WorldWideScience

Sample records for underwent hematopoietic stem

  1. Quality of Life and Psychopathology in Adults Who Underwent Hematopoietic Stem Cell Transplantation (HSCT in Childhood: A Qualitative and Quantitative Analysis

    Directory of Open Access Journals (Sweden)

    Francesco Sinatora

    2017-08-01

    Full Text Available Background: Patients who undergo pediatric Hematopoietic Stem Cell Transplantation (HSCT may experience long-term psychological sequelae and poor Quality of Life (QoL in adulthood. This study aimed to investigate subjective illness experience, QoL, and psychopathology in young adults who have survived pediatric HSCT.Method: The study involved patients treated with HSCT in the Hematology-Oncology Department between 1984 and 2007. Psychopathology and QoL were investigated using the SCL-90-R and SF-36. Socio-demographic and medical information was also collected. Finally, participants were asked to write a brief composition about their experiences of illness and care. Qualitative analysis of the texts was performed using T-LAB, an instrument for text analysis that allows the user to highlight the occurrences and co-occurrences of lemma. Quantitative analyses were performed using non-parametric tests (Spearman correlations, Kruskal-Wallis and Mann-Whitney tests.Results: Twenty-one patients (9 males participated in the study. No significant distress was found on the SCL-90 Global Severity Index, but it was found on specific scales. On the SF-36, lower scores were reported on scales referring to bodily pain, general health, and physical and social functioning. All the measures were significantly (p < 0.05 associated with specific socio-demographic and medical variables (gender, type of pathology, type of HSCT, time elapsed between communication of the need to transplant and effective transplantation, and days of hospitalization. With regard to the narrative analyses, males focused on expressions related to the body and medical therapies, while females focused on people they met during treatment, family members, and donors. Low general health and treatment with autologous HSCT were associated with memories about chemotherapy, radiotherapy, and the body parts involved, while high general health was associated with expressions focused on gratitude (V

  2. Hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Eleftheria Hatzimichael

    2010-08-01

    Full Text Available Eleftheria Hatzimichael1, Mark Tuthill21Department of Haematology, Medical School of Ioannina, University of Ioannina, Ioannina, Greece; 2Department of Medical Oncology, Hammersmith Hospital, Imperial College National Health Service Trust, London, UKAbstract: More than 25,000 hematopoietic stem cell transplantations (HSCTs are performed each year for the treatment of lymphoma, leukemia, immune-deficiency illnesses, congenital metabolic defects, hemoglobinopathies, and myelodysplastic and myeloproliferative syndromes. Before transplantation, patients receive intensive myeloablative chemoradiotherapy followed by stem cell “rescue.” Autologous HSCT is performed using the patient’s own hematopoietic stem cells, which are harvested before transplantation and reinfused after myeloablation. Allogeneic HSCT uses human leukocyte antigen (HLA-matched stem cells derived from a donor. Survival after allogeneic transplantation depends on donor–recipient matching, the graft-versus-host response, and the development of a graft versus leukemia effect. This article reviews the biology of stem cells, clinical efficacy of HSCT, transplantation procedures, and potential complications.Keywords: hematopoietic stem cell transplantation, complications

  3. Thrombopoietin and hematopoietic stem cells

    OpenAIRE

    de Graaf, Carolyn A; Metcalf, Donald

    2011-01-01

    Thrombopoietin (TPO) is the cytokine that is chiefly responsible for megakaryocyte production but increasingly attention has turned to its role in maintaining hematopoietic stem cells (HSCs). HSCs are required to initiate the production of all mature hematopoietic cells, but this differentiation needs to be balanced against self-renewal and quiescence to maintain the stem cell pool throughout life. TPO has been shown to support HSC quiescence during adult hematopoiesis, with the loss of TPO s...

  4. Prognostic Factors and a New Prognostic Index Model for Children and Adolescents with Hodgkin’s Lymphoma Who Underwent Autologous Hematopoietic Stem Cell Transplantation: A Multicenter Study of the Turkish Pediatric Bone Marrow Transplantation Study

    Directory of Open Access Journals (Sweden)

    Vural Kesik

    2016-12-01

    Full Text Available Objective: The prognostic factors and a new childhood prognostic index after autologous hematopoietic stem cell transplantation (AHSCT in patients with relapsed/refractory Hodgkin’s lymphoma (HL were evaluated. Materials and Methods: The prognostic factors of 61 patients who underwent AHSCT between January 1990 and December 2014 were evaluated. In addition, the Age-Adjusted International Prognostic Index and the Childhood International Prognostic Index (CIPI were evaluated for their impact on prognosis. Results: The median age of the 61 patients was 14.8 years (minimummaximum: 5-20 years at the time of AHSCT. There were single relapses in 28 patients, ≥2 relapses in eight patients, and refractory disease in 25 patients. The chemosensitivity/chemorefractory ratio was 36/25. No pretransplant radiotherapy, no remission at the time of transplantation, posttransplant white blood cell count over 10x103/ μL, posttransplant positron emission tomography positivity at day 100, and serum albumin of <2.5 g/dL at diagnosis were correlated with progression-free survival. No remission at the time of transplantation, bone marrow positivity at diagnosis, and relapse after AHSCT were significant parameters for overall survival. Conclusion: The major factors affecting the progression-free and overall survival were clearly demonstrated. A CIPI that uses a lactate dehydrogenase level of 500 IU/L worked well for estimating the prognosis. We recommend AHSCT at first complete remission for relapsed cases, and it should also be taken into consideration for patients with high prognostic scores at diagnosis.

  5. Hematopoietic stem cells under pressure.

    Science.gov (United States)

    Ganuza, Miguel; McKinney-Freeman, Shannon

    2017-07-01

    Hematopoietic stem cells (HSCs) and progenitors are tasked with maintaining hematopoietic homeostasis in the face of numerous insults and challenges, including infection, inflammation, and exsanguination. HSCs possess the remarkable ability to reconstitute the entire hematopoietic system of an organism whose own hematopoietic system has been ablated. This ability is exploited routinely in the clinic via HSC transplantation (HSCT). Here, we focus on the physiological and molecular bottlenecks overcome by HSCs during transplantation. During transplantation, HSCs encounter a damaged bone marrow niche, characterized molecularly by increases in oxygen concentrations and an altered cytokine milieu. New mechanisms and pathways have been recently implicated during HSCT, including transplanted HSC-dependent secretion of conditioning molecules that facilitate engraftment and pathways that protect HSCs from perturbed organelle homeostasis. Better understanding the molecular processes HSCs employ to withstand the stress of transplant will illuminate novel targets for further improving conditioning regimens and engraftment during HSCT.

  6. Thrombopoietin and hematopoietic stem cells

    Science.gov (United States)

    de Graaf, Carolyn A

    2011-01-01

    Thrombopoietin (TPO) is the cytokine that is chiefly responsible for megakaryocyte production but increasingly attention has turned to its role in maintaining hematopoietic stem cells (HSCs). HSCs are required to initiate the production of all mature hematopoietic cells, but this differentiation needs to be balanced against self-renewal and quiescence to maintain the stem cell pool throughout life. TPO has been shown to support HSC quiescence during adult hematopoiesis, with the loss of TPO signaling associated with bone marrow failure and thrombocytopenia. Recent studies have shown that constitutive activation mutations in Mpl contribute to myeloproliferative disease. In this review, we will discuss TPO signaling pathways, regulation of TPO levels and the role of TPO in normal hematopoiesis and during myeloproliferative disease. PMID:21478671

  7. Hematopoietic stem cells and the aging hematopoietic system.

    Science.gov (United States)

    Gazit, Roi; Weissman, Irving L; Rossi, Derrick J

    2008-10-01

    The etiology of the age-associated pathophysiological changes of the hematopoietic system including the onset of anemia, diminished adaptive immune competence, and myelogenous disease development are underwritten by the loss of normal homeostatic control. As tissue and organ homeostasis in adults is primarily mediated by the activity of stem and progenitor cells, it has been suggested that the imbalances accompanying aging of the hematopoietic system may stem from alterations in the prevalence and/or functional capacity of hematopoietic stem cells (HSCs) and progenitors. In this review, we examine evidence implicating a role for stem cells in the aging of the hematopoietic system, and focus on the mechanisms suggested to contribute to stem cell aging.

  8. Hematopoietic stem cell expansion : challenges and opportunities

    NARCIS (Netherlands)

    Walasek, Marta A.; van Os, Ronald; de Haan, Gerald; Kanz, L; Fibbe, WE; Lengerke, C; Dick, JE

    2012-01-01

    Attempts to improve hematopoietic reconstitution and engraftment potential of ex vivo-expanded hematopoietic stem and progenitor cells (HSPCs) have been largely unsuccessful due to the inability to generate sufficient stem cell numbers and to excessive differentiation of the starting cell

  9. The biochemistry of hematopoietic stem cell development

    NARCIS (Netherlands)

    P. Kaimakis (Polynikis); M. Crisan (Mihaela); E.A. Dzierzak (Elaine)

    2013-01-01

    textabstractBackground: The cornerstone of the adult hematopoietic system and clinical treatments for blood-related disease is the cohort of hematopoietic stem cells (HSC) that is harbored in the adult bone marrow microenvironment. Interestingly, this cohort of HSCs is generated only during a short

  10. Stem cells and the aging hematopoietic system.

    Science.gov (United States)

    Beerman, Isabel; Maloney, William J; Weissmann, Irving L; Rossi, Derrick J

    2010-08-01

    Advancing age is accompanied by a number of clinically significant conditions arising in the hematopoietic system that include: diminution and decreased competence of the adaptive immune system, elevated incidence of certain autoimmune diseases, increased hematological malignancies, and elevated incidence of age-associated anemia. As with most tissues, the aged hematopoietic system also exhibits a reduced capacity to regenerate and return to normal homeostasis after injury or stress. Evidence suggests age-dependent functional alterations within the hematopoietic stem cell compartment significantly contribute to many of these pathophysiologies. Recent developments have shed light on how aging of the hematopoietic stem cell compartment contributes to hematopoietic decline through diverse mechanisms. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Molecular regulation of human hematopoietic stem cells

    NARCIS (Netherlands)

    van Galen, P.L.J.

    2014-01-01

    Peter van Galen focuses on understanding the determinants that maintain the stem cell state. Using human hematopoietic stem cells (HSCs) as a model, processes that govern self-renewal and tissue regeneration were investigated. Specifically, a role for microRNAs in balancing the human HSC

  12. Thrombopoietin expands hematopoietic stem cells after transplantation

    OpenAIRE

    Fox, Norma; Priestley, Greg; Papayannopoulou, Thalia; Kaushansky, Kenneth

    2002-01-01

    Multiple lines of evidence indicate that thrombopoietin (TPO) contributes to the development of hematopoietic stem cells (HSC), supporting their survival and proliferation in vitro. To determine whether TPO supports the impressive expansion of HSC observed following transplantation, we transplanted normal marrow cells into lethally irradiated Tpo–/– and Tpo+/+ mice and quantified HSC self-renewal and expansion and hematopoietic progenitor cell homing. Although essentially identical numbers of...

  13. Recent advances in hematopoietic stem cell biology

    DEFF Research Database (Denmark)

    Bonde, Jesper; Hess, David A; Nolta, Jan A

    2004-01-01

    PURPOSE OF REVIEW: Exciting advances have been made in the field of hematopoietic stem cell biology during the past year. This review summarizes recent progress in the identification, culture, and in vivo tracking of hematopoietic stem cells. RECENT FINDINGS: The roles of Wnt and Notch proteins...... in the context of stem cell tracking in vivo. This review concludes with a section on the unexpected potential of bone marrow-derived stem cells to contribute to the repair of damaged tissues. The contribution of cell fusion to explain the latter phenomenon is discussed. SUMMARY: Because of exciting discoveries...... made recently in the field of stem cell biology, researchers now have improved tools to define novel populations of stem cells, examine them ex vivo using conditions that promote self-renewal, track them into recipients, and determine whether they can contribute to the repair of damaged tissues...

  14. Ex vivo Expansion of Hematopoietic Stem Cells

    NARCIS (Netherlands)

    E. Farahbakhshian (Elnaz)

    2013-01-01

    textabstractHematopoiesis is a complex cellular differentiation process resulting in the formation of all blood cell types. In this process, hematopoietic stem cells (HSCs) reside at the top of the hematopoiesis hierarchy and have the capacity to differentiate into all blood cell lineages

  15. Cellular memory and, hematopoietic stem cell aging

    NARCIS (Netherlands)

    Kamminga, Leonie M.; de Haan, Gerald

    Hematopoietic stem cells (HSCs) balance self-renewal and differentiation in order to sustain lifelong blood production and simultaneously maintain the HSC pool. However, there is clear evidence that HSCs are subject to quantitative and qualitative exhaustion. In this review, we briefly discuss

  16. Hematopoietic Stem Cell Approaches to Cancer.

    Science.gov (United States)

    Adair, Jennifer E; Kubek, Sara P; Kiem, Hans-Peter

    2017-10-01

    Hematopoietic stem cells (HSCs) are unique in their ability to self-renew and generate all blood lineages for the entire life. HSC modification affects red blood cells, platelets, lymphocytes, and myeloid cells. Chemotherapy can result in myelosuppression, limiting effective chemotherapy administration. For diseases like glioblastoma, high expression of methlylguanine methyltransferase can inactivate alkylating agent chemotherapy. Here we discuss how HSCs can be modified to overcome this resistance, permitting sensitization of tumors to chemotherapy while simultaneously protecting the hematopoietic system. We also discuss how HSCs can be harnessed to produce powerful tumor killing T cells, potentially benefitting and complementing T-cell-based immunotherapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Proteomic cornerstones of hematopoietic stem cell differentiation

    DEFF Research Database (Denmark)

    Klimmeck, Daniel; Hansson, Jenny; Raffel, Simon

    2012-01-01

    Regenerative tissues such as the skin epidermis, the intestinal mucosa or the hematopoietic system are organized in a hierarchical manner with stem cells building the top of this hierarchy. Somatic stem cells harbor the highest self-renewal activity and generate a series of multipotent progenitors...... which differentiate into lineage committed progenitors and subsequently mature cells. In this report, we applied an in-depth quantitative proteomic approach to analyze and compare the full proteomes of ex vivo isolated and FACS-sorted populations highly enriched for either multipotent hematopoietic stem....../progenitor cells (HSPCs, Lin(neg)Sca-1(+)c-Kit(+)) or myeloid committed precursors (Lin(neg)Sca-1(-)c-Kit(+)). By employing stable isotope dimethyl labeling and high-resolution mass spectrometry, more than 5,000 proteins were quantified. From biological triplicate experiments subjected to rigorous statistical...

  18. File list: His.Bld.05.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.05.AllAg.Hematopoietic_Stem_Cells mm9 Histone Blood Hematopoietic Stem Cell...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.05.AllAg.Hematopoietic_Stem_Cells.bed ...

  19. File list: His.Bld.20.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.20.AllAg.Hematopoietic_Stem_Cells mm9 Histone Blood Hematopoietic Stem Cell...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.20.AllAg.Hematopoietic_Stem_Cells.bed ...

  20. File list: His.Bld.50.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.50.AllAg.Hematopoietic_Stem_Cells mm9 Histone Blood Hematopoietic Stem Cell...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.50.AllAg.Hematopoietic_Stem_Cells.bed ...

  1. File list: His.Bld.10.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.10.AllAg.Hematopoietic_Stem_Cells mm9 Histone Blood Hematopoietic Stem Cell...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.10.AllAg.Hematopoietic_Stem_Cells.bed ...

  2. Prostaglandin E2 regulates hematopoietic stem cell

    International Nuclear Information System (INIS)

    Wang Yingying; Zhou Daohong; Meng Aimin

    2013-01-01

    Prostaglandin E2 (PGE2) is a bioactive lipid molecule produced by cyclooxygenase (COX), which plays an important role on hematopoiesis. While it can block differentiation of myeloid progenitors but enhance proliferation of erythroid progenitors. Recent research found that PGE2 have the effects on hematopoietic stem cell (HSC) function and these effects were independent from effects on progenitor cells. Exposure of HSC cells to PGE2 in vitro can increase homing efficiency of HSC to the murine bone marrow compartment and decrease HSC apoptosis, meanwhile increase long-term stem cell engraftment. In-vivo treatment with PGE2 expands short-term HSC and engraftment in murine bone marrow but not long-term HSC.In addition, PGE2 increases HSC survival after radiation injury and enhance hematopoietic recovery, resulting maintains hematopoietic homeostasis. PGE2 regulates HSC homeostasis by reactive oxygen species and Wnt pathway. Clinical beneficial of 16, 16-dimethyl-prostaglandin E2 treatment to enhance engraftment of umbilical cord blood suggest important improvements to therapeutic strategies. (authors)

  3. Epigenetic regulation of hematopoietic stem cell aging

    International Nuclear Information System (INIS)

    Beerman, Isabel; Rossi, Derrick J.

    2014-01-01

    Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and play a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks – DNA methylation and histone modifications – but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging

  4. Epigenetic regulation of hematopoietic stem cell aging

    Energy Technology Data Exchange (ETDEWEB)

    Beerman, Isabel, E-mail: isabel.beerman@childrens.harvard.edu [Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 (United States); Department of Pediatrics, Harvard Medical School, Boston, MA 02115 (United States); Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children' s Hospital, MA 02116 (United States); Rossi, Derrick J. [Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 (United States); Department of Pediatrics, Harvard Medical School, Boston, MA 02115 (United States); Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children' s Hospital, MA 02116 (United States)

    2014-12-10

    Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and play a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks – DNA methylation and histone modifications – but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging.

  5. Mismatch repair deficient hematopoietic stem cells are preleukemic stem cells.

    Directory of Open Access Journals (Sweden)

    Yulan Qing

    Full Text Available Whereas transformation events in hematopoietic malignancies may occur at different developmental stages, the initial mutation originates in hematopoietic stem cells (HSCs, creating a preleukemic stem cell (PLSC. Subsequent mutations at either stem cell or progenitor cell levels transform the PLSC into lymphoma/leukemia initiating cells (LIC. Thymic lymphomas have been thought to develop from developing thymocytes. T cell progenitors are generated from HSCs in the bone marrow (BM, but maturation and proliferation of T cells as well as T-lymphomagenesis depends on both regulatory mechanisms and microenvironment within the thymus. We studied PLSC linked to thymic lymphomas. In this study, we use MSH2-/- mice as a model to investigate the existence of PLSC and the evolution of PLSC to LIC. Following BM transplantation, we found that MSH2-/- BM cells from young mice are able to fully reconstitute multiple hematopoietic lineages of lethally irradiated wild-type recipients. However, all recipients developed thymic lymphomas within three and four months post transplantation. Transplantation of different fractions of BM cells or thymocytes from young health MSH2-/- mice showed that an HSC enriched fraction always reconstituted hematopoiesis followed by lymphoma development. In addition, lymphomas did not occur in thymectomized recipients of MSH2-/- BM. These results suggest that HSCs with DNA repair defects such as MSH2-/- are PLSCs because they retain hematopoietic function, but also carry an obligate lymphomagenic potential within their T-cell progeny that is dependent on the thymic microenvironment.

  6. Hematopoietic stem cell transplantation in multiple sclerosis

    DEFF Research Database (Denmark)

    Rogojan, C; Frederiksen, J L

    2009-01-01

    Intensive immunosuppresion followed by hematopoietic stem cell transplantation (HSCT) has been suggested as potential treatment in severe forms of multiple sclerosis (MS). Since 1995 ca. 400 patients have been treated with HSCT. Stabilization or improvement occurred in almost 70% of cases at least...... for 3 years post-transplant. Magnetic resonance revealed the capacity of autologous HSCT to suppress or markedly reduce gadolinium-enhancing lesions. The progression of brain atrophy declined after two years post-HSCT. The profound immunological changes following autologous HSCT may result...

  7. Complications of allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Arnaout, Karim; Patel, Nihar; Jain, Maneesh; El-Amm, Joelle; Amro, Farah; Tabbara, Imad A

    2014-08-01

    Infection, graft-versus-host disease (GVHD), and to a lesser extent sinusoidal obstructive syndrome (SOS) represent the major causes of morbidity and mortality in patients undergoing allogeneic hematopoietic stem cell transplantation (AHSCT). During the last decade, progress in prevention and treatment of these complications led to improvement in the outcome of these patients. Despite the fact that nonmyeloablative regimens have been increasingly used in elderly patients and in patients with co-morbidities, the nonrelapse related mortality remains a challenge and long-term follow-up is required. The objective of this manuscript is to provide an updated concise review of the complications of AHSCT and of the available treatment interventions.

  8. Mechanism of hematopoietic stem cell homing

    International Nuclear Information System (INIS)

    Jiang Fuquan

    2000-01-01

    The clinical transplantation of hematopoietic stem cell (HSC) originating from many sources such as bone marrow, peripheral blood and cord blood has been widely applied in recent years. At the same time, the development of the study on the mechanism of HSC homing which involves multi-procedures has been achieved. And a lot of molecular and cytokines on the surface or in the microenvironment of HSC are functioning in homing. The purpose of is to review those molecular and cytokines on which more studies have been focused in the past

  9. Small Molecule Protection of Bone Marrow Hematopoietic Stem Cells

    Science.gov (United States)

    2016-10-01

    mouse hematopoietic stem cells ex vivo by reprogramming cellular metabolism. Blood. 2015;125(10):1562-1565. 54. Nath N, Khan M, Paintlia MK, Singh I...Award Number: W81XWH-14-1-0297 TITLE: Small Molecule Protection of Bone Marrow Hematopoietic Stem Cells PRINCIPAL INVESTIGATOR: Raymond J...Molecule Protection of Bone Marrow Hematopoietic Stem Cells Stem Cells ’ 5a. CONTRACT NUMBER W81XWH-14-1-0297 W81XWH-14-1-0297 W81XWH-14-1-0297 5b

  10. Retrospective analysis of fluoroquinolone prophylaxis in patients undergoing allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Simondsen, Katherine A; Reed, Michael P; Mably, Mary S; Zhang, Yang; Longo, Walter L

    2013-12-01

    Patients undergoing allogeneic hematopoietic stem cell transplant are at a high risk for infection-related mortality in the immediate post-transplantation phase. Prophylaxis with a fluoroquinolone is now recommended to reduce this risk with the stipulation that surveillance for increased fluoroquinolone resistance Clostridium difficile associated diarrhea be conducted. We conducted a retrospective chart review of 48 patients who underwent an allogeneic hematopoietic stem cell transplant and received a fluoroquinolone for prophylaxis and 48 patients who underwent an allogeneic hematopoietic stem cell transplant who did not receive a fluoroquinolone for prophylaxis. All patients received the same standard antifungal, antiviral and anti-pneumocystis prophylaxis. Patients receiving fluoroquinolone prophylaxis had a lower incidence of febrile neutropenia than those not receiving prophylaxis, though the difference was not found to be statistically significant (83% vs. 67%, p = 0.098). Similar non-significant improvements in the number of positive cultures recovered during an episode of febrile neutropenia and antimicrobial days were noted. No significant increase in fluoroquinolone resistance, Clostridium difficile associated diarrhea, or in methicillin resistant Staphylococcus aureus infections were noted. Our single institution experience with fluoroquinolone prophylaxis for allogeneic hematopoietic stem cell transplant patients supports continuation of this practice. Expansion to autologous hematopoietic stem cell transplant patients may be appropriate based on guideline recommendations and our institution-specific experience with fluoroquinolone prophylaxis.

  11. Long-term adverse effects of hematopoietic stem cell transplantation on dental development in children

    NARCIS (Netherlands)

    van der Pas-van Voskuilen, I. G. M.; Veerkamp, J. S. J.; Raber-Durlacher, J. E.; Bresters, D.; van Wijk, A. J.; Barasch, A.; McNeal, S.; Gortzak, R. A. Th

    2009-01-01

    The purpose of this study was to assess late effects of cytotoxic therapy with hematopoietic stem cell transplantation (HCT) on dental development in survivors of childhood cancer. Forty children who underwent allogeneic HCT for a variety of hematological malignancies were evaluated at a minimum of

  12. Long-term adverse effects of hematopoietic stem cell transplantation on dental development in children

    NARCIS (Netherlands)

    van der Pas-Voskuilen, I.G.M.; Veerkamp, J.S.J.; Raber-Durlacher, J.E.; Bresters, D.; van Wijk, A.J.; Barasch, A.; McNeal, S.; Gortzak, R.A.T.

    2009-01-01

    Purpose: The purpose of this study was to assess late effects of cytotoxic therapy with hematopoietic stem cell transplantation (HCT) on dental development in survivors of childhood cancer. Materials and methods: Forty children who underwent allogeneic HCT for a variety of hematological malignancies

  13. Oral cyclosporine A treatment is feasible after myeloablative conditioning in allogeneic hematopoietic stem cell transplantation

    DEFF Research Database (Denmark)

    Nygaard, M; Hovgaard, D; Schjødt, I M

    2015-01-01

    underwent myeloablative hematopoietic stem cell transplantation. Twenty-one patients (44%) tolerated CsA orally throughout the transplantation period without increased incidence of acute graft versus host disease(aGVHD). Low concentration of CsA in week 2 was associated with increased incidence of a...

  14. Hematopoietic specification from human pluripotent stem cells: current advances and challenges toward de novo generation of hematopoietic stem cells.

    Science.gov (United States)

    Slukvin, Igor I

    2013-12-12

    Significant advances in cellular reprogramming technologies and hematopoietic differentiation from human pluripotent stem cells (hPSCs) have already enabled the routine production of multiple lineages of blood cells in vitro and opened novel opportunities to study hematopoietic development, model genetic blood diseases, and manufacture immunologically matched cells for transfusion and cancer immunotherapy. However, the generation of hematopoietic cells with robust and sustained multilineage engraftment has not been achieved. Here, we highlight the recent advances in understanding the molecular and cellular pathways leading to blood development from hPSCs and discuss potential approaches that can be taken to facilitate the development of technologies for de novo production of hematopoietic stem cells.

  15. Autologous hematopoietic stem cells for refractory Crohn's disease.

    Science.gov (United States)

    DiNicola, C A; Zand, A; Hommes, D W

    2017-05-01

    Autologous hematopoietic stem cells are gaining ground as an effective and safe treatment for treating severe refractory Crohn's disease (CD). Autologous hematopoietic stem cell therapy (AHSCT) induces resetting of the immune system by de novo regeneration of T-cell repertoire and repopulation of epithelial cells by bone-marrow derived cells to help patients achieve clinical and endoscopic remission. Areas covered: Herein, the authors discuss the use of AHSCT in treating patients with CD. Improvements in disease activity have been seen in patients with severe autoimmune disease and patients with severe CD who underwent AHSCT for a concomitant malignant hematological disease. Clinical and endoscopic remission has been achieved in patients treated with AHSCT for CD. The only randomized trial published to date, the ASTIC Trial, did not support further use of AHSCT to treat CD. Yet, critics of this trial have deemed AHSCT as a promising treatment for severe refractory CD. Expert opinion: Even with the promising evidence presented for HSCT for refractory CD, protocols need to be refined through the collaboration of GI and hemato-oncology professionals. The goal is to incorporate safe AHSCT and restore tolerance by delivering an effective immune 'cease fire' as a treatment option for severe refractory CD.

  16. Inflammatory signals regulate hematopoietic stem cells.

    Science.gov (United States)

    Baldridge, Megan T; King, Katherine Y; Goodell, Margaret A

    2011-02-01

    Hematopoietic stem cells (HSCs) are the progenitors of all blood and immune cells, yet their role in immunity is not well understood. Most studies have focused on the ability of committed lymphoid and myeloid precursors to replenish immune cells during infection. Recent studies, however, have indicated that HSCs also proliferate in response to systemic infection and replenish effector immune cells. Inflammatory signaling molecules including interferons, tumor necrosis factor-α and Toll-like receptors are essential to the HSC response. Observing the biology of HSCs through the lens of infection and inflammation has led to the discovery of an array of immune-mediators that serve crucial roles in HSC regulation and function. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Hematopoietic stem cell transplantation in Algeria.

    Science.gov (United States)

    Bekadja, Mohamed Amine; Brahimi, Mohamed; Osmani, Soufi; Yafour, Nabil; Krim, Amina; Serradj, Faiza; Talhi, Souad; Amani, Kamila; Bouhass, Rachid Amar

    2017-12-01

    Algeria is a country of 40.4 million inhabitants and half of which is under 30years. In Algeria, Health-care insurance covered, 90% of the population. Health care is free and it is supported by the Ministry of Health. 16 university hospitals exist in Algeria and only two (Algiers and Oran) practicing bone marrow transplant. Adult hematologic malignancies account for 10% (about 4000 new cases/year) of the malignancy affecting in most cases young patients under 65years of age. In 2016, 270 transplants were performed in total (Algiers+Oran), including 149 allografts (related donor transplants: 99%) and 121 autografts. 98% of transplants are done in adults and only 2% in children with cord blood transplants. In summary for the two transplant centers, the predominant types of transplantation performed are allogeneic transplant in 55% and autologous transplant in 45%. The particularity of EHU1st November in Oran, is the use of non-cryopreserved stem cells. Stem cell was mobilized using G-CSF alone and the grafts were kept in a conventional blood bank refrigerator at +4°C until reinfusion on day 0. The outcome with non-cryopreserved stem cells are the same as those with cryopreserved stem cells and we conclude that autologous transplant with non cryopreserved hematopoietic stem cells (HSC) is a simple, effective and safe method and the cryopreservation is not necessary in our work conditions in developing countries. The projects are achieving the autograft in all University Hospitals with non cryopreserved HSC, achieving a center allograft in the east of the country and the development of bone marrow transplantation in children. Currently in Algeria, the number of transplantation is insufficient and the development of new transplant centers is essential. In the future, we hope to implement the National Society of Bone Marrow transplant and also the National recipient registry and Donor registry in Algeria. Copyright © 2017 King Faisal Specialist Hospital & Research

  18. Distinct Brca1 Mutations Differentially Reduce Hematopoietic Stem Cell Function.

    Science.gov (United States)

    Mgbemena, Victoria E; Signer, Robert A J; Wijayatunge, Ranjula; Laxson, Travis; Morrison, Sean J; Ross, Theodora S

    2017-01-24

    BRCA1 is a well-known DNA repair pathway component and a tissue-specific tumor suppressor. However, its role in hematopoiesis is uncertain. Here, we report that a cohort of patients heterozygous for BRCA1 mutations experienced more hematopoietic toxicity from chemotherapy than those with BRCA2 mutations. To test whether this reflects a requirement for BRCA1 in hematopoiesis, we generated mice with Brca1 mutations in hematopoietic cells. Mice homozygous for a null Brca1 mutation in the embryonic hematopoietic system (Vav1-iCre;Brca1 F22-24/F22-24 ) developed hematopoietic defects in early adulthood that included reduced hematopoietic stem cells (HSCs). Although mice homozygous for a huBRCA1 knockin allele (Brca1 BRCA1/BRCA1 ) were normal, mice with a mutant huBRCA1/5382insC allele and a null allele (Mx1-Cre;Brca1 F22-24/5382insC ) had severe hematopoietic defects marked by a complete loss of hematopoietic stem and progenitor cells. Our data show that Brca1 is necessary for HSC maintenance and normal hematopoiesis and that distinct mutations lead to different degrees of hematopoietic dysfunction. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Distinct Brca1 Mutations Differentially Reduce Hematopoietic Stem Cell Function

    Directory of Open Access Journals (Sweden)

    Victoria E. Mgbemena

    2017-01-01

    Full Text Available BRCA1 is a well-known DNA repair pathway component and a tissue-specific tumor suppressor. However, its role in hematopoiesis is uncertain. Here, we report that a cohort of patients heterozygous for BRCA1 mutations experienced more hematopoietic toxicity from chemotherapy than those with BRCA2 mutations. To test whether this reflects a requirement for BRCA1 in hematopoiesis, we generated mice with Brca1 mutations in hematopoietic cells. Mice homozygous for a null Brca1 mutation in the embryonic hematopoietic system (Vav1-iCre;Brca1F22–24/F22–24 developed hematopoietic defects in early adulthood that included reduced hematopoietic stem cells (HSCs. Although mice homozygous for a huBRCA1 knockin allele (Brca1BRCA1/BRCA1 were normal, mice with a mutant huBRCA1/5382insC allele and a null allele (Mx1-Cre;Brca1F22–24/5382insC had severe hematopoietic defects marked by a complete loss of hematopoietic stem and progenitor cells. Our data show that Brca1 is necessary for HSC maintenance and normal hematopoiesis and that distinct mutations lead to different degrees of hematopoietic dysfunction.

  20. Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function

    OpenAIRE

    Kosan, Christian; Godmann, Maren

    2015-01-01

    All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC) have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several trans...

  1. Dynamic changes in mouse hematopoietic stem cell numbers during aging

    NARCIS (Netherlands)

    de Haan, G; Van Zant, G

    1999-01-01

    To address the fundamental question of whether or not stem cell populations age, we performed quantitative measurements of the cycling status and frequency of hematopoietic stem cells in long-lived C57BL/6 (B6) and short-lived DBA/2 (DBA) mice at different developmental and aging stages. The

  2. Polycomb group proteins in hematopoietic stem cell aging and malignancies

    NARCIS (Netherlands)

    Klauke, Karin; de Haan, Gerald

    Protection of the transcriptional "stemness" network is important to maintain a healthy hematopoietic stem cells (HSCs) compartment during the lifetime of the organism. Recent evidence shows that fundamental changes in the epigenetic status of HSCs might be one of the driving forces behind many

  3. Kaposi Sarcoma After Allogeneic Hematopoietic Stem Cell Transplant: A Rare Complication.

    Science.gov (United States)

    Ramzi, Mani; Vojdani, Reza; Haghighinejad, Hourvash

    2018-01-02

    Kaposi sarcoma is a multicentric angioproliferative neoplasm of lymphatic endothelium-derived cells. Although this malignancy is relatively frequent after solid-organ transplant, it is extremely rare after bone marrow transplantation. Allogeneic stem cell transplantation is associated with severe prolonged immunosuppression; however, a few cases of Kaposi sarcoma after hematopoietic stem cell transplant were previously reported. Here, we report a case of Kaposi sarcoma after haploidentical allogeneic hematopoietic stem cell transplant. The patient was a known case of acute myelogenous leukemia and underwent transplant after relapse. Four months posttransplant, she presented with 3 dark blue or purplish small nodules on her face above the upper lip. Histopathologic study confirmed Kaposi sarcoma. Serum antibody against human herpes virus type 8 was positive. After discontinuation of immunosuppressive medication and cryotherapy for local control, Kaposi sarcoma skin nodules healed with residual pigmented skin lesions. The patient is currently in complete remission for Kaposi sarcoma and cured from acute myelogenous leukemia 36 months after stem cell transplant. Only 14 cases of Kaposi sarcoma after hematopoietic cell transplant have been previously reported in the literature (11 after allogeneic and 3 after autologous hematopoietic stem cell transplant). According to our knowledge from literature review, this case is the first report of Kaposi sarcoma after a haploidentical HLA match transplant.

  4. Strength Training Following Hematopoietic Stem Cell Transplantation

    Science.gov (United States)

    Hacker, Eileen Danaher; Larson, Janet; Kujath, Amber; Peace, David; Rondelli, Damiano; Gaston, Lisa

    2010-01-01

    Background Patients receiving high-dose chemotherapy and hematopoietic stem cell transplantation (HSCT) experience considerable reductions in physical activity and deterioration of their health status. Objective The purpose of this pilot study was to test the effects of strength training compared to usual activity on physical activity, muscle strength, fatigue, health status perceptions, and quality of life following HSCT. Interventions/Methods Nineteen subjects were randomized to the exercise or control group. Moderate intensity strength training began following discharge from the hospital. Dependent variables included physical activity, muscle strength, fatigue, health status perceptions and quality of life. Variables were measured prior to admission to the hospital for HSCT, day 8 following HSCT, and six weeks following discharge from the hospital. Results Significant time effects were noted for many variables with anticipated declines in physical activity, muscle strength, fatigue, and health status perceptions immediately after HSCT with subsequent improvements six weeks following hospital discharge. One group effect was noted with subjects in the exercise group reporting less fatigue than subjects in the control group. Although no significant interactions were detected, the trends suggest that the exercise group may be more physically active following the intervention compared to the usual activity group. Conclusions This study demonstrates the potential positive effects of strength training on physical activity, fatigue, and quality of life in people receiving high-dose chemotherapy and HSCT. Implications for Practice Preliminary evidence is provided for using strength training to enhance early recovery following HSCT. Elastic resistance bands are easy to use and relatively inexpensive. PMID:21116175

  5. The aging hematopoietic stem cell niche: Phenotypic and functional changes and mechanisms that contribute to hematopoietic aging.

    Science.gov (United States)

    Latchney, Sarah E; Calvi, Laura M

    2017-01-01

    The hematopoietic system has the remarkable ability to provide a lifelong supply of mature cells that make up the entire blood and immune system. However, similar to other adult stem cell niches, the hematopoietic system is vulnerable to the detrimental effects of aging. This is a substantial health concern as the trend for population aging continues to increase. Identifying mechanisms that underlie hematopoietic aging is vital for understanding hematopoietic-related diseases. In this review, we first discuss the cellular hierarchy of the hematopoietic system and the components that make up the surrounding hematopoietic niche. We then provide an overview of the major phenotypes associated with hematopoietic aging and discuss recent research investigating cell-intrinsic and cell-extrinsic mechanisms of hematopoietic stem cell (HSCs) aging. We end by discussing the exciting new concept of possibly reversing the HSC aging process along with outstanding questions that remain to be answered. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Allogeneic hematopoietic stem cell transplantation in children with primary immunodeficiencies: Hospital Israelita Albert Einstein experience.

    Science.gov (United States)

    Fernandes, Juliana Folloni; Kerbauy, Fabio Rodrigues; Ribeiro, Andreza Alice Feitosa; Kutner, Jose Mauro; Camargo, Luis Fernando Aranha; Stape, Adalberto; Troster, Eduardo Juan; Zamperlini-Netto, Gabriele; Azambuja, Alessandra Milani Prandini de; Carvalho, Bruna; Dorna, Mayra de Barros; Vilela, Marluce Dos Santos; Jacob, Cristina Miuki Abe; Costa-Carvalho, Beatriz Tavares; Cunha, Jose Marcos; Carneiro-Sampaio, Magda Maria; Hamerschlak, Nelson

    2011-06-01

    To report the experience of a tertiary care hospital with allogeneic hematopoietic stem cell transplantation in children with primary immunodeficiencies. Seven pediatric patients with primary immunodeficiencies (severe combined immunodeficiency: n = 2; combined immunodeficiency: n = 1; chronic granulomatous disease: n = 1; hyper-IgM syndrome: n = 2; and IPEX syndrome: n = 1) who underwent eight hematopoietic stem cell transplants in a single center, from 2007 to 2010, were studied. Two patients received transplants from HLA-identical siblings; the other six transplants were done with unrelated donors (bone marrow: n = 1; cord blood: n = 5). All patients had pre-existing infections before hematopoietic stem cell transplants. One patient received only anti-thymocyte globulin prior to transplant, three transplants were done with reduced intensity conditioning regimens and four transplants were done after myeloablative therapy. Two patients were not evaluated for engraftment due to early death. Three patients engrafted, two had primary graft failure and one received a second transplant with posterior engraftment. Two patients died of regimen related toxicity (hepatic sinusoidal obstruction syndrome); one patient died of progressive respiratory failure due to Parainfluenza infection present prior to transplant. Four patients are alive and well from 60 days to 14 months after transplant. Patients' status prior to transplant is the most important risk factor on the outcome of hematopoietic stem cell transplants in the treatment of these diseases. Early diagnosis and the possibility of a faster referral of these patients for treatment in reference centers may substantially improve their survival and quality of life.

  7. Allogeneic hematopoietic stem cell transplantation in children with primary immunodeficiencies: Hospital Israelita Albert Einstein experience

    Directory of Open Access Journals (Sweden)

    Juliana Folloni Fernandes

    2011-06-01

    Full Text Available Objective: To report the experience of a tertiary care hospital withallogeneic hematopoietic stem cell transplantation in children withprimary immunodeficiencies. Methods: Seven patients with primaryimmunodeficiencies (severe combined immunodeficiency: n = 2;combined immunodeficiency: n = 1; chronic granulomatous disease:n = 1; hyper-IgM syndrome: n = 2; and IPEX syndrome: n = 1who underwent eight hematopoietic stem cell transplants (HSCTin a single center, from 2007 to 2010, were studied. Results: Twopatients received transplants from HLA-identical siblings; the othersix transplants were done with unrelated donors (bone marrow: n= 1; cord blood: n = 5. All patients had pre-existing infectionsbefore hematopoietic stem cell transplants. One patient receivedonly anti-thymocyte globulin prior to transplant, three transplantswere done with reduced intensity conditioning regimens and fourtransplants were done after myeloablative therapy. Two patientswere not evaluable for engraftment due to early death. Three patientsengrafted, two had primary graft failure and one received a secondtransplant with posterior engraftment. Two patients died of regimenrelated toxicity (hepatic sinusoidal obstruction syndrome; one patient died of progressive respiratory failure due to Parainfluenza infection diagnosed prior to transplant. Four patients are alive and well from 60 days to 14 months after transplant. Conclusion: Patients’ status prior to transplant is the most important risk factor on the outcome of hematopoietic stem cell transplants in the treatment of these diseases. Early diagnosis and the possibility of a faster referral of these patients for treatment in reference centers may substantially improve their survival and quality of life.

  8. Stepwise development of hematopoietic stem cells from embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Kenji Matsumoto

    Full Text Available The cellular ontogeny of hematopoietic stem cells (HSCs remains poorly understood because their isolation from and their identification in early developing small embryos are difficult. We attempted to dissect early developmental stages of HSCs using an in vitro mouse embryonic stem cell (ESC differentiation system combined with inducible HOXB4 expression. Here we report the identification of pre-HSCs and an embryonic type of HSCs (embryonic HSCs as intermediate cells between ESCs and HSCs. Both pre-HSCs and embryonic HSCs were isolated by their c-Kit(+CD41(+CD45(- phenotype. Pre-HSCs did not engraft in irradiated adult mice. After co-culture with OP9 stromal cells and conditional expression of HOXB4, pre-HSCs gave rise to embryonic HSCs capable of engraftment and long-term reconstitution in irradiated adult mice. Blast colony assays revealed that most hemangioblast activity was detected apart from the pre-HSC population, implying the early divergence of pre-HSCs from hemangioblasts. Gene expression profiling suggests that a particular set of transcripts closely associated with adult HSCs is involved in the transition of pre-HSC to embryonic HSCs. We propose an HSC developmental model in which pre-HSCs and embryonic HSCs sequentially give rise to adult types of HSCs in a stepwise manner.

  9. File list: ALL.Bld.05.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.05.AllAg.Hematopoietic_Stem_Cells mm9 All antigens Blood Hematopoietic Stem...18460,SRX818462,SRX818464,SRX818463,SRX818461,SRX818459 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.05.AllAg.Hematopoietic_Stem_Cells.bed ...

  10. File list: Unc.Bld.20.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.20.AllAg.Hematopoietic_Stem_Cells hg19 Unclassified Blood Hematopoietic Ste...m Cells SRX1089838,SRX1089837 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.20.AllAg.Hematopoietic_Stem_Cells.bed ...

  11. File list: DNS.Bld.10.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.10.AllAg.Hematopoietic_Stem_Cells hg19 DNase-seq Blood Hematopoietic Stem C...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.10.AllAg.Hematopoietic_Stem_Cells.bed ...

  12. File list: ALL.Bld.10.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.10.AllAg.Hematopoietic_Stem_Cells mm9 All antigens Blood Hematopoietic Stem...18460,SRX818462,SRX818463,SRX818464,SRX818459,SRX818461 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.10.AllAg.Hematopoietic_Stem_Cells.bed ...

  13. File list: Pol.Bld.10.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.10.AllAg.Hematopoietic_Stem_Cells hg19 RNA polymerase Blood Hematopoietic S...tem Cells SRX038919,SRX005153,SRX038920 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.10.AllAg.Hematopoietic_Stem_Cells.bed ...

  14. File list: DNS.Bld.05.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.05.AllAg.Hematopoietic_Stem_Cells mm9 DNase-seq Blood Hematopoietic Stem Ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.05.AllAg.Hematopoietic_Stem_Cells.bed ...

  15. File list: DNS.Bld.20.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.20.AllAg.Hematopoietic_Stem_Cells hg19 DNase-seq Blood Hematopoietic Stem C...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.20.AllAg.Hematopoietic_Stem_Cells.bed ...

  16. File list: Pol.Bld.10.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.10.AllAg.Hematopoietic_Stem_Cells mm9 RNA polymerase Blood Hematopoietic St...em Cells SRX180164 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.10.AllAg.Hematopoietic_Stem_Cells.bed ...

  17. File list: DNS.Bld.50.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.50.AllAg.Hematopoietic_Stem_Cells mm9 DNase-seq Blood Hematopoietic Stem Ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.50.AllAg.Hematopoietic_Stem_Cells.bed ...

  18. File list: Unc.Bld.50.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.50.AllAg.Hematopoietic_Stem_Cells mm9 Unclassified Blood Hematopoietic Stem...,SRX1520515,SRX507965,SRX507967,SRX507968,SRX1520514,SRX507966 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.50.AllAg.Hematopoietic_Stem_Cells.bed ...

  19. File list: ALL.Bld.50.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.50.AllAg.Hematopoietic_Stem_Cells mm9 All antigens Blood Hematopoietic Stem...18462,SRX818463,SRX818464,SRX818461,SRX818459,SRX127382 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.50.AllAg.Hematopoietic_Stem_Cells.bed ...

  20. File list: Unc.Bld.20.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.20.AllAg.Hematopoietic_Stem_Cells mm9 Unclassified Blood Hematopoietic Stem...,SRX1520512,SRX507965,SRX507967,SRX507968,SRX507966,SRX1520514 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.20.AllAg.Hematopoietic_Stem_Cells.bed ...

  1. File list: Pol.Bld.05.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.05.AllAg.Hematopoietic_Stem_Cells hg19 RNA polymerase Blood Hematopoietic S...tem Cells SRX038919,SRX038920,SRX005153 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.05.AllAg.Hematopoietic_Stem_Cells.bed ...

  2. File list: Pol.Bld.20.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.20.AllAg.Hematopoietic_Stem_Cells mm9 RNA polymerase Blood Hematopoietic St...em Cells SRX180164 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.20.AllAg.Hematopoietic_Stem_Cells.bed ...

  3. File list: Pol.Bld.50.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.50.AllAg.Hematopoietic_Stem_Cells mm9 RNA polymerase Blood Hematopoietic St...em Cells SRX180164 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.50.AllAg.Hematopoietic_Stem_Cells.bed ...

  4. File list: DNS.Bld.20.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.20.AllAg.Hematopoietic_Stem_Cells mm9 DNase-seq Blood Hematopoietic Stem Ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.20.AllAg.Hematopoietic_Stem_Cells.bed ...

  5. File list: Unc.Bld.50.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.50.AllAg.Hematopoietic_Stem_Cells hg19 Unclassified Blood Hematopoietic Ste...m Cells SRX1089838,SRX1089837 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.50.AllAg.Hematopoietic_Stem_Cells.bed ...

  6. File list: DNS.Bld.50.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.50.AllAg.Hematopoietic_Stem_Cells hg19 DNase-seq Blood Hematopoietic Stem C...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.50.AllAg.Hematopoietic_Stem_Cells.bed ...

  7. File list: Pol.Bld.05.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.05.AllAg.Hematopoietic_Stem_Cells mm9 RNA polymerase Blood Hematopoietic St...em Cells SRX180164 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.05.AllAg.Hematopoietic_Stem_Cells.bed ...

  8. File list: Unc.Bld.05.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.05.AllAg.Hematopoietic_Stem_Cells hg19 Unclassified Blood Hematopoietic Ste...m Cells SRX1089838,SRX1089837 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.05.AllAg.Hematopoietic_Stem_Cells.bed ...

  9. File list: Pol.Bld.50.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.50.AllAg.Hematopoietic_Stem_Cells hg19 RNA polymerase Blood Hematopoietic S...tem Cells SRX005153,SRX038919,SRX038920 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.50.AllAg.Hematopoietic_Stem_Cells.bed ...

  10. File list: ALL.Bld.20.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.20.AllAg.Hematopoietic_Stem_Cells mm9 All antigens Blood Hematopoietic Stem...18460,SRX818462,SRX818463,SRX818464,SRX818461,SRX818459 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.20.AllAg.Hematopoietic_Stem_Cells.bed ...

  11. File list: DNS.Bld.05.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.05.AllAg.Hematopoietic_Stem_Cells hg19 DNase-seq Blood Hematopoietic Stem C...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.05.AllAg.Hematopoietic_Stem_Cells.bed ...

  12. File list: Unc.Bld.10.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.10.AllAg.Hematopoietic_Stem_Cells mm9 Unclassified Blood Hematopoietic Stem...SRX1520512,SRX1520515,SRX1520514,SRX507968,SRX507967,SRX507966 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.10.AllAg.Hematopoietic_Stem_Cells.bed ...

  13. File list: Pol.Bld.20.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.20.AllAg.Hematopoietic_Stem_Cells hg19 RNA polymerase Blood Hematopoietic S...tem Cells SRX005153,SRX038919,SRX038920 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.20.AllAg.Hematopoietic_Stem_Cells.bed ...

  14. File list: Unc.Bld.05.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.05.AllAg.Hematopoietic_Stem_Cells mm9 Unclassified Blood Hematopoietic Stem...RX507967,SRX1520512,SRX1520515,SRX1520513,SRX1520514,SRX507966 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.05.AllAg.Hematopoietic_Stem_Cells.bed ...

  15. File list: Unc.Bld.10.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.10.AllAg.Hematopoietic_Stem_Cells hg19 Unclassified Blood Hematopoietic Ste...m Cells SRX1089838,SRX1089837 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.10.AllAg.Hematopoietic_Stem_Cells.bed ...

  16. File list: DNS.Bld.10.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.10.AllAg.Hematopoietic_Stem_Cells mm9 DNase-seq Blood Hematopoietic Stem Ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.10.AllAg.Hematopoietic_Stem_Cells.bed ...

  17. Hematopoietic stem cell transplant candidate and designated proxy distress levels prior to hematopoietic stem cell transplantation.

    Science.gov (United States)

    Duckworth, Katharine E; Forti, Allison M; Russell, Gregory B; Naik, Seema; Hurd, David D; McQuellon, Richard P

    2014-12-01

    Hematopoietic stem cell transplantation (HCT) is associated with a high risk of morbidity, making advance care planning (ACP) essential. The purpose of this study was to assess and compare proxy and HCT candidate distress levels (Distress Thermometer) before (T1) and after (T2) ACP question completion. 79 participants (40 HCT candidates, 39 proxies) rated their distress. The T1, T2 mean distress scores (SD) for HCT candidates were 3.13(2.27), 2.96(2.10); 43% and 38% endorsed clinically significant distress (≥4). Proxies reported 4.21(2.48), 4.33 (2.46); 62% endorsed significant distress at T1, T2. The majority of proxies endorsed distress levels that were clinically significant and comparatively higher (T1 (p = 0.047) and T2 (p = 0.009)) than their paired HCT recipients. Responding to questions about ACP did not increase overall distress ratings. © The Author(s) 2013.

  18. Hematopoietic stem cells are acutely sensitive to Acd shelterin gene inactivation.

    Science.gov (United States)

    Jones, Morgan; Osawa, Gail; Regal, Joshua A; Weinberg, Daniel N; Taggart, James; Kocak, Hande; Friedman, Ann; Ferguson, David O; Keegan, Catherine E; Maillard, Ivan

    2014-01-01

    The shelterin complex plays dual functions in telomere homeostasis by recruiting telomerase and preventing the activation of a DNA damage response at telomeric ends. Somatic stem cells require telomerase activity, as evidenced by progressive stem cell loss leading to bone marrow failure in hereditary dyskeratosis congenita. Recent work demonstrates that dyskeratosis congenita can also arise from mutations in specific shelterin genes, although little is known about shelterin functions in somatic stem cells. We found that mouse hematopoietic stem cells (HSCs) are acutely sensitive to inactivation of the shelterin gene Acd, encoding TPP1. Homozygosity for a hypomorphic acd allele preserved the emergence and expansion of fetal HSCs but led to profoundly defective function in transplantation assays. Upon complete Acd inactivation, HSCs expressed p53 target genes, underwent cell cycle arrest, and were severely depleted within days, leading to hematopoietic failure. TPP1 loss induced increased telomeric fusion events in bone marrow progenitors. However, unlike in epidermal stem cells, p53 deficiency did not rescue TPP1-deficient HSCs, indicating that shelterin dysfunction has unique effects in different stem cell populations. Because the consequences of telomere shortening are progressive and unsynchronized, acute loss of shelterin function represents an attractive alternative for studying telomere crisis in hematopoietic progenitors.

  19. Ocular findings after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Tabbara, Khalid F; Al-Ghamdi, Ahmad; Al-Mohareb, Fahad; Ayas, Mouhab; Chaudhri, Naeem; Al-Sharif, Fahad; Al-Zahrani, Hazzaa; Mohammed, Said Y; Nassar, Amr; Aljurf, Mahmoud

    2009-09-01

    To study the incidence, causes, and outcome of major ocular complications in patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT). Retrospective, noncomparative, observational clinical study. The study included a total of 620 patients who underwent allogeneic HSCT in the period from 1997 to 2007 at King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia. Allogeneic HSCT. Patients with ocular complications were referred to the ophthalmology division for complete ophthalmologic examination, including visual acuity, tonometry, Schirmer test, biomicroscopy, and dilated ophthalmoscopy. Laboratory investigations were performed whenever indicated. The incidence and causes of major ocular complications after allogeneic HSCT were determined. Visual acuity at 1 year after allogeneic HSCT was recorded. Major ocular complications occurred in 80 (13%) of 620 patients who underwent allogeneic HSCT. There were 36 male patients (45%) and 44 female patients (55%) with a mean age of 29 years and an age range of 9 to 65 years. Prophylaxis for graft-versus-host disease (GVHD) consisted of cyclosporine and methotrexate in 69 patients, and cyclosporine, methotrexate and corticosteroids, or mycophenolate mofetil in 11 patients. The most frequently encountered ocular complications were chronic GVHD, dry eye syndrome without GVHD, corneal ulcers, cataract, glaucoma, cytomegalovirus retinitis, fungal endophthalmitis, and acquisition of allergic conjunctivitis from atopic donors. There was no correlation between the pattern of ocular complications and the transplanted stem cell source. Best-corrected visual acuity (BCVA) at 1 year after transplantation was less than 20/200 in 13 patients (16%), less than 20/50 in 17 patients (21%), and better than 20/50 in 50 patients (63%). Ocular complications are common in patients undergoing allogeneic HSCT. Early recognition and prompt treatment are important. The author(s) have no proprietary or commercial

  20. Hematopoietic (stem) cell development - how divergent are the roads taken?

    Science.gov (United States)

    Kauts, Mari-Liis; Vink, Chris S; Dzierzak, Elaine

    2016-11-01

    The development of the hematopoietic system during early embryonic stages occurs in spatially and temporally distinct waves. Hematopoietic stem cells (HSC), the most potent and self-renewing cells of this system, are produced in the final 'definitive' wave of hematopoietic cell generation. In contrast to HSCs in the adult, which differentiate via intermediate progenitor populations to produce functional blood cells, the generation of hematopoietic cells in the embryo prior to HSC generation occurs in the early waves by producing blood cells without intermediate progenitors (such as the 'primitive' hematopoietic cells). The lineage relationship between the early hematopoietic cells and the cells giving rise to HSCs, the genetic networks controlling their emergence, and the precise temporal determination of HSC fate remain topics of intense research and debate. This Review article discusses the current knowledge on the step-wise embryonic establishment of the adult hematopoietic system, examines the roles of pivotal intrinsic regulators in this process, and raises questions concerning the temporal onset of HSC fate determination. © 2016 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  1. Hematopoietic Stem Cell Niche in Health and Disease.

    Science.gov (United States)

    Hoggatt, Jonathan; Kfoury, Youmna; Scadden, David T

    2016-05-23

    Regulation of stem cells in adult tissues is a key determinant of how well an organism can respond to the stresses of physiological challenge and disease. This is particularly true of the hematopoietic system, where demands on host defenses can call for an acute increase in cell production. Hematopoietic stem cells receive the regulatory signals for cell production in adult mammals in the bone marrow, a tissue with higher-order architectural and functional organization than previously appreciated. Here, we review the data defining particular structural components and heterologous cells in the bone marrow that participate in hematopoietic stem cell function. Further, we explore the case for stromal-hematopoietic cell interactions contributing to neoplastic myeloid disease. As the hematopoietic regulatory networks in the bone marrow are revealed, it is anticipated that strategies will emerge for how to enhance or inhibit production of specific blood cells. In that way, the control of hematopoiesis will enter the domain of therapies to modulate broad aspects of hematopoiesis, both normal and malignant.

  2. [Hematopoietic reconstitution and prognosis of different types of hematopoietic stem cell transplantation for severe aplastic anemia].

    Science.gov (United States)

    Lu, Jing; Wu, Depei; Hu, Shaoyan; Jin, Song; Wang, Xiuli; Miao, Miao; Chen, Jia; Han, Yue; Tang, Xiaowen; Qiu, Huiying; Sun, Aining; Jin, Zhengming; Fu, Chengcheng; Ma, Xiao; Chen, Feng

    2015-08-01

    To compare the differences between hematopoietic reconstitution and longterm prognosis of patients with severe aplastic anemia (SAA) after HLA- matched sibling donor hematopoietic stem cell transplantation(MSD-HSCT), Haploidentical HSCT(Haplo-HSCT), unrelated donor allogeneic HSCT(UD-HSCT)and umbilical cord blood HSCT(UCB-HSCT). In this retrospective study, 63 patients with SAA who received HSCT in the First Affiliated Hospital of Soochow University between May 2008 and December 2013 were enrolled. The subjects were divided into 4 groups according to the transplantation types. The hematopoietic reconstitution, the incidence of acute graft-versushost disease(aGVHD)and 5- year survival rate after transplantation were compared. All 53 subjects who received MSD-HSCT, Haplo-HSCT and UD-HSCT achieved hematopoietic reconstitution. Of them, the recovery of neutrophil and platelet were not significantly different(P0.05). MSD-HSCT, Haplo-HSCT and UD-HSCT had no statistically significance in terms of hematopoietic reconstitution or prognosis. Although hematopoietic reconstitution of UCB-HSCT was lower than other transplantation types, but no significant difference in overall prognosis. So if HLA-matched sibling donor is not available, SAA patients can choose Haplo- HSCT, UD - HSCT or UCB- HSCT with comparable efficacy to MSD- HSCT, as an alternative therapy.

  3. Hematopoietic Niche - Exploring Biomimetic Cues to Improve the Functionality of Hematopoietic Stem/Progenitor Cells.

    Science.gov (United States)

    Costa, Marta H G; de Soure, António M; Cabral, Joaquim M S; Ferreira, Frederico Castelo; da Silva, Cláudia L

    2018-02-01

    The adult bone marrow (BM) niche is a complex entity where a homeostatic hematopoietic system is maintained through a dynamic crosstalk between different cellular and non-cellular players. Signaling mechanisms triggered by cell-cell, cell-extracellular matrix (ECM), cell-cytokine interactions, and local microenvironment parameters are involved in controlling quiescence, self-renewal, differentiation, and migration of hematopoietic stem/progenitor cells (HSPC). A promising strategy to more efficiently expand HSPC numbers and tune their properties ex vivo is to mimic the hematopoietic niche through integration of adjuvant stromal cells, soluble cues, and/or biomaterial-based approaches in HSPC culture systems. Particularly, mesenchymal stem/stromal cells (MSC), through their paracrine activity or direct contact with HSPC, are thought to be a relevant niche player, positioning HSPC-MSC co-culture as a valuable platform to support the ex vivo expansion of hematopoietic progenitors. To improve the clinical outcome of hematopoietic cell transplantation (HCT), namely when the available HSPC are present in a limited number such is the case of HSPC collected from umbilical cord blood (UCB), ex vivo expansion of HSPC is required without eliminating the long-term repopulating capacity of more primitive HSC. Here, we will focus on depicting the characteristics of co-culture systems, as well as other bioengineering approaches to improve the functionality of HSPC ex vivo. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The Genetic Landscape of Hematopoietic Stem Cell Frequency in Mice

    Directory of Open Access Journals (Sweden)

    Xiaoying Zhou

    2015-07-01

    Full Text Available Prior efforts to identify regulators of hematopoietic stem cell physiology have relied mainly on candidate gene approaches with genetically modified mice. Here we used a genome-wide association study (GWAS strategy with the hybrid mouse diversity panel to identify the genetic determinants of hematopoietic stem/progenitor cell (HSPC frequency. Among 108 strains, we observed ∼120- to 300-fold variation in three HSPC populations. A GWAS analysis identified several loci that were significantly associated with HSPC frequency, including a locus on chromosome 5 harboring the homeodomain-only protein gene (Hopx. Hopx previously had been implicated in cardiac development but was not known to influence HSPC biology. Analysis of the HSPC pool in Hopx−/− mice demonstrated significantly reduced cell frequencies and impaired engraftment in competitive repopulation assays, thus providing functional validation of this positional candidate gene. These results demonstrate the power of GWAS in mice to identify genetic determinants of the hematopoietic system.

  5. Transplantation Dose Alters the Differentiation Program of Hematopoietic Stem Cells.

    Science.gov (United States)

    Brewer, Casey; Chu, Elizabeth; Chin, Mike; Lu, Rong

    2016-05-24

    Hematopoietic stem cell (HSC) transplantation is the most prevalent stem cell therapy, but it remains a risky procedure. To improve this treatment, it is important to understand how transplanted stem cells rebuild the blood and immune systems and how this process is impacted by transplantation variables such as the HSC dose. Here, we find that, in the long term following transplantation, 70%-80% of donor-HSC-derived clones do not produce all measured blood cell types. High HSC doses lead to more clones that exhibit balanced lymphocyte production, whereas low doses produce more T-cell-specialized clones. High HSC doses also produce significantly higher proportions of early-differentiating clones compared to low doses. These complex differentiation behaviors uncover the clonal-level regeneration dynamics of hematopoietic regeneration and suggest that transplantation dose can be exploited to improve stem cell therapy. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Primary Immunodeficiency Diseases and Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Ayse Ozkan

    2014-02-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT is the only curative therapy for primary immunodeficiency diseases. Early diagnosis, including prenatally, and early transplantation improve HSCT outcomes. Survival rates improve with advances in the methods of preparing hosts and donor cells, and in supportive and conditioning regimes.

  7. Autologous hematopoietic stem cell transplantation for autoimmune diseases.

    NARCIS (Netherlands)

    Gratwohl, A.; Passweg, J.R.; Bocelli-Tyndall, C.; Fassas, A.; Laar, J.M. van; Farge, D.; Andolina, M.; Arnold, R.; Carreras, E.; Finke, J.; Kotter, I.; Kozak, T.; Lisukov, I.; Lowenberg, B.; Marmont, A.; Moore, J.; Saccardi, R.; Snowden, J.A.; Hoogen, F.H.J. van den; Wulffraat, N.M.; Zhao, X.; Tyndall, A.

    2005-01-01

    Experimental data and early phase I/II studies suggest that high-dose chemotherapy followed by autologous hematopoietic stem cell transplantation (HSCT) can arrest progression of severe autoimmune diseases. We have evaluated the toxicity and disease response in 473 patients with severe autoimmune

  8. Longitudinal assessment of hematopoietic stem cell transplantation and hyposalivation

    NARCIS (Netherlands)

    Laaksonen, M.; Ramseier, A. M.; Rovó, A.; Jensen, S. B.; Raber-Durlacher, J. E.; Zitzmann, N. U.; Waltimo, T.

    2011-01-01

    Hyposalivation is a common adverse effect of anti-neoplastic therapy of head and neck cancer, causing impaired quality of life and predisposition to oral infections. However, data on the effects of hematopoietic stem cell transplantation (HSCT) on salivary secretion are scarce. The present study

  9. Nephrotic Syndrome After Hematopoietic Stem Cell Transplant: Outcomes in Iran.

    Science.gov (United States)

    Saddadi, Fereshteh; Alidadi, Ali; Hakemi, Monir; Bahar, Babak

    2017-02-01

    Patients undergoing hematopoietic stem cell transplant have an elevated incidence of acute renal failure. However, the incidence of nephritic syndrome due to graft-versus-host disease is growing and is independently associated with chronic renal disease after this procedure. We conducted a prospective study to examine the risk of chronic kidney disease in glomerulopathy patients following hematopoietic stem cell transplant with a follow-up of 10 years. In our follow-up of 14 patients (4 men and 10 women) who were diagnosed with nephrotic syndrome after hematopoietic stem cell transplant, in 10 patients (71%), biopsy showed membranous nephropathy associated with graft-versus-host disease. The remaining 4 patients had focal segmental glomerulosclerosis, membranoproliferative glomerulonephritis, or minimal change disease. All patients were treated with angiotensin receptor blockers, cyclosporine (Neoral), and prednisolone. During follow-up, 6 patients (43%) had heavy proteinuria and a rise in serum creatinine, and 1 patient (7%) needed hemodialysis. Eleven patients (79%) achieved complete remission of nephrotic syndrome, 5 (36%) remained hypertensive, and 3 (21%) did not respond to therapy.. The early diagnosis of nephrotic syndrome should be considered after hematopoietic stem cell transplant, and therapeutic outcome measures should be in place in advance. If this is done, we found that patients' response to treatment can be optimal, and their renal function and overall survival can improve.

  10. Lifelong dietary intervention does not affect hematopoietic stem cell function

    NARCIS (Netherlands)

    Lazare, Seka; Ausema, Albertina; Reijne, Aaffien C; van Dijk, Gertjan; van Os, Ronald; de Haan, Gerald

    Hematopoietic stem cells (HSCs) undergo a profound functional decline during normal aging. Because caloric or dietary restriction has been shown to delay multiple aspects of the aging process in many species, we explored the consequences of lifelong caloric restriction, or conversely, lifelong

  11. Hematopoietic stem cell aging and self-renewal

    NARCIS (Netherlands)

    Dykstra, Brad; de Haan, Gerald

    A functional decline of the immune system occurs during organismal aging that is attributable, in large part, to changes in the hematopoietic stem cell (HSC) compartment. In the mouse, several hallmark age-dependent changes in the HSC compartment have been identified, including an increase in HSC

  12. Hematopoietic stem cell transplantation for infantile osteopetrosis

    NARCIS (Netherlands)

    Orchard, Paul J.; Fasth, Anders L.; Le Rademacher, Jennifer L.; He, Wensheng; Boelens, Jaap Jan; Horwitz, Edwin M.; Al-Seraihy, Amal; Ayas, Mouhab; Bonfim, Carmem M.; Boulad, Farid; Lund, Troy; Buchbinder, David K.; Kapoor, Neena; OBrien, Tracey A.; Perez, Miguel A Diaz; Veys, Paul A.; Eapen, Mary

    2015-01-01

    We report the international experience in outcomes after related and unrelated hematopoietic transplantation for infantile osteopetrosis in 193 patients. Thirty-four percent of transplants used grafts from HLA-matched siblings, 13% from HLA-mismatched relatives, 12% from HLA-matched, and 41% from

  13. Symptoms after hospital discharge following hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Gamze Oguz

    2014-01-01

    Full Text Available Aims: The purposes of this study were to assess the symptoms of hematopoietic stem cell transplant patients after hospital discharge, and to determine the needs of transplant patients for symptom management. Materials and Methods: The study adopted a descriptive design. The study sample comprised of 66 hematopoietic stem cell transplant patients. The study was conducted in Istanbul. Data were collected using Patient Information Form and Memorial Symptom Assessment Scale (MSAS. Results: The frequency of psychological symptoms in hematopoietic stem cell transplant patients after discharge period (PSYCH subscale score 2.11 (standard deviation (SD = 0.69, range: 0.93-3.80 was higher in hematopoietic stem cell transplant patients than frequency of physical symptoms (PHYS subscale score: 1.59 (SD = 0.49, range: 1.00-3.38. Symptom distress caused by psychological and physical symptoms were at moderate level (Mean = 1.91, SD = 0.60, range: 0.95-3.63 and most distressing symptoms were problems with sexual interest or activity, difficulty sleeping, and diarrhea. Patients who did not have an additional chronic disease obtained higher MSAS scores. University graduates obtained higher Global Distress Index (GDI subscale and total MSAS scores with comparison to primary school graduates. Total MSAS, MSAS-PHYS subscale, and MSAS-PSYCH subscale scores were higher in patients with low level of income (P < 0.05. The patients (98.5% reported to receive education about symptom management after hospital discharge. Conclusions: Hematopoietic stem cell transplant patients continue to experience many distressing physical or psychological symptoms after discharge and need to be supported and educated for the symptom management.

