WorldWideScience

Sample records for underway partial pressure

  1. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship RONALD H. BROWN in 2008 (NODC Accession 0109930)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0109930 includes biological, chemical, meteorological, physical and underway - surface data collected from NOAA Ship RONALD H. BROWN in the North...

  2. Underway measurements of surface partial pressure of CO2 during the R/V Roger Revelle Cruise in the Indian Ocean on CLIVAR Repeat Hydrography Section I06S_2008 (Feb. 5 - March 14, 2008). (NCEI Accession 0163185)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163185 includes chemical, meteorological, optical, physical and surface underway data collected from ROGER REVELLE CLIVAR Cruise in the Indian Ocean...

  3. Partial pressure (or fugacity) of carbon dioxide, salinity and SEA SURFACE TEMPERATURE collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from Munida in the South Pacific Ocean from 2004-01-26 to 2006-07-30 (NODC Accession 0100218)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0100218 includes Surface underway data collected from Munida in the South Pacific Ocean from 2004-01-26 to 2006-07-30. These data include Partial...

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from EXPLORER OF THE SEAS in the Caribbean Sea, Coastal Waters of Florida and North Atlantic Ocean from 2012-01-27 to 2012-11-24 (NODC Accession 0108232)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108232 includes Surface underway, chemical, meteorological and physical data collected from EXPLORER OF THE SEAS in the Caribbean Sea, Coastal Waters...

  5. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from Trans Future 5 in the Bass Strait, Coral Sea and others from 2011-01-04 to 2011-11-22 (NCEI Accession 0157263)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157263 includes Surface underway, chemical, meteorological and physical data collected from Trans Future 5 in the Bass Strait, Coral Sea, Inland Sea...

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship KA'IMIMOANA in the North Pacific Ocean and South Pacific Ocean from 2010-01-06 to 2010-09-17 (NODC Accession 0115170)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115170 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship KA'IMIMOANA in the North Pacific Ocean and...

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from Trans Future 5 in the Bass Strait, Coral Sea and others from 2012-01-16 to 2012-12-07 (NCEI Accession 0144347)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144347 includes Surface underway data collected from Trans Future 5 in the Bass Strait, Coral Sea, East China Sea (Tung Hai), Inland Sea (Seto...

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from L'ASTROLABE in the Indian Ocean, South Pacific Ocean and others from 1996-10-21 to 1996-11-23 (NCEI Accession 0157233)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157233 includes Surface underway, chemical, meteorological, optical and physical data collected from L'ASTROLABE in the Indian Ocean, South Pacific...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from L'ASTROLABE in the Indian Ocean, South Pacific Ocean and others from 1997-02-02 to 1997-02-17 (NCEI Accession 0157416)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157416 includes Surface underway, chemical, meteorological, optical and physical data collected from L'ASTROLABE in the Indian Ocean, South Pacific...

  10. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from RIO BLANCO in the English Channel, Mediterranean Sea and others from 2009-12-13 to 2010-12-14 (NODC Accession 0117291)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0117291 includes Surface underway data collected from RIO BLANCO in the English Channel, Mediterranean Sea, North Atlantic Ocean, South Atlantic Ocean...

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from the KEIFU MARU in the East China Sea (Tung Hai), North Pacific Ocean and others from 2001-01-20 to 2011-03-22 (NODC Accession 0081044)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0081044 includes chemical, meteorological, physical and underway - surface data collected from KEIFU MARU in the East China Sea (Tung Hai), North...

  12. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from the JAMES CLARK ROSS in the Arctic Ocean, Barents Sea and others from 2012-11-15 to 2013-08-16 (NODC Accession 0115256)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115256 includes chemical, meteorological, physical and underway - surface data collected from JAMES CLARK ROSS in the Arctic Ocean, Barents Sea,...

  13. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from L'ASTROLABE in the Indian Ocean, South Pacific Ocean and others from 2002-10-16 to 2006-12-31 (NCEI Accession 0157276)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157276 includes Surface underway, chemical, meteorological and physical data collected from L'ASTROLABE in the Indian Ocean, South Pacific Ocean,...

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from Trans Future 5 in the Bass Strait, Coral Sea and others from 2010-01-06 to 2010-12-08 (NCEI Accession 0157308)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157308 includes Surface underway, chemical, meteorological and physical data collected from Trans Future 5 in the Bass Strait, Coral Sea, Inland Sea...

  15. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship RONALD H. BROWN in the Caribbean Sea, Coastal Waters of Florida and others from 2006-02-16 to 2006-12-02 (NODC Accession 0081021)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0081021 includes Surface underway, chemical, meteorological, optical and physical data collected from NOAA Ship RONALD H. BROWN in the Caribbean Sea,...

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from CONTSHIP WASHINGTON in the North Pacific Ocean and South Pacific Ocean from 2007-09-22 to 2007-11-10 (NODC Accession 0080968)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0080968 includes Surface underway, chemical, meteorological and physical data collected from CONTSHIP WASHINGTON in the North Pacific Ocean and South...

  17. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship McARTHUR II in the Coastal Waters of SE Alaska, Cordell Bank National Marine Sanctuary and others from 2007-06-05 to 2007-07-26 (NODC Accession 0109934)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0109934 includes chemical, meteorological, physical and underway - surface data collected from NOAA Ship McARTHUR II in the Coastal Waters of SE...

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from MARION DUFRESNE in the Arabian Sea, Gulf of Aden and others from 1999-10-18 to 1999-11-01 (NCEI Accession 0157283)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157283 includes Surface underway, chemical, meteorological, optical and physical data collected from MARION DUFRESNE in the Arabian Sea, Gulf of...

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from the Atlantic Companion in the Inner Sea - West Coast Scotland, Irish Sea and St. George's Channel and North Atlantic Ocean from 2006-06-11 to 2007-11-05 (NODC Accession 0115226)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115226 includes chemical, meteorological, physical and underway - surface data collected from Atlantic Companion in the Inner Sea - West Coast...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from MARION DUFRESNE in the Indian Ocean and Southern Oceans from 1998-01-21 to 1998-12-28 (NODC Accession 0081003)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0081003 includes Surface underway, chemical, meteorological, optical and physical data collected from MARION DUFRESNE in the Indian Ocean and Southern...

  1. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from MARION DUFRESNE in the Indian Ocean from 2008-01-05 to 2008-02-05 (NODC Accession 0081001)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0081001 includes Surface underway, chemical, meteorological, optical and physical data collected from MARION DUFRESNE in the Indian Ocean from...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship KA'IMIMOANA in the Hawaiian Islands Humpback Whale National Marine Sanctuary, North Pacific Ocean and South Pacific Ocean from 2008-02-02 to 2008-11-16 (NODC Accession 0081043)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0081043 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship KA'IMIMOANA in the Hawaiian Islands Humpback...

  3. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from MN COLIBRI in the Alboran Sea, English Channel and others from 2010-03-30 to 2011-01-02 (NCEI Accession 0157320)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157320 includes Surface underway, chemical, meteorological and physical data collected from MN COLIBRI in the Alboran Sea, English Channel, Ligurian...

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from MN COLIBRI in the English Channel and North Atlantic Ocean from 2011-01-07 to 2011-01-17 (NCEI Accession 0157367)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157367 includes Surface underway, chemical, meteorological and physical data collected from MN COLIBRI in the English Channel and North Atlantic...

  5. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship DAVID STARR JORDAN in the Gulf of California and North Pacific Ocean from 2006-08-06 to 2006-12-07 (NODC Accession 0084176)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0084176 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship DAVID STARR JORDAN in the Gulf of California...

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship RONALD H. BROWN in the Caribbean Sea, Coastal Waters of Florida and others from 2003-02-06 to 2003-11-21 (NODC Accession 0081017)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0081017 includes Surface underway, chemical, meteorological, optical and physical data collected from NOAA Ship RONALD H. BROWN in the Caribbean Sea,...

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from the ROGER REVELLE in the Bay of Bengal and Indian Ocean from 2007-03-22 to 2007-04-28 (NODC Accession 0108120)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108120 includes biological, chemical, meteorological, physical and underway - surface data collected from ROGER REVELLE in the Bay of Bengal and...

  8. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from SKOGAFOSS in the North Atlantic Ocean and Stellwagen Bank National Marine Sanctuary from 2007-01-07 to 2007-06-04 (NODC Accession 0112887)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0112887 includes Surface underway, chemical, meteorological and physical data collected from SKOGAFOSS in the North Atlantic Ocean and Stellwagen Bank...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from S.A. AGULHAS II in the Gulf of Guinea, North Atlantic Ocean and South Atlantic Ocean from 2012-12-06 to 2014-02-11 (NCEI Accession 0160546)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0160546 includes Surface underway, chemical, meteorological and physical data collected from S.A. AGULHAS II in the Gulf of Guinea, North Atlantic...

  10. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from COLUMBUS WAIKATO in the Bass Strait, North Pacific Ocean and others from 2004-03-03 to 2006-01-15 (NODC Accession 0080979)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0080979 includes Surface underway, chemical, meteorological and physical data collected from COLUMBUS WAIKATO in the Bass Strait, North Pacific Ocean,...

  11. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from the SKOGAFOSS in the North Atlantic Ocean and Stellwagen Bank National Marine Sanctuary from 2003-11-20 to 2003-12-21 (NODC Accession 0112929)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112929 includes chemical, meteorological, physical and underway - surface data collected from SKOGAFOSS in the North Atlantic Ocean and Stellwagen...

  12. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from WECOMA in the Cordell Bank National Marine Sanctuary, Gulf of the Farallones National Marine Sanctuary and others from 2011-08-12 to 2011-08-30 (NCEI Accession 0157448)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157448 includes Surface underway, chemical, meteorological and physical data collected from WECOMA in the Cordell Bank National Marine Sanctuary,...

  13. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from the EXPLORER OF THE SEAS in the Caribbean Sea, Gulf of Mexico and North Atlantic Ocean from 2003-02-08 to 2004-01-03 (NODC Accession 0081032)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0081032 includes biological, chemical, meteorological, physical and underway - surface data collected from EXPLORER OF THE SEAS in the Caribbean Sea,...

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from the EXPLORER OF THE SEAS in the Caribbean Sea, Gulf of Mexico and North Atlantic Ocean from 2005-01-02 to 2005-12-18 (NODC Accession 0109924)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0109924 includes biological, chemical, meteorological, physical and underway - surface data collected from EXPLORER OF THE SEAS in the Caribbean Sea,...

  15. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from Trans Future 5 in the Bass Strait, Coral Sea and others from 2015-01-10 to 2015-11-01 (NCEI Accession 0157329)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157329 includes Surface underway, chemical, meteorological and physical data collected from Trans Future 5 in the Bass Strait, Coral Sea, Inland Sea...

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from Trans Future 5 in the Bass Strait, Coral Sea and others from 2012-12-18 to 2014-01-02 (NCEI Accession 0157271)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157271 includes Surface underway, chemical, meteorological and physical data collected from Trans Future 5 in the Bass Strait, Coral Sea, Inland Sea...

  17. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from Atlantic Companion in the Inner Sea - West Coast Scotland, Irish Sea and St. George's Channel and others from 2012-03-17 to 2012-12-06 (NCEI Accession 0157280)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157280 includes Surface underway, chemical, meteorological and physical data collected from Atlantic Companion in the Inner Sea - West Coast...

  18. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from the SKOGAFOSS in the North Atlantic Ocean, North Greenland Sea and Stellwagen Bank National Marine Sanctuary from 2006-03-15 to 2007-01-04 (NODC Accession 0112932)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112932 includes chemical, meteorological, physical and underway - surface data collected from SKOGAFOSS in the North Atlantic Ocean, North Greenland...

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from the SKOGAFOSS in the Gulf of St. Lawrence, Labrador Sea and others from 2005-01-07 to 2005-12-06 (NODC Accession 0112931)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112931 includes chemical, meteorological, physical and underway - surface data collected from SKOGAFOSS in the Gulf of St. Lawrence, Labrador Sea,...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship MALCOLM BALDRIGE in the Arabian Sea, Arafura Sea and others from 1995-02-13 to 1996-01-29 (NCEI Accession 0157103)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157103 includes Surface underway, chemical, meteorological, optical and physical data collected from NOAA Ship MALCOLM BALDRIGE in the Arabian Sea,...

  1. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from METEOR in the Arabian Sea, Gulf of Oman and Indian Ocean from 1995-07-14 to 1995-08-14 (NCEI Accession 0157410)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157410 includes Surface underway, chemical, meteorological and physical data collected from METEOR in the Arabian Sea, Gulf of Oman and Indian Ocean...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from ROGER REVELLE in the South Pacific Ocean and Southern Oceans from 2005-01-06 to 2005-02-19 (NCEI Accession 0144243)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144243 includes Surface underway data collected from ROGER REVELLE in the South Pacific Ocean and Southern Oceans (> 60 degrees South) from...

  3. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from the Drifting Buoy in the Indian Ocean, South Atlantic Ocean and others from 2001-11-20 to 2007-05-08 (NODC Accession 0117495)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117495 includes Surface underway, biological, chemical, meteorological and physical data collected from Drifting Buoy in the Indian Ocean, South...

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from THALASSA in the North Atlantic Ocean from 2012-08-19 to 2012-09-10 (NODC Accession 0117712)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117712 includes Surface underway, chemical, meteorological and physical data collected from THALASSA in the North Atlantic Ocean from 2012-08-19 to...

  5. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from Benguela Stream in the Caribbean Sea, English Channel and North Atlantic Ocean from 2015-01-08 to 2015-08-27 (NCEI Accession 0160490)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0160490 includes Surface underway, chemical, meteorological and physical data collected from Benguela Stream in the Caribbean Sea, English Channel and...

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from S.A. AGULHAS II in the Gulf of Guinea, Indian Ocean and others from 2014-12-05 to 2016-02-10 (NCEI Accession 0160549)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0160549 includes Surface underway, chemical, meteorological and physical data collected from S.A. AGULHAS II in the Gulf of Guinea, Indian Ocean,...

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from MARION DUFRESNE in the Indian Ocean and Southern Oceans from 2000-01-15 to 2000-08-14 (NODC Accession 0081005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0081005 includes Surface underway, chemical, meteorological, optical and physical data collected from MARION DUFRESNE in the Indian Ocean and Southern...

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from Trans Future 5 in the Bass Strait, Coral Sea and others from 2006-06-27 to 2006-12-09 (NCEI Accession 0144357)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144357 includes Surface underway data collected from Trans Future 5 in the Bass Strait, Coral Sea, North Pacific Ocean, Philippine Sea, Solomon Sea,...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from the EXPLORER OF THE SEAS in the Caribbean Sea, Gulf of Mexico and others from 2006-01-15 to 2006-12-24 (NODC Accession 0109925)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0109925 includes biological, chemical, meteorological, physical and underway - surface data collected from EXPLORER OF THE SEAS in the Caribbean Sea,...

  10. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from the SKOGAFOSS in the North Atlantic Ocean, North Greenland Sea and Stellwagen Bank National Marine Sanctuary from 2004-02-17 to 2005-01-06 (NODC Accession 0112930)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112930 includes chemical, meteorological, physical and underway - surface data collected from SKOGAFOSS in the North Atlantic Ocean, North Greenland...

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from the AURORA AUSTRALIS in the Great Australian Bight, Indian Ocean and others from 1992-10-19 to 2001-12-12 (NODC Accession 0115153)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115153 includes chemical, meteorological, physical and underway - surface data collected from AURORA AUSTRALIS in the Great Australian Bight, Indian...

  12. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship RONALD H. BROWN in the North Atlantic Ocean and South Atlantic Ocean from 2013-07-18 to 2013-10-02 (NODC Accession 0117699)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117699 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship RONALD H. BROWN in the North Atlantic Ocean and...

  13. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship RONALD H. BROWN in the Caribbean Sea, North Atlantic Ocean and South Atlantic Ocean from 2013-04-30 to 2013-12-07 (NODC Accession 0117689)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0117689 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship RONALD H. BROWN in the Caribbean Sea, North...

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from F.G. Walton Smith in the Coastal Waters of Florida, Coastal Waters of Louisiana and others from 2016-01-04 to 2016-12-13 (NCEI Accession 0157454)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157454 includes Surface underway, chemical, meteorological and physical data collected from F.G. Walton Smith in the Coastal Waters of Florida,...

  15. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from ROGER REVELLE in the Indian Ocean, South Pacific Ocean and others from 2007-02-04 to 2007-03-16 (NCEI Accession 0144252)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144252 includes Surface underway data collected from ROGER REVELLE in the Indian Ocean, South Pacific Ocean, Southern Oceans (> 60 degrees South)...

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship DAVID STARR JORDAN in the Channel Islands National Marine Sanctuary, Cordell Bank National Marine Sanctuary and others from 2007-07-25 to 2007-10-28 (NCEI Accession 0144352)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144352 includes Surface underway data collected from NOAA Ship DAVID STARR JORDAN in the Channel Islands National Marine Sanctuary, Cordell Bank...

  17. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship OSCAR DYSON in the Bering Sea, Gulf of Alaska and North Pacific Ocean from 2014-03-03 to 2014-08-13 (NCEI Accession 0144980)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144980 includes Surface underway data collected from NOAA Ship OSCAR DYSON in the Bering Sea, Gulf of Alaska and North Pacific Ocean from 2014-03-03...

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship RONALD H. BROWN in the Coastal Waters of Florida, North Atlantic Ocean and others from 2004-12-29 to 2005-11-25 (NODC Accession 0081020)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0081020 includes Surface underway, chemical, meteorological, optical and physical data collected from NOAA Ship RONALD H. BROWN in the Coastal Waters...

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from Benguela Stream in the Caribbean Sea, English Channel and North Atlantic Ocean from 2014-04-30 to 2014-12-19 (NCEI Accession 0159093)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0159093 includes Surface underway, chemical, meteorological and physical data collected from Benguela Stream in the Caribbean Sea, English Channel and...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from MN COLIBRI in the Alboran Sea, Balearic Sea and others from 2009-06-15 to 2009-09-07 (NCEI Accession 0157421)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157421 includes Surface underway, chemical, meteorological and physical data collected from MN COLIBRI in the Alboran Sea, Balearic (or Iberian) Sea,...

  1. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from Trans Future 5 in the Bass Strait, Coral Sea and others from 2008-02-04 to 2008-11-22 (NCEI Accession 0157379)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157379 includes Surface underway, chemical, meteorological and physical data collected from Trans Future 5 in the Bass Strait, Coral Sea, North...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from the EXPLORER OF THE SEAS in the Caribbean Sea, Gulf of Mexico and North Atlantic Ocean from 2004-01-03 to 2005-01-02 (NODC Accession 0081033)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0081033 includes biological, chemical, meteorological, physical and underway - surface data collected from EXPLORER OF THE SEAS in the Caribbean Sea,...

  3. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship RONALD H. BROWN in the Caribbean Sea, Coastal Waters of Florida and others from 2004-02-12 to 2004-12-22 (NODC Accession 0081018)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0081018 includes Surface underway, chemical, meteorological, optical and physical data collected from NOAA Ship RONALD H. BROWN in the Caribbean Sea,...

  4. Mathematical Modelling of Intraretinal Oxygen Partial Pressure ...

    African Journals Online (AJOL)

    Purpose: The aim of our present work is to develop a simple steady state model for intraretinal oxygen partial pressure distribution and to investigate the effect of various model parameters on the partial pressure distribution under adapted conditions of light and darkness.. Method: A simple eight-layered mathematical model ...

  5. Estimation of vapour pressure and partial pressure of subliming ...

    Indian Academy of Sciences (India)

    Administrator

    conditions of (total) pressure by using thermogravimetry under those conditions. Further, from the partial pressure P, it is possible to determine the number of moles of material in the vapour phase using the ideal gas equation, PV = nRT, where P is the partial pressure, V the volume, n number of moles (of the vapour), R the ...

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean and others from 2004-12-30 to 2005-11-20 (NCEI Accession 0148772)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148772 includes Surface underway data collected from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean, South Pacific Ocean and...

  7. Partial pressure (or fugacity) of carbon dioxide and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NUKA ARCTICA in the Davis Strait, Kattegat and others from 2012-01-10 to 2012-12-31 (NCEI Accession 0157390)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157390 includes Surface underway, chemical and physical data collected from NUKA ARCTICA in the Davis Strait, Kattegat, The Sound, Great Belt, Little...

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the North Sea from 2013-06-02 to 2013-06-05 (NCEI Accession 0157234)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157234 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the North Sea from 2013-06-02 to...

  9. Partial pressure (or fugacity) of carbon dioxide and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NUKA ARCTICA in the Davis Strait, Kattegat and others from 2007-04-27 to 2008-01-05 (NCEI Accession 0144288)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144288 includes Surface underway data collected from NUKA ARCTICA in the Davis Strait, Kattegat, The Sound, Great Belt, Little Belt, North Atlantic...

  10. Partial pressure (or fugacity) of carbon dioxide and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NUKA ARCTICA in the Baffin Bay, Davis Strait and others from 2013-02-01 to 2013-12-31 (NCEI Accession 0157395)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157395 includes Surface underway, chemical and physical data collected from NUKA ARCTICA in the Baffin Bay, Davis Strait, Kattegat, The Sound, Great...

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the North Sea from 2013-08-03 to 2013-08-21 (NCEI Accession 0157420)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157420 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the North Sea from 2013-08-03 to...

  12. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the Bristol Channel, English Channel and others from 2012-09-13 to 2012-09-25 (NCEI Accession 0157385)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157385 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the Bristol Channel, English Channel,...

  13. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the North Sea from 2012-11-13 to 2012-11-15 (NCEI Accession 0157309)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157309 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the North Sea from 2012-11-13 to...

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the North Sea from 2012-10-19 to 2012-10-20 (NCEI Accession 0157401)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157401 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the North Sea from 2012-10-19 to...

  15. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the North Sea and South Atlantic Ocean from 2013-07-28 to 2013-07-31 (NCEI Accession 0157362)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157362 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the North Sea and South Atlantic Ocean...

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the North Sea from 2012-11-17 to 2012-12-01 (NCEI Accession 0157330)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157330 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the North Sea from 2012-11-17 to...

  17. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the North Sea from 2013-06-08 to 2013-06-17 (NCEI Accession 0157288)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157288 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the North Sea from 2013-06-08 to...

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the North Sea from 2012-04-09 to 2012-04-14 (NCEI Accession 0157299)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157299 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the North Sea from 2012-04-09 to...

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the North Sea from 2013-10-06 to 2013-10-08 (NCEI Accession 0157364)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157364 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the North Sea from 2013-10-06 to...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the English Channel and North Atlantic Ocean from 2012-03-24 to 2012-04-07 (NCEI Accession 0157273)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157273 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the English Channel and North Atlantic...

  1. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the North Sea from 2012-10-07 to 2012-10-17 (NCEI Accession 0157324)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157324 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the North Sea from 2012-10-07 to...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the Bristol Channel, English Channel and others from 2013-09-10 to 2013-10-02 (NCEI Accession 0157366)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157366 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the Bristol Channel, English Channel,...

  3. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the North Sea from 2012-03-10 to 2012-03-14 (NCEI Accession 0157343)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157343 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the North Sea from 2012-03-10 to...

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the North Sea from 2012-04-24 to 2012-04-25 (NCEI Accession 0157270)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157270 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the North Sea from 2012-04-24 to...

  5. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the North Sea from 2012-09-10 to 2012-09-12 (NCEI Accession 0157400)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157400 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the North Sea from 2012-09-10 to...

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the North Sea from 2012-05-28 to 2012-05-30 (NCEI Accession 0157384)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157384 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the North Sea from 2012-05-28 to...

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the North Sea from 2012-12-01 to 2012-12-04 (NCEI Accession 0157318)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157318 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the North Sea from 2012-12-01 to...

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Thin film type equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the MARION DUFRESNE in the Indian Ocean from 2009-01-04 to 2009-02-09 (NODC Accession 0108227)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108227 includes biological, chemical, meteorological, physical and underway - surface data collected from MARION DUFRESNE in the Indian Ocean from...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from unknown platforms in the world-wide oceans from 1968-11-16 to 2007-12-31 (NODC Accession 0101726)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0101726 includes Surface underway, chemical, meteorological and physical data collected from unknown platforms in the world-wide oceans from...

  10. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from MN COLIBRI in the Alboran Sea, Balearic Sea and others from 2015-02-26 to 2016-01-05 (NCEI Accession 0157253)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157253 includes Surface underway, chemical, meteorological and physical data collected from MN COLIBRI in the Alboran Sea, Balearic (or Iberian) Sea,...

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from Santa Cruz in the English Channel, North Atlantic Ocean and others from 2014-01-17 to 2014-02-28 (NCEI Accession 0157404)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157404 includes Surface underway, chemical, meteorological and physical data collected from Santa Cruz in the English Channel, North Atlantic Ocean,...

  12. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Thin film type equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the MARION DUFRESNE in the Indian Ocean from 2011-01-15 to 2011-02-18 (NODC Accession 0114448)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0114448 includes biological, chemical, meteorological, physical and underway - surface data collected from MARION DUFRESNE in the Indian Ocean from...

  13. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Micro-porous membrane equilibrator and other instruments from WAKATAKA MARU in the North Atlantic Ocean, North Pacific Ocean and South Atlantic Ocean from 2011-06-10 to 2011-12-06 (NCEI Accession 0157428)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157428 includes Surface underway, chemical, meteorological and physical data collected from WAKATAKA MARU in the North Atlantic Ocean, North Pacific...

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Micro-porous membrane equilibrator and other instruments from WAKATAKA MARU in the North Pacific Ocean from 2012-06-25 to 2012-10-21 (NCEI Accession 0157435)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157435 includes Surface underway, chemical, meteorological and physical data collected from WAKATAKA MARU in the North Pacific Ocean from 2012-06-25...

  15. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Micro-porous membrane equilibrator and other instruments from SOYO-MARU in the North Pacific Ocean, Philippine Sea and South Atlantic Ocean from 2012-04-10 to 2012-11-30 (NCEI Accession 0157371)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157371 includes Surface underway, chemical, meteorological and physical data collected from SOYO-MARU in the North Pacific Ocean, Philippine Sea and...

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and SEA SURFACE TEMPERATURE collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the USS BOLD in the Gulf of Mexico from 2007-05-02 to 2007-08-24 (NODC Accession 0117500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117500 includes Surface underway, chemical and physical data collected from USS BOLD in the Gulf of Mexico from 2007-05-02 to 2007-08-24. These data...

  17. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the USS BOLD in the Gulf of Mexico from 2006-06-06 to 2006-09-11 (NODC Accession 0117493)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117493 includes Surface underway, chemical, meteorological and physical data collected from USS BOLD in the Gulf of Mexico from 2006-06-06 to...

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the CAPE HATTERAS in the Gulf of Mexico from 2009-01-09 to 2010-03-21 (NODC Accession 0115765)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115765 includes chemical, meteorological, physical and underway - surface data collected from CAPE HATTERAS in the Gulf of Mexico from 2009-01-09 to...

  19. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample, profile and underway - surface observations using Alkalinity titrator, CTD and other instruments from the MIRAI in the Coral Sea, North Pacific Ocean and others from 2009-04-10 to 2009-07-03 (NODC Accession 0108084)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108084 includes chemical, discrete sample, meteorological, physical, profile and underway - surface data collected from MIRAI in the Coral Sea, North...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from New Century 2 in the Caribbean Sea, Coastal Waters of Florida and others from 2015-03-16 to 2015-10-23 (NCEI Accession 0157369)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157369 includes Surface underway, chemical and physical data collected from New Century 2 in the Caribbean Sea, Coastal Waters of Florida, Coastal...

  1. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from unknown platforms in the world-wide oceans from 1968-11-16 to 2011-12-31 (NCEI Accession 0157631)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157631 includes Surface underway, chemical, meteorological, navigational and physical data collected from unknown platforms in the world-wide oceans...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the English Channel and North Sea from 2013-07-11 to 2013-07-23 (NCEI Accession 0157281)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157281 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the English Channel and North Sea from...

  3. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from MN COLIBRI in the English Channel and North Atlantic Ocean from 2016-01-07 to 2016-05-30 (NCEI Accession 0160554)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0160554 includes Surface underway, chemical, meteorological and physical data collected from MN COLIBRI in the English Channel and North Atlantic...

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the English Channel, North Atlantic Ocean and North Sea from 2013-10-12 to 2013-10-22 (NCEI Accession 0157304)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157304 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the English Channel, North Atlantic...

  5. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from Cap San Lorenzo in the English Channel, North Atlantic Ocean and South Atlantic Ocean from 2016-01-29 to 2016-07-27 (NCEI Accession 0160551)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0160551 includes Surface underway, chemical, meteorological and physical data collected from Cap San Lorenzo in the English Channel, North Atlantic...

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the Bristol Channel, English Channel and others from 2013-05-08 to 2013-05-28 (NCEI Accession 0157373)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157373 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the Bristol Channel, English Channel,...

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the Bristol Channel, English Channel and others from 2013-04-19 to 2013-05-08 (NCEI Accession 0157305)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157305 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the Bristol Channel, English Channel,...

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the Bristol Channel, English Channel and others from 2012-09-27 to 2012-10-04 (NCEI Accession 0157267)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157267 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the Bristol Channel, English Channel,...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from Cap San Lorenzo in the English Channel, Mediterranean Sea and others from 2015-02-28 to 2015-12-16 (NCEI Accession 0157377)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157377 includes Surface underway, chemical, meteorological and physical data collected from Cap San Lorenzo in the English Channel, Mediterranean...

  10. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the English Channel, North Atlantic Ocean and North Sea from 2012-02-18 to 2012-02-29 (NCEI Accession 0157300)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157300 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the English Channel, North Atlantic...

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the Bristol Channel, English Channel and others from 2013-02-03 to 2013-02-13 (NCEI Accession 0157382)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157382 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the Bristol Channel, English Channel,...

  12. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the Bristol Channel, English Channel and others from 2012-10-23 to 2012-11-09 (NCEI Accession 0157241)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157241 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the Bristol Channel, English Channel,...

  13. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the METEOR in the English Channel, Indian Ocean and others from 1994-10-12 to 1994-11-12 (NODC Accession 0115605)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115605 includes Surface underway, chemical, meteorological and physical data collected from METEOR in the English Channel, Indian Ocean, North...

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the XUE LONG in the Bali Sea, Celebes Sea and others from 2007-11-12 to 2008-04-12 (NODC Accession 0108235)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108235 includes chemical, meteorological, physical and underway - surface data collected from XUE LONG in the Bali Sea, Celebes Sea, East China Sea...

  15. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from unknown platforms in the Adriatic Sea, Aegean Sea and others from 2012-01-01 to 2012-12-31 (NODC Accession 0059946)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0059946 includes Surface underway, chemical, meteorological and physical data collected from unknown platforms in the Adriatic Sea, Aegean Sea,...

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from ROGER REVELLE in the Andaman Sea or Burma Sea, Bali Sea and others from 2016-02-08 to 2016-09-22 (NCEI Accession 0160548)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0160548 includes Surface underway, chemical, meteorological and physical data collected from ROGER REVELLE in the Andaman Sea or Burma Sea, Bali Sea,...

  17. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, thermosalinographs and other instruments from JAMES CLARK ROSS in the South Atlantic Ocean and Southern Oceans from 2009-03-11 to 2009-04-17 (NCEI Accession 0157275)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157275 includes Surface underway, chemical and physical data collected from JAMES CLARK ROSS in the South Atlantic Ocean and Southern Oceans (> 60...

