WorldWideScience

Sample records for underway chromatographic system

  1. Dual liquid and gas chromatograph system

    Science.gov (United States)

    Gay, D.D.

    A chromatographic system is described that utilizes one detection system for gas chromatographic and micro-liquid chromatographic determinations. The detection system is a direct-current, atmospheric-pressure, helium plasma emission spectrometer. The detector utilizes a nontransparent plasma source unit which contains the plasma region and two side-arms which receive effluents from the micro-liquid chromatograph and the gas chromatograph. The dual nature of this chromatographic system offers: (1) extreme flexibility in the samples to be examined; (2) extreme low sensitivity; (3) element selectivity; (4) long-term stability; (5) direct correlation of data from the liquid and gas samples; (6) simpler operation than with individual liquid and gas chromatographs, each with different detection systems; and (7) cheaper than a commercial liquid chromatograph and a gas chromatograph.

  2. Modeling Aquatic Toxicity through Chromatographic Systems.

    Science.gov (United States)

    Fernández-Pumarega, Alejandro; Amézqueta, Susana; Farré, Sandra; Muñoz-Pascual, Laura; Abraham, Michael H; Fuguet, Elisabet; Rosés, Martí

    2017-08-01

    Environmental risk assessment requires information about the toxicity of the growing number of chemical products coming from different origins that can contaminate water and become toxicants to aquatic species or other living beings via the trophic chain. Direct toxicity measurements using sensitive aquatic species can be carried out but they may become expensive and ethically questionable. Literature refers to the use of chromatographic measurements that correlate to the toxic effect of a compound over a specific aquatic species as an alternative to get toxicity information. In this work, we have studied the similarity in the response of the toxicity to different species and we have selected eight representative aquatic species (including tadpoles, fish, water fleas, protozoan, and bacteria) with known nonspecific toxicity to chemical substances. Next, we have selected four chromatographic systems offering good perspectives for surrogation of the eight selected aquatic systems, and thus prediction of toxicity from the chromatographic measurement. Then toxicity has been correlated to the chromatographic retention factor. Satisfactory correlation results have been obtained to emulate toxicity in five of the selected aquatic species through some of the chromatographic systems. Other aquatic species with similar characteristics to these five representative ones could also be emulated by using the same chromatographic systems. The final aim of this study is to model chemical products toxicity to aquatic species by means of chromatographic systems to reduce in vivo testing.

  3. Acquisition of an Underway CTD System for the Flow Encountering Abrupt Topography DRI

    Science.gov (United States)

    2015-09-30

    Acquisition of an Underway CTD System for the Flow Encountering Abrupt Topography DRI T. M. Shaun Johnston Scripps Institution of Oceanography...westward flow in the North Equatorial Current (NEC) encounters tall, steep, submarine topography and islands. During the Flow Encountering Abrupt... Topography (FLEAT) DRI, investigators will determine: • Whether appreciable energy/momentum is lost from the large-scale NEC flow to smaller scales and

  4. Standard Format for Chromatographic-polarimetric System small samples assessment

    International Nuclear Information System (INIS)

    Naranjo, S.; Fajer, V.; Fonfria, C.; Patinno, R.

    2012-01-01

    The treatment of samples containing optically active substances to be evaluated as part of quality control of raw material entering industrial process, and also during the modifications exerted on it to obtain the desired final composition is still and unsolved problem for many industries. That is the case of sugarcane industry. Sometimes the troubles implied are enlarged because samples to be evaluated are not bigger than one milliliter. Reduction of gel beds in G-10 and G-50 chromatographic columns having an inner diameter of 16 mm, instead of 25, and bed heights adjustable to requirements by means of sliding stoppers to increase analytical power were evaluated with glucose and sucrose standards in concentrations from 1 to 10 g/dL, using aliquots of 1 ml without undesirable dilutions that could affect either detection or chromatographic profile. Assays with seaweed extracts gave good results that are shown. It is established the advantage to know concentration of a separated substance by the height of its peak and the savings in time and reagents resulting . Sample expanded uncertainty in both systems is compared. It is also presented several programs for data acquisition, storing and processing. (Author)

  5. Temperature Control of Gas Chromatograph Based on Switched Delayed System Techniques

    Directory of Open Access Journals (Sweden)

    Xiao-Liang Wang

    2014-01-01

    Full Text Available We address the temperature control problem of the gas chromatograph. We model the temperature control system of the gas chromatograph into a switched delayed system and analyze the stability by common Lyapunov functional technique. The PI controller parameters can be given based on the proposed linear matrix inequalities (LMIs condition and the designed controller can make the temperature of gas chromatograph track the reference signal asymptotically. An experiment is given to illustrate the effectiveness of the stability criterion.

  6. Automated chromatographic laccase-mediator-system activity assay.

    Science.gov (United States)

    Anders, Nico; Schelden, Maximilian; Roth, Simon; Spiess, Antje C

    2017-08-01

    To study the interaction of laccases, mediators, and substrates in laccase-mediator systems (LMS), an on-line measurement was developed using high performance anion exchange chromatography equipped with a CarboPac™ PA 100 column coupled to pulsed amperometric detection (HPAEC-PAD). The developed method was optimized for overall chromatographic run time (45 to 120 min) and automated sample drawing. As an example, the Trametes versicolor laccase induced oxidation of 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)-1,3-dihydroxypropane (adlerol) using 1-hydroxybenzotriazole (HBT) as mediator was measured and analyzed on-line. Since the Au electrode of the PAD detects only hydroxyl group containing substances with a limit of detection being in the milligram/liter range, not all products are measureable. Therefore, this method was applied for the quantification of adlerol, and-based on adlerol conversion-for the quantification of the LMS activity at a specific T. versicolor laccase/HBT ratio. The automated chromatographic activity assay allowed for a defined reaction start of all laccase-mediator-system reactions mixtures, and the LMS reaction progress was automatically monitored for 48 h. The automatization enabled an integrated monitoring overnight and over-weekend and minimized all manual errors such as pipetting of solutions accordingly. The activity of the LMS based on adlerol consumption was determined to 0.47 U/mg protein for a laccase/mediator ratio of 1.75 U laccase/g HBT. In the future, the automated method will allow for a fast screening of combinations of laccases, mediators, and substrates which are efficient for lignin modification. In particular, it allows for a fast and easy quantification of the oxidizing activity of an LMS on a lignin-related substrate which is not covered by typical colorimetric laccase assays. ᅟ.

  7. Statistical designs and response surface techniques for the optimization of chromatographic systems.

    Science.gov (United States)

    Ferreira, Sergio Luis Costa; Bruns, Roy Edward; da Silva, Erik Galvão Paranhos; Dos Santos, Walter Nei Lopes; Quintella, Cristina Maria; David, Jorge Mauricio; de Andrade, Jailson Bittencourt; Breitkreitz, Marcia Cristina; Jardim, Isabel Cristina Sales Fontes; Neto, Benicio Barros

    2007-07-27

    This paper describes fundamentals and applications of multivariate statistical techniques for the optimization of chromatographic systems. The surface response methodologies: central composite design, Doehlert matrix and Box-Behnken design are discussed and applications of these techniques for optimization of sample preparation steps (extractions) and determination of experimental conditions for chromatographic separations are presented. The use of mixture design for optimization of mobile phases is also related. An optimization example involving a real separation process is exhaustively described. A discussion about model validation is presented. Some applications of other multivariate techniques for optimization of chromatographic methods are also summarized.

  8. Spectrophotometric high-precision seawater pH determination for use in underway measuring systems

    Directory of Open Access Journals (Sweden)

    S. Aßmann

    2011-10-01

    Full Text Available Autonomous sensors are required for a comprehensive documentation of the changes in the marine carbon system and thus to differentiate between its natural variability and anthropogenic impacts. Spectrophotometric determination of pH – a key variable of the seawater carbon system – is particularly suited to achieve precise and drift-free measurements. However, available spectrophotometric instruments are not suitable for integration into automated measurement systems (e.g. FerryBox since they do not meet the major requirements of reliability, stability, robustness and moderate cost. Here we report on the development and testing of a~new indicator-based pH sensor that meets all of these requirements. This sensor can withstand the rough conditions during long-term deployments on ships of opportunity and is applicable to the open ocean as well as to coastal waters with a complex matrix and highly variable conditions. The sensor uses a high resolution CCD spectrometer as detector connected via optical fibers to a custom-made cuvette designed to reduce the impact of air bubbles. The sample temperature can be precisely adjusted (25 °C ± 0.006 °C using computer-controlled power supplies and Peltier elements thus avoiding the widely used water bath. The overall setup achieves a measurement frequency of 1 min−1 with a precision of ±0.0007 pH units, an average offset of +0.0005 pH units to a reference system, and an offset of +0.0081 pH units to a certified standard buffer. Application of this sensor allows monitoring of seawater pH in autonomous underway systems, providing a key variable for characterization and understanding of the marine carbon system.

  9. Simple gas chromatographic system for analysis of microbial respiratory gases

    Science.gov (United States)

    Carle, G. C.

    1972-01-01

    Dual column ambient temperature system, consisting of pair of capillary columns, microbead thermistor detector and micro gas-sampling valve, is used in remote life-detection equipment for space experiments. Performance outweighs advantage gained by utilizing single-column systems to reduce weight, conserve carrier gas and operate at lower power levels.

  10. Characterization and modeling of nonlinear hydrophobic interaction chromatographic systems.

    Science.gov (United States)

    Nagrath, Deepak; Xia, Fang; Cramer, Steven M

    2011-03-04

    A general rate model was employed in concert with a preferential interaction quadratic adsorption isotherm for the characterization of HIC resins and the prediction of solute behavior in these separation systems. The results indicate that both pore and surface diffusion play an important role in protein transport in HIC resins. The simulated and experimental solute profiles were compared for two model proteins, lysozyme and lectin, for both displacement and gradient modes of chromatography. Our results indicate that a modeling approach using the generate rate model and preferential interaction isotherm can accurately predict the shock layer response in both gradient and displacement chromatography in HIC systems. While pore and surface diffusion played a major role and were limiting steps for proteins, surface diffusion was seen to play less of a role for the displacer. The results demonstrate that this modeling approach can be employed to describe the behavior of these non-linear HIC systems, which may have implications for the development of more efficient preparative HIC separations. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Response surface based optimization of system variables for liquid chromatographic analysis of candesartan cilexetil

    Directory of Open Access Journals (Sweden)

    Jagdish V. Manwar

    2017-01-01

    Full Text Available A statistical optimization method was successfully employed to study the effect of system variables on the chromatographic analysis of candesartan cilexetil. The effect of simultaneously varying the flow rate, temperature and concentration of acetonitrile in the mobile phase in water (0.05% O-phosphoric acid (0.05% OPA was studied to optimize the method to obtain excellent chromatographic responses. The optimum conditions were determined with the help of response surface methodology (RSM using Plackett–Burman designs. From the response surface graphs, the optimum regions were selected to be −1, +1 and +1 for flow rate (0.8 ml/min, temperature (25 °C and concentration of acetonitrile in water (0.05% OPA (80%, v/v, respectively. Pareto ranking indicated that the most important variable affecting the selected responses was temperature. Linearity was found in the range of 10 of 50 μg/ml, with a significantly high correlation coefficient (r2 = 0.9989. The limits of detection and quantitation were 0.12 and 0.33 μg/ml, respectively. The developed method was validated for accuracy, precision, linearity, range, and specificity. The method was successfully used to analyze a tablet formulation to assess the chromatographic performance, and it was found to be 99.03%, with a standard deviation of ±0.04.

  12. Autonomous gas chromatograph system for Thermal Enhanced Vapor Extraction System (TEVES) proof of concept demonstration

    International Nuclear Information System (INIS)

    Peter, F.J.; Laguna, G.R.

    1996-09-01

    An autonomous gas chromatograph system was designed and built to support the Thermal Enhanced Vapor Extraction System (TEVES) demonstration. TEVES is a remediation demonstration that seeks to enhance an existing technology (vacuum extraction) by adding a new technology (soil heating). A pilot scale unit was set up at one of the organic waste disposal pits at the Sandia National Laboratories Chemical Waste Landfill (CWL) in Tech Area 3. The responsibility for engineering a major part of the process instrumentation for TEVES belonged to the Manufacturing Control Subsystems Department. The primary mission of the one-of-a-kind hardware/software system is to perform on-site gas sampling and analysis to quantify a variety of volatile organic compounds (VOCs) from various sources during TEVES operations. The secondary mission is to monitor a variety of TEVES process physical parameters such as extraction manifold temperature, pressure, humidity, and flow rate, and various subsurface pressures. The system began operation in September 1994 and was still in use on follow-on projects when this report was published

  13. A Gas Chromatographic System for the Detection of Ethylene Gas Using Ambient Air as a Carrier Gas.

    Science.gov (United States)

    Zaidi, Nayyer Abbas; Tahir, Muhammad Waseem; Vellekoop, Michael J; Lang, Walter

    2017-10-07

    Ethylene gas is a naturally occurring gas that has an influence on the shelf life of fruit during their transportation in cargo ships. An unintentional exposure of ethylene gas during transportation results in a loss of fruit. A gas chromatographic system is presented here for the detection of ethylene gas. The gas chromatographic system was assembled using a preconcentrator, a printed 3D printed gas chromatographic column, a humidity sensor, solenoid valves, and an electrochemical ethylene gas sensor. Ambient air was used as a carrier gas in the gas chromatographic system. The flow rate was fixed to 10 sccm. It was generated through a mini-pump connected in series with a mass flow controller. The metal oxide gas sensor is discussed with its limitation in ambient air. The results show the chromatogram obtained from metal oxide gas sensor has low stability, drifts, and has uncertain peaks, while the chromatogram from the electrochemical sensor is stable and precise. Furthermore, ethylene gas measurements at higher ppb concentration and at lower ppb concentration were demonstrated with the electrochemical ethylene gas sensor. The system separates ethylene gas and humidity. The chromatograms obtained from the system are stable, and the results are 1.2% repeatable in five similar measurements. The statistical calculation of the gas chromatographic system shows that a concentration of 2.3 ppb of ethylene gas can be detected through this system.

  14. A novel strategy for quantitative analysis of the formulated complex system using chromatographic fingerprints combined with some chemometric techniques.

    Science.gov (United States)

    Zhong, Xuan; Yan, Jun; Li, Yan-Chun; Kong, Bo; Lu, Hong-Bing; Liang, Yi-Zeng

    2014-11-28

    In this work, a novel strategy based on chromatographic fingerprints and some chemometric techniques is proposed for quantitative analysis of the formulated complex system. Here, the formulated complex system means a formulated type of complicated analytical system containing more than one kind of raw material under some concentration composition according to a certain formula. The strategy is elaborated by an example of quantitative determination of mixtures consist of three essential oils. Three key steps of the strategy are as follows: (1) remove baselines of the chromatograms; (2) align retention time; (3) conduct quantitative analysis using multivariate regression with entire chromatographic profiles. Through the determination of concentration compositions of nine mixtures arranged by uniform design, the feasibility of the proposed strategy is validated and the factors that influence the quantitative result are also discussed. This strategy is proved to be viable and the validation indicates that quantitative result obtained using this strategy mainly depends on the efficiency of the alignment method as well as chromatographic peak shape of the chromatograms. Previously, chromatographic fingerprints were only used for identification and/or recognition of some products. This work demonstrates that with the assistance of some effective chemometric techniques, chromatographic fingerprints are also potential and promising in solving quantitative problems of complex analytical systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Design of an Autonomous Underwater Vehicle (AUV) Charging System for Underway, Underwater Recharging

    Science.gov (United States)

    2014-05-09

    method of power transfer. Induction is less common than conduction. Rather than transferring power directly through a physical electrical...interesting aspects of this particular system include the “ hockey puck” coupling design of the induction coils. Transmit and receive coils are inlayed...The switching frequency for any application cannot be increased to an arbitrarily high value. Several physically limitations exist preventing

  16. Optical Remote Sensing Algorithm Validation using High-Frequency Underway Biogeochemical Measurements in Three Large Global River Systems

    Science.gov (United States)

    Kuhn, C.; Richey, J. E.; Striegl, R. G.; Ward, N.; Sawakuchi, H. O.; Crawford, J.; Loken, L. C.; Stadler, P.; Dornblaser, M.; Butman, D. E.