  14. File list: Oth.Bld.20.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.20.AllAg.Hematopoietic_Stem_Cells hg19 TFs and others Blood Hematopoietic S...8915,SRX658607,SRX658606,SRX038908,SRX038909 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.20.AllAg.Hematopoietic_Stem_Cells.bed ...

  15. File list: ALL.Bld.05.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.05.AllAg.Hematopoietic_Stem_Cells hg19 All antigens Blood Hematopoietic Ste...38918 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.05.AllAg.Hematopoietic_Stem_Cells.bed ...

  16. File list: ALL.Bld.10.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.10.AllAg.Hematopoietic_Stem_Cells hg19 All antigens Blood Hematopoietic Ste...38918 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.10.AllAg.Hematopoietic_Stem_Cells.bed ...

  17. File list: Oth.Bld.50.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.50.AllAg.Hematopoietic_Stem_Cells hg19 TFs and others Blood Hematopoietic S...8606,SRX038913,SRX038912,SRX038909,SRX038908 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.50.AllAg.Hematopoietic_Stem_Cells.bed ...

  18. File list: ALL.Bld.20.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.20.AllAg.Hematopoietic_Stem_Cells hg19 All antigens Blood Hematopoietic Ste...05150 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.20.AllAg.Hematopoietic_Stem_Cells.bed ...

  19. File list: Oth.Bld.20.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.20.AllAg.Hematopoietic_Stem_Cells mm9 TFs and others Blood Hematopoietic St...293143,SRX180155 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.20.AllAg.Hematopoietic_Stem_Cells.bed ...

  20. File list: Oth.Bld.05.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.05.AllAg.Hematopoietic_Stem_Cells mm9 TFs and others Blood Hematopoietic St...587736,SRX180155 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.05.AllAg.Hematopoietic_Stem_Cells.bed ...

  1. File list: Oth.Bld.10.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.10.AllAg.Hematopoietic_Stem_Cells mm9 TFs and others Blood Hematopoietic St...293144,SRX180155 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.10.AllAg.Hematopoietic_Stem_Cells.bed ...

  2. File list: ALL.Bld.50.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.50.AllAg.Hematopoietic_Stem_Cells hg19 All antigens Blood Hematopoietic Ste...38907 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.50.AllAg.Hematopoietic_Stem_Cells.bed ...

  3. File list: Oth.Bld.50.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.50.AllAg.Hematopoietic_Stem_Cells mm9 TFs and others Blood Hematopoietic St...293143,SRX180155 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.50.AllAg.Hematopoietic_Stem_Cells.bed ...

  4. File list: Oth.Bld.10.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.10.AllAg.Hematopoietic_Stem_Cells hg19 TFs and others Blood Hematopoietic S...0347,SRX038912,SRX038913,SRX658606,SRX658607 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.10.AllAg.Hematopoietic_Stem_Cells.bed ...

  5. File list: Oth.Bld.05.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.05.AllAg.Hematopoietic_Stem_Cells hg19 TFs and others Blood Hematopoietic S...0347,SRX038912,SRX038913,SRX658606,SRX658607 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.05.AllAg.Hematopoietic_Stem_Cells.bed ...

  6. Complexity of bone marrow hematopoietic stem cell niche.

    Science.gov (United States)

    Asada, Noboru; Takeishi, Shoichiro; Frenette, Paul S

    2017-07-01

    Hematopoietic stem cells (HSCs) that produce a variety of hematopoietic lineage cells throughout the life reside in specialized microenvironment called "niche" in the bone marrow (BM) where they are tightly regulated. With the recent advances in experimental technologies enabling the selective deletion of molecules, various types of cells in the BM have been proposed to contribute to HSC niche activity. Among these are stromal cells closely associated with the vasculature. In this review, we provide an overview of recent advances in HSC niche research, and focus on the studies describing the functional roles of perivascular cells for HSC maintenance and mobilization. Not only for physiologic state, we also discuss the recent evidences suggesting the importance of microenvironment for emergence of malignant hematopoietic diseases.

  7. Hematopoietic stem cell transplantation for people with sickle cell disease.

    Science.gov (United States)

    Oringanje, Chioma; Nemecek, Eneida; Oniyangi, Oluseyi

    2016-05-19

    Sickle cell disease is a genetic disorder involving a defect in the red blood cells due to its sickled hemoglobin. The main therapeutic interventions include preventive and supportive measures. Hematopoietic stem cell transplantations are carried out with the aim of replacing the defective cells and their progenitors (hematopoietic (i.e. blood forming) stem cells) in order to correct the disorder. This is an update of a previously published review. To determine whether stem cell transplantation can improve survival and prevent symptoms and complications associated with sickle cell disease. To examine the risks of stem cell transplantation against the potential long-term gain for people with sickle cell disease. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Group's Haemoglobinopathies Trials Register complied from electronic searches of the Cochrane Central Register of Controlled Trials (CENTRAL) (updated each new issue of The Cochrane Library) and quarterly searches of MEDLINE.Unpublished work was identified by searching the abstract books of major conference proceedings and we conducted a search of the website: www.ClinicalTrials.gov.Date of the most recent search of the Group's Haemoglobinopathies Trials Register: 06 October 2015. Randomized controlled and quasi-randomized studies that compared any method of stem cell transplantation with either each other or with any of the preventive or supportive interventions (e.g. periodic blood transfusion, use of hydroxyurea, antibiotics, pain relievers, supplemental oxygen) in people with sickle cell disease irrespective of the type of sickle cell disease, gender and setting. No relevant trials were identified. Ten trials were identified by the initial search and none for the update. None of these trials were suitable for inclusion in this review. Reports on the use of hematopoietic stem cell transplantation improving survival and preventing symptoms and complications associated with sickle cell

  8. Plerixafor (a CXCR4 antagonist following myeloablative allogeneic hematopoietic stem cell transplantation enhances hematopoietic recovery

    Directory of Open Access Journals (Sweden)

    Michael M. B. Green

    2016-08-01

    Full Text Available Abstract Background The binding of CXCR4 with its ligand (stromal-derived factor-1 maintains hematopoietic stem/progenitor cells (HSPCs in a quiescent state. We hypothesized that blocking CXCR4/SDF-1 interaction after hematopoietic stem cell transplantation (HSCT promotes hematopoiesis by inducing HSC proliferation. Methods We conducted a phase I/II trial of plerixafor on hematopoietic cell recovery following myeloablative allogeneic HSCT. Patients with hematologic malignancies receiving myeloablative conditioning were enrolled. Plerixafor 240 μg/kg was administered subcutaneously every other day beginning day +2 until day +21 or until neutrophil recovery. The primary efficacy endpoints of the study were time to absolute neutrophil count >500/μl and platelet count >20,000/μl. The cumulative incidence of neutrophil and platelet engraftment of the study cohort was compared to that of a cohort of 95 allogeneic peripheral blood stem cell transplant recipients treated during the same period of time and who received similar conditioning and graft-versus-host disease prophylaxis. Results Thirty patients received plerixafor following peripheral blood stem cell (n = 28 (PBSC or bone marrow (n = 2 transplantation. Adverse events attributable to plerixafor were mild and indistinguishable from effects of conditioning. The kinetics of neutrophil and platelet engraftment, as demonstrated by cumulative incidence, from the 28 study subjects receiving PBSC showed faster neutrophil (p = 0.04 and platelet recovery >20 K (p = 0.04 compared to the controls. Conclusions Our study demonstrated that plerixafor can be given safely following myeloablative HSCT. It provides proof of principle that blocking CXCR4 after HSCT enhances hematopoietic recovery. Larger, confirmatory studies in other settings are warranted. Trial registration ClinicalTrials.gov NCT01280955

  9. Mitochondrial metabolism in hematopoietic stem cells requires functional FOXO3

    Science.gov (United States)

    Rimmelé, Pauline; Liang, Raymond; Bigarella, Carolina L; Kocabas, Fatih; Xie, Jingjing; Serasinghe, Madhavika N; Chipuk, Jerry; Sadek, Hesham; Zhang, Cheng Cheng; Ghaffari, Saghi

    2015-01-01

    Hematopoietic stem cells (HSC) are primarily dormant but have the potential to become highly active on demand to reconstitute blood. This requires a swift metabolic switch from glycolysis to mitochondrial oxidative phosphorylation. Maintenance of low levels of reactive oxygen species (ROS), a by-product of mitochondrial metabolism, is also necessary for sustaining HSC dormancy. Little is known about mechanisms that integrate energy metabolism with hematopoietic stem cell homeostasis. Here, we identify the transcription factor FOXO3 as a new regulator of metabolic adaptation of HSC. ROS are elevated in Foxo3−/− HSC that are defective in their activity. We show that Foxo3−/− HSC are impaired in mitochondrial metabolism independent of ROS levels. These defects are associated with altered expression of mitochondrial/metabolic genes in Foxo3−/− hematopoietic stem and progenitor cells (HSPC). We further show that defects of Foxo3−/− HSC long-term repopulation activity are independent of ROS or mTOR signaling. Our results point to FOXO3 as a potential node that couples mitochondrial metabolism with HSC homeostasis. These findings have critical implications for mechanisms that promote malignant transformation and aging of blood stem and progenitor cells. PMID:26209246

  10. Reduced hematopoietic stem cell frequency predicts outcome in acute myeloid leukemia

    Science.gov (United States)

    Wang, Wenwen; Stiehl, Thomas; Raffel, Simon; Hoang, Van T.; Hoffmann, Isabel; Poisa-Beiro, Laura; Saeed, Borhan R.; Blume, Rachel; Manta, Linda; Eckstein, Volker; Bochtler, Tilmann; Wuchter, Patrick; Essers, Marieke; Jauch, Anna; Trumpp, Andreas; Marciniak-Czochra, Anna; Ho, Anthony D.; Lutz, Christoph

    2017-01-01

    In patients with acute myeloid leukemia and low percentages of aldehyde-dehydrogenase-positive cells, non-leukemic hematopoietic stem cells can be separated from leukemic cells. By relating hematopoietic stem cell frequencies to outcome we detected poor overall- and disease-free survival of patients with low hematopoietic stem cell frequencies. Serial analysis of matched diagnostic and follow-up samples further demonstrated that hematopoietic stem cells increased after chemotherapy in patients who achieved durable remissions. However, in patients who eventually relapsed, hematopoietic stem cell numbers decreased dramatically at the time of molecular relapse demonstrating that hematopoietic stem cell levels represent an indirect marker of minimal residual disease, which heralds leukemic relapse. Upon transplantation in immune-deficient mice cases with low percentages of hematopoietic stem cells of our cohort gave rise to leukemic or no engraftment, whereas cases with normal hematopoietic stem cell levels mostly resulted in multi-lineage engraftment. Based on our experimental data, we propose that leukemic stem cells have increased niche affinity in cases with low percentages of hematopoietic stem cells. To validate this hypothesis, we developed new mathematical models describing the dynamics of healthy and leukemic cells under different regulatory scenarios. These models suggest that the mechanism leading to decreases in hematopoietic stem cell frequencies before leukemic relapse must be based on expansion of leukemic stem cells with high niche affinity and the ability to dislodge hematopoietic stem cells. Thus, our data suggest that decreasing numbers of hematopoietic stem cells indicate leukemic stem cell persistence and the emergence of leukemic relapse. PMID:28550184

  11. DNA Damage Response in Hematopoietic Stem Cell Ageing.

    Science.gov (United States)

    Li, Tangliang; Zhou, Zhong-Wei; Ju, Zhenyu; Wang, Zhao-Qi

    2016-06-01

    Maintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity. Hematopoietic stem cells (HSCs) are the most primitive cell type in the hematopoietic system. They divide asymmetrically and give rise to daughter cells with HSC identity (self-renewal) and progenitor progenies (differentiation), which further proliferate and differentiate into full hematopoietic lineages. Mammalian ageing process is accompanied with abnormalities in the HSC self-renewal and differentiation. Transcriptional changes and epigenetic modulations have been implicated as the key regulators in HSC ageing process. The DNA damage response (DDR) in the cells involves an orchestrated signaling pathway, consisting of cell cycle regulation, cell death and senescence, transcriptional regulation, as well as chromatin remodeling. Recent studies employing DNA repair-deficient mouse models indicate that DDR could intrinsically and extrinsically regulate HSC maintenance and play important roles in tissue homeostasis of the hematopoietic system. In this review, we summarize the current understanding of how the DDR determines the HSC fates and finally contributes to organismal ageing. Copyright © 2016 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  12. Factors influencing platelet transfusion refractoriness in patients undergoing allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Solves, Pilar; Sanz, Jaime; Freiria, Carmen; Santiago, Marta; Villalba, Ana; Gómez, Inés; Montesinos, Pau; Montoro, Juan; Piñana, Jose Luis; Lorenzo, José Ignacio; Puig, Nieves; Sanz, Guillermo F; Sanz, Miguel Ángel; Carpio, Nelly

    2018-01-01

    Hematopoietic stem cell transplantation has been considered a risk factor for development of platelet transfusion refractoriness. The objective of this study was to assess the platelet transfusion refractoriness rate in patients undergoing allogeneic hematopoietic stem cell transplantation from different sources. We retrospectively reviewed the charts and transfusion records of patients who underwent allogeneic stem cell transplantation at our institution between 2013 and 2015. The evaluation of post-transfusion platelet count was assessed for each transfusion given, from day of progenitor infusion to day 30 after transplantation. Of 167 patients included in this study, 101 received peripheral blood stem cell transplantation (PBSCT) and 66 received umbilical cord blood transplantation (UCBT). Overall, the percentage of platelet transfusions with a 14-h CCI lower than 5000 was 59.3%, being these data significantly higher for UCBT (67.6%) than for PBSCT (31.0%). Seventy-eight percent of patients underwent UCBT become refractory, while 38.6% of patients who received PBSCT were refractory. Factors associated to platelet refractoriness were lower CD34+ cell dose infused, higher number of antibiotics used, presence of anti-HLA I antibodies, and reduced-intensity conditioning regimen. Platelet refractoriness is a frequent and complex adverse event and remains a therapeutic challenge in the management of patients undergoing HSCT. There is a higher rate of platelet refractoriness in patients who received UCBT as compared to patients who received PBSCT.

  13. Imaging of complications from hematopoietic stem cell transplant

    International Nuclear Information System (INIS)

    Pandey, Tarun; Maximin, Suresh; Bhargava, Puneet

    2014-01-01

    Stem cell transplant has been the focus of clinical research for a long time given its potential to treat several incurable diseases like hematological malignancies, diabetes mellitus, and neuro-degenerative disorders like Parkinson disease. Hematopoietic stem cell transplantation (HSCT) is the oldest and most widely used technique of stem cell transplant. HSCT has not only been used to treat hematological disorders including hematological malignancies, but has also been found useful in treamtent of genetic, immunological, and solid tumors like neuroblastoma, lymphoma, and germ cell tumors. In spite of the rapid advances in stem cell technology, success rate with this technique has not been universal and many complications have also been seen with this form of therapy. The key to a successful HSCT therapy lies in early diagnosis and effective management of complications associated with this treatment. Our article aims to review the role of imaging in diagnosis and management of stem cell transplant complications associated with HSCT

  14. Imaging of complications from hematopoietic stem cell transplant

    Directory of Open Access Journals (Sweden)

    Tarun Pandey

    2014-01-01

    Full Text Available Stem cell transplant has been the focus of clinical research for a long time given its potential to treat several incurable diseases like hematological malignancies, diabetes mellitus, and neuro-degenerative disorders like Parkinson disease. Hematopoietic stem cell transplantation (HSCT is the oldest and most widely used technique of stem cell transplant. HSCT has not only been used to treat hematological disorders including hematological malignancies, but has also been found useful in treamtent of genetic, immunological, and solid tumors like neuroblastoma, lymphoma, and germ cell tumors. In spite of the rapid advances in stem cell technology, success rate with this technique has not been universal and many complications have also been seen with this form of therapy. The key to a successful HSCT therapy lies in early diagnosis and effective management of complications associated with this treatment. Our article aims to review the role of imaging in diagnosis and management of stem cell transplant complications associated with HSCT.

  15. Mitophagy in hematopoietic stem cells: the case for exploration.

    Science.gov (United States)

    Joshi, Aashish; Kundu, Mondira

    2013-11-01

    Hematopoietic stem cells (HSCs) are inherently quiescent and self-renewing, yet can differentiate and commit to multiple blood cell types. Intracellular mitochondrial content is dynamic, and there is an increase in mitochondrial content during differentiation and lineage commitment in HSCs. HSCs reside in a hypoxic niche within the bone marrow and rely heavily on glycolysis, while differentiated and committed progenitors rely on oxidative phosphorylation. Increased oxidative phosphorylation during differentiation and commitment is not only due to increased mitochondrial content but also due to changes in mitochondrial cytosolic distribution and efficiency. These changes in the intracellular mitochondrial landscape contribute signals toward regulating differentiation and commitment. Thus, a functional relationship exists between the mitochondria in HSCs and the state of the HSCs (i.e., stemness vs. differentiated). This review focuses on how autophagy-mediated mitochondrial clearance (i.e., mitophagy) may affect HSC mitochondrial content, thereby influencing the fate of HSCs and maintenance of hematopoietic homeostasis.

  16. FIFTY YEARS OF MELPHALAN USE IN HEMATOPOIETIC STEM CELL TRANSPLANTATION

    Science.gov (United States)

    Bayraktar, Ulas D.; Bashir, Qaiser; Qazilbash, Muzaffar; Champlin, Richard E.; Ciurea, Stefan O.

    2015-01-01

    Melphalan remains the most widely used agent in preparative regimens for hematopoietic stem-cell transplantation. From its initial discovery more than 50 years ago, it has been gradually incorporated in the conditioning regimens for both autologous and allogeneic transplantation due to its myeloablative properties and broad antitumor effects as a DNA alkylating agent. Melphalan remains the mainstay conditioning for multiple myeloma and lymphomas; and has been used successfully in preparative regimens of a variety of other hematological and non-hematological malignancies. The addition of newer agents to conditioning like bortezomib or lenalidomide for myeloma, or clofarabine for myeloid malignancies, may improve antitumor effects for transplantation, while in combination with alemtuzumab may represent a backbone for future cellular therapy due to reliable engraftment and low toxicity profile. This review summarizes the development and the current use of this remarkable drug in hematopoietic stem-cell transplantation. PMID:22922522

  17. Osteoblastic activation in the hematopoietic stem cell niche.

    Science.gov (United States)

    Calvi, Laura M

    2006-04-01

    Hematopoietic stem cells (HSC) are rare primitive cells capable of reconstituting all blood cell lineages throughout the life of an individual. The microenvironment in which stem cells reside is essential for their survival, self-renewal, and differentiation. This microenvironment, or HSC niche, has been difficult to define in bone and bone marrow, but recent studies from our laboratory and others have shown that osteoblasts, the bone-forming cells, are an essential regulatory component of this complex cellular network. We established that parathyroid hormone (PTH), through activation of the PTH/PTHrP receptor (PTH1R) in osteoblastic cells, could alter the HSC niche resulting in HSC expansion in vivo and in vitro and improving dramatically the survival of mice receiving bone marrow transplants. These findings are of great clinical appeal, because they suggest that a strategy aimed at modifying supportive cells in a stem cell niche can expand HSC. While a number of molecules have been found to be important for hematopoietic/osteoblastic interactions, we have focused on the Jagged1/Notch signaling pathway, which was necessary for the PTH-dependent HSC expansion. Since the Jagged1/Notch signaling pathway has been implicated in the microenvironmental control of stem cell self-renewal in several organ systems, definition of Jagged1 modulation, which is currently poorly understood, should provide additional molecular targets for stem cell regulation and advance the understanding of stem cell-microenvironmental interactions.

  18. Nursing care in a hematopoietic stem cells transplantation unit

    OpenAIRE

    Lima,Kaoana; Bernardino,Elizabeth

    2014-01-01

    In hematopoietic stem cell transplantation units, nursing care is different from other services. The objective in this descriptive study with a qualitative approach was to identify the care activities of nurses at a transplantation unit, classified according to the framework of nurses' functions. The data were collected through systematic observation and treated through content analysis. Three functions were identified for nurses: clinical nurse, management nurse and visit nurse, the first ha...

  19. Periarteriolar Glioblastoma Stem Cell Niches Express Bone Marrow Hematopoietic Stem Cell Niche Proteins

    NARCIS (Netherlands)

    Hira, Vashendriya V. V.; Wormer, Jill R.; Kakar, Hala; Breznik, Barbara; van der Swaan, Britt; Hulsbos, Renske; Tigchelaar, Wikky; Tonar, Zbynek; Khurshed, Mohammed; Molenaar, Remco J.; van Noorden, Cornelis J. F.

    2018-01-01

    In glioblastoma, a fraction of malignant cells consists of therapy-resistant glioblastoma stem cells (GSCs) residing in protective niches that recapitulate hematopoietic stem cell (HSC) niches in bone marrow. We have previously shown that HSC niche proteins stromal cell-derived factor-1α (SDF-1α),

  20. SCA-1 Expression Level Identifies Quiescent Hematopoietic Stem and Progenitor Cells

    NARCIS (Netherlands)

    Morcos, Mina N.F.; Schoedel, Kristina B.; Hoppe, Anja; Behrendt, Rayk; Basak, Onur; Clevers, Hans C.; Roers, Axel; Gerbaulet, Alexander

    2017-01-01

    Blood cell generation depends on continuous cellular output by the sequential hierarchy of hematopoietic stem cell (HSC) and progenitor populations that all contain quiescent and actively cycling cells. Hematopoietic stem and progenitor cells (HSPCs) express the surface molecule Stem cell antigen 1

  1. Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function

    Science.gov (United States)

    Kosan, Christian; Godmann, Maren

    2016-01-01

    All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC) have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several transcription factors and epigenetic modifiers are involved in this process. These create modifications that regulate the cell fate in a more or less reversible and dynamic way and contribute to HSC homeostasis. In addition, HSC respond in a unique way to DNA damage. These mechanisms also contribute to the regulation of HSC function and are essential to ensure viability after DNA damage. How HSC maintain their quiescent stage during the entire life is still matter of ongoing research. Here we will focus on the molecular mechanisms that regulate HSC function. PMID:26798358

  2. Childhood Cerebral Adrenoleukodystrophy: MR Perfusion Measurements and Their Use in Predicting Clinical Outcome after Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    McKinney, A M; Benson, J; Nascene, D R; Eisengart, J; Salmela, M B; Loes, D J; Zhang, L; Patel, K; Raymond, G V; Miller, W P

    2016-09-01

    MR perfusion has shown abnormalities of affected WM in cerebral X-linked adrenoleukodystrophy, but serial data is needed to explore the import of such findings after hematopoietic stem cell transplantation. Our aim was to prospectively measure MR perfusion parameters in patients with cerebral adrenoleukodystrophy pre- and post-hematopoietic stem cell transplantation, and to correlate those measurements with clinical outcome. Ten patients with cerebral adrenoleukodystrophy prospectively underwent DSC-MR perfusion imaging at adrenoleukodystrophy at each time point and compared with those in controls. Correlations were calculated between the pre-hematopoietic stem cell transplantation MR perfusion values and 1-year clinical scores, with P value adjustment for multiple comparisons. At baseline in patients with cerebral adrenoleukodystrophy, both relative CBV and relative CBF within the splenium of the corpus callosum and parieto-occipital WM significantly differed from those in controls (P = .005-.031) and remained so 1 year post-hematopoietic stem cell transplantation (P = .003-.005). Meanwhile, no MR perfusion parameter within the leading enhancing edge differed significantly from that in controls at baseline or at 1 year (P = .074-.999) or significantly changed by 1 year post-hematopoietic stem cell transplantation (P = .142-.887). Baseline Loes scores correlated with 1-year clinical neurologic function (r = 0.813, P adrenoleukodystrophy, suggesting local disease stabilization. Meanwhile, parieto-occipital WM and splenium of the corpus callosum relative CBV and relative CBF values worsened; this change signified irreversible injury. Baseline splenium of the corpus callosum relative CBV may predict clinical outcomes following hematopoietic stem cell transplantation. © 2016 by American Journal of Neuroradiology.

  3. Hematopoietic (stem) cell development — how divergent are the roads taken?

    NARCIS (Netherlands)

    M.-L. Kauts (Mari-Liis); C.S. Vink (Chris); E.A. Dzierzak (Elaine)

    2016-01-01

    textabstractThe development of the hematopoietic system during early embryonic stages occurs in spatially and temporally distinct waves. Hematopoietic stem cells (HSC), the most potent and self-renewing cells of this system, are produced in the final ‘definitive’ wave of hematopoietic cell

  4. Aging of hematopoietic stem cells: DNA damage and mutations?

    Science.gov (United States)

    Moehrle, Bettina M; Geiger, Hartmut

    2016-10-01

    Aging in the hematopoietic system and the stem cell niche contributes to aging-associated phenotypes of hematopoietic stem cells (HSCs), including leukemia and aging-associated immune remodeling. Among others, the DNA damage theory of aging of HSCs is well established, based on the detection of a significantly larger amount of γH2AX foci and a higher tail moment in the comet assay, both initially thought to be associated with DNA damage in aged HSCs compared with young cells, and bone marrow failure in animals devoid of DNA repair factors. Novel data on the increase in and nature of DNA mutations in the hematopoietic system with age, the quality of the DNA damage response in aged HSCs, and the nature of γH2AX foci question a direct link between DNA damage and the DNA damage response and aging of HSCs, and rather favor changes in epigenetics, splicing-factors or three-dimensional architecture of the cell as major cell intrinsic factors of HSCs aging. Aging of HSCs is also driven by a strong contribution of aging of the niche. This review discusses the DNA damage theory of HSC aging in the light of these novel mechanisms of aging of HSCs. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  5. Cell cycle regulation of hematopoietic stem or progenitor cells.

    Science.gov (United States)

    Hao, Sha; Chen, Chen; Cheng, Tao

    2016-05-01

    The highly regulated process of blood production is achieved through the hierarchical organization of hematopoietic stem cell (HSC) subsets and their progenies, which differ in self-renewal and differentiation potential. Genetic studies in mice have demonstrated that cell cycle is tightly controlled by the complex interplay between extrinsic cues and intrinsic regulatory pathways involved in HSC self-renewal and differentiation. Deregulation of these cellular programs may transform HSCs or hematopoietic progenitor cells (HPCs) into disease-initiating stem cells, and can result in hematopoietic malignancies such as leukemia. While previous studies have shown roles for some cell cycle regulators and related signaling pathways in HSCs and HPCs, a more complete picture regarding the molecular mechanisms underlying cell cycle regulation in HSCs or HPCs is lacking. Based on accumulated studies in this field, the present review introduces the basic components of the cell cycle machinery and discusses their major cellular networks that regulate the dormancy and cell cycle progression of HSCs. Knowledge on this topic would help researchers and clinicians to better understand the pathogenesis of relevant blood disorders and to develop new strategies for therapeutic manipulation of HSCs.

  6. Differentiation of embryonic stem cells towards hematopoietic cells: progress and pitfalls.

    Science.gov (United States)

    Tian, Xinghui; Kaufman, Dan S

    2008-07-01

    Hematopoietic development from embryonic stem cells has been one of the most productive areas of stem cell biology. Recent studies have progressed from work with mouse to human embryonic stem cells. Strategies to produce defined blood cell populations can be used to better understand normal and abnormal hematopoiesis, as well as potentially improve the generation of hematopoietic cells with therapeutic potential. Molecular profiling, phenotypic and functional analyses have all been utilized to demonstrate that hematopoietic cells derived from embryonic stem cells most closely represent a stage of hematopoiesis that occurs at embryonic/fetal developmental stages. Generation of hematopoietic stem/progenitor cells comparable to hematopoietic stem cells found in the adult sources, such as bone marrow and cord blood, still remains challenging. However, genetic manipulation of intrinsic factors during hematopoietic differentiation has proven a suitable approach to induce adult definitive hematopoiesis from embryonic stem cells. Concrete evidence has shown that embryonic stem cells provide a powerful approach to study the early stage of hematopoiesis. Multiple hematopoietic lineages can be generated from embryonic stem cells, although most of the evidence suggests that hematopoietic development from embryonic stem cells mimics an embryonic/fetal stage of hematopoiesis.

  7. The many faces of hematopoietic stem cell heterogeneity.

    Science.gov (United States)

    Crisan, Mihaela; Dzierzak, Elaine

    2016-12-15

    Not all hematopoietic stem cells (HSCs) are alike. They differ in their physical characteristics such as cell cycle status and cell surface marker phenotype, they respond to different extrinsic signals, and they have different lineage outputs following transplantation. The growing body of evidence that supports heterogeneity within HSCs, which constitute the most robust cell fraction at the foundation of the adult hematopoietic system, is currently of great interest and raises questions as to why HSC subtypes exist, how they are generated and whether HSC heterogeneity affects leukemogenesis or treatment options. This Review provides a developmental overview of HSC subtypes during embryonic, fetal and adult stages of hematopoiesis and discusses the possible origins and consequences of HSC heterogeneity. © 2016. Published by The Company of Biologists Ltd.

  8. Aging, Clonality and Rejuvenation of Hematopoietic Stem Cells

    Science.gov (United States)

    Akunuru, Shailaja; Geiger, Hartmut

    2016-01-01

    Aging is associated with reduced organ function and increased disease incidence. Hematopoietic stem cell (HSC) aging driven by both cell intrinsic and extrinsic factors is linked to impaired HSC self-renewal and regeneration, aging-associated immune remodeling, and increased leukemia incidence. Compromised DNA damage responses and increased production of reactive oxygen species have been previously causatively attributed to HSC aging. However, recent paradigm-shifting concepts such as global epigenetic and cytoskeletal polarity shifts, cellular senescence, as well as clonal selection of HSCs upon aging provide new insights into HSC aging mechanisms. Rejuvenating agents that can reprogram the epigenetic status of aged HSCs or senolytic drugs that selectively deplete senescent cells provide promising translational avenues for attenuating hematopoietic aging and potentially, alleviating aging-associated immune remodeling and myeloid malignancies. PMID:27380967

  9. The many faces of hematopoietic stem cell heterogeneity

    Science.gov (United States)

    2016-01-01

    Not all hematopoietic stem cells (HSCs) are alike. They differ in their physical characteristics such as cell cycle status and cell surface marker phenotype, they respond to different extrinsic signals, and they have different lineage outputs following transplantation. The growing body of evidence that supports heterogeneity within HSCs, which constitute the most robust cell fraction at the foundation of the adult hematopoietic system, is currently of great interest and raises questions as to why HSC subtypes exist, how they are generated and whether HSC heterogeneity affects leukemogenesis or treatment options. This Review provides a developmental overview of HSC subtypes during embryonic, fetal and adult stages of hematopoiesis and discusses the possible origins and consequences of HSC heterogeneity. PMID:27965438

  10. A method to enrich mouse hematopoietic stem cells

    International Nuclear Information System (INIS)

    Barker, J.E.; McFarland, E.C.

    1983-01-01

    Hematopoietic stem cells form colonies in the spleens of lethally irradiated mice. The number of colonies is indicative of the number of stem cells present in the inoculum. In this article, a technique is presented for effecting a seven-fold enrichment of spleen colony-forming cells. Bone marrow cells are first segregated into ''red'' and ''white'' cell populations by centrifugation on Ficoll-Paque. Centrifugation of the ''white'' cell fraction in 75% Percoll concentrates the colony-forming cells in the top one-third of the gradient. The ability of these cells to repopulate and to cure the anemia of WBB6F1-W/Wv mice indicates that long-term functional pluripotent stem cells have not been destroyed or lost during the fractionation procedures. The segregation procedures enrich the colony-forming cell population from thalassemic as well as from normal mice

  11. Tritium contamination of hematopoietic stem cells alters long-term hematopoietic reconstitution

    International Nuclear Information System (INIS)

    Di Giacomo, F.; Barroca, V.; Laurent, D.; Lewandowski, D.; Saintigny, Y.; Romeo, P.H.; Granotier, Ch.; Boussin, F.D.

    2011-01-01

    Purpose: In vivo effects of tritium contamination are poorly documented. Here, we study the effects of tritiated Thymidine ([ 3 H] Thymidine) or tritiated water (HTO) contamination on the biological properties of hematopoietic stem cells (HSC). Materials and methods: Mouse HSC were contaminated with concentrations of [ 3 H] Thymidine ranging from 0.37-37.03 kBq/ml or of HTO ranging from 5-50 kBq/ml. The biological properties of contaminated HSC were studied in vitro after HTO contamination and in vitro and in vivo after [ 3 H] Thymidine contamination. Results: Proliferation, viability and double-strand breaks were dependent on [ 3 H] Thymidine or HTO concentrations used for contamination but in vitro myeloid differentiation of HSC was not affected by [ 3 H] Thymidine contamination. [ 3 H] Thymidine contaminated HSC showed a compromised long-term capacity of hematopoietic reconstitution and competition experiments showed an up to two-fold decreased capacity of contaminated HSC to reconstitute hematopoiesis. These defects were not due to impaired homing in bone marrow but to an initial decreased proliferation rate of HSC. Conclusion: These results indicate that contaminations of HSC with doses of tritium that do not result in cell death, induce short-term effects on proliferation and cell cycle and long-term effects on hematopoietic reconstitution capacity of contaminated HSC. (authors)

  12. Oral changes in individuals undergoing hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Regina Haddad Barrach

    2015-04-01

    Full Text Available INTRODUCTION: Patients undergoing hematopoietic stem cell transplantation receive high doses of chemotherapy and radiotherapy, which cause severe immunosuppression.OBJECTIVE: To report an oral disease management protocol before and after hematopoietic stem cell transplantation.METHODS: A prospective study was carried out with 65 patients aged > 18 years, with hematological diseases, who were allocated into two groups: A (allogeneic transplant, 34 patients; B (autologous transplant, 31 patients. A total of three dental status assessments were performed: in the pre-transplantation period (moment 1, one week after stem cell infusion (moment 2, and 100 days after transplantation (moment 3. In each moment, oral changes were assigned scores and classified as mild, moderate, and severe risks.RESULTS: The most frequent pathological conditions were gingivitis, pericoronitis in the third molar region, and ulcers at the third moment assessments. However, at moments 2 and 3, the most common disease was mucositis associated with toxicity from the drugs used in the immunosuppression.CONCLUSION: Mucositis accounted for the increased score and potential risk of clinical complications. Gingivitis, ulcers, and pericoronitis were other changes identified as potential risk factors for clinical complications.

  13. Autologous hematopoietic stem cell transplantation in classical Hodgkin's lymphoma

    Directory of Open Access Journals (Sweden)

    Afonso José Pereira Cortez

    2011-02-01

    Full Text Available BACKGROUND: Hodgkin's lymphoma has high rates of cure, but in 15% to 20% of general patients and between 35% and 40% of those in advanced stages, the disease will progress or will relapse after initial treatment. For this group, hematopoietic stem cell transplantation is considered one option of salvage therapy. OBJECTIVES: To evaluate a group of 106 patients with Hodgkin's lymphoma, who suffered relapse or who were refractory to treatment, submitted to autologous hematopoietic stem cell transplantation in a single transplant center. METHODS: A retrospective study was performed with data collected from patient charts. The analysis involved 106 classical Hodgkin's lymphoma patients who were consecutively submitted to high-dose chemotherapy followed by autologous transplants in a single institution from April 1993 to December 2006. RESULTS: The overall survival rates of this population at five and ten years were 86% and 70%, respectively. The disease-free survival was approximately 60% at five years. Four patients died of procedure-related causes but relapse of classical Hodgkin's lymphoma after transplant was the most frequent cause of death. Univariate analysis shows that sensitivity to pre-transplant treatment and hemoglobin < 10 g/dL at diagnosis had an impact on patient survival. Unlike other studies, B-type symptoms did not seem to affect overall survival. Lactic dehydrogenase and serum albumin concentrations analyzed at diagnosis did not influence patient survival either. CONCLUSION: Autologous hematopoietic stem cell transplantation is an effective treatment strategy for early and late relapse in classical Hodgkin's lymphoma for cases that were responsive to pre-transplant chemotherapy. Refractory to treatment is a sign of worse prognosis. Additionally, a hemoglobin concentration below 10 g/dL at diagnosis of Hodgkin's lymphoma has a negative impact on the survival of patients after transplant. As far as we know this relationship has not

  14. Functional evaluation indicates physical losses after hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Clarissa Vasconcellos de Souza

    2012-01-01

    Full Text Available OBJECTIVE: To perform a function evaluation of patients before and after hematopoietic stem cell transplantation. METHODS: From November 2008 to November 2010, 29 female (58% and 21 male patients (42% with median age of 48 years (range: 24-67 were enrolled in this study. Data collection was performed before and after autologous or allogeneic hematopoietic stem cell transplantation. Evaluation instruments included the 2-minute walking test to evaluate gait performance with assessment of the oxygen saturation, heart rate and Borg Scale before and after the test; grip strength for strength evaluation, Schober Test for spine mobility testing and maximum and adapted activity scores of the Human Activity Profile questionnaire to test functionality in daily activities. RESULTS: Fifty patients were evaluated at baseline; six did not undergo hematopoietic stem cell transplantation (three died, one refused and two were excluded. Thus 44/50 (88% - 21 allogeneic and 23 autologous transplantations were performed. Only 33 of the 44 patients (75% performed evaluations after transplantation (nine died and two were excluded. Of the patients who performed both evaluations, significantly lower values were found in the evaluation after transplantation for the 2-minute walking test (p-value = 0.004, grip strength of both right and left hands (p-value = 0.004 and p-value < 0.0001, respectively, the Schober Test, and maximum and adapted activity scores (p-value < 0.0001. The heart rate was higher (p-value = 0.01 before the 2-minute walking test and oxygen saturation was higher (p-value = 0.02 after. CONCLUSION: Statistical differences indicate functional impairment after transplantation showing physical losses in this population.

  15. The Hematopoietic Stem Cell Therapy for Exploration of Space

    Science.gov (United States)

    Roach, Allana Nicole; Brezo, Jelena

    2002-01-01

    Astronauts experience severe/invasive disorders caused by space environments. These include hematological/cardiac abnormalities, bone and muscle losses, immunodeficiency, neurological disorders and cancer. While the cause of these symptoms are not yet fully delineated, one possible explanation could be the inhibition of hematopoietic stem cell (HSC) growth and hematopoiesis in space. HSCs differentiate into all types of blood cells, and growing evidence indicates that the HSCs also have the ability to transdifferentiate to various tissues, including muscle, skin, liver, neuronal cells and possibly bone. Therefore, a hypothesis was advanced in this laboratory that the hematopoietic stem cell-based therapy, herein called the hematopoietic stem cell therapy (HSCT), could mitigate some of the disorders described above. Due to the magnitude of this project our laboratory has subdivided it into 3 sections: a) HSCT for space anemia; b) HSCT for muscle and bone losses; and c) HSCT for immunodeficiency. Toward developing the HSCT protocol for space anemia, the HSC transplantation procedure was established using a mouse model of beta thalassemia. In addition, the NASA Rotating Wall Vessel (RWV) culture system was used to grow HSCs in space condition. To investigate the HSCT for muscle loss and bone loss, donor HSCs were genetically marked either by transfecting the beta-galactosidase-containing plasmid, pCMV.SPORT-beta-gal or by preparing from b-galactosidase transgenic mice. The transdifferentiation of HSCs to muscle is traced by the reporter gene expression in the hindlimb suspended mice with some positive outcome, as studied by the X-gal staining procedure. The possible structural contribution of HSCs against muscle loss is being investigated histochemically.

  16. Oxidative stress in normal hematopoietic stem cells and leukemia.

    Science.gov (United States)

    Samimi, Azin; Kalantari, Heybatullah; Lorestani, Marzieh Zeinvand; Shirzad, Reza; Saki, Najmaldin

    2018-04-01

    Leukemia is developed following the abnormal proliferation of immature hematopoietic cells in the blood when hematopoietic stem cells lose the ability to turn into mature cells at different stages of maturation and differentiation. Leukemia initiating cells are specifically dependent upon the suppression of oxidative stress in the hypoglycemic bone marrow (BM) environment to be able to start their activities. Relevant literature was identified by a PubMed search (2000-2017) of English-language literature using the terms 'oxidative stress,' 'reactive oxygen species,' 'hematopoietic stem cell,' and 'leukemia.' The generation and degradation of free radicals is a main component of the metabolism in aerobic organisms. A certain level of ROS is required for proper cellular function, but values outside this range will result in oxidative stress (OS). Long-term overactivity of reactive oxygen species (ROS) has harmful effects on the function of cells and their vital macromolecules, including the transformation of proteins into autoantigens and increased degradation of protein/DNA, which eventually leads to the change in pathways involved in the development of cancer and several other disorders. According to the metabolic disorders of cancer, the relationship between OS changes, the viability of cancer cells, and their response to chemotherapeutic agents affecting this pathway are undeniable. Recently, studies have been conducted to determine the effect of herbal agents and cancer chemotherapy drugs on oxidative stress pathways. By emphasizing the role of oxidative stress on stem cells in the incidence of leukemia, this paper attempts to state and summarize this subject. © 2018 APMIS. Published by John Wiley & Sons Ltd.

  17. Patterns of psychological responses in parents of children that underwent stem cell transplantation.

    Science.gov (United States)

    Riva, Roberto; Forinder, Ulla; Arvidson, Johan; Mellgren, Karin; Toporski, Jacek; Winiarski, Jacek; Norberg, Annika Lindahl

    2014-11-01

    Hematopoietic stem cell transplantation (HSCT) is curative in several life-threatening pediatric diseases but may affect children and their families inducing depression, anxiety, burnout symptoms, and post-traumatic stress symptoms, as well as post-traumatic growth (PTG). The aim of this study was to investigate the co-occurrence of different aspects of such responses in parents of children that had undergone HSCT. Questionnaires were completed by 260 parents (146 mothers and 114 fathers) 11-198 months after HSCT: the Hospital Anxiety and Depression Scale, the Shirom-Melamed Burnout Questionnaire, the post-traumatic stress disorders checklist, civilian version, and the PTG inventory. Additional variables were also investigated: perceived support, time elapsed since HSCT, job stress, partner-relationship satisfaction, trauma appraisal, and the child's health problems. A hierarchical cluster analysis and a k-means cluster analysis were used to identify patterns of psychological responses. Four clusters of parents with different psychological responses were identified. One cluster (n = 40) significantly differed from the other groups and reported levels of depression, anxiety, burnout symptoms, and post-traumatic stress symptoms above the cut-off. In contrast, another cluster (n = 66) reported higher levels of PTG than the other groups did. This study shows a subgroup of parents maintaining high levels of several aspects of distress years after HSCT. Differences between clusters might be explained by differences in perceived support, the child's health problems, job stress, and partner-relationship satisfaction. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Lack of autophagy in the hematopoietic system leads to loss of hematopoietic stem cell function and dysregulated myeloid proliferation.

    Science.gov (United States)

    Mortensen, Monika; Watson, Alexander Scarth; Simon, Anna Katharina

    2011-09-01

    The regulated lysosomal degradation pathway of autophagy prevents cellular damage and thus protects from malignant transformation. Autophagy is also required for the maturation of various hematopoietic lineages, namely the erythroid and lymphoid ones, yet its role in adult hematopoietic stem cells (HSCs) remained unexplored. While normal HSCs sustain life-long hematopoiesis, malignant transformation of HSCs or early progenitors leads to leukemia. Mechanisms protecting HSCs from cellular damage are therefore essential to prevent hematopoietic malignancies. By conditionally deleting the essential autophagy gene Atg7 in the hematopoietic system, we found that autophagy is required for the maintenance of true HSCs and therefore also of downstream hematopoietic progenitors. Loss of autophagy in HSCs leads to the expansion of a progenitor cell population in the bone marrow, giving rise to a severe, invasive myeloproliferation, which strongly resembles human acute myeloid leukemia (AML).

  19. Depression and anxiety following hematopoietic stem cell transplantation

    DEFF Research Database (Denmark)

    Kuba, K; Esser, P; Mehnert, A

    2017-01-01

    In this prospective multicenter study, we investigated the course of depression and anxiety during hematopoietic stem cell transplantation (HSCT) until 5 years after transplantation adjusting for medical information. Patients were consulted before HSCT (n=239), at 3 months (n=150), 12 months (n=102......) and 5 years (n=45) after HSCT. Depression and anxiety were assessed with the Hospital Anxiety and Depression Scale (HADS). Detailed medical and demographic information was collected. Prevalence rates were compared with an age- and gender-matched control group drawn from a large representative sample (n...

  20. Lung function after allogeneic hematopoietic stem cell transplantation in children

    DEFF Research Database (Denmark)

    Uhlving, Hilde Hylland; Larsen Bang, Cæcilie; Christensen, Ib Jarle

    2013-01-01

    Reduction in pulmonary function (PF) has been reported in up to 85% of pediatric patients during the first year after hematopoietic stem cell transplantation (HSCT). Our understanding of the etiology for this decrease in lung function is, however, sparse. The aim of this study was to describe PF......-versus-host disease (GvHD). Other factors associated with PF decline were malignant diagnosis, busulfan-based conditioning, patient and donor age, female donor to male recipient, as well as chronic GvHD. Mild to moderate decline in PF is frequent and appears associated with acute GvHD and other parameters...

  1. The Hematopoietic Stem Cell Therapy for Exploration of Deep Space

    Science.gov (United States)

    Ohi, Seigo; Roach, Allana-Nicole; Fitzgerald, Wendy; Riley, Danny A.; Gonda, Steven R.

    2003-01-01

    It is hypothesized that the hematopoietic stem cell therapy (HSCT) might countermeasure various space-caused disorders so as to maintain astronauts' homeostasis. If this were achievable, the HSCT could promote human exploration of deep space. Using animal models of disorders (hindlimb suspension unloading system and beta-thalassemia), the HSCT was tested for muscle loss, immunodeficiency and space anemia. The results indicate feasibility of HSCT for these disorders. To facilitate the HSCT in space, growth of HSCs were optimized in the NASA Rotating Wall Vessel (RWV) culture systems, including Hydrodynamic Focusing Bioreactor (HFB).

  2. Pharmacoeconomics of Hematopoietic Stem Cell Mobilization : An Overview of Current Evidence and Gaps in the Literature

    NARCIS (Netherlands)

    Shaughnessy, Paul; Chao, Nelson; Shapiro, Jamie; Walters, Kent; McCarty, John; Abhyankar, Sunil; Shayani, Sepideh; Helmons, Pieter; Leather, Helen; Pazzalia, Amy; Pickard, Simon

    Adequate hematopoietic stem cell (HSC) mobilization and collection is required prior to proceeding with high dose chemotherapy and autologous hematopoietic stem cell transplant. Cytokines such as G-CSF, GM-CSF, and peg-filgrastim, alone or in combination with plerixafor, and after chemotherapy have

  3. Age-associated changes in human hematopoietic stem cells.

    Science.gov (United States)

    Pang, Wendy W; Schrier, Stanley L; Weissman, Irving L

    2017-01-01

    Aging has a broad impact on the function of the human hematopoietic system. This review will focus primarily on the effect of aging on the human hematopoietic stem cell (HSC) population. With age, even though human HSCs increase in number, they have decreased self-renewal capacity and reconstitution potential upon transplantation. As a population, human HSCs become more myeloid-biased in their differentiation potential. This is likely due to the human HSC population becoming more clonal with age, selecting for myeloid-biased HSC clones. The HSC clones that come to predominate with age may also contain disease-causing genetic and epigenetic changes that confer an increased risk of developing into an age-associated clonal hematopoietic disease, such as myelodysplastic syndrome, myeloproliferative disorders, or leukemia. The selection of these aged human HSC clones may be in part due to changes in the aging bone marrow microenvironment. While there have been significant advances in the understanding of the effect of aging on mouse hematopoiesis and mouse HSCs, we have comparatively less detailed analyses of the effect of aging on human HSCs. Continued evaluation of human HSCs in the context of aging will be important to determine how applicable the findings in mice and other model organisms are to the human clinical setting. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Ionizing radiation induces apoptosis in hematopoietic stem and progenitor cells

    International Nuclear Information System (INIS)

    Meng, A.; Zhou, D.; Geiger, H.; Zant, G.V.

    2003-01-01

    The aims of this study was to determine if ionizing radiation (IR) induces apoptosis in hematopoietic stem (HSC) and progenitor cells. Lin-cells were isolated from mouse bone marrow (BM) and pretreated with vehicle or 100 μM z-VAD 1 h prior to exposure to 4 Gy IR. The apoptotic and/or necrotic responses of these cells to IR were analyzed by measuring the annexin V and/or 7-AAD staining in HSC and progenitor populations using flow cytometry, and hematopoietic function of these cells was determined by CAFC assay. Exposure of Lin-cells to IR selectively decreased the numbers of HSC and progenitors in association with an increase in apoptosis in a time-dependent manner. Pretreatment of Lin- cells with z-VAD significantly inhibited IR-induced apoptosis and the decrease in the numbers of HSC and progenitors. However, IR alone or in combination with z-VAD did not lead to a significant increase in necrotic cell death in either HSC or progenitors. In addition, pretreatment of BM cells with z-VAD significantly attenuated IR-induced reduction in the frequencies of day-7, -28 and -35 CAFC. Exposure of HSC and progenitors to IR induces apoptosis. The induction of HSC and progenitor apoptosis contributes to IR-induced suppression of their hematopoietic function

  5. File list: DNS.Bld.05.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.05.AllAg.CD34_Hematopoietic_stem_cells hg19 DNase-seq Blood CD34 Hematopoie...tic stem cells SRX201280 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.05.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  6. File list: InP.Bld.50.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.50.AllAg.Hematopoietic_Stem_Cells hg19 Input control Blood Hematopoietic St...em Cells SRX038907 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.50.AllAg.Hematopoietic_Stem_Cells.bed ...

  7. File list: His.Bld.10.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.10.AllAg.CD34_Hematopoietic_stem_cells hg19 Histone Blood CD34 Hematopoieti...c stem cells SRX026654 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.10.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  8. File list: Pol.Bld.50.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.50.AllAg.CD34_Hematopoietic_stem_cells hg19 RNA polymerase Blood CD34 Hematopoi...etic stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.50.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  9. File list: InP.Bld.10.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.10.AllAg.Hematopoietic_Stem_Cells hg19 Input control Blood Hematopoietic St...em Cells SRX038907 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.10.AllAg.Hematopoietic_Stem_Cells.bed ...

  10. File list: NoD.Bld.05.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.05.AllAg.Hematopoietic_Stem_Cells hg19 No description Blood Hematopoietic S...tem Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Bld.05.AllAg.Hematopoietic_Stem_Cells.bed ...

  11. File list: His.Bld.50.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.50.AllAg.CD34_Hematopoietic_stem_cells hg19 Histone Blood CD34 Hematopoieti...c stem cells SRX026654 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.50.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  12. File list: DNS.Bld.10.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.10.AllAg.CD34_Hematopoietic_stem_cells hg19 DNase-seq Blood CD34 Hematopoie...tic stem cells SRX201280 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.10.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  13. File list: InP.Bld.20.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.20.AllAg.Hematopoietic_Stem_Cells hg19 Input control Blood Hematopoietic St...em Cells SRX038907 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.20.AllAg.Hematopoietic_Stem_Cells.bed ...

  14. File list: InP.Bld.05.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.05.AllAg.Hematopoietic_Stem_Cells hg19 Input control Blood Hematopoietic St...em Cells SRX038907 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.05.AllAg.Hematopoietic_Stem_Cells.bed ...

  15. File list: Pol.Bld.05.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.05.AllAg.CD34_Hematopoietic_stem_cells hg19 RNA polymerase Blood CD34 Hematopoi...etic stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.05.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  16. File list: Pol.Bld.20.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.20.AllAg.CD34_Hematopoietic_stem_cells hg19 RNA polymerase Blood CD34 Hematopoi...etic stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.20.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  17. File list: NoD.Bld.50.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.50.AllAg.Hematopoietic_Stem_Cells hg19 No description Blood Hematopoietic S...tem Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Bld.50.AllAg.Hematopoietic_Stem_Cells.bed ...

  18. File list: NoD.Bld.20.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.20.AllAg.Hematopoietic_Stem_Cells hg19 No description Blood Hematopoietic S...tem Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Bld.20.AllAg.Hematopoietic_Stem_Cells.bed ...

  19. File list: DNS.Bld.20.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.20.AllAg.CD34_Hematopoietic_stem_cells hg19 DNase-seq Blood CD34 Hematopoie...tic stem cells SRX201280 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.20.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  20. File list: DNS.Bld.50.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.50.AllAg.CD34_Hematopoietic_stem_cells hg19 DNase-seq Blood CD34 Hematopoie...tic stem cells SRX201280 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.50.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  1. File list: His.Bld.20.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.20.AllAg.CD34_Hematopoietic_stem_cells hg19 Histone Blood CD34 Hematopoieti...c stem cells SRX026654 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.20.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  2. File list: His.Bld.05.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.05.AllAg.CD34_Hematopoietic_stem_cells hg19 Histone Blood CD34 Hematopoieti...c stem cells SRX026654 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.05.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  3. File list: Pol.Bld.10.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.10.AllAg.CD34_Hematopoietic_stem_cells hg19 RNA polymerase Blood CD34 Hematopoi...etic stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.10.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  4. File list: NoD.Bld.10.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.10.AllAg.Hematopoietic_Stem_Cells hg19 No description Blood Hematopoietic S...tem Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Bld.10.AllAg.Hematopoietic_Stem_Cells.bed ...

  5. Hematopoietic Stem Cell Transplantation in Thalassemia and Sickle Cell Anemia

    Science.gov (United States)

    Lucarelli, Guido; Isgrò, Antonella; Sodani, Pietro; Gaziev, Javid

    2012-01-01

    The globally widespread single-gene disorders β-thalassemia and sickle cell anemia (SCA) can only be cured by allogeneic hematopoietic stem cell transplantation (HSCT). HSCT treatment of thalassemia has substantially improved over the last two decades, with advancements in preventive strategies, control of transplant-related complications, and preparative regimens. A risk class–based transplantation approach results in disease-free survival probabilities of 90%, 84%, and 78% for class 1, 2, and 3 thalassemia patients, respectively. Because of disease advancement, adult thalassemia patients have a higher risk for transplant-related toxicity and a 65% cure rate. Patients without matched donors could benefit from haploidentical mother-to-child transplantation. There is a high cure rate for children with SCA who receive HSCT following myeloablative conditioning protocols. Novel non-myeloablative transplantation protocols could make HSCT available to adult SCA patients who were previously excluded from allogeneic stem cell transplantation. PMID:22553502

  6. Herpes zoster after autologous hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Kelli Borges dos Santos

    Full Text Available ABSTRACT Background: The autologous hematopoietic stem cell transplantation procedure involves immunosuppression of the patient. Thus, the patient has an elevated risk for several diseases, such as infections with the varicella-zoster virus. Prevention protocols have been proposed based on the use of acyclovir from the first day of conditioning, and maintaining this drug for 30-100 days after the procedure or for as much as one year. The objective of this work was to evaluate the incidence of herpes zoster after autologous transplantations related to the early suspension of acyclovir. Methods: A retrospective study was carried out based on the collection of data from 231 medical records of transplant patients in the Bone Marrow Transplant Unit of the teaching hospital of the Universidade Federal de Juiz de Fora in the period between 2004 and 2014. Results: Fourteen (6.1% patients had herpes zoster in the post-transplant period on average within six months of the procedure. Patients with multiple myeloma (64.3% were the most affected. There was a statistically significant difference in the age of the patients, with older individuals having a greater chance of developing the infection (p-value = 0.002. There were no significant differences for the other variables analyzed. Conclusion: The early suspension of acyclovir can be safe in patients who receive autologous hematopoietic stem cell transplants. However some groups may benefit from extended prophylaxis with acyclovir, particularly older patients and patients with multiple myeloma.

  7. Ion Channels in Hematopoietic and Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Serena Pillozzi

    2012-01-01

    Full Text Available Hematopoietic stem cells (HSCs reside in bone marrow niches and give rise to hematopoietic precursor cells (HPCs. These have more restricted lineage potential and eventually differentiate into specific blood cell types. Bone marrow also contains mesenchymal stromal cells (MSCs, which present multilineage differentiation potential toward mesodermal cell types. In bone marrow niches, stem cell interaction with the extracellular matrix is mediated by integrin receptors. Ion channels regulate cell proliferation and differentiation by controlling intracellular Ca2+, cell volume, release of growth factors, and so forth. Although little evidence is available about the ion channel roles in true HSCs, increasing information is available about HPCs and MSCs, which present a complex pattern of K+ channel expression. K+ channels cooperate with Ca2+ and Cl− channels in regulating calcium entry and cell volume during mitosis. Other K+ channels modulate the integrin-dependent interaction between leukemic progenitor cells and the niche stroma. These channels can also regulate leukemia cell interaction with MSCs, which also involves integrin receptors and affects the MSC-mediated protection from chemotherapy. Ligand-gated channels are also implicated in these processes. Nicotinic acetylcholine receptors regulate cell proliferation and migration in HSCs and MSCs and may be implicated in the harmful effects of smoking.

  8. Desensitization for solid organ and hematopoietic stem cell transplantation

    Science.gov (United States)

    Zachary, Andrea A; Leffell, Mary S

    2014-01-01

    Desensitization protocols are being used worldwide to enable kidney transplantation across immunologic barriers, i.e. antibody to donor HLA or ABO antigens, which were once thought to be absolute contraindications to transplantation. Desensitization protocols are also being applied to permit transplantation of HLA mismatched hematopoietic stem cells to patients with antibody to donor HLA, to enhance the opportunity for transplantation of non-renal organs, and to treat antibody-mediated rejection. Although desensitization for organ transplantation carries an increased risk of antibody-mediated rejection, ultimately these transplants extend and enhance the quality of life for solid organ recipients, and desensitization that permits transplantation of hematopoietic stem cells is life saving for patients with limited donor options. Complex patient factors and variability in treatment protocols have made it difficult to identify, precisely, the mechanisms underlying the downregulation of donor-specific antibodies. The mechanisms underlying desensitization may differ among the various protocols in use, although there are likely to be some common features. However, it is likely that desensitization achieves a sort of immune detente by first reducing the immunologic barrier and then by creating an environment in which an autoregulatory process restricts the immune response to the allograft. PMID:24517434

  9. Mitigation of radiation induced hematopoietic injury via regulation of Nrf-2 and increasing hematopoietic stem cells

    International Nuclear Information System (INIS)

    Patwardhan, R.S.; Sharma, Deepak; Checker, Rahul; Santosh Kumar, S.

    2014-01-01

    Therapeutic doses of ionizing radiation (IR) that can be delivered to tumors are restricted due to radiation induced damage to surrounding normal tissues thereby limiting the effectiveness of radiotherapy. Strategies to develop agents that selectively protect normal cells yielded limited success in the past. There is pressing need to develop safe, syndrome specific and effective radiation countermeasures to prevent or mitigate the harmful consequences of radiation exposure. Survival of bone marrow stem cells (HSCs) play a key role in protecting against IR induced hematopoietic injury. Many studies have shown manipulation of HSC frequency and/or survival as principal mechanism of radioprotection. It is known that, Nrf-2 plays crucial role in HSC survival and maintenance under oxidative stress conditions. In the present study, we have investigated the radioprotective ability of a flavonoid baicalein (5,6,7-trihydroxyflavone), extracted from the root of Scutellaria baicalensis Georgi, a medicinal plant traditionally used in Oriental medicine. There are numerous reports showing anti-inflammatory, anti-apoptotic, anti-oxidant, anti-cancer, anti-microbial, anti-mutagenic and neuroprotective properties of baicalein. Based on these reports, we have investigated the ability of baicalein to protect against radiation induced hematopoietic injury. Baicalein administration to mice protected against WBI induced mortality. Interestingly, the stem cell frequency increased in bone marrow cells obtained from baicalein administered mice as compared to vehicle treated mice. Baicalein treatment led to increased phospho-Nrf-2 levels in lineage negative BM-MNC. Administration of mice with Nrf-2 inhibitor prior to baicalein treatment led to significant abrogation of radioprotective ability of baicalein. This result suggests that, Nrf-2 may be playing a key role in baicalein mediated radioprotection. Here, we have shown that baicalein administration augments stem cell frequency, induces

  10. TET2 deficiency inhibits mesoderm and hematopoietic differentiation in human embryonic stem cells

    DEFF Research Database (Denmark)

    Langlois, Thierry; da Costa Reis Monte Mor, Barbara; Lenglet, Gaëlle

    2014-01-01

    . Here, we show that TET2 expression is low in human embryonic stem (ES) cell lines and increases during hematopoietic differentiation. ShRNA-mediated TET2 knockdown had no effect on the pluripotency of various ES cells. However, it skewed their differentiation into neuroectoderm at the expense...... profile, including abnormal expression of neuronal genes. Intriguingly, when TET2 was knockdown in hematopoietic cells, it increased hematopoietic development. In conclusion, our work suggests that TET2 is involved in different stages of human embryonic development, including induction of the mesoderm...... and hematopoietic differentiation. Stem Cells 2014....

  11. Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function

    Directory of Open Access Journals (Sweden)

    Christian Kosan

    2016-01-01

    Full Text Available All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several transcription factors and epigenetic modifiers are involved in this process. These create modifications that regulate the cell fate in a more or less reversible and dynamic way and contribute to HSC homeostasis. In addition, HSC respond in a unique way to DNA damage. These mechanisms also contribute to the regulation of HSC function and are essential to ensure viability after DNA damage. How HSC maintain their quiescent stage during the entire life is still matter of ongoing research. Here we will focus on the molecular mechanisms that regulate HSC function.

  12. Hematopoietic Stem Cell Transplantation in Primary Immunodeficiency Patients in the Black Sea Region of Turkey.

    Science.gov (United States)

    Yıldıran, Alişan; Çeliksoy, Mehmet Halil; Borte, Stephan; Güner, Şükrü Nail; Elli, Murat; Fışgın, Tunç; Özyürek, Emel; Sancak, Recep; Oğur, Gönül

    2017-12-01

    Hematopoietic stem cell transplantation is a promising curative therapy for many combined primary immunodeficiencies and phagocytic disorders. We retrospectively reviewed pediatric cases of patients diagnosed with primary immunodeficiencies and scheduled for hematopoietic stem cell transplantation. We identified 22 patients (median age, 6 months; age range, 1 month to 10 years) with various diagnoses who received hematopoietic stem cell transplantation. The patient diagnoses included severe combined immunodeficiency (n=11), Chediak-Higashi syndrome (n=2), leukocyte adhesion deficiency (n=2), MHC class 2 deficiency (n=2), chronic granulomatous syndrome (n=2), hemophagocytic lymphohistiocytosis (n=1), Wiskott-Aldrich syndrome (n=1), and Omenn syndrome (n=1). Of the 22 patients, 7 received human leukocyte antigen-matched related hematopoietic stem cell transplantation, 12 received haploidentical hematopoietic stem cell transplantation, and 2 received matched unrelated hematopoietic stem cell transplantation. The results showed that 5 patients had graft failure. Fourteen patients survived, yielding an overall survival rate of 67%. Screening newborn infants for primary immunodeficiency diseases may result in timely administration of hematopoietic stem cell transplantation.

  13. Hematopoietic Stem Cell Transplantation in Primary Immunodeficiency Patients in the Black Sea Region of Turkey

    Directory of Open Access Journals (Sweden)

    Alişan Yıldıran

    2017-12-01

    Full Text Available Hematopoietic stem cell transplantation is a promising curative therapy for many combined primary immunodeficiencies and phagocytic disorders. We retrospectively reviewed pediatric cases of patients diagnosed with primary immunodeficiencies and scheduled for hematopoietic stem cell transplantation. We identified 22 patients (median age, 6 months; age range, 1 month to 10 years with various diagnoses who received hematopoietic stem cell transplantation. The patient diagnoses included severe combined immunodeficiency (n=11, Chediak-Higashi syndrome (n=2, leukocyte adhesion deficiency (n=2, MHC class 2 deficiency (n=2, chronic granulomatous syndrome (n=2, hemophagocytic lymphohistiocytosis (n=1, Wiskott-Aldrich syndrome (n=1, and Omenn syndrome (n=1. Of the 22 patients, 7 received human leukocyte antigen-matched related hematopoietic stem cell transplantation, 12 received haploidentical hematopoietic stem cell transplantation, and 2 received matched unrelated hematopoietic stem cell transplantation. The results showed that 5 patients had graft failure. Fourteen patients survived, yielding an overall survival rate of 67%. Screening newborn infants for primary immunodeficiency diseases may result in timely administration of hematopoietic stem cell transplantation.

  14. Deficiency of GRP94 in the hematopoietic system alters proliferation regulators in hematopoietic stem cells.

    Science.gov (United States)

    Luo, Biquan; Tseng, Chun-Chih; Adams, Gregor B; Lee, Amy S

    2013-12-01

    We have previously reported that acute inducible knockout of the endoplasmic reticulum chaperone GRP94 led to an expansion of the hematopoietic stem and progenitor cell pool. Here, we investigated the effectors and mechanisms for this phenomenon. We observed an increase in AKT activation in freshly isolated GRP94-null HSC-enriched Lin(-) Sca-1(+) c-Kit(+) (LSK) cells, corresponding with higher production of PI(3,4,5)P3, indicative of PI3K activation. Treatment of GRP94-null LSK cells with the AKT inhibitor MK2206 compromised cell expansion, suggesting a causal relationship between elevated AKT activation and increased proliferation in GRP94-null HSCs. Microarray analysis demonstrated a 97% reduction in the expression of the hematopoietic cell cycle regulator Ms4a3 in the GRP94-null LSK cells, and real-time quantitative PCR confirmed this down-regulation in the LSK cells but not in the total bone marrow (BM). A further examination comparing freshly isolated BM LSK cells with spleen LSK cells, as well as BM LSK cells cultured in vitro, revealed specific down-regulation of Ms4a3 in freshly isolated BM GRP94-null LSK cells. On examining cell surface proteins that are known to regulate stem cell proliferation, we observed a reduced expression of cell surface connexin 32 (Cx32) plaques in GRP94-null LSK cells. However, suppression of Cx32 hemichannel activity in wild-type LSK cells through mimetic peptides did not lead to increased LSK cell proliferation in vitro. Two other important cell surface proteins that mediate HSC-niche interactions, specifically Tie2 and CXCR4, were not impaired by Grp94 deletion. Collectively, our study uncovers novel and unique roles of GRP94 in regulating HSC proliferation.