  18. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, PAR Sensor and other instruments from NATHANIEL B. PALMER in the South Pacific Ocean and Southern Oceans from 1997-11-25 to 1997-12-08 (NCEI Accession 0157301)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157301 includes Surface underway, biological, chemical, optical and physical data collected from NATHANIEL B. PALMER in the South Pacific Ocean and...

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, thermosalinographs and other instruments from JAMES CLARK ROSS in the South Atlantic Ocean and Southern Oceans from 2008-01-02 to 2008-02-17 (NCEI Accession 0157284)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157284 includes Surface underway, chemical and physical data collected from JAMES CLARK ROSS in the South Atlantic Ocean and Southern Oceans (> 60...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from New Century 2 in the Bering Sea, Caribbean Sea and others from 2014-04-11 to 2015-01-12 (NCEI Accession 0157356)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157356 includes Surface underway, chemical and physical data collected from New Century 2 in the Bering Sea, Caribbean Sea, Coastal Waters of...

  1. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the XUE LONG in the Arctic Ocean, Beaufort Sea and Bering Sea from 2008-07-30 to 2008-09-11 (NODC Accession 0109932)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0109932 includes chemical, meteorological, physical and underway - surface data collected from XUE LONG in the Arctic Ocean, Beaufort Sea and Bering...

  2. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from AEGAEO in the Aegean Sea and Mediterranean Sea from 2006-02-08 to 2006-02-13 (NODC Accession 0084543)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0084543 includes Surface underway, chemical, meteorological and physical data collected from AEGAEO in the Aegean Sea and Mediterranean Sea from...

  3. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NOAA Ship RONALD H. BROWN in the Arabian Sea, Arafura Sea and others from 1999-01-14 to 1999-12-02 (NODC Accession 0081013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0081013 includes Surface underway, chemical and physical data collected from NOAA Ship RONALD H. BROWN in the Arabian Sea, Arafura Sea, Bay of Bengal,...

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from Ryofu Maru in the East China Sea, North Pacific Ocean and others from 2010-04-15 to 2013-09-13 (NODC Accession 0117056)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0117056 includes Surface underway data collected from Ryofu Maru in the East China Sea (Tung Hai), North Pacific Ocean, Philippine Sea and South...

  5. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from RYOFU MARU in the Bismarck Sea, North Pacific Ocean and others from 1983-01-19 to 1989-02-06 (NODC Accession 0080988)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0080988 includes Surface underway, chemical, meteorological and physical data collected from RYOFU MARU in the Bismarck Sea, North Pacific Ocean,...

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the SOUTHERN SURVEYOR in the Coral Sea, Indian Ocean and others from 2012-04-11 to 2012-07-25 (NODC Accession 0115295)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115295 includes chemical, meteorological, physical and underway - surface data collected from SOUTHERN SURVEYOR in the Coral Sea, Indian Ocean, South...

  7. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from METEOR in the North Atlantic Ocean from 1996-06-06 to 1996-06-19 (NCEI Accession 0157375)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157375 includes Surface underway, chemical, meteorological and physical data collected from METEOR in the North Atlantic Ocean from 1996-06-06 to...

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from Atlantic Cartier in the Inner Sea - West Coast Scotland, Irish Sea and St. George's Channel and North Atlantic Ocean from 2015-09-12 to 2015-12-22 (NCEI Accession 0157236)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157236 includes Surface underway, chemical, meteorological and physical data collected from Atlantic Cartier in the Inner Sea - West Coast Scotland,...

  9. Partial pressure (or fugacity) of carbon dioxide and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from NUKA ARCTICA in the Davis Strait, Kattegat and others from 2011-02-09 to 2011-12-26 (NCEI Accession 0157346)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157346 includes Surface underway, chemical and physical data collected from NUKA ARCTICA in the Davis Strait, Kattegat, The Sound, Great Belt, Little...

  10. Partial pressure of carbon dioxide (pCO2), temperature, salinity and other variables collected from surface underway observations using shower head equilibrator, carbon dioxide gas detector and other instruments from the R/V Thomas G. Thompson in the Pacific Ocean from 2016-03-02 to 2016-04-18 (NCEI Accession 0158483)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains underway measurements of pCO2, salinity, sea surface temperature, and other parameters collected in the Pacific ocean on the R/V...

  11. Partial pressure of carbon dioxide (pCO2), temperature, salinity and other variables collected from surface underway observations using shower head equilibrator, carbon dioxide gas detector and other instruments from 3 trans-Pacific crossings onboard container ship Cap Blanche in the Pacific Ocean from 2016-03-13 to 2016-09-13 (NCEI Accession 0158484)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains underway measurements of pCO2, salinity, sea surface temperature, and other parameters that were collected during 3 trans-Pacific...

  12. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from L'ATALANTE in the North Pacific Ocean and South Pacific Ocean from 1994-09-23 to 1994-10-30 (NCEI Accession 0157463)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157463 includes Surface underway, chemical, meteorological and physical data collected from L'ATALANTE in the North Pacific Ocean and South Pacific...

  13. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from JOHAN HJORT in the Barents Sea, North Sea and others from 2007-11-15 to 2008-06-08 (NCEI Accession 0157398)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157398 includes Surface underway, chemical and physical data collected from JOHAN HJORT in the Barents Sea, North Sea, Norwegian Sea and Skagerrak...

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from G.O. SARS in the Barents Sea, North Atlantic Ocean and others from 2009-01-18 to 2009-07-17 (NCEI Accession 0157383)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157383 includes Surface underway, chemical, meteorological and physical data collected from G.O. SARS in the Barents Sea, North Atlantic Ocean, North...

  15. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the SOUTHERN SURVEYOR in the Bass Strait, Coral Sea and others from 2008011 to 2010-10-31 (NODC Accession 0115181)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115181 includes chemical, meteorological, physical and underway - surface data collected from SOUTHERN SURVEYOR in the Bass Strait, Coral Sea, Great...

  16. Partial pressure (or fugacity) of carbon dioxide and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from RYOFU MARU in the Bismarck Sea, East China Sea and others from 1989-11-17 to 1992-03-09 (NCEI Accession 0157056)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157056 includes Surface underway, chemical, meteorological and physical data collected from RYOFU MARU in the Bismarck Sea, East China Sea (Tung...

  17. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity and salinity collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from ARMORIQUE in the English Channel from 2013-03-15 to 2013-12-22 (NCEI Accession 0157444)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157444 includes Surface underway, chemical and physical data collected from ARMORIQUE in the English Channel from 2013-03-15 to 2013-12-22. These...

  18. Partial pressure (or fugacity) of carbon dioxide and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from unknown platforms in the Andaman Sea or Burma Sea, Arabian Sea and others from 1957-10-21 to 1963-08-15 (NCEI Accession 0157734)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157734 includes Surface underway, chemical, meteorological and physical data collected from unknown platforms in the Andaman Sea or Burma Sea,...

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Thin film type equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from MARION DUFRESNE in the Indian Ocean from 2013-02-10 to 2013-03-09 (NODC Accession 0116410)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0116410 includes Surface underway, chemical, meteorological, optical and physical data collected from MARION DUFRESNE in the Indian Ocean from...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Thin film type equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the MARION DUFRESNE in the Indian Ocean from 2012-01-25 to 2012-03-07 (NODC Accession 0116411)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0116411 includes biological, chemical, meteorological, physical and underway - surface data collected from MARION DUFRESNE in the Indian Ocean from...

  1. Partial pressure (or fugacity) of carbon dioxide and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from HUDSON, KNORR and others in the Alboran Sea, Arabian Sea and others from 1977-11-07 to 1990-04-16 (NODC Accession 9400165)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 9400165 includes Surface underway, chemical, meteorological and physical data collected from HUDSON, KNORR, NOAA Ship MALCOLM BALDRIGE, MELVILLE,...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Thin film type equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the MARION DUFRESNE in the Indian Ocean from 2009-12-24 to 2010-01-22 (NODC Accession 0108228)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108228 includes biological, chemical, meteorological, physical and underway - surface data collected from MARION DUFRESNE in the Indian Ocean from...

  3. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Thin film type equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the POLARSTERN in the North Atlantic Ocean and South Atlantic Ocean from 1995-11-09 to 1995-12-01 (NODC Accession 0112941)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112941 includes chemical, meteorological, physical and underway - surface data collected from POLARSTERN in the North Atlantic Ocean and South...

  4. Partial pressure (or fugacity) of carbon dioxide and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from POLARSTERN in the North Atlantic Ocean, South Atlantic Ocean and others from 2016-02-20 to 2016-05-08 (NCEI Accession 0160572)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0160572 includes Surface underway, chemical and meteorological data collected from POLARSTERN in the North Atlantic Ocean, South Atlantic Ocean, South...

  5. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from KEIFU MARU in the East China Sea, North Pacific Ocean and others from 2001-01-20 to 2012-06-12 (NODC Accession 0116978)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0116978 includes Surface underway data collected from KEIFU MARU in the East China Sea (Tung Hai), North Pacific Ocean, Philippine Sea, Sea of Japan...

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from SOGEN MARU in the North Pacific Ocean and Philippine Sea from 1991-10-08 to 1991-12-31 (NODC Accession 0080991)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0080991 includes Surface underway, chemical, meteorological and physical data collected from SOGEN MARU in the North Pacific Ocean and Philippine Sea...

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from RYOFU MARU in the Bismarck Sea, North Pacific Ocean and others from 1983-01-19 to 1989-02-06 (NCEI Accession 0157286)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157286 includes Surface underway, chemical, meteorological and physical data collected from RYOFU MARU in the Bismarck Sea, North Pacific Ocean,...

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from Hakuho Maru in the Bali Sea, Bismarck Sea and others from 1968-11-16 to 1988-03-23 (NODC Accession 0080981)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0080981 includes Surface underway, chemical, meteorological and physical data collected from Hakuho Maru in the Bali Sea, Bismarck Sea, Celebes Sea...

  9. Partial pressure of carbon dioxide (pCO2), temperature, salinity and other variables collected from surface underway observations using shower head equilibrator, carbon dioxide gas detector, and other instruments from container ship Cap Blanche in the Pacific Ocean from 2014-02-01 to 2014-11-26 (NCEI Accession 0132047)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains underway measurements of pCO2, salinity, sea surface temperature, and other parameters were collected during 6 trans-Pacific crossings...

  10. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, salinity and other variables collected from Surface underway observations using Autonomous sensor to measure dissolved inorganic carbon (DIC), Carbon dioxide (CO2) gas analyzer and other instruments from Hakuho Maru in the Bismarck Sea, Coral Sea and others from 1990-09-03 to 2002-01-21 (NODC Accession 0080982)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0080982 includes Surface underway, chemical, meteorological and physical data collected from Hakuho Maru in the Bismarck Sea, Coral Sea, Indian Ocean,...

  11. Partial pressure (or fugacity) of carbon dioxide collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from unknown platforms in the world-wide oceans from 1996-01-01 to 2004-12-31 (NCEI Accession 0157733)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157733 includes Surface underway and chemical data collected from unknown platforms in the world-wide oceans from 1996-01-01 to 2004-12-31. These...

  12. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from Surface underway, discrete sample and profile observations using CTD, Carbon dioxide (CO2) gas analyzer and other instruments from THOMAS G. THOMPSON in the Bismarck Sea, Coral Sea and others from 1993-10-05 to 1993-11-10 (NODC Accession 0115019)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115019 includes Surface underway, chemical, discrete sample, meteorological, physical and profile data collected from THOMAS G. THOMPSON in the...

  13. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample, profile and underway - surface observations using CTD, Carbon dioxide (CO2) gas analyzer and other instruments from the KNORR in the North Atlantic Ocean and South Atlantic Ocean from 1994-04-03 to 1994-05-21 (NODC Accession 0115002)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115002 includes chemical, discrete sample, meteorological, physical, profile and underway - surface data collected from KNORR in the North Atlantic...

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using gas chromatograph and other instruments from the LILLOOET in the Coastal Waters of SE Alaska, Coral Sea and others from 1988-02-04 to 1988-02-20 (NODC Accession 0000439)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0000439 includes chemical, meteorological, physical and underway - surface data collected from LILLOOET in the Coastal Waters of SE Alaska, Coral Sea,...

  15. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from L'ATALANTE in the North Pacific Ocean and South Pacific Ocean from 1994-11-05 to 1994-11-29 (NCEI Accession 0157470)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157470 includes Surface underway, chemical, meteorological and physical data collected from L'ATALANTE in the North Pacific Ocean and South Pacific...

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from MARION DUFRESNE in the Arabian Sea, Bali Sea and others from 1991-01-05 to 1993-08-08 (NCEI Accession 0157100)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157100 includes Surface underway, chemical, meteorological and physical data collected from MARION DUFRESNE in the Arabian Sea, Bali Sea, Gulf of...

  17. Partial pressure (or fugacity) of carbon dioxide and SEA SURFACE TEMPERATURE collected from surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NUKA ARCTICA in the Davis Strait, Labrador Sea and others from 2005-01-07 to 2005-12-03 (NODC Accession 0081037)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0081037 includes chemical, physical and surface underway data collected from NUKA ARCTICA in the Davis Strait, Labrador Sea, North Atlantic Ocean,...

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from Trans Future 5 in the Bass Strait, Coral Sea and others from 2014-01-02 to 2015-07-15 (NCEI Accession 0157240)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157240 includes Surface underway, chemical, meteorological and physical data collected from Trans Future 5 in the Bass Strait, Coral Sea, Inland Sea...

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from POLARSTERN in the Arctic Ocean, Barents Sea and others from 2011-06-17 to 2012-01-04 (NCEI Accession 0157242)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157242 includes Surface underway, chemical, meteorological and physical data collected from POLARSTERN in the Arctic Ocean, Barents Sea, Kara Sea,...

  20. Partial pressure (or fugacity) of carbon dioxide and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from POLARSTERN in the Adriatic Sea, Aegean Sea and others from 2014-03-09 to 2015-01-31 (NCEI Accession 0160489)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0160489 includes Surface underway, chemical and meteorological data collected from POLARSTERN in the Adriatic Sea, Aegean Sea, Alboran Sea, Arabian...

  1. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the KNORR in the Andaman Sea or Burma Sea, Arabian Sea and others from 1994-12-01 to 1996-01-21 (NODC Accession 0115589)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115589 includes chemical, meteorological, physical and underway - surface data collected from KNORR in the Andaman Sea or Burma Sea, Arabian Sea, Bay...

  2. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample, profile and underway - surface observations using CTD, Carbon dioxide (CO2) gas analyzer and other instruments from the METEOR in the North Atlantic Ocean from 1991-09-02 to 1991-09-26 (NODC Accession 0115001)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115001 includes chemical, discrete sample, physical, profile and underway - surface data collected from METEOR in the North Atlantic Ocean from...

  3. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the KNORR in the North Atlantic Ocean from 2011-06-28 to 2011-07-13 (NODC Accession 0117690)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117690 includes Surface underway, chemical, meteorological and physical data collected from KNORR in the North Atlantic Ocean from 2011-06-28 to...

  4. Partial pressure of carbon dioxide (pCO2), temperature, salinity and other variables collected from surface underway observations using shower head equilibrator, carbon dioxide gas detector, and other instruments from container ship Cap Vilano in the Pacific Ocean from 2013-02-01 to 2013-06-06 (NCEI Accession 0132054)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains underway measurements of pCO2, salinity, sea surface temperature, and other parameters were collected during 3 trans-Pacific crossings...

  5. Partial pressure of carbon dioxide (pCO2), temperature, salinity and other variables collected from surface underway observations using shower head equilibrator, carbon dioxide gas detector, and other instruments from 4 trans-Pacific crossings onboard container ship Cap Blanche in the Pacific Ocean from 2015-03-28 to 2015-12-04 (NCEI Accession 0141304)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains underway measurements of pCO2, salinity, sea surface temperature, and other parameters collected during 4 trans-Pacific crossings in...

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from Natalie Schulte in the Bass Strait, North Pacific Ocean and others from 2010-10-01 to 2012-06-21 (NODC Accession 0108233)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108233 includes Surface underway, chemical, meteorological and physical data collected from Natalie Schulte in the Bass Strait, North Pacific Ocean,...

  7. Partial pressure (or fugacity) of carbon dioxide and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Micro-porous membrane equilibrator and other instruments from unknown platforms in the North Atlantic Ocean and South Atlantic Ocean from 1997-06-19 to 1997-09-16 (NCEI Accession 0157739)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157739 includes Surface underway, chemical, meteorological, optical and physical data collected from unknown platforms in the North Atlantic Ocean...

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from POSEIDON in the North Atlantic Ocean from 2010-05-31 to 2015-04-07 (NCEI Accession 0157471)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157471 includes Surface underway, chemical, meteorological and physical data collected from POSEIDON in the North Atlantic Ocean from 2010-05-31 to...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from MIRAI in the Indian Ocean, Mozambique Channel and South Atlantic Ocean from 2003-12-09 to 2004-01-24 (NCEI Accession 0144250)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144250 includes Surface underway data collected from MIRAI in the Indian Ocean, Mozambique Channel and South Atlantic Ocean from 2003-12-09 to...

  10. Partial pressure (or fugacity) of carbon dioxide, temperature, and other variables collected from surface underway observations using carbon dioxide gas analyzer, shower head equilibrator and other instruments from SOOP M/V Nuka Arctica lines in the North Atlantic Ocean from 2008-01-08 to 2009-01-07 (NCEI Accession 0162251)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0162251 includes Surface underway, chemical, meteorological and physical data collected from SOOP M/V Nuka Arctica lines in the North Atlantic Ocean...

  11. Partial pressure (or fugacity) of carbon dioxide, temperature, and other variables collected from surface underway observations using carbon dioxide gas analyzer, shower head equilibrator and other instruments from SOOP M/V Nuka Arctica lines in the North Atlantic Ocean in 2016 (NCEI Accession 0165355)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0165355 includes surface underway, chemical, meteorological and physical data collected from SOOP M/V Nuka Arctica lines in the North Atlantic Ocean...

  12. Partial pressure (or fugacity) of carbon dioxide, temperature, and other variables collected from surface underway observations using carbon dioxide gas analyzer, shower head equilibrator and other instruments from SOOP M/V Nuka Arctica lines in the North Atlantic Ocean in 2015 (NCEI Accession 0165353)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0165353 includes surface underway, chemical, meteorological and physical data collected from SOOP M/V Nuka Arctica lines in the North Atlantic Ocean...

  13. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Thin film type equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from MARION DUFRESNE in the Indian Ocean from 2016-01-08 to 2016-01-21 (NCEI Accession 0160553)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0160553 includes Surface underway, chemical, meteorological, optical and physical data collected from MARION DUFRESNE in the Indian Ocean from...

  14. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, salinity and other variables collected from Surface underway observations using Autonomous sensor to measure dissolved inorganic carbon (DIC), Carbon dioxide (CO2) gas analyzer and other instruments from Kaiyo in the Bismarck Sea, Celebes Sea and others from 1994-01-06 to 1999-11-21 (NODC Accession 0080984)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0080984 includes Surface underway, chemical, meteorological and physical data collected from Kaiyo in the Bismarck Sea, Celebes Sea (Sulawesi Sea and...

  15. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from BARCELONA EXPRESS in the Alboran Sea, Balearic Sea and others from 2010-03-02 to 2011-01-05 (NCEI Accession 0157298)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157298 includes Surface underway, chemical, meteorological and physical data collected from BARCELONA EXPRESS in the Alboran Sea, Balearic (or...

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from Pyxis in the Bering Sea, Caribbean Sea and others from 2001-11-06 to 2013-04-25 (NODC Accession 0081041)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0081041 includes Surface underway, chemical, meteorological and physical data collected from Pyxis in the Bering Sea, Caribbean Sea, Coastal Waters of...

  17. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample, profile and underway - surface observations using CTD, Carbon dioxide (CO2) gas analyzer and other instruments from the METEOR in the South Atlantic Ocean from 1992-12-27 to 1993-01-31 (NODC Accession 0115173)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115173 includes chemical, discrete sample, meteorological, physical, profile and underway - surface data collected from METEOR in the South Atlantic...

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from G.O. SARS in the Norwegian Sea from 2008-11-13 to 2008-12-10 (NCEI Accession 0157353)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157353 includes Surface underway, chemical, meteorological and physical data collected from G.O. SARS in the Norwegian Sea from 2008-11-13 to...

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from G.O. SARS in the Barents Sea, North Greenland Sea and others from 2007-02-12 to 2007-10-28 (NCEI Accession 0157392)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157392 includes Surface underway, chemical, meteorological and physical data collected from G.O. SARS in the Barents Sea, North Greenland Sea, North...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from HEALY in the Arctic Ocean, Beaufort Sea and others from 2014-05-05 to 2014-08-30 (NCEI Accession 0144350)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144350 includes Surface underway data collected from HEALY in the Arctic Ocean, Beaufort Sea, Bering Sea, Coastal Waters of SE Alaska, Gulf of...

  1. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from HEALY in the Arctic Ocean, Beaufort Sea and others from 2013-08-06 to 2013-10-29 (NCEI Accession 0144346)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144346 includes Surface underway data collected from HEALY in the Arctic Ocean, Beaufort Sea, Bering Sea and Northwest Passage from 2013-08-06 to...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the Indian Ocean, South Pacific Ocean and others from 1995-03-17 to 1995-04-27 (NCEI Accession 0157358)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157358 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the Indian Ocean, South Pacific...

  3. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from NATHANIEL B. PALMER in the South Pacific Ocean from 2015-12-06 to 2016-01-02 (NCEI Accession 0157474)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157474 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the South Pacific Ocean from...

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic Ocean and others from 2001-01-30 to 2002-01-13 (NCEI Accession 0157365)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157365 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic...

  5. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from HEALY in the Arctic Ocean, Beaufort Sea and others from 2015-08-09 to 2015-10-12 (NCEI Accession 0157049)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157049 includes Surface underway, chemical, meteorological and physical data collected from HEALY in the Arctic Ocean, Beaufort Sea, Bering Sea,...

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and SEA SURFACE TEMPERATURE collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the NATHANIEL B. PALMER in the Arctic Ocean, Beaufort Sea and others from 1994-11-04 to 2012-08-31 (NODC Accession 0083189)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0083189 includes chemical, physical and underway - surface data collected from NATHANIEL B. PALMER in the Arctic Ocean, Beaufort Sea, Bering Sea,...

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from Marcus G. Langseth in the Arctic Ocean, Beaufort Sea and others from 2011-04-13 to 2011-12-28 (NCEI Accession 0144305)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144305 includes Surface underway data collected from Marcus G. Langseth in the Arctic Ocean, Beaufort Sea, Bering Sea, Gulf of Alaska, Hawaiian...

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic Ocean and others from 2004-01-20 to 2005-01-25 (NCEI Accession 0157327)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157327 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the South Pacific Ocean, Southern Oceans and Tasman Sea from 1997-01-12 to 1998-01-09 (NCEI Accession 0157323)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157323 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the South Pacific Ocean, Southern...

  10. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean and others from 2008-12-31 to 2009-12-22 (NCEI Accession 0144533)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144533 includes Surface underway data collected from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean, South Pacific Ocean and...

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the Caribbean Sea, North Pacific Ocean and others from 2004-01-01 to 2004-12-21 (NCEI Accession 0144538)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144538 includes Surface underway data collected from LAURENCE M. GOULD in the Caribbean Sea, North Pacific Ocean, South Atlantic Ocean, South Pacific...

  12. Partial pressure (or fugacity) of carbon dioxide and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from PRINCE OF SEAS in the Caribbean Sea, English Channel and others from 1994-06-03 to 1995-08-04 (NCEI Accession 0157050)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157050 includes Surface underway, chemical, meteorological and physical data collected from PRINCE OF SEAS in the Caribbean Sea, English Channel,...

  13. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from HEALY in the Arctic Ocean, Beaufort Sea and others from 2015-07-14 to 2015-10-28 (NCEI Accession 0144530)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144530 includes Surface underway data collected from HEALY in the Arctic Ocean, Beaufort Sea, Bering Sea, Coastal Waters of SE Alaska, Gulf of Alaska...

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from HEALY in the Arctic Ocean, Beaufort Sea and others from 2012-08-01 to 2012-10-24 (NCEI Accession 0144338)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144338 includes Surface underway data collected from HEALY in the Arctic Ocean, Beaufort Sea, Bering Sea, Coastal Waters of SE Alaska and North...

  15. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2009-12-29 to 2010-12-20 (NCEI Accession 0156926)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0156926 includes Surface underway, chemical, meteorological and physical data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South...

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and SEA SURFACE TEMPERATURE collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the HEALY in the Arctic Ocean, Beaufort Sea and others from 2011-05-17 to 2012-10-26 (NODC Accession 0083197)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0083197 includes chemical, physical and underway - surface data collected from HEALY in the Arctic Ocean, Beaufort Sea, Bering Sea, Coastal Waters of...

  17. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the Arctic Ocean, Beaufort Sea and others from 2003-01-05 to 2004-01-15 (NCEI Accession 0157387)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157387 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the Arctic Ocean, Beaufort Sea,...

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the Indian Ocean, North Pacific Ocean and others from 2000-02-15 to 2001-01-25 (NCEI Accession 0157250)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157250 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the Indian Ocean, North Pacific...

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from Marcus G. Langseth in the North Atlantic Ocean from 2014-10-04 to 2014-10-15 (NCEI Accession 0144547)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144547 includes Surface underway data collected from Marcus G. Langseth in the North Atlantic Ocean from 2014-10-04 to 2014-10-15. These data include...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean and Southern Oceans from 2016-02-21 to 2016-08-04 (NCEI Accession 0160570)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0160570 includes Surface underway, chemical, meteorological and physical data collected from LAURENCE M. GOULD in the South Atlantic Ocean and...

  1. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean and others from 2004-12-31 to 2005-12-26 (NCEI Accession 0144531)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144531 includes Surface underway data collected from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean, South Pacific Ocean and...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from Sikuliaq in the Arctic Ocean, Beaufort Sea and Bering Sea from 2015-08-13 to 2015-09-02 (NCEI Accession 0157261)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157261 includes Surface underway, chemical, meteorological and physical data collected from Sikuliaq in the Arctic Ocean, Beaufort Sea and Bering Sea...

  3. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic Ocean and others from 2013-11-18 to 2014-12-25 (NCEI Accession 0157374)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157374 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic...

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic Ocean and others from 1996-05-04 to 1997-01-08 (NCEI Accession 0157413)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157413 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic...

  5. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from Marcus G. Langseth in the Aegean Sea, Alboran Sea and others from 2015-04-13 to 2015-11-12 (NCEI Accession 0144534)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144534 includes Surface underway data collected from Marcus G. Langseth in the Aegean Sea, Alboran Sea, Mediterranean Sea, Mediterranean Sea -...

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from unknown platforms in the world-wide oceans from 1968-11-16 to 2013-12-31 (NCEI Accession 0160918)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0160918 includes Surface underway, chemical, meteorological, navigational and physical data collected from unknown platforms in the world-wide oceans...

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the North Pacific Ocean, South Atlantic Ocean and others from 2002-01-18 to 2003-01-01 (NCEI Accession 0157376)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157376 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the North Pacific Ocean, South...

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Thin film type equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from MARION DUFRESNE in the Indian Ocean from 2014-01-06 to 2014-02-19 (NCEI Accession 0157272)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157272 includes Surface underway, chemical, meteorological, optical and physical data collected from MARION DUFRESNE in the Indian Ocean from...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Thin film type equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from MARION DUFRESNE in the Indian Ocean from 2015-01-07 to 2015-02-06 (NCEI Accession 0157289)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157289 includes Surface underway, chemical, meteorological, optical and physical data collected from MARION DUFRESNE in the Indian Ocean from...

  10. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Thin film type equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from MARION DUFRESNE in the Indian Ocean from 2011-10-11 to 2011-11-21 (NODC Accession 0115604)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115604 includes Surface underway, chemical, meteorological, optical and physical data collected from MARION DUFRESNE in the Indian Ocean from...

  11. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from Surface underway, discrete sample and profile observations using CTD, Carbon dioxide (CO2) gas analyzer and other instruments from MAURICE EWING in the North Atlantic Ocean and South Atlantic Ocean from 1994-01-04 to 1994-03-21 (NODC Accession 0115157)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115157 includes Surface underway, discrete sample and profile data collected from MAURICE EWING in the North Atlantic Ocean and South Atlantic Ocean...

  12. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from METEOR in the North Atlantic Ocean and North Sea from 1996-06-22 to 1996-07-17 (NCEI Accession 0157292)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157292 includes Surface underway, chemical, meteorological and physical data collected from METEOR in the North Atlantic Ocean and North Sea from...

  13. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from POLARSTERN in the Arctic Ocean, North Atlantic Ocean and others from 2007-12-03 to 2008-08-05 (NCEI Accession 0157407)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157407 includes Surface underway, chemical, meteorological and physical data collected from POLARSTERN in the Arctic Ocean, North Atlantic Ocean,...

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from ANTARES in the North Atlantic Ocean and South Atlantic Ocean from 2009-03-20 to 2010-08-06 (NODC Accession 0114477)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0114477 includes Surface underway, chemical, meteorological and physical data collected from ANTARES in the North Atlantic Ocean and South Atlantic...

  15. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic Ocean and others from 2015-01-04 to 2015-10-18 (NCEI Accession 0157344)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157344 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic...

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from MIRAI in the South Atlantic Ocean from 2003-11-06 to 2003-12-05 (NCEI Accession 0144246)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144246 includes Surface underway data collected from MIRAI in the South Atlantic Ocean from 2003-11-06 to 2003-12-05. These data include AIR...

  17. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from POLARSTERN in the Bay of Biscay, English Channel and others from 2010-01-31 to 2010-11-25 (NCEI Accession 0157388)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157388 includes Surface underway, chemical, meteorological and physical data collected from POLARSTERN in the Bay of Biscay, English Channel, North...

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from Marcus G. Langseth in the North Pacific Ocean from 2010-05-07 to 2010-09-30 (NCEI Accession 0144353)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144353 includes Surface underway data collected from Marcus G. Langseth in the North Pacific Ocean from 2010-05-07 to 2010-09-30. These data include...

  19. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from Surface underway, discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from PELICAN in the Coastal Waters of Louisiana, Coastal Waters of Texas and Gulf of Mexico from 2013-09-09 to 2013-09-22 (NCEI Accession 0157461)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157461 includes Surface underway, chemical, discrete sample, meteorological, physical and profile data collected from PELICAN in the Coastal Waters...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean and others from 2008-12-31 to 2009-12-21 (NCEI Accession 0148771)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148771 includes Surface underway data collected from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean, South Pacific Ocean and...

  1. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from Ryofu Maru in the East China Sea, North Pacific Ocean and others from 1995-07-16 to 1999-11-05 (NODC Accession 0116981)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0116981 includes Surface underway data collected from Ryofu Maru in the East China Sea (Tung Hai), North Pacific Ocean, Philippine Sea, Sea of Japan...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from HEALY in the Arctic Ocean, Beaufort Sea and others from 2011-05-27 to 2011-12-16 (NCEI Accession 0144345)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144345 includes Surface underway data collected from HEALY in the Arctic Ocean, Beaufort Sea, Bering Sea, Coastal Waters of SE Alaska, Gulf of...

