2 flux in mangrove wetland of Quanzhou Bay, China].

    Science.gov (United States)

    Wang, Zong-Lin; Wu, Yan-You; Xing, De-Ke; Liu, Rong-Cheng; Zhou Gui-Yao; Zhao, Kuan

    2014-09-01

    Mangrove wetland ecosystem in Quanzhou Bay in Fujian Province is newly restored with a regular semidiurnal tide. Soil CO2 concentration in the mangrove soil was determined by Li-840 portable gas analyzer, and periodic characteristics of soil CO2 emission was investigated. The soil CO2 flux in the wetland soil was relatively small because the mangrove was young. The change trends of soil CO2 concentration and flux with time were consistent in Kandelia obovate and Aegiceras corniculatum communities in the intertidal periods. The CO2 concentration and flux in the wetland soil were 557.08-2211.50 μmol · mol(-1) and -0.21-0.40 μmol · m(-2) · s(-1), respectively. The average CO2 flux in the wetland soil was 0.26 μmol · mol(-1) · s(-1) in the intertidal of morning and evening tides (early intertidal) and -0.01 μmol · m(-2) · s(-1) in the intertidal of evening and morning tides (late intertidal), respectively. At the same time after the tide, the concentration and flux of CO2 in the mangrove soil in early intertidal was higher than that in late intertidal. In early intertidal, the relationship between the flux and instantaneous concentration of CO2 in the wetland soil was expressed as a bell-shaped curve, and CO2 flux increased first and then decreased with the increasing CO2 concentration, which was in conformity with Gaussian distribution.

  1. EFFECT OF REFINED PETROLEUM PRODUCTS CONTAMINATION ON BACTERIAL POPULATION AND PHYSICOCHEMICAL CHARACTERISTICS OF CULTIVATED AGRICULTURAL SOIL

    Directory of Open Access Journals (Sweden)

    Adewale Sogo Olalemi

    2012-10-01

    Full Text Available An investigation into the effect of refined petroleum products contamination on bacterial population and physicochemical characteristics of cultivated agricultural soil was carried out. The soil samples obtained from the Teaching and Research Farm, Obakekere, Federal University of Technology, Akure, Ondo State were contaminated with varying volumes of petrol, diesel and kerosene. The results revealed higher bacterial populations in uncontaminated soils than contaminated soils. The counts of bacteria ranged from 3.0 × 105 to 5.0 × 105 cfu/g in uncontaminated soils and 1.0 × 105 to 3.0 × 105 cfu/g in contaminated soils. The isolated bacteria were identified as Bacillus subtilis, Flavobacterium lutescens, Micrococcus luteus, Corynebacterium variabilis, Pseudomonas fluorescens. The contamination had no significant effect on pH, potassium, sodium, organic carbon and nitrogen content of the soils, while the moisture, calcium, phosphorus and magnesium content of the contaminated soils were significantly different (P < 0.05 compared with the uncontaminated soils. The ability of Bacillus subtilis, Flavobacterium lutescens, Micrococcus luteus, and Pseudomonas fluorescens to utilize the refined petroleum products suggest that these bacteria had potential to bioremediate petroleum contaminated soils.

  2. 40 CFR 268.32 - Waste specific prohibitions-Soils exhibiting the toxicity characteristic for metals and...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste specific prohibitions-Soils... Prohibitions on Land Disposal § 268.32 Waste specific prohibitions—Soils exhibiting the toxicity characteristic... from land disposal: any volumes of soil exhibiting the toxicity characteristic solely because of the...

  3. The Soil-Water Characteristic Curve of Unsaturated Tropical Residual Soil

    Science.gov (United States)

    Yusof, M. F.; Setapa, A. S.; Tajudin, S. A. A.; Madun, A.; Abidin, M. H. Z.; Marto, A.

    2016-07-01

    This study was conducted to determine the SWCC of unsaturated tropical residual soil in Kuala Lumpur, Malaysia. Undisturbed soil samples at five locations of high-risk slopes area were taken at a depth of 0.5 m using block sampler. In the determination of the SWCC, the pressure plate extractor with the capacity of 1500 kN/m2 has been used. The index properties of the soil such as natural moisture content, Atterberg limits, specific gravity, and soil classification are performed according to BS 1377: Part 2: 1990. The results of index properties show that the natural moisture content of the soil is between 36% to 46%, the plasticity index is between 10% - 26%, the specific gravity is between 2.51 - 2.61 and the soils is classified as silty organic clay of low plasticity. The SWCC data from the pressure plate extractor have been fitted with the Fredlund and Xing equation. The results show that the air entry value and residual matric suction for residual soils are in the range of 17 kN/m2 to 24 kN/m2 and 145 kN/m2 to 225 kN/m2 respectively. From the fitting curve, it is found that the average value of the Fredlund and Xing parameters such as a, n and m are in the range of 0.24-0.299, 1.7-4.8 and 0.142-0.440 respectively.

  4. The Characteristics of Electrical and Physical Properties of Peat Soil in Rasau Village, West Kalimantan

    Science.gov (United States)

    Aminudin, A.; Hasanah, T. R.; Iryati, M.

    2018-05-01

    The Electrical and physical properties can be used as indicators for measuring soil conditions. One of the methods developed in agricultural systems to obtain information on soil conditions is through measuring of electrical conductivity. Peat soil is one of the natural resources that exist in Indonesia. This study aims to determine the characteristics of peat soil in Rasau village, West Kalimantan. This research was conducted by the properties of electrical conductivity and water content using 5TE Water Contents and EC Sensor equipment, but also to know the change of physical nature of peat soil covering peat soil and peat type. The results showed that the electrical conductivity value of 1-4 samples was 0.02 -0.29 dS/m and the volume water content value (VWC) was 0.255-0.548 m3/m3 and the physical characteristics obtained were peat colour brown to dark brown that allegedly the soil still has a very high content of organic material derived from weathering plants and there are discovery of wood chips, wood powder and leaf powder on the ground. Knowing the information is expected to identify the land needs to be developed to be considered for future peat soil utilization.

  5. Soil characteristics of landslides on Mount Elgon (Uganda): implications for estimating their age

    Science.gov (United States)

    Van Eynde, Elise; Dondeyne, Stefaan; Isabirye, Moses; Deckers, Jozef; Poesen, Jean

    2017-04-01

    The slopes of Mount Elgon, a complex volcano at the border between Uganda and Kenya, are frequently affected by landslides with disastrous effects on the livelihood of its population. Since local people greatly depend on the land for crop production, we examined if and how fast physico-chemical characteristics in landslide scars recover. A chronosequence of 18 landslides covering a period of 103 years was sampled in order to explore differences between topsoil within and outside landslide scars. For each landslide, two topsoil samples were taken within the landslide and two in nearby undisturbed soils to compare their physico-chemical characteristics. No differences were found for available P, Ca2+, Mg2+ content or for the fine earth texture. Recent landslides had however lower content of soil organic carbon (OC) and K+, and higher content of rock fragments and Na+ than the adjacent soils. Soil OC content increased significantly with age and reached levels of the corresponding undisturbed soils after ca. 60 years. Older landslides had even higher OC contents than soils adjacent to the landslide. Hence landslide scars act as local carbon sink. We suggest that the occurrence of rock fragments in the topsoil is a useful indicator for mapping past landslides. Moreover, the difference in soil OC content between landslide scars and adjacent soil could be used for estimating the age of landslides in data-poor regions.

  6. Application of nanoparticle of rock phosphate and biofertilizer in increasing some soil chemical characteristics of variable charge soil

    Science.gov (United States)

    Devnita, Rina; Joy, Benny; Arifin, Mahfud; Hudaya, Ridha; Oktaviani, Nurul

    2018-02-01

    Soils in Indonesia are dominated by variable charge soils where the technology like fertilization did not give the same result as the soils with permanent charge. The objectives of this research is to increase some chemical characteristic of variable charge soils by using the high negative charge ameliorations like rock phosphate in nanoparticle combined with biofertilizer. The research used a complete randomized experimental design in factorial with two factors. The first factor was nanoparticle of rock phosphate consists of four doses on soil weight percentage (0%, 2.5%, 5.0% and 7.5%). The second factor was biofertilizer consisted of two doses (without biofertilizer and 1 g.kg-1 soil biofertilizer). The combination treatments replicated three times. Variable charge soil used was Andisol. Andisol and the treatments were incubated for 4 months. Soil samples were taken after one and four months during incubation period to be analyzed for P-retention, available P and potential P. The result showed that all combinations of rock phosphate and biofertilizer decreased the P-retention to 75-77% after one month. Independently, application of 7.5% of rock phosphate decreased P-retention to 87.22% after four months, increased available P (245.37 and 19.12 mg.kg-1) and potential P (1354.78 and 3000.99 mg/100) after one and four months. Independently, biofertilizer increased the P-retention to 91.66% after four months, decreased available P to 121.55 mg.kg-1 after one month but increased to 12.55 mg.kg-1 after four months, decreased potential P to 635.30 after one month but increased to 1810.40 mg.100 g-1 after four months.

  7. Sensitivity of the biosphere-atmosphere transfer scheme (BATS) to the inclusion of variable soil characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M.F.; Henderson-Sellers, A.; Dickinson, R.E.; Kennedy, P.J.

    1987-03-01

    The soils data of Wilson and Henderson-Sellers have been incorporated into the land-surface parameterization scheme of the NCAR Community Climate Model after Dickinson. A stand-alone version of this land-surface scheme, termed the Biosphere-Atmosphere Transfer Scheme (BATS), has been tested in a series of sensitivity experiments designed to assess the sensitivity of the scheme to the inclusion of variable soil characteristics. The cases investigated were for conditions designed to represent a low-latitude, evergreen forest; a low-latitude sand desert; a high-latitude coniferous forest; high-latitude tundra; and prairie grasslands, each for a specified time of year. The tundra included spring snowmelt and the grassland incorporated snow accumulation. The sensitivity experiments included varying the soil texture from a coarse texture typical of sand through a medium texture typical of loam to a fine texture typical of clay. The sensitivity of the formation to the specified total and upper soil column depth and the response to altering the parameterization of the soil albedo dependence upon soil wetness and snow-cover were also examined. The biosphere-atmosphere transfer scheme showed the greatest sensitivity to the soil texture variation, particularly to the associated variation in the hydraulic conductivity and diffusivity parameters. There was only a very small response to the change in the soil albedo dependence on wetness and, although the sensitivity to the snow-covered soil albedo via the response to roughness length/snowmasking depth was significant, the results were predictable. Soil moisture responses can also be initiated by changes in vegetation characteristics such as the stomatal resistance through changed canopy interaction which modify the radiation and water budgets of the soil surface.

  8. [Heavy metals: soil characteristics and methods of evaluating parameters for defining "contaminated soils"].

    Science.gov (United States)

    Gagliano-Candela, R; Cammarota, R

    2000-01-01

    The excessive content of toxic elements in the human environment is associated with the etiology of a number of diseases. Soils' pollutants decontamination regards the main industrialised countries. Heavy metals represent the main problem for soil pollution characterisation. The first approach for pollution evaluation is the determination of total metal concentration; the evaluation of their bioavailability is required for a correct knowledge of the environmental risk. In the present work is shown the procedure to evaluate the sites, which require decontamination and which need the following data: knowledge of the threshold for each metal in the soil and its range, chemical analysis of the components, determination of bioavailability and soil destination. The bioavailability is easily calculated by the procedure of aimed extractions.

  9. Metal Load of the Crops Depending on Land Use, Land Management and Soil Characteristics

    Science.gov (United States)

    Oeztan, Sezin; Duering, Rolf-Alexander

    2010-05-01

    The increase of pollutant concentrations in soil and in the food chain became very important in the past few decades. Metals of different toxicities (Cd, Zn, As, Cr, Cu, Pb, Ni, Co, V, Tl) occur in soils as a result of weathering, industrial processes, fertilization and atmospheric deposition. Some of them can be absorbed by the plants due to their mobility. The transfer of metals from soil into the plants can be explained by the physicochemical characteristics of the soil such as pH-value, organic matter and clay content. Badly adapted cultivation of the agricultural soils (declining pH-value, application of unsuitable fertilizers) can enhance the mobility of the metals and by the way increase their concentrations in agricultural products. With this study, a field experiment was established and the aim is to test the relations between available metal concentrations in the soil and metal load of the plants depending on the fertilization techniques. The plants and soil samples of the reference sites were taken, heavy metal contents of the soil samples identified by Microwave Assisted Extraction (MAE) and compared to the Aqua Regia Digestion Method for confirming the methodology. For the determination of the metal content in plants, MAE was executed to the selected plant samples and for that procedure, the samples were digested with HNO3 and H2O2 in the microwave oven. Quantation of the metals in soil and in plants was done by ICP-OES Methodology. The evaluation of the first results confirmed that the metal content of the soil is strongly dependent on the properties of different fertilization variants (N,P,K) used and physicochemical characteristics of the soils. According to the fertilization variants, total metal contents of the soil are increased in the soil samples which have high amounts of N, P, K fertilization. Soils which were enforced with high P fertilization degrees had significantly higher total Cd content. Results on the Cd content of the plant samples

  10. Soil Physical Characteristics and Biological Indicators of Soil Quality Under Different Biodegradable Mulches

    Science.gov (United States)

    Schaeffer, S. M.; Flury, M.; Sintim, H.; Bandopadhyay, S.; Ghimire, S.; Bary, A.; DeBruyn, J.

    2015-12-01

    Application of conventional polyethylene (PE) mulch in crop production offers benefits of increased water use efficiency, weed control, management of certain plant diseases, and maintenance of a micro-climate conducive for plant growth. These factors improve crop yield and quality, but PE must be retrieved and safely disposed of after usage. Substituting PE with biodegradable plastic mulches (BDM) would alleviate disposal needs, and is potentially a more sustainable practice. However, knowledge of potential impacts of BDMs on agricultural soil ecosystems is needed to evaluate sustainability. We (a) monitored soil moisture and temperature dynamics, and (b) assessed soil quality upon usage of different mulches, with pie pumpkin (Cucurbita pepo) as the test crop. Experimental field trials are ongoing at two sites, one at Northwestern Washington Research and Extension Center, Mount Vernon, WA, and the other at East Tennessee Research and Education Center, Knoxville, TN. The treatments constitute four different commercial BDM products, one experimental BDM; no mulch and PE served as the controls. Soil quality parameters being examined include: organic matter content, aggregate stability, water infiltration rate, CO2 flux, pH, and extracellular enzyme activity. In addition, lysimeters were installed to examine the soil water and heat flow dynamics. We present baseline and the first field season results from this study. Mulch cover appeared to moderate soil temperatures, but biodegradable mulches also appeared to lose water more quickly than PE. All mulch types, with the exception of cellulose, reduced the diurnal fluctuations in soil temperature at 10cm depth from 1 to 4ºC. However, volumetric water content ranged from 0.10 to 0.22 m3 m-3 under the five biodegradable mulches compared to 0.22 to 0.28 m3 m-3 under conventional PE. Results from the study will be useful for management practices by providing knowledge on how different mulches impact soil physical and

  11. A Spreadsheet for Estimating Soil Water Characteristic Curves (SWCC)

    Science.gov (United States)

    2017-05-01

    Approved for public release; distribution is unlimited. PURPOSE: SWCC can be measured in the lab; however, due to the cost, time, and high varia ...SWCC for a single soil, the variability can typically be as great as the difference between the w·PI = 10 curve and the w·PI = 30 curve shown in...wetting and drying SWCC is variable but is approximately one order of magnitude. The 90 percent confidence limit was constructed using 1.28 times the

  12. Physical, chemical and mineralogical characteristics of some selected gardud soils of kordofan region

    International Nuclear Information System (INIS)

    Elgubshawi, Abdelmoneim Ahmed Ismail

    1995-05-01

    Recently much of the attention is given to gardud soil as the main alternative for the depleted marginal sandy soils. A lack of exact knowledge regarding these soils are evident. For studying gardud soil four sites were chosen according to the annual rainfall. Two pits were excavated in each site to represent the concaved and convexed locations plus composite samples to cover the area between two pits. Morphological, physical, chemical and mineralogical investigations were made. The results showed that the gardud soils were relatively differed within and between sites due to the climate and the topography. The dominant clay minerals are kaolinite, montmorillonite and illte. The chemical and physical characteristics were poor. Some of the restrictions limiting the use of these soils such as erosion, hardness, fertility, stoniness, drought and acidity. According to the American system of soil classification, the soils studied were given the following classification: (1) Bardab soil: (A) Kanhablic rhodustalf-fine clay, kaolinite, isohyperthermic (concaved). (B) Kandic paleustalf-very fine clay, kaolinite, isohyperthermic (convexed). (2) Sodari: (A) Typic comborthid-coarse loamy, mixed hyperthermic (concave). (B) Typic comborthid-coarse loamy, mixed hyperthermic (convexed). (3) Nihud (Rahad Elsilk): (A) Rhodic paleustalf-fine loamy, kaolinite isohyperthermic (concaved). (B) Aridic paleustalf-fine loamy kaolinite isohyperthermic (convexed). (4) Umgamalla: (A) Ustic hapustalf-fine loamy kaolinite isohyperthermic (concaved). (B)Ustic hapustalf-fine loamy kaolinite isohyperthermic (convexed). (Author)

  13. Soils of Sub-Antarctic tundras: diversity and basic chemical characteristics

    Science.gov (United States)

    Abakumov, Evgeny; Vlasov, Dmitry; Mukhametova, Nadezhda

    2014-05-01

    Antarctic peninsula is known as specific part of Antarctica, which is characterizes by humid and relatively warm climate of so-called sub Antarctic (maritime) zone. Annual precipitation and long above zero period provides the possibility of sustainable tundra's ecosystem formation. Therefore, the soil diversity of these tundra landscapes is maximal in the whole Antarctic. Moreover, the thickness of parent material debris's is also highest and achieves a 1 or 2 meters as highest. The presence of higher vascular plants Deshampsia antarctica which is considered as one of the main edificators provides the development of humus accumulation in upper solum. Penguins activity provides an intensive soil fertilization and development of plant communities with increased density. All these factors leads to formation of specific and quite diverse soil cover in sub Antarctic tundra's. These ecosystems are presented by following permafrost affected soils: Leptosols, Lithoosols, Crysols, Gleysols, Peats and Ornhitosols. Also the post Ornhitosols are widely spreaded in subantarcic ecosystems, they forms on the penguin rockeries during the plant succession development, leaching of nutrients and organic matter mineralization. "Amphibious" soils are specific for seasonal lakes, which evaporates in the end if Australian summer. These soils have specific features of bio sediments and soils as well. Soil chemical characteristic as well as organic matter features discussed in comparison with Antacrtic continental soil in presentation.

  14. Dynamics and characteristics of soil temperature and moisture of active layer in central Tibetan Plateau

    Science.gov (United States)

    Zhao, L.; Hu, G.; Wu, X.; Tian, L.

    2017-12-01

    Research on the hydrothermal properties of active layer during the thawing and freezing processes was considered as a key question to revealing the heat and moisture exchanges between permafrost and atmosphere. The characteristics of freezing and thawing processes at Tanggula (TGL) site in permafrost regions on the Tibetan Plateau, the results revealed that the depth of daily soil temperature transmission was about 40 cm shallower during thawing period than that during the freezing period. Soil warming process at the depth above 140 cm was slower than the cooling process, whereas they were close below 140 cm depth. Moreover, the hydro-thermal properties differed significantly among different stages. Precipitation caused an obviously increase in soil moisture at 0-20 cm depth. The vertical distribution of soil moisture could be divided into two main zones: less than 12% in the freeze state and greater than 12% in the thaw state. In addition, coupling of moisture and heat during the freezing and thawing processes also showed that soil temperature decreased faster than soil moisture during the freezing process. At the freezing stage, soil moisture exhibited an exponential relationship with the absolute soil temperature. Energy consumed for water-ice conversion during the freezing process was 149.83 MJ/m2 and 141.22 MJ/m2 in 2011 and 2012, respectively, which was estimated by the soil moisture variation.

  15. Physical, chemical and mineralogical characteristics of some selected gardud soils of kordofan region

    Energy Technology Data Exchange (ETDEWEB)

    Elgubshawi, Abdelmoneim Ahmed Ismail [Department of Biochemistry and Soil Science, Faculty of agriculture, University of Khartoum, Khartoum (Sudan)

    1995-05-01

    Recently much of the attention is given to gardud soil as the main alternative for the depleted marginal sandy soils. A lack of exact knowledge regarding these soils are evident. For studying gardud soil four sites were chosen according to the annual rainfall. Two pits were excavated in each site to represent the concaved and convexed locations plus composite samples to cover the area between two pits. Morphological, physical, chemical and mineralogical investigations were made. The results showed that the gardud soils were relatively differed within and between sites due to the climate and the topography. The dominant clay minerals are kaolinite, montmorillonite and illte. The chemical and physical characteristics were poor. Some of the restrictions limiting the use of these soils such as erosion, hardness, fertility, stoniness, drought and acidity. According to the American system of soil classification, the soils studied were given the following classification: (1) Bardab soil: (A) Kanhablic rhodustalf-fine clay, kaolinite, isohyperthermic (concaved). (B) Kandic paleustalf-very fine clay, kaolinite, isohyperthermic (convexed). (2) Sodari: (A) Typic comborthid-coarse loamy, mixed hyperthermic (concave). (B) Typic comborthid-coarse loamy, mixed hyperthermic (convexed). (3) Nihud (Rahad Elsilk): (A) Rhodic paleustalf-fine loamy, kaolinite isohyperthermic (concaved). (B) Aridic paleustalf-fine loamy kaolinite isohyperthermic (convexed). (4) Umgamalla: (A) Ustic hapustalf-fine loamy kaolinite isohyperthermic (concaved). (B)Ustic hapustalf-fine loamy kaolinite isohyperthermic (convexed). (Author) 39 refs. , 8 tabs. , 35 figs.

  16. Undesirable Effects of Media on Children: Why Limitation is Necessary?

    Science.gov (United States)

    Karaagac, Aysu Turkmen

    2015-06-01

    Pervasive media environment is a social problem shared by most of the countries around the world. Several studies have been performed to highlight the undesired effects of media on children. Some of these studies have focused on the time spent by children watching television, playing with computers or using mobile media devices while some others have tried to explain the associations between the obesity, postural abnormalities or psychological problems of children, and their media use. This article discusses the recent approaches to curb influence of media on children, and the importance of family media literacy education programs with particular relevance to developing countries.

  17. Spectral reflectance characteristics of soils in northeastern Brazil as influenced by salinity levels.

    Science.gov (United States)

    Pessoa, Luiz Guilherme Medeiros; Freire, Maria Betânia Galvão Dos Santos; Wilcox, Bradford Paul; Green, Colleen Heather Machado; De Araújo, Rômulo José Tolêdo; De Araújo Filho, José Coelho

    2016-11-01

    In northeastern Brazil, large swaths of once-productive soils have been severely degraded by soil salinization, but the true extent of the damage has not been assessed. Emerging remote sensing technology based on hyperspectral analysis offers one possibility for large-scale assessment, but it has been unclear to what extent the spectral properties of soils are related to salinity characteristics. The purpose of this study was to characterize the spectral properties of degraded (saline) and non-degraded agricultural soils in northeastern Brazil and determine the extent to which these properties correspond to soil salinity. We took soil samples from 78 locations within a 45,000-km 2 site in Pernambuco State. We used cluster analysis to group the soil samples on the basis of similarities in salinity and sodicity levels, and then obtained spectral data for each group. The physical properties analysis indicated a predominance of the coarse sand fraction in almost all the soil groups, and total porosity was similar for all the groups. The chemical analysis revealed different levels of degradation among the groups, ranging from non-degraded to strongly degraded conditions, as defined by the degree of salinity and sodicity. The soil properties showing the highest correlation with spectral reflectance were the exchangeable sodium percentage followed by fine sand. Differences in the reflectance curves for the various soil groups were relatively small and were not significant. These results suggest that, where soil crusts are not present, significant challenges remain for using hyperspectral remote sensing to assess soil salinity in northeastern Brazil.

  18. Relating Bioavailability Parameters to the Sorbent Characteristics of PAH Polluted Soils

    DEFF Research Database (Denmark)

    Bartolome, N.; Hilber, I.; Schulin, R.

    2015-01-01

    Regulation of Hydrophobic Organic Contaminants (HOC) such as polycyclic aromatic hydrocarbons (PAHs) in soil is still based on total concentrations. However, many studies have demonstrated that not all of a pollutant’s content in soil is equally available to organisms (Reichenberg & Mayer 2006...... to several sorbent characteristics including organic and black carbon content. The results will provide a better understanding of bioavailability of PAHs in soils. Moreover, the outcomes will be discussed regarding to the potential application of chemical proxies in soil pollution risk assessment......). Over the last decade, intensive effort has been made to incorporate bioavailability into risk assessment (Cachada et al. 2014). Here, we compare total concentrations of PAH with two bioavailability parameters in 30 different soil samples from the archive of the standardized National and Zurich Cantonal...

  19. Inorganic Phosphorus Fractions and Their Relationships with Soil Characteristics of Selected Calcareous Soils of Fars Province

    Directory of Open Access Journals (Sweden)

    abolfazl azadi

    2017-01-01

    Full Text Available Introduction: Phosphorus (P is the second limiting nutrient in soils for crop production after nitrogen. Phosphorus is an essential nutrient in crop production. Determination of forms of soil phosphorus is important in the evaluation of soil phosphorus status. Various sequential P fractionation procedures have been used to identify the forms of P and to determine the distribution of P fractions in soils (Chang and Jackson, 1957, Williams et al., 1967; Hedley et al., 1982, but are not particularly sensitive to the various P compounds that may exist in calcareous soils. A Sequential fractionation scheme has been suggested for calcareous soils by which three types of Ca-phosphates i.e. dicalcium phosphate, octacalcium phosphate, and apatite could be identified (Jiang and Gu, 1989. These types of Ca-phosphates were described as Ca2-P (NaHCO3-extractable P, Ca8-P (NH4AC-extractable P and Ca10-P (apatite type, respectively. In this study, the amount and distribution of soil inorganic phosphorus fractions were examined in 49 soil samples of Fars province according to the method described by Jiang and Gu (1989. Materials and Methods: Based on the previous soil survey maps of Fars province and According to Soil Moisture and Temperature Regime Map of Iran (Banaei, 1998, three regions (abadeh, eghlid and noorabad with different Soil Moisture and Temperature Regimes were selected. The soils were comprised Aridic, xeric, and ustic moisture regimes along with mesic, and hyperthemic temperature regimes. 49 representative samples were selected. The soil samples were air-dried and were passed through a 2-mm sieve before analysis. Particle size distribution was determined by hydrometer method (Gee and Bauder 1996. Also, Cation exchange capacity (CEC; Sumner and Miller 1996, calcium carbonate equivalent (Loeppert and Suarez 1996, organic matter content (Nelson and Sommers 1996, and pH by saturated paste method (Thomas 1996 were determined . Inorganic phosphorus

  20. Reuse of Ablution Water to Improve Peat Soil Characteristics for Ornamental Landscape Plants Cultivation

    Directory of Open Access Journals (Sweden)

    Radin Mohamed Radin Maya Saphira

    2017-01-01

    Full Text Available The present study aimed to reuse of ablution water for washing peat soil in order to reduce the concentrations of heavy metals in these soils which might effect negatively on the plant growth. The washing process design was similar to horizontal subsurface flow constructed wetlands (HSSFCW consist of layers of peat and sand soil and surrounded by gravel on both sides. Strelitzia sp. was used to detect the presence negative effect of the washing process on the morphological characteristics of the plants. The physical and chemical characteristics of ablution water was examined before and after the washing process by using Inductively Couple Plasma- Mass Spectrometer (ICP-MS Atomic Absorption Spectrometer (AAS. The characteristics of peat soil before and after the washing process were examined by using X-Ray Fluorescence (XRF. The results revealed that the percentage of FeO3in peat soil reduced from 45.80 to 1.01%. The percentage of SiO2 in sand soil dropped from 87.7 to 67.10%. Parameters of ablution water resulted from the washing process which including Biological Oxygen Demand (BOD5 and heavy metals have increased but still within the standard limits for the disposal of ablution water into the environment. No atrophy was observed in Strelitzia sp. leaves, indicating the ability of plant to grow normally. It can be concluded that the utilization of ablution water in the washing of peat soil has improve the characteristics of the soil without effect on their organic constitutes.

  1. Characteristics and distribution of soil piping erosion in loess-derived soils of Belgium

    International Nuclear Information System (INIS)

    Verachtert, E.; Van Den Eeckhaut, M.; Poesen, J.; Deckers, J.

    2009-01-01

    Subsurface erosion (piping, tunnel erosion) in non-karstic landscapes has been considered of little importance compared to sheet and gully erosion for a long time. Although the basic factors responsible for piping in certain environments are well understood, there is still uncertainty about the topographic and soil properties inducing subsurface pipe development in loess-derived soils under temperate climate. Therefore, this research aims at understanding the factors controlling the occurrence of piping erosion in the loess-derived soils of the Flemish Ardennes (Belgium). Analysis of ortho photos as well as field surveys were conducted to detect the sites with piping in the study area. Enquiries among farmers and technical services were carried out. In total, 114 sites (parcels) with 301 collapsed soil pipes were found in a 170 kM 2 study area. For each site with piping, data was collected on possible controlling factors: topographic parameters, land use, lithology and soil type. Land use plays an important role as 94% of the sites with piping are found under pasture. (Author) 15 refs.

  2. Characteristics and distribution of soil piping erosion in loess-derived soils of Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Verachtert, E.; Van Den Eeckhaut, M.; Poesen, J.; Deckers, J.

    2009-07-01

    Subsurface erosion (piping, tunnel erosion) in non-karstic landscapes has been considered of little importance compared to sheet and gully erosion for a long time. Although the basic factors responsible for piping in certain environments are well understood, there is still uncertainty about the topographic and soil properties inducing subsurface pipe development in loess-derived soils under temperate climate. Therefore, this research aims at understanding the factors controlling the occurrence of piping erosion in the loess-derived soils of the Flemish Ardennes (Belgium). Analysis of ortho photos as well as field surveys were conducted to detect the sites with piping in the study area. Enquiries among farmers and technical services were carried out. In total, 114 sites (parcels) with 301 collapsed soil pipes were found in a 170 kM{sup 2} study area. For each site with piping, data was collected on possible controlling factors: topographic parameters, land use, lithology and soil type. Land use plays an important role as 94% of the sites with piping are found under pasture. (Author) 15 refs.

  3. [Variation characteristics of soil carbon sequestration under long-term different fertilization in red paddy soil].

    Science.gov (United States)

    Huang, Jing; Zhang, Yang-zhu; Gao, Ju-sheng; Zhang, Wen-ju; Liu, Shu-jun

    2015-11-01

    The objective of this study was to clarify the changes of soil organic carbon (SOC) content, the saturation capacity of soil carbon sequestration and its cooperation with carbon input (crop source and organic fertilizer source carbon) under long-term (1982-2012) different fertilization in red paddy soil. The results showed that fertilization could increase SOC content. The SOC content of all the fertilization treatments demonstrated a trend of stabilization after applying fertilizer for 30 years. The SOC content in the treatments applying organic manure with mineral fertilizers was between 21.02 and 21.24 g · kg(-1), and the increase rate ranged from 0.41 to 0.59 g · kg(-1) · a(-1). The SOC content in the treatments applying mineral fertilizers only was 15.48 g · kg(-1). The average soil carbon sequestration in the treatments that applied organic manure with mineral fertilizers ranged from 43.61 to 48.43 t C · hm(-2), and the average SOC storage over the years in these treatments was significantly greater than those applying mineral fertilizers only. There was an exponentially positive correlation between C sequestration efficiency and annual average organic C input. It must input exogenous organic carbon at least at 0. 12 t C · hm(-2) · a(-1) to maintain the balance of soil organic carbon under the experimental conditions.

  4. Improving the relationship between soil characteristics and metal bioavailability by using reactive fractions of soil parameters in calcareous soils.

    Science.gov (United States)

    de Santiago-Martín, Ana; van Oort, Folkert; González, Concepción; Quintana, José R; Lafuente, Antonio L; Lamy, Isabelle

    2015-01-01

    The contribution of the nature instead of the total content of soil parameters relevant to metal bioavailability in lettuce was tested using a series of low-polluted Mediterranean agricultural calcareous soils offering natural gradients in the content and composition of carbonate, organic, and oxide fractions. Two datasets were compared by canonical ordination based on redundancy analysis: total concentrations (TC dataset) of main soil parameters (constituents, phases, or elements) involved in metal retention and bioavailability; and chemically defined reactive fractions of these parameters (RF dataset). The metal bioavailability patterns were satisfactorily explained only when the RF dataset was used, and the results showed that the proportion of crystalline Fe oxides, dissolved organic C, diethylene-triamine-pentaacetic acid (DTPA)-extractable Cu and Zn, and a labile organic pool accounted for 76% of the variance. In addition, 2 multipollution scenarios by metal spiking were tested that showed better relationships with the RF dataset than with the TC dataset (up to 17% more) and new reactive fractions involved. For Mediterranean calcareous soils, the use of reactive pools of soil parameters rather than their total contents improved the relationships between soil constituents and metal bioavailability. Such pool determinations should be systematically included in studies dealing with bioavailability or risk assessment. © 2014 SETAC.

  5. Adjustable liquid aperture to eliminate undesirable light in holographic projection.

    Science.gov (United States)

    Wang, Di; Liu, Chao; Li, Lei; Zhou, Xin; Wang, Qiong-Hua

    2016-02-08

    In this paper, we propose an adjustable liquid aperture to eliminate the undesirable light in a holographic projection. The aperture is based on hydrodynamic actuation. A chamber is formed with a cylindrical tube. A black droplet is filled in the sidewall of the cylinder tube and the outside space is the transparent oil which is immiscible with the black droplet. An ultrathin glass sheet is attached on the bottom substrate of the device and a black shading film is secured to the central area of the glass sheet. By changing the volume of the black droplet, the black droplet will move to the middle or sidewall due to hydrodynamic actuation, so the device can be used as an adjustable aperture. A divergent spherical wave and a solid lens are used to separate the focus planes of the reconstructed image and diffraction beams induced by the liquid crystal on silicon in the holographic projection. Then the aperture is used to eliminate the diffraction beams by adjusting the size of the liquid aperture and the holographic projection does not have undesirable light.

  6. Undesirable substances in vegetable oils: anything to declare?

    Directory of Open Access Journals (Sweden)

    Lacoste Florence

    2014-01-01

    Full Text Available The presence of undesirable compounds in vegetable and animal oils and fats may have many different origins. Although the potential toxicity of most of these undesirable compounds is real, poisoning risks are rather limited due to the efficient elimination during oil-refining steps, careful conditioning, choice of efficient packaging and industrial quality control management. However the research of contaminants is part of multiple controls conducted by fat and oil industry to verify the conformity of products placed on the market in relation to regulations such as the European commission regulation EC No. 1881/2006 setting maximum levels for some contaminants in food as lead, some mycotoxins, dioxins, polychlorobiphenyls, benzo[a]pyrene. In the absence of regulation, the detection of contaminants must be addressed in partnership with authorities according to the toxicity of molecules. The controls are not confined to environmental contaminants. They also include compounds that can be formed during the production process of vegetable oils such as esters of 3-monochloropropanediol. This article focuses more particularly on heavy metals, polycyclic aromatic hydrocarbons, mineral oils, phthalates and 3-MCPD or glycidyl esters. Aspects such as methods for analysis, limits fixed by EC regulation and occurrence in vegetable oils are discussed.

  7. Manure-amended soil characteristics affecting the survival of E. coli O157:H7 in 36 Dutch soils.

    Science.gov (United States)

    Franz, Eelco; Semenov, Alexander V; Termorshuizen, Aad J; de Vos, O J; Bokhorst, Jan G; van Bruggen, Ariena H C

    2008-02-01

    The recent increase in foodborne disease associated with the consumption of fresh vegetables stresses the importance of the development of intervention strategies that minimize the risk of preharvest contamination. To identify risk factors for Escherichia coli O157:H7 persistence in soil, we studied the survival of a Shiga-toxin-deficient mutant in a set of 36 Dutch arable manure-amended soils (organic/conventional, sand/loam) and measured an array of biotic and abiotic manure-amended soil characteristics. The Weibull model, which is the cumulative form of the underlying distribution of individual inactivation kinetics, proved to be a suitable model for describing the decline of E. coli O157:H7. The survival curves generally showed a concave curvature, indicating changes in biological stress over time. The calculated time to reach the detection limit ttd ranged from 54 to 105 days, and the variability followed a logistic distribution. Due to large variation among soils of each management type, no differences were observed between organic and conventional soils. Although the initial decline was faster in sandy soils, no significant differences were observed in ttd between both sandy and loamy soils. With sandy, loamy and conventional soils, the variation in ttd was best explained by the level of dissolved organic carbon per unit biomass carbon DOC/biomC, with prolonged survival at increasing DOC/biomC. With organic soils, the variation in ttd was best explained by the level of dissolved organic nitrogen (positive relation) and the microbial species diversity as determined by denaturing gradient gel electrophoresis (negative relation). Survival increased with a field history of low-quality manure (artificial fertilizer and slurry) compared with high-quality manure application (farmyard manure and compost). We conclude that E. coli O157:H7 populations decline faster under more oligotrophic soil conditions, which can be achieved by the use of organic fertilizer with a

  8. GEOTECHNICAL CHARACTERISTICS OF LATERITIC SOIL STABILIZED WITH SAWDUST ASH-LIME MIXTURES

    Directory of Open Access Journals (Sweden)

    Emeka Segun Nnochiri

    2017-04-01

    Full Text Available This study assesses the geotechnical characteristics of lateritic soil and sawdust ash lime (SDAL mixtures. Preliminary tests were carried out on the natural soil sample for identification and classification purposes. The sawdust was mixed with lime for stabilization in the ratio 2:1. This mixture was thereafter added to the lateritic soil in varying proportions of 2, 4, 6, 8 and 10% by weight of soil. Addition of SDAL increased values of Optimum Moisture Content (OMC from 17.0% at 0% SDAL to 26.5% at 10% SDAL by weight of soil, also, values of Maximum Dry Density (MDD decreased from 2040 kg/m3 at 0% SDAL to 1415 kg/m3 at 10% SDAL. Values of Unconfined Compressive Strength (UCS increased from 38.58 kN/m2 at 0% SDAL to highest value of 129.63 kN/m2 at 6% SDAL. The values of liquid limits and plasticity index of the soil were effectively reduced with the addition of the SDAL, from 54.0% at 0% SDAL to 49.0% at 10% SDAL and from 13.7% at 0% SDAL to 12.5% at 10% SDAL respectively. It was therefore concluded that the sawdust ash lime (SDAL mixture can serve as a cheap soil stabilizing agent for poor lateritic soil.

  9. Effect of soil properties on Hydraulic characteristics under subsurface drip irrigation

    Science.gov (United States)

    Fan, Wangtao; Li, Gang

    2018-02-01

    Subsurface drip irrigation (SDI) is a technique that has a high potential in application because of its high efficiency in water-saving. The hydraulic characteristics of SDI sub-unit pipe network can be affected by soil physical properties as the emitters are buried in soils. The related research, however, is not fully explored. The laboratory tests were carried out in the present study to determine the effects of hydraulic factors including operating pressure, initial soil water content, and bulk density on flow rate and its sensitivity to each hydraulic factor for two types of SDI emitters (PLASSIM emitter and Heping emitter). For this purpose, three soils with contrasting textures (i.e., light sand, silt loam, and light clay) were repacked with two soil bulk density (1.25 and1.40 g cm-3) with two initial soil water content (12% and 18%) in plexiglass columns with 40 cm in diameter and 40 cm in height. Drip emitters were buried at depth of 20 cm to measure the flow rates under seven operating pressures (60, 100, 150, 200, 250, 300, and 370 kPa). We found that the operating pressure was the dominating factor of flow rate of the SDI emitter, and flow rate increased with the increase of operating pressure. The initial soil water content and bulk density also affected the flow rate, and their effects were the most notable in the light sand soil. The sensitivity of flow rate to each hydraulic factor was dependent on soil texture, and followed a descending order of light sand>silt loam>light clay for both types of emitters. Further, the sensitivity of flow rate to each hydraulic factor decreased with the increase of operating pressure, initial soil water content, and bulk density. This study may be used to guide the soil specific-design of SDI emitters for optimal water use and management.

  10. Characteristics of current roadside pollution of soils in Upper Silesia

    Science.gov (United States)

    Wawer, M.; Szuszkiewicz, M.; Magiera, T.

    2012-04-01

    The aim of the study was qualitative recognition of contemporary roadside pollutants deposited on topsoils in areas located in close vicinity to roads with high traffic volume (main roads, ring roads). So far, the determination of pollutant content in soil samples has shown only the amount of pollutants deposited on soils over long time period, without the possibility to assess the quality changes in type of deposition and to determine the present structure of roadside pollution. Moreover, in many cases, it is difficult to distinguish roadside pollution from other industrial sources. In order to avoid this issue and recognize currently emergent threats of road traffic origin, three monitoring plots filled with quartz sand had been installed in Zabrze, Gliwice and Opole (Poland) close to arteries with high traffic volume. For installation of monitoring plots 7 cm of topsoil had been removed and replaced by boxes filled with clean quartz sand with known chemical composition and neutral magnetic properties (diamagnetic). This sand was treated as neutral matrix for the accumulation of traffic pollution. Results of chemical analyses of heavy metal contents and magnetic susceptibility measurements of removed topsoils have shown that the highest content of Fe, Mn, Zn, Pb, Cu, Cr and Ni were observed in Zabrze. Amount of Zn and Pb exceeded threshold values. Magnetic susceptibility values were also the highest in Zabrze. In all investigated areas magnetic susceptibility values and heavy metal contents decreased with the distance from the road. Measurements of sand from monitoring plots which were executed after 3, 6 and 12 months of exposure have shown that values of magnetic susceptibility have increased during these time periods. It is visible especially in surface layer of sand. Initially magnetic susceptibility value of quartz sand which was used as matrix after first year of exposure increased from 0,25 - 10-8 m3kg-1 to 300 in Zabrze, 50 in Gliwice and 30- 10-8 m3kg-1

  11. In-Soil and Down-Hole Soil Water Sensors: Characteristics for Irrigation Management

    Science.gov (United States)

    The past use of soil water sensors for irrigation management was variously hampered by high cost, onerous regulations in the case of the neutron probe (NP), difficulty of installation or maintenance, and poor accuracy. Although many sensors are now available, questions of their utility still abound....

  12. Relations of microbiome characteristics to edaphic properties of tropical soils from Trinidad

    Directory of Open Access Journals (Sweden)

    Vidya eDe Gannes

    2015-09-01

    Full Text Available Understanding how community structure of Bacteria, Archaea and Fungi varies as a function of edaphic characteristics is key to elucidating associations between soil ecosystem function and the microbiome that sustains it. In this study, non-managed tropical soils were examined that represented a range of edaphic characteristics, and a comprehensive soil microbiome analysis was done by Illumina sequencing of amplicon libraries that targeted Bacteria (universal prokaryotic 16S rRNA gene primers, Archaea (primers selective for archaeal 16S rRNA genes or Fungi (internal transcribed spacer region. Microbiome diversity decreased in the order: Bacteria > Archaea > Fungi. Bacterial community composition had a strong relationship to edaphic factors while that of Archaea and Fungi was comparatively weak. All communities were significantly more similar within soils, than they were between soils (ANOSIM p < 0.001; bacterial communities were 70-80% alike, while communities of Fungi and Archaea had 40-50% similarity. Communities differed in species turnover patterns, such that two soils with relatively similar bacterial communities could not be predicted to be similar in composition of Archaea or Fungi. Bacterial and archaeal diversity had significant (negative correlations to pH, whereas fungal diversity was not correlated to pH. Edaphic characteristics that best explained variation between soils in bacterial community structure were: total carbon, sodium, magnesium and zinc. For fungi, the best variables were: sodium, magnesium, phosphorus, boron and C/N. Archaeal communities had two sets of edaphic factors of equal strength, one contained sulphur, sodium, and ammonium-N and the other was composed of clay, potassium, ammonium-N, and nitrate-N. Collectively, the data indicate that Bacteria, Archaea and Fungi did not closely parallel one another in community structure development, and thus microbiomes in each soil acquired unique identities. This divergence

  13. [Undesired treatment effects in behavior group therapy: Frequency and spectrum].

    Science.gov (United States)

    Linden, M; Walter, M; Fritz, K; Muschalla, B

    2015-11-01

    Psychotherapy not only has positive but also negative effects, which is especially true for group psychotherapy due to psychodynamic and interactional processes. Using the UE-G questionnaire 71 patients who participated in cognitive behavioral group psychotherapy reported on negative experiences in the context of the group therapy. The answers were then validated in a qualitative interview. Of the patients 98.6% reported about at least one negative experience and 43.7% about severe or extremely severe negative experiences. Most prominent was the induction of hopelessness and demoralization by what patients saw and heard from other patients in the group. Burdensome and therefore undesired treatment effects are regularly seen in group psychotherapy, because of treatment or patient related factors. In any case they must be taken into account during treatment, in the training of group psychotherapists and in quality control.

  14. Pig herd monitoring and undesirable tripping and stepping prevention

    DEFF Research Database (Denmark)

    Gronskyte, Ruta; Clemmensen, Line Katrine Harder; Hviid, Marchen Sonja

    2015-01-01

    Humane handling and slaughter of livestock are of major concern in modern societies. Monitoring animal wellbeing in slaughterhouses is critical in preventing unnecessary stress and physical damage to livestock, which can also affect the meat quality. The goal of this study is to monitor pig herds...... at the slaughterhouse and identify undesirable events such as pigs tripping or stepping on each other. In this paper, we monitor pig behavior in color videos recorded during unloading from transportation trucks. We monitor the movement of a pig herd where the pigs enter and leave a surveyed area. The method is based...... on optical flow, which is not well explored for monitoring all types of animals, but is the method of choice for human crowd monitoring. We recommend using modified angular histograms to summarize the optical flow vectors. We show that the classification rate based on support vector machines is 93% of all...

  15. Potential Phosphorus Mobilisation in Peat Soils

    DEFF Research Database (Denmark)

    Forsmann, Ditte M.; Kjærgaard, Charlotte

    2012-01-01

    Re-establishment of wetlands on peat soils containing phosphorus bound to iron(III)-oxides can lead to an undesirable phosphorus loss to the aquatic environment due to the reductive dissolution of iron(III)-oxides. Thus it is important to be able to assess the potential phosphorus mobilisation from...... peat soils before a re-establishment takes place. The potential phosphorus mobilisation from a peat soil depends not only on the geochemical characteristics but also on the redox conditions, the hydrological regime in the area as well as the hydro-physical properties of the soil. The hypothesis...... for this study is (i) the release of phosphorus in peat is controlled by the geochemistry; (ii) the mobilisation of phosphorus is controlled by both geochemistry and hydro-physics of the soil. For this study, 10 Danish riparian lowland areas with peat soil were selected based on their geochemical characteristics...

  16. Investigation of Soil and Vegetation Characteristics in Discontinuous Permafrost Landscapes Near Fairbanks, Alaska

    Science.gov (United States)

    2015-08-01

    ER D C TR -1 5- 7 ERDC Center-Directed Research Investigation of Soil and Vegetation Characteristics in Discontinuous Permafrost ...Characteristics in Discontinuous Permafrost Landscapes Near Fairbanks, Alaska Jacob F. Berkowitz U.S. Army Engineer Research and Development Center (ERDC...Washington, DC 20314-1000 Under ERDC Center-Directed Research project “Integrated Technologies for Delineat- ing Permafrost and Ground-State

  17. CHARACTERISTICS OF RICE SOILS FROM THE TIDAL FLAT AREAS OF MUSI BANYUASIN, SOUTH SUMATRA

    Directory of Open Access Journals (Sweden)

    B.H. Prasetyo

    2016-10-01

    Full Text Available Tidal flats in the Musi Banyuasin region that cover more than 200,000 ha are the largest area for agricultural development in South Sumatra Province. Only about a half of this has been used for tidal swamp rice fields, therefore, the other half needs to be developed. To obtain a better understanding of their properties for appropriate soil management, soil characteristics of the area need to be studied. To characterize the soil, thirty-four soil samples from seven soil profiles were analyzed for their chemical and mineralogical composition at the laboratories of the Center for Soil and Agroclimate Research and Development. The results indicate that soils from the tidal flat areas have an aquic soil moisture regime, the upper parts of the soils are mostly ripe, and most of the pedons show the presence of sulfidic materials below 65 cm of the mineral soil surface. The soils are classified as Sulfic Endoaquept (P1, P2, Histic Sulfaquent (P3, Typic Sulfaquept (P4, Fluvaquentic Endoaquept (P5, and Sulfic Hydraquent (P6, P7. Mineral composition of the sand fraction is dominated by quartz, while the clay minerals consist of predominantly kaolinite, mixed with small amount of smectite, illite, quartz, and crystoballite. Organic carbon content is high to very high, potential phosphate content of most pedons ranges from very low to medium, while potential potassium content varies from very low to medium in the upper layers and medium to very high in the bottom layers. Phosphate retention of topsoil sample varies from 56 to 97%, and is positively correlated (r2 = 0.73 with aluminum from amorphous materials. Exchangeable cations are dominated by Mg cation, and in all pedons cation exchange capacity values are medium to very high, and seem to be influenced by organic carbon. Specific chemical properties, particularly soil pH and content of exchangeable aluminum exhibit a significant change about 1-2 months after soil samples were taken from the field

  18. Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview.

    Science.gov (United States)

    Demeyer, A; Voundi Nkana, J C; Verloo, M G

    2001-05-01

    Wood industries and power plants generate enormous quantities of wood ash. Disposal in landfills has been for long a common method for removal. New regulations for conserving the environment have raised the costs of landfill disposal and added to the difficulties for acquiring new sites for disposal. Over a few decades a number of studies have been carried out on the utilization of wood ashes in agriculture and forestry as an alternative method for disposal. Because of their properties and their influence on soil chemistry the utilization of wood ashes is particularly suited for the fertility management of tropical acid soils and forest soils. This review principally focuses on ash from the wood industry and power plants and considers its physical, chemical and mineralogical characteristics, its effect on soil properties, on the availability of nutrient elements and on the growth and chemical composition of crops and trees, as well as its impact on the environment.

  19. Study on Dynamic Characteristics of Heavy Machine Tool-Composite Pile Foundation-Soil

    Directory of Open Access Journals (Sweden)

    CAI Li-Gang

    2014-09-01

    Full Text Available Heavy duty computer numerical control machine tools have characteristics of large self-weight, load and. The insufficiency of foundation bearing capacity leads to deformation of lathe bed, which effects machining accuracy. A combined-layer foundation model is created to describe the pile group foundation of multi-soil layer in this paper. Considering piles and soil in pile group as transversely isotropic material, equivalent constitutive relationship of composite foundation is constructed. A mathematical model is established by the introduction of boundary conditions, which is based on heavy duty computer numerical control machine tools-composite pile foundation-soil interaction system. And then, the response of different soil and pile depth is studied by a case. The model improves motion accuracy of machine tools.

  20. Physical and hydraulic characteristics of bentonite-amended soil from Area 5, Nevada Test Site

    International Nuclear Information System (INIS)

    Albright, W.

    1995-08-01

    Radioactive waste requires significant isolation from the biosphere. Shallow land burial using low-permeability covers are often used to prevent the release of impounded material. This report details the characterization of a soil mixture intended for use as the low-permeability component of a radioactive waste disposal site. The addition of 6.5 percent bentonite to the sandy soils of the site reduced the value of saturated hydraulic conductivity (K s ) by more than two orders of magnitude to 7.6 x 10- 8 cm/sec. Characterization of the soil mixture included measurements of grain density, grain size distribution, compaction, porosity, dry bulk density, shear strength, desiccation shrinkage, K s , vapor conductivity, air permeability, the characteristic water retention function, and unsaturated hydraulic conductivity by both experimental and numerical estimation methods. The ability of the soil layer to limit infiltration in a simulated application was estimated in a one-dimensional model of a landfill cover

  1. [Soil organic pollution characteristics and microbial properties in coal mining areas of Mentougou].

    Science.gov (United States)

    Jia, Jian-Li; Zhang, Yue; Wang, Chen; Li, Dong; Liu, Bo-Wen; Liu, Ying; Zhao, Le; Yang, Si-Qi

    2011-03-01

    Soil micro-ecosystem including organic pollution characteristics, basic physicochemical parameters, and microbial properties was analyzed which contaminated with organic pollutants in coal mining area. Results showed that the organic pollution level in coal mining area soils distributed from 0.4 to 1.5 mg/g dry soil, which was 1. 5-6 times as much as the background sample. Furthermore, the column chromatography and GC-MS analysis revealed that content of lightly components including saturated and aromatic hydrocarbons exceeded 40%, specifically was alkenes (> C15), hydrocarbon derivatives, and a small amount aromatic hydrocarbons. Totally, the components of organic pollutants extracted in soils were similar to which in coal gangue samples, illustrating the source of soil pollution to a certain extent in coal mining areas. The physicochemical factors such as nutrient level and moisture contents were not conducive to the growth and reproduction of microbe except pH level, which might show inhibition to microbial activities. Microbial density of pollutant soils in coal mining areas was totally low, with specific amount 10(4)-10(5) cell/g dry soil and FDA activity 2.0-2.9 mg/(g x min). Generally, the microbial density and activity were decreased as the enhancing pollution level. However, in-depth analysis was needed urgently because of the complex impact of environmental conditions like pH, moisture, and nutrition.

  2. Cosmetics Europe Guidelines on the Management of Undesirable Effects and Reporting of Serious Undesirable Effects from Cosmetics in the European Union

    Directory of Open Access Journals (Sweden)

    Gerald Renner

    2017-01-01

    Full Text Available The European Union (EU Cosmetics Regulation (EC No. 1223/2009 requires companies to collect and assess reports of adverse health effects from the cosmetic products (undesirable effects they market. Furthermore, undesirable effects that are considered as serious need to be reported to the national competent authorities. Cosmetics Europe, representing the European cosmetics industry, has developed these guidelines to promote a consistent practical approach for the management of undesirable effects and the notification of serious undesirable effects. Following these guidelines allows companies concerned to demonstrate due diligence and compliance with the legal requirements.

  3. Prediction of the wetting-induced collapse behaviour using the soil-water characteristic curve

    Science.gov (United States)

    Xie, Wan-Li; Li, Ping; Vanapalli, Sai K.; Wang, Jia-Ding

    2018-01-01

    Collapsible soils go through three distinct phases in response to matric suction decrease during wetting: pre-collapse phase, collapse phase and post-collapse phase. It is reasonable and conservative to consider a strain path that includes a pre-collapse phase in which constant volume is maintained and a collapse phase that extends to the final matric suction to be experienced by collapsible soils during wetting. Upon this assumption, a method is proposed for predicting the collapse behaviour due to wetting. To use the proposed method, two parameters, critical suction and collapse rate, are required. The former is the suction value below which significant collapse deformations take place in response to matric suction decease, and the later is the rate at which void ratio reduces with matric suction in the collapse phase. The value of critical suction can be estimated from the water-entry value taking account of both the microstructure characteristics and collapse mechanism of fine-grained collapsible soils; the wetting soil-water characteristic curve thus can be used as a tool. Five sets of data of wetting tests on both compacted and natural collapsible soils reported in the literature were used to validate the proposed method. The critical suction values were estimated from the water-entry value with parameter a that is suggested to vary between 0.10 and 0.25 for compacted soils and to be lower for natural collapsible soils. The results of a field permeation test in collapsible loess soils were also used to validate the proposed method. The relatively good agreement between the measured and estimated collapse deformations suggests that the proposed method can provide reasonable prediction of the collapse behaviour due to wetting.