  15. Studies of hematopoietic stem cells spared by 5-fluorouracil

    International Nuclear Information System (INIS)

    Van Zant, G.

    1984-01-01

    Mouse marrow cells were exposed to 5-fluorouracil (FU) either in vivo or in vitro and the effects on the hematopoietic stem cell compartment were studied. The drug was highly toxic to bone marrow cells including the spleen colony-forming unit (CFU-S) population. The small population of stem cells surviving FU, however, caused a different pattern of spleen colony growth when injected into lethally irradiated mice. Whereas numbers of spleen colonies caused by normal marrow cells remained constant during an 8-14 d period after transplantation, spleen colonies derived from FU-treated marrow cells increased by as much as 100-fold during this time. This effect on stem cells was dose dependent both in vitro and in vivo. When FU was given in vivo, the day 14/day 8 ratio of colonies was greatest 1 d after injection and, over the next 7 d, returned to a near-normal value, that is, unity. A number of studies have shown that the stem cell compartment is heterogeneous with respect to self-replicative capacity and developmental potential. An age structure for the stem cell compartment has been proposed wherein cells with a short mitotic history are more likely to self-replicate than they are to differentiate; hence they are more primitive. I propose that the delayed spleen colony appearance in normal hosts is the result of developmental maturation of the primitive stem cell compartment that survives FU and is responsible for spleen colonies arising around day 14. This maturation, at least initially, occurs in the marrow and leads to the replenishment of the more differentiated CFU-S subsets ablated by FU, which are normally responsible for spleen colonies appearing earlier after transplantation

  16. Response of hematopoietic stem cells to ionizing radiation

    International Nuclear Information System (INIS)

    Simonnet, A.

    2008-12-01

    Hematopoietic stem cells (HSCs) maintain blood and immune system throughout life and restore them after hematological injuries. Exposure of an organism to ionizing radiation (IR) causes rapid and acute myelosuppression and challenges the replenishment capacity of HSCs. Yet, the precise damages that are generated remain largely unexplored. To better understand these effects, phenotypic and functional changes in the stem/progenitor compartments of sublethally irradiated mice were monitored over a ten week period after radiation exposure. We report that shortly after sublethal IR-exposure, HSCs, defined by their repopulating ability, still segregate in the Hoechst dye excluding side population (SP); yet, their Sca-1 (S) and c-Kit (K) expression levels are increased and severely reduced, respectively, with a concurrent increase in the proportion of SP SK cells positive for established indicators of HSC presence: CD150 + and CD105 + . A great proportion of HSCs quickly but transiently enter the cell cycle to replenish the bone marrow of myelo-ablated mice. Ten weeks after, whereas bone marrow cellularity has recovered and hematopoietic homeostasis is restored, major phenotypic modifications can be observed within the Lin -/low Sca-1 + c-Kit + (LSK) stem/progenitor compartment: CD150 + /Flk2 - and CD150 - /Flk2 + LSK cell frequencies are increased and dramatically reduced, respectively. CD150 + LSK cells also show impaired reconstitution capacity, accrued number of γ-H2AX foci and increased tendency to apoptosis. This demonstrates that the LSK compartment is not properly restored 10 weeks after sublethal exposure, and that long-term IR-induced injury to the bone marrow proceeds, at least partially, through direct damage to the stem cell pool. Thrombopoietin (TPO) has been shown to promote the survival of lethally irradiated mice when administrated quickly after exposure. We investigated the mechanisms underlying this effect, and found in a competitive transplant

  17. File list: InP.Bld.20.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.20.AllAg.Hematopoietic_Stem_Cells mm9 Input control Blood Hematopoietic Ste...hive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.20.AllAg.Hematopoietic_Stem_Cells.bed ...

  18. File list: InP.Bld.05.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.05.AllAg.Hematopoietic_Stem_Cells mm9 Input control Blood Hematopoietic Ste...hive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.05.AllAg.Hematopoietic_Stem_Cells.bed ...

  19. File list: InP.Bld.10.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.10.AllAg.Hematopoietic_Stem_Cells mm9 Input control Blood Hematopoietic Ste...hive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.10.AllAg.Hematopoietic_Stem_Cells.bed ...

  20. COST OF HEMATOPOIETIC STEM CELL TRANSPLANTATION IN INDIA

    Directory of Open Access Journals (Sweden)

    Sanjeev Kumar Sharma

    2014-06-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT is the definite cure for many hematological diseases. With the increasing indications for HSCT and its relatively low cost in Indian subcontinent, an increasing number of patients are opting for this procedure. We retrospectively analyzed the cost of one hundred sixty two HSCTs done at our center in the last three years. The median cost of autologous transplant was INR 7,52,294 (USD, $ 12,500 (range INR 6,19,850-14,17,212 and the median cost of allogenic transplant was INR 10,74,881 ($18,000 (range INR 6,49,944-23,82,227. The cost of HSCT is cheaper here compared to that in developed countries and success rates are nearly equivalent. The major factors contributing to the cost are related to the complications post-transplant mainly infections and graft versus host disease, which are also the reasons for the increased stay in the hospital.

  1. The Hematopoietic Stem Cell Therapy for Exploration of Space

    Science.gov (United States)

    Ohi, S.

    Departments of Biochemistry &Molecular Biology, Genetics &Human Genetics, Pediatrics &Child Long-duration space missions require countermeasures against severe/invasive disorders in astronauts that are caused by space environments, such as hematological/cardiac abnormalities, bone/muscle losses, immunodeficiency, neurological disorders, and cancer. Some, if not all, of these disorders may be amenable to hematopoietic stem cell therapy and gene therapy. Growing evidence indicates that hematopoietic stem cells (HSCs) possess extraordinary plasticity to differentiate not only to all types of blood cells but also to various tissues, including bone, muscle, skin, liver and neuronal cells. Therefore, our working hypothesis is that the hematopoietic stem cell-based therapy, herein called as the hematopoietic stem cell therapy (HSCT), might provide countermeasure/prevention for hematological abnormalities, bone and muscle losses in space, thereby maintaining astronauts' homeostasis. Our expertise lies in recombinant adeno-associated virus (rAAV)-mediated gene therapy for the hemoglobinopathies, -thalassemia and sickle cell disease (Ohi S, Kim BC, J Pharm Sci 85: 274-281, 1996; Ohi S, et al. Grav Space Biol Bull 14: 43, 2000). As the requisite steps in this protocol, we established procedures for purification of HSCs from both mouse and human bone marrow in 1 G. Furthermore, we developed an easily harvestable, long-term liquid suspension culture system, which lasts more than one year, for growing/expanding HSCs without stromal cells. Human globin cDNAs/gene were efficiently expressed from the rAAVs in the mouse HSCs in culture. Additionally, the NASA Rotating Wall Vessel (RWV) culture system is being optimized for the HSC growth/expansion. Thus, using these technologies, the above hypothesis is being investigated by the ground-based experiments as follows: 1) -thalassemic mice (C57BL/6-Hbbth/Hbbth, Hbd-minor) are transplanted with normal isologous HSCs to correct the

  2. Bone Marrow Vascular Niche: Home for Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Ningning He

    2014-01-01

    Full Text Available Though discovered later than osteoblastic niche, vascular niche has been regarded as an alternative indispensable niche operating regulation on hematopoietic stem cells (HSCs. As significant progresses gained on this type niche, it is gradually clear that the main work of vascular niche is undertaking to support hematopoiesis. However, compared to what have been defined in the mechanisms through which the osteoblastic niche regulates hematopoiesis, we know less in vascular niche. In this review, based on research data hitherto we will focus on component foundation and various functions of vascular niche that guarantee the normal hematopoiesis process within bone marrow microenvironments. And the possible pathways raised by various research results through which this environment undergoes its function will be discussed as well.

  3. Role of HLA in Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Meerim Park

    2012-01-01

    Full Text Available The selection of hematopoietic stem cell transplantation (HSCT donors includes a rigorous assessment of the availability and human leukocyte antigen (HLA match status of donors. HLA plays a critical role in HSCT, but its involvement in HSCT is constantly in flux because of changing technologies and variations in clinical transplantation results. The increased availability of HSCT through the use of HLA-mismatched related and unrelated donors is feasible with a more complete understanding of permissible HLA mismatches and the role of killer-cell immunoglobulin-like receptor (KIR genes in HSCT. The influence of nongenetic factors on the tolerability of HLA mismatching has recently become evident, demonstrating a need for the integration of both genetic and nongenetic variables in donor selection.

  4. Analysis of the motivation for hematopoietic stem cell donation.

    Science.gov (United States)

    Aurelio, M T; Aniasi, A; Haworth, S E; Colombo, M B; Dimonopoli, T; Mocellin, M C; Poli, F; Torelli, R; Crespiatico, L; Serafini, M; Scalamogna, M

    2011-05-01

    The Italian Bone Marrow Donor Register is the institutional organization for management of unrelated hematopoietic stem cell donors. The law requires only a donor's clinical history, but not a psychosocial profile for registration. We have studied the donor's motivation for enlistment on the donor registry and the medical staff's need for this information to interact correctly with the donor. For this purpose we distributed a questionnaire to new donors at the 20 centers in the Lombardy Region over a period of 1 year. The analysis of the responses revealed a prevalence of extrinsic motivations that would not ensure continued registration for donation. Therefore, it is necessary that the donor be well informed and better educated about all aspects of donation, in order to produce a shift to an intrinsic motivation. This objective can be facilitated via professional training of health workers in communication. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Genetic Engineering and Manufacturing of Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Xiuyan Wang

    2017-06-01

    Full Text Available The marketing approval of genetically engineered hematopoietic stem cells (HSCs as the first-line therapy for the treatment of severe combined immunodeficiency due to adenosine deaminase deficiency (ADA-SCID is a tribute to the substantial progress that has been made regarding HSC engineering in the past decade. Reproducible manufacturing of high-quality, clinical-grade, genetically engineered HSCs is the foundation for broadening the application of this technology. Herein, the current state-of-the-art manufacturing platforms to genetically engineer HSCs as well as the challenges pertaining to production standardization and product characterization are addressed in the context of primary immunodeficiency diseases (PIDs and other monogenic disorders.

  6. Immune Reconstitution after Allogeneic Hematopoietic Stem Cell Transplantation

    Science.gov (United States)

    Ogonek, Justyna; Kralj Juric, Mateja; Ghimire, Sakhila; Varanasi, Pavankumar Reddy; Holler, Ernst; Greinix, Hildegard; Weissinger, Eva

    2016-01-01

    The timely reconstitution and regain of function of a donor-derived immune system is of utmost importance for the recovery and long-term survival of patients after allogeneic hematopoietic stem cell transplantation (HSCT). Of note, new developments such as umbilical cord blood or haploidentical grafts were associated with prolonged immunodeficiency due to delayed immune reconstitution, raising the need for better understanding and enhancing the process of immune reconstitution and finding strategies to further optimize these transplant procedures. Immune reconstitution post-HSCT occurs in several phases, innate immunity being the first to regain function. The slow T cell reconstitution is regarded as primarily responsible for deleterious infections with latent viruses or fungi, occurrence of graft-versus-host disease, and relapse. Here we aim to summarize the major steps of the adaptive immune reconstitution and will discuss the importance of immune balance in patients after HSCT. PMID:27909435

  7. ABO blood group mismatched hematopoietic stem cell transplantation.

    Science.gov (United States)

    Tekgündüz, Sibel Akpınar; Özbek, Namık

    2016-02-01

    Apart from solid organ transplantations, use of ABO-blood group mismatched (ABO-mismatched) donors is acceptable in hematopoietic stem cell transplantation (HSCT) patients. About 20-40% of allogeneic HSCT recipients will receive grafts from ABO-mismatched donors. ABO incompatible HSCT procedures are associated with immediate and late consequences, including but not restricted to acute or delayed hemolytic reactions, delayed red blood cell recovery, pure red cell aplasia and graft-versus-host disease. This review summarizes the current knowledge about consequences of ABO-mismatched HSCT in terms of associated complications and will evaluate its impact on important outcome parameters of HSCT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. HSC-explorer: a curated database for hematopoietic stem cells.

    Science.gov (United States)

    Montrone, Corinna; Kokkaliaris, Konstantinos D; Loeffler, Dirk; Lechner, Martin; Kastenmüller, Gabi; Schroeder, Timm; Ruepp, Andreas

    2013-01-01

    HSC-Explorer (http://mips.helmholtz-muenchen.de/HSC/) is a publicly available, integrative database containing detailed information about the early steps of hematopoiesis. The resource aims at providing fast and easy access to relevant information, in particular to the complex network of interacting cell types and molecules, from the wealth of publications in the field through visualization interfaces. It provides structured information on more than 7000 experimentally validated interactions between molecules, bioprocesses and environmental factors. Information is manually derived by critical reading of the scientific literature from expert annotators. Hematopoiesis-relevant interactions are accompanied with context information such as model organisms and experimental methods for enabling assessment of reliability and relevance of experimental results. Usage of established vocabularies facilitates downstream bioinformatics applications and to convert the results into complex networks. Several predefined datasets (Selected topics) offer insights into stem cell behavior, the stem cell niche and signaling processes supporting hematopoietic stem cell maintenance. HSC-Explorer provides a versatile web-based resource for scientists entering the field of hematopoiesis enabling users to inspect the associated biological processes through interactive graphical presentation.

  9. HSC-explorer: a curated database for hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Corinna Montrone

    Full Text Available HSC-Explorer (http://mips.helmholtz-muenchen.de/HSC/ is a publicly available, integrative database containing detailed information about the early steps of hematopoiesis. The resource aims at providing fast and easy access to relevant information, in particular to the complex network of interacting cell types and molecules, from the wealth of publications in the field through visualization interfaces. It provides structured information on more than 7000 experimentally validated interactions between molecules, bioprocesses and environmental factors. Information is manually derived by critical reading of the scientific literature from expert annotators. Hematopoiesis-relevant interactions are accompanied with context information such as model organisms and experimental methods for enabling assessment of reliability and relevance of experimental results. Usage of established vocabularies facilitates downstream bioinformatics applications and to convert the results into complex networks. Several predefined datasets (Selected topics offer insights into stem cell behavior, the stem cell niche and signaling processes supporting hematopoietic stem cell maintenance. HSC-Explorer provides a versatile web-based resource for scientists entering the field of hematopoiesis enabling users to inspect the associated biological processes through interactive graphical presentation.

  10. The Hematopoietic Stem Cell Therapy for Exploration of Deep Space

    Science.gov (United States)

    Ohi, Seigo; Roach, Allana-Nicole; Ramsahai, Shweta; Kim, Bak C.; Fitzgerald, Wendy; Riley, Danny A.; Gonda, Steven R.

    2004-02-01

    Astronauts experience severe/invasive disorders caused by space environments. These include hematological and cardiac abnormalities, bone and muscle losses, immunodeficiency, neurological disorders and cancer. Exploiting the extraordinary plasticity of hematopoietic stem cells (HSCs), which differentiate not only to all types of blood cells, but also to various tissues, including muscle, bone, skin, liver, and neuronal cells, we advanced a hypothesis that some of the space-caused disorders might be amenable to hematopoietic stem cell therapy (HSCT) so as to maintain astronauts' homeostasis. If this were achievable, the HSCT could promote human exploration of deep space. Using mouse models of human anemia (β-thalassemia) and spaceflight (hindlimb suspension unloading system), we have obtained feasibility results of HSCT for space anemia, muscle loss, and immunodeficiency. For example, the β-thalassemic mice were successfully transplanted with isologous HSCs, resulting in chimerism of hemoglobin species and alleviation of the hemoglobinopathy. In the case of HSCT for muscle loss, β-galactosidase-marked HSCs, which were prepared from β-galactosidase-transgenic mice, were detected by the X-gal wholemount staining procedure in the hindlimbs of unloaded mice following transplantation. Histochemical and physical analyses indicated structural contribution of HSCs to the muscle. To investigate HSCT for immunodeficiency, β-galactosidase-transformed Escherichia coli was used as the reporter bacteria, and infected to control and the hindlimb suspended mice. Results of the X-gal stained tissues indicated that the HSCT could help eliminate the E. coli infection. In an effort to facilitate the HSCT in space, growth of HSCs has been optimized in the NASA Rotating Wall Vessel (RWV) culture systems, including Hydrodynamic Focusing Bioreactor (HFB).

  11. Umbilical Cord-Derived Mesenchymal Stem Cells for Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Yu-Hua Chao

    2012-01-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT is becoming an effective therapeutic modality for a variety of diseases. Mesenchymal stem cells (MSCs can be used to enhance hematopoietic engraftment, accelerate lymphocyte recovery, reduce the risk of graft failure, prevent and treat graft-versus-host disease, and repair tissue damage in patients receiving HSCT. Till now, most MSCs for human clinical application have been derived from bone marrow. However, acquiring bone-marrow-derived MSCs involves an invasive procedure. Umbilical cord is rich with MSCs. Compared to bone-marrow-derived MSCs, umbilical cord-derived MSCs (UCMSCs are easier to obtain without harm to the donor and can proliferate faster. No severe adverse effects were noted in our previous clinical application of UCMSCs in HSCT. Accordingly, application of UCMSCs in humans appears to be feasible and safe. Further studies are warranted.

  12. Angiotensin-converting enzyme (CD143) marks hematopoietic stem cells in human embryonic, fetal, and adult hematopoietic tissues

    NARCIS (Netherlands)

    Jokubaitis, Vanta J.; Sinka, Lidia; Driessen, Rebecca; Whitty, Genevieve; Haylock, David N.; Bertoncello, Ivan; Smith, Ian; Peault, Bruno; Tavian, Manuela; Simmons, Paul J.

    2008-01-01

    Previous studies revealed that mAb BB9 reacts with a subset of CD34(+) human BM cells with hematopoietic stem cell (HSC) characteristics. Here we map B89 expression throughout hernatopoietic development and show that the earliest definitive HSCs that arise at the ventral wall of the aorta and

  13. The GOD of Hematopoietic Stem Cells: A Clonal Diversity Model of the Stem Cell Compartment

    OpenAIRE

    Muller-Sieburg, C.E.; Sieburg, H.B.

    2006-01-01

    Hematopoietic stem cells (HSC) show heterogeneous behavior even when isolated as phenotypically homogeneous populations. The cellular and molecular mechanisms that control the generation of diversity (GOD) in the HSC compartment are not well understood, but have been the focus of much debate. There is increasing evidence that the most important HSC functions, self-renewal and differentiation, are epigenetically preprogrammed and therefore predictable. Indeed, recent data show that the adult H...

  14. CD97 is differentially expressed on murine hematopoietic stem-and progenitor-cells

    NARCIS (Netherlands)

    van Pel, Melissa; Hagoort, Henny; Hamann, Jörg; Fibbe, Willem E.

    2008-01-01

    BACKGROUND: CD97 is a member of the epidermal growth factor-seven transmembrane (EGF-TM7) family of adhesion receptors and is broadly expressed on hematopoietic cells. The aim of this study was to investigate the expression of CD97 on hematopoietic stem- and progenitor cells (HSC/HPC). DESIGN AND

  15. Analysis and manipulation of hematopoietic progenitor and stem cells from murine embryonic tissues

    NARCIS (Netherlands)

    A. Medvinsky (Alexander); S. Taoudi (Samir); S.C. Mendes (Sandra); E.A. Dzierzak (Elaine)

    2008-01-01

    textabstractHematopoietic development begins in several locations in the mammalian embryo: yolk sac, aorta-gonad-mesonephros region (AGM), and the chorio-allantoic placenta. Generation of the most potent cells, adult definitive hematopoietic stem cells (HSCs), occurs within the body of the mouse

  16. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo.

    NARCIS (Netherlands)

    M.F.T.R. de Bruijn (Marella); N.A. Speck; M.C. Peeters (Marian); E.A. Dzierzak (Elaine)

    2000-01-01

    textabstractThe aorta-gonad-mesonephros (AGM) region is a potent hematopoietic site within the mammalian embryo body, and the first place from which hematopoietic stem cells (HSCs) emerge. Within the complex embryonic vascular, excretory and reproductive tissues of the

  17. Serpina1 is a potent inhibitor of IL-8-induced hematopoietic stem cell mobilization

    NARCIS (Netherlands)

    van Pel, M; van Os, R; Velders, GA; Hagoort, H; Heegaard, PMH; Lindley, IJD; Willemze, R; Fibbe, WE

    2006-01-01

    Here, we report that cytokine-induced (granulocyte colony-stimulating factor and IL-8) hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) mobilization is completely inhibited after low-dose (0.5 Gy) total-body irradiation (TBI). Because neutrophil granular proteases are regulatory

  18. Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block

    DEFF Research Database (Denmark)

    Kirstetter, Peggy; Anderson, Kristina; Porse, Bo T

    2006-01-01

    Wnt signaling increases hematopoietic stem cell self-renewal and is activated in both myeloid and lymphoid malignancies, indicating involvement in both normal and malignant hematopoiesis. We report here activated canonical Wnt signaling in the hematopoietic system through conditional expression...

  19. DNA damage: a sensible mediator of the differentiation decision in hematopoietic stem cells and in leukemia.

    Science.gov (United States)

    Weiss, Cary N; Ito, Keisuke

    2015-03-17

    In the adult, the source of functionally diverse, mature blood cells are hematopoietic stem cells, a rare population of quiescent cells that reside in the bone marrow niche. Like stem cells in other tissues, hematopoietic stem cells are defined by their ability to self-renew, in order to maintain the stem cell population for the lifetime of the organism, and to differentiate, in order to give rise to the multiple lineages of the hematopoietic system. In recent years, increasing evidence has suggested a role for the accumulation of reactive oxygen species and DNA damage in the decision for hematopoietic stem cells to exit quiescence and to differentiate. In this review, we will examine recent work supporting the idea that detection of cell stressors, such as oxidative and genetic damage, is an important mediator of cell fate decisions in hematopoietic stem cells. We will explore the benefits of such a system in avoiding the development and progression of malignancies, and in avoiding tissue exhaustion and failure. Additionally, we will discuss new work that examines the accumulation of DNA damage and replication stress in aging hematopoietic stem cells and causes us to rethink ideas of genoprotection in the bone marrow niche.

  20. Peripheral blood stem cell collection for allogeneic hematopoietic stem cell transplantation: Practical implications after 200 consequent transplants.

    Science.gov (United States)

    Goren Sahin, Deniz; Arat, Mutlu

    2017-12-01

    Proper stem cell mobilization is one of the most important steps in hematopoietic stem cell transplantation (HSCT). The aim of this paper is to share our 6 years' experience and provide practical clinical approaches particularly for stem cell mobilization and collection within the series of more than 200 successive allogeneic HSCT at our transplant center. Two hundred and seven consecutive patients who underwent allogeneic peripheral blood stem cell transplantation were included in this study. Age, sex, weight, complete blood counts, CD34 + cell counts, total collected amount of CD34 + cells, CD34 + cells per 10l processed, mobilization failure and adverse events were reviewed. Median age was 40.2±12.9 (21-68) years and 46.4±13.4 (17-67) years for donors and patients, respectively. The number of donors who had undergone adequate CD34 + cell harvesting and completed the procedure on the fourth day was 67 (32.8% of all patients). Only 12 patients required cell apheresis both on day 5 and 6. Apheresis was completed on day 4 and/or day 5 in 94.2% of all our donors. There was no significant association between CD34 + stem cell volume and age, gender and weight values of donors. Mobilization failure was not seen in our series. G-CSF is highly effective in 1/3 of the donors on the 4th day in order to collect enough number of stem cells. We propose that peripheral stem cell collection might start on day 4th of G-CSF treatment for avoiding G-CSF related side effects and complications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Oral complications in hematopoietic stem cell recipients: the role of inflammation

    NARCIS (Netherlands)

    Haverman, T. M.; Raber-Durlacher, J. E.; Rademacher, W. M. H.; Vokurka, S.; Epstein, J. B.; Huisman, C.; Hazenberg, M. D.; de Soet, J. J.; de Lange, J.; Rozema, F. R.

    2014-01-01

    Hematopoietic stem cell transplantation (HSCT) is widely used as a potentially curative treatment for patients with various hematological malignancies, bone marrow failure syndromes, and congenital immune deficiencies. The prevalence of oral complications in both autologous and allogeneic HSCT

  2. Hematopoietic Stem Cells in Regenerative Medicine: Astray or on the Path?

    Science.gov (United States)

    Müller, Albrecht M; Huppertz, Sascha; Henschler, Reinhard

    2016-07-01

    Hematopoietic stem cells (HSCs) are the best characterized adult stem cells and the only stem cell type in routine clinical use. The concept of stem cell transplantation laid the foundations for the development of novel cell therapies within, and even outside, the hematopoietic system. Here, we report on the history of hematopoietic cell transplantation (HCT) and of HSC isolation, we briefly summarize the capabilities of HSCs to reconstitute the entire hemato/lymphoid cell system, and we assess current indications for HCT. We aim to draw the lines between areas where HCT has been firmly established, areas where HCT can in the future be expected to be of clinical benefit using their regenerative functions, and areas where doubts persist. We further review clinical trials for diverse approaches that are based on HCT. Finally, we highlight the advent of genome editing in HSCs and critically view the use of HSCs in non-hematopoietic tissue regeneration.

  3. Oral features and dental health in Hurler Syndrome following hematopoietic stem cell transplantation.

    LENUS (Irish Health Repository)

    McGovern, Eleanor

    2010-09-01

    Hurler Syndrome is associated with a deficiency of a specific lysosomal enzyme involved in the degradation of glycosaminoglycans. Hematopoietic stem cell transplantation (HSCT) in early infancy is undertaken to help prevent the accumulation of glycosaminoglycans and improve organ function.

  4. Restricted intra-embryonic origin of bona fide hematopoietic stem cells in the chicken

    NARCIS (Netherlands)

    Yvernogeau, Laurent; Robin, Catherine

    2017-01-01

    Hematopoietic stem cells (HSCs), which are responsible for blood cell production, are generated during embryonic development. Human and chicken embryos share features that position the chicken as a reliable and accessible alternative model to study developmental hematopoiesis. However, the existence

  5. Allogeneic hematopoietic stem cell transplantations in acute lymphoblastic leukemia in children and adolescents

    OpenAIRE

    Styczyński, Jan; Dębski, Robert; Krenska, Anna; Czyżewski, Krzysztof; Dembna, Ewa; Irga, Ninela; Szalewska, Magdalena; Adamkiewicz-Drożyńska, Elżbieta; Płonowski, Marcin; Leszczyńska, Elżbieta; Krawczuk-Rybak, Maryna; Żyromska, Agnieszka; Drzewiecka, Barbara; Majewska, Karolina; Windorbska, Wiesława

    2012-01-01

    Background. ALL is the most common indication for allogeneic hematopoietic stem cell transplantation (allo- HSCT) in children. Objective. The analysis of results of therapy in children and adolescents treated for ALL with allo-HSCT. Patients and methods. A total number of 41 patients undergoing allo-HSCT due to ALL between 2003 and 2012. In 17 patients HSCT was performed from related donor and in 24 from unrelated donor. A source of hematopoietic stem cells was peripheral blood in 21 patients...

  6. Fever and neutropenia in pediatric hematopoietic stem cell transplant patients.

    Science.gov (United States)

    Mullen, C A; Nair, J; Sandesh, S; Chan, K W

    2000-01-01

    The objective of this study was to identify patterns of fever and neutropenia in pediatric patients undergoing initial hospitalization for hematopoietic stem cell transplantation. A retrospective review of 75 HSCTs over a 4-year period at a single institution was performed, of which 68% were allogeneic and 32% were autologous. Stem cell sources included bone marrow (29%), PBSC (52%) and umbilical cord blood (16%). Fever occurred in 74 (98%) of the episodes. Unexplained fever (FUO) occurred in 43%. Bacteremia without an anatomic focus occurred in 29%, while CVC associated infections occurred in 17%. In 49% of transplants at least one blood culture was positive. The incidence of bacteremia was higher in allogeneic HSCTs (58%) than in autologous transplants (29%). Gram-positive bacteria accounted for 71% of the isolates. Lower rates of bacteremia were observed in patients receiving oral fluoroquinolone prophylaxis. The median duration of fever was 12.5 days and time to engraftment 14 days. Regression analysis demonstrated that duration of fever was strongly associated with time to engraftment, and that time to engraftment was associated with source of cells and number of CD34+ cells/kg administered. Recipients of autologous PBSC had the shortest durations of fever and time to engraftment, while recipients of allogeneic umbilical cord blood had the longest. Bone Marrow Transplantation (2000) 25, 59-65.

  7. ABO-Mismatched Allogeneic Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Worel, Nina

    2016-01-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative option for a variety of malignant and non-malignant hematological and congenital diseases. Due to the fact that the human leukocyte antigen system is inherited independently of the blood group system, approximately 40-50% of all HSCTs are performed across the ABO blood group barrier. The expected immune-hematological consequences after transplantation of an ABO-mismatched stem cell graft are immediate and delayed hemolytic complications due to presence of isohemagglutinins or passenger lymphocyte syndrome. The risks of these complications can partially be prevented by graft manipulation and appropriate transfusion support. Dependent on the kind of ABO mismatch, different effects on engraftment have been observed, e.g. delayed red blood cell recovery and pure red cell aplasia. Data on incidence of acute graft-versus-host disease (GVHD), non-relapse mortality, relapse, and overall survival are inconsistent as most studies include limited patient numbers, various graft sources, and different conditioning and GVHD prophylaxis regimens. This makes it difficult to detect a consistent effect of ABO-mismatched transplantation in the literature. However, knowledge of expectable complications and close monitoring of patients helps to detect problems early and to treat patients efficiently, thus reducing the number of fatal or life-threatening events caused by ABO-mismatched HSCT.

  8. Clonal dominance and transplantation dynamics in hematopoietic stem cell compartments.

    Directory of Open Access Journals (Sweden)

    Peter Ashcroft

    2017-10-01

    Full Text Available Hematopoietic stem cells in mammals are known to reside mostly in the bone marrow, but also transitively passage in small numbers in the blood. Experimental findings have suggested that they exist in a dynamic equilibrium, continuously migrating between these two compartments. Here we construct an individual-based mathematical model of this process, which is parametrised using existing empirical findings from mice. This approach allows us to quantify the amount of migration between the bone marrow niches and the peripheral blood. We use this model to investigate clonal hematopoiesis, which is a significant risk factor for hematologic cancers. We also analyse the engraftment of donor stem cells into non-conditioned and conditioned hosts, quantifying the impact of different treatment scenarios. The simplicity of the model permits a thorough mathematical analysis, providing deeper insights into the dynamics of both the model and of the real-world system. We predict the time taken for mutant clones to expand within a host, as well as chimerism levels that can be expected following transplantation therapy, and the probability that a preconditioned host is reconstituted by donor cells.

  9. Reconstitution of mammary epithelial morphogenesis by murine embryonic stem cells undergoing hematopoietic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Shuxian Jiang

    2010-03-01

    Full Text Available Mammary stem cells are maintained within specific microenvironments and recruited throughout lifetime to reconstitute de novo the mammary gland. Mammary stem cells have been isolated through the identification of specific cell surface markers and in vivo transplantation into cleared mammary fat pads. Accumulating evidence showed that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mammary epithelial cells may be sequestered and reprogrammed to perform mammary epithelial cell functions and to adopt mammary epithelial characteristics during reconstruction of mammary epithelium in regenerating mammary tissue in vivo.To examine whether other types of progenitor cells are able to contribute to mammary branching morphogenesis, we examined the potential of murine embryonic stem (mES cells, undergoing hematopoietic differentiation, to support mammary reconstitution in vivo. We observed that cells from day 14 embryoid bodies (EBs under hematopoietic differentiation condition, but not supernatants derived from these cells, when transplanted into denuded mammary fat pads, were able to contribute to both the luminal and myoepithelial lineages in branching ductal structures resembling the ductal-alveolar architecture of the mammary tree. No teratomas were observed when these cells were transplanted in vivo.Our data provide evidence for the dominance of the tissue-specific mammary stem cell niche and its role in directing mES cells, undergoing hematopoietic differentiation, to reprogram into mammary epithelial cells and to promote mammary epithelial morphogenesis. These studies should also provide insights into regeneration of damaged mammary gland and the role of the mammary microenvironment in reprogramming cell fate.

  10. Hematopoietic stem-cell transplantation for advanced systemic mastocytosis.

    Science.gov (United States)

    Ustun, Celalettin; Reiter, Andreas; Scott, Bart L; Nakamura, Ryotaro; Damaj, Gandhi; Kreil, Sebastian; Shanley, Ryan; Hogan, William J; Perales, Miguel-Angel; Shore, Tsiporah; Baurmann, Herrad; Stuart, Robert; Gruhn, Bernd; Doubek, Michael; Hsu, Jack W; Tholouli, Eleni; Gromke, Tanja; Godley, Lucy A; Pagano, Livio; Gilman, Andrew; Wagner, Eva Maria; Shwayder, Tor; Bornhäuser, Martin; Papadopoulos, Esperanza B; Böhm, Alexandra; Vercellotti, Gregory; Van Lint, Maria Teresa; Schmid, Christoph; Rabitsch, Werner; Pullarkat, Vinod; Legrand, Faezeh; Yakoub-Agha, Ibrahim; Saber, Wael; Barrett, John; Hermine, Olivier; Hagglund, Hans; Sperr, Wolfgang R; Popat, Uday; Alyea, Edwin P; Devine, Steven; Deeg, H Joachim; Weisdorf, Daniel; Akin, Cem; Valent, Peter

    2014-10-10

    Advanced systemic mastocytosis (SM), a fatal hematopoietic malignancy characterized by drug resistance, has no standard therapy. The effectiveness of allogeneic hematopoietic stem-cell transplantation (alloHCT) in SM remains unknown. In a global effort to define the value of HCT in SM, 57 patients with the following subtypes of SM were evaluated: SM associated with clonal hematologic non-mast cell disorders (SM-AHNMD; n = 38), mast cell leukemia (MCL; n = 12), and aggressive SM (ASM; n = 7). Median age of patients was 46 years (range, 11 to 67 years). Donors were HLA-identical (n = 34), unrelated (n = 17), umbilical cord blood (n = 2), HLA-haploidentical (n = 1), or unknown (n = 3). Thirty-six patients received myeloablative conditioning (MAC), and 21 patients received reduced-intensity conditioning (RIC). Responses in SM were observed in 40 patients (70%), with complete remission in 16 patients (28%). Twelve patients (21%) had stable disease, and five patients (9%) had primary refractory disease. Overall survival (OS) at 3 years was 57% for all patients, 74% for patients with SM-AHNMD, 43% for those with ASM, and 17% for those with MCL. The strongest risk factor for poor OS was MCL. Survival was also lower in patients receiving RIC compared with MAC and in patients having progression compared with patients having stable disease or response. AlloHCT was associated with long-term survival in patients with advanced SM. Although alloHCT may be considered as a viable and potentially curative therapeutic option for advanced SM in the meantime, given that this is a retrospective analysis with no control group, the definitive role of alloHCT will need to be determined by a prospective trial. © 2014 by American Society of Clinical Oncology.

  11. [Results of hematopoietic stem cell transplantation in hemoglobinopathies: thalassemia major and sickle cell disease].

    Science.gov (United States)

    Hladun, R; Elorza, I; Olivé, T; Dapena, J L; Llort, A; Sánchez de Toledo, J; Díaz de Heredia, C

    2013-08-01

    The prevalence of hemoglobinopathies in Spain is increasing as a result of immigration. Thalassemia major presents with chronic hemolytic anemia that requires regular red blood cell transfusions within the first year of life. Patients with sickle cell disease suffer from chronic anemia, vasculopathy and progressive damage in almost any organ. There is decreased life expectancy in both conditions. Allogeneic hematopoietic stem cell transplantation represents the only potentially curative option. Seventeen patients (fourteen thalassemia major, and three sickle cell disease) underwent allogeneic hematopoietic stem cell transplantations. In the thalassemia group, nine donors were HLA-geno-identical siblings, two were partially matched related donors (one HLA allele mismatch), and three unrelated donors. All three patients with sickle cell disease were transplanted from HLA-geno-identical siblings. The source of stem cells was bone marrow in sixteen cases. Median patient age at transplant was six years (range: 1-16) in the thalassemia group, and twelve years (range: 8-15) in the sickle cell disease group. The graft was successful in all patients. Secondary graft rejection was observed in two thalassemia patients rendering them dependent on blood transfusions. Complete chimerism was observed in thirteen patients and, although mixed chimerism occurred in two, with all of them showing normal hemoglobin levels after transplantation and not requiring further transfusion support. Patients affected by sickle cell disease did not present with new vaso-occlusive crises, and stabilization of pulmonary and neurological function was observed. Chronic graft-versus-host disease was detected in three patients affected by thalassemia, and hypogonadotrophic hypogonadism in five patients. We conclude that for thalassemia major and sickle cell disease, allogenic hematopoietic stem cell transplantation from HLA-geno-identical siblings offers a high probability of complication-free survival

  12. ESAM is a novel human hematopoietic stem cell marker associated with a subset of human leukemias.

    Science.gov (United States)

    Ishibashi, Tomohiko; Yokota, Takafumi; Tanaka, Hirokazu; Ichii, Michiko; Sudo, Takao; Satoh, Yusuke; Doi, Yukiko; Ueda, Tomoaki; Tanimura, Akira; Hamanaka, Yuri; Ezoe, Sachiko; Shibayama, Hirohiko; Oritani, Kenji; Kanakura, Yuzuru

    2016-04-01

    Reliable markers are essential to increase our understanding of the biological features of human hematopoietic stem cells and to facilitate the application of hematopoietic stem cells in the field of transplantation and regenerative medicine. We previously identified endothelial cell-selective adhesion molecule (ESAM) as a novel functional marker of hematopoietic stem cells in mice. Here, we found that ESAM can also be used to purify human hematopoietic stem cells from all the currently available sources (adult bone marrow, mobilized peripheral blood, and cord blood). Multipotent colony-forming units and long-term hematopoietic-reconstituting cells in immunodeficient mice were found exclusively in the ESAM(High) fraction of CD34(+)CD38(-) cells. The CD34(+)CD38(-) fraction of cord blood and collagenase-treated bone marrow contained cells exhibiting extremely high expression of ESAM; these cells are likely to be related to the endothelial lineage. Leukemia cell lines of erythroid and megakaryocyte origin, but not those of myeloid or lymphoid descent, were ESAM positive. However, high ESAM expression was observed in some primary acute myeloid leukemia cells. Furthermore, KG-1a myeloid leukemia cells switched from ESAM negative to ESAM positive with repeated leukemia reconstitution in vivo. Thus, ESAM is a useful marker for studying both human hematopoietic stem cells and leukemia cells. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  13. Replication stress in hematopoietic stem cells in mouse and man.

    Science.gov (United States)

    Flach, Johanna; Milyavsky, Michael

    2018-03-01

    Life-long blood regeneration relies on a rare population of self-renewing hematopoietic stem cells (HSCs). These cells' nearly unlimited self-renewal potential and lifetime persistence in the body signifies the need for tight control of their genome integrity. Their quiescent state, tightly linked with low metabolic activity, is one of the main strategies employed by HSCs to preserve an intact genome. On the other hand, HSCs need to be able to quickly respond to increased blood demands and rapidly increase their cellular output in order to fight infection-associated inflammation or extensive blood loss. This increase in proliferation rate, however, comes at the price of exposing HSCs to DNA damage inevitably associated with the process of DNA replication. Any interference with normal replication fork progression leads to a specialized molecular response termed replication stress (RS). Importantly, increased levels of RS are a hallmark feature of aged HSCs, where an accumulating body of evidence points to causative relationships between RS and the aging-associated impairment of the blood system's functional capacity. In this review, we present an overview of RS in HSCs focusing on its causes and consequences for the blood system of mice and men. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Systematic Nutritional Support in Allogeneic Hematopoietic Stem Cell Transplant Recipients.

    Science.gov (United States)

    Fuji, Shigeo; Einsele, Hermann; Savani, Bipin N; Kapp, Markus

    2015-10-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) has become an established treatment modality for various hematological diseases. However, in allogeneic HSCT, patients often suffer from severe gastrointestinal complications caused by the conditioning regimen and acute/chronic graft-versus-host disease, which requires support by multidisciplinary nutritional support teams (NST). In addition, pretransplantation nutritional status can affect the clinical outcome after allogeneic HSCT. Therefore, it is important to refer the patient to a NST when becoming aware of nutritional problems before allogeneic HSCT. It is also important to follow nutritional status over the long term, as patients often suffer from various nutritional problems, such as malnutrition and metabolic syndrome, even late after allogeneic HSCT. In summary, NST can contribute to the improvement of nutritional status and possibly prognosis at every stage before and after allogeneic HSCT. Here, we aim to give a comprehensive overview of current understanding about nutritional support in allogeneic HSCT and try to provoke a constructive discussion to stimulate further investigation. Copyright © 2015 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  15. Hematopoietic Stem and Progenitor Cells as Effectors in Innate Immunity

    Directory of Open Access Journals (Sweden)

    Jennifer L. Granick

    2012-01-01

    Full Text Available Recent research has shed light on novel functions of hematopoietic stem and progenitor cells (HSPC. While they are critical for maintenance and replenishment of blood cells in the bone marrow, these cells are not limited to the bone marrow compartment and function beyond their role in hematopoiesis. HSPC can leave bone marrow and circulate in peripheral blood and lymph, a process often manipulated therapeutically for the purpose of transplantation. Additionally, these cells preferentially home to extramedullary sites of inflammation where they can differentiate to more mature effector cells. HSPC are susceptible to various pathogens, though they may participate in the innate immune response without being directly infected. They express pattern recognition receptors for detection of endogenous and exogenous danger-associated molecular patterns and respond not only by the formation of daughter cells but can themselves secrete powerful cytokines. This paper summarizes the functional and phenotypic characterization of HSPC, their niche within and outside of the bone marrow, and what is known regarding their role in the innate immune response.

  16. Central nervous system infection following allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Hanajiri, Ryo; Kobayashi, Takeshi; Yoshioka, Kosuke; Watanabe, Daisuke; Watakabe, Kyoko; Murata, Yutaka; Hagino, Takeshi; Seno, Yasushi; Najima, Yuho; Igarashi, Aiko; Doki, Noriko; Kakihana, Kazuhiko; Sakamaki, Hisashi; Ohashi, Kazuteru

    2017-03-01

    Here, we described the clinical characteristics and outcomes of central nervous system (CNS) infections occurring after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in a single institution over the previous 6 years. Charts of 353 consecutive allogeneic transplant recipients were retrospectively reviewed for CNS infection. A total of 17 cases of CNS infection were identified at a median of 38 days (range, 10-1028 days) after allo-HSCT. Causative pathogens were human herpesvirus-6 (n=6), enterococcus (n=2), staphylococcus (n=2), streptococcus (n=2), varicella zoster virus (n=1), cytomegalovirus (n=1), John Cunningham virus (n=1), adenovirus (n=1), and Toxoplasma gondii (n=1). The cumulative incidence of CNS infection was 4.1% at 1 year and 5.5% at 5 years. Multivariate analysis revealed that high-risk disease status was a risk factor for developing CNS infection (p=.02), and that overall survival at 3 years after allo-HSCT was 33% in patients with CNS infection and 53% in those without CNS infection (p=.04). Copyright © 2016 King Faisal Specialist Hospital & Research Centre. Published by Elsevier Ltd. All rights reserved.

  17. Intensive care outcomes in adult hematopoietic stem cell transplantation patients.

    Science.gov (United States)

    Bayraktar, Ulas D; Nates, Joseph L

    2016-02-10

    Although outcomes of intensive care for patients undergoing hematopoietic stem cell transplantation (HSCT) have improved in the last two decades, the short-term mortality still remains above 50% among allogeneic HSCT patients. Better selection of HSCT patients for intensive care, and consequently reduction of non-beneficial care, may reduce financial costs and alleviate patient suffering. We reviewed the studies on intensive care outcomes of patients undergoing HSCT published since 2000. The risk factors for intensive care unit (ICU) admission identified in this report were primarily patient and transplant related: HSCT type (autologous vs allogeneic), conditioning intensity, HLA mismatch, and graft-versus-host disease (GVHD). At the same time, most of the factors associated with ICU outcomes reported were related to the patients' functional status upon development of critical illness and interventions in ICU. Among the many possible interventions, the initiation of mechanical ventilation was the most consistently reported factor affecting ICU survival. As a consequence, our current ability to assess the benefit or futility of intensive care is limited. Until better ICU or hospital mortality prediction models are available, based on the available evidence, we recommend practitioners to base their ICU admission decisions on: Patient pre-transplant comorbidities, underlying disease status, GVHD diagnosis/grade, and patients' functional status at the time of critical illness.

  18. [Sirolimus associated pneumonitis in a hematopoietic stem cell transplant patient].

    Science.gov (United States)

    García, Estefanía; Buenasmañanas, Diana; Martín, Carmen; Rojas, Rafael

    2015-07-06

    Sirolimus (SR) is a lipophilic macrocytic lactone with immunosuppressive properties (mTOR inhibitor) commonly used in solid organ transplantation and recently introduced in the prophylaxis and treatment of graft-versus-host disease. Its numerous side effects include: hyperlipidemia, arthralgias, noncardiac peripheral edema, thrombotic microangiopathy and interstitial pneumonitis. SR-associated pneumonitis is a rare but potentially serious complication due to its increasing utilization in transplant patients. We report the case of a patient undergoing hematopoietic stem cell transplantation with severe respiratory distress and SR therapy. Microbiological tests were all negative and other complications related to transplantation were discarded. The chest computed tomography of high-resolution showed pneumonitis. The SR therapy was interrupted and treatment was started with steroids with resolution of symptoms. SR associated pneumonitis is a potentially fatal side effect. In patients treated with SR and respiratory failure, we must suspect this complication because early recognition along with drug discontinuation and steroid treatment is essential to reverse this complication. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  19. Engineering the hematopoietic stem cell niche: Frontiers in biomaterial science

    Science.gov (United States)

    Choi, Ji Sun; Mahadik, Bhushan P.; Harley, Brendan A. C.

    2016-01-01

    Hematopoietic stem cells (HSCs) play a crucial role in the generation of the body’s blood and immune cells. This process takes place primarily in the bone marrow in specialized ‘niche’ microenvironments, which provide signals responsible for maintaining a balance between HSC quiescence, self-renewal, and lineage specification required for life-long hematopoiesis. While our understanding of these signaling mechanisms continues to improve, our ability to engineer them in vitro for the expansion of clinically relevant HSC populations is still lacking. In this review, we focus on development of biomaterials-based culture platforms for in vitro study of interactions between HSCs and their local microenvironment. The tools and techniques used for both examining HSC-niche interactions as well as applying these findings towards controlled HSC expansion or directed differentiation in 2D and 3D platforms are discussed. These novel techniques hold the potential to push the existing boundaries of HSC cultures towards high-throughput, real-time, and single-cell level biomimetic approaches that enable a more nuanced understanding of HSC regulation and function. Their application in conjunction with innovative biomaterial platforms can pave the way for engineering artificial bone marrow niches for clinical applications as well as elucidating the pathology of blood-related cancers and disorders. PMID:26356030

  20. Characterization of Selectin Ligands on Hematopoietic Stem Cells

    KAUST Repository

    Mahmood, Hanan

    2013-05-18

    Successful bone marrow (BM) transplantation requires the homing of the transplanted hematopoietic stem/progenitor cells (HSPCs) to their bone marrow niche, where they undergo differentiation to form mature cells that are eventually released into the peripheral blood. However, the survival rate of patients receiving BM transplants is poor since many of the transplanted HSPCs do not make it to their BM niches in the recipient’s body. Since the availability of HSPCs from traditional sources is limited, transplanting more number of HSPCs is not a solution to this problem. This study aims to characterize the adhesion molecules mediating cell migration in order to better understand the adhesion mechanisms of HSCs with the bone marrow endothelium. This will aid in developing future tools to improve the clinical transplantation of HSPCs. This study also aims to understand the factors that influence HSPC proliferation in the bone marrow niche. E-selectin plays an important role in the process of homing; however, its ligands on HSPCs are not well characterized. We used western blotting and immunoprecipitation to show that endomucin is expressed on HSPCs and plays a role in the binding of HSPCs to E-selectin. We also studied the effect of recombinant E-selectin on the expression of a newly characterized E-selectin ligand in our lab, CD34, in HSPCs. This will provide us insight into novel roles for endomucin and E-selectin and help us to understand the factors influencing HSPC migration to BM endothelium.

  1. Characteristics and Outcome of Patients After Allogeneic Hematopoietic Stem Cell Transplantation Treated With Extracorporeal Membrane Oxygenation for Acute Respiratory Distress Syndrome.

    Science.gov (United States)

    Wohlfarth, Philipp; Beutel, Gernot; Lebiedz, Pia; Stemmler, Hans-Joachim; Staudinger, Thomas; Schmidt, Matthieu; Kochanek, Matthias; Liebregts, Tobias; Taccone, Fabio Silvio; Azoulay, Elie; Demoule, Alexandre; Kluge, Stefan; Svalebjørg, Morten; Lueck, Catherina; Tischer, Johanna; Combes, Alain; Böll, Boris; Rabitsch, Werner; Schellongowski, Peter

    2017-05-01

    The acute respiratory distress syndrome is a frequent condition following allogeneic hematopoietic stem cell transplantation. Extracorporeal membrane oxygenation may serve as rescue therapy in refractory acute respiratory distress syndrome but has not been assessed in allogeneic hematopoietic stem cell transplantation recipients. Multicenter, retrospective, observational study. ICUs in 12 European tertiary care centers (Austria, Germany, France, and Belgium). All allogeneic hematopoietic stem cell transplantation recipients treated with venovenous extracorporeal membrane oxygenation for acute respiratory distress syndrome between 2010 and 2015. None. Thirty-seven patients, nine of whom underwent noninvasive ventilation at the time of extracorporeal membrane oxygenation initiation, were analyzed. ICU admission occurred at a median of 146 (interquartile range, 27-321) days after allogeneic hematopoietic stem cell transplantation. The main reason for acute respiratory distress syndrome was pneumonia in 81% of patients. All but one patient undergoing noninvasive ventilation at extracorporeal membrane oxygenation initiation had to be intubated thereafter. Overall, seven patients (19%) survived to hospital discharge and were alive and in remission of their hematologic disease after a follow-up of 18 (range, 5-30) months. Only one of 24 patients (4%) initiated on extracorporeal membrane oxygenation within 240 days after allogeneic hematopoietic stem cell transplantation survived compared to six of 13 (46%) of those treated thereafter (p syndrome in this group. On the contrary, long-term allogeneic hematopoietic stem cell transplantation recipients otherwise eligible for full-code ICU management may be potential candidates for extracorporeal membrane oxygenation therapy in case of severe acute respiratory distress syndrome failing conventional measures.

  2. Allogeneic hematopoietic stem cell transplantation in patients with advanced indolent lymphoproliferative disorders

    Directory of Open Access Journals (Sweden)

    Ana Marcela Rojas Fonseca-Hial

    2016-06-01

    Full Text Available ABSTRACT BACKGROUND: The role of allogeneic hematopoietic stem cell transplantation for advanced indolent lymphoproliferative disorders remains to be established. OBJECTIVE: This paper aims to describe the results of allogeneic hematopoietic stem cell transplantation in patients with advanced indolent lymphoproliferative disorders. METHODS: This article reports on 29 adult patients submitted to allogeneic transplantations from 1997 to 2010. RESULTS: Most had follicular non-Hodgkin lymphoma (n = 14 or chronic lymphocytic leukemia (n = 12. The median age was 44 years (range: 24-53 years and 65% of patients were male. Only 21% had had access to rituximab and 45% to fludarabine. All had advanced disease (stage IV with partial response or stable disease. Most underwent myeloablative conditioning n = 17 - 59%. In this scenario, refractory disease was observed in seven (24% patients, the 100-day mortality rate was 17% (n = 5 and relapse occurred in four patients (18%. The main cause of death throughout the follow up was refractory disease in six of the 12 patients who died. Moderate and severe chronic graft-versus-host disease was frequent; about 41% of 24 patients analyzed. The overall survival rates and disease free survival at 42 months were 56.7% and 45.4%, respectively. According to Kaplan-Meyer analysis, the median time from diagnosis to transplant predicted the overall survival; however age, gender and conditioning regimen did not predict the prognosis. It was impossible to reach other conclusions because of the small sample size in this study. CONCLUSIONS: The role of allogeneic transplantations should be re-evaluated in the era of targeted therapy.

  3. The Effect of Mesenchymal Stem Cell-Derived Extracellular Vesicles on Hematopoietic Stem Cells Fate

    Directory of Open Access Journals (Sweden)

    Hamze Timari

    2017-12-01

    Full Text Available Hematopoietic stem cells (HSCs are multipotent stem cells, with self-renewal ability as well as ability to generate all blood cells. Mesenchymal stem cells (MSCs are multipotent stem cells, with self-renewal ability, and capable of differentiating into a variety of cell types. MSCs have supporting effects on hematopoiesis; through direct intercellular communications as well as secreting cytokines, chemokines, and extracellular vesicles (EVs. Recent investigations demonstrated that some biological functions and effects of MSCs are mediated by their EVs. MSC-EVs are the cell membrane and endosomal membrane compartments, which are important mediators in the intercellular communications. MSC-EVs contain some of the molecules such as proteins, mRNA, siRNA, and miRNA from their parental cells. MSC-EVs are able to inhibit tumor, repair damaged tissue, and modulate immune system responses. MSC-EVs compared to their parental cells, may have the specific safety advantages such as the lower potential to trigger immune system responses and limited side effects. Recently some studies demonstrated the effect of MSC-EVs on the expansion, differentiation, and clinical applications of HSCs such as improvement of hematopoietic stem cell transplantation (HSCT and inhibition of graft versus host disease (GVHD. HSCT may be the only therapeutic choice for patients who suffer from malignant and non-malignant hematological disorders. However, there are several severe side effects such GVHD that restricts the successfulness of HSCT. In this review, we will discuss the most important effects of MSCs and MSC-EVs on the improvement of HSCT, inhibition and treatment of GVHD, as well as, on the expansion of HSCs.

  4. Nucleofection, an efficient nonviral method to transfer genes into human hematopoietic stem and progenitor cells.

    NARCIS (Netherlands)

    Levetzow, G. von; Spanholtz, J.; Beckmann, J.; Fischer, J.; Kogler, G.; Wernet, P.; Punzel, M.; Giebel, B.

    2006-01-01

    The targeted manipulation of the genetic program of single cells as well as of complete organisms has strongly enhanced our understanding of cellular and developmental processes and should also help to increase our knowledge of primary human stem cells, e.g., hematopoietic stem cells (HSCs), within

  5. The combination of valproic acid and lithium delays hematopoietic stem/progenitor cell differentiation

    NARCIS (Netherlands)

    Walasek, Marta A.; Bystrykh, Leonid; van den Boom, Vincent; Olthof, Sandra; Ausema, Albertina; Ritsema, Martha; Huls, Gerwin; de Haan, Gerald; van Os, Ronald

    2012-01-01

    Despite increasing knowledge on the regulation of hematopoietic stem/progenitor cell (HSPC) self-renewal and differentiation, in vitro control of stem cell fate decisions has been difficult. The ability to inhibit HSPC commitment in culture may be of benefit to cell therapy protocols. Small

  6. Novel therapeutic strategies to target leukemic cells that hijack compartmentalized continuous hematopoietic stem cell niches

    NARCIS (Netherlands)

    Hira, Vashendriya V. V.; van Noorden, Cornelis J. F.; Carraway, Hetty E.; Maciejewski, Jaroslaw P.; Molenaar, Remco J.

    2017-01-01

    Acute myeloid leukemia and acute lymphoblastic leukemia cells hijack hematopoietic stem cell (HSC) niches in the bone marrow and become leukemic stem cells (LSCs) at the expense of normal HSCs. LSCs are quiescent and resistant to chemotherapy and can cause relapse of the disease. HSCs in niches are

  7. Aging of hematopoietic stem cells: Intrinsic changes or micro-environmental effects?

    Science.gov (United States)

    Woolthuis, Carolien M; de Haan, Gerald; Huls, Gerwin

    2011-08-01

    During development hematopoietic stem cells (HSCs) expand in number and persist throughout life by undergoing self-renewing divisions. Nevertheless, the hematopoietic system does not escape the negative effects of aging, suggesting that self-renewal is not complete. A fundamental issue in stem cell biology relates to such age-dependent loss of stem cell activity. Both stem cell intrinsic factors and extrinsic factors associated with an aging micro-environment could contribute to aging of the hematopoietic system. Recently, changes in the clonal composition of the HSC compartment during aging have been put forward as a key factor. Here, we discuss these recent developments and speculate how they may be of clinical relevance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Interleukin-21 promotes thymopoiesis recovery following hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Aurélie Tormo

    2017-06-01

    Full Text Available Abstract Background Impaired T cell reconstitution remains a major deterrent in the field of bone marrow (BM transplantation (BMT due to pre-conditioning-induced damages inflicted to the thymi of recipient hosts. Given the previously reported thymo-stimulatory property of interleukin (IL-21, we reasoned that its use post-BMT could have a profound effect on de novo T cell development. Methods To evaluate the effect of IL-21 on de novo T cell development in vivo, BM derived from RAG2p-GFP mice was transplanted into LP/J mice. Lymphocyte reconstitution was first assessed using a hematological analyzer and a flow cytometer on collected blood samples. Detailed flow cytometry analysis was then performed on the BM, thymus, and spleen of transplanted animals. Finally, the effect of human IL-21 on thymopoiesis was validated in humanized mice. Results Using a major histocompatibility complex (MHC-matched allogeneic BMT model, we found that IL-21 administration improves immune reconstitution by triggering the proliferation of BM Lin−Sca1+c-kit+ (LSK subsets. The pharmacological effect of IL-21 also culminates in the recovery of both hematopoietic (thymocytes and non-hematopoietic (stromal cells within the thymi of IL-21-treated recipient animals. Although T cells derived from all transplanted groups proliferate, secrete various cytokines, and express granzyme B similarly in response to T cell receptor (TCR stimulation, full regeneration of peripheral naïve CD4+ and CD8+ T cells and normal TCRvβ distribution could only be detected in IL-21-treated recipient mice. Astonishingly, none of the recipient mice who underwent IL-21 treatment developed graft-versus-host disease (GVHD in the MHC-matched allogeneic setting while the graft-versus-tumor (GVT effect was strongly retained. Inhibition of GVHD onset could also be attributed to the enhanced generation of regulatory B cells (B10 observed in the IL-21, but not PBS, recipient mice. We also tested the

  9. Hematopoietic Stem-Cell Gene Therapy for Cerebral Adrenoleukodystrophy.

    Science.gov (United States)

    Eichler, Florian; Duncan, Christine; Musolino, Patricia L; Orchard, Paul J; De Oliveira, Satiro; Thrasher, Adrian J; Armant, Myriam; Dansereau, Colleen; Lund, Troy C; Miller, Weston P; Raymond, Gerald V; Sankar, Raman; Shah, Ami J; Sevin, Caroline; Gaspar, H Bobby; Gissen, Paul; Amartino, Hernan; Bratkovic, Drago; Smith, Nicholas J C; Paker, Asif M; Shamir, Esther; O'Meara, Tara; Davidson, David; Aubourg, Patrick; Williams, David A

    2017-10-26

    In X-linked adrenoleukodystrophy, mutations in ABCD1 lead to loss of function of the ALD protein. Cerebral adrenoleukodystrophy is characterized by demyelination and neurodegeneration. Disease progression, which leads to loss of neurologic function and death, can be halted only with allogeneic hematopoietic stem-cell transplantation. We enrolled boys with cerebral adrenoleukodystrophy in a single-group, open-label, phase 2-3 safety and efficacy study. Patients were required to have early-stage disease and gadolinium enhancement on magnetic resonance imaging (MRI) at screening. The investigational therapy involved infusion of autologous CD34+ cells transduced with the elivaldogene tavalentivec (Lenti-D) lentiviral vector. In this interim analysis, patients were assessed for the occurrence of graft-versus-host disease, death, and major functional disabilities, as well as changes in neurologic function and in the extent of lesions on MRI. The primary end point was being alive and having no major functional disability at 24 months after infusion. A total of 17 boys received Lenti-D gene therapy. At the time of the interim analysis, the median follow-up was 29.4 months (range, 21.6 to 42.0). All the patients had gene-marked cells after engraftment, with no evidence of preferential integration near known oncogenes or clonal outgrowth. Measurable ALD protein was observed in all the patients. No treatment-related death or graft-versus-host disease had been reported; 15 of the 17 patients (88%) were alive and free of major functional disability, with minimal clinical symptoms. One patient, who had had rapid neurologic deterioration, had died from disease progression. Another patient, who had had evidence of disease progression on MRI, had withdrawn from the study to undergo allogeneic stem-cell transplantation and later died from transplantation-related complications. Early results of this study suggest that Lenti-D gene therapy may be a safe and effective alternative to

  10. The incidence of autoimmune hemolytic anemia in pediatric hematopoietic stem cell recipients post first and second hematopoietic stem cell transplant

    Science.gov (United States)

    Ahmed, Ibrahim; Teruya, Jun; Murray-Krezan, Cristina; Krance, Robert

    2015-01-01

    The reported incidence of post allogeneic hematopoietic stem cell transplant (HSCT) auto-immune hemolytic anemia (AIHA) was between 4.4% and 6% following a single transplant. Cord blood transplantation, T-cell depletion and chronic GvHD are significantly associated with post-transplant AIHA. During an 11 year period, data for 500 pediatric HSCT recipients were eligible for evaluation of the incidence of AIHA post first and second transplants. Demographic, transplant, and post-transplant related variables were analyzed. Twelve/500 (2.4%) recipients at a median of 273 days and 7/72 (9.7%) recipients at a median of 157 days developed AIHA post first and second HSCT respectively. Post first HSCT, none of the matched related donor recipients developed AIHA (0/175 MRD vs. 12/325 other donors, p=0.04). Four/12 required a second HSCT to control the AIHA. Post the second HSCT, matched unrelated donor was significantly associated with the development of AIHA. No other variables were associated with the post-second transplant AIHA. The incidence of AIHA post first and second HSCT was less than reported. The increased incidence of AIHA among recipients of second HSCT is most likely due to the profound immune dysregulation. A much larger, prospective study would be needed to evaluate the incidence, complications and management of post-transplant AIHA. PMID:25809012

  11. Distinct Molecular Signature of Murine Fetal Liver and Adult Hematopoietic Stem Cells Identify Novel Regulators of Hematopoietic Stem Cell Function.

    Science.gov (United States)

    Manesia, Javed K; Franch, Monica; Tabas-Madrid, Daniel; Nogales-Cadenas, Ruben; Vanwelden, Thomas; Van Den Bosch, Elisa; Xu, Zhuofei; Pascual-Montano, Alberto; Khurana, Satish; Verfaillie, Catherine M

    2017-04-15

    During ontogeny, fetal liver (FL) acts as a major site for hematopoietic stem cell (HSC) maturation and expansion, whereas HSCs in the adult bone marrow (ABM) are largely quiescent. HSCs in the FL possess faster repopulation capacity as compared with ABM HSCs. However, the molecular mechanism regulating the greater self-renewal potential of FL HSCs has not yet extensively been assessed. Recently, we published RNA sequencing-based gene expression analysis on FL HSCs from 14.5-day mouse embryo (E14.5) in comparison to the ABM HSCs. We reanalyzed these data to identify key transcriptional regulators that play important roles in the expansion of HSCs during development. The comparison of FL E14.5 with ABM HSCs identified more than 1,400 differentially expressed genes. More than 200 genes were shortlisted based on the gene ontology (GO) annotation term "transcription." By morpholino-based knockdown studies in zebrafish, we assessed the function of 18 of these regulators, previously not associated with HSC proliferation. Our studies identified a previously unknown role for tdg, uhrf1, uchl5, and ncoa1 in the emergence of definitive hematopoiesis in zebrafish. In conclusion, we demonstrate that identification of genes involved in transcriptional regulation differentially expressed between expanding FL HSCs and quiescent ABM HSCs, uncovers novel regulators of HSC function.

  12. Expression of human adenosine deaminase in mice reconstituted with retrovirus-transduced hematopoietic stem cells

    International Nuclear Information System (INIS)

    Wilson, J.M.; Danos, O.; Grossman, M.; Raulet, D.H.; Mulligan, R.C.

    1990-01-01

    Recombinant retroviruses encoding human adenosine deaminase have been used to infect murine hematopoietic stem cells. In bone marrow transplant recipients reconstituted with the genetically modified cells, human ADA was detected in peripheral blood mononuclear cells of the recipients for at least 6 months after transplantation. In animals analyzed in detail 4 months after transplantation, human ADA and proviral sequences were detected in all hematopoietic lineages; in several cases, human ADA activity exceeded the endogenous activity. These studies demonstrate the feasibility of introducing a functional human ADA gene into hematopoietic stem cells and obtaining expression in multiple hematopoietic lineages long after transplantation. This approach should be helpful in designing effective gene therapies for severe combined immunodeficiency syndromes in humans

  13. Regulatory Systems in Bone Marrow for Hematopoietic Stem/Progenitor Cells Mobilization and Homing

    Directory of Open Access Journals (Sweden)

    P. Alvarez

    2013-01-01

    Full Text Available Regulation of hematopoietic stem cell release, migration, and homing from the bone marrow (BM and of the mobilization pathway involves a complex interaction among adhesion molecules, cytokines, proteolytic enzymes, stromal cells, and hematopoietic cells. The identification of new mechanisms that regulate the trafficking of hematopoietic stem/progenitor cells (HSPCs cells has important implications, not only for hematopoietic transplantation but also for cell therapies in regenerative medicine for patients with acute myocardial infarction, spinal cord injury, and stroke, among others. This paper reviews the regulation mechanisms underlying the homing and mobilization of BM hematopoietic stem/progenitor cells, investigating the following issues: (a the role of different factors, such as stromal cell derived factor-1 (SDF-1, granulocyte colony-stimulating factor (G-CSF, and vascular cell adhesion molecule-1 (VCAM-1, among other ligands; (b the stem cell count in peripheral blood and BM and influential factors; (c the therapeutic utilization of this phenomenon in lesions in different tissues, examining the agents involved in HSPCs mobilization, such as the different forms of G-CSF, plerixafor, and natalizumab; and (d the effects of this mobilization on BM-derived stem/progenitor cells in clinical trials of patients with different diseases.

  14. Donor Dependent Variations in Hematopoietic Differentiation among Embryonic and Induced Pluripotent Stem Cell Lines.

    Directory of Open Access Journals (Sweden)

    Olivier Féraud

    Full Text Available Hematopoiesis generated from human embryonic stem cells (ES and induced pluripotent stem cells (iPS are unprecedented resources for cell therapy. We compared hematopoietic differentiation potentials from ES and iPS cell lines originated from various donors and derived them using integrative and non-integrative vectors. Significant differences in differentiation toward hematopoietic lineage were observed among ES and iPS. The ability of engraftment of iPS or ES-derived cells in NOG mice varied among the lines with low levels of chimerism. iPS generated from ES cell-derived mesenchymal stem cells (MSC reproduce a similar hematopoietic outcome compared to their parental ES cell line. We were not able to identify any specific hematopoietic transcription factors that allow to distinguish between good versus poor hematopoiesis in undifferentiated ES or iPS cell lines. There is a relatively unpredictable variation in hematopoietic differentiation between ES and iPS cell lines that could not be predicted based on phenotype or gene expression of the undifferentiated cells. These results demonstrate the influence of genetic background in variation of hematopoietic potential rather than the reprogramming process.