  3. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from Celebrity Equinox in the Adriatic Sea, Aegean Sea and others from 2016-01-02 to 2017-01-02 (NCEI Accession 0157264)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157264 includes Surface underway, chemical, meteorological and physical data collected from Celebrity Equinox in the Adriatic Sea, Aegean Sea,...

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from Skogafoss in the North Atlantic Ocean, North Greenland Sea and others from 2016-01-28 to 2016-03-30 (NCEI Accession 0157391)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157391 includes Surface underway, chemical, meteorological and physical data collected from Skogafoss in the North Atlantic Ocean, North Greenland...

  5. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from surface underway observations using carbon dioxide gas analyzer, shower head equilibrator and other instruments from NOAA Ship Ronald H. Brown cruises RB1301 and RB1302 in the North Atlantic Ocean from 2013-01-08 to 2013-03-04 (NCEI Accession 0162200)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0162200 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship Ronald H. Brown Cruises RB1301 and RB1302 in...

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from ROGER REVELLE in the Philippine Sea from 2016-05-19 to 2016-05-28 (NCEI Accession 0157249)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157249 includes Surface underway, chemical, meteorological and physical data collected from ROGER REVELLE in the Philippine Sea from 2016-05-19 to...

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from TANGAROA in the Arafura Sea, Coral Sea and others from 2014-02-03 to 2014-12-23 (NCEI Accession 0157248)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157248 includes Surface underway, chemical, meteorological and physical data collected from TANGAROA in the Arafura Sea, Coral Sea, South Pacific...

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NOAA Ship RONALD H. BROWN in the South Atlantic Ocean from 2013-12-23 to 2014-02-04 (NODC Accession 0116979)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0116979 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship RONALD H. BROWN in the South Atlantic Ocean...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship RONALD H. BROWN in the Coastal Waters of Florida, Florida Keys National Marine Sanctuary and others from 2012-07-21 to 2012-08-13 (NCEI Accession 0157303)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157303 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship RONALD H. BROWN in the Coastal Waters of...

  10. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from BARCELONA EXPRESS in the Alboran Sea, Balearic Sea and others from 2011-07-26 to 2011-12-28 (NCEI Accession 0157414)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157414 includes Surface underway, chemical, meteorological and physical data collected from BARCELONA EXPRESS in the Alboran Sea, Balearic (or...

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from ATLANTIS in the Caribbean Sea and North Atlantic Ocean from 2012-03-24 to 2012-04-17 (NCEI Accession 0144247)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144247 includes Surface underway data collected from ATLANTIS in the Caribbean Sea and North Atlantic Ocean from 2012-03-24 to 2012-04-17. These data...

  12. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from EXPLORER OF THE SEAS in the Caribbean Sea and North Atlantic Ocean from 2013-03-31 to 2013-12-24 (NCEI Accession 0157260)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157260 includes Surface underway, chemical, meteorological and physical data collected from EXPLORER OF THE SEAS in the Caribbean Sea and North...

  13. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from ROGER REVELLE in the Indian Ocean and Southern Oceans from 2016-02-08 to 2016-03-15 (NCEI Accession 0157333)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157333 includes Surface underway, chemical, meteorological and physical data collected from ROGER REVELLE in the Indian Ocean and Southern Oceans...

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from TANGAROA in the South Pacific Ocean, Southern Oceans and Tasman Sea from 2015-01-05 to 2015-12-23 (NCEI Accession 0157326)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157326 includes Surface underway, chemical, meteorological and physical data collected from TANGAROA in the South Pacific Ocean, Southern Oceans...

  15. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from the coastal surface underway observations using carbon dioxide gas analyzer, shower head equilibrator and other instruments from NOAA Ship Gordon Gunter in the North Atlantic Ocean, US North-East coast during 2017 (NCEI Accession 0163566)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In March, 2008, the Ocean Carbon Cycle (OCC) group at NOAA's Atlantic Oceanographic and Meteorological Laboratory (AOML) installed an underway system to measure...

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship RONALD H. BROWN in the Arctic Ocean, Beaufort Sea and others from 2015-01-15 to 2015-12-18 (NCEI Accession 0157252)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157252 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship RONALD H. BROWN in the Arctic Ocean, Beaufort...

  17. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from RYOFU MARU in the Bismarck Sea, East China Sea and others from 1989-11-17 to 1995-03-07 (NCEI Accession 0156927)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0156927 includes Surface underway, chemical, meteorological and physical data collected from RYOFU MARU in the Bismarck Sea, East China Sea (Tung...

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from MIRAI in the Coral Sea, South Pacific Ocean and Tasman Sea from 2003-08-03 to 2003-10-16 (NCEI Accession 0160573)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0160573 includes Surface underway, chemical, meteorological and physical data collected from MIRAI in the Coral Sea, South Pacific Ocean and Tasman...

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from RYOFU MARU in the Bismarck Sea, East China Sea and others from 1989-11-17 to 1995-03-07 (NODC Accession 0116982)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0116982 includes Surface underway data collected from RYOFU MARU in the Bismarck Sea, East China Sea (Tung Hai), North Pacific Ocean, Philippine Sea,...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from KEIFU MARU in the East China Sea, Japan Sea and others from 2012-10-24 to 2013-08-27 (NODC Accession 0116977)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0116977 includes Surface underway, chemical, meteorological and physical data collected from KEIFU MARU in the East China Sea (Tung Hai), Japan Sea,...

  1. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from MIRAI in the Coral Sea, North Pacific Ocean and others from 2009-04-10 to 2009-07-03 (NCEI Accession 0144249)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144249 includes Surface underway data collected from MIRAI in the Coral Sea, North Pacific Ocean, Philippine Sea, Solomon Sea and South Pacific Ocean...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from MIRAI in the Bering Sea, North Pacific Ocean and South Pacific Ocean from 2007-10-08 to 2007-12-26 (NCEI Accession 0157449)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157449 includes Surface underway, chemical, meteorological and physical data collected from MIRAI in the Bering Sea, North Pacific Ocean and South...

  3. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from MIRAI in the North Pacific Ocean from 2007-07-24 to 2007-09-03 (NCEI Accession 0157457)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157457 includes Surface underway, chemical, meteorological and physical data collected from MIRAI in the North Pacific Ocean from 2007-07-24 to...

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from MELVILLE in the South Pacific Ocean from 2010-01-05 to 2010-02-11 (NCEI Accession 0144244)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144244 includes Surface underway data collected from MELVILLE in the South Pacific Ocean from 2010-01-05 to 2010-02-11. These data include AIR...

  5. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NOAA Ship GORDON GUNTER in the Gulf of Mexico from 2008-04-03 to 2008-11-20 (NODC Accession 0117697)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117697 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship GORDON GUNTER in the Gulf of Mexico from...

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from Ryofu Maru in the East China Sea, North Pacific Ocean and others from 2000-01-22 to 2009-07-06 (NODC Accession 0116980)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0116980 includes Surface underway data collected from Ryofu Maru in the East China Sea (Tung Hai), North Pacific Ocean, Philippine Sea, Sea of Japan...

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2012-12-31 to 2013-12-19 (NCEI Accession 0163187)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163187 includes chemical, meteorological, physical and surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South...

  8. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity and salinity collected from surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from ARMORIQUE in the English Channel from 2014-03-18 to 2014-10-09 (NCEI Accession 0163193)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163193 includes chemical, physical and surface underway data collected from ARMORIQUE in the English Channel from 2014-03-18 to 2014-10-09. These...

  9. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from Benguela Stream in the Caribbean Sea, Davis Strait and others from 2008-03-08 to 2009-01-01 (NCEI Accession 0157314)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157314 includes Surface underway, chemical, meteorological and physical data collected from Benguela Stream in the Caribbean Sea, Davis Strait,...

  10. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from Benguela Stream in the Caribbean Sea, English Channel and North Atlantic Ocean from 2011-01-08 to 2011-12-29 (NCEI Accession 0157237)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157237 includes Surface underway, biological, chemical, meteorological, optical and physical data collected from Benguela Stream in the Caribbean...

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from POLARSTERN in the English Channel, North Atlantic Ocean and others from 2009-01-09 to 2010-01-25 (NCEI Accession 0157325)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157325 includes Surface underway, chemical, meteorological and physical data collected from POLARSTERN in the English Channel, North Atlantic Ocean,...

  12. Partial pressure (or fugacity) of carbon dioxide and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from POLARSTERN in the Arctic Ocean, Barents Sea and others from 2015-05-19 to 2015-12-01 (NCEI Accession 0160491)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0160491 includes Surface underway, chemical and meteorological data collected from POLARSTERN in the Arctic Ocean, Barents Sea, Bay of Biscay, English...

  13. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from MN COLIBRI in the English Channel and North Atlantic Ocean from 2014-07-04 to 2014-11-04 (NCEI Accession 0157355)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157355 includes Surface underway, chemical, meteorological and physical data collected from MN COLIBRI in the English Channel and North Atlantic...

  14. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from Benguela Stream in the Caribbean Sea, English Channel and North Atlantic Ocean from 2009-01-10 to 2009-12-30 (NCEI Accession 0157285)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157285 includes Surface underway, chemical, meteorological and physical data collected from Benguela Stream in the Caribbean Sea, English Channel and...

  15. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from Benguela Stream in the Caribbean Sea, English Channel and North Atlantic Ocean from 2012-01-07 to 2012-09-03 (NCEI Accession 0157312)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157312 includes Surface underway, biological, chemical, meteorological, optical and physical data collected from Benguela Stream in the Caribbean...

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from POLARSTERN in the Arctic Ocean, Barents Sea and others from 2012-01-08 to 2012-10-06 (NCEI Accession 0157350)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157350 includes Surface underway, chemical, meteorological and physical data collected from POLARSTERN in the Arctic Ocean, Barents Sea, English...

  17. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from Cap San Lorenzo in the English Channel, Mediterranean Sea and others from 2014-11-15 to 2014-11-19 (NCEI Accession 0157277)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157277 includes Surface underway, chemical, meteorological and physical data collected from Cap San Lorenzo in the English Channel, Mediterranean...

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from Atlantic Cartier in the English Channel, Inner Sea - West Coast Scotland and others from 2016-03-07 to 2016-11-09 (NCEI Accession 0157322)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157322 includes Surface underway, chemical, meteorological and physical data collected from Atlantic Cartier in the English Channel, Inner Sea - West...

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from RABELAIS in the Caribbean Sea, Coral Sea and others from 1991-07-27 to 1997-01-15 (NCEI Accession 0157239)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157239 includes Surface underway, chemical and physical data collected from RABELAIS in the Caribbean Sea, Coral Sea, English Channel, North Atlantic...

  20. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from Benguela Stream in the Caribbean Sea, English Channel and North Atlantic Ocean from 2010-01-09 to 2010-12-30 (NCEI Accession 0157319)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157319 includes Surface underway, chemical, meteorological and physical data collected from Benguela Stream in the Caribbean Sea, English Channel and...

  1. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from Benguela Stream in the Caribbean Sea, English Channel and North Atlantic Ocean from 2013-09-18 to 2014-01-05 (NCEI Accession 0157352)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157352 includes Surface underway, biological, chemical, meteorological, optical and physical data collected from Benguela Stream in the Caribbean...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the Caribbean Sea, North Pacific Ocean and others from 2004-01-02 to 2004-12-21 (NCEI Accession 0148768)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148768 includes Surface underway data collected from LAURENCE M. GOULD in the Caribbean Sea, North Pacific Ocean, South Atlantic Ocean, South Pacific...

  3. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from TANGAROA in the Indian Ocean, South Pacific Ocean and others from 1999-02-02 to 1999-02-28 (NCEI Accession 0155958)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0155958 includes Surface underway, chemical, meteorological and physical data collected from TANGAROA in the Indian Ocean, South Pacific Ocean,...

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from BARCELONA EXPRESS in the Alboran Sea, Balearic Sea and others from 2012-04-18 to 2013-02-06 (NCEI Accession 0157393)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157393 includes Surface underway, chemical, meteorological and physical data collected from BARCELONA EXPRESS in the Alboran Sea, Balearic (or...

  5. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from BARCELONA EXPRESS in the Alboran Sea, Balearic Sea and others from 2013-02-07 to 2013-10-08 (NCEI Accession 0157381)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157381 includes Surface underway, chemical, meteorological and physical data collected from BARCELONA EXPRESS in the Alboran Sea, Balearic (or...

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the SOUTHERN SURVEYOR in the Coral Sea, Great Australian Bight and others from 2011-04-06 to 2011-11-26 (NODC Accession 0115708)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115708 includes chemical, meteorological, physical and underway - surface data collected from SOUTHERN SURVEYOR in the Coral Sea, Great Australian...

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATSUSHIMA in the Inland Sea, North Pacific Ocean and others from 1987-01-24 to 1991-03-10 (NODC Accession 0080987)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0080987 includes Surface underway, chemical, meteorological and physical data collected from NATSUSHIMA in the Inland Sea (Seto Naikai), North Pacific...

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from SOYO-MARU in the Japan Sea, North Pacific Ocean and Philippine Sea from 2010-11-12 to 2011-07-17 (NODC Accession 0117672)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0117672 includes Surface underway, chemical, meteorological and physical data collected from SOYO-MARU in the Japan Sea, North Pacific Ocean and...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from JOHN P. TULLY, PARIZEAU and others in the Arctic Ocean, Beaufort Sea and others from 1973-08-12 to 2003-09-13 (NODC Accession 0081025)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0081025 includes Surface underway, chemical, meteorological and physical data collected from JOHN P. TULLY, PARIZEAU, QUADRA and VANCOUVER in the...

  10. Partial pressure (or fugacity) of carbon dioxide, salinity and SEA SURFACE TEMPERATURE collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from Marcus G. Langseth in the Arctic Ocean, Beaufort Sea and others from 2010-05-07 to 2013-06-25 (NODC Accession 0109901)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0109901 includes Surface underway data collected from Marcus G. Langseth in the Arctic Ocean, Beaufort Sea, Bering Sea, Caribbean Sea, Cordell Bank...

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from TAISEI MARU in the Coral Sea, Indian Ocean and others from 1993-01-25 to 1998-03-07 (NODC Accession 0080992)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0080992 includes Surface underway, chemical, meteorological and physical data collected from TAISEI MARU in the Coral Sea, Indian Ocean, Inland Sea...

  12. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from WEATHERBIRD II in the Coastal Waters of Florida and Gulf of Mexico from 2012-05-08 to 2012-08-12 (NCEI Accession 0157334)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157334 includes Surface underway, chemical, meteorological and physical data collected from WEATHERBIRD II in the Coastal Waters of Florida and Gulf...

  13. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from POLARSTERN in the South Atlantic Ocean from 2013-11-10 to 2014-03-01 (NCEI Accession 0157296)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157296 includes Surface underway, chemical, meteorological and physical data collected from POLARSTERN in the South Atlantic Ocean from 2013-11-10 to...

  14. Thin film oxygen partial pressure sensor

    Science.gov (United States)

    Wortman, J. J.; Harrison, J. W.; Honbarrier, H. L.; Yen, J.

    1972-01-01

    The development is described of a laboratory model oxygen partial pressure sensor using a sputtered zinc oxide thin film. The film is operated at about 400 C through the use of a miniature silicon bar. Because of the unique resistance versus temperature relation of the silicon bar, control of the operational temperature is achieved by controlling the resistance. A circuit for accomplishing this is described. The response of sputtered zinc oxide films of various thicknesses to oxygen, nitrogen, argon, carbon dioxide, and water vapor caused a change in the film resistance. Over a large range, film conductance varied approximately as the square root of the oxygen partial pressure. The presence of water vapor in the gas stream caused a shift in the film conductance at a given oxygen partial pressure. A theoretical model is presented to explain the characteristic features of the zinc oxide response to oxygen.

  15. DEVICE FOR CONTROL OF OXYGEN PARTIAL PRESSURE

    Science.gov (United States)

    Bradner, H.; Gordon, H.S.

    1957-12-24

    A device is described that can sense changes in oxygen partial pressure and cause a corresponding mechanical displacement sufficient to actuate meters, valves and similar devices. A piston and cylinder arrangement contains a charge of crystalline metal chelate pellets which have the peculiar property of responding to variations in the oxygen content of the ambient atmosphere by undergoing a change in dimension. A lever system amplifies the relative displacement of the piston in the cylinder, and actuates the controlled valving device. This partial pressure oxygen sensing device is useful in controlled chemical reactions or in respiratory devices such as the oxygen demand meters for high altitude aircraft.

  16. psychrometry: from partial pressures to mole fractions

    African Journals Online (AJOL)

    ES Obe

    1980-03-01

    Mar 1, 1980 ... as an ideal gas mixture. Partial pressures then become identical: to mole fractions and sets of psychometric parameters result from rather elementary thermodynamic relations. Search for more accurate data has long led to the realization that neither dry air nor pure water vapour behaves like an ideal gas,.

  17. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from Surface underway, discrete sample and profile observations using Alkalinity titrator, Barometric pressure sensor and other instruments from NOAA Ship RONALD H. BROWN in the Coastal Waters of Florida, Gray's Reef National Marine Sanctuary and others from 2007-05-11 to 2007-08-04 (NODC Accession 0083633)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0083633 includes Surface underway, chemical, discrete sample, meteorological, optical, physical and profile data collected from NOAA Ship RONALD H....

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship McARTHUR II in the Hawaiian Islands Humpback Whale National Marine Sanctuary, North Pacific Ocean and South Pacific Ocean from 2006-07-30 to 2006-12-02 (NODC Accession 0084052)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0084052 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship McARTHUR II in the Hawaiian Islands Humpback...

  19. Oxygen partial pressure sensor for gases

    International Nuclear Information System (INIS)

    Barbero, J.A.; Azcona, M.A.; Orce, A.

    1997-01-01

    Precise measurement of very low oxygen partial pressure is important in both laboratories and industries. Particularly in nuclear industry, it is relevant in the different steps of the nuclear fuel fabrication. It is presented an instrument which is handy and of easy construction, suitable for the measurement of oxygen partial pressure of gases, in the range of 10 -6 -1 atm. It is based on a solid electrolyte galvanic cell, using Yttria doped zirconia as a ceramic membrane. Through an indirect measurement and calibration, the instrument can be used to measure the content of free oxygen in liquids. It is a import feature in NPP instrumentation. The equipment was calibrated with mixtures of special nonreactive gases. (author). 5 refs

  20. Oxygen partial pressure sensor for gases

    Energy Technology Data Exchange (ETDEWEB)

    Barbero, J.A.; Azcona, M.A.; Orce, A. [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche

    1997-10-01

    Precise measurement of very low oxygen partial pressure is important in both laboratories and industries. Particularly in nuclear industry, it is relevant in the different steps of the nuclear fuel fabrication. It is presented an instrument which is handy and of easy construction, suitable for the measurement of oxygen partial pressure of gases, in the range of 10{sup -6}-1 atm. It is based on a solid electrolyte galvanic cell, using Yttria doped zirconia as a ceramic membrane. Through an indirect measurement and calibration, the instrument can be used to measure the content of free oxygen in liquids. It is a import feature in NPP instrumentation. The equipment was calibrated with mixtures of special nonreactive gases. (author). 5 refs.

  1. Computing the partial volume of pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Wiencke, Bent [Nestle USA, Corporate Engineering, 800 N. Brand Blvd, Glendale, CA 91203 (United States)

    2010-06-15

    The computation of the partial and total volume of pressure vessels with various type of head profiles requires detailed knowledge of the head profile geometry. Depending on the type of head profile the derivation of the equations can become very complex and the calculation process cumbersome. Certain head profiles require numerical methods to obtain the partial volume, which for most application is beyond the scope of practicability. This paper suggests a unique method that simplifies the calculation procedure for the various types of head profiles by using one common set of equations without the need for numerical or complex computation methods. For ease of use, all equations presented in this paper are summarized in a single table format for horizontal and vertical vessels. (author)

  2. Thin film devices used as oxygen partial pressure sensors

    Science.gov (United States)

    Canady, K. S.; Wortman, J. J.

    1970-01-01

    Electrical conductivity of zinc oxide films to be used in an oxygen partial pressure sensor is measured as a function of temperature, oxygen partial pressure, and other atmospheric constituents. Time response following partial pressure changes is studied as a function of temperature and environmental changes.

  3. Partial pressure measurements with an active spectrometer

    International Nuclear Information System (INIS)

    Brooks, N.H.; Jensen, T.H.; Colchin, R.J.; Maingi, R.; Wade, M.R.; Finkenthal, D.F.; Naumenko, N.; Tugarinov, S.

    1998-07-01

    Partial pressure neutral ga measurements have been made using a commercial Penning gauge in conjunction with an active spectrometer. In prior work utilizing bandpass filters and conventional spectrometers, trace concentrations of the hydrogen isotopes H, D, T and of the noble gases He, Ne and Ar were determined from characteristic spectral lines in the light emitted by the neutral species of these elements. For all the elements mentioned, the sensitivity was limited by spectral contamination from a pervasive background of molecular hydrogen radiation. The active spectrometer overcomes this limitations by means of a digital lock-in method and correlation with reference spectra. Preliminary measurements of an admixture containing a trace amount of neon in deuterium show better than a factor of 20 improvement in sensitivity over conventional techniques. This can be further improved by correlating the relative intensities of multiple lines to sets of reference spectra

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and sea surface temperature collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments during R/V Oden cruise Beringia_2005 (EXPOCODE 77DN20050720) in the Northwest Passage, Can. Archipelago, Bering Strait, Chukchi Sea, East Siberian Sea and Arctic Ocean from 2005-07-20 to 2005-08-17 (NCEI Accession 0164210)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164210 includes Surface underway data collected from R/V Oden in the Northwest Passage, Can. Archipelago, Bering Strait, Chukchi Sea, East Siberian...

  5. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the EXPLORER OF THE SEAS in the Caribbean Sea and North Atlantic Ocean from 2008-02-13 to 2008-12-11 (NODC Accession 0109928)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0109928 includes chemical, meteorological, physical and underway - surface data collected from EXPLORER OF THE SEAS in the Caribbean Sea and North...

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from F.G. Walton Smith in the Coastal Waters of Florida, Coastal Waters of Louisiana and others from 2014-04-22 to 2014-12-05 (NCEI Accession 0157432)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157432 includes Surface underway, chemical, meteorological and physical data collected from F.G. Walton Smith in the Coastal Waters of Florida,...

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from F.G. Walton Smith in the Coastal Waters of Florida, Florida Keys National Marine Sanctuary and others from 2011-10-20 to 2011-12-16 (NCEI Accession 0157433)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157433 includes Surface underway, chemical, meteorological and physical data collected from F.G. Walton Smith in the Coastal Waters of Florida,...

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NOAA Ship GORDON GUNTER in the Coastal Waters of Florida, Coastal Waters of Mississippi and others from 2016-04-10 to 2016-11-14 (NCEI Accession 0157402)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157402 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship GORDON GUNTER in the Coastal Waters of Florida,...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the Ryofu Maru II in the Bismarck Sea, East China Sea (Tung Hai) and others from 1989-11-17 to 2011-03-14 (NODC Accession 0081046)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0081046 includes chemical, meteorological, physical and underway - surface data collected from Ryofu Maru II in the Bismarck Sea, East China Sea (Tung...

  10. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, salinity and other variables collected from Surface underway observations using Autonomous sensor to measure dissolved inorganic carbon (DIC), Carbon dioxide (CO2) gas analyzer and other instruments from MIRAI in the North Pacific Ocean, Papahānaumokuākea Marine National Monument and others from 1998-01-31 to 2003-02-12 (NODC Accession 0080986)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0080986 includes Surface underway, chemical, meteorological and physical data collected from MIRAI in the North Pacific Ocean, Papahānaumokuākea...

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the English Channel, Irish Sea and St. George's Channel and North Atlantic Ocean from 2013-02-16 to 2013-03-13 (NCEI Accession 0157256)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157256 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the English Channel, Irish Sea and St....

  12. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, temperature, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NOAA Ship MALCOLM BALDRIGE in the Banda Sea, Celebes Sea and others from 1994-04-16 to 1994-09-25 (NODC Accession 0117715)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117715 includes Surface underway, biological, chemical, meteorological and physical data collected from NOAA Ship MALCOLM BALDRIGE in the Banda Sea,...

  13. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NOAA Ship GORDON GUNTER in the Caribbean Sea, Coastal Waters of Florida and others from 2011-03-24 to 2011-11-12 (NCEI Accession 0157279)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157279 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship GORDON GUNTER in the Caribbean Sea, Coastal...

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the L'ASTROLABE in the Indian Ocean, South Pacific Ocean and Tasman Sea from 2008-10-21 to 2011-03-05 (NODC Accession 0117499)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117499 includes Surface underway, chemical, meteorological and physical data collected from L'ASTROLABE in the Indian Ocean, South Pacific Ocean and...

  15. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the EXPLORER OF THE SEAS in the Bay of Fundy, Caribbean Sea and others from 2009-03-15 to 2009-12-20 (NODC Accession 0108229)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108229 includes chemical, meteorological, physical and underway - surface data collected from EXPLORER OF THE SEAS in the Bay of Fundy, Caribbean...

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NOAA Ship MILLER FREEMAN in the Bering Sea, Coastal Waters of SE Alaska and others from 2009-05-16 to 2010-10-08 (NODC Accession 0117502)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117502 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship MILLER FREEMAN in the Bering Sea, Coastal...

  17. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from Surface underway, discrete sample and profile observations using CTD, Carbon dioxide (CO2) gas analyzer and other instruments from ANTEA and L'ATALANTE in the Gulf of Guinea, North Atlantic Ocean and South Atlantic Ocean from 2005-06-09 to 2007-09-30 (NODC Accession 0108086)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108086 includes Surface underway, chemical, discrete sample, meteorological, physical and profile data collected from ANTEA and L'ATALANTE in the...

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NOAA Ship RONALD H. BROWN in the Hawaiian Islands Humpback Whale National Marine Sanctuary, North Pacific Ocean and South Pacific Ocean from 2014-02-25 to 2014-11-24 (NODC Accession 0117674)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0117674 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship RONALD H. BROWN in the Hawaiian Islands...

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NOAA Ship RONALD H. BROWN in the Gulf of Guinea, Gulf of Mexico, North Atlantic Ocean and South Atlantic Ocean from 2010-03-08 to 2010-12-20 (NODC Accession 0108093)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108093 includes chemical, meteorological, physical and underway - surface data collected from NOAA Ship RONALD H. BROWN in the Gulf of Guinea, Gulf...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the L'ASTROLABE in the Indian Ocean, South Pacific Ocean and Tasman Sea from 2011-10-22 to 2011-12-11 (NODC Accession 0115180)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115180 includes chemical, meteorological, physical and underway - surface data collected from L'ASTROLABE in the Indian Ocean, South Pacific Ocean...

  1. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NOAA Ship RONALD H. BROWN in the Coastal Waters of Southeast Alaska and British Columbia, Cordell Bank National Marine Sanctuary and others from 2016-01-05 to 2016-07-07 (NCEI Accession 0157306)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157306 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship RONALD H. BROWN in the Coastal Waters of...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from AKADEMIK KOROLYOV, NOAA Ship DISCOVERER and NOAA Ship OCEANOGRAPHER in the Bass Strait, Bering Sea and others from 1986-05-21 to 1989-04-20 (NODC Accession 0000071)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0000071 includes Surface underway, chemical, meteorological and physical data collected from AKADEMIK KOROLYOV, NOAA Ship DISCOVERER and NOAA Ship...

  3. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from F.G. Walton Smith in the Caribbean Sea, Coastal Waters of Florida and others from 2012-02-27 to 2012-09-25 (NCEI Accession 0157425)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157425 includes Surface underway, chemical, meteorological and physical data collected from F.G. Walton Smith in the Caribbean Sea, Coastal Waters of...

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NOAA Ship RONALD H. BROWN in the Caribbean Sea, Channel Islands National Marine Sanctuary and others from 1997-07-28 to 1997-11-14 (NODC Accession 0081011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0081011 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship RONALD H. BROWN in the Caribbean Sea, Channel...

  5. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from KAIYO-MARU in the Hawaiian Islands Humpback Whale National Marine Sanctuary, North Pacific Ocean and others from 1987-10-28 to 1987-12-05 (NODC Accession 0080985)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0080985 includes Surface underway, chemical, meteorological and physical data collected from KAIYO-MARU in the Hawaiian Islands Humpback Whale...

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Thin film type equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from JAMES CLARK ROSS in the English Channel, North Atlantic Ocean and South Atlantic Ocean from 1995-10-02 to 1998-10-16 (NCEI Accession 0157101)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157101 includes Surface underway, chemical and physical data collected from JAMES CLARK ROSS in the English Channel, North Atlantic Ocean and South...

  7. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from WEATHERBIRD II in the Coastal Waters of Florida and Gulf of Mexico from 2008-08-11 to 2011-06-30 (NCEI Accession 0144622)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144622 includes Surface underway data collected from WEATHERBIRD II in the Coastal Waters of Florida and Gulf of Mexico from 2008-08-11 to...

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2007-01-02 to 2007-12-20 (NCEI Accession 0148773)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148773 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  9. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample, profile and underway - surface observations using CTD, Carbon dioxide (CO2) gas analyzer and other instruments from the THOMAS G. THOMPSON in the Coastal Waters of SE Alaska, Gulf of Alaska and North Pacific Ocean from 1993-05-15 to 1993-06-26 (NODC Accession 0115172)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115172 includes chemical, discrete sample, meteorological, physical, profile and underway - surface data collected from THOMAS G. THOMPSON in the...

  10. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, salinity and other variables collected from underway - surface observations using Bubble type equilibrator for autonomous carbon dioxide (CO2) measurement, Carbon dioxide (CO2) gas analyzer and other instruments from the L'ATALANTE in the Gulf of Guinea, North Atlantic Ocean and South Atlantic Ocean from 2006-05-26 to 2006-07-05 (NODC Accession 0108088)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108088 includes chemical, meteorological, physical and underway - surface data collected from L'ATALANTE in the Gulf of Guinea, North Atlantic Ocean...

  11. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from DISCOVERY in the English Channel, Inner Sea - West Coast Scotland and others from 2011-06-06 to 2011-07-09 (NCEI Accession 0157465)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157465 includes Surface underway, chemical, meteorological and physical data collected from DISCOVERY in the English Channel, Inner Sea - West Coast...

  12. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, temperature, salinity and SEA SURFACE TEMPERATURE collected from Surface underway observations using automated Multi-parameter Inorganic Carbon Analyzer (MICA) for autonomous measurement of pH, carbon dioxide (CO2) and dissolved inorganic carbon (DIC) and other instruments from THOMAS G. THOMPSON in the Gulf of Alaska, North Pacific Ocean and South Pacific Ocean from 2006-02-13 to 2006-03-30 (NCEI Accession 0157411)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157411 includes Surface underway, chemical and physical data collected from THOMAS G. THOMPSON in the Gulf of Alaska, North Pacific Ocean and South...

  13. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from surface underway observations using carbon dioxide gas analyzer, shower head equilibrator and other instruments from R/V Wecoma in the U.S. West Coast California Current System during the 2011 West Coast Ocean Acidification Cruise (WCOA2011) from 2011-08-12 to 2011-08-30 (NODC Accession 0123607)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains the surface underway pCO2 data of the first dedicated West Coast Ocean Acidification cruise (WCOA2011). The cruise took place August...