  4. Decay characteristics and erosion-related transport of glyphosate in Chinese loess soil under field conditions

    NARCIS (Netherlands)

    Yang, X.; Wang, Fei; Martins Bento, Celia; Meng, L.; Dam, van R.C.J.; Mol, J.G.J.; Liu, Guobin; Ritsema, C.J.; Geissen, V.

    2015-01-01

    The decay characteristics and erosion-related transport of glyphosate and aminomethylphosphonic acid (AMPA) were monitored for 35 d at different slope gradients and rates of application in plots with loess soil on the Loess Plateau, China. The initial glyphosate decayed rapidly (half-life of 3.5 d)

  5. Physiochemical, site, and bidirectional reflectance factor characteristics of uniformly moist soils. [Brazil, Spain and the United States of America

    Science.gov (United States)

    Stoner, E. R.; Baumgardner, M. F. (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. The bidirectional reflectance factor (0.5 micron to 2.3 micron wavelength interval) and physiochemical properties of over 500 soils from 39 states, Brazil and Spain were measured. Site characteristics of soil temperature regime and moisture zone were used as selection criteria. Parent material and internal drainage were noted for each soil. At least five general types of soil reflectance curves were identified based primarily on the presence or absence of ferric iron absorption bands, organic matter content, and soil drainage characteristics. Reflectance in 10 bands across the spectrum was found to be negatively correlated with the natural log of organic matter content.

  6. Studyof Wastewater and Compost Effects on Some of Soil Physical and Chemical Characteristics

    Directory of Open Access Journals (Sweden)

    M. Shakarami

    2016-09-01

    Full Text Available Introduction: Arid and semi-arid areas are confronting increasing water shortages. In these regions of the world, planners are being forced to consider other water sources that could be used economically and effectively to promote further development. Wastewater is the only potential water source, which will increase as the population grows and the demand on freshwater increases. Composting municipal solid wastes (MSW and sewage sludge is a good way to reduce the amount of wastes generated in densely populated areas. Municipal solid waste production in Asia in 1998 was 0.76 million tons per day, with an annual growth rate of 2- 3% in developing countries and 3.2- 4.5% in developed countries. (MSW compost is increasingly used in agriculture not only as a soil conditioner but also as a fertilizer. Despite the growing interest in wastewater and compost usage, excessive application of them may have some harmful effects such as human health problems, runoff and leaching of nutrients to surface and groundwater, undesirable chemical constituents, pathogens, accumulations of heavy metals in plants and soils, negative environmental and health impacts. So, using of wastewater and compost application should be under controlled conditions that minimize health risks of agricultural products. Materials and Methods: This study was conducted in greenhouse of Bu-Ali Sina as a factorial completely randomized design to evaluate the effects of wastewater and compost on physical and chemical properties of soil. The factors included four types of watering: raw wastewater (W1, treated wastewater (W2 combined 50% of raw wastewater and fresh water (W3 and tap water (W4 and also four compost levels: 0 (C1, 40 (C2, 80 (C3 and 120 tha-1 (C4. Therefore, 16 treatments (W1C1 to W4C4 were considered for investigation. It is noted that Compost added and mixed just with top layer of the soil. 48 volumetric lysimeters were applied as Cultivation beds (26 × 30 × 30 cm. The soil

  7. Influence of Extractant and Soil Type on Molecular Characteristics of Humic Substances From Two Brazilian Soils

    Directory of Open Access Journals (Sweden)

    Dick Deborah Pinheiro

    1999-01-01

    Full Text Available In a previous study it was observed that humic substances (HS extracted with NaOH solution and with Na4P2O7 solution presented different molecular weights, and also that the extracted HS yield by each method varied between an Oxisol and a Mollisol from South Brazil. In the present study, we further investigated the organic matter in these soils by characterizing HS extracted with 0.5 mol L-1 NaOH and with neutral 0.15 mol L-1 Na4P2O7 solutions from the above mentioned samples, using elemental analysis and nuclear magnetic ressonance spectroscopy (liquid state ¹H- and 13C-NMR, and by relating the molecular differences to the extraction method and soil type. HS extracted with pyrophosphate were more humified, showing a higher aromaticity and higher carboxylic content. The NaOH-extracted HS were more aliphatic and contained a higher O-alkyl proportion, which is indicative of a less humified nature than the pyrophosphate-extracted HS.

  8. Studies on the characteristics of vegetation and soil on mount sejila, tibet

    International Nuclear Information System (INIS)

    Khan, X.; Hu, Z.; Xin, G.

    2014-01-01

    In order to better understand the ecosystems of the Qinghai-Tibet Plateau, we studied the characteristics of the vegetation and soil on Mount Sejila in Tibet, at altitudes ranging from 3700m to 4700m was studied. Eleven sampling areas were examined, and the vegetation composition, species diversity, plant biomass and soil properties were measured in each one. Representatives of 99 different plant species from 26 families were identified, and the plant communities exhibited a clear degree of altitude dependence: some species were found in all samples while others were only present in a single sampling area. Plant aboveground biomass correlated negatively with altitude, but the species diversity (based on the Shannon-Wiener and Simpson diversity indices as well as evenness and species richness measurements) were not altitude dependent. Community similarity decreased as the difference in altitude between sites increased. The measured soil properties had significant effects on plant characteristics, especially the soil nitrogen, soil moisture and temperature. The results presented herein provide a solid foundation for a more comprehensive study of the Qinghai-Tibet Plateau's ecosystems and will be useful in drawing up biodiversity and ecosystem preservation schemes. (author)

  9. Monitoring of soil chemical characteristics with time as affected by irrigation with saline water

    International Nuclear Information System (INIS)

    Mostafa, A. Z.; Galal, Y.G.M.; Lotfy, S.M.

    2012-01-01

    A lysimeter study was conducted to investigate the effect of irrigation with saline water on soil chemical characteristics at two depth (0-20) and (20-40 cm).Both fertilized (60, 120 KgN/ha) and unfertilized (0) soil were simulated in a total of 84 lysimeter. Data indicated that the electric conductivity (EC) values tended to increase with time intervals also EC-values as affected by soil depth after 105 days were high in 20 cm depth as compared to 40 cm depth. Chloride concentration did not reflect great variations as affected by time of nitrogen application where the values were nearly closed to each other. At the end of the experiment, much of Cl - content was occurred in the second layer of soil depth (20-40) as compared to depth of 0-20 cm. This was the case under all salinity levels. The irrigation with fresh water did not reflect any significant different in EC values between 120 KgN/ha , 60 KgN/ha or soil depth, however, it tend to increase with increasing water salinity levels. There were no much differences between the nitrogen application time (T1, T2 and T3). In contrast with Cl - , sodium was remained in the upper layer of 0-20 cm soil depth but still increase with increasing water salinity levels.

  10. Thermal characteristics of soil and water during summer at King Sejong Station, King George Island, Antarctica

    Science.gov (United States)

    Lim, H. S.; Lee, J. Y.; Yoon, H.

    2016-12-01

    Soil temperatures, water temperatures, and weather parameters were monitored at a variety of locations in the vicinity of King Sejong station, King George Island, Antarctica, during summer 2010-2011. Thermal characteristics of soil and water were analysed using time-series analyses, apparent thermal diffusivity (ATD), and active layer thickness. The temperatures of pond water and nearby seawater showed the distinctive diurnal variations and correlated strongly with solar radiation (r = 0.411-0.797). Soil temperature (0.1-0.3 m depth) also showed diurnal fluctuations that decreased with depth and were directly linked to air temperature (r = 0.513-0.783) rather than to solar radiation; correlation decreased with depth and the time lag in the response increased by 2-3 hours per 0.1 m of soil depth. Owing to the lack of snow cover, summertime soil temperature was not decoupled from air temperature. Estimated ATD was between 0.022 and 29.209 mm2/sec, showed temporal and spatial variations, and correlated strongly with soil moisture content. The maximum estimated active layer thickness in the study area was a 41-70 cm, which is consistent with values reported in the previous work.

  11. Sorption and biodegradation characteristics of the selected pharmaceuticals and personal care products onto tropical soil.

    Science.gov (United States)

    Foolad, Mahsa; Hu, Jiangyong; Tran, Ngoc Han; Ong, Say Leong

    2016-01-01

    In the present study, the sorption and biodegradation characteristics of five pharmaceutical and personal care products (PPCPs), including acetaminophen (ACT), carbamazepine (CBZ), crotamiton (CTMT), diethyltoluamide (DEET) and salicylic acid (SA), were studied in laboratory-batch experiments. Sorption kinetics experimental data showed that sorption systems under this study were more appropriately described by the pseudo second-order kinetics with a correlation coefficient (R2)>0.98. Sorption equilibrium data of almost all target compounds onto soil could be better described by the Freundlich sorption isotherm model. The adsorption results showed higher soil affinity for SA, following by ACT. Results also indicated a slight effect of pH on PPCP adsorption with lower pH causing lower adsorption of compounds onto the soil except for SA at pH 12. Moreover, adsorption of PPCPs onto the soil was influenced by natural organic matter (NOM) since the higher amount of NOM caused lower adsorption to the soil. Biodegradation studies of selected PPCPs by indigenous microbial community present in soil appeared that the removal rates of ACT, SA and DEET increased with time while no effect had been observed for the rest. This study suggests that the CBZ and CTMT can be considered as suitable chemical sewage indicators based on their low sorption affinity and high resistance to biodegradation.

  12. Resilient modulus characteristics of soil subgrade with geopolymer additive in peat

    Science.gov (United States)

    Zain, Nasuhi; Hadiwardoyo, Sigit Pranowo; Rahayu, Wiwik

    2017-06-01

    Resilient modulus characteristics of peat soil are generally very low with high potential of deformation and low bearing capacity. The efforts to improve the peat subgrade resilient modulus characteristics is required, one among them is by adding the geopolymer additive. Geopolymer was made as an alternative to replace portland cement binder in the concrete mix in order to promote environmentally friendly, low shrinkage value, low creep value, and fire resistant material. The use of geopolymer to improve the mechanical properties of peat as a road construction subgrade, hence it becomes important to identify the effect of geopolymer addition on the resilient modulus characteristics of peat soil. This study investigated the addition of 0% - 20% geopolymer content on peat soil derived from Ogan Komering Ilir, South Sumatera Province. Resilient modulus measurement was performed by using cyclic triaxial test to determine the resilience modulus model as a function of deviator stresses and radial stresses. The test results showed that an increase in radial stresses did not necessarily lead to an increase in modulus resilient, and on the contrary, an increase in deviator stresses led to a decrease in modulus resilient. The addition of geopolymer in peat soil provided an insignificant effect on the increase of resilient modulus value.

  13. Characteristics of Volcanic Soils in Landslide during the 2016 Kumamoto Earthquake, Japan

    Science.gov (United States)

    Hazarika, H.; Fukuoka, H.; Kokusho, T.; Sumartini, O.; Bhoopendra, D.

    2017-12-01

    There were many seismic subsidence, debris flows, landslides and slope failures, which occurred in Aso area due to the 2016 Kumamoto earthquake, Japan. This research aims to determine the failure mechanism of many mild slopes, and elucidate the strength characteristics of volcanic soils collected from the sites. A series of undrained static and cyclic triaxial tests, ring shear tests and direct shear tests were performed. Also, for further understanding of volcanic soils' material strength, X-ray powder diffraction analysis (XRD), X-ray fluorescence analysis (XRF), and Scanning electron microscope analysis (SEM) were performed. In this paper, preliminary results of the experimental testing program are discussed.

  14. Environmentally Clean Mitigation of Undesirable Plant Life Using Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Rubenchik, A M; McGrann, T J; Yamamoto, R M; Parker, J M

    2009-07-01

    This concept comprises a method for environmentally clean destruction of undesirable plant life using visible or infrared radiation. We believe that during the blossom stage, plant life is very sensitive to electromagnetic radiation, with an enhanced sensitivity to specific spectral ranges. Small doses of irradiation can arrest further plant growth, cause flower destruction or promote plant death. Surrounding plants, which are not in the blossoming stage, should not be affected. Our proposed mechanism to initiate this effect is radiation produced by a laser. Tender parts of the blossom possess enhanced absorptivity in some spectral ranges. This absorption can increase the local tissue temperature by several degrees, which is sufficient to induce bio-tissue damage. In some instances, the radiation may actually stimulate plant growth, as an alternative for use in increased crop production. This would be dependent on factors such as plant type, the wavelength of the laser radiation being used and the amount of the radiation dose. Practical, economically viable realization of this concept is possible today with the advent of high efficiency, compact and powerful laser diodes. The laser diodes provide an efficient, environmentally clean source of radiation at a variety of power levels and radiation wavelengths. Figure 1 shows the overall concept, with the laser diodes mounted on a movable platform, traversing and directing the laser radiation over a field of opium poppies.

  15. [Relationships between vegetation characteristics and soil properties at different restoration stages on slope land with purple soils in Hengyang of Hunan Province, South-central China].

    Science.gov (United States)

    Yang, Ning; Zou, Dong-Sheng; Yang, Man-Yuan; Hu, Li-Zhen; Zou, Fang-Ping; Song, Guang-Tao; Lin, Zhong-Gui

    2013-01-01

    By using space series to replace time series, this paper studied the relationships between the vegetation characteristics and soil properties at different restoration stages on the slope land with purple soils in Hengyang of Hunnan Province South-central China. There existed obvious differences in the soil physical and chemical properties at different restoration stages. From grassplot, grass-shrub, shrub to shrub-arbor, the soil organic matter, total and available N, and moisture contents increased markedly, soil bulk density had an obvious decrease, soil total and available P contents changed little, and soil pH decreased gradually, but no significant differences were observed among different restoration stages. At different restoration stages, the biomass of plant community had effects on the quantity and composition of soil microbes. The quantities of soil bacteria and fungi had significant positive correlations with the aboveground biomass of plant community, but the quantity of soil actinomycetes had less correlation with plant community's aboveground biomass. At different restoration stages, the activities of soil urease, protease, alkaline phosphatase, invertase, cellulase, catalase, and polyphenol oxidase decreased with increasing soil layer, and had significant positive correlations with plant community's richness and aboveground biomass.

  16. Analysis of soil characteristics, soil management and sugar yield on top and averagely managed farms growing sugar beet (Beta vulgaris L.) in the Netherlands

    NARCIS (Netherlands)

    Hanse, B.; Vermeulen, G.D.; Tijink, F.G.J.; Koch, H.J.; Märlander, B.

    2011-01-01

    Within the Speeding Up Sugar Yield (SUSY) project, soil management and soil characteristics were investigated as possible causes of yield differences in fields between 26 ‘type top’ and 26 ‘type average’ growers, ‘top’ and ‘average’ performance being based on past yield data. Growers were pairwise

  17. Evaluation of deformation-strength characteristics of Fiber-cement-stabilized soil by using Distinct Element Method

    Science.gov (United States)

    Satomi, Tomoaki; Konda, Naoki; Takahashi, Hiroshi

    Fiber-cement-stabilized soil method is an effective way to recycle high-water content mud. The modified soil has several advantages such as high failure stress and high failure strain. However, the quality of the modified soil is not constant and depends on the water content of the mud and additives. Therefore, experimental verification to obtain the strength characteristics of the modified soil is necessary, but conducting experiments under various conditions is ineffective and uneconomic. In this study, a numerical model to estimate deformation-strength characteristics of the modified soil is investigated by using Distinct Element Method (DEM). It was shown that the developed model was effective way to estimate deformation-strength characteristics. Moreover, it was confirmed that the modified soil had high earthquake resistance.

  18. Arsenic-containing soil from geogenic source in Hong Kong: Leaching characteristics and stabilization/solidification.

    Science.gov (United States)

    Li, Jiang-Shan; Beiyuan, Jingzi; Tsang, Daniel C W; Wang, Lei; Poon, Chi Sun; Li, Xiang-Dong; Fendorf, Scott

    2017-09-01

    Geogenic sources of arsenic (As) have aroused extensive environmental concerns in many countries. This study evaluated the vertical profiles, leaching characteristics, and surface characteristics of As-containing soils in Hong Kong. The results indicated that elevated levels of As (486-1985 mg kg -1 ) were mostly encountered in deeper layer (15-20 m below ground). Despite high concentrations, geogenic As displayed a high degree of chemical stability in the natural geochemical conditions, and there was minimal leaching of As in various leaching tests representing leachability, mobility, phytoavailability, and bioaccessibility. Microscopic/spectroscopic investigations suggested that As in the soils was predominantly present as As(V) in a coordination environment with Fe oxides. Sequential extraction indicated that the majority of As were strongly bound with crystalline Fe/Al oxides and residual phase. Yet, uncertainties may remain with potential As exposure through accidental ingestion and abiotic/biotic transformation due to changes in geochemical conditions. Hence, the effectiveness of stabilization/solidification (S/S) treatment was evaluated. Although the leached concentrations of As from the S/S treated soils increased to varying extent in different batch leaching tests due to the increase in alkalinity, the mobility of As was considered very low based on semi-dynamic leaching test. This suggested that As immobilization in the S/S treated soils was predominantly dependent on physical encapsulation by interlocking framework of hydration products, which could also prevent potential exposure and allow controlled utilization of S/S treated soils as monolithic materials. These results illustrate the importance of holistic assessment and treatment/management of As-containing soils for enabling flexible future land use. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Cycles of undesirable substances in the food chain; Kreislaeufe unerwuenschter Stoffe in der Lebensmittelkette

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    The working group ''Carry over of undesirable substances in animal feed'' at the Federal Ministry of Food, Agriculture and Forestry (BMELV) in cooperation with the Institute of Animal Nutrition of the Friedrich-Loeffler-Institute (FLI) performed on 27 and 28 October 2011 in Braunschweig a workshop on ''cycles of undesirable substances in Food Chain ''. The aim of the workshop was to present the latest findings of research and Carry over Recommendations of the Carry over - Working Group on undesirable substances in feed and production processes of the feed industry, to evaluate and discuss about this with representatives from science, business and management and to work out the further research and action need. The focus of the considerations were the pathways, the carry over and the Exposure to dioxins and other halogenated hydrocarbons, the effects of Mycotoxins in feed and starting points for preventive measures, the soil contamination and the exposure of humans and animals by cadmium and case studies on Nitrite in feed, antibiotics in plants and residues of pesticides and radionuclides in feed. Furthermore the risks associated with specified manufacturing processes of feed are considered, especially the used materials that come into contact with animal feed, and the risks from nanotechnology. [German] Die Arbeitsgruppe ''Carry over unerwuenschter Stoffe in Futtermitteln'' beim Bundesministerium fuer Ernaehrung, Landwirtschaft und Forsten (BMELV) hat in Zusammenarbeit mit dem Institut fuer Tierernaehrung des Friedrich-Loeffler-Instituts (FLI) am 27. und 28. Oktober 2011 in Braunschweig einen Workshop zum Thema ''Kreislaeufe unerwuenschter Stoffe in der Lebensmittelkette'' durchgefuehrt. Ziel des Workshops war es, die aktuellen Erkenntnisse der Carry over Forschung und die Empfehlungen der Carry over - Arbeitsgruppe zu unerwuenschten Stoffen in Futtermitteln und Produktionsverfahren in

  20. Characteristics of Soil Structure Interaction for Reactor Building of Kashiwazaki-Kariwa Nuclear Power Plant

    International Nuclear Information System (INIS)

    Gil, Moon Joo; Jung, Rae Young; Hyun, Chang Hun; Kim, Moon Soo; Lim, Nam Hyoung

    2010-01-01

    On 16 July 2007, the Nigataken-chuetsu-oki earthquake registering a moment magnitude of 6.8 occurred at a depth of about 15 km. As a result of this earthquake, noticeable shaking exceeding the design ground motion was measured at the Tokyo Electric Power Company (TEPCO) Kashiwazaki-Kariwa Nuclear Power Station (KKN), the biggest nuclear power plant in the world, located at about 16 km away from the epicenter. This earthquake triggered a fire at an electrical transformer and insignificant damage on some parts of facilities. This event gave an impulse to study on the damage and safety margin of nuclear power plant due to the strong earthquake exceeding design basis. As a part of those efforts, KARISMA (KAshiwazaki-Kariwa Research Initiative for Seismic Margin Assessment) benchmark study was launched by the IAEA in terms of an international collaborative research. The main objectives of this research are to estimate the structural behavior and to evaluate the seismic margin of reactor building considering the effects of Soil-Structure Interaction (SSI). This paper presents verification of structural model developed here and validation of soil foundation characteristics through soil-column analysis. It has also been demonstrated that the spring constants and damping coefficient obtained from impedance analysis represent well the soil foundation characteristics

  1. Characteristics of soils in selected maize growing sites along altitudinal gradients in East African highlands

    Directory of Open Access Journals (Sweden)

    Elijah Njuguna

    2015-12-01

    Full Text Available Maize is the main staple crop in the East African Mountains. Understanding how the edaphic characteristics change along altitudinal gradients is important for maximizing maize production in East African Highlands, which are the key maize production areas in the region. This study evaluated and compared the levels of some macro and micro-elements (Al, Ca, Fe, K, Mg, Mn, Na and P and other soil parameters (pH, organic carbon content, soil texture [i.e. % Sand, % Clay and % Silt], cation exchange capacity [CEC], electric conductivity [EC], and water holding capacity [HC]. Soil samples were taken from maize plots along three altitudinal gradients in East African highlands (namely Machakos Hills, Taita Hills and Mount Kilimanjaro characterized by graded changes in climatic conditions. For all transects, pH, Ca, K and Mg decreased with the increase in altitude. In contrast, % Silt, organic carbon content, Al and water holding capacity (HC increased with increasing altitude. The research provides information on the status of the physical–chemical characteristics of soils along three altitudinal ranges of East African Highlands and includes data available for further research.

  2. Changes in soil characteristics and C dynamics after mangrove clearing (Vietnam).

    Science.gov (United States)

    Grellier, Séraphine; Janeau, Jean-Louis; Dang Hoai, Nhon; Nguyen Thi Kim, Cuc; Le Thi Phuong, Quynh; Pham Thi Thu, Thao; Tran-Thi, Nhu-Trang; Marchand, Cyril

    2017-09-01

    Of the blue carbon sinks, mangroves have one of the highest organic matter (OM) storage capacities in their soil due to low mineralization processes resulting from waterlogging. However, mangroves are disappearing worldwide because of demographic increases. In addition to the loss of CO 2 fixation, mangrove clearing can strongly affect soil characteristics and C storage. The objectives of the present study were to quantify the evolution of soil quality, carbon stocks and carbon fluxes after mangrove clearing. Sediment cores to assess physico-chemical properties were collected and in situ CO 2 fluxes were measured at the soil-air interface in a mangrove of Northern Vietnam. We compared a Kandelia candel mangrove forest with a nearby zone that had been cleared two years before the study. Significant decrease of clay content and an increase in bulk density for the upper 35cm in the cleared zone were observed. Soil organic carbon (OC) content in the upper 35cm decreased by >65% two years after clearing. The quantity and the quality of the carbon changed, with lower carbon to nitrogen ratios, indicating a more decomposed OM, a higher content of dissolved organic carbon, and a higher content of inorganic carbon (three times higher). This highlights the efficiency of mineralization processes following clearing. Due to the rapid decrease in the soil carbon content, CO 2 fluxes at sediment interface were >50% lower in the cleared zone. Taking into account carbonate precipitation after OC mineralization, the mangrove soil lost ~10MgOCha -1 yr -1 mostly as CO 2 to the atmosphere and possibly as dissolved forms towards adjacent ecosystems. The impacts on the carbon cycle of mangrove clearing as shown by the switch from a C sink to a C source highlight the importance of maintaining these ecosystems, particularly in a context of climate change. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A dynamic model to calculate cadmium concentrations in bovine tissues from basic soil characteristics

    International Nuclear Information System (INIS)

    Waegeneers, Nadia; Ruttens, Ann; De Temmerman, Ludwig

    2011-01-01

    A chain model was developed to calculate the flow of cadmium from soil, drinking water and feed towards bovine tissues. The data used for model development were tissue Cd concentrations of 57 bovines and Cd concentrations in soil, feed and drinking water, sampled at the farms were the bovines were reared. Validation of the model occurred with a second set of measured tissue Cd concentrations of 93 bovines of which age and farm location were known. The exposure part of the chain model consists of two parts: (1) a soil-plant transfer model, deriving cadmium concentrations in feed from basic soil characteristics (pH and organic matter content) and soil Cd concentrations, and (2) bovine intake calculations, based on typical feed and water consumption patterns for cattle and Cd concentrations in feed and drinking water. The output of the exposure model is an animal-specific average daily Cd intake, which is then taken forward to a kinetic uptake model in which time-dependent Cd concentrations in bovine tissues are calculated. The chain model was able to account for 65%, 42% and 32% of the variation in observed kidney, liver and meat Cd concentrations in the validation study. - Research highlights: → Cadmium transfer from soil, drinking water and feed to bovine tissues was modeled. → The model was based on 57 bovines and corresponding feed and soil Cd concentrations. → The model was validated with an independent data set of 93 bovines. → The model explained 65% of variation in kidney Cd in the validation study.

  4. [Geochemical characteristics of radon and mercury in soil gas in Lhasa, Tibet, China].

    Science.gov (United States)

    Zhou, Xiao-Cheng; Du, Jian-Guo; Wang, Chuan-Yuan; Cao, Zhong-Quan; Yi, Li; Liu, Lei

    2007-03-01

    The geochemical characteristics of radon and mercury in soil gas in Lhasa and vicinity are investigated based on the measurements of Rn and Hg concentrations, and environmental quality for Rn and Hg in soil gas was evaluated by means of the index of geoaccumulation. The data of Rn and Hg of 1 579 sampling site indicate that the values of environmental-geochemical background of Rn and Hg are 7 634.9 Bq/m3, 41.5 ng/m3 with standard deviations of 2.7 Bq/m3, 2.2 ng/m3, respectively. The environmental quality for Rn in soil gas is better in the west and east parts of studied area, but becomes moderate pollution (level III) in the north part of the central area. Rn is derived from radioactive elements in granitic sediments in the intermountain basin and granite base, which are the major sources of pollution. The environmental quality for Hg in soil gas becomes gradually polluted from the suburban to the center of urban, and the highest pollution reaches level IV. The background of Hg in soil gas is mainly controlled by compositions of sediments, but the Hg pollution caused by human waste and religionary use of mercury.

  5. The Relation between Soil Parameters and Growth Characteristics of Tamarix ramosissima in Abyaneh, Isfahan Province

    Directory of Open Access Journals (Sweden)

    SayedHamid Matinkhah

    2017-12-01

    Full Text Available Vegetative characteristics of plant species are strongly dependent on habitat environmental conditions. Most Salt cedar (Tamarix ramosissima individuals grow on unsuitable soil and climate conditions. One of the important habitats of this species is near Abyaneh in Isfahan Province. To investigate the relation of edaphic factors on the growth of T. ramosissima, three plots 400m2 in area were randomly placed in this region. In each plot, crown cover and mean height of each tree were measured. Chemical and physical properties of soil were evaluated in two depths (0-20, 20-40cm. The relation between soil and vegetation was assessed using ordination method and RDA. The results suggest that in the upper depth, organic matter and saturation percentage (%SP have a strong positive correlation with vegetative factors of T. ramosissima including canopy cover and mean height. On the other hand, in lower depth pH, %CaSO4 factors have higher correlation with plants factors compared to upper depth. Therefore, organic matter in upper layer and saturation percentage (%SP have more correlation with vegetative factors. This suggests the importance of studying these two soil depths. In the restoration projects on this species, it is necessary to consider the abovementioned soil factors.

  6. Determination of Some Land and Soil Characteristics of Siirt Province with Geographic Information System Analysis

    Directory of Open Access Journals (Sweden)

    Mehmet Arif ÖZYAZICI

    2014-09-01

    Full Text Available The main aim of this research was to determine some land and soil characteristics of Siirt province and to make database using Geographic Information System (GIS. The study area covers about 562619.5 ha. Firstly, digital elevation model was formed using topographic map of the Siirt province and after this process slope, aspect, elevation and hill shade maps were also produced. In addition to that, some data produced General Directory of Rural Services and climate data were used in this study. According to study results, west part of the Siirt province has almost flat area whereas, hilly and mountain area locate in north and east part of it. Therefore, slope degree increase from west to north and east ways. More than half of the study area’s soil types (65% is Brown forest soils. Besides, according to land use and land cover map about 44% and 31% of the study area covers by shrubbery-brush and pastures, respectively. According to erosion maps, approximately %90 of the Siirt province lands has medium, severe and very severe erosion problem. Lands that are suitable for agricultural activities are very limited in Siirt Province. Only about 9% of the total land was classified as I, II and III land capability classes. Moreover, investigated depth map of the study area about 85% of the study area has very shallow and shallow soil depth. Deep soils found on plain and valley located at west part of the study area.

  7. Improvement of Soil Biology Characteristics at Paddy Field by System of Rice Intensification

    Directory of Open Access Journals (Sweden)

    Widyatmani Sih Dewi

    2015-07-01

    Full Text Available The aim of the research was to test the System of Rice Intensification (SRI method in improving the biological properties of paddy soil. The indicators of improvement were measured by the number of earthworm feces (cast, and the population of some microbial and nutrient content in the cast. The experiments were performed by comparing the three methods, namely: (1 SRI, (2 semi-conventional, and (3 conventional, using Randomized Completely Block Design. Each treatment was repeated nine times. The experiments were performed in the paddy fields belonging to farmers in Sukoharjo, Central Java. The result showed that the SRI (application of 1 tons ha-1 of vermicompost + 50% of inorganic fertilizer dosage tends to increase the number of earthworms cast. It is an indicator of earthworm activity in soil. Earthworms cast contains more phosphate solubilizing bacteria (12.98 x 1010cfu and N content (1.23% compared to its surrounding soil. There is a close functional relation between earthworms cast with total tiller number. SRI method is better than the other two methods to improve the biological characteristics of paddy soil that has the potential to maintain the sustainability of soil productivity.

  8. Morphological, sediment and soil chemical characteristics of dry tropical shallow reservoirs in the Southern Mexican Highlands

    Directory of Open Access Journals (Sweden)

    José Luis ARREDONDO-FIGUEROA

    2011-02-01

    Full Text Available The morphometry, sediment and soil chemical characteristics of eleven dry tropical shallow reservoirs situated in Southern Mexican Highlands were studied. The reservoirs are located at 1104 to 1183 meters above sea level in a sedimentary area. Seventeen morphometric and eight sediment and soil chemical parameters were measured. The results of the morphometric parameters showed that these reservoirs presented a soft and roughness bottom, with an ellipsoid form and a concave depression that permit the mix up of water and sediments, causing turbidity and broken thermal gradients; their slight slopes allowed the colonization of submerged macrophyte and halophyte plants and improved the incidence of sunlight on water surface increasing evaporation and primary productivity. Dry tropical shallow reservoirs have fluctuations in area, and volume according to the amount of rainfall, the effect of evaporation, temperature, lost volume for irrigation, and other causes. The sand-clay was the most important sediment texture and their values fluctuated with the flooded periods. The concentration-dilution cycle showed a direct relationship in the percentage of organic matter in the soil as well as with pH, soil nitrogen and phosphorus. El Tilzate, El Candelero and El Movil were related by the shore development and high concentrations of organic matter and nitrogen in the soil. Finally, we emphasize the importance of this study, in relation to possible future changes in morphometrical parameters as a consequence of human impact.

  9. Eleven years' effect of conservation practices for temperate sandy loams: II. Soil pore characteristics

    DEFF Research Database (Denmark)

    Abdollahi, Lotfallah; Munkholm, Lars Juhl

    2017-01-01

    Conservation agriculture (CA) is regarded by many as a sustainable intensification strategy. Minimal soil disturbance in combination with residue retention are important CA components. This study examined the long-term effects of crop rotation, residue retention, and tillage on soil pore characte......Conservation agriculture (CA) is regarded by many as a sustainable intensification strategy. Minimal soil disturbance in combination with residue retention are important CA components. This study examined the long-term effects of crop rotation, residue retention, and tillage on soil pore...... characteristics of two Danish sandy loams. Rotation R2 is a rotation of winter crops (mainly cereals) with residues retained, rotation R3 a mix of winter and spring crops (mainly cereals) with residues removed, and rotation R4 the same mix of winter and spring crops, but with residues retained. Each rotation...... included the tillage treatments: moldboard plowing to 20-cm depth (MP), harrowing to 8- to 10-cm depth (H) and direct drilling (D). Soil cores were taken from the topsoil (4–8, 12–16, 18–27 cm) in mid-autumn 2013 and early spring 2014. Water retention, air permeability, and gas diffusivity was determined...

  10. Method of eliminating undesirable gaseous products resulting in underground uranium ore leaching

    International Nuclear Information System (INIS)

    Krizek, J.; Dedic, K.; Johann, J.; Haas, F.; Sokola, K.

    1980-01-01

    The method described is characteristic of the fact that gases being formed or dissolved are oxidized using a combined oxidation-reduction system consisting of airborne oxygen, oxygen carriers and a strong irreversible oxidant. The oxygen carrier system consists of a mixture of Fe 2+ and Fe 3+ cations or of Cu + and Cu 2+ cations introduced in solutions in form of iron salts at a concentration of 0.0001 to 0.003 M, or copper salts maximally of 0.0003 M. The irreversible oxidant shows a standard redox potential of at least +1.0 V. In addition to undesirable product elimination, the method allows increasing the leaching process yield. (J.B.)

  11. Damping characteristic identification of non-linear soil-structural system interaction by phase resonance

    International Nuclear Information System (INIS)

    Poterasu, V.F.

    1984-01-01

    It is presented a method and the phase resonance for damping characteristic identification of non-linear soil-structural interaction. The algorithm can be applied in case of any, not necessarily, damping characteristic of the system examined. For the identification, the system is harmonically excited and are considered the super-harmonic amplitudes for odd and even powers of the x. The response of shear beam system for different levels of base excitation and for different locations of the load is considered. (Author) [pt

  12. Soil friability

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl

    2011-01-01

    This review gathers and synthesizes literature on soil friability produced during the last three decades. Soil friability is of vital importance for crop production and the impact of crop production on the environment. A friable soil is characterized by an ease of fragmentation of undesirably large...... aggregates/clods and a difficulty in fragmentation of minor aggregates into undesirable small elements. Soil friability has been assessed using qualitative field methods as well as quantitative field and laboratory methods at different scales of observation. The qualitative field methods are broadly used...... by scientists, advisors and farmers, whereas the quantitative laboratory methods demand specialized skills and more or less sophisticated equipment. Most methods address only one aspect of soil friability, i.e. either the strength of unconfined soil or the fragment size distribution after applying a stress. All...

  13. Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia

    Science.gov (United States)

    Cornelissen, Gerard; Martinsen, Vegard; Shitumbanuma, Victor; Alling, Vanja; Breedveld, Gijs D.; Rutherford, David W.; Sparrevik, Magnus; Hale, Sarah E.; Obia, Alfred; Mulder, Jan

    2013-01-01

    Biochar addition to agricultural soils can improve soil fertility, with the added bonus of climate change mitigation through carbon sequestration. Conservation farming (CF) is precision farming, often combining minimum tillage, crop rotation and residue retention. In the present farmer-led field trials carried out in Zambia, the use of a low dosage biochar combined with CF minimum tillage was tested as a way to increase crop yields. Using CF minimum tillage allows the biochar to be applied to the area where most of the plant roots are present and mirrors the fertilizer application in CF practices. The CF practice used comprised manually hoe-dug planting 10-L sized basins, where 10%–12% of the land was tilled. Pilot trials were performed with maize cob biochar and wood biochar on five soils with variable physical/chemical characteristics. At a dosage as low as 4 tons/ha, both biochars had a strong positive effect on maize yields in the coarse white aeolian sand of Kaoma, West-Zambia, with yields of 444% ± 114% (p = 0.06) and 352% ± 139% (p = 0.1) of the fertilized reference plots for maize and wood biochar, respectively. Thus for sandy acidic soils, CF and biochar amendment can be a promising combination for increasing harvest yield. Moderate but non-significant effects on yields were observed for maize and wood biochar in a red sandy clay loam ultisol east of Lusaka, central Zambia (University of Zambia, UNZA, site) with growth of 142% ± 42% (p > 0.2) and 131% ± 62% (p > 0.2) of fertilized reference plots, respectively. For three other soils (acidic and neutral clay loams and silty clay with variable cation exchange capacity, CEC), no significant effects on maize yields were observed (p > 0.2). In laboratory trials, 5% of the two biochars were added to the soil samples in order to study the effect of the biochar on physical and chemical soil characteristics. The large increase in crop yield in Kaoma soil was tentatively explained by a combination of an

  14. Biochar Effect on Maize Yield and Soil Characteristics in Five Conservation Farming Sites in Zambia

    Directory of Open Access Journals (Sweden)

    Alfred Obia

    2013-04-01

    Full Text Available Biochar addition to agricultural soils can improve soil fertility, with the added bonus of climate change mitigation through carbon sequestration. Conservation farming (CF is precision farming, often combining minimum tillage, crop rotation and residue retention. In the present farmer-led field trials carried out in Zambia, the use of a low dosage biochar combined with CF minimum tillage was tested as a way to increase crop yields. Using CF minimum tillage allows the biochar to be applied to the area where most of the plant roots are present and mirrors the fertilizer application in CF practices. The CF practice used comprised manually hoe-dug planting 10-L sized basins, where 10%–12% of the land was tilled. Pilot trials were performed with maize cob biochar and wood biochar on five soils with variable physical/chemical characteristics. At a dosage as low as 4 tons/ha, both biochars had a strong positive effect on maize yields in the coarse white aeolian sand of Kaoma, West-Zambia, with yields of 444% ± 114% (p = 0.06 and 352% ± 139% (p = 0.1 of the fertilized reference plots for maize and wood biochar, respectively. Thus for sandy acidic soils, CF and biochar amendment can be a promising combination for increasing harvest yield. Moderate but non-significant effects on yields were observed for maize and wood biochar in a red sandy clay loam ultisol east of Lusaka, central Zambia (University of Zambia, UNZA, site with growth of 142% ± 42% (p > 0.2 and 131% ± 62% (p > 0.2 of fertilized reference plots, respectively. For three other soils (acidic and neutral clay loams and silty clay with variable cation exchange capacity, CEC, no significant effects on maize yields were observed (p > 0.2. In laboratory trials, 5% of the two biochars were added to the soil samples in order to study the effect of the biochar on physical and chemical soil characteristics. The large increase in crop yield in Kaoma soil was tentatively explained by a combination

  15. Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia

    Science.gov (United States)

    Cornelissen, Gerard; Martinsen, Vegard; Shitumbanuma, Victor; Alling, Vanja; Breedveld, Gijs D.; Rutherford, David W.; Sparrevik, Magnus; Hale, Sarah E.; Obia, Alfred; Mulder, Jan

    2013-01-01

    Biochar addition to agricultural soils can improve soil fertility, with the added bonus of climate change mitigation through carbon sequestration. Conservation farming (CF) is precision farming, often combining minimum tillage, crop rotation and residue retention. In the present farmer-led field trials carried out in Zambia, the use of a low dosage biochar combined with CF minimum tillage was tested as a way to increase crop yields. Using CF minimum tillage allows the biochar to be applied to the area where most of the plant roots are present and mirrors the fertilizer application in CF practices. The CF practice used comprised manually hoe-dug planting 10-L sized basins, where 10%–12% of the land was tilled. Pilot trials were performed with maize cob biochar and wood biochar on five soils with variable physical/chemical characteristics. At a dosage as low as 4 tons/ha, both biochars had a strong positive effect on maize yields in the coarse white aeolian sand of Kaoma, West-Zambia, with yields of 444% ± 114% (p = 0.06) and 352% ± 139% (p = 0.1) of the fertilized reference plots for maize and wood biochar, respectively. Thus for sandy acidic soils, CF and biochar amendment can be a promising combination for increasing harvest yield. Moderate but non-significant effects on yields were observed for maize and wood biochar in a red sandy clay loam ultisol east of Lusaka, central Zambia (University of Zambia, UNZA, site) with growth of 142% ± 42% (p > 0.2) and 131% ± 62% (p > 0.2) of fertilized reference plots, respectively. For three other soils (acidic and neutral clay loams and silty clay with variable cation exchange capacity, CEC), no significant effects on maize yields were observed (p > 0.2). In laboratory trials, 5% of the two biochars were added to the soil samples in order to study the effect of the biochar on physical and chemical soil characteristics. The large increase in crop yield in Kaoma soil was tentatively explained by a combination of an

  16. To Evaluate the Effect of Soil Physical and Chemical Characteristics on the Growth Characteristics of Saffron (Crocus sativus L. Corms in Tornbat-e Heydariyeh Area

    Directory of Open Access Journals (Sweden)

    Fariba Zarghani

    2016-07-01

    Full Text Available Introduction Saffron is one of the most economically important plants across Iran and all over the world. The most important cultivated areas of saffron are in Khorasan-e Razavi and Southern Khorasan provinces (Jihad Keshavarzi Khorasan Razavi, 2013. The corm is the reservoir of photosynthetic materials and plays an important role in the saffron life cycle. Corm size and physicochemical characteristics of soil determine the growth and yield of saffron (Aytekin et al., 2008. It has been advised to use corms with diameter more than 2.5 cm (Kafi et al., 2002. Despite the importance of this plant, few studies have been conducted on the effects of soil characteristics on the growth of the plant in natural field conditions. Therefore, the objective which we will try to achieve is: to evaluate the effect of soil physical and chemical characteristics of the growth of saffron corm and determine the most important effect characteristics. Materials and methods In September 2012, 30 samples of 3 to 5 years old saffron corms were taken from the fields with similar management in Torbat Heydariyeh. The surrounding soil corms (depth of 0 to 30 cm were sampled, too. Dry weight of corms was measured in the laboratory. Air dried soil samples were passed through a 2 mm sieve and used for physical-chemical analyses. Soil texture was determined by using pipet method. Total nitrogen, available phosphorous, available potassium, soil organic carbon and calcium carbonate equivalent were measured in bulk soil samples. Calcium, magnesium, sodium, EC and pH were measured in the saturated soil paste. Fe, Cu and Zn were extracted by DTPA and measured by atomic adsorption spectroscopy. Correlation, regression and neural network technique were used to analyze the data and to identify the most important soil characteristics on the corms characteristics. Results and discussion Diameter and dry weight of corms with mean values of 34.04 mm and 3.72 g, ranged from 22.8 to 51.7 mm

  17. A review of the distribution coefficients of trace elements in soils: influence of sorption system, element characteristics, and soil colloidal properties.

    Science.gov (United States)

    Shaheen, Sabry M; Tsadilas, Christos D; Rinklebe, Jörg

    2013-12-01

    Knowledge about the behavior and reactions of separate soil components with trace elements (TEs) and their distribution coefficients (Kds) in soils is a key issue in assessing the mobility and retention of TEs. Thus, the fate of TEs and the toxic risk they pose depend crucially on their Kd in soil. This article reviews the Kd of TEs in soils as affected by the sorption system, element characteristics, and soil colloidal properties. The sorption mechanism, determining factors, favorable conditions, and competitive ions on the sorption and Kd of TEs are also discussed here. This review demonstrates that the Kd value of TEs does not only depend on inorganic and organic soil constituents, but also on the nature and characteristics of the elements involved as well as on their competition for sorption sites. The Kd value of TEs is mainly affected by individual or competitive sorption systems. Generally, the sorption in competitive systems is lower than in mono-metal sorption systems. More strongly sorbed elements, such as Pb and Cu, are less affected by competition than mobile elements, such as Cd, Ni, and Zn. The sorption preference exhibited by soils for elements over others may be due to: (i) the hydrolysis constant, (ii) the atomic weight, (iii) the ionic radius, and subsequently the hydrated radius, and (iv) its Misono softness value. Moreover, element concentrations in the test solution mainly affect the Kd values. Mostly, values of Kd decrease as the concentration of the included cation increases in the test solution. Additionally, the Kd of TEs is controlled by the sorption characteristics of soils, such as pH, clay minerals, soil organic matter, Fe and Mn oxides, and calcium carbonate. However, more research is required to verify the practical utilization of studying Kd of TEs in soils as a reliable indicator for assessing the remediation process of toxic metals in soils and waters. © 2013 Elsevier B.V. All rights reserved.

  18. Contamination characteristics and source apportionment of methylated PAHs in agricultural soils from Yangtze River Delta, China

    International Nuclear Information System (INIS)

    Chen, Weixiao; Wu, Xinyi; Zhang, Haiyun; Sun, Jianteng; Liu, Wenxin; Zhu, Lizhong; Li, Xiangdong; Tsang, Daniel C.W.; Tao, Shu; Wang, Xilong

    2017-01-01

    18MPAHs were in Jiaxing, Huzhou and border of Wuxi and Suzhou. • Different molecular-weight MPAHs showed dissimilar spatial distribution patterns. • Relatively severe pollution of ∑18MPAHs was mainly from petroleum leakage. • Some isomeric MPAHs with methyl at specific site were much higher than others. - Understanding the pollution characteristics and origins of methylated PAHs in agricultural soils in YRD, China is important for developing effective strategies for pollution control to ensure food safety.

  19. A preliminary spatial-temporal study of some soil characteristics in the calcareous massif of Sicó, Portugal.

    Science.gov (United States)

    Torres, Maria Odete; Neves, Maria Manuela

    2016-04-18

    The mountainous massif of Sicó, in the centre of Portugal, is an extensive area composed of calcareous Jurassic formations. Hillside calcareous soils, with high pH, present chemical restrictions to support plant growth and are subjected to important erosion processes leading to their degradation if not protected by vegetation. In a first year of study some soil physicochemical characteristics have been measured in some geo-referenced locations of a larger design experiment and an exploratory spatial analysis has been performed. The objective of this study was to present some suggestions in order to give sustainable phosphorus fertiliser recommendations aiming to establish pastures in these soils and thus support traditional livestock activity. Ten years apart, those soil characteristics have been measured again in the same locations and comparisions have been made. The objective was to understand the variability of the soil properties under study in order to better adequate the fertiliser soil management regarding the area restoration.

  20. Evaluation of rainfall infiltration characteristics in a volcanic ash soil by time domain reflectometry method

    Directory of Open Access Journals (Sweden)

    S. Hasegawa

    1997-01-01

    Full Text Available Time domain reflectometry (TDR was used to monitor soil water conditions and to evaluate infiltration characteristics associated with rainfall into a volcanic-ash soil (Hydric Hapludand with a low bulk density. Four 1 m TDR probes were installed vertically along a 6 m line in a bare field. Three 30 cm and one 60 cm probes were installed between the 1 m probes. Soil water content was measured every half or every hour throughout the year. TDR enabled prediction of the soil water content precisely even though the empirical equation developed by Topp et al. (1980 underestimated the water content. Field capacity, defined as the amount of water stored to a depth of 1 m on the day following heavy rainfall, was 640 mm. There was approximately 100 mm difference in the amount of water stored between field capacity and the driest period. Infiltration characteristics of rainfall were investigated for 36 rainfall events exceeding 10 mm with a total amount of rain of 969 mm out of an annual rainfall of 1192 mm. In the case of 25 low intensity rainfall events with less than 10 mm h-1 on to dry soils, the increase in the amount of water stored to a depth of 1 m was equal to the cumulative rainfall. For rain intensity in excess of 10 mm h-1, non-uniform infiltration occurred. The increase in the amount of water stored at lower elevation locations was 1.4 to 1.6 times larger than at higher elevation locations even though the difference in ground height among the 1 m probes was 6 cm. In the two instances when rainfall exceeded 100 mm, including the amount of rain in a previous rainfall event, the increase in the amount of water stored to a depth of 1 m was 65 mm lower than the total quantity of rain on the two occasions (220 mm; this indicated that 65 mm of water or 5.5% of the annual rainfall had flowed away either by surface runoff or bypass flow. Hence, approximately 95% of the annual rainfall was absorbed by the soil matrix but it is not possible to simulate

  1. Fractal Characteristics of Soil Retention Curve and Particle Size Distribution with Different Vegetation Types in Mountain Areas of Northern China

    Directory of Open Access Journals (Sweden)

    Xiang Niu

    2015-12-01

    Full Text Available Based on fractal theory, the fractal characteristics of soil particle size distribution (PSD and soil water retention curve (WRC under the five vegetation types were studied in the mountainous land of Northern China. Results showed that: (1 the fractal parameters of soil PSD and soil WRC varied greatly under each different vegetation type, with Quercus acutissima Carr. and Robina pseudoacacia Linn. mixed plantation (QRM > Pinus thunbergii Parl. and Pistacia chinensis Bunge mixed plantation (PPM > Pinus thunbergii Parl. (PTP > Juglans rigia Linn. (JRL > abandoned grassland (ABG; (2 the soil fractal dimensions of woodlands (QRM, PPM, PTP and JRL were significantly higher than that in ABG, and mixed forests (QRM and PPM were higher than that in pure forests (PTP and JRL; (3 the fractal dimension of soil was positively correlated with the silt and clay content but negatively correlated with the sand content; and (4 the fractal dimension of soil PSD was positively correlated with the soil WRC. These indicated that the fractal parameters of soil PSD and soil WRC could act as quantitative indices to reflect the physical properties of the soil, and could be used to describe the influences of the Return Farmland to Forests Projects on soil structure.

  2. Fractal Characteristics of Soil Retention Curve and Particle Size Distribution with Different Vegetation Types in Mountain Areas of Northern China

    Science.gov (United States)

    Niu, Xiang; Gao, Peng; Wang, Bing; Liu, Yu

    2015-01-01

    Based on fractal theory, the fractal characteristics of soil particle size distribution (PSD) and soil water retention curve (WRC) under the five vegetation types were studied in the mountainous land of Northern China. Results showed that: (1) the fractal parameters of soil PSD and soil WRC varied greatly under each different vegetation type, with Quercus acutissima Carr. and Robina pseudoacacia Linn. mixed plantation (QRM) > Pinus thunbergii Parl. and Pistacia chinensis Bunge mixed plantation (PPM) > Pinus thunbergii Parl. (PTP) > Juglans rigia Linn. (JRL) > abandoned grassland (ABG); (2) the soil fractal dimensions of woodlands (QRM, PPM, PTP and JRL) were significantly higher than that in ABG, and mixed forests (QRM and PPM) were higher than that in pure forests (PTP and JRL); (3) the fractal dimension of soil was positively correlated with the silt and clay content but negatively correlated with the sand content; and (4) the fractal dimension of soil PSD was positively correlated with the soil WRC. These indicated that the fractal parameters of soil PSD and soil WRC could act as quantitative indices to reflect the physical properties of the soil, and could be used to describe the influences of the Return Farmland to Forests Projects on soil structure. PMID:26633458

  3. Relationship Between Soil Characteristics and Rate of Soil Loss on Coffee Base-Farming System at Sumberjaya, West Lampung

    OpenAIRE

    DARIAH, AI; AGUS, F; ARSYAD, S; SUDARSONO,; MASWAR,

    2003-01-01

    The current public perception concerning land use change is, whenever forest is converted to agricultural land, the forest functions would drasticaly decrease. Studies have shown that soil loss in coffee based systems varied widely and it could be much lower than the tolerable soil loss level, depending on soil properties. This research was conducted to determine the dominant factors of soil properties in influencing soil loss. This analysis was based on data collected from a 3-site (Laksana,...

  4. Nitrogen isotope compositions and spatial distribution characteristics of soil in the process of karst rocky desertification

    International Nuclear Information System (INIS)

    Luo Xuqiang; Wang Shijie; Wang Chengyuan; Liang Yuhua; Liao Xinrong; Yang Hongyan

    2011-01-01

    Isotopic composition and spatial distribution characteristic of total nitrogen of the surficial soil in karst rocky desertification area, including different types, different grades and different disturbed modes karst rocky desertification within the same small catchment, which belong to the Wangjiazhai peak-cluster depression basin and located in Qingzhen City, Guizhou Province were discussed in this study. Results showed that δ 15 N values of total nitrogen in top soil in yellow soil area were mainly between +0.35‰ ∼ +6.82% with the average of +4.50‰, and between +2.70‰ ∼ +6.50‰ in black calcareous with the average of +4.27‰. In both yellow soil area and black calcareous area, there were no significant difference in the δ 15 N values of total nitrogen on sample lands of rocky desertification at different levels, different ways of interruption and different slope positions, and no obvious difference on the whole (P≤0.05), which is mainly due to the high habitat heterogeneity of karst area. (authors)

  5. Microbial characteristics of purple paddy soil in response to Pb pollution.

    Science.gov (United States)

    Jiang, Qiu-Ju; Zhang, Yue-Qiang; Zhang, La-Mei; Zhou, Xin-Bin; Shi, Xiao-Jun

    2014-05-01

    The study focused on the change of microbial characteristics affected by Plumbum pollution with purple paddy soil in an incubation experiment. The results showed that low concentration of Plumbum had little effect on most of microbial amounts, biological activity and enzymatic activity. However, denitrifying activity was inhibited severely, and inhibition rate was up to 98%. Medium and high concentration of Plumbum significantly reduced the amounts and activity of all microorganisms and enzymatic activity, which increased with incubation time. Negative correlations were found between Plumbum concentrations and microbial amounts, biological activity and enzymatic activities except fungi and actinomyces. Thus they can be used to indicate the Plumbum pollution levels to some extent. LD(50) of denitrifying bacteria (DB) and ED50 of denitrifying activity were 852mg/kg and 33.5mg/kg. Across all test soil microbes, denitrifying bacteria was most sensitive to Plumbum pollution in purple paddy soil. Value of early warning showed that anaerobic cellulose-decomposing bacteria (ACDB) and actinomyces were also sensitive to Plumbum pollution. We concluded that denitrifying activity, actinomyces, ACDB or DB can be chosen as predictor of Plumbum contamination in purple paddy soil.

  6. Evaluation of soil characteristics potentially affecting arsenic concentration in paddy rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Bogdan, Katja; Schenk, Manfred K.

    2009-01-01

    Paddy rice may contribute considerably to the human intake of As. The knowledge of soil characteristics affecting the As content of the rice plant enables the development of agricultural measures for controlling As uptake. During field surveys in 2004 and 2006, plant samples from 68 fields (Italy, Po-area) revealed markedly differing As concentration in polished rice. The soil factors total As (aquaregia) , pH, grain size fractions, total C, plant available P (CAL) , poorly crystalline Fe (oxal.) and plant available Si (Na-acetate) content that potentially affect As content of rice were determined. A multiple linear regression analysis showed a significant positive influence of the total As (aquaregia) and plant available P (CAL) content and a negative influence of the poorly crystalline Fe (oxal.) content of the soil on the As content in polished rice and rice straw. Si concentration in rice straw varied widely and was negatively related to As content in straw and polished rice. - Field selection for total As, poorly crystalline Fe and plant available P in soil might contribute to control As content of paddy rice.