  15. IMMUNITY TO INFECTIONS AFTER HAPLOIDENTICAL HEMATOPOIETIC STEM CELL TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    Franco Aversa

    2016-10-01

    Full Text Available The advantage of using a Human Leukocyte Antigen (HLA-mismatched related donor is that almost every patient who does not have a HLA-identical donor or who urgently needs hematopoietic stem cell transplantation (HSCT has at least one family member with whom shares one haplotype (haploidentical and who is promptly available as a donor. The major challenge of haplo-HSCT is intense bi-directional alloreactivity leading to high incidences of graft rejection and graft-versus-host disease (GVHD. Advances in graft processing and in pharmacologic prophylaxis of GVHD have reduced these risks and have made haplo-HSCT a viable alternative for patients lacking a matched donor. Indeed, the haplo-HSCT  has spread to centers worldwide even though some centers have preferred an approach based on T cell depletion of G-CSF-mobilized peripheral blood progenitor cells (PBPCs, others have focused on new strategies for GvHD prevention, such as G-CSF priming of bone marrow and robust post-transplant immune suppression or post-transplant cyclophosphamide (PTCY. Today, the graft can be a megadose of T-cell depleted PBPCs or standard dose of unmanipulated bone marrow and/or PBPCs.  Although haplo-HSCT modalities are based mainly on high intensity conditioning regimens, recently introduced reduced intensity regimens (RIC   showed promise in decreasing early transplant-related mortality (TRM, and extending the opportunity of HSCT to an elderly population with more comorbidities. Infections are still mostly responsible for toxicity and non-relapse mortality due to prolonged immunosuppression related, or not, to GVHD. Future challenges lie in determining the safest preparative conditioning regimen, minimizing GvHD and promoting rapid and more robust immune reconstitution.

  16. Cigarette Smoke Alters the Hematopoietic Stem Cell Niche

    Directory of Open Access Journals (Sweden)

    Robert W. Siggins

    2014-02-01

    Full Text Available Effects of tobacco smoke on hematologic derangements have received little attention. This study employed a mouse model of cigarette smoke exposure to explore the effects on bone marrow niche function. While lung cancer is the most widely studied consequence of tobacco smoke exposure, other malignancies, including leukemia, are associated with tobacco smoke exposure. Animals received cigarette smoke exposure for 6 h/day, 5 days/week for 9 months. Results reveal that the hematopoietic stem and progenitor cell (HSPC pool size is reduced by cigarette smoke exposure. We next examined the effect of cigarette smoke exposure on one supporting cell type of the niche, the mesenchymal stromal cells (MSCs. Smoke exposure decreased the number of MSCs. Transplantation of naïve HSPCs into irradiated mice with cigarette smoke exposure yielded fewer numbers of engrafted HSPCs. This result suggests that smoke-exposed mice possess dysfunctional niches, resulting in abnormal hematopoiesis. Co-culture experiments using MSCs isolated from control or cigarette smoke-exposed mice with naïve HSPCs in vitro showed that MSCs from cigarette smoke-exposed mice generated marked expansion of naïve HSPCs. These data show that cigarette smoke exposure decreases in vivo MSC and HSC number and also increases pro-proliferative gene expression by cigarette smoke-exposed MSCs, which may stimulate HSPC expansion. These results of this investigation are clinically relevant to both bone marrow donors with a history of smoking and bone marrow transplant (BMT recipients with a history of smoking.

  17. Safety of Voriconazole and Sirolimus Coadministration after Allogeneic Hematopoietic Stem Cell Transplantation

    Science.gov (United States)

    Ceberio, Izaskun; Dai, Kefei; Devlin, Sean M.; Barke, Juliet N.; Castro-Malaspina, Hugo; Goldberg, Jenna D.; Giralt, Sergio; Adel, Nelly G.; Perales, Miguel-Angel

    2015-01-01

    Antifungal prophylaxis with azoles is considered standard in allogeneic hematopoietic stem-cell transplant (allo-HCT). Although sirolimus is being used increasingly for prevention of graft-versus-host disease (GVHD), it is a substrate of CYP3A4, which is inhibited by voriconazole, and concurrent administration can lead to significantly increased exposure to sirolimus. We identified 67 patients with hematologic malignancies who underwent allo-HCT with sirolimus, tacrolimus, and low-dose methotrexate and received concomitant voriconazole prophylaxis from April-2008 to June-2011. All patients underwent a non-myeloablative or reduced-intensity conditioned allo-HCT. Patients received sirolimus and voriconazole concurrently for a median of 113 days. The median daily dose reduction of sirolimus at start of coadministration was 90%. The median serum sirolimus trough-level before and at steady-state of coadministration were 5.8ng/mL (range 0-47.6) and 6.1ng/mL (range 1-14.2) (p=0.45), respectively. One patient with an average sirolimus level of 6 ng/mL developed sirolimus-related thrombotic microangiopathy that resolved after sirolimus discontinuation. No sinusoidal-obstructive syndrome was reported. Seventeen patients (25%) prematurely discontinued voriconazole because of adverse events. Only 2 patients (3%) presented with possible IFI at day100. We demonstrate that sirolimus and voriconazole coadministration with an empiric 90% sirolimus dose-reduction and close monitoring of sirolimus trough levels is safe and well tolerated. PMID:25599164

  18. Engineering antigen-specific T cells from genetically modified human hematopoietic stem cells in immunodeficient mice.

    Science.gov (United States)

    Kitchen, Scott G; Bennett, Michael; Galić, Zoran; Kim, Joanne; Xu, Qing; Young, Alan; Lieberman, Alexis; Joseph, Aviva; Goldstein, Harris; Ng, Hwee; Yang, Otto; Zack, Jerome A

    2009-12-07

    There is a desperate need for effective therapies to fight chronic viral infections. The immune response is normally fastidious at controlling the majority of viral infections and a therapeutic strategy aimed at reestablishing immune control represents a potentially powerful approach towards treating persistent viral infections. We examined the potential of genetically programming human hematopoietic stem cells to generate mature CD8+ cytotoxic T lymphocytes that express a molecularly cloned, "transgenic" human anti-HIV T cell receptor (TCR). Anti-HIV TCR transduction of human hematopoietic stem cells directed the maturation of a large population of polyfunctional, HIV-specific CD8+ cells capable of recognizing and killing viral antigen-presenting cells. Thus, through this proof-of-concept we propose that genetic engineering of human hematopoietic stem cells will allow the tailoring of effector T cell responses to fight HIV infection or other diseases that are characterized by the loss of immune control.

  19. Engineering antigen-specific T cells from genetically modified human hematopoietic stem cells in immunodeficient mice.

    Directory of Open Access Journals (Sweden)

    Scott G Kitchen

    Full Text Available There is a desperate need for effective therapies to fight chronic viral infections. The immune response is normally fastidious at controlling the majority of viral infections and a therapeutic strategy aimed at reestablishing immune control represents a potentially powerful approach towards treating persistent viral infections. We examined the potential of genetically programming human hematopoietic stem cells to generate mature CD8+ cytotoxic T lymphocytes that express a molecularly cloned, "transgenic" human anti-HIV T cell receptor (TCR. Anti-HIV TCR transduction of human hematopoietic stem cells directed the maturation of a large population of polyfunctional, HIV-specific CD8+ cells capable of recognizing and killing viral antigen-presenting cells. Thus, through this proof-of-concept we propose that genetic engineering of human hematopoietic stem cells will allow the tailoring of effector T cell responses to fight HIV infection or other diseases that are characterized by the loss of immune control.

  20. Blood on the tracks: hematopoietic stem cell-endothelial cell interactions in homing and engraftment.

    Science.gov (United States)

    Perlin, Julie R; Sporrij, Audrey; Zon, Leonard I

    2017-08-01

    Cells of the hematopoietic system undergo rapid turnover. Each day, humans require the production of about one hundred billion new blood cells for proper function. Hematopoietic stem cells (HSCs) are rare cells that reside in specialized niches and are required throughout life to produce specific progenitor cells that will replenish all blood lineages. There is, however, an incomplete understanding of the molecular and physical properties that regulate HSC migration, homing, engraftment, and maintenance in the niche. Endothelial cells (ECs) are intimately associated with HSCs throughout the life of the stem cell, from the specialized endothelial cells that give rise to HSCs, to the perivascular niche endothelial cells that regulate HSC homeostasis. Recent studies have dissected the unique molecular and physical properties of the endothelial cells in the HSC vascular niche and their role in HSC biology, which may be manipulated to enhance hematopoietic stem cell transplantation therapies.

  1. File list: NoD.Bld.05.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.05.AllAg.CD34_Hematopoietic_stem_cells hg19 No description Blood CD34 Hematopoi...barchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Bld.05.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  2. File list: Unc.Bld.50.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.50.AllAg.CD34_Hematopoietic_stem_cells hg19 Unclassified Blood CD34 Hematopoi...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.50.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  3. File list: ALL.Bld.50.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.50.AllAg.CD34_Hematopoietic_stem_cells hg19 All antigens Blood CD34 Hematopoi...,SRX813531,SRX097081,SRX097084,SRX180945,SRX180946,SRX180947,SRX029316 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.50.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  4. File list: ALL.Bld.05.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.05.AllAg.CD34_Hematopoietic_stem_cells hg19 All antigens Blood CD34 Hematopoi...,SRX180940,SRX813531,SRX029315,SRX097082,SRX100320,SRX097084,SRX029316 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.05.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  5. File list: ALL.Bld.20.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.20.AllAg.CD34_Hematopoietic_stem_cells hg19 All antigens Blood CD34 Hematopoi...,SRX097082,SRX097084,SRX751542,SRX813531,SRX029598,SRX813532,SRX029316 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.20.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  6. File list: NoD.Bld.10.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.10.AllAg.CD34_Hematopoietic_stem_cells hg19 No description Blood CD34 Hematopoi...barchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Bld.10.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  7. File list: NoD.Bld.20.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.20.AllAg.CD34_Hematopoietic_stem_cells hg19 No description Blood CD34 Hematopoi...barchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Bld.20.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  8. File list: Oth.Bld.10.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.10.AllAg.CD34_Hematopoietic_stem_cells hg19 TFs and others Blood CD34 Hematopoi...5,SRX100320 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.10.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  9. File list: Unc.Bld.05.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.05.AllAg.CD34_Hematopoietic_stem_cells hg19 Unclassified Blood CD34 Hematopoi...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.05.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  10. File list: Unc.Bld.20.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.20.AllAg.CD34_Hematopoietic_stem_cells hg19 Unclassified Blood CD34 Hematopoi...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.20.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  11. File list: Oth.Bld.20.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.20.AllAg.CD34_Hematopoietic_stem_cells hg19 TFs and others Blood CD34 Hematopoi...0,SRX029598 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.20.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  12. File list: Unc.Bld.10.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.10.AllAg.CD34_Hematopoietic_stem_cells hg19 Unclassified Blood CD34 Hematopoi...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.10.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  13. File list: ALL.Bld.10.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.10.AllAg.CD34_Hematopoietic_stem_cells hg19 All antigens Blood CD34 Hematopoi...,SRX026654,SRX029315,SRX751542,SRX100320,SRX097082,SRX097084,SRX029316 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.10.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  14. File list: NoD.Bld.50.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.50.AllAg.CD34_Hematopoietic_stem_cells hg19 No description Blood CD34 Hematopoi...barchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Bld.50.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  15. File list: Oth.Bld.50.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.50.AllAg.CD34_Hematopoietic_stem_cells hg19 TFs and others Blood CD34 Hematopoi...8,SRX097074 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.50.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  16. File list: Oth.Bld.05.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.05.AllAg.CD34_Hematopoietic_stem_cells hg19 TFs and others Blood CD34 Hematopoi...5,SRX100320 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.05.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  17. IP3 3-kinase B controls hematopoietic stem cell homeostasis and prevents lethal hematopoietic failure in mice

    Science.gov (United States)

    Siegemund, Sabine; Rigaud, Stephanie; Conche, Claire; Broaten, Blake; Schaffer, Lana; Westernberg, Luise; Head, Steven Robert

    2015-01-01

    Tight regulation of hematopoietic stem cell (HSC) homeostasis ensures lifelong hematopoiesis and prevents blood cancers. The mechanisms balancing HSC quiescence with expansion and differentiation into hematopoietic progenitors are incompletely understood. Here, we identify Inositol-trisphosphate 3-kinase B (Itpkb) as an essential regulator of HSC homeostasis. Young Itpkb−/− mice accumulated phenotypic HSC, which were less quiescent and proliferated more than wild-type (WT) controls. Itpkb−/− HSC downregulated quiescence and stemness associated, but upregulated activation, oxidative metabolism, protein synthesis, and lineage associated messenger RNAs. Although they had normal-to-elevated viability and no significant homing defects, Itpkb−/− HSC had a severely reduced competitive long-term repopulating potential. Aging Itpkb−/− mice lost hematopoietic stem and progenitor cells and died with severe anemia. WT HSC normally repopulated Itpkb−/− hosts, indicating an HSC-intrinsic Itpkb requirement. Itpkb−/− HSC showed reduced colony-forming activity and increased stem-cell-factor activation of the phosphoinositide-3-kinase (PI3K) effectors Akt/mammalian/mechanistic target of rapamycin (mTOR). This was reversed by treatment with the Itpkb product and PI3K/Akt antagonist IP4. Transcriptome changes and biochemistry support mTOR hyperactivity in Itpkb−/− HSC. Treatment with the mTOR-inhibitor rapamycin reversed the excessive mTOR signaling and hyperproliferation of Itpkb−/− HSC without rescuing colony forming activity. Thus, we propose that Itpkb ensures HSC quiescence and function through limiting cytokine-induced PI3K/mTOR signaling and other mechanisms. PMID:25788703

  18. Are neural crest stem cells the missing link between hematopoietic and neurogenic niches?

    Directory of Open Access Journals (Sweden)

    Cécile eCoste

    2015-06-01

    Full Text Available Hematopoietic niches are defined as cellular and molecular microenvironments that regulate hematopoietic stem cell (HSC function together with stem cell autonomous mechanisms. Many different cell types have been characterized as contributors to the formation of HSC niches, such as osteoblasts, endothelial cells, Schwann cells, and mesenchymal progenitors. These mesenchymal progenitors have themselves been classified as CXC chemokine ligand (CXCL12-abundant reticular (CAR cells, stem cell factor expressing cells, or nestin-positive mesenchymal stem cells (MSCs, which have been recently identified as neural crest-derived cells (NCSCs. Together, these cells are spatially associated with HSCs and believed to provide appropriate microenvironments for HSC self-renewal, differentiation, mobilization and hibernation both by cell-to-cell contact and soluble factors. Interestingly, it appears that regulatory pathways governing the hematopoietic niche homeostasis are operating in the neurogenic niche as well. Therefore, this review paper aims to compare both the regulation of hematopoietic and neurogenic niches, in order to highlight the role of NCSCs and nervous system components in the development and the regulation of the hematopoietic system.

  19. Are neural crest stem cells the missing link between hematopoietic and neurogenic niches?

    Science.gov (United States)

    Coste, Cécile; Neirinckx, Virginie; Gothot, André; Wislet, Sabine; Rogister, Bernard

    2015-01-01

    Hematopoietic niches are defined as cellular and molecular microenvironments that regulate hematopoietic stem cell (HSC) function together with stem cell autonomous mechanisms. Many different cell types have been characterized as contributors to the formation of HSC niches, such as osteoblasts, endothelial cells, Schwann cells, and mesenchymal progenitors. These mesenchymal progenitors have themselves been classified as CXC chemokine ligand (CXCL) 12-abundant reticular (CAR) cells, stem cell factor expressing cells, or nestin-positive mesenchymal stem cells (MSCs), which have been recently identified as neural crest-derived cells (NCSCs). Together, these cells are spatially associated with HSCs and believed to provide appropriate microenvironments for HSC self-renewal, differentiation, mobilization and hibernation both by cell-cell contact and soluble factors. Interestingly, it appears that regulatory pathways governing the hematopoietic niche homeostasis are operating in the neurogenic niche as well. Therefore, this review paper aims to compare both the regulation of hematopoietic and neurogenic niches, in order to highlight the role of NCSCs and nervous system components in the development and the regulation of the hematopoietic system.

  20. Vitamin D deficiency in children and adolescents submitted to hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Denise Johnsson Campos

    2014-04-01

    Full Text Available Background: Sub-optimal levels of vitamin D have been found to be highly prevalent in all age groups, with epidemiologic studies demonstrating a link between vitamin D deficiency and disease susceptibility, such as infection and cancer, and mortality rates. In adult transplant patients, it has been suggested that the immunomodulatory properties of vitamin D may have an important role in the prevention and treatment of graft-versus-host disease. Objective: The objective of this study was to assess serum 25-hydroxyvitamin D levels of children and adolescents submitted to allogeneic hematopoietic stem cell transplantation. Methods: Serum 25-hydroxyvitamin D levels of 66 patients, aged 4-20 years, were assessed at three stages: before hospitalization for hematopoietic stem cell transplantation and at 30 and 180 days after hematopoietic stem cell transplantation. The control group consisted of 25 healthy children. Results: At the pre-hematopoietic stem cell transplantation stage, patients had lower levels of 25-hydroxyvitamin D compared to controls (25.7 ± 12.3 ng/mL vs. 31.9 ± 9.9 ng/mL; p-value = 0.01, and a higher prevalence of 25-hydroxyvitamin D deficiency (32% vs. 8%; p-value = 0.01. Prevalence increased significantly after hematopoietic stem cell transplantation (p-value = 0.01 with half of the patients having vitamin D deficiency at 180 days after transplantation. At this stage, mean serum 25-hydroxyvitamin D levels were 20.9 ± 10.9 ng/mL, a significant decline in relation to baseline (p-value = 0.01. No correlation was found between 25-hydroxyvitamin D levels and vitamin D intake, graft-versus-host disease, corticoid use or survival rates. Conclusion: Low levels of 25-hydroxyvitamin D were detected even before hematopoietic stem cell transplantation and were significantly lower at 180 days after hematopoietic stem cell transplantation, thus recommending vitamin D supplementation for children and adolescents submitted to hematopoietic stem

  1. Indications of hematopoietic stem cell transplantations and therapeutic strategies of accidental irradiations

    International Nuclear Information System (INIS)

    2003-01-01

    Produced by a group of experts, this document first discusses the issue of accidental irradiations in terms of medical management. They notably outline the peculiar characteristics of these irradiations with respect to therapeutic irradiations. They agreed on general principles regarding casualty sorting criteria and process, and their medical treatment (systematic hematopoiesis stimulation, allogeneic transplantation of hematopoietic stem cells). They discuss some practical aspects of these issues: casualty sorting within a therapeutic perspective (actions to be performed within 48 hours), therapeutic strategies (support therapy, use of cytokines, and therapy by hematopoietic stem cell transplant). They state a set of recommendations regarding the taking into care and diagnosis, therapeutic strategies, research perspectives, and teaching

  2. An Analysis of MicroRNA Expression in the Myelodysplastic Syndromes Using Hematopoietic Stem Cells

    Science.gov (United States)

    2015-10-01

    predisposition for the development of MDS. 15. SUBJECT TERMS MicroRNAs, the myelodysplastic syndromes, hematopoietic stem cells...hematopoietic  stem  cells  (HSCs),  demonstrating   the  presence  of  disease  associated  cytogenetic  and  molecular   genetic ...hematopoiesis   in   the   context   of   aging   and   its   likely   implication   in   the   age-­‐related   predisposition

  3. PRDM11 is dispensable for the maintenance and function of hematopoietic stem and progenitor cells

    DEFF Research Database (Denmark)

    Thoren, Lina A; Fog, Cathrine K; Jensen, Klaus T

    2013-01-01

    Hematopoietic stem cells (HSC)(1) supply organisms with life-long output of mature blood cells. To do so, the HSC pool size has to be maintained by HSC self-renewing divisions. PRDM3 and PRDM16 have been documented to regulate HSC self-renewal, maintenance and function. We found Prdm11 to have...... similar expression patterns in the hematopoietic stem and progenitor cell (HSPC) compartments as Prdm3 and Prdm16. Therefore, we undertook experiments to test if PRDM11 regulates HSC self-renewal, maintenance and function by investigating the Prdm11(-/-) mice. Our data shows that phenotypic HSPCs...

  4. Hematopoietic stem cells: ex-vivo expansion and therapeutic potential for myocardial ischemia

    Directory of Open Access Journals (Sweden)

    Jingwei Lu

    2010-03-01

    Full Text Available Jingwei Lu, Vincent J Pompili, Hiranmoy DasCardiovascular Stem Cell Research Laboratory, The Dorothy M Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USAAbstract: Despite recent advances in cardiovascular medicine, ischemic heart disease remains the major cause of death in the United States and abroad. Cell-based therapy for degenerative diseases like myocardial ischemia using stem cells is currently under serious investigation. Various types of stem cells are being considered to be candidates for cell transplantation in cell-based therapy. Hematopoietic stem cells are one of the most promising cell types as several studies demonstrated their ability to improve ischemic cardiac functions by enhancing neovascularization and by reducing the total size of scar tissue. However, in order to procure sufficient numbers of functional stem cells, ex-vivo expansion technology became critically important. In this review, we focus on the state-of-the-art ex-vivo technology for the expansion of hematopoietic stem cells, and the underlying mechanisms regulating stem cell self-renewal as well as differentiation.Keywords: ischemic heart disease, ex-vivo expansion, hematopoietic stem cells, cytokines, nanofibers

  5. Hematopoietic stem and progenitor cells regulate the regeneration of their niche by secreting Angiopoietin-1

    Science.gov (United States)

    Zhou, Bo O; Ding, Lei; Morrison, Sean J

    2015-01-01

    Hematopoietic stem cells (HSCs) are maintained by a perivascular niche in bone marrow but it is unclear whether the niche is reciprocally regulated by HSCs. Here, we systematically assessed the expression and function of Angiopoietin-1 (Angpt1) in bone marrow. Angpt1 was not expressed by osteoblasts. Angpt1 was most highly expressed by HSCs, and at lower levels by c-kit+ hematopoietic progenitors, megakaryocytes, and Leptin Receptor+ (LepR+) stromal cells. Global conditional deletion of Angpt1, or deletion from osteoblasts, LepR+ cells, Nes-cre-expressing cells, megakaryocytes, endothelial cells or hematopoietic cells in normal mice did not affect hematopoiesis, HSC maintenance, or HSC quiescence. Deletion of Angpt1 from hematopoietic cells and LepR+ cells had little effect on vasculature or HSC frequency under steady-state conditions but accelerated vascular and hematopoietic recovery after irradiation while increasing vascular leakiness. Hematopoietic stem/progenitor cells and LepR+ stromal cells regulate niche regeneration by secreting Angpt1, reducing vascular leakiness but slowing niche recovery. DOI: http://dx.doi.org/10.7554/eLife.05521.001 PMID:25821987

  6. [Pathogenesis and therapy of hydronephrosis after hematopoietic stem cell transplantation].

    Science.gov (United States)

    Yu, Lu-ping; Xu, Tao; Huang, Xiao-bo; Wang, Xiao-feng

    2014-08-18

    To investigate the pathogenesis and therapy of hydronephrosis after hematopoietic stem cell transplantation (HSCT). From March 2004 to March 2014, 23 patients with hydronephrosis after HSCT were identified. With these data, the pathogenesis of hydronephrosis after HSCT were analyzed. According to the surgical intervention of hydronephrosis and ureteral dialation of ureteral stricture, the patients were divided into two groups, rank-sum test and exact probability test were used to evaluate whether there were significant differences in the time of hemorrhagic cystitis (HC) occurred, ureteritis and viremia. HC, ureteritis, ureteral stenosis were all the causes of hydronephrosis after HSCT. In this study, 69.6% (16/23) of the patients suffered from HSCT were cured by conservative treatment, 30.4% (7/23) by surgical intervention, and 13.0% (3/23) by insertion DJ stent or nephrostomy.Of the patients [17.4% (4/23)] who suffered ureteral stenosis, 2 were cured after the balloon dialation of ureter, 1 needed DJ tube long-term insertion, and 1 was still followed-up. rank-sum test and exact probability test results showed that the patients who needed surgical intervention might suffer from HC later than other patients, and their incidences of viremia and ureteritis were higher, but the differences between the two groups were not statistically significant (P = 0.524, P = 0.169, and P = 0.124, respectively). The results also showed that the ureteritis incidences of the patients who suffered from ureteral stricture and needed ureteral dialation were higher than that of the other patients, and the difference between the two groups was statistically significant (P = 0.024). The patients who needed ureteral dialation suffered from HC later and their incidences of viremia was higher, but the differences between the two groups were not statistically significant (P = 0.73 and P = 0.27). HC, ureteritis and ureteral stenosis may cause hydronephrosis after HSCT. Patients may treated by

  7. Loss of Folliculin Disrupts Hematopoietic Stem Cell Quiescence and Homeostasis Resulting in Bone Marrow Failure.

    Science.gov (United States)

    Baba, Masaya; Toyama, Hirofumi; Sun, Lei; Takubo, Keiyo; Suh, Hyung-Chan; Hasumi, Hisashi; Nakamura-Ishizu, Ayako; Hasumi, Yukiko; Klarmann, Kimberly D; Nakagata, Naomi; Schmidt, Laura S; Linehan, W Marston; Suda, Toshio; Keller, Jonathan R

    2016-04-01

    Folliculin (FLCN) is an autosomal dominant tumor suppressor gene that modulates diverse signaling pathways required for growth, proliferation, metabolism, survival, motility, and adhesion. FLCN is an essential protein required for murine embryonic development, embryonic stem cell (ESC) commitment, and Drosophila germline stem cell maintenance, suggesting that Flcn may be required for adult stem cell homeostasis. Conditional inactivation of Flcn in adult hematopoietic stem/progenitor cells (HSPCs) drives hematopoietic stem cells (HSC) into proliferative exhaustion resulting in the rapid depletion of HSPC, loss of all hematopoietic cell lineages, acute bone marrow (BM) failure, and mortality after 40 days. HSC that lack Flcn fail to reconstitute the hematopoietic compartment in recipient mice, demonstrating a cell-autonomous requirement for Flcn in HSC maintenance. BM cells showed increased phosphorylation of Akt and mTorc1, and extramedullary hematopoiesis was significantly reduced by treating mice with rapamycin in vivo, suggesting that the mTorc1 pathway was activated by loss of Flcn expression in hematopoietic cells in vivo. Tfe3 was activated and preferentially localized to the nucleus of Flcn knockout (KO) HSPCs. Tfe3 overexpression in HSPCs impaired long-term hematopoietic reconstitution in vivo, recapitulating the Flcn KO phenotype, and supporting the notion that abnormal activation of Tfe3 contributes to the Flcn KO phenotype. Flcn KO mice develop an acute histiocytic hyperplasia in multiple organs, suggesting a novel function for Flcn in macrophage development. Thus, Flcn is intrinsically required to maintain adult HSC quiescence and homeostasis, and Flcn loss leads to BM failure and mortality in mice. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  8. Hematopoietic stem cell-specific GFP-expressing transgenic mice generated by genetic excision of a pan-hematopoietic reporter gene.

    Science.gov (United States)

    Perez-Cunningham, Jessica; Boyer, Scott W; Landon, Mark; Forsberg, E Camilla

    2016-08-01

    Selective labeling of specific cell types by expression of green fluorescent protein (GFP) within the hematopoietic system would have great utility in identifying, localizing, and tracking different cell populations in flow cytometry, microscopy, lineage tracing, and transplantation assays. In this report, we describe the generation and characterization of a new transgenic mouse line with specific GFP labeling of all nucleated hematopoietic cells and platelets. This new "Vav-GFP" mouse line labels the vast majority of hematopoietic cells with GFP during both embryonic development and adulthood, with particularly high expression in hematopoietic stem and progenitor cells (HSPCs). With the exception of transient labeling of fetal endothelial cells, GFP expression is highly selective for hematopoietic cells and persists in donor-derived progeny after transplantation of HSPCs. Finally, we also demonstrate that the loxP-flanked reporter allows for specific GFP labeling of different hematopoietic cell subsets when crossed to various Cre reporter lines. By crossing Vav-GFP mice to Flk2-Cre mice, we obtained robust and highly selective GFP expression in hematopoietic stem cells (HSCs). These data describe a new mouse model capable of directing GFP labeling exclusively of hematopoietic cells or exclusively of HSCs. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  9. Hematopoietic Support Capacity of Mesenchymal Stem Cells: Biology and Clinical Potential.

    Science.gov (United States)

    Fajardo-Orduña, Guadalupe R; Mayani, Héctor; Montesinos, Juan J

    2015-11-01

    Mesenchymal stem cells (MSCs) play an important role in the physiology and homeostasis of the hematopoietic system. Because MSCs generate most of the stromal cells present in the bone marrow (BM), form part of the hematopoietic stem cell (HSC) niche, and produce various molecules regulating hematopoiesis, their hematopoiesis-supporting capacity has been demonstrated. In the last decade, BM-MSCs have been proposed to be useful in some ex vivo protocols for HSC expansion, with the aim of expanding their numbers for transplant purposes (HSC transplant, HSCT). Furthermore, application of MSCs has been proposed as an adjuvant cellular therapy for promoting rapid hematopoietic recovery in HSCT patients. Although the MSCs used in preliminary clinical trials have come from the BM, isolation of MSCs from far more accessible sources such as neonatal tissues has now been achieved, and these cells have been found to possess similar biological characteristics to those isolated from the BM. Therefore, such tissues are now considered as a potential alternative source of MSCs for clinical applications. In this review, we discuss current knowledge regarding the biological characteristics of MSCs as related to their capacity to support the formation of hematopoietic stem and progenitor cells. We also describe MSC manipulation for ex vivo HSC expansion protocols used for transplants and their clinical relevance for hematopoietic recovery in HSCT patients. Copyright © 2015 IMSS. Published by Elsevier Inc. All rights reserved.

  10. The effects of proliferation and DNA damage on hematopoietic stem cell function determine aging.

    Science.gov (United States)

    Khurana, Satish

    2016-07-01

    In most of the mammalian tissues, homeostasis as well as injury repair depend upon a small number of resident adult stem cells. The decline in tissue/organ function in aged organisms has been directly linked with poorly functioning stem cells. Altered function of hematopoietic stem cells (HSCs) is at the center of an aging hematopoietic system, a tissue with high cellular turnover. Poorly engrafting, myeloid-biased HSCs with higher levels of DNA damage accumulation are the hallmark features of an aged hematopoietic system. These cells show a higher proliferation rate than their younger counterparts. It was proposed that quiescence of these cells over long period of time leads to accumulation of DNA damage, eventually resulting in poor function/pathological conditions in hematopoietic system. However, various mouse models with premature aging phenotype also show highly proliferative HSCs. This review examines the evidence that links proliferation of HSCs with aging, which leads to functional changes in the hematopoietic system. Developmental Dynamics 245:739-750, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. [Adjunctive reflections on history of hematopoietic stem cell study--editorial].

    Science.gov (United States)

    Tang, Pei-Xian

    2005-10-01

    The article reviews concisely around the history of hematopoietic stem cell research, basic and clinical, since its very beginning after the nuclear explosions at the end of the Second World War, that explains why the stem cell study in the world began with the hematopoietic stem cells and the existence of non-hematopoietic stem cell in vivo had been left out of account for many decades till 21st century. During 50-60s of the last century, it was known from the animal experiments that there must be hematopoietic stem cells existing in vivo and believed that the effective bone marrow transplant is actually the stem cell transplantation. It is reviewed how the basic studies of stem cell interacted with the clinical stem cell transplantation and how great the contribution was given to strongly push forward the development of contemporary stem cell biology and modern hematology from the basic studies especially in the immunological and molecular biological fields, for instance, the applications of HLA technology and monoclonal antibody produced, flow cytometry, and genetic recombinant cytokines, the novel technique for gene cloning, genomics, proteomics, and iRNA as well as bioinformatics. It has lead to the pluralistic cell therapy as a novel trend in stem cell transplantation as to combine immunotherapy and mesenchymal stem cells with the conventional stem cell transplants. This paper looks back in the past several decades, however, on every achievement of stem cell study that were usually accompanied with some idealistic one-sidedness or even errors in design and conclusion of some experiments. Usually it took a period of 2 or even 4 decades to clarify some basic idea, that seemed normal in the science development, for examples, the dividing line between the hematopoietic stem cell and progenitor cells, possibility to expand or clone the real stem cell ex vivo, and whether the majority of leukemias are originated from stem cell level, etc. Towards the end of 20th

  12. Hematopoietic Stem Cell Transplantation Activity and Trends at a Pediatric Transplantation Center in Turkey During 1998-2008

    Directory of Open Access Journals (Sweden)

    Volkan Hazar

    2012-06-01

    Full Text Available OBJECTIVE: The aim of this study was to document hematopoietic stem cell transplantation (HSCT activity and trends at our treatment center. METHODS: Data collected over a 10-year period were retrospectively analyzed, concentrating primarily on types of HSCT, transplant-related mortality (TRM, stem cell sources, indications for HSCT, and causes of death following HSCT. RESULTS: In total, 222 allogeneic (allo-HSCT (87.4% and 32 autologous (auto-HSCT (12.6% procedures were performed between 1998 and 2008. Stem cells obtained from unrelated donors were used in 22.6% (50/222 of the allo- HSCTs. Cord blood was the source of hematopoietic stem cells (HSC in 12.2% of all transplants. The most common indication for allo-HSCT was hemoglobinopathy (43.2%, versus neuroblastoma (53.1% for auto-HSCT. The TRM rate 1 year post transplantation was 18.3% ± 2.5% for all transplants, but differed according to transplantation type (23.5% ± 7.9% for auto-HSCT and 17.5% ± 2.6% for allo-HSCT. The most common cause of death 1 year post HSCT was infection (35.9%. CONCLUSION: The TRM rate in the patients that underwent allo-HSCT was similar to that which has been previously reported; however, the TRM rate in the patients that underwent auto-HSCT was higher than previously reported in developed countries. The selection of these patients to be transplanted must be made attentively.

  13. Ex Vivo Expansion of Hematopoietic Stem Cells to Improve Engraftment in Stem Cell Transplantation.

    Science.gov (United States)

    Ko, Kap-Hyoun; Nordon, Robert; O'Brien, Tracey A; Symonds, Geoff; Dolnikov, Alla

    2017-01-01

    The efficient use of hematopoietic stem cells (HSC) for transplantation is often limited by the relatively low numbers of HSC collected. The ex vivo expansion of HSC for clinical use is a potentially valuable and safe approach to increase HSC numbers thereby increasing engraftment and reducing the risk of morbidity from infection. Here, we describe a protocol for the robust ex vivo expansion of human CD34(+) HSC isolated from umbilical cord blood. The protocol described can efficiently generate large numbers of HSC. We also describe a flow cytometry-based method using high-resolution division tracking to characterize the kinetics of HSC growth and differentiation. Utilizing the guidelines discussed, it is possible for investigators to use this protocol as presented or to modify it for their specific needs.

  14. Hematopoietic stem cells exhibit a specific ABC transporter gene expression profile clearly distinct from other stem cells.

    NARCIS (Netherlands)

    Tang, L.; Bergevoet, S.M.; Gilissen, C.F.H.A.; Witte, T.J.M. de; Jansen, J.H.; Reijden, B.A. van der; Raymakers, R.A.P.

    2010-01-01

    BACKGROUND: ATP-binding cassette (ABC) transporters protect cells against unrelated (toxic) substances by pumping them across cell membranes. Earlier we showed that many ABC transporters are highly expressed in hematopoietic stem cells (HSCs) compared to more committed progenitor cells. The ABC

  15. Tachykinins and hematopoietic stem cell functions: implications in clinical disorders and tissue regeneration.

    Science.gov (United States)

    Murthy, Raghav G; Reddy, Bobby Y; Ruggiero, Jaclyn E; Rameshwar, Pranela

    2007-05-01

    Hematopoiesis is the process by which a limited number of hematopoietic stem cells (HSCs) maintain a functioning blood and immune system. In adults, hematopoiesis occurs in bone marrow and is supported by the microenvironment. The tachykinin family of peptides regulates hematopoiesis. Tachykinins can be released in bone marrow as neurotransmitters from innervating fibers, and from resident bone marrow cells. The hematopoietic effects by tachykinins involve four tachykinin genes, Tac1-Tac4. The latter is the most recently discovered member and encodes hemokinin-1, endokinin A, endokinin B, and two orphan peptides, endokinin C, and endokinin D. The alteration of normal hematopoietic functions by the tachykinins may result in the development of various pathologies. For example, Tac1 is involved in myelofibrosis and in leukemia, both of which are dysfunction of hematopoietic stem cells. A comprehensive understanding of dysfunctions caused by the tachykinins requires further research since other cells, such as stromal cells and factors including cytokines, chemokines, and endopeptidases, are involved in a network in which the tachykinins have critical roles. Studies into the properties and functions of tachykinins, the biology of their receptors, and related molecules would provide insights into the development of aging disorders, hematopoiesis, other dysfunction, and may also lead to the discovery of novel and effective clinical therapies. Controversies on applications for hematopoietic stem cells in regenerative medicine are discussed. Despite these controversies, a detailed understanding on how the bone marrow microenvironment maintains pluripotency of hematopoietic stem cells would be useful to manipulate the system to acquire specialized cells for tissue repair.

  16. Epigenetic control of hematopoietic stem cell aging - The case of Ezh2

    NARCIS (Netherlands)

    de Haan, Gerald; Gerrits, Alice; Kanz, L; Weisel, KC; Dick, JE; Fibbe, WE

    2007-01-01

    Hematopoietic stem cells have potent, but not unlimited, selfrenewal potential. The mechanisms that restrict selfrenewal are likely to play a role during aging. Recent data suggest that the regulation of histone modifications by Polycomb group genes may be of crucial relevance to balance selfrenewal

  17. Age- and stage-specific regulation patterns in the hematopoietic stem cell hierarchy

    NARCIS (Netherlands)

    Geiger, H; True, JM; de Haan, G; Van Zant, G

    2001-01-01

    The molecular mechanisms that regulate self-renewal and differentiation of very primitive hematopoietic stem and progenitor cells in vivo are still poorly understood. Despite the clinical relevance, even less is known about the mechanisms that regulate these cells in old animals. In a forward

  18. Allogeneic hematopoietic stem cell transplantation as immunotherapy : B lymphocytes versus leukemia

    NARCIS (Netherlands)

    Gillissen, M.A.

    2018-01-01

    Research described in this thesis focuses on the role of B lymphocytes in graft versus leukemia responses following allogeneic hematopoietic stem cell transplantation (HSCT) as treatment of acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Acute myeloid leukemia (AML) and high-risk

  19. Effectiveness of Partner Social Support Predicts Enduring Psychological Distress after Hematopoietic Stem Cell Transplantation

    Science.gov (United States)

    Rini, Christine; Redd, William H.; Austin, Jane; Mosher, Catherine E.; Meschian, Yeraz Markarian; Isola, Luis; Scigliano, Eileen; Moskowitz, Craig H.; Papadopoulos, Esperanza; Labay, Larissa E.; Rowley, Scott; Burkhalter, Jack E.; Schetter, Christine Dunkel; DuHamel, Katherine N.

    2011-01-01

    Objective: Hematopoietic stem cell transplant (HSCT) survivors who are 1 to 3 years posttransplant are challenged by the need to resume valued social roles and activities--a task that may be complicated by enduring transplant-related psychological distress common in this patient population. The present study investigated whether transplant…

  20. Bacterial meningitis in hematopoietic stem cell transplant recipients: a population-based prospective study

    NARCIS (Netherlands)

    van Veen, K. E. B.; Brouwer, M. C.; van der Ende, A.; van de Beek, D.

    2016-01-01

    We performed a nationwide prospective cohort study on the epidemiology and clinical features of community-acquired bacterial meningitis. Patients with a medical history of autologous or allogeneic hematopoietic stem cell transplantation (HSCT) were identified from the cohort performed from March

  1. Gastrointestinal toxicity, systemic inflammation, and liver biochemistry in allogeneic hematopoietic stem cell transplantation

    Science.gov (United States)

    Liver toxicity is frequently seen in relation to allogeneic hematopoietic stem cell transplantation (HSCT), but pathogenesis and the risk factors are poorly understood. The purpose of this study was to investigate associations between liver toxicity, gastrointestinal toxicity, and levels of immune-r...

  2. Oral bacteria and yeasts in relationship to oral ulcerations in hematopoietic stem cell transplant recipients

    NARCIS (Netherlands)

    Laheij, A.M.G.A.; de Soet, J.J.; von dem Borne, P.A.; Kuijper, E.J.; Kraneveld, E.A.; van Loveren, C.; Raber-Durlacher, J.E.

    2012-01-01

    BACKGROUND: Oral mucositis is a serious and debilitating side effect of conditioning regimens for hematopoietic stem cell transplant (HSCT). Through HSCT, the homeostasis in the oral cavity is disrupted. The contribution of the oral microflora to mucositis remains to be clarified. The aim of our

  3. Oral bacteria and yeasts in relationship to oral ulcerations in hematopoietic stem cell transplant recipients

    NARCIS (Netherlands)

    Laheij, Alexa M. G. A.; de Soet, Johannes J.; von dem Borne, Peter A.; Kuijper, Ed J.; Kraneveld, Eefje A.; van Loveren, Cor; Raber-Durlacher, Judith E.

    2012-01-01

    Oral mucositis is a serious and debilitating side effect of conditioning regimens for hematopoietic stem cell transplant (HSCT). Through HSCT, the homeostasis in the oral cavity is disrupted. The contribution of the oral microflora to mucositis remains to be clarified. The aim of our study was to

  4. Hematopoietic stem cell transplantation in Europe 2014 : more than 40 000 transplants annually

    NARCIS (Netherlands)

    Passweg, J. R.; Baldomero, H.; Bader, P.; Bonini, C.; Cesaro, S.; Dreger, P.; Duarte, R. F.; Dufour, C.; Kuball, J.; Farge-Bancel, D.; Gennery, A.; Kröger, N.; Lanza, F.; Nagler, A.; Sureda, A.; Mohty, M.

    2016-01-01

    A record number of 40 829 hematopoietic stem cell transplantation (HSCT) in 36 469 patients (15 765 allogeneic (43%), 20 704 autologous (57%)) were reported by 656 centers in 47 countries to the 2014 survey. Trends include: continued growth in transplant activity, more so in Eastern European

  5. Definitive hematopoietic stem/progenitor cells manifest distinct differentiation output in the zebrafish VDA and PBI.

    Science.gov (United States)

    Jin, Hao; Sood, Raman; Xu, Jin; Zhen, Fenghua; English, Milton A; Liu, P Paul; Wen, Zilong

    2009-02-01

    One unique feature of vertebrate definitive hematopoiesis is the ontogenic switching of hematopoietic stem cells from one anatomical compartment or niche to another. In mice, hematopoietic stem cells are believed to originate in the aorta-gonad-mesonephros (AGM), subsequently migrate to the fetal liver (FL) and finally colonize the bone marrow (BM). Yet, the differentiation potential of hematopoietic stem cells within early niches such as the AGM and FL remains incompletely defined. Here, we present in vivo analysis to delineate the differentiation potential of definitive hematopoietic stem/progenitor cells (HSPCs) in the zebrafish AGM and FL analogies, namely the ventral wall of dorsal aorta (VDA) and the posterior blood island (PBI), respectively. Cell fate mapping and analysis of zebrafish runx1(w84x) and vlad tepes (vlt(m651)) mutants revealed that HSPCs in the PBI gave rise to both erythroid and myeloid lineages. However, we surprisingly found that HSPCs in the VDA were not quiescent but were uniquely adapted to generate myeloid but not erythroid lineage cells. We further showed that such distinct differentiation output of HSPCs was, at least in part, ascribed to the different micro-environments present in these two niches. Our results highlight the importance of niche in shaping the differentiation output of developing HSPCs.

  6. Gastrointestinal toxicity, systemic inflammation, and liver biochemistry in allogeneic hematopoietic stem cell transplantation

    DEFF Research Database (Denmark)

    Jordan, Karina; Pontoppidan, Peter; Uhlving, Hilde Hylland

    2017-01-01

    Liver toxicity is frequently seen in relation to allogeneic hematopoietic stem cell transplantation (HSCT), but pathogenesis and the risk factors are poorly understood. The purpose of this study was to investigate associations between liver toxicity, gastrointestinal toxicity, and levels of immun...

  7. Pericarditis mediated by respiratory syncytial virus in a hematopoietic stem cell transplant patient.

    Science.gov (United States)

    Rubach, M P; Pavlisko, E N; Perfect, J R

    2013-08-01

    We describe a case of pericarditis and large pericardial effusion in a 63-year-old African-American man undergoing autologous hematopoietic stem cell transplant for multiple myeloma. Pericardial tissue biopsy demonstrated fibrinous pericarditis, and immunohistochemistry stains were positive for respiratory syncytial virus. The patient improved with oral ribavirin and intravenous immune globulin infusions. © 2013 John Wiley & Sons A/S.

  8. Interferon-gamma impairs proliferation of hematopoietic stem cells in mice

    NARCIS (Netherlands)

    de Bruin, Alexander M.; Demirel, Özlem; Hooibrink, Berend; Brandts, Christian H.; Nolte, Martijn A.

    2013-01-01

    Balancing the processes of hematopoietic stem cell (HSC) differentiation and self-renewal is critical for maintaining a lifelong supply of blood cells. The bone marrow (BM) produces a stable output of newly generated cells, but immunologic stress conditions inducing leukopenia increase the demand

  9. Automated Identification and Localization of Hematopoietic Stem Cells in 3D Intravital Microscopy Data

    OpenAIRE

    Khorshed, Reema?A.; Hawkins, Edwin?D.; Duarte, Delfim; Scott, Mark?K.; Akinduro, Olufolake?A.; Rashidi, Narges?M.; Spitaler, Martin; Lo?Celso, Cristina

    2015-01-01

    Summary Measuring three-dimensional (3D) localization of hematopoietic stem cells (HSCs) within the bone marrow microenvironment using intravital microscopy is a rapidly expanding research theme. This approach holds the key to understanding the detail of HSC-niche interactions, which are critical for appropriate stem cell function. Due to the complex tissue architecture of the bone marrow and to the progressive introduction of scattering and signal loss at increasing imaging depths, there is ...

  10. Persistent seropositivity for yellow fever in a previously vaccinated autologous hematopoietic stem cell transplantation recipient.

    Science.gov (United States)

    Hayakawa, Kayoko; Takasaki, Tomohiko; Tsunemine, Hiroko; Kanagawa, Shuzo; Kutsuna, Satoshi; Takeshita, Nozomi; Mawatari, Momoko; Fujiya, Yoshihiro; Yamamoto, Kei; Ohmagari, Norio; Kato, Yasuyuki

    2015-08-01

    The duration of a protective level of yellow fever antibodies after autologous hematopoietic stem cell transplantation in a previously vaccinated person is unclear. The case of a patient who had previously been vaccinated for yellow fever and who remained seropositive for 22 months after autologous peripheral blood stem cell transplantation for malignant lymphoma is described herein. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Regulation of hematopoietic stem cells during mouse development

    NARCIS (Netherlands)

    C. Orelio (Claudia)

    2003-01-01

    textabstractThe hematopoietic system is comprised of many different cell types that fulfill important physiological functions throughout embryonic and adult stages of mouse development. As the mature blood cells have a limited life-span, the pool of blood cells needs constant replenishing. At the

  12. Impact of Human Herpesvirus-6 Reactivation on Outcomes of Allogeneic Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Aoki, Jun; Numata, Ayumi; Yamamoto, Eri; Fujii, Eriko; Tanaka, Masatsugu; Kanamori, Heiwa

    2015-11-01

    Human herpesvirus-6 (HHV-6) is known to reactivate after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and may be associated with development of acute graft-versus-host disease (GVHD) and nonrelapse mortality (NRM). However, the clinical significance of HHV-6 reactivation after allo-HSCT remains unclear. Therefore, we conducted a retrospective analysis to elucidate the impact of HHV-6 reactivation on transplantation outcomes. Of 236 patients who underwent allo-HSCT, 138 (58.5%) developed HHV-6 reactivation and 98 (41.5%) did not. Univariate analysis indicated that at 3 years, patients with HHV-6 reactivation had significantly higher NRM (27.7% versus 13.7%, P = .003) and worse overall survival (42.1% versus 59.0%, P = .008) than those without reactivation. In multivariate analysis, HHV-6 reactivation was associated with higher incidence of acute GVHD (hazard ratio [HR], 1.87; P = .01), cytomegalovirus reactivation (HR, 2.24; P impact of HHV-6 reactivation on acute GVHD was observed only in patients who received myeloablative conditioning (MAC). These results indicate that HHV-6 reactivation was associated with development of acute GVHD, cytomegalovirus reactivation, and NRM. Furthermore, adverse impact of HHV-6 reactivation on transplantation outcomes was prominent in the setting of MAC. Copyright © 2015 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  13. Oral features and dental health in Hurler Syndrome following hematopoietic stem cell transplantation.

    LENUS (Irish Health Repository)

    McGovern, Eleanor

    2012-02-01

    BACKGROUND: Hurler Syndrome is associated with a deficiency of a specific lysosomal enzyme involved in the degradation of glycosaminoglycans. Hematopoietic stem cell transplantation (HSCT) in early infancy is undertaken to help prevent the accumulation of glycosaminoglycans and improve organ function. AIM: To investigate the oral features and dental health of patients with Hurler Syndrome who have undergone successful HSCT. MATERIALS AND METHODS: Twenty-five patients (median age 8.6 years) post-HSCT (mean age 9.4 months) underwent oral assessment (mean of 7.5 years post-HSCT). RESULTS: Dental development was delayed. Numerous occlusal anomalies were noted including: open-bite, class III skeletal base, dental spacing, primary molar infra-occlusion and ectopic tooth eruption. Dental anomalies included hypodontia, microdontia, enamel defects, thin tapering canine crowns, pointed molar cusps, bulbous molar crowns and molar taurodontism. Tooth roots were usually short\\/blunted\\/spindle-like in permanent molars. The prevalence of dental caries was low in the permanent dentition (mean DMFT 0.7) but high in the primary dentition (mean dmft 2.4). Oral hygiene instruction with plaque and or calculus removal was indicated in 71% of those that were dentate. CONCLUSION: Patients with Hurler Syndrome post-HSCT are likely to have delayed dental development, a malocclusion, and dental anomalies, particularly hypodontia and microdontia.

  14. Mitigation of radiation-induced hematopoietic injury via regulation of cellular MAPK/phosphatase levels and increasing hematopoietic stem cells.

    Science.gov (United States)

    Patwardhan, R S; Sharma, Deepak; Checker, Rahul; Sandur, Santosh K

    2014-03-01

    Here we describe a novel strategy for mitigation of ionizing radiation-induced hematopoietic syndrome by suppressing the activity of MKP3, resulting in ERK activation and enhanced abundance of hematopoietic stem cells, using the antioxidant flavonoid baicalein (5,6,7-trihydroxyflavone). It offered complete protection to mouse splenic lymphocytes against radiation-induced cell death. Inhibitors of ERK and Nrf-2 could significantly abrogate baicalein-mediated radioprotection in lymphocytes. Baicalein inhibited phosphatase MKP3 and thereby enhanced phosphorylation of ERK and its downstream proteins such as Elk and Nrf-2. It also increased the nuclear levels of Nrf-2 and the mRNA levels of its dependent genes. Importantly, baicalein administration to mice before radiation exposure led to significant recovery of loss of bone marrow cellularity and also inhibited cell death. Administration of baicalein increased the hematopoietic stem cell frequency as measured by side-population assay and also by antibody staining. Further, baicalein offered significant protection against whole-body irradiation (WBI; 7.5Gy)-induced mortality in mice. Interestingly, we found that baicalein works by activating the same target molecules ERK and Nrf-2 both in vitro and in vivo. Finally, administration of all-trans-retinoic acid (inhibitor of Nrf-2) significantly abrogated baicalein-mediated protection against WBI-induced mortality in mice. Thus, in contrast to the generalized conception of antioxidants acting as radioprotectors, we provide a rationale that antioxidants exhibit pleiotropic effects through the activation of multiple cellular signaling pathways. © 2013 Elsevier Inc. All rights reserved.

  15. Functionality testing of stem cell grafts to predict infectious complications after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Nilsson, J; Granrot, I; Mattsson, J; Omazic, B; Uhlin, M; Thunberg, S

    2017-07-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) is a routine clinical procedure performed to treat patients with haematological malignancies, primary immune deficiencies or metabolic disorders. Infections during lymphopenia after allogeneic HSCT are associated with high mortality and morbidity. Typical infectious agents are Epstein-Barr virus, cytomegalovirus, herpes simplex virus, varicella-zoster virus and fungi. The study aim was to evaluate whether measurement of the responses of antigen-specific T-cells, recognizing infectious pathogens would correlate to protective functions in the stem cell recipient post-transplant. Twenty-one grafts were analysed by flow cytometry and cells were stimulated in vitro with relevant infectious antigens, followed by evaluation of T-cell proliferation and cytokine production. Results were compared to the recipients' clinical records 1-year post-transplantation. We show that an extensive repertoire of transferred antigen-specific T-cells from allogeneic donor grafts against infectious agents, involved in post-transplant infections, are linked to an absence of infectious complications for the recipient up-to 1-year post-transplant. The protective effect was associated with antigen-specific T-cell proliferation and IL-1β secretion. Our results suggest that assaying T-cell function before HSCT could determine individual risks for infectious complications and thus aid in clinical decision-making regarding prophylactic and pre-emptive anti-infective therapy. © 2017 International Society of Blood Transfusion.

  16. SHIP1-expressing mesenchymal stem cells regulate hematopoietic stem cell homeostasis and lineage commitment during aging.

    Science.gov (United States)

    Iyer, Sonia; Brooks, Robert; Gumbleton, Matthew; Kerr, William G

    2015-05-01

    Hematopoietic stem cell (HSC) self-renewal and lineage choice are subject to intrinsic control. However, this intrinsic regulation is also impacted by external cues provided by niche cells. There are multiple cellular components that participate in HSC support with the mesenchymal stem cell (MSC) playing a pivotal role. We had previously identified a role for SH2 domain-containing inositol 5'-phosphatase-1 (SHIP1) in HSC niche function through analysis of mice with germline or induced SHIP1 deficiency. In this study, we show that the HSC compartment expands significantly when aged in a niche that contains SHIP1-deficient MSC; however, this expanded HSC compartment exhibits a strong bias toward myeloid differentiation. In addition, we show that SHIP1 prevents chronic G-CSF production by the aging MSC compartment. These findings demonstrate that intracellular signaling by SHIP1 in MSC is critical for the control of HSC output and lineage commitment during aging. These studies increase our understanding of how myeloid bias occurs in aging and thus could have implications for the development of myeloproliferative disease in aging.

  17. Hematopoietic stem cells : Self-renewing or aging?

    NARCIS (Netherlands)

    de Haan, G

    2002-01-01

    Stem cells are defined by their extensive self-renewal properties, and yet there is abundant evidence of erosion of stem cell functioning during aging. Whereas intracellular repair and protection mechanisms determine the lifespan of an individual cell, here an argument is made that somatic stem

  18. Clinical analysis of hematopoiesis reconstruction after total body irradiation in hematopoietic stem cell transplantation

    International Nuclear Information System (INIS)

    Fang Tong; Gao Hong; Sun Baojing; Chen Li

    2008-01-01

    Objective: To analyze the clinical outcome of total body irradiation in hematopoiesis reconstruction after autologous and allogeneic hematopoietic stem cell transplantation. Methods: 35 patients received autologous hematopoietic stem cell transplantation (ASCT group) and 35 patients received allogeneic hematopoietic stem cell transplantation (Allo-HSCT group) were enrolled in this study. And their hematopoiesis reconstruction were observed and analyzed. Results: The recovery time of ANC were 14 and 16 d, respectively, and the recovery time of PLT were 23 and 27 d, respectively, the difference were not significant (P>0.05) in ASCT group and Allo-HSCT group. But for both group, hematopoiesis reconstruction were faster in peripheral blood stem cell transplant than those in bone marrow transplant (P<0.05). The recovery time of PLT with the patients of total body irradiation dose ≥ 10 Gy were longer than those of < 10 Gy. Conclusions: At the same doses, the clinical outcome of hematopoiesis reconstruction of ASCT is similar to that of Allo-HSCT. But the recovery time in peripheral blood stem cell transplantation is faster than that in bone marrow transplant. The recovery time of PLT has relation with the irradiation dose. (authors)

  19. Distinguishing autocrine and paracrine signals in hematopoietic stem cell culture using a biofunctional microcavity platform

    Science.gov (United States)

    Müller, Eike; Wang, Weijia; Qiao, Wenlian; Bornhäuser, Martin; Zandstra, Peter W.; Werner, Carsten; Pompe, Tilo

    2016-08-01

    Homeostasis of hematopoietic stem cells (HSC) in the mammalian bone marrow stem cell niche is regulated by signals of the local microenvironment. Besides juxtacrine, endocrine and metabolic cues, paracrine and autocrine signals are involved in controlling quiescence, proliferation and differentiation of HSC with strong implications on expansion and differentiation ex vivo as well as in vivo transplantation. Towards this aim, a cell culture analysis on a polymer microcavity carrier platform was combined with a partial least square analysis of a mechanistic model of cell proliferation. We could demonstrate the discrimination of specific autocrine and paracrine signals from soluble factors as stimulating and inhibitory effectors in hematopoietic stem and progenitor cell culture. From that we hypothesize autocrine signals to be predominantly involved in maintaining the quiescent state of HSC in single-cell niches and advocate our analysis platform as an unprecedented option for untangling convoluted signaling mechanisms in complex cell systems being it of juxtacrine, paracrine or autocrine origin.

  20. The effect of carbon beam on the survival of hematopoietic stem cells in irradiated mice

    International Nuclear Information System (INIS)

    Tsuboi, Atsushi; Kojima, Eiichi; Tanaka, Kaoru

    1993-01-01

    The new cyclotron for heavy ion radiotherapy will be completed in the very near future at NIRS. High LET radiations having different qualities are known to produce differences in biological effectiveness. It is necessary to determine the biological effectiveness of this new radiation source in both normal and tumor tissues. In this paper, the effects of 200 kVp x-rays and a 135 MeV/u carbon 12 beam on hematopoietic stem cells (CFU-S and GM-CFC) are described. The rationale for this experimental approach is that the sensitivity of hematopoietic stem cells and the committed stem cells to radiation is often the treatment limiting-factor for radiotherapy. (author)

  1. Psychological and cytokine changes in children and adolescents undergoing hematopoietic stem cell transplantation.

    Science.gov (United States)

    Munitz-Shenkar, Dafna; Krulik, Tamar; Peretz, Chava; Shiloh, Roni; Elhasid, Ronit; Toren, Amos; Weizman, Abraham

    2007-01-01

    Hematopoietic stem cell transplantation is a therapeutic option of a large variety of diseases. It involves several physiological and psychological changes. Investigations of mood changes in patients undergoing hematopoietic stem cell transplantation are common. There are no studies however, on the relationship between changes in mood and physiological changes in hematopoietic stem cell transplantation in children and adolescents. We investigated the correlation between anxiety, depression and serum Interleukin-1beta (IL-1beta), IL-2 and IL-6. Participants, 11 boys and 12 girls, aged 6-18 years, were administered the Children Depression Inventory (CDI) and the Spielberger State Anxiety Inventory for Children (SAIC), at four different points in time: at conditioning time when treatment is initiated (time 1 = T1), on the day of hematopoietic transplantation (T2), on the day of engraftment (T3) and a week after the engraftment (T4). At each of those times serum samples for cytokines determination were collected as well. Up to the time of engraftment depression and anxiety were relatively high but resolved subsequently. Globally, there was a significant time effect for anxiety (p = 0.0082). Namely, scores differ between times. Depression showed a similar trend, though this trend did not reach significance (p = 0.1394). Negative correlation was found between serum IL-1beta, IL-2 and IL-6 levels and anxiety (IL-2 and IL-6) and depression scores (IL-1beta and IL-2) at T4. The complex interaction between cytokines, depression and anxiety in children and adolescents undergoing hematopoietic stem cell transplantation merits further long-term studies under natural conditions and on laboratory models.

  2. Retroviral transduction of murine and human hematopoietic progenitors and stem cells.

    Science.gov (United States)

    Ciuculescu, Marioara F; Brendel, Christian; Harris, Chad E; Williams, David A

    2014-01-01

    Genetic modification of cells using retroviral vectors is the method of choice when the cell population is difficult to transfect and/or requires persistent transgene expression in progeny cells. There are innumerable potential applications for these procedures in laboratory research and clinical therapeutic interventions. One paradigmatic example is the genetic modification of hematopoietic stem and progenitor cells (HSPCs). These are rare nucleated cells which reside in a specialized microenvironment within the bone marrow, and have the potential to self-renew and/or differentiate into all hematopoietic lineages. Due to their enormous regenerative capacity in steady state or under stress conditions these cells are routinely used in allogeneic bone marrow transplantation to reconstitute the hematopoietic system in patients with metabolic, inflammatory, malignant, and other hematologic disorders. For patients lacking a matched bone marrow donor, gene therapy of autologous hematopoietic stem cells has proven to be an alternative as highlighted recently by several successful gene therapy trials. Genetic modification of HSPCs using retrovirus vectors requires ex vivo manipulation to efficiently introduce the new genetic material into cells (transduction). Optimal culture conditions are essential to facilitate this process while preserving the stemness of the cells. The most frequently used retroviral vector systems for the genetic modifications of HSPCs are derived either from Moloney murine leukemia-virus (Mo-MLV) or the human immunodeficiency virus-1 (HIV-1) and are generally termed according to their genus gamma-retroviral (γ-RV) or lentiviral vectors (LV), respectively. This chapter describes in a step-by-step fashion some techniques used to produce research grade vector supernatants and to obtain purified murine or human hematopoietic stem cells for transduction, as well as follow-up methods for analysis of transduced cell populations.

  3. Concise review: From greenhouse to garden: the changing soil of the hematopoietic stem cell microenvironment during development.

    Science.gov (United States)

    Mirshekar-Syahkal, Bahar; Fitch, Simon R; Ottersbach, Katrin

    2014-07-01

    The hematopoietic system has been intensely studied for many decades. For this reason, it has become the best understood stem cell-derived system that serves as a paradigm for stem cell biology and has found numerous applications in the clinics. While a lot of progress has recently been made in describing the bone marrow components that maintain and control blood stem cell function in the adult, very little is currently known about the regulatory microenvironment in which the first adult-repopulating hematopoietic stem cells are formed during development. Knowledge of these processes is crucial for understanding the basic regulation of hematopoietic stem cell production and behavior and to allow their in vitro expansion and generation from embryonic stem cells or iPS cells for clinical and research purposes. This review summarizes the recent advances that have been made in defining the cellular components, as well as the soluble and physical factors, that are part of the niche involved in regulating hematopoietic stem cell generation in the embryo. The findings are compared with what is known about the adult bone marrow niche to find common pathways for stem cell regulation, but also to highlight processes uniquely required for de novo hematopoietic stem cell generation, as these are the conditions that will need to be recreated for the successful production of blood stem cells in culture. © 2014 AlphaMed Press.

  4. A Transient Developmental Hematopoietic Stem Cell Gives Rise to Innate-like B and T Cells.

    Science.gov (United States)

    Beaudin, Anna E; Boyer, Scott W; Perez-Cunningham, Jessica; Hernandez, Gloria E; Derderian, S Christopher; Jujjavarapu, Chethan; Aaserude, Eric; MacKenzie, Tippi; Forsberg, E Camilla

    2016-12-01

    The generation of distinct hematopoietic cell types, including tissue-resident immune cells, distinguishes fetal from adult hematopoiesis. However, the mechanisms underlying differential cell production to generate a layered immune system during hematopoietic development are unclear. Using an irreversible lineage-tracing model, we identify a definitive hematopoietic stem cell (HSC) that supports long-term multilineage reconstitution upon transplantation into adult recipients but does not persist into adulthood in situ. These HSCs are fully multipotent, yet they display both higher lymphoid cell production and greater capacity to generate innate-like B and T lymphocytes as compared to coexisting fetal HSCs and adult HSCs. Thus, these developmentally restricted HSCs (drHSCs) define the origin and generation of early lymphoid cells that play essential roles in establishing self-recognition and tolerance, with important implications for understanding autoimmune disease, allergy, and rejection of transplanted organs. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Nuclear adaptor Ldb1 regulates a transcriptional program essential for the maintenance of hematopoietic stem cells.

    Science.gov (United States)

    Li, LiQi; Jothi, Raja; Cui, Kairong; Lee, Jan Y; Cohen, Tsadok; Gorivodsky, Marat; Tzchori, Itai; Zhao, Yangu; Hayes, Sandra M; Bresnick, Emery H; Zhao, Keji; Westphal, Heiner; Love, Paul E

    2011-02-01

    The nuclear adaptor Ldb1 functions as a core component of multiprotein transcription complexes that regulate differentiation in diverse cell types. In the hematopoietic lineage, Ldb1 forms a complex with the non-DNA-binding adaptor Lmo2 and the transcription factors E2A, Scl and GATA-1 (or GATA-2). Here we demonstrate a critical and continuous requirement for Ldb1 in the maintenance of both fetal and adult mouse hematopoietic stem cells (HSCs). Deletion of Ldb1 in hematopoietic progenitors resulted in the downregulation of many transcripts required for HSC maintenance. Genome-wide profiling by chromatin immunoprecipitation followed by sequencing (ChIP-Seq) identified Ldb1 complex-binding sites at highly conserved regions in the promoters of genes involved in HSC maintenance. Our results identify a central role for Ldb1 in regulating the transcriptional program responsible for the maintenance of HSCs.