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NOAA Ship RONALD H. BROWN in the Coastal Waters of Florida, Florida Keys National Marine Sanctuary and others from 2012-02-15 to 2012-08-27 (NODC Accession 0109926)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0109926 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship RONALD H. BROWN in the Coastal Waters of...

  15. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NOAA Ship RONALD H. BROWN in the Caribbean Sea, Gulf of Mexico and others from 2009-04-17 to 2009-10-18 (NODC Accession 0109931)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0109931 includes biological, chemical, meteorological, physical and underway - surface data collected from NOAA Ship RONALD H. BROWN in the Caribbean...

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NOAA Ship RONALD H. BROWN in the Caribbean Sea, Coastal Waters of Florida and others from 1998-01-08 to 1998-11-22 (NODC Accession 0081012)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0081012 includes Surface underway, chemical and physical data collected from NOAA Ship RONALD H. BROWN in the Caribbean Sea, Coastal Waters of...

  17. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2011-12-30 to 2012-12-23 (NCEI Accession 0148774)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148774 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2007-12-31 to 2008-10-27 (NCEI Accession 0148763)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148763 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2011-01-02 to 2011-12-18 (NCEI Accession 0148767)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148767 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  20. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from Surface underway and time series observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from GULF CHALLENGER in the North Atlantic Ocean and Stellwagen Bank National Marine Sanctuary from 2004-05-10 to 2016-12-07 (NODC Accession 0073808)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0073808 includes Surface underway, chemical, meteorological, physical and time series data collected from GULF CHALLENGER in the North Atlantic Ocean...

  1. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NOAA Ship RONALD H. BROWN in the Bering Sea, Channel Islands National Marine Sanctuary and others from 2001-02-07 to 2001-12-03 (NODC Accession 0081015)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0081015 includes Surface underway, chemical and physical data collected from NOAA Ship RONALD H. BROWN in the Bering Sea, Channel Islands National...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the MONTE OLIVIA and Rio Blanco in the English Channel, North Atlantic Ocean and others from 2009-01-18 to 2009-12-23 (NODC Accession 0117337)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117337 includes Surface underway, chemical, meteorological and physical data collected from MONTE OLIVIA and Rio Blanco in the English Channel, North...

  3. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, temperature, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from POLARSTERN in the English Channel, North Atlantic Ocean and South Atlantic Ocean from 1991-12-04 to 1994-06-12 (NODC Accession 0117725)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117725 includes Surface underway, chemical, meteorological and physical data collected from POLARSTERN in the English Channel, North Atlantic Ocean...

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from G.O. SARS in the Barents Sea, Inner Sea - West Coast Scotland and others from 2006-02-02 to 2006-12-08 (NCEI Accession 0157361)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157361 includes Surface underway, chemical, meteorological and physical data collected from G.O. SARS in the Barents Sea, Inner Sea - West Coast...

  5. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the Bering Sea, Coastal Waters of Southeast Alaska and British Columbia and others from 1994-11-04 to 1994-12-16 (NCEI Accession 0157274)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157274 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the Bering Sea, Coastal Waters of...

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2006-01-01 to 2006-12-27 (NCEI Accession 0144535)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144535 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2014-12-30 to 2015-07-01 (NCEI Accession 0144343)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144343 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from Marcus G. Langseth in the North Pacific Ocean, Olympic Coast National Marine Sanctuary and South China Sea from 2012-05-13 to 2012-08-26 (NCEI Accession 0144304)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144304 includes Surface underway data collected from Marcus G. Langseth in the North Pacific Ocean, Olympic Coast National Marine Sanctuary and South...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2013-01-03 to 2013-11-15 (NCEI Accession 0157348)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157348 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the South Atlantic Ocean, South...

  10. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2014-12-30 to 2015-12-27 (NCEI Accession 0148769)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148769 includes Surface underway, chemical, meteorological and physical data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South...

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2008-01-09 to 2008-08-06 (NCEI Accession 0157386)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157386 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the South Atlantic Ocean, South...

  12. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2011-01-02 to 2011-12-19 (NCEI Accession 0144354)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144354 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  13. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from Marcus G. Langseth in the Caribbean Sea, Cordell Bank National Marine Sanctuary and others from 2013-02-28 to 2013-06-25 (NCEI Accession 0144355)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144355 includes Surface underway data collected from Marcus G. Langseth in the Caribbean Sea, Cordell Bank National Marine Sanctuary, Gulf of Mexico,...

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2006-12-22 to 2007-12-30 (NCEI Accession 0157245)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157245 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the South Atlantic Ocean, South...

  15. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2007-12-30 to 2008-10-28 (NCEI Accession 0144348)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144348 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2011-01-22 to 2011-12-11 (NCEI Accession 0157336)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157336 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the South Atlantic Ocean, South...

  17. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2007-01-02 to 2007-12-22 (NCEI Accession 0144528)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144528 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  18. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from Surface underway and time series observations using Bubble type equilibrator for autonomous carbon dioxide (CO2) measurement, Carbon dioxide (CO2) gas analyzer and other instruments from the NATHANIEL B. PALMER and ROGER REVELLE in the South Atlantic Ocean and South Pacific Ocean from 1994-11-01 to 1998-04-30 (NODC Accession 0112324)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112324 includes Surface underway, chemical, meteorological, physical and time series data collected from NATHANIEL B. PALMER and ROGER REVELLE in the...

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2002-03-07 to 2002-12-23 (NCEI Accession 0144356)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144356 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2011-12-30 to 2012-12-24 (NCEI Accession 0144349)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144349 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  1. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2012-03-14 to 2012-09-02 (NCEI Accession 0157397)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157397 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the South Atlantic Ocean, South...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2005-12-17 to 2006-12-15 (NCEI Accession 0157311)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157311 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the South Atlantic Ocean, South...

  3. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2013-12-31 to 2014-12-20 (NCEI Accession 0144532)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144532 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the Coastal Waters of Southeast Alaska and British Columbia, Monterey Bay National Marine Sanctuary and others from 1998-01-16 to 1998-12-17 (NCEI Accession 0157317)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157317 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the Coastal Waters of Southeast...

  5. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from COLUMBUS ISELIN, ENDEAVOR and others in the Coastal Waters of Florida, North Atlantic Ocean and South Atlantic Ocean from 1993-05-11 to 1996-10-17 (NODC Accession 0051984)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0051984 includes Surface underway, chemical and physical data collected from COLUMBUS ISELIN, ENDEAVOR, GYRE, OCEANUS and SEWARD JOHNSON in the...

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and SEA SURFACE TEMPERATURE collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the LAURENCE M. GOULD in the Caribbean Sea, North Pacific Ocean and others from 2002-03-07 to 2012-11-24 (NODC Accession 0083196)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0083196 includes chemical, physical and underway - surface data collected from LAURENCE M. GOULD in the Caribbean Sea, North Pacific Ocean, South...

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 1999-03-06 to 2000-02-10 (NCEI Accession 0157370)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157370 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the South Atlantic Ocean, South...

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2010-01-02 to 2011-01-16 (NCEI Accession 0157259)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157259 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the South Atlantic Ocean, South...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2006-01-02 to 2006-12-26 (NCEI Accession 0148764)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148764 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  10. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NOAA Ship RONALD H. BROWN in the North Atlantic Ocean and South Atlantic Ocean from 2011-07-22 to 2011-12-06 (NODC Accession 0108094)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108094 includes chemical, meteorological, physical and underway - surface data collected from NOAA Ship RONALD H. BROWN in the North Atlantic Ocean...

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2002-12-29 to 2003-11-30 (NCEI Accession 0144351)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144351 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  12. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2005-01-28 to 2005-12-12 (NCEI Accession 0157262)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157262 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the South Atlantic Ocean, South...

  13. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2012-12-31 to 2013-11-15 (NCEI Accession 0144529)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144529 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from G.O. SARS in the North Atlantic Ocean, North Greenland Sea and others from 2012-02-15 to 2012-08-13 (NCEI Accession 0157254)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157254 includes Surface underway, chemical, meteorological and physical data collected from G.O. SARS in the North Atlantic Ocean, North Greenland...

  15. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the SANTA LUCIA and Santa Maria in the Caribbean Sea, English Channel and others from 2002-02-22 to 2007-12-22 (NODC Accession 0110259)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0110259 includes biological, chemical, meteorological, physical and underway - surface data collected from SANTA LUCIA and Santa Maria in the...

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2002-03-23 to 2002-12-23 (NCEI Accession 0148766)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148766 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  17. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the EXPLORER OF THE SEAS in the Bay of Fundy, Caribbean Sea and others from 2010-01-14 to 2011-01-02 (NODC Accession 0108230)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108230 includes chemical, meteorological, physical and underway - surface data collected from EXPLORER OF THE SEAS in the Bay of Fundy, Caribbean...

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NOAA Ship GORDON GUNTER in the Gulf of Mexico, North Atlantic Ocean and Stellwagen Bank National Marine Sanctuary from 2013-04-30 to 2013-12-05 (NCEI Accession 0157243)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157243 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship GORDON GUNTER in the Gulf of Mexico, North...

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from F.G. Walton Smith in the Coastal Waters of Florida, Florida Keys National Marine Sanctuary and others from 2015-01-12 to 2015-11-20 (NCEI Accession 0157434)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157434 includes Surface underway, chemical, meteorological and physical data collected from F.G. Walton Smith in the Coastal Waters of Florida,...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NOAA Ship GORDON GUNTER in the Coastal Waters of Florida, Coastal Waters of Louisiana and others from 2014-02-15 to 2014-11-22 (NCEI Accession 0157328)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157328 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship GORDON GUNTER in the Coastal Waters of Florida,...

  1. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NOAA Ship HENRY B. BIGELOW in the North Atlantic Ocean and Stellwagen Bank National Marine Sanctuary from 2015-03-12 to 2015-11-17 (NCEI Accession 0157418)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157418 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship HENRY B. BIGELOW in the North Atlantic Ocean...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the EXPLORER OF THE SEAS in the Bay of Fundy, Caribbean Sea and others from 2011-01-02 to 2011-11-20 (NODC Accession 0108231)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108231 includes chemical, meteorological, physical and underway - surface data collected from EXPLORER OF THE SEAS in the Bay of Fundy, Caribbean...

  3. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NOAA Ship HENRY B. BIGELOW in the North Atlantic Ocean and Stellwagen Bank National Marine Sanctuary from 2011-03-01 to 2012-08-24 (NCEI Accession 0157459)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157459 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship HENRY B. BIGELOW in the North Atlantic Ocean...

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NOAA Ship GORDON GUNTER in the Caribbean Sea, Coastal Waters of Mississippi and others from 2010-04-08 to 2010-11-23 (NCEI Accession 0157268)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157268 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship GORDON GUNTER in the Caribbean Sea, Coastal...

  5. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NOAA Ship RONALD H. BROWN in the North Atlantic Ocean and South Atlantic Ocean from 2010-03-08 to 2010-04-17 (NCEI Accession 0157269)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157269 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship RONALD H. BROWN in the North Atlantic Ocean and...

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NOAA Ship GORDON GUNTER in the Coastal Waters of Florida, Coastal Waters of Mississippi and others from 2012-04-29 to 2012-11-20 (NCEI Accession 0157337)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157337 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship GORDON GUNTER in the Coastal Waters of Florida,...

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NOAA Ship GORDON GUNTER in the Bay of Fundy, Coastal Waters of Florida and others from 2015-03-03 to 2015-10-25 (NCEI Accession 0157408)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157408 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship GORDON GUNTER in the Bay of Fundy, Coastal...

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NOAA Ship GORDON GUNTER in the Florida Keys National Marine Sanctuary, Gulf of Mexico and North Atlantic Ocean from 2009-02-04 to 2009-11-08 (NODC Accession 0117704)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117704 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship GORDON GUNTER in the Florida Keys National...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NOAA Ship HENRY B. BIGELOW in the North Atlantic Ocean and Stellwagen Bank National Marine Sanctuary from 2016-04-08 to 2016-11-21 (NCEI Accession 0157405)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157405 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship HENRY B. BIGELOW in the North Atlantic Ocean...

  10. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2014-01-01 to 2014-12-20 (NCEI Accession 0145200)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0145200 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from Hokuto Maru in the Bismarck Sea, Columbia River estuary - Washington/Oregon and others from 1992-07-04 to 1996-08-27 (NODC Accession 0080983)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0080983 includes Surface underway, chemical, meteorological and physical data collected from Hokuto Maru in the Bismarck Sea, Columbia River estuary -...

  12. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2003-01-01 to 2003-12-29 (NCEI Accession 0148770)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148770 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  13. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from G.O. SARS in the Barents Sea, Inner Sea - West Coast Scotland and others from 2005-03-12 to 2005-12-14 (NCEI Accession 0157257)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157257 includes Surface underway, chemical, meteorological and physical data collected from G.O. SARS in the Barents Sea, Inner Sea - West Coast...

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2010-01-01 to 2011-12-19 (NCEI Accession 0148765)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148765 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  15. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from G.O. SARS in the North Greenland Sea, North Sea and Norwegian Sea from 2011-04-29 to 2011-11-01 (NCEI Accession 0157278)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157278 includes Surface underway, chemical, meteorological and physical data collected from G.O. SARS in the North Greenland Sea, North Sea and...

  16. Mathematical Modelling of Intraretinal Oxygen Partial Pressure

    African Journals Online (AJOL)

    Erah

    oxygen availability) is required for retinal oxidative metabolism. .... retina was described using Hill's equation and Fick's law. ... ganglion cell / nerve fiber layer and the superficial ..... parameter values producing the best. Figure 2: Partial ...

  17. Mathematical Modelling of Intraretinal Oxygen Partial Pressure

    African Journals Online (AJOL)

    Erah

    The system of non-linear differential equations was solved numerically using Runge-kutta. Nystroms method. ... artery occlusion. Keywords: Mathematical modeling, Intraretinal oxygen pressure, Retinal capillaries, Oxygen ..... Mass transfer,.

  18. Recommended practice for process sampling for partial pressure analysis

    International Nuclear Information System (INIS)

    Blessing, James E.; Ellefson, Robert E.; Raby, Bruce A.; Brucker, Gerardo A.; Waits, Robert K.

    2007-01-01

    This Recommended Practice describes and recommends various procedures and types of apparatus for obtaining representative samples of process gases from >10 -2 Pa (10 -4 Torr) for partial pressure analysis using a mass spectrometer. The document was prepared by a subcommittee of the Recommended Practices Committee of the American Vacuum Society. The subcommittee was comprised of vacuum users and manufacturers of mass spectrometer partial pressure analyzers who have practical experience in the sampling of process gas atmospheres

  19. Microwave measurements of water vapor partial pressure at high temperatures

    International Nuclear Information System (INIS)

    Latorre, V.R.

    1991-01-01

    One of the desired parameters in the Yucca Mountain Project is the capillary pressure of the rock comprising the repository. This parameter is related to the partial pressure of water vapor in the air when in equilibrium with the rock mass. Although there are a number of devices that will measure the relative humidity (directly related to the water vapor partial pressure), they generally will fail at temperatures on the order of 150C. Since thee author has observed borehole temperatures considerably in excess of this value in G-Tunnel at the Nevada Test Site (NTS), a different scheme is required to obtain the desired partial pressure data at higher temperatures. This chapter presents a microwave technique that has been developed to measure water vapor partial pressure in boreholes at temperatures up to 250C. The heart of the system is a microwave coaxial resonator whose resonant frequency is inversely proportional to the square root of the real part of the complex dielectric constant of the medium (air) filling the resonator. The real part of the dielectric constant of air is approximately equal to the square of the refractive index which, in turn, is proportional to the partial pressure of the water vapor in the air. Thus, a microwave resonant cavity can be used to measure changes in the relative humidity or partial pressure of water vapor in the air. Since this type of device is constructed of metal, it is able to withstand very high temperatures. The actual limitation is the temperature limit of the dielectric material in the cable connecting the resonator to its driving and monitoring equipment-an automatic network analyzer in our case. In the following sections, the theory of operation, design, construction, calibration and installation of the microwave diagnostics system is presented. The results and conclusions are also presented, along with suggestions for future work

  20. Report on ISS Oxygen Production, Resupply, and Partial Pressure Management

    Science.gov (United States)

    Schaezler, Ryan; Ghariani, Ahmed; Leonard, Daniel; Lehman, Daniel

    2011-01-01

    The majority of oxygen used on International Space Station (ISS) is for metabolic support and denitrogenation procedures prior to Extra-Vehicular Activities. Oxygen is supplied by various visiting vehicles such as the Progress and Shuttle in addition to oxygen production capability on both the United States On-Orbit Segment (USOS) and Russian Segment (RS). To maintain a habitable atmosphere the oxygen partial pressure is controlled between upper and lower bounds. The full range of the allowable oxygen partial pressure along with the increased ISS cabin volume is utilized as a buffer allowing days to pass between oxygen production or direct addition of oxygen to the atmosphere from reserves. This paper summarizes amount of oxygen supplied and produced from all of the sources and describes past experience of managing oxygen partial pressure along with the range of management options available to the ISS.

  1. Underway pressure, temperature, and salinity data from the MOANA WAVE from the Pacific warm pool in support of the Coupled Ocean-Atmosphere Response Experiment (COARE) from 02 February 1993 to 21 February 1993 (NODC Accession 9600090)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Pressure, temperature, and salinity data were collected while underway from the MOANA WAVE from the Pacific warm pool. Data were collected in support of the Coupled...

  2. A system for incubations at high gas partial pressure

    Directory of Open Access Journals (Sweden)

    Patrick eSauer

    2012-02-01

    Full Text Available High-pressure is a key feature of deep subsurface environments. High partial pressure of dissolved gasses plays an important role in microbial metabolism, because thermodynamic feasibility of many reactions depends on the concentration of reactants. For gases, this is controlled by their partial pressure, which can exceed one MPa at in-situ conditions. Therefore, high hydrostatic pressure alone is not sufficient to recreate true deep subsurface in-situ conditions, but the partial pressure of dissolved gasses has to be controlled as well.We developed an incubation system that allows for incubations at hydrostatic pressure up to 60 MPa, temperatures up to 120° C and at high gas partial pressure. The composition and partial pressure of gasses can be manipulated during the experiment. The system is mainly made from off-the-shelf components with only very few custom-made parts. A flexible and inert PVDF incubator sleeve, which is almost impermeable for gases, holds the sample and separates it from the pressure fluid. The flexibility of the incubator sleeve allows for sub-sampling of the medium without loss of pressure. Experiments can be run in both static and flow through mode. The incubation system described here is usable for versatile purposes, not only the incubation of microorganisms and determination of growth rates, but also for chemical degradation or extraction experiments under high gas saturation, e.g. fluid-gas-rock-interactions in relation to carbon dioxide sequestration.As an application of the system we extracted organic acids from sub-bituminous coal using H2O as well as a H2O-CO2 mixture at elevated temperature (90°C and pressure (5 MPa. Subsamples were taken during the incubation and analysed by ion chromatography. Furthermore we demonstrated the applicability of the system for studies of microbial activity, using samples from the Isis mud volcano. We could detect an increase in sulphate reduction rate upon the addition of

  3. Calibration Of Partial-Pressure-Of-Oxygen Sensors

    Science.gov (United States)

    Yount, David W.; Heronimus, Kevin

    1995-01-01

    Report and analysis of, and discussion of improvements in, procedure for calibrating partial-pressure-of-oxygen sensors to satisfy Spacelab calibration requirements released. Sensors exhibit fast drift, which results in short calibration period not suitable for Spacelab. By assessing complete process of determining total drift range available, calibration procedure modified to eliminate errors and still satisfy requirements without compromising integrity of system.

  4. Oxygen-Partial-Pressure Sensor for Aircraft Oxygen Mask

    Science.gov (United States)

    Kelly, Mark; Pettit, Donald

    2003-01-01

    A device that generates an alarm when the partial pressure of oxygen decreases to less than a preset level has been developed to help prevent hypoxia in a pilot or other crewmember of a military or other high-performance aircraft. Loss of oxygen partial pressure can be caused by poor fit of the mask or failure of a hose or other component of an oxygen distribution system. The deleterious physical and mental effects of hypoxia cause the loss of a military aircraft and crew every few years. The device is installed in the crewmember s oxygen mask and is powered via communication wiring already present in all such oxygen masks. The device (see figure) includes an electrochemical sensor, the output potential of which is proportional to the partial pressure of oxygen. The output of the sensor is amplified and fed to the input of a comparator circuit. A reference potential that corresponds to the amplified sensor output at the alarm oxygen-partial-pressure level is fed to the second input of the comparator. When the sensed partial pressure of oxygen falls below the minimum acceptable level, the output of the comparator goes from the low state (a few millivolts) to the high state (near the supply potential, which is typically 6.8 V for microphone power). The switching of the comparator output to the high state triggers a tactile alarm in the form of a vibration in the mask, generated by a small 1.3-Vdc pager motor spinning an eccentric mass at a rate between 8,000 and 10,000 rpm. The sensation of the mask vibrating against the crewmember s nose is very effective at alerting the crewmember, who may already be groggy from hypoxia and is immersed in an environment that is saturated with visual cues and sounds. Indeed, the sensation is one of rudeness, but such rudeness could be what is needed to stimulate the crewmember to take corrective action in a life-threatening situation.

  5. Determination of the partial pressure of thallium in high-pressure lamp arcs: A comparative study

    International Nuclear Information System (INIS)

    Karabourniotis, D.; Couris, S.; Damelincourt, J.J.; Aubes, M.

    1986-01-01

    The partial pressure of thallium in high-pressure Hg-TlI discharges with different mercury, thallium, and electron pressures has been measured by using the optically thin line Tl 655 nm and the self-reversed line Tl 535 nm. The partial pressure of the arc axis has been measured from the line Tl 655nm. The effective partial pressure has been measured from the self-reversed line Tl 535 nm on the basis of the multiparameter method, and it has been calculated from the known axis pressure of thallium and the calculation of its radial variation by taking into account the chemical reactions. The experimental results confirm the dispersion character of the blue wing of the line Tl 535 nm. The systematic difference obtained between the measured and calculated effective pressure, particularly at the moment of minimum electron density, may be interpreted by deviations from the local thermodynamic equilibrium (LTE) caused by overpopulation of the upper level of the line Tl 535 nm

  6. Effect of oxygen partial pressure on production of animal virus (VSV)

    OpenAIRE

    Lim, Hyun S.; Chang, Kern H.; Kim, Jung H.

    1999-01-01

    The effect of oxygen partial pressure on viral replication was investigated with Vero/VSV system. At 10% oxygen partial pressure in spinner culture, VSV titer was significantly increased 130 fold compared to that obtained at 21%. A similar result was obtained for viral production in 1liter bioreactor. This implies that oxygen partial pressure during viral production has to be low. In low oxygen partial pressure, malondialdehyde concentration was decreased about 5 fold. Thus, low oxygen partia...

  7. Negative pressure wound therapy for partial-thickness burns.

    Science.gov (United States)

    Dumville, Jo C; Munson, Christopher; Christie, Janice

    2014-12-15

    A burn wound is a complex and evolving injury, with both local and systemic consequences. Burn treatments include a variety of dressings, as well as newer strategies, such as negative pressure wound therapy (NPWT), which, by means of a suction force that drains excess fluids from the burn, tries to promote the wound healing process and minimise progression of the burn wound. To assess the effectiveness of NPWT for people with partial-thickness burns. We searched the Cochrane Wounds Group Specialised Register (searched 04 September 2014); The Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2014, Issue 8). All randomised controlled trials (RCTs) and controlled clinical trials (CCTs) that evaluated the safety and effectiveness of NPWT for partial-thickness burns. Two review authors used standardised forms, and extracted the data independently. We assessed each trial for risk of bias, and resolved differences by discussion. One RCT, that was an interim report, satisfied the inclusion criteria. We undertook a narrative synthesis of results, as the absence of data and poor reporting precluded us from carrying out any formal statistical analysis. The trial was at high risk of bias. There was not enough evidence available to permit any conclusions to be drawn regarding the use of NPWT for treatment of partial-thickness burn wounds.

  8. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    Energy Technology Data Exchange (ETDEWEB)

    Archie Robertson

    2003-10-29

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the July 1--September 30, 2003 time period.

  9. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2003-01-30

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the October 1--December 31, 2002 time period.

  10. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    Energy Technology Data Exchange (ETDEWEB)

    Archie Robertson

    2003-07-23

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the April 1--June 30, 2003 time period.

  11. Development of Pressurized Circulating Fluidized Bed Partial Gasification Module (PGM)

    Energy Technology Data Exchange (ETDEWEB)

    A. Robertson

    2003-12-31

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the October 1 - December 31, 2003 time period.

  12. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Indwelling blood oxygen partial pressure (PO2... Indwelling blood oxygen partial pressure (PO2) analyzer. (a) Identification. An indwelling blood oxygen... electrode) and that is used to measure, in vivo, the partial pressure of oxygen in blood to aid in...

  13. An experimental study of pressure shadows in partially molten rocks

    Science.gov (United States)

    Qi, Chao; Zhao, Yong-Hong; Kohlstedt, David L.

    2013-11-01

    As a two-phase, solid-melt material flows around rigid particles, melt-depleted and melt-enriched regions (i.e., pressure shadows) develop due to the coupled fluxes of melt and solid driven by pressure gradients around the particles. To study this compaction-decompaction process, samples composed of fine-grained San Carlos olivine plus mid-ocean ridge basalt containing dispersed sub-millimeter-sized, single crystal beads of olivine were deformed in torsion at a temperature of 1473 K and a confining pressure of 300 MPa. Indicated by melt distribution maps obtained from reflected-light optical and backscattered electron microscopy, melt-enriched and melt-depleted regions around the beads became observable at a local shear strain of γ≈1 in samples with an initially homogeneously distributed melt fraction of ϕ≈0.05. The melt-enriched regions (ϕbarhigh≈0.06 to 0.10) and the melt-depleted regions (ϕbarlow≈0.02 to 0.04), extending as far as one radius of the bead, were symmetrically distributed around the bead. The flow field of the olivine matrix determined from crystallographic preferred orientations agrees with theoretical predictions based on two-phase flow analysis. These experiments are the first to produce pressure shadows in partially molten rocks. One implication of this study is that it will be possible to constrain the ratio of bulk to shear viscosity, which is inferred from the distribution of melt using a combination of experimental observations and numerical simulations.

  14. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    International Nuclear Information System (INIS)

    Unknown

    2001-01-01

    Foster Wheeler Development Corporation is working under DOE contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% while producing near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The unique aspect of the process is that it utilizes a pressurized circulating fluidized bed partial gasifier and does not attempt to consume the coal in a single step. To convert all the coal to syngas in a single step requires extremely high temperatures ((approx)2500 to 2800F) that melt and vaporize the coal and essentially drive all coal ash contaminants into the syngas. Since these contaminants can be corrosive to power generating equipment, the syngas must be cooled to near room temperature to enable a series of chemical processes to clean the syngas. Foster Wheeler's process operates at much lower temperatures that control/minimize the release of contaminants; this eliminates/minimizes the need for the expensive, complicated syngas heat exchangers and chemical cleanup systems typical of high temperature gasification. By performing the gasification in a circulating bed, a significant amount of syngas can still be produced despite the reduced temperature and the circulating bed allows easy scale up to large size plants. Rather than air, it can also operate with oxygen to facilitate

  15. Factors associated with blood oxygen partial pressure and carbon dioxide partial pressure regulation during respiratory extracorporeal membrane oxygenation support: data from a swine model.

    Science.gov (United States)

    Park, Marcelo; Mendes, Pedro Vitale; Costa, Eduardo Leite Vieira; Barbosa, Edzangela Vasconcelos Santos; Hirota, Adriana Sayuri; Azevedo, Luciano Cesar Pontes

    2016-01-01

    The aim of this study was to explore the factors associated with blood oxygen partial pressure and carbon dioxide partial pressure. The factors associated with oxygen - and carbon dioxide regulation were investigated in an apneic pig model under veno-venous extracorporeal membrane oxygenation support. A predefined sequence of blood and sweep flows was tested. Oxygenation was mainly associated with extracorporeal membrane oxygenation blood flow (beta coefficient = 0.036mmHg/mL/min), cardiac output (beta coefficient = -11.970mmHg/L/min) and pulmonary shunting (beta coefficient = -0.232mmHg/%). Furthermore, the initial oxygen partial pressure and carbon dioxide partial pressure measurements were also associated with oxygenation, with beta coefficients of 0.160 and 0.442mmHg/mmHg, respectively. Carbon dioxide partial pressure was associated with cardiac output (beta coefficient = 3.578mmHg/L/min), sweep gas flow (beta coefficient = -2.635mmHg/L/min), temperature (beta coefficient = 4.514mmHg/ºC), initial pH (beta coefficient = -66.065mmHg/0.01 unit) and hemoglobin (beta coefficient = 6.635mmHg/g/dL). In conclusion, elevations in blood and sweep gas flows in an apneic veno-venous extracorporeal membrane oxygenation model resulted in an increase in oxygen partial pressure and a reduction in carbon dioxide partial pressure 2, respectively. Furthermore, without the possibility of causal inference, oxygen partial pressure was negatively associated with pulmonary shunting and cardiac output, and carbon dioxide partial pressure was positively associated with cardiac output, core temperature and initial hemoglobin.

  16. The relation between in vivo ethylene production and oxygen partial pressure

    NARCIS (Netherlands)

    Sanders, M.G.; Wild, de H.P.J.

    2003-01-01

    Modelling in vivo ethylene production rate in relation to O2 partial pressure was used to improve understanding of enzyme kinetics of 1-aminocyclopropane-1-carboxylate oxidase (ACC oxidase). Tomato fruit were stored in an extensive range of O2 partial pressures at 8, 13 and 18 °C. Ethylene

  17. Changes in Cerebral Partial Oxygen Pressure and Cerebrovascular Reactivity During Intracranial Pressure Plateau Waves.

    Science.gov (United States)

    Lang, Erhard W; Kasprowicz, Magdalena; Smielewski, Peter; Pickard, John; Czosnyka, Marek

    2015-08-01

    Plateau waves in intracranial pressure (ICP) are frequently recorded in neuro intensive care and are not yet fully understood. To further investigate this phenomenon, we analyzed partial pressure of cerebral oxygen (pbtO2) and a moving correlation coefficient between ICP and mean arterial blood pressure (ABP), called PRx, along with the cerebral oxygen reactivity index (ORx), which is a moving correlation coefficient between cerebral perfusion pressure (CPP) and pbtO2 in an observational study. We analyzed 55 plateau waves in 20 patients after severe traumatic brain injury. We calculated ABP, ABP pulse amplitude (ampABP), ICP, CPP, pbtO2, heart rate (HR), ICP pulse amplitude (ampICP), PRx, and ORx, before, during, and after each plateau wave. The analysis of variance with Bonferroni post hoc test was used to compare the differences in the variables before, during, and after the plateau wave. We considered all plateau waves, even in the same patient, independent because they are separated by long intervals. We found increases for ICP and ampICP according to our operational definitions for plateau waves. PRx increased significantly (p = 0.00026), CPP (p pressure remains stable in ICP plateau waves, while cerebral autoregulatory indices show distinct changes, which indicate cerebrovascular reactivity impairment at the top of the wave. PbtO2 decreases during the waves and may show a slight overshoot after normalization. We assume that this might be due to different latencies of the cerebral blood flow and oxygen level control mechanisms. Other factors may include baseline conditions, such as pre-plateau wave cerebrovascular reactivity or pbtO2 levels, which differ between studies.