  7. Footprint Characteristics of Cosmic-Ray Neutron Sensors for Soil Moisture Monitoring

    Science.gov (United States)

    Schrön, Martin; Köhli, Markus; Zreda, Marek; Dietrich, Peter; Zacharias, Steffen

    2015-04-01

    Cosmic-ray neutron sensing is a unique and an increasingly accepted method to monitor the effective soil water content at the field scale. The technology is famous for its low maintenance, non-invasiveness, continuous measurement, and most importantly, for its large footprint. Being more representative than point data and finer resolved than remote-sensing products, cosmic-ray neutron derived soil moisture products provide unrivaled advantage for mesoscale hydrologic and land surface models. The method takes advantage of neutrons induced by cosmic radiation which are extraordinarily sensitive to hydrogen and behave like a hot gas. Information about nearby water sources are quickly mixed in a domain of tens of hectares in air. Since experimental determination of the actual spatial extent is hardly possible, scientists have applied numerical models to address the footprint characteristics. We have revisited previous neutron transport simulations and present a modified conceptual design and refined physical assumptions. Our revised study reveals new insights into probing distance and water sensitivity of detected neutrons under various environmental conditions. These results sharpen the range of interpretation concerning the spatial extent of integral soil moisture products derived from cosmic-ray neutron counts. Our findings will have important impact on calibration strategies, on scales for data assimilation and on the interpolation of soil moisture data derived from mobile cosmic-ray neutron surveys.

  8. Influence of Characteristic-Soil-Property-Estimation Approach on the Response of Monopiles for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard; Sørensen, John Dalsgaard; Kim, Sun-Bin

    2015-01-01

    Different approaches to estimation of the characteristic undrained shear strength of soil are discussed, based on 12 cone penetration tests (CPTs) carried out within a soil volume representative of an offshore monopile foundation. The paper is focused on the statistical treatment of the data, and...

  9. Time evolution of the general characteristics and Cu retention capacity in an acid soil amended with a bentonite winery waste

    DEFF Research Database (Denmark)

    Fernandez Calviño, David; Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula

    2015-01-01

    The effect of bentonite waste added to a "poor" soil on its general characteristic and copper adsorption capacity was assessed. The soil was amended with different bentonite waste concentrations (0, 10, 20, 40 and 80Mgha-1) in laboratory pots, and different times of incubation of samples were tes...

  10. A Study on Soil Movement Characteristics and Monitoring of Land creeping in the Republic of Korea

    Science.gov (United States)

    Kang, M.; Lee, C.; Woo, C.; Kim, D.; Seo, J.; Kim, K.

    2017-12-01

    In South Korea, `Landslide' is general phenomenon that the soil is saturated by rainfall and the soil is rapidly falling down at top soil. Landslide Sediment-related disaster is mainly composed of shallow landslide and debris flow in South Korea. However, land creeping is also occurring due to climate change and mountain development. Land creeping is a phenomenon in which a part of the soil layer moves due to the influence of groundwater and external impacts in the mountain slope. It is difficult to detect the phenomenon because the moving speed is very slow and it occurs even without the effect of rainfall. In case land creeping occurs, the damage appears on a large scale. Therefore, it is important to analyze the cause of the occurrence and to cope with it promptly. This study was conducted to investigation soil characteristics and cracks monitoring in order to understand the characteristics and causes of land creeping in South Korea. The crack of land creeping was found in 5ea and the total extension was about 121m. The width and depth range of the crack are each 0.2 0.5m, 0.25 0.45m. Geology, engineering and geomorphological characteristics of the ground were considered. As a result, the land creeping occurred to following reasons; (1) Characteristics of bed rock(anorthosite), (2) Relatively high groundwater level, (3) Maintenance of lower slope when reservoir build, (4) Stratum structure of thinly plied layer. In addition, stability analysis was carried out through the precision ground survey. As a result, instability was found in all sections except for some sections. The method of countermeasures was decided by opinions of field experts. As a result, a monitoring method was suggested in order to understand the change of tension cracks. Therefore, real-time monitoring of landslide early detection system is being implemented. NIFS `unmanned remote monitoring system detects the occurrence of landslides using sensor data and provides early warning information

  11. [Research on characteristics of soil clay mineral evolution in paddy field and dry land by XRD spectrum].

    Science.gov (United States)

    Zhang, Zhi-dan; Li, Qiao; Luo, Xiang-li; Jiang, Hai-chao; Zheng, Qing-fu; Zhao, Lan-po; Wang, Ji-hong

    2014-08-01

    The present paper took the typical saline-alkali soil in Jilin province as study object, and determinated the soil clay mineral composition characteristics of soil in paddy field and dry land. Then XRD spectrum was used to analyze the evolutionary mechanism of clay mineral in the two kinds of soil. The results showed that the physical and chemical properties of soil in paddy field were better than those in dry land, and paddy field would promote the weathering of mineral particles in saline-alkali soil and enhance the silt content. Paddy field soil showed a strong potassium-removal process, with a higher degree of clay mineral hydration and lower degree of illite crystallinity. Analysis of XRD spectrum showed that the clay mineral composition was similar in two kinds of soil, while the intensity and position of diffraction peak showed difference. The evolution process of clay mineral in dry land was S/I mixture-->vermiculite, while in paddy field it was S/I mixture-->vermiculite-->kaolinite. One kind of hydroxylated 'chlorite' mineral would appear in saline-alkali soil in long-term cultivated paddy field. Taking into account that the physical and chemical properties of soil in paddy field were better then those in dry land, we could know that paddy field could help much improve soil structure, cultivate high-fertility soil and improve saline-alkali soil. This paper used XRD spectrum to determine the characteristics of clay minerals comprehensively, and analyzed two'kinds of land use comparatively, and was a new perspective of soil minerals study.

  12. A methodological framework to determine optimum durations for the construction of soil water characteristic curves using centrifugation

    NARCIS (Netherlands)

    Vero, Sara E.; Healy, Mark G.; Henry, Tiernan; Creamer, Rachel E.; Ibrahim, Tristan G.; Forrestal, Patrick J.; Richards, Karl G.; Fenton, Owen

    2016-01-01

    During laboratory assessment of the soil water characteristic curve (SWCC), determining equilibrium at various pressures is challenging. This study establishes a methodological framework to identify appropriate experimental duration at each pressure step for the construction of SWCCs via

  13. Effects of freeze-thaw on characteristics of new KMP binder stabilized Zn- and Pb-contaminated soils.

    Science.gov (United States)

    Wei, Ming-Li; Du, Yan-Jun; Reddy, Krishna R; Wu, Hao-Liang

    2015-12-01

    For viable and sustainable reuse of solidified/stabilized heavy metal-contaminated soils as roadway subgrade materials, long-term durability of these soils should be ensured. A new binder, KMP, has been developed for solidifying/stabilizing soils contaminated with high concentrations of heavy metals. However, the effects of long-term extreme weather conditions including freeze and thaw on the leachability and strength of the KMP stabilized contaminated soils have not been investigated. This study presents a systematic investigation on the impacts of freeze-thaw cycle on leachability, strength, and microstructural characteristics of the KMP stabilized soils spiked with Zn and Pb individually and together. For comparison purpose, Portland cement is also tested as a conventional binder. Several series of tests are conducted including the toxicity characteristic leaching procedure (TCLP), modified European Community Bureau of Reference (BCR) sequential extraction procedure, unconfined compression test (UCT), and mercury intrusion porosimetry (MIP). The results demonstrate that the freeze-thaw cycles have much less impact on the leachability and strength of the KMP stabilized soils as compared to the PC stabilized soils. After the freeze-thaw cycle tests, the KMP stabilized soils display much lower leachability, mass loss, and strength loss. These results are assessed based on the chemical speciation of Zn and Pb, and pore size distribution of the soils. Overall, this study demonstrates that the KMP stabilized heavy metal-contaminated soils perform well under the freeze-thaw conditions.

  14. Effects of soil characteristics on grape juice nutrient concentrations and other grape quality parameters in Shiraz

    Science.gov (United States)

    Concepción Ramos, Maria; Romero, Maria Paz

    2017-04-01

    H; soil characteristics, sugar content.

  15. THE STUDY OF DEFORMATION CHARACTERISTICS OF SOIL MATERIALS WITH THE USAGE OF WASTES

    Directory of Open Access Journals (Sweden)

    L. V. Trykoz

    2017-04-01

    Full Text Available Purpose. More often the qualified building materials are replaced by the industrial wastes for environmental improvement. This refers to both metallurgical slags and biological solids of water treatment plants. In order to understand the possibilities of their usage it needs studying deformation properties of composite soil materials with industrial wastes addition. Methodology. The soil of real buildings and structures foundation is in the complicated conditions and the stress-strained state. While studying this state the total deformation modulus Е0 is used as the deformation characteristic. This one is determined according to the results of sample soil testing in the compression instrument (odometer. This instrument prevents the possibility of lateral expansion of sample soil under the vertical load. Findings. As a result of the testing the compression curves are plotted as the dependence of the porosity coefficient on pressure. These data allow determining the compressibility coefficient and the strain modulus. It is found that a biological solids addition increases the compressibility coefficient four times compared to the clay. The two types of samples are compared. The first type contains 50% of biological solids. The second type contains 50% of biological solids and 50% of slag. The comparison shows that the second type is compressed twelve times less. An addition into the clay of biological solids increases the strain modulus from 7.8 to 20.3 MPa. The slag increases the strain modulus to 52.7 MPa. Originality. While making the composition based clay materials the functional groups of biological solids interact with hydroxyl groups which are placed on the surface of clay particles and form a spatial structure. Besides an addition of biological solids contributes to peptization, soil aggregates destroy themselves, and form contacts between separate particles. It causes the decrease of soil compressibility due to the total porosity

  16. Kinetic characteristic of phenanthrene sorption in aged soil amended with biochar

    Science.gov (United States)

    Kim, Chanyang; Kim, Yong-Seong; Hyun, Seunghun

    2015-04-01

    Biochar has been recently highlighted as an amendment that affects yield of the crops by increasing pH, cation exchange capacity and water retention, and reduces the lability of contaminants by increasing sorption capacity in the soil system. Biochar's physico-chemical properties, high CEC, surfaces containing abundant micropores and macropores, and various types of functional groups, play important roles in enhancing sorption capacity of contaminants. Aging through a natural weathering process might change physico-chemical properties of biochar amended in soils, which can affect the sorption behavior of contaminants. Thus, in this study, the sorption characteristics of phenanthrene (PHE) on biochar-amended soils were studied with various types of chars depending on aging time. To do this, 1) soil was amended with sludge waste char (SWC), wood char (WC), and municipal waste char (MWC) during 0, 6, and 12 month. Chars were applied to soil at 1% and 2.5% (w/w) ratio. 2) Several batch kinetic and equilibrium studies were conducted. One-compartment first order and two-compartment first order model apportioning the fraction of fast and slow sorbing were selected for kinetic models. Where, qt is PHE concentration in biochar-amended soils at each time t, qeis PHE concentration in biochar-amended soils at equilibrium. ff is fastly sorbing fraction and (1-ff) is slowly sorbing fraction. k is sorption rate constant from one-compartment first order model, k1 and k2 are sorption rate constant from two-compartment first order model, t is time (hr). The equilibrium sorption data were fitted with Fruendlich and Langmuir equation. 3) Change in physico-chemical properties of biochar-amended soils was investigated with aging time. Batch equilibrium sorption results suggested that sorbed amount of PHE on WC was greater than SWC and MWC. The more char contents added to soil, the greater sorption capacity of PHE. Sorption equilibrium was reached after 4 hours and equilibrium pH ranged

  17. BETWEEN THE RIGHT AND THE COMMON. HOW GROUPS REACT TO SOCIALLY UNDESIRABLE BEHAVIOUR

    Directory of Open Access Journals (Sweden)

    Komendant-Brodowska Agata

    2017-06-01

    Full Text Available The aim of the paper is to analyse the relationship between group characteristics and the scope of reaction of the group to socially undesirable behaviour. Sometimes small groups or communities fail to react to undesirable or violent behaviour and their apathy can have devastating consequences. Such a situation can occur among co-workers witnessing workplace mobbing, or neighbours who do not react to a suspicion of domestic violence. Reasons for their inaction are diverse and can include fear, doubts concerning the necessity of such a reaction, and also conformity. In the paper I examine a seemingly favourable situation: I assume that reaction is costless and all the members of the group would like to react (internalised norm, but they also want to conform. In order to analyse the factors that can influence the scope of group reaction, a structurally embedded sequential coordination game was played for different initial conditions. Computer simulations were conducted for networks of a specific type (Erd¨os-R´enyi random graph. The main aim of the analysis was to identify non-structural and structural features of the group that can impede or even block the intervention of the group. There is a positive relationship between the scope of group reaction and the strength of the internalized norm, whereas the level of conformity affects the chances of group intervention in a negative way. Heterogeneity of the group is an important factor - the scope of reaction is higher when members of the group have different levels of norm internalisation and conformity. There is a non-linear relationship between network density and the scope of reaction. Both low and high density can make it harder for people to act.

  18. Effects of Plant Residues in Two Types of Soil Texture on Soil characteristics and corn (Zea mays L. NS640 Yield in a Reduced -Tillage cropping System

    Directory of Open Access Journals (Sweden)

    E Hesami

    2018-05-01

    Full Text Available Introduction The impact of agronomy on the subsequent product in rotational cropping systems depends on factors such as plant type, duration of crop growth, soil moisture content, tillage type, irrigation method, the amount of nitrogen fertilizer, quantity and quality of returned crop residues to the soil. Prior cultivated crops improve the next crop yield by causing different conditions (nitrogen availability, organic matter and volume of available water in soil. This study was conducted due to importance of corn cultivation in Khuzestan and necessity of increasing the soil organic matter, moisture conservation and in the other hand the lack of sufficient information about the relationship between soil texture, type of preparatory crop in low-tillage condition and some soil characteristics and corn growth habits. The purpose of this experiment was to evaluate the effect of residue of preparatory crops in low plowing condition in two soil types on corn yield and some soil characteristics. Materials and Methods This experiment was carried out at Shooshtar city located in Khuzestan province. An experiment was performed by combined analysis in randomized complete block design in two fields and in two consecutive years with four replications. Two kinds of soil texture including: clay loam and clay sand. Five preparatory crops including: broad bean, wheat, canola, cabbage and fallow as control assigned as sub plots. SAS Ver. 9.1 statistical software was used for analysis of variance and comparison of means. Graphs were drawn using MS Excel software. All means were compared by Duncan test at 5% probability level. Results and Discussion The soil texture and the type of preparatory crop influenced the characteristics of the soil and corn grain yield. Returning the broad bean residue into two types of soil caused the highest grain yield of corn 10128.6 and 9547.9 kgha-1, respectively. The control treatment in sandy loam texture had the lowest corn seed

  19. MICROBIAL CHARACTERISTICS OF SOILS UNDER AN INTEGRATED CROP-LIVESTOCK SYSTEM

    Directory of Open Access Journals (Sweden)

    Andréa Scaramal da Silva

    2015-02-01

    Full Text Available Integrated crop-livestock systems (ICLs are a viable strategy for the recovery and maintenance of soil characteristics. In the present study, an ICL experiment was conducted by the Instituto Agronômico do Paraná in the municipality of Xambre, Parana (PR, Brazil, to evaluate the effects of various grazing intensities. The objective of the present study was to quantify the levels of microbial biomass carbon (MBC and soil enzymatic activity in an ICL of soybean (summer and Brachiaria ruziziensis (winter, with B. ruziziensis subjected to various grazing intensities. Treatments consisted of varying pasture heights and grazing intensities (GI: 10, 20, 30, and 40 cm (GI-10, GI-20, GI-30, and GI-40, respectively and a no grazing (NG control. The microbial characteristics analysed were MBC, microbial respiration (MR, metabolic quotient (qCO2, the activities of acid phosphatase, β-glucosidase, arylsuphatase, and cellulase, and fluorescein diacetate (FDA hydrolysis. Following the second grazing cycle, the GI-20 treatment (20-cm - moderate grazing intensity contained the highest MBC concentrations and lowest qCO2 concentrations. Following the second soybean cycle, the treatment with the highest grazing intensity (GI-10 contained the lowest MBC concentration. Soil MBC concentrations in the pasture were favoured by the introduction of animals to the system. High grazing intensity (10-cm pasture height during the pasture cycle may cause a decrease in soil MBC and have a negative effect on the microbial biomass during the succeeding crop. Of all the enzymes analyzed, only arylsuphatase and cellulase activities were altered by ICL management, with differences between the moderate grazing intensity (GI-20 and no grazing (NG treatments.

  20. Variations in fuel characteristics of corn (Zea mays) stovers: General spatial patterns and relationships to soil properties

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Shaojun [Unit of Biomass Technology and Chemistry, Swedish University of Agricultural Sciences, SE-901 83 Umeaa (Sweden); College of Life Science, Beijing Normal University, Beijing (China); Zhang, Yufen [College of Life Science, Beijing Normal University, Beijing (China); Zhuo, Yue [Biomass Engineering Centre, China Agricultural University, Beijing (China); Lestander, Torbjoern; Geladi, Paul [Unit of Biomass Technology and Chemistry, Swedish University of Agricultural Sciences, SE-901 83 Umeaa (Sweden)

    2010-06-15

    The geographic variations in corn stover fuel and soil characteristics from 22 sites in the Kerchin region (43.8-45.0 N, 122.7-125.1 E), north-east China, were examined in both 2006 and 2007. The correlations between fuel characteristics and soil parameters were analysed using principal component analysis (PCA) and partial least squares regression (PLS). The main emphasis was on the feasibility of using corn stovers as feedstock in direct combustion for heat and power generation. The examined corn stovers from Kerchin generally have similar characteristics to energy grasses grown in Europe and may be used as biofuels. However, large variations, up to several orders of magnitude, in the fuel characteristics existed among the samples. With PCA, the studied soils showed a clear distinction between soluble and less soluble elements, with a trend for higher insoluble element (such as Si) concentrations in south-western soils and a higher pH in the more northern soils. The component for fuel characteristics showed a distinct trend with latitude that can be explained by the above-mentioned soil component pattern. PLS regression models suggested some important relationships that may be used to predict corn stover fuel characteristics using soil and environment properties; for example, latitude, soil pH and Si are the most important predictors for Ca content in corn stovers, but not for K that is best predicted by soil K. Although limited by numbers of samples and sites, this study indicated that this approach can be used to predict biofuel quality. (author)

  1. [Development and succession of artificial biological soil crusts and water holding characteristics of topsoil].

    Science.gov (United States)

    Wu, Li; Chen, Xiao-Guo; Zhang, Gao-Ke; Lan, Shu-Bin; Zhang, De-Lu; Hu, Chun-Xiang

    2014-03-01

    In order to understand the improving effects of cyanobacterial inoculation on water retention of topsoil in desert regions, this work focused on the development and succession of biological soil crusts and water holding characteristics of topsoil after cyanobacterial inoculation in Qubqi Desert. The results showed that after the artificial inoculation of desert cyanobacteria, algal crusts were quickly formed, and in some microenvironments direct succession of the algal crusts to moss crusts occurred after 2-3 years. With the development and succession of biological soil crusts, the topsoil biomass, polysaccharides content, crust thickness and porosity increased, while the soil bulk density decreased. At the same time, with crust development and succession, the topsoil texture became finer and the percents of fine soil particles including silt and clay contents increased, while the percents of coarse soil particles (sand content) decreased proportionately. In addition, it was found that with crust development and succession, the water holding capacity and water content of topsoil showed an increasing trend, namely: moss crust > algal crusts > shifting sand. The water content (or water holding capacity) in algal and moss crusts were 1.1-1.3 and 1.8-2.2 times of those in shifting sand, respectively. Correlation analysis showed that the water holding capacity and water content of topsoil were positively correlated with the crust biomass, polysaccharides content, thickness, bulk density, silt and clay content; while negatively correlated with the porosity and sand content. Furthermore, stepwise regression analysis showed that the main factor affecting water content was the clay content, while that affecting water holding capacity was the porosity.

  2. Trace elements assessment in agricultural and desert soils of Aswan area, south Egypt: Geochemical characteristics and environmental impacts

    Science.gov (United States)

    Darwish, Mohamed Abdallah Gad; Pöllmann, Hebert

    2015-12-01

    Determination of chemical elements, Al, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, P, Pb, Sc, Sr, Ti, Y, and Zn have been performed in agricultural and desert soils and alfalfa (Medicago sativa) at Aswan area. Consequently, the pollution indices, univariate and multivariate statistical methods have been applied, in order to assess the geochemical characteristics of these elements and their impact on soil environmental quality and plant, and to reach for their potential input sources. The investigation revealed that the mean and range values of all element concentrations in agricultural soil are higher than those in desert soil. Furthermore, the agricultural soil displayed various degrees of enrichment and pollution of Cd, Zn, Mo, Co, P, Ti, Pb. The geochemical pattern of integrated pollution indices gave a clear image of extreme and strong pollution in the agricultural soil stations, their poor quality with high risk to human health and considered as a tocsin for an alert. In contrast, the desert soil is the good environmental quality and safe for plant, animal and human health. Alfalfa is tolerant plant and considered as a biomarker for P and Mo in polluted agricultural soil. Four geochemical associations of analyzing elements in agricultural soil and three ones in desert soil have been generated, and their enhancements were essentially caused by various anthropogenic activities and geogenic sources. The investigation also revealed that the broad extended desert soil is fruitful and promising as cultivable lands for agricultural processes in the futures.

  3. Challenges of conservation agriculture practices on silty soils. Effects on soil pore and gas transport characteristics in North-eastern Italy

    DEFF Research Database (Denmark)

    Piccoli, Ilaria; Schjønning, Per; Lamandé, Mathieu

    2017-01-01

    highlighted low transmission properties of the silty soils independently from agronomic management. Both air permeability and relative gas diffusivity showed poor aerated conditions being generallytreatments affected the transmission properties only in the coarsest soil...... of this study was to evaluate the effect of CA practices on gas transport characteristics in the silty soils of the Veneto Region (North-Eastern Italy). In 2010, a field experiment comparing CA practices (no-tillage, cover crop and residues retention) to conventional intensive tillage (IT) system...... was established in four farms located in the Veneto low plain. In fall 2015, 144 undisturbed 100 cm3 soil cores where collected at two different layers (3–6.5 cm and 20–23.5 cm) and analysed for air-filled porosity, air permeability, gas diffusivity and soil structure indices derived. Gas transport measurements...

  4. Changes According to Incubation Periods in Some Microbiological Characteristics at Soil Samples of Some Soil Series from the Gelemen Agricultural Administration

    OpenAIRE

    KARA, Emine Erman

    1998-01-01

    Changes according to incubation periods in some microbiological characteristics at soil samples of soil series from Gelemen Agricultural Administraction were investigated in this study. The results show that bacteria, actinomycet had values in the first periods of incubation (30ºC and field capacity) and in the following periods increased. However, fungus population changed depending upon series properties and reached maximum values 24th and 32th days after the beginning of incubation. During...

  5. Soil , phyto and zoocenosis characteristics along an elevational gradient in the Alps (NW Italy)

    Science.gov (United States)

    Caimi, Angelo; Freppaz, Michele; Filippa, Gianluca; Buffa, Giorgio; Rivella, Enrico; Griselli, Bona; Parodi, Alessandra; Zanini, Ermanno

    2010-05-01

    From a global point of view, the distribution of biodiversity can be associated with climate. In particular, a majority of patterns of species diversity can be explained in terms of climatic gradients. Within a given mountain range, climate may affect the distribution of soils and the abundance and richness of plant species and mesofauna composition. In this study, promoted in the framework of an INTERREG Project "Biodiversità: una ricchezza da conservare" we investigate the soil, plant characteristics and mesofauna communities along two elevational gradient in Italian North Western Alps. Mountain environments are well-suited for such studies because of pronounced climatic gradients within short distances. The study areas, named San Bernardo and Vannino, are located in North Italy, close to the border of Switzerland (San Bernardo: N 46°09' E 08°10'; Vannino: N 46°23'E 08°22'). The first one ranged form 1617 m ASL to 2595 m ASL. while the second one ranged from 1786 to 2515 m ASL , with both a prevalent south aspect. Along both elevational gradients we selected 7 sites, with a vegetation cover ranging from coniferous forest (Larix, Picea and Abies) to high-elevation prairies. In each site, soil material (0-10 cm depth) was collected and in the laboratory, samples were dried and passed through a 2-mm sieve. The pH and the particle size distribution was determined following standard methods (SISS, 1998, 2000). Total C and N contents of the soil were measured with a C/H/N analyser (Elementar Vario EL). Data on the vegetation structure were collected close to each soil sampling points, covering a surface of 16 m2; each sampling site has been further divided into 4 sub-areas of 4 m2. Soil texture ranged between sand and loamy sand, without any obvious distribution with altitude. On average, in the Vannino transect soil texture was slightly coarser than at San Bernardo. A total of 118 vascular species were found at the sampling sites. Landolt ecological spectrum

  6. Heterogeneity of soil surface ammonium concentration and other characteristics, related to plant specific variability in a Mediterranean-type ecosystem

    International Nuclear Information System (INIS)

    Cruz, Cristina; Bio, Ana M.F.; Jullioti, Aldo; Tavares, Alice; Dias, Teresa; Martins-Loucao, Maria Amelia

    2008-01-01

    Heterogeneity and dynamics of eight soil surface characteristics essential for plants-ammonium and nitrate concentrations, water content, temperature, pH, organic matter, nitrification and ammonification rates-were studied in a Mediterranean-type ecosystem on four occasions over a year. Soil properties varied seasonally and were influenced by plant species. Nitrate and ammonium were present in the soil at similar concentrations throughout the year. The positive correlation between them at the time of greatest plant development indicates that ammonium is a readily available nitrogen source in Mediterranean-type ecosystems. The results presented here suggest that plant cover significantly affects soil surface characteristics. - In Mediterranean-type ecosystems ammonium is present in the soil throughout the year and its concentration is dependent on plant cover

  7. Temperature-dependent residual shear strength characteristics of smectite-rich landslide soils

    Science.gov (United States)

    Shibasaki, Tatsuya; Matsuura, Sumio; Okamoto, Takashi

    2015-04-01

    behaviors were also recognized during cooling-event tests. Shear stress fluctuations, which were obtained by 1 Hz data sampling, showed that shear behavior characteristically changed in response to temperature conditions. Stick-slip behavior prevailed under room temperature conditions, whereas shear behavior gradually changed into stable sliding behavior as temperature decreased. SEM (Scanning Electric Microscope) observation on shear surfaces indicated that silt- and sand-size asperities in the vicinity of the shear surface influence the occurrence of stick-slip behavior. It is also characteristically noted that rod-shaped smectitic clays, here called "roll", developed on shear surfaces and are arrayed densely perpendicular to the shearing direction in a micrometer scale. We assume that these rolls are probably rotating slowly within shear zone and acting as a lubricant which affects the temperature-dependent frictional properties of the shearing plane. These experimental results show that residual strength characteristics of smectite-rich soils are sensitive to temperature conditions. Our findings imply that if slip surface soils contain a high fraction of smectite, a decrease in ground temperature can lead to lowered shear resistance of the slip surface and triggering of slow landslide movement.

  8. Effect of Physicochemical Characteristics of Soil on Population Density of Arbuscular Mycorrhizal Fungi in the Roots of Grapevine in Urmia

    Directory of Open Access Journals (Sweden)

    A. Mahdavi Bileh Savar

    2015-01-01

    Full Text Available Relationship of is one of the most useful interactions in terrestrial ecosystems that its positive effects on growth, physiology and ecology of different plants has been documented. This study investigated the relationship between important physicochemical characteristics of soils such as pH, electrical conductivity (EC, soil texture, organic carbon percentage, soil potassium percentage and the amount of accessible phosphorus with population of mycorrhizal fungi. After dividing the study region into four areas, 43 samples of soil were collected. The results of statistical analysis on physico-chemical characteristics of soil and their relation with population density of spores of arbuscular mycorrhizal fungi showed that there was a negative correlation between electrical conductivity (EC, pH, clay percent, and percent of soil available phosphorus, potassium percent, and percentage of organic carbon with the mean number of fungi. There were positive correlations between silt and sand percentages and mean number of spores present in the soil. Based on the coefficien of determination and based on study conditions, the best model for the rhizosphere was found tobe the one in wich available phosphorus percent of soil was the independent variable, and mean population of fungi as the dependant variable. The correlation between available phosphorus percent in soil samples with average fungi population density negative (P<0/05, but there was not a meaningful correlation between other traits and population density of fungi

  9. Physicochemical Characteristics and Ecological Risk Assessment of Heavy Metals Contaminated Soils in Copper Mining of Nulasai, Xinjiang, China

    Directory of Open Access Journals (Sweden)

    Dina·Tursenjan

    2017-12-01

    Full Text Available Taking the mining areas, tailings and surrounding farmland soil of the Nulasai copper mine in Xinjiang as the research object, the characteristics of soil physical and characteristics of heavy metal contents in this area were studied, and their ecological and environmental risks were preliminarily evaluated. The results showed that due to the long-term impact of mining wastewater, soil pH in the Nulasai mining area was relatively low. Soil conductivity and salt content were higher than those in the surrounding farmland, while soil organic matter, available nitrogen, available potassium and available phosphorus were lower than those in the surrounding farmland. The contents of heavy metals Cr, Cd, Pb, Cu, Ni and Zn in the mining area, tailing area and farmland soil were all lower than those in Xinjiang except for Cu. Overall, the heavy metal content of the soil manifested the area > tailing area > farmland. Single factor(Pi, Nemerow comprehensive pollution index(I and potential ecological risk index(RI indicated that the ecological risk of heavy metals in the soil around the mining area was manifested tailings > mining area > farmland. The potential ecological risk index of heavy metals in 0~30 cm topsoil was higher than that in 30~70 cm deep soil, but the overall ecological risk was lower in different land use types.

  10. Behavior of Copper Oxide Nanoparticles in Soil Pore Waters as Influenced by Soil Characteristics, Bacteria, and Wheat Roots

    OpenAIRE

    Hortin, Joshua

    2017-01-01

    The goal of this project was to study the behavior of copper oxide nanoparticles in soil environments. Copper oxide nanoparticles have antimicrobial properties and may also be used in agricultural settings to provide a source of copper for plant health, but accidental or misapplication of these nanoparticles to soil may be damaging to the plant and its associated bacteria. Dissolved soil organic matter that is present in soil pore waters dissolved nanoparticles, but did not dissolve the ex...

  11. Undesired Behaviors Faced in Classroom by Physics Teachers in High Schools

    Science.gov (United States)

    Bayar, Adem; Kerns, James H.

    2015-01-01

    The aim of this study is to define undesired behaviors in the classroom, to better understand the reasons of these undesired behaviors, and to offer strategies to overcome these behaviors. The researchers have used a qualitative research approach in this study. For this aim, the researchers have purposefully selected 12 physics teachers who work…

  12. [Soil hydrolase characteristics in late soil-thawing period in subalpine/alpine forests of west Sichuan].

    Science.gov (United States)

    Tan, Bo; Wu, Fu-Zhong; Yang, Wan-Qin; Yu, Sheng; Yang, Yu-Lian; Wang, Ao

    2011-05-01

    Late soil-thawing period is a critical stage connecting winter and growth season. The significant temperature fluctuation at this stage might have strong effects on soil ecological processes. In order to understand the soil biochemical processes at this stage in the subalpine/alpine forests of west Sichuan, soil samples were collected from the representative forests including primary fir forest, fir and birch mixed forest, and secondary fir forest in March 5-April 25, 2009, with the activities of soil invertase, urease, and phosphatase (neutral, acid and alkaline phosphatases) measured. In soil frozen period, the activities of the three enzymes in test forests still kept relatively higher. With the increase of soil temperature, the activities of hydrolases at the early stage of soil-thawing decreased rapidly after a sharp increase, except for neutral phosphatease. Thereafter, there was an increase in the activities of urease and phosphatase. Relative to soil mineral layer, soil organic layer had higher hydrolase activity in late soil-thawing period, and showed more obvious responses to the variation of soil temperature.

  13. Effects of pH-Induced Changes in Soil Physical Characteristics on the Development of Soil Water Erosion

    Directory of Open Access Journals (Sweden)

    Shinji Matsumoto

    2018-04-01

    Full Text Available Soil water erosion is frequently reported as serious problem in soils in Southeast Asia with tropical climates, and the variations in pH affect the development of the erosion. This study investigated the effects of changes in pH on soil water erosion based on changes in the physical properties of the simulated soils with pH adjusted from 2.0 to 10.0 through artificial rainfall tests. The zeta potential was entirely shifted to positive direction at each pH condition due to Al, Ca, and Mg. In the pH range of 6.0 to 2.0, the aggregation of soil particles resulting from the release of Al3+ from clay minerals and/or molecular attraction between soil particles caused the plastic index (IP of the soil to decrease. The decrease in IP led to the development of soil water erosion at the pH range. When the pH exceeded 6.0, the repulsive force generated by the negative charges on soil particles decreased IP, resulting in accelerated erosion by water. The results suggest that changes in pH causes physical properties of the soil to change through changes of the zeta potential in the clayey soil rich in Al, Ca, and Mg, leading to the development of soil water erosion.

  14. Seasonal phosphatase activity in three characteristic soils of the English uplands polluted by long-term atmospheric nitrogen deposition

    International Nuclear Information System (INIS)

    Turner, B.L.; Baxter, Robert; Whitton, B.A.

    2002-01-01

    High soil phosphatase activities confirm strong biological phosphorus limitations due to nitrogen deposition. - Phosphomonoesterase activities were determined monthly during a seasonal cycle in three characteristic soil types of the English uplands that have been subject to long-term atmospheric nitrogen deposition. Activities (μmol para-nitrophenol g -1 soil dry wt. h -1 ) ranged between 83.9 and 307 in a blanket peat (total carbon 318 mg g -1 , pH 3.9), 45.2-86.4 in an acid organic grassland soil (total carbon 354 mg g -1 , pH 3.7) and 10.4-21.1 in a calcareous grassland soil (total carbon 140 mg g -1 , pH 7.3). These are amongst the highest reported soil phosphomonoesterase activities and confirm the strong biological phosphorus limitation in this environment

  15. Distribution characteristics of available trace elements in soil from a reclaimed land in a mining area of north Shaanxi, China

    Directory of Open Access Journals (Sweden)

    Li Zhanbin

    2013-06-01

    Full Text Available Through field and laboratory tests we studied the temporal and spatial variation in the soil content of four available trace elements :copper(Cu, iron(Fe, manganese(Mn and zinc (Zn, to analyze their distribution characteristics in reclaimed mining land under different reclamation conditions. The available trace elements content varied considerably with different land reclamation patterns. Extended reclamation time was helpful for the recovery of the available trace element content in the soil, and after more than eight years of soil reclamation, the content of available trace elements was closer to or greater than that in soil under natural conditions. Various treatment measures significantly influenced the content and distribution of available trace elements in the soil, and reasonable artificial treatments, including covering the soil and growing shrubs and herbaceous plants, increased the content of available trace elements.

  16. The Influence of Soil Characteristics on the Toxicity of Oil Refinery Waste for the Springtail Folsomia candida (Collembola).

    Science.gov (United States)

    Reinecke, Adriaan J; van Wyk, Mia; Reinecke, Sophie A

    2016-06-01

    We determined the toxicity of oil refinery waste in three soils using the springtail Folsomia candida (Collembola) in bioassays. Sublethal exposure to a concentration series of API-sludge presented EC50's for reproduction of 210 mg/kg in site soil; 880 mg/kg in LUFA2.2- and 3260 mg/kg in OECD-soil. The sludge was the least toxic in the OECD-soil with the highest clay and organic matter content, the highest maximum water holding capacity, and the least amount of sand. It was the most toxic in the reference site soil with the lowest organic matter content and highest sand content. The results emphasized the important role of soil characteristics such as texture and organic matter content in influencing toxicity, possibly by affecting bioavailability of toxicants.

  17. Exploring the Role of the Spatial Characteristics of Visible and Near-Infrared Reflectance in Predicting Soil Organic Carbon Density

    Directory of Open Access Journals (Sweden)

    Long Guo

    2017-10-01

    Full Text Available Soil organic carbon stock plays a key role in the global carbon cycle and the precision agriculture. Visible and near-infrared reflectance spectroscopy (VNIRS can directly reflect the internal physical construction and chemical substances of soil. The partial least squares regression (PLSR is a classical and highly commonly used model in constructing soil spectral models and predicting soil properties. Nevertheless, using PLSR alone may not consider soil as characterized by strong spatial heterogeneity and dependence. However, considering the spatial characteristics of soil can offer valuable spatial information to guarantee the prediction accuracy of soil spectral models. Thus, this study aims to construct a rapid and accurate soil spectral model in predicting soil organic carbon density (SOCD with the aid of the spatial autocorrelation of soil spectral reflectance. A total of 231 topsoil samples (0–30 cm were collected from the Jianghan Plain, Wuhan, China. The spectral reflectance (350–2500 nm was used as auxiliary variable. A geographically-weighted regression (GWR model was used to evaluate the potential improvement of SOCD prediction when the spatial information of the spectral features was considered. Results showed that: (1 The principal components extracted from PLSR have a strong relationship with the regression coefficients at the average sampling distance (300 m based on the Moran’s I values. (2 The eigenvectors of the principal components exhibited strong relationships with the absorption spectral features, and the regression coefficients of GWR varied with the geographical locations. (3 GWR displayed a higher accuracy than that of PLSR in predicting the SOCD by VNIRS. This study aimed to help people realize the importance of the spatial characteristics of soil properties and their spectra. This work also introduced guidelines for the application of GWR in predicting soil properties by VNIRS.

  18. Study on the Permeability Characteristics of Polyurethane Soil Stabilizer Reinforced Sand

    Directory of Open Access Journals (Sweden)

    Jin Liu

    2017-01-01

    Full Text Available A polymer material of polyurethane soil stabilizer (PSS is used to reinforce the sand. To understand the permeability characteristics of PSS reinforced sand, a series of reinforcement layer form test, single-hole permeability test, and porous permeability test of sand reinforced with PSS have been performed. Reinforcement mechanism is discussed with scanning electron microscope images. The results indicated that the permeability resistance of sand reinforced with polyurethane soil stabilizer is improved through the formation of reinforcement layer on the sand surface. The thickness and complete degree of the reinforcement layer increase with the increasing of curing time and PSS concentration. The water flow rate decreases with the increasing of curing time or PSS concentration. The permeability coefficient decreases with the increasing of curing time and PSS concentration and increases with the increasing of depth in specimen. PSS fills up the voids of sand and adsorbs on the surface of sand particle to reduce or block the flowing channels of water to improve the permeability resistance of sand. The results can be applied as the reference for chemical reinforcement sandy soil engineering, especially for surface protection of embankment, slope, and landfill.

  19. Soil characteristics and heavy metal accumulation by native plants in a Mn mining area of Guangxi, South China.

    Science.gov (United States)

    Liu, Jie; Zhang, Xue-hong; Li, Tian-yu; Wu, Qing-xin; Jin, Zhen-jiang

    2014-04-01

    Revegetation and ecological restoration of a Mn mineland are important concerns in southern China. To determine the major constraints for revegetation and select suitable plants for phytorestoration, pedological and botanical characteristics of a Mn mine in Guangxi, southern China were investigated. All the soils were characterized by low pH and low nitrogen and phosphorus levels except for the control soil, suggesting that soil acidity and poor nutrition were disadvantageous to plant growth. In general, the studied mine soils had normal organic matter (OM) and cation exchange capacity (CEC). However, OM (8.9 g/kg) and CEC (7.15 cmol/kg) were very low in the soils from tailing dumps. The sandy texture and nutrient deficiency made it difficult to establish vegetation on tailing dumps. Mn and Cd concentrations in all soils and Cr and Zn concentrations in three soils exceeded the pollution threshold. Soil Mn and Cd were above phytotoxic levels, indicating that they were considered to be the major constraints for phytorestoration. A botanical survey of the mineland showed that 13 plant species grew on the mineland without obvious toxicity symptoms. High Mn and Cd concentrations have been found in the aerial parts of Polygonum pubescens, Celosia argentea, Camellia oleifera, and Solanum nigrum, which would be interesting for soil phytoremediation. Miscanthus floridulus, Erigeron acer, Eleusina indica, and Kummerowia striata showed high resistance to the heavy metal and harsh condition of the soils. These species could be well suited to restore local degraded land in a phytostabilization strategy.

  20. Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in southeastern China

    International Nuclear Information System (INIS)

    Wang Guo; Su Miaoyu; Chen Yanhui; Lin Fenfang; Luo Dan; Gao Shufang

    2006-01-01

    The transfer characteristics of Cd and Pb from soils to the edible parts of six vegetable species were calculated from plant and corresponding surface soil samples collected from the fields in Fujian Province, southeastern China. The soil-to-plant transfer factors (TF) calculated from both total and DTPA-extractable Cd and Pb in the soils decreased with increasing total or DTPA-extractable Cd and Pb, indicating that the TF values of Cd and Pb depend on the soil metal content. For most plants studied, there was a significant relation between the TF values and the corresponding soil metal concentrations (total or DTPA-extractable) that was best described by an exponential equation (y = ax b ). We recommend that the representative TF value for a given crop-metal system should be estimated from the regression models between the transfer factors and the corresponding soil metal concentrations and at a given soil metal concentration. - Soil-to-plant transfer factors of Cd and Pb decreased with increasing soil contents of Cd and Pb

  1. Soils

    Science.gov (United States)

    Emily Moghaddas; Ken Hubbert

    2014-01-01

    When managing for resilient forests, each soil’s inherent capacity to resist and recover from changes in soil function should be evaluated relative to the anticipated extent and duration of soil disturbance. Application of several key principles will help ensure healthy, resilient soils: (1) minimize physical disturbance using guidelines tailored to specific soil types...

  2. Impact of soil characteristics and land use on pipe erosion in a temperate humid climate: Field studies in Belgium

    Science.gov (United States)

    Verachtert, E.; Van Den Eeckhaut, M.; Martínez-Murillo, J. F.; Nadal-Romero, E.; Poesen, J.; Devoldere, S.; Wijnants, N.; Deckers, J.

    2013-06-01

    This study investigates the role of soil characteristics and land use in the development of soil pipes in the loess belt of Belgium. First, we tested the hypothesis that discontinuities in the soil profile enhance lateral flow and piping by impeding vertical infiltration. We focus on discontinuities in soil characteristics that can vary with soil depth, including texture, saturated hydraulic conductivity, penetration resistance, and bulk density. These characteristics as well as soil biological activity were studied in detail on 12 representative soil profiles for different land use types. Twelve sites were selected in the Flemish Ardennes (Belgium): four pastures with collapsed pipes (CP), four pastures without CP, two sites under arable land without CP and two sites under forest without CP. Secondly, this study aimed at evaluating the interaction of groundwater table positions (through soil augerings) and CP in a larger area, with a focus on pastures. Pasture is the land use where almost all CP in the study area are observed. Therefore, the position of the groundwater table was compared for 15 pastures with CP and 14 pastures without CP, having comparable topographical characteristics in terms of slope gradient and contributing area. Finally, the effect of land use history on the occurrence of pipe collapse was evaluated for a database of 84 parcels with CP and 84 parcels without CP, currently under pasture. As to the first hypothesis, no clear discontinuities for abiotic soil characteristics in soil profiles were observed at the depth where pipes occur, but pastures with CP had significantly more earthworm channels and mole burrows at larger depths (> 120 cm: mean of > 200 earthworm channels per m2) than pastures without CP, arable land or forest (> 120 cm depth, a few or no earthworm channels left). The land use history appeared to be similar for the pastures with and without CP. Combining all results from soil profiles and soil augering indicates that intense

  3. Characteristic of Soil Nutrients Loss in Beiyunhe Reservoir Under the Simulated Rainfall

    Directory of Open Access Journals (Sweden)

    LIU Cao

    2016-05-01

    Full Text Available Field nutrient loss from soil became the major factor of the water pollution control in countryside in China. Beiyunhe reservoir is located in semiarid zone, where field nutrient loss distributed in summer. To assess the flied nutrient loss in Beiyunhe reservoir, we conducted experiments to study the characteristic of soil nutrients loss by analysis of the content of runoff water, soil nutrients and runoff water sediment under simulated rainfall. The results showed that the runoff happened in the rainstorm. In runoff water, the content of TN was 4.7~11.3 mg·L-1, ammonia nitrogen and nitrate nitrogen accounted for 44.51% of TN; the content of P was 0.66~1.35 mg·L-1, water soluble phosphorus accounted for 54.08% of TP. And the main loss of nutrients was in the surface soil, the loss of TN, NH4+-N, NO3--N, TP and DP were 29.79%, 52.09%, 10.21%, 16.48% and 5.27%, respectively. However, the most of field nutrient loss were in runoff sediment, the content of TN and TP were 0.66~1.27 mg·g-1 and 14.73~20 mg·g-1 in sediment, and TN and TP account for 82.28% and 99.89% of total loss of nutrient. After the rainstorm, the macro-aggregates were reduced 8.8%, and the micro-aggregates increased 9.5%.

  4. Study on Hyperspectral Characteristics and Estimation Model of Soil Mercury Content

    Science.gov (United States)

    Liu, Jinbao; Dong, Zhenyu; Sun, Zenghui; Ma, Hongchao; Shi, Lei

    2017-12-01

    In this study, the mercury content of 44 soil samples in Guan Zhong area of Shaanxi Province was used as the data source, and the reflectance spectrum of soil was obtained by ASD Field Spec HR (350-2500 nm) Comparing the reflection characteristics of different contents and the effect of different pre-treatment methods on the establishment of soil heavy metal spectral inversion model. The first order differential, second order differential and reflectance logarithmic transformations were carried out after the pre-treatment of NOR, MSC and SNV, and the sensitive bands of reflectance and mercury content in different mathematical transformations were selected. A hyperspectral estimation model is established by regression method. The results of chemical analysis show that there is a serious Hg pollution in the study area. The results show that: (1) the reflectivity decreases with the increase of mercury content, and the sensitive regions of mercury are located at 392 ~ 455nm, 923nm ~ 1040nm and 1806nm ~ 1969nm. (2) The combination of NOR, MSC and SNV transformations combined with differential transformations can improve the information of heavy metal elements in the soil, and the combination of high correlation band can improve the stability and prediction ability of the model. (3) The partial least squares regression model based on the logarithm of the original reflectance is better and the precision is higher, Rc2 = 0.9912, RMSEC = 0.665; Rv2 = 0.9506, RMSEP = 1.93, which can achieve the mercury content in this region Quick forecast.

  5. RELATION OF Xylopia emarginata MART. POPULATION GENETIC ESTIMATIOS WITH SOIL CHEMISTRY CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    Peterson Jaeger

    2007-06-01

    Full Text Available It is known that there is a relation between the biotic and abiotic environment and that this interaction reflects in the live organisms group of a place. The interactions between genotype and environment, also already recognized, act in a anolog way, but in a difficult mensurable constatation. In this way, the current research objectifies relating soil Chemistry characteristics with the heterozygosis levels of three Xylopia emarginata Mart. subpopulations. The generic analysis results demonstrated that the subpopulation 1 differs from other ones, showing significative Wright fixation index (-0.389, while non-significative values have been found in the subpopulations 2 and 3 (-0.105 and -0.209, respectely. This difference has also been observed by the Principal Component Analysis (PCA, where the subpopulation 1 has been influencianted by the tenors of organic material (MO, alumin (Al, effective cationic change capacity (t, pH 7.0 (T and sum of hydrogen and alumin (H+Al, while the subpopulations 2 and 3 have been influenciated by pH, phosphor (P and basis saturation index (V. In the same way, the allele 2 of EST-1 and MDH-2 are inversely related to pH, P and V end the allele 1 of GDH-3, SDH-3 and GTDH-3 directly related with MO, AL, t, T and H+Al. In studied populations of Xylopia emarginata Mart. the soil chemistry characteristics affected heterozygosis levels.

  6. Role of soil characteristics on analysis of water flow in shallow land

    International Nuclear Information System (INIS)

    Tohaya, Takayuki; Wakabayashi, Noriaki; Wadachi, Yoshiki.

    1987-09-01

    Analysis of water flow on posutulated model grounds has been carried out by using 2-dimensional finite element analytical model, to clarify the effects of soil characteristics (hydroulic conductivities in saturated and unsaturated zones, moisture content - water head relationship, porosity, etc.) of a shallow land layer on variations in water tables and water flow rates. Results thus obtained indicate that hydroulic conductivities in saturated and unsaturated zones play an important role in governing the development of a water table, especially the hydroulic conductivity of the top layer and of the layers near the water table give significant effect on the water table development. It was found through multiple regression analyses of the variation of the water table that among soil characteristics following parameters give pronounced effect on the development of the water table in the order; the relationship between moisture content of the unsaturated zone and pressure head, the distance between the water table and ground surface, and the saturated hydroulic conductivity of the layer immediately above the water table. (author)

  7. Effect of Grazing Intensity on Some Soil Chemical Characteristics in Gardaneh Zanburi Rangeland of Arsanjan

    Directory of Open Access Journals (Sweden)

    zeinab khademolhosseini

    2016-02-01

    Full Text Available Introduction:Changes caused by grazing on range ecosystem are generally assessed based on the soil conditions and vegetation. Livestock as one of the major elements in range land ecosystems has different effects on different parts of this ecosystem. One of these impacts is excessive livestock grazing capacity which can have different effects on soils and plants in various intensities. Materials and Methods:Gardaneh ZanbooriRangelandis located in Arsanjan in Fars province. This isanareaof mountains, hillsandplains with the maximum height of 2280 meters and minimum height of 1640 meters above sea level. Related areas were separated under three different management methods of enclosure, moderate grazing and heavy grazing. These three areas are considered as symbolic areas of grazing intensity including the reference area where no grazing intensity was observed, the key area where medium to heavy grazing was applied and critical area where heavy grazing was used. These areas were similar in all characteristics such as topography, soil type and rainfall and differed only in their grazing intensity factor. Then, soil samples were collected. Random systematic soil sampling was conducted at two horizons of 0 -15 and 15 -30 cm. Therefore, five profiles in each area (enclosure, moderate grazing and heavy grazing, a total of 15 soil profiles, were excavated and two samples were taken in each profile (one sample from each horizon. Finally, the thirty soil samples were transported to the laboratory. Samples were dried in the air laboratory and passed a two millimeter sieve after smashing. Factors such as N, P, K, OM, EC and PH were measured in each sample In the laboratory, the percentage of P was determined by the Olsen method while the percentage of K was determined using the flamephotometry method. Moreover, N was measured using the Kjeldhal method. C was measured by the Walkley and Black method. The percentage of OM was found by carbon multiplying

  8. Effects of Rainfall Characteristics on the Stability of Tropical Residual Soil Slope

    Directory of Open Access Journals (Sweden)

    Rahardjo Harianto

    2016-01-01

    Full Text Available Global climate change has a significant impact on rainfall characteristics, sea water level and groundwater table. Changes in rainfall characteristics may affect stability of slopes and have severe impacts on sustainable urban living. Information on the intensity, frequency and duration of rainfall is often required by geotechnical engineers for performing slope stability analyses. Many seepage analyses are commonly performed using the most extreme rainfall possible which is uneconomical in designing a slope repair or slope failure preventive measure. In this study, the historical rainfall data were analyzed and investigated to understand the characteristics of rainfall in Singapore. The frequency distribution method was used to estimate future rainfall characteristics in Singapore. New intensity-duration-frequency (IDF curves for rainfall in Singapore were developed for six different durations (10, 20, 30 min and 1, 2 and 24 h and six frequencies (2, 5, 10, 25, 50 and 100 years. The new IDF curves were used in the seepage and slope stability analyses to determine the variation of factor of safety of residual soil slopes under different rainfall intensities in Singapore.

  9. The Use of Adsorbent Materials of Improving the Characteristics of Polluted Soils, Part 1 Phytoremediation of Soils Polluted with Oil Products, Cultivated with Technical Plants

    Directory of Open Access Journals (Sweden)

    Smaranda Masu

    2015-10-01

    Full Text Available In this study are presented in pot experimental variants regarding alternatives to improve the characteristics of soils polluted with 74.12 ± 3.50 g·kg-1 D.M. total petroleum hydrocarbon (TPH in order to apply the phytoremediation process using technical plants from the common flax (Linum usitatissimum. The harmful effects of TPH polluted soils to plants was reduced by using fly ash from thermal plant as temporary adsorbent of non-polar pollutants, petroleum products. The increase of water retention capacity of the soil was achieved by treatments with indigenous volcanic tuff. The lack of nutrients, based on N and P in soils contaminated with TPH rich in C compounds are completed using sewage sludge anaerobically stabilized. The use of appropriate amounts of fly ash and fertilizer agents in the presence of volcanic tuff caused the formation of strong networks of roots and rich harvests of plants, stems and seeds from the treated soil. The TPH reduction efficiency of TPH polluted soils treated with fly ash (TPH soil: fly ash ratio 12:1 wt. / wt. and anaerobically stabilized sewage sludge respectively indigenous volcanic tuff during one vegetative cycle of crops was in the range of 56.2 - 63.25 %.

  10. [Pollution characteristics and sources of polycyclic aromatic hydrocarbons in riparian soils along urban rivers of Wenzhou city].

    Science.gov (United States)

    Zhou, Jie-Cheng; Bi, Chun-Juan; Chen, Zhen-Lou; Wang, Lu; Xu, Shi-Yuan; Pan, Qi

    2012-12-01

    Twenty one riparian soil samples along Jiushanwai River and Shanxia River of Wenzhou city were collected in August 2010 to investigate the pollution characteristics of polycyclic aromatic hydrocarbons (PAHs). The samples were extracted by an accelerated solvent extractor (ASE), purified by a purification column and determined by GC-MS. Results showed that the total concentrations of PAHs in the riparian soils ranged from 60.7 ng x g(-1) to 3 871.3 ng x g(-1), and the concentrations of sigma PAHs in soils along the Shanxia River were significantly lower than the levels along Jiushanwai River. The dominant compounds were 2 to 3 rings in the riparian soils along both rivers, which in average accounted for 62.47% - 72.51% in sigma PAHs. Compared with the PAHs concentrations in soils of other areas in the world, the riparian soils of the studied rivers were moderately polluted by PAHs, but the concentrations of BaP in three soil samples were much higher than the soil standard value of the former Soviet Union, which should be paid more attention. Based on the ratios of Ant/(Ant + Phe) and Fla/(Fla + Pyr) and principal component analysis results, PAHs in riparian soils of the studied rivers were mainly derived from both the petroleum and combustion.

  11. Compaction and rotovation effects on soil pore characteristics of a loamy sand soil with contrasting organic matter content

    DEFF Research Database (Denmark)

    Eden, Marie; Schjønning, Per; Møldrup, Per

    2011-01-01

    only mineral fertilizer (MF) or, in addition, animal manure (OF). Undisturbed soil cores were taken from two separate fields in consecutive years at an identical stage in the crop rotation. We measured soil organic carbon (OC), soil microbial biomass carbon (BC), and hot-water extractable carbon (Chot...... OF had larger porosity than that from treatment MF. Treatment P eliminated this difference and significantly reduced the volume of macropores. This interaction between soil organic matter content and mechanical impact was also reflected in the gas diffusion data. Specific air permeability was mainly...

  12. Quantifying the Interactions Between Soil Thermal Characteristics, Soil Physical Properties, Hydro-geomorphological Conditions and Vegetation Distribution in an Arctic Watershed

    Science.gov (United States)

    Dafflon, B.; Leger, E.; Robert, Y.; Ulrich, C.; Peterson, J. E.; Soom, F.; Biraud, S.; Tran, A. P.; Hubbard, S. S.