  6. Total body irradiation in hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Fundagul Andic

    2014-06-01

    Full Text Available Total body irradiation is used in conjunction with chemotherapy as a conditioning regimen in the treatment of many disease such as leukemia, myelodysplastic syndrome, aplastic anemia, multiple myeloma and lymphoma prior to the hematopoetic stem cell transplantation. The main purposes of the hematopoetic stem cell transplantation are eradication of the recipient bone marrow and any residual cancer cells, creation of space in the receipient bone marrow for donor hematopoetic stem cells, and immunosuppression to prevent rejection of donor stem cells in the case of an allotransplant. [Archives Medical Review Journal 2014; 23(3.000: 398-410

  7. GSTA1 diplotypes affect busulfan clearance and toxicity in children undergoing allogeneic hematopoietic stem cell transplantation : A multicenter study

    NARCIS (Netherlands)

    Ansari, Marc; Curtis, Patricia Huezo Diaz; Uppugunduri, Chakradhara Rao S.; Rezgui, Mohammed Aziz; Nava, Tiago; Mlakar, Vid; Lesne, Laurence; Théoret, Yves; Chalandon, Yves; Dupuis, Lee L.; Schechter, Tao; Bartelink, Imke H.; Boelens, Jaap J.; Bredius, Robbert; Dalle, Jean-Hugues; Azarnoush, Saba; Sedlacek, Petr; Lewis, Victor A.; Champagne, Martin A.; Peters, Christina; Bittencourt, Henrique; Krajinovic, Maja

    2017-01-01

    Busulfan (BU) dose adjustment following therapeutic drug monitoring contributes to better outcome of hematopoietic stem cell transplantation (HSCT). Further improvement could be achieved through genotype-guided BU dose adjustments. To investigate this aspect, polymorphism within glutathione S

  8. Stem cell factor induces phosphatidylinositol 3'-kinase-dependent Lyn/Tec/Dok-1 complex formation in hematopoietic cells

    NARCIS (Netherlands)

    T.B. van Dijk (Thamar); M. Parren-Van Amelsvoort (Martine); H. Mano; M.M. von Lindern (Marieke); B. Löwenberg (Bob); E. van den Akker (Emile)

    2000-01-01

    textabstractStem cell factor (SCF) has an important role in the proliferation, differentiation, survival, and migration of hematopoietic cells. SCF exerts its effects by binding to cKit, a receptor with intrinsic tyrosine kinase activity. Activation of

  9. IMMUNE STATE IN PATIENTS WITH HEMATOLOGICAL MALIGNANCIES AT LATE TERMS AFTER AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    N. V. Minaeva

    2012-01-01

    Full Text Available Abstract. Autologous hematopoietic stem cell transplantation (auto-HSCT is one of the most effective methods for treatment of patients with various forms of hemoblastoses, both in adults and children. However, high-dose chemotherapy protocols used in this procedure are characterized by pronounced myeloand immunotoxicity. Appropriate data concerning immune state at long terms after high-dose chemotherapy and auto-HSCT are sparse and controversial, and there is no consensus on time dynamics of immune system reconstitution. The aim of this study was a comprehensive evaluation of immunity in recipients of auto-HSCT at longer terms. Clinical and immunological testing was performed in ninety-eight patients with hematological malignancies before starting a high-dose chemotherapy, and at late post-transplant period. The state of cellular immunity was assessed as expression of surface CD3+, CD4+, CD8+, CD16+, CD19+ lymphocyte antigens. Humoral immunity was evaluated by serum IgG, IgA, and IgM levels. The studies have revealed disorders of cellular and humoral immunity, as well as nonspecific immune resistance factors in recipients of autologous hematopoietic stem cells at late terms post-transplant. Immune reconstitution in patients receiving highdose consolidation treatment followed by auto-HSCT takes longer time than in patients who did not receive autologous hematopoietic stem cells. Severity of these disturbances and immune reconstitution rates depend on the type of conditioning regimen, and the source of haematopoietic stem cells used for transplantation.

  10. [Protective effects of amifostine on hematopoietic stem/progenitor cells against chemotherapeutic damage].

    Science.gov (United States)

    Chen, Bao-An; Li, Cui-Ping; Zhou, Min; Gao, Chong; Ding, Jia-Hua

    2004-12-01

    The aim was to study the protective effects of amifostine (AMF) on normal hematopoietic stem/progenitor cells against the chemotherapeutic damage from etoposide (VP-16). The cord blood mononuclear cells (CBMNC), fresh and frozen peripheral blood stem cells (PBSC), and HL-60 cells were divided into AMF, AMF + VP-16, VP-16 and control groups, each group cell viability was determined by using trypan blue exclusion test, the CFU-GM culture was used to count cells, the apoptosis was detected by flow cytometry. The results showed that in CBMNC, fresh and frozen PBSC samples, cell viability and the number of CFU-GM in AMF + VP-16 group were all significantly higher than those in VP-16 group (P GFU-GM life in AMF + VP-16 group was also longer than that of latter, in CBMNC samples, the number of CFU-GM in AMF groups was higher than that in control group, but there was no statistical significance between the two groups (P > 0.05), in HL-60 cell apoptotic rate in AMF + VP-16 group was little higher than that in VP-16 group, but no statistical significance between these two groups (P > 0.05). It is concluded that AMF can significantly protect normal hematopoietic stem/progenitor cells against the damage from VP-16. Moreover, AMF does not affect cytotoxity of VP-16 on HL-60 cells, and can not stimulate the growth and differentiation of cord hematopoietic stem/progenitor cells directly.

  11. Pre-Transplantation Blockade of TNF-α-Mediated Oxygen Species Accumulation Protects Hematopoietic Stem Cells.

    Science.gov (United States)

    Ishida, Takashi; Suzuki, Sachie; Lai, Chen-Yi; Yamazaki, Satoshi; Kakuta, Shigeru; Iwakura, Yoichiro; Nojima, Masanori; Takeuchi, Yasuo; Higashihara, Masaaki; Nakauchi, Hiromitsu; Otsu, Makoto

    2017-04-01

    Hematopoietic stem cell (HSC) transplantation (HSCT) for malignancy requires toxic pre-conditioning to maximize anti-tumor effects and donor-HSC engraftment. While this induces bone marrow (BM)-localized inflammation, how this BM environmental change affects transplanted HSCs in vivo remains largely unknown. We here report that, depending on interval between irradiation and HSCT, residence within lethally irradiated recipient BM compromises donor-HSC reconstitution ability. Both in vivo and in vitro we demonstrate that, among inflammatory cytokines, TNF-α plays a role in HSC damage: TNF-α stimulation leads to accumulation of reactive oxygen species (ROS) in highly purified hematopoietic stem/progenitor cells (HSCs/HSPCs). Transplantation of flow-cytometry-sorted murine HSCs reveals damaging effects of accumulated ROS on HSCs. Short-term incubation either with an specific inhibitor of tumor necrosis factor receptor 1 signaling or an antioxidant N-acetyl-L-cysteine (NAC) prevents TNF-α-mediated ROS accumulation in HSCs. Importantly, pre-transplantation exposure to NAC successfully demonstrats protective effects in inflammatory BM on graft-HSCs, exhibiting better reconstitution capability than that of nonprotected control grafts. We thus suggest that in vivo protection of graft-HSCs from BM inflammation is a feasible and attractive approach, which may lead to improved hematopoietic reconstitution kinetics in transplantation with myeloablative conditioning that inevitably causes inflammation in recipient BM. Stem Cells 2017;35:989-1002. © 2016 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  12. Secreted protein Del-1 regulates myelopoiesis in the hematopoietic stem cell niche.

    Science.gov (United States)

    Mitroulis, Ioannis; Chen, Lan-Sun; Singh, Rashim Pal; Kourtzelis, Ioannis; Economopoulou, Matina; Kajikawa, Tetsuhiro; Troullinaki, Maria; Ziogas, Athanasios; Ruppova, Klara; Hosur, Kavita; Maekawa, Tomoki; Wang, Baomei; Subramanian, Pallavi; Tonn, Torsten; Verginis, Panayotis; von Bonin, Malte; Wobus, Manja; Bornhäuser, Martin; Grinenko, Tatyana; Di Scala, Marianna; Hidalgo, Andres; Wielockx, Ben; Hajishengallis, George; Chavakis, Triantafyllos

    2017-10-02

    Hematopoietic stem cells (HSCs) remain mostly quiescent under steady-state conditions but switch to a proliferative state following hematopoietic stress, e.g., bone marrow (BM) injury, transplantation, or systemic infection and inflammation. The homeostatic balance between quiescence, self-renewal, and differentiation of HSCs is strongly dependent on their interactions with cells that constitute a specialized microanatomical environment in the BM known as the HSC niche. Here, we identified the secreted extracellular matrix protein Del-1 as a component and regulator of the HSC niche. Specifically, we found that Del-1 was expressed by several cellular components of the HSC niche, including arteriolar endothelial cells, CXCL12-abundant reticular (CAR) cells, and cells of the osteoblastic lineage. Del-1 promoted critical functions of the HSC niche, as it regulated long-term HSC (LT-HSC) proliferation and differentiation toward the myeloid lineage. Del-1 deficiency in mice resulted in reduced LT-HSC proliferation and infringed preferentially upon myelopoiesis under both steady-state and stressful conditions, such as hematopoietic cell transplantation and G-CSF- or inflammation-induced stress myelopoiesis. Del-1-induced HSC proliferation and myeloid lineage commitment were mediated by β3 integrin on hematopoietic progenitors. This hitherto unknown Del-1 function in the HSC niche represents a juxtacrine homeostatic adaptation of the hematopoietic system in stress myelopoiesis.

  13. Bone marrow laminins influence hematopoietic stem and progenitor cell cycling and homing to the bone marrow.

    Science.gov (United States)

    Susek, Katharina Helene; Korpos, Eva; Huppert, Jula; Wu, Chuan; Savelyeva, Irina; Rosenbauer, Frank; Müller-Tidow, Carsten; Koschmieder, Steffen; Sorokin, Lydia

    2018-01-31

    Hematopoietic stem and progenitor cell (HSPC) functions are regulated by a specialized microenvironment in the bone marrow - the hematopoietic stem cell niche - of which the extracellular matrix (ECM) is an integral component. We describe here the localization of ECM molecules, in particular the laminin α4, α3 and α5 containing isoforms in the bone marrow. Laminin 421 (composed of laminin α4, β2, γ1 chains) is identified as a major component of the bone marrow ECM, occurring abundantly surrounding venous sinuses and in a specialized reticular fiber network of the intersinusoidal spaces of murine bone marrow (BM) in close association with HSPC. Bone marrow from Lama4 -/- mice is significantly less efficient in reconstituting the hematopoietic system of irradiated wildtype (WT) recipients in competitive bone marrow transplantation assays and shows reduced colony formation in vitro. This is partially due to retention of Lin - c-kit + Sca-1 + CD48 - long-term and short-term hematopoietic stem cells (LT-HSC/ST-HSC) in the G0 phase of the cell cycle in Lama4 -/- bone marrow and hence a more quiescent phenotype. In addition, the extravasation of WT BM cells into Lama4 -/- bone marrow is impaired, influencing the recirculation of HSPC. Our data suggest that these effects are mediated by a compensatory expression of laminin α5 containing isoforms (laminin 521/522) in Lama4 -/- bone marrow. Collectively, these intrinsic and extrinsic effects lead to reduced HSPC numbers in Lama4 -/- bone marrow and reduced hematopoietic potential. Copyright © 2018 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  14. Kinetics of hematopoietic stem cells and supportive activities of stromal cells in a three-dimensional bone marrow culture system.

    Science.gov (United States)

    Harada, Tomonori; Hirabayashi, Yukio; Hatta, Yoshihiro; Tsuboi, Isao; Glomm, Wilhelm Robert; Yasuda, Masahiro; Aizawa, Shin

    2015-01-01

    In the bone marrow, hematopoietic cells proliferate and differentiate in close association with a three-dimensional (3D) hematopoietic microenvironment. Previously, we established a 3D bone marrow culture system. In this study, we analyzed the kinetics of hematopoietic cells, and more than 50% of hematopoietic progenitor cells, including CFU-Mix, CFU-GM and BFU-E in 3D culture were in a resting (non-S) phase. Furthermore, we examined the hematopoietic supportive ability of stromal cells by measuring the expression of various mRNAs relevant to hematopoietic regulation. Over the 4 weeks of culture, the stromal cells in the 3D culture are not needlessly activated and "quietly" regulate hematopoietic cell proliferation and differentiation during the culture, resulting in the presence of resting hematopoietic stem cells in the 3D culture for a long time. Thus, the 3D culture system may be a new tool for investigating hematopoietic stem cell-stromal cell interactions in vitro.

  15. Combined influence of biophysical and biochemical cues on maintenance and proliferation of hematopoietic stem cells.

    Science.gov (United States)

    Gvaramia, David; Müller, Eike; Müller, Katrin; Atallah, Passant; Tsurkan, Mikhail; Freudenberg, Uwe; Bornhäuser, Martin; Werner, Carsten

    2017-09-01

    Homeostasis of hematopoietic stem and progenitor cells (HSPC) is controlled by a combination of biochemical and biophysical environmental cues in the bone marrow (BM) niche, where a tight balance of quiescence and proliferation of HSPC is maintained. Specifically, alongside soluble factors and extracellular matrix (ECM) proteins, spatial confinement and ECM stiffness have been recognized to be critical for regulation of HSPC fate. Here we employ a modular, glycosaminoglycan (GAG)-based biohybrid hydrogel system to balance proliferation of human HSPC and maintenance of quiescent hematopoietic stem cells (HSC) through simultaneous regulation of exogenous biochemical and biophysical cues. Our results demonstrate that HSPC respond to increased spatial confinement with lowered proliferation and cell cycling, which results in higher frequency of quiescent LTC-IC (long-term culture initiating cells), while GAG-rich 3D environments further support maintenance of the cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Sirt1 Protects Stressed Adult Hematopoietic Stem Cells | Center for Cancer Research

    Science.gov (United States)

    The immune system relies on a stable pool of hematopoietic stem and progenitor cells (HSPCs) to respond properly to injury or stress. Maintaining genomic integrity and appropriate gene expression is essential for HSPC homeostasis, and dysregulation can result in myeloproliferative disorders or loss of immune function. Sirt1 is a histone deacetylase that can protect embryonic stem (ES) cells from accumulating DNA damage and has been linked to hematopoietic differentiation of ES cells. Satyendra Singh, Ph.D., a postdoctoral fellow working with Philipp Oberdoerffer, Ph.D., in CCR’s Laboratory of Receptor Biology and Gene Expression, and their colleagues set out to determine whether Sirt1 could play a similar protective role in adult HSPCs.

  17. Different Motile Behaviors of Human Hematopoietic Stem versus Progenitor Cells at the Osteoblastic Niche

    Directory of Open Access Journals (Sweden)

    Katie Foster

    2015-11-01

    Full Text Available Despite advances in our understanding of interactions between mouse hematopoietic stem cells (HSCs and their niche, little is known about communication between human HSCs and the microenvironment. Using a xenotransplantation model and intravital imaging, we demonstrate that human HSCs display distinct motile behaviors to their hematopoietic progenitor cell (HPC counterparts, and the same pattern can be found between mouse HSCs and HPCs. HSCs become significantly less motile after transplantation, while progenitor cells remain motile. We show that human HSCs take longer to find their niche than previously expected and suggest that the niche be defined as the position where HSCs stop moving. Intravital imaging is the only technique to determine where in the bone marrow stem cells stop moving, and future analyses should focus on the environment surrounding the HSC at this point.

  18. Cerebral salt-wasting syndrome after hematopoietic stem cell transplantation in adolescents: 3 case reports

    Directory of Open Access Journals (Sweden)

    Yeon Jin Jeon

    2015-12-01

    Full Text Available Cerebral salt-wasting syndrome (CSWS is a rare disease characterized by a extracellular volume depletion and hyponatremia induced by marked natriuresis. It is mainly reported in patients who experience a central nervous system insult, such as cerebral hemorrhage or encephalitis. The syndrome of inappropriate antidiuretic hormone secretion is a main cause of severe hyponatremia after hematopoietic stem cell transplantation, whereas CSWS is rarely reported. We report 3 patients with childhood acute leukemia who developed CSWS with central nervous system complication after hematopoietic stem cell transplantation. The diagnosis of CSW was made on the basis of severe hyponatremia accompanied by increased urine output with clinical signs of dehydration. All patients showed elevated natriuretic peptide and normal antidiuretic hormone. Aggressive water and sodium replacement treatment was instituted in all 3 patients and 2 of them were effectively recovered, the other one was required to add fludrocortisone administration.

  19. Synergistic actions of hematopoietic and mesenchymal stem/progenitor cells in vascularizing bioengineered tissues.

    Directory of Open Access Journals (Sweden)

    Eduardo K Moioli

    Full Text Available Poor angiogenesis is a major road block for tissue repair. The regeneration of virtually all tissues is limited by angiogenesis, given the diffusion of nutrients, oxygen, and waste products is limited to a few hundred micrometers. We postulated that co-transplantation of hematopoietic and mesenchymal stem/progenitor cells improves angiogenesis of tissue repair and hence the outcome of regeneration. In this study, we tested this hypothesis by using bone as a model whose regeneration is impaired unless it is vascularized. Hematopoietic stem/progenitor cells (HSCs and mesenchymal stem/progenitor cells (MSCs were isolated from each of three healthy human bone marrow samples and reconstituted in a porous scaffold. MSCs were seeded in micropores of 3D calcium phosphate (CP scaffolds, followed by infusion of gel-suspended CD34(+ hematopoietic cells. Co-transplantation of CD34(+ HSCs and CD34(- MSCs in microporous CP scaffolds subcutaneously in the dorsum of immunocompromised mice yielded vascularized tissue. The average vascular number of co-transplanted CD34(+ and MSC scaffolds was substantially greater than MSC transplantation alone. Human osteocalcin was expressed in the micropores of CP scaffolds and was significantly increased upon co-transplantation of MSCs and CD34(+ cells. Human nuclear staining revealed the engraftment of transplanted human cells in vascular endothelium upon co-transplantation of MSCs and CD34(+ cells. Based on additional in vitro results of endothelial differentiation of CD34(+ cells by vascular endothelial growth factor (VEGF, we adsorbed VEGF with co-transplanted CD34(+ and MSCs in the microporous CP scaffolds in vivo, and discovered that vascular number and diameter further increased, likely owing to the promotion of endothelial differentiation of CD34(+ cells by VEGF. Together, co-transplantation of hematopoietic and mesenchymal stem/progenitor cells may improve the regeneration of vascular dependent tissues such as bone

  20. Notch and Wnt signaling in the emergence of hematopoietic stem cells

    DEFF Research Database (Denmark)

    Bigas, Anna; Guiu, Jordi; Gama-Norton, Leonor

    2013-01-01

    Hematopoietic stem cells (HSC), which reside in the marrow of adult mammals and sustain hematopoiesis for the lifetime of the organism, are specified and generated during embryonic development. We are just beginning to understand how HSC develop from more primitive cells and the complexity of the...... of the signaling pathways involved. In this work, we review the role of two crucial pathways, Notch and Wnt, in the specification and development of HSC and their nascent microenvironment, the arterial vessels....

  1. Topical Cidofovir for Recalcitrant Verrucae in Individuals with Severe Combined Immunodeficiency After Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Henrickson, Sarah E; Treat, James R

    2017-01-01

    Verrucae vulgaris in patients with severe combined immunodeficiency (SCID) after hematopoietic stem cell transplantation (HCST) can be challenging to manage. We describe two brothers with X-linked SCID who had severe, persistent verrucae that did not respond to traditional topical therapies, including liquid nitrogen, imiquimod, salicylic acid, sinecatechins, 40% urea, and 5-fluorourcil. Both brothers had full response to topical 3% cidofovir, which should be considered in recalcitrant warts in individuals with SCID after HSCT. © 2016 Wiley Periodicals, Inc.

  2. Difficulties in the revaccination program of hematopoietic stem cell transplantation recipients

    OpenAIRE

    da Silva, Paula Moreira; da Silva, Élen Monteiro; Simioni, Anderson João; de Souza, Mair Pedro; Colturato, Vergílio Antonio Rensi; Machado, Clarisse Martins

    2017-01-01

    ABSTRACT Hematopoietic stem cell transplant (HSCT) recipients should be routinely revaccinated after transplantation. We evaluated the difficulties met in the revaccination program and how a prospective and tailored follow-up could help to overcome these obstacles. HSCT recipients (n=122) were prospectively followed up and categorized into Group 1 (n=72), recipients who had already started the revaccination program, and Group 2 (n=50), recipients starting their vaccines. Whenever a difficulty...

  3. Nicaraven attenuates radiation-induced injury in hematopoietic stem/progenitor cells in mice.

    Directory of Open Access Journals (Sweden)

    Miho Kawakatsu

    Full Text Available Nicaraven, a chemically synthesized hydroxyl radical-specific scavenger, has been demonstrated to protect against ischemia-reperfusion injury in various organs. We investigated whether nicaraven can attenuate radiation-induced injury in hematopoietic stem/progenitor cells, which is the conmen complication of radiotherapy and one of the major causes of death in sub-acute phase after accidental exposure to high dose radiation. C57BL/6 mice were exposed to 1 Gy γ-ray radiation daily for 5 days in succession (a total of 5 Gy, and given nicaraven or a placebo after each exposure. The mice were sacrificed 2 days after the last radiation treatment, and the protective effects and relevant mechanisms of nicaraven in hematopoietic stem/progenitor cells with radiation-induced damage were investigated by ex vivo examination. We found that post-radiation administration of nicaraven significantly increased the number, improved the colony-forming capacity, and decreased the DNA damage of hematopoietic stem/progenitor cells. The urinary levels of 8-oxo-2'-deoxyguanosine, a marker of DNA oxidation, were significantly lower in mice that were given nicaraven compared with those that received a placebo treatment, although the levels of intracellular and mitochondrial reactive oxygen species in the bone marrow cells did not differ significantly between the two groups. Interestingly, compared with the placebo treatment, the administration of nicaraven significantly decreased the levels of the inflammatory cytokines IL-6 and TNF-α in the plasma of mice. Our data suggest that nicaraven effectively diminished the effects of radiation-induced injury in hematopoietic stem/progenitor cells, which is likely associated with the anti-oxidative and anti-inflammatory properties of this compound.

  4. The Changing Epidemiology of Bloodstream Infections and Resistance in Hematopoietic Stem Cell Transplantation Recipients

    Directory of Open Access Journals (Sweden)

    Mücahit Yemişen

    2016-08-01

    Full Text Available Objective: Patients receiving hematopoietic stem cell transplantation (HSCT are exposed to highly immunosuppressive conditions and bloodstream infections (BSIs are one of the most common major complications within this period. Our aim, in this study, was to evaluate the epidemiology of BSIs in these patients retrospectively. Materials and Methods: The epidemiological properties of 312 patients with HSCT were retrospectively evaluated. Results: A total of 312 patients, followed between 2000 and 2011, who underwent autologous (62% and allogeneic (38% HSCT were included in the study. The most common underlying malignancies were multiple myeloma (28% and Hodgkin lymphoma (21.5%. A total of 142 (45% patients developed at least 1 episode of BSI and 193 separate pathogens were isolated from the blood cultures. There was a trend of increase in the numbers of BSIs in 2005-2008 and a relative increase in the proportion of gram-positive infections in recent years (2009-2011, and central venous catheter-related BSI was found to be most common source. Coagulase-negative staphylococci (49.2% and Acinetobacter baumannii (8.8% were the most common pathogens. Extended-spectrum beta-lactamase-producing strains were 23% and 22% among Escherichia coli and Klebsiella spp. isolates, respectively. Quinolone resistance was detected in 10% of Enterobacteriaceae. Resistance to carbapenems was not detected in Enterobacteriaceae, while it was seen at 11.1% and 23.5% in Pseudomonas and Acinetobacter strains, respectively. Conclusion: A shift was detected from gram-negative bacteria to gram-positive in the etiology over the years and central lines were the most common sources of BSIs.

  5. Hematopoietic Stem Cell Transplantation in an Infant with Immunodeficiency, Centromeric Instability, and Facial Anomaly Syndrome

    Directory of Open Access Journals (Sweden)

    Katharina L. Gössling

    2017-06-01

    Full Text Available Immunodeficiency, centromeric instability, and facial anomaly (ICF syndrome is a rare autosomal recessive genetic condition with severe immunodeficiency, which leads to lethal infections if not recognized and treated in early childhood. Up-to-date treatment regimens consist of prophylactic and supportive treatment of the recurrent infections. Here, we report the case of a 1-year-old boy of Moroccan consanguineous parents, who was diagnosed at 4 months of age with ICF syndrome with a homozygous missense mutation in the DNMT3B gene. He was initially admitted to the hospital with recurrent pulmonary infections from the opportunistic pathogen Pneumocystis jirovecii (PJ. Further immunological workup revealed agammaglobulinemia in the presence of B cells. After successful recovery from the PJ pneumonia, he underwent hematopoietic stem cell transplantation (HSCT from the HLA-matched healthy sister using a chemotherapeutic conditioning regimen consisting of treosulfan, fludarabine, and thiotepa. Other than acute chemotherapy-associated side effects, no serious adverse events occurred. Six months after HSCT immune-reconstitution, he had a stable chimerism with 2.9% autologous portion in the peripheral blood and a normal differential blood cell count, including all immunoglobulin subtypes. This is one of the first cases of successful HSCT in ICF syndrome. Early diagnosis and subsequent HSCT can prevent severe opportunistic infections and cure the immunodeficiency. Centromeric instability and facial anomaly remain unaffected. Although the long-term patient outcome and the neurological development remain to be seen, this curative therapy for immunodeficiency improves life expectancy and quality of life. This case is meant to raise physicians awareness for ICF syndrome and highlight the consideration for HSCT in ICF syndrome early on.

  6. Hypothyroidism following allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia.

    Science.gov (United States)

    Medinger, Michael; Zeiter, Deborah; Heim, Dominik; Halter, Jörg; Gerull, Sabine; Tichelli, André; Passweg, Jakob; Nigro, Nicole

    2017-07-01

    Hypothyroidism may complicate allogeneic hematopoietic stem cell transplantation (allo-HSCT); we therefore analyzed risk factors in this study. We studied 229 patients with acute myeloid leukemia (AML) who underwent an allo-HSCT between 2003 and 2013 with different conditioning regimens (myeloablative, reduced-intensity, chemotherapy-based, or total body irradiation-based). Thyroid-stimulating hormone (TSH) and free thyroxine levels (fT4) were available in 104 patients before and after allo-HSCT. The median age at transplantation (n=104) was 47 (IQR 40-59)], 37 (35.6%) patients were female, and the overall mortality was 34.6% (n=36). After a median follow-up period of 47 (IQR 25-84) months, overt hypothyroidism (basal TSH>4.49mIU/l, FT4hypothyroidism (basal TSH>4.49mIU/l, normal fT4) was observed in 20 patients (19.2%). Positive thyroperoxidase (TPO) antibodies were found in 5 (4.8%) patients. A total of 13 patients (12.5%) were treated with thyroid hormone replacement. Acute graft-versus-host disease (aGvHD) ≥grade 2 occurred in 55 (52.9%) and chronic GvHD (cGvHD) in 74 (71.2%) of the patients. The risk of developing hypothyroidism was higher in the patients with repeated allo-HSCTs (P=0.024) and with positive TPO antibodies (P=0.045). Furthermore, the development of overt hypothyroidism was inversely proportional to age (P=0.043). No correlation was found with GvHD, HLA-mismatch, total body irradiation, and gender. After allo-HSCT, a significant number of patients experience thyroid dysfunction, including subclinical and overt hypothyroidism. Long-term and continuous follow-up for thyroid function after HSCT is important to provide timely and appropriate treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. [Biological characteristics of mesenchymal stem cell and hematopoietic stem cell in the co-culture system].

    Science.gov (United States)

    Wei, Wei; Xu, Chao; Ye, Zhi-Yong; Huang, Xiao-Jun; Yuan, Jia-En; Ma, Tian-Bao; Lin, Han-Biao; Chen, Xiu-Qiong

    2016-10-25

    The aim of the present study was to obtain the qualified hematopoietic stem/progenitor cells (HSC/HPC) and human umbilical cord-mesenchymal stem cells (MSC) in vitro in the co-culture system. Cord blood mononuclear cells were separated from umbilical cord blood by Ficoll lymphocyte separation medium, and then CD34 + HSC was collected by MACS immunomagnetic beads. The selected CD34 + HSC/HPC and MSC were transferred into culture flask. IMDM culture medium with 15% AB-type cord plasma supplemented with interleukin-3 (IL-3), IL-6, thrombopoietin (TPO), stem cell factor (SCF) and FMS-like tyrosine kinase 3 ligand (Flt-3L) factors were used as the co-culture system for the amplification of HSC/HPC and MSC. The cellular growth status and proliferation on day 6 and 10 after co-culture were observed by using inverted microscope. The percentage of positive expression of CD34 in HSC/HPC, as well as the percentages of positive expressions of CD105, CD90, CD73, CD45, CD34 and HLA-DR in the 4 th generation MSC, was tested by flow cytometry. Semisolid colony culture was used to test the HSC/HPC colony forming ability. The osteogenic, chondrogenesis and adipogenic ability of the 4 th generation MSC were assessed. The karyotype analysis of MSC was conducted by colchicines. The results demonstrated that the HSC/HPC of co-culture group showed higher ability of amplification, CFU-GM and higher CD34 + percentage compared with the control group. The co-cultured MSC maintained the ability to differentiate into bone cells, fat cells and chondrocytes. And the karyotype stability of MSC remained normal. These results reveal that the appropriate co-culture system for MSC and HSC is developed, and via this co-culture system we could gain both two kinds of these cells. The MSCs under the co-culture system maintain the biological characteristics. The CFU-GM ability, cell counting and the flow cytometry results of HSC/HPC under the co-culture system are conform to the criterion, showing that

  8. Safety and tolerability of deferasirox in pediatric hematopoietic stem cell transplant recipients: one facility's five years' experience of chelation treatment.

    Science.gov (United States)

    Maximova, Natalia; Gregori, Massimo; Simeone, Roberto; Sonzogni, Aurelio; Boz, Giulia; Fucile, Carmen; Marini, Valeria; Martelli, Antonietta; Mattioli, Francesca

    2017-09-08

    42 pediatric patients with iron overload, who underwent liver biopsy and DFX treatment after hematopoietic stem cell transplantation were included in the study group. The patients were divided into two groups diversified according to deferasirox trough plasma concentrations (DFX C trough ) with cut-off equal to10 mcg/mL. The average dose of DFX was 25.9 mg/kg in the DFX C trough 10 mcg/mL group ( p =0,0003). The mean duration of DFX treatment was 135.7 days in the DFX C trough 10 mcg/mL group ( p 10 mcg/mL group ( p 10 mcg/mL group had ductopenia which was complete in 47.6% of them and severe in 52.4%. All patients with particularly high C trough (> 25 mcg/mL) were found to have total ductopenia. 90.5% of all deferasirox-related adverse events and 100% of major adverse events occurred in the DFX C trough > 10 mcg/mL group. In the DFX C trough 10 mcg/mL group. We would recommend a close monitoring in pediatric hematopoietic transplant recipients subjected to deferasirox-based therapy because we have observed a high incidence of adverse events and discontinuation of chelation treatment.

  9. Pulmonary candidiasis after hematopoietic stem cell transplantation: thin-section CT findings.

    Science.gov (United States)

    Franquet, Tomás; Müller, Nestor L; Lee, Kyung S; Oikonomou, Anastasia; Flint, Julia D

    2005-07-01

    To retrospectively evaluate thin-section computed tomographic (CT) findings in hematopoietic stem cell transplant (ie, bone marrow transplant) patients with histopathologically proved pulmonary candidiasis. Ethical approval was obtained from the institutional review board of each of the three institutions; informed consent was not required. The study included 17 hematopoietic stem cell transplant recipients with proved pulmonary candidiasis. Histopathologic specimens were acquired at transbronchial biopsy (n = 8), open lung biopsy (n = 6), and autopsy (n = 3). The patients included seven men and 10 women (age range, 20-62 years; mean age, 37 years). The thin-section CT scans were retrospectively reviewed by two thoracic radiologists for the presence, appearance, and distribution of parenchymal abnormalities. Multiple nodules were present in 15 (88%) patients, including centrilobular nodules and tree-in-bud pattern in seven (41%) patients. Nodules were bilateral in 12 patients and unilateral in three. An associated halo of ground-glass opacity was identified in five (33%) patients. Nodules were the only CT finding in five patients (29%). Areas of air-space consolidation were identified in 11 (65%) patients. Areas of ground-glass opacity were seen in six (35%) of 17 patients and were always associated with other abnormalities. Other less common CT findings included pleural effusion (n = 3), thickening of the bronchial walls (n = 2), and cavitation (n = 1). The most common thin-section CT findings of pulmonary candidiasis in hematopoietic stem cell transplant patients are multiple bilateral nodular opacities often associated with areas of consolidation. Copyright RSNA, 2005

  10. Icing oral mucositis: Oral cryotherapy in multiple myeloma patients undergoing autologous hematopoietic stem cell transplant.

    Science.gov (United States)

    Chen, Joey; Seabrook, Jamie; Fulford, Adrienne; Rajakumar, Irina

    2017-03-01

    Background Up to 70% of patients receiving hematopoietic stem cell transplant develop oral mucositis as a side effect of high-dose melphalan conditioning chemotherapy. Oral cryotherapy has been documented to be potentially effective in reducing oral mucositis. The aim of this study was to examine the effectiveness of the cryotherapy protocol implemented within the hematopoietic stem cell transplant program. Methods A retrospective chart review was conducted of adult multiple myeloma patients who received high-dose melphalan conditioning therapy for autologous hematopoietic stem cell transplant. Primary endpoints were incidence and severity of oral mucositis. Secondary endpoints included duration of oral mucositis, duration of hospital stay, parenteral narcotics use and total parenteral nutrition use. Results One hundred and forty patients were included in the study, 70 patients in both no cryotherapy and cryotherapy groups. Both oral mucositis incidence and severity were found to be significantly lower in the cryotherapy group. Fifty (71.4%) experienced mucositis post cryotherapy compared to 67 (95.7%) in the no cryotherapy group (p cryotherapy group (p = 0.03). Oral mucositis duration and use of parenteral narcotics were also significantly reduced. Duration of hospital stay and use of parenteral nutrition were similar between the two groups. Conclusion The cryotherapy protocol resulted in a significantly lower incidence and severity of oral mucositis. These results provide evidence for the continued use of oral cryotherapy, an inexpensive and generally well-tolerated practice.

  11. Deletion of the Imprinted Gene Grb10 Promotes Hematopoietic Stem Cell Self-Renewal and Regeneration.

    Science.gov (United States)

    Yan, Xiao; Himburg, Heather A; Pohl, Katherine; Quarmyne, Mamle; Tran, Evelyn; Zhang, Yurun; Fang, Tiancheng; Kan, Jenny; Chao, Nelson J; Zhao, Liman; Doan, Phuong L; Chute, John P

    2016-11-01

    Imprinted genes are differentially expressed by adult stem cells, but their functions in regulating adult stem cell fate are incompletely understood. Here we show that growth factor receptor-bound protein 10 (Grb10), an imprinted gene, regulates hematopoietic stem cell (HSC) self-renewal and regeneration. Deletion of the maternal allele of Grb10 in mice (Grb10 m/+ mice) substantially increased HSC long-term repopulating capacity, as compared to that of Grb10 +/+ mice. After total body irradiation (TBI), Grb10 m/+ mice demonstrated accelerated HSC regeneration and hematopoietic reconstitution, as compared to Grb10 +/+ mice. Grb10-deficient HSCs displayed increased proliferation after competitive transplantation or TBI, commensurate with upregulation of CDK4 and Cyclin E. Furthermore, the enhanced HSC regeneration observed in Grb10-deficient mice was dependent on activation of the Akt/mTORC1 pathway. This study reveals a function for the imprinted gene Grb10 in regulating HSC self-renewal and regeneration and suggests that the inhibition of Grb10 can promote hematopoietic regeneration in vivo. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Nutraceutical augmentation of circulating endothelial progenitor cells and hematopoietic stem cells in human subjects

    Directory of Open Access Journals (Sweden)

    Minev Boris

    2010-04-01

    Full Text Available Abstract The medical significance of circulating endothelial or hematopoietic progenitors is becoming increasing recognized. While therapeutic augmentation of circulating progenitor cells using G-CSF has resulted in promising preclinical and early clinical data for several degenerative conditions, this approach is limited by cost and inability to perform chronic administration. Stem-Kine is a food supplement that was previously reported to augment circulating EPC in a pilot study. Here we report a trial in 18 healthy volunteers administered Stem-Kine twice daily for a 2 week period. Significant increases in circulating CD133 and CD34 cells were observed at days 1, 2, 7, and 14 subsequent to initiation of administration, which correlated with increased hematopoietic progenitors as detected by the HALO assay. Augmentation of EPC numbers in circulation was detected by KDR-1/CD34 staining and colony forming assays. These data suggest Stem-Kine supplementation may be useful as a stimulator of reparative processes associated with mobilization of hematopoietic and endothelial progenitors.

  13. Long-term hematopoietic stem cell damage after external irradiation with X rays

    International Nuclear Information System (INIS)

    Grande, M.T.; Varas, F.; Bueren, J.A.

    1997-01-01

    We have investigated the functionality of the lympho-hematopoietic stem cells long-term (9 months) after the irradiation (X rays) of mice at different stages of development, by means of a competitive bone marrow repopulation assay. Our data revealed that a dose of 1 Gy was only capable of inducing significant long-term failures in the functionality of the primitive repopulating cells in mice irradiated at the young-adult stage (12 week-old), but not in mice irradiated at the late stages of foetus development (17 day-old fetuses) nor at the early development of the embryo (4 day-old embryos). The differential generation of long-term stem cell defects as a function of the age was confirmed in mice irradiated with 3 Gy. While no significant effects in the long-term repopulating cells were observed in 4 day-old embryos, significant repopulation deficiencies were observed in this population when mice were irradiated at the 17 day of foetus development, and more markedly at the adult stage of growth. These data offer new evidence about the influence of the developmental stage of the animal on the generation of residual hematopoietic dysfunctions by external irradiation, with particular relevance to the very primitive lympho-hematopoietic stem cells. (author)

  14. The histone demethylase Jarid1b is required for hematopoietic stem cell self-renewal

    DEFF Research Database (Denmark)

    Stewart, Morag H; Albert, Mareike; Sroczynska, Patrycja

    2015-01-01

    Jarid1b/KDM5b is a histone demethylase that regulates self-renewal and differentiation in stem cells and cancer, however its function in hematopoiesis is unclear. Here, we find that Jarid1b is highly expressed in primitive hematopoietic compartments and is overexpressed in acute myeloid leukemias...... compromises hematopoietic stem cell (HSC) self-renewal capacity and suggest that Jarid1b is a positive regulator of HSC potential.......Jarid1b/KDM5b is a histone demethylase that regulates self-renewal and differentiation in stem cells and cancer, however its function in hematopoiesis is unclear. Here, we find that Jarid1b is highly expressed in primitive hematopoietic compartments and is overexpressed in acute myeloid leukemias....... Constitutive genetic deletion of Jarid1b did not impact steady-state hematopoiesis. In contrast, acute deletion of Jarid1b from bone marrow increased peripheral blood T cells and, following secondary transplantation, resulted in loss of bone marrow reconstitution. Our results reveal that deletion of Jarid1b...

  15. Todralazine protects zebra fish from lethal doses of ionizing radiation: role of hematopoietic stem cell expansion

    International Nuclear Information System (INIS)

    Dimri, Manali; Joshi, Jaidev; Indracanti, Prem Kumar

    2013-01-01

    Radiation induced cell killing and hematopoietic stem cell depletion leads to compromised immune functions and opportunistic infections which significantly affect the recovery and survival upon irradiation. Any agent which can expand residual hematopoietic stem cells in irradiated organism can render protection from the effects of lethal doses of ionizing radiation. Johns Hopkins Clinical compound library (JHCCL) was screened for protection against lethal doses of ionizing radiation using developing zebra fish as a model organism. Modulation of radiation induced reactive oxygen species by the small molecules were done by DCFDA staining and for visual identification and quantification of apoptosis acridine orange assay, flow cytometry were employed respectively. Hematopoietic stem cell expansion potential was assessed by quantifying runx1 expression, a marker for definitive stem cells, were done by RT-PCR and by the kinetics of recovery from chemically induced anaemia. Todralazine hydrochloride from JHCCL exhibited promising results with potential anti radiation effects. A dose of 5μM was found to be the most effective and has rendered significant organ and whole body protection (100% survival advantage over a period of 6 days) against 20 Gy. However todralazine did not modulated radiation induced free radicals (monitored within 2 h of irradiation) and apoptosis in zebra fish embryos analysed at 8 and 24h post irradiation. Flow cytometric quantification of pre G1 population suggested the same. Chemoinformatics approaches were further carried out to elucidate possible targets which are contributing to its radioprotection potential. Structural similarity search suggested several targets and possible hematopoietic stem cell expanding potential. Treatment of zebra fish embryos with todralazine has lead to significant proliferation of hematopoietic stem cell as indicated by increase in expression of runx1. HSC expanding potential of todralazine was further supported by

  16. Early osteoinductive human bone marrow mesenchymal stromal/stem cells support an enhanced hematopoietic cell expansion with altered chemotaxis- and adhesion-related gene expression profiles

    Energy Technology Data Exchange (ETDEWEB)

    Sugino, Noriko [Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Miura, Yasuo, E-mail: ym58f5@kuhp.kyoto-u.ac.jp [Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Yao, Hisayuki [Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Iwasa, Masaki; Fujishiro, Aya [Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Division of Gastroenterology and Hematology, Shiga University of Medical Science, Shiga 520-2192 (Japan); Fujii, Sumie [Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Hirai, Hideyo [Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Takaori-Kondo, Akifumi [Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Ichinohe, Tatsuo [Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553 (Japan); Maekawa, Taira [Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan)

    2016-01-22

    Bone marrow (BM) microenvironment has a crucial role in supporting hematopoiesis. Here, by using a microarray analysis, we demonstrate that human BM mesenchymal stromal/stem cells (MSCs) in an early osteoinductive stage (e-MSCs) are characterized by unique hematopoiesis-associated gene expression with an enhanced hematopoiesis-supportive ability. In comparison to BM-MSCs without osteoinductive treatment, gene expression in e-MSCs was significantly altered in terms of their cell adhesion- and chemotaxis-related profiles, as identified with Gene Ontology and Gene Set Enrichment Analysis. Noteworthy, expression of the hematopoiesis-associated molecules CXCL12 and vascular cell adhesion molecule 1 was remarkably decreased in e-MSCs. e-MSCs supported an enhanced expansion of CD34{sup +} hematopoietic stem and progenitor cells, and generation of myeloid lineage cells in vitro. In addition, short-term osteoinductive treatment favored in vivo hematopoietic recovery in lethally irradiated mice that underwent BM transplantation. e-MSCs exhibited the absence of decreased stemness-associated gene expression, increased osteogenesis-associated gene expression, and apparent mineralization, thus maintaining the ability to differentiate into adipogenic cells. Our findings demonstrate the unique biological characteristics of e-MSCs as hematopoiesis-regulatory stromal cells at differentiation stage between MSCs and osteoprogenitor cells and have significant implications in developing new strategy for using pharmacological osteoinductive treatment to support hematopoiesis in hematopoietic stem and progenitor cell transplantation. - Highlights: • Human BM-MSCs in an early osteoinductive stage (e-MSCs) support hematopoiesis. • Adhesion- and chemotaxis-associated gene signatures are altered in e-MSCs. • Expression of CXCL12 and VCAM1 is remarkably decreased in e-MSCs. • e-MSCs are at differentiation stage between MSCs and osteoprogenitor cells. • Osteoinductive treatment

  17. Functional analysis of human hematopoietic stem cell gene expression using zebrafish.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available Although several reports have characterized the hematopoietic stem cell (HSC transcriptome, the roles of HSC-specific genes in hematopoiesis remain elusive. To identify candidate regulators of HSC fate decisions, we compared the transcriptome of human umbilical cord blood and bone marrow (CD34+(CD33-(CD38-Rho(lo(c-kit+ cells, enriched for hematopoietic stem/progenitor cells with (CD34+(CD33-(CD38-Rho(hi cells, enriched in committed progenitors. We identified 277 differentially expressed transcripts conserved in these ontogenically distinct cell sources. We next performed a morpholino antisense oligonucleotide (MO-based functional screen in zebrafish to determine the hematopoietic function of 61 genes that had no previously known function in HSC biology and for which a likely zebrafish ortholog could be identified. MO knock down of 14/61 (23% of the differentially expressed transcripts resulted in hematopoietic defects in developing zebrafish embryos, as demonstrated by altered levels of circulating blood cells at 30 and 48 h postfertilization and subsequently confirmed by quantitative RT-PCR for erythroid-specific hbae1 and myeloid-specific lcp1 transcripts. Recapitulating the knockdown phenotype using a second MO of independent sequence, absence of the phenotype using a mismatched MO sequence, and rescue of the phenotype by cDNA-based overexpression of the targeted transcript for zebrafish spry4 confirmed the specificity of MO targeting in this system. Further characterization of the spry4-deficient zebrafish embryos demonstrated that hematopoietic defects were not due to more widespread defects in the mesodermal development, and therefore represented primary defects in HSC specification, proliferation, and/or differentiation. Overall, this high-throughput screen for the functional validation of differentially expressed genes using a zebrafish model of hematopoiesis represents a major step toward obtaining meaningful information from global

  18. A synthetic three-dimensional niche system facilitates generation of functional hematopoietic cells from human-induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Yulin Xu

    2016-09-01

    Full Text Available Abstract Background The efficient generation of hematopoietic stem cells (HSCs from human-induced pluripotent stem cells (iPSCs holds great promise in personalized transplantation therapies. However, the derivation of functional and transplantable HSCs from iPSCs has had very limited success thus far. Methods We developed a synthetic 3D hematopoietic niche system comprising nanofibers seeded with bone marrow (BM-derived stromal cells and growth factors to induce functional hematopoietic cells from human iPSCs in vitro. Results Approximately 70 % of human CD34+ hematopoietic cells accompanied with CD43+ progenitor cells could be derived from this 3D induction system. Colony-forming-unit (CFU assay showed that iPSC-derived CD34+ cells formed all types of hematopoietic colonies including CFU-GEMM. TAL-1 and MIXL1, critical transcription factors associated with hematopoietic development, were expressed during the differentiation process. Furthermore, iPSC-derived hematopoietic cells gave rise to both lymphoid and myeloid lineages in the recipient NOD/SCID mice after transplantation. Conclusions Our study underscores the importance of a synthetic 3D niche system for the derivation of transplantable hematopoietic cells from human iPSCs in vitro thereby establishing a foundation towards utilization of human iPSC-derived HSCs for transplantation therapies in the clinic.

  19. Frozen cord blood hematopoietic stem cells differentiate into higher numbers of functional natural killer cells in vitro than mobilized hematopoietic stem cells or freshly isolated cord blood hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Martha Luevano

    Full Text Available Adoptive natural killer (NK cell therapy relies on the acquisition of large numbers of NK cells that are cytotoxic but not exhausted. NK cell differentiation from hematopoietic stem cells (HSC has become an alluring option for NK cell therapy, with umbilical cord blood (UCB and mobilized peripheral blood (PBCD34(+ being the most accessible HSC sources as collection procedures are less invasive. In this study we compared the capacity of frozen or freshly isolated UCB hematopoietic stem cells (CBCD34(+ and frozen PBCD34(+ to generate NK cells in vitro. By modifying a previously published protocol, we showed that frozen CBCD34(+ cultures generated higher NK cell numbers without loss of function compared to fresh CBCD34(+ cultures. NK cells generated from CBCD34(+ and PBCD34(+ expressed low levels of killer-cell immunoglobulin-like receptors but high levels of activating receptors and of the myeloid marker CD33. However, blocking studies showed that CD33 expression did not impact on the functions of the generated cells. CBCD34(+-NK cells exhibited increased capacity to secrete IFN-γ and kill K562 in vitro and in vivo as compared to PBCD34(+-NK cells. Moreover, K562 killing by the generated NK cells could be further enhanced by IL-12 stimulation. Our data indicate that the use of frozen CBCD34(+ for the production of NK cells in vitro results in higher cell numbers than PBCD34(+, without jeopardizing their functionality, rendering them suitable for NK cell immunotherapy. The results presented here provide an optimal strategy to generate NK cells in vitro for immunotherapy that exhibit enhanced effector function when compared to alternate sources of HSC.

  20. Enrichment of human hematopoietic stem/progenitor cells facilitates transduction for stem cell gene therapy.

    Science.gov (United States)

    Baldwin, Kismet; Urbinati, Fabrizia; Romero, Zulema; Campo-Fernandez, Beatriz; Kaufman, Michael L; Cooper, Aaron R; Masiuk, Katelyn; Hollis, Roger P; Kohn, Donald B

    2015-05-01

    Autologous hematopoietic stem cell (HSC) gene therapy for sickle cell disease has the potential to treat this illness without the major immunological complications associated with allogeneic transplantation. However, transduction efficiency by β-globin lentiviral vectors using CD34-enriched cell populations is suboptimal and large vector production batches may be needed for clinical trials. Transducing a cell population more enriched for HSC could greatly reduce vector needs and, potentially, increase transduction efficiency. CD34(+) /CD38(-) cells, comprising ∼1%-3% of all CD34(+) cells, were isolated from healthy cord blood CD34(+) cells by fluorescence-activated cell sorting and transduced with a lentiviral vector expressing an antisickling form of beta-globin (CCL-β(AS3) -FB). Isolated CD34(+) /CD38(-) cells were able to generate progeny over an extended period of long-term culture (LTC) compared to the CD34(+) cells and required up to 40-fold less vector for transduction compared to bulk CD34(+) preparations containing an equivalent number of CD34(+) /CD38(-) cells. Transduction of isolated CD34(+) /CD38(-) cells was comparable to CD34(+) cells measured by quantitative PCR at day 14 with reduced vector needs, and average vector copy/cell remained higher over time for LTC initiated from CD34(+) /38(-) cells. Following in vitro erythroid differentiation, HBBAS3 mRNA expression was similar in cultures derived from CD34(+) /CD38(-) cells or unfractionated CD34(+) cells. In vivo studies showed equivalent engraftment of transduced CD34(+) /CD38(-) cells when transplanted in competition with 100-fold more CD34(+) /CD38(+) cells. This work provides initial evidence for the beneficial effects from isolating human CD34(+) /CD38(-) cells to use significantly less vector and potentially improve transduction for HSC gene therapy. © 2015 AlphaMed Press.

  1. Converting cell fates: generating hematopoietic stem cells de novo via transcription factor reprogramming.

    Science.gov (United States)

    Daniel, Michael G; Lemischka, Ihor R; Moore, Kateri

    2016-04-01

    Even though all paradigms of stem cell therapy and regenerative medicine emerged from the study of hematopoietic stem cells (HSCs), the inability to generate these cells de novo or expand them in vitro persists. Initial efforts to obtain these cells began with the use of embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) technologies, but these strategies have yet to yield fully functional cells. Subsequently, more recent approaches involve transcription factor (TF) overexpression to reprogram PSCs and various somatic cells. The induction of pluripotency with just four TFs by Yamanaka informs our ability to convert cell fates and demonstrates the feasibility of utilizing terminally differentiated cells to generate cells with multilineage potential. In this review, we discuss the recent efforts undertaken using TF-based reprogramming strategies to convert several cell types into HSCs. © 2016 New York Academy of Sciences.

  2. Epigenetic Memory Underlies Cell-Autonomous Heterogeneous Behavior of Hematopoietic Stem Cells.

    Science.gov (United States)

    Yu, Vionnie W C; Yusuf, Rushdia Z; Oki, Toshihiko; Wu, Juwell; Saez, Borja; Wang, Xin; Cook, Colleen; Baryawno, Ninib; Ziller, Michael J; Lee, Eunjung; Gu, Hongcang; Meissner, Alexander; Lin, Charles P; Kharchenko, Peter V; Scadden, David T

    2016-11-17

    Stem cells determine homeostasis and repair of many tissues and are increasingly recognized as functionally heterogeneous. To define the extent of-and molecular basis for-heterogeneity, we overlaid functional, transcriptional, and epigenetic attributes of hematopoietic stem cells (HSCs) at a clonal level using endogenous fluorescent tagging. Endogenous HSC had clone-specific functional attributes over time in vivo. The intra-clonal behaviors were highly stereotypic, conserved under the stress of transplantation, inflammation, and genotoxic injury, and associated with distinctive transcriptional, DNA methylation, and chromatin accessibility patterns. Further, HSC function corresponded to epigenetic configuration but not always to transcriptional state. Therefore, hematopoiesis under homeostatic and stress conditions represents the integrated action of highly heterogeneous clones of HSC with epigenetically scripted behaviors. This high degree of epigenetically driven cell autonomy among HSCs implies that refinement of the concepts of stem cell plasticity and of the stem cell niche is warranted. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Endothelium and NOTCH specify and amplify aorta-gonad-mesonephros-derived hematopoietic stem cells.

    Science.gov (United States)

    Hadland, Brandon K; Varnum-Finney, Barbara; Poulos, Michael G; Moon, Randall T; Butler, Jason M; Rafii, Shahin; Bernstein, Irwin D

    2015-05-01

    Hematopoietic stem cells (HSCs) first emerge during embryonic development within vessels such as the dorsal aorta of the aorta-gonad-mesonephros (AGM) region, suggesting that signals from the vascular microenvironment are critical for HSC development. Here, we demonstrated that AGM-derived endothelial cells (ECs) engineered to constitutively express AKT (AGM AKT-ECs) can provide an in vitro niche that recapitulates embryonic HSC specification and amplification. Specifically, nonengrafting embryonic precursors, including the VE-cadherin-expressing population that lacks hematopoietic surface markers, cocultured with AGM AKT-ECs specified into long-term, adult-engrafting HSCs, establishing that a vascular niche is sufficient to induce the endothelial-to-HSC transition in vitro. Subsequent to hematopoietic induction, coculture with AGM AKT-ECs also substantially increased the numbers of HSCs derived from VE-cadherin⁺CD45⁺ AGM hematopoietic cells, consistent with a role in supporting further HSC maturation and self-renewal. We also identified conditions that included NOTCH activation with an immobilized NOTCH ligand that were sufficient to amplify AGM-derived HSCs following their specification in the absence of AGM AKT-ECs. Together, these studies begin to define the critical niche components and resident signals required for HSC induction and self-renewal ex vivo, and thus provide insight for development of defined in vitro systems targeted toward HSC generation for therapeutic applications.

  4. Quality of life of patients with graft-versus-host disease (GvHD) post-hematopoietic stem cell transplantation.

    Science.gov (United States)

    Proença, Sibéli de Fátima Ferraz Simão; Machado, Celina Mattos; Coelho, Raquel de Castro Figueiredo Pereira; Sarquis, Leila Maria Mansano; Guimarães, Paulo Ricardo Bittencourt; Kalinke, Luciana Puchalski

    2016-01-01

    Assessing the quality of life of adult patients with hematological cancer in the 100 days after transplantation of hematopoietic stem cells and verifying whether the variable graft-versus-host disease (GvHD) is predictive of worse results. An observational correlational and quantitative study with 36 adult participants diagnosed with hematologic cancer who underwent hematopoietic stem cell transplantation from September 2013 to June 2015. The mean age was 37 years, 52.78% were female, and 61.11% were diagnosed with leukemia. Quality of life scores showed a significant impact between pre-transplantation and pre-hospital discharge, and also within the 100 days post-transplantation. The statistical analysis between the scores for the groups with and without GvHD showed a significant difference between the presence of the complication and worse results. Quality of life is altered as a result of hematopoietic stem cells transplantation, especially in patients who have graft-versus-host disease. Avaliar a qualidade de vida de pacientes adultos com câncer hematológico nos 100 dias do transplante de células-tronco hematopoéticas e verificar se a variável doença do enxerto contra o hospedeiro é preditiva de piores resultados. Estudo observacional, correlacional e quantitativo, com 36 participantes adultos, diagnosticados com câncer hematológico que se submeteram ao transplante de células-tronco hematopoéticas de setembro de 2013 a junho de 2015. A média de idade foi 37 anos, 52,78% eram do sexo feminino, e 61,11% com diagnóstico de leucemia. Os escores de qualidade de vida demonstraram impacto significativo entre o pré-transplante e a pré-alta hospitalar e entre os 100 dias pós-transplante. A análise estatística entre os escores dos grupos com e sem doença do enxerto contra o hospedeiro evidenciou significância entre a presença desta complicação e piores resultados. A qualidade de vida é alterada em decorrência do transplante de c

  5. Peripheral blood CD34+ cell count as a predictor of adequacy of hematopoietic stem cell collection for autologous transplantation

    Directory of Open Access Journals (Sweden)

    Combariza, Juan F.

    2016-10-01

    Full Text Available Introduction: In order to carry out an autologous transplantation, hematopoietic stem cells should be mobilized to peripheral blood and later collected by apheresis. The CD34+ cell count is a tool to establish the optimal time to begin the apheresis procedure. Objective: To evaluate the association between peripheral blood CD34+ cell count and the successful collection of hematopoietic stem cells. Materials and methods: A predictive test evaluation study was carried out to establish the usefulness of peripheral blood CD34+ cell count as a predictor of successful stem cell collection in patients that will receive an autologous transplantation. Results: 77 patients were included (median age: 49 years; range: 5-66. The predominant baseline diagnosis was lymphoma (53.2 %. The percentage of patients with successful harvest of hematopoietic stem cells was proportional to the number of CD34+cells in peripheral blood at the end of the mobilization procedure. We propose that more than 15 CD34+cells/μL must be present in order to achieve an adequate collection of hematopoietic stem cells. Conclusion: Peripheral blood CD34+ cell count is a useful tool to predict the successful collection of hematopoietic stem cells.

  6. Prophylactic antiviral therapy in allogeneic hematopoietic stem cell transplantation in hepatitis B virus patients.

    Science.gov (United States)

    Liao, Ya-Ping; Jiang, Jia-Lu; Zou, Wai-Yi; Xu, Duo-Rong; Li, Juan

    2015-04-14

    To investigate the timing, safety and efficacy of prophylactic antiviral therapy in patients with hepatitis B virus (HBV) infection undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT). This prospective study recruited a total of 57 patients diagnosed with malignant hematological diseases and HBV infection at the First Affiliated Hospital of Sun Yat-sen University between 2006 and 2013. The patients were classified as hepatitis B surface antigen (HBsAg)-positive or HBsAg-negative/ antiHBc-positive. Patients were treated with chemotherapy followed by antiviral therapy with nucleoside analogues. Patients underwent allo-HSCT when serum HBV DNA was antiviral therapy was continued for 1 year after the discontinuation of immunosuppressive therapy. A total of 105 patients who underwent allo-HSCT and had no HBV infection were recruited as controls. The three groups were compared for incidence of graft-vs-host disease (GVHD), drug-induced liver injury, hepatic veno-occlusive disease, death and survival time. A total of 29 of the 41 subjects with chronic GVHD exhibited extensive involvement and 12 exhibited focal involvement. Ten of the 13 subjects with chronic GVHD in the HBsAg(-)/hepatitis B core antibody(+) group exhibited extensive involvement and 3 exhibited focal involvement. Five of the 10 subjects with chronic GVHD in the HBsAg(+) group exhibited extensive involvement and 5 exhibited focal involvement. The non HBV-infected group did not differ significantly from the HBsAg-negative/antiHBc-positive and the HBsAg-positive groups which were treated with nucleoside analogues in the incidence of graft-vs-host disease (acute GVHD; 37.1%, 46.9% and 40%, respectively; P = 0.614; chronic GVHD; 39%, 40.6% and 40%, respectively; P = 0.98), drug-induced liver injury (25.7%, 18.7% and 28%, respectively; P = 0.7), death (37.1%, 40.6% and 52%, respectively; P = 0.4) and survival times (P = 0.516). One patient developed HBV reactivation (HBsAg-positivity) due to

  7. Differential Reponses of Hematopoietic Stem and Progenitor Cells to mTOR Inhibition

    Directory of Open Access Journals (Sweden)

    Aimin Yang

    2015-01-01

    Full Text Available Abnormal activation of the mammalian target of rapamycin (mTOR signaling pathway has been observed in a variety of human cancers. Therefore, targeting of the mTOR pathway is an attractive strategy for cancer treatment and several mTOR inhibitors, including AZD8055 (AZD, a novel dual mTORC1/2 inhibitor, are currently in clinical trials. Although bone marrow (BM suppression is one of the primary side effects of anticancer drugs, it is not known if pharmacological inhibition of dual mTORC1/2 affects BM hematopoietic stem and progenitor cells (HSPCs function and plasticity. Here we report that dual inhibition of mTORC1/2 by AZD or its analogue (KU-63794 depletes mouse BM Lin−Sca-1+c-Kit+ cells in cultures via the induction of apoptotic cell death. Subsequent colony-forming unit (CFU assays revealed that inhibition of mTORC1/2 suppresses the clonogenic function of hematopoietic progenitor cells (HPCs in a dose-dependent manner. Surprisingly, we found that dual inhibition of mTORC1/2 markedly inhibits the growth of day-14 cobblestone area-forming cells (CAFCs but enhances the generation of day-35 CAFCs. Given the fact that day-14 and day-35 CAFCs are functional surrogates of HPCs and hematopoietic stem cells (HSCs, respectively, these results suggest that dual inhibition of mTORC1/2 may have distinct effects on HPCs versus HSCs.

  8. 27-Hydroxycholesterol induces hematopoietic stem cell mobilization and extramedullary hematopoiesis during pregnancy.

    Science.gov (United States)

    Oguro, Hideyuki; McDonald, Jeffrey G; Zhao, Zhiyu; Umetani, Michihisa; Shaul, Philip W; Morrison, Sean J

    2017-09-01

    Extramedullary hematopoiesis (EMH) is induced during pregnancy to support rapid expansion of maternal blood volume. EMH activation requires hematopoietic stem cell (HSC) proliferation and mobilization, processes that depend upon estrogen receptor α (ERα) in HSCs. Here we show that treating mice with estradiol to model estradiol increases during pregnancy induced HSC proliferation in the bone marrow but not HSC mobilization. Treatment with the alternative ERα ligand 27-hydroxycholesterol (27HC) induced ERα-dependent HSC mobilization and EMH but not HSC division in the bone marrow. During pregnancy, 27HC levels increased in hematopoietic stem/progenitor cells as a result of CYP27A1, a cholesterol hydroxylase. Cyp27a1-deficient mice had significantly reduced 27HC levels, HSC mobilization, and EMH during pregnancy but normal bone marrow hematopoiesis and EMH in response to bleeding or G-CSF treatment. Distinct hematopoietic stresses thus induce EMH through different mechanisms. Two different ERα ligands, estradiol and 27HC, work together to promote EMH during pregnancy, revealing a collaboration of hormonal and metabolic mechanisms as well as a physiological function for 27HC in normal mice.

  9. The role of osteoblasts in regulating hematopoietic stem cell activity and tumor metastasis

    Directory of Open Access Journals (Sweden)

    Neiva K.

    2005-01-01

    Full Text Available Bone marrow stromal cells are critical regulators of hematopoiesis. Osteoblasts are part of the stromal cell support system in bone marrow and may be derived from a common precursor. Several studies suggested that osteoblasts regulate hematopoiesis, yet the entire mechanism is not understood. It is clear, however, that both hematopoietic precursors and osteoblasts interact for the production of osteoclasts and the activation of resorption. We observed that hematopoietic stem cells (HSCs regulate osteoblastic secretion of various growth factors, and that osteoblasts express some soluble factors exclusively in the presence of HSCs. Osteoblasts and hematopoietic cells are closely associated with each other in the bone marrow, suggesting a reciprocal relationship between them to develop the HSC niche. One critical component regulating the niche is stromal-derived factor-1 (SDF-1 and its receptor CXCR4 which regulates stem cell homing and, as we have recently demonstrated, plays a crucial role in facilitating those tumors which metastasize to bone. Osteoblasts produce abundant amounts of SDF-1 and therefore osteoblasts play an important role in metastasis. These findings are discussed in the context of the role of osteoblasts in marrow function in health and disease.

  10. Nucleofection, an efficient nonviral method to transfer genes into human hematopoietic stem and progenitor cells.

    Science.gov (United States)

    von Levetzow, Gregor; Spanholtz, Jan; Beckmann, Julia; Fischer, Johannes; Kögler, Gesine; Wernet, Peter; Punzel, Michael; Giebel, Bernd

    2006-04-01

    The targeted manipulation of the genetic program of single cells as well as of complete organisms has strongly enhanced our understanding of cellular and developmental processes and should also help to increase our knowledge of primary human stem cells, e.g., hematopoietic stem cells (HSCs), within the next few years. An essential requirement for such genetic approaches is the existence of a reliable and efficient method to introduce genetic elements into living cells. Retro- and lentiviral techniques are efficient in transducing primary human HSCs, but remain labor and time consuming and require special safety conditions, which do not exist in many laboratories. In our study, we have optimized the nucleofection technology, a modified electroporation strategy, to introduce plasmid DNA into freshly isolated human HSC-enriched CD34(+) cells. Using enhanced green fluorescent protein (eGFP)-encoding plasmids, we obtained transfection efficiencies of approximately 80% and a mean survival rate of 50%. Performing functional assays using GFU-GEMM and long-term culture initiating cells (LTC-IC), we demonstrate that apart from a reduction in the survival rate the nucleofection method itself does not recognizably change the short- or long-term cell fate of primitive hematopoietic cells. Therefore, we conclude, the nucleofection method is a reliable and efficient method to manipulate primitive hematopoietic cells genetically.

  11. Distinct Functions of Different scl Isoforms in Zebrafish Definitive Hematopoietic Stem Cell Initiation and Maintenance

    Science.gov (United States)

    Lan, Yahui

    2011-07-01

    The establishment of entire blood system relies on the multi-potent hematopoietic stem cells (HSCs), thus identifying the molecular mechanism in HSC generation is of importance for not only complementing the fundamental knowledge in stem cell biology, but also providing insights to the regenerative therapies. Recent researches have documented the formation of nascent HSCs through a direct transition from ventral aortic endothelium, named as endothelial hematopoietic transition (EHT) process. However, the precise genetic program engaged in this process remains largely elusive. The transcription factor scl plays pivotal and conserved roles in embryonic and adult hematopoiesis from teleosts to mammals. Our lab have previously identified a new truncated scl isoform, scl-beta, which is indispensible for the specification of HSCs in the ventral wall of dorsal aorta (VDA), the zebrafish equivalent of mammalian fetal hematopoietic organ. Here we observe that, by combining time-lapse confocal imaging of transgenic zebrafish and genetic epistasis analysis, scl-beta is expressed in a subset of ventral aortic endothelial cells and critical for their forthcoming transformation to hemogenic endothelium; in contrast, runx1 is required downstream to govern the successful egress of the hemogenic endothelial cells to become naive HSCs. In addition, the traditional known full-length scl-alpha isoform is firstly evidenced to be required for the maintenance or survival of newly formed HSCs in VDA. Collectively our data has established the genetic hierarchy controlling discrete steps in the consecutive process of HSC formation from endothelial cells and further development in VDA.

  12. 27-Hydroxycholesterol induces hematopoietic stem cell mobilization and extramedullary hematopoiesis during pregnancy

    Science.gov (United States)

    McDonald, Jeffrey G.; Shaul, Philip W.; Morrison, Sean J.