    2017-12-01

    More than 93% of the world's river-water volume occurs in basins impacted by large dams and about 43% of river water discharge is impacted by flow regulation. Human land use also alters nutrient and carbon cycling and the emission of carbon dioxide from inland reservoirs. Increased water residence times and warmer temperatures in reservoirs fundamentally alter the physical settings for biogeochemical processing in large rivers, yet river biogeochemistry for many large systems remains undersampled. Satellite remote sensing holds promise as a methodology for responsive regional and global water resources management. Decades of ocean optics research has laid the foundation for the use of remote sensing reflectance in optical wavelengths (400 - 700 nm) to produce satellite-derived, near-surface estimates of phytoplankton chlorophyll concentration. Significant improvements between successive generations of ocean color sensors have enabled the scientific community to document changes in global ocean productivity (NPP) and estimate ocean biomass with increasing accuracy. Despite large advances in ocean optics, application of optical methods to inland waters has been limited to date due to their optical complexity and small spatial scale. To test this frontier, we present a study evaluating the accuracy and suitability of empirical inversion approaches for estimating chlorophyll-a, turbidity and temperature for the Amazon, Columbia and Mississippi rivers using satellite remote sensing. We demonstrate how riverine biogeochemical measurements collected at high frequencies from underway vessels can be used as in situ matchups to evaluate remotely-sensed, near-surface temperature, turbidity, chlorophyll-a derived from the Landsat 8 (NASA) and Sentinel 2 (ESA) satellites. We investigate the use of remote sensing water reflectance to infer trophic status as well as tributary influences on the optical characteristics of the Amazon, Mississippi and Columbia rivers.

  17. [Research on the application of grey system theory in the pattern recognition for chromatographic fingerprints of traditional Chinese medicine].

    Science.gov (United States)

    Wei, Hang; Lin, Li; Zhang, Yuan; Wang, Lianjing; Chen, Qinqun

    2013-02-01

    A model based on grey system theory was proposed for pattern recognition in chromatographic fingerprints (CF) of traditional Chinese medicine (TCM). The grey relational grade among the data series of each testing CF and the ideal CF was obtained by entropy and norm respectively, then the principle of "maximal matching degree" was introduced to make judgments, so as to achieve the purpose of variety identification and quality evaluation. A satisfactory result in the high performance liquid chromatographic (HPLC) analysis of 56 batches of different varieties of Exocarpium Citrus Grandis was achieved with this model. The errors in the chromatographic fingerprint analysis caused by traditional similarity method or grey correlation method were overcome, as the samples of Citrus grandis 'Tomentosa' and Citrus grandis (L.) Osbeck were correctly distinguished in the experiment. Furthermore in the study on the variety identification of Citrus grandis 'Tomentosa', the recognition rates were up to 92.85%, although the types and the contents of the chemical compositions of the samples were very close. At the same time, the model had the merits of low computation complexity and easy operation by computer programming. The research indicated that the grey system theory has good applicability to pattern recognition in the chromatographic fingerprints of TCM.

  18. Evaluation of selectivity in homologous multimodal chromatographic systems using in silico designed antibody fragment libraries.

    Science.gov (United States)

    Karkov, Hanne Sophie; Woo, James; Krogh, Berit Olsen; Ahmadian, Haleh; Cramer, Steven M

    2015-12-24

    This study describes the in silico design, surface property analyses, production and chromatographic evaluations of a diverse set of antibody Fab fragment variants. Based on previous findings, we hypothesized that the complementarity-determining regions (CDRs) constitute important binding sites for multimodal chromatographic ligands. Given that antibodies are highly diversified molecules and in particular the CDRs, we set out to examine the generality of this result. For this purpose, four different Fab fragments with different CDRs and/or framework regions of the variable domains were identified and related variants were designed in silico. The four Fab variant libraries were subsequently generated by site-directed mutagenesis and produced by recombinant expression and affinity purification to enable examination of their chromatographic retention behavior. The effects of geometric re-arrangement of the functional moieties on the multimodal resin ligands were also investigated with respect to Fab variant retention profiles by comparing two commercially available multimodal cation-exchange ligands, Capto MMC and Nuvia cPrime, and two novel multimodal ligand prototypes. Interestingly, the chromatographic data demonstrated distinct selectivity trends between the four Fab variant libraries. For three of the Fab libraries, the CDR regions appeared as major binding sites for all multimodal ligands. In contrast, the fourth Fab library displayed a distinctly different chromatographic behavior, where Nuvia cPrime and related multimodal ligand prototypes provided markedly improved selectivity over Capto MMC. Clearly, the results illustrate that the discriminating power of multimodal ligands differs between different Fab fragments. The results are promising indications that multimodal chromatography using the appropriate multimodal ligands can be employed in downstream bioprocessing for challenging selective separation of product related variants. Copyright © 2015 Elsevier B

  19. Core-shell in liquid chromatography: application for determining sulphonamides in feed and meat using conventional chromatographic systems

    Directory of Open Access Journals (Sweden)

    Antonio Armentano

    2016-12-01

    Full Text Available A C18 column packed with core-shell particles was used for the chromatographic separation of sulphonamides in feed and meat by a conventional high performance liquid chromatography system coupled with a diode array detector. Two analytical methods, already used in our laboratory, have been modified without any changes in the extraction and clean-up steps and in the liquid chromatography instrumentation. Chromatographic conditions applied on a traditional 5-μm column have been optimized on a column packed with 2.6 μm core-shell particles. A binary mobile phase [acetate buffer solution at pH 4.50 and a mixture of methanol acetonitrile 50: 50 (v/v] was employed in gradient mode at the flow rate of 1.2 mL with an injection volume of 6 μL. These chromatographic conditions allow the separation of 13 sulphonamides with an entire run of 13 minutes. Preliminary studies have been carried out comparing blanks and spiked samples of feed and meat. A good resolution and the absence of interferences were achieved in chromatograms for both matrices. Since no change was made to the sample preparation, the optimized method does not require a complete revalidation and can be used to make routine analysis faster.

  20. A unified ion chromatographic system for the determination of acidity and alkalinity.

    Science.gov (United States)

    Hu, W; Hasebe, K; Iles, A; Tanaka, K

    2001-12-01

    A unified ion chromatographic (IC) system was developed for the determination of acidity or alkalinity. Separation column used was a reversed-phase ODS packed column, which had been modified by saturating it with lithium dodecylsulfate. A slightly acidified LiCl (50 mM LiCl and 0.05 mM H2SO4) aqueous solution was used as the eluent. By conditioning the separation column in this way, both H+ and Li+ ions became bound to the stationary phase. Dodecylsulfate groups with Li+ counterions acted as cation-exchange sites for the separation of hydrogen ions (free acidity determination). The remaining dodecylsulfate groups, with H+ counterions acted as a titrant, which reacted with basic species (total alkalinity determination). The acidity or alkalinity of each sample was measured according to the change in conductance from the eluent baseline level. A positive peak was observed from those samples with a free acidity greater than their total alkalinity, due to the separation/elution of free H+ ions. A negative peak was observed from those samples with a free acidity less than their total alkalinity. This was due to an equivalent amount of eluent H+ ions being re-supplied to the stationary phase while the "solid titrant" consumed by the acid-base reaction was regenerated. The retention time for the peak corresponding to the acidity or alkalinity was governed by the retention time for H+ ions in this IC system. Samples with a free acidity greater than 2.25 microM (tested by determination of H+ ions in pure water in equilibrium with atmospheric CO2) could be analyzed by this method. A very similar detection level was obtained for alkalinity (tested by analyzing standard aqueous NaHCO3 solutions). Aqueous solutions of some strong-acid/strong-base inorganic salts were found to be slightly alkaline. This was measured as a percentage, relative to an NaHCO3 solution at the same concentration. Solutions of NaClO4, Na2SO4, NaI, NaNO3, and NaCl, gave comparative alkalinity values of 8

  1. Development of a chromatographic low pressure flow injection system: application to the analysis of methylxanthines in coffee.

    Science.gov (United States)

    Santos, João Rodrigo; Rangel, António O S S

    2012-02-17

    In this work, the coupling of a commercial monolithic column to a traditional low pressure FIA system is proposed for the analysis of theobromine, theophylline and caffeine in coffee brewed samples using UV detection. The parameters mobile phase composition, flow rate and loop volume were evaluated and discussed considering the various chromatographic parameters in order to enable resolution of the methylxanthines studied within the coffee brewed sample matrix. The analyses of methylxanthines in coffee brewed samples by the proposed methodology were in good agreement with those obtained by the reference procedure based on HPLC. Relative errors were below 6% for all samples analyzed. Detection limits in the selected experimental conditions were within 10(-6)M range for theobromine and theophylline, and 10(-5) M for caffeine. The determination rate of the three methylxanthines for coffee brewed samples was ca of 10 h(-1). The main advantage of the proposed flow system was the possibility to perform chromatographic separations in low pressure flow systems. This substantial improvement was achieved due to the compatibility of monolithic columns within the flow injection system surpassing in this way one of the main handicaps of traditional flow analysis systems. Additional features of the strategy presented were low cost, efficiency, high versatility and low reagent consumption comparing to HPLC methodologies usually followed in the case study herein presented. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using gas chromatograph and other instruments from the LILLOOET in the Coastal Waters of SE Alaska, Coral Sea and others from 1988-02-04 to 1988-02-20 (NODC Accession 0000439)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0000439 includes chemical, meteorological, physical and underway - surface data collected from LILLOOET in the Coastal Waters of SE Alaska, Coral Sea,...

  3. A novel two-dimensional liquid chromatographic system for the online toxicity prediction of pharmaceuticals and related substances

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian; Xu, Li [Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030 (China); Shi, Zhi-guo, E-mail: shizg@whu.edu.cn [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Hu, Min [Hubei Instrument for Food and Drug Control, Wuhan (China)

    2015-08-15

    Highlights: • A novel two-dimensional liquid chromatographic system was developed. • The 1st dimension was ODS to separate components in the sample. • The 2nd dimension was biopartitioning micellar chromatography to predict toxicity. • The system was used to screen toxicity of pharmaceuticals and related substances. • It was promising for fast online toxicity screening of complex sample in one step. - Abstract: In this study, a novel two-dimensional liquid chromatographic (2D-LC) system was developed for simultaneous separation and toxicity prediction of pharmaceutical and its related substances. A conventional ODS column was used on the 1st-D to separate the sample; while, bio-partitioning micellar chromatography served as the 2nd-D to predict toxicity of the components. The established system was tested for the toxicity of ibuprofen and its impurities with known toxicity. With only one injection, ibuprofen and its impurities were separated on the 1st-D; and LC50 values of individual impurity were obtained based on the quantitative retention–activity relationships, which agreed well with the reported data. Furthermore, LC50 values of photolysis transformation products (TPs) of carprofen, ketoprofen and diclofenac acid (as unknown compounds) were screened in this 2D-LC system, which could be an indicator of the toxicity of these TPs and was meaningful for the environmental monitoring and drinking water treatment. The established 2D-LC system was cost-effective, time-saving and reliable, and was promising for fast online screening of toxicity of known and unknown analytes in the complex sample in a single step. It may find applications in environment, pharmaceutical and food, etc.

  4. A novel two-dimensional liquid chromatographic system for the online toxicity prediction of pharmaceuticals and related substances

    International Nuclear Information System (INIS)

    Li, Jian; Xu, Li; Shi, Zhi-guo; Hu, Min

    2015-01-01

    Highlights: • A novel two-dimensional liquid chromatographic system was developed. • The 1st dimension was ODS to separate components in the sample. • The 2nd dimension was biopartitioning micellar chromatography to predict toxicity. • The system was used to screen toxicity of pharmaceuticals and related substances. • It was promising for fast online toxicity screening of complex sample in one step. - Abstract: In this study, a novel two-dimensional liquid chromatographic (2D-LC) system was developed for simultaneous separation and toxicity prediction of pharmaceutical and its related substances. A conventional ODS column was used on the 1st-D to separate the sample; while, bio-partitioning micellar chromatography served as the 2nd-D to predict toxicity of the components. The established system was tested for the toxicity of ibuprofen and its impurities with known toxicity. With only one injection, ibuprofen and its impurities were separated on the 1st-D; and LC50 values of individual impurity were obtained based on the quantitative retention–activity relationships, which agreed well with the reported data. Furthermore, LC50 values of photolysis transformation products (TPs) of carprofen, ketoprofen and diclofenac acid (as unknown compounds) were screened in this 2D-LC system, which could be an indicator of the toxicity of these TPs and was meaningful for the environmental monitoring and drinking water treatment. The established 2D-LC system was cost-effective, time-saving and reliable, and was promising for fast online screening of toxicity of known and unknown analytes in the complex sample in a single step. It may find applications in environment, pharmaceutical and food, etc

  5. Automated-process gas-chromatograph system for use in accelerated corrosion testing of HTGR core-support posts

    International Nuclear Information System (INIS)

    Harper, R.E.; Herndon, P.G.

    1982-01-01

    An automated-process gas chromatograph is the heart of a gaseous-impurities-analysis system developed for the Oak Ridge National Laboratory Core Support Performance Test, at which graphite core-support posts for high-temperature gas-cooled fission reactors are being subjected to accelerated corrosion tests under tightly controlled conditions of atmosphere and temperature. Realistic estimation of in-core corrosion rates is critically dependent upon the accurate measurement of low concentrations of CO, CO 2 , CH 4 , H 2 , and O 2 in the predominantly helium atmosphere. In addition, the capital and labor investment associated with each test puts a premium upon the reliability of the analytical system, as excessive downtime or failure to obtain accurate data would result in unacceptable costs and schedule delays. After an extensive survey of available measurement techniques, gas chromatography was chosen for reasons of accuracy, flexibility, good-performance record, and cost

  6. Chromatographic separation of rhenium in alumina-methanol/sulfuric acid system

    International Nuclear Information System (INIS)

    Oguma, Koichi

    1983-01-01

    The adsorption behavior of a number of metals on alumina was surveyed in a methanol-(0.005 -- 0.5) M H 2 SO 4 (3 : 1 v/v) developing solvent by thin-layer chromatography. Over the acid concentration range tested, Re(VII) does not favor the alumina phase to any great extent while the most other metals are strongly adsorbed on alumina. These findings allowed to establish a column chromatographic technique for selective separation of rhenium in a methanol-0.05 M H 2 SO 4 (3 : 1 v/v) eluent. The separation technique thus established was applied to molybdenite analysis for rhenium. About 100-mg powdered sample containing ca. 100 ppm rhenium was decomposed with HNO 3 and then evaporated nearly to dryness. The residue was dissolved in NH 4 OH and the excess NH 4 OH was expelled by evaporation to dryness. The residue was dissolved in 2.5-ml 0.5 M H 2 SO 4 and 10-ml water, the insoluble materials filtered off, and the filtrate diluted to exactly 25 ml with water. A 10-ml aliquot of this solution was mixed with 30-ml methanol and the mixture was passed through a column (diameter 15 mm, bed height 30 mm) containing 5 g of alumina. The column was then washed with 20 ml of a methanol-0.05 M H 2 SO 4 (3 : 1 v/v) mixture. Rhenium was recovered from the loaded solution and the subsequent washings, and was determined spectrophotometrically with Methylene Blue as a chromogenic reagent. The values obtained from four samples of molybdenite are in good agreement with those obtained by neutron activation analysis. The relative standard deviation (n = 4; calculated from the range) was between 2.0 and 5.2 %. (author)

  7. Characterizing the selectivity of stationary phases and organic modifiers in reversed-phase high-performance liquid chromatographic systems by a general solvation equation using gradient elution.