  18. Plateau Waves of Intracranial Pressure and Partial Pressure of Cerebral Oxygen.

    Science.gov (United States)

    Lang, Erhard W; Kasprowicz, Magdalena; Smielewski, Peter; Pickard, John; Czosnyka, Marek

    2016-01-01

    This study investigates 55 intracranial pressure (ICP) plateau waves recorded in 20 patients after severe traumatic brain injury (TBI) with a focus on a moving correlation coefficient between mean arterial pressure (ABP) and ICP, called PRx, which serves as a marker of cerebrovascular reactivity, and a moving correlation coefficient between ABP and cerebral partial pressure of oxygen (pbtO2), called ORx, which serves as a marker for cerebral oxygen reactivity. ICP and ICPamplitude increased significantly during the plateau waves, whereas CPP and pbtO2 decreased significantly. ABP, ABP amplitude, and heart rate remained unchanged. In 73 % of plateau waves PRx increased during the wave. ORx showed an increase during and a decrease after the plateau waves, which was not statistically significant. Our data show profound cerebral vasoparalysis on top of the wave and, to a lesser extent, impairment of cerebral oxygen reactivity. The different behavior of the indices may be due to the different latencies of the cerebral blood flow and oxygen level control mechanisms. While cerebrovascular reactivity is a rapidly reacting mechanism, cerebral oxygen reactivity is slower.

  19. Potential hydrogen and oxygen partial pressures in legacy plutonium oxide packages at Oak Ridge

    Energy Technology Data Exchange (ETDEWEB)

    Veirs, Douglas K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-07-07

    An approach to estimate the maximum hydrogen and oxygen partial pressures within sealed containers is described and applied to a set of packages containing high-purity plutonium dioxide. The approach uses experimentally determined maximum hydrogen and oxygen partial pressures and scales the experimentally determined pressures to the relevant packaged material properties. The important material properties are the specific wattage and specific surface area (SSA). Important results from the experimental determination of maximum partial pressures are (1) the ratio of hydrogen to oxygen is stoichiometric, and (2) the maximum pressures increase with increasing initial rates of production. The material properties that influence the rates are the material specific wattage and the SSA. The unusual properties of these materials, high specific wattage and high SSA, result in higher predicted maximum pressures than typical plutonium dioxide in storage. The pressures are well within the deflagration range for mixtures of hydrogen and oxygen.

  20. In vivo near real time imaging of oxygen partial pressures in the glass catfish (Kryptopterus bichirris)

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2012-01-01

    of the transparent glass catfish (Kryptopterus bichirris), it is possible to measure near realtime oxygen partial pressure in vivo. We used a commercially-available digital single-lens reflex camera mounted with an optical long pass filter (II = 490 nm) and excited the phosphorescent dye in the microspheres inside...... the fish with externally-mounted blue light emitting diodes (lip = 470 nm) to image the oxygen partial pressure. This method makes it possible to investigate oxygen partial pressures in the vascular system and different tissues of fish without having to insert any probes into the animal. After injection...

  1. Method and apparatus for monitoring oxygen partial pressure in air masks

    Science.gov (United States)

    Kelly, Mark E. (Inventor); Pettit, Donald R. (Inventor)

    2006-01-01

    Method and apparatus are disclosed for monitoring an oxygen partial pressure in an air mask and providing a tactile warning to the user. The oxygen partial pressure in the air mask is detected using an electrochemical sensor, the output signal from which is provided to a comparator. The comparator compares the output signal with a preset reference value or range of values representing acceptable oxygen partial pressures. If the output signal is different than the reference value or outside the range of values, the air mask is vibrated by a vibrating motor to alert the user to a potentially hypoxic condition.

  2. Partial Pressures of Te2 and Thermodynamic Properties of Ga-Te System

    Science.gov (United States)

    Su, Ching-Hua; Curreri, Peter A. (Technical Monitor)

    2001-01-01

    The partial pressures of Te2 in equilibrium with Ga(1-x)Te(x) samples were measured by optical absorption technique from 450 to 1100 C for compositions, x, between 0.333 and 0.612. To establish the relationship between the partial pressure of Te, and the measured optical absorbance, the calibration runs of a pure Te sample were also conducted to determine the Beer's Law constants. The partial pressures of Te2 in equilibrium with the GaTe(s) and Ga2Te3(s)compounds, or the so-called three-phase curves, were established. These partial pressure data imply the existence of the Ga3Te4(s) compound. From the partial pressures of Te2 over the Ga-Te melts, partial molar enthalpy and entropy of mixing for Te were derived and they agree reasonable well with the published data. The activities of Te in the Ga-Te melts were also derived from the measured partial pressures of Te2. These data agree well with most of the previous results. The possible reason for the high activity of Te measured for x less than 0.60 is discussed.

  3. Pressures of Partial Crystallization of Magmas Along Transforms: Implications for Crustal Accretion

    Science.gov (United States)

    Scott, J. L.; Zerda, C.; Brown, D.; Ciaramitaro, S. C.; Barton, M.

    2016-12-01

    Plate spreading at mid-ocean ridges is responsible for the creation of most of the crust on earth. The ridge system is very complex and many questions remain unresolved. Among these is the nature of magma plumbing systems beneath transform faults. Pervious workers have suggested that increased conductive cooling along transforms promotes higher pressures of partial crystallization, and that this explains the higher partial pressures of crystallization inferred for magmas erupted along slow spreading ridges compared to magmas erupted along faster spreading ridges. To test this hypothesis, we undertook a detailed analysis of pressures of partial crystallization for magmas erupted at 3 transforms along the fast to intermediate spreading East Pacific Rise(Blanco, Clipperton, and Siqueiros) and 3 transforms along the slow spreading Mid Atlantic Ridge(Famous Transform B, Kane, and 15°20'N). Pressures of partial crystallization were calculated from the compositions of glasses (quenched liquids) lying along the P (and T) dependent olivine, plagioclase, and augite cotectic using the method described by Kelley and Barton (2008). Published analyses of mid-ocean ridge basalt glasses sampled from these transforms and surrounding ridge segments were used as input data. Samples with anomalous chemical compositions and samples that yielded pressures associated with unrealistically large uncertainties were filtered out of the database. The pressures of partial crystallization for the remaining 916 samples ranged from 0 to 520 MPa with the great majority ( 95%) of sample returning pressures of less than 300 MPa. Pressures of 300 MPa) are associated with a small number of samples from the Pacific segments. Except for the Blanco, pressures of partial crystallization do not increase as transforms are approached. These observations contrast with those of previous workers, who reported anomalously high pressures (up to 1000 MPa) for a large number of samples erupted near both Atlantic

  4. Four-Hour Dives with Exercise While Breathing Oxygen Partial Pressure of 1.3 ATM

    National Research Council Canada - National Science Library

    Shykoff, B

    2006-01-01

    ...) or less but does not address the possible accumulation of effects over multiple days. We have conducted experimental four-hour dives with oxygen partial pressure (Po2) of approximately 1.4 atmospheres (atm...

  5. Three-Hour Dives with Exercise While Breathing Oxygen Partial Pressure of 1.3 ATM

    National Research Council Canada - National Science Library

    Shykoff, B

    2007-01-01

    ...) or less but does not address the possible accumulation of effects over multiple days. When we conducted experimental four-hour dives with oxygen partial pressure (Po2) of approximately 1.4 atmospheres (atm...

  6. Viscoelastic properties of doped-ceria under reduced oxygen partial pressure

    DEFF Research Database (Denmark)

    Teocoli, Francesca; Esposito, Vincenzo

    2014-01-01

    The viscoelastic properties of gadolinium-doped ceria (CGO) powder compacts are characterized during sintering and cooling under reduced oxygen partial pressure and compared with conventional sintering in air. Highly defective doped ceria in reducing conditions shows peculiar viscoelastic...

  7. [Effects of gap junction blocking on the oxygen partial pressure in acupoints of the bladder meridian].

    Science.gov (United States)

    Wang, Qi; Yu, Wei-Chang; Jiang, Hong-Zhi; Chen, Sheng-Li; Zhang, Ming-Min; Kong, E-Sheng; Huang, Guang-Ying

    2010-12-01

    To explore the relation between gap junction and meridian phenomenon. The oxygen partial pressure in acupoints [see text for formula] and in their corresponding non-acupoints of the Bladder Meridian was observed with the needle-type tissue oxygen tension sensor in the gap junction blocking goats by 1-Heptanol injection and the Connexin 43 (Cx43) gene knockout mice. (1) The oxygen partial pressure in acupoints of Bladder Meridian on goats was higher than that in non-acupoints after 1-Heptanol injection with significant differences between them (both P oxygen partial pressure in acupoints of Bladder Meridian on goats increased significantly after injecting 1-Heptanol as compare with that either injecting normal saline or injecting nothing with significant differences between them (all P oxygen partial pressure in acupoints of the Bladder Meridian was significantly higher than that in the non-acupoint controls in Cx43 wild type (WT) mice (all P oxygen partial pressure between acupoints and non-acupoint controls showed no significant differences (all P > 0.05). (4) In acupoints, the oxygen partial pressure in Cx43 WT mice was significantly higher than that in Cx43 HT mice (all P 0.05). Gap junction maybe the essential factor in signal transduction of acupuncture.

  8. A system for incubations at high gas partial pressure

    DEFF Research Database (Denmark)

    Sauer, Patrick; Glombitza, Clemens; Kallmeyer, Jens

    2012-01-01

    dioxide sequestration. As an application of the system we extracted organic compounds from sub-bituminous coal using H2O as well as a H2O–CO2 mixture at elevated temperature (90°C) and pressure (5 MPa). Subsamples were taken at different time points during the incubation and analyzed by ion chromatography....... Furthermore we demonstrated the applicability of the system for studies of microbial activity, using samples from the Isis mud volcano. We could detect an increase in sulfate reduction rate upon the addition of methane to the sample....

  9. Design improvement for partial penetration welds of Pressurizer heater sleeves to head junctures

    International Nuclear Information System (INIS)

    Kim, Jin-Seon; Lee, Kyoung-Jin; Park, Tae-Jung; Kim, Moo-Yong

    2007-01-01

    ASME Code, Section III allows partial penetration welds for openings for instrumentation on which there are substantially no piping reactions and requires to have interference fit or limited diametral clearance between nozzles and vessel penetrations for the partial penetration welds. Pressurizer heater sleeves are nonaxisymmetrically attached on the hill-side of bottom head by partial penetration welds. The excessive stresses in the partial penetration weld regions of the heater sleeves are induced by pressure and thermal transient loads and also by the deformation due to manual welding process. The purpose of this study is 1) to improve design for the partial penetration welds between heater sleeves to head junctures, 2) to demonstrate the structural integrity according to the requirements of ASME Code, Section III and 3) to improve welding procedure considering the proposed design

  10. Non-invasive multiwavelength photoplethysmography under low partial pressure of oxygen.

    Science.gov (United States)

    Fang, Yung Chieh; Tai, Cheng-Chi

    2016-08-01

    A reduction in partial pressure of oxygen in the environment may be caused by a gain in altitude, which reduces the atmospheric pressure; it may also be caused by the carbon dioxide generated from breathing in an enclosed space. Does inhaling oxygen of lower partial pressure affect the oxygen-carrying function of haemoglobin in vivo? This study uses non-invasive multiwavelength photoplethysmography to measure the effects that inhaling this type of oxygen can have on the plethysmography of the appendages of the body (fingertips). The results indicate that under low partial pressure of oxygen, be it the result of a gain in carbon dioxide concentration or altitude, the change in visible light absorption is the biggest for short wavelengths (approximately 620 or 640 nm) near deoxyhaemoglobin, which has higher absorption coefficient. Moreover, increasing carbon dioxide concentration from 5000 to 10,000 ppm doubly reduces the absorption rate of these short wavelengths.

  11. Acidogenesis driven by hydrogen partial pressure towards bioethanol production through fatty acids reduction

    International Nuclear Information System (INIS)

    Sarkar, Omprakash; Butti, Sai Kishore; Venkata Mohan, S.

    2017-01-01

    H 2 partial pressure drives the reduction of carboxylic acid (short chain fatty acids) formed as primary metabolites in acidogenic fermentation to form bioalcohols. Microbial catalysis under the influence of H 2 partial pressure was evaluated in comparison with a reactor operated at atmospheric pressure under identical conditions. Carboxylic acid reduction gets regulated selectively by the influence of elevated pressures and redox conditions, resulting in the formation of alcohols. The non-equilibrium of the intra and extracellular H 2 ions causes the anaerobic bacteria to alter their pathways as a function of interspecies H 2 transfer. Ethanol production was quantified, as acetic acid was the major carboxylic acid synthesised during acidogenesis. H 2 pressure influenced the electrochemical activity which was reflected in the distinct variation of the electron transfer rates and the catalytic activity of redox mediators (NAD + /NADH, flavoproteins and iron-sulphur clusters). The bioprocess depicted in this communication depicted a non-genetic regulation of product formation, understanding the acidogenic metabolism and alternate route for alcohol production. - Highlights: • H 2 partial pressure in HPR aided in the reduction of carboxylic acids to alcohols. • Production and consumption rate of VFAs were correlating with alcohol formation. • Metabolic shift was evident with bioelectrochical analysis. • NADH/NAD + ratio and H 2 partial pressure coupled in enhanced solventogenesis.

  12. [Correlation between the inspired fraction of oxygen, maternal partial oxygen pressure, and fetal partial oxygen pressure during cesarean section of normal pregnancies].

    Science.gov (United States)

    Castro, Carlos Henrique Viana de; Cruvinel, Marcos Guilherme Cunha; Carneiro, Fabiano Soares; Silva, Yerkes Pereira; Cabral, Antônio Carlos Vieira; Bessa, Roberto Cardoso

    2009-01-01

    Despite changes in pulmonary function, maternal oxygenation is maintained during obstetric regional blocks. But in those situations, the administration of supplementary oxygen to parturients is a common practice. Good fetal oxygenation is the main justification; however, this has not been proven. The objective of this randomized, prospective study was to test the hypothesis of whether maternal hyperoxia is correlated with an increase in fetal gasometric parameters in elective cesarean sections. Arterial blood gases of 20 parturients undergoing spinal block with different inspired fractions of oxygen were evaluated and correlated with fetal arterial blood gases. An increase in maternal inspired fraction of oxygen did not show any correlation with an increase of fetal partial oxygen pressure. Induction of maternal hyperoxia by the administration of supplementary oxygen did not increase fetal partial oxygen pressure. Fetal gasometric parameters did not change even when maternal parameters changed, induced by hyperoxia, during cesarean section under spinal block.

  13. Effect of substrate temperature and oxygen partial pressure on RF sputtered NiO thin films

    Science.gov (United States)

    Cheemadan, Saheer; Santhosh Kumar, M. C.

    2018-04-01

    Nickel oxide (NiO) thin films were deposited by RF sputtering process and the physical properties were investigated for varying substrate temperatures and oxygen partial pressure. The variation of the crystallographic orientation and microstructure of the NiO thin films with an increase in substrate temperature were studied. It was observed that NiO thin films deposited at 350 °C shows relatively good crystalline characteristics with a preferential orientation along (111) plane. With the optimum substrate temperature of 350 °C, the NiO thin films were deposited under various oxygen partial pressures at the same experimental conditions. The structural, optical and electrical properties of NiO thin films under varying oxygen partial pressure of 10%–50% were investigated. From XRD it is clear that the films prepared in the pure argon atmosphere were amorphous while the films in oxygen partial pressure exhibited polycrystalline NiO phase. SEM and AFM investigations unveil that the higher substrate temperature improves the microstructure of the thin films. It is revealed that the NiO thin films deposited at oxygen partial pressure of 40% and a substrate temperature of 350 °C, showed higher electrical conductivity with p-type characteristics.

  14. Oxygen partial pressure effects on the magnetron sputtered WO3 films

    International Nuclear Information System (INIS)

    Muğlu, G Merhan; Gür, E

    2016-01-01

    Electrochromism is changing color of a substance in response to the applied an external electric field and the phenomenon is reversible. WO 3 is very attractive material due to its electrochromic properties as well as it is also attractive for many different applications such as gas sensors, phosphorous screen, textile, glass industry. In this study, it is aimed to provide optimization of the optical and structural characteristics of WO 3 by changing the growth parameters mainly the oxygen partial pressure. The partial pressure of oxygen was changed with increments of 0.7 mTorr. For the analysis, X-ray Diffraction (XRD), absorption, Raman spectroscopy measurements were used. When O 2 gas increased, peaks belong to the WO 3 was observed in XRD patterns at the 2 theta angles of 23.0, 11.0, 23.5 and 28.5 angles corresponding to the (002), (020) and (220) planes, respectively. This shows that there is a significant effect of increasing O 2 partial pressure in the formation of WO 3 films. The bandgap energy of the WO 3 thin films are found to be around 3.0 eV. Raman measurements showed vibrational modes of W-O-W stretching and bending modes which shows small shifts depending on the partial pressures of the O 2 . Obtained results indicated that better crystal structure is obtained with higher O 2 gas partial pressure. (paper)

  15. Effects of oxygen partial pressure on Li-air battery performance

    Science.gov (United States)

    Kwon, Hyuk Jae; Lee, Heung Chan; Ko, Jeongsik; Jung, In Sun; Lee, Hyun Chul; Lee, Hyunpyo; Kim, Mokwon; Lee, Dong Joon; Kim, Hyunjin; Kim, Tae Young; Im, Dongmin

    2017-10-01

    For application in electric vehicles (EVs), the Li-air battery system needs an air intake system to supply dry oxygen at controlled concentration and feeding rate as the cathode active material. To facilitate the design of such air intake systems, we have investigated the effects of oxygen partial pressure (≤1 atm) on the performance of the Li-air cell, which has not been systematically examined. The amounts of consumed O2 and evolved CO2 from the Li-air cell are measured with a custom in situ differential electrochemical gas chromatography-mass spectrometry (DEGC-MS). The amounts of consumed O2 suggest that the oxygen partial pressure does not affect the reaction mechanism during discharge, and the two-electron reaction occurs under all test conditions. On the other hand, the charging behavior varies by the oxygen partial pressure. The highest O2 evolution ratio is attained under 70% O2, along with the lowest CO2 evolution. The cell cycle life also peaks at 70% O2 condition. Overall, an oxygen partial pressure of about 0.5-0.7 atm maximizes the Li-air cell capacity and stability at 1 atm condition. The findings here indicate that the appropriate oxygen partial pressure can be a key factor when developing practical Li-air battery systems.

  16. Growth responses of Neurospora crassa to increased partial pressures of the noble gases and nitrogen.

    Science.gov (United States)

    Buchheit, R G; Schreiner, H R; Doebbler, G F

    1966-02-01

    Buchheit, R. G. (Union Carbide Corp., Tonawanda, N.Y.), H. R. Schreiner, and G. F. Doebbler. Growth responses of Neurospora crassa to increased partial pressures of the noble gases and nitrogen. J. Bacteriol. 91:622-627. 1966.-Growth rate of the fungus Neurospora crassa depends in part on the nature of metabolically "inert gas" present in its environment. At high partial pressures, the noble gas elements (helium, neon, argon, krypton, and xenon) inhibit growth in the order: Xe > Kr> Ar > Ne > He. Nitrogen (N(2)) closely resembles He in inhibitory effectiveness. Partial pressures required for 50% inhibition of growth were: Xe (0.8 atm), Kr (1.6 atm), Ar (3.8 atm), Ne (35 atm), and He ( approximately 300 atm). With respect to inhibition of growth, the noble gases and N(2) differ qualitatively and quantitatively from the order of effectiveness found with other biological effects, i.e., narcosis, inhibition of insect development, depression of O(2)-dependent radiation sensitivity, and effects on tissue-slice glycolysis and respiration. Partial pressures giving 50% inhibition of N. crassa growth parallel various physical properties (i.e., solubilities, solubility ratios, etc.) of the noble gases. Linear correlation of 50% inhibition pressures to the polarizability and of the logarithm of pressure to the first and second ionization potentials suggests the involvement of weak intermolecular interactions or charge-transfer in the biological activity of the noble gases.

  17. Partial pressures of oxygen, phosphorus and fluorine in some lunar lavas

    Science.gov (United States)

    Nash, W. P.; Hausel, W. D.

    1973-01-01

    Lunar sample 14310 is a feldspar-rich basalt which shows no evidence of shock deformation or recrystallization. Pyroxenes include Mg-rich orthopyroxene, pigeonite and augite; pyroxferroite occurs in the interstitial residuum. Plagioclase feldspars are zoned from An(96) to An(67), and variations in feldspar compositions do not necessarily indicate loss of Na during eruption of the lava. Opaque phases include ilmenite, ulvospinel, metallic iron, troilite, and schreibersite. Both whitlockite and apatite are present, and the interstitial residua contain baddeleyite, tranquillityite and barium-rich sanidine. Theoretical calculations provide estimates of partial pressures of oxygen, phosphorus, and fluorine in lunar magmas. In general, partial pressures of oxygen are restricted by the limiting assemblages of iron-wuestite and ilmenite-iron-rutile; phosphorus partial pressures are higher in lunar magmas than in terrestrial lavas. The occurrence of whitlockite indicates significantly lower fugacities of fluorine in lunar magmas than in terrestrial magmas.

  18. Carbon dioxide, temperature, salinity, and atmospheric pressure from surface underway survey in the North Pacific from January 1998 to January 2004 (NODC Accession 0045502)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea surface pCO2, sea surface temperature, sea surface salinity, and atmospheric pressure measurements collected in the North Pacific as part of the NOAA Office of...

  19. Photosynthesis and growth response of almond to increased atmospheric ozone partial pressures

    Energy Technology Data Exchange (ETDEWEB)

    Retzlaff, W.A.; Williams, L.E. (Univ. of California, Davis (United States) Kearney Agricultural Center, Parlier, CA (United States)); DeJong, T.M. (Univ. of California, Davis (United States))

    Uniform nursery stock of five almond cultivars [Prunus dulcis (Mill) D.A. Webb syn. P. amygdalus Batsch, cv. Butte, Carmel, Mission, Nonpareil, and Sonora] propagated on peach (P. domstica L. Batsch.) rootstock were exposed to three different atmospheric ozone (O[sub 3]) partial pressures. The trees were planted in open-top fumigation chambers on 19 Apr. 1989 at the University of California Kearny Agricultural Center located in the San Joaquin Valley of California. Exposures of the trees to three atmospheric O[sub 3] partial pressures lasted from 1 June to 2 Nov. 1989. The mean 12-h [0800-2000 h Pacific Daylight Time (PDT)] O[sub 3] partial pressures measured in the open-top chambers during the experimental period were 0.038, 0.060, and 0.112 [mu]Pa Pa[sup [minus]1] O[sub 3] in the charcoal filtered, ambient, and ambient + O[sub 3] treatments, respectively. Leaf net CO[sub 2] assimilation, trunk cross-sectional area growth, and root, trunk, foliage, and total dry weight of Nonpareil were reduced by increased atmospheric O[sub 3] partial pressures. Mission was unaffected by O[sub 3] and Butte, Carmel, and Sonora were intermediate in their responses. Foliage of Nonpareil also abscised prematurely in the ambient and ambient + O[sub 3] treatments. The results indicate that there are almond cultivars that are sensitive to O[sub 3] exposure.

  20. Photosynthesis and growth response of almond to increased atmospheric ozone partial pressures

    International Nuclear Information System (INIS)

    Retzlaff, W.A.; Williams, L.E.; DeJong, T.M.

    1992-01-01

    Uniform nursery stock of five almond cultivars [Prunus dulcis (Mill) D.A. Webb syn. P. amygdalus Batsch, cv. Butte, Carmel, Mission, Nonpareil, and Sonora] propagated on peach (P. domstica L. Batsch.) rootstock were exposed to three different atmospheric ozone (O 3 ) partial pressures. The trees were planted in open-top fumigation chambers on 19 Apr. 1989 at the University of California Kearny Agricultural Center located in the San Joaquin Valley of California. Exposures of the trees to three atmospheric O 3 partial pressures lasted from 1 June to 2 Nov. 1989. The mean 12-h [0800-2000 h Pacific Daylight Time (PDT)] O 3 partial pressures measured in the open-top chambers during the experimental period were 0.038, 0.060, and 0.112 μPa Pa -1 O 3 in the charcoal filtered, ambient, and ambient + O 3 treatments, respectively. Leaf net CO 2 assimilation, trunk cross-sectional area growth, and root, trunk, foliage, and total dry weight of Nonpareil were reduced by increased atmospheric O 3 partial pressures. Mission was unaffected by O 3 and Butte, Carmel, and Sonora were intermediate in their responses. Foliage of Nonpareil also abscised prematurely in the ambient and ambient + O 3 treatments. The results indicate that there are almond cultivars that are sensitive to O 3 exposure

  1. Partial Discharge Measurements in HV Rotating Machines in Dependence on Pressure of Coolant

    Directory of Open Access Journals (Sweden)

    I. Kršňák

    2002-01-01

    Full Text Available The influence of the pressure of the coolant used in high voltage rotating machines on partial discharges occurring in stator insulation is discussed in this paper. The first part deals with a theoretical analysis of the topic. The second part deals with the results obtained on a real generator in industrial conditions. Finally, theoretical assumptions and obtained results are compared.

  2. Effect of sulfur dioxide partial pressure on the reaction of iodine, sulfur dioxide and water

    International Nuclear Information System (INIS)

    Nakajima, Hayato; Imai, Yoshiyuki; Kasahara, Seiji; Kubo, Shinji; Onuki, Kaoru

    2007-01-01

    Effect of sulfur dioxide partial pressure on the reaction of iodine, sulfur dioxide and water, which is a unit reaction in the IS process for thermochemical hydrogen production, was studied experimentally at 323 K under iodine saturation. Quasi-equilibrium state was observed in the presence of sulfur dioxide gas at constant pressure. The composition of the poly-hydriodic acid solution formed was discussed assuming an ideal desulfurization by the reverse reaction of the Bunsen reaction. The value of HI/(HI+H 2 O) of the desulfurized solution was large at high sulfur dioxide pressure and reached the maximum of 15.7 ± 0.3 mol%. (author)

  3. Partial alignment and measurement of residual dipolar couplings of proteins under high hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yinan; Wand, A. Joshua, E-mail: wand@mail.med.upenn.edu [University of Pennsylvania, Department of Biochemistry and Biophysics, Johnson Research Foundation (United States)

    2013-08-15

    High-pressure NMR spectroscopy has emerged as a complementary approach for investigating various structural and thermodynamic properties of macromolecules. Noticeably absent from the array of experimental restraints that have been employed to characterize protein structures at high hydrostatic pressure is the residual dipolar coupling, which requires the partial alignment of the macromolecule of interest. Here we examine five alignment media that are commonly used at ambient pressure for this purpose. We find that the spontaneous alignment of Pf1 phage, d(GpG) and a C12E5/n-hexnanol mixture in a magnetic field is preserved under high hydrostatic pressure. However, DMPC/DHPC bicelles and collagen gel are found to be unsuitable. Evidence is presented to demonstrate that pressure-induced structural changes can be identified using the residual dipolar coupling.

  4. Dependence of mitochondrial and cytosolic adenine nucleotides on oxygen partial pressure in isolated hepatocytes. Application of a new rapid high pressure filtration technique for fractionation.

    OpenAIRE

    Hummerich, H; de Groot, H; Noll, T; Soboll, S

    1988-01-01

    By using a new rapid high pressure filtration technique, mitochondrial and cytosolic ATP and ADP contents were determined in isolated hepatocytes at different oxygen partial pressures. At 670 mmHg, subcellular adenine nucleotide contents and ATP/ADP ratios were comparable with values obtained with the digitonin fractionation technique. However at lower oxygen partial pressure ADP appears to be rephosphorylated during digitonin fractionation whereas with high pressure filtration fractionation ...

  5. Cathodic over-potential and hydrogen partial pressure coupling in hydrogen evolution reaction of marine steel under hydrostatic pressure

    International Nuclear Information System (INIS)

    Xiong, X.L.; Zhou, Q.J.; Li, J.X.; Volinsky, Alex A.; Su, Y.J.

    2017-01-01

    Highlights: •Hydrostatic pressure increases the Volmer and the Heyrovsky reactions rates. •Hydrostatic pressure decreases the Tafel reaction rate. •Hydrogen adsorption conditions change with pressure under −1.2 and −1.3 V SSE . •Under −1.2 and −1.3 V SSE , the Heyrovsky reaction dominates the hydrogen recombination. •Under −1.0 and −1.1 V SSE , the Tafel reaction dominates the hydrogen recombination. -- Abstract: A new electrochemical impedance spectroscopy (EIS) model, which considers both the Tafel recombination and the Heyrovsky reaction under permeable boundary conditions, was developed to characterize the kinetic parameters of the hydrogen evolution reaction (HER) under hydrostatic pressure. The effect of the hydrostatic pressure on the kinetic parameters of the HER and the permeation of A514 steel in alkaline solution were measured using potentiodynamic polarization, the Devanathan cell hydrogen permeation, and EIS. The hydrostatic pressure accelerates the Volmer reaction and inhibits the Tafel recombination, which increases the number of adsorbed hydrogen atoms. On the other hand, the pressure accelerates the Heyrovsky reaction, which decreases the amount of adsorbed hydrogen atoms. At 10 to 40 MPa hydrostatic pressure within the −1.0 to −1.1 V SSE cathodic potential region, the HER is controlled by hydrogen partial pressure, and hydrogen adsorption is the Langmuir type. Within the −1.2 to −1.3 V SSE cathodic potential region, the HER is controlled by the potential, and hydrogen adsorption gradually transfers from the Langmuir type to the Temkin type with increasing hydrostatic pressure.

  6. Effect of partial sports massage on blood pressure and heart rate

    Directory of Open Access Journals (Sweden)

    T.D. Pystupa

    2013-12-01

    Full Text Available With the growing popularity and demand for different types of massages (including sports is a growing need for research on specific forms. There is also a need to study the advantages and effects on various body functions. The objective was to study the effect of partial sports massage on blood pressure and heart rate in both men and women. Material and methods. Research has been extended 80 healthy men and women are physically active (age 20-25 years. Blood pressure and heart rate were made on the left arm automatic digital device (model HEM - 907. The device is intended to measure blood pressure. It is established that it is possible to verify the existing beliefs. This promotes more efficient use of massage therapy. Conclusions . Sports massage has an effect on hemodynamic changes, the increase (decrease in blood pressure acceleration (deceleration of the heart rate. It depends on what part of the body exposed to the massage procedure.

  7. Growth of the microalgae Neochloris oleoabundans at high partial oxygen pressures and sub-saturating light intensity

    NARCIS (Netherlands)

    Sousa, C.A.; Winter, de L.; Janssen, M.G.J.; Vermue, M.H.; Wijffels, R.H.

    2012-01-01

    The effect of partial oxygen pressure on growth of Neochloris oleoabundans was studied at sub-saturating light intensity in a fully-controlled stirred tank photobioreactor. At the three partial oxygen pressures tested (PO2=0.24; 0.63; 0.84 bar), the specific growth rate was 1.38; 1.36 and 1.06

  8. Measurement and prediction of the solubility of acid gases in monoethanolamine solutions at low partial pressures

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, P; Mather, A E

    1977-12-01

    An apparatus for the determination of the solubility of hydrogen sulfide, carbon dioxide, and their mixtures in ethanolamine solutions at low pressures is described. With this apparatus, the solubility of H/sub 2/S, CO/sub 2/ and their mixtures in aqueous solutions of monoethanolamine was measured at partial pressures between 0.001 kPa and 9 kPa at temperatures of 80 and 100/sup 0/C. The results for the mixture were compared with two methods of prediction based on a thermodynamic model. 6 figures, 4 tables.