    2017-01-01

    Extramedullary hematopoiesis (EMH) is induced during pregnancy to support rapid expansion of maternal blood volume. EMH activation requires hematopoietic stem cell (HSC) proliferation and mobilization, processes that depend upon estrogen receptor α (ERα) in HSCs. Here we show that treating mice with estradiol to model estradiol increases during pregnancy induced HSC proliferation in the bone marrow but not HSC mobilization. Treatment with the alternative ERα ligand 27-hydroxycholesterol (27HC) induced ERα-dependent HSC mobilization and EMH but not HSC division in the bone marrow. During pregnancy, 27HC levels increased in hematopoietic stem/progenitor cells as a result of CYP27A1, a cholesterol hydroxylase. Cyp27a1-deficient mice had significantly reduced 27HC levels, HSC mobilization, and EMH during pregnancy but normal bone marrow hematopoiesis and EMH in response to bleeding or G-CSF treatment. Distinct hematopoietic stresses thus induce EMH through different mechanisms. Two different ERα ligands, estradiol and 27HC, work together to promote EMH during pregnancy, revealing a collaboration of hormonal and metabolic mechanisms as well as a physiological function for 27HC in normal mice. PMID:28783041

  13. Haploidentical hematopoietic stem cell transplantation without total body irradiation for pediatric acute leukemia: a single-center experience

    Directory of Open Access Journals (Sweden)

    Mu YS

    2016-05-01

    Full Text Available Yanshun Mu,* Maoquan Qin,* Bin Wang, Sidan Li, Guanghua Zhu, Xuan Zhou, Jun Yang, Kai Wang, Wei Lin, Huyong Zheng Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children’s Hospital, Capital Medical University, Beijing, People’s Republic of China *These authors contributed equally to this work Abstract: Hematopoietic stem cell transplantation (HSCT is a promising method for therapy of pediatric patients with acute leukemia. However, less availability of matched donors limited its wide application. Recently, haploidentical HSCT has become a great resource. Here, we have retrospectively reported our experience of 20 pediatric patients with acute leukemia who underwent haploidentical HSCT without total body irradiation (TBI myeloablative regimen in our center from November 2007 to June 2014. All the patients attained successful HSCT engraftment in terms of myeloid and platelet recovery. Thirteen patients developed grade I–IV acute graft-versus-host disease (a-GVHD. The incidence of grade I–II a-GVHD, grade III–IV a-GVHD, and chronic GVHD (c-GVHD was 45%, 20%, and 25%, respectively. The mean myeloid and platelet recovery time was 13.20±2.41 and 19.10±8.37 days. The median follow-up time was 43.95±29.26 months. During the follow-up, three patients died. The overall survival (OS rate was 85%. The present study indicated that haploidentical HSCT without TBI myeloablative regimen significantly improved the OS rate of pediatric patients with acute leukemia. Keywords: haploidentical, hematopoietic stem cell transplantation, myeloablative regimen, total body irradiation, acute leukemia, pediatric

  14. In vivo generation of transplantable human hematopoietic cells from induced pluripotent stem cells.

    Science.gov (United States)

    Amabile, Giovanni; Welner, Robert S; Nombela-Arrieta, Cesar; D'Alise, Anna Morena; Di Ruscio, Annalisa; Ebralidze, Alexander K; Kraytsberg, Yevgenya; Ye, Min; Kocher, Olivier; Neuberg, Donna S; Khrapko, Konstantin; Silberstein, Leslie E; Tenen, Daniel G

    2013-02-21

    Lineage-restricted cells can be reprogrammed to a pluripotent state known as induced pluripotent stem (iPS) cells through overexpression of 4 transcription factors. iPS cells are similar to human embryonic stem (hES) cells and have the same ability to generate all the cells of the human body, including blood cells. However, this process is extremely inefficient and to date has been unsuccessful at differentiating iPS into hematopoietic stem cells (HSCs). We hypothesized that iPS cells, injected into NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl)/SzJ immunocompromised (NSG) mice could give rise to hematopoietic stem/progenitor cells (HSPCs) during teratoma formation. Here, we report a novel in vivo system in which human iPS cells differentiate within teratomas to derive functional myeloid and lymphoid cells. Similarly, HSPCs can be isolated from teratoma parenchyma and reconstitute a human immune system when transplanted into immunodeficient mice. Our data provide evidence that in vivo generation of patient customized cells is feasible, providing materials that could be useful for transplantation, human antibody generation, and drug screening applications.

  15. Effects of low level radiation upon the hematopoietic stem cell: Implications for leukemogenesis

    International Nuclear Information System (INIS)

    Cronkite, E.P.; Bond, V.P.; Carsten, A.L.; Miller, M.E.; Bullis, J.E.; Inoue, T.; Yokohama City Univ.

    1987-01-01

    These studies have addressed firstly the effect of single small doses of X-rays upon murine hematopoietic stem cells to obtain a better estimate of the D q . It is small, of the order of 20 rad. Secondly, a dose fractionation schedule that does not kill or perturb the kinetcs of hemopoietic cell proliferation was sought in order to investigate the leukemogenic potential of low level radiation upon an unperturbed hemopoietic system. Doses used by others in past radiation leukemogenesis studies clearly perturb hemopoiesis and kill a detectable fraction of stem cells. The studies reported herein show that 1.25 rad every day decrease the CFU-S content of bone marrow by the time 80 rads are accumulated. Higher daily doses as used in published studies on radiation leukemogenesis produce greater effects. Studies on the effect of 0.5, 1.0, 2.0, and 3.0 rad 3 times per week are under way. Two rad 3 times per week produced a modest decrease in CFU-S content of bone marrow after an accumulation of 68 rad. With 3.0 rad 3 times per week an accumulation of 102 rad produced a significant decrease in CFU-S content of bone marrow. Dose fractionation at 0.5 and 1.0 rad 3 times per week has not produced a CFU-S depression after accumulation of 17 and 34 rad. Radiation leukemogenesis studies published to date have utilized single doses and chronic exposure schedules that probably have significantly perturbed the kinetcs of hematopoietic stem cells. Whether radiation will produce leukemia in animal models with dose schedules that do not perturb kinetics of hematopoietic stem cells remains to be seen. (orig.)

  16. Reduced Erg Dosage Impairs Survival of Hematopoietic Stem and Progenitor Cells.

    Science.gov (United States)

    Xie, Ying; Koch, Mia Lee; Zhang, Xin; Hamblen, Melanie J; Godinho, Frank J; Fujiwara, Yuko; Xie, Huafeng; Klusmann, Jan-Henning; Orkin, Stuart H; Li, Zhe

    2017-07-01

    ERG, an ETS family transcription factor frequently overexpressed in human leukemia, has been implicated as a key regulator of hematopoietic stem cells. However, how ERG controls normal hematopoiesis, particularly at the stem and progenitor cell level, and how it contributes to leukemogenesis remain incompletely understood. Using homologous recombination, we generated an Erg knockdown allele (Erg kd ) in which Erg expression can be conditionally restored by Cre recombinase. Erg kd/kd animals die at E10.5-E11.5 due to defects in endothelial and hematopoietic cells, but can be completely rescued by Tie2-Cre-mediated restoration of Erg in these cells. In Erg kd/+ mice, ∼40% reduction in Erg dosage perturbs both fetal liver and bone marrow hematopoiesis by reducing the numbers of Lin - Sca-1 + c-Kit + (LSK) hematopoietic stem and progenitor cells (HSPCs) and megakaryocytic progenitors. By genetic mosaic analysis, we find that Erg-restored HSPCs outcompete Erg kd/+ HSPCs for contribution to adult hematopoiesis in vivo. This defect is in part due to increased apoptosis of HSPCs with reduced Erg dosage, a phenotype that becomes more drastic during 5-FU-induced stress hematopoiesis. Expression analysis reveals that reduced Erg expression leads to changes in expression of a subset of ERG target genes involved in regulating survival of HSPCs, including increased expression of a pro-apoptotic regulator Bcl2l11 (Bim) and reduced expression of Jun. Collectively, our data demonstrate that ERG controls survival of HSPCs, a property that may be used by leukemic cells. Stem Cells 2017;35:1773-1785. © 2017 AlphaMed Press.

  17. Impact of Pretransplantation Indices in Hematopoietic Stem Cell Transplantation: Knowledge of Center-Specific Outcome Data Is Pivotal before Making Index-Based Decisions.

    Science.gov (United States)

    Törlén, Johan; Remberger, Mats; Le Blanc, Katarina; Ljungman, Per; Mattsson, Jonas

    2017-04-01

    Outcome after allogeneic hematopoietic stem cell transplantation is influenced by patient comorbidity, disease type, and status before treatment. We performed a retrospective study involving 521 consecutive adult hematopoietic stem cell transplantation patients who underwent transplantation for hematological malignancy at our center from 2000 to 2012 to compare the predictive value of the hematopoietic cell transplantation-specific comorbidity index (HCT-CI) and the disease risk index (DRI) for overall survival and transplantation-related mortality. Patients in the highest HCT-CI risk group (HCT-CI score ≥3) had a lower 5-year overall survival rate (50%) than the low-risk group (63%; P 6 [n = 9]). Five-year overall survival in the highest DRI risk group was significantly poorer (44%) than in the low-risk group (63%; P indices failed to predict differences in transplantation-related mortality (HCT-CI, P = .54; DRI, P = .17). We conclude that HCT-CI and DRI were predictive of overall survival in our patient population. Even so, our data show that different patient groups may have different outcomes despite sharing the same index risk group and that indices should, therefore, be evaluated according to local data before clinical implementation at the single-center level. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  18. The kinetic alteration of hematopoietic stem cells irradiated by ionizing radiation

    International Nuclear Information System (INIS)

    Ishikawa, Junya; Ojima, Mitsuaki; Kai, Michiaki

    2014-01-01

    Ionizing radiation (IR) brings oxidative stress, and can cause damages not only on DNA but also proteins and lipids in mammalian cells, and increases the mitochondria-dependent generation of reactive oxygen species (ROS), with the subsequent induction of cell death, cell cycle arrest, and stress related responses. It is well known that IR induces acute myeloid leukemia that originates in hematopoietic cells. However, the mechanisms of leukemogenesis following IR remain unclear. To clarify these mechanisms, it is necessary to quantify the several biological events induced by IR in hematopoietic stem/progenitor cells. In this review, we focus and summarize several recent findings, especially survival/clonogenic potential, cell cycle distribution, generation of ROS, DNA damage/repair, chromosomal abbreviation, and senescence. (author)

  19. Genetic modification of hematopoietic stem cells as a therapy for HIV/AIDS.

    Science.gov (United States)

    Younan, Patrick; Kowalski, John; Kiem, Hans-Peter

    2013-11-28

    The combination of genetic modification and hematopoietic stem cell (HSC) transplantation may provide the necessary means to develop an alternative treatment option to conventional antiretroviral therapy. As HSCs give rise to all hematopoietic cell types susceptible to HIV infection, modification of HSCs is an ideal strategy for the development of infection-resistant immune cell populations. Although promising results have been obtained in multiple animal models, additional evidence is needed to convincingly demonstrate the feasibility of this approach as a treatment of HIV-1 infected patients. Here, we review the potential of HSC transplantation and the recently identified limitations of this approach. Using the Berlin Patient as a model for a functional cure, we contrast the confines of autologous versus allogeneic transplantation. Finally, we suggest that although autologous, gene-modified HSC-transplantation may significantly reduce plasma viremia, reaching the lower detection limits currently obtainable through daily HAART will remain a challenging endeavor that will require innovative combinatorial therapies.

  20. Genetic Modification of Hematopoietic Stem Cells as a Therapy for HIV/AIDS

    Directory of Open Access Journals (Sweden)

    Patrick Younan

    2013-11-01

    Full Text Available The combination of genetic modification and hematopoietic stem cell (HSC transplantation may provide the necessary means to develop an alternative treatment option to conventional antiretroviral therapy. As HSCs give rise to all hematopoietic cell types susceptible to HIV infection, modification of HSCs is an ideal strategy for the development of infection-resistant immune cell populations. Although promising results have been obtained in multiple animal models, additional evidence is needed to convincingly demonstrate the feasibility of this approach as a treatment of HIV-1 infected patients. Here, we review the potential of HSC transplantation and the recently identified limitations of this approach. Using the Berlin Patient as a model for a functional cure, we contrast the confines of autologous versus allogeneic transplantation. Finally, we suggest that although autologous, gene-modified HSC-transplantation may significantly reduce plasma viremia, reaching the lower detection limits currently obtainable through daily HAART will remain a challenging endeavor that will require innovative combinatorial therapies.

  1. Serpina1 is a potent inhibitor of IL-8-induced hematopoietic stem cell mobilization

    DEFF Research Database (Denmark)

    van Pel, M.; van Os, R.; Velders, G.A.

    2006-01-01

    Here, we report that cytokine-induced (granulocyte colony-stimulating factor and IL-8) hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) mobilization is completely inhibited after low-dose (0.5 Gy) total-body irradiation (TBI). Because neutrophil granular proteases...... are regulatory mediators in cytokine-induced HSC/HPC mobilization, we considered a possible role for protease inhibitors in the induction of HSC/HPC mobilization. Bone marrow (BM) extracellular extracts that were obtained from murine femurs after 0.5 Gy of TBI contained an inhibitor of elastase. Also, after low...... of Serpina1 in HSC/HPC mobilization, we administered Serpina1 before IL-8 injection. This administration resulted in an almost complete inhibition of HSC/HPC mobilization, whereas heat-inactivated Serpina1 had no effect. These results indicate that low-dose TBI inhibits cytokine-induced HSC/HPC mobilization...

  2. Metabolic regulation of hematopoietic and leukemic stem/progenitor cells under homeostatic and stress conditions.

    Science.gov (United States)

    Karigane, Daiki; Takubo, Keiyo

    2017-07-01

    Hematopoietic stem cells (HSCs) exhibit multilineage differentiation and self-renewal activities that maintain the entire hematopoietic system during an organism's lifetime. These abilities are sustained by intrinsic transcriptional programs and extrinsic cues from the microenvironment or niche. Recent studies using metabolomics technologies reveal that metabolic regulation plays an essential role in HSC maintenance. Metabolic pathways provide energy and building blocks for other factors functioning at steady state and in stress. Here we review recent advances in our understanding of metabolic regulation in HSCs relevant to cell cycle quiescence, symmetric/asymmetric division, and proliferation following stress and lineage commitment, and discuss the therapeutic potential of targeting metabolic factors or pathways to treat hematological malignancies.

  3. Favorable impact of natural killer cell reconstitution on chronic graft-versus-host disease and cytomegalovirus reactivation after allogeneic hematopoietic stem cell transplantation

    Science.gov (United States)

    Kheav, Vissal David; Busson, Marc; Scieux, Catherine; de Latour, Régis Peffault; Maki, Guitta; Haas, Philippe; Mazeron, Marie-Christine; Carmagnat, Maryvonnick; Masson, Emeline; Xhaard, Aliénor; Robin, Marie; Ribaud, Patricia; Dulphy, Nicolas; Loiseau, Pascale; Charron, Dominique; Socié, Gérard; Toubert, Antoine; Moins-Teisserenc, Hélène

    2014-01-01

    Natural killer cells are the first lymphocyte subset to reconstitute, and play a major role in early immunity after allogeneic hematopoietic stem cell transplantation. Cells expressing the activating receptor NKG2C seem crucial in the resolution of cytomegalovirus episodes, even in the absence of T cells. We prospectively investigated natural killer-cell reconstitution in a cohort of 439 adult recipients who underwent non-T-cell-depleted allogeneic hematopoietic stem cell transplantation between 2005 and 2012. Freshly collected blood samples were analyzed 3, 6, 12 and 24 months after transplantation. Data were studied with respect to conditioning regimen, source of stem cells, underlying disease, occurrence of graft-versus-host disease, and profiles of cytomegalovirus reactivation. In multivariate analysis we found that the absolute numbers of CD56bright natural killer cells at month 3 were significantly higher after myeloablative conditioning than after reduced intensity conditioning. Acute graft-versus-host disease impaired reconstitution of total and CD56dim natural killer cells at month 3. In contrast, high natural killer cell count at month 3 was associated with a lower incidence of chronic graft-versus-host disease, independently of a previous episode of acute graft-versus-host disease and stem cell source. NKG2C+CD56dim and total natural killer cell counts at month 3 were lower in patients with reactivation of cytomegalovirus between month 0 and month 3, but expanded greatly afterwards. These cells were also less numerous in patients who experienced later cytomegalovirus reactivation between month 3 and month 6. Our results advocate a direct role of NKG2C-expressing natural killer cells in the early control of cytomegalovirus reactivation after allogeneic hematopoietic stem cell transplantation. PMID:25085354

  4. Effect of cotransplantation of hematopoietic stem cells and embryonic AGM stromal cells on hematopoietic reconstitution in mice after bone marrow transplantation

    International Nuclear Information System (INIS)

    Tao Si; Sun Hanying; Liu Wenli

    2007-01-01

    Objective: To explore the effects of cotransplantation of hematopoietic stem cells and stromal cells derived from aorta-gonad-mesonephros (AGM) region on hematopoietic reconstitution in mice after bone marrow transplantation (BMT). Methods: The typical mice model of syngeneic BMT was established and the mice were randomly divided into 4 groups: the control group, the BMT group, the group of cotransplantation of HSC with AGM stromal cells (the cotransplantation group) and the ligustrazine group (the LT group). On days 3, 7, 10, 14, 21 and 28 after BMT, the peripheral blood cells and bone marrow mononuclear cells (BMMNC) were counted, and histology changes of bone marrow were detected. Results: The levels of peripheral WBC, RBC, platelet, and BMMNC in the contransplantation group were significantly higher than those in the single BMT group and the LT group (P<0.05). Conclusions: Cotransplantation with AGM stromal cells could significantly promote hematopoietic reconstruction in mice after BMT. (authors)

  5. The Microtubule Plus-End Tracking Protein CLASP2 Is Required for Hematopoiesis and Hematopoietic Stem Cell Maintenance

    Directory of Open Access Journals (Sweden)

    Ksenija Drabek

    2012-10-01

    Full Text Available Mammalian CLASPs are microtubule plus-end tracking proteins whose essential function as regulators of microtubule behavior has been studied mainly in cultured cells. We show here that absence of murine CLASP2 in vivo results in thrombocytopenia, progressive anemia, and pancytopenia, due to defects in megakaryopoiesis, in erythropoiesis, and in the maintenance of hematopoietic stem cell activity. Furthermore, microtubule stability and organization are affected upon attachment of Clasp2 knockout hematopoietic stem-cell-enriched populations, and these cells do not home efficiently toward their bone marrow niche. Strikingly, CLASP2-deficient hematopoietic stem cells contain severely reduced mRNA levels of c-Mpl, which encodes the thrombopoietin receptor, an essential factor for megakaryopoiesis and hematopoietic stem cell maintenance. Our data suggest that thrombopoietin signaling is impaired in Clasp2 knockout mice. We propose that the CLASP2-mediated stabilization of microtubules is required for proper attachment, homing, and maintenance of hematopoietic stem cells and that this is necessary to sustain c-Mpl transcription.

  6. The Sirt1 activator SRT3025 expands hematopoietic stem and progenitor cells and improves hematopoiesis in Fanconi anemia mice

    Directory of Open Access Journals (Sweden)

    Qing-Shuo Zhang

    2015-07-01

    Full Text Available Fanconi anemia is a genetic bone marrow failure syndrome. The current treatment options are suboptimal and do not prevent the eventual onset of aplastic anemia requiring bone marrow transplantation. We previously showed that resveratrol, an antioxidant and an activator of the protein deacetylase Sirt1, enhanced hematopoiesis in Fancd2 mutant mice and improved the impaired stem cell quiescence observed in this disease. Given that Sirt1 is important for the function of hematopoietic stem cells, we hypothesized that Sirt1 activation may improve hematopoiesis. Indeed, Fancd2−/− mice and wild-type mice treated with the selective Sirt1 activator SRT3025 had increased numbers of hematopoietic stem and progenitor cells, platelets and white blood cells. SRT3025 was also protective against acetaldehyde-induced hematopoietic damage. Unlike resveratrol, however, SRT3025 did not affect stem cell quiescence, suggesting distinct mechanisms of action. Conditional deletion of Sirt1 in hematopoietic cells did not abrogate the beneficial effects of SRT3025, indicating that the drug did not act by directly stimulating Sirt1 in stem cells, but must be acting indirectly via extra-hematopoietic effects. RNA-Seq transcriptome analysis revealed the down-regulation of Egr1–p21 expression, providing a potential mechanism for improved hematopoiesis. Overall, our data indicate that SRT3025 or related compounds may be beneficial in Fanconi anemia and other bone marrow failure syndromes.

  7. Expression profiling of CD34+ hematopoietic stem/ progenitor cells reveals distinct subtypes of therapy-related acute myeloid leukemia

    OpenAIRE

    Qian, Zhijian; Fernald, Anthony A.; Godley, Lucy A.; Larson, Richard A.; Le Beau, Michelle M.

    2002-01-01

    One of the most serious consequences of cytotoxic cancer therapy is the development of therapy-related acute myeloid leukemia (t-AML), a neoplastic disorder arising from a multipotential hematopoietic stem cell. To gain insights into the molecular basis of this disease, we performed gene expression profiling of CD34+ hematopoietic progenitor cells from t-AML patients. Our analysis revealed that there are distinct subtypes of t-AML that have a characteristic gene expression pattern. Common to ...

  8. Development of model for analysing respective collections of intended hematopoietic stem cells and harvests of unintended mature cells in apheresis for autologous hematopoietic stem cell collection.

    Science.gov (United States)

    Hequet, O; Le, Q H; Rodriguez, J; Dubost, P; Revesz, D; Clerc, A; Rigal, D; Salles, G; Coiffier, B

    2014-04-01

    Hematopoietic stem cells (HSCs) required to perform peripheral hematopoietic autologous stem cell transplantation (APBSCT) can be collected by processing several blood volumes (BVs) in leukapheresis sessions. However, this may cause granulocyte harvest in graft and decrease in patient's platelet blood level. Both consequences may induce disturbances in patient. One apheresis team's current purpose is to improve HSC collection by increasing HSC collection and prevent increase in granulocyte and platelet harvests. Before improving HSC collection it seemed important to know more about the way to harvest these types of cells. The purpose of our study was to develop a simple model for analysing respective collections of intended CD34+ cells among HSC (designated here as HSC) and harvests of unintended platelets or granulocytes among mature cells (designated here as mature cells) considering the number of BVs processed and factors likely to influence cell collection or harvest. For this, we processed 1, 2 and 3 BVs in 59 leukapheresis sessions and analysed corresponding collections and harvests with a referent device (COBE Spectra). First we analysed the amounts of HSC collected and mature cells harvested and second the evolution of the respective shares of HSC and mature cells collected or harvested throughout the BV processes. HSC collections and mature cell harvests increased globally (pcells and platelets) influenced both cell collections and harvests (CD34+cells and platelets) (pHSC collections and mature unintended cells harvests (pHSC collections or unintended mature cell harvests were pre-leukapheresis blood cell levels. Our model was meant to assist apheresis teams in analysing shares of HSC collected and mature cells harvested with new devices or with new types of HSC mobilization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Quality control and assurance in hematopoietic stem cell transplantation data registries in Japan and other countries.

    Science.gov (United States)

    Kuwatsuka, Yachiyo

    2016-01-01

    Observational studies from national and international registries with large volumes of patients are commonly performed to identify superior strategies for hematopoietic stem cell transplantation. Major international and national stem cell transplant registries collect outcome data using electronic data capture systems, and a systematic study support process has been developed. Statistical support for studies is available from some major international registries, and international and national registries also mutually collaborate to promote stem cell transplant outcome studies and transplant-related activities. Transplant registries additionally take measures to improve data quality to further improve the quality of outcome studies by utilizing data capture systems and manual data management. Data auditing can potentially even further improve data quality; however, human and budgetary resources can be limiting factors in system construction and audits of the Japanese transplant registry are not currently performed.

  10. Proliferation Drives Aging-Related Functional Decline in a Subpopulation of the Hematopoietic Stem Cell Compartment.

    Science.gov (United States)

    Kirschner, Kristina; Chandra, Tamir; Kiselev, Vladimir; Flores-Santa Cruz, David; Macaulay, Iain C; Park, Hyun Jun; Li, Juan; Kent, David G; Kumar, Rupa; Pask, Dean C; Hamilton, Tina L; Hemberg, Martin; Reik, Wolf; Green, Anthony R

    2017-05-23

    Aging of the hematopoietic stem cell (HSC) compartment is characterized by lineage bias and reduced stem cell function, the molecular basis of which is largely unknown. Using single-cell transcriptomics, we identified a distinct subpopulation of old HSCs carrying a p53 signature indicative of stem cell decline alongside pro-proliferative JAK/STAT signaling. To investigate the relationship between JAK/STAT and p53 signaling, we challenged HSCs with a constitutively active form of JAK2 (V617F) and observed an expansion of the p53-positive subpopulation in old mice. Our results reveal cellular heterogeneity in the onset of HSC aging and implicate a role for JAK2V617F-driven proliferation in the p53-mediated functional decline of old HSCs. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Proliferation Drives Aging-Related Functional Decline in a Subpopulation of the Hematopoietic Stem Cell Compartment

    Directory of Open Access Journals (Sweden)

    Kristina Kirschner

    2017-05-01

    Full Text Available Aging of the hematopoietic stem cell (HSC compartment is characterized by lineage bias and reduced stem cell function, the molecular basis of which is largely unknown. Using single-cell transcriptomics, we identified a distinct subpopulation of old HSCs carrying a p53 signature indicative of stem cell decline alongside pro-proliferative JAK/STAT signaling. To investigate the relationship between JAK/STAT and p53 signaling, we challenged HSCs with a constitutively active form of JAK2 (V617F and observed an expansion of the p53-positive subpopulation in old mice. Our results reveal cellular heterogeneity in the onset of HSC aging and implicate a role for JAK2V617F-driven proliferation in the p53-mediated functional decline of old HSCs.

  12. Does high-resolution CT has diagnostic value in patients presenting with respiratory symptoms after hematopoietic stem cell transplantation?

    International Nuclear Information System (INIS)

    Wijers, Sofieke C.; Boelens, Jaap Jan; Raphael, Martine F.; Beek, Frederik J.; Jong, Pim A. de

    2011-01-01

    Background: Hematopoietic stem cell transplantation (SCT) can be complicated by a variety of live-threatening infectious and non-infectious pulmonary complications. The management of these complications is critically dependent on the most probable diagnosis, which is in part based on imaging work-up. Methods: Systematic review of the literature related to the diagnostic value of high-resolution computed tomography (HRCT) in patients who underwent SCT and developed respiratory symptoms. Results: Literature review did not reveal systematic cohort studies that included patients with respiratory symptoms post-SCT who underwent HRCT and had a well-defined outcome. Most studies selected participants based on their final diagnosis instead of the indication for diagnostic testing in practice. Nevertheless, several papers clearly indicated a potential role for HRCT when complications after SCT occur. A variety of articles described the role of certain HRCT findings in the diagnosis of specific infectious complications, but less data were available for non-infectious complications. Conclusion: We believe more diagnostic studies are needed to determine the value of HRCT for a specific diagnosis in SCT-recipients who present with respiratory symptoms at the transplant clinic. Currently, radiologists should be cautious since HRCT interpretation in these patients is not unambiguous.

  13. Importance of Nongovernmental Organizations for the Establishment of a Successful Hematopoietic Stem-Cell Transplantation Program in a Developing Country

    Directory of Open Access Journals (Sweden)

    Monica M. Rivera Franco

    2018-02-01

    Full Text Available Purpose: In low- and middle-income countries with limited resources, the success of a hematopoietic stem-cell transplantation (HSCT program relies directly on its affordability while obtaining similar outcomes to developed regions. The objective of this study was to describe the experience of a tertiary/referral center in Mexico City performing HSCT with the subsidy of a nongovernmental organization (NGO. Patients and Methods: We performed a retrospective analysis including 146 patients who underwent HSCT at the National Institutes of Health Sciences and Nutrition Salvador Zubiran and were subsidized by the NGO Unidos. Results: Seventy-five patients (51% and 71 patients (49% underwent autologous and allogeneic HSCT, respectively. The median age was 30 years, 56% did not obtain a bachelor’s degree, 79% had a low socioeconomic level, and 75% were unemployed. None had any health coverage. According to the real patient out-of-pocket expense, the subsidy by Unidos corresponded to 88% and 72% in autologous and allogeneic HSCT, respectively. Conclusion: Our results highlight that undergoing an HSCT was feasible for vulnerable patients because of the subsidy of medications and chemotherapy by Unidos. Therefore, creating NGOs in developing countries is important to provide complex medical procedures, such as HSCT, at limited-resource centers to underserved populations while obtaining good outcomes.

  14. A risk-based approach to optimize autologous hematopoietic stem cell (HSC) collection with the use of plerixafor.

    Science.gov (United States)

    Abhyankar, S; DeJarnette, S; Aljitawi, O; Ganguly, S; Merkel, D; McGuirk, J

    2012-04-01

    Autologous hematopoietic stem cell (HSC) transplant is an effective treatment for patients with hematological malignancies. Unfortunately, 15-30% of patients fail to mobilize a sufficient number of HSCs for the transplant. Plerixafor is now used as a salvage mobilization regimen, with good success. We describe here a risk-based approach for the use of plerixafor, based on the circulating CD34(+) cell count and the CD34(+) cell dose collected after 4 days of G-CSF, that identifies potential poor HSC mobilizers upfront. A total of 159 patients underwent HSC collections using this approach. Of these, 55 (35%) were identified as high risk owing to low CD34(+) cell number or low yield on day 1 of collection, and received plerixafor on the subsequent days of collection. Of the 159 patients, 151 (95%) were able to provide adequate collections with the first mobilization attempt in a median of 1.7 days using this approach. Of the eight who failed initial mobilization, 5 successfully underwent re-mobilization with plerixafor and G-CSF and 3 (1.9%) were mobilization failures. This approach helped to control the overall cost of HSC collections for our BMT program by decreasing the need for remobilization, reducing the number of collection days and avoiding the use of plerixafor in all patients.

  15. NRF2 Activation Impairs Quiescence and Bone Marrow Reconstitution Capacity of Hematopoietic Stem Cells.

    Science.gov (United States)

    Murakami, Shohei; Suzuki, Takuma; Harigae, Hideo; Romeo, Paul-Henri; Yamamoto, Masayuki; Motohashi, Hozumi

    2017-10-01

    Tissue stem cells are maintained in quiescence under physiological conditions but proliferate and differentiate to replenish mature cells under stressed conditions. The KEAP1-NRF2 system plays an essential role in stress response and cytoprotection against redox disturbance. To clarify the role of the KEAP1-NRF2 system in tissue stem cells, we focused on hematopoiesis in this study and used Keap1 -deficient mice to examine the effects of persistent activation of NRF2 on long-term hematopoietic stem cells (LT-HSCs). We found that persistent activation of NRF2 due to Keap1 deficiency did not change the number of LT-HSCs but reduced their quiescence in steady-state hematopoiesis. During hematopoietic regeneration after bone marrow (BM) transplantation, persistent activation of NRF2 reduced the BM reconstitution capacity of LT-HSCs, suggesting that NRF2 reduces the quiescence of LT-HSCs and promotes their differentiation, leading to eventual exhaustion. Transient activation of NRF2 by an electrophilic reagent also promotes the entry of LT-HSCs into the cell cycle. Taken together, our findings show that NRF2 drives the cell cycle entry and differentiation of LT-HSCs at the expense of their quiescence and maintenance, an effect that appears to be beneficial for prompt recovery from blood loss. We propose that the appropriate control of NRF2 activity by KEAP1 is essential for maintaining HSCs and guarantees their stress-induced regenerative response. Copyright © 2017 American Society for Microbiology.

  16. Aging impairs long-term hematopoietic regeneration after autologous stem cell transplantation.

    Science.gov (United States)

    Woolthuis, Carolien M; Mariani, Niccoló; Verkaik-Schakel, Rikst Nynke; Brouwers-Vos, Annet Z; Schuringa, Jan Jacob; Vellenga, Edo; de Wolf, Joost T M; Huls, Gerwin

    2014-06-01

    Most of our knowledge of the effects of aging on the hematopoietic system comes from studies in animal models. In this study, to explore potential effects of aging on human hematopoietic stem and progenitor cells (HSPCs), we evaluated CD34(+) cells derived from young (60 years) adult bone marrow with respect to phenotype and in vitro function. We observed an increased frequency of phenotypically defined stem and progenitor cells with age, but no distinct differences with respect to in vitro functional capacity. Given that regeneration of peripheral blood counts can serve as a functional readout of HSPCs, we compared various peripheral blood parameters between younger patients (≤50 years; n = 64) and older patients (≥60 years; n = 55) after autologous stem cell transplantation. Patient age did not affect the number of apheresis cycles or the amount of CD34(+) cells harvested. Parameters for short-term regeneration did not differ significantly between the younger and older patients; however, complete recovery of all 3 blood lineages at 1 year after transplantation was strongly affected by advanced age, occurring in only 29% of the older patients, compared with 56% of the younger patients (P = .009). Collectively, these data suggest that aging has only limited effects on CD34(+) HSPCs under steady-state conditions, but can be important under consitions of chemotoxic and replicative stress. Copyright © 2014 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  17. Enhancement of committed hematopoietic stem cell colony formation by nandrolone decanoate after sublethal whole body irradiation

    International Nuclear Information System (INIS)

    Gallicchio, V.S.; Chen, M.G.; Watts, T.D.

    1984-01-01

    The ability of an anabolic steroid, nandrolone decanoate, to increase committed topoietic stem cell (CFU-gm, CFU-e, and BFU-e) colony formation after sublethal irradiation was evaluated. Immediately after receiving whole body irradiation and on the next two days, each mouse was injected intraperitoneally with nandrolone decanoate (1.25 mg) in propylene glycol. Irradiated control mice received only propylene glycol. Compared to controls, drug-treated mice showed marked peripheral blood leukocytosis and more stable packed red cell volume. Drug-treated mice also demonstrated increased erythropoiesis, as CFU-e/BFU-e concentrations from both marrow (9% to 581%) and spleen (15% to 797%) were elevated. Granulopoiesis was increased similarly, as CFU-gm concentrations from marrow (38% to 685%) and spleen (9% to 373%) were elevated. These results demonstrate that nandrolone decanoate enhances hematopoietic stem cell recovery after sublethal whole body irradiation. This suggests that following hematopoietic suppression, nandrolone decanoate may stimulate the recovery of hematopoiesis at the stem cell level and in peripheral blood

  18. Enhancement of committed hematopoietic stem cell colony formation by nandrolone decanoate after sublethal whole body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gallicchio, V.S.; Chen, M.G.; Watts, T.D.

    1984-11-01

    The ability of an anabolic steroid, nandrolone decanoate, to increase committed topoietic stem cell (CFU-gm, CFU-e, and BFU-e) colony formation after sublethal irradiation was evaluated. Immediately after receiving whole body irradiation and on the next two days, each mouse was injected intraperitoneally with nandrolone decanoate (1.25 mg) in propylene glycol. Irradiated control mice received only propylene glycol. Compared to controls, drug-treated mice showed marked peripheral blood leukocytosis and more stable packed red cell volume. Drug-treated mice also demonstrated increased erythropoiesis, as CFU-e/BFU-e concentrations from both marrow (9% to 581%) and spleen (15% to 797%) were elevated. Granulopoiesis was increased similarly, as CFU-gm concentrations from marrow (38% to 685%) and spleen (9% to 373%) were elevated. These results demonstrate that nandrolone decanoate enhances hematopoietic stem cell recovery after sublethal whole body irradiation. This suggests that following hematopoietic suppression, nandrolone decanoate may stimulate the recovery of hematopoiesis at the stem cell level and in peripheral blood.

  19. Autophagy as an ultrastructural marker of heavy metal toxicity in human cord blood hematopoietic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Di Gioacchino, Mario [Aging Research Center, ' G. d' Annunzio' University Foundation, Via Colle dell' Ara, 66100 Chieti (Italy); Medicine and Science of Ageing University of Chieti-Pescara, Via dei Vestini 1, 66100 Chieti (Italy)], E-mail: m.digioacchino@unich.it; Petrarca, Claudia; Perrone, Angela [Aging Research Center, ' G. d' Annunzio' University Foundation, Via Colle dell' Ara, 66100 Chieti (Italy); Medicine and Science of Ageing University of Chieti-Pescara, Via dei Vestini 1, 66100 Chieti (Italy); Farina, Massimo; Sabbioni, Enrico; Hartung, Thomas [Oncology and Neurosciences University of Chieti-Pescara, Via dei Vestini 1, 66100 Chieti (Italy); Martino, Simone [Department of Experimental Medicine, University La Sapienza, Viale Regina Elena 324, 00161 Rome (Italy); Esposito, Diana L. [Aging Research Center, ' G. d' Annunzio' University Foundation, Via Colle dell' Ara, 66100 Chieti (Italy); Oncology and Neurosciences University of Chieti-Pescara, Via dei Vestini 1, 66100 Chieti (Italy); Lotti, Lavinia Vittoria [Department of Experimental Medicine, University La Sapienza, Viale Regina Elena 324, 00161 Rome (Italy); Mariani-Costantini, Renato [Aging Research Center, ' G. d' Annunzio' University Foundation, Via Colle dell' Ara, 66100 Chieti (Italy); Oncology and Neurosciences University of Chieti-Pescara, Via dei Vestini 1, 66100 Chieti (Italy)

    2008-03-15

    Stem cells are a key target of environmental toxicants, but little is known about their toxicological responses. We aimed at developing an in-vitro model based on adult human stem cells to identify biomarkers of heavy metal exposure. To this end we investigated the responses of human CD34+ hematopoietic progenitor cells to hexavalent chromium (Cr[VI]) and cadmium (Cd). Parallel cultures of CD34+ cells isolated from umbilical cord blood were exposed for 48 h to 0.1 {mu}M and 10 {mu}M Cr(VI) or Cd. Cultures treated with 10 {mu}M Cr(VI) or Cd showed marked cell loss. Ultrastructural analysis of surviving cells revealed prominent autophagosomes/autophagolysosomes, which is diagnostic of autophagy, associated with mitochondrial damage and replication, dilatation of the rough endoplasmic reticulum and Golgi complex, cytoplasmic lipid droplets and chromatin condensation. Treated cells did not show the morphologic hallmarks of apoptosis. Treatment with 0.1 {mu}M Cr(VI) or Cd did not result in cell loss, but at the ultrastructural level cells showed dilated endoplasmic reticulum and evidence of mitochondrial damage. We conclude that autophagy is implicated in the response of human hematopoietic stem cells to toxic concentrations of Cr(VI) and Cd. Autophagy, which mediates cell survival and death under stress, deserves further evaluation to be established as biomarker of metal exposure.

  20. Autophagy as an ultrastructural marker of heavy metal toxicity in human cord blood hematopoietic stem cells

    International Nuclear Information System (INIS)

    Di Gioacchino, Mario; Petrarca, Claudia; Perrone, Angela; Farina, Massimo; Sabbioni, Enrico; Hartung, Thomas; Martino, Simone; Esposito, Diana L.; Lotti, Lavinia Vittoria; Mariani-Costantini, Renato

    2008-01-01

    Stem cells are a key target of environmental toxicants, but little is known about their toxicological responses. We aimed at developing an in-vitro model based on adult human stem cells to identify biomarkers of heavy metal exposure. To this end we investigated the responses of human CD34+ hematopoietic progenitor cells to hexavalent chromium (Cr[VI]) and cadmium (Cd). Parallel cultures of CD34+ cells isolated from umbilical cord blood were exposed for 48 h to 0.1 μM and 10 μM Cr(VI) or Cd. Cultures treated with 10 μM Cr(VI) or Cd showed marked cell loss. Ultrastructural analysis of surviving cells revealed prominent autophagosomes/autophagolysosomes, which is diagnostic of autophagy, associated with mitochondrial damage and replication, dilatation of the rough endoplasmic reticulum and Golgi complex, cytoplasmic lipid droplets and chromatin condensation. Treated cells did not show the morphologic hallmarks of apoptosis. Treatment with 0.1 μM Cr(VI) or Cd did not result in cell loss, but at the ultrastructural level cells showed dilated endoplasmic reticulum and evidence of mitochondrial damage. We conclude that autophagy is implicated in the response of human hematopoietic stem cells to toxic concentrations of Cr(VI) and Cd. Autophagy, which mediates cell survival and death under stress, deserves further evaluation to be established as biomarker of metal exposure

  1. SCA-1 Expression Level Identifies Quiescent Hematopoietic Stem and Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Mina N.F. Morcos

    2017-06-01

    Full Text Available Blood cell generation depends on continuous cellular output by the sequential hierarchy of hematopoietic stem cell (HSC and progenitor populations that all contain quiescent and actively cycling cells. Hematopoietic stem and progenitor cells (HSPCs express the surface molecule Stem cell antigen 1 (SCA-1/LY6A. Using histone 2B-red fluorescent fusion protein label retention and cell-cycle reporter mice, we demonstrate that high SCA-1 expression (SCA-1hi identifies not only quiescent HSCs but quiescent cells on all hierarchical levels within the lineage−SCA-1+KIT+ (LSK population. Each transplanted SCA-1hi HSPC population also displayed self-renewal potential superior to that of the respective SCA-1lo population. SCA-1 expression is inducible by type I interferon (IFN. We show, however, that quiescence and high self-renewal capacity of cells with brighter SCA-1 expression at steady state were independent of type I IFN signaling. We conclude that SCA-1 expression levels can be used to prospectively isolate functionally heterogeneous HSPC subpopulations.

  2. Body composition of Fanconi anemia patients after hematopoietic stem cell transplantation.

    Science.gov (United States)

    Silva, Priscilla Peixoto Policarpo da; Schmit, Daniella; Bonfim, Carmem; Campos, Denise Johnsson; Rabito, Estela Iraci; Vilela, Regina Maria

    Fanconi anemia is a rare genetic disease linked to bone marrow failure; a possible treatment is hematopoietic stem cell transplantation. Changes in the nutritional status of Fanconi anemia patients are not very well known. This study aimed to characterize body composition of adult, children and adolescent patients with Fanconi anemia who were submitted to hematopoietic stem cell transplantation or not. This cross-sectional study enrolled 63 patients (29 adults and 34 children and adolescents). Body composition was assessed based on diverse methods, including triceps skin fold, arm circumference, arm muscle area and bioelectrical impedance analysis, as there is no established consensus for this population. Body mass index was also considered as reference according to age. Almost half (48.3%) of the transplanted adult patients were underweight considering body mass index whereas eutrophic status was observed in 66.7% of the children and adolescents submitted to hematopoietic stem cell transplantation and in 80% of those who were not. At least 50% of all groups displayed muscle mass depletion. Half of the transplanted children and adolescents presented short/very short stature for age. All patients presented low muscle stores, underweight was common in adults, and short stature was common in children and adolescents. More studies are needed to detect whether muscle mass loss measured at the early stages of treatment results in higher risk of mortality, considering the importance of muscle mass as an essential body component to prevent mortality related to infectious and non-infectious diseases and the malnutrition inherent to Fanconi anemia. Copyright © 2017 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier Editora Ltda. All rights reserved.

  3. Invasive Mechanical Ventilation and Mortality in Pediatric Hematopoietic Stem Cell Transplantation: A Multicenter Study.

    Science.gov (United States)

    Rowan, Courtney M; Gertz, Shira J; McArthur, Jennifer; Fitzgerald, Julie C; Nitu, Mara E; Loomis, Ashley; Hsing, Deyin D; Duncan, Christine N; Mahadeo, Kris M; Smith, Lincoln S; Moffet, Jerelyn; Hall, Mark W; Pinos, Emily L; Cheifetz, Ira M; Tamburro, Robert F

    2016-04-01

    To establish the current respiratory practice patterns in pediatric hematopoietic stem cell transplant patients and investigate their associations with mortality across multiple centers. Retrospective cohort between 2009 and 2014. Twelve children's hospitals in the United States. Two hundred twenty-two pediatric allogeneic hematopoietic stem cell transplant recipients with acute respiratory failure using invasive mechanical ventilation. None. PICU mortality of our cohort was 60.4%. Mortality at 180 days post PICU discharge was 74%. Length of PICU stay prior to initiation of invasive mechanical ventilation was significantly lower in survivors, and the odds of mortality increased for longer length of PICU stay prior to intubation. A total of 91 patients (41%) received noninvasive ventilation at some point during their PICU stay prior to intubation. Noninvasive ventilation use preintubation was associated with increased mortality (odds ratio, 2.1; 95% CI, 1.2-3.6; p = 0.010). Patients ventilated longer than 15 days had higher odds of death (odds ratio, 2.4; 95% CI, 1.3-4.2; p = 0.004). Almost 40% of patients (n = 85) were placed on high-frequency oscillatory ventilation with a mortality of 76.5% (odds ratio, 3.3; 95% CI, 1.7-6.5; p = 0.0004). Of the 20 patients who survived high-frequency oscillatory ventilation, 18 were placed on high-frequency oscillatory ventilation no later than the third day of invasive mechanical ventilation. In this subset of 85 patients, transition to high-frequency oscillatory ventilation within 2 days of the start of invasive mechanical ventilation resulted in a 76% decrease in the odds of death compared with those who transitioned to high-frequency oscillatory ventilation later in the invasive mechanical ventilation course. This study suggests that perhaps earlier more aggressive critical care interventions in the pediatric hematopoietic stem cell transplant patient with respiratory failure requiring invasive mechanical ventilation may

  4. AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION IN CHILDREN WITH SEVERE RESISTANT MULTIPLE SCLEROSIS

    Directory of Open Access Journals (Sweden)

    K. I. Kirgizov

    2013-01-01

    Full Text Available Unique experience of high-dose chemotherapy with consequent autologous hematopoietic stem cell transplantation in children with severe resistant multiple sclerosis (n=7 is shown in this article. At present time there is enough data on chemotherapy with consequent hematopoietic stem cell transplantation in children with severe resistant multiple sclerosis. This method was proved to be efficient and safe with immunoablative conditioning chemotherapy regimen. In patients included in this study the mean rate according to the Expanded Disability Status Scale was 5,94±0,2 (from 3 to 9 points. All the patients had disseminated demyelination loci, accumulating the contrast substance, in the brain and the spinal cord. After cyclophosphamide treatment in combination with anti-monocytes globulin the fast stabilization of the condition and prolonged (the observation period was 3-36 moths clinical and radiologic as well as immunophenotypic remission with marked positive dynamics according to the Expanded Disability Status Scale were noted. No pronounced side-effects and infectious complications were mentioned. The maximal improvement according to the Expanded Disability Status Scale (EDSS was 5,5 points, the mean — 2,7±0,1 (from 2 to 5,5 points accompanied with positive dynamics on the magneto-resonance imaging.  The efficacy of the treatment was also proved by the positive changes in the lymphocytes subpopulation status in peripheral blood. The timely performed high-dose chemotherapy with consequent hematopoietic stem cell transplantation is an effective and safe method to slowdown the autoimmune inflammatory process. This method can be recommended to use in treatment of children with severe resistant multiple sclerosis. 

  5. Basic oral care for hematology–oncology patients and hematopoietic stem cell transplantation recipients

    DEFF Research Database (Denmark)

    Elad, Sharon; Raber-Durlacher, Judith E; Brennan, Michael T

    2015-01-01

    PURPOSE: Hematology-oncology patients undergoing chemotherapy and hematopoietic stem cell transplantation (HSCT) recipients are at risk for oral complications which may cause significant morbidity and a potential risk of mortality. This emphasizes the importance of basic oral care prior to, during...... and following chemotherapy/HSCT. While scientific evidence is available to support some of the clinical practices used to manage the oral complications, expert opinion is needed to shape the current optimal protocols. METHODS: This position paper was developed by members of the Oral Care Study Group...

  6. Historical Perspective on the Current Renaissance for Hematopoietic Stem Cell Gene Therapy.

    Science.gov (United States)

    Kohn, Donald B

    2017-10-01

    Gene therapy using hematopoietic stem cells (HSC) has developed over the past 3 decades, with progressive improvements in the efficacy and safety. Autologous transplantation of HSC modified with murine gammaretroviral vectors first showed clinical benefits for patients with several primary immune deficiencies, but some of these patients suffered complications from vector-related genotoxicity. Lentiviral vectors have been used recently for gene addition to HSC and have yielded clinical benefits for primary immune deficiencies, metabolic diseases, and hemoglobinopathies, without vector-related complications. Gene editing using site-specific endonucleases is emerging as a promising technology for gene therapy and is moving into clinical trials. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Graft-versus-Leukemia Effect Following Hematopoietic Stem Cell Transplantation for Leukemia

    Directory of Open Access Journals (Sweden)

    Anne M. Dickinson

    2017-06-01

    Full Text Available The success of hematopoietic stem cell transplantation (HSCT lies with the ability of the engrafting immune system to remove residual leukemia cells via a graft-versus-leukemia effect (GvL, caused either spontaneously post-HSCT or via donor lymphocyte infusion. GvL effects can also be initiated by allogenic mismatched natural killer cells, antigen-specific T cells, and activated dendritic cells of leukemic origin. The history and further application of this GvL effect and the main mechanisms will be discussed and reviewed in this chapter.

  8. Successful autologous hematopoietic stem cell transplantation for a patient with rapidly progressive localized scleroderma.

    Science.gov (United States)

    Nair, Velu; Sharma, Ajay; Sharma, Sanjeevan; Das, Satyaranjan; Bhakuni, Darshan S; Narayanan, Krishnan; Nair, Vivek; Shankar, Subramanian

    2015-03-01

    Autologous hematopoietic stem cell transplant (HSCT) for rapidly progressive disease has not been reported in localized scleroderma. Our patient, a 16-year-old girl had an aggressive variant of localized scleroderma, mixed subtype (linear-generalized) with Parry Romberg syndrome, with no internal organ involvement, that was unresponsive to immunosuppressive therapy and was causing rapid disfigurement. She was administered autologous HSCT in June 2011 and has maintained drug-free remission with excellent functional status at almost 3.5 years of follow-up. © 2015 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  9. HEPATITIS B AND C IN HEMATOPOIETIC STEM CELL TRANSPLANT

    Directory of Open Access Journals (Sweden)

    Anna Locasciulli

    2009-11-01

    Full Text Available Although  the risk of acquisition of hepatitis B or hepatitis C virus through blood products has considerably reduced since the last decade, some infected patients are candidates to stem cell transplantation. Others may have no alternative than an infected donor. In all these cases, recipients of transplant are prone to short and long term liver complications. The evolution of liver tests under chemotherapy before transplant may give useful information to anticipate on  the risk of hepatitis reactivation after transplant, both for HBv and HCv. More than sixty percent of the patients who are HBsAg-positive before transplant reactivate after transplant, and 3% develop acute severe liver failure. Because both viral replication and immune reconstitution are the key factors for reactivation, it is crucial to closely follow liver function tests and viral load during the first months of transplant, and to pay a special attention in slowly tapering the immunosuppression in these patients. Lamivudine reduces HBv viremia, but favors the emergence of HBv polymerase gene mutants and should be individually discussed. Both in case of HBv or HCv hepatitis reactivation with ALT > 10N concomitantly to an increase in viral load at time of immune reconstitution, steroids should be given. In case there is no alternative than a HBv or HCv positive geno-identical donor, the risk of viral hepatitis, including acute liver failure and late complications, should be balanced with the benefit of transplant in a given situation.

  10. Solid organ transplants following hematopoietic stem cell transplant in children.

    Science.gov (United States)

    Bunin, Nancy; Guzikowski, Virginia; Rand, Elizabeth R; Goldfarb, Samuel; Baluarte, Jorge; Meyers, Kevin; Olthoff, Kim M

    2010-12-01

    SOT may be indicated for a select group of pediatric patients who experience permanent organ failure following HSCT. However, there is limited information available about outcomes. We identified eight children at our center who received an SOT following an HSCT. Patients were six months to 18 yr at HSCT. Diseases for which children underwent HSCT included thalassemia, Wiskott-Aldrich syndrome, Shwachman-Diamond/bone marrow failure, sickle cell disease (SCD), erythropoietic porphyria (EP), ALL, chronic granulomatous disease, and neuroblastoma. Time from HSCT to SOT was 13 days to seven yr (median, 27 months. Lung SOT was performed for two patients with BO, kidney transplants for three patients, and liver transplants for three patients (VOD, chronic GVHD). Seven patients are alive with functioning allografts 6-180 months from SOT. Advances in organ procurement, operative technique, immunosuppressant therapy, and infection control may allow SOT for a select group of patients post-HSCT. However, scarcity of donor organs available in a timely fashion continues to be a limiting factor. Children who have undergone HSCT and develop single organ failure should be considered for an SOT if there is a high likelihood of cure of the primary disease. © 2010 John Wiley & Sons A/S.

  11. Effects of nonpharmacological interventions on reducing fatigue after hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Hedayat Jafari

    2017-01-01

    Full Text Available Fatigue is one of the main complaints of patients undergoing allogeneic and autologous hematopoietic stem cell transplantation (HSCT. Since nonpharmacological interventions are cost-effective and causes fewer complications, this study aimed to review the studies performed on the effects of nonpharmacological interventions on fatigue in patients undergoing HSCT during September 2016. MEDLINE, CINAHL, Scientific Information Database, IranMedex, PubMed, ScienceDirect, Scopus, Magiran, and IRANDOC databases were searched using Persian and English keywords. A total of 1217 articles were retrieved, 21 of which were used in this study. Exercise is known as an effective intervention in alleviating physical and mental problems of patients undergoing stem cell transplant. This review-based study showed that nonpharmacological methods such as exercise might be effective in decreasing fatigue in patients undergoing stem cell transplant. There is a multitude of studies on some of the complementary and alternative therapy methods, such as music therapy, yoga, relaxation, and therapeutic massage. These studies demonstrated the positive effects of the aforementioned therapies on reduction of fatigue in patients undergoing stem cell transplantation. All the investigated methods in this study were nonaggressive, safe, and cost-effective and could be used along with common treatments or even as an alternative for pharmacological treatments for the reduction, or elimination of fatigue in patients undergoing stem cell transplantation. Given the advantages of complementary and alternative medicine, conducting further studies on this issue is recommended to reduce fatigue in patients after stem cell transplantation.

  12. Observations on the contributions of environmental restraints and innate stem cell ability to hematopoietic regeneration

    International Nuclear Information System (INIS)

    Duke-Cohan, J.S.

    1988-01-01

    A competitive repopulation assay utilizing chromosome markers was used to assay the reconstituting potential of hematopoietic populations. The test populations consisted of tibial murine marrow locally irradiated with doses ranging from 1.5 Gy to 8.5 Gy and of marrow generated from either murine splenic or marrow stem cells. The purpose of this assay was to assess the innate proliferative potential and microenvironmental influences on the ability to repopulate. Regardless of origin, spleen repopulating ability consistently agreed with spleen colony-forming unit (CFU-s) content. Doses of radiation from 5 Gy to 8.5 Gy diminished, by a factor of 2, the ability to repopulate marrow despite maintenance of CFU-s levels. Marrow generated from splenic stem cells had one-fifth the repopulating ability of marrow derived from marrow stem cells, even though CFU-s levels were equivalent. The results imply that the splenic environment can only maintain stem cells at the level of the CFU-s, even if the stem cells were originally of higher quality, and that their original potential cannot be regained in a marrow environment. Nevertheless, the marrow can maintain more primitive stem cells, but this reserve is drained to support CFU-s levels

  13. Dpy30 is critical for maintaining the identity and function of adult hematopoietic stem cells

    Science.gov (United States)

    2016-01-01

    As the major histone H3K4 methyltransferases in mammals, the Set1/Mll complexes play important roles in animal development and are associated with many diseases, including hematological malignancies. However, the role of the H3K4 methylation activity of these complexes in fate determination of hematopoietic stem and progenitor cells (HSCs and HPCs) remains elusive. Here, we address this question by generating a conditional knockout mouse for Dpy30, which is a common core subunit of all Set1/Mll complexes and facilitates genome-wide H3K4 methylation in cells. Dpy30 loss in the adult hematopoietic system results in severe pancytopenia but striking accumulation of HSCs and early HPCs that are defective in multilineage reconstitution, suggesting a differentiation block. In mixed bone marrow chimeras, Dpy30-deficient HSCs cannot differentiate or efficiently up-regulate lineage-regulatory genes, and eventually fail to sustain for long term with significant loss of HSC signature gene expression. Our molecular analyses reveal that Dpy30 directly and preferentially controls H3K4 methylation and expression of many hematopoietic development-associated genes including several key transcriptional and chromatin regulators involved in HSC function. Collectively, our results establish a critical and selective role of Dpy30 and the H3K4 methylation activity of the Set1/Mll complexes for maintaining the identity and function of adult HSCs. PMID:27647347

  14. TIMP-3 recruits quiescent hematopoietic stem cells into active cell cycle and expands multipotent progenitor pool.

    Science.gov (United States)

    Nakajima, Hideaki; Ito, Miyuki; Smookler, David S; Shibata, Fumi; Fukuchi, Yumi; Morikawa, Yoshihiro; Ikeda, Yuichi; Arai, Fumio; Suda, Toshio; Khokha, Rama; Kitamura, Toshio

    2010-11-25

    Regulating transition of hematopoietic stem cells (HSCs) between quiescent and cycling states is critical for maintaining homeostasis of blood cell production. The cycling states of HSCs are regulated by the extracellular factors such as cytokines and extracellular matrix; however, the molecular circuitry for such regulation remains elusive. Here we show that tissue inhibitor of metalloproteinase-3 (TIMP-3), an endogenous regulator of metalloproteinases, stimulates HSC proliferation by recruiting quiescent HSCs into the cell cycle. Myelosuppression induced TIMP-3 in the bone marrow before hematopoietic recovery. Interestingly, TIMP-3 enhanced proliferation of HSCs and promoted expansion of multipotent progenitors, which was achieved by stimulating cell-cycle entry of quiescent HSCs without compensating their long-term repopulating activity. Surprisingly, this effect did not require metalloproteinase inhibitory activity of TIMP-3 and was possibly mediated through a direct inhibition of angiopoietin-1 signaling, a critical mediator for HSC quiescence. Furthermore, bone marrow recovery from myelosuppression was accelerated by over-expression of TIMP-3, and in turn, impaired in TIMP-3-deficient animals. These results suggest that TIMP-3 may act as a molecular cue in response to myelosuppression for recruiting dormant HSCs into active cell cycle and may be clinically useful for facilitating hematopoietic recovery after chemotherapy or ex vivo expansion of HSCs.

  15. Dpy30 is critical for maintaining the identity and function of adult hematopoietic stem cells.

    Science.gov (United States)

    Yang, Zhenhua; Shah, Kushani; Khodadadi-Jamayran, Alireza; Jiang, Hao

    2016-10-17

    As the major histone H3K4 methyltransferases in mammals, the Set1/Mll complexes play important roles in animal development and are associated with many diseases, including hematological malignancies. However, the role of the H3K4 methylation activity of these complexes in fate determination of hematopoietic stem and progenitor cells (HSCs and HPCs) remains elusive. Here, we address this question by generating a conditional knockout mouse for Dpy30, which is a common core subunit of all Set1/Mll complexes and facilitates genome-wide H3K4 methylation in cells. Dpy30 loss in the adult hematopoietic system results in severe pancytopenia but striking accumulation of HSCs and early HPCs that are defective in multilineage reconstitution, suggesting a differentiation block. In mixed bone marrow chimeras, Dpy30-deficient HSCs cannot differentiate or efficiently up-regulate lineage-regulatory genes, and eventually fail to sustain for long term with significant loss of HSC signature gene expression. Our molecular analyses reveal that Dpy30 directly and preferentially controls H3K4 methylation and expression of many hematopoietic development-associated genes including several key transcriptional and chromatin regulators involved in HSC function. Collectively, our results establish a critical and selective role of Dpy30 and the H3K4 methylation activity of the Set1/Mll complexes for maintaining the identity and function of adult HSCs. © 2016 Yang et al.

  16. The human and murine hematopoietic stem cell niches: are they comparable?

    Science.gov (United States)

    van Pel, Melissa; Fibbe, Willem E; Schepers, Koen

    2016-04-01

    Hematopoietic stem cells (HSCs) reside in specific niches that provide various instructive cues that regulate HSC self-renewal and their development into all mature cells of the peripheral blood. Progress in this research field has largely been guided by mouse studies. However, parallel studies with human subjects, tissues, and cells, in combination with xenotransplantation experiments in immunodeficient mice, have contributed to our increased understanding of the human HSC niche. Here, we summarize our current knowledge of the various specialized subsets of both stromal and hematopoietic cells that support HSCs through cell-cell interactions and secreted factors, and the many parallels between the murine and human HSC niches. Furthermore, we discuss recent technological advances that are likely to improve our understanding of the human HSC niche, a better understanding of which may allow further identification of unique molecular and cellular pathways in the HSC niche. This information may help to further improve the outcome of HSC transplantation and refine the treatment of hematopoietic diseases. © 2015 New York Academy of Sciences.

  17. Transcriptional profiling of Foxo3a and Fancd2 regulated genes in mouse hematopoietic stem cells

    Directory of Open Access Journals (Sweden)

    Xiaoli Li

    2015-06-01

    Full Text Available Functional maintenance of hematopoietic stem cells (HSCs is constantly challenged by stresses like DNA damage and oxidative stress. Foxo factors particularly Foxo3a function to regulate the self-renewal of HSCs and contribute to the maintenance of the HSC pool during aging by providing resistance to oxidative stress. Fancd2-deficient mice had multiple hematopoietic defects including HSC loss in early development and in response to cellular stresses including oxidative stress. The cellular mechanisms underlying HSC loss in Fancd2-deficient mice include abnormal cell cycle status loss of quiescence and compromised hematopoietic repopulating capacity of HSCs. To address on a genome wide level the genes and pathways that are impacted by deletion of the Fancd2 and Foxo3a we performed microarray analysis on phenotypic HSCs (Lin−ckit+Sca-1+CD150+CD48− from Fancd2 single knockout Foxo3a single knockout and Fancd2−/−Foxo3a−/− double-knockout (dKO mice. Here we provide detailed methods and analysis on these microarray data which has been deposited in Gene Expression Omnibus (GEO: GSE64215.

  18. Regulation of the hematopoietic stem cell lifecycle by the endothelial niche.

    Science.gov (United States)

    Ramalingam, Pradeep; Poulos, Michael G; Butler, Jason M

    2017-07-01

    Hematopoietic stem cells (HSCs) predominantly reside either in direct contact or in close proximity to the vascular endothelium throughout their lifespan. From the moment of HSC embryonic specification from hemogenic endothelium, endothelial cells (ECs) act as a critical cellular-hub that regulates a vast repertoire of biological processes crucial for HSC maintenance throughout its lifespan. In this review, we will discuss recent findings in endothelial niche-mediated regulation of HSC function during development, aging and regenerative conditions. Studies employing genetic vascular models have unequivocally confirmed that ECs provide the essential instructive cues for HSC emergence during embryonic development as well as adult HSC maintenance during homeostasis and regeneration. Aging of ECs may impair their ability to maintain HSC function contributing to the development of aging-associated hematopoietic deficiencies. These findings have opened up new avenues to explore the therapeutic application of ECs. ECs can be adapted to serve as an instructive platform to expand bona fide HSCs and also utilized as a cellular therapy to promote regeneration of the hematopoietic system following myelosuppressive and myeloablative injuries. ECs provide a fertile niche for maintenance of functional HSCs throughout their lifecycle. An improved understanding of the EC-HSC cross-talk will pave the way for development of EC-directed strategies for improving HSC function during aging.

  19. Differentiation of hematopoietic stem cells in irradiated mouse thymic lobes. Kinetics and phenotype of progeny

    International Nuclear Information System (INIS)

    Spangrude, G.J.; Scollay, R.

    1990-01-01

    To define cell populations which participate in the very early stages of T cell development in the mouse thymus, we enriched hematopoietic stem cells from mouse bone marrow and injected them into thymic lobes of irradiated Ly-5 congenic recipients. The progeny of the stem cells were identified and their phenotypes were determined by two-color flow cytometry for the expression of various cell surface differentiation Ag during the course of their subsequent intrathymic development. The majority of the differentiation which occurred in the first 10 days after intrathymic cell transfer was myeloid in nature; hence, this study demonstrates that the irradiated thymus is not strictly selective for T cell development. Further, the maximum rate of T cell development was observed after intrathymic injection of 200 stem cells. Donor-derived cells which did not express Ag characteristic of the myeloid lineage could be detected and their phenotypes could be determined by flow cytometry as early as 7 days after intrathymic injection. At this time, the cells were still very similar phenotypically to the bone marrow hematopoietic stem cells. Exceptions to this were the expression of stem cell Ag 2 and a decrease in the level of MHC class I Ag expression. After 9 days, the donor-derived cells expressed high levels of the Thy-1 Ag and proceeded to change in cell surface phenotype as differentiation continued. These cell phenotypes are described for the time frame ending 18 days after injection, when most donor-derived cells were phenotypically small CD4+ CD8+ (double-positive) thymocytes

  20. The impact of HLA matching on long-term transplant outcome after allogeneic hematopoietic stem cell transplantation for CLL: a retrospective study from the EBMT registry

    DEFF Research Database (Denmark)

    Michallet, M; Sobh, M; Milligan, D

    2010-01-01

    We analyzed 368 chronic lymphocytic leukemia patients who underwent allogeneic hematopoietic stem cell transplantation reported to the EBMT registry between 1995 and 2007. There were 198 human leukocyte antigen (HLA)-identical siblings; among unrelated transplants, 31 were well matched in high re...... support the use of WMUD as equivalent alternative to HLA-matched sibling donors for allogeneic HSCT in CLL, and justify the application of EBMT risk score in this disease.......We analyzed 368 chronic lymphocytic leukemia patients who underwent allogeneic hematopoietic stem cell transplantation reported to the EBMT registry between 1995 and 2007. There were 198 human leukocyte antigen (HLA)-identical siblings; among unrelated transplants, 31 were well matched in high......% in score 6 and 4% in score 7. There was no difference in overall survival (OS) at 5 years between HLA-identical siblings (55% (48-64)) and WMUD (59% (41-84)), P=0.82. In contrast, OS was significantly worse for MM (37% (29-48) P=0.005) due to a significant excess of transplant-related mortality. Also OS...

  1. [Absolute numbers of peripheral blood CD34+ hematopoietic stem cells prior to a leukapheresis procedure as a parameter predicting the efficiency of stem cell collection].

    Science.gov (United States)

    Galtseva, I V; Davydova, Yu O; Gaponova, T V; Kapranov, N M; Kuzmina, L A; Troitskaya, V V; Gribanova, E O; Kravchenko, S K; Mangasarova, Ya K; Zvonkov, E E; Parovichnikova, E N; Mendeleeva, L P; Savchenko, V G

    To identify a parameter predicting a collection of at least 2·106 CD34+ hematopoietic stem cells (HSC)/kg body weight per leukapheresis (LA) procedure. The investigation included 189 patients with hematological malignancies and 3 HSC donors, who underwent mobilization of stem cells with their subsequent collection by LA. Absolute numbers of peripheral blood leukocytes and CD34+ cells before a LA procedure, as well as a number of CD34+ cells/kg body weight (BW) in the LA product stored on the same day were determined in each patient (donor). There was no correlation between the number of leukocytes and that of stored CD34+ cells/kg BW. There was a close correlation between the count of peripheral blood CD34+ cells prior to LA and that of collected CD34+ cells calculated with reference to kg BW. The optimal absolute blood CD34+ cell count was estimated to 20 per µl, at which a LA procedure makes it possible to collect 2·106 or more CD34+ cells/kg BW.

  2. MOZ (KAT6A) is essential for the maintenance of classically defined adult hematopoietic stem cells.

    Science.gov (United States)

    Sheikh, Bilal N; Yang, Yuqing; Schreuder, Jaring; Nilsson, Susan K; Bilardi, Rebecca; Carotta, Sebastian; McRae, Helen M; Metcalf, Donald; Voss, Anne K; Thomas, Tim

    2016-11-10

    Hematopoietic stem cells (HSCs) are conventionally thought to be at the apex of a hierarchy that produces all mature cells of the blood. The quintessential property of these cells is their ability to reconstitute the entire hematopoietic system of hemoablated recipients. This characteristic has enabled HSCs to be used to replenish the hematopoietic system of patients after chemotherapy or radiotherapy. Here, we use deletion of the monocytic leukemia zinc finger gene (Moz/Kat6a/Myst3) to examine the effects of removing HSCs. Loss of MOZ in adult mice leads to the rapid loss of HSCs as defined by transplantation. This is accompanied by a reduction of the LSK-CD48 - CD150 + and LSK-CD34 - Flt3 - populations in the bone marrow and a reduction in quiescent cells in G 0 Surprisingly, the loss of classically defined HSCs did not affect mouse viability, and there was no recovery of the LSK-CD48 - CD150 + and LSK-CD34 - Flt3 - populations 15 to 18 months after Moz deletion. Clonal analysis of myeloid progenitors, which produce short-lived granulocytes, demonstrate that these are derived from cells that had undergone recombination at the Moz locus up to 2 years earlier, suggesting that early progenitors have acquired extended self-renewal. Our results establish that there are essential differences in HSC requirement for steady-state blood cell production compared with the artificial situation of reconstitution after transplantation into a hemoablated host. A better understanding of steady-state hematopoiesis may facilitate the development of novel therapies engaging hematopoietic cell populations with previously unrecognized traits, as well as characterizing potential vulnerability to oncogenic transformation. © 2016 by The American Society of Hematology.