    Science.gov (United States)

    Du, C M; Valko, K; Bevan, C; Reynolds, D; Abraham, M H

    2000-11-01

    Retention data for a set of 69 compounds using rapid gradient elution are obtained on a wide range of reversed-phase stationary phases and organic modifiers. The chromatographic stationary phases studied are Inertsil (IN)-ODS, pentafluorophenyl, fluoro-octyl, n-propylcyano, Polymer (PLRP-S 100), and hexylphenyl. The organic solvent modifiers are 2,2,2-trifluoroethanol (TFE); 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP); isopropanol; methanol (MeOH); acetonitrile (AcN); tetrahydrofuran; 1,4-dioxane; N,N-dimethylformamide; and mixed solvents of dimethylsulfoxide (DMSO) with AcN and DMSO with MeOH (1:1). A total of 25 chromatographic systems are analyzed using a solvation equation. In general, most of the systems give reasonable statistics. The selectivity of the reversed phase-high-performance liquid chromatographic (HPLC) systems with respect to the solute's dipolarity-polarity, hydrogen-bond acidity, and basicity are reflected in correspondingly large coefficients in the solvation equation. We wanted to find the most orthogonal HPLC systems, showing the highest possible selectivity difference in order to derive molecular descriptors using the gradient retention times of a compound. We selected eight chromatographic systems that have a large range of coefficients of interest (s, a, and b) similar to those found in water-solvent partitions used previously to derive molecular descriptors. The systems selected are IN-ODS phases with AcN, MeOH, TFE, and HFIP as mobile phase, PLRP-S 100 phase with AcN, propylcyano phase with AcN and MeOH, and fluorooctyl phase with TFE. Using the retention data obtained for a compound in the selected chromatographic systems, we can estimate the molecular descriptors with the faster and simpler gradient elution method.

  8. Automated chromatographic system with polarimetric detection laser applied in the control of fermentation processes and seaweed extracts characterization

    International Nuclear Information System (INIS)

    Fajer, V.; Naranjo, S.; Mora, W.; Patinno, R.; Coba, E.; Michelena, G.

    2012-01-01

    There are presented applications and innovations of chromatographic and polarimetric systems in which develop methodologies for measuring the input molasses and the resulting product of a fermentation process of alcohol from a rich honey and evaluation of the fermentation process honey servery in obtaining a drink native to the Yucatan region. Composition was assessed optically active substances in seaweed, of interest to the pharmaceutical industry. The findings provide measurements alternative raw materials and products of the sugar industry, beekeeping and pharmaceutical liquid chromatography with automated polarimetric detection reduces measurement times up to 15 min, making it comparable to the times of high chromatography resolution, significantly reducing operating costs. By chromatography system with polarimetric detection (SCDP) is new columns have included standard size designed by the authors, which allow process samples with volumes up to 1 ml and reduce measurement time to 15 min, decreasing to 5 times the volume sample and halving the time of measurement. Was evaluated determining the concentration of substances using the peaks of the chromatograms obtained for the different columns and calculate the uncertainty of measurements. The results relating to the improvement of a data acquisition program (ADQUIPOL v.2.0) and new programs for the preparation of chromatograms (CROMAPOL CROMAPOL V.1.0 and V.1.2) provide important benefits, which allow a considerable saving of time the processing of the results and can be applied in other chromatography systems with the appropriate adjustments. (Author)

  9. A low-power pressure-and temperature-programmed separation system for a micro gas chromatograph.

    Energy Technology Data Exchange (ETDEWEB)

    Sacks, Richard D. (University of Michigan, Ann Arbor, MI); Robinson, Alex Lockwood (Advanced Sensor Technologies, Albuquerque, NM); Lambertus, Gordon R. (University of Michigan, Ann Arbor, MI); Potkay, Joseph A. (University of Michigan, Ann Arbor, MI); Wise, Kensall D. (University of Michigan, Ann Arbor, MI)

    2006-10-01

    This thesis presents the theory, design, fabrication and testing of the microvalves and columns necessary in a pressure- and temperature-programmed micro gas chromatograph ({micro}GC). Two microcolumn designs are investigated: a bonded Si-glass column having a rectangular cross section and a vapor-deposited silicon oxynitride (Sion) column having a roughly circular cross section. Both microcolumns contain integrated heaters and sensors for rapid, controlled heating. The 3.2 cm x 3.2 cm, 3 m-long silicon-glass column, coated with a non-polar polydimethylsiloxane (PDMS) stationary phase, separates 30 volatile organic compounds (VOCs) in less than 6 min. This is the most efficient micromachined column reported to date, producing greater than 4000 plates/m. The 2.7 mm x 1.4 mm Sion column eliminates the glass sealing plate and silicon substrate using deposited dielectrics and is the lowest power and fastest GC column reported to date; it requires only 11 mW to raise the column temperature by 100 C and has a response time of 11s and natural temperature ramp rate of 580 C/min. A 1 m-long PDMS-coated Sion microcolumn separates 10 VOCs in 52s. A system-based design approach was used for both columns.

  10. Parabens determination in cosmetic and personal care products exploiting a multi-syringe chromatographic (MSC) system and chemiluminescent detection.

    Science.gov (United States)

    Rodas, Melisa; Portugal, Lindomar A; Avivar, Jessica; Estela, José Manuel; Cerdà, Víctor

    2015-10-01

    Parabens are widely used in dairy products, such as in cosmetics and personal care products. Thus, in this work a multi-syringe chromatographic (MSC) system is proposed for the first time for the determination of four parabens: methylparaben (MP), ethylparaben (EP), propylparaben (PP) and butylparaben (BP) in cosmetics and personal care products, as a simpler, practical, and low cost alternative to HPLC methods. Separation was achieved using a 5mm-long precolumn of reversed phase C18 and multi-isocratic separation, i.e. using two consecutive mobile phases, 12:88 acetonitrile:water and 28:72 acetonitrile:water. The use of a multi-syringe buret allowed the easy implementation of chemiluminescent (CL) detection after separation. The chemiluminescent detection is based on the reduction of Ce(IV) by p-hydroxybenzoic acid, product of the acid hydrolysis of parabens, to excite rhodamine 6G (Rho 6G) and measure the resulting light emission. Multivariate designs combined with the concepts of multiple response treatments and desirability functions have been employed to simultaneously optimize and evaluate the responses. The optimized method has proved to be sensitive and precise, obtaining limits of detection between 20 and 40 µg L(-1) and RSD <4.9% in all cases. The method was satisfactorily applied to cosmetics and personal care products, obtaining no significant differences at a confidence level of 95% comparing with the HPLC reference method. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Flow system for optical activity detection of vegetable extracts employing molecular exclusion continuous chromatographic detection

    Science.gov (United States)

    Fajer, V.; Rodríguez, C.; Naranjo, S.; Mesa, G.; Mora, W.; Arista, E.; Cepero, T.; Fernández, H.

    2006-02-01

    The combination of molecular exclusion chromatography and laser polarimetric detection has turned into a carbohydrate separation and quantification system for plant fluids of industrial value, making it possible the evaluation of the quality of sugarcane juices, agave juices and many other plant extracts. Some previous papers described a system where liquid chromatography separation and polarimetric detection using a LASERPOL 101M polarimeter with He-Ne light source allowed the collection and quantification of discrete samples for analytical purposes. In this paper, the authors are introducing a new improved system which accomplishes polarimetric measurements in a continuous flux. Chromatograms of several carbohydrates standard solutions were obtained as useful references to study juice quality of several sugarcane varieties under different physiological conditions. Results by either discrete or continuous flux systems were compared in order to test the validation of the new system. An application of the system to the diagnostics of scalded foliar is described. A computer program allowing the output of the chromatograms to a display on line and the possibility of digital storing, maxima detections, zone integration, and some other possibilities make this system very competitive and self-convincing.

  12. Chromatographic study of element 104 in the system HCl/triisobutylphosphate (TBP)

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, R.; Paulus, W.; Kratz, J.V.; Seibert, A.; Thoerle, P.; Zauner, S. [Mainz Univ. (Germany); Bruechle, W.; Jaeger, E.; Schaedel, M.; Schausten, B. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Schumann, D. [Technische Univ. Dresden (Germany); Eichler, B.; Jost, D.T.; Tuerler, A.; Gaeggeler, H.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    With the Automated Rapid Chemistry Apparatus ARCA chromatic experiments have been performed using the chemical system hydrochloric acid/tributylphosphate with element 104 (Rf). The results indicate that Rf behaves more like its homolog Hf. (author) 2 figs., 5 refs.

  13. NOAA Ship Nancy Foster Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Nancy Foster Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  14. NOAA Ship Delaware II Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Delaware II Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  15. NOAA Ship Pisces Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Pisces Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  16. NOAA Ship Miller Freeman Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Miller Freeman Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  17. NOAA Ship Gordon Gunter Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Gordon Gunter Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  18. NOAA Ship Hi'ialakai Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Hi'ialakai Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  19. Research Ship Healy Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Healy Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  20. NOAA Ship Pisces Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Pisces Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  1. NOAA Ship Oregon II Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Oregon II Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  2. Research Ship Knorr Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Knorr Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  3. Research Ship Oceanus Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Oceanus Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  4. NOAA Ship Ronald Brown Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Ronald Brown Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  5. NOAA Ship Oscar Dyson Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Oscar Dyson Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  6. Research Ship Melville Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Melville Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  7. Research Ship Kilo Moana Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Kilo Moana Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  8. Research Ship Tangaroa Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Tangaroa Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  9. NOAA Ship Ronald Brown Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Ronald Brown Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  10. NOAA Ship Okeanos Explorer Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Okeanos Explorer Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System...

  11. NOAA Ship Ka'imimoana Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Ka'imimoana Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  12. NOAA Ship Oscar Dyson Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Oscar Dyson Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  13. NOAA Ship Oregon II Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Oregon II Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  14. NOAA Ship Fairweather Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Fairweather Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  15. Research Ship Atlantis Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Atlantis Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  16. NOAA Ship Rainier Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Rainier Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  17. NOAA Ship Gordon Gunter Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Gordon Gunter Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  18. NOAA Ship Rainier Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Rainier Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  19. NOAA Ship Fairweather Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Fairweather Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  20. NOAA Ship Nancy Foster Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Nancy Foster Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  1. Evidence for the Presence of Colloidal Metacinnabar in Mercury-DOM-Sulfide Systems as Determined by a Chromatographic-EXAFS Method

    Science.gov (United States)

    Gerbig, C. A.; Kim, C. S.; Moreau, J. W.; Aiken, G. R.; Krabbenhoft, D. P.; Nagy, K. L.; Ryan, J. N.

    2008-12-01

    Mercury speciation and bioavailability is frequently thought to be controlled by the presence of dissolved organic matter (DOM) and sulfide. However, the speciation of mercury in these systems is poorly understood due to the complex interactions of mercury, DOM, and sulfide. We have developed a combined chromatographic-extended x-ray absorption fine structure (EXAFS) spectroscopy approach to determine the speciation of the hydrophobic fraction of mercury species in both sulfide-free and sulfide-rich (100 μM) experimental systems that also contain dissolved organic matter isolated from several locations, including the Florida Everglades. Chromatographic experiments were carried out with and without sulfide at varied mercury concentrations ranging from 0.1 nM to 1 μM in the presence of 10 mg L-1 DOM. The method consists of equilibrating the mercury-DOM with or without sulfide for 20 h (pH 6.5, I 0.1M) followed by chromatographic fractionation and concentration on a small column of C18 resin. Greater than 80% of the mercury in all solutions was found to be hydrophobic with respect to the resin when the mercury was interacting with the strong-binding DOM sites. The chromatographic behavior of solutions with and without sulfide was distinctly different. Sulfide-free mercury-DOM systems exhibited typical chromatographic behavior exemplified by resin saturation and subsequent breakthrough of mercury species. The sulfide-rich system exhibited very high resin affinity for almost all mercury species in solution and no apparent breakthrough, regardless of the ratio of mercury to DOM. Similar chromatographic experiments were carried out with and without sulfide at mercury concentrations as low as 250 nM and a DOM concentration of 50 mg L-1. EXAFS spectroscopy at the mercury LIII edge clearly showed spectra consistent with metacinnabar (HgS) as the dominant form of mercury adsorbed to the resin under sulfidic conditions despite the fact that no bulk precipitation was observed

  2. Gas chromatographical detection of oxygenated compounds in gasoline with a switching capillary column system

    Energy Technology Data Exchange (ETDEWEB)

    Winskowski, J.

    1988-01-01

    In this paper the separation and identification of oxygenated compounds in gasoline is described. Using a two-dimensional column system swtiching from a high polar TCEP-capillary column (1,2,3-Tris(cyanoethoxy)propan) to a non-polar column with a greater filmthickness of DMS (dimethylpolysiloxane) acetone and alcohols as well as further ketones and esters were separated from the hydrocarbon matrix without any difficulties. The analysis of the ethers is more difficult, especially in presence of olefinic compounds, mainly occuring in crack and pyrolysis gasoline, and can only be carried out if highly efficient capillary columns are applied. A test mixture is proposed which can be used to find out whether column systems are suitable for this purpose. The total amount of oxygen can be calculated from the single components after identification. (orig.)

  3. Retention behavior of selected alkaloids in Reversed Phase micellar chromatographic systems

    Directory of Open Access Journals (Sweden)

    Petruczynik Anna

    2015-06-01

    Full Text Available In this work, the effects of sodium dodecyl sulfate (SDS concentrations on retention, separation selectivity, peak shapes and systems efficiency were investigated. Herein, the retention data for 11 alkaloids were determined on an RP18 silica column with mobile phases containing methanol as organic modifier, with acetate buffer at pH 3.5, and, subsequently, with the addition of sodium dodecyl sulfate (SDS. The results of this study indicate that the retention of alkaloids decreases with the increase of SDS concentration in the mobile phase. The increase of SDS concentration, however, leads to the significantly improvement of peak symmetry and the increase of theoretical plate number in all cases. The best system efficiency for most of the investigated alkaloids was obtained in a mobile phase containing 0.1 M SDS, while most symmetrical peaks were obtained through the addition of 0.3 M of SDS to the mobile phase.

  4. Alternative chromatographic system for the quality control of lipophilic technetium-99m radiopharmaceuticals such as [99mTc(MIBI6]+

    Directory of Open Access Journals (Sweden)

    D.P. Faria

    2015-01-01

    Full Text Available Knowledge of the radiochemical purity of radiopharmaceuticals is mandatory and can be evaluated by several methods and techniques. Planar chromatography is the technique normally employed in nuclear medicine since it is simple, rapid and usually of low cost. There is no standard system for the chromatographic technique, but price, separation efficiency and short time for execution must be considered. We have studied an alternative system using common chromatographic stationary phase and alcohol or alcohol:chloroform mixtures as the mobile phase, using the lipophilic radiopharmaceutical [99mTc(MIBI6]+ as a model. Whatman 1 modified phase paper and absolute ethanol, Whatman 1 paper and methanol:chloroform (25:75, Whatman 3MM paper and ethanol:chloroform (25:75, and the more expensive ITLC-SG and 1-propanol:chloroform (10:90 were suitable systems for the direct determination of radiochemical purity of [99mTc(MIBI6]+ since impurities such as 99mTc-reduced-hydrolyzed (RH, 99mTcO4 - and [99mTc(cysteine2]- complex were completely separated from the radiopharmaceutical, which moved toward the front of chromatographic systems while impurities were retained at the origin. The time required for analysis was 4 to 15 min, which is appropriate for nuclear medicine routines.