    2017-12-01

    Improving understanding of Arctic ecosystem functioning and parameterization of process-rich hydro-biogeochemical models require advances in quantifying ecosystem properties, from the bedrock to the top of the canopy. In Arctic regions having significant subsurface heterogeneity, understanding the link between soil physical properties (incl. fraction of soil constituents, bedrock depth, permafrost characteristics), thermal behavior, hydrological conditions and landscape properties is particularly challenging yet is critical for predicting the storage and flux of carbon in a changing climate. This study takes place in Seward Peninsula Watersheds near Nome AK and Council AK, which are characterized by an elevation gradient, shallow bedrock, and discontinuous permafrost. To characterize permafrost distribution where the top of permafrost cannot be easily identified with a tile probe (due to rocky soil and/or large thaw layer thickness), we developed a novel technique using vertically resolved thermistor probes to directly sense the temperature regime at multiple depths and locations. These measurements complement electrical imaging, seismic refraction and point-scale data for identification of the various thermal behavior and soil characteristics. Also, we evaluate linkages between the soil physical-thermal properties and the surface properties (hydrological conditions, geomorphic characteristics and vegetation distribution) using UAV-based aerial imaging. Data integration and analysis is supported by numerical approaches that simulate hydrological and thermal processes. Overall, this study enables the identification of watershed structure and the links between various subsurface and landscape properties in representative Arctic watersheds. Results show very distinct trends in vertically resolved soil temperature profiles and strong lateral variations over tens of meters that are linked to zones with various hydrological conditions, soil properties and vegetation

  13. EXPERIMENTAL STUDY OF SOIL CEMENT BRICKS AND CHARACTERISTICS COMPRESSIVESTRENGTH OF BRICK MASONRY WALL

    OpenAIRE

    S. Divya; K. Nithya; S. Manoj Kumar; K. Saravanakumar

    2017-01-01

    This research is intended to provide detailed technical and economic information on the production of compressed cement stabilised soil bricks. These include information on suitable soil types, local stabilisers, stabilization techniques, production of compressed stabilized soil bricks and their economical value and potential. Critical review of related literatures show that soil types, proportions between soil and stabilizer and compaction pressure applied to the moist soil mix affects the q...

  14. Soil characteristics of two locations in Swisher and Deaf Smith Couties, Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    1984-12-01

    The soil is the resource on which the important economic activity of both the Swisher County and Deaf Smith County locations is based. Soils are discussed in terms of where they occur on the natural landscape. Major soil associations and the primary soil series included in them are described for both locations. Agricultural, engineering and reclamation interpretations are drawn from three published soil surveys. Field inspection of location soils was not performed

  15. [Fluorescence spectroscopic characteristics of fulvic acid from the long-term located fertilization in black soil].

    Science.gov (United States)

    Li, Yan-Ping; Wei, Dan; Zhou, Bao-Ku; Zhao, Yue; Zhang, Xi-Lin; Wei, Zi-Min; Li, Shu-Ling

    2011-10-01

    In order to investigate the effect of long-term located fertilization on soil fulvic acid (FA), in this study, four soil samples were taken from black soil with long-term located fertilization (about 30 year) in Harbin, Heilongjiang province. The fertilization treatments included control (CK), N, P and K fertilization (NPK), horse manure (OM), combination of organic manure and chemical fertilizations (MNPK). Soil FA was extracted from the samples and purified. The excitation, emission, synchronous, and three-dimensional-excitation emission matrix fluorescence spectroscopy (3DEEM) characteristics of the FA were determined. The excitation, emission and synchronous scan spectra all indicated that the main peaks of FA in the NPK treatment exhibited a significantly blue shift compared with CK, while those of MNPK, OM treatment caused a red shift to some extent. 3DEEM spectra of FA in all treatments exhibited four peaks (peak a, peak b, peak c, and peak d), compared with FA in CK, the wavelengths shift tendency of peak a, peak b, and peak c of FA 3DEEM in NPK, MNPK and OM treatments were similar to that of traditional spectra in FA. In order to provide quantitative information of FA humification degree in different treatments, we investigated the fluorescence index f450/500 (FI), area integration (A370-600 nm, A1 370-412 nm, A4 538-600 nm). Compared with CK, the f450/500, ratio of A1/A in NPK and A4/A in MNPK treatment increased by 4.62%, 6.12%, 7.22%, respectively. However, the f450/500, the ratio of A1/A in MNPK and A4/A in NPK treatment decreased by 3.86%, 15.31%, and 7.22% respectively. This indicated that NPK application gave a lower degree of FA humification, and combination of organic manure and chemical fertilizations would lead to a greater degree of FA aromatization in black soil with long-term located fertilization than CK.

  16. Adsorption-desorption characteristics of Ni, Zn and Pb in soils of a landfill environment in Metro Manila, Philippines

    International Nuclear Information System (INIS)

    Castañeda, Soledad S.; Cuarto, Christina D.; David, Carlos Primo C.

    2015-01-01

    This study investigated the sorption-desorption characteristics of Ni, Zn, and Pb on two soil types in the environment of a municipal waste disposal facility. Batch experiments were carried out in ambient temperature and in unadjusted and close to soil field pH conditions. The kinetics of of adsorption fitted a pseudo second-order model. Rate constants were calculated and an empirical model for predicting adsorption of metal ions at a given time was derived from these constants. The equilibrium sorption capacities for the heavy metals in the clay and sandy loam soils were estimated using the Linear, Freundlich, and Langmuir isotherm models. The sorption process of Ni, Pb, and Zn in both soils generally fitted well with the Freundlich isotherm model at moderate to high initial concentration range of the metals. The Langmuir isotherm was applicable to the adsorption of Ni and Zn only. The adsorption capacity of the clay soil for the metals followed the order Zn > Pb > Ni. In the sandy loam soil, the adsorption capacity for the metals under the same conditions followed the order Pb > Zn > Ni. The adsorption capacities for the metals were in order of 1mg/g in both the landfill clay soil and the Lukutan River sandy loam soil, with slightly higher values for the clay soil. Desorption was minimal, less than 1% in the clay soil and about 2% in the sandy loam soil. Sorption reversibility tests showed that the retention of the metals in both soils follows the order Ni> Pb> Zn. (author)

  17. Spectroscopic characteristics of soil organic matter as a tool to assess soil physical quality in Mediterranean ecosystems

    Science.gov (United States)

    Recio Vázquez, Lorena; Almendros, Gonzalo; Knicker, Heike; López-Martín, María; Carral, Pilar; Álvarez, Ana

    2014-05-01

    In Mediterranean areas, the loss of soil physical quality is of particular concern due to the vulnerability of these ecosystems in relation to unfavourable climatic conditions, which usually lead to soil degradation processes and severe decline of its functionality. As a result, increasing scientific attention is being paid on the exploration of soil properties which could be readily used as quality indicators, including organic matter which, in fact, represents a key factor in the maintenance of soil physical status. In this line, the present research tackles the assessment of the quality of several soils from central Spain with the purpose of identifying the physical properties most closely correlated with the organic matter, considering not only the quantity but also the quality of the different C-forms. The studied attributes consist of a series of physical properties determined in field and laboratory conditions-total porosity, aggregate stability, available water capacity, air provision, water infiltration rate and soil hydric saturation-.The bulk organic matter was characterised by solid-state 13C NMR spectroscopy and the major organic fractions (lipids, free particulate organic matter, fulvic acids, humic acids and humin) were quantified using standard procedures. The humic acids were also analysed by visible and infrared spectroscopies. The use of multidimensional scaling to classify physical properties in conjunction with molecular descriptors of soil organic matter, suggested significant correlations between the two set of variables, which were confirmed with simple and canonical regression models. The results pointed to two well-defined groups of physical attributes in the studied soils: (i) those associated with organic matter of predominantly aromatic character (water infiltration descriptors), and (ii) soil physical variables related to organic matter with marked aliphatic character, high preservation of the lignin signature and comparatively low

  18. [Distribution characteristics of soil organic carbon and its composition in Suaeda salsa wetland in the Yellow River delta].

    Science.gov (United States)

    Dong, Hong-Fang; Yu, Jun-Bao; Guan, Bo

    2013-01-01

    Applying the method of physical fractionation, distribution characteristics of soil organic carbon and its composition in Suaeda salsa wetland in the Yellow River delta were studied. The results showed that the heavy fraction organic carbon was the dominant component of soil organic carbon in the studied region. There was a significantly positive relationship between the content of heavy fraction organic carbon, particulate organic carbon and total soil organic carbon. The ranges of soil light fraction organic carbon ratio and content were 0.008% - 0.15% and 0.10-0.40 g x kg(-1), respectively, and the range of particulate organic carbon ratio was 8.83% - 30.58%, indicating that the non-protection component of soil organic carbon was low and the carbon pool was relatively stable in Suaeda salsa wetland of the Yellow River delta.

  19. Changes in soil toxicity by phosphate-aided soil washing: effect of soil characteristics, chemical forms of arsenic, and cations in washing solutions.

    Science.gov (United States)

    Jho, Eun Hea; Im, Jinwoo; Yang, Kyung; Kim, Young-Jin; Nam, Kyoungphile

    2015-01-01

    This study was set to investigate the changes in the toxicity of arsenic (As)-contaminated soils after washing with phosphate solutions. The soil samples collected from two locations (A: rice paddy and B: forest land) of a former smelter site were contaminated with a similar level of As. Soil washing (0.5 M phosphate solution for 2 h) removed 24.5% As, on average, in soil from both locations. Regardless of soil washing, Location A soil toxicities, determined using Microtox, were greater than that of Location B and this could be largely attributed to different soil particle size distribution. With soils from both locations, the changes in As chemical forms resulted in either similar or greater toxicities after washing. This emphasizes the importance of considering ecotoxicological aspects, which are likely to differ depending on soil particle size distribution and changes in As chemical forms, in addition to the total concentration based remedial goals, in producing ecotoxicologically-sound soils for reuse. In addition, calcium phosphate used as the washing solution seemed to contribute more on the toxic effects of the washed soils than potassium phosphate and ammonium phosphate. Therefore, it would be more appropriate to use potassium or ammonium phosphate than calcium phosphate for phosphate-aided soil washing of the As-contaminated soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The presence of undesirable mould species on the surface of dry sausages

    Directory of Open Access Journals (Sweden)

    Vesković-Moračanin Slavica M.

    2008-01-01

    Full Text Available Transition from manufacture to the industrial way of meat production and processing, as well as contemporary concept of food quality and safety, have led to the application of starter cultures. Their application leads towards the streamlining of the production process in the desired direction, quality improvement and its harmonization, and thereby to its standardization. Application of moulds in the meat industry is based on positive effects of their proteolytic and lipolytic egzoenzymes which, as a consequence, leads to the creation of characteristic sensory properties ('flavor' of fermented products. Penicillium nalgiovense is a typical representative of moulds used in the production of fermented sausages-salamis from our region. Samples of 'zimska salama' (dry sausage, produced with Penicillium nalgiovense, were evaluated as hygienically unacceptable. Their sensory properties changed due to contamination of this mould during the ripening process. Micological analysis discovered the presence of Penicillium aurantiogriseum, which is a frequent mould contaminant in the meat industry. At the same time, thin layer chromatography revealed no possibility of metabolic activity of this mould in the creation of mycotoxins. However, the presence of this mould on the surface of 'zimska salama' is considered as undesirable due to formation of 'off flavor' in products. Such product is considered as hygienically unacceptable and cannot be used for the human consumption.

  1. Enhancing Bioremediation of Oil-contaminated Soils by Controlling Nutrient Transport using Dual Characteristics of Soil Pore Structure

    Science.gov (United States)

    Mori, Y.; Suetsugu, A.; Matsumoto, Y.; Fujihara, A.; Suyama, K.; Miyamoto, T.

    2012-12-01

    Soil structure is heterogeneous with cracks or macropores allowing bypass flow, which may lead to applied chemicals avoiding interaction with soil particles or the contaminated area. We investigated the bioremediation efficiency of oil-contaminated soils by applying suction at the bottom of soil columns during bioremediation. Unsaturated flow conditions were investigated so as to avoid bypass flow and achieve sufficient dispersion of chemicals in the soil column. The boundary conditions at the bottom of the soil columns were 0 kPa and -3 kPa, and were applied to a volcanic ash soil with and without macropores. Unsaturated flow was achieved with -3 kPa and an injection rate of 1/10 of the saturated hydraulic conductivity. The resultant biological activities of the effluent increased dramatically in the unsaturated flow with macropores condition. Unsaturated conditions prevented bypass flow and allowed dispersion of the injected nutrients. Unsaturated flow achieved 60-80% of saturation, which enhanced biological activity in the soil column. Remediation results were better for unsaturated conditions because of higher biological activity. Moreover, unsaturated flow with macropores achieved uniform remediation efficiency from upper through lower positions in the column. Finally, taking the applied solution volume into consideration, unsaturated flow with -3 kPa achieved 10 times higher efficiency when compared with conventional saturated flow application. These results suggest that effective use of nutrients or remediation chemicals is possible by avoiding bypass flow and enhancing biological activity using relatively simple and inexpensive techniques.

  2. THE DISTRIBUTION OF PREFERENTIAL PATHS AND ITS RELATION TO THE SOIL CHARACTERISTICS IN THE THREE GORGES AREA, CHINA

    Institute of Scientific and Technical Information of China (English)

    Hongjiang ZHANG; Jinhua CHENG; Yuhu SHI; Yun CHENG

    2007-01-01

    To study the characteristics of the distribution of the preferential paths and the affecting factors in the Three Gorges area, four soil profiles were dug to observe the distribution of preferential paths in the Quxi watershed in the Yangtze River basin. The Morisita exponential test method was used to examine the distribution type of preferential paths. The physical properties and infiltration characteristics of the soil were also measured to evaluate their relationship to preferential paths. The results showed that in this area, preferential paths clustered and mainly distributed in the 80-100 cm soil layer, and along the interface between the weathered layer and semi-weathered layer. There were more non-capillary pores in the 83-110 cm layer than in the other layers. It can be derived that most non-capillary pores in this layer were preferential paths caused by geological processes and rotten plant roots. The percentage of coarse soil particles increased with the depth of the soil layer. In the deeper soil layer, the coarse soil particles helped the formation of preferential paths. The fastest steady infiltration rate was observed in the of 83-110cm layer, which is inferred to be due to the greater number of preferential paths.

  3. Characteristics of soil under variations in clay, water saturation, and water flow rates, and the implications upon soil remediation

    International Nuclear Information System (INIS)

    Aikman, M.; Mirotchnik, K.; Kantzas, A.

    1997-01-01

    A potential remediation method for hydrocarbon contaminated soils was discussed. The new method was based on the use of proven and economic petroleum reservoir engineering methods for soil remediation. The methods that were applied included water and gas displacement methods together with horizontal boreholes as the flow inlet and outlets. This system could be used in the case of spills that seep beneath a plant or other immovable infrastructure which requires in-situ treatment schemes to decontaminate the soil. A study was conducted to characterize native soils and water samples from industrial plants in central Alberta and Sarnia, Ontario and to determine the variables that impact upon the flow conditions of synthetic test materials. The methods used to characterize the soils included X-Ray computed tomographic analysis, grain size and density measurements, and X-Ray diffraction. Clay content, initial water saturation, and water and gas flow rate were the variables that impacted on the flow conditions

  4. Short-Term Effect of Feedstock and Pyrolysis Temperature on Biochar Characteristics, Soil and Crop Response in Temperate Soils

    DEFF Research Database (Denmark)

    Nelissen, Victoria; Ruysschaert, Greet; Müller-Stöver, Dorette Sophie

    2014-01-01

    At present, there is limited understanding of how biochar application to soil could be beneficial to crop growth in temperate regions and which biochar types are most suitable. Biochar’s (two feedstocks: willow, pine; three pyrolysis temperatures: 450 °C, 550 °C, 650 °C) effect on nitrogen (N......) availability, N use efficiency and crop yield was studied in northwestern European soils using a combined approach of process-based and agronomic experiments. Biochar labile carbon (C) fractions were determined and a phytotoxicity test, sorption experiment, N incubation experiment and two pot trials were...... conducted. Generally, biochar caused decreased soil NO3−availability and N use efficiency, and reduced biomass yields compared to a control soil. Soil NO3−concentrations were more reduced in the willow compared to the pine biochar treatments and the reduction increased with increasing pyrolysis temperatures...

  5. Vegetation pattern and soil characteristics of the polluted industrial area of Karachi

    International Nuclear Information System (INIS)

    Kabir, M.; Iqbal, M.Z.; Farooqi, M.Z.; Shafiq, M.

    2010-01-01

    A quantitative phyto sociological survey was conducted around the industrial areas of Sindh Industrial Trading Estate (S.I.T.E.) of Karachi. The herbaceous, shrubs vegetation was predominantly disturbed in nature. Fifteen plant communities based on Importance Value Index (IVI) of species were recognized. Eighty plant species were recorded in industrial areas. Abutilon fruticosum L., attained the highest importance value index (823.25) followed by Prosopis juliflora DC. (662.62), Corchorus trilocularis L. (467.20), Aerva javanica Burm.f. (419.97), Amaranthus viridis L. (397.65) and Senna holosericea L. (387.22), respectively. P. juliflora and A. fruticosum showed leading first dominant in five and four stands, respectively. Whereas, A. javanica, A. viridis, S. holosericea, Launaea nudicaulis L., Crochorus depressus L. and Salvadora L., attained the presence class III. Zygophyllum simplex L., Suaeda fruticosa L., Convolvulus glomeratus Choisky, Cressa cretica L., Cleome viscosa L., Calotropis procera Willd, Blepharis sindica T. Anderson, Rhynchosia pulverulenta L., Abutilon pakistanicum Jafri and Ali, Chenopodium album L., Capparis decidua Forssk and Digera muricata L. Mart showed the presence of class II. Whereas, rest of 58 species showed presence of class I. The soil characteristics of the polluted industrial area were also analyzed and related with the vegetation of the polluted areas. The Industrial area soil was coarse in texture and ranged from sandy clay loam to sandy loam. The soil was acidic to alkaline in nature. Maximum water holding capacity, bulk density, porosity, CaCO/sub 3/, pH, organic matter, total organic carbon, chloride, electrical conductivity, total dissolved salt, available sulphur contents, exchangeable sodium and potassium were recorded in wide range. It was concluded that certain edaphic factors due to industrial activities and induction of pollutants were responsible for variation in vegetation composition of the study area. (author)

  6. Soil-water characteristics of Gaomiaozi bentonite by vapour equilibrium technique

    Directory of Open Access Journals (Sweden)

    Wenjing Sun

    2014-02-01

    Full Text Available Soil-water characteristics of Gaomiaozi (GMZ Ca-bentonite at high suctions (3–287 MPa are measured by vapour equilibrium technique. The soil-water retention curve (SWRC of samples with the same initial compaction states is obtained in drying and wetting process. At high suctions, the hysteresis behaviour is not obvious in relationship between water content and suction, while the opposite holds between degree of saturation and suction. The suction variation can change its water retention behaviour and void ratio. Moreover, changes of void ratio can bring about changes in degree of saturation. Therefore, the total change in degree of saturation includes changes caused by suction and that by void ratio. In the space of degree of saturation and suction, the SWRC at constant void ratio shifts to the direction of higher suctions with decreasing void ratio. However, the relationship between water content and suction is less affected by changes of void ratio. The degree of saturation decreases approximately linearly with increasing void ratio at a constant suction. Moreover, the slope of the line decreases with increasing suction and they show an approximately linear relationship in semi-logarithmical scale. From this linear relationship, the variation of degree of saturation caused by the change in void ratio can be obtained. Correspondingly, SWRC at a constant void ratio can be determined from SWRC at different void ratios.

  7. Effect of Underground Saline Water on the Growth Characteristic of Tamarix austromongolica in Halomorphic Soil

    Science.gov (United States)

    Iwama, Kenji; Kobayashi, Koji; Kaneki, Ryoichi; Furukawa, Masayuki; Odani, Hiromichi

    It is important to evaluate the salt tolerance of native plants in order to utilize them for improving halomorphic soil in arid regions. Tamarix austromongolica, a dominant species in Inner Mongolia, China, has the property of salt absorption and expected soil desalinization. The effect of salt concentration in groundwater on the growth of stock diameter and shoot length were evaluated by cultivation experiments, growing the plants from cuttings for two years. Though the plants grew well in 1% salt concentration of groundwater, the evapotranspiration in the second year was reduced because of the growth of the root system. The growth of the plants and evapotranspiration were reduced with increasing groundwater salinity of 3 to 5%, but most plants did not die. In contrast, the plants which were supplied with groundwater of 7% salt concentration in the second year started to die in about a month, and two thirds of them died within five months. Thus the results showed that the tolerant limit of salinity of the plants in groundwater was 7%, and the growth was constrained with groundwater salinity of 3 to 5% concentration. The plants that survived with 7% salinity in the second year, however, were grown in groundwater salt concentration of 3% to 5% in the first year. This result indicated that saline stress might have changed the characteristic of salinity tolerance of the plant.

  8. Effects of silicon on photosynthetic characteristics of maize (Zea mays L.) on alluvial soil.

    Science.gov (United States)

    Xie, Zhiming; Song, Fengbin; Xu, Hongwen; Shao, Hongbo; Song, Ri

    2014-01-01

    The objectives of the study were to determine the effects of silicon on photosynthetic characteristics of maize on alluvial soil, including total chlorophyll contents, photosynthetic rate (P n), stomatal conductance (g s), transpiration rate (E), and intercellular CO2 concentration (C i ) using the method of field experiment, in which there were five levels (0, 45, 90, 150, and 225 kg · ha(-1)) of silicon supplying. The results showed that certain doses of silicon fertilizers can be used successfully in increasing the values of total chlorophyll contents, P n, and g s and decreasing the values of E and C i of maize leaves, which meant that photosynthetic efficiency of maize was significantly increased in different growth stages by proper doses of Si application on alluvial soil, and the optimal dose of Si application was 150 kg · ha(-1). Our results indicated that silicon in proper amounts can be beneficial in increasing the photosynthetic ability of maize, which would be helpful for the grain yield and growth of maize.

  9. New land disposal restrictions on contaminated soil and debris, and newly identified toxicity characteristic organics

    International Nuclear Information System (INIS)

    Fortune, William B.; Schumann, Jean C.; Fallon, William E.; Badden, Janet W.; Smith, Edward H.

    1992-01-01

    The applicability of the Resource Conservation and Recovery Act (RCRA) Land Disposal Restrictions (LDR) program to radioactive mixed wastes (RMW) has been clarified through U.S. Environmental Protection Agency (EPA) and U.S. Department of Energy (DOE) rulemakings and notices. However, a number of waste management concerns involving RMW and RMW-contaminated soil and debris continue to exist with respect to achieving compliance with LDR provisions and treatment standards. Consequently, DOE has become increasingly proactive in its participation in the LDR rulemaking process and in the identification of LDR compliance issues associated with its RMW inventories. Both data and recommendations from across the DOE complex were collected and transmitted to EPA in response to proposed requirements that would implement LDR for contaminated soil and debris, and certain newly identified toxicity characteristic (TC) organics. Much of this information focused on concerns related to the application of proposed regulatory approaches to RMW streams. Highlights from the information included in these DOE responses are presented. (author)

  10. Implementing a physical soil water flow model with minimal soil characteristics and added value offered by surface soil moisture measurements assimilation.

    Science.gov (United States)

    Chanzy, André

    2010-05-01

    Soil moisture is a key variable for many soil physical and biogeochemical processes. Its dynamic results from water fluxes in soil and at its boundaries, as well as soil water storage properties. If the water flows are dominated by diffusive processes, modelling approaches based on the Richard's equation or the Philip and de Vries coupled heat and water flow equations lead to a satisfactory representation of the soil moisture dynamic. However, It requires the characterization of soil hydraulic functions, the initialisation and the boundary conditions, which are expensive to obtain. The major problem to assess soil moisture for decision making or for representing its spatiotemporal evolution over complex landscape is therefore the lack of information to run the models. The aim of the presentation is to analyse how a soil moisture model can be implemented when only climatic data and basic soil information are available (soil texture, organic matter) and what would be the added of making a few soil moisture measurements. We considered the field scale, which is the key scale for decision making application (the field being the management unit for farming system) and landscape modelling (field size being comparable to the computation unit of distributed hydrological models). The presentation is limited to the bare soil case in order to limit the complexity of the system and the TEC model based on Philip and De Vries equations is used in this study. The following points are addressed: o the within field spatial variability. This spatial variability can be induced by the soil hydraulic properties and/or by the amount of infiltrated water induced by water rooting towards infiltration areas. We analyse how an effective parameterization of soil properties and boundary conditions can be used to simulate the field average moisture. o The model implementation with limited information. We propose strategies that can be implemented when information are limited to soil texture and

  11. [Evaluation and cumulative characteristics of heavy metals in soil-Uncaria rhynchophylla system of different functional areas].

    Science.gov (United States)

    Zhang, Jia-Chun; Zeng, Xian-Ping; Zhang, Zhen-Ming; Lin, Shao-Xia; Zhang, Qing-Hai; Lin, Chang-Hu

    2016-10-01

    Soil and Uncaria rhynchophylla in different functional areas were selected for the study,the content of heavy metals such as As, Cd, Cu, Cr, Pb, and Hg in soil and U. rhynchophylla was discussed, the characteristics of their accumulation in the U.rhynchophylla was analyzed, the contamination levels of heavy metals in soil in different functional areas was evaluated. The results showed that content of Cu, As, Pb and Cr in soil was being cropland>woodland>wasteland, content of Cd was being woodland>cropland>wasteland, content of Hg was being cropland>woodland>wasteland. According to quality standard of soil environment, soil Cd in woodland, cropland and wasteland all exceeded the state-level standards, soil Cd in woodland exceeded the secondary standard, soil Hg in cropland and wasteland all exceeded the state-level standards. According to technical conditions of green food producing area, soil Cd in woodland exceeded the limit value of standard. According to Green Trade Standards of Importing Exporting Medicinal Plants Preparations,the content of heavy metals of U.rhynchophylla in cropland,woodland and wasteland were correspond to the specification. From the single factor pollution index, the soil in woodland was polluted by Cd. From the comprehensive pollution index, the soils in different functional areas were not contaminated by heavy metals. The enrichment coefficient of heavy metals such as As, Cu, Cr, and Pb in hook of U.rhynchophylla was being wasteland>woodland>cropland, the enrichment coefficient of Cu in hook of U. rhynchophylla in wasteland was more than 1. Except Cu, the enrichment coefficient of other heavy metals was low. Copyright© by the Chinese Pharmaceutical Association.

  12. Evaluation of the potential of pentachlorophenol degradation in soil by pulsed corona discharge plasma from soil characteristics.

    Science.gov (United States)

    Wang, Tie Cheng; Lu, Na; Li, Jie; Wu, Yan

    2010-04-15

    Chlorinated organics are frequently found as harmful soil contaminants and persisted for extended periods of time. A novel approach, named pulsed corona discharge plasma (PCDP), was employed for the degradation of pentachlorophenol (PCP) in soil. Experimental results showed that 87% of PCP could be smoothly removed in 60 min. Increasing pulse voltage, enhancing soil pH, lowering humic acid (HA) in soil and reducing granular size of the soil were found to be favorable for PCP degradation efficiency. Oxidation and physical processes simultaneously contributed to PCP removal in soil and ozone was the main factor in PCDP treatment. C-Cl bonds in PCP were cleaved during PCDP treatment by Fourier transform infrared spectroscopy (FTIR) analysis. The mineralization of PCP was confirmed by total organic carbon (TOC) and dechlorination analyses. The main intermediate products such as tetrachlorocatechol, tetrachlorohydroquinone, acetic acid, formic acid, and oxalic acid were identified by HPLC/MS and ion chromatography. A possible pathway of PCP degradation in soil in such a system was proposed.

  13. Enhanced DEA model with undesirable output and interval data for rice growing farmers performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Sahubar Ali Mohd. Nadhar, E-mail: sahubar@uum.edu.my; Ramli, Razamin, E-mail: razamin@uum.edu.my; Baten, M. D. Azizul, E-mail: baten-math@yahoo.com [School of Quantitative Sciences, UUM College of Arts and Sciences, Universiti Utara Malaysia, 06010 Sintok, Kedah (Malaysia)

    2015-12-11

    Agricultural production process typically produces two types of outputs which are economic desirable as well as environmentally undesirable outputs (such as greenhouse gas emission, nitrate leaching, effects to human and organisms and water pollution). In efficiency analysis, this undesirable outputs cannot be ignored and need to be included in order to obtain the actual estimation of firms efficiency. Additionally, climatic factors as well as data uncertainty can significantly affect the efficiency analysis. There are a number of approaches that has been proposed in DEA literature to account for undesirable outputs. Many researchers has pointed that directional distance function (DDF) approach is the best as it allows for simultaneous increase in desirable outputs and reduction of undesirable outputs. Additionally, it has been found that interval data approach is the most suitable to account for data uncertainty as it is much simpler to model and need less information regarding its distribution and membership function. In this paper, an enhanced DEA model based on DDF approach that considers undesirable outputs as well as climatic factors and interval data is proposed. This model will be used to determine the efficiency of rice farmers who produces undesirable outputs and operates under uncertainty. It is hoped that the proposed model will provide a better estimate of rice farmers’ efficiency.

  14. Enhanced DEA model with undesirable output and interval data for rice growing farmers performance assessment

    International Nuclear Information System (INIS)

    Khan, Sahubar Ali Mohd. Nadhar; Ramli, Razamin; Baten, M. D. Azizul

    2015-01-01

    Agricultural production process typically produces two types of outputs which are economic desirable as well as environmentally undesirable outputs (such as greenhouse gas emission, nitrate leaching, effects to human and organisms and water pollution). In efficiency analysis, this undesirable outputs cannot be ignored and need to be included in order to obtain the actual estimation of firms efficiency. Additionally, climatic factors as well as data uncertainty can significantly affect the efficiency analysis. There are a number of approaches that has been proposed in DEA literature to account for undesirable outputs. Many researchers has pointed that directional distance function (DDF) approach is the best as it allows for simultaneous increase in desirable outputs and reduction of undesirable outputs. Additionally, it has been found that interval data approach is the most suitable to account for data uncertainty as it is much simpler to model and need less information regarding its distribution and membership function. In this paper, an enhanced DEA model based on DDF approach that considers undesirable outputs as well as climatic factors and interval data is proposed. This model will be used to determine the efficiency of rice farmers who produces undesirable outputs and operates under uncertainty. It is hoped that the proposed model will provide a better estimate of rice farmers’ efficiency

  15. Enhanced DEA model with undesirable output and interval data for rice growing farmers performance assessment

    Science.gov (United States)

    Khan, Sahubar Ali Mohd. Nadhar; Ramli, Razamin; Baten, M. D. Azizul

    2015-12-01

    Agricultural production process typically produces two types of outputs which are economic desirable as well as environmentally undesirable outputs (such as greenhouse gas emission, nitrate leaching, effects to human and organisms and water pollution). In efficiency analysis, this undesirable outputs cannot be ignored and need to be included in order to obtain the actual estimation of firms efficiency. Additionally, climatic factors as well as data uncertainty can significantly affect the efficiency analysis. There are a number of approaches that has been proposed in DEA literature to account for undesirable outputs. Many researchers has pointed that directional distance function (DDF) approach is the best as it allows for simultaneous increase in desirable outputs and reduction of undesirable outputs. Additionally, it has been found that interval data approach is the most suitable to account for data uncertainty as it is much simpler to model and need less information regarding its distribution and membership function. In this paper, an enhanced DEA model based on DDF approach that considers undesirable outputs as well as climatic factors and interval data is proposed. This model will be used to determine the efficiency of rice farmers who produces undesirable outputs and operates under uncertainty. It is hoped that the proposed model will provide a better estimate of rice farmers' efficiency.

  16. Thermal Characteristics and Bacterial Diversity of Forest Soil in the Haean Basin of Korea

    OpenAIRE

    Kim, Heejung; Lee, Jin-Yong; Lee, Kang-Kun

    2014-01-01

    To predict biotic responses to disturbances in forest environments, it is important to examine both the thermophysical properties of forest soils and the diversity of microorganisms that these soils contain. To predict the effects of climate change on forests, in particular, it is essential to understand the interactions between the soil surface, the air, and the biological diversity in the soil. In this study, the temperature and thermal properties of forest soil at three depths at a site in...

  17. Quantitative Analysis of Relevant Soil, Land-use and Climate Characteristics on Landscape Degradation in Hungary

    Science.gov (United States)

    Kertesz, Adam; Mika, Janos; Jakab, Gergely; Palinkas, Melinda

    2017-04-01

    The objective of our research is to survey degradation processes acting in each micro-region of Hungary in connection with geographical and climatic characteristics. A survey of land degradation processes has been carried out at medium scale (1:50 000) to identify the affected areas of the region. Over 18,000 rectangles of Hungary have been digitally characterised for several types of land degradation. Water-flow type gully erosion and soil-loss (RUSLE, 2015: Esdac-data) are studied for dependent variables in this study. USDA textural classes, available water capacity, bulk density, clay content, coarse fragments, silt content, sand content, soil parent material, soil texture, land-use type (Corine, 2012) are used for non-climatic variables. Some of these characteristics are quantified in a non-scalable way, so the first step was to arrange these qualitative codes or pseudo-numbers into monotonous order for including them into the following multi-regression analyses. Data available from the CarpatClim Project (www.carpatclim-eu.org/pages/home) for 1961-2010 are also used in their 50 years averages is seasonal and annual resolution. The selected variables from this gridded data set are global radiation, daily mean temperature, maximum and minimum temperature, number of extreme cold days (20 mm), days with utilizable precipitation (>1mm/d), potential evapotranspiration, Palmer Index (PDSI), Palfai Index (PAI), relative humidity and wind speed at 10 m height. The gully erosion processes strongly depend on the investigated non-climatic variables, mostly on parent material and slope. The group of further climatic factors is formed by winter relative humidity, wind speed and all-year round Palmer index. Besides leading role of the above non-climatic factors, additional effects of the significant climate variables are difficult to interpret. Nevertheless, the partial effects of these climate variables are combined with future climate scenarios available from GCM and RCM

  18. Micromorphological characteristics of sandy forest soils recently impacted by wildfires in Russia

    Science.gov (United States)

    Maksimova, Ekaterina; Abakumov, Evgeny

    2017-04-01

    Two fire-affected soils were studied using micromorphological methods. The objective of the paper is to assess and compare fire effects on the micropedological organisation of soils in a forest-steppe zone of central Russia (Volga Basin, Togliatti city). Samples were collected in the green zone of Togliatti city. The results showed that both soils were rich in quartz and feldspar. Mica was highly present in soils affected by surface fires, while calcium carbonates were identified in the soils affected by crown fires. The type of plasma is humus-clay, but the soil assemblage is plasma-silt with a prevalence of silt. Angular and subangular grains are the most dominant soil particulates. No evidence of intensive weathering was detected. There was a decrease in the porosity of soils affected by fires as a consequence of soil pores filled with ash and charcoal.

  19. [Changes in vegetation and soil characteristics under tourism disturbance in lakeside wetland of northwest Yunnan Plateau, Southwest China].

    Science.gov (United States)

    Tang, Ming-Yan; Yang, Yong-Xing

    2014-05-01

    The characteristics of vegetation and soil were investigated in Bita Lake and Shudu Lake wetlands in northwest Yunnan Plateau under tourism disturbance. The 22 typical plots in the wetlands were classified into 4 types by TWINSPAN, including primary wetland, light degradation, moderate degradation, and severe degradation. Along the degradation gradient, the plant community density, coverage, species number and Shannon diversity index increased and the plant height decreased in Bita Lake and Shudu Lake wetlands, and Whittaker diversity index increased in Bita Lake wetland. Plant species number, soil organic matter, total nitrogen, porosity, available nitrogen, available phosphorus and available potassium contents were higher in Shudu Lake wetland than in Bita Lake wetland, but the plant density, height, soil total potassium and pH were opposite. Canonical correspondence analysis (CCA) by importance values of 42 plants and 11 soil variables showed that soil organic matter, total nitrogen and total potassium were the key factors on plant species distribution in Bita Lake and Shudu Lake wetlands under tourism disturbance. TWINSPAN classification and analysis of vegetation-soil characteristics indicated the effects of tourism disturbance in Bita Lake wetland were larger than in Shudu Lake wetland.

  20. [Effects of soil moisture content and light intensity on the plant growth and leaf physiological characteristics of squash].

    Science.gov (United States)

    Du, She-ni; Bai, Gang-shuan; Liang, Yin-li

    2011-04-01

    A pot experiment with artificial shading was conducted to study the effects of soil moisture content and light intensity on the plant growth and leaf physiological characteristics of squash variety "Jingyingyihao". Under all test soil moisture conditions, 30% shading promoted the growth of "Jingyingyihao", with the highest yield at 70% - 80% soil relative moisture contents. 70% shading inhibited plant growth severely, only flowering and not bearing fruits, no economic yield produced. In all treatments, there was a similar water consumption trend, i. e., both the daily and the total water consumption decreased with increasing shading and decreasing soil moisture content. Among all treatments, 30% shading and 70% - 80% soil relative moisture contents had the highest water use efficiency (2.36 kg mm(-1) hm(-2)) and water output rate (1.57 kg mm(-1) hm(-2)). The net photosynthetic rate, transpiration rate, stomatal conductance, and chlorophyll content of squash leaves decreased with increasing shading, whereas the intercellular CO2 concentration was in adverse. The leaf protective enzyme activity and proline content decreased with increasing shading, and the leaf MAD content decreased in the order of 70% shading, natural radiation, and 30% shading. Under the three light intensities, the change characteristics of squash leaf photosynthesis, protective enzyme activity, and proline and MAD contents differed with the increase of soil relative moisture content.

  1. Effect of carbonation on leachability, strength and microstructural characteristics of KMP binder stabilized Zn and Pb contaminated soils.

    Science.gov (United States)

    Du, Yan-Jun; Wei, Ming-Li; Reddy, Krishna R; Wu, Hao-liang

    2016-02-01

    This study presents a systematic investigation of effects of carbonation on the contaminant leachability and unconfined compressive strength of KMP stabilized contaminated soils. A field soil spiked with Zn and Pb individually and together is stabilized using a new KMP additive under standard curing conditions and also with carbonation. The KMP additive is composed of oxalic acid-activated phosphate rock, monopotassium phosphate and reactive magnesia. The stabilized soils are tested for acid neutralization capacity, toxic characteristics leaching characteristics, contaminant speciation and unconfined compression strength. X-ray diffraction, scanning electron microscope and energy dispersive spectroscopy analyses are performed to assess reaction products. The results demonstrate that carbonation increases both acid buffer capacity index and unconfined compressive strength, but decreases leachability of KMP stabilized soils. These results are interpreted based on the changes in chemical speciation of Zn and Pb and also stability and solubility of the reaction products (metal phosphates and carbonates) formed in the soils. Overall, this study demonstrates that carbonation has positive effects on leachability and strength of the KMP stabilized soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. [Characteristics of Phthalic Acid Esters in Agricultural Soils and Products in Areas of Zhongshan City, South China].

    Science.gov (United States)

    Li, Bin; Wu, Shan; Liang, Jin-ming; Liang, Wen-li; Chen, Gui-xian; Li, Yong-jun; Yang, Guo-yi

    2015-06-01

    significant difference for single PAEs compound accumulated by agricultural products, the ∑ PAEs bioconcentration factors of all agricultural products were above 1. Therefore, the accumulation characteristics of PAEs should be fully concerned when farm soil quality assessment is taken.

  3. Linking air and water transport in intact soils to macropore characteristics inferred from X-ray computed tomography

    DEFF Research Database (Denmark)

    Katuwal, S.; Nørgaard, Trine; Møldrup, Per

    2015-01-01

    Soil macropores often control fluid flow and solute transport, and quantification of macropore characteristics including their variability in space and time are essential to predict soil hydraulic and hydrogeochemical functions. In this study, measurements of air and solute transport properties...... and direct macropore visualization by X-ray CT scanning were carried out on 17 large (19-cm diam.; 20-cm length) undisturbed soil columns sampled across a field site (Silstrup, Denmark) with natural gradients in texture and density. Air permeability (ka) at in-situ water content and -20 hPa of matric......-porosity, suggesting that density is the main control of functional soil structure and gas and solute transport at the Silstrup site. Linking gas transport and chemical tracer experiments with X-ray CT based visualization and quantification of macro-porosity was found to be a powerful method to understand field scale...

  4. Time evolution of the general characteristics and Cu retention capacity in an acid soil amended with a bentonite winery waste.

    Science.gov (United States)

    Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2015-03-01

    The effect of bentonite waste added to a "poor" soil on its general characteristic and copper adsorption capacity was assessed. The soil was amended with different bentonite waste concentrations (0, 10, 20, 40 and 80 Mg ha(-1)) in laboratory pots, and different times of incubation of samples were tested (one day and one, four and eight months). The addition of bentonite waste increased the pH, organic matter content and phosphorus and potassium concentrations in the soil, being stable for P and K, whereas the organic matter decreased with time. Additionally, the copper sorption capacity of the soil and the energy of the Cu bonds increased with bentonite waste additions. However, the use of this type of waste in soil presented important drawbacks for waste dosages higher than 20 Mg ha(-1), such as an excessive increase of the soil pH and an increase of copper in the soil solution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Thermal characteristics and bacterial diversity of forest soil in the Haean basin of Korea.

    Science.gov (United States)

    Kim, Heejung; Lee, Jin-Yong; Lee, Kang-Kun

    2014-01-01

    To predict biotic responses to disturbances in forest environments, it is important to examine both the thermophysical properties of forest soils and the diversity of microorganisms that these soils contain. To predict the effects of climate change on forests, in particular, it is essential to understand the interactions between the soil surface, the air, and the biological diversity in the soil. In this study, the temperature and thermal properties of forest soil at three depths at a site in the Haean basin of Korea were measured over a period of four months. Metagenomic analyses were also carried out to ascertain the diversity of microorganisms inhabiting the soil. The thermal diffusivity of the soil at the study site was 5.9 × 10(-8) m(2) · s(-1). The heat flow through the soil resulted from the cooling and heating processes acting on the surface layers of the soils. The heat productivity in the soil varied through time. The phylum Proteobacteria predominated at all three soil depths, with members of Proteobacteria forming a substantial fraction (25.64 to 39.29%). The diversity and richness of microorganisms in the soil were both highest at the deepest depth, 90 cm, where the soil temperature fluctuation was the minimum.

  6. Thermal Characteristics and Bacterial Diversity of Forest Soil in the Haean Basin of Korea

    Directory of Open Access Journals (Sweden)

    Heejung Kim

    2014-01-01

    Full Text Available To predict biotic responses to disturbances in forest environments, it is important to examine both the thermophysical properties of forest soils and the diversity of microorganisms that these soils contain. To predict the effects of climate change on forests, in particular, it is essential to understand the interactions between the soil surface, the air, and the biological diversity in the soil. In this study, the temperature and thermal properties of forest soil at three depths at a site in the Haean basin of Korea were measured over a period of four months. Metagenomic analyses were also carried out to ascertain the diversity of microorganisms inhabiting the soil. The thermal diffusivity of the soil at the study site was 5.9 × 10−8 m2·s−1. The heat flow through the soil resulted from the cooling and heating processes acting on the surface layers of the soils. The heat productivity in the soil varied through time. The phylum Proteobacteria predominated at all three soil depths, with members of Proteobacteria forming a substantial fraction (25.64 to 39.29%. The diversity and richness of microorganisms in the soil were both highest at the deepest depth, 90 cm, where the soil temperature fluctuation was the minimum.

  7. Characteristics of cesium accumulation in the filamentous soil bacterium Streptomyces sp. K202

    International Nuclear Information System (INIS)

    Kuwahara, Chikako; Fukumoto, Atsushi; Nishina, Masami; Sugiyama, Hideo; Anzai, Yojiro; Kato, Fumio

    2011-01-01

    A filamentous soil bacterium, strain K202, was isolated from soil where an edible mushroom (Boletopsis leucomelas) was growing and identified as belonging to the genus Streptomyces on the basis of its morphological characteristics and the presence of LL-2, 6-diaminopimelic acid. We studied the existence states of Cs and its migration from extracellular to intracellular fluid in the mycelia of Streptomyces sp. K202. The results indicated that Cs accumulated in the cells through at least 2 steps: in the first step, Cs + was immediately and non-specifically adsorbed on the negatively charged cell surface, and in the second step, this adsorbed Cs + was taken up into the cytoplasm, and a part of the Cs entering the cytoplasm was taken up by an energy-dependent transport system(s). Further, we confirmed that a part of the Cs + was taken up into the mycelia competitively with K + , because K + uptake into the intact mycelia of the strain was significantly inhibited by the presence of Cs + in the culture media. This suggested that part of the Cs is transported by the potassium transport system. Moreover, 133 Cs-NMR spectra and SEM-EDX spectra of the mycelia that accumulated Cs showed the presence of at least 2 intracellular Cs states: Cs + trapped by intercellular materials such as polyphosphate and Cs + present in a cytoplasmic pool. - Research highlights: → Cs was taken up into the cells of Streptomyces sp. K202 via 2 steps. → The existence states of Cs accumulated in strain K202 were at least 2 types. → The localized Cs in the cells would be trapped by granules such as polyphosphate. → The localized Cs in the cells might involve in Cs detoxification of strain K202.

  8. Soil microbiome characteristics and soilborne disease development associated with long-term potato cropping system practices

    Science.gov (United States)

    Potato cropping system practices substantially affect soil microbial communities and the development of soilborne diseases. Cropping systems incorporating soil health management practices, such as longer rotations, disease-suppressive crops, reduced tillage, and/or organic amendments can potentially...

  9. [Nutrient Characteristics and Nitrogen Forms of Rhizosphere Soils Under Four Typical Plants in the Littoral Zone of TGR].

    Science.gov (United States)

    Wang, Xiao-feng; Yuan, Xing-zhong; Liu, Hong; Zhang, Lei; Yu, Jian-jun; Yue, Jun-sheng

    2015-10-01

    The Three Gorges Reservoir (TGR), which is the largest water conservancy project ever built in tne world, produced a drawdown area of about 348.93 km2 because of water level control. The biological geochemical cycle of the soil in the drawdown zone has been changed as the result of long-term winter flooding and summer drought and vegetation covering. The loss of soil nitrogen in the drawdown zone poses a threat to the water environmental in TGR. Pengxi river, is an important anabranch, which has the largest drawdown area has been selected in the present study. The four typical vegetation, contained Cynodon dactylon, Cyperus rotundus, Anthium sibiricum and Zea mays L. as the control, were studied to measure nutrient characteristics and nitrogen forms of rhizosphere and non-rhizosphere soils in three distribution areas with different soil types (paddy soil, purple soil and fluvo-aquic soils). The variables measured included organic matter (OM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), hydrolysis N, available P and available K, pH, ion-exchangeable N (IEE-N), weak acid extractable N (CF-N) , iron-manganese oxides N (IMOF-N), organic matter sulfide N (OSF-N), added up four N forms for total transferable N (TF-N) and TN minus TF-N for non-transferable N (NTF-N). The results showed: (1) pH of rhizosphere soil was generally lower than that of non-rhizosphere soil under different vegetation in different type soils because the possible organic acid and H+ released form plant roots and cation absorption differences, and the OM, TP, TN and hydrolysis N of rhizosphere soil were generally higher than those of non-rhizosphere soil, and that the enrichment ratio (ER) of all the four nutrient indicators showed Cyperus rotundus > Cynodon dactylon > Zea mays L. > Anthium sibiricum. Available P showed enrichment in the rhizosphere of three natural vegetations but lose under corn, and available K, TK showed different ER in different conditions. (2) IEF-N CF

  10. Strength and Compressibility Characteristics of Reconstituted Organic Soil at Khulna Region of Bangladesh

    OpenAIRE

    Tahia Rabbee; Islam M. Rafizul

    2012-01-01

    This study depicts the experimental investigations into the effect of organic content on the shear strength and compressibility parameters of reconstituted soil. To these attempts, disturbed soil samples were collected from two selected locations of Khulna region. The reconstituted soil having organic content of 5-35 % were prepared in the laboratory to mix at various proportions of inorganic and organic soil at the water content equal to 1.25 times of liquid limits of collected samples .The ...

  11. Energy efficiency of selected OECD countries: A slacks based model with undesirable outputs

    International Nuclear Information System (INIS)

    Apergis, Nicholas; Aye, Goodness C.; Barros, Carlos Pestana; Gupta, Rangan; Wanke, Peter

    2015-01-01

    This paper presents an efficiency assessment of selected OECD countries using a Slacks Based Model with undesirable or bad outputs (SBM-Undesirable). In this research, SBM-Undesirable is used first in a two-stage approach to assess the relative efficiency of OECD countries using the most frequent indicators adopted by the literature on energy efficiency. Besides, in the second stage, GLMM–MCMC methods are combined with SBM-Undesirable results as part of an attempt to produce a model for energy performance with effective predictive ability. The results reveal different impacts of contextual variables, such as economic blocks and capital–labor ratio, on energy efficiency levels. - Highlights: • We analyze the energy efficiency of selected OECD countries. • SBM-Undesirable and MCMC–GLMM are combined for this purpose. • Find that efficiency levels are high but declining over time. • Analysis with contextual variables shows varying efficiency levels across groups. • Capital-intensive countries are more energy efficient than labor-intensive countries.

  12. Dynamic chemical characteristics of soil solution after pig manure application: a column study.

    Science.gov (United States)

    Hao, Xiuzhen; Zhou, Dongmei; Sun, Lei; Li, Lianzhen; Zhang, Hailin

    2008-06-01

    When manures from intensive livestock operations are applied to agricultural or vegetable fields at a high rate, large amounts of salts and metals will be introduced into soils. Using a column leaching experiment, this study assessed the leaching potential of the downward movement of Cu and Zn as well as some salt ions after an intensive farm pig manure at rates of 0%, 5% and 10% (w/w) were applied to the top 20 cm of two different textured soils (G soil -sandy loam soil; H soil-silty clay loam soil), and investigated the growth of amaranth and Cu and Zn transfer from soil to amaranth (Amaranthus tricolor). Soil solutions were obtained at 20, 40 and 60 cm depth of the packed column and analyzed for pH, electrical conductivity (EC), dissolved organic matter (DOC) and Cu and Zn concentrations. The results indicated that application of pig manure containing Cu and Zn to sandy loam soil might cause higher leaching and uptake risk than silty clay loam soil, especially at high application rates. And manure amendment at 5% and 10% significantly decreased the biomass of amaranth, in which the salt impact rather than Cu and Zn toxicity from manures played more important role in amaranth growth. Thus the farmer should avoid application the high rate of pig manure containing metal and salt to soil at a time, especially in sandy soil.

  13. [Distribution characteristic and assessment of soil heavy metal pollution in the iron mining of Baotou in Inner Mongolia].

    Science.gov (United States)

    Guo, Wei; Zhao, Ren-Xin; Zhang, Jun; Bao, Yu-Ying; Wang, Hong; Yang, Ming; Sun, Xiao-Li; Jin, Fan

    2011-10-01

    The pollution status and total concentration of soil heavy metals were analyzed around tailing reservoir of Baotou and iron mining of Bayan Obo located in Inner Mongolia grassland ecosystem. Aim of the study is to control soil heavy metal pollution of grassland mining area and provide the basic information. The results indicated that the soils from different directions of the tailing reservoir were contaminated by Pb, Cu, Zn and Mn. According to the single factor pollution index, the pollution degree was Mn > Zn > Pb > Cu. According to Nemerow integrated pollution index, the indexes of the northeast, southeast, southwest, and northwest of the tailing reservoir, were 2.43, 10.2, 1.88, 1.64. Soils from the southeast had the most serious heavy metal contamination because of the dominant wind of northwest. Within 50 m from the edge of tailing reservoir, heavy metal contamination was most serious except Cu. With regard to Bayan Obo iron mining, the single factor pollution index indicated that the soils from the six surveyed regions were contaminated by Pb, Cu, Zn and Mn. The integrated pollution index indicated that the indexes of the six regions, such as the mining area, the dump, outside the dump, outside the urban area, east region of the railway, and west region of the railway, were 14.3, 4.30, 2.69, 3.41, 2.88, and 2.20, respectively. The soil pollution degree of the mining area was the highest. Additionally, the transport of ore resulted in soil heavy metal pollution along railway. In general, soils of the two studied areas had the similar pollution characteristic, and the elements of heavy metal contamination were corresponding with the concentrations of tailings. The health and stabilization of grassland ecosystem are being threatened by soil heavy metals.

  14. [Sap flow characteristics of Quercus liaotungensis in response to sapwood area and soil moisture in the loess hilly region, China].

    Science.gov (United States)

    Lyu, Jin Lin; He, Qiu Yue; Yan, Mei Jie; Li, Guo Qing; Du, Sheng

    2018-03-01

    To examine the characteristics of sap flow in Quercus liaotungensis and their response to environmental factors under different soil moisture conditions, Granier-type thermal dissipation probes were used to measure xylem sap flow of trees with different sapwood area in a natural Q. liaotungensis forest in the loess hilly region. Solar radiation, air temperature, relative air humidity, precipitation, and soil moisture were monitored during the study period. The results showed that sap flux of Q. liaotungensis reached daily peaks earlier than solar radiation and vapor pressure deficit. The diurnal dynamics of sap flux showed a similar pattern to those of the environmental factors. Trees had larger sap flux during the period with higher soil moisture. Under the same soil moisture conditions, trees with larger diameter and sapwood areas had significantly higher sap flux than those with smaller diameter and sapwood areas. Sap flux could be fitted with vapor pressure deficit, solar radiation, and the integrated index of the two factors using exponential saturation function. Differences in the fitted curves and parameters suggested that sap flux tended to reach saturation faster under higher soil moisture. Furthermore, trees in the smaller diameter class were more sensitive to the changes of soil moisture. The ratio of daily sap flux per unit vapor pressure deficit under lower soil moisture condition to that under higher soil moisture condition was linearly correlated to sapwood area. The regressive slope in smaller diameter class was larger than that in bigger diameter class, which further indicated the higher sensitivity of trees with smaller diameter class to soil moisture. These results indicated that wider sapwood of larger diameter class provided a buffer against drought stress.

  15. Leaching characteristics of vanadium in mine tailings and soils near a vanadium titanomagnetite mining site

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jinyan; Tang, Ya; Yang, Kai [College of Architecture and Environment, Sichuan University, Chengdu 610065 (China); Rouff, Ashaki A. [School of Earth and Environmental Sciences, Queens College City University of New York, 65-30 Kissena Boulevard, Flushing, NY 11367 (United States); Elzinga, Evert J. [Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ (United States); Huang, Jen-How, E-mail: jen-how.huang@unibas.ch [Institute of Environmental Geosciences, University of Basel, CH-4056 Basel (Switzerland)

    2014-01-15

    Highlights: • Vanadium in the soil and mine tailings has low solubility. • The leachability of vanadium in the mine tailings is lower than in the soil. • Low risk of vanadium migrating from the soil and mine tailings into the surrounding environment. • Drought and rewetting increase vanadium release from the soil and mine tailings. • Soil leaching processes control vanadium transport in soils overlain with mine tailings. -- Abstract: A series of column leaching experiments were performed to understand the leaching behaviour and the potential environmental risk of vanadium in a Panzhihua soil and vanadium titanomagnetite mine tailings. Results from sequential extraction experiments indicated that the mobility of vanadium in both the soil and the mine tailings was low, with <1% of the total vanadium readily mobilised. Column experiments revealed that only <0.1% of vanadium in the soil and mine tailing was leachable. The vanadium concentrations in the soil leachates did not vary considerably, but decreased with the leachate volume in the mine tailing leachates. This suggests that there was a smaller pool of leachable vanadium in the mine tailings compared to that in the soil. Drought and rewetting increased the vanadium concentrations in the soil and mine tailing leachates from 20 μg L{sup −1} to 50–90 μg L{sup −1}, indicating the potential for high vanadium release following periods of drought. Experiments with soil columns overlain with 4, 8 and 20% volume mine tailings/volume soil exhibited very similar vanadium leaching behaviour. These results suggest that the transport of vanadium to the subsurface is controlled primarily by the leaching processes occurring in soils.