  3. Mesenchymal stem cell derived hematopoietic cells are permissive to HIV-1 infection

    Directory of Open Access Journals (Sweden)

    Mondal Debasis

    2011-01-01

    Full Text Available Abstract Background Tissue resident mesenchymal stem cells (MSCs are multipotent, self-renewing cells known for their differentiation potential into cells of mesenchymal lineage. The ability of single cell clones isolated from adipose tissue resident MSCs (ASCs to differentiate into cells of hematopoietic lineage has been previously demonstrated. In the present study, we investigated if the hematopoietic differentiated (HD cells derived from ASCs could productively be infected with HIV-1. Results HD cells were generated by differentiating clonally expanded cultures of adherent subsets of ASCs (CD90+, CD105+, CD45-, and CD34-. Transcriptome analysis revealed that HD cells acquire a number of elements that increase their susceptibility for HIV-1 infection, including HIV-1 receptor/co-receptor and other key cellular cofactors. HIV-1 infected HD cells (HD-HIV showed elevated p24 protein and gag and tat gene expression, implying a high and productive infection. HD-HIV cells showed decreased CD4, but significant increase in the expression of CCR5, CXCR4, Nef-associated factor HCK, and Vpu-associated factor BTRC. HIV-1 restricting factors like APOBEC3F and TRIM5 also showed up regulation. HIV-1 infection increased apoptosis and cell cycle regulatory genes in HD cells. Although undifferentiated ASCs failed to show productive infection, HIV-1 exposure increased the expression of several hematopoietic lineage associated genes such as c-Kit, MMD2, and IL-10. Conclusions Considering the presence of profuse amounts of ASCs in different tissues, these findings suggest the possible role that could be played by HD cells derived from ASCs in HIV-1 infection. The undifferentiated ASCs were non-permissive to HIV-1 infection; however, HIV-1 exposure increased the expression of some hematopoietic lineage related genes. The findings relate the importance of ASCs in HIV-1 research and facilitate the understanding of the disease process and management strategies.

  4. Latexin Inactivation Enhances Survival and Long-Term Engraftment of Hematopoietic Stem Cells and Expands the Entire Hematopoietic System in Mice

    Directory of Open Access Journals (Sweden)

    Yi Liu

    2017-04-01

    Full Text Available Summary: Natural genetic diversity offers an important yet largely untapped resource to decipher the molecular mechanisms regulating hematopoietic stem cell (HSC function. Latexin (Lxn is a negative stem cell regulatory gene identified on the basis of genetic diversity. By using an Lxn knockout mouse model, we found that Lxn inactivation in vivo led to the physiological expansion of the entire hematopoietic hierarchy. Loss of Lxn enhanced the competitive repopulation capacity and survival of HSCs in a cell-intrinsic manner. Gene profiling of Lxn-null HSCs showed altered expression of genes enriched in cell-matrix and cell-cell interactions. Thrombospondin 1 (Thbs1 was a potential downstream target with a dramatic downregulation in Lxn-null HSCs. Enforced expression of Thbs1 restored the Lxn inactivation-mediated HSC phenotypes. This study reveals that Lxn plays an important role in the maintenance of homeostatic hematopoiesis, and it may lead to development of safe and effective approaches to manipulate HSCs for clinical benefit. : In this article, Liang and colleagues show that loss of latexin in vivo expands the HSC population and increases their survival and engraftment. Latexin regulates HSC function and hematopoiesis via the Thbs1 signaling pathway. Keywords: latexin, hematopoietic stem cell, repopulating advantage, expansion, survival, thrombospondin 1

  5. Reduced intensity conditioning, combined transplantation of haploidentical hematopoietic stem cells and mesenchymal stem cells in patients with severe aplastic anemia.

    Directory of Open Access Journals (Sweden)

    Xiao-Hong Li

    Full Text Available We examined if transplantation of combined haploidentical hematopoietic stem cells (HSC and mesenchymal stem cells (MSC affected graft failure and graft-versus-host disease (GVHD in patients with severe aplastic anemia (SAA. Patients with SAA-I (N = 17 received haploidentical HSCT plus MSC infusion. Stem cell grafts used a combination of granulocyte colony-stimulating factor (G-CSF-primed bone marrow and G-CSF-mobilized peripheral blood stem cells of haploidentical donors and the culture-expanded third-party donor-derived umbilical cord MSCs (UC-MSCs, respectively. Reduced intensity conditioning consisted of fludarabine (30 mg/m2·d+cyclosphamide (500 mg/m2·d+anti-human thymocyte IgG. Transplant recipients also received cyclosporin A, mycophenolatemofetil, and CD25 monoclonal antibody. A total of 16 patients achieved hematopoietic reconstitution. The median mononuclear cell and CD34 count was 9.3×10(8/kg and 4.5×10(6/kg. Median time to ANC was >0.5×10(9/L and PLT count >20×10(9/L were 12 and 14 days, respectively. Grade III-IV acute GVHD was seen in 23.5% of the cases, while moderate and severe chronic GVHD were seen in 14.2% of the cases. The 3-month and 6-month survival rates for all patients were 88.2% and 76.5%, respectively; mean survival time was 56.5 months. Combined transplantation of haploidentical HSCs and MSCs on SAA without an HLA-identical sibling donor was safe, effectively reduced the incidence of severe GVHD, and improved patient survival.

  6. Autoimmune hematological diseases following haploidentical donor hematopoietic stem cell transplant compared with matched sibling and unrelated donor

    Science.gov (United States)

    Lv, Weiran; Fan, Zhiping; Huang, Fen; Xu, Na; Xuan, Li; Yu, Guopan; Jiang, Qianli; Zhou, Hongsheng; Lin, Ren; Zhang, Xin; Sun, Jing; Liu, Qifa

    2017-01-01

    Autoimmune hematological diseases (AHDs) occur more frequently than other autoimmune complications after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and are often refractory to treatment. This study was to analyze the incidence and risk factors of AHDs as well as their response to treatment. Four hundred and forty-five adult malignant hematopoietic disorders underwent allo-HSCT were enrolled in this retrospective study, including 124 haploidentical donor (HRD), 140 unrelated donor (MUD) and 181 HLA-matched sibling donor (MSD) transplants. Twelve patients developed AHDs, including 6 autoimmune hemolytic anemia and 6 Evans syndrome. Evans syndrome all occurred in HRD transplants. The 3-year cumulative incidence of AHDs was 4.0 ± 1.3%, and HRD had higher incidence than MUD (8.7 ± 3.0% vs 1.8 ± 1.2%, P = 0.012) and MSD (8.7 ± 3.0% vs 3.5 ± 2.6%, P = 0.004 ). The steroids combined with Cyclosporine A were acted as the first line treatment, and the response rate was 73%. No patients experienced recurrence at a median follow up of 313 days after stopping treatment. HRD transplants (vs MUD: HR, 5.87; CI, 1.24 to 27.73; p = 0.026 and vs MSD: HR, 7.70; CI, 1.63 to 36.44; P = 0.010) and concurrent chronic graft versus host disease (HR, 3.76; CI, 1.18 to 11.92; P = 0.025) were risk factors for AHDs. PMID:28460445

  7. Autoimmune hematological diseases following haploidentical donor hematopoietic stem cell Transplant compared with matched sibling and unrelated donor.

    Science.gov (United States)

    Lv, Weiran; Fan, Zhiping; Huang, Fen; Xu, Na; Xuan, Li; GuopanYu; Jiang, Qianli; Zhou, Hongsheng; Lin, Ren; Zhang, Xin; Sun, Jing; Liu, Qifa

    2017-04-18

    Autoimmune hematological diseases (AHDs) occur more frequently than other autoimmune complications after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and are often refractory to treatment. This study was to analyze the incidence and risk factors of AHDs as well as their response to treatment . Four hundred and forty-five adult malignant hematopoietic disorders underwent allo-HSCT were enrolled in this retrospective study, including 124 haploidentical donor (HRD), 140 unrelated donor (MUD) and 181 HLA-matched sibling donor (MSD) transplants. Twelve patients developed AHDs, including 6 autoimmune hemolytic anemia and 6 Evans syndrome. Evans syndrome all occurred in HRD transplants. The 3-year cumulative incidence of AHDs was 4.0 ± 1.3%, and HRD had higher incidence than MUD (8.7 ± 3.0% vs 1.8 ± 1.2%, P = 0.012) and MSD (8.7 ± 3.0% vs 3.5 ± 2.6%, P = 0.004 ). The steroids combined with Cyclosporine A were acted as the first line treatment, and the response rate was 73%. No patients experienced recurrence at a median follow up of 313 days after stopping treatment. HRD transplants (vs MUD: HR, 5.87; CI, 1.24 to 27.73; p = 0.026 and vs MSD: HR, 7.70; CI, 1.63 to 36.44; P = 0.010) and concurrent chronic graft versus host disease (HR, 3.76; CI, 1.18 to 11.92; P = 0.025) were risk factors for AHDs.

  8. Circulating hematopoietic stem cell count is a valuable predictor of prematurity complications in preterm newborns

    Directory of Open Access Journals (Sweden)

    Kotowski Maciej

    2012-09-01

    Full Text Available Abstract Background The frequency of preterm labour has risen over the last few years. Hence, there is growing interest in the identification of markers that may facilitate prediction and prevention of premature birth complications. Here, we studied the association of the number of circulating stem cell populations with the incidence of complications typical of prematurity. Methods The study groups consisted of 90 preterm (23–36 weeks of gestational age and 52 full-term (37–41 weeks infants. Non-hematopoietic stem cells (non-HSCs; CD45-lin-CD184+, enriched in very small embryonic-like stem cells (VSELs, expressing pluripotent (Oct-4, Nanog, early neural (β-III-tubulin, and oligodendrocyte lineage (Olig-1 genes as well as hematopoietic stem cells (HSCs; CD45+lin-CD184+, and circulating stem/progenitor cells (CSPCs; CD133+CD34+; CD133-CD34+ in association with characteristics of prematurity and preterm morbidity were analyzed in cord blood (CB and peripheral blood (PB until the sixth week after delivery. Phenotype analysis was performed using flow cytometry methods. Clonogenic assays suitable for detection of human hematopoietic progenitor cells were also applied. The quantitative parameters were compared between groups by the Mann–Whitney test and between time points by the Friedman test. Fisher’s exact test was used for qualitative variables. Results We found that the number of CB non-HSCs/VSELs is inversely associated with the birth weight of preterm infants. More notably, a high number of CB HSCs is strongly associated with a lower risk of prematurity complications including intraventricular hemorrhage, respiratory distress syndrome, infections, and anemia. The number of HSCs remains stable for the first six weeks of postnatal life. Besides, the number of CSPCs in CB is significantly higher in preterm infants than in full-term neonates (p  Conclusion We conclude that CB HSCs are markedly associated with the development of premature

  9. Nonmyeloablative and reduced-intensity conditioning for allogeneic hematopoietic stem cell transplantation: a clinical review.

    Science.gov (United States)

    Pollack, Seth M; O'Connor, Thomas P; Hashash, Jana; Tabbara, Imad A

    2009-12-01

    Allogeneic hematopoietic stem cell transplantation provides many patients, with hematological and malignant diseases, hope of remission and in some cases cure. Because the toxicities of this approach are severe, its use has been limited to younger healthier patients. Nonmyeloablative and reduced intensity conditioning regimens depend more on donor cellular immune effects and less on the cytotoxic effects of the conditioning regimen to eradicate the underlying disease. This approach is based on the induction of host tolerance to donor cells followed by the administration of scheduled donor T-lymphocytes infusions. Accumulated clinical data have been encouraging, and prospective studies are underway to compare this approach to conventional myeloablative allogeneic stem cell transplantation with regard to outcome, durability of responses, effects on the immune system, and the consequences of late complications such as chronic graft-versus-host disease.

  10. Acute Fibrinous and Organizing Pneumonia Associated With Allogenic Hematopoietic Stem Cell Transplant Successfully Treated With Corticosteroids

    Directory of Open Access Journals (Sweden)

    Lam-Phuong Nguyen DO

    2016-04-01

    Full Text Available Acute fibrinous and organizing pneumonia (AFOP is an extremely rare, relatively new, and distinct histological pattern of acute lung injury characterized predominately by the presence of intra-alveolar fibrin and associated organizing pneumonia. AFOP may be idiopathic or associated with a wide spectrum of clinical conditions. It has a variable clinical presentation from mild respiratory symptoms to that similar to the acute respiratory distress syndrome. Currently there is no consensus on treatment, and corticosteroids previously were of unclear benefit. To date, there are less than 40 cases of AFOP reported in the literature and only one has been linked to hematopoietic stem cell transplantation. Here we report the first case series of 2 patients who developed AFOP following allogenic stem cell transplant that were successfully treated with high-dose corticosteroids.

  11. Automated Identification and Localization of Hematopoietic Stem Cells in 3D Intravital Microscopy Data

    Directory of Open Access Journals (Sweden)

    Reema A. Khorshed

    2015-07-01

    Full Text Available Measuring three-dimensional (3D localization of hematopoietic stem cells (HSCs within the bone marrow microenvironment using intravital microscopy is a rapidly expanding research theme. This approach holds the key to understanding the detail of HSC-niche interactions, which are critical for appropriate stem cell function. Due to the complex tissue architecture of the bone marrow and to the progressive introduction of scattering and signal loss at increasing imaging depths, there is no ready-made software to handle efficient segmentation and unbiased analysis of the data. To address this, we developed an automated image analysis tool that simplifies and standardizes the biological interpretation of 3D HSC microenvironment images. The algorithm identifies HSCs and measures their localization relative to surrounding osteoblast cells and bone collagen. We demonstrate here the effectiveness, consistency, and accuracy of the proposed approach compared to current manual analysis and its wider applicability to analyze other 3D bone marrow components.

  12. Catalase inhibits ionizing radiation-induced apoptosis in hematopoietic stem and progenitor cells.

    Science.gov (United States)

    Xiao, Xia; Luo, Hongmei; Vanek, Kenneth N; LaRue, Amanda C; Schulte, Bradley A; Wang, Gavin Y

    2015-06-01

    Hematologic toxicity is a major cause of mortality in radiation emergency scenarios and a primary side effect concern in patients undergoing chemo-radiotherapy. Therefore, there is a critical need for the development of novel and more effective approaches to manage this side effect. Catalase is a potent antioxidant enzyme that coverts hydrogen peroxide into hydrogen and water. In this study, we evaluated the efficacy of catalase as a protectant against ionizing radiation (IR)-induced toxicity in hematopoietic stem and progenitor cells (HSPCs). The results revealed that catalase treatment markedly inhibits IR-induced apoptosis in murine hematopoietic stem cells and hematopoietic progenitor cells. Subsequent colony-forming cell and cobble-stone area-forming cell assays showed that catalase-treated HSPCs can not only survive irradiation-induced apoptosis but also have higher clonogenic capacity, compared with vehicle-treated cells. Moreover, transplantation of catalase-treated irradiated HSPCs results in high levels of multi-lineage and long-term engraftments, whereas vehicle-treated irradiated HSPCs exhibit very limited hematopoiesis reconstituting capacity. Mechanistically, catalase treatment attenuates IR-induced DNA double-strand breaks and inhibits reactive oxygen species. Unexpectedly, we found that the radioprotective effect of catalase is associated with activation of the signal transducer and activator of transcription 3 (STAT3) signaling pathway and pharmacological inhibition of STAT3 abolishes the protective activity of catalase, suggesting that catalase may protect HSPCs against IR-induced toxicity via promoting STAT3 activation. Collectively, these results demonstrate a previously unrecognized mechanism by which catalase inhibits IR-induced DNA damage and apoptosis in HSPCs.

  13. Parental haploidentical hematopoietic stem cell transplantation for hematologic diseases: a report of 45 cases

    Directory of Open Access Journals (Sweden)

    Xi-xi XIANG

    2012-02-01

    Full Text Available Objective  The present report describes the clinical effects of parental haploidentical hematopoietic stem celltransplantation (hi-allo-HSCT in the treatment of hematologic diseases. Methods  A total of 45 patients received parental hiallo-HSCT from July 2007 to January 2011. The therapeutic effects and complications were observed. Results  Engraftment was successful in a total of 43 patients. Implantation failed in 2 patients. The incidence of the graft versus host disease (GVHD was 62.2%. The incidence of acute GVHD was 40.0%, and chronic GVHD occurred in 22.2% of the patients. The incidence of GVHD was lower when the father was the donor compared with the mother was the donor. The incidence of GVHD was related to the age of the donor and the number of HLA matching sites. In addition, infections observed in the present study were mainly blood-borne with cytomegalovirus as the invader and lung infections. During the follow-up period of 6 months to 4 years, six patients died in the 43 patients with successful implantation. The major cause of death was infection and a relapse of their original disease. The disease free survival (DFS rate was 86.7%. Seven patients additionally received umbilical cord blood, their efficacy in the transplantation seemed better than those who received parental stem cells only, as hematopoietic reconstruction was faster and the incidence of GVHD accounted for only 7.14% of the total incidence rate. Conclusions  Parental hi-allo-HSCT is an effective treatment for hematologic diseases. A young male donor with more HLA matching sites is recommended to prevent GVHD and infection. The combination of parental hi-allo-HSCT and umbilical cord blood transplantation could result in positive effects with faster hematopoietic reconstruction and a lower incidence of GVHD.

  14. Gab2 promotes hematopoietic stem cell maintenance and self-renewal synergistically with STAT5.

    Directory of Open Access Journals (Sweden)

    Geqiang Li

    2010-02-01

    Full Text Available Grb2-associated binding (Gab adapter proteins play major roles in coordinating signaling downstream of hematopoietic cytokine receptors. In hematopoietic cells, Gab2 can modulate phosphatidylinositol-3 kinase and mitogen associated protein kinase activities and regulate the long-term multilineage competitive repopulating activity of hematopoietic stem cells (HSCs. Gab2 may also act in a linear pathway upstream or downstream of signal transducer and activator of transcription-5 (STAT5, a major positive regulator of HSC function. Therefore, we aimed to determine whether Gab2 and STAT5 function in hematopoiesis in a redundant or non-redundant manner.To do this we generated Gab2 mutant mice with heterozygous and homozygous deletions of STAT5. In heterozygous STAT5 mutant mice, deficiencies in HSC/multipotent progenitors were reflected by decreased long-term repopulating activity. This reduction in repopulation function was mirrored in the reduced growth response to early-acting cytokines from sorted double mutant c-Kit(+Lin(-Sca-1(+ (KLS cells. Importantly, in non-ablated newborn mice, the host steady-state engraftment ability was impaired by loss of Gab2 in heterozygous STAT5 mutant background. Fetal liver cells isolated from homozygous STAT5 mutant mice lacking Gab2 showed significant reduction in HSC number (KLS CD150(+CD48(-, reduced HSC survival, and dramatic loss of self-renewal potential as measured by serial transplantation.These data demonstrate new functions for Gab2 in hematopoiesis in a manner that is non-redundant with STAT5. Furthermore, important synergy between STAT5 and Gab2 was observed in HSC self-renewal, which might be exploited to optimize stem cell-based therapeutics.

  15. Angiotensin II Regulation of Proliferation, Differentiation, and Engraftment of Hematopoietic Stem Cells.

    Science.gov (United States)

    Kim, Seungbum; Zingler, Michael; Harrison, Jeffrey K; Scott, Edward W; Cogle, Christopher R; Luo, Defang; Raizada, Mohan K

    2016-03-01

    Emerging evidence indicates that differentiation and mobilization of hematopoietic cell are critical in the development and establishment of hypertension and hypertension-linked vascular pathophysiology. This, coupled with the intimate involvement of the hyperactive renin-angiotensin system in hypertension, led us to investigate the hypothesis that chronic angiotensin II (Ang II) infusion affects hematopoietic stem cell (HSC) regulation at the level of the bone marrow. Ang II infusion resulted in increases in hematopoietic stem/progenitor cells (83%) and long-term HSC (207%) in the bone marrow. Interestingly, increases of HSCs and long-term HSCs were more pronounced in the spleen (228% and 1117%, respectively). Furthermore, we observed higher expression of C-C chemokine receptor type 2 in these HSCs, indicating there was increased myeloid differentiation in Ang II-infused mice. This was associated with accumulation of C-C chemokine receptor type 2(+) proinflammatory monocytes in the spleen. In contrast, decreased engraftment efficiency of GFP(+) HSC was observed after Ang II infusion. Time-lapse in vivo imaging and in vitro Ang II pretreatment demonstrated that Ang II induces untimely proliferation and differentiation of the donor HSC resulting in diminished HSC engraftment and bone marrow reconstitution. We conclude that (1) chronic Ang II infusion regulates HSC proliferation, mediated by angiotensin receptor type 1a, (2) Ang II accelerates HSC to myeloid differentiation resulting in accumulation of C-C chemokine receptor type 2(+) HSCs and inflammatory monocytes in the spleen, and (3) Ang II impairs homing and reconstitution potentials of the donor HSCs. These observations highlight the important regulatory roles of Ang II on HSC proliferation, differentiation, and engraftment. © 2016 American Heart Association, Inc.

  16. Milestones of Hematopoietic Stem Cell Transplantation – From First Human Studies to Current Developments

    Science.gov (United States)

    Juric, Mateja Kralj; Ghimire, Sakhila; Ogonek, Justyna; Weissinger, Eva M.; Holler, Ernst; van Rood, Jon J.; Oudshoorn, Machteld; Dickinson, Anne; Greinix, Hildegard T.

    2016-01-01

    Since the early beginnings, in the 1950s, hematopoietic stem cell transplantation (HSCT) has become an established curative treatment for an increasing number of patients with life-threatening hematological, oncological, hereditary, and immunological diseases. This has become possible due to worldwide efforts of preclinical and clinical research focusing on issues of transplant immunology, reduction of transplant-associated morbidity, and mortality and efficient malignant disease eradication. The latter has been accomplished by potent graft-versus-leukemia (GvL) effector cells contained in the stem cell graft. Exciting insights into the genetics of the human leukocyte antigen (HLA) system allowed improved donor selection, including HLA-identical related and unrelated donors. Besides bone marrow, other stem cell sources like granulocyte-colony stimulating-mobilized peripheral blood stem cells and cord blood stem cells have been established in clinical routine. Use of reduced-intensity or non-myeloablative conditioning regimens has been associated with a marked reduction of non-hematological toxicities and eventually, non-relapse mortality allowing older patients and individuals with comorbidities to undergo allogeneic HSCT and to benefit from GvL or antitumor effects. Whereas in the early years, malignant disease eradication by high-dose chemotherapy or radiotherapy was the ultimate goal; nowadays, allogeneic HSCT has been recognized as cellular immunotherapy relying prominently on immune mechanisms and to a lesser extent on non-specific direct cellular toxicity. This chapter will summarize the key milestones of HSCT and introduce current developments. PMID:27881982

  17. Coordinate expansion of murine hematopoietic and mesenchymal stem cell compartments by SHIPi.

    Science.gov (United States)

    Brooks, R; Iyer, S; Akada, H; Neelam, S; Russo, C M; Chisholm, J D; Kerr, W G

    2015-03-01

    Promoting the expansion of adult stem cell populations offers the potential to ameliorate radiation or chemotherapy-induced bone marrow failure and allows for expedited recovery for patients undergoing these therapies. Previous genetic studies suggested a pivotal role for SH2 domain-containing inositol-5-phosphatase 1 (SHIP1) in limiting the size of the hematopoietic stem cell (HSC) compartment. The aim of this study was to determine whether our recent development of small molecule SHIP1 inhibitors offers the potential for pharmacological expansion of the HSC compartment in vivo. We show here that treatment of mice with aminosteroid inhibitors of SHIP1 (SHIPi) more than doubles the size of the adult mesenchymal stem cell (MSC) compartment while simultaneously expanding the HSC pool sixfold. Consistent with its ability to target SHIP1 function in vivo, SHIPi also significantly increases plasma granulocyte colony-stimulating factor (G-CSF) levels, a growth factor that supports proliferation of HSC. Here, we show that SHIPi-induced G-CSF production mediates HSC and MSC expansion, as in vivo neutralization of G-CSF abrogates the SHIPi-induced expansion of both the HSC and MSC compartments. Due to its expansionary effect on adult stem cell compartments, SHIPi represents a potential novel strategy to improve declining stem cell function in both therapy induced and genetically derived bone marrow failure syndromes. © 2014 AlphaMed Press.

  18. Normal hematopoietic stem cell function in mice with enforced expression of the Hippo signaling effector YAP1.

    Science.gov (United States)

    Jansson, Lina; Larsson, Jonas

    2012-01-01

    The Hippo pathway has recently been implicated in the regulation of organ size and stem cells in multiple tissues. The transcriptional cofactor yes-associated protein 1 (Yap1) is the most downstream effector of Hippo signaling and is functionally repressed by the upstream components of the pathway. Overexpression of YAP1 stimulates proliferation of stem and progenitor cells in many tissues, consistent with inhibition of Hippo signaling. To study the role of Hippo signaling in hematopoietic stem cells (HSCs), we created a transgenic model with inducible YAP1 expression exclusively within the hematopoietic system. Following 3 months induction, examination of blood and bone marrow in the induced mice revealed no changes in the distribution of the hematopoietic lineages compared to control mice. Moreover, the progenitor cell compartment was unaltered as determined by colony forming assays and immunophenotyping. To address whether YAP1 affects the quantity and function of HSCs we performed competitive transplantation experiments. We show that ectopic YAP1 expression does not influence HSC function neither during steady state nor in situations of hematopoietic stress. This is in sharp contrast to effects seen on stem- and progenitor cells in other organs and suggests highly tissue specific functions of the Hippo pathway in regulation of stem cells.

  19. Normal hematopoietic stem cell function in mice with enforced expression of the Hippo signaling effector YAP1.

    Directory of Open Access Journals (Sweden)

    Lina Jansson

    Full Text Available The Hippo pathway has recently been implicated in the regulation of organ size and stem cells in multiple tissues. The transcriptional cofactor yes-associated protein 1 (Yap1 is the most downstream effector of Hippo signaling and is functionally repressed by the upstream components of the pathway. Overexpression of YAP1 stimulates proliferation of stem and progenitor cells in many tissues, consistent with inhibition of Hippo signaling. To study the role of Hippo signaling in hematopoietic stem cells (HSCs, we created a transgenic model with inducible YAP1 expression exclusively within the hematopoietic system. Following 3 months induction, examination of blood and bone marrow in the induced mice revealed no changes in the distribution of the hematopoietic lineages compared to control mice. Moreover, the progenitor cell compartment was unaltered as determined by colony forming assays and immunophenotyping. To address whether YAP1 affects the quantity and function of HSCs we performed competitive transplantation experiments. We show that ectopic YAP1 expression does not influence HSC function neither during steady state nor in situations of hematopoietic stress. This is in sharp contrast to effects seen on stem- and progenitor cells in other organs and suggests highly tissue specific functions of the Hippo pathway in regulation of stem cells.

  20. Therapeutic role of hematopoietic stem cells in autism spectrum disorder-related inflammation

    Directory of Open Access Journals (Sweden)

    Dario eSiniscalco

    2013-06-01

    Full Text Available Autism and autism spectrum disorders (ASDs are heterogeneous, severe neurodevelopmental disorders with core symptoms of dysfunctions in social interactions and communication skills, restricted interests, repetitive - stereotypic verbal and non-verbal behaviours. Biomolecular evidence points to complex gene-environmental interactions in ASDs. Several biochemical processes are associated with ASDs: oxidative stress (including endoplasmic reticulum stress, decreased methylation capacity, limited production of glutathione; mitochondrial dysfunction, intestinal dysbiosis, increased toxic metal burden and various immune abnormalities. The known immunological disorders include: T-lymphocyte populations and function, gene expression changes in monocytes, several autoimmune-related findings, high levels of N-acetylgalactosaminidase (which precludes macrophage activation, and primary immune deficiencies. These immunological observations may result in minicolumn structural changes in the brain, as well as, abnormal immune mediation of synaptic functions. Equally, these immune dysregulations serve as the rationale for immune-directed interventions such as hematopoietic stem cells (HSCs, which are pivotal in controlling chronic inflammation and in the restoration of immunological balance. These properties make them intriguing potential agents for ASD treatments. This prospective review will focus on the current state-of-the-art knowledge and challenges intrinsic in the application of hematopoietic stem cells for ASD-related immunological disorders.

  1. Extramedullary hematopoiesis: Elucidating the function of the hematopoietic stem cell niche (Review).

    Science.gov (United States)

    Yamamoto, Kouhei; Miwa, Yukako; Abe-Suzuki, Shiho; Abe, Shinya; Kirimura, Susumu; Onishi, Iichiroh; Kitagawa, Masanobu; Kurata, Morito

    2016-01-01

    Extramedullary hematopoiesis (EMH) occurs under various circumstances, including during embryonic/developmental periods, pathological status secondary to insufficient bone marrow function or ineffective hematopoiesis, in hematological disorders, for example malignancies, as well as stromal disorders of the bone. EMH is characterized by hematopoietic cell accumulations in multiple body locations. Common EMH locations observed in clinical and pathological practice include the spleen, liver, lymph nodes and para‑vertebral regions. Among the various organs associated with EMH, the spleen offers a unique site for evaluation of hematopoietic stem cell (HSC)/niche interactions, as this organ is one of the most common sites of EMH. However, the spleen does not have a major role in embryonic/developmental hematopoiesis. A recent study by our group revealed that circulating HSCs may be trapped by chemokine (C‑X‑C motif) ligand 12 (CXCL12)‑positive cells at the margin of sinuses near CXCL12‑positive endothelial cells, resulting in the initiation of the first step of EMH, which is a similar mechanism to bone marrow hematopoiesis. The present review briefly discusses the environment of EMH in extramedullary spaces in order to investigate the mechanisms underlying HSC maintenance, and aid the elucidation of the niche‑stem cell interactions that occur in the bone marrow.

  2. Importance of killer immunoglobulin-like receptors in allogeneic hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Danilo Santana Alessio Franceschi

    2011-01-01

    Full Text Available Hematopoietic stem cell transplantation is the treatment of choice for many hematologic diseases, such as multiple myeloma, bone marrow aplasia and leukemia. Human leukocyte antigen (HLA compatibility is an important tool to prevent post-transplant complications such as graft rejection and graft-versus-host disease, but the high rates of relapse limit the survival of transplant patients. Natural Killer cells, a type of lymphocyte that is a key element in the defense against tumor cells, cells infected with viruses and intracellular microbes, have different receptors on their surfaces that regulate their cytotoxicity. Killer immunoglobulin-like receptors are the most important, interacting consistently with human leukocyte antigen class I molecules present in other cells and thus controlling the activation of natural killer cells. Several studies have shown that certain combinations of killer immunoglobulin-like receptors and human leukocyte antigens (in both donors and recipients can affect the chances of survival of transplant patients, particularly in relation to the graft-versusleukemia effect, which may be associated to decreased relapse rates in certain groups. This review aims to shed light on the mechanisms and effects of killer immunoglobulin-like receptors - human leukocyte antigen associations and their implications following hematopoietic stem cell transplantation, and to critically analyze the results obtained by the studies presented herein.

  3. Hematopoietic Stem Cell Transplantation—50 Years of Evolution and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Israel Henig

    2014-10-01

    Full Text Available Hematopoietic stem cell transplantation is a highly specialized and unique medical procedure. Autologous transplantation allows the administration of high-dose chemotherapy without prolonged bone marrow aplasia. In allogeneic transplantation, donor-derived stem cells provide alloimmunity that enables a graft-versus-tumor effect to eradicate residual disease and prevent relapse. The first allogeneic transplantation was performed by E. Donnall Thomas in 1957. Since then the field has evolved and expanded worldwide. New indications beside acute leukemia and aplastic anemia have been constantly explored and now include congenital disorders of the hematopoietic system, metabolic disorders, and autoimmune disease. The use of matched unrelated donors, umbilical cord blood units, and partially matched related donors has dramatically extended the availability of allogeneic transplantation. Transplant-related mortality has decreased due to improved supportive care, including better strategies to prevent severe infections and with the incorporation of reduced-intensity conditioning protocols that lowered the toxicity and allowed for transplantation in older patients. However, disease relapse and graft-versus-host disease remain the two major causes of mortality with unsatisfactory progress. Intense research aiming to improve adoptive immunotherapy and increase graft-versus-leukemia response while decreasing graft-versus-host response might bring the next breakthrough in allogeneic transplantation. Strategies of graft manipulation, tumor-associated antigen vaccinations, monoclonal antibodies, and adoptive cellular immunotherapy have already proved clinically efficient. In the following years, allogeneic transplantation is likely to become more complex, more individualized, and more efficient.

  4. Total Hip Arthroplasty in Patients With Avascular Necrosis After Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Vijapura, Anita; Levine, Harlan B; Donato, Michele; Hartzband, Mark A; Baker, Melissa; Klein, Gregg R

    2018-03-01

    The immunosuppressive regimens required for hematopoietic stem cell transplantation predispose recipients to complications, including avascular necrosis. Cancer-related comorbidities, immunosuppression, and poor bone quality theoretically increase the risk for perioperative medical complications, infection, and implant-related complications in total joint arthroplasty. This study reviewed 20 primary total hip arthroplasties for avascular necrosis in 14 patients. Outcomes were assessed at routine clinical visits and Harris hip scores were calculated. Follow-up radiographs were evaluated for component malposition, loosening, polyethylene wear, and osteolysis. Average follow-up was 44.5 months for all patients. Postoperative clinical follow-up revealed good to excellent outcomes, with significant improvement in functional outcome scores. There were no periprosthetic infections or revisions for aseptic loosening. There was 1 dislocation on postoperative day 40, which was treated successfully with a closed reduction. Two patients with a prior history of venous thromboembolism developed a pulmonary embolus on postoperative day 13 and 77, respectively. Four patients died several months to years after arthroplasty of complications unrelated to the surgical procedure. Total hip arthroplasty can both be safely performed and greatly improve quality of life in recipients of hematopoietic stem cell transplantation who develop avascular necrosis. However, prolonged venous thromboembolism prophylaxis should be carefully considered in this high-risk patient population. [Orthopedics. 2018; 41(2):e257-e261.]. Copyright 2018, SLACK Incorporated.

  5. Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells.

    Science.gov (United States)

    Hoban, Megan D; Cost, Gregory J; Mendel, Matthew C; Romero, Zulema; Kaufman, Michael L; Joglekar, Alok V; Ho, Michelle; Lumaquin, Dianne; Gray, David; Lill, Georgia R; Cooper, Aaron R; Urbinati, Fabrizia; Senadheera, Shantha; Zhu, Allen; Liu, Pei-Qi; Paschon, David E; Zhang, Lei; Rebar, Edward J; Wilber, Andrew; Wang, Xiaoyan; Gregory, Philip D; Holmes, Michael C; Reik, Andreas; Hollis, Roger P; Kohn, Donald B

    2015-04-23

    Sickle cell disease (SCD) is characterized by a single point mutation in the seventh codon of the β-globin gene. Site-specific correction of the sickle mutation in hematopoietic stem cells would allow for permanent production of normal red blood cells. Using zinc-finger nucleases (ZFNs) designed to flank the sickle mutation, we demonstrate efficient targeted cleavage at the β-globin locus with minimal off-target modification. By co-delivering a homologous donor template (either an integrase-defective lentiviral vector or a DNA oligonucleotide), high levels of gene modification were achieved in CD34(+) hematopoietic stem and progenitor cells. Modified cells maintained their ability to engraft NOD/SCID/IL2rγ(null) mice and to produce cells from multiple lineages, although with a reduction in the modification levels relative to the in vitro samples. Importantly, ZFN-driven gene correction in CD34(+) cells from the bone marrow of patients with SCD resulted in the production of wild-type hemoglobin tetramers. © 2015 by The American Society of Hematology.

  6. Bmi1 confers resistance to oxidative stress on hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Shunsuke Nakamura

    Full Text Available The polycomb-group (PcG proteins function as general regulators of stem cells. We previously reported that retrovirus-mediated overexpression of Bmi1, a gene encoding a core component of polycomb repressive complex (PRC 1, maintained self-renewing hematopoietic stem cells (HSCs during long-term culture. However, the effects of overexpression of Bmi1 on HSCs in vivo remained to be precisely addressed.In this study, we generated a mouse line where Bmi1 can be conditionally overexpressed under the control of the endogenous Rosa26 promoter in a hematopoietic cell-specific fashion (Tie2-Cre;R26Stop(FLBmi1. Although overexpression of Bmi1 did not significantly affect steady state hematopoiesis, it promoted expansion of functional HSCs during ex vivo culture and efficiently protected HSCs against loss of self-renewal capacity during serial transplantation. Overexpression of Bmi1 had no effect on DNA damage response triggered by ionizing radiation. In contrast, Tie2-Cre;R26Stop(FLBmi1 HSCs under oxidative stress maintained a multipotent state and generally tolerated oxidative stress better than the control. Unexpectedly, overexpression of Bmi1 had no impact on the level of intracellular reactive oxygen species (ROS.Our findings demonstrate that overexpression of Bmi1 confers resistance to stresses, particularly oxidative stress, onto HSCs. This thereby enhances their regenerative capacity and suggests that Bmi1 is located downstream of ROS signaling and negatively regulated by it.

  7. Hematopoietic Stem Cell Therapy to Countermeasure Cancer in Astronauts during Exploration of Deep Space

    Science.gov (United States)

    Ohi, S.; Kindred, R. P.; Roach, A-N.; Edossa, A.; Kim, B. C.; Gonda, S. R.; Emami, K.

    2004-01-01

    Exposure to cosmic radiation can cause chromosomal mutations, which may lead to cancer in astronauts engaged in space exploration. Therefore, our goals are to develop countermeasures to prevent space-induced cancer using hematopoietic stem cell therapy (HSCT) and gene therapy. This presentation focuses on HSCT for cancer. Our previous experiments on a simulated, space-induced immuno-deficiency model (mouse hind limb unloading ) indicated that transplanted hematopoietic stem cells (HSCs) could enhance the host's immunity by effectively eliminating bacterial infection (Ohi S, et. al. J Grav Physiol 10, P63-64, 2003; Ohi S, et. al. Proceedings of the Space Technology and Applications International Forum (STAIF) . American Institute of Physics, New York, pp. 938-950, 2004). Hence, we hypothesized that the HSCs might be effective in combating cancer as well. Studies of cocultured mouse HSCs with beta-galactosidase marked rat gliosarcoma spheroids (9L/lacZ), a cancer model, indicated antagonistic interactions , resulting in destruction of the spheroids by HSCs. Trypan Blue dye-exclusion assays were consistent with the conclusion. These results show potential usehlness of HSCT for cancer. Currently, the NASA Hydrodynamic Focusing Bioreactor (HFB), a space analog tissue/cell culture system, is being used to study invasion of the gliosarcoma (GS) spheroids into mouse brain with or without co-cultured HSCs. This may simulate the metastasis of gliosarcoma to brain. There is a tendency for the HSCs to inhibit invasion of GS spheroids into brain, as evidenced by the X-gal staining.

  8. Caregiver and health care provider preferences of nutritional support in a hematopoietic stem cell transplant unit.

    Science.gov (United States)

    Williams-Hooker, Ruth; Adams, Marissa; Havrilla, David A; Leung, Wing; Roach, Robin R; Mosby, Terezie T

    2015-08-01

    Many pediatric oncology patients undergoing hematopoietic stem cell transplantation (HSCT) require nutritional support (NS) because of their inability to consume adequate caloric intake enough calories orally. Although NS can be provided either enteraly (EN) or parenteraly (PN), EN is the preferred method of NS as long as if the gastrointestinal tract is functioning. In this qualitative study, we determined the type of NS preferences and the reservations of caregivers of pediatric HSCT patients undergoing hematopoietic stem cell transplantation (HSCT) as well as those of health care (HC) providers working on the HSCT unit. A survey was developed and completed anonymously by HC providers and caregivers. The hypothesis was that HC providers and caregivers would prefer PN because it is convenient to use in patients who already have a central line in place. Most caregivers preferred PN to EN, while most HC providers preferred EN to PN. The barrier between EN initiation and caregivers' approval was the caregivers' perception that EN was invasive and painful, most common obstacle for initiation of EN among caregivers was that it hurts/is invasive, while the barrier with HC providers was vomiting and/abdominal pain associated with EN. If caregivers were better educated about NS and the advantages/disadvantages of the different forms of NS, their preferences may change. There have been policy changes at St. Jude have been implemented since this study, and an outpatient dietitian now provides education to caregivers about NS during the pre-evaluation for HSCT. © 2015 Wiley Periodicals, Inc.

  9. Less is More: unveiling the functional core of hematopoietic stem cells through knockout mice

    Science.gov (United States)

    Rossi, Lara; Lin, Kuanyin K.; Boles, Nathan C.; Yang, Liubin; King, Katherine Y.; Jeong, Mira; Mayle, Allison; Goodell, Margaret A.

    2012-01-01

    Summary Hematopoietic stem cells (HSCs) represent one of the first recognized somatic stem cells. As such, nearly 200 genes have been examined for roles in HSC function in knockout mice. In this review, we compile the majority of these reports to provide a broad overview of the functional modules revealed by these genetic analyses and highlight some key regulatory pathways involved, including cell cycle control, TGF-β signaling, Pten/AKT signaling, Wnt signaling, and cytokine signaling. Finally, we propose recommendations for characterization of HSC function in knockout mice to facilitate cross-study comparisons that would generate a more cohesive picture of HSC biology. In the field of design, the minimalist movement stripped down buildings and objects to their most basic features, a sentiment that architect Ludwig Mies van der Rohe summarized in his motto “less is more”. By depleting HSCs of specific genes, knockout studies transpose the minimalist approach into research biology, providing insights into the essential core of genetic features that is indispensable for a well-functioning hematopoietic system. PMID:22958929

  10. Imaging spectrum of central nervous system complications of hematopoietic stem cell and solid organ transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Server, Andres [Oslo University Hospital-Rikshospitalet, Section of Neuroradiology, Department of Radiology and Nuclear Medicine, Oslo (Norway); Bargallo, Nuria [Universitat de Barcelona, Section of Neuroradiology, Department of Radiology, Hospital Clinic, Barcelona (Spain); Institut d' investigacions Biomediques August Pi i Sunyer (IDIBARS), Resonance Magnetic Image Core Facility, Barcelona (Spain); Floeisand, Yngvar [Oslo University Hospital-Rikshospitalet, Department of Hematology, Oslo (Norway); Sponheim, Jon [Oslo University Hospital-Rikshospitalet, Section of Gastroenterology, Department of Transplantation Medicine, Oslo (Norway); Graus, Francesc [Universitat de Barcelona, Department of Neurology, Hospital Clinic, Barcelona (Spain); Institut d' investigacions Biomediques August Pi i Sunyer (IDIBARS), Neuroimmunology Program, Barcelona (Spain); Hald, John K. [Oslo University Hospital-Rikshospitalet, Section of Neuroradiology, Department of Radiology and Nuclear Medicine, Oslo (Norway); University of Oslo, Faculty of Medicine, Oslo (Norway)

    2017-02-15

    Neurologic complications are common after hematopoietic stem cell transplantation (HSCT) and solid organ transplantation (SOT) and affect 30-60% of transplant recipients. The aim of this article is to provide a practical imaging approach based on the timeline and etiology of CNS abnormalities, and neurologic complications related to transplantation of specific organs. The lesions will be classified based upon the interval from HSCT procedure: pre-engraftment period <30 days, early post-engraftment period 30-100 days, late post-engraftment period >100 days, and the interval from SOT procedure: postoperative phase 1-4 weeks, early posttransplant syndromes 1-6 months, late posttransplant syndromes >6 months. Further differentiation will be based on etiology: infections, drug toxicity, metabolic derangements, cerebrovascular complications, and posttransplantation malignancies. In addition, differentiation will be based on complications specific to the type of transplantation: allogeneic and autologous hematopoietic stem cells (HSC), heart, lung, kidney, pancreas, and liver. Thus, in this article we emphasize the strategic role of neuroradiology in the diagnosis and response to treatment by utilizing a methodical approach in the work up of patients with neurologic complications after transplantation. (orig.)

  11. Imaging spectrum of central nervous system complications of hematopoietic stem cell and solid organ transplantation

    International Nuclear Information System (INIS)

    Server, Andres; Bargallo, Nuria; Floeisand, Yngvar; Sponheim, Jon; Graus, Francesc; Hald, John K.

    2017-01-01

    Neurologic complications are common after hematopoietic stem cell transplantation (HSCT) and solid organ transplantation (SOT) and affect 30-60% of transplant recipients. The aim of this article is to provide a practical imaging approach based on the timeline and etiology of CNS abnormalities, and neurologic complications related to transplantation of specific organs. The lesions will be classified based upon the interval from HSCT procedure: pre-engraftment period <30 days, early post-engraftment period 30-100 days, late post-engraftment period >100 days, and the interval from SOT procedure: postoperative phase 1-4 weeks, early posttransplant syndromes 1-6 months, late posttransplant syndromes >6 months. Further differentiation will be based on etiology: infections, drug toxicity, metabolic derangements, cerebrovascular complications, and posttransplantation malignancies. In addition, differentiation will be based on complications specific to the type of transplantation: allogeneic and autologous hematopoietic stem cells (HSC), heart, lung, kidney, pancreas, and liver. Thus, in this article we emphasize the strategic role of neuroradiology in the diagnosis and response to treatment by utilizing a methodical approach in the work up of patients with neurologic complications after transplantation. (orig.)

  12. MYSM1 Is Essential for Maintaining Hematopoietic Stem Cell (HSC) Quiescence and Survival.

    Science.gov (United States)

    Huo, Yi; Li, Bing-Yi; Lin, Zhi-Feng; Wang, Wei; Jiang, Xiao-Xia; Chen, Xu; Xi, Wen-Jin; Yang, An-Gang; Chen, Si-Yi; Wang, Tao

    2018-04-25

    BACKGROUND Histone H2A deubiquitinase MYSM1 has recently been shown to be essential for hematopoiesis and hematopoietic stem cell (HSC) function in both mice and humans. However, conventional MYSM1 knockouts cause partial embryonic lethality and growth retardation, and it is difficult to convincingly remove the effects of environmental factors on HSC differentiation and function. MATERIAL AND METHODS MYSM1 conditional knockout (cKO) mice were efficiently induced by using the Vav1-cre transgenic system. The Vav-Cre MYSM1 cKO mice were then analyzed to verify the intrinsic role of MYSM1 in hematopoietic cells. RESULTS MYSM1 cKO mice were viable and were born at normal litter sizes. At steady state, we observed a defect in hematopoiesis, including reduced bone marrow cellularity and abnormal HSC function. MYSM1 deletion drives HSCs from quiescence into rapid cycling, and MYSM1-deficient HSCs display impaired engraftment. In particular, the immature cycling cKO HSCs have elevated reactive oxygen species (ROS) levels and are prone to apoptosis, resulting in the exhaustion of the stem cell pool during stress response to 5-FU. CONCLUSIONS Our study using MYSM1 cKO mice confirms the important role of MYSM1 in maintaining HSC quiescence and survival.

  13. Human CD8 T cells generated in vitro from hematopoietic stem cells are functionally mature

    Directory of Open Access Journals (Sweden)

    Zúñiga-Pflücker Juan

    2011-03-01

    Full Text Available Abstract Background T cell development occurs within the highly specialized thymus. Cytotoxic CD8 T cells are critical in adaptive immunity by targeting virally infected or tumor cells. In this study, we addressed whether functional CD8 T cells can be generated fully in vitro using human umbilical cord blood (UCB hematopoietic stem cells (HSCs in coculture with OP9-DL1 cells. Results HSC/OP9-DL1 cocultures supported the differentiation of CD8 T cells, which were TCR/CD3hi CD27hi CD1aneg and thus phenotypically resembled mature functional CD8 single positive thymocytes. These in vitro-generated T cells also appeared to be conventional CD8 cells, as they expressed high levels of Eomes and low levels of Plzf, albeit not identical to ex vivo UCB CD8 T cells. Consistent with the phenotypic and molecular characterization, upon TCR-stimulation, in vitro-generated CD8 T cells proliferated, expressed activation markers (MHC-II, CD25, CD38, secreted IFN-γ and expressed Granzyme B, a cytotoxic T-cell effector molecule. Conclusion Taken together, the ability to direct human hematopoietic stem cell or T-progenitor cells towards a mature functional phenotype raises the possibility of establishing cell-based treatments for T-immunodeficiencies by rapidly restoring CD8 effector function, thereby mitigating the risks associated with opportunistic infections.

  14. Hematopoietic stem cell-derived exosomes promote hematopoietic differentiation of mouse embryonic stem cells in vitro via inhibiting the miR126/Notch1 pathway.

    Science.gov (United States)

    Liao, Feng-Ling; Tan, Lin; Liu, Hua; Wang, Jin-Ju; Ma, Xiao-Tang; Zhao, Bin; Chen, Yanfang; Bihl, Ji; Yang, Yi; Chen, Ri-Ling

    2018-04-01

    Cell-derived exosomes (EXs) can modulate target cell differentiation via microRNAs (miRs) that they carried. Previous studies have shown that miR126 is highly expressed in hematopoietic stem cells (HSCs) and plays a role in hematopoiesis via modulating the Notch pathway that participates in progenitors' cell fate decisions. In this study we investigated whether HSC-derived EXs (HSC-EXs) could affect the differentiation of mouse embryonic stem cells (ESCs) into HSCs. We prepared HSC-EXs con , HSC-EXs sc and HSC-EXs miR126 from control HSCs and the HSCs transfected with scramble control or miR126 mimics, respectively. HSC-EXs were isolated by ultracentrifugation and analyzed using nanoparticle tracking analysis. We incubated the collected EXs with mouse ESCs over a 10-d differentiation induction period, during which HSC-EXs and a Notch pathway activator (Jagged1, 100 ng/mL) were added to the cultures every 3 d. After the 10-d differentiation period, the expression levels of miR126, SSEA1, CD117, Sca1, Notch1 and Hes1 in ESCs were assessed. The generated HSCs were validated by flow cytometry using antibodies against HSC markers (CD117, CD34 and Sca1). Our results revealed that: (1) transfection with miR126 mimics significantly increased miR126 levels in HSC-EXs miR126 . (2) HSC-EX co-culture promoted mouse ESCs differentiation into HSCs with the most prominent effect found in the HSC-EXs miR126 co-culture. (3) HSC differentiation was verified by reduced SSEA1 expression and increased CD117 and Sca1 expression. (4) All the effects caused by HSC-EXs were accompanied by significant reduction of Notch1 and Hes1 expression, thus inhibition of the Notch1/Hes1 pathway, whereas activation of Notch by Jagged1 abolished the effects of HSC-EXs miR126 . In conclusion, HSC-EXs promote hematopoietic differentiation of mouse ESCs in vitro by inhibiting the miR126/Notch1 pathway.

  15. Gene editing in hematopoietic stem cells: a potential therapeutic approach for Fanconi anemia

    Energy Technology Data Exchange (ETDEWEB)

    Diez Cabezas, B.

    2015-07-01

    Gene therapy nowadays constitutes a safe and efficient treatment for a number of monogenic diseases affecting the hematopoietic system. Risks of insertional mutagenesis derived from the use of integrative vectors cannot, however, be completely excluded. Therefore, gene targeting has been proposed as a safer alternative, since the insertion of the herapeutic gene is driven to a specific locus in the genome. Gene targeting approaches are based on the use of specific nucleases which generate double strand breaks (DSBs) in a specific site of the genome,markedly enhancing the efficacy of homologous recombination (HR) with donor constructs harboring the gene of interest flanked by the corresponding homology arms. In this study we have optimized the conditions to target human lymphoblastic cell lines (LCLs) and also hematopoietic stem cells (HSCs) from healthy donors, with the final aim of correcting by gene editing the hematopoietic progenitor cells from Fanconi anemia subtype A (FA-A) patients. In particular, we have established a robust method to target both LCLs and HSCs in a safe harbor site in the genome, the AAVS1 locus. Our approach is based on the transduction of these cells with integrase-defective lentiviral vectors carrying a donor with the gene of interest, followed by the nucleofection of these cells with zinc finger nucleases used as mRNA. Using a control donor vector carrying the GFP reporter gene we have obtained, on average, 9.43% gene targeting efficiency in cord blood CD34+ cells from healthy donors. Moreover, we confirmed that gene targeting was also efficient in HSCs with long term and multipotent repopulation capacity, as demonstrated by transplants into immunodeficient mice. To improve the gene targeting efficiency, we investigated the feasibility of using gold nanoparticles, which were shown to improve the transduction efficiency of integrase-defective and competent lentiviral vectors in HSCs. This increment, however, did not lead to a higher gene

  16. Gene editing in hematopoietic stem cells: a potential therapeutic approach for Fanconi anemia

    International Nuclear Information System (INIS)

    Diez Cabezas, B.

    2015-01-01

    Gene therapy nowadays constitutes a safe and efficient treatment for a number of monogenic diseases affecting the hematopoietic system. Risks of insertional mutagenesis derived from the use of integrative vectors cannot, however, be completely excluded. Therefore, gene targeting has been proposed as a safer alternative, since the insertion of the herapeutic gene is driven to a specific locus in the genome. Gene targeting approaches are based on the use of specific nucleases which generate double strand breaks (DSBs) in a specific site of the genome,markedly enhancing the efficacy of homologous recombination (HR) with donor constructs harboring the gene of interest flanked by the corresponding homology arms. In this study we have optimized the conditions to target human lymphoblastic cell lines (LCLs) and also hematopoietic stem cells (HSCs) from healthy donors, with the final aim of correcting by gene editing the hematopoietic progenitor cells from Fanconi anemia subtype A (FA-A) patients. In particular, we have established a robust method to target both LCLs and HSCs in a safe harbor site in the genome, the AAVS1 locus. Our approach is based on the transduction of these cells with integrase-defective lentiviral vectors carrying a donor with the gene of interest, followed by the nucleofection of these cells with zinc finger nucleases used as mRNA. Using a control donor vector carrying the GFP reporter gene we have obtained, on average, 9.43% gene targeting efficiency in cord blood CD34+ cells from healthy donors. Moreover, we confirmed that gene targeting was also efficient in HSCs with long term and multipotent repopulation capacity, as demonstrated by transplants into immunodeficient mice. To improve the gene targeting efficiency, we investigated the feasibility of using gold nanoparticles, which were shown to improve the transduction efficiency of integrase-defective and competent lentiviral vectors in HSCs. This increment, however, did not lead to a higher gene

  17. A small-molecule/cytokine combination enhances hematopoietic stem cell proliferation via inhibition of cell differentiation.

    Science.gov (United States)

    Wang, Lan; Guan, Xin; Wang, Huihui; Shen, Bin; Zhang, Yu; Ren, Zhihua; Ma, Yupo; Ding, Xinxin; Jiang, Yongping

    2017-07-18

    Accumulated evidence supports the potent stimulating effects of multiple small molecules on the expansion of hematopoietic stem cells (HSCs) which are important for the therapy of various hematological disorders. Here, we report a novel, optimized formula, named the SC cocktail, which contains a combination of three such small molecules and four cytokines. Small-molecule candidates were individually screened and then combined at their optimal concentration with the presence of cytokines to achieve maximum capacity for stimulating the human CD34 + cell expansion ex vivo. The extent of cell expansion and the immunophenotype of expanded cells were assessed through flow cytometry. The functional preservation of HSC stemness was confirmed by additional cell and molecular assays in vitro. Subsequently, the expanded cells were transplanted into sublethally irradiated NOD/SCID mice for the assessment of human cell viability and engraftment potential in vivo. Furthermore, the expression of several genes in the cell proliferation and differentiation pathways was analyzed through quantitative polymerase chain reaction (qPCR) during the process of CD34 + cell expansion. The SC cocktail supported the retention of the immunophenotype of hematopoietic stem/progenitor cells remarkably well, by yielding purities of 86.6 ± 11.2% for CD34 + cells and 76.2 ± 10.5% for CD34 + CD38 - cells, respectively, for a 7-day culture. On day 7, the enhancement of expansion of CD34 + cells and CD34 + CD38 - cells reached a maxima of 28.0 ± 5.5-fold and 27.9 ± 4.3-fold, respectively. The SC cocktail-expanded CD34 + cells preserved the characteristics of HSCs by effectively inhibiting their differentiation in vitro and retained the multilineage differentiation potential in primary and secondary in vivo murine xenotransplantation trials. Further gene expression analysis suggested that the small-molecule combination strengthened the ability of the cytokines to enhance the Notch

  18. Comparative study of hematopoietic stem and progenitor cells between sexes in mice under physiological conditions along time.

    Science.gov (United States)

    Gasco, Samanta; Rando, Amaya; Zaragoza, Pilar; García-Redondo, Alberto; Calvo, Ana Cristina; Osta, Rosario

    2017-12-01

    Hematopoietic stem and progenitor cells (HSPCs) are attractive targets in regenerative medicine, although the differences in their homeostatic maintenance between sexes along time are still under debate. We accurately monitored hematopoietic stem cells (HSCs), common lymphoid progenitors (CLPs), and common myeloid progenitors (CMPs) frequencies by flow cytometry, by performing serial peripheral blood extractions from male and female B6SJL wild-type mice and found no significant differences. Only modest differences were found in the gene expression profile of Slamf1 and Gata2. Our findings suggest that both sexes could be used indistinctly to perform descriptive studies in the murine hematopoietic system, especially for flow cytometry studies in peripheral blood. This would allow diminishing the number of animals needed for the experimental procedures. In addition, the use of serial extractions in the same animals drastically decreases the number of animals needed. © 2017 International Federation for Cell Biology.

  19. Immunophenotype of hematopoietic stem cells from placental/umbilical cord blood after culture

    Directory of Open Access Journals (Sweden)

    P. Pranke

    2005-12-01

    Full Text Available Identification and enumeration of human hematopoietic stem cells remain problematic, since in vitro and in vivo stem cell assays have different outcomes. We determined if the altered expression of adhesion molecules during stem cell expansion could be a reason for the discrepancy. CD34+CD38- and CD34+CD38+ cells from umbilical cord blood were analyzed before and after culture with thrombopoietin (TPO, FLT-3 ligand (FL and kit ligand (KL; or stem cell factor in different combinations: TPO + FL + KL, TPO + FL and TPO, at concentrations of 50 ng/mL each. Cells were immunophenotyped by four-color fluorescence using antibodies against CD11c, CD31, CD49e, CD61, CD62L, CD117, and HLA-DR. Low-density cord blood contained 1.4 ± 0.9% CD34+ cells, 2.6 ± 2.1% of which were CD38-negative. CD34+ cells were isolated using immuno-magnetic beads and cultured for up to 7 days. The TPO + FL + KL combination presented the best condition for maintenance of stem cells. The total cell number increased 4.3 ± 1.8-fold, but the number of viable CD34+ cells decreased by 46 ± 25%. On the other hand, the fraction of CD34+CD38- cells became 52.0 ± 29% of all CD34+ cells. The absolute number of CD34+CD38- cells was expanded on average 15 ± 12-fold when CD34+ cells were cultured with TPO + FL + KL for 7 days. The expression of CD62L, HLA-DR and CD117 was modulated after culture, particularly with TPO + FL + KL, explaining differences between the adhesion and engraftment of primary and cultured candidate stem cells. We conclude that culture of CD34+ cells with TPO + FL + KL results in a significant increase in the number of candidate stem cells with the CD34+CD38- phenotype.

  20. Angiopoietin-like protein 3 promotes preservation of stemness during ex vivo expansion of murine hematopoietic stem cells.

    Science.gov (United States)

    Farahbakhshian, Elnaz; Verstegen, Monique M; Visser, Trudi P; Kheradmandkia, Sima; Geerts, Dirk; Arshad, Shazia; Riaz, Noveen; Grosveld, Frank; van Til, Niek P; Meijerink, Jules P P

    2014-01-01

    Allogeneic hematopoietic stem cell (HSC) transplantations from umbilical cord blood or autologous HSCs for gene therapy purposes are hampered by limited number of stem cells. To test the ability to expand HSCs in vitro prior to transplantation, two growth factor cocktails containing stem cell factor, thrombopoietin, fms-related tyrosine kinase-3 ligand (STF) or stem cell factor, thrombopoietin, insulin-like growth factor-2, fibroblast growth factor-1 (STIF) either with or without the addition of angiopoietin-like protein-3 (Angptl3) were used. Culturing HSCs in STF and STIF media for 7 days expanded long-term repopulating stem cells content in vivo by ∼6-fold and ∼10-fold compared to freshly isolated stem cells. Addition of Angptl3 resulted in increased expansion of these populations by ∼17-fold and ∼32-fold, respectively, and was further supported by enforced expression of Angptl3 in HSCs through lentiviral transduction that also promoted HSC expansion. As expansion of highly purified lineage-negative, Sca-1+, c-Kit+ HSCs was less efficient than less pure lineage-negative HSCs, Angptl3 may have a direct effect on HCS but also an indirect effect on accessory cells that support HSC expansion. No evidence for leukemia or toxicity was found during long-term follow up of mice transplanted with ex vivo expanded HSCs or manipulated HSC populations that expressed Angptl3. We conclude that the cytokine combinations used in this study to expand HSCs ex vivo enhances the engraftment in vivo. This has important implications for allogeneic umbilical cord-blood derived HSC transplantations and autologous HSC applications including gene therapy.

  1. Subsequent vitiligo after hematopoietic stem cell transplantation: A nationwide population-based cohort study from Korea.

    Science.gov (United States)

    Bae, Jung Min; Choi, Kwang Hyun; Jung, Han Mi; Kim, Sook Young; Kim, Miri; Kim, Gyung Moon; Yu, Dong Soo; Lee, Young Bok

    2017-03-01

    Subsequent vitiligo after hematopoietic stem cell transplantation (HSCT) has been described sporadically in case series. To investigate the incidence and risk factors of subsequent vitiligo after HSCT. A nationwide, population-based cohort study was performed using the Korean National Health Insurance Claims Database from 2009 to 2013. All HSCT recipients who had undergone HSCT between 2010 and 2011 and not treatment for vitiligo in 2009 (to exclude preexisting active vitiligo) were included in the HSCT recipient group, and an age- and sex-matched control group without HSCT was also established. A total of 2747 HSCT recipients and 8241 controls were enrolled. Newly acquired vitiligo occurred in 1.06% of HSCT recipients between 2010 and 2013, and there was a significant increase (OR 3.130, 95% CI 1.859-5.271) in cases of vitiligo in HSCT recipients compared with controls (0.34%). Allogeneic HSCT (OR 5.593, 95% CI 1.628-19.213) and bone marrow-sourced stem cells (as compared with peripheral blood-sourced stem cells; OR 2.492, 95% CI 1.114-5.576) were independently associated with the development of vitiligo after HSCT. Medical record review was not available. Vitiligo developed at a significantly increased rate after HSCT compared with controls. Allogeneic HSCT and bone marrow-sourced stem cells were independent risk factors. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  2. Biochemical analysis and quantification of hematopoietic stem cells by infrared spectroscopy

    Science.gov (United States)

    Zelig, Udi; Dror, Ziv; Iskovich, Svetlana; Zwielly, Amir; Ben-Harush, Miri; Nathan, Ilana; Mordechai, Shaul; Kapelushnik, Joseph

    2010-05-01

    Identification of hematopoietic stem cells (HSCs) in different stages of maturation is one of the major issues in stem cell research and bone marrow (BM) transplantation. Each stage of maturation of HSCs is characterized by a series of distinct glycoproteins present on the cell plasma membrane surface, named a cluster of differentiation (CD). Currently, complicated and expensive procedures based on CD expression are needed for identification and isolation of HSCs. This method is under dispute, since the correct markers' composition is not strictly clear, thus there is need for a better method for stem cell characterization. In the present study, Fourier transform infrared (FTIR) spectroscopy is employed as a novel optical method for identification and characterization of HSCs based on their entire biochemical features. FTIR spectral analysis of isolated mice HSCs reveals several spectral markers related to lipids, nucleic acids, and carbohydrates, which distinguish HSCs from BM cells. The unique ``open'' conformation of HSC DNA as identified by FTIR is exploited for HSCs quantification in the BM. The proposed method of FTIR spectroscopy for HSC identification and quantification can contribute to stem cell research and BM transplantation.

  3. Haploidentical Hematopoietic Stem Cell Transplantation: Expanding the Horizon for Hematologic Disorders

    Directory of Open Access Journals (Sweden)

    Mohammad Faizan Zahid

    2016-01-01

    Full Text Available Despite the advent of targeted therapies and novel agents, allogeneic hematopoietic stem cell transplantation remains the only curative modality in the management of hematologic disorders. The necessity to find an HLA-matched related donor is a major obstacle that compromises the widespread application and development of this field. Matched unrelated donors and umbilical cord blood have emerged as alternative sources of donor stem cells; however, the cost of maintaining donor registries and cord blood banks is very high and even impractical in developing countries. Almost every patient has an HLA haploidentical relative in the family, meaning that haploidentical donors are potential sources of stem cells, especially in situations where cord blood or matched unrelated donors are not easily available. Due to the high rates of graft failure and graft-versus-host disease, haploidentical transplant was not considered a feasible option up until the late 20th century, when strategies such as “megadose stem cell infusions” and posttransplantation immunosuppression with cyclophosphamide showed the ability to overcome the HLA disparity barrier and significantly improve the rates of engraftment and reduce the incidence and severity of graft-versus-host disease. Newer technologies of graft manipulation have also yielded the same effects in addition to preserving the antileukemic cells in the donor graft.

  4. Microenvironmental regulation of hematopoietic stem cells and its implications in leukemogenesis.

    Science.gov (United States)

    Seshadri, Madhav; Qu, Cheng-Kui

    2016-07-01

    Hematopoietic stem cells (HSCs) are a population of cells in the bone marrow which can self-renew, differentiate into late lineage progenitors, or remain quiescent. HSCs exist alongside several cell types in the bone marrow microenvironment that comprise the stem cell niche. These cells regulate HSC function and can contribute to leukemogenesis. In this review we will discuss recent advances in this field. In the vascular niche, arteriolar and sinusoidal zones appear to play distinct roles in HSC function. Endothelial cells modulate HSC function via Notch and other signaling pathways. In the endosteal niche multiple cell types regulate HSCs. Osteoblasts promote HSC quiescence via secreted factors and possibly physical interactions, whereas adipocytes may oppose HSC quiescence. The balance of these opposing factors depends on metabolic cues. Feedback from HSC-derived cells, including macrophages and megakaryocytes also appears to regulate HSC quiescence. Dysfunction of the bone marrow microenvironment, including mesenchymal stem cell-derived stromal cells and the sympathetic nervous system can induce or alter the progression of hematologic malignancies. Many cell types in the bone marrow microenvironment affect HSC function and contribute to malignancy. Further understanding how HSCs are regulated by the microenvironment has clinical implications for stem cell transplantation and other therapies for hematologic malignancies.