  9. Oxygen partial pressure dependence of electrical conductivity in γ'-Bi2MoO6

    International Nuclear Information System (INIS)

    Vera, C.M.C.; Aragon, R.

    2008-01-01

    The electrical conductivity of γ'-Bi 2 MoO 6 was surveyed between 450 and 750 deg. C as a function of oxygen partial pressure, in the range 0.01-1 atm. A -1/6 power law dependence, consistent with a Frenkel defect model of doubly ionized oxygen vacancies and interstitials, is evidence for an n-type semiconductive component, with an optical band gap of 2.9 eV. The absence of this dependence is used to map the onset of dominant ionic conduction. - Graphical abstract: Temporal dependence of electrical conductivity at 500 deg. C for γ'-Bi 2 MoO 6 at controlled partial pressures of oxygen

  10. The change of steel surface chemistry regarding oxygen partial pressure and dew point

    Science.gov (United States)

    Norden, Martin; Blumenau, Marc; Wuttke, Thiemo; Peters, Klaus-Josef

    2013-04-01

    By investigating the surface state of a Ti-IF, TiNb-IF and a MnCr-DP after several series of intercritical annealing, the impact of the annealing gas composition on the selective oxidation process is discussed. On behalf of the presented results, it can be concluded that not the general oxygen partial pressure in the annealing furnace, which is a result of the equilibrium reaction of water and hydrogen, is the main driving force for the selective oxidation process. It is shown that the amounts of adsorbed gases at the strip surface and the effective oxygen partial pressure resulting from the adsorbed gases, which is mainly dependent on the water content of the annealing furnace, is driving the selective oxidation processes occurring during intercritical annealing. Thus it is concluded, that for industrial applications the dew point must be the key parameter value for process control.

  11. Oxidation of C/SiC Composites at Reduced Oxygen Partial Pressures

    Science.gov (United States)

    Opila, Elizabeth J.; Serra, Jessica

    2009-01-01

    Carbon-fiber reinforced SiC (C/SiC) composites are proposed for leading edge applications of hypersonic vehicles due to the superior strength of carbon fibers at high temperatures (greater than 1500 C). However, the vulnerability of the carbon fibers in C/SiC to oxidation over a wide range of temperatures remains a problem. Previous oxidation studies of C/SiC have mainly been conducted in air or oxygen, so that the oxidation behavior of C/SiC at reduced oxygen partial pressures of the hypersonic flight regime are less well understood. In this study, both carbon fibers and C/SiC composites were oxidized over a wide range of temperatures and oxygen partial pressures to facilitate the understanding and modeling of C/SiC oxidation kinetics for hypersonic flight conditions.

  12. Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns.

    Science.gov (United States)

    Verberk, Wilco C E P; Bilton, David T; Calosi, Piero; Spicer, John I

    2011-08-01

    Aquatic ectotherms face the continuous challenge of capturing sufficient oxygen from their environment as the diffusion rate of oxygen in water is 3 x 10(5) times lower than in air. Despite the recognized importance of oxygen in shaping aquatic communities, consensus on what drives environmental oxygen availability is lacking. Physiologists emphasize oxygen partial pressure, while ecologists emphasize oxygen solubility, traditionally expressing oxygen in terms of concentrations. To resolve the question of whether partial pressure or solubility limits oxygen supply in nature, we return to first principles and derive an index of oxygen supply from Fick's classic first law of diffusion. This oxygen supply index (OSI) incorporates both partial pressure and solubility. Our OSI successfully explains published patterns in body size and species across environmental clines linked to differences in oxygen partial pressure (altitude, organic pollution) or oxygen solubility (temperature and salinity). Moreover, the OSI was more accurately and consistently related to these ecological patterns than other measures of oxygen (oxygen saturation, dissolved oxygen concentration, biochemical oxygen demand concentrations) and similarly outperformed temperature and altitude, which covaried with these environmental clines. Intriguingly, by incorporating gas diffusion rates, it becomes clear that actually more oxygen is available to an organism in warmer habitats where lower oxygen concentrations would suggest the reverse. Under our model, the observed reductions in aerobic performance in warmer habitats do not arise from lower oxygen concentrations, but instead through organismal oxygen demand exceeding supply. This reappraisal of how organismal thermal physiology and oxygen demands together shape aerobic performance in aquatic ectotherms and the new insight of how these components change with temperature have broad implications for predicting the responses of aquatic communities to

  13. Syngas fermentation to biofuels: Effects of hydrogen partial pressure on hydrogenase efficiency

    International Nuclear Information System (INIS)

    Skidmore, Bradley E.; Baker, Ryan A.; Banjade, Dila R.; Bray, Jason M.; Tree, Douglas R.; Lewis, Randy S.

    2013-01-01

    Producing biofuels from gasified biomass (synthesis gas) via microbial fermentation is currently being pursued as one alternative in biofuels development. In synthesis gas fermentation, reducing equivalents from H 2 oxidation via hydrogenase is important towards directing more carbon towards product formation. In this work, kinetic studies of H 2 utilization via the Clostridium P11 hydrogenase enzyme were performed to determine the most appropriate model to predict hydrogenase activity as a function of H 2 partial pressure. An important aspect of this work included the proper analysis of electron acceptors used in the kinetic studies. The K H 2 model parameter governing the effect of H 2 partial pressure on activity was ∼30 kPa (absolute), independent of the type and concentration of electron acceptor. The K H 2 value indicates that H 2 partial pressures typically associated with syngas fermentation will result in compromised efficiency of the hydrogenase activity. -- Highlights: ► We model hydrogenase activity as a function of H 2 and electron acceptors. ► Model shows the H 2 kinetic parameter is independent of electron acceptor. ► Hydrogenase efficiency is compromised at H 2 levels observed in gasified biomass

  14. Biomass hydrolysis inhibition at high hydrogen partial pressure in solid-state anaerobic digestion.

    Science.gov (United States)

    Cazier, E A; Trably, E; Steyer, J P; Escudie, R

    2015-08-01

    In solid-state anaerobic digestion, so-called ss-AD, biogas production is inhibited at high total solids contents. Such inhibition is likely caused by a slow diffusion of dissolved reaction intermediates that locally accumulate. In this study, we investigated the effect of H2 and CO2 partial pressure on ss-AD. Partial pressure of H2 and/or CO2 was artificially fixed, from 0 to 1 557mbars for H2 and from 0 to 427mbars for CO2. High partial pressure of H2 showed a significant effect on methanogenesis, while CO2 had no impact. At high [Formula: see text] , the overall substrate degradation decreased with no accumulation of metabolites from acidogenic bacteria, indicating that the hydrolytic activity was specifically impacted. Interestingly, such inhibition did not occur when CO2 was added with H2. This result suggests that CO2 gas transfer is probably a key factor in ss-AD from biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Optimizing the physical ergonomics indices for the use of partial pressure suits.

    Science.gov (United States)

    Ding, Li; Li, Xianxue; Hedge, Alan; Hu, Huimin; Feathers, David; Qin, Zhifeng; Xiao, Huajun; Xue, Lihao; Zhou, Qianxiang

    2015-03-01

    This study developed an ergonomic evaluation system for the design of high-altitude partial pressure suits (PPSs). A total of twenty-one Chinese males participated in the experiment which tested three types of ergonomics indices (manipulative mission, operational reach and operational strength) were studied using a three-dimensional video-based motion capture system, a target-pointing board, a hand dynamometer, and a step-tread apparatus. In total, 36 ergonomics indices were evaluated and optimized using regression and fitting analysis. Some indices that were found to be linearly related and redundant were removed from the study. An optimal ergonomics index system was established that can be used to conveniently and quickly evaluate the performance of different pressurized/non-pressurized suit designs. The resulting ergonomics index system will provide a theoretical basis and practical guidance for mission planners, suit designers and engineers to design equipment for human use, and to aid in assessing partial pressure suits. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  16. Pressure distribution of implant-supported removable partial dentures with stress-breaking attachments.

    Science.gov (United States)

    Kono, Kentaro; Kurihara, Daisuke; Suzuki, Yasunori; Ohkubo, Chikahiro

    2014-04-01

    This in vitro study investigated the pressure distribution of the implant-supported removable partial dentures (RPDs) with the stress-breaking attachments under the occlusal force. The experimental model of bilateral missing premolars and molars was modified from a commercial simulation model. Five pressure sensors were embedded near the bilateral first molars, first premolars, and medio-lingual alveolar crest. Two implants were placed near the second molars, and they were connected to the denture base using the following conditions: complete separation between the denture base and implant with cover screws (CRPD), flexible connection with a stress-breaking ball (SBB) attachment, and rigid connection without stress breaking with healing caps (HC). The pressure at five different areas of the soft tissue and the displacement of the RPDs were simultaneously measured, loading up to 50 N. The coefficient of variation (CV) for each connection was calculated from all data of the pressure at five areas to evaluate the pressure distribution. The pressure on medio-lingual alveolar crest and molars of the HC was less than SBB and CRPD. In contrast, the pressure on premolars of SBB was greater than for the HC and CRPD. The CV of SBB was less than that of HC and CRPD. Denture displacement of HC and SBB was less than for CRPD. Within the in vitro limitations, precise denture settlements and pressure distribution under the denture base could be controlled using an SBB attachment. An SBB attachment might be able to protect the implant from harmful force. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  17. Design and control of the oxygen partial pressure of UO2 in TGA using the humidification system

    International Nuclear Information System (INIS)

    Lee, S.; Knight, T.W.; Roberts, E.

    2015-01-01

    Highlights: • We focus on measurement of oxygen partial pressure and change of O/M ratio under specific conditions produced by the humidification system. • This shows that the humidification system is stable, accurate, and reliable enough to be used for experiments of the oxygen partial pressure measurement for the oxide fuels. • The humidification system has benefits of easy control and flexibility for producing various oxygen partial pressures with fixed hydrogen gas flow rate. - Abstract: The oxygen to uranium (O/U) ratio of UO 2±x is determined by the oxygen content of the sample and is affected by oxygen partial pressure (pO 2 ) of the surrounding gas. Oxygen partial pressure is controllable by several methods. A common method to produce different oxygen partial pressures is the use of equilibria of different reaction gases. There are two common methods: H 2 O/H 2 reaction and CO 2 /CO reaction. In this work, H 2 O/H 2 reaction using a humidifier was employed and investigated to ensure that this humidification system for oxygen partial pressure is stable and accurate for use in Thermogravimetric Analyzer (TGA) experiments with UO 2 . This approach has the further advantage of flexibility to make a wide range of oxygen partial pressure with fixed hydrogen gas flow rate only by varying temperature of water in the humidifier. The whole system for experiments was constructed and includes the humidification system, TGA, oxygen analyzer, and gas flow controller. Uranium dioxide (UO 2 ) samples were used for experiments and oxygen partial pressure was measured at the equilibrium state of stoichiometric UO 2.0 . Oxygen partial pressures produced by humidification (wet gas) system were compared to the approach using mixed dry gases (without humidification system) to demonstrate that the humidification system provides for more stable and accurate oxygen partial pressure control. This work provides the design, method, and analysis of a humidification system for

  18. Effect of oxygen partial pressure on oxidation of Mo-metal

    Science.gov (United States)

    Sharma, Rabindar Kumar; Kumar, Prabhat; Singh, Megha; Gopal, Pawar; Reddy, G. B.

    2018-05-01

    This report explains the effect of oxygen partial pressure (PO2 ) on oxidation of Mo-metal in oxygen plasma. XRD results indulge that oxide layers formed on Mo-surfaces at different oxygen partial pressures have two different oxide phases (i.e. orthorhombic MoO3 and monoclinic Mo8O23). Intense XRD peaks at high pressure (i.e. 2.0×10-1 Torr) points out the formation of thick oxide layer on Mo-surface due to presence of large oxygen species in chamber and less oxide volatilization. Whereas, at low PO2 (6.5×10-2 and 7.5×10-2 Torr.) the reduced peak strength is owing to high oxide volatilization rate. SEM micrographs and thickness measurements also support XRD results and confirm that the optimum -2value of PO2 to deposited thicker and uniform oxide film on glass substrate is 7.5×10-2 Torr through plasma assistedoxidation process. Further to study the compositional properties, EDX of the sample M2 (the best sample) is carried out, which confirms that the stoichiometric ratio is less than 3 (i.e. 2.88). Less stoichiometric ratio again confirms the presence of sub oxides in oxide layers on Mo metal as evidenced by XRD results. All the observed results are well in consonance with each other.

  19. Hydrogen production by the iodine-sulphur thermochemical cycle. Total and partial pressure measurements

    International Nuclear Information System (INIS)

    D Doizi; V Dauvois; J L Roujou; V Delanne; P Fauvet; B Larousse; O Hercher; P Carles; C Moulin

    2006-01-01

    The iodine sulphur thermochemical cycle appears to be one of the most promising candidate for the massive production of hydrogen using nuclear energy. The key step in this cycle is the HI distillation section which must be optimized to get a good efficiency of the overall cycle. The concept of reactive versus extractive distillation of HI has been proposed because of its potentiality. The design and the optimization of the reactive distillation column requires the knowledge of the liquid vapour equilibrium over the ternary HI-I 2 -H 2 O mixtures up to 300 C and 100 bars. A general methodology based on three experimental devices imposed by the very corrosive and concentrated media will be described: 1) I1 for the total pressure measurement versus different ternary compositions. 2) I2 for the partial and total pressure measurements around 130 C and 2 bars to validate the choice of the analytical optical 'online' techniques we have proposed. 3) I3 for the partial and total pressures measurements in the process domain. The results obtained on pure samples, binary mixtures HI-H 2 O and ternary mixtures using an experimental design analysis in the experimental device I2 will be discussed. (authors)

  20. Effect of Electroacupuncture on Transcutaneous Oxygen Partial Pressure During Hyperbaric Oxygen Therapy in Healthy Individuals.

    Science.gov (United States)

    Qu, Lan; Ye, Yong; Li, Chunfeng; Gao, Guangkai

    2015-01-01

    The goal of hyperbaric oxygen therapy (HBOT) is to increase the oxygen (O₂) supply to the body significantly. Because of the toxic side effects and complications of hyperbaric oxygen (HBO₂), the environmental pressure and treatment time must be restricted. The research team hypothesized that other therapies administered during HBOT could safely improve the value of the arterial oxygen partial pressure (PaO₂) during HBOT and improve its therapeutic effect. The study intended to investigate whether electroacupuncture (EA) while receiving HBOT had a greater effect for healthy individuals than HBOT or EA alone or EA combined with normobaric pure oxygen (pure O₂). The research team designed a randomized, controlled trial. The study was performed in the Department of Hyperbaric Medicine at the No. 401 Hospital of the People's Liberation Army in Qingdao, China. A total of 81 volunteers were recruited. After thorough physical examination and laboratory testing, 21 volunteers were excluded from the study. Participants included 60 healthy volunteers. Participants were randomly assigned to 1 of 4 groups of 15 participants each: (1) an HBOT group, (2) an EA group, (3) an EA During HBOT group, and (4) an EA Combined With Pure O₂group. Because at the current technology level a blood gas analyzer cannot test PaO₂during HBOT, transcutaneous oxygen partial pressure (PtcO₂) of the participants was tested instead. Before, during, and after EA, variations in PtcO₂were monitored in each group. For the EA During HBOT group, (1) the increase in PtcO₂during EA was significantly greater than that observed for the other 3 groups (P > .05). The EA During HBOT method provided improvements in the efficacy, safety, and tolerability of HBOT, and the study's results partially demonstrated the accuracy of the research team's hypothesis that EA therapy applied during HBOT could safely improve the value of PtcO₂(PaO₂) during HBOT and produce a greater therapeutic effect.

  1. Sensor for Measuring Hydrogen Partial Pressure in Parabolic Trough Power Plant Expansion Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, Greg C.; Cooney, Daniel A.

    2017-06-27

    The National Renewable Energy Laboratory and Acciona Energy North America are working together to design and implement a process system that provides a permanent solution to the issue of hydrogen buildup at parabolic trough power plants. We are pursuing a method that selectively removes hydrogen from the expansion tanks that serve as reservoirs for the heat transfer fluid (HTF) that circulates in the collector field and power block components. Our modeling shows that removing hydrogen from the expansion tanks at a design rate reduces and maintains dissolved hydrogen in the circulating HTF to a selected target level. Our collaborative work consists of several tasks that are needed to advance this process concept to a development stage, where it is ready for implementation at a commercial power plant. Our main effort is to design and evaluate likely process-unit operations that remove hydrogen from the expansion tanks at a specified rate. Additionally, we designed and demonstrated a method and instrumentation to measure hydrogen partial pressure and concentration in the expansion-tank headspace gas. We measured hydrogen partial pressure in the headspace gas mixture using a palladium-alloy membrane, which is permeable exclusively to hydrogen. The membrane establishes a pure hydrogen gas phase that is in equilibrium with the hydrogen in the gas mixture. We designed and fabricated instrumentation, and demonstrated its effectiveness in measuring hydrogen partial pressures over a range of three orders of magnitude. Our goal is to install this instrument at the Nevada Solar One power plant and to demonstrate its effectiveness in measuring hydrogen levels in the expansion tanks under normal plant operating conditions.

  2. In vivo integrated photoacoustic and confocal microscopy of hemoglobin oxygen saturation and oxygen partial pressure.

    Science.gov (United States)

    Wang, Yu; Hu, Song; Maslov, Konstantin; Zhang, Yu; Xia, Younan; Wang, Lihong V

    2011-04-01

    We developed dual-modality microscope integrating photoacoustic microscopy (PAM) and fluorescence confocal microscopy (FCM) to noninvasively image hemoglobin oxygen saturation (sO₂) and oxygen partial pressure (pO₂) in vivo in single blood vessels with high spatial resolution. While PAM measures sO₂ by imaging hemoglobin optical absorption at two wavelengths, FCM quantifies pO₂ using phosphorescence quenching. The variations of sO₂ and pO₂ values in multiple orders of vessel branches under hyperoxic (100% oxygen) and normoxic (21% oxygen) conditions correlate well with the oxygen-hemoglobin dissociation curve. In addition, the total concentration of hemoglobin is imaged by PAM at an isosbestic wavelength.

  3. Oxygen partial pressure: a key to alloying and discovery in metal oxide--metal eutectic systems

    International Nuclear Information System (INIS)

    Holder, J.D.; Clark, G.W.; Oliver, B.F.

    1978-01-01

    Control of oxygen partial pressure is essential in the directional solidification of oxide--metal eutectic composites by techniques involving gas-solid and gas-liquid interactions. The existence of end components in the eutectic composite is Po 2 sensitive as are melt stoichiometry, solid phase compositions, and vapor losses due to oxidation-volatilization. Simple criteria are postulated which can aid the experimentalist in selecting the proper gas mixture for oxide--metal eutectic composite growth. The Cr 2 O 3 --Mo--Cr systems was used to verify certain aspects of the proposed criteria

  4. A New Way to Calculate Flow Pressure for Low Permeability Oil Well with Partially Penetrating Fracture

    Directory of Open Access Journals (Sweden)

    Xiong Ping

    2018-01-01

    Full Text Available In order to improve the validity of the previous models on calculating flow pressure for oil well with partially perforating fracture, a new physical model that obeys the actual heterogeneous reservoir characteristics was built. Different conditions, including reservoir with impermeable top and bottom borders or the reservoir top which has constant pressure, were considered. Through dimensionless transformation, Laplace transformation, Fourier cosine transformation, separation of variables, and other mathematical methods, the analytical solution of Laplace domain was obtained. By using Stephenson numerical methods, the numerical solution pressure in a real domain was obtained. The results of this method agree with the numerical simulations, suggesting that this new method is reliable. The following sensitivity analysis showed that the pressure dynamic linear flow curve can be divided into four flow streams of early linear flow, midradial flow, advanced spherical flow, and border controlling flow. Fracture length controls the early linear flow. Permeability anisotropy significantly affects the midradial flow. The degree of penetration and fracture orientation dominantly affect the late spherical flow. The boundary conditions and reservoir boundary width mainly affect the border controlling flow. The method can be used to determine the optimal degree of opening shot, vertical permeability, and other useful parameters, providing theoretical guidance for reservoir engineering analysis.

  5. TUNABLE MAGNETIC AND ELECTRICAL PROPERTIES OF Co-DOPED ZnO FILMS BY VARYING OXYGEN PARTIAL PRESSURE

    OpenAIRE

    L. G. WANG; H. W. ZHANG; X. L. TANG; Y. X. LI; Z. Y. ZHONG

    2011-01-01

    High quality Co-doped ZnO films with good reproducibility have been prepared under different oxygen partial pressure by radio-frequency magnetron sputtering. These films were characterized using numerous characterization techniques including X-ray diffraction, electrical transport, and magnetization measurements. The effect of oxygen partial pressure on the structural, magnetic, and electrical properties of Co-doped ZnO films has been systematically studied. It was found that the structural, ...

  6. Hypothesis: the regulation of the partial pressure of oxygen by the serotonergic nervous system in hypoxia.

    Science.gov (United States)

    Devereux, Diana; Ikomi-Kumm, Julie

    2013-03-01

    The regulation of the partial pressure of oxygen by the serotonergic nervous system in hypoxia is a hypothesis, which proposes an inherent operative system in homo sapiens that allows central nervous system and endocrine-mediated vascular system adaption to variables in partial pressure of oxygen, pH and body composition, while maintaining sufficient oxygen saturation for the immune system and ensuring protection of major organs in hypoxic and suboptimal conditions. While acknowledging the importance of the Henderson-Hasselbalch equation in the regulation of acid base balance, the hypothesis seeks to define the specific neuroendocrine/vascular mechanisms at work in regulating acid base balance in hypoxia and infection. The SIA (serotonin-immune-adrenergic) system is proposed as a working model, which allows central nervous system and endocrine-mediated macro- and micro vascular 'fine tuning'. The neurotransmitter serotonin serves as a 'hypoxic sensor' in concert with other operators to orchestrate homeostatic balance in normal and pathological states. The SIA system finely regulates oxygen, fuel and metabolic buffering systems at local sites to ensure optimum conditions for the immune response. The SIA system is fragile and its operation may be affected by infection, stress, diet, environmental toxins and lack of exercise. The hypothesis provides new insight in the area of neuro-gastroenterology, and emphasizes the importance of diet and nutrition as a complement in the treatment of infection, as well as the normalization of intestinal flora following antibiotic therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Influence of the oxygen partial pressure on the phase evolution during Bi-2212 wire melt processing

    CERN Document Server

    Scheuerlein, C.; Rikel, M.O.; Kadar, J.; Doerrer, C.; Di Michiel, M.; Ballarino, A.; Bottura, L.; Jiang, J.; Kametani, F.; Hellstrom, E.E.; Larbalestier, D.C.

    2016-01-01

    We have studied the influence of the oxygen partial pressure pO2 up to 5.5 bar on the phase changes that occur during melt processing of a state-of-the-art Bi-2212 multifilamentary wire. Phase changes have been monitored in situ by high energy synchrotron X-ray diffraction (XRD). We found that the stability of Bi-2212 phase is reduced with increasing pO2. For pO2>1 bar a significant amount of Bi-2212 phase decomposes upon heating in the range 400 to 650 °C. The extent of decomposition strongly increases with increasing pO2, and at pO2=5.5 bar Bi-2212 decomposes completely in the solid state. Textured Bi-2212 can be formed during solidification when pO2 is reduced to 0.45 bar when the precursor is molten. Since the formation of current limiting second phases is very sensitive to pO2 when it exceeds 1 bar, we recommend to reduce the oxygen partial pressure below the commonly used pO2=1 bar, in order to increase the pO2 margins and to make the overpressure process more robust.

  8. DEVELOPMENT OF PRESSURIZED CIRCULATIONG FLUIDIZED BED PARTIAL GASIFICATION MODULE(PGM)

    Energy Technology Data Exchange (ETDEWEB)

    Archie Robertson

    2003-04-17

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building block that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the January 1--March 31, 2003 time period.

  9. Oxygen partial pressure effects on the RF sputtered p-type NiO hydrogen gas sensors

    Science.gov (United States)

    Turgut, Erdal; Çoban, Ömer; Sarıtaş, Sevda; Tüzemen, Sebahattin; Yıldırım, Muhammet; Gür, Emre

    2018-03-01

    NiO thin films were grown by Radio Frequency (RF) Magnetron Sputtering method under different oxygen partial pressures, which are 0.6 mTorr, 1.3 mTorr and 2.0 mTorr. The effects of oxygen partial pressures on the thin films were analyzed through Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and Hall measurements. The change in the surface morphology of the thin films has been observed with the SEM and AFM measurements. While nano-pyramids have been obtained on the thin film grown at the lowest oxygen partial pressure, the spherical granules lower than 60 nm in size has been observed for the samples grown at higher oxygen partial pressures. The shift in the dominant XRD peak is realized to the lower two theta angle with increasing the oxygen partial pressures. XPS measurements showed that the Ni2p peak involves satellite peaks and two oxidation states of Ni, Ni2+ and Ni3+, have been existed together with the corresponding splitting in O1s spectrum. P-type conductivity of the grown NiO thin films are confirmed by the Hall measurements with concentrations on the order of 1013 holes/cm-3. Gas sensor measurements revealed minimum of 10% response to the 10 ppm H2 level. Enhanced responsivity of the gas sensor devices of NiO thin films is shown as the oxygen partial pressure increases.

  10. SrRuO3 thin films grown on MgO substrates at different oxygen partial pressures

    KAUST Repository

    Zou, Bin

    2013-01-08

    A comprehensive study of SrRuO3 thin films growth on (001) MgO substrates by pulsed laser deposition in a wide oxygen pressure range from 10 to 300 mTorr was carried out. The experimental results showed a correlation between the lattice constants, resistivity, and oxygen partial pressures used. Ru deficiency detected only in films deposited at lower oxygen pressures (<50 mTorr), resulted in an elongation of the in-plane and out-of-plane lattice constants and an increase in the film resistivity. When deposited with oxygen partial pressure of 50 mTorr, SrRuO3 films had lattice parameters matching those of bulk SrRuO3 material and exhibited room temperature resistivity of 320 μΩ·cm. The resistivity of SrRuO 3/MgO films decreased with increasing oxygen partial pressure. Copyright © 2013 Materials Research Society.

  11. Hydro-isomerization of n-hexane on bi-functional catalyst: Effect of total and hydrogen partial pressures

    Science.gov (United States)

    Thoa, Dao Thi Kim; Loc, Luu Cam

    2017-09-01

    The effect of both total pressure and hydrogen partial pressure during n-hexane hydro-isomerization over platinum impregnated on HZSM-5 was studied. n-Hexane hydro-isomerization was conducted at atmospheric pressure and 0.7 MPa to observe the influence of total pressure. In order to see the effect of hydrogen partial pressure, the reaction was taken place at different partial pressure of hydrogen varied from 307 hPa to 718 hPa by dilution with nitrogen to keep the total pressure at 0.1 MPa. Physico-chemical characteristics of catalyst were determined by the methods of nitrogen physi-sorption BET, SEM, XRD, TEM, NH3-TPD, TPR, and Hydrogen Pulse Chemi-sorption. Activity of catalyst in the hydro-isomerization of n-hexane was studied in a micro-flow reactor in the temperature range of 225-325 °C; the molar ratio H2/ hydrocarbon: 5.92, concentration of n-hexane: 9.2 mol.%, GHSV 2698 h-1. The obtained catalyst expressed high acid density, good reducing property, high metal dispersion, and good balance between metallic and acidic sites. It is excellent contact for n-hexane hydro-isomerization. At 250 °C, n-hexane conversion and selectivity were as high as 59-76 % and 85-99 %, respectively. It was found that catalytic activity was promoted either by total pressure or hydrogen partial pressure. At total pressure of 0.7 MPa while hydrogen partial pressure of 718 hPa, catalyst produced 63 RON liquid product containing friendly environmental iso-paraffins which is superior blending stock for green gasoline. Hydrogen did not only preserve catalyst actives by depressing hydrocracking and removing coke precursors but also facilitated hydride transfer step in the bi-functional bi-molecular mechanism.

  12. [The influence of oxygen partial pressure change and vascularization of rabbit wound through negative pressure wound therapy].

    Science.gov (United States)

    Yang, Fan; Hu, Duan; Bai, Xiang-jun; Zhang, Kun; Li, Ren-jie; Xue, Chen-chen

    2012-07-01

    To investigate the effect of vacuum sealing drainage (VSD) on variation of oxygen partial pressure (PtO2) and vascularization. The 12 cases of rabbit's wound models were undergoing the VSD (vacuum group, n = 6) or conventional therapy (conventional group, n = 6). Variation of PtO2 was measured by oxygen partial pressure admeasuring apparatus, expression of hypoxia inducible factor 1α (HIF-1α) mRNA was measured by real-time fluorescent quantitative PCR, content of vascular endothelial growth factor (VEGF) was measured by ELISA after tissue homogenate in 7 days. Vascular endothelial cell (VEC) and new blood capillary (NBC) of hematoxylin-eosin slice of tissue were counted by using light microscope. Average value of PtO2 of vacuum group was significant lower than conventional group (t = -99.780 to -5.305, P < 0.01). Expression of HIF-1α (30 minutes, 1, 6, 12 hours were 3.11 ± 0.07, 3.68 ± 0.26, 4.16 ± 0.13 and 3.91 ± 0.26 respectively) and content of VEGF (30 minutes, 1, 6, 12 hours were 103.3 ± 2.4, 134.2 ± 9.0, 167.8 ± 3.8 and 232.1 ± 9.5 respectively) of vacuum group were increased after 30 minutes and significant lower than conventional group (t = 13.038 - 80.208, P < 0.01), and both of them were reduced after 24 hours (P < 0.05). Counting numbers of VEC (2.47 ± 0.45 to 4.70 ± 0.38) and NBC (1.33 ± 0.49 to 4.33 ± 0.68) of vacuum group were increased at the same time-point and significant higher than conventional group (t = -0.670 to 16.500, P < 0.05). PtO2 of wound surface could be reduced significantly by VSD. Expression of HIF-1α and content of VEGF were increased by VSD for enhancing differentiated state of VEC and construction of NBC, which were better for vascularization and wound healing.

  13. [Effect of oxygen tubing connection site on percutaneous oxygen partial pressure and percutaneous carbon dioxide partial pressure in patients with chronic obstructive pulmonary disease during noninvasive positive pressure ventilation].

    Science.gov (United States)

    Mi, S; Zhang, L M

    2017-04-12

    Objective: We evaluated the effects of administering oxygen through nasal catheters inside the mask or through the mask on percutaneous oxygen partial pressure (PcO(2))and percutaneous carbon dioxide partial pressure (PcCO(2)) during noninvasive positive pressure ventilation (NPPV) to find a better way of administering oxygen, which could increase PcO(2) by increasing the inspired oxygen concentration. Methods: Ten healthy volunteers and 9 patients with chronic obstructive pulmonary disease complicated by type Ⅱ respiratory failure were included in this study. Oxygen was administered through a nasal catheter inside the mask or through the mask (oxygen flow was 3 and 5 L/min) during NPPV. PcO(2) and PcCO(2) were measured to evaluate the effects of administering oxygen through a nasal catheter inside the mask or through the mask, indirectly reflecting the effects of administering oxygen through nasal catheter inside the mask or through the mask on inspired oxygen concentration. Results: Compared to administering oxygen through the mask during NPPV, elevated PcO(2) was measured in administering oxygen through the nasal catheter inside the mask, and the differences were statistically significant ( P 0.05). Conclusion: Administering oxygen through a nasal catheter inside the mask during NPPV increased PcO(2) by increasing the inspired oxygen concentration but did not increase PcCO(2). This method of administering oxygen could conserve oxygen and be suitable for family NPPV. Our results also provided theoretical basis for the development of new masks.