  16. Characteristics of Soil and Organic Carbon Loss Induced by Water Erosion on the Loess Plateau in China.

    Science.gov (United States)

    Li, Zhongwu; Nie, Xiaodong; Chang, Xiaofeng; Liu, Lin; Sun, Liying

    2016-01-01

    Soil erosion has been a common environmental problem in the Loess Plateau in China. This study aims to better understand the losses of soil organic carbon (SOC) induced by water erosion. Laboratory-simulated rainfall experiments were conducted to investigate the characteristics of SOC loss induced by water erosion. The applied treatments included two rainfall intensities (90 and 120 mm h-1), four slope gradients (10°, 15°, 20°, and 25°), and two typical soil types- silty clay loam and silty loam. Results showed that the sediment OC enrichment ratios (ERoc) in all the events were relative stable with values ranged from 0.85 to1.21 and 0.64 to 1.52 and mean values of 0.98 and 1.01 for silty clay loam and silty loam, respectively. Similar to the ERoc, the proportions of different sized particles in sediment showed tiny variations during erosion processes. No significant correlation was observed between ERoc values and the proportions of sediment particles. Slope, rainfall intensity and soil type almost had no impact on ERoc. These results indicate that the transportation of SOC during erosion processes was nonselective. While the mean SOC loss rates for the events of silty clay loam and silty loam were 0.30 and 0.08 g m-2 min-1, respectively. Greater differences in SOC loss rates were found in events among different soil types. Meanwhile, significant correlations between SOC loss and soil loss for all the events were observed. These results indicated that the amount of SOC loss was influenced primarily by soil loss and the SOC content of the original soil. Erosion pattern and original SOC content are two main factors by which different soils can influence SOC loss. It seems that soil type has a greater impact on SOC loss than rainfall characteristics on the Loess Plateau of China. However, more kinds of soils should be further studied due to the special formation processes in the Loess Plateau.

  17. Soil

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2002-01-01

    Environmental soil surveys in each province of Austria have been performed, soils of about 5,000 sites were described and analyzed for nutrients and pollutants, the majority of these data are recorded in the soil information system of Austria (BORIS) soil database, http://www.ubavie.gv.at/umweltsituation/boden/boris), which also contains a soil map of Austria, data from 30 specific investigations mainly in areas with industry and results from the Austria - wide cesium investigation. With respect to the environmental state of soils a short discussion is given, including two geographical charts, one showing which sites have soil data (2001) and the other the cadmium distribution in top soils according land use (forest, grassland, arable land, others). Information related to the soil erosion, Corine land cover (Europe-wide land cover database), evaluation of pollutants in soils (reference values of As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Se, Pb, Tl, Va, Zn, AOX, PAH, PCB, PCDD/pcdf, dioxin), and relevant Austrian and European standards and regulations is provided. Figs. 2, Tables 4. (nevyjel)

  18. The Relations Between Soil Water Retention Characteristics, Particle Size Distributions, Bulk Densities and Calcium Carbonate Contents for Danish Soils

    DEFF Research Database (Denmark)

    Jensen, Niels H.; Balstrøm, Thomas; Breuning-Madsen, Henrik

    2005-01-01

    functions developed in HYPRES (Hydraulic Properties of European Soils). Introducing bulk density as a predictor improved the equation for pressure head –1 kPa but not for lower ones. The grouping of data sets in surface and subsurface horizons or in textural classes did not improve the equations. Based...

  19. Manure-amended soil characteristics affecting the survival of E. coli O157:h7 in 36 Dutch soils

    NARCIS (Netherlands)

    Franz, E.; Semenov, A.V.; Termorshuizen, A.J.; Vos, de O.J.; Bokhorst, J.G.; Bruggen, van A.H.C.

    2008-01-01

    The recent increase in foodborne disease associated with the consumption of fresh vegetables stresses the importance of the development of intervention strategies that minimize the risk of preharvest contamination. To identify risk factors for Escherichia coli O157:H7 persistence in soil, we studied

  20. Scenario Studies on Effects of Soil Infiltration Rates, Land Slope, and Furrow Irrigation Characteristics on Furrow Irrigation-Induced Erosion.

    Science.gov (United States)

    Dibal, Jibrin M; Ramalan, A A; Mudiare, O J; Igbadun, H E

    2014-01-01

    Furrow irrigation proceeds under several soil-water-furrow hydraulics interaction dynamics. The soil erosion consequences from such interactions in furrow irrigation in Samaru had remained uncertain. A furrow irrigation-induced erosion (FIIE) model was used to simulate the potential severity of soil erosion in irrigated furrows due to interactive effects of infiltration rates, land slope, and some furrow irrigation characteristics under different scenarios. The furrow irrigation characteristics considered were furrow lengths, widths, and stream sizes. The model itself was developed using the dimensional analysis approach. The scenarios studied were the interactive effects of furrow lengths, furrow widths, and slopes steepness; infiltration rates and furrow lengths; and stream sizes, furrow lengths, and slopes steepness on potential furrow irrigation-induced erosion, respectively. The severity of FIIE was found to relate somewhat linearly with slope and stream size, and inversely with furrow lengths and furrow width. The worst soil erosion (378.05 t/ha/yr) was found as a result of the interactive effects of 0.65 m furrow width, 50 m furrow length, and 0.25% slope steepness; and the least soil erosion (0.013 t/ha/yr) was induced by the combined effects of 0.5 l/s, 200 m furrow length, and 0.05% slope steepness. Evidently considering longer furrows in furrow irrigation designs would be a better alternative of averting excessive FIIE.

  1. Surface runoff and soil erosion by difference of surface cover characteristics using by an oscillating rainfall simulator

    Science.gov (United States)

    Kim, J. K.; Kim, M. S.; Yang, D. Y.

    2017-12-01

    Sediment transfer within hill slope can be changed by the hydrologic characteristics of surface material on hill slope. To better understand sediment transfer of the past and future related to climate changes, studies for the changes of soil erosion due to hydrological characteristics changes by surface materials on hill slope are needed. To do so, on-situ rainfall simulating test was conducted on three different surface conditions, i.e. well covered with litter layer condition (a), undisturbed bare condition (b), and disturbed bare condition (c) and these results from rainfall simulating test were compared with that estimated using the Limburg Soil Erosion Model (LISEM). The result from the rainfall simulating tests showed differences in the infiltration rate (a > b > c) and the highest soil erosion rate was occurred on c condition. The result from model also was similar to those from rainfall simulating tests, however, the difference from the value of soil erosion rate between two results was quite large on b and c conditions. These results implied that the difference of surface conditions could change the surface runoff and soil erosion and the result from the erosion model might significantly underestimate on bare surface conditions rather than that from rainfall simulating test.

  2. Desirable and undesirable future thoughts call for different scene construction processes.

    Science.gov (United States)

    de Vito, S; Neroni, M A; Gamboz, N; Della Sala, S; Brandimonte, M A

    2015-01-01

    Despite the growing interest in the ability of foreseeing (episodic future thinking), it is still unclear how healthy people construct possible future scenarios. We suggest that different future thoughts require different processes of scene construction. Thirty-five participants were asked to imagine desirable and less desirable future events. Imagining desirable events increased the ease of scene construction, the frequency of life scripts, the number of internal details, and the clarity of sensorial and spatial temporal information. The initial description of general personal knowledge lasted longer in undesirable than in desirable anticipations. Finally, participants were more prone to explicitly indicate autobiographical memory as the main source of their simulations of undesirable episodes, whereas they equally related the simulations of desirable events to autobiographical events or semantic knowledge. These findings show that desirable and undesirable scenarios call for different mechanisms of scene construction. The present study emphasizes that future thinking cannot be considered as a monolithic entity.

  3. Ranking of bank branches with undesirable and fuzzy data: A DEA-based approach

    Directory of Open Access Journals (Sweden)

    Sohrab Kordrostami

    2016-07-01

    Full Text Available Banks are one of the most important financial sectors in order to the economic development of each country. Certainly, efficiency scores and ranks of banks are significant and effective aspects towards future planning. Sometimes the performance of banks must be measured in the presence of undesirable and vague factors. For these reasons in the current paper a procedure based on data envelopment analysis (DEA is introduced for evaluating the efficiency and complete ranking of decision making units (DMUs where undesirable and fuzzy measures exist. To illustrate, in the presence of undesirable and fuzzy measures, DMUs are evaluated by using a fuzzy expected value approach and DMUs with similar efficiency scores are ranked by using constraints and the Maximal Balance Index based on the optimal shadow prices. Afterwards, the efficiency scores of 25 branches of an Iranian commercial bank are evaluated using the proposed method. Also, a complete ranking of bank branches is presented to discriminate branches.

  4. Greenhouse gas emissions and plant characteristics from soil cultivated with sunflower (Helianthus annuus L.) and amended with organic or inorganic fertilizers.

    Science.gov (United States)

    López-Valdez, F; Fernández-Luqueño, F; Luna-Suárez, S; Dendooven, L

    2011-12-15

    Agricultural application of wastewater sludge has become the most widespread method of disposal, but the environmental effects on soil, air, and crops must be considered. The effect of wastewater sludge or urea on sunflower's (Helianthus annuus L.) growth and yield, the soil properties, and the resulting CO(2) and N(2)O emissions are still unknown. The objectives of this study were to investigate: i) the effect on soil properties of organic or inorganic fertilizer added to agricultural soil cultivated with sunflower, ii) how urea or wastewater sludge increases CO(2) and N(2)O emissions from agricultural soil over short time periods, and iii) the effect on plant characteristics and yield of urea or wastewater sludge added to agricultural soil cultivated with sunflower. The sunflower was fertilized with wastewater sludge or urea or grown in unamended soil under greenhouse conditions while plant and soil characteristics, yield, and greenhouse gas emissions were monitored. Sludge and urea modified some soil characteristics at the onset of the experiment and during the first two months but not thereafter. Some plant characteristics were improved by sludge. Urea and sludge treatments increased the yield at similar rates, while sludge-amended soil significantly increased N(2)O emissions but not CO(2) emissions compared to the other amended or unamended soils. This implies that wastewater sludge increased the biomass and/or the yield; however, from a holistic point of view, using wastewater sludge as fertilizer should be viewed with concern. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Greenhouse gas emissions and plant characteristics from soil cultivated with sunflower (Helianthus annuus L.) and amended with organic or inorganic fertilizers

    International Nuclear Information System (INIS)

    López-Valdez, F.; Fernández-Luqueño, F.; Luna-Suárez, S.; Dendooven, L.

    2011-01-01

    Agricultural application of wastewater sludge has become the most widespread method of disposal, but the environmental effects on soil, air, and crops must be considered. The effect of wastewater sludge or urea on sunflower's (Helianthus annuus L.) growth and yield, the soil properties, and the resulting CO 2 and N 2 O emissions are still unknown. The objectives of this study were to investigate: i) the effect on soil properties of organic or inorganic fertilizer added to agricultural soil cultivated with sunflower, ii) how urea or wastewater sludge increases CO 2 and N 2 O emissions from agricultural soil over short time periods, and iii) the effect on plant characteristics and yield of urea or wastewater sludge added to agricultural soil cultivated with sunflower. The sunflower was fertilized with wastewater sludge or urea or grown in unamended soil under greenhouse conditions while plant and soil characteristics, yield, and greenhouse gas emissions were monitored. Sludge and urea modified some soil characteristics at the onset of the experiment and during the first two months but not thereafter. Some plant characteristics were improved by sludge. Urea and sludge treatments increased the yield at similar rates, while sludge-amended soil significantly increased N 2 O emissions but not CO 2 emissions compared to the other amended or unamended soils. This implies that wastewater sludge increased the biomass and/or the yield; however, from a holistic point of view, using wastewater sludge as fertilizer should be viewed with concern.

  6. Investigations of the sorption characteristics of radiosilver on some natural and artificial soil particles

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, Gyula; Guczi, Judit [`FJC` National Research Institute for Radiobiology and Radiohygiene, Budapest (Hungary); Valyon, Jozef [Central Research Institute for Chemistry, Hungarian Academy of Sciences, Budapest (Hungary); Bulman, Robert A. [National Radiological Protection Board, Chilton Didcot, England (United Kingdom)

    1995-09-05

    The likely distribution of {sup 110m}Ag(I), a radionuclide that may be produced in nuclear power stations and which has been known to contaminate the environment, between the components of particles of soil has been investigated by measuring its uptake from solutions of sodium nitrate, sodium EDTA and sodium citrate onto particles of chernozem soil and particles formed to simulate soils. The artificial soil particles were formed from: (1) silicas coated with manganese oxide, ferric oxide and hydrated ferric oxide, (2) silicas bearing chemically bound humic and fulvic acids and (3) alumina bearing anionically associated humic acid. These investigations have established that uptake of {sup 110m}Ag(I) by the humate coatings of soil particles will predominate under a wide range of pH. In the absence of humate coatings on the soil particles the radionuclide will be bound by the Fe/Mn oxide fractions of soils.

  7. Investigations of the sorption characteristics of radiosilver on some natural and artificial soil particles

    International Nuclear Information System (INIS)

    Szabo, Gyula; Guczi, Judit; Valyon, Jozef; Bulman, Robert A.

    1995-01-01

    The likely distribution of 110m Ag(I), a radionuclide that may be produced in nuclear power stations and which has been known to contaminate the environment, between the components of particles of soil has been investigated by measuring its uptake from solutions of sodium nitrate, sodium EDTA and sodium citrate onto particles of chernozem soil and particles formed to simulate soils. The artificial soil particles were formed from: (1) silicas coated with manganese oxide, ferric oxide and hydrated ferric oxide, (2) silicas bearing chemically bound humic and fulvic acids and (3) alumina bearing anionically associated humic acid. These investigations have established that uptake of 110m Ag(I) by the humate coatings of soil particles will predominate under a wide range of pH. In the absence of humate coatings on the soil particles the radionuclide will be bound by the Fe/Mn oxide fractions of soils

  8. The Soil Characteristic Curve at Low Water Contents: Relations to Specific Surface Area and Texture

    DEFF Research Database (Denmark)

    Resurreccion, Augustus; Møldrup, Per; Schjønning, Per

    Accurate description of the soil-water retention curve (SWRC) at low water contents is important for simulating water dynamics, plant-water relations, and microbial processes in surface soil. Soil-water retention at soil-water matric potential of less than -10 MPa, where adsorptive forces dominate...... that measurements by traditional pressure plate apparatus generally overestimated water contents at -1.5 MPa (plant wilting point). The 41 soils were classified into four textural classes based on the so-called Dexter index n (= CL/OC), and the Tuller-Or (TO) general scaling model describing the water film...... thickness at a given soil-water matric potential ( 10, the estimated SA from the dry soil-water retention was in good agreement with the SA measured using ethylene glycol monoethyl ether (SA_EGME). A strong relationship between the ratio...

  9. [Soil respiration characteristics in winter wheat field in North China Plain].

    Science.gov (United States)

    Chen, Shuyue; Li, Jun; Lu, Peiling; Wang, Yinghong; Yu, Qiang

    2004-09-01

    Experiments were conducted at the Yucheng Comprehensive Experimental Station of the Chinese Academy of Sciences during 2002-2003 to investigate the respiration of a pulverous sandstone soil under cultivation of winter wheat over a growth season. The effluent CO2 was collected and analyzed by the static-chamber/gas chromatography (GC) method at a frequency of once a week in spring and autumn, once two weeks in winter, twice a week for straw manure treatment, once a week for no straw manure treatment and nitrogen fertilization treatment in summer. The results indicated that diurnal variation of soil respiration rate showed a single peak in typical winter wheat farmlands in the North China Plain, and reached the highest at about 13 o'clock, and the lowest at about 4 o'clock in the early morning. In winter wheat growth season, the soil respiration rate was 31.23-606.85 mg x m(-2) x h(-1) under straw manure, 28.99-549.66 x m(-2) x h(-1) under no straw manure, 10.46-590.86 mg x m(-2) x h(-1) in N0, 16.11-349.88 mg x m(-2) x h(-1) in N100, 12.25-415.00 mg x m(-2) x h(-1) in N200, and 23.01-410.58 mg x m(-2) x h(-1) in N300, showing a similar seasonal variation tendency with soil temperature. Among all treatments, the straw manure had the most distinct soil respiration, though the soil respiration also increased slightly with increasing nitrogen fertilization. Soil respiration increased exponentially with increasing soil temperature, and the correlation of soil temperature at the depth of 5 cm was the best. This relationship was usually described with the Q10 model, which represented the sensitivity of soil respiration to temperature. Q10 was not a fixed value, which varied with the depth at which the temperature was measured and the depth of the active soil layer and soil temperature. At same time, the Q10 value decreased with increasing soil temperature. Soil water content was another important factor affecting soil respiration rate, but in this region, the relationship

  10. Laboratory test investigations on soil water characteristic curve and air permeability of municipal solid waste.

    Science.gov (United States)

    Shi, Jianyong; Wu, Xun; Ai, Yingbo; Zhang, Zhen

    2018-05-01

    The air permeability coefficient has a high correlation with the water content of municipal solid waste. In this study, continuous drying methodology using a tension meter was employed to construct the soil water characteristic curve of municipal solid waste (M-SWCC). The municipal solid waste air permeability test was conducted by a newly designed apparatus. The measured M-SWCC was well reproduced by the van Genuchten (V-G) model and was used to predict the parameters of typical points in M-SWCC, including saturated water content, field capacity, residual water content and water content at the inflection point. It was found that the M-SWCC was significantly influenced by void ratio. The final evaporation and test period of M-SWCC increase with the increase in void ratio of municipal solid waste. The evolution of air permeability coefficient with water content of municipal solid waste depicted three distinct characteristic stages. It was observed that the water contents that corresponded to the two cut-off points of the three stages were residual water content and water content at the inflection point, respectively. The air permeability coefficient of municipal solid waste decreased with the increase of the water content from zero to the residual water content. The air permeability coefficient was almost invariable when the water content increased from residual water content to the water content at the inflection point. When the water content of municipal solid waste exceeded the water content at the inflection point, the air permeability coefficient sharply decreased with the increase of water content.

  11. Phosphorus Characteristics with Controlled Nitrogen in Fertile Soils in Protected Vegetable Field

    Directory of Open Access Journals (Sweden)

    WANG Heng

    2014-06-01

    Full Text Available There is an unreasonable phenomenon of fertilization in vegetable facility cultivation, with the serious imbalance of soil nutrient. In purpose of understanding the absorption characteristics of phosphorus from nitrogen-rich soil, a long-term nitrogen-controlled experiment was carried from the year 2004 to 2007, and a split plot experiment of leaching was carried in winter-spring season of 2007. The results showed that the content of phosphorus varied with different nitrogen control. The TP was decreased with nitrogen supply of none(NN 、organic manure(MN 、organic manure and straw(MN+S, and the decreased range was NN>MN>MN+S, meanwhile the increase range of TP was traditional-nitrogen(CN >traditional-nitrogen+straw(CN+S >optimized-nitrogen+straw(SN+S >optimized-nitrogen(SN. The available P with CN and CN+S reached to 213.7 mg· kg -1 、225.4 mg·kg -1, which increased by 17.1 percent and 23.5 percent, which declared the phosphorus was accumulated; The available P with other nitrogen controlled decreased with the range of NN>MN>MN+S>SN+S>SN跃CN>CN+S, which showed that the supply reduction of nitrogen could slowdown the phosphorus accumulated and promote the utilization ratio of phosphorus. The organophosphorus was increased except NN, with obvious increase with CN、CN+S(308.4 mg·kg -1 、331.4 mg·kg -1 by 28.5 percent and 38.2 percent. The absorption coefficient of phosphorus with SN+S(P 2 O 5,mg· 100 g -1 reached to 1 571, increased by 143.6 percent; Otherwise the absorption coefficient of phosphorus with CN、CN+S showed negative growth, the CN dipped to 416(P 2 O 5,mg·100 g -1 by 35.5 percent. Adding wheat straw could greatly improved the capacity of absorption of phosphorus and slow down the accumulation of available phosphorus to some extent. The concentrations of total phosphorus in the filtrate with SN+S were less than SN, contrary to the concentration of organophosphorus, thus the straw returning had a certain effect on

  12. Stochastic analysis of uncertain thermal characteristic of foundation soils surrounding the crude oil pipeline in permafrost regions

    International Nuclear Information System (INIS)

    Wang, Tao; Zhou, Guoqing; Wang, Jianzhou; Zhao, Xiaodong

    2016-01-01

    Highlights: • The influence of stochastic properties and conditions on permafrost foundation was investigated. • A stochastic analysis for the uncertain thermal characteristic of crude oil pipe is presented. • The mean temperature and standard deviation of foundation soils are obtained and analyzed. • Average standard deviation and maximum standard deviation of foundation soils increase with time. - Abstract: For foundation soils surrounding the crude oil pipeline in permafrost regions, the soil properties and the upper boundary conditions are stochastic because of complex geological processes and changeable atmospheric environment. The conventional finite element analysis of thermal characteristics for crude oil pipeline is always deterministic, rather than taking stochastic parameters and conditions into account. This study investigated the stochastic influence of an underground crude oil pipeline on the thermal stability of the permafrost foundation on the basis of a stochastic analysis model and the stochastic finite element method. A stochastic finite element program is compiled by Matrix Laboratory (MATLAB) software, and the random temperature fields of foundation soils surrounding a crude oil pipeline in a permafrost region are obtained and analyzed by Neumann stochastic finite element method (NSFEM). The results provide a new way to predict the thermal effects of the crude oil pipeline in permafrost regions, and it shows that the standard deviations in temperature increase with time when considering the stochastic effect of soil properties and boundary conditions, which imply that the results of conventional deterministic analysis may be far from the true value, even if in different seasons. It can improve our understanding of the random temperature field of foundation soils surrounding the crude oil pipeline and provide a theoretical basis for actual engineering design in permafrost regions.

  13. A methodological framework to determine optimum durations for the construction of soil water characteristic curves using centrifugation

    Directory of Open Access Journals (Sweden)

    Vero Sara E.

    2016-12-01

    Full Text Available During laboratory assessment of the soil water characteristic curve (SWCC, determining equilibrium at various pressures is challenging. This study establishes a methodological framework to identify appropriate experimental duration at each pressure step for the construction of SWCCs via centrifugation. Three common temporal approaches to equilibrium – 24-, 48- and 72-h – are examined, for a grassland and arable soil. The framework highlights the differences in equilibrium duration between the two soils. For both soils, the 24-h treatment significantly overestimated saturation. For the arable site, no significant difference was observed between the 48- and 72-h treatments. Hence, a 48-h treatment was sufficient to determine ‘effective equilibrium’. For the grassland site, the 48- and 72-h treatments differed significantly. This highlights that a more prolonged duration is necessary for some soils to conclusively determine that effective equilibrium has been reached. This framework can be applied to other soils to determine the optimum centrifuge durations for SWCC construction.

  14. [Heavy metal pollution characteristics and ecological risk analysis for soil in Phyllostachys praecox stands of Lin'an].

    Science.gov (United States)

    Fang, Xiao-bo; Shi, Han; Liao, Xin-feng; Lou, Zhong; Zhou, Lyu-yan; Yu, Hai-xia; Yao, Lin; Sun, Li-ping

    2015-06-01

    An investigation was carried out in an attempt to reveal the characteristics of heavy metals contamination in the soils of Phyllostachys praecox forest in Lin' an. Based on the concentrations of Hg, As, Cu, Pb, Zn, Cd, Cr, Ni, Co and Mn in 160 topsoil samples, the pollution status and ecological risks of heavy metals in the soils were assessed by single factor pollution index, Nemerow integrated pollution index and Hankanson potential ecological risk index. The spatial variability of heavy metal concentrations in the soils closely related to the distribution of traffic, industrial and livestock pollution sources. The average concentrations of Hg, As, Cu, Pb, Zn, Cd, Cr, Ni, Co and Mn in the soils were 0.16, 7.41, 34.36, 87.98, 103.98, 0.26, 59.12, 29.56, 11.44 and 350.26 mg · kg(-1), respectively. Pb, Cd, Zn and Cu concentrations were as 2.89, 1.70, 1.12 and 1.12 times as the background values of soil in Zhejiang Province, respectively. But their concentrations were all lower than the threshold values of the National Environmental Quality Standard for Soil (GB 15618-1995). The average single factor pollution index revealed that the level of heavy metal pollution in the soils was in order of Pb>Cd>Cu= Zn>Hg>As>Ni>Co>Cr>Mn. Pb pollution was of moderate level while Cd, Cu and Zn pollutions were slight. There was no soil pollution caused by the other heavy metals. However, the Nemerow integrated pollution index showed that all the 160 soil samples were contaminated by heavy metals to a certain extent. Among total 160 soil samples, slight pollution level, moderate pollution level and heavy pollution level accounted for 55.6%, 29.4% and 15.0%, respectively. The average single factor potential ecological risk index (Er(i)) implied that the potential ecological risk related to Cd reached moderate level, while the others were of slight level. Furthermore, Cd and Hg showed higher potential ecological risk indices which reached up to 256.82 and 187.33 respectively

  15. [Characteristics of soil moisture variation in different land use types in the hilly region of the Loess Plateau, China].

    Science.gov (United States)

    Tang, Min; Zhao, Xi Ning; Gao, Xiao Dong; Zhang, Chao; Wu, Pu Te

    2018-03-01

    Soil water availability is a key factor restricting the ecological construction and sustainable land use in the loess hilly region. It is of great theoretical and practical significance to understand the soil moisture status of different land use types for the vegetation restoration and the effective utilization of land resources in this area. In this study, EC-5 soil moisture sensors were used to continuously monitor the soil moisture content in the 0-160 cm soil profile in the slope cropland, terraced fields, jujube orchard, and grassland during the growing season (from May to October) in the Yuanzegou catchment on the Loess Plateau, to investigate soil moisture dynamics in these four typical land use types. The results showed that there were differences in seasonal variation, water storage characteristics, and vertical distribution of soil moisture under different land use types in both the normal precipitation (2014) and dry (2015) years. The terraced fields showed good water retention capacity in the dry year, with the average soil moisture content of 0-60 cm soil layer in the growing season being 2.6%, 4.2%, and 1.8% higher than that of the slope cropland, jujube orchard, and grassland (all Pmoisture content of 0-60 cm soil layer in jujube orchard in the growing season was 2.9%, 3.8%, and 4.5% lower than that of slope cropland, terraced fields, and grassland, respectively (all Pmoisture in the surface layer (0-20 cm) and soil moisture in the middle layer (20-100 cm) under different land use types was large, and the trend for the similarity degree of soil moisture variation followed terraced fields > grassland > slope cropland > jujube orchard. The slope cropland in this area could be transformed into terraced fields to improve the utilization of precipitation and promote the construction of ecological agriculture. Aiming at resolving the severe water shortage in the rain-fed jujube orchard for the sustainable development of jujube orchard in the loess hilly

  16. [Characteristics of mercury pollution in soil and atmosphere in Songhua River upstream Jia-pi-gou gold mining area].

    Science.gov (United States)

    Zhang, Gang; Wang, Ning; Wang, Yuan; Liu, Te; Ai, Jian-Chao

    2012-09-01

    In the studied area of Jia-pi-gou at the upstream area of Songhua River, algamation process has been applied as a dominant method to extract gold for more than one hundred and eighty years, resulting in severe mercury environmental pollution. The total mercury contents in the atmosphere and soil have been determined by mercury analyzer (Zeeman RA915+) and cold atomic absorption spectrophotometry (GB/T 17136-1997), respectively. To study the pollution characteristics of mercury in the soil and atmosphere, the mercury flux at the interface between the soil and the atmosphere of 4 sampling sites Lao-jin-chang, Er-dao-gou, Er-dao-cha and community of Jia-pi-gou have been determined with the method of dynamic flux chamber. Furthermore, linear regression analyses on the total mercury contents between soil and atmosphere have been carried out and the correlation coefficient of mercury exchange flux between soil and atmosphere and meteorological factors has been studied. The results are as follows: (1) The mean value of mercury content in the atmosphere is (71.08 +/- 38.22) ng x m(-3). (2) The mean value of mercury content in the soil is (0.913 1 +/- 0.040 8) mg x kg(-1); it shows remarkably positive correlation between the mercury contents in soil and in the atmosphere. (3) The mercury exchange flux between soil and atmosphere in different locations are Lao-jin-chang [(129.13 +/- 496.07) ng (m2 x h)(-1)], Er-dao-gou [(98.64 +/- 43.96) ng x (m2 x h)(-1)], Er-dao-cha [(23.17 +/- 171.23) ng x (m2 x h)(-1)], and community of Jia-pi-gou [(7.12 +/- 46.33) ng x (m2 x h)(-1)]. (4) Solar radiation is the major influential factor in the mercury exchange flux between the soil and atmosphere in Lao-jin-chang, Er-dao-cha and community of Jia-pi-gou. Solar radiation, air temperature and soil temperature jointly influence the process of the mercury exchange flux between the soil and atmosphere in Er-dao-gou. Under the disturbance of terrain, three noticeably distinctive trend features

  17. Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil

    International Nuclear Information System (INIS)

    Wenzel, W.W.; Bunkowski, M.; Puschenreiter, M.; Horak, O.

    2003-01-01

    Field study reinforces that root exudates may contribute to nickel hyperaccumulation in Thlaspi goesingense Halacsy. - The role of rhizosphere processes in metal hyperaccumulation is largely unexplored and a matter of debate, related field data are virtually not available. We conducted a field survey of rhizosphere characteristics beneath the Ni hyperaccumulator Thlaspi goesingense Halacsy and the metal-excluder species Silene vulgaris L. and Rumex acetosella L. growing natively on the same serpentine site. Relative to bulk soil and to the rhizosphere of the excluder species, we found significantly increased DOC and Ni concentrations in water extracts of T. goesingense rhizosphere, whereas exchangeable Ni was depleted due to excessive uptake of Ni. Chemical speciation analysis using the MINTEQA2 software package revealed that enhanced Ni solubility in Thlaspi rhizosphere is driven by the formation of Ni-organic complexes. Moreover, ligand-induced dissolution of Ni-bearing minerals is likely to contribute to enhanced Ni solubility. Increased Mg and Ca concentrations and pH in Thlaspi rhizosphere are consistent with ligand-induced dissolution of orthosilicates such as forsterite (Mg 2 SiO 4 ). Our field data reinforce the hypothesis that exudation of organic ligands may contribute to enhanced solubility and replenishment of metals in the rhizosphere of hyperaccumulating species

  18. [Infiltration characteristics of soil water on loess slope land under intermittent and repetitive rainfall conditions].

    Science.gov (United States)

    Li, Yi; Shao, Ming-An

    2008-07-01

    Based on the experiments of controlled intermittent and repetitive rainfall on slope land, the infiltration and distribution characteristics of soil water on loess slope land were studied. The results showed that under the condition of intermittent rainfall, the cumulative runoff during two rainfall events increased linearly with time, and the wetting front also increased with time. In the interval of the two rainfall events, the wetting front increased slowly, and the infiltration rate was smaller on steeper slope than on flat surface. During the second rainfall event, there was an obvious decreasing trend of infiltration rate with time. The cumulative infiltration on 15 degrees slope land was larger than that of 25 degrees slope land, being 178 mm and 88 mm, respectively. Under the condition of repetitive rainfall, the initial infiltration rate during each rainfall event was relatively large, and during the first rainfall, both the infiltration rate and the cumulative infiltration at various stages were larger than those during the other three rainfall events. However, after the first rainfall, there were no obvious differences in the infiltration rate among the next three rainfall events. The more the rainfall event, the deeper the wetting front advanced.

  19. Risk management of undesirable substances in feed following updated risk assessments

    International Nuclear Information System (INIS)

    Verstraete, Frans

    2013-01-01

    Directive 2002/32/EC of 7 May 2002 of the European Parliament and of the Council on undesirable substances in animal feed is the framework for the EU action on undesirable substances in feed. This framework Directive provides: ⁎that products intended for animal feed may enter for use in the Union from third countries, be put into circulation and/or used in the Union only if they are sound, genuine and of merchantable quality and therefore when correctly used do not represent any danger to human health, animal health or to the environment or could adversely affect livestock production. ⁎that in order to protect animal and public health and the environment, maximum levels for specific undesirable substances shall be established where necessary. ⁎for mandatory consultation of a scientific body (EFSA) for all provisions which may have an effect upon public health or animal health or on the environment. ⁎that products intended for animal feed containing levels of an undesirable substance that exceed the established maximum level may not be mixed for dilution purposes with the same, or other, products intended for animal feed and may not be used for the production of compound feed. Based on the provisions and principles laid down in this framework Directive, maximum levels for a whole range of undesirable substances have been established at EU level. During the discussions in view of the adoption of Directive 2002/32/EC, the European Commission made the commitment to review all existing provisions on undesirable substances on the basis of updated scientific risk assessments. Following requests of the European Commission, the Panel on Contaminants in the Food Chain (CONTAM) from the European Food Safety Authority (EFSA) has completed a series of 30 risk assessments undertaken over the last 5 years on undesirable substances in animal feed reviewing the possible risks for animal and human health due to the presence of these substances in animal feed. EU legislation

  20. Risk management of undesirable substances in feed following updated risk assessments

    Energy Technology Data Exchange (ETDEWEB)

    Verstraete, Frans, E-mail: Frans.Verstraete@ec.europa.eu

    2013-08-01

    Directive 2002/32/EC of 7 May 2002 of the European Parliament and of the Council on undesirable substances in animal feed is the framework for the EU action on undesirable substances in feed. This framework Directive provides: ⁎that products intended for animal feed may enter for use in the Union from third countries, be put into circulation and/or used in the Union only if they are sound, genuine and of merchantable quality and therefore when correctly used do not represent any danger to human health, animal health or to the environment or could adversely affect livestock production. ⁎that in order to protect animal and public health and the environment, maximum levels for specific undesirable substances shall be established where necessary. ⁎for mandatory consultation of a scientific body (EFSA) for all provisions which may have an effect upon public health or animal health or on the environment. ⁎that products intended for animal feed containing levels of an undesirable substance that exceed the established maximum level may not be mixed for dilution purposes with the same, or other, products intended for animal feed and may not be used for the production of compound feed. Based on the provisions and principles laid down in this framework Directive, maximum levels for a whole range of undesirable substances have been established at EU level. During the discussions in view of the adoption of Directive 2002/32/EC, the European Commission made the commitment to review all existing provisions on undesirable substances on the basis of updated scientific risk assessments. Following requests of the European Commission, the Panel on Contaminants in the Food Chain (CONTAM) from the European Food Safety Authority (EFSA) has completed a series of 30 risk assessments undertaken over the last 5 years on undesirable substances in animal feed reviewing the possible risks for animal and human health due to the presence of these substances in animal feed. EU legislation

  1. Soils

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2001-01-01

    For Austria there exists a comprehensive soil data collection, integrated in a GIS (geographical information system). The content values of pollutants (cadmium, mercury, lead, copper, mercury, radio-cesium) are given in geographical charts and in tables by regions and by type of soil (forests, agriculture, greenland, others) for the whole area of Austria. Erosion effects are studied for the Austrian region. Legal regulations and measures for an effective soil protection, reduction of soil degradation and sustainable development in Austria and the European Union are discussed. (a.n.)

  2. Effects of simulated acid rain on microbial characteristics in a lateritic red soil.

    Science.gov (United States)

    Xu, Hua-qin; Zhang, Jia-en; Ouyang, Ying; Lin, Ling; Quan, Guo-ming; Zhao, Ben-liang; Yu, Jia-yu

    2015-11-01

    A laboratory experiment was performed to examine the impact of simulated acid rain (SAR) on nutrient leaching, microbial biomass, and microbial activities in a lateritic red soil in South China. The soil column leaching experiment was conducted over a 60-day period with the following six SAR pH treatments (levels): 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 and one control treatment (pH = 7). Compared with the control treatment, the concentrations of soil organic matter, total nitrogen, total phosphorus, total potassium, soil microbial biomass carbon (MBC), soil microbial biomass nitrogen (MBN), and average well color density (AWCD) in the Ecoplates were all significantly decreased by leaching with SAR at different pH levels. The decrease in MBC and MBN indicated that acid rain reduced the soil microbial population, while the decrease in AWCD revealed that acid rain had a negative effect on soil bacterial metabolic function. Soil basal respiration increased gradually from pH 4.0 to 7.0 but decreased dramatically from pH 2.5 to 3.0. The decrease in soil nutrient was the major reason for the change of soil microbial functions. A principal component analysis showed that the major carbon sources used by the bacteria were carbohydrates and carboxylic acids.

  3. [Heavy metal pollution characteristics and ecological risk analysis for soil around Haining electroplating industrial park].

    Science.gov (United States)

    Li, Jiong-Hui; Weng, Shan; Fang, Jing; Huang, Jia-Lei; Lu, Fang-Hua; Lu, Yu-Hao; Zhang, Hong-Ming

    2014-04-01

    The pollution status and potential ecological risks of heavy metal in soils around Haining electroplating industrial park were studied. Hakanson index approach was used to assess the ecological hazards of heavy metals in soils. Results showed that average concentrations of six heavy metals (Cu, Ni, Pb, Zn, Cd and Cr) in the soils were lower than the secondary criteria of environmental quality standard for soils, indicating limited harmful effects on the plants and the environment in general. Though the average soil concentrations were low, heavy metal concentrations in six sampling points located at the side of road still exceeded the criteria, with excessive rate of 13%. Statistic analysis showed that concentrations of Cu and Cd in roadside soils were significantly higher than those in non-roadside soils, indicating that the excessive heavy metal accumulations in the soil closely related with traffic transport. The average potential ecological hazard index of soils around Haining electroplating industrial park was 46.6, suggesting a slightly ecological harm. However, the potential ecological hazard index of soils with excessive heavy metals was 220-278, suggesting the medium ecological hazards. Cd was the most seriously ecological hazard factor.

  4. Adsorption and desorption characteristic of benzimidazole based fungicide carbendazim in pakistani soils

    International Nuclear Information System (INIS)

    Ahmad, K.S.; Rashid, N.; Tazaiyen, S.; Nazar, M.F.

    2013-01-01

    A versatile cost-effective Benzimidazole based fungicide, Carbendazim (methyl 1H-benzimidazole-2 carboxylate ) has been utilized to investigate its sorption-desorption behaviour on physicochemical properties of geographical soils, ranging from hilly to desert areas of Pakistan, via batch equilibrium method. The data obtained in all tests showed that adsorption co-efficient isotherm for Carbendazim in four tested soil were well fitted the freundlich equation. Distribution co-efficient (K d ) parameters are low (3.59 to 11.60 ml micro g/sup -1/) indicating low adsorption. It was observed that Carbendazim showed a relatively greater degree of adsorption on soil samples (Soil 4) that were collected from northern hilly areas Ayubia, Khyber Pakhton khaw (KPK) (Silt loam) i.e.11.60 ml mu g/sup -1/ and least adsorption on sandy Soil of Multan Punjab(Soil 2). While other two soils 1 were collected from Murree region, a boarder of Punjab and KPK mountain area and Soil 3 from Tarnol, Islamabad. Desorption studies reveal that the adsorbed fungicide is firmly retained by soil particles and their adsorption are almost irreversible. The results indicate that soil organic matter (SOM) and appropriate pH also play key role in sorption capacity. (author)

  5. Detailed sorption characteristics of the anti-diabetic drug metformin and its transformation product guanylurea in agricultural soils.

    Science.gov (United States)

    Briones, Rowena M; Sarmah, Ajit K

    2018-07-15

    Detection of metformin, an antidiabetic drug and its transformation product guanylurea in various environmental matrices such as surface water and groundwater, coupled with their effects on aquatic organisms warrant an understanding of the compounds fate and behaviour in the environment. Batch studies were conducted with the aim of evaluating the sorption of these two emerging contaminants in six New Zealand agricultural soils of contrasting physico-chemical properties. Kinetic studies revealed that metformin and guanylurea sorption in Te Kowhai soil was very rapid initially achieving 90% sorption within the first 4 and 13h, respectively. Fit of several isotherm models to the measured batch sorption data showed that the hybrid models Langmuir-Freundlich and Redlich-Peterson best described the isotherms. Freundlich isotherm showed higher linearity for guanylurea (n F =0.58-0.93) in all soils compared to metformin (n F =0.25-0.71). A linear isotherm was fitted at environmentally relevant low concentrations (< 3mg/L) of target compounds and calculated values of sorption distribution coefficient (K d ) were in the range of 8.97 to 53.49L/kg for metformin and between 10.6 and 37.51L/kg for guanylurea. Sorption of both metformin and guanylurea was dependent on the soil characteristics, however, no generalisation could be made as to which had higher affinity to soils studied. Pearson's correlation and multiple regression analyses indicate that Si/Al (p=0.042) and clay (p=0.015) significantly influenced metformin K d values, whereas the soil's cation exchange capacity (p=0.024) is the single most significant factor determining guanylurea sorption in soils. It is likely that the type of minerals present in soils and its ion-exchange capacity could play an important role in metformin and guanylurea sorption, respectively. Copyright © 2018. Published by Elsevier B.V.

  6. Soil pore characteristics assessed from X-ray micro-CT derived images and correlations to soil friability

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Heck, R; Deen, B

    2012-01-01

    X-ray computed tomography (CT) scanning technology has, in recent decades, been shown to be a very powerful technique to visualize and quantify soil structure. The objective of this project was to quantify soilporecharacteristics, on undisturbed field moist soil, using a high resolution X-rayCT...... cores varied in porosity and porecharacteristics. A drop shatter test was used as a reference procedure to quantify soilfriability. The top 40 mm of the 80 mm high soil samples were scanned using a X-raymicro-CT scanner. The selected region of interest (36 × 36 × 36 mm) was reconstructed with a voxel...... of 49 m3 100 m− 3. The air-filled porosity, at sampling/testing, ranged between 5 and 32 m3 100 m− 3, with an average of 15 m3 100 m− 3. The porosity determined from CT imagery ranged between 1 and 31 m3 100 m− 3, with an average of 4.5 m3 100 m− 3. The number of branches, junctions and end points...

  7. Characteristics of the soil in mountain beech communities on mountain Manjača

    Directory of Open Access Journals (Sweden)

    Eremija Saša

    2008-01-01

    Full Text Available The presented results of soil study, which will be used for defining the beech forest types of management unit 'Dubička Gora' on Mt. Manjača, are the basis for solving a series of current tasks of forestry profession. Relief and chemical nature of limestone are the main factors of the soil cover differentiation (Knežević, Košanin, 2004.. The results of physical and chemical soil properties are shown and its taxonomy is determined. Forest cover is represented by heterogeneous units-forest combinations. Four basic soil types are defined on the basis of detailed field and laboratory research: rendzina on dolomite, chernozem on limestone, brown soil on limestone, illimerised soil on limestone and dolomite.

  8. Characteristics of CO2 release from forest soil in the mountains near Beijing.

    Science.gov (United States)

    Sun, Xiang Yang; Gao, Cheng Da; Zhang, Lin; Li, Su Yan; Qiao, Yong

    2011-04-01

    CO2 release from forest soil is a key driver of carbon cycling between the soil and atmosphere ecosystem. The rate of CO2 released from soil was measured in three forest stands (in the mountainous region near Beijing, China) by the alkaline absorption method from 2004 to 2006. The rate of CO2 released did not differ among the three stands. The CO2 release rate ranged from - 341 to 1,193 mg m(-2) h(-1), and the mean value over all three forests and sampling times was 286 mg m(-2) h(-1). CO2 release was positively correlated with soil water content and the soil temperature. Diurnally, CO2 release was higher in the day than at night. Seasonally, CO2 release was highest in early autumn and lowest in winter; in winter, negative values of CO2 release suggested that CO2 was absorbed by soil.

  9. Certain characteristics of industrial and domestic contamination of soil in cities of the Kusnetsk Basin

    Energy Technology Data Exchange (ETDEWEB)

    Bashirova, F N

    1966-01-01

    Analysis of soil samples taken in and near cities of the Kusnetsk Basin, a coal and metal working center, has revealed significant changes caused by various waste products. Soils were found to contain harmful elements such as lead, and to be poor in nutrients. The natural composition of soil was found in gardens and parks where cultivation was maintained to a depth 60-130 cm. It is concluded that with proper agronomic measures these soils can be made to support trees, shrubs, flowers, and grasses.

  10. Unique Rhizosphere Micro-characteristics Facilitate Phytoextraction of Multiple Metals in Soil by the Hyperaccumulating Plant Sedum alfredii.

    Science.gov (United States)

    Hou, Dandi; Wang, Kai; Liu, Ting; Wang, Haixin; Lin, Zhi; Qian, Jie; Lu, Lingli; Tian, Shengke

    2017-05-16

    Understanding the strategies that the roots of hyperaccumulating plants use to extract heavy metals from soils is important for optimizing phytoremediation. The rhizosphere characteristics of Sedum alfredii, a hyperaccumulator, were investigated 6 months after it had been planted in weathered field soils contaminated with 5.8 μg of Cd g -1 , 1985.1 μg of Zn g -1 , 667.5 μg of Pb g -1 , and 698.8 μg of Cu g -1 . In contrast with the non-hyperaccumulating ecotype (NHE), the hyperaccumulating ecotype (HE) of S. alfredii was more tolerant to the metals, and higher levels of Cd and Zn accumulated. The HE was characterized by a unique rhizosphere, including extensive root systems, a reduced soil pH, a higher metal bioavailability, and increased rhizomicrobial activity. The bioavailability of metals was significantly correlated with the HE's unique bacterial communities (P heavy metal phytoextraction.

  11. Array diagnostics, spatial resolution, and filtering of undesired radiation with the 3D reconstruction algorithm

    DEFF Research Database (Denmark)

    Cappellin, C.; Pivnenko, Sergey; Jørgensen, E.

    2013-01-01

    This paper focuses on three important features of the 3D reconstruction algorithm of DIATOOL: the identification of array elements improper functioning and failure, the obtainable spatial resolution of the reconstructed fields and currents, and the filtering of undesired radiation and scattering...

  12. Relationships between College Students' Credit Card Debt, Undesirable Academic Behaviors and Cognitions, and Academic Performance

    Science.gov (United States)

    Hogan, Eileen A.; Bryant, Sarah K.; Overymyer-Day, Leslie E.

    2013-01-01

    The acquisition of credit card debt by college students has long been a topic of concern. This study explores relationships among debt, undesirable academic behaviors and cognitions, and academic performance, through surveys of 338 students in a public university, replicating two past measures of credit card debt and creating new measures of…

  13. A survey on the presence of undesirable botanical substances in feed in the European Union

    NARCIS (Netherlands)

    Raamsdonk, van L.W.D.; Vancutsem, J.; Jorgensen, J.S.

    2009-01-01

    Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed lists a range of substances from botanical origin (weed seeds) and additionally some chemical compounds directly originating from specific weeds. In order to examine the actual

  14. School Social Workers' Perceived Efficacy at Tasks Related to Curbing Suspension and Undesirable Behaviors

    Science.gov (United States)

    Teasley, Martell L.; Miller, Christina R.

    2011-01-01

    This study explores school social workers' perceptions of their ability to successfully engage in practice tasks that reduce the likelihood of school suspension and undesirable behaviors among racial and ethnic groups within diverse geographical locations (urban, suburban, and rural). Using survey research methods with a convenience sample, 201…

  15. Phosphorus status and sorption characteristics of some calcareous soils of Hamadan, western Iran

    Science.gov (United States)

    Jalali, Mohsen

    2007-10-01

    Phosphorus (P) application in excess of plant requirement may result in contamination of drinking water and eutrophication of surface water bodies. The phosphorous buffer capacity (PBC) of soil is important in plant nutrition and is an important soil property in the determination of the P release potential of soils. Phosphorus sorption greatly affects both plant nutrition and environmental pollution. For better and accurate P fertilizer recommendations, it is necessary to quantify P sorption. This study was conducted to investigate available P and P sorption by calcareous soils in a semi-arid region of Hamadan, western Iran. The soil samples were mainly from cultivated land. Olsen’s biocarbonate extractable P (Olsen P) varied among soils and ranged from 10 to 80 mg kg-1 with a mean of 36 mg kg-1. Half of the soils had an Olsen P > 40 mg kg-1 and >70% of them had a concentration >20 mg kg-1, whereas the critical concentration for most crops is potato (44 kg kg-1) fields than in dry-land wheat farming (24 mg kg-1), pasture (30 mg kg-1), and wheat (24 mg P kg-1) fields. A marked increase in fertilizer P rates applied to agricultural soils has caused P to be accumulated in the surface soil. Phosphate sorption curves were well fitted to the Freundlich equation. The standard P requirement (SPR) of soils, defined as the amount of P sorbed at an equilibrium concentration of 0.2 mg l-1 ranged from 4 to 102 mg kg-1. Phosphorus buffer capacity was relatively high and varied from 16 to 123 l kg-1 with an average of 58 l kg-1. In areas of intensive crop production, continual P applications as P fertilizer and farmyard manure have been used at levels exceeding crop requirements. Surface soil accumulations of P are high enough that loss of P in surface runoff and a high risk for P transfer into groundwater have become priority management concerns.

  16. A review of fire effects on vegetation and soils in the Great Basin region: response and ecological site characteristics

    Science.gov (United States)

    Miller, Richard F.; Chambers, Jeanne C.; Pyke, David A.; Pierson, Fred B.; Williams, C. Jason

    2013-01-01

    This review synthesizes the state of knowledge on fire effects on vegetation and soils in semi-arid ecosystems in the Great Basin Region, including the central and northern Great Basin and Range, Columbia River Basin, and the Snake River Plain. We summarize available literature related to: (1) the effects of environmental gradients, ecological site, and vegetation characteristics on resilience to disturbance and resistance to invasive species; (2) the effects of fire on individual plant species and communities, biological soil crusts, seed banks, soil nutrients, and hydrology; and (3) the role of fire severity, fire versus fire surrogate treatments, and post-fire grazing in determining ecosystem response. From this, we identify knowledge gaps and present a framework for predicting plant successional trajectories following wild and prescribed fires and fire surrogate treatments. Possibly the three most important ecological site characteristics that influence a site’s resilience (ability of the ecological site to recover from disturbance) and resistance to invasive species are soil temperature/moisture regimes and the composition and structure of vegetation on the ecological site just prior to the disturbance event.

  17. Soil Profile Characteristics of a 25-Year-Old Windrowed Loblolly Pine Plantation in Louisiana

    Science.gov (United States)

    William B. Patterson; John C. Adams; Spencer E. Loe; R. Jarod Patterson

    2002-01-01

    Windrowing site preparation, the raking and piling of long rows of logging debris, has been reported to displace surface soil, redistribute nutrients, and reduce volume growth of southern pine forests. Many of these studies have reported short-term results, and there are few long-term studies of the effects of windrowing on soil properties and pine growth. A 16.2...

  18. Comparative characterization of sewage sludge compost and soil: Heavy metal leaching characteristics.

    Science.gov (United States)

    Fang, Wen; Wei, Yonghong; Liu, Jianguo

    2016-06-05

    The leaching and accumulation of heavy metals are major concerns following the land application of sewage sludge compost (SSC). We comparatively characterized SSC, the reference soil, and the SSC amended soil to investigate their similarities and differences regarding heavy metal leaching behavior and then to evaluate the effect of SSC land application on the leaching behavior of soil. Results showed that organic matter, including both of particulate organic matter (POM) and dissolved organic matter (DOM), were critical factors influencing heavy metal leaching from both of SSC and the soil. When SSC was applied to soil at the application rate of 48t/ha, the increase of DOM content slightly enhanced heavy metal leaching from the amended soil over the applicable pH domain (6leaching behavior of heavy metals. The geochemical speciation modeling revealed that heavy metal speciation in the solid phase were similar between the reference soil and the amended soil. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Characteristics of soils and saprolite in Solid Waste Storage Area 6

    International Nuclear Information System (INIS)

    Ammons, J.T.; Phillips, D.H.; Timpson, M.E.

    1987-01-01

    Solid Waste Storage Area 6 (SWSA-6) is one of the disposal sites for solid low-level radioactive waste at Oak Ridge National Laboratory. Soils and saprolites from the site were characterized to provide base line information to initiate assessment for remedial actions and closure plans. Physical, chemical, mineralogical, and engineering analyses were conducted on soil and saprolite samples

  20. Study on the adsorption-desorption characteristics of 14C-pirimicarb in soils

    International Nuclear Information System (INIS)

    Guo Jiangfeng; Sun Jinhe; Li Xingming

    1995-01-01

    14 C-pirimicarb was used to study its adsorption-desorption behavior in 8 kinds of soils. The results indicated that there were significant differences in its adsorption with different kinds of soil. The lowest adsorption percentage was only 13.16% and the highest one was 87.75%. The amount of adsorption in the same kind of soil increased with the concentration of pesticide, but concentration had little influence on the adsorption within the certain range of concentrations. Multiple linear regression equation was developed for prediction of adsorption and determination of the relative importance of the soil parameters. It was significant that the key factors, soil pH and clay content were negatively and positively correlated with the adsorption respectively. The adsorption equilibrium of pirimicarb in soils could be well described by both the Freundlich isotherm and the Langmuir isotherm. The adsorbed 14 C-pirimicarb could disrobe from soil and its desorption was also influenced by soil properties described by multiple linear regression equation

  1. Toxicities of TNT and RDX to the Earthworm Eisenia fetida in Five Soils with Contrasting Characteristics

    Science.gov (United States)

    2013-05-01

    to prevent photolysis of the EM. Each soil treatment sample was then transferred into a fluorocarbon-coated, high-density polyethylene container and...and abiotic processes under anaerobic and aerobic conditions (Sunahara et al., 2001). A number of soil-borne bacteria and fungi are known to transform

  2. Climate-related changes of soil characteristics affect bacterial community composition and function of high altitude and latitude lakes.