  5. Alternative chromatographic system for the quality control of lipophilic technetium-99m radiopharmaceuticals such as [{sup 99m}Tc(MIBI){sub 6}]{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Faria, D.P.; Buchpiguel, C.A.; Marques, F.L.N., E-mail: danielefaria1@gmail.com [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Departamento de Radiologia. Servico de Medicina Nuclear

    2015-10-15

    Knowledge of the radiochemical purity of radiopharmaceuticals is mandatory and can be evaluated by several methods and techniques. Planar chromatography is the technique normally employed in nuclear medicine since it is simple, rapid and usually of low cost. There is no standard system for the chromatographic technique, but price, separation efficiency and short time for execution must be considered. We have studied an alternative system using common chromatographic stationary phase and alcohol or alcohol:chloroform mixtures as the mobile phase, using the lipophilic radiopharmaceutical [{sup 99m}Tc(MIBI){sub 6}]{sup +} as a model. Whatman 1 modified phase paper and absolute ethanol, Whatman 1 paper and methanol: chloroform (25:75), Whatman 3MM paper and ethanol:chloroform (25:75), and the more expensive ITLC-SG and 1-propanol: chloroform (10:90) were suitable systems for the direct determination of radiochemical purity of [{sup 99m}Tc(MIBI){sub 6}]{sup +} since impurities such as {sup 99m}Tc-reduced-hydrolyzed (RH), {sup 99m}TcO4{sup -} and [{sup 99m}Tc(cysteine){sub 2}]{sup -} complex were completely separated from the radiopharmaceutical, which moved toward the front of chromatographic systems while impurities were retained at the origin. The time required for analysis was 4 to 15 min, which is appropriate for nuclear medicine routines. (author)

  6. Development of a chromatographic micro-system for radionuclides analysis in nitric acid media

    International Nuclear Information System (INIS)

    Losno, Marion

    2017-01-01

    Radionuclides analysis is a key point for nuclear waste management and nuclear material control. Several steps of sample modification have to be carried out before measurements in order to avoid any interferences and improve measurement precision. However those different steps are long, irradiating and difficult to achieve in gloveboxes. Moreover they produce liquid and solid waste. The goal of the study is to offer a new alternative to the use of solid phase extraction column for radionuclides separation in hard nitric acid medium. The system will decrease the amount of nuclear waste due to the analysis and automatize the different steps of the analysis. A plastic device made of COC containing a micro solid phase extraction column is first designed. Stationary phase is a poly(AMA-co-EDMA) monolith synthesized in situ. Its structure is adjustable and its functionalization versatile with a high resistance to nitric acid medium. Exchange capacity is 150 mg/g of monolith for TBP and TBP/CMPO column and up to 280 mg/g of monolith in case of DAAP. Exchange coefficients are determined for U(VI), Th(IV), Eu(III) and Nd(III) for 3 different extractants (and Pu(IV) in case of TBP column). Monolith synthesis is transferred in centrifugal device and hydrodynamic behavior studied. U,Th/Eu separation was finally carried out in both classic and centrifugal micro-system on TBP column. (author) [fr

  7. Technical Note: Precise quantitative measurements of total dissolved inorganic carbon from small amounts of seawater using a gas chromatographic system

    Directory of Open Access Journals (Sweden)

    T. Hansen

    2013-10-01

    Full Text Available Total dissolved inorganic carbon (CT is one of the most frequently measured parameters used to calculate the partial pressure of carbon dioxide in seawater. Its determination has become increasingly important because of the rising interest in the biological effects of ocean acidification. Coulometric and infrared detection methods are currently favored in order to precisely quantify CT. These methods however are not sufficiently validated for CT measurements of biological experiments manipulating seawater carbonate chemistry with an extended CT measurement range (~1250–2400 μmol kg–1 compared to natural open ocean seawater (~1950–2200 μmol kg−1. The requirement of total sample amounts between 0.1–1 L seawater in the coulometric- and infrared detection methods potentially exclude their use for experiments working with much smaller volumes. Additionally, precise CT analytics become difficult with high amounts of biomass (e.g., phytoplankton cultures or even impossible in the presence of planktonic calcifiers without sample pre-filtration. Filtration however, can alter CT concentration through gas exchange induced by high pressure. Addressing these problems, we present precise quantification of CT using a small, basic and inexpensive gas chromatograph as a CT analyzer. Our technique is able to provide a repeatability of ±3.1 μmol kg−1, given by the pooled standard deviation over a CT range typically applied in acidification experiments. 200 μL of sample is required to perform the actual CT measurement. The total sample amount needed is 12 mL. Moreover, we show that sample filtration is applicable with only minor alteration of the CT. The method is simple, reliable and with low cumulative material costs. Hence, it is potentially attractive for all researchers experimentally manipulating the seawater carbonate system.

  8. Chromatographic separations of stereoisomers

    Energy Technology Data Exchange (ETDEWEB)

    Souter, R.W.

    1985-01-01

    This text covers both diastereomers and enantiomers; describes techniques for GC, HPLC, and other chromatographic methods; and tabulates results of various applications by both techniques and compound class. It provides current knowledge about separation mechanisms and interactions of asymmetric molecules, as well as experimental and commercial materials such as columns, instruments, and derivatization reagents. The contents also include stereoisomer separations by gas chromatography. Stereoisomer separations by high-performance liquid chromatography. Stereoisomer separations by other chromatographic techniques.

  9. Liquid chromatographic extraction medium

    Science.gov (United States)

    Horwitz, E. Philip; Dietz, Mark L.

    1994-01-01

    A method and apparatus for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column is described. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water.

  10. Chromatographic hydrogen isotope separation

    International Nuclear Information System (INIS)

    Aldridge, F.T.

    1983-01-01

    Intermetallic compounds with the CaCu5 type of crystal structure, particularly LaNiCo and CaNi5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors

  11. Chromatographic hydrogen isotope separation

    Science.gov (United States)

    Aldridge, F.T.

    Intermetallic compounds with the CaCu/sub 5/ type of crystal structure, particularly LaNiCo/sub 4/ and CaNi/sub 5/, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen cn produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  12. MICROSCOPIC, PHYSICOCHEMICAL AND CHROMATOGRAPHIC ...

    African Journals Online (AJOL)

    Peters

    MICROSCOPIC, PHYSICOCHEMICAL AND CHROMATOGRAPHIC. FINGERPRINTS OF LEAVES OF NIGERIAN CASSIA TORA LINN. Fatokun Omolola T1*., EsievoKevwe B2., Ugbabe Grace E3. and Kunle Oluyemisi F4. Department of Medicinal Plant Research and Traditional Medicine, National Institute for.

  13. CHROMATOGRAPHIC SEPARATION AND SPECTRO ...

    African Journals Online (AJOL)

    The spectro-analytical techniques used for characterization included energy dispersive X-ray fluorescence (EDXRF), X-ray diffractometry (XRD), Optical microscopy, infrared (IR) and UV-VIS spectroscopy. Four different fractions having colours yellow, grey, orange and purple were obtained from the chromatographic ...

  14. Portable gas chromatograph-mass spectrometer

    Science.gov (United States)

    Andresen, B.D.; Eckels, J.D.; Kimmons, J.F.; Myers, D.W.

    1996-06-11

    A gas chromatograph-mass spectrometer (GC-MS) is described for use as a field portable organic chemical analysis instrument. The GC-MS is designed to be contained in a standard size suitcase, weighs less than 70 pounds, and requires less than 600 watts of electrical power at peak power (all systems on). The GC-MS includes: a conduction heated, forced air cooled small bore capillary gas chromatograph, a small injector assembly, a self-contained ion/sorption pump vacuum system, a hydrogen supply, a dual computer system used to control the hardware and acquire spectrum data, and operational software used to control the pumping system and the gas chromatograph. This instrument incorporates a modified commercial quadrupole mass spectrometer to achieve the instrument sensitivity and mass resolution characteristic of laboratory bench top units. 4 figs.

  15. Vibrational Spectroscopy of Chromatographic Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jeanne E. Pemberton

    2011-03-10

    Chromatographic separations play a central role in DOE-supported fundamental research related to energy, biological systems, the environment, and nuclear science. The overall portfolio of research activities in the Separations and Analysis Program within the DOE Office of Basic Energy Sciences includes support for activities designed to develop a molecular-level understanding of the chemical processes that underlie separations for both large-scale and analytical-scale purposes. The research effort funded by this grant award was a continuation of DOE-supported research to develop vibrational spectroscopic methods to characterize the interfacial details of separations processes at a molecular level.

  16. Domestic Preparedness Program: Evaluation of the Agilent Gas Chromatograph - Flame Photometric Detector/Mass Selective Detector (GC-FPD/MSD) System Against Chemical Warfare Agents Summary Report

    National Research Council Canada - National Science Library

    Longworth, Terri

    2003-01-01

    This report characterizes the chemical warfare agent (CWA) detection potential of the commercially available Agilent gas chromatograph-flame photometric detector/mass selective detector (GC-FPD/MSD...

  17. On-site monitoring of biogenic emissions from Eucalyptus dunnii leaves using membrane extraction with sorbent interface combined with a portable gas chromatograph system.

    Science.gov (United States)

    Liu, Xinyu; Pawliszyn, Richard; Wang, Limei; Pawliszyn, Janusz

    2004-01-01

    Membrane extraction with sorbent interface, combined with a portable gas chromatograph system (MESI-Portable GC) for continuous on-line monitoring of biogenic volatile organic compounds (BVOCs) emissions (from leaves of Eucalytus dunnii in a greenhouse), is presented herein. A sampling chamber was designed to facilitate the extraction and identification of the BVOCs emitted by the Eucalytus dunnii leaves. Preliminary experiments, including; enrichment times, microtrap temperatures, stripping gas flow rates, and desorption temperatures were investigated to optimize experimental parameters. The main components of BVOCs released by the Eucalytus dunnii leaves were identified by comparing the retention times of peaks with those of authentic standard solutions. They were then confirmed with solid phase microextraction coupled with gas chromatography and mass spectrometry (SPME-GC-MS). BVOC emission profiles of [small alpha]-pinene, eucalyptol, and [gamma]-terpinene emitted by intact and damaged Eucalytus dunnii leaves were obtained. The findings suggest that the MESI-Portable GC system is a simple and useful tool for field monitoring changes in plant emissions as a function of time.

  18. Proposal for data acquisition system of gas chromatograph and natural gas transfer custody via web; Proposta para um sistema de aquisicao de dados de cromatografia e medicao fiscal de gas natural via web

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Jose Paulo C.; Guimaraes, Marcelo F.; Zeitoune, Rafael J. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2005-07-01

    In this paper, is presented a proposal of a Chromatograph and Transfer Custody Measurement Data Acquisition System through Web, complementary to the SCADA System, responsible for control and monitoring PETROBRAS Gas Pipelines, intended to comply with the requirements of the Gerencias de Qualidade e Medicao (MQD) and Planejamento Integrado da Logistica (PCL) from PETROBRAS Gas e Energia, regarding the evaluation of the quality of the natural gas that is being commercialized, as well as its billing. (author)

  19. Study on the effect of gamma radiolysis on the chromatographic composition profile of tri-isoAmyl-phosphate-n-dodecane-nitric acid system

    International Nuclear Information System (INIS)

    Chaudhary, S.D.; Lokhande, Manisha; Bindu, M.; Tripathi, S.C.; Gandhi, P.M.

    2013-01-01

    Tri-Iso-Amyl phosphate (TiAP), a higher homologue of tri-butyl phosphate (TBP) is the solvent proposed for the reprocessing of the spent nuclear fuel of Fast Breeder Reactors (FBR) origin. TiAP-n-dodecane has extraction behavior comparable to that of TBP-n-dodecane system, without third phase formation and an aqueous solubility ∼ 19mg/L, that is far too less in case as compared to that with TBP(∼400gm/L). We have initiated our study to examine the radiolytic degradation behavior of TiAP-n-dodecane in comparison to that of TBP and explore its full potential for reprocessing of spent nuclear fuels. A 30% mixture of TiAP with n-dodecane equilibrated with nitric acid of concentrations 2M has been subjected to steady state gamma radiolysis using 60 Co source. The samples were irradiated for increasing absorbed dose of 6,12 and 18M rad. Each of these samples were subjected to gas chromatographic analysis under optimised condition using thermal conductivity detector. Separately, these samples were also methylated using diazomethane for the determination of acidic phosphate species as their volatile methyl ester

  20. Radiolytic degradation of TBP-HNO3 system: gas chromatographic determination of radiation chemical yields of n-butanol and nitrobutane

    International Nuclear Information System (INIS)

    Krishnamurthy, M.V.; Sipahimalani, A.T.

    1995-01-01

    Radiolytic degradation of the TBP-HNO 3 system has been studied for the radiation dose range of 19.8 to 262 kGy by the gas chromatographic method. n-Butanol and nitrobutane formed due to irradiation have been identified and estimated in pure TBP, TBP-3M HNO 3 extract and TBP-5M HNO 3 extract. The G-values (radiation chemical yields) of n-butanol are determined to be 0.28, 0.77 and 0.47 for a pure TBP, TBP-3M HNO 3 extract and TBP-5M HNO 3 extract, respectively. The G-values of nitrobutane (1-nitrobutane) are 0.55 and 1.09 for TBP-3M HNO 3 extract and TBP-5M HNO 3 extract. It is found that G(n-butanol) is less for TBP-5M HNO 3 extract than for TBP-3M HNO 3 extract, while G(nitrobutane) is grater for TBP-5M HNO 3 extract than for TBP-3M HNO 3 extract. This is explained on the basis of the formation of TBP.HNO 3 species and the role played by nitric acid in the TBP phase. (author) 12 refs.; 2 figs

  1. Determination of Odor Release in Hydrocolloid Model Systems Containing Original or Carboxylated Cellulose at Different pH Values Using Static Headspace Gas Chromatographic (SHS-GC Analysis

    Directory of Open Access Journals (Sweden)

    Pahn-Shick Chang

    2013-02-01

    Full Text Available Static headspace gas chromatographic (SHS-GC analysis was performed to determine the release of 13 odorants in hydrocolloid model systems containing original or regio-selectively carboxylated cellulose at different pH values. The release of most odor compounds was decreased in the hydrocolloid solutions compared to control, with the amounts of 2-propanol, 3-methyl-1-butanol, and 2,3-butanedione released into the headspace being less than those of any other odor compound in the hydrocolloid model systems. However, there was no considerable difference between original cellulose-containing and carboxylated-cellulose containing systems in the release of most compounds, except for relatively long-chain esters such as ethyl caprylate and ethyl nonanoate. The release from the original and carboxylated cellulose solutions controlled to pH 10 was significantly higher than that from solutions adjusted to pH 4 and 7 in the case of some esters (ethyl acetate, methyl propionate, ethyl propionate, ethyl butyrate, butyl propionate, ethyl caproate and alcohols (2-propanol, 3-methyl-1-butanol, in particular, ethyl butyrate and 3-methyl-1-butanol. In contrast, the release of 2,3-butanedione from both the original and carboxylated cellulose solutions was increased at pH 4 and 7 compared to that at pH 10 by about 70% and 130%, respectively. Our study demonstrated that the release of some odorants could be changed significantly by addition of both original and carboxylated cellulose in hydrocolloid model systems, but only minor effect was observed in pH of the solution.