  14. Role of oxygen partial pressure in microstructural development and properties of YBCO superconductors

    International Nuclear Information System (INIS)

    Singh, J.P.; Guttschow, R.; Dusek, J.T.; Poeppel, R.B.

    1991-01-01

    Results are presented for the effect of oxygen partial pressure (pO 2 ) on the sintered density and microstructure of YBCO superconductors. Extruded YBCO wires were sintered at 910C at different values of pO 2 . Generally, the density increased with decreasing pO 2 , and a density of 91% was achieved at pO 2 = 0.01 atm. Wires sintered at pO 2 = 0.01 atm had a fine microstructure with an average grain size of ∼3 μm and an average strength of 191 MPa. The high strength is due to the small grain size, which causes a decrease in residual tensile stress because of grain anisotropy

  15. Partial-depth modulation study of anions and neutrals in low pressure silane plasmas

    International Nuclear Information System (INIS)

    Cozurteille, C.; Dorier, J.L.; Hollenstein, C.; Sansonnens; Howling, A.A.

    1995-10-01

    Partial-depth modulation of the rf power in a capacitive discharge is used to investigate the relative importance of negative ions and neutral radicals for particle formation in low power, low pressure silane plasmas. For less than 85% modulation depth, anions are trapped indefinitely in the plasma and particle formation ensues, whereas the polymerised neutral flux magnitudes and dynamics are independent of the modulation depth and the powder formation. These observations suggest that negative ions could be the particle precursors in plasma conditions where powder appears many seconds after plasma ignition. Microwave interferometry and mass spectrometry were combined to infer an anion density of ≅7.10 9 cm -3 which is approximately twice the free electron density in these modulated plasmas. (author) 6 figs., tabs., refs

  16. Increasing arterial oxygen partial pressure during cardiopulmonary resuscitation is associated with improved rates of hospital admission.

    Science.gov (United States)

    Spindelboeck, Walter; Schindler, Otmar; Moser, Adrian; Hausler, Florian; Wallner, Simon; Strasser, Christa; Haas, Josef; Gemes, Geza; Prause, Gerhard

    2013-06-01

    As recent clinical data suggest a harmful effect of arterial hyperoxia on patients after resuscitation from cardiac arrest (CA), we aimed to investigate this association during cardiopulmonary resuscitation (CPR), the earliest and one of the most crucial phases of recirculation. We analysed 1015 patients who from 2003 to 2010 underwent out-of-hospital CPR administered by emergency medical services serving 300,000 inhabitants. Inclusion criteria for further analysis were nontraumatic background of CA and patients >18 years of age. One hundred and forty-five arterial blood gas analyses including oxygen partial pressure (paO2) measurement were obtained during CPR. We observed a highly significant increase in hospital admission rates associated with increases in paO2 in steps of 100 mmHg (13.3 kPa). Subsequently, data were clustered according to previously described cutoffs (≤ 60 mmHg [8 kPa

  17. Relating oxygen partial pressure, saturation and content: the haemoglobin-oxygen dissociation curve.

    Science.gov (United States)

    Collins, Julie-Ann; Rudenski, Aram; Gibson, John; Howard, Luke; O'Driscoll, Ronan

    2015-09-01

    The delivery of oxygen by arterial blood to the tissues of the body has a number of critical determinants including blood oxygen concentration (content), saturation (S O2 ) and partial pressure, haemoglobin concentration and cardiac output, including its distribution. The haemoglobin-oxygen dissociation curve, a graphical representation of the relationship between oxygen satur-ation and oxygen partial pressure helps us to understand some of the principles underpinning this process. Historically this curve was derived from very limited data based on blood samples from small numbers of healthy subjects which were manipulated in vitro and ultimately determined by equations such as those described by Severinghaus in 1979. In a study of 3524 clinical specimens, we found that this equation estimated the S O2 in blood from patients with normal pH and S O2 >70% with remarkable accuracy and, to our knowledge, this is the first large-scale validation of this equation using clinical samples. Oxygen saturation by pulse oximetry (S pO2 ) is nowadays the standard clinical method for assessing arterial oxygen saturation, providing a convenient, pain-free means of continuously assessing oxygenation, provided the interpreting clinician is aware of important limitations. The use of pulse oximetry reduces the need for arterial blood gas analysis (S aO2 ) as many patients who are not at risk of hypercapnic respiratory failure or metabolic acidosis and have acceptable S pO2 do not necessarily require blood gas analysis. While arterial sampling remains the gold-standard method of assessing ventilation and oxygenation, in those patients in whom blood gas analysis is indicated, arterialised capillary samples also have a valuable role in patient care. The clinical role of venous blood gases however remains less well defined.

  18. Relating oxygen partial pressure, saturation and content: the haemoglobin–oxygen dissociation curve

    Directory of Open Access Journals (Sweden)

    Julie-Ann Collins

    2015-09-01

    The delivery of oxygen by arterial blood to the tissues of the body has a number of critical determinants including blood oxygen concentration (content, saturation (SO2 and partial pressure, haemoglobin concentration and cardiac output, including its distribution. The haemoglobin–oxygen dissociation curve, a graphical representation of the relationship between oxygen satur­ation and oxygen partial pressure helps us to understand some of the principles underpinning this process. Historically this curve was derived from very limited data based on blood samples from small numbers of healthy subjects which were manipulated in vitro and ultimately determined by equations such as those described by Severinghaus in 1979. In a study of 3524 clinical specimens, we found that this equation estimated the SO2 in blood from patients with normal pH and SO2 >70% with remarkable accuracy and, to our knowledge, this is the first large-scale validation of this equation using clinical samples. Oxygen saturation by pulse oximetry (SpO2 is nowadays the standard clinical method for assessing arterial oxygen saturation, providing a convenient, pain-free means of continuously assessing oxygenation, provided the interpreting clinician is aware of important limitations. The use of pulse oximetry reduces the need for arterial blood gas analysis (SaO2 as many patients who are not at risk of hypercapnic respiratory failure or metabolic acidosis and have acceptable SpO2 do not necessarily require blood gas analysis. While arterial sampling remains the gold-standard method of assessing ventilation and oxygenation, in those patients in whom blood gas analysis is indicated, arterialised capillary samples also have a valuable role in patient care. The clinical role of venous blood gases however remains less well defined.

  19. Oxidation of SiC/BN/SiC Composites in Reduced Oxygen Partial Pressures

    Science.gov (United States)

    Opila, Elizabeth J.; Boyd, Meredith

    2010-01-01

    SiC fiber-reinforced SiC composites with a BN interphase are proposed for use as leading edge structures of hypersonic vehicles. The durability of these materials under hypersonic flight conditions is therefore of interest. Thermogravimetric analysis was used to characterize the oxidation kinetics of both the constituent fibers and composite coupons at four temperatures: 816, 1149, 1343, and 1538 C (1500, 2100, 2450, and 2800 F) and in oxygen partial pressures between 5% and 0.1% (balance argon) at 1 atm total pressure. One edge of the coupons was ground off so the effects of oxygen ingress into the composite could be monitored by post-test SEM and EDS. Additional characterization of the oxidation products was conducted by XPS and TOF-SIMS. Under most conditions, the BN oxidized rapidly, leading to the formation of borosilicate glass. Rapid initial oxidation followed by volatilization of boria lead to protective oxide formation and further oxidation was slow. At 1538C in 5% oxygen, both the fibers and coupons exhibited borosilicate glass formation and bubbling. At 1538C in 0.1% oxygen, active oxidation of both the fibers and the composites was observed leading to rapid SiC degradation. BN oxidation at 1538C in 0.1% oxygen was not significant.

  20. Development of pressurized coal partial combustor; Kaatsu sekitan bubun nenshoro gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T [Center for Coal Utilization, Japan, Tokyo (Japan); Kawamura, K [Kawasaki Heavy Industries, Ltd., Kobe (Japan); Tanaka, T [Chubu Electric Power Co. Inc., Nagoya (Japan); Muramatsu, T [Electric Power Development Co. Ltd., Tokyo (Japan)

    1996-09-01

    The coal partial combustor (CPC) uses a combustion technology with which coal is burned at elevated temperatures and under revolution, the constituents are captured on the furnace wall and removed as molten slag from the furnace. This is a combustion technology to reduce load of ash on subsequent devices. To generate a molten condition, it is necessary to raise the combustion temperature as high as possible (to about 1600 degC in the furnace), but this is effective for a gas turbine composite power generation system. An efficiency of higher than 45% may be expected at the power transmission terminal. As an operation on subsidy from the Agency of Natural Resources and Energy, the normal-pressure CPC technology has already been established, and a research on pressurized CPC is being progressed since fiscal 1991. The research is in progress with a schedule that elemental tests for 7 tons per day production are conducted until fiscal 1995, a 25 tons per day pilot plant will be completed by November 1997, and verification tests for long-term continuous operation will be implemented until 1998. The 7 tons per day elemental tests have identified gasification performance and slag extraction performance using five types of coal having different properties. 7 refs., 10 figs., 4 tabs.

  1. The influence of the oxygen partial pressure on the quasi-ternary system Cr-Mn-Ti-oxide

    International Nuclear Information System (INIS)

    Garcia-Rosales, C.; Schulze, H.A.; Naoumidis, A.; Nickel, H.

    1991-05-01

    The passivation layers formed by the oxidizing corrosion of high temperature alloys consist primarily of oxides and mixed oxides of the elements chromium, manganese and titanium. For a reproducible formation and characterization of such oxide layers it is necessary to know the phase equilibria of these oxide systems at temperature and oxygen partial pressure conditions which will be relevant during their application. For the investigation of the quasi-ternary system Cr-Mn-Ti-oxide, oxide powders were prepared and annealed at 1000deg C under different oxygen partial pressures ranging from 0.21 bar to 10 -21 bar. Phase identification and determination of lattice parameter using X-ray diffraction analysis as well as the direct measurement of phase boundaries as a function of oxygen partial pressure using the emf-methode were carried out for these investigations. In the quasi-ternary system Cr-Mn-Ti-oxide the spinels play a decisive role in the oxigen partial pressure range examined. The spinel MnCr 2 O 4 may be regarded as the most significant compound. Part of the chronium can be replaced by trivalent manganese at high oxygen partial pressures and by trivalent titanium at low pressures, and the formation of a solid solution with the spinel Mn 2 TiO 4 is possible in all cases. In this way a coherent single-phase spinel region is observed which extends over the entire oxygen partial pressure range form 0.21 bar to 10 -21 bar examined at 1000deg C. (orig.) [de

  2. Solar fuel processing efficiency for ceria redox cycling using alternative oxygen partial pressure reduction methods

    International Nuclear Information System (INIS)

    Lin, Meng; Haussener, Sophia

    2015-01-01

    Solar-driven non-stoichiometric thermochemical redox cycling of ceria for the conversion of solar energy into fuels shows promise in achieving high solar-to-fuel efficiency. This efficiency is significantly affected by the operating conditions, e.g. redox temperatures, reduction and oxidation pressures, solar irradiation concentration, or heat recovery effectiveness. We present a thermodynamic analysis of five redox cycle designs to investigate the effects of working conditions on the fuel production. We focused on the influence of approaches to reduce the partial pressure of oxygen in the reduction step, namely by mechanical approaches (sweep gassing or vacuum pumping), chemical approaches (chemical scavenger), and combinations thereof. The results indicated that the sweep gas schemes work more efficient at non-isothermal than isothermal conditions, and efficient gas phase heat recovery and sweep gas recycling was important to ensure efficient fuel processing. The vacuum pump scheme achieved best efficiencies at isothermal conditions, and at non-isothermal conditions heat recovery was less essential. The use of oxygen scavengers combined with sweep gas and vacuum pump schemes further increased the system efficiency. The present work can be used to predict the performance of solar-driven non-stoichiometric redox cycles and further offers quantifiable guidelines for system design and operation. - Highlights: • A thermodynamic analysis was conducted for ceria-based thermochemical cycles. • Five novel cycle designs and various operating conditions were proposed and investigated. • Pressure reduction method affects optimal operating conditions for maximized efficiency. • Chemical oxygen scavenger proves to be promising in further increasing efficiency. • Formulation of quantifiable design guidelines for economical competitive solar fuel processing

  3. Negative pressure wound therapy after partial diabetic foot amputation: a multicentre, randomised controlled trial.

    Science.gov (United States)

    Armstrong, David G; Lavery, Lawrence A

    2005-11-12

    Diabetic foot wounds, particularly those secondary to amputation, are very complex and difficult to treat. We investigated whether negative pressure wound therapy (NPWT) improves the proportion and rate of wound healing after partial foot amputation in patients with diabetes. We enrolled 162 patients into a 16-week, 18-centre, randomised clinical trial in the USA. Inclusion criteria consisted of partial foot amputation wounds up to the transmetatarsal level and evidence of adequate perfusion. Patients who were randomly assigned to NPWT (n=77) received treatment with dressing changes every 48 h. Control patients (n=85) received standard moist wound care according to consensus guidelines. NPWT was delivered through the Vacuum Assisted Closure (VAC) Therapy System. Wounds were treated until healing or completion of the 112-day period of active treatment. Analysis was by intention to treat. This study has been registered with , number NCT00224796. More patients healed in the NPWT group than in the control group (43 [56%] vs 33 [39%], p=0.040). The rate of wound healing, based on the time to complete closure, was faster in the NPWT group than in controls (p=0.005). The rate of granulation tissue formation, based on the time to 76-100% formation in the wound bed, was faster in the NPWT group than in controls (p=0.002). The frequency and severity of adverse events (of which the most common was wound infection) were similar in both treatment groups. NPWT delivered by the VAC Therapy System seems to be a safe and effective treatment for complex diabetic foot wounds, and could lead to a higher proportion of healed wounds, faster healing rates, and potentially fewer re-amputations than standard care.

  4. Changes in oxygen partial pressure of brain tissue in an animal model of obstructive apnea

    Directory of Open Access Journals (Sweden)

    Torres Marta

    2010-01-01

    Full Text Available Abstract Background Cognitive impairment is one of the main consequences of obstructive sleep apnea (OSA and is usually attributed in part to the oxidative stress caused by intermittent hypoxia in cerebral tissues. The presence of oxygen-reactive species in the brain tissue should be produced by the deoxygenation-reoxygenation cycles which occur at tissue level during recurrent apneic events. However, how changes in arterial blood oxygen saturation (SpO2 during repetitive apneas translate into oxygen partial pressure (PtO2 in brain tissue has not been studied. The objective of this study was to assess whether brain tissue is partially protected from intermittently occurring interruption of O2 supply during recurrent swings in arterial SpO2 in an animal model of OSA. Methods Twenty-four male Sprague-Dawley rats (300-350 g were used. Sixteen rats were anesthetized and non-invasively subjected to recurrent obstructive apneas: 60 apneas/h, 15 s each, for 1 h. A control group of 8 rats was instrumented but not subjected to obstructive apneas. PtO2 in the cerebral cortex was measured using a fast-response oxygen microelectrode. SpO2 was measured by pulse oximetry. The time dependence of arterial SpO2 and brain tissue PtO2 was carried out by Friedman repeated measures ANOVA. Results Arterial SpO2 showed a stable periodic pattern (no significant changes in maximum [95.5 ± 0.5%; m ± SE] and minimum values [83.9 ± 1.3%]. By contrast, brain tissue PtO2 exhibited a different pattern from that of arterial SpO2. The minimum cerebral cortex PtO2 computed during the first apnea (29.6 ± 2.4 mmHg was significantly lower than baseline PtO2 (39.7 ± 2.9 mmHg; p = 0.011. In contrast to SpO2, the minimum and maximum values of PtO2 gradually increased (p 2 were significantly greater relative to baseline and the first apnea dip, respectively. Conclusions These data suggest that the cerebral cortex is partially protected from intermittently occurring interruption of

  5. Thermal behaviour of pressure tube under fully and partially voided heating conditions using 19 pin fuel element simulator

    International Nuclear Information System (INIS)

    Yadav, Ashwini K.; Kumar, Ravi; Gupta, Akhilesh; Chatterjee, B.; Mukhopadhya, D.; Lele, H.G.

    2011-01-01

    In a nuclear reactor temperature can rise drastically during LOCA due to failure of heat transportation system and subsequently leads to mechanical deformations like sagging, ballooning and breaching of pressure tube. To understand the phenomenon an experiment has been carried out using 19 pin fuel element simulator. Main purpose of the experiment was to trace temperature profiles over the pressure tube, calandria tube and clad tubes of 220 MWe Indian Pressurised Heavy Water Reactor (IPHWR). The symmetrical heating of pressure tube of 1 m length was done through resistance heating of 19 pins under 13.5 kW power using a rectifier and the variation of temperatures over the circumference of pressure tube (PT), calandria tube (CT) and clad tubes were measured. The sagging of pressure tube was initiated at 460 deg C temperature and highest temperature attained was 650 deg C. The highest temperature attained by clad tubes was 680 deg C (over outer ring) and heat is dissipated to calandria vessel mainly due to radiation and natural convection. Again to simulate partially voided conditions, asymmetrical heating of pressure was carried out by injecting 8 kW power to upper 8 pins of fuel simulator. A maximum temperature difference of 295 deg C was observed over the circumference of pressure tube which highlights the magnitude of thermal stresses and its role in breaching of pressure tube under partially voided conditions. Integrity of pressure tube was retained during both symmetrical and asymmetrical heatup conditions. (author)

  6. Glycaemic, uricaemic and blood pressure response to beverages with partial fructose replacement of sucrose.

    Science.gov (United States)

    Rodrigues, Natasha; Peng, Mei; Oey, Indrawati; Venn, Bernard Joseph

    2018-03-20

    The European Food Safety Authority approved a health claim (ID558) relating to lowered postprandial glycaemia when fructose replaces 30% of sucrose in foods and beverages. We assessed the effects of partial replacement of sucrose with fructose on serum glucose, uric acid and blood pressure. A randomised, crossover, double blind trial of 12 normoglycaemic participants consuming beverages containing 50 g blends of fructose and sucrose in proportions; 67% sucrose/33% fructose (67%S:33%F); 50% each (50%S:50%F) and 33%S:67%F; a 100% sucrose reference beverage was tested twice. Serum glucose and uric acid concentrations were measured at 0, 15, 30, 45, 60, 90 and 120 min and incremental area-under-the-curve (iAUC) calculated. The geometric mean (95% CI) glycaemic iAUC following the 100% sucrose, 67%S:33%F, 50%S:50%F and 33%S:67%F blended beverages were 96 (63,145), 71 (46,109), 60 (39, 93) and 39 (12, 86) mmol/L min, respectively. At 33% fructose replacement, the proportionally lower iAUC of -28.5% (95% CI: -62.1, 5.2) mmol/L min was not different to sucrose alone. The response was lowered by fructose replacement of 50 and 67% and overall there was an inverse association (p beverages were 1320 (393, 2248), 3062 (1553, 4570), 3646 (2446, 4847), 3623 (2020, 5226) µmol/L min. Uric acid concentration was raised by all fructose-containing beverages with 33% fructose replacement causing an increase of 1741 (95% CI: 655, 2829) µmol/L min compared with sucrose alone. Blood pressure was not different among beverages. Reduced postprandial glycaemia was achieved by the substitution of sucrose with fructose although elevated uricaemic responses should be cautioned.

  7. Pressure and partial wetting effects on superhydrophobic friction reduction in microchannel flow

    Science.gov (United States)

    Kim, Tae Jin; Hidrovo, Carlos

    2012-11-01

    Friction reduction in microchannel flows can help alleviate the inherently taxing pumping power requirements associated with the dimensions involved. One possible way of achieving friction reduction is through the introduction of surface microtexturing that can lead to a superhydrophobic Cassie-Baxter state. The Cassie-Baxter state is characterized by the presence of air pockets within the surface microtexturing believed to act as an effective "shear free" (or at least shear reduced) layer, decreasing the overall friction characteristics of the surface. Most work in this area has concentrated on optimizing the surface microtexturing geometry to maximize the friction reduction effects and overall stability of the Cassie-Baxter state. However, less attention has been paid to the effects of partially wetted conditions induced by pressure and the correlation between the liquid-gas interface location within the surface microtexturing and the microchannel flow characteristics. This is mainly attributed to the difficulty in tracking the interface shape and location within the microtexturing in the typical top-down view arrangements used in most studies. In this paper, a rectangular microchannel with regular microtexturing on the sidewalls is used to visualize and track the location of the air-water interface within the roughness elements. While visually tracking the wetting conditions in the microtextures, pressure drops versus flow rates for each microchannel are measured and analyzed in terms of the non-dimensional friction coefficient. The frictional behavior of the Poiseuille flow suggests that (1) the air-water interface more closely resembles a no-slip boundary rather than a shear-free one, (2) the friction is rather insensitive to the degree of microtexturing wetting, and (3) the fully wetted (Wenzel state) microtexturing provides lower friction than the non-wetted one (Cassie state), in corroboration with observations (1) and (2).

  8. Positive end-expiratory pressure improves gas exchange and pulmonary mechanics during partial liquid ventilation.

    Science.gov (United States)

    Kirmse, M; Fujino, Y; Hess, D; Kacmarek, R M

    1998-11-01

    Partial liquid ventilation (PLV) with perflubron (PFB) has been proposed as an adjunct to the current therapies for the acute respiratory distress syndrome (ARDS). Because PFB has been also referred to as "liquid PEEP," distributing to the most gravity-dependent regions of the lung, less attention has been paid to the amount of applied positive end-expiratory pressure (PEEP). We hypothesized that higher PEEP levels than currently applied are needed to optimize gas exchange, and that the lower inflection point (LIP) of the pressure-volume curve could be used to estimate the amount of PEEP needed when the lung is filled with PFB. Lung injury was induced in 23 sheep by repeated lung lavage with warmed saline until the PaO2/FIO2 ratio fell below 150. Five sheep were used to investigate the change of the LIP when the lung was filled with PFB in increments of 5 ml/kg/body weight to a total of 30 ml/kg/body weight. To evaluate the impact of PEEP set at LIP +1 cm H2O we randomized an additional 15 sheep to three groups with different doses (7.5 ml, 15 ml, 30 ml/kg/body weight) of PFB. In random order a PEEP of 5 cm H2O or PEEP at LIP +1 cm H2O was applied. The LIP decreased with incremental filling of PFB to a minimum at 10 ml (p PFB shifts the LIP to the left, and that setting PEEP at LIP +1 cm H2O improves gas exchange at moderate to high doses of PFB.

  9. The Role of the Pressure in the Partial Regularity Theory for Weak Solutions of the Navier-Stokes Equations

    Science.gov (United States)

    Chamorro, Diego; Lemarié-Rieusset, Pierre-Gilles; Mayoufi, Kawther

    2018-04-01

    We study the role of the pressure in the partial regularity theory for weak solutions of the Navier-Stokes equations. By introducing the notion of dissipative solutions, due to D uchon and R obert (Nonlinearity 13:249-255, 2000), we will provide a generalization of the Caffarelli, Kohn and Nirenberg theory. Our approach sheels new light on the role of the pressure in this theory in connection to Serrin's local regularity criterion.

  10. Electrochemical impedance spectroscopy of fully hydrated Nafion membranes at high and low hydrogen partial pressures

    International Nuclear Information System (INIS)

    Tsampas, M.N.; Brosda, S.; Vayenas, C.G.

    2011-01-01

    The proton transport mechanism in fully hydrated Nafion 117 membranes was examined via electrochemical impedance spectroscopy (EIS) and steady-state current–potential measurements both in a symmetric H 2 , Pt|Nafion|Pt, H 2 cell and in a H 2 , Pt|Nafion|Pt, air PEM fuel cell with hydrogen partial pressure values, P H 2 , varied between 0.5 kPa and 100 kPa. In agreement with recent studies it is found that for low P H 2 values the steady-state current–potential curves exhibit bistability and regions of positive slope. In these regions the Nyquist plots are found to exhibit negative real part impedance with a large imaginary component, while the Bode plots show a pronounced negative phase shift. These observations are consistent with the mechanism involving two parallel routes of proton conduction in fully hydrated Nafion membranes, one due to proton migration in the aqueous phase, the other due to proton transfer, probably involving tunneling, between adjacent sulfonate groups in narrow pores. The former mechanism dominates at high P H 2 values and the latter dominates in the low P H 2 region where the real part of the impedance is negative.

  11. Effects of varying oxygen partial pressure on molten silicon-ceramic substrate interactions

    Science.gov (United States)

    Ownby, D. P.; Barsoum, M. W.

    1980-01-01

    The silicon sessile drop contact angle was measured on hot pressed silicon nitride, silicon nitride coated on hot pressed silicon nitride, silicon carbon coated on graphite, and on Sialon to determine the degree to which silicon wets these substances. The post-sessile drop experiment samples were sectioned and photomicrographs were taken of the silicon-substrate interface to observe the degree of surface dissolution and degradation. Of these materials, silicon did not form a true sessile drop on the SiC on graphite due to infiltration of the silicon through the SiC coating, nor on the Sialon due to the formation of a more-or-less rigid coating on the liquid silicon. The most wetting was obtained on the coated Si3N4 with a value of 42 deg. The oxygen concentrations in a silicon ribbon furnace and in a sessile drop furnace were measured using the protable thoria-yttria solid solution electrolyte oxygen sensor. Oxygen partial pressures of 10 to the minus 7 power atm and 10 to the minus 8 power atm were obtained at the two facilities. These measurements are believed to represent nonequilibrium conditions.

  12. Critical hematocrit and oxygen partial pressure in the beating heart of pigs.

    Science.gov (United States)

    Hiebl, B; Mrowietz, C; Ploetze, K; Matschke, K; Jung, F

    2010-12-01

    In cardiac surgery the substitution of lost blood volume by plasma substitutes is a common therapeutical approach. None of the currently available blood substitutes has a sufficient oxygen transport capacity. This can limit the functional integrity of the myocardium known as highly oxygen consumptive. The study was aimed to get information about the minimal hematocrit, also known as critical hematocrit (cHct), which guarantees a stable and adequate oxygen partial pressure in the myocardium (pO2). In adult female pigs (n=7) the hematocrit was reduced by isovolemic blood dilution with an intravenous infusion of isotonic 4% gelatine polysuccinate solution, The substituted blood volume ranged between 3000ml and 7780ml (mean: 5254±1672ml). In all animals the pO2 of the myocardium of the beating heart and of the resting skeletal muscle increased until blood dilution resulted in a Hct decrease down to 15%. Further blood dilution resulted in a decrease of the pO2. Only after the Hct was <10% the pO2 was lower than before blood dilution and accompanied by a lethal ischemia of the myocardium. These data indicate a cHct of about 10% in the pig animal model. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Influence of polymeric microspheres on the myocardial oxygen partial pressure in the beating heart of pigs.

    Science.gov (United States)

    Hiebl, B; Mrowietz, C; Lee, S; Braune, S; Knaut, M; Lendlein, A; Franke, R P; Jung, F

    2011-07-01

    Injection of labeled microspheres is an established method in animal models to analyze the capillary organ blood flow at different time points. However, the microspheres can lead to stenoses of the capillary lumen, which might affect tissue oxygen supply. Our study aimed to investigate the influence of repeated injections of microspheres into the left coronary artery on the tissue oxygen partial pressure (pO(2)) in the downstream supplied myocardium of Göttingen minipigs. Tests (n=6 pigs each) were performed with two differently sized microspheres (ø=10 ± 0.1 μm (M10) or ø=15 ± 0.15 μm (M15)) from polystyrene. The pO(2) was measured in the midmyocardium of the left and right ventricle for 6 min continuously after each of five injections (1 × 10(6) microspheres each). There was a time laps of 12 min between each injection. In addition, the influence of the carrier solution was analyzed solely in the identical time frame. pO(2) decreased significantly in the myocardial area supplied by the ramus interventricularis paraconalis after injection of M15 microspheres. In contrast, the application of the M10 microspheres did not change the myocardial pO(2). This finding suggests to use microspheres with diameters not exceeding 10 μm for the coronary blood flow assessment. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. [The influence of low partial oxygen pressure on the biolodical process of mesenchymal stromal cells].

    Science.gov (United States)

    Berezovskyĭ, V Ia; Plotnikova, L M; Vesel'skyĭ, S P; Litovka, I H

    2014-01-01

    The influence of low partial oxygen pressure (Po2) on the amino acid composition in culture medium of human mesenchymal stromal cell (MSC) lines 4BL has been studied. At 23 mm Hg (3% oxygen), a significant decrease (by 31%) in the concentration of proline and hydroxyproline was registered. Under these conditions, the concentration of serine and aspartic acid decreased by 45% compared to the control. Maximum consumption of free amino acids from the culture medium required for the synthesis of collagen (proline and hydroxyproline by 42%, serine and aspartic acid by 62%) was observed at a gas-phase Po2 of 38 mm Hg (5% O2). At Po2 76 mm Hg (10% O2), a lack of amino acids proline and hydroxyproline was only 21%, while that of glutamine and alanine amounted 12% compared to the control. This intensity ratio of consumption of amino acids may indicate that the maximum of MSC vital functions occurs at Po2 38 mm Hg.

  15. Non-site-specific allosteric effect of oxygen on human hemoglobin under high oxygen partial pressure.

    Science.gov (United States)

    Takayanagi, Masayoshi; Kurisaki, Ikuo; Nagaoka, Masataka

    2014-04-08

    Protein allostery is essential for vital activities. Allosteric regulation of human hemoglobin (HbA) with two quaternary states T and R has been a paradigm of allosteric structural regulation of proteins. It is widely accepted that oxygen molecules (O2) act as a "site-specific" homotropic effector, or the successive O2 binding to the heme brings about the quaternary regulation. However, here we show that the site-specific allosteric effect is not necessarily only a unique mechanism of O2 allostery. Our simulation results revealed that the solution environment of high O2 partial pressure enhances the quaternary change from T to R without binding to the heme, suggesting an additional "non-site-specific" allosteric effect of O2. The latter effect should play a complementary role in the quaternary change by affecting the intersubunit contacts. This analysis must become a milestone in comprehensive understanding of the allosteric regulation of HbA from the molecular point of view.

  16. Influence of oxygen partial pressure on defect concentrations and on oxygen diffusion in UO2+x

    International Nuclear Information System (INIS)

    Pizzi, Elisabetta

    2013-01-01

    The hyper-stoichiometric uranium dioxide (UO 2+x ) is stable over a wide range of temperature and compositions. Such variations of composition and the eventual presence of doping elements or impurities lead to a variation of anionic and electronic defect concentrations. Moreover, many properties of this material are affected by its composition modifications, in particular their atomic transport properties. Firstly we developed a point defect model to evaluate the dependence of the electronic and oxygen defect concentrations upon temperature, equilibrium oxygen partial pressure and impurity content. The physical constants of the model, in particular the equilibrium constants of the defect formation reactions were determined from deviation from stoichiometry and electrical conductivity measurements of literature. This work enabled us to interpret our measures of conductivity, oxygen chemical and self- diffusion coefficients. From a quantitative standpoint, the analysis of our experimental results allows to evaluate the oxygen interstitial diffusion coefficient but also its formation energy. Moreover, an estimate of oxygen di-interstitial formation energy is also provided. Presence of oxygen clusters leads oxygen self- and chemical diffusion to decrease. X-ray Absorption Spectroscopy characterization shows the presence of the same defect in the entire deviation from stoichiometry studied, confirming the approach used to develop the model. (author) [fr

  17. Growth of the microalgae Neochloris oleoabundans at high partial oxygen pressures and sub-saturating light intensity.