    Science.gov (United States)

    Rofner, Carina; Peter, Hannes; Catalán, Núria; Drewes, Fabian; Sommaruga, Ruben; Pérez, María Teresa

    2017-06-01

    Lakes at high altitude and latitude are typically unproductive ecosystems where external factors outweigh the relative importance of in-lake processes, making them ideal sentinels of climate change. Climate change is inducing upward vegetation shifts at high altitude and latitude regions that translate into changes in the pools of soil organic matter. Upon mobilization, this allochthonous organic matter may rapidly alter the composition and function of lake bacterial communities. Here, we experimentally simulate this potential climate-change effect by exposing bacterioplankton of two lakes located above the treeline, one in the Alps and one in the subarctic region, to soil organic matter from below and above the treeline. Changes in bacterial community composition, diversity and function were followed for 72 h. In the subarctic lake, soil organic matter from below the treeline reduced bulk and taxon-specific phosphorus uptake, indicating that bacterial phosphorus limitation was alleviated compared to organic matter from above the treeline. These effects were less pronounced in the alpine lake, suggesting that soil properties (phosphorus and dissolved organic carbon availability) and water temperature further shaped the magnitude of response. The rapid bacterial succession observed in both lakes indicates that certain taxa directly benefited from soil sources. Accordingly, the substrate uptake profiles of initially rare bacteria (copiotrophs) indicated that they are one of the main actors cycling soil-derived carbon and phosphorus. Our work suggests that climate-induced changes in soil characteristics affect bacterioplankton community structure and function, and in turn, the cycling of carbon and phosphorus in high altitude and latitude aquatic ecosystems. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  3. Linking the Composition of Bacterial and Archaeal Communities to Characteristics of Soil and Flora Composition in the Atlantic Rainforest

    Science.gov (United States)

    Lima-Perim, Julia Elidia; Romagnoli, Emiliana Manesco; Dini-Andreote, Francisco; Durrer, Ademir; Dias, Armando Cavalcante Franco; Andreote, Fernando Dini

    2016-01-01

    The description of microbiomes as intrinsic fractions of any given ecosystem is an important issue, for instance, by linking their compositions and functions with other biotic and abiotic components of natural systems and hosts. Here we describe the archaeal and bacterial communities from soils of the Atlantic Rainforest in Brazil. Based on the comparison of three areas located along an altitudinal gradient—namely, Santa Virginia, Picinguaba and Restinga—we detected the most abundant groups of Bacteria (Acidobacteria and Proteobacteria) and Archaea (Thaumarchaeota, Crenarchaeota and Euryarchaeota). The particular composition of such communities in each of these areas was first evidenced by PCR-DGGE patterns [determined for Bacteria, Archaea and ammonia-oxidizing organisms—ammonia-oxidizing archaea (AOA) and bacteria (AOB)]. Moreover, sequence-based analysis provided a better resolution of communities, which indicated distinct frequencies of archaeal phyla and bacterial OTUs across areas. We found, as indicated by the Mantel test and multivariate analyses, a potential effect of the flora composition that outpaces the effect of soil characteristics (either physical and chemical) influencing the assembly of these microbial communities in soils. Our results indicate a collective role of the ecosystem underlying observed differences in microbial communities in these soils. Particularly, we posit that rainforest preservation also needs to take into account the maintenance of the soil biodiversity, as this is prompted to influence major processes that affect ecosystem functioning. PMID:26752633

  4. Linking the Composition of Bacterial and Archaeal Communities to Characteristics of Soil and Flora Composition in the Atlantic Rainforest.

    Science.gov (United States)

    Lima-Perim, Julia Elidia; Romagnoli, Emiliana Manesco; Dini-Andreote, Francisco; Durrer, Ademir; Dias, Armando Cavalcante Franco; Andreote, Fernando Dini

    2016-01-01

    The description of microbiomes as intrinsic fractions of any given ecosystem is an important issue, for instance, by linking their compositions and functions with other biotic and abiotic components of natural systems and hosts. Here we describe the archaeal and bacterial communities from soils of the Atlantic Rainforest in Brazil. Based on the comparison of three areas located along an altitudinal gradient-namely, Santa Virginia, Picinguaba and Restinga-we detected the most abundant groups of Bacteria (Acidobacteria and Proteobacteria) and Archaea (Thaumarchaeota, Crenarchaeota and Euryarchaeota). The particular composition of such communities in each of these areas was first evidenced by PCR-DGGE patterns [determined for Bacteria, Archaea and ammonia-oxidizing organisms-ammonia-oxidizing archaea (AOA) and bacteria (AOB)]. Moreover, sequence-based analysis provided a better resolution of communities, which indicated distinct frequencies of archaeal phyla and bacterial OTUs across areas. We found, as indicated by the Mantel test and multivariate analyses, a potential effect of the flora composition that outpaces the effect of soil characteristics (either physical and chemical) influencing the assembly of these microbial communities in soils. Our results indicate a collective role of the ecosystem underlying observed differences in microbial communities in these soils. Particularly, we posit that rainforest preservation also needs to take into account the maintenance of the soil biodiversity, as this is prompted to influence major processes that affect ecosystem functioning.

  5. Characteristics of soil in the areas adjacent to the ports of the Black Sea coast

    Directory of Open Access Journals (Sweden)

    M. S. Zambriborshch

    2016-09-01

    Ukrainian Scientific Research Institute of Transport Medicine of Ministry of Health of Ukraine, Odessa   Abstract As a result, over the past half-century technogenesis was "pollution of the biosphere", while accumulating medium has become the soil. If the environmental assessment of the urban area one of the most informative sites is studying the soil cover, accumulating dirt that come over an extended period. The soil is the most sensitive indicator of contamination in the landscape due to its material composition and physico-chemical parameters. On the territory of the Odessa region, there are 4 major seaports of Ukraine, which are created and improved specialized complexes for processing of iron-ore concentrate, fertilizer and sulfur. Samples of soil, which took away from the areas of ports Yuzhny, Chernomorsk andOdessa, were analyzed for metals and toxic elements. Keywords: soil pollution by port territory, toxic elements, heavy metals

  6. Characteristics of soils developed from alluvium and their potential for cocoa plant development in East Kolaka Regency, Southeast Sulawesi

    Directory of Open Access Journals (Sweden)

    E. Yatno

    2016-04-01

    Full Text Available Cocoa is one of plantation commodities that is quite important for the national economy. Land management for the development of this plant should pay attention to the characteristics of the soil. Three soil profiles formed from alluvium parent material in East Kolaka Regency were investigated to determine the mineralogical, physical, and chemical soil properties, as well as the potential of the land for the development of cocoa plant. The results showed that the mineral composition of the sand fraction was dominated by quartz, while the clay mineral fraction was composed of kaolinite, hydrate halloysite, interstratified of illite-vermiculite and smectite. The soils were characterized by poor drainage, low bulk density (0.78 to 0.95 g / cm3, moderate available water pores (10-15%, slow to fast permeability (0.10 to 14.05 cm / h, silty clay loam to silty clay texture of top soil, acidic soil reaction (pH 4.62 to 5.47, high organic C content (3.86 to 4.60% in the top soil and very low organic C content (<0.65% in the lower layer, moderate to high available P (14-38 mg / kg in the A horizon and very low to moderate (1-18 mg / kg in horizon B, moderate to high P2O5 (30-71 mg / 100g in horizon A and extremely low (1-11 mg / 100g in horizon B, very low to moderate K2O (3-28 mg / 100g , moderate to high exchangeable Ca (9.32 to 13.92 cmolc / kg in the upper and lower (0.70 to 5.04 cmolc / kg in the bottom layer, high exchangeable Mg content (2.83 to 8.95 cmolc / kg, high soil CEC (34.18 to 38.28 cmolc / kg in the upper layer and low to moderate (7.87 to 20.39 cmolc / kg in the bottom layer, moderate to high base saturation (44-68%, and very low to moderate Al saturation (0-17%. At the family level, the soil was classified as Fluvaquentic Endoaquepts (EK 1 profile and Typic Endoaquepts (EK 2 and EK 3 profiles, finely loamy, mix, acid, isohypertermik. The land was marginally suitable (S3 for cocoa plant with the contraints of impeded drainage, acid soil

  7. Characteristics of soil-to-plant transfer of elements relevant to radioactive waste in boreal forest

    International Nuclear Information System (INIS)

    Roivainen, P.

    2011-01-01

    The use of nuclear energy generates large amounts of different types of radioactive wastes that can be accidentally released into the environment. Soil-to-plant transfer is a key process for the dispersion of radionuclides in the biosphere and is usually described by a concentration ratio (CR) between plant and soil concentrations in radioecological models. Our knowledge of the soil-to-plant transfer of many radionuclides is currently limited and concerns mainly agricultural species and temperate environments. The validity of radioecological modelling is affected by the accuracy of the assumptions and parameters used to describe soil-to-plant transfer. This study investigated the soil-to-plant transfer of six elements (cobalt (Co), molybdenum (Mo), nickel (Ni), lead (Pb), uranium (U) and zinc (Zn)) relevant to radioactive waste at two boreal forest sites and assessed the factors affecting the CR values. May lily (Maianthemum bifolium), narrow buckler fern (Dryopteris carthusiana) and blueberry (Vaccinium myrtillus) were selected as representatives of understory species, while rowan (Sorbus aucuparia) and Norway spruce (Picea abies) represented trees in this study. All the elements studied were found to accumulate in plant roots, indicating that separate CR values for root and aboveground plant parts are needed. The between-species variation in CR values was not clearly higher than the within-species variation, suggesting that the use of generic CR values for understory species and trees is justified. No linear relationship was found between soil and plant concentrations for the elements studied and a non-linear equation was found to be the best for describing the dependence of CR values on soil concentration. Thus, the commonly used assumption of a linear relationship between plant and soil concentrations may lead to underestimation of plant root uptake at low soil concentrations. Plant nutrients potassium, magnesium, manganese, phosphorus and sulphur were found to

  8. Characteristics of PAHs in farmland soil and rainfall runoff in Tianjin, China.

    Science.gov (United States)

    Shi, Rongguang; Xu, Mengmeng; Liu, Aifeng; Tian, Yong; Zhao, Zongshan

    2017-10-14

    Rainfall runoff can remove certain amounts of pollutants from contaminated farmland soil and result in a decline in water quality. However, the leaching behaviors of polycyclic aromatic hydrocarbons (PAHs) with rainfall have been rarely reported due to wide variations in the soil compositions, rainfall conditions, and sources of soil PAHs in complex farmland ecosystems. In this paper, the levels, spatial distributions, and composition profiles of PAHs in 30 farmland soil samples and 49 rainfall-runoff samples from the Tianjin region in 2012 were studied to investigate their leaching behaviors caused by rainfall runoff. The contents of the Σ 16 PAHs ranged from 58.53 to 3137.90 μg/kg in the soil and 146.58 to 3636.59 μg/L in the runoff. In total, most of the soil sampling sites (23 of 30) were contaminated, and biomass and petroleum combustion were proposed as the main sources of the soil PAHs. Both the spatial distributions of the soil and the runoff PAHs show a decreasing trend moving away from the downtown, which suggested that the leaching behaviors of PAHs in a larger region during rainfall may be mainly affected by the compounds themselves. In addition, 4- and 5-ring PAHs are the dominant components in farmland soil and 3- and 4-ring PAHs dominate the runoff. Comparisons of the PAH pairs and enrichment ratios showed that acenaphthylene, acenaphthene, benzo[a]anthracene, chrysene, and fluoranthene were more easily transferred into water systems from soil than benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[ghi]perylene, and indeno[123-cd]pyrene, which indicated that PAHs with low molecular weight are preferentially dissolved due to their higher solubility compared to those with high molecular weight.

  9. Characteristics of soil-to-plant transfer of elements relevant to radioactive waste in boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Roivainen, P.

    2011-07-01

    The use of nuclear energy generates large amounts of different types of radioactive wastes that can be accidentally released into the environment. Soil-to-plant transfer is a key process for the dispersion of radionuclides in the biosphere and is usually described by a concentration ratio (CR) between plant and soil concentrations in radioecological models. Our knowledge of the soil-to-plant transfer of many radionuclides is currently limited and concerns mainly agricultural species and temperate environments. The validity of radioecological modelling is affected by the accuracy of the assumptions and parameters used to describe soil-to-plant transfer. This study investigated the soil-to-plant transfer of six elements (cobalt (Co), molybdenum (Mo), nickel (Ni), lead (Pb), uranium (U) and zinc (Zn)) relevant to radioactive waste at two boreal forest sites and assessed the factors affecting the CR values. May lily (Maianthemum bifolium), narrow buckler fern (Dryopteris carthusiana) and blueberry (Vaccinium myrtillus) were selected as representatives of understory species, while rowan (Sorbus aucuparia) and Norway spruce (Picea abies) represented trees in this study. All the elements studied were found to accumulate in plant roots, indicating that separate CR values for root and aboveground plant parts are needed. The between-species variation in CR values was not clearly higher than the within-species variation, suggesting that the use of generic CR values for understory species and trees is justified. No linear relationship was found between soil and plant concentrations for the elements studied and a non-linear equation was found to be the best for describing the dependence of CR values on soil concentration. Thus, the commonly used assumption of a linear relationship between plant and soil concentrations may lead to underestimation of plant root uptake at low soil concentrations. Plant nutrients potassium, magnesium, manganese, phosphorus and sulphur were found to

  10. Linking tephrochronology and soil characteristics in the Sila and Nebrodi Mountains, Italy

    Science.gov (United States)

    Raab, Gerald; Halpern, Dieter; Scarciglia, Fabio; Raimondi, Salvatore; de Castro Portes, Raquel; Norton, Kevin; Egli, Markus

    2017-04-01

    Mediterranean soils are an important key to understanding past volcanic events and landscape evolution. The influence and timing of Quaternary volcanic events on soils, however, remains still poorly understood in southern Italy. We used a multi-method approach to explore the origin and age of volcanic deposits (soils) in Sicily and Calabria. By comparing the geochemical signature of the soils with the chemical fingerprint of magmatic effusive rocks in southern Italy, we tried to identify the source material. It seems that the investigated soils on the Nebrodi (Sicily) and Sila (Calabria) mountains were both influenced by volcanic deposits having a high-K calc-alkaline series volcanic background. The Aeolian islands (Lipari and Vulcano) are the most likely sources of origin. Due to weathering processes of the volcanic sediments and the partial mixing with the underlying non-volcanic parent material, a direct relation with the potential source areas was not always straightforward. Immobile elements and their corresponding ratios (e.g. the Nb/Y vs Zr/Ti plot) or trace elements (Co, Th) and rare earth elements gave better hints of the origin of the deposits. Radiocarbon dating of the stable soil organic fraction (H2O2 resistant) indicated a minimum age of 8 - 10 ka of the Nebrodi and Sila soils. The chemical proxy of alteration (CPA) and weathering index according to Parker (WIP) were tested as proxies for an age estimate of the volcanic deposits and duration of soil formation. The soils and, subsequently, landscape are characterized by multiple volcanic depositional phases for the last 30 - 50 ka in the Sila mountains and about 70 ka in the Nebrodi mountains. We show that a multi-method approach (numerical dating, relative dating using weathering indices and the forensic procedure) enabled the identification of potential source areas, gave tentative age estimates of the ash deposits, duration of soil formation and, therefore, improved our understanding of volcanic

  11. [Characteristics of water and heat fluxes and its footprint climatology on farmland in low hilly region of red soil].

    Science.gov (United States)

    Li, Yang; Jing, Yuan Shu; Qin, Ben Ben

    2017-01-01

    The analysis of the characteristics and footprint climatology of farmland water and heat fluxes has great significance to strengthen regional climate resource management and improve the hydrothermal resource utilization in the region of red soil. Based on quality controlled data from large aperture scintillometer and automatic meteorological station in hilly region of red soil, this paper analyzed in detail the characteristics of farmland water and heat fluxes at different temporal scales and the corresponding source area distribution of flux measurement in the non-rainy season and crop growth period in hilly region of red soil. The results showed that the diurnal variation of water and heat fluxes showed a unimodal trend, but compared with the sunny day, the diurnal variation curves fluctuated more complicatedly on cloudy day. In the whole, either ten-day periods or month scale, the water and heat fluxes were greater in August than in September, while the net radiation flux was more distributed to latent heat exchange. The proportion of net radiation to latent heat flux decreased in September compared to August, but the sensible heat flux was vice versa. With combined effects of weather conditions (particularly wind), stability, and surface condition, the source areas of flux measurement at different temporal scales showed different distribution characteristics. Combined with the underlying surface crops, the source areas at different temporal scales also had different contribution sources.

  12. Investigation of structure and characteristics of soil for foundation design of gamma irradiators capacity 2 MCi

    International Nuclear Information System (INIS)

    Kukuh Prayogo; Hasriyasti Saptowati

    2016-01-01

    Soil investigation conducted before the work of irradiator building structural foundation design is initiated. Intake of sample was set at some point drill at Irradiator facility site to the disturbed soil layer or not disturbed. From the results of this soil investigation will be selected as alternative / types, the depth and dimensions of the foundation of the most economical but still safe. Soil investigation method used was Deep Boring, undisturbed and disturbed sampling, SPT ( Standard Penetration Test ), CPT ( Cone Penetration Test / Sondir ). Testing conducted in the field and in the laboratory of soil mechanics to determine the mechanical properties, soil layer thickness and other physical properties for calculation of the bearing capacity of the foundation. The results of the soil investigation at the three-point drill showed the average depth of the bedrock -19.33 m and adhesion 3163.88 kg / cm’. Test boring at point BH1 found the depth of the bedrock -19.33 m and adhesion 3163.88 kg / cm’. Test boring at point BH1 found the bedrock at a depth of 32 m with a maximum SPT value 16. from the data can be determined the appropriate type of foundation is bored pile. The foundation is the upper structure support which can lead to a reduction / settlement if its bearing capacity is not able to withstand the load on it. (author)

  13. Structural characteristic of the Eastern Plains soils of Colombia, submitted to several handling systems

    International Nuclear Information System (INIS)

    Amezquita, E; Saenz J I; Thomas, R J; Vera, R R; Hoyos, P; Molina, D L; Chavez, L F

    1997-01-01

    Soil productivity and sustainability depends on the building and/or conservation of an adequate and dynamic equilibrium between physical, chemical and biological properties and processes in the volume of soil explored by roots, so that there is no constraints in the availability of water and nutrients to plants. Soil structure is one of the soil properties that are more vulnerable to the intensity of use in tropical soils. Aggregate size distribution, aggregate stability and pore size distribution are some of the attributes that are usually used to describe structural changes and can act as indicators of structural sustainability. This paper presents and discusses the behavior of these attributes under different soil management treatments (native savanna, Brachiaria alone; Brachiaria + legume and monocrop) in the Colombian Eastern plains soil classified as Typic haplustox Kaolinitic iso-hyperthermic. These results showed highly statistical significant differences between treatments in the parameters studied and allow concluding that aggregate size distribution and stability could be indicators of susceptibility to degradation

  14. Effects of runoff harvesting through semi-circular bund on some soil characteristics

    Directory of Open Access Journals (Sweden)

    M. Heshmati

    2018-04-01

    Full Text Available In this study, to investigate the effects of runoff harvesting on soil properties in the semiarid forest, runoff harvesting through semi-circular bund was considered as a method to conserve soil and thereby combat tree mortality. In order to evaluate this hypothesis, runoff was harvested through the semi-circular bund affecting soil quality and moisture storage. The selected forest site is located in Kalehzard, Kermanshah, in Zagros region of western Iran. The experiment was a randomized complete block design with four treatment plots: bund with protection, protection treatment, bund without protection and control treatment. The results showed that the mean values of soil organic carbon in the bund with protection, protection treatment, bund without protection and  control treatment were 2.35, 2.40, 1.90, and 1.80%, respectively, indicating no significant difference among them in the first year, while there were significant (p> 0.05 increases in the bund with protection and protection treatment after three years. Furthermore, coarse and very coarse soil aggregates increased significantly in the bund with protection treatment. This treatment also attributed to significant reduction in soil bulk density from 1.46 (in the first year to 1.32 (in the third year, which enhanced soil moisture content. Finally it was found that bunds with protection significantly curtail dieback and adverse re-growing of stands due to the coupled effects of bund building and protection to curtail forest mortality in the semi-arid regions.

  15. Soil, Groundwater, Surface Water, and Sediments of Kennedy Space Center, Florida: Background Chemical and Physical Characteristics

    Science.gov (United States)

    Shmalzer, Paul A.; Hensley, Melissa A.; Mota, Mario; Hall, Carlton R.; Dunlevy, Colleen A.

    2000-01-01

    This study documented background chemical composition of soils, groundwater, surface; water, and sediments of Kennedy Space Center. Two hundred soil samples were collected, 20 each in 10 soil classes. Fifty-one groundwater wells were installed in 4 subaquifers of the Surficial Aquifer and sampled; there were 24 shallow, 16 intermediate, and 11 deep wells. Forty surface water and sediment samples were collected in major watershed basins. All samples were away from sites of known contamination. Samples were analyzed for organochlorine pesticides, aroclors, chlorinated herbicides, polycyclic aromatic hydrocarbons (PAH), total metals, and other parameters. All aroclors (6) were below detection in all media. Some organochlorine pesticides were detected at very low frequencies in soil, sediment, and surface water. Chlorinated herbicides were detected at very low frequencies in soil and sediments. PAH occurred in low frequencies in soiL, shallow groundwater, surface water, and sediments. Concentrations of some metals differed among soil classes, with subaquifers and depths, and among watershed basins for surface water but not sediments. Most of the variation in metal concentrations was natural, but agriculture had increased Cr, Cu, Mn, and Zn.

  16. Physicochemical and Microbiological Characteristics of Tundra Soils on the Rybachii Peninsula

    Science.gov (United States)

    Evdokimova, G. A.; Mozgova, N. P.; Myazin, V. A.

    2018-01-01

    The Rybachii Peninsula is composed of Proterozoic sedimentary rocks and differs sharply from the rest of the Kola Peninsula in its geological structure, topographic forms, and parent rocks. It is dominated by Al-Fe-humus soils formed on moraines with an admixture of local rock fragments, including slates. Organic horizons of tundra soils in the peninsula are less acid than those on granitoids of adjacent mainland of the Kola Peninsula. The content of exchangeable calcium in the organic horizons varies from 17.4 to 68.0 cmolc/kg, and the content of water-soluble carbon reaches 400 mg/100 g amounting to 1-2% of the total soil organic matter content. The total number of bacteria in the organic horizons of tundra soils varies from 3.5 × 109 to 4.8 × 109 cells/g; and bacterial biomass varies from 0.14 to 0.19 mg/g. The length of fungal mycelium and its biomass in the organic horizons are significant (>1000 m/g soil). The biomass of fungal mycelium in the organic horizons exceeds the bacterial biomass by seven times in podzols (Albic Podzols) and by ten times in podbur (Entic Podzol), dry-peat soil (Folic Histosol), and low-moor peat soil (Sapric Histosol).

  17. Improvement of Characteristics of Clayey Soil Mixed with Randomly Distributed Natural Fibers

    Science.gov (United States)

    Maity, J.; Chattopadhyay, B. C.; Mukherjee, S. P.

    2017-11-01

    In subgrade construction for flexible road pavement, properties of clayey soils available locally can be improved by providing randomly distributed fibers in the soil. The fibers added in subgrade constructions are expected to provide better compact interlocking system between the fiber and the soil grain, greater resistance to deformation and quicker dissipation of pore water pressure, thus helping consolidation and strengthening. Many natural fibers like jute, coir, sabai grass etc. which are economical and eco-friendly, are grown in abundance in India. If suitable they can be used as additive material in the subgrade soil to result in increase in strength and decrease in deformability. Such application will also reduce the cost of construction of roads, by providing lesser thickness of pavement layer. In this paper, the efficacy of using natural jute, coir or sabai grass fibers with locally available clayey soil has been studied. A series of Standard Proctor test, Soaked and Unsoaked California Bearing Ratio (CBR) test, and Unconfined Compressive Strength test were done on locally available clayey soil mixed with different types of natural fiber for various length and proportion to study the improvement of strength properties of fiber-soil composites placed at optimum moisture content. From the test results, it was observed that there was a substantial increase in CBR value for the clayey soil when mixed with increasing percentage of all three types of randomly distributed natural fibers up to 2% of the dry weight of soil. The CBR attains maximum value when the length for all types of fibers mixed with the clay taken in this study, attains a value of 10 mm.

  18. Rice growing farmers efficiency measurement using a slack based interval DEA model with undesirable outputs

    Science.gov (United States)

    Khan, Sahubar Ali Mohd. Nadhar; Ramli, Razamin; Baten, M. D. Azizul

    2017-11-01

    In recent years eco-efficiency which considers the effect of production process on environment in determining the efficiency of firms have gained traction and a lot of attention. Rice farming is one of such production processes which typically produces two types of outputs which are economic desirable as well as environmentally undesirable. In efficiency analysis, these undesirable outputs cannot be ignored and need to be included in the model to obtain the actual estimation of firm's efficiency. There are numerous approaches that have been used in data envelopment analysis (DEA) literature to account for undesirable outputs of which directional distance function (DDF) approach is the most widely used as it allows for simultaneous increase in desirable outputs and reduction of undesirable outputs. Additionally, slack based DDF DEA approaches considers the output shortfalls and input excess in determining efficiency. In situations when data uncertainty is present, the deterministic DEA model is not suitable to be used as the effects of uncertain data will not be considered. In this case, it has been found that interval data approach is suitable to account for data uncertainty as it is much simpler to model and need less information regarding the underlying data distribution and membership function. The proposed model uses an enhanced DEA model which is based on DDF approach and incorporates slack based measure to determine efficiency in the presence of undesirable factors and data uncertainty. Interval data approach was used to estimate the values of inputs, undesirable outputs and desirable outputs. Two separate slack based interval DEA models were constructed for optimistic and pessimistic scenarios. The developed model was used to determine rice farmers efficiency from Kepala Batas, Kedah. The obtained results were later compared to the results obtained using a deterministic DDF DEA model. The study found that 15 out of 30 farmers are efficient in all cases. It

  19. Concentration and spectroscopic characteristics of DOM in surface runoff and fracture flow in a cropland plot of a loamy soil.

    Science.gov (United States)

    Xian, Qingsong; Li, Penghui; Liu, Chen; Cui, Junfang; Guan, Zhuo; Tang, Xiangyu

    2018-05-01

    Being crucial for predicting the impact of source inputs on a watershed in rainfall events, an understanding of the dynamics and characteristics of dissolved organic matter (DOM) export from the soil under particular land use types, particularly those associated with underground flows is still largely lacking. A field study was carried out using a 1500m 2 slope farmland plot in the hilly area of Sichuan Basin, Southwest China. The discharge of surface runoff and fracture flow was recorded and samples were collected in four representative rainfall events. For DOM characterization, concentration of dissolved organic carbon (DOC) and absorbance/excitation-emission matrix (EEM) fluorescence were analyzed. Soil water potential was also determined using tensiometers for understanding the runoff generation mechanisms. The DOC values for both surface and fracture flow showed significant responses to rainfall, with hydrological path being the primary factor in determining DOM dynamics. EEM-PARAFAC analyses indicated that the soil DOM mainly consisted of two terrestrial humic-like components with peaks located at Ex/Em 270(380)/480nm (C1) and 250(320)/410nm (C2), respectively. Concentrations of these components also responded strongly to rainfall, fluctuating in good agreement with the corresponding DOCs. Although there was no change in the presence of the components themselves, their relative distributions varied during precipitation, with the C1/C2 ratio increasing with the proportion of soil pre-event water. As the dynamic changes of soil DOM characteristics can be successfully captured using spectroscopic techniques, they may serve as a tracer for understanding hydrological paths based on their potential correlations with water source differences during rains. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Cadmium Sorption Characteristics of Soil Amendments and its Relationship with the Cadmium Uptake by Hyperaccumulator and Normal Plants in Amended Soils

    Science.gov (United States)

    Sun, Yan; Wu, Qi-Tang; Lee, Charles C.C.; Li, Baoqin; Long, Xinxian

    2013-01-01

    In order to select appropriate amendments for cropping hyperaccumulator or normal plants on contaminated soils and establish the relationship between Cd sorption characteristics of soil amendments and their capacity to reduce Cd uptake by plants, batch sorption experiments with 11 different clay minerals and organic materials and a pot experiment with the same amendments were carried out. The pot experiment was conducted with Sedum alfredii and maize (Zea mays) in a co-cropping system. The results showed that the highest sorption amount was by montmorillonite at 40.82 mg/g, while mica was the lowest at only 1.83 mg/g. There was a significant negative correlation between the n value of Freundlich equation and Cd uptake by plants, and between the logarithm of the stability constant K of the Langmuir equation and plant uptake. Humic acids (HAs) and mushroom manure increased Cd uptake by S. alfredii, but not maize, thus they are suitable as soil amendments for the co-cropping S. alfredii and maize. The stability constant K in these cases was 0.14–0.16 L/mg and n values were 1.51–2.19. The alkaline zeolite and mica had the best fixation abilities and significantly decreased Cd uptake by the both plants, with K ≥ 1.49 L/mg and n ≥ 3.59. PMID:24912231

  1. Computer aided modeling of soil mix designs to predict characteristics and properties of stabilized road bases.

    Science.gov (United States)

    2009-07-01

    "Considerable data exists for soils that were tested and documented, both for native properties and : properties with pozzolan stabilization. While the data exists there was no database for the Nebraska : Department of Roads to retrieve this data for...

  2. Heavy metals contamination characteristics in soil of different mining activity zones

    Institute of Scientific and Technical Information of China (English)

    LIAO Guo-li; LIAO Da-xue; LI Quan-ming

    2008-01-01

    Depending upon the polluted features of various mining activities in a typical nonferrous metal mine, the contaminated soil area was divided into four zones which were polluted by tailings, mine drainage, dust deposition in wind and spreading minerals during vehicle transportation, respectively. In each zone, soil samples were collected. Total 28 soil samples were dug and analyzed by ICP-AES and other relevant methods. The results indicate that the average contents of Zn, Pb, Cd, Cu and As in soils are 508.6, 384.8, 7.53, 356 and 44.6 mg/kg, respectively. But the contents of heavy metals in different zone have distinct differences. The proportion of oxidizing association with organic substance is small. Difference of the association of heavy metals is small in different polluted zones.

  3. [Distribution characteristics of soil organic carbon under different forest restoration modes on opencast coal mine dump].

    Science.gov (United States)

    Wen, Yue-rong; Dang, Ting-hui; Tang, Jun; Li, Jun-chao

    2016-01-01

    The content and storage of soil organic carbon (SOC) were compared in six wood restoration modes and adjacent abandoned land on opencast coal mine dump, and the mechanisms behind the differences and their influencing factors were analyzed. Results showed that the contents of SOC in six wood lands were significantly higher (23.8%-53.2%) than that of abandoned land (1.92 g · kg⁻¹) at 0-10 cm soil depth, the index were significantly higher (5.8%-70.4%) at 10-20 cm soil depth than the abandoned land (1.39 g · kg⁻¹), and then the difference of the contents of SOC in the deep soil (20-100 cm) were not significant. The contents of SOC decreased with increase of soil depth, but the decreasing magnitude of the topsoil (0-20 cm) was higher than that of the deep soil (20-100 cm). Compared with the deep soil, the topsoil significant higer storage of SOC in different woods, the SOC storage decreased with the soil depth. Along the 0-100 cm soil layer, the storage of SOC in six wood lands higher (18.1%-42.4%) than that of the abandoned land (17.52 t · hm⁻²). The SOC storage of Amorpha fruticosa land (24.95 t · hm⁻²) was obviously higher than that in the other wood lands. The SOC storage in the shrub lands was 12.4% higher than that of the arbor woods. There were significantly positive correlations among forest litter, fine root biomass, soil water content and SOC on the dump. Consequently, different plantation restorations significantly improved the SOC level on the dump in 0-100 cm soil, especially the topsoil. But there was still a big gap about SOC level between the wood restoration lands and the original landform. To improve the SOC on opencast coal mine dump, A. fruticosa could be selected as the main wood vegetation.

  4. Toxicities of TNT and RDX to Terrestrial Plants in Five Soils with Contrasting Characteristics

    Science.gov (United States)

    2013-07-01

    lettuce ( Lactuca sativa (L.)) and barley (Hordeum vulgare (L.)), respectively, at analytically determined soil concentrations up to and including 3320... sativa L.), Japanese millet (J. millet; Echinochloa crus-galli L. [Beauv.]), and perennial ryegrass (Lolium perenne L.) in five natural soils that...of the test. The test species in these studies were Medicago sativa (L.) var. Canada no. 1 (alfalfa), Echinochloa crus-galli (L.) P. Beauv. var

  5. Dynamic Characteristics of Saturated Silty Soil Ground Treated by Stone Column Composite Foundation

    Directory of Open Access Journals (Sweden)

    Yongxiang Zhan

    2014-01-01

    Full Text Available A shaking table model test was carried out to develop an understanding of the performance improvement of saturated silty soil ground using stone column composite foundation as reinforcement. It is found that at less than 0.161 g loading acceleration, soil between piles has not yet been liquefied, the response acceleration scarcely enlarges, and the shear displacement almost does not appear in silty soil. At 0.252 g loading acceleration, as a result of liquefaction of soil between piles, the response acceleration increases rapidly and reaches its peak, and the shear displacement of silty soil increases significantly. At 0.325 g loading acceleration, the integral rigidity of foundation decreases greatly, which reduces its capability of vibration transmission and result in the response acceleration amplification coefficient is less than that at the former loading acceleration, but the shear displacement of silty soil further increases. The stone column composite foundation can greatly reduce both the shear displacement and the settlement of ground compared with untreated foundation. Under the condition of 7-degree seismic fortification, the design meets seismic resistance requirements.

  6. Main Feedbacks Between Oxidizable Carbon Content and Selected Soil Characteristic of Chernozem

    Directory of Open Access Journals (Sweden)

    Vítězslav Vlček

    2015-01-01

    Full Text Available Anthropogenic pressure on our agricultural land is culminating last hundred years, especially after 1948, not only because of only massive application of mineral fertilizers but also because of land consolidation and subsequent accelerated water and wind erosion and use of mechanization. This article focuses on main demonstration of feedbacks especially with oxidizable carbon which can negatively affect soil as a homeostatic system. Oxidizable carbon, as the basis of soil humus, is crucial for maintaining soil fertility and for its resistance to further degradation factors affecting the soil. 35 chernozem sites were selected in South Moravia region. These soils had been probably used for their fertility and availability before the turn of the AD. Unfortunately, their long-term agricultural use has resulted in adverse impact on their quality.This way, shallower forms of erosion were often formed. These erosion forms are omitted for the purposes of our study there. For this work, locations with preserved chernic (i.e. diagnostic horizon, as the horizon with less anthropogenic influence, were selected. Relations between a grain size (clay, silt and sand particles, exchange reaction in soil, sorption capacity, oxidizable carbon content, total nitrogen content and content of selected potentially acceptable elements (Ca, Mg were monitored.

  7. Spectroscopic Characteristics of Dissolved Organic Matter in Afforestation Forest Soil of Miyun District, Beijing

    Science.gov (United States)

    Zhao, Chen; Shi, Zong-Hai; Zhong, Jun; Liu, Jian-Guo; Li, Jun-Qing

    2016-01-01

    In this study, soil samples collected from different plain afforestation time (1 year, 4 years, 10 years, 15 years, and 20 years) in Miyun were characterized, including total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP), available K (K+), microbial biomass carbon (MBC), and dissolved organic carbon (DOC). The DOM in the soil samples with different afforestation time was further characterized via DOC, UV-Visible spectroscopy, excitation-emission matrix (EEM) fluorescence spectroscopy, and 1H NMR spectroscopy. The results suggested that the texture of soil sample was sandy. The extracted DOM from soil consisted mainly of aliphatic chains and only a minor aromatic component. It can be included that afforestation can improve the soil quality to some extent, which can be partly reflected from the indexes like TOC, TN, TP, K+, MBC, and DOC. And the characterization of DOM implied that UV humic-like substances were the major fluorophores components in the DOM of the soil samples, which consisted of aliphatic chains and aromatic components with carbonyl, carboxyl, and hydroxyl groups. PMID:27433371

  8. Influence of agrochemical characteristics of 85Sr and 137Cs in soil samples from the localities around nuclear power plants in Slovak Republic

    International Nuclear Information System (INIS)

    Cipakova, A.; Mitro, A.

    1997-01-01

    Sorption of radiostrontium and radiocesium, two biologically available radionuclides in soils was studied. Experiments were carried out on the soil samples from the localities around nuclear power plants. Adsorption processes are the function of many factors. Multi-para-metrical regression analysis was used for studying of the influence of agrochemical characteristics on sorption of 85 Sr and 137 Cs in observed soil types. (authors)

  9. Experimental investigation of undesired stable equilibria in pumpkin shape super-pressure balloon designs

    Science.gov (United States)

    Schur, W. W.

    2004-01-01

    Excess in skin material of a pneumatic envelope beyond what is required for minimum enclosure of a gas bubble is a necessary but by no means sufficient condition for the existence of multiple equilibrium configurations for that pneumatic envelope. The very design of structurally efficient super-pressure balloons of the pumpkin shape type requires such excess. Undesired stable equilibria in pumpkin shape balloons have been observed on experimental pumpkin shape balloons. These configurations contain regions with stress levels far higher than those predicted for the cyclically symmetric design configuration under maximum pressurization. Successful designs of pumpkin shape super-pressure balloons do not allow such undesired stable equilibria under full pressurization. This work documents efforts made so far and describes efforts still underway by the National Aeronautics and Space Administration's Balloon Program Office to arrive on guidance on the design of pumpkin shape super-pressure balloons that guarantee full and proper deployment.

  10. Data Envelopment Analysis with Fixed Inputs, Undesirable Outputs and Negative Data

    Directory of Open Access Journals (Sweden)

    F. Seyed Esmaeili

    2017-03-01

    Full Text Available In Data Envelopment Analysis (DEA, different models have been measured to evaluate the performance of decision making units with multiple inputs and outputs. Revised model of Slack-based measures known as MBSM of collective models family has been introduced by Sharp et al. Slack-based measure has been introduced by Ton. In this study, a model is proposed that is able to estimate the efficiency when a number of outputs of decision making units are undesirable, inputs are fixed and some of outputs and inputs are negative. So that, level of undesirable output is reduced at the constant level of inputs in the evaluation unit and by conserving the efficiency.

  11. A Test Study to Display Buried Anti-Tank Landmines with GPR and Research Soil Characteristics with CRS

    Science.gov (United States)

    Kadioglu, Selma; Kagan Kadioglu, Yusuf

    2014-05-01

    An anti-tank mine (AT mine) is a type of land mine designed to damage or destroy vehicles including tanks and armored fighting vehicles. Anti-tank mines typically have a much larger explosive charge, and a fuze designed only to be triggered by vehicles or, in some cases, tampering with the mine. There are a lot of AT mine types. In our test study, MK4 and MK5 AT mine types has been used. The Mk 5 was a cylindrical metal cased U.K. anti-tank blast mine that entered service in 1943, during the Second World War. General Specifications of them are 203 mm diameter, 127 mm height, 4.4-5.7 kg weight, 2.05-3.75 kg of TNT explosive content and 350 lbs operating pressure respectively. The aims of the test study were to image anti-tank landmine with GPR method and to analyse the soil characteristics before the mines made explode and after made be exploded and determine changing of the soil characteristics. We realized data measurement on the real 6 unexploded anti-tank landmine buried approximately 15 cm in depth. The mines spaced 3 m were buried in two lines. Space between lines was 1.5 m. We gathered data on the profiles, approximately 7 m, with a Ramac CUII system and 800 MHz shielded antenna. We collected soil samples on the mines, near and around the mines, on the area in village. We collected soil samples before exploding and after exploding mines. We imaged anti-tank landmines on the depth slices of the GPR data and in their interactive transparent 3D subsets successfully. We used polarized microscope and confocal Raman spectroscopy (CRS) to identify soil characteristic before and after exploitation. The results presented that GPR method and its 3D imaging were successful to determine AT mines, and there was no important changing on mineralogical and petrographical characterization of the soil before and after exploding processing. This project has been supported by Ankara University under grant no 11B6055002. The study is a contribution to the EU funded COST action TU

  12. Undesirable Behaviors Elementary School Classroom Teachers Encounter in the Classroom and Their Reasons

    OpenAIRE

    E.G. Balcik; S. Gulec

    2011-01-01

    The present study aims to determine how often elementary school teachers encounter undesirable behaviors in the classroom and what their thoughts regarding possible reasons of these behaviors are. The teachers’ opininon about the prevalence of these behaviors and their possible reasons were evaluated according to gender, marital status, level of class being taught, size of class being taught and it was tried to be determined if there were significant differences between variables. The measure...

  13. DEREGULATION, FINANCIAL CRISIS, AND BANK EFFICIENCY IN TAIWAN: AN ESTIMATION OF UNDESIRABLE OUTPUTS

    OpenAIRE

    Liao, Chang-Sheng

    2018-01-01

    Purpose- This study investigates the undesirable impacts of outputson bank efficiency and contributes to the literature by assessing howregulation policies and other events impact bank efficiency in Taiwan inregards to deregulation, financial crisis, and financial reform from 1993 to2011. Methodology- In order to effectively deal with both undesirableand desirable outputs, this study follows Seiford and Zhu (2002), who recommendusing the standard data envelopment analysis model to measure per...

  14. The Influences of Soil Characteristics on Nest-Site Selection in Painted Turtles (Chrysemys picta)

    Science.gov (United States)

    Page, R.

    2017-12-01

    A variety of animals dig nests and lay their eggs in soil, leaving them to incubate and hatch without assistance from the parents. Nesting habitat is important for these organisms many of which exhibit temperature dependent sex determination (TSD) whereby the incubation temperature determines the sex of each hatchling. However, suitable nesting habitat may be limited due to anthropogenic activities and global temperature increases. Soil thermal properties are critical to these organisms and are positively correlated with water retention and soil carbon; carbon-rich soils result in higher incubation temperatures. We investigated nest-site selection in painted turtles (Chrysemys picta) inhabiting an anthropogenic pond in south central Pennsylvania. We surveyed for turtle nests and documented location, depth, width, temperature, canopy coverage, clutch size, and hatch success for a total of 31 turtle nests. To address the influence of soil carbon and particle size on nest selection, we analyzed samples collected from: 1) actual nests that were depredated, 2) false nests, incomplete nests aborted during digging prior to nest completion, and 3) randomized locations. Soil samples were separated into coarse, medium, and fine grain size fractions through a stack of sieves. Samples were combusted in a total carbon analyzer to measure weight percent organic carbon. We found that anthropogenic activity at this site has created homogenous, sandy, compacted soils at the uppermost layer that may limit females' access to appropriate nesting habitat. Turtle nesting activity was limited to a linear region north of the pond and was constrained by an impassable rail line. Relative to other studies, turtle nests were notably shallow (5.8±0.9 cm) and placed close to the pond. Compared to false nests and random locations, turtle-selected sites averaged greater coarse grains (35% compared to 20.24 and 20.57%) and less fine grains (47% compared to 59 and 59, respectively). Despite

  15. [Effect of Water Extracts from Rhizosphere Soil of Cultivated Astragalus membranaceus var. mongholicus on It's Seed Germination and Physiological Characteristics].

    Science.gov (United States)

    Lang, Duo-yong; Fu, Xue-yan; Rong, Jia-wang; Zhang, Xin-hui

    2015-01-01

    To explore the relationship between continuous cropping obstacle and autotoxicity of Astragalus membranaceus var. mongholicus. Distilled water(CK), water extracts of rhizosphere soil(50, 100, 200 and 400 mg/mL) were applied to test their effect on early growth and physiological characteristics of Astragalus membranaceus var. mongholicus. The water extracts from rhizospher soil of cultivated Astragalus membranaceus var. mongholicus significantly increased seedling emergence rate, root length and vigor index of Astragalus membranaceus var. mongholicus seedling when at the concentration of 100 mg/mL or below, however,there was no significant effect at 200 mg/mL or higher. The water extracts from rhizosphere soil of cultivated Astragalus membranaceus var. mongholicus significantly reduced the SOD activity in Astragalus membranaceus var. mongholicus seedling at 400 mg/mL and POD activity at 200 mg/mL and 400 mg/mL,while significantly increased the MDA content. Water extracts from Astragalus membranaceus var. mongholicus rhizosphere soil significantly affected Astragalus membranaceus var. mongholicus germination and seedling growth in a concentration-dependent manner, generally, low concentrations increased the SOD and POD activity which improved seed germination and seedling growth, while high concentrations caused cell membrane damage of the seedling.

  16. Vegetation succession and soil infiltration characteristics under different aged refuse dumps at the Heidaigou opencast coal mine

    Directory of Open Access Journals (Sweden)

    Huang Lei

    2015-07-01

    Full Text Available Vegetation succession and soil infiltration characteristics under five different restoration models of refuse dumps including different-aged revegetated sites (1995, 1998, 2003 and 2005 in the northern, eastern and western open-pit coal mine dump and a reference site with native vegetation, which had never been damaged by coal mining activities on the Heidaigou Open Cut Coal Mine were studied. Changes in the plant species, soil properties and infiltration rates were evaluated at the different refuse dumps. The results indicated that the number of herbaceous species, plant cover, biomass, fine particles, and total N, P and SOM increased significantly with increasing site age. However, the number of shrub species decreased since revegetation, its cover increased from 17% to 41% initially and subsequently decreased to the present level of 4%. The natural vegetation community and the northern refuse dump had the highest cumulative infiltration rates of 3.96 and 2.89 cm s−1 in contrast to the eastern and western refuse dumps and the abandoned land, where the highest cumulative infiltration rates were 1.26, 1.04 and 0.88 cm s−1, respectively. A multiple linear regression analysis indicated that the infiltration rate was primarily determined by the silt percentage, SOM, plant coverage and the variation in soil bulk density. Our results provide new ideas regarding future soil erosion controls and sustainable development at open-pit coal mine refuse dumps.

  17. Effect of untreated and treated sewage wastewater by chloride or irradiation on growth of some plants and soil characteristics

    International Nuclear Information System (INIS)

    Takriti, S.; Khalifa, K.

    2003-12-01

    Pot experiments were conducted at Deir-Alhajar research station, about 40 km. south east of Damascus during 2000. Corn. eggplant and parsley were planted in plastic pots capacity 8 kg soil to study the effect of irrigation of corn, eggplant and parsley by untreated and treated sewage water (by Chloride or Irradiation) on growth and effect of irrigation on soil characteristics and accumulation of some heavy metals such as Pb, Cr, Co, Hg, and Zn, Cu in plant and soil which irrigated with treated and untreated sewage water compared with irrigated with fresh water (well water). The results showed that no negative effect was observed for untreated and treated sewage water on growth of plants (corn, eggplant and parsley). Also, no significant effect due to irrigation with treated and untreated sewage water was observed in accumulation of some trace elopements (heavy metals) such as Cr, Pb, Hg, and Zn and Cu in plants irrigated with treated and untreated sewage water to critical toxic point. This point needed more studies and longer period to confirm these results before using by farmers on large scale. Irradiation of sewage water had a positive effect on reducing the transfer of some heavy toxic metals such as Pb and Cr form waste water to soil. (author)

  18. Development of Data Envelopment Analysis for the Performance Evaluation of Green Supply Chain with Undesirable Outputs

    Directory of Open Access Journals (Sweden)

    Alireza Alinezhad

    2016-08-01

    Full Text Available A fundamental problem is the use of DEA in multistep or multilevel processes such as supply chain, lack of attention to processes’ internal communications in a way that the recent studies on DEA in the context of serial processes have focused on closed systems that the outputs of one level become the inputs of the next level and none of the inputs enter the mediator process. The present study aimed to examine the general dimensions of an open multilevel process. Here, some of the data such as inputs and outputs are supposed to leave the system while other outputs turn into the inputs of the next level. The new inputs can enter the next level as well. We expand this mode for network structures. The overall performance of such a structure is considered as a weighted average of sectors’ performance or distinct steps. Therefore, this suggested model in this study, not only provides the possibility to evaluate the performance of the entire network, but creates the performance analysis for each of the sub-processes. On the other hand, considering the data with undesirable structure leads to more correct performance estimation. In the real world, all productive processes do not comprise desirable factors. Therefore, presenting a structure that is capable of taking into account the undesirable structure is of crucial importance. In this study, a new model in the DEA by network structure is offered that can analyze the performance considering undesirable factors.

  19. [Degradation characteristics of naphthalene with a Pseudomonas aeruginosa strain isolated from soil contaminated by diesel].

    Science.gov (United States)

    Liu, Wen-Chao; Wu, Bin-Bin; Li, Xiao-Sen; Lu, Dian-Nan; Liu, Yong-Min

    2015-02-01

    Abstract: A naphthalene-degrading bacterium (referred as HD-5) was isolated from the diesel-contaminated soil and was assigned to Pseudomonas aeruginosa according to 16S rDNA sequences analysis. Gene nah, which encodes naphthalene dioxygenase, was identified from strain HD-5 by PCR amplification. Different bioremediation approaches, including nature attenuation, bioaugmentation with strain Pseudomonas aeruginosa, biostimulation, and an integrated degradation by bioaugmentation and biostimulation, were evaluated for their effectiveness in the remediating soil containing 5% naphthalene. The degradation rates of naphthalene in the soil were compared among the different bioremediation approaches, the FDA and dehydrogenase activity in bioremediation process were measured, and the gene copy number of 16S rRNA and nah in soil were dynamically monitored using real-time PCR. It was shown that the naphthalene removal rate reached 71.94%, 62.22% and 83.14% in approaches of bioaugmentation (B), biostimulation(S) and integrated degradation composed of bioaugmentation and biostimulation (BS), respectively. The highest removal rate of naphthalene was achieved by using BS protocol, which also gives the highest FDA and dehydrogenase activity. The gene copy number of 16S rRNA and nah in soil increased by about 2.67 x 10(11) g(-1) and 8.67 x 10(8) g(-1) after 31 days treatment using BS protocol. Above-mentioned results also demonstrated that the screened bacterium, Pseudomonas aeruginosa, could grow well in naphthalene-contaminated soil and effectively degrade naphthalene, which is of fundamental importance for bioremediation of naphthalene-contaminated soil.

  20. Community Characteristics and Leaf Stoichiometric Traits of Desert Ecosystems Regulated by Precipitation and Soil in an Arid Area of China

    Science.gov (United States)

    Guan, Tianyu; Zhou, Jihua; Cai, Wentao; Gao, Nannan; Du, Hui; Jiang, Lianhe; Lai, Liming; Zheng, Yuanrun

    2018-01-01

    Precipitation is a key environmental factor determining plant community structure and function. Knowledge of how community characteristics and leaf stoichiometric traits respond to variation in precipitation is crucial for assessing the effects of global changes on terrestrial ecosystems. In this study, we measured community characteristics, leaf stoichiometric traits, and soil properties along a precipitation gradient (35–209 mm) in a desert ecosystem of Northwest China to explore the drivers of these factors. With increasing precipitation, species richness, aboveground biomass, community coverage, foliage projective cover (FPC), and leaf area index (LAI) all significantly increased, while community height decreased. The hyperarid desert plants were characterized by lower leaf carbon (C) and nitrogen/phosphorus (N/P) levels, and stable N and P, and these parameters did not change significantly with precipitation. The growth of desert plants was limited more by N than P. Soil properties, rather than precipitation, were the main drivers of desert plant leaf stoichiometric traits, whereas precipitation made the biggest contribution to vegetation structure and function. These results test the importance of precipitation in regulating plant community structure and composition together with soil properties, and provide further insights into the adaptive strategy of communities at regional scale in response to global climate change. PMID:29320458

  1. Community Characteristics and Leaf Stoichiometric Traits of Desert Ecosystems Regulated by Precipitation and Soil in an Arid Area of China.

    Science.gov (United States)

    Zhang, Xiaolong; Guan, Tianyu; Zhou, Jihua; Cai, Wentao; Gao, Nannan; Du, Hui; Jiang, Lianhe; Lai, Liming; Zheng, Yuanrun

    2018-01-10

    Precipitation is a key environmental factor determining plant community structure and function. Knowledge of how community characteristics and leaf stoichiometric traits respond to variation in precipitation is crucial for assessing the effects of global changes on terrestrial ecosystems. In this study, we measured community characteristics, leaf stoichiometric traits, and soil properties along a precipitation gradient (35-209 mm) in a desert ecosystem of Northwest China to explore the drivers of these factors. With increasing precipitation, species richness, aboveground biomass, community coverage, foliage projective cover (FPC), and leaf area index (LAI) all significantly increased, while community height decreased. The hyperarid desert plants were characterized by lower leaf carbon (C) and nitrogen/phosphorus (N/P) levels, and stable N and P, and these parameters did not change significantly with precipitation. The growth of desert plants was limited more by N than P. Soil properties, rather than precipitation, were the main drivers of desert plant leaf stoichiometric traits, whereas precipitation made the biggest contribution to vegetation structure and function. These results test the importance of precipitation in regulating plant community structure and composition together with soil properties, and provide further insights into the adaptive strategy of communities at regional scale in response to global climate change.

  2. The Effects of Organic Manures, Soil Cover and Drying Temperature on Some Growth and Phytochemical Characteristics of Calendula officinalis

    Directory of Open Access Journals (Sweden)

    Lamia Vojodi Mehrabani

    2017-01-01

    Full Text Available Two separate experiments were conducted to evaluate the effects of some pre and post -harvest treatments on growth characteristics of Calendula officinalis. The first experiment as RCBD with three replication studied the effects of organic fertilizers as vermicompost, cow and poultry manure with control plus soil cover (plastic white and black. Organic manure application +mulch had positive effects on flower fresh weight. The greatest amount for chlorophyll b content was recorded in vermicompost + black plastic cover. In the second experiment, the effects of nutrition with organic manure +soil cover and post-harvest flower drying temperature (natural drying in shade condition and oven drying at 40 and 60 0C as a factorial based on RCBD were evaluated. The highest methanolic extract amount and total anthocyanin content were recorded with vermicompost + black cover + natural drying. For essential oil content and carotenoids gross amount poultry manure + black cover and drying at 60 0C was the preferred treatments. The highest recorded data for total flavonoids was traced in vermicompot and cow manure with white cover at natural drying condition. For total phenolics content, cow manure + black cover at 40 0C used for drying was selected as the treatment of choice. Also, vermicompost+ black mulch and natural drying were nice treatment combinations for the highest total phenolics content. In total, all the treatment applied i.e. organic manures, soil covers and drying methods at varying levels and combinations had suitable effectiveness on the growth characteristics and phytochemicals content of Calendula officinalis.

  3. Phosphate Sorption Characteristics and External P Requirements of Selected South African Soils

    Directory of Open Access Journals (Sweden)

    E. M. Gichangi

    2008-10-01

    Full Text Available The Transkei is the largest consolidated area in South Africa where land is held by smallholder farmers but little is known about the extent of phosphate fixation in the region. This study was conducted to determine the phosphate sorption properties and external P requirements (EPR of selected soils from the Transkei region, South Africa and to relate derived sorption values to selected soil parameters. The P sorption maxima and EPR values varied widely ranging from 192.3 to 909.1 mg P kg−1 and from 2 to 123 mg P kg−1−1 soil, respectively. Citrate dithionite bicarbonate-extractable aluminum explained most of the observed variations in P sorption. About 43% of the soils were found to be moderate P fixers and may need management interventions to ensure adequate P availability to crops. The single point sorption index accurately predicted the EPR of the soils obviating the need to use multiple point sorption isotherms. The results suggested that the use of blanket phosphate fertilizer recommendations may not be a good strategy for the region as it may lead to under-application or over-application of P in some areas.