  2. NOAA Ship Hi'ialakai Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Hi'ialakai Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  3. NOAA Ship Oscar Elton Sette Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Oscar Elton Sette Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System...

  4. NOAA Ship McArthurII Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship McArthur II Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  5. NOAA Ship Ka'imimoana Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Ka'imimoana Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  6. NOAA Ship Bell M. Shimada Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Bell M. Shimada Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System...

  7. NOAA Ship Henry B. Bigelow Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Henry B. Bigelow Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System...

  8. A Task Analysis of Underway Replenishment for Virtual Environment Ship-Handling Simulator Scenario Development

    National Research Council Canada - National Science Library

    Norris, Steven

    1998-01-01

    ...) in Newport, RI, researchers at the Naval Air Warfare Center Training Systems Division (NAWCTSD) in Orlando, FL discovered a need for a task analysis of a Conning Officer during an Underway Replenishment...

  9. Amalgam-chromatographic separation of magnesium isotopes

    International Nuclear Information System (INIS)

    Klinskij, G.D.; Levkin, A.V.; Ivanov, S.A.

    1990-01-01

    Separation of magnesium isotopes within Mg(Hg)-MgI 2 system (in dimethylformamide) is conducted under amalgam-chromatographic conditions. Separation maximal degree, that is (1.09), for 24 Mg and 26 Mg and separation coefficient (α = 1.0089±0.006) are determined. Light isotopes are found to concentrate in the amalgam. Technique of thermal conversion of flows within amalgam-dimethylformamide system is suggested on the basis of reversible reaction of Ca-Mg element exchange

  10. [The gas chromatographic analysis of volatile compounds on the compact MKhP chromatograph].

    Science.gov (United States)

    Krasnova, R R; Ianovskiĭ, S M

    1998-01-01

    Methods of analysis of biological specimens, alcohol beverages, and technological liquids in columns with standard adsorbents carbopaque B and C with carbowax 20M, widely used abroad, are described and examples of analyses presented. A special portable chromatographer (MCP) with flame ionization detector has been designed. It is intended for analysis of volatile organic compounds (alcohols, carbohydrates, organochlorine compounds, glycols, esters, etc.) in columns of different polarity. The system of processing of chromatographic findings permits a quantitative analysis of complex chromatograms and automated identification of substances in biological samples by using the available database.

  11. Gas chromatographic/matrix isolation/FTIR studies of decomposition products of Irganox 1010 in an aqueous ethanol system

    Science.gov (United States)

    Chen, Jo-Yun T.; Mossoba, Madgi M.; Varner, S. L.; Roach, J. A.; Sphon, J. A.; Page, Samuel W.

    1989-12-01

    Irganox 1010 is an antioxidant used in food packaging. The degradation products of Irganox 1010 in a 50% aqueous ethanol system at 90C were examined by GC/MS and GC/MI/FTIR. The data suggest Irganox 10101 is hydrolyzed to form (3) benzenepropanoic acid, 3,5-bis (1,1-dimethylethyl)4-hydroxy-which reacts with solvent ethanol to form (f) its ethyl ester. The 4 other decomposition products (a) 2.5 cyclohexadiene-I,4-dione, 2,6-bis(1.1-dimethylethyl)-; (B) 3.5-bis-(1,1,-dimethylethyl)-2.5 cyclohexadiene-4-one spiro (5'-tetrahydrofuran-2'-one); (C) benzofuran, 2,3-dihydro-3.3-dimethyl-5 ethenyl-7-(1,1-dimethylethyl)-and (D) benzaldehyede, 3.5-bis-(1,1-dimethylethyl)-4-hydroxy-, can result from osidation, dehydration and decarboxylation processes of (E).

  12. Development of a chromatographic low pressure flow injection system using amperometric detection: Application to the analysis of niacin in coffee.

    Science.gov (United States)

    Santos, João Rodrigo; Rangel, António O S S

    2015-11-15

    In this work, an analytical flow system able to perform low pressure chromatography with amperometric detection is presented. As case study, the determination of niacin (vitamin B3) in coffee brewed samples was selected. The manifold comprised a 1.0 cm length monolithic column coated with didecyldimethylammonium bromide, a laboratory-made boron doped diamond electrode, and featured in-line ionic strength adjustment of the mobile phase. The figures of merit concerning the selected case study namely, detection limit, 7.90 × 10(-7) M, determination rate, ca. 10 samplesh(-1), mobile phase and ISA solution consumption, ca. 2.6 mL per analysis, and CV, below 5% for retention time and peak height, showed the competitiveness of this analytical strategy comparing to the described HPLC methods for niacin determination. The strategy displays a simple configuration, low cost, fast and easy assembling, foreseeing its use to general purpose applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. An aircraft gas chromatograph-mass spectrometer System for Organic Fast Identification Analysis (SOFIA): design, performance and a case study of Asian monsoon pollution outflow

    Science.gov (United States)

    Bourtsoukidis, Efstratios; Helleis, Frank; Tomsche, Laura; Fischer, Horst; Hofmann, Rolf; Lelieveld, Jos; Williams, Jonathan

    2017-12-01

    Volatile organic compounds (VOCs) are important for global air quality and oxidation processes in the troposphere. In addition to ground-based measurements, the chemical evolution of such species during transport can be studied by performing in situ airborne measurements. Generally, aircraft instrumentation needs to be sensitive, robust and sample at higher frequency than ground-based systems while their construction must comply with rigorous mechanical and electrical safety standards. Here, we present a new System for Organic Fast Identification Analysis (SOFIA), which is a custom-built fast gas chromatography-mass spectrometry (GC-MS) system with a time resolution of 2-3 min and the ability to quantify atmospheric mixing ratios of halocarbons (e.g. chloromethanes), hydrocarbons (e.g isoprene), oxygenated VOCs (acetone, propanal, butanone) and aromatics (e.g. benzene, toluene) from sub-ppt to ppb levels. The relatively high time resolution is the result of a novel cryogenic pre-concentration unit which rapidly cools (˜ 6 °C s-1) the sample enrichment traps to -140 °C, and a new chromatographic oven designed for rapid cooling rates (˜ 30 °C s-1) and subsequent thermal stabilization. SOFIA was installed in the High Altitude and Long Range Research Aircraft (HALO) for the Oxidation Mechanism Observations (OMO) campaign in August 2015, aimed at investigating the Asian monsoon pollution outflow in the tropical upper troposphere. In addition to a comprehensive instrument characterization we present an example monsoon plume crossing flight as a case study to demonstrate the instrument capability. Hydrocarbon, halocarbon and oxygenated VOC data from SOFIA are compared with mixing ratios of carbon monoxide (CO) and methane (CH4), used to define the pollution plume. By using excess (ExMR) and normalized excess mixing ratios (NEMRs) the pollution could be attributed to two air masses of distinctly different origin, identified by back-trajectory analysis. This work

  14. Parameter selection for peak alignment in chromatographic sample profiling: Objective quality indicators and use of control samples

    NARCIS (Netherlands)

    Peters, S.; van Velzen, E.; Janssen, H.-G.

    2009-01-01

    In chromatographic profiling applications, peak alignment is often essential as most chromatographic systems exhibit small peak shifts over time. When using currently available alignment algorithms, there are several parameters that determine the outcome of the alignment process. Selecting the

  15. Determination of the analytical performance of a headspace capillary gas chromatographic technique and karl Fischer coulometric titration by system calibration using oil samples containing known amounts of moisture.

    Science.gov (United States)

    Jalbert, J; Gilbert, R; Tétreault, P

    1999-08-01

    Over the past few years, concerns have been raised in the literature about the accuracy of the Karl Fischer (KF) method for assessing moisture in transformer mineral oils. To better understand this issue, the performance of a static headspace capillary gas chromatographic (HS-CGC) technique was compared to that of KF coulometric titration by analyzing moisture in samples containing known amounts of water and various samples obtained from the National Institute of Standards and Technology (NIST). Two modes of adding samples into the KF vessel were used:  direct injection and indirect injection via an azeotropic distillation of the moisture with toluene. Under the conditions used for direct injection, the oil matrix was totally dissolved in the anolyte, which allowed the moisture to be titrated in a single-phase solution rather than in a suspension. The results have shown that when HS-CGC and combined azeotropic distillation/KF titration are calibrated with moisture-in-oil standards, a linear relation is observed over 0-60 ppm H(2)O with a correlation coefficient better than 0.9994 (95% confidence), with the regression line crossing through zero. A similar relation can also be observed when calibration is achieved by direct KF addition of standards prepared with octanol-1, but in this case an intercept of 4-5 ppm is noted. The amount of moisture determined by curve interpolation in NIST reference materials by the three calibrated systems ranges from 13.0 to 14.8 ppm for RM 8506 and 42.5 to 46.4 ppm for RM 8507, and in any case, the results were as high as those reported in the literature with volumetric KF titration. However, titration of various dehydrated oil and solvent samples showed that direct KF titration is affected by a small bias when samples contain very little moisture. The source of error after correction for the large sample volume used for the determination (8 mL) is about 6 ppm for Voltesso naphthenic oil and 4 ppm for toluene, revealing a matrix

  16. Evaluation of pesticide adsorption in gas chromatographic injector and column

    Directory of Open Access Journals (Sweden)

    Gevany Paulino de Pinho

    2012-01-01

    Full Text Available Components in complex matrices can cause variations in chromatographic response during analysis of pesticides by gas chromatography. These variations are related to the competition between analytes and matrix components for adsorption sites in the chromatographic system. The capacity of the pesticides chlorpyrifos and deltamethrin to be adsorbed in the injector and chromatographic column was evaluated by constructing three isotherms and changing the column heating rate to 10 and 30 ºC min-1. By using ANCOVA to compare the slope of calibration graphs, results showed that the higher the injector temperature (310 ºC the lower the pesticide adsorption. Also, deltamethrin influenced the adsorption of chlorpyrifos on the column chromatographic.

  17. High performance liquid chromatographic determination of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-08

    sulphonate (synthesized). Instrumentation. The chromatographic apparatus consisted of a Cecil 1200 series. 1000 high performance liquid chromatograph. The analytical column was ODS hypersil C18,5 µm particle size in 250 mm ...

  18. Chromatographic screening techniques in systematic toxicological analysis.

    Science.gov (United States)

    Drummer, O H

    1999-10-15

    A review of techniques used to screen biological specimens for the presence of drugs was conducted with particular reference to systematic toxicological analysis. Extraction systems of both the liquid-liquid and solid-phase type show little apparent difference in their relative ability to extract a range of drugs according to their physio-chemical properties, although mixed-phase SPE extraction is a preferred technique for GC-based applications, and liquid-liquid were preferred for HPLC-based applications. No one chromatographic system has been shown to be capable of detecting a full range of common drugs of abuse, and common ethical drugs, hence two or more assays are required for laboratories wishing to cover a reasonably comprehensive range of drugs of toxicological significance. While immunoassays are invariably used to screen for drugs of abuse, chromatographic systems relying on derivatization and capable of extracting both acidic and basic drugs would be capable of screening a limited range of targeted drugs. Drugs most difficult to detect in systematic toxicological analysis include LSD, psilocin, THC and its metabolites, fentanyl and its designer derivatives, some potent opiates, potent benzodiazepines and some potent neuroleptics, many of the newer anti-convulsants, alkaloids colchicine, amantins, aflatoxins, antineoplastics, coumarin-based anti-coagulants, and a number of cardiovascular drugs. The widespread use of LC-MS and LC-MS-MS for specific drug detection and the emergence of capillary electrophoresis linked to MS and MS-MS provide an exciting possibility for the future to increase the range of drugs detected in any one chromatographic screening system.

  19. In Portugal, the energy revolution is underway

    International Nuclear Information System (INIS)

    Mary, Olivier

    2015-01-01

    As at the beginning of 2013, 70 per cent of the electricity consumed in Portugal had a renewable origin, this article outlines that this result is based on a strong-willed policy. In fact, Portugal entered the energy transition in 2001 with its '4E program' (energy efficiency and endogenous energies) which aimed at reaching 60 per cent of renewable energies in electricity consumption by 2020. This program was based on a strong development of wind and hydraulic energy. Moreover, the country developed its own capacities for the manufacturing of wind turbines. On another hand, other renewable energies (notably solar energy) seem a bit late although several projects are underway. As far as hydraulic energy, a dam project is a matter of controversy

  20. Determination of solute descriptors by chromatographic methods.

    Science.gov (United States)

    Poole, Colin F; Atapattu, Sanka N; Poole, Salwa K; Bell, Andrea K

    2009-10-12

    The solvation parameter model is now well established as a useful tool for obtaining quantitative structure-property relationships for chemical, biomedical and environmental processes. The model correlates a free-energy related property of a system to six free-energy derived descriptors describing molecular properties. These molecular descriptors are defined as L (gas-liquid partition coefficient on hexadecane at 298K), V (McGowan's characteristic volume), E (excess molar refraction), S (dipolarity/polarizability), A (hydrogen-bond acidity), and B (hydrogen-bond basicity). McGowan's characteristic volume is trivially calculated from structure and the excess molar refraction can be calculated for liquids from their refractive index and easily estimated for solids. The remaining four descriptors are derived by experiment using (largely) two-phase partitioning, chromatography, and solubility measurements. In this article, the use of gas chromatography, reversed-phase liquid chromatography, micellar electrokinetic chromatography, and two-phase partitioning for determining solute descriptors is described. A large database of experimental retention factors and partition coefficients is constructed after first applying selection tools to remove unreliable experimental values and an optimized collection of varied compounds with descriptor values suitable for calibrating chromatographic systems is presented. These optimized descriptors are demonstrated to be robust and more suitable than other groups of descriptors characterizing the separation properties of chromatographic systems.

  1. Determination of solute descriptors by chromatographic methods

    International Nuclear Information System (INIS)

    Poole, Colin F.; Atapattu, Sanka N.; Poole, Salwa K.; Bell, Andrea K.

    2009-01-01

    The solvation parameter model is now well established as a useful tool for obtaining quantitative structure-property relationships for chemical, biomedical and environmental processes. The model correlates a free-energy related property of a system to six free-energy derived descriptors describing molecular properties. These molecular descriptors are defined as L (gas-liquid partition coefficient on hexadecane at 298 K), V (McGowan's characteristic volume), E (excess molar refraction), S (dipolarity/polarizability), A (hydrogen-bond acidity), and B (hydrogen-bond basicity). McGowan's characteristic volume is trivially calculated from structure and the excess molar refraction can be calculated for liquids from their refractive index and easily estimated for solids. The remaining four descriptors are derived by experiment using (largely) two-phase partitioning, chromatography, and solubility measurements. In this article, the use of gas chromatography, reversed-phase liquid chromatography, micellar electrokinetic chromatography, and two-phase partitioning for determining solute descriptors is described. A large database of experimental retention factors and partition coefficients is constructed after first applying selection tools to remove unreliable experimental values and an optimized collection of varied compounds with descriptor values suitable for calibrating chromatographic systems is presented. These optimized descriptors are demonstrated to be robust and more suitable than other groups of descriptors characterizing the separation properties of chromatographic systems.

  2. FTIR gas chromatographic analysis of perfumes

    Science.gov (United States)

    Diederich, H.; Stout, Phillip J.; Hill, Stephen L.; Krishnan, K.