    Science.gov (United States)

    Sousa, Cláudia; de Winter, Lenneke; Janssen, Marcel; Vermuë, Marian H; Wijffels, René H

    2012-01-01

    The effect of partial oxygen pressure on growth of Neochloris oleoabundans was studied at sub-saturating light intensity in a fully-controlled stirred tank photobioreactor. At the three partial oxygen pressures tested (P(O)₂= 0.24; 0.63; 0.84 bar), the specific growth rate was 1.38; 1.36 and 1.06 day(-1), respectively. An increase of the P(CO)₂from 0.007 to 0.02 bar at P(O₂) of 0.84 bar resulted in an increase in the growth rate from 1.06 to 1.36 day(-1). These results confirm that the reduction of algal growth at high oxygen concentrations at sub-saturating light conditions is mainly caused by competitive inhibition of Rubisco. This negative effect on growth can be overcome by restoring the O(2)/CO(2) ratio by an increase in the partial carbon dioxide pressure. In comparison to general practice (P(O(2)) = 0.42 bar), working at partial O(2) pressure of 0.84 bar could reduce the energy requirement for degassing by a factor of 3-4. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Classifying Acute Respiratory Distress Syndrome Severity: Correcting the Arterial Oxygen Partial Pressure to Fractional Inspired Oxygen at Altitude.

    Science.gov (United States)

    Pérez-Padilla, Rogelio; Hernández-Cárdenas, Carmen Margarita; Lugo-Goytia, Gustavo

    2016-01-01

    In the well-known Berlin definition of acute respiratory distress syndrome (ARDS), there is a recommended adjustment for arterial oxygen partial pressure to fractional inspired oxygen (PaO2/FIO2) at altitude, but without a reference as to how it was derived.

  19. Association between administered oxygen, arterial partial oxygen pressure and mortality in mechanically ventilated intensive care unit patients

    NARCIS (Netherlands)

    de Jonge, Evert; Peelen, Linda; Keijzers, Peter J.; Joore, Hans; de Lange, Dylan; van der Voort, Peter Hj; Bosman, Robert J.; de Waal, Ruud Al; Wesselink, Ronald; de Keizer, Nicolette F.

    2008-01-01

    Introduction The aim of this study was to investigate whether in-hospital mortality was associated with the administered fraction of oxygen in inspired air (FiO(2)) and achieved arterial partial pressure of oxygen (PaO2). Methods This was a retrospective, observational study on data from the first

  20. Association between administered oxygen, arterial partial oxygen pressure and mortality in mechanically ventilated intensive care unit patients

    NARCIS (Netherlands)

    de Jonge, Evert; Peelen, Linda; Keijzers, Peter J.; Joore, Hans; de Lange, Dylan; van der Voort, Peter H. J.; Bosman, Robert J.; de Waal, Ruud A. L.; Wesselink, Ronald; de Keizer, Nicolette F.

    2008-01-01

    Introduction The aim of this study was to investigate whether in-hospital mortality was associated with the administered fraction of oxygen in inspired air (FiO(2)) and achieved arterial partial pressure of oxygen (PaO(2)). Methods This was a retrospective, observational study on data from the first

  1. Analyzing the dependence of oxygen incorporation current density on overpotential and oxygen partial pressure in mixed conducting oxide electrodes.

    Science.gov (United States)

    Guan, Zixuan; Chen, Di; Chueh, William C

    2017-08-30

    The oxygen incorporation reaction, which involves the transformation of an oxygen gas molecule to two lattice oxygen ions in a mixed ionic and electronic conducting solid, is a ubiquitous and fundamental reaction in solid-state electrochemistry. To understand the reaction pathway and to identify the rate-determining step, near-equilibrium measurements have been employed to quantify the exchange coefficients as a function of oxygen partial pressure and temperature. However, because the exchange coefficient contains contributions from both forward and reverse reaction rate constants and depends on both oxygen partial pressure and oxygen fugacity in the solid, unique and definitive mechanistic assessment has been challenging. In this work, we derive a current density equation as a function of both oxygen partial pressure and overpotential, and consider both near and far from equilibrium limits. Rather than considering specific reaction pathways, we generalize the multi-step oxygen incorporation reaction into the rate-determining step, preceding and following quasi-equilibrium steps, and consider the number of oxygen ions and electrons involved in each. By evaluating the dependence of current density on oxygen partial pressure and overpotential separately, one obtains the reaction orders for oxygen gas molecules and for solid-state species in the electrode. We simulated the oxygen incorporation current density-overpotential curves for praseodymium-doped ceria for various candidate rate-determining steps. This work highlights a promising method for studying the exchange kinetics far away from equilibrium.

  2. Theoretical study of the partial molar volume change associated with the pressure-induced structural transition of ubiquitin.

    Science.gov (United States)

    Imai, Takashi; Ohyama, Shusaku; Kovalenko, Andriy; Hirata, Fumio

    2007-09-01

    The partial molar volume (PMV) change associated with the pressure-induced structural transition of ubiquitin is analyzed by the three-dimensional reference interaction site model (3D-RISM) theory of molecular solvation. The theory predicts that the PMV decreases upon the structural transition, which is consistent with the experimental observation. The volume decomposition analysis demonstrates that the PMV reduction is primarily caused by the decrease in the volume of structural voids in the protein, which is partially canceled by the volume expansion due to the hydration effects. It is found from further analysis that the PMV reduction is ascribed substantially to the penetration of water molecules into a specific part of the protein. Based on the thermodynamic relation, this result implies that the water penetration causes the pressure-induced structural transition. It supports the water penetration model of pressure denaturation of proteins proposed earlier.

  3. Microvascular oxygen partial pressure during hyperbaric oxygen in diabetic rat skeletal muscle.

    Science.gov (United States)

    Yamakoshi, Kohei; Yagishita, Kazuyoshi; Tsuchimochi, Hirotsugu; Inagaki, Tadakatsu; Shirai, Mikiyasu; Poole, David C; Kano, Yutaka

    2015-12-15

    Hyperbaric oxygen (HBO) is a major therapeutic treatment for ischemic ulcerations that perforate skin and underlying muscle in diabetic patients. These lesions do not heal effectively, in part, because of the hypoxic microvascular O2 partial pressures (PmvO2 ) resulting from diabetes-induced cardiovascular dysfunction, which alters the dynamic balance between O2 delivery (Q̇o2) and utilization (V̇o2) rates. We tested the hypothesis that HBO in diabetic muscle would exacerbate the hyperoxic PmvO2 dynamics due, in part, to a reduction or slowing of the cardiovascular, sympathetic nervous, and respiratory system responses to acute HBO exposure. Adult male Wistar rats were divided randomly into diabetic (DIA: streptozotocin ip) and healthy (control) groups. A small animal hyperbaric chamber was pressurized with oxygen (100% O2) to 3.0 atmospheres absolute (ATA) at 0.2 ATA/min. Phosphorescence quenching techniques were used to measure PmvO2 in tibialis anterior muscle of anesthetized rats during HBO. Lumbar sympathetic nerve activity (LSNA), heart rate (HR), and respiratory rate (RR) were measured electrophysiologically. During the normobaric hyperoxia and HBO, DIA tibialis anterior PmvO2 increased faster (mean response time, CONT 78 ± 8, DIA 55 ± 8 s, P < 0.05) than CONT. Subsequently, PmvO2 remained elevated at similar levels in CONT and DIA muscles until normobaric normoxic recovery where the DIA PmvO2 retained its hyperoxic level longer than CONT. Sympathetic nervous system and cardiac and respiratory responses to HBO were slower in DIA vs. CONT. Specifically the mean response times for RR (CONT: 6 ± 1 s, DIA: 29 ± 4 s, P < 0.05), HR (CONT: 16 ± 1 s, DIA: 45 ± 5 s, P < 0.05), and LSNA (CONT: 140 ± 16 s, DIA: 247 ± 34 s, P < 0.05) were greater following HBO onset in DIA than CONT. HBO treatment increases tibialis anterior muscle PmvO2 more rapidly and for a longer duration in DIA than CONT, but not to a greater level. Whereas respiratory, cardiovascular

  4. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia

    Science.gov (United States)

    Carreau, Aude; Hafny-Rahbi, Bouchra El; Matejuk, Agata; Grillon, Catherine; Kieda, Claudine

    2011-01-01

    Abstract Oxygen supply and diffusion into tissues are necessary for survival. The oxygen partial pressure (pO2), which is a key component of the physiological state of an organ, results from the balance between oxygen delivery and its consumption. In mammals, oxygen is transported by red blood cells circulating in a well-organized vasculature. Oxygen delivery is dependent on the metabolic requirements and functional status of each organ. Consequently, in a physiological condition, organ and tissue are characterized by their own unique ‘tissue normoxia’ or ‘physioxia’ status. Tissue oxygenation is severely disturbed during pathological conditions such as cancer, diabetes, coronary heart disease, stroke, etc., which are associated with decrease in pO2, i.e. ‘hypoxia’. In this review, we present an array of methods currently used for assessing tissue oxygenation. We show that hypoxia is marked during tumour development and has strong consequences for oxygenation and its influence upon chemotherapy efficiency. Then we compare this to physiological pO2 values of human organs. Finally we evaluate consequences of physioxia on cell activity and its molecular modulations. More importantly we emphasize the discrepancy between in vivo and in vitro tissue and cells oxygen status which can have detrimental effects on experimental outcome. It appears that the values corresponding to the physioxia are ranging between 11% and 1% O2 whereas current in vitro experimentations are usually performed in 19.95% O2, an artificial context as far as oxygen balance is concerned. It is important to realize that most of the experiments performed in so-called normoxia might be dangerously misleading. PMID:21251211

  5. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia.

    Science.gov (United States)

    Carreau, Aude; El Hafny-Rahbi, Bouchra; Matejuk, Agata; Grillon, Catherine; Kieda, Claudine

    2011-06-01

    Oxygen supply and diffusion into tissues are necessary for survival. The oxygen partial pressure (pO(2)), which is a key component of the physiological state of an organ, results from the balance between oxygen delivery and its consumption. In mammals, oxygen is transported by red blood cells circulating in a well-organized vasculature. Oxygen delivery is dependent on the metabolic requirements and functional status of each organ. Consequently, in a physiological condition, organ and tissue are characterized by their own unique 'tissue normoxia' or 'physioxia' status. Tissue oxygenation is severely disturbed during pathological conditions such as cancer, diabetes, coronary heart disease, stroke, etc., which are associated with decrease in pO(2), i.e. 'hypoxia'. In this review, we present an array of methods currently used for assessing tissue oxygenation. We show that hypoxia is marked during tumour development and has strong consequences for oxygenation and its influence upon chemotherapy efficiency. Then we compare this to physiological pO(2) values of human organs. Finally we evaluate consequences of physioxia on cell activity and its molecular modulations. More importantly we emphasize the discrepancy between in vivo and in vitro tissue and cells oxygen status which can have detrimental effects on experimental outcome. It appears that the values corresponding to the physioxia are ranging between 11% and 1% O(2) whereas current in vitro experimentations are usually performed in 19.95% O(2), an artificial context as far as oxygen balance is concerned. It is important to realize that most of the experiments performed in so-called normoxia might be dangerously misleading. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  6. Preretinal partial pressure of oxygen gradients before and after experimental pars plana vitrectomy.

    Science.gov (United States)

    Petropoulos, Ioannis K; Pournaras, Jean-Antoine C; Stangos, Alexandros N; Pournaras, Constantin J

    2013-01-01

    To evaluate preretinal partial pressure of oxygen (PO2) gradients before and after experimental pars plana vitrectomy. Arteriolar, venous, and intervascular preretinal PO2 gradients were recorded in 7 minipigs during slow withdrawal of oxygen-sensitive microelectrodes (10-μm tip diameter) from the vitreoretinal interface to 2 mm into the vitreous cavity. Recordings were repeated after pars plana vitrectomy and balanced salt solution (BSS) intraocular perfusion. Arteriolar, venous, and intervascular preretinal PO2 at the vitreoretinal interface were 62.3 ± 13.8, 22.5 ± 3.3, and 17.0 ± 7.5 mmHg, respectively, before vitrectomy; 97.7 ± 19.9, 40.0 ± 21.9, and 56.3 ± 28.4 mmHg, respectively, immediately after vitrectomy; and 59.0 ± 27.4, 25.2 ± 3.0, and 21.5 ± 4.5 mmHg, respectively, 2½ hours after interruption of BSS perfusion. PO2 2 mm from the vitreoretinal interface was 28.4 ± 3.6 mmHg before vitrectomy; 151.8 ± 4.5 mmHg immediately after vitrectomy; and 34.8 ± 4.1 mmHg 2½ hours after interruption of BSS perfusion. PO2 gradients were still present after vitrectomy, with the same patterns as before vitrectomy. Preretinal PO2 gradients are not eliminated after pars plana vitrectomy. During BSS perfusion, vitreous cavity PO2 is very high. Interruption of BSS perfusion evokes progressive equilibration of vitreous cavity PO2 with concomitant progressive return of preretinal PO2 gradients to their previtrectomy patterns. This indicates that preretinal diffusion of oxygen is not altered after vitrectomy. The beneficial effect of vitrectomy in ischemic retinal diseases or macular edema may be related to other mechanisms, such as increased oxygen convection currents or removal of growth factors and cytokines secreted in the vitreous.

  7. Relationship between arterial partial oxygen pressure after resuscitation from cardiac arrest and mortality in children.

    Science.gov (United States)

    Ferguson, Lee P; Durward, Andrew; Tibby, Shane M

    2012-07-17

    Observational studies in adults have shown a worse outcome associated with hyperoxia after resuscitation from cardiac arrest. Extrapolating from adult data, current pediatric resuscitation guidelines recommend avoiding hyperoxia. We investigated the relationship between arterial partial oxygen pressure and survival in patients admitted to the pediatric intensive care unit (PICU) after cardiac arrest. We conducted a retrospective cohort study using the Pediatric Intensive Care Audit Network (PICANet) database between 2003 and 2010 (n=122,521). Patients aged oxygen status and outcome was modeled with logistic regression, with nonlinearities explored via multivariable fractional polynomials. Covariates included age, sex, ethnicity, congenital heart disease, out-of-hospital arrest, year, Pediatric Index of Mortality-2 (PIM2) mortality risk, and organ supportive therapies. Of 1875 patients, 735 (39%) died in PICU. Based on the first arterial gas, 207 patients (11%) had hyperoxia (Pa(O)(2) ≥300 mm Hg) and 448 (24%) had hypoxia (Pa(O)(2) <60 mm Hg). We found a significant nonlinear relationship between Pa(O)(2) and PICU mortality. After covariate adjustment, risk of death increased sharply with increasing hypoxia (odds ratio, 1.92; 95% confidence interval, 1.80-2.21 at Pa(O)(2) of 23 mm Hg). There was also an association with increasing hyperoxia, although not as dramatic as that for hypoxia (odds ratio, 1.25; 95% confidence interval, 1.17-1.37 at 600 mm Hg). We observed an increasing mortality risk with advancing age, which was more pronounced in the presence of congenital heart disease. Both severe hypoxia and, to a lesser extent, hyperoxia are associated with an increased risk of death after PICU admission after cardiac arrest.

  8. Microenvironmental oxygen partial pressure in acute myeloid leukemia: Is there really a role for hypoxia?

    Science.gov (United States)

    Rieger, Christina T; Fiegl, Michael

    2016-07-01

    Reduced oxygen partial pressure (pO2) has been recognized as being relevant in hematopoiesis and the pathophysiology of malignant diseases. Although hypoxic (meaning insufficient supply of oxygen) and anoxic areas are present and of pathophysiologic importance (by hypoxia-induced pathways such as HiF1α) in solid tumors, this may not be true for (malignant) hematologic cells. Hematopoiesis occurs in the stem cell niche, which is characterized, among other things, by extremely low pO2. However, in contrast to solid tumors, in this context, the low pO2 is physiological and this feature, among others, is shared by the malignant stem cell niche harboring leukemia-initiating cells. Upon differentiation, hematopoietic cells are constantly exposed to changes in pO2 as they travel throughout the human body and encounter arterial and venous blood and migrate into oxygen-carrier-free tissue with low pO2. Hematologic malignancies such as acute myeloid leukemia (AML) make little difference in this respect and, whereas low oxygen is the usual environment of AML cells, recent evidence suggests no role for real hypoxia. Although there is no evidence that AML pathophysiology is related to hypoxia, leukemic blasts still show several distinct biological features when exposed to reduced pO2: they down- or upregulate membrane receptors such as CXCR4 or FLT3, activate or inhibit intracellular signaling pathways such as PI3K, and specifically secrete cytokines (IL-8). In summary, reduced pO2 should not be mistaken for hypoxia (nor should it be so called), and it does not automatically induce hypoxia-response mechanisms; therefore, a strict distinction should be made between physiologically low pO2 (physoxia) and hypoxia. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  9. Relations between pH, oxygen partial pressure and growth in cultured cell spheroids.

    Science.gov (United States)

    Carlsson, J; Acker, H

    1988-11-15

    The pH gradients, oxygen partial-pressure gradients and growth curves were measured for 7 different types of spheroids. Growth curves were measured in liquid overlay culture and thereafter the spheroids were attached to cover glasses and transferred to a chamber for micro-electrode measurements. The spheroids were randomly divided for pH or pO2 measurements which then were made under conditions as identical as possible. The decreases in pO2 and pH, delta pO2 and delta pH were calculated as the difference between the values in the culture medium and the values 200 micron inside the spheroids. Each type of spheroid had a certain relation between delta pO2 and delta pH. The human colon carcinoma HT29, the mouse mammary carcinoma EMT6 and the hamster lung V79-379A spheroids had high values of the quotient delta pO2/delta pH. The human thyroid carcinoma HTh7 spheroids and the 3 types of human glioma spheroids had lower quotients. There was a tendency for fast-growing spheroids to have high quotients. Two extreme types of spheroids, HT29 (high quotient) and U-118 MG (low quotient) were analyzed for lactate production and oxygen consumption. The U-118 MG spheroids produced about 3 times more lactate and consumed about 3 times less oxygen than the HT29 spheroids. The differences in lactate production could not be explained by differences in the pyruvate Km values of lactate dehydrogenase. The results indicate that there are significant metabolic differences between the spheroid systems studied.

  10. Pressure of a partially ionized hydrogen gas: numerical results from exact low temperature expansions

    Energy Technology Data Exchange (ETDEWEB)

    Alastuey, A. [Laboratoire de Physique, ENS Lyon, CNRS, Lyon (France); Ballenegger, V. [Institut UTINAM, Universite de Franche-Comte, CNRS, Besancon (France)

    2010-01-15

    We consider a partially ionized hydrogen gas at low densities, where it reduces almost to an ideal mixture made with hydrogen atoms in their ground-state, ionized protons and ionized electrons. By performing systematic low-temperature expansions within the physical picture, in which the system is described as a quantum electron-proton plasma interacting via the Coulomb potential, exact formulae for the first.ve leading corrections to the ideal Saha equation of state have been derived[A. Alastuey, V. Ballenegger et al., J. Stat. Phys. 130, 1119 (2008)]. Those corrections account for all effects of interactions and thermal excitations up to order exp(E{sub H} /kT) included, where E{sub H} {approx_equal} -13.6 eV is the ground state energy of the hydrogen atom. Among the.ve leading corrections, three are easy to evaluate, while the remaining ones involve suitably truncated internal partition functions of H{sub 2} molecules and H{sup -} and H{sub 2}{sup +} ions, for which no analytical formulae are available in closed form. We estimate those partitions functions at.nite temperature via a simple phenomenology based on known values of rotational and vibrational energies. This allows us to compute numerically the leading deviations to the Saha pressure along several isotherms and isochores. Our values are compared with those of the OPAL tables (for pure hydrogen) calculated within the ACTEX method (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. [Efficacy observation on application of negative pressure therapy in the treatment of superficial partial-thickness scald wound in children].

    Science.gov (United States)

    Shen, Chuan-an; Chai, Jia-ke; Tuo, Xiao-ye; Cai, Jian-hua; Li, Dong-jie; Zhang, Lin; Zhu, Hua; Cai, Jin-dong

    2013-02-01

    To observe the effect of negative pressure therapy in the treatment of superficial partial-thickness scald in children. Three hundred and seven children with superficial partial-thickness scald hospitalized from August 2009 to May 2012 were divided into negative pressure therapy group (NPT, n = 145) and control group (C, n = 162) according to the random number table. Patients in group NPT were treated with negative pressure from within post injury day (PID) 3 to PID 9 (with -16 kPa pressure), while traditional occlusive dressing method was used in group C. Changes in body temperature, wound healing condition, frequency of dressing change were compared between group NPT and group C. Bacterial culture results of wounds were compared before and after treatment in group NPT. Volume of drained transudate per one percent of wound area was recorded in group NPT on PID 1 to PID 3. Data were processed with t test or chi-square test. The incidence of high fever was significantly lower in group NPT (26.9%, 39/145) than in group C (63.6%, 103/162, χ(2) = 41.419, P partial-thickness scald.

  12. Influence of oxygen partial pressure on the characteristics of human hepatocarcinoma cells.

    Science.gov (United States)

    Trepiana, Jenifer; Meijide, Susana; Navarro, Rosaura; Hernández, M Luisa; Ruiz-Sanz, José Ignacio; Ruiz-Larrea, M Begoña

    2017-08-01

    Most of the in vitro studies using liver cell lines have been performed under atmospheric oxygen partial pressure (21% O 2 ). However, the oxygen concentrations in the liver and cancer cells are far from this value. In the present study, we have evaluated the influence of oxygen on 1) the tumor cell lines features (growth, steady-state ROS levels, GSH content, activities of antioxidant enzymes, p66 Shc and SOD expressions, metalloproteinases secretion, migration, invasion, and adhesion) of human hepatocellular carcinoma cell lines, and b) the response of the cells to an oxidant stimulus (aqueous leaf extract of the V. baccifera plant species). For this purpose, three hepatocarcinoma cell lines with different p53 status, HepG2 (wild-type), Huh7 (mutated), and Hep3B (deleted), were cultured (6-30 days) under atmospheric (21%) and more physiological (8%) pO 2 . Results showed that after long-term culturing at 8% versus 21% O 2 , the cellular proliferation rate and the steady-state levels of mitochondrial O 2 - were unaffected. However, the intracellular basal ROS levels were higher independently of the characteristics of the cell line. Moreover, the lower pO 2 was associated with lower glutathione content, the induction of p66 Shc and Mn-SOD proteins, and increased SOD activity only in HepG2. This cell line also showed a higher migration rate, secretion of active metalloproteinases, and a faster invasion. HepG2 cells were more resistant to the oxidative stress induced by V. baccifera. Results suggest that the long-term culturing of human hepatoma cells at a low, more physiological pO 2 induces antioxidant adaptations that could be mediated by p53, and may alter the cellular response to a subsequent oxidant challenge. Data support the necessity of validating outcomes from studies performed with hepatoma cell cultures under ambient O 2 . Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Systematic trends of YBa2Cu3O7-δ thin films post annealed in low oxygen partial pressures

    International Nuclear Information System (INIS)

    Hou, S.Y.; Phillips, J.M.; Werder, D.J.; Tiefel, T.H.; Marshall, J.H.; Siegal, M.P.

    1994-01-01

    Systematic studies have been performed on 1000 A YBa 2 Cu 3 O 7-δ films produced by the BaF 2 process and annealed in an oxygen partial pressure (p O 2 ) range from 740 Torr to 10 mTorr as well as a temperature range from 600 to 1050 degree C. The results show that while high quality films can be annealed in a wide range of oxygen partial pressure, they have different characteristics. In general, crystalline quality and T c are optimized at high p O 2 and high annealing temperature, while strong flux pinning and low normal state resistivity are achieved at lower values of both variables. Under optimized low p O 2 conditions, an ion channeling χ min of 6% is obtained on films as thick as 5000 A. This study will serve as a useful guide to tailoring film properties to the application at hand

  14. Measurement of Local Partial Pressure of Oxygen in the Brain Tissue under Normoxia and Epilepsy with Phosphorescence Lifetime Microscopy

    Science.gov (United States)

    Zhang, Cong; Bélanger, Samuel; Pouliot, Philippe; Lesage, Frédéric

    2015-01-01

    In this work a method for measuring brain oxygen partial pressure with confocal phosphorescence lifetime microscopy system is reported. When used in conjunction with a dendritic phosphorescent probe, Oxyphor G4, this system enabled minimally invasive measurements of oxygen partial pressure (pO2) in cerebral tissue with high spatial and temporal resolution during 4-AP induced epileptic seizures. Investigating epileptic events, we characterized the spatio-temporal distribution of the "initial dip" in pO2 near the probe injection site and along nearby arterioles. Our results reveal a correlation between the percent change in the pO2 signal during the "initial dip" and the duration of seizure-like activity, which can help localize the epileptic focus and predict the length of seizure. PMID:26305777

  15. Measurement of Local Partial Pressure of Oxygen in the Brain Tissue under Normoxia and Epilepsy with Phosphorescence Lifetime Microscopy.

    Science.gov (United States)

    Zhang, Cong; Bélanger, Samuel; Pouliot, Philippe; Lesage, Frédéric

    2015-01-01

    In this work a method for measuring brain oxygen partial pressure with confocal phosphorescence lifetime microscopy system is reported. When used in conjunction with a dendritic phosphorescent probe, Oxyphor G4, this system enabled minimally invasive measurements of oxygen partial pressure (pO2) in cerebral tissue with high spatial and temporal resolution during 4-AP induced epileptic seizures. Investigating epileptic events, we characterized the spatio-temporal distribution of the "initial dip" in pO2 near the probe injection site and along nearby arterioles. Our results reveal a correlation between the percent change in the pO2 signal during the "initial dip" and the duration of seizure-like activity, which can help localize the epileptic focus and predict the length of seizure.

  16. Development of a low tritium partial pressure permeation system for mass transport measurement in lead lithium eutectic

    International Nuclear Information System (INIS)

    Pawelko, R.; Shimada, M.; Katayama, K.; Fukada, S.; Terai, T.

    2014-01-01

    A new experimental system designed to investigate tritium mass transfer properties in materials important to fusion technology is operational at the Safety and Tritium Applied Research (STAR) facility located at the Idaho National Laboratory (INL). The tritium permeation measurement system was developed as part of the Japan/US TITAN collaboration to investigate tritium mass transfer properties in liquid lead lithium eutectic (LLE) alloy. The system is similar to a hydrogen/deuterium permeation measurement system developed at Kyushu University and also incorporates lessons learned from previous tritium permeation experiments conducted at the STAR facility. This paper describes the experimental system that is configured specifically to measure tritium mass transfer properties at low tritium partial pressures. We present preliminary tritium permeation results for α-Fe and α-Fe/LLE samples at 600degC and at tritium partial pressures between 1.0E-3 and 2.4 Pain helium. The preliminary results are compared with literature data. (author)

  17. Ionic conductivity ageing investigation of 1Ce10ScSZ in different partial pressures of oxygen

    DEFF Research Database (Denmark)

    Omar, Shobit; Belda, Adriana; Escardino, Agustín

    2011-01-01

    The conductivity and its ageing behaviour has been determined for zirconia co-doped with 10 mol% of Sc2O3 and 1 mol% CeO2 in different partial pressures of oxygen at 600 °C. After 3000 h, samples kept in air, in a humidified mixture of H2/N2 and in humidified H2 exhibited loss in the ionic...

  18. Atmospheric constraints for the CO2 partial pressure on terrestrial planets near the outer edge of the habitable zone

    OpenAIRE

    von Paris, P.; Grenfell, J. L.; Hedelt, P.; Rauer, H.; Selsis, F.; Stracke, B.

    2013-01-01

    In recent years, several potentially habitable, probably terrestrial exoplanets and exoplanet candidates have been discovered. The amount of CO2 in their atmosphere is of great importance for surface conditions and habitability. In the absence of detailed information on the geochemistry of the planet, this amount could be considered as a free parameter. Up to now, CO2 partial pressures for terrestrial planets have been obtained assuming an available volatile reservoir and outgassing scenarios...

  19. Real-Time Monitoring of Singlet Oxygen and Oxygen Partial Pressure During the Deep Photodynamic Therapy In Vitro.

    Science.gov (United States)

    Li, Weitao; Huang, Dong; Zhang, Yan; Liu, Yangyang; Gu, Yueqing; Qian, Zhiyu

    2016-09-01

    Photodynamic therapy (PDT) is an effective noninvasive method for the tumor treatment. The major challenge in current PDT research is how to quantitatively evaluate therapy effects. To our best knowledge, this is the first time to combine multi-parameter detection methods in PDT. More specifically, we have developed a set of system, including the high-sensitivity measurement of singlet oxygen, oxygen partial pressure and fluorescence image. In this paper, the detection ability of the system was validated by the different concentrations of carbon quantum dots. Moreover, the correlation between singlet oxygen and oxygen partial pressure with laser irradiation was observed. Then, the system could detect the signal up to 0.5 cm tissue depth with 660 nm irradiation and 1 cm tissue depth with 980 nm irradiation by using up-conversion nanoparticles during PDT in vitro. Furthermore, we obtained the relationship among concentration of singlet oxygen, oxygen partial pressure and tumor cell viability under certain conditions. The results indicate that the multi-parameter detection system is a promising asset to evaluate the deep tumor therapy during PDT. Moreover, the system might be potentially used for the further study in biology and molecular imaging.

  20. Influence of Oxygen Partial Pressure during Processing on the Thermoelectric Properties of Aerosol-Deposited CuFeO₂.

    Science.gov (United States)

    Stöcker, Thomas; Exner, Jörg; Schubert, Michael; Streibl, Maximilian; Moos, Ralf

    2016-03-24

    In the field of thermoelectric energy conversion, oxide materials show promising potential due to their good stability in oxidizing environments. Hence, the influence of oxygen partial pressure during synthesis on the thermoelectric properties of Cu-Delafossites at high temperatures was investigated in this study. For these purposes, CuFeO₂ powders were synthetized using a conventional mixed-oxide technique. X-ray diffraction (XRD) studies were conducted to determine the crystal structures of the delafossites associated with the oxygen content during the synthesis. Out of these powders, films with a thickness of about 25 µm were prepared by the relatively new aerosol-deposition (AD) coating technique. It is based on a room temperature impact consolidation process (RTIC) to deposit dense solid films of ceramic materials on various substrates without using a high-temperature step during the coating process. On these dense CuFeO₂ films deposited on alumina substrates with electrode structures, the Seebeck coefficient and the electrical conductivity were measured as a function of temperature and oxygen partial pressure. We compared the thermoelectric properties of both standard processed and aerosol deposited CuFeO₂ up to 900 °C and investigated the influence of oxygen partial pressure on the electrical conductivity, on the Seebeck coefficient and on the high temperature stability of CuFeO₂. These studies may not only help to improve the thermoelectric material in the high-temperature case, but may also serve as an initial basis to establish a defect chemical model.