  5. Physiological problems in patients undergoing autologous and allogeneic hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Sevgisun Kapucu

    2014-01-01

    Full Text Available Objective: Stem cell transplantation is usually performed in an effort to extend the patient′s life span and to improve their quality of life. This study was conducted to determine the postoperative physiological effects experienced by patients who had undergone autologous and allogeneic stem cell transplantation. Methods: The research is a descriptive study conducted with a sample of 60 patients at Stem Cell Transplantation Units in Ankara. Percentile calculation and chi-square tests were used to evaluate the data. Results: When a comparison was made between patients who had undergone allogeneic Hematopoietic stem cell transplantation (HSCT and those who had undergone autologous HSCT, results indicated that problems occurred more often for the allogeneic HSCT patients. The problems included: Digestion (94.3%, dermatological (76.7%, cardiac and respiratory (66.7%, neurological (66.7%, eye (56.7%, infections (26.7% and Graft Versus Host Disease (5 patients. Furthermore, the problems with pain (50%, numbness and tingling (40%, and speech disorders (3 patients were observed more often in autologous BMT patients. Conclusion: Autologous and allogeneic patients experienced most of physical problems due to they receive high doses of chemotherapy. Therefore, it is recommended that an interdisciplinary support team approach should be usedtohelp reduce and manage the problems that may arise during patient care.

  6. The Ly-6A (Sca-1) GFP transgene is expressed in all adult mouse hematopoietic stem cells

    NARCIS (Netherlands)

    X. Ma (Xiaoqian); C.I. Robin; K. Ottersbach (Katrin); E.A. Dzierzak (Elaine)

    2002-01-01

    textabstractThe Sca-1 cell surface glycoprotein is used routinely as a marker of adult hematopoietic stem cells (HSCs), allowing a >100-fold enrichment of these rare cells from the bone marrow of the adult mouse. The Sca-1 protein is encoded by the Ly-6A/E gene, a small 4-exon gene

  7. Patient-Reported Measures of Hearing Loss and Tinnitus in Pediatric Cancer and Hematopoietic Stem Cell Transplantation: A Systematic Review

    Science.gov (United States)

    Stark, Daniel; Rosenberg, Abby R.; Johnston, Donna; Knight, Kristin; Caperon, Lizzie; Uleryk, Elizabeth; Frazier, A. Lindsay; Sung, Lillian

    2016-01-01

    Purpose: We identified studies that described use of any patient-reported outcome scale for hearing loss or tinnitus among children and adolescents and young adults (AYAs) with cancer or hematopoietic stem cell transplantation (HSCT) recipients. Method: In this systematic review, we performed electronic searches of OvidSP MEDLINE, EMBASE, and…

  8. Psychosocial Changes Associated with Participation in Art Therapy Interventions for Siblings of Pediatric Hematopoietic Stem Cell Transplant Patients

    Science.gov (United States)

    Wallace, Jo; Packman, Wendy; Huffman, Lynne C.; Horn, Biljana; Cowan, Morton; Amylon, Michael D.; Kahn, Colleen; Cordova, Matt; Moses, Jim

    2014-01-01

    Hematopoietic stem cell transplantation (HSCT) is an accepted medical treatment for many serious childhood diseases. HSCT is a demanding procedure that creates both physical and emotional challenges for patients and their family members. Research has demonstrated that siblings of children undergoing HSCT are at risk for developing psychosocial…

  9. Autologous hematopoietic stem cell transplantation vs intravenous pulse cyclophosphamide in diffuse cutaneous systemic sclerosis: a randomized clinical trial

    NARCIS (Netherlands)

    Laar, J.M. van; Farge, D.; Sont, J.K.; Naraghi, K.; Marjanovic, Z.; Larghero, J.; Schuerwegh, A.J.; Marijt, E.W.; Vonk, M.C.; Schattenberg, A.V.M.B.; Matucci-Cerinic, M.; Voskuyl, A.E.; Loosdrecht, A.A. van de; Daikeler, T.; Kotter, I.; Schmalzing, M.; Martin, T.; Lioure, B.; Weiner, S.M.; Kreuter, A.; Deligny, C.; Durand, J.M.; Emery, P.; Machold, K.P.; Sarrot-Reynauld, F.; Warnatz, K.; Adoue, D.F.; Constans, J.; Tony, H.P.; Papa, N. Del; Fassas, A.; Himsel, A.; Launay, D. de; Monaco, A. Lo; Philippe, P.; Quere, I.; Rich, E.; Westhovens, R.; Griffiths, B.; Saccardi, R.; Hoogen, F.H.J. van den; Fibbe, W.E.; Socie, G.; Gratwohl, A.; Tyndall, A.; et al.,

    2014-01-01

    IMPORTANCE: High-dose immunosuppressive therapy and autologous hematopoietic stem cell transplantation (HSCT) have shown efficacy in systemic sclerosis in phase 1 and small phase 2 trials. OBJECTIVE: To compare efficacy and safety of HSCT vs 12 successive monthly intravenous pulses of

  10. Pivotal role of Pten in the balance between proliferation and differentiation of hematopoietic stem cells in zebrafish

    NARCIS (Netherlands)

    Choorapoikayil, Suma; Kers, Rianne; Herbomel, Philippe; Kissa, Karima; den Hertog, Jeroen

    2014-01-01

    Self-renewing hematopoietic stem/progenitor cells (HSPCs) produce blood cells of all lineages throughout life. Phosphatase and tensin homolog (PTEN), a tumor suppressor that antagonizes phosphatidylinositol 3-kinase (PI3K) signaling, is frequently mutated in hematologic malignancies such as bone

  11. Physical exercise for patients undergoing hematopoietic stem cell transplantation: systematic review and meta-analyses of randomized controlled trials

    NARCIS (Netherlands)

    Haren, I.E.P.M. van; Timmerman, H.; Potting, C.M.J.; Blijlevens, N.M.A.; Staal, J.B.; Nijhuis-Van der Sanden, M.W.G.

    2013-01-01

    BACKGROUND: The treatment-related burden for patients undergoing hematopoietic stem cell transplantation (HSCT) may be relieved by physical exercises. PURPOSE: The purpose of this study was to summarize and analyze the evidence provided by randomized controlled trials (RCTs) on physical exercise

  12. Social Correlates of Distress Following Hematopoietic Stem Cell Transplantation: Exploring the Role of Loneliness and Cognitive Processing

    OpenAIRE

    Mosher, Catherine E.; Lepore, Stephen J.; Wu, Lisa; Austin, Jane; Valdimarsdottir, Heiddis; Rowley, Scott; Isola, Luis; Redd, William H.; Rini, Christine

    2012-01-01

    This study investigated whether loneliness and cognitive processing explain the influence of negative (social constraints) and positive (emotional support) relationship qualities on cancer survivors’ distress. Participants were 195 cancer survivors who had undergone hematopoietic stem cell transplantation. Path analysis supported the hypothesis that loneliness and cognitive processing would mediate the association between social constraints and distress. Only loneliness mediated the associati...

  13. Synergism between erythropoietin and interleukin-3 in the induction of hematopoietic stem cell proliferation and erythroid burst colony formation

    NARCIS (Netherlands)

    Migliaccio, G.; Migliaccio, A.R.; Visser, J.W.M

    1988-01-01

    The influence of recombinant erythropoietin (Ep) and interleukin-3 (IL-3) on the proliferation and differentiation of murine hematopoietic stem and progenitor cells was investigated in serum-deprived cultures. The differentiation of progenitor cells, purified by collecting blast cell colonies from

  14. Stem cell factor induces phosphatidylinositol 3'-kinase-dependent Lyn/Tec/Dok-1 complex formation in hematopoietic cells

    NARCIS (Netherlands)

    van Dijk, T. B.; van den Akker, E.; Amelsvoort, M. P.; Mano, H.; Löwenberg, B.; von Lindern, M.

    2000-01-01

    Stem cell factor (SCF) has an important role in the proliferation, differentiation, survival, and migration of hematopoietic cells. SCF exerts its effects by binding to cKit, a receptor with intrinsic tyrosine kinase activity. Activation of phosphatidylinositol 3'-kinase (PI3-K) by cKit was

  15. Early determinants of long-term T-cell reconstitution after hematopoietic stem cell transplantation for severe combined immunodeficiency

    NARCIS (Netherlands)

    Borghans, José A.; Bredius, Robbert G.; Hazenberg, Mette D.; Roelofs, Helene; Jol-van der Zijde, Els C.; Heidt, Jeroen; Otto, Sigrid A.; Kuijpers, Taco W.; Fibbe, Willem E.; Vossen, Jaak M.; Miedema, Frank; van Tol, Maarten J.

    2006-01-01

    The immune system of patients with severe combined immunodeficiency (SCID) reconstitutes to a large extent during the first years after hematopoietic stem cell transplantation (HSCT). It was suggested, however, that accelerated loss of thymus output may cause impaired immune function at the long

  16. SF3B1-initiating mutations in MDS-RSs target lymphomyeloid hematopoietic stem cells.

    Science.gov (United States)

    Mortera-Blanco, Teresa; Dimitriou, Marios; Woll, Petter S; Karimi, Mohsen; Elvarsdottir, Edda; Conte, Simona; Tobiasson, Magnus; Jansson, Monika; Douagi, Iyadh; Moarii, Matahi; Saft, Leonie; Papaemmanuil, Elli; Jacobsen, Sten Eirik W; Hellström-Lindberg, Eva

    2017-08-17

    Mutations in the RNA splicing gene SF3B1 are found in >80% of patients with myelodysplastic syndrome with ring sideroblasts (MDS-RS). We investigated the origin of SF3B1 mutations within the bone marrow hematopoietic stem and progenitor cell compartments in patients with MDS-RS. Screening for recurrently mutated genes in the mononuclear cell fraction revealed mutations in SF3B1 in 39 of 40 cases (97.5%), combined with TET2 and DNMT3A in 11 (28%) and 6 (15%) patients, respectively. All recurrent mutations identified in mononuclear cells could be tracked back to the phenotypically defined hematopoietic stem cell (HSC) compartment in all investigated patients and were also present in downstream myeloid and erythroid progenitor cells. While in agreement with previous studies, little or no evidence for clonal ( SF3B1 mutation) involvement could be found in mature B cells, consistent involvement at the pro-B-cell progenitor stage was established, providing definitive evidence for SF3B1 mutations targeting lymphomyeloid HSCs and compatible with mutated SF3B1 negatively affecting lymphoid development. Assessment of stem cell function in vitro as well as in vivo established that only HSCs and not investigated progenitor populations could propagate the SF3B1 mutated clone. Upon transplantation into immune-deficient mice, SF3B1 mutated MDS-RS HSCs differentiated into characteristic ring sideroblasts, the hallmark of MDS-RS. Our findings provide evidence of a multipotent lymphomyeloid HSC origin of SF3B1 mutations in MDS-RS patients and provide a novel in vivo platform for mechanistically and therapeutically exploring SF3B1 mutated MDS-RS. © 2017 by The American Society of Hematology.

  17. Osteomacs interact with megakaryocytes and osteoblasts to regulate murine hematopoietic stem cell function.

    Science.gov (United States)

    Mohamad, Safa F; Xu, Linlin; Ghosh, Joydeep; Childress, Paul J; Abeysekera, Irushi; Himes, Evan R; Wu, Hao; Alvarez, Marta B; Davis, Korbin M; Aguilar-Perez, Alexandra; Hong, Jung Min; Bruzzaniti, Angela; Kacena, Melissa A; Srour, Edward F

    2017-12-12

    Networking between hematopoietic stem cells (HSCs) and cells of the hematopoietic niche is critical for stem cell function and maintenance of the stem cell pool. We characterized calvariae-resident osteomacs (OMs) and their interaction with megakaryocytes to sustain HSC function and identified distinguishing properties between OMs and bone marrow (BM)-derived macrophages. OMs, identified as CD45 + F4/80 + cells, were easily detectable (3%-5%) in neonatal calvarial cells. Coculture of neonatal calvarial cells with megakaryocytes for 7 days increased OM three- to sixfold, demonstrating that megakaryocytes regulate OM proliferation. OMs were required for the hematopoiesis-enhancing activity of osteoblasts, and this activity was augmented by megakaryocytes. Serial transplantation demonstrated that HSC repopulating potential was best maintained by in vitro cultures containing osteoblasts, OMs, and megakaryocytes. With or without megakaryocytes, BM-derived macrophages were unable to functionally substitute for neonatal calvarial cell-associated OMs. In addition, OMs differentiated into multinucleated, tartrate resistant acid phosphatase-positive osteoclasts capable of bone resorption. Nine-color flow cytometric analysis revealed that although BM-derived macrophages and OMs share many cell surface phenotypic similarities (CD45, F4/80, CD68, CD11b, Mac2, and Gr-1), only a subgroup of OMs coexpressed M-CSFR and CD166, thus providing a unique profile for OMs. CD169 was expressed by both OMs and BM-derived macrophages and therefore was not a distinguishing marker between these 2 cell types. These results demonstrate that OMs support HSC function and illustrate that megakaryocytes significantly augment the synergistic activity of osteoblasts and OMs. Furthermore, this report establishes for the first time that the crosstalk between OMs, osteoblasts, and megakaryocytes is a novel network supporting HSC function.

  18. The OP9-DL1 System: Generation of T-Lymphocytes from Embryonic or Hematopoietic Stem Cells In Vitro

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Roxanne Holmes and Juan Carlos Zúñiga-Pflücker Corresponding author: []() ### INTRODUCTION Differentiation of mouse embryonic stem cells (ESCs) or hematopoietic stem cells (HSCs) from fetal liver or bone marrow into T-lymphocytes can be achieved in vitro with the support of OP9-DL1 cells, a bone-marrow-derived stromal cell line that ectopically expresses the Notch ligand, Delta-like 1 (Dll1). This approach provides a simple, versat...

  19. "Crazy-paving" patterns on high-resolution CT scans in patients with pulmonary complications after hematopoietic stem cell transplantation.

    Science.gov (United States)

    Marchiori, Edson; Escuissato, Dante L; Gasparetto, Taisa Davaus; Considera, Daniela Peixoto; Franquet, Tomas

    2009-01-01

    To describe the pulmonary complications following hematopoietic stem cell transplantation (HSCT) that can present with a "crazy-paving" pattern in high-resolution CT scans. Retrospective review of medical records from 2,537 patients who underwent HSCT. The "crazy-paving" pattern consists of interlobular and intralobular septal thickening superimposed on an area of ground-glass attenuation on high-resolution CT scans. The CT scans were retrospectively reviewed by two radiologists, who reached final decisions by consensus. We identified 10 cases (2.02%), seven male and three female, with pulmonary complications following HSCT that presented with the "crazy-paving" pattern. Seven (70%) patients had infectious pneumonia (adenovirus, herpes simplex, influenza virus, cytomegalovirus, respiratory syncytial virus, and toxoplasmosis), and three patients presented with non-infectious complications (idiopathic pneumonia syndrome and acute pulmonary edema). The "crazy-paving" pattern was bilateral in all cases, with diffuse distribution in nine patients (90%), predominantly in the middle and inferior lung regions in seven patients (70%), and involving the anterior and posterior regions of the lungs in nine patients (90%). The "crazy-paving" pattern is rare in HSCT recipients with pulmonary complications and is associated with infectious complications more commonly than non-infectious conditions.

  20. Impact of Allogeneic Hematopoietic Stem Cell Transplantation on the HIV Reservoir and Immune Response in 3 HIV-Infected Individuals.

    Science.gov (United States)

    Koelsch, Kersten K; Rasmussen, Thomas A; Hey-Nguyen, William J; Pearson, Chester; Xu, Yin; Bailey, Michelle; Marks, Katherine H; Sasson, Sarah C; Taylor, Mark S; Tantau, Robyn; Obeid, Solange; Milner, Brad; Morrissey, Orla; Pinto, Angie N; Suzuki, Kazuo; Busch, Michael P; Keating, Sheila M; Kaiser, Philipp; Yukl, Steven; Wong, Joseph K; Hiener, Bonnie M; Palmer, Sarah; Zaunders, John; Post, Jeffrey J; Chan, Derek J; Avery, Sharon; Milliken, Sam T; Kelleher, Anthony D; Lewin, Sharon R; Cooper, David A

    2017-07-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) can lead to significant changes to the HIV reservoir and HIV immune responses, indicating that further characterization of HIV-infected patients undergoing HSCT is warranted. We studied 3 patients who underwent HSCT after either reduced intensity conditioning or myeloablative conditioning regimen. We measured HIV antigens and antibodies (Ag/Ab), HIV-specific CD4 T-cell responses, HIV RNA, and DNA in plasma, peripheral blood mononuclear cells, isolated CD4 T cells from peripheral blood, and lymph node cells. The patients remained on antiretroviral therapy throughout the follow-up period. All patients have been in continued remission for 4-6 years post-HSCT. Analyses of HIV RNA and DNA levels showed substantial reductions in HIV reservoir-related measurements in all 3 patients, changes in immune response varied with pronounced reductions in 2 patients and a less dramatic reduction in 1 patient. One patient experienced unexpected viral rebound 4 years after HSCT. These 3 cases highlight the substantial changes to the HIV reservoir and the HIV immune response in patients undergoing allogeneic HSCT. The viral rebound observed in 1 patient indicates that replication competent HIV can re-emerge several years after HSCT despite these marked changes.

  1. Voriconazole exposure and the risk of cutaneous squamous cell carcinoma in allogeneic hematopoietic stem cell transplant patients.

    Science.gov (United States)

    Wojenski, D J; Bartoo, G T; Merten, J A; Dierkhising, R A; Barajas, M R; El-Azhary, R A; Wilson, J W; Plevak, M F; Hogan, W J; Litzow, M R; Patnaik, M M; Wolf, R C; Hashmi, S K

    2015-04-01

    Voriconazole is a commonly used antifungal medication in allogeneic hematopoietic stem cell transplantation (allo-HSCT) patients. In solid organ transplantation, voriconazole use has been associated with the development of cutaneous squamous cell carcinoma (SCC). We sought to determine if voriconazole use was associated with SCC in patients undergoing allo-HSCT. We retrospectively reviewed consecutive adult patients who underwent allo-HSCT at Mayo Clinic from January 2007 through July 2012. Multivariable Cox models were created to assess the relationship of SCC with two time-dependent voriconazole exposure variables: (i) history of voriconazole exposure (yes/no), and (ii) cumulative days of voriconazole use. In our cohort of 381 allo-HSCT patients, SCC developed in 26 of 312 patients exposed to voriconazole (25 post-voriconazole) and in 1 of 69 patients who received alternative antifungal agent(s). Cumulative incidence of SCC was estimated to be 19% at 5 years post allo-transplant. Cumulative days of voriconazole use was found to be a risk factor for SCC, and this relationship persisted in a multivariable model using previously identified risk factors as covariates (hazard ratio 1.859 for each 180 days of use, P voriconazole use as a risk factor for SCC development following allo-HSCT, and may help guide appropriate antifungal use in this patient population. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Neurological outcomes after hematopoietic stem cell transplantation for cerebral X-linked adrenoleukodystrophy, late onset metachromatic leukodystrophy and Hurler syndrome

    Directory of Open Access Journals (Sweden)

    Jonas Alex Morales Saute

    Full Text Available ABSTRACT Hematopoietic stem cell transplantation (HSCT is the only available treatment for the neurological involvement of disorders such as late-onset metachromatic leukodystrophy (MLD, mucopolysaccharidosis type I-Hurler (MPS-IH, and X-linked cerebral adrenoleukodystrophy (CALD. Objective To describe survival and neurological outcomes after HSCT for these disorders. Methods Seven CALD, 2 MLD and 2 MPS-IH patients underwent HSCT between 2007 and 2014. Neurological examinations, magnetic resonance imaging, molecular and biochemical studies were obtained at baseline and repeated when appropriated. Results Favorable outcomes were obtained with 4/5 related and 3/6 unrelated donors. Two patients died from procedure-related complications. Nine transplanted patients were alive after a median of 3.7 years: neurological stabilization was obtained in 5/6 CALD, 1/2 MLD, and one MPS-IH patient. Brain lesions of the MPS-IH patient were reduced four years after HSCT. Conclusion Good outcomes were obtained when HSCT was performed before adulthood, early in the clinical course, and/or from a related donor.

  3. Validation of a Pediatric Early Warning Score in Hospitalized Pediatric Oncology and Hematopoietic Stem Cell Transplant Patients.

    Science.gov (United States)

    Agulnik, Asya; Forbes, Peter W; Stenquist, Nicole; Rodriguez-Galindo, Carlos; Kleinman, Monica

    2016-04-01

    To evaluate the correlation of a Pediatric Early Warning Score with unplanned transfer to the PICU in hospitalized oncology and hematopoietic stem cell transplant patients. We performed a retrospective matched case-control study, comparing the highest documented Pediatric Early Warning Score within 24 hours prior to unplanned PICU transfers in hospitalized pediatric oncology and hematopoietic stem cell transplant patients between September 2011 and December 2013. Controls were patients who remained on the inpatient unit and were matched 2:1 using age, condition (oncology vs hematopoietic stem cell transplant), and length of hospital stay. Pediatric Early Warning Scores were documented by nursing staff at least every 4 hours as part of routine care. Need for transfer was determined by a PICU physician called to evaluate the patient. A large tertiary/quaternary free-standing academic children's hospital. One hundred ten hospitalized pediatric oncology patients (42 oncology, 68 hematopoietic stem cell transplant) requiring unplanned PICU transfer and 220 matched controls. None. Using the highest score in the 24 hours prior to transfer for cases and a matched time period for controls, the Pediatric Early Warning Score was highly correlated with the need for PICU transfer overall (area under the receiver operating characteristic = 0.96), and in the oncology and hematopoietic stem cell transplant groups individually (area under the receiver operating characteristic = 0.95 and 0.96, respectively). The difference in Pediatric Early Warning Score results between the cases and controls was noted as early as 24 hours prior to PICU admission. Seventeen patients died (15.4%). Patients with higher Pediatric Early Warning Scores prior to transfer had increased PICU mortality (p = 0.028) and length of stay (p = 0.004). We demonstrate that our institution's Pediatric Early Warning Score is highly correlated with the need for unplanned PICU transfer in hospitalized oncology and

  4. Reconstitution of Mammary Epithelial Morphogenesis by Murine Embryonic Stem Cells Undergoing Hematopoietic Stem Cell Differentiation

    OpenAIRE

    Jiang, Shuxian; Lee, Byeong-Chel; Fu, Yigong; Avraham, Shalom; Lim, Bing; Avraham, Hava Karsenty

    2010-01-01

    Background: Mammary stem cells are maintained within specific microenvironments and recruited throughout lifetime to reconstitute de novo the mammary gland. Mammary stem cells have been isolated through the identification of specific cell surface markers and in vivo transplantation into cleared mammary fat pads. Accumulating evidence showed that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mam...

  5. Hepatic Leukemia Factor Maintains Quiescence of Hematopoietic Stem Cells and Protects the Stem Cell Pool during Regeneration.

    Science.gov (United States)

    Komorowska, Karolina; Doyle, Alexander; Wahlestedt, Martin; Subramaniam, Agatheeswaran; Debnath, Shubhranshu; Chen, Jun; Soneji, Shamit; Van Handel, Ben; Mikkola, Hanna K A; Miharada, Kenichi; Bryder, David; Larsson, Jonas; Magnusson, Mattias

    2017-12-19

    The transcription factor hepatic leukemia factor (HLF) is strongly expressed in hematopoietic stem cells (HSCs) and is thought to influence both HSC self-renewal and leukemogenesis. However, the physiological role of HLF in hematopoiesis and HSC function is unclear. Here, we report that mice lacking Hlf are viable with essentially normal hematopoietic parameters, including an intact HSC pool during steady-state hematopoiesis. In contrast, when challenged through transplantation, Hlf-deficient HSCs showed an impaired ability to reconstitute hematopoiesis and became gradually exhausted upon serial transplantation. Transcriptional profiling of Hlf-deficient HSCs revealed changes associated with enhanced cellular activation, and cell-cycle analysis demonstrated a significant reduction of quiescent HSCs. Accordingly, toxic insults targeting dividing cells completely eradicated the HSC pool in Hlf-deficient mice. In summary, our findings point to HLF as a critical regulator of HSC quiescence and as an essential factor for maintaining the HSC pool during regeneration. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Protein malnutrition induces bone marrow mesenchymal stem cells commitment to adipogenic differentiation leading to hematopoietic failure.

    Science.gov (United States)

    Cunha, Mayara Caldas Ramos; Lima, Fabiana da Silva; Vinolo, Marco Aurélio Ramirez; Hastreiter, Araceli; Curi, Rui; Borelli, Primavera; Fock, Ricardo Ambrósio

    2013-01-01

    Protein malnutrition (PM) results in pathological changes that are associated with peripheral leukopenia, bone marrow (BM) hypoplasia and alterations in the BM microenvironment leading to hematopoietic failure; however, the mechanisms involved are poorly understood. In this context, the BM mesenchymal stem cells (MSCs) are cells intimately related to the formation of the BM microenvironment, and their differentiation into adipocytes is important because adipocytes are cells that have the capability to negatively modulate hematopoiesis. Two-month-old male Balb/c mice were subjected to protein-energy malnutrition with a low-protein diet containing 2% protein, whereas control animals were fed a diet containing 12% protein. The hematopoietic parameters and the expression of CD45 and CD117 positive cells in the BM were evaluated. MSCs were isolated from BM, and their capability to produce SCF, IL-3, G-CSF and GM-CSF were analyzed. The expression of PPAR-γ and C/EBP-α as well as the expression of PPAR-γ and SREBP mRNAs were evaluated in MSCs together with their capability to differentiate into adipocytes in vitro. The malnourished animals had anemia and leukopenia as well as spleen and bone marrow hypoplasia and a reduction in the expression of CD45 and CD117 positive cells from BM. The MSCs of the malnourished mice presented an increased capability to produce SCF and reduced production of G-CSF and GM-CSF. The MSCs from the malnourished animals showed increased expression of PPAR-γ protein and PPAR-γ mRNA associated with an increased capability to differentiate into adipocytes. The alterations found in the malnourished animals allowed us to conclude that malnutrition committed MSC differentiation leading to adipocyte decision and compromised their capacity for cytokine production, contributing to an impaired hematopoietic microenvironment and inducing the bone marrow failure commonly observed in protein malnutrition states.

  7. Cadmium modulates hematopoietic stem and progenitor cells and skews toward myelopoiesis in mice

    International Nuclear Information System (INIS)

    Zhang, Yandong; Yu, Xinchun; Sun, Shuhui; Li, Qian; Xie, Yunli; Li, Qiang; Zhao, Yifan; Pei, Jianfeng; Zhang, Wenmin; Xue, Peng; Zhou, Zhijun; Zhang, Yubin

    2016-01-01

    The heavy metal cadmium (Cd) is known to modulate immunity and cause osteoporosis. However, how Cd influences on hematopoiesis remain largely unknown. Herein, we show that wild-type C57BL/6 (B6) mice exposed to Cd for 3 months had expanded bone marrow (BM) populations of long-term hematopoietic stem cells (LT-HSCs), common myeloid progenitors (CMPs) and granulocyte-macrophage progenitors (GMPs), while having reduced populations of multipotent progenitors (MPPs) and common lymphoid progenitors (CLPs). A competitive mixed BM transplantation assay indicates that BM from Cd-treated mice had impaired LT-HSC ability to differentiate into mature cells. In accordance with increased myeloid progenitors and decreased lymphoid progenitors, the BM and spleens of Cd-treated mice had more monocytes and/or neutrophils and fewer B cells and T cells. Cd impaired the ability of the non-hematopoietic system to support LT-HSCs, in that lethally irradiated Cd-treated recipients transplanted with normal BM cells had reduced LT-HSCs after the hematopoietic system was fully reconstituted. This is consistent with reduced osteoblasts, a known critical component for HSC niche, observed in Cd-treated mice. Conversely, lethally irradiated control recipients transplanted with BM cells from Cd-treated mice had normal LT-HSC reconstitution. Furthermore, both control mice and Cd-treated mice that received Alendronate, a clinical drug used for treating osteoporosis, had BM increases of LT-HSCs. Thus, the results suggest Cd increase of LT-HSCs is due to effects on HSCs and not on osteoblasts, although, Cd causes osteoblast reduction and impaired niche function for maintaining HSCs. Furthermore, Cd skews HSCs toward myelopoiesis. - Highlights: • Cd increases the number of LT-HSCs but impairs their development. • Cd-treated hosts have compromised ability to support LT-HSCs. • Cd promotes myelopoiesis at the expense of lymphopoiesis at the MPP level.

  8. Lentiviral-mediated knockdown during ex vivo erythropoiesis of human hematopoietic stem cells.

    Science.gov (United States)

    Palii, Carmen G; Pasha, Roya; Brand, Marjorie

    2011-07-16

    Erythropoiesis is a commonly used model system to study cell differentiation. During erythropoiesis, pluripotent adult human hematopoietic stem cells (HSCs) differentiate into oligopotent progenitors, committed precursors and mature red blood cells. This process is regulated for a large part at the level of gene expression, whereby specific transcription factors activate lineage-specific genes while concomitantly repressing genes that are specific to other cell types. Studies on transcription factors regulating erythropoiesis are often performed using human and murine cell lines that represent, to some extent, erythroid cells at given stages of differentiation. However transformed cell lines can only partially mimic erythroid cells and most importantly they do not allow one to comprehensibly study the dynamic changes that occur as cells progress through many stages towards their final erythroid fate. Therefore, a current challenge remains the development of a protocol to obtain relatively homogenous populations of primary HSCs and erythroid cells at various stages of differentiation in quantities that are sufficient to perform genomics and proteomics experiments. Here we describe an ex vivo cell culture protocol to induce erythroid differentiation from human hematopoietic stem/progenitor cells that have been isolated from either cord blood, bone marrow, or adult peripheral blood mobilized with G-CSF (leukapheresis). This culture system, initially developed by the Douay laboratory, uses cytokines and co-culture on mesenchymal cells to mimic the bone marrow microenvironment. Using this ex vivo differentiation protocol, we observe a strong amplification of erythroid progenitors, an induction of differentiation exclusively towards the erythroid lineage and a complete maturation to the stage of enucleated red blood cells. Thus, this system provides an opportunity to study the molecular mechanism of transcriptional regulation as hematopoietic stem cells progress along

  9. HIF1α is a regulator of hematopoietic progenitor and stem cell development in hypoxic sites of the mouse embryo

    Directory of Open Access Journals (Sweden)

    Parisa Imanirad

    2014-01-01

    Full Text Available Hypoxia affects many physiologic processes during early stages of mammalian ontogeny, particularly placental and vascular development. In the adult, the hypoxic bone marrow microenvironment plays a role in regulating hematopoietic stem cell (HSC function. HSCs are generated from the major vasculature of the embryo, but whether the hypoxic response affects the generation of these HSCs is as yet unknown. Here we examined whether Hypoxia Inducible Factor1-alpha (HIF1α, a key modulator of the response to hypoxia, is essential for HSC development. We found hypoxic cells in embryonic tissues that generate and expand hematopoietic cells (aorta, placenta and fetal liver, and specifically aortic endothelial and hematopoietic cluster cells. A Cre/loxP conditional knockout (cKO approach was taken to delete HIF1α in Vascular Endothelial-Cadherin expressing endothelial cells, the precursors to definitive hematopoietic cells. Functional assays show that HSC and hematopoietic progenitor cells (HPCs are significantly reduced in cKO aorta and placenta. Moreover, decreases in phenotypic aortic hematopoietic cluster cells in cKO embryos indicate that HIF1α is necessary for generation and/or expansion of HPCs and HSCs. cKO adult BM HSCs are also affected under transplantation conditions. Thus, HIF1α is a regulator of HSC generation and function beginning at the earliest embryonic stages.

  10. Bottlenecks in deriving definitive hematopoietic stem cells from human pluripotent stem cells: a CIRM mini-symposium and workshop report.

    Science.gov (United States)

    Shepard, Kelly A; Talib, Sohel

    2014-07-01

    On August 29, 2013, the California Institute for Regenerative Medicine (CIRM) convened a small group of investigators in San Francisco, CA, to discuss a longstanding challenge in the stem cell field: the inability to derive fully functional, definitive hematopoietic stem cells (HSCs) from pluripotent stem cells (PSCs). To date, PSC-derived HSCs have been deficient in their developmental potential and their ability to self-renew and engraft upon transplantation. Tasked with identifying key challenges to overcoming this "HSC bottleneck", workshop participants identified critical knowledge gaps in two key areas: (a) understanding the ontogeny of human HSCs, and (b) understanding of the intrinsic and extrinsic factors that govern HSC behavior and function. They agreed that development of new methods and tools is critical for addressing these knowledge gaps. These include molecular profiling of key HSC properties, development of new model systems/assays for predicting and assessing HSC function, and novel technological advancements for manipulating cell culture conditions and genetic programs. The workshop produced tangible advances, including providing a current definition of the nature and challenge of the HSC bottleneck and identifying key mechanistic studies of HSC biology that should be prioritized for future funding initiatives (e.g., including higher risk approaches that have potential for high gain). ©AlphaMed Press.

  11. Immuno-metabolism and adipose tissue: The key role of hematopoietic stem cells.

    Science.gov (United States)

    Cousin, B; Casteilla, L; Laharrague, P; Luche, E; Lorsignol, A; Cuminetti, V; Paupert, J

    2016-05-01

    The field of immunometabolism has come a long way in the past decade, leading to the emergence of a new role for white adipose tissue (WAT) that is now recognized to stand at the junction of immune and metabolic regulations. Interestingly, a crucial role of the abundant and heterogeneous immune population present in WAT has been proposed in the induction and development of metabolic diseases. Although a large body of data focused on mature immune cells, only few scattered studies are dedicated to leukocyte production, and the activity of hematopoietic stem cells (HSC) in these pathological states. Considering that blood cell production and the differentiation of HSCs and their progeny is orchestrated, in part, by complex interacting signals emanating from their microenvironment, it thus seems worth to better understand the relationships between metabolism and HSC. This review discusses the alterations of hematopoietic process described in metabolic diseases and focused on the emerging data concerning HSC present in WAT. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  12. Retroviral vector design studies toward hematopoietic stem cell gene therapy for mucopolysaccharidosis type I.

    Science.gov (United States)

    Pan, D; Aronovich, E; McIvor, R S; Whitley, C B

    2000-11-01

    To optimize a gene transfer system for hematopoietic stem cell gene therapy of patients with mucopolysaccharidosis (MPS) type I, 10 retroviral vectors were constructed to express the human alpha-L-iduronidase (IDUA) cDNA. These vectors were designed to evaluate the potential effects of specific promoters, the addition of selectable markers, and the use of multiple promoters versus an internal ribosome entry site for expression of IDUA and selectable maker genes. The effect of vector design was investigated in primary patient fibroblasts (F(MPS)) or murine fibroblast cell lines; while overall comparison of transgene expression was determined in patients' peripheral blood lymphocytes (PBL(MPS)) and CD34+ progenitors (PBPC(MPS)). We observed that the human PGK promoter introduced the highest IDUA activity per 1% relative transgene frequency in F(MPS). Use of the same promoter to separately regulate both the therapeutic gene and a drug-resistance gene resulted in decreased expression of the unselected gene. Co-selection using bicistronic vectors not only increased the number of transductants, but also elevated transgene expression under selective pressure in transgene-positive progenitors. Bicistronic vector LP1CD overcame down-regulation and practically introduced the highest IDUA level in unselected PBL(MPS) and an intermediate level in PBPC(MPS). These studies provide a better understanding of factors contributing to efficient gene expression in hematopoietic cells.

  13. Continuation of a Levonorgestrel Intrauterine Device During Hematopoietic Stem Cell Transplant: A Case Report.

    Science.gov (United States)

    Brady, Paula C; Soiffer, Robert J; Ginsburg, Elizabeth S

    2017-04-01

    During treatment of hematologic malignancies in premenopausal women, both menstrual suppression and contraception are crucial. Continuation of hormonal intrauterine devices (IUDs) - widely used and highly effective contraceptives that also decrease menstrual flow - is controversial during hematopoietic stem cell transplants (SCTs) due to infectious and vaginal bleeding concerns. A 23-year-old nulligravid female was diagnosed with acute myeloid leukemia (AML, positive for FLT3-ITD, DNMT3A and RUNX1, with normal cytogenetics). She elected to retain her existing levonorgestrel-containing IUD during chemotherapy and SCT. During and following treatment, she remained amenorrheic without infection, despite severe neutropenia and thrombocytopenia. Eight months later, she remains in remission without IUD-related complications. This is the first report of levonorgestrel IUD retention during hematopoietic SCT. Despite severe neutropenia and thrombocytopenia, the patient developed neither pelvic infection by retaining her IUD nor significant vaginal bleeding. Future studies are needed to confirm the safety of levonorgestrel IUDs in women undergoing SCT. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  14. [Effect of ABO-Incompatibility on Outcome of Allogeneic Hematopoietic Stem Cell Transplantation].

    Science.gov (United States)

    Yang, Bing-Bing; Gan, Yi-Feng; Chen, Peng; Chen, Yi; Yu, Kang

    2017-04-01

    To investigate the effect of ABO-incompatibility on the efficacy and complications of allogeneic hematopoietic stem cell transplantation(HSCT). The clinical data of 54 recipients who received ABO-incompatible allo-HSCT were retrospectively analyzed and were compared with 54 ABO-identical recipients as controls. Hematopoietic reconstruction and the blood type conversion time were dynamically observed and compared between 2 groups. The time of erythrocyte reconstitution was prolonged to 24 d in ABO-incompatible group, compared with that of 19 d in ABO-compatible group (P0.05). Major mismatch group and bidirectional mismatch group required more erythrocyte transfusions than that of ABO-compatible group. The surface antigen of erythrocyte change in major mismatch group was earlier than that of minor mismatch group (Pdisease (aGVHD) and survival were not significantly different between 2 groups. ABO-incompatibility can not influence the effect of allo-HSCT, but ABO-incompatibility delayed erythrocyte recovery, and required more RBC and platelet transfusions.

  15. CXCR4-Related Increase of Circulating Human Lymphoid Progenitors after Allogeneic Hematopoietic Stem Cell Transplantation

    Science.gov (United States)

    Glauzy, Salomé; André-Schmutz, Isabelle; Larghero, Jérôme; Ezine, Sophie; de Latour, Régis Peffault; Moins-Teisserenc, Hélène; Servais, Sophie; Robin, Marie; Socié, Gérard

    2014-01-01

    Immune recovery after profound lymphopenia is a major challenge in many clinical situations, such as allogeneic hematopoietic stem cell transplantation (allo-HSCT). Recovery depends, in a first step, on hematopoietic lymphoid progenitors production in the bone marrow (BM). In this study, we characterized CD34+Lin−CD10+ lymphoid progenitors in the peripheral blood of allo-HSCT patients. Our data demonstrate a strong recovery of this population 3 months after transplantation. This rebound was abolished in patients who developed acute graft-versus-host disease (aGVHD). A similar recovery profile was found for both CD24+ and CD24− progenitor subpopulations. CD34+lin−CD10+CD24− lymphoid progenitors sorted from allo-HSCT patients preserved their T cell potentiel according to in vitro T-cell differentiation assay and the expression profile of 22 genes involved in T-cell differentiation and homing. CD34+lin−CD10+CD24− cells from patients without aGVHD had reduced CXCR4 gene expression, consistent with an enhanced egress from the BM. CCR7 gene expression was reduced in patients after allo-HSCT, as were its ligands CCL21 and CCL19. This reduction was particularly marked in patients with aGVHD, suggesting a possible impact on thymic homing. Thus, the data presented here identify this population as an important early step in T cell reconstitution in humans and so, an important target when seeking to enhance immune reconstitution. PMID:24621606

  16. DNA Damage and Repair in Epithelium after Allogeneic Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Maria Themeli

    2012-11-01

    Full Text Available Allogeneic hematopoietic stem cell transplantation (allo-HSCT in humans, following hematoablative treatment, results in biological chimeras. In this case, the transplanted hematopoietic, immune cells and their derivatives can be considered the donor genotype, while the other tissues are the recipient genotype. The first sequel, which has been recognized in the development of chimerical organisms after allo-HSCT, is the graft versus host (GvH reaction, in which the new developed immune cells from the graft recognize the host’s epithelial cells as foreign and mount an inflammatory response to kill them. There is now accumulating evidence that this chronic inflammatory tissue stress may contribute to clinical consequences in the transplant recipient. It has been recently reported that host epithelial tissue acquire genomic alterations and display a mutator phenotype that may be linked to the occurrence of a GvH reaction. The current review discusses existing data on this recently discovered phenomenon and focuses on the possible pathogenesis, clinical significance and therapeutic implications.

  17. Cellular players of hematopoietic stem cell mobilization in the bone marrow niche.

    Science.gov (United States)

    Tay, Joshua; Levesque, Jean-Pierre; Winkler, Ingrid G

    2017-02-01

    Hematopoietic stem cells (HSC) reside in perivascular regions of the bone marrow (BM) embedded within a complex regulatory unit called the niche. Cellular components of HSC niches include vascular endothelial cells, mesenchymal stromal progenitor cells and a variety of mature hematopoietic cells such as macrophages, neutrophils, and megakaryocytes-further regulated by sympathetic nerves and complement components as described in this review. Three decades ago the discovery that cytokines induce a large number of HSC to mobilize from the BM into the blood where they are easily harvested, revolutionised the field of HSC transplantation-curative for immune-deficiencies and some malignancies. However, despite now routine use of granulocyte-colony stimulating factor (G-CSF) to mobilise HSC for transplant, only in last 15 years has research on the mechanisms behind why and how HSC can be induced to move into the blood began. These studies have revealed the complexity of the niche that retains HSC in the BM. This review describes how BM niches and HSC themselves change during administration of G-CSF-or in the recovery phase of chemotherapy-to facilitate movement of HSC into the blood, and research now leading to development of novel therapeutics to further boost HSC mobilization and transplant success.

  18. Dysfunctional Hematopoietic Stem Cell Biology: Underlying Mechanisms and Potential Therapeutic Strategies

    Directory of Open Access Journals (Sweden)

    Anja Geiselhart

    2012-01-01

    Full Text Available Fanconi anemia (FA is the most common inherited bone marrow failure syndrome. FA patients suffer to varying degrees from a heterogeneous range of developmental defects and, in addition, have an increased likelihood of developing cancer. Almost all FA patients develop a severe, progressive bone marrow failure syndrome, which impacts upon the production of all hematopoietic lineages and, hence, is thought to be driven by a defect at the level of the hematopoietic stem cell (HSC. This hypothesis would also correlate with the very high incidence of MDS and AML that is observed in FA patients. In this paper, we discuss the evidence that supports the role of dysfunctional HSC biology in driving the etiology of the disease. Furthermore, we consider the different model systems currently available to study the biology of cells defective in the FA signaling pathway and how they are informative in terms of identifying the physiologic mediators of HSC depletion and dissecting their putative mechanism of action. Finally, we ask whether the insights gained using such disease models can be translated into potential novel therapeutic strategies for the treatment of the hematologic disorders in FA patients.

  19. ROBO4-Mediated Vascular Integrity Regulates the Directionality of Hematopoietic Stem Cell Trafficking

    Directory of Open Access Journals (Sweden)

    Stephanie Smith-Berdan

    2015-02-01

    Full Text Available Despite the use of hematopoietic stem cells (HSCs in clinical therapy for over half a century, the mechanisms that regulate HSC trafficking, engraftment, and life-long persistence after transplantation are unclear. Here, we show that the vascular endothelium regulates HSC trafficking into and out of bone marrow (BM niches. Surprisingly, we found that instead of acting as barriers to cellular entry, vascular endothelial cells, via the guidance molecule ROBO4, actively promote HSC translocation across vessel walls into the BM space. In contrast, we found that the vasculature inhibits the reverse process, as induced vascular permeability led to a rapid increase in HSCs in the blood stream. Thus, the vascular endothelium reinforces HSC localization to BM niches both by promoting HSC extravasation from blood-to-BM and by forming vascular barriers that prevent BM-to-blood escape. Our results uncouple the mechanisms that regulate the directionality of HSC trafficking and show that the vasculature can be targeted to improve hematopoietic transplantation therapies.

  20. Increasing Hematopoietic Stem Cell Yield to Develop Mice with Human Immune Systems

    Directory of Open Access Journals (Sweden)

    Juan-Carlos Biancotti

    2013-01-01

    Full Text Available Hematopoietic stem cells (HSCs are unique in their capacity to give rise to all mature cells of the immune system. For years, HSC transplantation has been used for treatment of genetic and neoplastic diseases of the hematopoietic and immune systems. The sourcing of HSCs from human umbilical cord blood has salient advantages over isolation from mobilized peripheral blood. However, poor sample yield has prompted development of methodologies to expand HSCs ex vivo. Cytokines, trophic factors, and small molecules have been variously used to promote survival and proliferation of HSCs in culture, whilst strategies to lower the concentration of inhibitors in the culture media have recently been applied to promote HSC expansion. In this paper, we outline strategies to expand HSCs in vitro, and to improve engraftment and reconstitution of human immune systems in immunocompromised mice. To the extent that these “humanized” mice are representative of the endogenous human immune system, they will be invaluable tools for both basic science and translational medicine.

  1. Cytokine-Regulated GADD45G Induces Differentiation and Lineage Selection in Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Frederic B. Thalheimer

    2014-07-01

    Full Text Available The balance of self-renewal and differentiation in long-term repopulating hematopoietic stem cells (LT-HSC must be strictly controlled to maintain blood homeostasis and to prevent leukemogenesis. Hematopoietic cytokines can induce differentiation in LT-HSCs; however, the molecular mechanism orchestrating this delicate balance requires further elucidation. We identified the tumor suppressor GADD45G as an instructor of LT-HSC differentiation under the control of differentiation-promoting cytokine receptor signaling. GADD45G immediately induces and accelerates differentiation in LT-HSCs and overrides the self-renewal program by specifically activating MAP3K4-mediated MAPK p38. Conversely, the absence of GADD45G enhances the self-renewal potential of LT-HSCs. Videomicroscopy-based tracking of single LT-HSCs revealed that, once GADD45G is expressed, the development of LT-HSCs into lineage-committed progeny occurred within 36 hr and uncovered a selective lineage choice with a severe reduction in megakaryocytic-erythroid cells. Here, we report an unrecognized role of GADD45G as a central molecular linker of extrinsic cytokine differentiation and lineage choice control in hematopoiesis.

  2. Hematopoietic growth factors including keratinocyte growth factor in allogeneic and autologous stem cell transplantation.

    Science.gov (United States)

    Seggewiss, Ruth; Einsele, Hermann

    2007-07-01

    The aim of hematopoietic stem cell transplantation (HSCT) is to cure patients of malignancies, autoimmune diseases, and immunodeficiency disorders by redirecting the immune system: the often described graft-versus-leukemia (GVL) or graft-versus-tumor (GVT) effects. Unfortunately, fulfillment of this goal is often hampered by relapse of the underlying disease, graft-versus-host disease (GVHD), or severe opportunistic infections, which account for the majority of post-transplantation deaths. Moreover, studies of long-term survivors of transplantation indicate an accelerated immune aging due to the transplantation procedure itself, preceding chemo- or radiotherapy, and acute and chronic GVHD. Significant advances have been made towards overcoming these obstacles by enhancing immune reconstitution with hematopoietic growth factors (HGFs) such as granulocyte colony-stimulating factor (G-CSF) or erythropoietin (EPO) or through the application of cytokines. In addition, there are approaches to promote the thymic-dependent development of naive T cells, which are prepared for the interaction with a multitude of pathogens. Examples are the application of keratinocyte growth factor (KGF), neuroendocrine hormones such as growth hormone or prolactin, sex hormone ablation, or the invention of a three-dimensional artificial thymus based on a cytomatrix. Might these measures result in a higher rate of healthy and fully recovered patients? Here we review progress in each of these areas.

  3. Response of hematopoietic stem cells to ionizing radiation; Reponse des cellules souches hematopoitiques aux radiations ionisantes

    Energy Technology Data Exchange (ETDEWEB)

    Simonnet, A

    2008-12-15

    Hematopoietic stem cells (HSCs) maintain blood and immune system throughout life and restore them after hematological injuries. Exposure of an organism to ionizing radiation (IR) causes rapid and acute myelosuppression and challenges the replenishment capacity of HSCs. Yet, the precise damages that are generated remain largely unexplored. To better understand these effects, phenotypic and functional changes in the stem/progenitor compartments of sublethally irradiated mice were monitored over a ten week period after radiation exposure. We report that shortly after sublethal IR-exposure, HSCs, defined by their repopulating ability, still segregate in the Hoechst dye excluding side population (SP); yet, their Sca-1 (S) and c-Kit (K) expression levels are increased and severely reduced, respectively, with a concurrent increase in the proportion of SP{sup SK} cells positive for established indicators of HSC presence: CD150{sup +} and CD105{sup +}. A great proportion of HSCs quickly but transiently enter the cell cycle to replenish the bone marrow of myelo-ablated mice. Ten weeks after, whereas bone marrow cellularity has recovered and hematopoietic homeostasis is restored, major phenotypic modifications can be observed within the Lin{sup -/low} Sca-1{sup +} c-Kit{sup +} (LSK) stem/progenitor compartment: CD150{sup +}/Flk2{sup -} and CD150{sup -}/Flk2{sup +} LSK cell frequencies are increased and dramatically reduced, respectively. CD150{sup +} LSK cells also show impaired reconstitution capacity, accrued number of {gamma}-H2AX foci and increased tendency to apoptosis. This demonstrates that the LSK compartment is not properly restored 10 weeks after sublethal exposure, and that long-term IR-induced injury to the bone marrow proceeds, at least partially, through direct damage to the stem cell pool. Thrombopoietin (TPO) has been shown to promote the survival of lethally irradiated mice when administrated quickly after exposure. We investigated the mechanisms underlying

  4. HLA-mismatched hematopoietic stem cell tranplantation for pediatric solid tumors

    Directory of Open Access Journals (Sweden)

    Andrea Pession

    2011-06-01

    Full Text Available Even if the overall survival of children with cancer is significantly improved over these decades, the cure rate of high-risk pediatric solid tumors such as neuroblastoma, Ewing’s sarcoma family tumors or rhabdomiosarcoma remain challenging. Autologous hematopoietic stem cell transplantation (HSCT allows chemotherapy dose intensification beyond marrow tolerance and has become a fundamental tool in the multimodal therapeutical approach of these patients. Anyway this procedure does not allow to these children an eventfree survival approaching more than 50% at 5 years. New concepts of allogeneic HSCT and in particular HLA-mismatched HSCT for high risk solid tumors do not rely on escalation of chemo therapy intensity and tumor load reduction but rather on a graft-versus-tumor effect. We here report an experimental study design of HLA-mismatched HSCT for the treatment of pediatric solid tumors and the inherent preliminary results.

  5. Voriconazole for prophylaxis of invasive fungal infections after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Marks, David I; Liu, Qifa; Slavin, Monica

    2017-05-01

    Invasive fungal infections (IFIs) following allogeneic hematopoietic stem cell transplantation (alloHSCT) are associated with a high mortality, and accordingly most alloHSCT recipients receive prophylaxis with antifungal agents. Despite some improvement in outcomes of IFIs over time, they continue to represent substantial clinical risk, mortality, and financial burden. Areas covered: We review the main pathogens responsible for IFIs in recipients of alloHSCT, current treatment recommendations, and discuss clinical and economic considerations associated with voriconazole prophylaxis of IFIs in these patients. Expert commentary: The clinical efficacy of voriconazole appears to be at least equivalent to other antifungal treatments, and generally well tolerated. Overall, benefit-risk balance is favorable, and findings from cost-effectiveness analyses support the use of voriconazole prophylaxis of IFIs in recipients of alloHSCT.

  6. Highly Variable Plasma Concentrations of Voriconazole in Pediatric Hematopoietic Stem Cell Transplantation Patients

    Science.gov (United States)

    Wolfs, Tom; Jonker, Martine; de Waal, Marjolein; Egberts, Toine C. G.; Ververs, Tessa T.; Boelens, Jaap J.; Bierings, Marc

    2013-01-01

    Invasive fungal infections are of great concern in pediatric hematopoietic stem cell transplantation (HSCT) recipients. Voriconazole is usually the drug of first choice for treating or preventing invasive aspergillosis. Optimum trough levels (Ctroughs) are between 1 and 5 mg/liter. It is unclear whether these levels are reached with currently advised pediatric dosing schedules. Between 2007 and 2011, 11 patients voriconazole in the HSCT unit of UMC Utrecht. For children 12 years) (P = 0.034). The intrapatient variability in Ctrough ranged between 1 and 238%. Voriconazole was discontinued in six patients due to toxicity. These patients had a median Ctrough of 0.5 mg/liter at the initial dose (ranging from 0.5 to 2.6 mg/liter), and a medium maximal concentration of 4 mg/liter was reached. Inter- and intrapatient variability is a major concern in voriconazole treatment and necessitates therapeutic drug monitoring of dosing, especially in young children. PMID:23114771

  7. Identification of a permissible HLA mismatch in hematopoietic stem cell transplantation

    Science.gov (United States)

    Fernandez-Viña, Marcelo A.; Wang, Tao; Lee, Stephanie J.; Haagenson, Michael; Aljurf, Mahmoud; Askar, Medhat; Battiwalla, Minoo; Baxter-Lowe, Lee-Ann; Gajewski, James; Jakubowski, Ann A.; Marino, Susana; Oudshoorn, Machteld; Marsh, Steven G. E.; Petersdorf, Effie W.; Schultz, Kirk; Turner, E. Victoria; Waller, Edmund K.; Woolfrey, Ann; Umejiego, John; Spellman, Stephen R.; Setterholm, Michelle

    2014-01-01

    In subjects mismatched in the HLA alleles C*03:03/C*03:04 no allogeneic cytotoxic T-lymphocyte responses are detected in vitro. Hematopoietic stem cell transplantation (HSCT) with unrelated donors (UDs) showed no association between the HLA-C allele mismatches (CAMMs) and adverse outcomes; antigen mismatches at this and mismatches other HLA loci are deleterious. The absence of effect of the CAMM may have resulted from the predominance of the mismatch C*03:03/C*03:04. Patients with hematologic malignancies receiving UD HSCT matched in 8/8 and 7/8 HLA alleles were examined. Transplants mismatched in HLA-C antigens or mismatched in HLA-A, -B, or -DRB1 presented significant differences (P HLA mismatches. PMID:24408320

  8. Oral Complications in Hematopoietic Stem Cell Recipients: The Role of Inflammation

    Directory of Open Access Journals (Sweden)

    T. M. Haverman

    2014-01-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT is widely used as a potentially curative treatment for patients with various hematological malignancies, bone marrow failure syndromes, and congenital immune deficiencies. The prevalence of oral complications in both autologous and allogeneic HSCT recipients remains high, despite advances in transplant medicine and in supportive care. Frequently encountered oral complications include mucositis, infections, oral dryness, taste changes, and graft versus host disease in allogeneic HSCT. Oral complications are associated with substantial morbidity and in some cases with increased mortality and may significantly affect quality of life, even many years after HSCT. Inflammatory processes are key in the pathobiology of most oral complications in HSCT recipients. This review article will discuss frequently encountered oral complications associated with HSCT focusing on the inflammatory pathways and inflammatory mediators involved in their pathogenesis.

  9. Nurses' competences in the critical care of children undergoing hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Marianna Ferreira

    2017-11-01

    Full Text Available This is a descriptive study, with qualitative data analysis, in order to identify and analyze the experiences and competencies required by nurses in the care of transplanted child, who demand critical care. Nine nurses were interviewed. We analyzed the data according to the procedures for qualitative content analysis, and then we elaborated the following themes: Critical care to the transplanted child: a double challenge for the nurse; Nurses' competences for the care towards the critically ill child submitted to hematopoietic stem cell transplantation (HSCT. The identified competencies based on scientific knowledge, skills and natural abilities and relate to specific knowledge about pediatric HSCT; technical-scientific, interactive and communication skills; management of material resources and equipment; emotional control, empathy and leadership. Such competences help in the construction of a specific profile for the care offered to this clientele, with a view to therapeutic success.

  10. Stability and bifurcation analysis in hematopoietic stem cell dynamics with multiple delays

    Science.gov (United States)

    Qu, Ying; Wei, Junjie; Ruan, Shigui

    2010-10-01

    This paper is devoted to the analysis of a maturity structured system of hematopoietic stem cell (HSC) populations in the bone marrow. The model is a system of differential equations with several time delays. We discuss the stability of equilibria and perform the analysis of Hopf bifurcation. More precisely, we first obtain a set of improved sufficient conditions ensuring the global asymptotical stability of the zero solution using the Lyapunov method and the embedding technique of asymptotically autonomous semiflows. Then we prove that there exists at least one positive periodic solution for the n-dimensional system as a time delay varies in some region. This result is established by combining Hopf bifurcation theory, the global Hopf bifurcation theorem due to Wu [J. Wu, Symmetric functional differential equations and neural networks with memory, Trans. Amer. Math. Soc. 350 (1998) 4799-4838], and a continuation theorem of coincidence degree theory. Some numerical simulations are also presented to illustrate the analytic results.

  11. Successful hematopoietic stem cell transplantation following a cyclophosphamide-containing preparative regimen with concomitant phenobarbital administration.

    Science.gov (United States)

    Weber, Catherine; Kasberg, Heather; Copelan, Edward

    2012-01-01

    Cyclophosphamide is an immunosuppressive agent and an anticancer prodrug which requires bioactivation catalyzed primarily by cytochrome P450 enzymes in order to be transformed into its active alkylating compounds. Concomitant administration of drugs known to inhibit or induce this enzyme system is a clinical concern. Herein, we present the case of a chronically ill 21-year-old patient who received high-dose cyclophosphamide, equine antithymocyte globulin (eATG), and total body irradiation (TBI) followed by an allogeneic hematopoietic stem cell transplant (HSCT) for severe aplastic anemia. Throughout her hospitalization, she continued to receive quadruple anticonvulsant therapy including phenobarbital for her long-standing seizure history. The preparative regimen was tolerated well aside from a hypersensitivity reaction to eATG, and minimal cyclophosphamide-related toxicities. Safe and effective administration of high-dose cyclophosphamide was possible with multidisciplinary care consisting of physician, nursing, pharmacy, neurology consultation, as well as social work and case management.

  12. Role of Pharmacogenetics in Hematopoietic Stem Cell Transplantation Outcome in Children

    Directory of Open Access Journals (Sweden)

    Raffaella Franca

    2015-08-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT is an established therapeutic procedure for several congenital and acquired disorders, both malignant and nonmalignant. Despite the great improvements in HSCT clinical practices over the last few decades, complications, such as graft vs. host disease (GVHD and sinusoidal obstructive syndrome (SOS, are still largely unpredictable and remain the major causes of morbidity and mortality. Both donor and patient genetic background might influence the success of bone marrow transplantation and could at least partially explain the inter-individual variability in HSCT outcome. This review summarizes some of the recent studies on candidate gene polymorphisms in HSCT, with particular reference to pediatric cohorts. The interest is especially focused on pharmacogenetic variants affecting myeloablative and immunosuppressive drugs, although genetic traits involved in SOS susceptibility and transplant-related mortality are also reviewed.

  13. Identification of Multipotent Progenitors that Emerge Prior to Hematopoietic Stem Cells in Embryonic Development

    Directory of Open Access Journals (Sweden)

    Matthew A. Inlay

    2014-04-01

    Full Text Available Hematopoiesis in the embryo proceeds in a series of waves, with primitive erythroid-biased waves succeeded by definitive waves, within which the properties of hematopoietic stem cells (multilineage potential, self-renewal, and engraftability gradually arise. Whereas self-renewal and engraftability have previously been examined in the embryo, multipotency has not been thoroughly addressed, especially at the single-cell level or within well-defined populations. To identify when and where clonal multilineage potential arises during embryogenesis, we developed a single-cell multipotency assay. We find that, during the initiation of definitive hematopoiesis in the embryo, a defined population of multipotent, engraftable progenitors emerges that is much more abundant within the yolk sac (YS than the aorta-gonad-mesonephros (AGM or fetal liver. These experiments indicate that multipotent cells appear in concert within both the YS and AGM and strongly implicate YS-derived progenitors as contributors to definitive hematopoiesis.

  14. Hematopoietic stem cell transplantation in juvenile myelomonocytic leukemia: analyse one centre experience and literature review

    Directory of Open Access Journals (Sweden)

    M. A. Maschan

    2011-01-01

    Full Text Available Allogeneic hematopoietic stem cell transplantation (HSCT is the standard curative therapy for juvenile myelomonocytic leukemia (JMML. Seventeen patients with JMML received myeloablative conditioning (busulfan-based — 15, treosulfan-based — 2. Donors included 5 matched related siblings, 8 — matched unrelated volunteer or cord blood (2, 4 — mismatched relatives. Primary engraftment was achieved in 75 %. The rate of acute GVHD grade II–IV was 58 %, grade III–IV — 23 %. Chronic GVHD occurred in 33 % of patients. Five JMML relapses occurred. Relapse-free survival is 66 ± 12 %. Four patients died of transplant-related complications. TRM was 28 ± 12 %.Five patients died of disease progression. Overall survival is 38 ± 13 % with median follow-up of 13 months. A review of most important publications related to HSCT in JMML is provided.

  15. Hematopoietic stem cell transplantation in juvenile myelomonocytic leukemia: analyse one centre experience and literature review

    Directory of Open Access Journals (Sweden)

    M. A. Maschan

    2014-07-01

    Full Text Available Allogeneic hematopoietic stem cell transplantation (HSCT is the standard curative therapy for juvenile myelomonocytic leukemia (JMML. Seventeen patients with JMML received myeloablative conditioning (busulfan-based — 15, treosulfan-based — 2. Donors included 5 matched related siblings, 8 — matched unrelated volunteer or cord blood (2, 4 — mismatched relatives. Primary engraftment was achieved in 75 %. The rate of acute GVHD grade II–IV was 58 %, grade III–IV — 23 %. Chronic GVHD occurred in 33 % of patients. Five JMML relapses occurred. Relapse-free survival is 66 ± 12 %. Four patients died of transplant-related complications. TRM was 28 ± 12 %.Five patients died of disease progression. Overall survival is 38 ± 13 % with median follow-up of 13 months. A review of most important publications related to HSCT in JMML is provided.

  16. Precision monitoring of immunotherapies in solid organ and hematopoietic stem cell transplantation.

    Science.gov (United States)

    DiLoreto, Rose; Khush, Kiran; De Vlaminck, Iwijn

    2017-05-15

    Pharmacological immunotherapies are a key component of post-transplant therapy in solid-organ and hematopoietic stem cell transplantation. In current clinical practice, immunotherapies largely follow a one-size fits all approach, leaving a large portion of transplant recipients either over- or under-immunosuppressed, and consequently at risk of infections or immune-mediated complications. Our goal here is to review recent and rapid advances in precision and genomic medicine approaches to monitoring of post-transplant immunotherapies. We will discuss recent advances in precision measurements of pharmacological immunosuppression, measurements of the plasma and gut microbiome, strategies to monitor for allograft injury and post-transplant malignancies via circulating cell-free DNA, and comprehensive measurements of the B and T cell immune cell repertoire. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Solid organ transplantation after allogeneic hematopoietic stem cell transplantation: a retrospective, multicenter study of the EBMT

    DEFF Research Database (Denmark)

    Koenecke, C; Hertenstein, B; Schetelig, J

    2010-01-01

    To analyze the outcome of solid organ transplantation (SOT) in patients who had undergone allogeneic hematopoietic stem cell transplantation (HSCT), a questionnaire survey was carried out within 107 European Group of Blood and Marrow Transplantation centers. This study covered HSCT between 1984...... and 2007 in Europe. Forty-five SOT in 40 patients were reported. Fifteen liver, 15 renal, 13 lung, 1 heart and 1 skin transplantations were performed in 28 centers. Overall survival (OS) of patients after SOT was 78% at 5 years (95% confidence interval [CI], 64% to 92%). OS at 5 years was 100% for renal......, 71% (95% CI, 46% to 96%) for liver and 63% (95% CI, 23% to 100%) for lung transplant recipients. The 2-year-incidence of SOT failure was 20% (95% CI, 4% to 36%) in patients with graft-versus-host disease (GvHD) and 7% (95% CI, 0% to 21%) in patients without GvHD before SOT. The relapse incidence...

  18. Exercise Intervention: Attrition, Compliance, Adherence, and Progression Following Hematopoietic Stem Cell Transplantation
.

    Science.gov (United States)

    Peters, Tara; Erdmann, Ruby; Hacker, Eileen Danaher

    2018-02-01

    Exercise is widely touted as an effective intervention to optimize health and well-being after high-dose chemotherapy and hematopoietic stem cell transplantation. 
. This article reports attrition, compliance, adherence, and progression from the strength training arm of the single-blind randomized, controlled trial Strength Training to Enhance Early Recovery (STEER). 
. 37 patients were randomized to the intervention and participated in a structured strength training program introduced during hospitalization and continued for six weeks after release. Research staff and patients maintained exercise logs to document compliance, adherence, and progression. 
. No patients left the study because of burden. Patients were compliant with completion of exercise sessions, and their adherence was high; they also progressed on their exercise prescription. Because STEER balances intervention effectiveness with patient burden, the findings support the likelihood of successful translation into clinical practice.

  19. Candidemia in Cancer Patients: Focus Mainly on Hematological Malignancyand Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Okinaka, Keiji

    2016-01-01

    Although many new antifungals have become commercially available since 2000, candidemia remains an important public health issue because of its poor prognosis. Some studies have suggested that early antifungal therapy is associated with decreased mortality; however, it is difficult to promptly diagnose candidemia because of the poor sensitivity of blood cultures. Thus, prophylaxis against Candida infection is recommended in patient groups in whom the risk of infection is high, such as allogeneic hematopoietic stem cell transplant recipients or those undergoing intensive remission-induction chemotherapy for acute leukemia. Non-Candida albicans candidemia is dominant among hematology patients, and the use of an echinocandin is recommended as the initial therapy. However, echinocandin-resistant Candida have been reported with increasing frequency, mainly in Candida glabrata. Several studies have reported that echinocandin resistance is associated with prior exposure to an echinocandin. Therefore, susceptibility testing is vital in treating severe or refractory candidemia, and the introduction of an antifungal stewardship program is recommended.

  20. Successful Hematopoietic Stem Cell Transplantation Following a Cyclophosphamide-Containing Preparative Regimen with Concomitant Phenobarbital Administration

    Directory of Open Access Journals (Sweden)

    Catherine Weber

    2012-01-01

    Full Text Available Cyclophosphamide is an immunosuppressive agent and an anticancer prodrug which requires bioactivation catalyzed primarily by cytochrome P450 enzymes in order to be transformed into its active alkylating compounds. Concomitant administration of drugs known to inhibit or induce this enzyme system is a clinical concern. Herein, we present the case of a chronically ill 21-year-old patient who received high-dose cyclophosphamide, equine antithymocyte globulin (eATG, and total body irradiation (TBI followed by an allogeneic hematopoietic stem cell transplant (HSCT for severe aplastic anemia. Throughout her hospitalization, she continued to receive quadruple anticonvulsant therapy including phenobarbital for her long-standing seizure history. The preparative regimen was tolerated well aside from a hypersensitivity reaction to eATG, and minimal cyclophosphamide-related toxicities. Safe and effective administration of high-dose cyclophosphamide was possible with multidisciplinary care consisting of physician, nursing, pharmacy, neurology consultation, as well as social work and case management.