    1992-03-01

    Perfumes, natural or synthetic, are complex mixtures consisting of numerous components. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques have been extensively utilized for the analysis of perfumes and essential oils. A limited number of perfume samples have also been analyzed by FT-IR gas chromatographic (GC-FTIR) techniques. Most of the latter studies have been performed using the conventional light pipe (LP) based GC-FTIR systems. In recent years, cold-trapping (in a matrix or neat) GC-FTIR systems have become available. The cold-trapping systems are capable of sub-nanogram sensitivities. In this paper, comparison data between the LP and the neat cold-trapping GC- FTIR systems is presented. The neat cold-trapping interface is known as Tracer. The results of GC-FTIR analysis of some commercial perfumes is also presented. For comparison of LP and Tracer GC-FTIR systems, a reference (synthetic) mixture containing 16 major and numerous minor constituents was used. The components of the mixture are the compounds commonly encountered in commercial perfumes. The GC-FTIR spectra of the reference mixture was obtained under identical chromatographic conditions from an LP and a Tracer system. A comparison of the two sets of data thus generated do indeed show the enhanced sensitivity level of the Tracer system. The comparison also shows that some of the major components detected by the Tracer system were absent from the LP data. Closer examination reveals that these compounds undergo thermal decomposition on contact with the hot gold surface that is part of the LP system. GC-FTIR data were obtained for three commercial perfume samples. The major components of these samples could easily be identified by spectra search against a digitized spectral library created using the Tracer data from the reference mixture.

  3. Miniaturized chromatographic radiochemical procedure for 131I - MIBG

    International Nuclear Information System (INIS)

    Barboza, M.F. de; Pereira, N.S. de; Colturato, M.T.; Silva, C.P.G. da.

    1989-12-01

    Different solvents were used in paper chromatographic methods to obtain the best system in routine radiochemical control for 131 I-MIBG produced at IPEN-CNEN/SP. The dates were compared with those obtained with eletrophoresis method in buffer acetate, pH=4.5, 350V, during 40 minutes. The stability of the labeled compound store under 4 0 C was studied during 15 days. Miniaturized chromatographic procedures were established using Whatman 3MM (8x1cm) and n-butanol-:acetic acid: water (S:2:1) as a solvent. the Rf values were: 0.3 (I - ) and 1.0 (MIBG). The radiochemical purity was 99.3 and 99.2% (first day) obtained with eletrophoresis and miniaturized chromatographic procedures, respectively and, 84.7% after 15 days of its preparation. It is a rapid, practical and reproductive method. (author) [pt

  4. Interface for liquid chromatograph-mass spectrometer

    Science.gov (United States)

    Andresen, Brian D.; Fought, Eric R.

    1989-01-01

    A moving belt interface for real-time, high-performance liquid chromatograph (HPLC)/mass spectrometer (MS) analysis which strips away the HPLC solvent as it emerges from the end of the HPLC column and leaves a residue suitable for mass-spectral analysis. The interface includes a portable, stand-alone apparatus having a plural stage vacuum station, a continuous ribbon or belt, a drive train magnetically coupled to an external drive motor, a calibrated HPLC delivery system, a heated probe tip and means located adjacent the probe tip for direct ionization of the residue on the belt. The interface is also capable of being readily adapted to fit any mass spectrometer.

  5. Research Ship Southern Surveyor Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Southern Surveyor Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  6. NOAA Ship Okeanos Explorer Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Okeanos Explorer Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  7. Research Ship Nathaniel B. Palmer Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Nathaniel B. Palmer Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and...

  8. Research Ship New Horizon Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship New Horizon Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  9. Research Ship Laurence M. Gould Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Laurence M. Gould Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  10. Research Ship Robert Gordon Sproul Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Robert Gordon Sproul Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and...

  11. NOAA Ship David Starr Jordan Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship David Starr Jordan Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  12. NOAA Ship Bell M. Shimada Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Bell M. Shimada Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  13. Research Ship T. G. Thompson Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship T. G. Thompson Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  14. NOAA Ship Oscar Elton Sette Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Oscar Elton Sette Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  15. Research Ship Atlantic Explorer Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Atlantic Explorer Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  16. Research Ship Aurora Australis Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Aurora Australis Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  17. Research Ship Roger Revelle Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Roger Revelle Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  18. NOAA Ship Henry B. Bigelow Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Henry B. Bigelow Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  19. Chromatographic analysis of tryptophan metabolites.

    Science.gov (United States)

    Sadok, Ilona; Gamian, Andrzej; Staniszewska, Magdalena Maria

    2017-08-01

    The kynurenine pathway generates multiple tryptophan metabolites called collectively kynurenines and leads to formation of the enzyme cofactor nicotinamide adenine dinucleotide. The first step in this pathway is tryptophan degradation, initiated by the rate-limiting enzymes indoleamine 2,3-dioxygenase, or tryptophan 2,3-dioxygenase, depending on the tissue. The balanced kynurenine metabolism, which has been a subject of multiple studies in last decades, plays an important role in several physiological and pathological conditions such as infections, autoimmunity, neurological disorders, cancer, cataracts, as well as pregnancy. Understanding the regulation of tryptophan depletion provide novel diagnostic and treatment opportunities, however it requires reliable methods for quantification of kynurenines in biological samples with complex composition (body fluids, tissues, or cells). Trace concentrations, interference of sample components, and instability of some tryptophan metabolites need to be addressed using analytical methods. The novel separation approaches and optimized extraction protocols help to overcome difficulties in analyzing kynurenines within the complex tissue material. Recent developments in chromatography coupled with mass spectrometry provide new opportunity for quantification of tryptophan and its degradation products in various biological samples. In this review, we present current accomplishments in the chromatographic methodologies proposed for detection of tryptophan metabolites and provide a guide for choosing the optimal approach. © 2017 The Authors. Journal of Separation Science published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Chromatographic Separations of Enantiomers and Underivatized Oligosaccharides

    International Nuclear Information System (INIS)

    Ying Liu

    2004-01-01

    My graduate research has focused on separation science and bioanalytical analysis, which emphasized in method development. It includes three major areas: enantiomeric separations using high performance liquid chromatography (HPLC), Super/subcritical fluid chromatography (SFC), and capillary electrophoresis (CE); drug-protein binding behavior studies using CE; and carbohydrate analysis using liquid chromatograph-electrospray ionization mass spectrometry (LC-ESI-MS). Enantiomeric separations continue to be extremely important in the pharmaceutical industry. An in-depth evaluation of the enantiomeric separation capabilities of macrocyclic glycopeptides CSPs with SFC mobile phases was investigated using a set of over 100 chiral compounds. It was found that the macrocyclic based CSPs were able to separate enantiomers of various compounds with different polarities and functionalities. Seventy percent of all separations were achieved in less than 4 min due to the high flow rate (4.0 ml/min) that can be used in SFC. Drug-protein binding is an important process in determining the activity and fate of a drug once it enters the body. Two drug/protein systems have been studied using frontal analysis CE method. More sensitive fluorescence detection was introduced in this assay, which overcame the problem of low sensitivity that is common when using UV detection for drug-protein studies. In addition, the first usage of an argon ion laser with 257 nm beam coupled with CCD camera as a frontal analysis detection method enabled the simultaneous observation of drug fluorescence as well as the protein fluorescence. LC-ESI-MS was used for the separation and characterization of underivatized oligosaccharide mixtures. With the limits of detection as low as 50 picograms, all individual components of oligosaccharide mixtures (up to 11 glucose-units long) were baseline resolved on a Cyclobond I 2000 column and detected using ESI-MS. This system is characterized by high chromatographic

  1. Chromatographic Separations of Enantiomers and Underivatized Oligosaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    My graduate research has focused on separation science and bioanalytical analysis, which emphasized in method development. It includes three major areas: enantiomeric separations using high performance liquid chromatography (HPLC), Super/subcritical fluid chromatography (SFC), and capillary electrophoresis (CE); drug-protein binding behavior studies using CE; and carbohydrate analysis using liquid chromatograph-electrospray ionization mass spectrometry (LC-ESI-MS). Enantiomeric separations continue to be extremely important in the pharmaceutical industry. An in-depth evaluation of the enantiomeric separation capabilities of macrocyclic glycopeptides CSPs with SFC mobile phases was investigated using a set of over 100 chiral compounds. It was found that the macrocyclic based CSPs were able to separate enantiomers of various compounds with different polarities and functionalities. Seventy percent of all separations were achieved in less than 4 min due to the high flow rate (4.0 ml/min) that can be used in SFC. Drug-protein binding is an important process in determining the activity and fate of a drug once it enters the body. Two drug/protein systems have been studied using frontal analysis CE method. More sensitive fluorescence detection was introduced in this assay, which overcame the problem of low sensitivity that is common when using UV detection for drug-protein studies. In addition, the first usage of an argon ion laser with 257 nm beam coupled with CCD camera as a frontal analysis detection method enabled the simultaneous observation of drug fluorescence as well as the protein fluorescence. LC-ESI-MS was used for the separation and characterization of underivatized oligosaccharide mixtures. With the limits of detection as low as 50 picograms, all individual components of oligosaccharide mixtures (up to 11 glucose-units long) were baseline resolved on a Cyclobond I 2000 column and detected using ESI-MS. This system is characterized by high chromatographic

  2. Studies on polar high-speed counter-current chromatographic systems in separation of amaranthine-type betacyanins from Celosia species.

    Science.gov (United States)

    Spórna-Kucab, Aneta; Milo, Angelika; Kumorkiewicz, Agnieszka; Wybraniec, Sławomir

    2018-01-15

    Betacyanins, natural plant pigments exhibiting antioxidant and chemopreventive properties, were extracted from Celosia spicata (Thouars) Spreng. inflorescences and separated by high-speed counter-current chromatography (HSCCC) in two polar solvent systems composed of: TBME - 1-BuOH - ACN - H 2 O (0.7% HFBA, 2:2:1:5, v/v/v/v) (system I) and EtOH - ACN - 1-PrOH - (NH 4 ) 2 SO 4satd.soln - H 2 O (0.5:0.5:0.5:1.2:1, v/v/v/v/v) (system II). The systems were used in the head-to-tail (system I) and tail-to-head (system II) mode. The flow rate of the mobile phase was 2.0 ml/min and the column rotation speed was 860 rpm. The retention of the stationary phase was 73.5% (system I) and 80.0% (system II). For the identification of separated betacyanins in the crude extract as well as in the HSCCC fractions, LC-DAD-ESI-MS/MS analyses were performed. Depending on the target compounds, each of the systems exhibit meaningfully different selectivity and applicability. For the pairs of amaranthines (1/1') and betanins (2/2'), the best choice is the system II, but the acylated amaranthine pairs (3/3' and 4/4') can be resolved only in the ion-pair system I. For the indication of the most suitable solvent system for Celosia plumosa hort., Celosia cristata L. and Celosia spicata (Thouars) Spreng. species, the profiles of betacyanins in different plant parts were studied. Copyright © 2017. Published by Elsevier B.V.

  3. Evaluation of chromatographic conditions in reversed phase liquid chromatography-mass spectrometry systems for fingerprinting of polar and amphiphilic plant metabolites

    DEFF Research Database (Denmark)

    Nielsen, Nikoline Juul; Tomasi, Giorgio; Christensen, Jan H.

    2016-01-01

    metabolites. The approach does not rely on isotopic labeling or biological origin of sample constituent and can also be used for non-biological matrices (e.g., oil or sewage sludge) or for other optimization purposes (e.g., mass spectrometric source parameterization). The LC systems varied in column chemistry...... and temperature, mobile phase pH/additive, gradient steepness/eluotropic strength, and electrospray mode of operation. The systems were evaluated based on the number of features detected using the matchedFilter algorithm from XCMS and the repeatability of this detection across analytical replicates. For negative...

  4. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Gordon Gunter in the Gulf of Mexico on 2016-10-01 (NCEI Accession 0164087)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164087 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  5. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Henry B. Bigelow in the North Atlantic Ocean on 2016-08-26 (NCEI Accession 0162238)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0162238 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  6. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Oscar Elton Sette in the North Pacific Ocean on 2016-06-22 (NCEI Accession 0155170)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0155170 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  7. A Generalized Adsorption Rate Model Based on the Limiting-Component Constraint in Ion-Exchange Chromatographic Separation for Multicomponent Systems

    DEFF Research Database (Denmark)

    such that conventional LDF (linear driving force) type models are extended to inactive zones without loosing their generality. Based on a limiting component constraint, an exchange probability kernel is developed for multi-component systems. The LDF-type model with the kernel is continuous with time and axial direction...

  8. Nanofiber polymers as novel sorbents for on-line solid phase extraction in chromatographic system: A comparison with monolithic reversed phase C18 sorbent.

    Science.gov (United States)

    Háková, Martina; Havlíková, Lucie Chocholoušová; Chvojka, Jiří; Švec, František; Solich, Petr; Šatínský, Dalibor

    2018-08-14

    A novel application of nanofiber polymers in the wide area of a sample preparation techniques known as solid phase extraction has been studied. We demonstrated application of nanofibers as sorbents for use in a system including on-line extraction coupled with column-switching high performance liquid chromatography. Four types of nanofibers including polyamide 6 with two different surface densities, poly(ε-caprolactone), and polystyrene were tested. We found that three of them were very efficient extraction sorbents sufficiently stable for application in the on-line system. Our results confirmed that the extraction efficiency of the nanofibers depended on the type and chemistry of the spun polymer as well as on the fabrication process of the nanofibrous mats that affected their density, structure, surface density, and mechanical functionality. We also compared performance of all four nanofibers with a conventional monolithic reversed-phase C18 sorbent in terms of extraction efficiency using on-line solid-phase extraction-HPLC system. Polyamide 6 was found to be the best sorbent for lipophilic analytes with a retention and extraction efficiency for the target analytes comparable with that of the C18 monolith. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Optimization of the gas chromatographic separations

    International Nuclear Information System (INIS)

    Gasco Sanchez, L.

    1973-01-01

    A review and a critical study on the optimization of the gas chromatographic separations are made. After dealing with the fundamental gas chromatographic equations, some methods of expressing column performances are discussed: performance indices, performance parameters, resolution and effective plate number per unit time. This is completed with a comparative study on performances of various types of columns. Moreover, optimization methods for operating chromatographic conditions are extensively dealt with: as resolution optimization, separation time, and normalization techniques for the time of analysis in order to achieve the maximum resolution at constant time. Finally, some others non operating parameters such as: selectivity of stationary phases, column preparation and optimization methods by means of computers are studied. (Author) 68 refs

  10. Identificação de substâncias em análise toxicológica sistemática utilizando um sistema informatizado para cálculo de parâmetros cromatográficos e busca em bases de dados Substance identification in systematic toxicological analysis using a computer system for chromatographic parameter calculation and database retrieval

    Directory of Open Access Journals (Sweden)

    Rafael Linden

    2007-04-01

    Full Text Available In spite of the availability of large databases of chromatographic data on several standardized systems, one major task in systematic toxicological analysis remains, namely how to handle the experimental data and retrieve data from the large available databases in a meaningful and productive way. To achieve this purpose, our group proposed an Internet-based tool using previously published STA databases, which interlaboratorial reproducibility tests have already evaluated. The developed software has the capability to calculate corrected chromatographic parameters, after the input of data obtained with standard mixtures of calibrators, and search the databases, currently incorporating TLC, color reactions, GC and HPLC data. At the end of the process, a list with candidate substances and their similarity indexes is presented.

  11. Antidiarrhoeal Activity of Chromatographic Fractions of ...

    African Journals Online (AJOL)

    Erah

    Purpose: The present study was undertaken in order to evaluate the antidiarrhoeal activity of three chromatographic fractions (L, S and Y) of Stereospermum kunthianum stem bark in mice. Methods: Vacuum liquid/column chromatography (VLC/ CC) were used to obtain three fractions (L,S and Y) of Stereospermum ...