  4. Analysis on the influence of forest soil characteristics on radioactive Cs infiltration

    International Nuclear Information System (INIS)

    Mori, Yoshitomo; Yoneda, Minoru; Shimada, Yoko; Shimomura, Ryohei; Fukutani, Satoshi; Ikegami, Maiko

    2017-01-01

    Soil core (0-5 cm and 5-10 cm) was collected in 5 points with different vegetation in Fukushima Prefecture in order to explore the permeability, field capacity and voidage. Depth profiles of radioactive Cs, ignition loss and CEC (Cation Exchange Capacity) in the 5 forest soils were also investigated, using scraper plate (at 0.5 cm intervals for 0-5 cm and at 1.0 cm intervals for 5-10 cm). Depth profiles in soil layers were totally different between forests and did not show explicit correlation with field capacity, voidage or ignition loss. On the other hand, CEC correlated weakly and permeability did strongly with infiltration of radioactive Cs. Compartment modeling was conducted, so as to reproduce the monitored depth profile, taking ignition loss as a parameter, based on the experiment result that ignition loss had positive correlation with CEC, which might influence the adsorption process on radioactive Cs in soil layer. However, the ignition loss alone failed to fully reproduce the depth profile. Considering the present results as well as the fact that permeability might have explicit relation with infiltration of radioactive Cs, factors related with precipitation or water flow in early stage after the accident could influence the depth profile, before adsorbed with negative charge in soil particles. (author)

  5. Behavior of granular rubber waste tire reinforced soil for application in geosynthetic reinforced soil wall

    Directory of Open Access Journals (Sweden)

    G. G. D. RAMIREZ

    Full Text Available AbstractLarge quantities of waste tires are released to the environment in an undesirable way. The potential use of this waste material in geotechnical applications can contribute to reducing the tire disposal problem and to improve strength and deformation characteristics of soils. This paper presents a laboratory study on the effect of granular rubber waste tire on the physical properties of a clayey soil. Compaction tests using standard effort and consolidated-drained triaxial tests were run on soil and mixtures. The results conveyed an improvement in the cohesion and the angle of internal friction the clayey soil-granular rubber mixture, depending on the level of confining stress. These mixtures can be used like backfill material in soil retaining walls replacing the clayey soil due to its better strength and shear behavior and low unit weight. A numerical simulation was conducted for geosynthetic reinforced soil wall using the clayey soil and mixture like backfill material to analyzing the influence in this structure.

  6. Greenhouse gas emissions and plant characteristics from soil cultivated with sunflower (Helianthus annuus L.) and amended with organic or inorganic fertilizers

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Valdez, F., E-mail: flopez2072@yahoo.com [Laboratory of Agricultural Biotechnology, CIBA, IPN, Tepetitla de Lardizabal, C.P. 90700, Tlaxcala (Mexico); Laboratory of Soil Ecology, GIB, Department of Biotechnology and Bioengineering, Cinvestav-Zacatenco, C.P. 07360, D.F. (Mexico); Fernandez-Luqueno, F. [Natural and Energetic Resources, Cinvestav-Saltillo, C.P. 25900, Coahuila (Mexico); Laboratory of Soil Ecology, GIB, Department of Biotechnology and Bioengineering, Cinvestav-Zacatenco, C.P. 07360, D.F. (Mexico); Luna-Suarez, S. [Laboratory of Agricultural Biotechnology, CIBA, IPN, Tepetitla de Lardizabal, C.P. 90700, Tlaxcala (Mexico); Dendooven, L. [Laboratory of Soil Ecology, GIB, Department of Biotechnology and Bioengineering, Cinvestav-Zacatenco, C.P. 07360, D.F. (Mexico)

    2011-12-15

    Agricultural application of wastewater sludge has become the most widespread method of disposal, but the environmental effects on soil, air, and crops must be considered. The effect of wastewater sludge or urea on sunflower's (Helianthus annuus L.) growth and yield, the soil properties, and the resulting CO{sub 2} and N{sub 2}O emissions are still unknown. The objectives of this study were to investigate: i) the effect on soil properties of organic or inorganic fertilizer added to agricultural soil cultivated with sunflower, ii) how urea or wastewater sludge increases CO{sub 2} and N{sub 2}O emissions from agricultural soil over short time periods, and iii) the effect on plant characteristics and yield of urea or wastewater sludge added to agricultural soil cultivated with sunflower. The sunflower was fertilized with wastewater sludge or urea or grown in unamended soil under greenhouse conditions while plant and soil characteristics, yield, and greenhouse gas emissions were monitored. Sludge and urea modified some soil characteristics at the onset of the experiment and during the first two months but not thereafter. Some plant characteristics were improved by sludge. Urea and sludge treatments increased the yield at similar rates, while sludge-amended soil significantly increased N{sub 2}O emissions but not CO{sub 2} emissions compared to the other amended or unamended soils. This implies that wastewater sludge increased the biomass and/or the yield; however, from a holistic point of view, using wastewater sludge as fertilizer should be viewed with concern.

  7. Pollution characteristics and source identification of trace metals in riparian soils of Miyun Reservoir, China.

    Science.gov (United States)

    Han, Lanfang; Gao, Bo; Lu, Jin; Zhou, Yang; Xu, Dongyu; Gao, Li; Sun, Ke

    2017-10-01

    The South-to-North Water Diversion Project, one of China's largest water diversion projects, has aroused widespread concerns about its potential ecological impacts, especially the potential release of trace metals from shoreline soils into Miyun Reservoir (MYR). Here, riparian soil samples from three elevations and four types of land use were collected. Soil particle size distributions, contents and chemical fractionations of trace metals and lead (Pb) isotopic compositions were analyzed. Results showed that soil texture was basically similar in four types of land use, being mainly composed of sand, with minor portions of clay and silt, while recreational land contained more abundant chromium (Cr), copper (Cu), zinc (Zn) and cadmium (Cd), suggesting a possible anthropogenic source for this soil pollution. The potential ecological risk assessment revealed considerable contamination of recreational land, with Cd being the predominant contaminant. Chemical fractionations showed that Cu, arsenic (As), Pb and Cd had potential release risks. Additionally, the 206 Pb/ 207 Pb and 208 Pb/ 207 Pb values of soils were similar to those of coal combustion. By combining principal component analysis (PCA) with Pb isotopic results, coal combustion was identified as the major anthropogenic source of Zn, Cr, Cu, Cd and Pb. Moreover, isotope ratios of Pb fell in the scope of aerosols, indicating that atmospheric deposition may be the primary input pathway of anthropogenic Zn, Cr, Cu, Cd and Pb. Therefore, controlling coal combustion should be a priority to reduce effectively the introduction of additional Zn, Cu, Cd, and Pb to the area in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. 32 CFR 887.7 - Persons separated under other than honorable conditions (undesirable or bad conduct) or...

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Persons separated under other than honorable conditions (undesirable or bad conduct) or dishonorable discharge. 887.7 Section 887.7 National Defense... honorable conditions (undesirable or bad conduct) or dishonorable discharge. Those persons whose character...

  9. [Characteristics of soil microbes and enzyme activities in different degraded alpine meadows].

    Science.gov (United States)

    Yin, Ya Li; Wang, Yu Qin; Bao, Gen Sheng; Wang, Hong Sheng; Li, Shi Xiong; Song, Mei Ling; Shao, Bao Lian; Wen, Yu Cun

    2017-12-01

    Soil microbial biomass C and N, microbial diversities and enzyme activity in 0-10 cm and 10-20 cm soil layers of different degraded grasslands (non-degradation, ND; light degradation, LD; moderate degradation, MD; sever degradation, SD; and black soil beach, ED) were measured by Biolog and other methods. The results showed that: 1) There were significant diffe-rences between 0-10 cm and 10-20 cm soil layers in soil microbial biomass, diversities and inver-tase activities in all grasslands. 2) The ratio of soil microbial biomass C to N decreased significantly with the grassland degradation. In the 0-10 cm soil layer, microbial biomass C and N in ND and LD were significantly higher than that in MD, SD and ED. Among the latter three kinds of grasslands, there was no difference for microbial biomass C, but microbial biomass N was lower in MD than in the other grasslands. The average color change rate (AWCD) and McIntosh Index (U) also decreased with grassland degradation, but only the reduction from ND to MD was significant. There were no differences among all grasslands for Shannon index (H) and Simpson Index (D). The urease activity was highest in MD and SD, and the activity of phosphatase and invertase was lowest in ED. In the 10-20 cm soil layer, microbial biomass C in ND and LD were significantly higher than that in the other grasslands. Microbial biomass N in LD and ED were significantly higher than that in the other grasslands. Carbon metabolism index in MD was significantly lower than that in LD and SD. AWCD and U index in ND and LD were significantly higher than that in ED. H index and D index showed no difference among different grasslands. The urease activity in ND and MD was significantly higher than that in the other grasslands. The phosphatase activity was highest in MD, and the invertase activity was lowest in MD. 3) The belowground biomass was significantly positively correlated with microbial biomass, carbon metabolic index and phosphatase activity

  10. Distribution characteristics of 137Cs in soil profiles under different land uses and its implication

    International Nuclear Information System (INIS)

    Mian Li; Wenyi Yao; Jishan Yang; Zhenzhou Shen; Er Yang

    2016-01-01

    This paper presents a study of the distribution of 137 Cs in soils under three different land uses in a semiarid watershed. The results showed the average inventory of 137 Cs in the cultivated land, woodland and grassland was 888, 1489 and 1650 Bq/m 2 , respectively. The pattern of depth distribution of 137 Cs in the soil profiles with cultivated land, woodland and grassland was disturbed, eroding and aggrading, and normal profiles, respectively. The coefficient of variation of 137 Cs inventory varied from 8.9 to 38.8 % for different land uses. (author)

  11. Spatial and Seasonal Variation of dissolved organic carbon (DOC) concentrations in Irish streams: importance of soil and topography characteristics.

    Science.gov (United States)

    Liu, Wen; Xu, Xianli; McGoff, Nicola M; Eaton, James M; Leahy, Paul; Foley, Nelius; Kiely, Gerard

    2014-05-01

    Dissolved organic carbon (DOC) concentrations have increased in many sites in Europe and North America in recent decades. High DOC concentrations can damage the structure and functions of aquatic ecosystems by influencing water chemistry. This study investigated the spatial and seasonal variation of DOC concentrations in Irish streams across 55 sites at seven time occasions over 1 year (2006/2007). The DOC concentrations ranged from 0.9 to 25.9 mg/L with a mean value of 6.8 and a median value of 5.7 mg/L and varied significantly over the course of the year. The DOC concentrations from late winter (February: 5.2 ± 3.0 mg/L across 55 sites) and early spring (April: 4.5 ± 3.5 mg/L) had significantly lower DOC concentrations than autumn (October: mean 8.3 ± 5.6 mg/L) and early winter (December: 8.3 ± 5.1 mg/L). The DOC production sources (e.g., litterfall) or the accumulation of DOC over dry periods might be the driving factor of seasonal change in Irish stream DOC concentrations. Analysis of data using stepwise multiple linear regression techniques identified the topographic index (TI, an indication of saturation-excess runoff potential) and soil conditions (organic carbon content and soil drainage characteristics) as key factors in controlling DOC spatial variation in different seasons. The TI and soil carbon content (e.g., soil organic carbon; peat occurrence) are positively related to DOC concentrations, while well-drained soils are negatively related to DOC concentrations. The knowledge of spatial and seasonal variation of DOC concentrations in streams and their drivers are essential for optimum riverine water resources management.

  12. The Effects of Soil Amendments and Bio-fertilizers Inoculation on Morphological Characteristics and Yield of Echium amoenum

    Directory of Open Access Journals (Sweden)

    M.B. Amiri

    2017-10-01

    Full Text Available Introduction: In recent years, the effect of ecological inputs on soil properties and plant growth characteristics has received renewed attention. Although the utilization of mineral fertilizers could be viewed as the best solution in plant productivity, this approach is often inefficient in the long-term in many ecosystems due to the limited ability of low-activity clay soils to retain nutrients. Intensive use of chemical fertilizers and pesticides in agricultural systems is also known to have irreversible effects on soil and water resources. Maintenance of soil fertility as a permanent bed for continuous production of agricultural products is one of the most important issues affecting the sustainability of food production. In order to achieve healthy food production, application of ecological inputs such as soil amendments and bio-fertilizers is inevitable. Humic substances are a group of heterogeneous molecules that are bonded together by weak forces; therefore, they have a high chemical stability. This material included 65 to 80 percent of total soil organic matter. Application of bio-fertilizers is an appropriate alternative of chemical fertilizers to enhance soil fertility. In fact, bio-fertilizers include different types of free living organisms that convert unavailable nutrients to available forms and enhance root development and better seed germination. Mycorrhiza arbuscular fungi are coexist microorganisms that improve soil fertility, nutrients cycling and agroecosystem health. Mycorrhizal fungi are the most abundant organisms in agricultural soils. Many researchers have pointed to the positive roles of mycorrhizal fungi on plants growth characteristics. Echium amoenum is a perennial plant belongs to Boraginaceae family. This plant is native of North of Iran. Petal extract of E. amoenum have sedative, diaphoretic, anti-inflammatory and anti-depressant effects. These plants are wild perennial herbs and known in Iran as oxtongue. It is

  13. Improvement of soil characteristics and growth of Dorycnium pentaphyllum by amendment with agrowastes and inoculation with AM fungi and/or the yeast Yarowia lipolytica.

    Science.gov (United States)

    Medina, A; Vassileva, M; Caravaca, F; Roldán, A; Azcón, R

    2004-08-01

    The effectiveness of two microbiologically treated agrowastes [dry olive cake (DOC) and/or sugar beet (SB)] on plant growth, soil enzymatic activities and other soil characteristics was determined in a natural soil from a desertified area. Dorycnium pentaphyllum, a legume plant adapted to stress situations, was the test plant to evaluate the effect of inoculation of native arbuscular mycorrhizal (AM) fungi and/or Yarowia lipolytica (a dry soil adapted yeast) on amended and non-amended soils. Plant growth and nutrition, symbiotic developments and soil enzymatic activities were limited in non-amended soil where microbial inoculations did not improve plant development. The lack of nodules formation and AM colonization can explain the limited plant growth in this natural soil. The effectiveness and performance of inocula applied was only evident in amended soils. AM colonization and spores number in natural soil were increased by amendments and the inoculation with Y. lipolytica promoted this value. The effect of the inoculations on plant N-acquisition was only important in AM-inoculated plants growing in SB medium. Enzymatic activities as urease and protease activities were particularly increased in DOC amended soil meanwhile dehydrogenase activity was greatest in treatments inoculated with Y. lipolytica in SB added soil. The biological activities in rhizosphere of agrowaste amended soil, used as indices of changes in soil properties and fertility, were affected not only by the nature of amendments but also by the inoculant applied. All these results show that the lignocellulosic agrowastes treated with a selected microorganism and its further interaction with beneficial microbial groups (native AM fungi and/or Y. lipolytica) is a useful tool to modify soil physico-chemical, biological and fertility properties that enhance the plant performance probably by making nutrients more available to plants.

  14. The influences of soil and nearby structures on dispersion characteristics of wave propagating along buried plastic pipes

    Science.gov (United States)

    Liu, Shuyong; Jiang, J.; Parr, Nicola

    2016-09-01

    Water loss in distribution systems is a global problem for the water industry and governments. According to the international water supply association (IWSA), as a result of leaks from distribution pipes, 20% to 30% of water is lost while in transit from treatment plants to consumers. Although governments have tried to push the water industry to reduce the water leaks, a lot of experts have pointed out that a wide use of plastic pipes instead of metal pipes in recent years has caused difficulties in the detection of leaks using current acoustic technology. Leaks from plastic pipes are much quieter than traditional metal pipes and comparing to metal pipes the plastic pipes have very different coupling characteristics with soil, water and surrounding structures, such as other pipes, road surface and building foundations. The dispersion characteristics of wave propagating along buried plastic pipes are investigated in this paper using finite element and boundary element based models. Both empty and water- filled pipes were considered. Influences from nearby pipes and building foundations were carefully studied. The results showed that soil condition and nearby structures have significant influences on the dispersion characteristics of wave propagating along buried plastic pipes.

  15. Immediate impact of the flood (Bohemia, August 2002) on selected soil characteristics

    Czech Academy of Sciences Publication Activity Database

    Elhottová, Dana; Krištůfek, Václav; Tříska, Jan; Chrastný, V.; Uhlířová, Eva; Kalčík, Jiří; Picek, T.

    2006-01-01

    Roč. 173, č. 1-4, (2006), s. 177-193 ISSN 0049-6979 Institutional research plan: CEZ:AV0Z6066911; CEZ:AV0Z6087904; CEZ:AV0Z60870520 Keywords : flood on soil * hazardous elements * organic persistent compounds Subject RIV: EH - Ecology, Behaviour Impact factor: 1.205, year: 2006

  16. Characteristics of the flora of fallow lands on rendzina soils on the Twardowice Plateau (Silesian Upland

    Directory of Open Access Journals (Sweden)

    Beata Babczyńska-Sendek

    2012-12-01

    Full Text Available The paper presents the results of investigations on the flora of fallow lands on rendzina soils. The research was carried out in the area of the Twardowice Plateau (the Silesian Upland within 9 areas adjacent to xerothermic grasslands. The investigated flora consisted of 220 vascular plant species with the dominance of native taxa. Plants of xerothermic grasslands and thermophilous edges were the most numerous (32%. The dominance of Libanotis pyrenaica in 4 of the examined areas should be emphasized. The percentage of meadow species was also considerable (25%. Anthropophytes comprised 18% of the flora of fallow lands and archaeophytes prevailed among them (9%. Solidago canadensis, an invasive species, was the constant component of the investigated fallows and sometimes its coverage was remarkable. As a result of the high proportion of xerothermic and thermophilous plants, plants associated with dry soils and soils having an intermediate character between dry and fresh, as well as plants preferring slightly acidic to alkaline soils poor in nitrogen compounds predominated in the investigated fallows. Perennial plants prevailed (65% in the studied flora and slightly more than half of the species reproduced only by seeds. Competitive plant species (C strategists had the highest proportion (39% and species with intermediate strategies CSR, CR and CS were also numerous. The investigations have shown that there are favourable conditions for settling and growth of many xerothermic species in the investigated fallow lands. Moreover, the neighbouring grasslands are the seed source for these areas.

  17. Relationship of Aboveground Biomass Production Site Index and Soil Characteristics in a Loblolly Pine Stand

    Science.gov (United States)

    Minyi Zhou; Thomas J. Dean

    2004-01-01

    As a part of the continuing studies of the Cooperative Research in Sustainable Silviculture and Soil Productivity (CRiSSSP), 24 experimental plots in a loblolly pine (Pinus taeda L.) stand have recently been installed near Natchitoches, LA. The plots were uniformly assigned to 3 blocks based on topography (i.e., up slope, midslope, and down slope)....

  18. Effect on stone lines on soil chemical characteristics under continuous sorghum cropping in semiarid Burkina Faso

    NARCIS (Netherlands)

    Zougmore, R.; Gnankambary, Z.; Guillobez, L.S.; Stroosnijder, L.

    2002-01-01

    In the semiarid Sahel, farmers commonly lay stone lines in fields to disperse runoff. This study was conducted in northern Burkina Faso to assess the chemical fertility of soil under a permanent, non-fertilised sorghum crop, which is the main production system in this area, 5 years after laying

  19. Hydrologic characteristics of benchmark soils of Hawaii’s forest watersheds-

    Science.gov (United States)

    L. R. Ahuja; S. A. El-Swaify

    1975-01-01

    The project was initiated in May, 1972. the initial effort involved mapping of forest soils on the islands of Oahu and Kawaii, and collection of relevant literature for preparing the study plan. The detailed study plan (el-Swaify, 1972) was prepared after cooperative discussions with staff of the Institute of Pacific Islands Forestry, Honolulu, Hawaii, and set forth...

  20. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests

    Science.gov (United States)

    Daniela F. Cusack; Whendee L. Silver; Margaret S. Torn; Sarah D. Burton; Mary K. Firestone

    2011-01-01

    Microbial communities and their associated enzyme activities affect the amount and chemical quality of carbon (C) in soils. Increasing nitrogen (N) deposition, particularly in N-rich tropical forests, is likely to change the composition and behavior of microbial communities and feed back on ecosystem structure and function. This study presents a novel assessment of...

  1. Red cabbage yield, heavy metal content, water use and soil chemical characteristics under wastewater irrigation.

    Science.gov (United States)

    Tunc, Talip; Sahin, Ustun

    2016-04-01

    The objective of this 2-year field study was to evaluate the effects of drip irrigation with urban wastewaters reclaimed using primary (filtration) and secondary (filtration and aeration) processes on red cabbage growth and fresh yield, heavy metal content, water use and efficiency and soil chemical properties. Filtered wastewater (WW1), filtered and aerated wastewater (WW2), freshwater and filtered wastewater mix (1:1 by volume) (WW3) and freshwater (FW) were investigated as irrigation water treatments. Crop evapotranspiration decreased significantly, while water use efficiency increased under wastewater treatments compared to FW. WW1 treatment had the lowest value (474.2 mm), while FW treatments had the highest value (556.7 mm). The highest water use efficiency was found in the WW1 treatment as 8.41 kg m(-3), and there was a twofold increase with regard to the FW. Wastewater irrigation increased soil fertility and therefore red cabbage yield. WW2 treatment produced the highest total fresh yield (40.02 Mg ha(-1)). However, wastewater irrigation increased the heavy metal content in crops and soil. Cd content in red cabbage heads was above the safe limit, and WW1 treatment had the highest value (0.168 mg kg(-1)). WW3 treatment among wastewater treatments is less risky in terms of soil and crop heavy metal pollution and faecal coliform contamination. Therefore, WW3 wastewater irrigation for red cabbage could be recommended for higher yield and water efficiency with regard to freshwater irrigation.

  2. Indication of Importance of Including Soil Microbial Characteristics into Biotope Valuation Method.

    Czech Academy of Sciences Publication Activity Database

    Trögl, J.; Pavlorková, Jana; Packová, P.; Seják, J.; Kuráň, P.; Kuráň, J.; Popelka, J.; Pacina, J.

    2016-01-01

    Roč. 8, č. 3 (2016), č. článku 253. ISSN 2071-1050 Institutional support: RVO:67985858 Keywords : biotope assessment * biotope valuation method * soil microbial communities Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.789, year: 2016

  3. The sorption characteristics of mercury as affected by organic matter content and/or soil properties

    Science.gov (United States)

    Šípková, Adéla; Šillerová, Hana; Száková, Jiřina

    2014-05-01

    The determination and description of the mercury sorption extend on soil is significant for potential environmental toxic effects. The aim of this study was to assess the effectiveness of mercury sorption at different soil samples and vermicomposts. Mercury interactions with soil organic matter were studied using three soils with different physical-chemical properties - fluvisol, cambisol, and chernozem. Moreover, three different vermicomposts based on various bio-waste materials with high organic matter content were prepared in special fermentors. First was a digestate, second was represented by a mixture of bio-waste from housing estate and woodchips, and third was a garden bio-waste. In the case of vermicompost, the fractionation of organic matter was executed primarily using the resin SuperliteTM DAX-8. Therefore, the representation of individual fractions (humic acid, fulvic acid, hydrophilic compounds, and hydrophobic neutral organic matter) was known. The kinetics of mercury sorption onto materials of interest was studied by static sorption experiments. Samples were exposed to the solution with known Hg concentration of 12 mg kg-1 for the time from 10 minutes to 24 hours. Mercury content in the solutions was measured by the inductively coupled plasma mass spectrometry (ICP-MS). Based on this data, the optimum conditions for following sorption experiments were chosen. Subsequently, the batch sorption tests for all soil types and vermicomposts were performed in solution containing variable mercury concentrations between 1 and 12 mg kg-1. Equilibrium concentration values measured in the solution after sorption and calculated mercury content per kilogram of the soil or the vermi-compost were plotted. Two basic models of sorption isotherm - Langmuir and Freundlich, were used for the evaluation of the mercury sorption properties. The results showed that the best sorption properties from studied soil were identified in chernozem with highest cation exchange

  4. Partitioning the relative contributions of inorganic plant composition and soil characteristics to the quality of Helichrysum italicum subsp. italicum (Roth) G. Don fil. essential oil.

    Science.gov (United States)

    Bianchini, Ange; Santoni, François; Paolini, Julien; Bernardini, Antoine-François; Mouillot, David; Costa, Jean

    2009-07-01

    Composition of Helichrysum italicum subsp. italicum essential oil showed chemical variability according to vegetation cycle, environment, and geographic origins. In the present work, 48 individuals of this plant at different development stages and the corresponding root soils were sampled: i) 28 volatile components were identified and measured in essential oil by using GC and GC/MS; ii) ten elements from plants and soils have been estimated using colorimetry in continuous flux, flame atomic absorption spectrometry, or emission spectrometry (FAAS/FAES); iii) texture and acidity (real and potential) of soil samples were also reported. Relationships between the essential-oil composition, the inorganic plant composition, and the soil characteristics (inorganic composition, texture, and acidity) have been established using multivariate analysis such as Principal Component Analysis (PCA) and partial Redundancy Analysis (RDA). This study demonstrates a high level of intraspecific differences in oil composition due to environmental factors and, more particularly, soil characteristics.

  5. Phyto-availability of zirconium in relation with initial speciation, solubility and soil characteristics

    International Nuclear Information System (INIS)

    Ferrand, E.; Benedetti, M.; Dumat, C.; Ferrand, E.; Leclerc-Cessac, E.

    2005-01-01

    During the last decades, the use of zirconium in industry has been widely developed and there is a potential risk of zirconium contamination. The long half-life isotope 93 Zr (T1/2=10 6 years) is largely observed in radioactive wastes. Therefore, the long-term prediction of the zirconium fate in the environment is essential. Due to its low solubility and strong tendency to polymerize, zirconium is usually considered as immobile, however the evidence of Zr mobility in certain conditions such as tropical weathering has been demonstrated. Soil-plant transfer is an important link in the chain of events which leads to radionuclide entry into the human food chain, but only few studies concern the Zr transfer to plants. The primary aim of this investigation is to verify if zirconium can be absorbed by edible plants (young peas and tomatoes) and to study the influence of Zr speciation on its availability. The second aim is to highlight the potential influence of plants on the Zr solubility in soil from the measurements of K d and with chemical extractions. Two agricultural top soils closed to the underground experimental laboratory (Meuse/Haute Marne, France) of the French National Agency for management of radioactive wastes (ANDRA) were collected: a sandy clayey loamy soil (A) and a clayey calcareous soil (B). The main differences between the two soils are: the pH, the texture and the carbonate content. In order to investigate the influence of the Zr speciation on its plant availability, soils were spiked with different forms of Zr chosen for their natural occurrence in the environment. Soil adsorption of Zr in batch experiments was realized (various initial [Zr], pH and I) in order to determine adsorption isotherms and partition coefficients (K d ). Tomatoes and peas were exposed to Zr by contact with the various soils during 8 days. After acidic digestion of the dried roots and aerial parts, the total Zr concentrations were measured by a quadrupole ICP-MS spectrometer

  6. Diversity and Symbiotic Characteristics of Cowpea Bradyrhizobium Strains in Ghanaian Soils

    International Nuclear Information System (INIS)

    Fening, Joseph Opoku

    1999-08-01

    This study reports investigation of the biodiversity of bradyrhizobia isolates that nodulate cowpea in Ghanaian soils. As a prelude, some components of nitrogen fixation of cowpea in the various soils were examined through: (1) assessment of the natural nodulation of 45 cowpea cultivars in 20 soils sampled from 5 ecozones (coastal savanna, tain forest, semi deciduous forest, forest savanna transition and guinea savanna), (2) determination of the numbers of bradyrhizobial isolates in the soils and (3) determination of the response of cowpea to nitrogen fertilization. The results of the ability of 45 cowpea cultivars to nodulate naturally in different soil types showed large variability among the cultivars. Counts of the indigenous bradyrhizobia population in the soils showed that most of the soils in Ghana harbour large populations of bradyrhizobia (in the range of 0.6 x 10 to 31 x 10 3 ) capable of nodulating cowpea. Response of cowpea to nitrogen fertilizer differed in the different soils. In general all the cultivars showed significant responses to increasing levels of nitrogen, an indication that nitrogen fixation was not supplying the plants with all the external nitrogen required for maximum yield. A combination of morpho-physiological and molecular analysis was used to assess the diversity of the bradyrhizobia isolates. A total of 100 isolates were assessed. The results of the morpho physiological analysis indicated that cowpea is nodulated by both fast and slow growing rhizobia. The results also showed that the isolates were versatile and could survive under different soil conditions particularly acidity and salt stress. A cross inoculation study of the isolates with nine legume species produced seven major groupings with 28 subgroups based on distinct nodulation patterns. Results of the serology (ELISA) assay indicated that only a small fraction of the isolates reacted strongly with antisera of each other. The greater proportion showed no cross reactivity

  7. [Characteristics of 'salt island' and 'fertile island' for Tamarix chinensis and soil carbon, nitrogen and phosphorus ecological stoichiometry in saline-alkali land].

    Science.gov (United States)

    Zhang, Li-hua; Chen, Xiao-bing

    2015-03-01

    To clarify the nutrient characteristics of 'salt island' and 'fertile island' effects in saline-alkali soil, the native Tamarix chinensis of the Yellow River Delta (YRD) was selected to measure its soil pH, electrical conductivity (EC), organic carbon (SOC), total nitrogen (N), total phosphorus (P) and their stoichiometry characteristics at different soil depths. The results showed that soil pH and EC increased with the increasing soil depth. Soil EC and P in the 0-20 cm layer decreased and increased from canopied area to interspace, respectively. SOC, N, N/P and C/P in the 20-40 cm soil layer decreased, and C/N increased from the shrub center to interspace. SOC and N contents between island and interspace both decreased but P content decreased firstly and then increased with the increasing soil depth. Soil pH correlated positively with EC. In addition, pH and EC correlated negatively with C, N, P contents and their ecological stoichiometry.

  8. Linkage of within vineyard soil properties, grapevine physiology, grape composition and sensory characteristics in a premium wine grape vineyard.

    Science.gov (United States)

    Smart, David; Hess, Sallie; Ebeler, Susan; Heymann, Hildegarde; Plant, Richard

    2014-05-01

    Analysis of numerous vineyards has revealed a very high degree of variation exists at the within vineyard scale and may outweigh in some cases broader mesoclimatic and geological factors. For this reason, selective harvest of high quality wine grapes is often conducted and based on subjective field sensory analysis (taste). This is an established practice in many wine growing regions. But the relationships between these subjective judgments to principle soil and grapevine physiological characteristics are not well understood. To move toward greater understanding of the physiological factors related to field sensory evaluation, physiological data was collected over the 2007 and 2008 growing seasons in a selectively harvested premium production Napa Valley estate vineyard, with a history of selective harvesting based on field sensory evaluation. Data vines were established and remained as individual study units throughout the data gathering and analysis phase, and geographic information systems science (GIS) was used to geographically scale physiological and other data at the vineyard level. Areas yielding grapes with perceived higher quality (subjective analysis) were characterized by vines with 1) statistically significantly lower (P grape berry diameter (R2 = 0.616 in 2007 and 0.413 in 2008) and similar strong correlations existed for berry weight (R2 = 0.626 in 2007 and 0.554 in 2008). A trained sensory panel performed a sensory analysis and characterized fruit using and a multivariate, principal components, analysis (PCA). This approach indicated that grapes from vines with lowest midday leaf water potential at veraison (grapes from vines of > -1.5 MPa were characterized by vegetal flavors and astringent and bitter seeds and skins. Data from vines were grouped into vines experiencing MD at veraison of -1.5 MPa and subjected to single factor analysis of variance. This analysis revealed statistically significant differences (P less than 0.05) in many of the above

  9. Soil Characteristics and Lodgepole Pine (Pinus contorta var. latifolia Performance Two Decades after Disk Trenching of Unburned and Broadcast-Burned Plots in Subboreal British Columbia

    Directory of Open Access Journals (Sweden)

    Jacob O. Boateng

    2011-01-01

    Full Text Available We examined the effects of low-impact broadcast-burning and disk-trenching planting position (control, hinge, trench on soil characteristics and lodgepole pine foliar nutrition and growth over two decades at a subboreal site in British Columbia, Canada. Broadcast burning had virtually no effect on either the bulk density or chemical properties of soil. In contrast, significant reductions in soil bulk density and increases in soil nutrient availability persisted for 20 years in hinge position soils relative to undisturbed (control soil between trenches. These effects on bulk density and nutrient availability are associated with significant differences in pine size by year 6. Burning and planting positions interacted significantly in their effect on pine height, diameter, and stem volume for at least 19 years. Pine survival was high regardless of burning or planting position. Neither broadcast burning nor planting position significantly affected lodgepole pine foliar nutrient status in this study.

  10. A survey on the presence of undesirable botanical substances in feed in the European Union

    Directory of Open Access Journals (Sweden)

    van Raamsdonk LWD.

    2009-01-01

    Full Text Available Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed lists a range of substances from botanical origin (weed seeds and additionally some chemical compounds directly originating from specific weeds. In order to examine the actual status of enforcement and of the present occurrence of these botanical substances, a survey was carried out. A questionnaire was sent to 103 laboratories, including official control labs from all member states of the European Union. The results, indicating the frequency of occurrence as far as reported, are compared to the publications of the EU Rapid Alert System for Food and Feed (RASFF. A total of 44 questionnaires was returned (42.7% from 22 member states. Ten member states predominantly from north-western Europe appeared to have an active monitoring of botanical undesirable substances. The questionnaire results did not indicate that the other member states enforce this part of Directive 2002/32/EC. Reports on the frequency of occurrence include: a few to 25-50% of the samples contain traces of ergot (8 member states, a few to 24% contain at least some traces of thorn apple (6 member states, zero to 17% contain some castor oil plant seeds (3 member states, zero to a few samples contain Crotalaria seeds (3 member states, and zero to 6% contain traces of Sareptian mustard (4 member states. One member state conducted extra surveillance since several cases of animal intoxications have been reported. In some cases a coincidence with undesirable botanical substances was found.

  11. Undesirable Behaviors Elementary School Classroom Teachers Encounter in the Classroom and Their Reasons

    Directory of Open Access Journals (Sweden)

    E.G. Balcik

    2011-12-01

    Full Text Available The present study aims to determine how often elementary school teachers encounter undesirable behaviors in the classroom and what their thoughts regarding possible reasons of these behaviors are. The teachers’ opininon about the prevalence of these behaviors and their possible reasons were evaluated according to gender, marital status, level of class being taught, size of class being taught and it was tried to be determined if there were significant differences between variables. The measurement tool was applied to a total of 54 teachers at 5 schools in Gölcük district of the Kocaeli province. The data collection tool is composed of three sections. The first section is for establishing teachers’ personal information. In this study, as a data collection tool, a questionnaire was used. When preparing questions for the questionnaire, following the examination of resources available, the questionnaire prepared by Aksoy (1999 and used in the thesis study entitled “Classroom Management and Student Discipline in Elementary Schools of Ankara” and also used in the thesis study by Boyraz (2007 entitled “Discipline Problems that Candidate Teachers Servicing at Elementary Schools Encounter in the Classroom” was employed. Although the validity and reliability of the questionnaire was tested by Aksoy (1999 and Boyraz (2007, the reliability study for the questionnaire was retested and found to be 0,9. The questionnaire include 42 items. 19 of them are related to the reasons of undesirable behaviors observed in the classroom and 23 of them are related to undesirable behaviors observed in the classroom.

  12. Validation of Transfer Functions Predicting Cd and Pb Free Metal Ion Activity in Soil Solution as a Function of Soil Characteristics and Reactive Metal Content

    NARCIS (Netherlands)

    Pampura, T.; Groenenberg, J.E.; Lofts, S.; Priputina, I.

    2007-01-01

    According to recent insight, the toxicity of metals in soils is better related to the free metal ion (FMI) activity in the soil solution than to the total metal concentration in soil. However, the determination of FMI activities in soil solution is a difficult and time-consuming task. An alternative

  13. Investigation of soil properties for identifying recharge characteristics in the Lake Chad Basin

    Science.gov (United States)

    Banks, M. L.; Ndunguru, G. G.; Adisa, S. J.; Lee, J.; Adegoke, J. O.; Goni, I. B.; Grindley, J.; Mulugeta, V.

    2009-12-01

    Lake Chad was once labeled as one of the largest fresh water lakes in the world, providing water and livelihood to over 20 million people. The lake is shared by six different countries; Chad Nigeria, Niger, Cameroon, Central African Republic, and Sudan. Since the 1970 to date, a significant decrease in the size of the lake has been observed with the use of satellite imagery. This shrinking of the lake has been blamed on global warming, population increase and poor water management by the agriculture industry for farming purpose for both plants and animals. While these can be all valid reasons for the decrease of Lake Chad, we see the need to examine environmental and hydrological evidence around the Lake Chad basin. This study was carried out from upper stream to lower stream leading from Kano to the Damatru region which is one of several water bodies that supply Lake Chad. Over seventy six sites were sampled for soil texture, bulk density and other physical properties to investigate recharge capacity of the basin especially along the stream. Soils were collected using a soil core and properly stored at 4 degrees Celsius. Soils were weighed and put to dry at 105 degrees for twenty four hours. Dry weight was recorded and bulk density was calculated. The wet sieve method was used to determine the particle size analysis. Soils were weighed to 10 grams and hydrogen peroxide added to separate particles. Samples were washed with water and put to dry overnight. Soils were reweighed and sieved to separate as course sand, fine sand and silt and clay. The data revealed that in the upstream, coarse sand continuously decreased while silt and clay continuously increased down toward the lake. At mid stream silt and clay had significantly higher values when compared to coarse sand and fine sand. In the lower stream, bulk density clearly decreased compared to the upper and mid streams. Correlations will be carried out to investigate the particle size analysis and bulk density with

  14. Organic carbon characteristics in density fractions of soils with contrasting mineralogies

    Science.gov (United States)

    Yeasmin, Sabina; Singh, Balwant; Johnston, Cliff T.; Sparks, Donald L.

    2017-12-01

    This study was aimed to evaluate the role of minerals in the preservation of organic carbon (OC) in different soil types. Sequential density fractionation was done to isolate particulate organic matter (POM, 2.6 g cm-3) from four soils, i.e., a Ferralsol, a Luvisol, a Vertisol and a Solonetz. Organic matter (OM) in the density fractions was characterised using diffuse reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and mass spectroscopy in the original states (i.e., without any chemical pre-treatment), and after 6% sodium hypochlorite (NaOCl) and 10% hydrofluoric acid (HF) treatments. The NaOCl oxidation resistant fraction was considered as a relatively stable pool of OC and the HF soluble fraction was presumed as the mineral bound OC. Phyllosilicate-dominated soils, i.e., Vertisol, Luvisol and Solonetz, contained a greater proportion of POM than Fe and Al oxide-dominated Ferralsol. Wider C:N ratio and lower δ13C and δ15N in POM suggest the dominance of labile OC in this fraction and this was also supported by a greater proportion of NaOCl oxidised OC in the same fraction that was enriched with aliphatic C. The sequential density fractionation method effectively isolated OM into three distinct groups in the soils: (i) OM associated with Fe and Al oxides (>1.8 g cm-3 in the Ferralsol); (ii) OM associated with phyllosilicates (1.8-2.6 g cm-3) and (iii) OM associated with quartz and feldspar (>2.6 g cm-3) in the other three soils. Greater oxidation resistance, and more dissolution of OC during the HF treatment in the Fe and Al oxides dominated fractions suggest a greater potential of these minerals to protect OC from oxidative degradation as compared to the phyllosilicates, and quartz and feldspar matrices. OM associated with Fe and Al oxides was predominantly aromatic and carboxylate C. Decreased C:N ratio in the NaOCl oxidation resistant OM and HF soluble OM of phyllosilicates, and quartz and feldspars dominant fractions

  15. Plant-associated fluorescent Pseudomonas from red lateritic soil: Beneficial characteristics and their impact on lettuce growth.

    Science.gov (United States)

    Maroniche, Guillermo A; Rubio, Esteban J; Consiglio, Adrián; Perticari, Alejandro

    2016-11-25

    Fluorescent Pseudomonas are ubiquitous soil bacteria that usually establish mutualistic associations with plants, promoting their growth and health by several mechanisms. This makes them interesting candidates for the development of crop bio-inoculants. In this work, we isolated phosphate-solubilizing fluorescent Pseudomonas from the rhizosphere and inner tissues of different plant species growing in red soil from Misiones, Argentina. Seven isolates displaying strong phosphate solubilization were selected for further studies. Molecular identification by rpoD genotyping indicated that they belong to different species within the P. fluorescens and P. putida phylogenetic groups. Screening for in vitro traits such as phosphate solubilization, growth regulators synthesis or degradation, motility and antagonism against phytopathogens or other bacteria, revealed a unique profile of characteristics for each strain. Their plant growth-promoting potential was assayed using lettuce as a model for inoculation under controlled and greenhouse conditions. Five of the strains increased the growth of lettuce plants. Overall, the strongest lettuce growth promoter under both conditions was strain ZME4, isolated from inner tissues of maize. No clear association between lettuce growth promotion and in vitro beneficial traits was detected. In conclusion, several phosphate solubilizing pseudomonads from red soil were isolated that display a rich array of plant growth promotion traits, thus showing a potential for the development of new inoculants.

  16. Identification of rice cultivar with exclusive characteristic to Cd using a field-polluted soil and its foreground application.

    Science.gov (United States)

    Zhan, Jie; Wei, Shuhe; Niu, Rongcheng; Li, Yunmeng; Wang, Shanshan; Zhu, Jiangong

    2013-04-01

    Using low-accumulative plant, especially excluder crop, to safely produce food is one of the very important technologies of phytoremediation, which is practical to safe production and long-term remediation of heavy metal-contaminated soil. A pot experiment using field cadmium (Cd)-contaminated soil (Cd concentration was 0.75 mg kg(-1)) was conducted to compare Cd accumulation differences among 39 normal rice cultivars (Japonica) in Shenyang region of China for food safety and high grain yield aim. The results showed that brown grain Cd concentration in 12 rice cultivars of a total of 39 tested cultivars was lower than 0.2 mg kg(-1) (Agricultural Trade Standard of Nonpollution Food for Rice of China, NY 5115-2008). In these 12 cultivars, Cd enrichment factors (Cd concentration ratio in shoot to that in soil) of nine cultivars were lower than 1. Likewise, Cd translocation factors (Cd concentration ratio in shoot to that in root) of eight cultivars were lower than the 0.28 average. Furthermore, grain yield per pot of seven cultivars were higher than the average 18.4 g pot(-1). Four cultivars, i.e., Shendao 5, Tianfu 1, Fuhe 90, and Yanfeng 47 showed Cd-exclusive characteristic and better foreground application.

  17. Spatial Distribution and Pollution Characteristics of Heavy Metals in Soil of Mentougou Mining Area of Beijing City, China

    Directory of Open Access Journals (Sweden)

    XING Yu-xin

    2016-11-01

    Full Text Available The pollution characteristics and spatial distribution of soil heavy metals around mine-concentrated area in Mentougou were comprehensive studied using ArcGIS carried by inverse distance weighted interpolation mathematical model and SPSS multivariate statistical analysis. The ecological risk assessment was carried out by the potential ecological risk index. The results showed that the spatial distribution of soil heavy metal concentrations increased gradually from the west to the east of study area. Harmful degrees of heavy metals decreased in the order of Hg > Cd > Pb > Cr > Zn > Cu > Ni > As. Combination of coal mining and human activity caused the strongest risk, while the risks caused by heavy metals from sandstone minerals was relatively weak. The potential ecological risk indexes(RI of eight heavy metals were between 67.81 and 668.53. The order of the potential ecological risk was Hg > Cd > As > Pb > Ni > Cu > Cr > Zn. In summary, the heavy metals in soil of the study area were harmful. Because the study area is located in the ecological conservation district of Beijing, the ecological harm should not be overlooked, and needs to be evaluated and repaired.

  18. Predicted tyre-soil interface area and vertical stress distribution based on loading characteristics

    DEFF Research Database (Denmark)

    Schjønning, Per; Stettler, M.; Keller, Thomas

    2015-01-01

    The upper boundary condition for all models simulating stress patterns throughout the soil profile is the stress distribution at the tyre–soil interface. The so-called FRIDA model (Schjønning et al., 2008. Biosyst. Eng. 99, 119–133) treats the contact area as a superellipse and has been shown...... of the actual to recommended inflation pressure ratio. We found that VT and Kr accounted for nearly all variation in the data with respect to the contact area. The contact area width was accurately described by a combination of tyre width and Kr, while the superellipse squareness parameter, n, diminished...... slightly with increasing Kr. Estimated values of the contact area length related to observed data with a standard deviation of about 0.06 m. A difference between traction and implement tyres called for separate prediction equations, especially for the contact area. The FRIDA parameters α and β, reflecting...

  19. [Characteristics of mercury exchange flux between soil and atmosphere under the snow retention and snow melting control].

    Science.gov (United States)

    Zhang, Gang; Wang, Ning; Ai, Jian-Chao; Zhang, Lei; Yang, Jing; Liu, Zi-Qi

    2013-02-01

    Jiapigou gold mine, located in the upper Songhua River, was once the largest mine in China due to gold output, where gold extraction with algamation was widely applied to extract gold resulting in severe mercury pollution to ambient environmental medium. In order to study the characteristics of mercury exchange flux between soil (snow) and atmosphere under the snow retention and snow melting control, sampling sites were selected in equal distances along the slope which is situated in the typical hill-valley terrain unit. Mercury exchange flux between soil (snow) and atmosphere was determined with the method of dynamic flux chamber and in all sampling sites the atmosphere concentration from 0 to 150 cm near to the earth in the vertical direction was measured. Furthermore, the impact factors including synchronous meteorology, the surface characteristics under the snow retention and snow melting control and the mercury concentration in vertical direction were also investigated. The results are as follows: During the period of snow retention and melting the air mercury tends to gather towards valley bottom along the slope and an obvious deposit tendency process was found from air to the earth's surface under the control of thermal inversion due to the underlying surface of cold source (snow surface). However, during the period of snow melting, mercury exchange flux between the soil and atmosphere on the surface of the earth with the snow being melted demonstrates alternative deposit and release processes. As for the earth with snow covered, the deposit level of mercury exchange flux between soil and atmosphere is lower than that during the period of snow retention. The relationship between mercury exchange flux and impact factors shows that in snow retention there is a remarkable negative linear correlation between mercury exchange flux and air mercury concentration as well as between the former and the air temperature. In addition, in snow melting mercury exchange

  20. Sorption Characteristics of 137Cs and 90Sr into Rembang and Sumedang Soils

    Directory of Open Access Journals (Sweden)

    Budi Setiawan

    2016-12-01

    Full Text Available In order to understand the sorption behavior of 137Cs and 90Sr into soil sample from Rembang and Subang, it is important to estimate the effect of contact time, ionic strength and concentration of metal ion in the solution. For this reason, the interaction of 137Cs and 90Sr with soil sample has been examined. The study performed at trace concentration (~10-8 M of CsCl and SrCl2, and batch method was used. NaCl has been selected as a representative of the ionic strength with 0.1; 0.5 and 1.0 M concentrations. Concentration of 10-8~10-4 M CsCl and SrCl2 were used for study the effect of Cs and Sr concentrations in solution. Apparent distribution coefficient was used to predict the sorption behavior. The sorption equilibrium of 137Cs and 90Sr into soil was attained after 5 days contacted with Kd value around 3300-4200 mL/g, where Kd was defined as the ratio of number of radionuclide activity absorbed in solid phase per-unit mass to the number of radionuclide activity remains is solution per-unit volume. Presence of NaCl as background salt in the solution affected Kd values due to competition among metal ions into soil samples. Increase of Cs or Sr concentration in solution made Kd value decreased drastically. This information is expected could provide an important input for the planning and design of radioactive waste disposal system in Java Island in the future.

  1. Impact of soil sorption characteristics and bedrock composition on phosphorus concentrations in two Bohemian Forest lakes

    Czech Academy of Sciences Publication Activity Database

    Kaňa, Jiří; Kopáček, Jiří

    2006-01-01

    Roč. 173, 1-4 (2006), s. 243-259 ISSN 0049-6979 R&D Projects: GA ČR(CZ) GA206/03/1583; GA AV ČR(CZ) 1QS600170504 Grant - others:EC(XE) GOCE-CT-2003-505540; MSM(CZ) 6007665801 Institutional research plan: CEZ:AV0Z60170517 Keywords : acidification * aluminium * forest soils Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.205, year: 2006

  2. USING OF THE MATHEMATICAL STATISTICS METHODS FOR THE CHARACTERISTIC OF THE ELEMENTAL CONTAMINATION URBAN ECOSYSTEMS SOILS BY THE HEAVY METALS

    Directory of Open Access Journals (Sweden)

    YAKOVYSHYNA T. F.

    2017-03-01

    Full Text Available Summary. Raising of problem. Sustainable development of the urban ecosystems, taking into account the provision of ecological safety standards for the human life within the city and the rational use and restoration of the resource potential of the territory, requires the search for effective methods of the characteristic of the ecological situation. In the conditions of the progressive pressure to the environment, the leading role belongs to the mathematical statistics methods, as a tool that allows us to examine and analyze in detail ecological systems of the various complexity. Of all the environmental abiotic components, soils have been given the least attention, which is due, firstly, to the ambiguous characteristic of the environmental situation according to the total content of the contaminant, and secondly, to the problem of choice its additional forms for the statistical analysis. Purpose. Substantial using of the mathematical statistics methods in the ecomonitoring system along with the generally accepted for the characterization of the elemental soil contamination of the urban ecosystem by the heavy metals, by determining the statistical characteristics and establishing relationships between the total content, potentially available and available forms by the example of Zn contamination in the Dnieper. The total content, potentially available and available forms have been used to determine the elemental Zn contamination. An array of the content data of the studied Zn forms has been obtained in the network of ecological monitoring of soils of the Dnieper urban ecosystem: grid (2 km × 2 km, key sampling sites – 65. In the selected samples, the Zn total content yas been determined by the atomic absorption method after acidizing the soil, its potentially available forms in the extraction of 1 H HCl, and the available forms in AAB (pH 4.8 by standard methods. The mathematical statistics methods and the application package Microsoft Excel

  3. Predicting Soil-Water Characteristics from Volumetric Contents of Pore-Size Analogue Particle Fractions

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Møldrup, Per; Tuller, Markus

    *-model) for the SWC, derived from readily available soil properties such as texture and bulk density. A total of 46 soils from different horizons at 15 locations across Denmark were used for models evaluation. The Xw-model predicts the volumetric water content as a function of volumetric fines content (organic matter...... and clay). It performed reasonably well for the dry-end (above a pF value of 2.0; pF = log(|Ψ|), where Ψ is the matric potential in cm), but did not do as well closer to saturated conditions. The Xw*-model gives the volumetric water content as a function of volumetric content of particle size fractions...... (organic matter, clay, silt, fine and coarse sand), variably included in the model depending on the pF value. The volumetric content of a particular soil particle size fraction was included in the model if it was assumed to contribute to the pore size fraction still occupied with water at the given p...

  4. Effects of root pruning on the growth and rhizosphere soil characteristics of short-rotation closed-canopy poplar

    Energy Technology Data Exchange (ETDEWEB)

    Du, Z. Y.; Xing, S. J.; Ma, B. Y.; Liu, F. C.; Ma, H. L.; Wang, Q. H.

    2012-11-01

    When poplar trees planted at a high density are canopy-closed in plantation after 4-5 years of growth, the roots of adjacent trees will inevitably intermingle together, which possibly restricts the nutrient uptake by root system. Root pruning might stimulate the emergence of fine roots and benefit the tree growth of short-rotation poplar at the stage of canopy closing. The aim of this study is to evaluate the effects of root pruning on DBH (diameter at breast height, 1.3 m), tree height, nutrients (N, P and K) and hormones (indoleacetic acid and cytokinin) in poplar leaves, gas exchange variables (photosynthetic rate and stomatal conductance), and rhizosphere soil characteristics. Field experiment was carried out with four-yearold poplar (Populus × euramericana cv. ‘Neva’) planted in a fluvo-aquic loam soil in Shandong province, China in early April, 2008. Three root pruning treatments (severe, moderate and light degree) were conducted at the distances of 6, 8 and 10 times DBH on both inter-row sides of the trees to the depth of 30 cm, respectively. The results showed that the growth performance was obtained in the following order of treatments: moderate > light = control > severe. In the rhizophere soil, moderate and light pruning increased the microbial populations, enzymatic activities, and the concentrations of available N, P, K and organic matter. Generally, root pruning to improve tree growth and rhizosphere soil fertility can be recommended in canopy-closed poplar plantation. The appropriate selection of root pruning intensity is a pivotal factor for the effectiveness of this technique. (Author) 35 refs.

  5. Attributes for NHDPlus catchments (Version 1.1) for the conterminous United States: STATSGO soil characteristics

    Science.gov (United States)

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents estimated soil variables compiled for every catchment of NHDPlus for the conterminous United States. The variables included are cation exchange capacity, percent calcium carbonate, slope, water-table depth, soil thickness, hydrologic soil group, soil erodibility (k-factor), permeability, average water capacity, bulk density, percent organic material, percent clay, percent sand, and percent silt. The source data set is the State Soil ( STATSGO ) Geographic Database (Wolock, 1997). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee

  6. Productivity Growth-Accounting for Undesirable Outputs and Its Influencing Factors: The Case of China

    Directory of Open Access Journals (Sweden)

    Junfeng Zhang

    2016-11-01

    Full Text Available Presently, China’s social development is facing the dilemma of supporting economic growth and reducing emissions. Therefore, it is crucial to analyse productivity growth and examine its relationship with influencing factors in China. This study evaluated the total factor productivity (TFP growth of 30 provinces in China by adopting the Malmquist-Luenberger (ML productivity index and incorporating undesirable outputs from 2011–2014. Then, a Tobit regression model was employed to explore the factors that influence China’s TFP growth. The results show that the average annual growth of the Malmquist-Luenberger productivity index was lower than that of the traditional Malmquist (M productivity index growth during the research period. The findings reveal several key conclusions: First, the true TFP growth in China will be overestimated if undesirable outputs are ignored. Second, technical changes are the main contributor to TFP growth. Third, there are huge regional disparities of productivity growth in China. Fourth, coal intensity, environmental regulations, and industrial structure have significantly negative effects on productivity growth, while real per capita gross domestic product (GDP and foreign direct investment (FDI have strongly positive effects on productivity growth.