  12. Liquid chromatographic determination of pyrethroid insecticide ...

    African Journals Online (AJOL)

    A new high performance liquid chromatography (HPLC) method for the quantitative analysis of cypermethrin in vegetable samples has been described. The determination of cypermethrin was carried out on Kromosil C18 analytical column (250 mm × 4.6 mm I.D., 5 μm particle size), under reversed phase chromatographic ...

  13. Liquid chromatographic analysis of phenobarbitone, ethosuximide ...

    African Journals Online (AJOL)

    A liquid chromatographic method for the simultaneous assay of four anticonvulsant drugs, phenobarbitone, ethosuximide, phenytoin and carbamazepine on a polystyrene-divinyl benzene column is described. The method was developed by the systematic study of different types of co-polymer materials, type and ...

  14. Rapid validated liquid chromatographic method coupled with ...

    African Journals Online (AJOL)

    Abstract. Purpose: To develop and validate a fast, sensitive, and simple liquid chromatographic method coupled with tandem mass spectrometry for the ... European Medicines Agency (EMA) guidelines. Results: The proposed method ... that few articles were published for NTB quantification in rat biological fluids and tissues.

  15. High performance liquid chromatographic determination of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-08

    Feb 8, 2010 ... liquid chromatographic with UV/Fluorescence detection is described. Proguanil was derivatised to its corresponding ... proguanil in combination with other antimalarial drugs has also been reported to posses synergic toxicity ..... Chlorophenyl Biguanide in Biological Fluids. Afr. J. Biotechnol. 4(8):. 856-861.

  16. Chromatographic characterisation, in vitro antioxidant and free ...

    African Journals Online (AJOL)

    Chromatographic fractionation and spectroscopic analysis of the ME4 fraction revealed the presence of four compounds namely garcinia biflavonoids GB1 and GB2, garcinal and garcinoic acid. These findings show that these four compounds are partly responsible for the great antioxidant potential of G. kola seeds.

  17. A Small-Scale Low-Cost Gas Chromatograph

    Science.gov (United States)

    Gros, Natasa; Vrtacnik, Margareta

    2005-01-01

    The design and application of a small-scale portable gas chromatograph for learning of the basic concepts of chromatography is described. The apparatus consists of two basic separable units, which includes a chromatographic unit and an electronic unit.

  18. Gas chromatographic isolation technique for compound-specific radiocarbon analysis

    International Nuclear Information System (INIS)

    Uchida, M.; Kumamoto, Y.; Shibata, Y.; Yoneda, M.; Morita, M.; Kawamura, K.

    2002-01-01

    Full text: We present here a gas chromatographic isolation technique for the compound-specific radiocarbon analysis of biomarkers from the marine sediments. The biomarkers of fatty acids, hydrocarbon and sterols were isolated with enough amount for radiocarbon analysis using a preparative capillary gas chromatograph (PCGC) system. The PCGC systems used here is composed of an HP 6890 GC with FID, a cooled injection system (CIS, Gerstel, Germany), a zero-dead-volume effluent splitter, and a cryogenic preparative collection device (PFC, Gerstel). For AMS analysis, we need to separate and recover sufficient quantity of target individual compounds (>50 μgC). Yields of target compounds from C 14 n-alkanes to C 40 to C 30 n-alkanes and approximately that of 80% for higher molecular weights compounds more than C 30 n-alkanes. Compound specific radiocarbon analysis of organic compounds, as well as compound-specific stable isotope analysis, provide valuable information on the origins and carbon cycling in marine system. Above PCGC conditions, we applied compound-specific radiocarbon analysis to the marine sediments from western north Pacific, which showed the possibility of a useful chronology tool for estimating the age of sediment using organic matter in paleoceanographic study, in the area where enough amounts of planktonic foraminifera for radiocarbon analysis by accelerator mass spectrometry (AMS) are difficult to obtain due to dissolution of calcium carbonate. (author)

  19. Liquid chromatographic determination of water

    Science.gov (United States)

    Fortier, N.E.; Fritz, J.S.

    1990-11-13

    A sensitive method for the determination of water in the presence of common interferences is presented. The detection system is based on the effect of water on the equilibrium which results from the reaction aryl aldehydes, such as cinnamaldehyde and methanol in the eluent to form cinnamaldehyde dimethylacetal, plus water. This equilibrium is shifted in a catalytic atmosphere of a hydrogen ion form past column reactor. The extent of the shift and the resulting change in absorbance are proportional to the amount of water present. 1 fig.

  20. Chromatographic separation of human salivary peroxidases.

    Science.gov (United States)

    Mäkinen, K K; Tenovuo, J

    1976-01-01

    A series of rapid and simple chromatographic purification procedures for peroxidase-like enzymes occurring in the human oral cavity is presented. Samples of whole saliva, parotid saliva, gingival exudate and various bacterial preparations contain peroxidases which were purified using molecular exclusion and ion exchange chromatography, and isoelectric focusing. Salivary lactoperoxidase can be easily separated from bacterial and leucocyte peroxidase activity by the methods presented.

  1. GAS CHROMATOGRAPHIC AND SPECTROSCOPIC ANALYSIS OF ...

    African Journals Online (AJOL)

    Peroxyformic acid prepared in-situ was employed for epoxidation of canola oil in the presence of toluene. Gas chromatographic analysis of the product revealed the following species: C16:0; C18:0; C18:1; C18:2; C18:3; monoepoxy C18:0; monoepoxy C18:1; monoepoxy C18:2; diepoxy C18:0; diepoxy C18:1 and triepoxy ...

  2. Chromatographic 188W →188Re generator

    International Nuclear Information System (INIS)

    Khujaev, S.

    2005-01-01

    Full text: The main purpose of the generator - reception of daughter radioisotope Rhenium-188 from it by periodic elution for a long period of time (more than half-year). It is generally known that Rhenium-188, in the form of its complex connections, is applied in nuclear medicine in treatment and removal of painful syndromes. The generator possesses convenient nuclear-physical characteristics of a daughter radioisotope Rhenium-188. It is a source of (Irradiation with energy 2.12 MeV (98 %) with small contribution soft γ-radiation with energy 0.155 MeV (15 %). The Period of half-life destruction of radioisotope is 17 hours. The 188 W parent radioisotope for the generator is formed by irradiation of 186 W neutrons based on the following reaction: 186 W (n,γ) 187 W (n,γ) 188 W (69 days) → 188 Re (17 hours) + β The following were used as targets for irradiation: 1) Metal Tungsten (powder) of natural structure; 2) Metal Tungsten (plate) of natural structure; 3) Metal Tungsten (wire) of natural structure, d = 12 mm; 4) Metal Tungsten (powder) with enrichment on isotope 186 W - 99.79 %. The irradiated material was exposed to chemical processing with reception of radioactive solution of tungsten-188, from which sorption Tungsten was carried out onto sorbent as poly-wolframate-ions. It is established that Tungsten sorption depends on many factors as there are various chemical forms of Tungsten (VI) in water solutions, ratio of which depends on pH of the solution, concentration of Tungsten in the solution and presence of foreign ions. Tungsten sorption was carried out in static and in dynamic regimes. At dynamic regime the sorbent was placed directly in the generating column. The generator consisted of chromatographic columns with sorbent and radioisotope 188 W, eluting system and radiation protection. Rhenium-188 was taken from the generator as perrhenate sodium by elution of 0.9 % solution of chloride sodium in 10 ml. Technical characteristics of the generator

  3. Gas-chromatographic quantitative determination of argon in air samples, by elimination of oxigen

    International Nuclear Information System (INIS)

    Sofronie, E.

    1982-08-01

    A method of gas-chromatographic quantitative determination of argon in air samples, by elimination of oxygen, is presented. Experiments were carried out in a static system. Conditions for the application of the method in dynamic systems are specified. Sensibility of the method: 5 10 -4 cm 3 Ar per cm 3 of air. (author)

  4. Use of laminar chromatographic methods for determination of separation conditions in column extraction chromatography

    International Nuclear Information System (INIS)

    Ghersini, G.; Cerrai, E.

    1978-01-01

    Possibilities of using laminar chromatographic methods (paper and thin-layer chromatography) to determine optimal separation conditions in column extraction chromatography are analysed. Most of the given laminar methods are presented as Rf-spectra, i.e. as dependences of Rf found experimentally on eluating solution component concentration. Interrelation between Rf and distribution coefficients of corresponding liquid extraction systems and retention volumes of chromatographic columns is considered. Literature data on extraction paper and thin-layer chromatography of elements with various immovable phases are presented

  5. Sea experiments of the Underway Conductivity-Temperature-Depth prototype made in China

    Science.gov (United States)

    Song, Xiangzhou; Li, Hui; Lin, Xiaopei; Chen, Xueen; Guo, Xinshun; Tian, Jiwei

    2009-12-01

    A new instrument for upper ocean survey, namely the UCTD (Underway Conductivity-Temperature-Depth), which combines some of the advantages of other underway instruments, is introduced in this paper. The Introduction section presents a description of the construction and function of the UCTD, and the experiments conducted in the South China Sea on board the R/V Dong Fang Hong 2 in July 2007 and August 2008. The UCTD system, with pressure and temperature sensors in the probe, is conveniently portable, cost-effective and environment-friendly. It is hopefully suitable for future cruises. An intercomparison based on regressing with the experiment temperature data from both SeaBird plus911 CTD and the UCTD showed that the standard deviation is 0.88°C and the correlation coefficient is 0.96, achieving the goals set for the current oceanography uses. In the hydrodynamic experiments, the descending velocities and depths were calculated for different ship speeds. A pulling test was designed with a tensiometer to measure the magnitude of the pull. The maximal tension of the line was found to be 66.2 kg, which is far lower than the bearing limit of the Hollow Spectra line. Finally, some improvement suggestions are put forward for future experiments and production.

  6. High Performance Liquid Chromatographic Analysis of Phytoplankton Pigments Using a C16-Amide Column

    Science.gov (United States)

    A reverse-phase high performance liquid chromatographic (RP-HPLC) method was developed to analyze in a single run, most polar and non-polar chlorophylls and carotenoids from marine phytoplankton. The method is based on a RP-C16-Amide column and a ternary gradient system consistin...

  7. The combination of the liquid chromatograph with the nuclear magnetic resonance spectrometer

    International Nuclear Information System (INIS)

    Scott, R.P.W.

    1986-01-01

    The association of the liquid chromatograph with the NMR spectrometer would be a very powerful analytical system for the separation and identification of unknown mixtures. There are, however, some serious difficulties involved with the association of these two techniques. The historical development of NMR chromatography is outlined and some problems are discussed. (Auth.)

  8. Supercritical Fluid Chromatographic Separation of Dimethylpolysiloxane Polymer

    Energy Technology Data Exchange (ETDEWEB)

    Pyo, Dong Jin; Lim, Chang Hyun [Kangwon National University, Chuncheon (Korea, Republic of)

    2005-02-15

    Water was used as a polar modifier and a μ-porasil column as a saturator column. The μ-porasil column was inserted between the pump outlet and the injection valve. During the passage of the supercritical fluid mobile phase through the silica column, a polar modifier (water) can be dissolved in the pressurized supercritical fluid. Dimethylpolysiloxane polymer has been known as more polar polymer than polystyrene polymer. Dimethylpolysiloxane polymer has never been separated using water modified mobile phase. In this paper, using a μ-porasil column as a saturator column, excellent supercritical fluid chromatograms of dimethylpolysiloxane oligomers were obtained. The use of compressed (dense) gases and supercritical fluids as chromatographic mobile phases in conjunction with liquid chromatographic (LC)-type packed columns was first reported by Klesper et al. in 1962. During its relatively short history, supercritical fluid chromatography (SFC) has become an attractive alternative to GC and LC in certain industrially important applications. SFC gives the advantage of high efficiency and allows the analysis of nonvolatile or thermally labile mixtures.

  9. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Elton Sette in the North Pacific Ocean and South Pacific Ocean from 2016-02-21 to 2016-03-25 (NCEI Accession 0155172)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0155172 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  10. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Pisces in the North Atlantic Ocean from 2016-10-18 to 2016-10-20 (NCEI Accession 0164092)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164092 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  11. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Pisces in the North Atlantic Ocean from 2016-06-08 to 2016-06-25 (NCEI Accession 0155294)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0155294 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  12. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Pisces in the North Atlantic Ocean from 2016-07-03 to 2016-08-03 (NCEI Accession 0155990)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0155990 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  13. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Oregon II in the Gulf of Mexico and North Atlantic Ocean from 2017-07-26 to 2017-08-10 (NCEI Accession 0164961)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164961 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  14. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Bering Sea from 2016-05-03 to 2016-05-04 (NCEI Accession 0165030)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0165030 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  15. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Oregon II in the Gulf of Mexico and North Atlantic Ocean from 2014-05-04 to 2014-05-31 (NODC Accession 0118842)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0118842 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  16. Underway meteorological, navigational, physical, profile and time series data collected aboard NOAA Ship Henry B. Bigelow in the North Atlantic Ocean from 2015-08-12 to 2015-08-21 (NCEI Accession 0131861)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0131861 contains raw underway meteorological, navigational, physical, profile and time series data logged by the Scientific Computer System (SCS)...

  17. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Fairweather in the Gulf of Alaska from 2014-04-28 to 2014-07-28 (NODC Accession 0126498)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0126498 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  18. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Rainier in the Gulf of Alaska from 2014-05-19 to 2014-09-04 (NODC Accession 0123694)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0123694 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  19. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Gulf of Alaska from 2013-03-14 to 2013-03-28 (NODC Accession 0124186)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0124186 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  20. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Gulf of Alaska from 2015-03-14 to 2015-03-31 (NCEI Accession 0130691)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0130691 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  1. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Gulf of Alaska and North Pacific Ocean from 2016-02-11 to 2016-02-20 (NCEI Accession 0150731)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0150731 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  2. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Bell M. Shimada in the North Pacific Ocean from 2016-05-27 to 2016-05-28 (NCEI Accession 0164091)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164091 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  3. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Bell M. Shimada in the North Pacific Ocean from 2017-05-15 to 2017-05-24 (NCEI Accession 0164430)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164430 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  4. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Gordon Gunter in the Gulf of Mexico and North Atlantic Ocean from 2015-08-07 to 2015-09-28 (NCEI Accession 0131988)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0131988 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  5. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Hi'ialakai in the North Pacific Ocean from 2015-11-01 to 2015-11-14 (NCEI Accession 0150693)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0150693 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  6. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Gordon Gunter in the Gulf of Mexico and North Atlantic Ocean from 2015-04-14 to 2015-06-13 (NCEI Accession 0128347)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0128347 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  7. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Gordon Gunter in the Gulf of Mexico from 2012-10-19 to 2012-10-29 (NODC Accession 0113519)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113519 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  8. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Nancy Foster in the Gulf of Mexico and North Atlantic Ocean from 2013-04-26 to 2013-06-01 (NODC Accession 0113336)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113336 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  9. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Thomas Jefferson in the North Atlantic Ocean from 2017-07-22 to 2017-07-26 (NCEI Accession 0164960)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164960 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  10. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Rainier in the Gulf of Alaska from 2015-09-16 to 2015-09-25 (NCEI Accession 0138191)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0138191 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  11. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Oregon II in the Gulf of Mexico and North Atlantic Ocean from 2014-07-26 to 2014-09-29 (NODC Accession 0122397)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0122397 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  12. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Pisces in the Gulf of Mexico from 2014-05-27 to 2014-09-30 (NODC Accession 0119414)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0119414 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  13. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Bering Sea from 2014-05-20 to 2014-06-08 (NODC Accession 0125267)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0125267 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  14. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Elton Sette in the North Pacific Ocean and Philippine Sea from 2014-06-19 to 2014-07-19 (NODC Accession 0123094)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0123094 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  15. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Thomas Jefferson in the North Atlantic Ocean from 2013-03-11 to 2013-03-13 (NODC Accession 0123054)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0123054 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  16. Underway navigational, physical and time series data collected aboard NOAA Ship Thomas Jefferson in the North Atlantic Ocean from 2013-06-17 to 2013-10-02 (NODC Accession 0123055)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0123055 contains raw underway navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA Ship Thomas...