  7. Response characteristics of vegetation and soil environment to permafrost degradation in the upstream regions of the Shule River Basin

    International Nuclear Information System (INIS)

    Chen Shengyun; Liu Wenjie; Qin Xiang; Liu Yushuo; Ren Jiawen; Qin Dahe; Zhang Tongzuo; Hu Fengzu; Chen Kelong

    2012-01-01

    Permafrost degradation exhibits striking and profound influences on the alpine ecosystem, and response characteristics of vegetation and soil environment to such degradation inevitably differ during the entire degraded periods. However, up to now, the related research is lacking in the Qinghai–Tibetan Plateau (QTP). For this reason, twenty ecological plots in the different types of permafrost zones were selected in the upstream regions of the Shule River Basin on the northeastern margin of the QTP. Vegetation characteristics (species diversity, community coverage and biomass etc) and topsoil environment (temperature (ST), water content (SW), mechanical composition (SMC), culturable microorganism (SCM), organic carbon (SOC) and total nitrogen (TN) contents and so on), as well as active layer thickness (ALT) were investigated in late July 2009 and 2010. A spatial–temporal shifts method (the spatial pattern that is represented by different types of permafrost shifting to the temporal series that stands for different stages of permafrost degradation) has been used to discuss response characteristics of vegetation and topsoil environment throughout the entire permafrost degradation. The results showed that (1) ST of 0–40 cm depth and ALT gradually increased from highly stable and stable permafrost (H-SP) to unstable permafrost (UP). SW increased initially and then decreased, and SOC content and the quantities of SCM at a depth of 0–20 cm first decreased and then increased, whereas TN content and SMC showed obscure trends throughout the stages of permafrost degradation with a stability decline from H-SP to extremely unstable permafrost (EUP); (2) further, species diversity, community coverage and biomass first increased and then decreased in the stages from H-SP to EUP; (3) in the alpine meadow ecosystem, SOC and TN contents increased initially and then decreased, soil sandy fractions gradually increased with stages of permafrost degradation from substable (SSP

  8. Using Cesium-137 technique to study the characteristics of different aspect of soil erosion in the Wind-water Erosion Crisscross Region on Loess Plateau of China

    International Nuclear Information System (INIS)

    Li Mian; Li Zhanbin; Liu Puling; Yao Wenyi

    2005-01-01

    The most serious soil erosion on Loess Plateau exists in the Wind-water Erosion Crisscross Region. In the past 20 years, the types and intensity of soil erosion and its temporal and spatial distribution were studied, but studies on the difference of soil erosion between slope aspects and slope positions in this area have no report. However, it is very important to analyze and evaluate quantitatively the characteristics of different aspects and positions of soil loss for the prevention and treatment of soil erosion in this area. The spatial pattern of net soil loss on 4 downslope transects in four aspects (east, west, south and north) on a typical Mao (round loess mound) in Liudaogou catchment in Wind-water Erosion Crisscross Region was measured in 2000 using the resident cesium-137 deficit technique. The purposes of this investigation were undertaken to determine whether or not 137 Cs measurement would give a useful indication of the extent of soil loss and their characteristics from cultivated hillsides in different slope aspect and slope position in the study area. The results showed that the difference of soil erosion in different aspect was significant and the erosion rate was in this order: north>east>south>west. Compared with other areas, the difference of erosion rate between north hillside and south hillside was on the contrary, and the possible explanations could be the effect of wind erosion. Also, the percentage of wind erosion was estimated to be at least larger than 18% of total soil loss by comparing the difference of erosion amount in south hillside and north hillside. The erosion rates on different slope positions in all aspects were also different, the highest net soil loss occurred in the lower slope position, and the upper and middle slope positions were slight. The general trend of net soil loss on sloping surface was to increase in fluctuation with increasing downslope distance

  9. Using Cesium-137 technique to study the characteristics of different aspect of soil erosion in the Wind-water Erosion Crisscross Region on Loess Plateau of China

    Energy Technology Data Exchange (ETDEWEB)

    Li Mian E-mail: hnli-mian@163.com; Li Zhanbin; Liu Puling; Yao Wenyi

    2005-01-01

    The most serious soil erosion on Loess Plateau exists in the Wind-water Erosion Crisscross Region. In the past 20 years, the types and intensity of soil erosion and its temporal and spatial distribution were studied, but studies on the difference of soil erosion between slope aspects and slope positions in this area have no report. However, it is very important to analyze and evaluate quantitatively the characteristics of different aspects and positions of soil loss for the prevention and treatment of soil erosion in this area. The spatial pattern of net soil loss on 4 downslope transects in four aspects (east, west, south and north) on a typical Mao (round loess mound) in Liudaogou catchment in Wind-water Erosion Crisscross Region was measured in 2000 using the resident cesium-137 deficit technique. The purposes of this investigation were undertaken to determine whether or not {sup 137}Cs measurement would give a useful indication of the extent of soil loss and their characteristics from cultivated hillsides in different slope aspect and slope position in the study area. The results showed that the difference of soil erosion in different aspect was significant and the erosion rate was in this order: north>east>south>west. Compared with other areas, the difference of erosion rate between north hillside and south hillside was on the contrary, and the possible explanations could be the effect of wind erosion. Also, the percentage of wind erosion was estimated to be at least larger than 18% of total soil loss by comparing the difference of erosion amount in south hillside and north hillside. The erosion rates on different slope positions in all aspects were also different, the highest net soil loss occurred in the lower slope position, and the upper and middle slope positions were slight. The general trend of net soil loss on sloping surface was to increase in fluctuation with increasing downslope distance.

  10. Effects of Rainfall Characteristics on the Stability of Tropical Residual Soil Slope

    OpenAIRE

    Rahardjo Harianto; Satyanaga Alfrendo; Leong Eng Choon

    2016-01-01

    Global climate change has a significant impact on rainfall characteristics, sea water level and groundwater table. Changes in rainfall characteristics may affect stability of slopes and have severe impacts on sustainable urban living. Information on the intensity, frequency and duration of rainfall is often required by geotechnical engineers for performing slope stability analyses. Many seepage analyses are commonly performed using the most extreme rainfall possible which is uneconomical in d...

  11. Characteristics of Nitrogen Loss through Surface-Subsurface Flow on Red Soil Slopes of Southeast China

    Science.gov (United States)

    Zheng, Haijin; Liu, Zhao; Zuo, Jichao; Wang, Lingyun; Nie, Xiaofei

    2017-12-01

    Soil nitrogen (N) loss related to surface flow and subsurface flow (including interflow and groundwater flow) from slope lands is a global issue. A lysimetric experiment with three types of land cover (grass cover, GC; litter cover, LC; and bare land, BL) were carried out on a red soil slope land in southeast China. Total Nitrogen (TN) loss through surface flow, interflow and groundwater flow was observed under 28 natural precipitation events from 2015 to 2016. TN concentrations from subsurface flow on BL and LC plots were, on average, 2.7-8.2 and 1.5-4.4 times greater than TN concentrations from surface flow, respectively; the average concentration of TN from subsurface flow on GC was about 36-56% of that recorded from surface flow. Surface flow, interflow and groundwater flow contributed 0-15, 2-9 and 76-96%, respectively, of loss load of TN. Compared with BL, GC and LC intercepted 83-86% of TN loss through surface runoff; GC intercepted 95% of TN loss through subsurface flow while TN loss through subsurface flow on LC is 2.3 times larger than that on BL. In conclusion, subsurface flow especially groundwater flow is the dominant hydrological rout for N loss that is usually underestimated. Grass cover has the high retention of N runoff loss while litter mulch will increase N leaching loss. These findings provide scientific support to control N runoff loss from the red soil slope lands by using suitable vegetation cover and mulching techniques.

  12. Effects of irrigation regime and salinity on soil characteristics and yield of tomato

    Directory of Open Access Journals (Sweden)

    Rita Leogrande

    2012-03-01

    Full Text Available A field experiment was conducted in Mediterranean conditions to evaluate the effects of different irrigation volumes and water quality on yield performance of tomato crop. The tomato crop was irrigated re-establishing 50 (I1, 75 (I2 and 100% (I3 of the crop evapotranspiration (ETc with two water quality: fresh water with EC 0.9 dS m-1 (FW and saline water with EC 6 dSm-1 (SW. At harvest, total and marketable yield, weight, number, , total soluble solids (TSS and dry matter of fruit were calculated, The results showed no statistical differences among the three different irrigation volumes on tomato yield and quality. The salinity treatment did not affect yield, probably because the soil salinity in the root zone on average remained below the threshold of tomato salt tolerance. Instead, salinity improved fruit quality parameters as dry matter and TSS by 13 and 8 %, respectively. After the first field application of saline water, soil saturated extract cations (SSEC, electrical conductivity of soil paste extract (ECe, sodium absorption ratio (SAR and exchangeable sodium percentage (ESP cations increased; the largest increase of cations, in particular of Na, occurred in the top layer. At the end of the experiment, the absolute value of SSEC, ECe and SAR, for all the effects studied, were lower than those recorded in 2007. This behavior was suitable to the reduced volumes of treatments administered in 2009 in respect to the 2007. Furthermore, the higher total rainfall recorded in 2009 increased the leaching and downward movement of salts out of the sampling depth.

  13. The analysis of soil characteristics near the animal feed and fertiliser mill using the Bartington

    Science.gov (United States)

    Azhari, Adinda Syifa; Agustine, Eleonora; Fitriani, Dini

    2017-07-01

    Industrial activities have the potential to make pollution in agricultural land, the waste contains poisonous material and it is dangerous for the environment. In general, waste from factory is dumped directly into the river, but in the current study an object that is going to be conscientious is soil on around mill. There are three sampling sites are around fertilizer plants, feed mills and original uncontaminated soil. This research has been conducted to assess the impact of pollution resulting from the two mills for the environment. Physical parameter that used is magnetic susceptibility. Sampling was conducted using the method of magnetic susceptibility of rock to see the value of low frequency (lf) and shows Frequency Dependent (fd%) using the MS2B Bartington. The results from this study is at a location close to the fertilizer plant at a depth of 0-5 cm has a value susceptibility low frequency ( lf)=187.1 - 494.8, fd (%)=1.37 - 2:46, at a depth of 6-10 cm susceptibility value of low frequency (lf)=211 - 832.7,fd (%)=1.04 - 5.37. Results in the area of animal feed mill at a depth of 0-5 cm value susceptibility low frequency (lf)=111.9 - 325.7, fd (%)=0.8 - 3.57, at a depth of 6-10 cm value susceptibility low frequency (lf)=189.2 to 386.8,fd (%)=0.33 - 3.7. Results in the original soil at a depth of 0-5 cm susceptibility value of low frequency (lf)=1188.7 - 2237.8,fd (%)=2.75 - 4.65, at a depth of 6-10 cm value susceptibility low frequency (lf)=977.7 - 2134.7,fd (%)=3.06 - 6.21. The highest value was in the arealf original, shows the area has a high mineral content andlf lows were in the area near the factory fodder it is caused by high pollution, resulting in lower mineral content in the soil.

  14. A Geographical Study of Soil Characteristic in Sugarcane Cultivation of Rahuri Tahsil of Ahmedngar District (MS)

    OpenAIRE

    Dilip Mahipati Nalage

    2017-01-01

    Sugarcane requires more water compare to other crops within growth periods. Its requires more water in summer season due to increases in temperature. Its growth is found successfully where the annual rainfall received 1400 to 2500 mm. pH in water is high (more than 8.1) is found in 21.72 percent villages. These villages come under canal and other source of irrigation. Less than 7.5 pH is found in 44 percent villages in the study area. EC in soil is suggested that it’s sufficient range in 25.5...

  15. Influence of soil on St3 surface spectroscopic characteristics under cathode protection conditions

    International Nuclear Information System (INIS)

    Kuznetsova, E.G.; Lazorenko-Manevich, R.M.; Sokolova, L.A.; Remezkova, L.V.

    1992-01-01

    Using electroreflection spectra it is shown, that St3 surface following long holding in cold clay without cathode protection is less heterogeneous relative to water absorption, than surface of initial specimens, as well as, of specimens holded in wet clay. This variation of distribution of adsorption centres by heats of water absorption results from stable absorption of surface-and-active components of clayed soil and is accompanied by increase of St3 corrosion stability. Long-term cathode polarization reduces initial distribution and decreases corrosion stability of St3

  16. Heavy metal contamination characteristic of soil in WEEE (waste electrical and electronic equipment) dismantling community: a case study of Bangkok, Thailand.

    Science.gov (United States)

    Damrongsiri, Seelawut; Vassanadumrongdee, Sujitra; Tanwattana, Puntita

    2016-09-01

    Sue Yai Utit is an old community located in Bangkok, Thailand which dismantles waste electrical and electronic equipment (WEEE). The surface soil samples at the dismantling site were contaminated with copper (Cu), lead (Pb), zinc (Zn), and nickel (Ni) higher than Dutch Standards, especially around the WEEE dumps. Residual fractions of Cu, Pb, Zn, and Ni in coarse soil particles were greater than in finer soil. However, those metals bonded to Fe-Mn oxides were considerably greater in fine soil particles. The distribution of Zn in the mobile fraction and a higher concentration in finer soil particles indicated its readily leachable character. The concentration of Cu, Pb, and Ni in both fine and coarse soil particles was mostly not significantly different. The fractionation of heavy metals at this dismantling site was comparable to the background. The contamination characteristics differed from pollution by other sources, which generally demonstrated the magnification of the non-residual fraction. A distribution pathway was proposed whereby contamination began by the deposition of WEEE scrap directly onto the soil surface as a source of heavy metal. This then accumulated, corroded, and was released via natural processes, becoming redistributed among the soil material. Therefore, the concentrations of both the residual and non-residual fractions of heavy metals in WEEE-contaminated soil increased.

  17. SHEAR STRENGTH, COLLAPSIBILITY AND COMPRESSIBILITY CHARACTERISTICS OF COMPACTED BAIJI DUNE SOILS

    Directory of Open Access Journals (Sweden)

    ABBAS JAWAD AL-TAIE

    2017-03-01

    Full Text Available Baiji city is a vital industrial centre in Iraq since it has the biggest oil refinery. Therefore, Baiji has become an attractive site for strategic construction projects. Dune sand covers about 220 km2 of the area of Baiji city. However, few researches had attempted to study its behaviour. In this study laboratory tests were conducted to determine the shear strength, collapsibility and compressibility of the dune sand at its natural and compacted status. The effect of dry unit weight, moisture content, relative density and soaking on mechanical properties of dune soil was investigated. The results demonstrated that dry and soaked dune specimens tested at their in-situ condition exhibited similar volume changes during shear and identical friction angles. The results of shear tests of both of compacted soaked and unsoaked samples were identical. The collapse potential of dune soil is inversely proportional with the relative density. The minimum axial strain is observed when the samples are compacted to modified effort. The compression index of the compacted specimens is affected by moulding water content, while the rebound index is less sensitive.

  18. [Effects of nitrogen deposition on the concentration and spectral characteristics of dissolved organic matter in soil solution in a young Cunninghamia lanceolata plantation.

    Science.gov (United States)

    Yuan, Xiao Chun; Chen, Yue Min; Yuan, Shuo; Zheng, Wei; Si, You Tao; Yuan, Zhi Peng; Lin, Wei Sheng; Yang, Yu Sheng

    2017-01-01

    To study the effects of nitrogen deposition on the concentration and spectral characteristics of dissolved organic matter (DOM) in the forest soil solution from the subtropical Cunninghamia lanceolata plantation, using negative pressure sampling method, the dynamics of DOM in soil solutions from 0-15 and 15-30 cm soil layer was monitored for two years and the spectroscopic features of DOM were analyzed. The results showed that nitrogen deposition significantly reduced the concentration of dissolved organic carbon (DOC), and increased the aromatic index (AI) and the humic index (HIX), but had no significant effect on dissolved organic nitrogen (DON) concentration in both soil layers. There was obvious seasonal variation in DOM concentration of the soil solution, which was prominently higher in summer and autumn than in spring and winter.Fourier-transform infrared (FTIR) absorption spectrometry indicated that the DOM in forest soil solution had absorption peaks in the similar position of six regions, being the highest in wave number of 1145-1149 cm -1 . Three-dimensional fluorescence spectra indicated that DOM was mainly consisted of protein-like substances (Ex/Em=230 nm/300 nm) and microbial degradation products (Ex/Em=275 nm/300 nm). The availability of protein-like substances from 0-15 cm soil layer was reduced in the nitrogen treatments. Nitrogen deposition significantly reduced the concentration of DOC in soil solution, maybe largely by reducing soil pH, inhibiting soil carbon mineralization and stimulating plant growth. In particular, the decline of DOC concentration in the surface layer was due to the production inhibition of the protein-like substances and carboxylic acids. Short-term nitrogen deposition might be beneficial to the maintenance of soil fertility, while the long-term accumulation of nitrogen deposition might lead to the hard utilization of soil nutrients.

  19. Lead and stable Pb-isotope characteristics of tropical soils in north-eastern Brazil

    International Nuclear Information System (INIS)

    Schucknecht, Anne; Matschullat, Jörg; Reimann, Clemens

    2011-01-01

    Stable Pb-isotope ratios are widely used as tracers for Pb-sources in the environment. Recently, a few publications have challenged the predominating view of environmental applications of Pb-isotopes. Present applications of Pb-isotopic tracers in soils largely represent the northern hemisphere. This study focuses on tropical soils from Paraíba, north-eastern Brazil. Lead concentrations and Pb-isotopic signatures (both 7N HNO 3 ) were determined at 30 sites along a 327 km E–W-transect, from the Atlantic coast at João Pessoa to some kilometers west of Patos, to identify possible processes for the observed (and anticipated) distribution pattern. Thirty samples each of litter (ORG) and top mineral soil (TOP) were taken on pasture land at suitable distance from roads or other potential contamination sources. Lead-content was determined by inductively-coupled plasma atomic emission spectrometry (ICP-AES) and the ratios of 206 Pb/ 207 Pb, 206 Pb/ 208 Pb, and 208 Pb/ 207 Pb by ICP-sector field mass spectrometry (ICP-SFMS). Both sample materials show similarly low Pb-concentrations with a lower median in the ORG samples (ORG 3.4 mg kg −1 versus TOP 6.9 mg kg −1 ). The 206 Pb/ 207 Pb ratios revealed a large spread along the transect with median 206 Pb/ 207 Pb ratios of 1.160 (ORG) and 1.175 (TOP). The 206 Pb/ 207 Pb ratios differ noticeably between sample sites located in the Atlantic Forest biome along the coast and sample sites in the inland Caatinga biome. The “forest” sites were characterised by a significant lower median and a lower spread in the 206 Pb/ 207 Pb and 206 Pb/ 208 Pb ratios compared to the Caatinga sites. Results indicate a very restricted influence of anthropogenic activities (individual sites only). The main process influencing the spatial variability of Pb-isotope ratios is supposed to be precipitation-dependent bioproductivity and weathering.

  20. Operation condition for continuous anti-solvent crystallization of CBZ-SAC cocrystal considering deposition risk of undesired crystals

    Science.gov (United States)

    Nishimaru, Momoko; Nakasa, Miku; Kudo, Shoji; Takiyama, Hiroshi

    2017-07-01

    Crystallization operation of cocrystal production has deposition risk of undesired crystals. Simultaneously, continuous manufacturing processes are focused on. In this study, conditions for continuous cocrystallization considering risk reduction of undesired crystals deposition were investigated on the view point of thermodynamics and kinetics. The anti-solvent cocrystallization was carried out in four-component system of carbamazepine, saccharin, methanol and water. From the preliminary batch experiment, the relationships among undesired crystal deposition, solution composition decided by mixing ratio of solutions, and residence time for the crystals were considered, and then the conditions of continuous experiment were decided. Under these conditions, the continuous experiment was carried out. The XRD patterns of obtained crystals in the continuous experiment showed that desired cocrystals were obtained without undesired crystals. This experimental result was evaluated by using multi-component phase diagrams from the view point of the operation point's movement. From the evaluation, it was found that there is a certain operation condition which the operation point is fixed with time in the specific domain without the deposition risk of undesired single component crystals. It means the possibility of continuous production of cocrystals without deposition risk of undesired crystals was confirmed by using multi-component phase diagrams.

  1. The application of game theory and cognitive economy to analyze the problem of undesired location

    International Nuclear Information System (INIS)

    Villani, S.

    2008-01-01

    The analysts of the processes of public bodies decision - taking have long been discussing on the establishment of proper strategies to manage environmental conflicts - above all the so-called problems of undesired location of public works and facilities - efficiently (i.e. on a short-period basis so as to grant decision and agreement stability) and fairly (the parties' satisfaction is itself a further guarantee of decision and agreement stability). Each strategy, anyway, is still in progress, like a universe to create and explore. Therefore, in this paper, we will focus on the analysis of the problem and provide as well some theoretical proposals to arrange a new interpreting model of public bodies decision-taking processes based on the achievements of two new subject-matters: evolutionary game theory and cognitive economy. Both sciences share their investigation field with law and economic science. [it

  2. Phosphorus application to cotton enhances growth, yield, and quality characteristics on a sandy loam soil

    International Nuclear Information System (INIS)

    Ahmad, M.; Ranjha, A.M.

    2009-01-01

    Phosphorus (P) is the second most limiting nutrient in cotton (Gossypium hirsutum L.) production after nitrogen. Under wheat-cotton cropping system of Pakistan most of the farmers apply P fertilizer only to wheat crop. A field experiment was conducted to evaluate the effect of fertilizer P on the growth, yield and fibre quality of cotton on a sandy loam calcareous soil at farmer's field in cotton growing area of district Khanewal, Punjab. Five levels of P (0, 17, 26, 34 and 43 kg P ha /sup -1/) along with 120 kg N and 53 kg K ha/sup -1/ were applied. The response of cotton growth parameters was greater than quality components to P addition in calcareous soil. There was significant increase in the growth and yield parameters with each additional rate of P. The response of number of bolls per plant, boll weight and seed cotton yield was to the tune of 88.23, 16.82 and 42%, respectively at P application rate of 34 kg ha/sup -1/. Cotton quality components (lint %age, fiber length and fiber strength) improved from 2 to 5% where 43 kg P ha/sup -1/ was added. The lint and seed P concentration was little affected by P application as compared to stem and leaves showing its essentiality for cell division and development of meristematic tissue. Phosphorus use, thus not only valuable for wheat crop but also its application to cotton crop is of vital importance in improving both lint yield and quality. (author)

  3. Turbulent characteristics of a semiarid atmospheric surface layer from cup anemometers – effects of soil tillage treatment (Northern Spain

    Directory of Open Access Journals (Sweden)

    S. Yahaya

    2003-10-01

    Full Text Available This paper deals with the characteristics of turbulent flow over two agricultural plots with various tillage treatments in a fallow, semiarid area (Central Aragon, Spain. The main dynamic characteristics of the Atmospheric Surface Layer (ASL measured over the experimental site (friction velocity, roughness length, etc., and energy budget, have been presented previously (Frangi and Richard, 2000. The current study is based on experimental measurements performed with cup anemometers located in the vicinity of the ground at 5 different levels (from 0.25 to 4 m and sampled at 1 Hz. It reveals that the horizontal wind variance, the Eulerian integral scales, the frequency range of turbulence and the turbulent kinetic energy dissipation rate are affected by the surface roughness. In the vicinity of the ground surface, the horizontal wind variance logarithmically increases with height, directly in relation to the friction velocity and the roughness length scale. It was found that the time integral scale (and subsequently the length integral scale increased with the surface roughness and decreased with the anemometer height. These variations imply some shifts in the meteorological spectral gap and some variations of the spectral peak length scale. The turbulent energy dissipation rate, affected by the soil roughness, shows a z-less stratification behaviour under stable conditions. In addition to the characterization of the studied ASL, this paper intends to show which turbulence characteristics, and under what conditions, are accessible through the cup anemometer.Key words. Meteorology and atmospheric dynamics (climatology, turbulence, instruments and techniques

  4. Turbulent characteristics of a semiarid atmospheric surface layer from cup anemometers – effects of soil tillage treatment (Northern Spain

    Directory of Open Access Journals (Sweden)

    S. Yahaya

    Full Text Available This paper deals with the characteristics of turbulent flow over two agricultural plots with various tillage treatments in a fallow, semiarid area (Central Aragon, Spain. The main dynamic characteristics of the Atmospheric Surface Layer (ASL measured over the experimental site (friction velocity, roughness length, etc., and energy budget, have been presented previously (Frangi and Richard, 2000. The current study is based on experimental measurements performed with cup anemometers located in the vicinity of the ground at 5 different levels (from 0.25 to 4 m and sampled at 1 Hz. It reveals that the horizontal wind variance, the Eulerian integral scales, the frequency range of turbulence and the turbulent kinetic energy dissipation rate are affected by the surface roughness. In the vicinity of the ground surface, the horizontal wind variance logarithmically increases with height, directly in relation to the friction velocity and the roughness length scale. It was found that the time integral scale (and subsequently the length integral scale increased with the surface roughness and decreased with the anemometer height. These variations imply some shifts in the meteorological spectral gap and some variations of the spectral peak length scale. The turbulent energy dissipation rate, affected by the soil roughness, shows a z-less stratification behaviour under stable conditions. In addition to the characterization of the studied ASL, this paper intends to show which turbulence characteristics, and under what conditions, are accessible through the cup anemometer.

    Key words. Meteorology and atmospheric dynamics (climatology, turbulence, instruments and techniques

  5. Removing undesirable color and boosting biological activity in red beet extracts using gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Sik; Lee, Eun Mi; Hong, Sung Hyun; Bai, Hyoung Woo; Chung, Byung Yeoup [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, In Chul [Youngdong University, Youngdong (Korea, Republic of)

    2011-10-15

    Red beet (Beta vulgaris L.) is a traditional and popular vegetable distributed in many part of the world and has been used as a natural colorant in many dairy products, beverages, candies and cattle products. Red beet roots contain two groups of betalain pigments, redviolet betacyanins and yellow betaxanthins. Betalains possess several biological activities such as antioxidant, anti-inflammatory, hepatoprotective, and anticancer properities. Recent trend of using natural products in industries tends toward multifunctional, high quality, and highpriced value foods and cosmetics. To meet the needs of consumers, cosmetics, medicine, and foods should contain the proper amount of natural products. Although the color removal processes such as filtration and absorption by clay are still useful, these procedures are difficult, time-consuming and costly. To overcome this problem, the radiation technology has emerged as a new way. Radiation technology has been applied to the decomposition and decoloration of pigment and is an efficient technique for inactivating pathogens, removing undesirable color in biomaterial extracts and improving or maintaining biological activities. Gamma-irradiation and electron beamirradiation techniques in previous reports were applied in order to remove any undesirable color and to improve or maintain biological activities of various extracts such as green tea leaves, licorice root, and S. chinensis fruits. Latorre et al. reported that betacyanin concentration decreased with the irradiation dose and significantly, in 35%, after 2.0 kGy of gamma-ray, whereas betaxathin concentration increased (about 11%-ratio with respect to control) after 1 kGy but decreased (about 19%) after 2 kGy. However, they did not try to analysis for completed removal of red beet pigments. Therefore, it is necessary to find the optimum irradiation dose for entirely removing red pigments in red beet. The aim of this work was to address the effects of the color removal and

  6. Qualitative screening of undesirable compounds from feeds to fish by liquid chromatography coupled to mass spectrometry.

    Science.gov (United States)

    Nácher-Mestre, Jaime; Ibáñez, María; Serrano, Roque; Pérez-Sánchez, Jaume; Hernández, Félix

    2013-03-06

    This paper describes the development, validation, and application of a rapid screening method for the detection and identification of undesirable organic compounds in aquaculture products. A generic sample treatment was applied without any purification or preconcentration step. After extraction of the samples with acetonitrile/water 80:20 (0.1% formic acid), the extracts were centrifuged and directly injected in the LC-HRMS system, consisting of ultra-high performance liquid chromatography coupled to hybrid quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS). A qualitative validation was carried out for over 70 representative compounds, including antibiotics, pesticides, and mycotoxins, in fish feed and fish fillets spiked at 20 and 100 μg/kg. At the highest level, the great majority of compounds were detected (using the most abundant ion, typically the protonated molecule) and unequivocally identified (on the basis of the presence of two accurate-mass measured ions). At the 20 μg/kg level, many contaminants could already be detected, although identification using two ions was not fully reached for some of them, mainly in fish feed due to the complexity of this matrix. Subsequent application of this screening methodology to aquaculture samples made it possible to find several compounds from the target list, such as the antibiotic ciprofloxacin, the insecticide pirimiphos-methyl, and the mycotoxins fumonisin B2 and zearalenone. A retrospective analysis of accurate-mass full-spectrum acquisition data provided by QTOF MS was also made, without either reprocessing or injecting the samples. This allowed the detection and tentative identification of other organic undesirables different from those included in the validated list.

  7. Removing undesirable color and boosting biological activity in red beet extracts using gamma irradiation

    International Nuclear Information System (INIS)

    Lee, Seung Sik; Lee, Eun Mi; Hong, Sung Hyun; Bai, Hyoung Woo; Chung, Byung Yeoup; Lee, In Chul

    2011-01-01

    Red beet (Beta vulgaris L.) is a traditional and popular vegetable distributed in many part of the world and has been used as a natural colorant in many dairy products, beverages, candies and cattle products. Red beet roots contain two groups of betalain pigments, redviolet betacyanins and yellow betaxanthins. Betalains possess several biological activities such as antioxidant, anti-inflammatory, hepatoprotective, and anticancer properities. Recent trend of using natural products in industries tends toward multifunctional, high quality, and highpriced value foods and cosmetics. To meet the needs of consumers, cosmetics, medicine, and foods should contain the proper amount of natural products. Although the color removal processes such as filtration and absorption by clay are still useful, these procedures are difficult, time-consuming and costly. To overcome this problem, the radiation technology has emerged as a new way. Radiation technology has been applied to the decomposition and decoloration of pigment and is an efficient technique for inactivating pathogens, removing undesirable color in biomaterial extracts and improving or maintaining biological activities. Gamma-irradiation and electron beamirradiation techniques in previous reports were applied in order to remove any undesirable color and to improve or maintain biological activities of various extracts such as green tea leaves, licorice root, and S. chinensis fruits. Latorre et al. reported that betacyanin concentration decreased with the irradiation dose and significantly, in 35%, after 2.0 kGy of gamma-ray, whereas betaxathin concentration increased (about 11%-ratio with respect to control) after 1 kGy but decreased (about 19%) after 2 kGy. However, they did not try to analysis for completed removal of red beet pigments. Therefore, it is necessary to find the optimum irradiation dose for entirely removing red pigments in red beet. The aim of this work was to address the effects of the color removal and

  8. The effect of using irradiated sludge as an organic fertilizer on the soil characteristics and productivity of yellow corn

    International Nuclear Information System (INIS)

    Takriti, S.; Khalifa, K.

    2003-08-01

    A field experiment was conducted at Deir- El-Hajar research station near Damascus, to study the effect of using irradiated sludge (5 KGy) and unirradiated sludge (0 KGy) as an organic fertilizer on productivity of corn and some soil characteristics. The results showed that increment of grain yield of corn by 20% when applying 1kg/m 2 from unirradiated sludge and 37% when applying irradiated sludge. Also it was found increment in productivity of the other parts of corn (cobs, stems and leaves) compared with control plots. The concentration and accumulation of heavy metals (Zn, Co, Cu, Pb, Cr) in corn were low and less than critical limits for all treatment. The accumulation for these metals in corn plants was not clear at end of the experiment. The highest accumulation for Cu was in grain, Cr and Zn in cobs, and Fe was in stems and leaves. Addition of sludge at different rates had no negative effect on the accumulation of the studied heavy metals in the soil. (author)

  9. Definition of soil characteristics and ground response at the northwestern part of the Gulf of Suez, Egypt

    International Nuclear Information System (INIS)

    Mohamed Adel, M E; Deif, A; El-Hadidy, S; Sayed, S R Moustafa; El Werr, A

    2008-01-01

    The area of interest represents the industrial part of Ain El-Sokhna new port, located in the northwestern part of the seismically active Gulf of Suez zone. The main objective of the current study is to estimate the site characteristics of the area of interest in terms of the fundamental frequency and the corresponding peak amplitude using noise measurements. The microtremor measurements were performed at 44 sites distributed over the study area in order to calculate the horizontal-to-vertical (H/V) spectral ratio. The standard spectral ratio (SSR) is used in addition to the numerical modelling of horizontal shear (SH) waves in soil at selected sites in order to have a comparison with the H/V spectral ratio. The required 1D soil models for the numerical modelling of SH-waves were derived from 220 P-wave shallow seismic refraction profiles in addition to 30 SH-wave profiles. Maps of the fundamental frequency (f 0 ) and its corresponding H/V peak amplitude (A 0 ) were provided, and a range of site conditions in the area were shown. The amplification factor results derived from the SSR technique are very similar to those derived from the H/V spectral ratio. In most cases, the H/V spectral ratio proved to be suitable for calculating the fundamental resonance. Results were found to be compatible with the surface geology of the area of interest

  10. The GEANT4 simulation study of the characteristic γ-ray spectrum of TNT under soil induced by DT neutron

    International Nuclear Information System (INIS)

    Qin Xue; Han Jifeng; Yang Chaowen

    2014-01-01

    The characteristic γ-ray spectrum of TNT under soil induced by DT neutron is measured based on the PFTNA demining system. GEANT4 Monte Carlo simulation toolkit is used to simulate the whole experimental procedure. The simulative spectrum is compared with the experimental spectrum. The result shows that they are mainly consistent. It is for the first time to analyze the spectrum by Monte Carlo simulation, the share of the background sources such as neutron, gamma are obtained, the contribution that the experimental apparatus such as shielding, detector sleeve, moderator make to the background is analysed. The study found that the effective gamma signal (from soil and TNT) is only 29% of the full-spectrum signal, and the background signal is more than 68% of the full-spectrum signal, which is mainly produced in the shielding and the detector sleeve. The simulation result shows that by gradually improving the shielding and the cadmium of the detector sleeve, the share of the effective gamma signal can increase to 36% and the background signal can fell 7% eventually. (authors)

  11. [Characteristics of Soil Respiration along Eroded Sloping Land with Different SOC Background on the Hilly Loess Plateau].

    Science.gov (United States)

    Chen, Gai; Xu, Ming-xiang; Zhang, Ya-feng; Wang, Chao-hua; Fan, Hui-min; Wang, Shan-shan

    2015-09-01

    This study aimed to characterize soil respiration along eroded sloping land at erosion and deposition area under different soil organic carbon(SOC) levels, and linked the relationship between soil respiration and soil temperature, soil moisture, SOC and slope position. Experiments were carried out in the plots of S type slopes include five different soil organic carbon levels in the Loess Hilly Region. The S type slopes were divided into control area at the top of the slope, erosion area at the middle of the slope and deposition area at the toe of the slope. We found that soil temperature had a greater impact on soil respiration in the deposition area, whereas soil moisture had a greater impact on soil respiration in the erosion area compared among control area, erosion area and deposition area. In addition, SOC was the most important factor affecting soil respiration, which can explain soil respiration variation 54. 72%, followed by soil moisture, slope position and soil temperature, which explain soil respiration variation 18. 86% , 16. 13% and 10. 29%, respectively. Soil respiration response to erosion showed obvious on-site and off-site effects along the eroded sloping land. Soil respiration in the erosion area was reduced by 21. 14% compared with control area, and soil respiration in the deposition area was increased by 21. 93% compared with control area. Erosion effect on source and sink of carbon emission was correlated with SOC content of the eroded sloping land. When SOC content was higher than 6. 82 g.kg-1, the slope. erosion tended to be a carbon sequestration process, and when SOC content was lower than 3.03 g.kg-1, the slope erosion tended to be a process of the carbon emission source. The model could reflect the relationship between soil respiration and independent variables of soil organic carbon content, soil temperature and moisture.

  12. The Effect of Drying-Wetting Cycle’s Repetition to the Characteristic of Natural and Stabilization Residual Soils Jawa Timur - Indonesia

    Science.gov (United States)

    Muntaha, M.

    2017-11-01

    Indonesia, which located in tropical region, continuously undergoes wetting and drying cycles due to the changeable seasons. An important role in activating the clay minerals on tropical residual soils is the main factor that affects the static and dynamic properties, such as: volume change, soil suction and dynamic modulus. The purpose of this paper is to evaluate the effect of drying-wetting cycles repetition on volume change, soil suction and mechanical characteristics of natural and stabilization of residual soils from Jawa Timur - Indonesia. The natural undisturbed and stabilized residual soil sample was naturally and gradually dried up with air to 25%, 50%, 75%, and 100 % of the initial water content. The wetting processes were carried out with the gradual increment water content of 25 %(wsat - wi), 50 %(wsat - wi), 75 %(wsat - wi), up to 100 %(wsat - wi). The Direct Shear test is used to measure the mechanic properties, and Whatman filter paper No. 42 is used to measure the soil suction. The drying-wetting processes were carried out for 1, 2, 4, and 6 cycles. The laboratory test results showed that, the void ratio decreased, the unit weight, cohesion and the internal friction angle were increasing due to stabilization. Drying-wetting cycle repetition reduces void ratio, negative pore-water pressure, cohesion and internal friction angle of natural and stabilized soils. Briefly, the decreased of mechanical soil properties was proven from the physical properties change observation.

  13. CHARACTERISTICS OF COMPOSTED BIO-TOILET RESIDUE AND ITS POTENTIAL USE AS A SOIL CONDITIONER

    Directory of Open Access Journals (Sweden)

    Jovita Triastuti

    2016-10-01

    Full Text Available Bio-toilet is a dry toilet where human excreta is trapped in a lignocelluloses soil matrix such as wood sawdust, then it is decomposed by aerobic  bacteria to organic compost rich in minerals such as N, P, and K. The study aimed to characterize the bio-toilet residue and its potential use as a soil conditioner for Jatropha curcas. The study was conducted in a private school of Daarut Tauhid in Bandung West Java. A bio-toilet S-50 type of Japan was constructed consisting of a composting chamber, mixer, heater, exhaust fan, and closet. The composting chamber was filled with 63 kg of Albizzia sawdust. Feces and urine was loaded daily by 54 students for 122-day observation. At the end of observation, the decomposed bio-toilet residue was evaluated for its physical properties such as bulk density (rb, porosity (%, and water retention (WR. Chemical properties such as pH, C/N ratio, N, P, and K, as well as microbiological properties such as numbers of bacteria, fungi, and worm eggs were evaluated at 14 and 122 days of decomposition process. Effect of the composted bio-toilet residue as plant growth media was evaluated using J. curcass as a plant indicator. Before it was used as a growth media, the composted bio-toilet residue was dried in a room temperature for 30 days. The experiment was designed in a completely randomized design 2 x 4 factorial with three replications. The first factor was the rate of composted biotoilet residue, i.e., 0, 20, 40, and 60% based on weight of the growth media mixture (1500 g pot-1, and the second was NPK fertilizer addition at 0 and 2 g pot-1. Each pot was planted with 2-month old of J. curcas seedlings. Parameters evaluated were leaf number, leaf area, stem height, and stem diameter measured at 12 weeks after planting. The results showed that the biotoilet residue was suitable as soil conditioner because it had high porosity (76%, low bulk density (0.19 g cm-3, high water retention (2.6 ml g-1 DM, neutral pH (6.9, C

  14. Reliable and accurate point-based prediction of cumulative infiltration using soil readily available characteristics: A comparison between GMDH, ANN, and MLR

    Science.gov (United States)

    Rahmati, Mehdi

    2017-08-01

    Developing accurate and reliable pedo-transfer functions (PTFs) to predict soil non-readily available characteristics is one of the most concerned topic in soil science and selecting more appropriate predictors is a crucial factor in PTFs' development. Group method of data handling (GMDH), which finds an approximate relationship between a set of input and output variables, not only provide an explicit procedure to select the most essential PTF input variables, but also results in more accurate and reliable estimates than other mostly applied methodologies. Therefore, the current research was aimed to apply GMDH in comparison with multivariate linear regression (MLR) and artificial neural network (ANN) to develop several PTFs to predict soil cumulative infiltration point-basely at specific time intervals (0.5-45 min) using soil readily available characteristics (RACs). In this regard, soil infiltration curves as well as several soil RACs including soil primary particles (clay (CC), silt (Si), and sand (Sa)), saturated hydraulic conductivity (Ks), bulk (Db) and particle (Dp) densities, organic carbon (OC), wet-aggregate stability (WAS), electrical conductivity (EC), and soil antecedent (θi) and field saturated (θfs) water contents were measured at 134 different points in Lighvan watershed, northwest of Iran. Then, applying GMDH, MLR, and ANN methodologies, several PTFs have been developed to predict cumulative infiltrations using two sets of selected soil RACs including and excluding Ks. According to the test data, results showed that developed PTFs by GMDH and MLR procedures using all soil RACs including Ks resulted in more accurate (with E values of 0.673-0.963) and reliable (with CV values lower than 11 percent) predictions of cumulative infiltrations at different specific time steps. In contrast, ANN procedure had lower accuracy (with E values of 0.356-0.890) and reliability (with CV values up to 50 percent) compared to GMDH and MLR. The results also revealed

  15. Physical and chemical characteristics of plutonium in existing contaminated soils and sediments

    International Nuclear Information System (INIS)

    Tamura, T.

    1975-01-01

    Plutonium from three sites was studied to provide information necessary in understanding its behavior and fate under prevailing conditions. Plutonium in soils from the Nevada Test Site (NTS) was predominantly associated (50 to 75 percent) with the coarse silt (53 to 20 μm) fraction. The plutonium in samples from Oak Ridge National Laboratory (ORNL) and Mound Laboratory (ML) was predominantly in the clay size (less than 2 μm). The solubility in citric acid was about 20 to 25 percent in the ORNL sample and 40 to 50 percent in the ML sample. Density gradient segregation of the clay size fraction of the ML sample showed the activity distribution to be directly related to the weight of the recovered fraction with enhanced contribution by the very light organic fraction. Approximately 71 percent was found in the 2.3 to 2.4 g/cm 3 fraction which contained 65 weight percent of the clay and 16 percent in the less than 1.8 g/cm 3 fraction (organic fraction) which contained 6 percent of the weight fraction

  16. A Low-Cost Automated Test Column to Estimate Soil Hydraulic Characteristics in Unsaturated Porous Media

    Directory of Open Access Journals (Sweden)

    J. Salas-García

    2017-01-01

    Full Text Available The estimation of soil hydraulic properties in the vadose zone has some issues, such as accuracy, acquisition time, and cost. In this study, an inexpensive automated test column (ATC was developed to characterize water flow in a homogeneous unsaturated porous medium by the simultaneous estimation of three hydraulic state variables: water content, matric potential, and water flow rates. The ATC includes five electrical resistance probes, two minitensiometers, and a drop counter, which were tested with infiltration tests using the Hydrus-1D model. The results show that calibrations of electrical resistance probes reasonably match with similar studies, and the maximum error of calibration of the tensiometers was 4.6% with respect to the full range. Data measured by the drop counter installed in the ATC exhibited a high consistency with the electrical resistance probes, which provides an independent verification of the model and indicates an evaluation of the water mass balance. The study results show good performance of the model against the infiltration tests, which suggests a robustness of the methodology developed in this study. An extension to the applicability of this system could be successfully used in low-budget projects in large-scale field experiments, which may be correlated with resistivity changes.

  17. [Transfer characteristic and source identification of soil heavy metals from water-level-fluctuating zone along Xiangxi River, three-Gorges Reservoir area].

    Science.gov (United States)

    Xu, Tao; Wang, Fei; Guo, Qiang; Nie, Xiao-Qian; Huang, Ying-Ping; Chen, Jun

    2014-04-01

    Transfer characteristics of heavy metals and their evaluation of potential risk were studied based on determining concentration of heavy metal in soils from water-level-fluctuating zone (altitude:145-175 m) and bank (altitude: 175-185 m) along Xiangxi River, Three Gorges Reservoir area. Factor analysis-multiple linear regression (FA-MLR) was employed for heavy metal source identification and source apportionment. Results demonstrate that, during exposing season, the concentration of soil heavy metals in water-level-fluctuation zone and bank showed the variation, and the concentration of soil heavy metals reduced in shallow soil, but increased in deep soil at water-level-fluctuation zone. However, the concentration of soil heavy metals reduced in both shallow and deep soil at bank during the same period. According to the geoaccumulation index,the pollution extent of heavy metals followed the order: Cd > Pb > Cu > Cr, Cd is the primary pollutant. FA and FA-MLR reveal that in soils from water-level-fluctuation zone, 75.60% of Pb originates from traffic, 62.03% of Cd is from agriculture, 64.71% of Cu and 75.36% of Cr are from natural rock. In soils from bank, 82.26% of Pb originates from traffic, 68.63% of Cd is from agriculture, 65.72% of Cu and 69.33% of Cr are from natural rock. In conclusion, FA-MLR can successfully identify source of heavy metal and compute source apportionment of heavy metals, meanwhile the transfer characteristic is revealed. All these information can be a reference for heavy metal pollution control.

  18. [Characteristics of ground-dwelling soil macro-arthropod communities in a biodiversity monitoring plot of black soil cropland, northeastern China].

    Science.gov (United States)

    Liu, Jie; Gao, Mie Xiang; Wu, Dong Hui

    2017-12-01

    Agro-ecosystem is an important component of terrestrial ecosystems and it is one of the key areas of global ecological and environmental studies. A 16 hm 2 permanent plot in black soil cropland was built to study the community structure of soil biodiversity in typical black soil region in Northeast China. Pitfall trap was used to investigate the ground-dwelling soil macro-arthropods from August to October 2015 in accordance with the three crop growth stages: whirling stage, silking stage, and milk stage. A total of 5284 ground-dwelling soil macro-arthropods belonging to 47 species were captured sorted into 3 classes, 12 orders, 32 families. 3 dominant groups and 11 common groups were found. Phytophages and Omnivores were dominant groups. The individuals and species numbers of ground-dwelling soil macro-arthropods had significant changes with the vegetative growth period. The maximum values of the Shannon index, Margalef index, Pielou index of soil macro-arthropods all appeared in September, but the maximum dominant index appeared in August. From the variation coefficient (CV) and spatial interpolation of different species, it could be seen that there was heterogeneity in the horizontal direction of the ground-dwelling soil macro-arthropod communities. Regarding the relationships between the ground-dwelling soil macro-arthropod communities and soil environmental factors including soil pH, soil organic matter, total nitrogen and soil water content, the bivariate correlation analysis showed there was no significant correlation between them. Results of canonical correspondence analysis (CCA) further indicated that the dominant and common groups were adaptable to environmental factors and widely distributed in the study area. The results showed that the species richness of ground-dwelling soil macro-arthropods was very high in cropland, and the dynamic of soil arthropod's composition and spatial distribution pattern in diffe-rent crop growth stages were significantly

  19. Out of sight - Profiling soil characteristics, nutrients and microbial communities affected by organic amendments down to one meter in a long-term maize cultivation experiment

    Science.gov (United States)

    Lehtinen, Taru; Mikkonen, Anu; Zavattaro, Laura; Grignani, Carlo; Baumgarten, Andreas; Spiegel, Heide

    2016-04-01

    Soil characteristics, nutrients and microbial activity in the deeper soil layers are topics not of-ten covered in agricultural studies since the main interest lies within the most active topsoils and deep soils are more time-consuming to sample. Studies have shown that deep soil does matter, although biogeochemical cycles are not fully understood yet. The main aim of this study is to investigate the soil organic matter dynamics, nutrients and microbial community composition in the first meter of the soil profiles in the long-term maize cropping system ex-periment Tetto Frati, in the vicinity of the Po River in Northern Italy. The trial site lies on a deep, calcareous, free-draining soil with a loamy texture. The following treatments have been applied since 1992: 1) maize for silage with 250 kg mineral N ha-1 (crop residue removal, CRR), 2) maize for grain with 250 kg mineral N ha-1 (crop residue incorporation, CRI), 3) maize for silage with 250 kg bovine slurry N ha-1 (SLU), 4) maize for silage with 250 kg farm yard manure N ha-1 (FYM). Soil characteristics (pH, carbonate content, soil organic carbon (SOC), aggregate stability (WSA)), and nutrients (total nitrogen (Nt), CAL-extractable phos-phorous (P) and potassium (K), potential N mineralisation) were investigated. Bacteri-al community composition was investigated with Ion PGM high-throughput sequencing at the depth of 8000 sequences per sample. Soil pH was moderately alkaline in all soil samples, in-creasing with increasing soil depth, as the carbonate content increased. SOC was significantly higher in the treatments with organic amendments (CRI, SLU and FYM) compared to CRR in 0-25 cm (11.1, 11.6, 14.7 vs. 9.8 g kg-1, respectively), but not in the deeper soil. At 50-75 cm soil depth FYM treatment revealed higher WSA compared to CRR, as well as higher CAL-extractable K (25 and 15 mg kg-1, respectively) and potential N mineralisation (11.30 and 8.78 mg N kg-1 7d-1, respectively). At 75-100 cm soil depth, SLU and

  20. Sap flow characteristics of neotropical mangroves in flooded and drained soils

    Science.gov (United States)

    Krauss, Ken W.; Young, P. Joy; Chambers, Jim L.; Doyle, Thomas W.; Twilley, Robert R.

    2007-01-01

    Effects of flooding on water transport in mangroves have previously been investigated in a few studies, most of which were conducted on seedlings in controlled settings. In this study, we used heat-dissipation sap probes to determine if sap flow (Js) attenuates with radial depth into the xylem of mature trees of three south Florida mangrove species growing in Rookery Bay. This was accomplished by inserting sap probes at multiple depths and monitoring diurnal flow. For most species and diameter size class combinations tested, Js decreased dramatically beyond a radial depth of 2 or 4 cm, with little sap flow beyond a depth of 6 cm. Mean Js was reduced on average by 20% in Avicennia germinans (L.) Stearn, Laguncularia racemosa (L.) Gaertn. f. and Rhizophora mangle L. trees when soils were flooded. Species differences were highly significant, with L. racemosahaving the greatest midday Js of about 26g H2O H2O m−2s−1 at a radial depth of 2 cm compared with a mean for the other two species of about 15 g H2O m−2s−1. Sap flow at a depth of 2 cm in mangroves was commensurate with rates reported for other forested wetland tree species. We conclude that: (1) early spring flooding of basin mangrove forests causes reductions in sap flow in mature mangrove trees; (2) the sharp attenuations in Js along the radial profile have implications for understanding whole-tree water use strategies by mangrove forests; and (3) regardless of flood state, individual mangrove tree water use follows leaf-level mechanisms in being conservative.

  1. Soil water retention, air flow and pore structure characteristics after corn cob biochar application to a tropical sandy loam

    DEFF Research Database (Denmark)

    Amoakwah, Emmanuel; Frimpong, Kwame Agyei; Okae-Anti, D

    2017-01-01

    Soil structure is a key soil physical property that affects soil water balance, gas transport, plant growth and development, and ultimately plant yield. Biochar has received global recognition as a soil amendment with the potential to ameliorate the structure of degraded soils. We investigated how...... corn cob biochar contributed to changes in soil water retention, air flow by convection and diffusion, and derived soil structure indices in a tropical sandy loam. Intact soil cores were taken from a field experiment that had plots without biochar (CT), and plots each with 10 t ha− 1 (BC-10), 20 t ha...... to significant increase in soil water retention compared to the CT and BC-10 as a result of increased microporosity (pores biochar had minimal impact. No significant influence of biochar was observed for ka and Dp/D0 for the BC treatments compared to the CT despite...

  2. Pollution characteristics and health risk assessment of phthalate esters in urban soil in the typical semi-arid city of Xi'an, Northwest China.

    Science.gov (United States)

    Wang, Lijun; Liu, Mengmei; Tao, Wendong; Zhang, Wenjuan; Wang, Li; Shi, Xingmin; Lu, Xinwei; Li, Xiaoping

    2018-01-01

    A total of 62 urban soil samples were collected in the city of Xi'an in Northwest China, and analyzed for six U.S. Environmental Protection Agency priority phthalate esters (PAEs). Unlike earlier studies on PAEs in agricultural soil as well as urban soil in humid climates, this paper for the first time comprehensively assessed pollution characteristics and health risks of human exposure to PAEs in urban soil in a typical semi-arid climate. The total concentrations of the six PAEs (Σ6PAEs) in the urban soil varied between 193.0 and 19146.4 μg kg -1 with a mean of 1369.3 μg kg -1 . The PAEs were dominated by di-n-butyl phthalate and di(2-ethylhexyl) phthalate. Magnetic susceptibility and soil texture were controlling factors influencing the concentrations of PAEs in the urban soil. The concentrations of benzyl butyl phthalate, di(2-ethylhexyl) phthalate, and Σ6PAEs increased from the first to third ring roads, while the concentrations of di-n-octyl phthalate decreased. Relatively higher levels of PAEs were observed in industrial, traffic, and residential areas. The PAEs in the urban soil originated mainly from the application of plasticizers or additives, use of cosmetics and personal care products, emissions of construction materials and home furnishings, industrial processes, and atmospheric deposition. The concentrations of some PAEs in the urban soil exceeded soil allowable concentrations and environmental risk levels. The non-cancer and carcinogenic risks of human exposure to the PAEs were relatively low. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Undesired small RNAs originate from an artificial microRNA precursor in transgenic petunia (Petunia hybrida.

    Directory of Open Access Journals (Sweden)

    Yulong Guo

    Full Text Available Although artificial microRNA (amiRNA technology has been used frequently in gene silencing in plants, little research has been devoted to investigating the accuracy of amiRNA precursor processing. In this work, amiRNAchs1 (amiRchs1, based on the Arabidopsis miR319a precursor, was expressed in order to suppress the expression of CHS genes in petunia. The transgenic plants showed the CHS gene-silencing phenotype. A modified 5' RACE technique was used to map small-RNA-directed cleavage sites and to detect processing intermediates of the amiRchs1 precursor. The results showed that the target CHS mRNAs were cut at the expected sites and that the amiRchs1 precursor was processed from loop to base. The accumulation of small RNAs in amiRchs1 transgenic petunia petals was analyzed using the deep-sequencing technique. The results showed that, alongside the accumulation of the desired artificial microRNAs, additional small RNAs that originated from other regions of the amiRNA precursor were also accumulated at high frequency. Some of these had previously been found to be accumulated at low frequency in the products of ath-miR319a precursor processing and some of them were accompanied by 3'-tailing variant. Potential targets of the undesired small RNAs were discovered in petunia and other Solanaceae plants. The findings draw attention to the potential occurrence of undesired target silencing induced by such additional small RNAs when amiRNA technology is used. No appreciable production of secondary small RNAs occurred, despite the fact that amiRchs1 was designed to have perfect complementarity to its CHS-J target. This confirmed that perfect pairing between an amiRNA and its targets is not the trigger for secondary small RNA production. In conjunction with the observation that amiRNAs with perfect complementarity to their target genes show high efficiency and specificity in gene silencing, this finding has an important bearing on future applications of ami

  4. Undesired small RNAs originate from an artificial microRNA precursor in transgenic petunia (Petunia hybrida).

    Science.gov (United States)

    Guo, Yulong; Han, Yao; Ma, Jing; Wang, Huiping; Sang, Xianchun; Li, Mingyang

    2014-01-01

    Although artificial microRNA (amiRNA) technology has been used frequently in gene silencing in plants, little research has been devoted to investigating the accuracy of amiRNA precursor processing. In this work, amiRNAchs1 (amiRchs1), based on the Arabidopsis miR319a precursor, was expressed in order to suppress the expression of CHS genes in petunia. The transgenic plants showed the CHS gene-silencing phenotype. A modified 5' RACE technique was used to map small-RNA-directed cleavage sites and to detect processing intermediates of the amiRchs1 precursor. The results showed that the target CHS mRNAs were cut at the expected sites and that the amiRchs1 precursor was processed from loop to base. The accumulation of small RNAs in amiRchs1 transgenic petunia petals was analyzed using the deep-sequencing technique. The results showed that, alongside the accumulation of the desired artificial microRNAs, additional small RNAs that originated from other regions of the amiRNA precursor were also accumulated at high frequency. Some of these had previously been found to be accumulated at low frequency in the products of ath-miR319a precursor processing and some of them were accompanied by 3'-tailing variant. Potential targets of the undesired small RNAs were discovered in petunia and other Solanaceae plants. The findings draw attention to the potential occurrence of undesired target silencing induced by such additional small RNAs when amiRNA technology is used. No appreciable production of secondary small RNAs occurred, despite the fact that amiRchs1 was designed to have perfect complementarity to its CHS-J target. This confirmed that perfect pairing between an amiRNA and its targets is not the trigger for secondary small RNA production. In conjunction with the observation that amiRNAs with perfect complementarity to their target genes show high efficiency and specificity in gene silencing, this finding has an important bearing on future applications of amiRNAs in gene

  5. Impacts of biochar addition on soil dissolved organic matter characteristics in a wheat-maize rotation system in Loess Plateau of China.

    Science.gov (United States)

    Zhang, Afeng; Zhou, Xu; Li, Ming; Wu, Haiming

    2017-11-01

    Biochar amendment in soil has the potential to sequester carbon, improve soil quality and mitigate greenhouse