  17. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Hi'ialakai in the North Pacific Ocean from 2014-09-06 to 2014-09-30 (NODC Accession 0122499)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0122499 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  18. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Ronald H. Brown in the North Pacific Ocean and South Pacific Ocean from 2014-08-25 to 2014-09-27 (NODC Accession 0122504)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0122504 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  19. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Elton Sette in the North Pacific Ocean from 2014-09-25 to 2014-10-27 (NODC Accession 0123056)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0123056 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  20. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Nancy Foster in the Gulf of Mexico and North Atlantic Ocean from 2014-09-01 to 2014-09-14 (NODC Accession 0123337)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0123337 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  1. Underway meteorological, navigational, physical, profile and time series data collected aboard NOAA Ship Ronald H. Brown in the Coral Sea, North Pacific Ocean and South Pacific Ocean from 2014-10-06 to 2014-11-01 (NODC Accession 0123096)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0123096 contains raw underway meteorological, navigational, physical, profile and time series data logged by the Scientific Computer System (SCS)...

  2. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Elton Sette in the North Pacific Ocean and Philippine Sea from 2014-05-31 to 2014-06-16 (NODC Accession 0123093)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0123093 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  3. Underway meteorological, navigational, physical, profile and time series data collected aboard NOAA Ship Ronald H. Brown in the North Pacific Ocean and South Pacific Ocean from 2014-11-05 to 2014-11-24 (NODC Accession 0123338)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0123338 contains raw underway meteorological, navigational, physical, profile and time series data logged by the Scientific Computer System (SCS)...

  4. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Elton Sette in the North Pacific Ocean from 2014-08-30 to 2014-09-19 (NCEI Accession 0123092)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0123092 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  5. Underway meteorological, navigational and physical data collected aboard NOAA Ship Ferdinand R. Hassler in the North Atlantic Ocean from 2016-03-01 to 2016-03-28 (NCEI Accession 0150691)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0150691 contains raw underway meteorological, navigational and physical data logged by the Scientific Computer System (SCS) aboard NOAA Ship Ferdinand...

  6. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Bering Sea from 2016-05-18 to 2016-06-08 (NCEI Accession 0165363)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0165363 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  7. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Pisces in the North Atlantic Ocean from 2015-06-18 to 2015-07-01 (NCEI Accession 0129541)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0129541 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  8. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Rainier in the Beaufort Sea, Bering Sea and others from 2015-06-19 to 2015-08-27 (NCEI Accession 0130918)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0130918 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  9. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Rainier in the Gulf of Alaska from 2015-09-28 to 2015-10-10 (NCEI Accession 0138029)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0138029 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  10. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Rainier in the Coastal Waters of SE Alaska, Gulf of Alaska and North Pacific Ocean from 2015-04-25 to 2015-06-03 (NCEI Accession 0129420)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0129420 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  11. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Ronald H. Brown in the Coastal Waters of SE Alaska and North Pacific Ocean from 2016-06-23 to 2016-07-09 (NCEI Accession 0155758)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0155758 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  12. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Bell M. Shimada in the North Pacific Ocean from 2013-03-01 to 2013-03-10 (NODC Accession 0116096)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0116096 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  13. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Fairweather in the Beaufort Sea, Bering Sea and others from 2015-06-12 to 2015-08-14 (NCEI Accession 0131828)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0131828 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  14. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Nancy Foster in the North Atlantic Ocean from 2016-09-01 to 2016-09-07 (NCEI Accession 0165225)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0165225 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  15. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Oregon II in the Gulf of Mexico from 2017-04-28 to 2017-05-30 (NCEI Accession 0164785)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164785 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  16. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Nancy Foster in the Caribbean Sea and North Atlantic Ocean from 2015-04-12 to 2015-05-05 (NCEI Accession 0129874)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0129874 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  17. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Nancy Foster in the Gulf of Mexico from 2017-08-13 to 2017-08-24 (NCEI Accession 0165351)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0165351 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  18. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Nancy Foster in the Caribbean Sea and North Atlantic Ocean from 2013-02-13 to 2013-03-01 (NODC Accession 0113486)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113486 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  19. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Reuben Lasker in the North Pacific Ocean from 2016-09-06 to 2016-09-24 (NCEI Accession 0162242)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0162242 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  20. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Thomas Jefferson in the North Atlantic Ocean from 2015-04-27 to 2015-06-21 (NCEI Accession 0129518)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0129518 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  1. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Nancy Foster in the Caribbean Sea, Gulf of Mexico and North Atlantic Ocean from 2015-05-10 to 2015-06-02 (NCEI Accession 0129840)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0129840 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  2. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Nancy Foster in the Gulf of Mexico and North Atlantic Ocean from 2016-08-10 to 2016-08-22 (NCEI Accession 0165224)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0165224 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  3. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Gordon Gunter in the North Atlantic Ocean from 2015-10-06 to 2015-10-27 (NCEI Accession 0137363)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0137363 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  4. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Nancy Foster in the Caribbean Sea and North Atlantic Ocean from 2016-06-02 to 2016-06-07 (NCEI Accession 0165093)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0165093 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  5. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Nancy Foster in the North Atlantic Ocean from 2014-04-12 to 2014-04-17 (NODC Accession 0117969)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117969 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  6. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Gordon Gunter in the North Atlantic Ocean from 2016-05-21 to 2016-06-04 (NCEI Accession 0155169)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0155169 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  7. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Nancy Foster in the Caribbean Sea and North Atlantic Ocean from 2013-02-16 to 2013-04-06 (NODC Accession 0113252)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113252 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  8. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Oregon II in the Gulf of Mexico from 2016-04-29 to 2016-05-31 (NCEI Accession 0152488)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0152488 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  9. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Bell M. Shimada in the North Pacific Ocean from 2017-04-27 to 2017-05-11 (NCEI Accession 0164342)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164342 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  10. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Oregon II in the Gulf of Mexico from 2017-06-07 to 2017-07-20 (NCEI Accession 0164784)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164784 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  11. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Nancy Foster in the North Atlantic Ocean from 2014-05-05 to 2014-05-17 (NODC Accession 0118731)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0118731 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  12. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Nancy Foster in the North Atlantic Ocean from 2015-08-21 to 2015-08-30 (NCEI Accession 0131113)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0131113 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  13. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Gordon Gunter in the Gulf of Mexico and North Atlantic Ocean from 2017-07-02 to 2017-07-18 (NCEI Accession 0165352)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0165352 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  14. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Nancy Foster in the North Atlantic Ocean from 2016-10-13 to 2016-10-18 (NCEI Accession 0165350)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0165350 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  15. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Pisces in the North Atlantic Ocean from 2016-10-04 to 2016-10-13 (NCEI Accession 0164086)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164086 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  16. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Bering Sea, Gulf of Alaska and North Pacific Ocean from 2013-05-15 to 2013-06-01 (NODC Accession 0124207)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0124207 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  17. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Nancy Foster in the Gulf of Mexico and North Atlantic Ocean from 2017-08-07 to 2017-08-09 (NCEI Accession 0165223)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0165223 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  18. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Nancy Foster in the North Atlantic Ocean from 2015-07-07 to 2015-07-24 (NCEI Accession 0129912)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0129912 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  19. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Nancy Foster in the Caribbean Sea and North Atlantic Ocean from 2015-03-19 to 2015-04-08 (NCEI Accession 0129817)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0129817 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  20. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Oregon II in the Gulf of Mexico from 2016-10-23 to 2016-11-20 (NCEI Accession 0164299)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164299 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  1. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Pisces in the North Atlantic Ocean from 2017-06-20 to 2017-07-06 (NCEI Accession 0165349)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0165349 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  2. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Oregon II in the Gulf of Mexico from 2016-06-07 to 2016-07-20 (NCEI Accession 0155955)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0155955 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  3. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Pisces in the Gulf of Mexico and North Atlantic Ocean from 2017-04-11 to 2017-06-17 (NCEI Accession 0164341)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164341 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  4. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Bell M. Shimada in the North Pacific Ocean from 2016-04-28 to 2016-05-09 (NCEI Accession 0151241)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0151241 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  5. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Gulf of Alaska and North Pacific Ocean from 2013-02-08 to 2013-03-05 (NODC Accession 0124184)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0124184 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  6. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Nancy Foster in the North Atlantic Ocean from 2013-08-31 to 2013-09-07 (NODC Accession 0113487)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113487 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  7. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Reuben Lasker in the North Pacific Ocean from 2016-10-06 to 2016-10-13 (NCEI Accession 0164089)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164089 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  8. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Elton Sette in the North Pacific Ocean from 2016-06-13 to 2016-06-22 (NCEI Accession 0155171)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0155171 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  9. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Bering Sea, Gulf of Alaska and North Pacific Ocean from 2014-04-04 to 2014-05-02 (NODC Accession 0125006)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0125006 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  10. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Bering Sea, Gulf of Alaska and North Pacific Ocean from 2015-10-02 to 2015-10-06 (NCEI Accession 0165362)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0165362 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  11. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Bering Sea, Gulf of Alaska and North Pacific Ocean from 2016-04-02 to 2016-04-29 (NCEI Accession 0165023)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0165023 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  12. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Bering Sea, Gulf of Alaska and North Pacific Ocean from 2014-08-17 to 2014-10-06 (NODC Accession 0124596)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0124596 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  13. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Bering Sea from 2016-06-12 to 2016-08-17 (NCEI Accession 0165031)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0165031 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  14. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Bering Sea, Gulf of Alaska and North Pacific Ocean from 2013-06-08 to 2013-08-09 (NODC Accession 0123940)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0123940 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  15. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Bering Sea from 2015-09-06 to 2015-09-18 (NCEI Accession 0137412)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0137412 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  16. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Bering Sea, Gulf of Alaska and North Pacific Ocean from 2015-08-20 to 2015-09-02 (NCEI Accession 0131578)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0131578 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  17. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Bering Sea from 2016-05-04 to 2016-05-14 (NCEI Accession 0165029)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0165029 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  18. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Bering Sea, Gulf of Alaska and North Pacific Ocean from 2014-03-13 to 2014-03-25 (NODC Accession 0124597)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0124597 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  19. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Gulf of Alaska and North Pacific Ocean from 2017-02-07 to 2017-02-16 (NCEI Accession 0164963)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164963 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  20. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Bering Sea, Gulf of Alaska and North Pacific Ocean from 2013-04-29 to 2013-05-11 (NODC Accession 0124208)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0124208 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  1. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Bering Sea, Gulf of Alaska and North Pacific Ocean from 2015-06-11 to 2015-08-16 (NCEI Accession 0130738)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0130738 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  2. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Bering Sea from 2014-05-06 to 2014-05-17 (NODC Accession 0125087)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0125087 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  3. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Coastal Waters of SE Alaska from 2016-01-30 to 2016-02-01 (NCEI Accession 0150695)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0150695 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  4. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Gulf of Alaska from 2017-03-14 to 2017-03-27 (NCEI Accession 0165012)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0165012 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  5. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Bering Sea, Gulf of Alaska and North Pacific Ocean from 2014-03-03 to 2014-03-12 (NODC Accession 0125005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0125005 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  6. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Gulf of Alaska and North Pacific Ocean from 2015-02-09 to 2015-03-03 (NODC Accession 0127242)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0127242 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  7. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Bering Sea from 2016-08-22 to 2016-09-20 (NCEI Accession 0165088)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0165088 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  8. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Bering Sea, Gulf of Alaska and North Pacific Ocean from 2013-08-15 to 2013-09-19 (NODC Accession 0123941)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0123941 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  9. Underway meteorological, navigational, physical, profile and time series data collected aboard NOAA Ship Henry B. Bigelow in the North Atlantic Ocean from 2015-05-19 to 2015-06-03 (NCEI Accession 0134847)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0134847 contains raw underway meteorological, navigational, physical, profile and time series data logged by the Scientific Computer System (SCS)...

  10. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Bering Sea, Gulf of Alaska and North Pacific Ocean from 2015-09-23 to 2015-10-06 (NCEI Accession 0137392)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0137392 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  11. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Gordon Gunter in the Gulf of Mexico from 2015-03-03 to 2015-04-02 (NODC Accession 0127257)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0127257 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  12. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Oregon II in the Gulf of Mexico from 2017-06-05 to 2017-06-07 (NCEI Accession 0164786)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164786 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  13. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Pisces in the Gulf of Mexico from 2016-05-26 to 2016-05-31 (NCEI Accession 0155295)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0155295 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  14. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Pisces in the North Atlantic Ocean from 2013-02-10 to 2013-02-26 (NODC Accession 0117954)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117954 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  15. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Elton Sette in the North Pacific Ocean from 2015-09-06 to 2015-10-02 (NCEI Accession 0134813)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0134813 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  16. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Elton Sette in the North Pacific Ocean from 2017-03-08 to 2017-03-22 (NCEI Accession 0164156)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164156 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  17. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Elton Sette in the North Pacific Ocean and South Pacific Ocean from 2016-04-14 to 2016-05-31 (NCEI Accession 0164154)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164154 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  18. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Elton Sette in the North Pacific Ocean from 2016-10-13 to 2016-11-04 (NCEI Accession 0164095)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164095 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  19. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Elton Sette in the North Pacific Ocean from 2017-03-29 to 2017-04-07 (NCEI Accession 0164431)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164431 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  20. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Elton Sette in the North Pacific Ocean from 2017-04-18 to 2017-05-02 (NCEI Accession 0164433)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164433 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  1. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Elton Sette in the North Pacific Ocean from 2014-04-05 to 2014-04-19 (NODC Accession 0118646)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0118646 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  2. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Elton Sette in the North Pacific Ocean from 2016-09-06 to 2016-09-25 (NCEI Accession 0164098)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164098 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  3. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Elton Sette in the North Pacific Ocean from 2016-06-28 to 2016-07-27 (NCEI Accession 0164096)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164096 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  4. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Oscar Elton Sette in the North Pacific Ocean from 2015-04-03 to 2015-04-15 (NCEI Accession 0130368)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0130368 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  5. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Oscar Elton Sette in the North Pacific Ocean and Philippine Sea from 2015-06-11 to 2015-07-14 (NCEI Accession 0129902)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0129902 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  6. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Elton Sette in the North Pacific Ocean from 2017-07-07 to 2017-08-02 (NCEI Accession 0165987)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0165987 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  7. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Elton Sette in the North Pacific Ocean from 2014-03-17 to 2014-03-28 (NODC Accession 0118676)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0118676 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  8. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Bell M. Shimada in the Coastal Waters of SE Alaska and North Pacific Ocean from 2016-02-21 to 2016-03-11 (NCEI Accession 0150967)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0150967 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  9. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Pisces in the North Atlantic Ocean from 2015-07-10 to 2015-08-04 (NCEI Accession 0130690)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0130690 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  10. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Pisces in the Gulf of Mexico and North Atlantic Ocean from 2013-04-05 to 2013-06-07 (NODC Accession 0117812)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117812 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  11. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Pisces in the North Atlantic Ocean from 2013-07-01 to 2013-07-12 (NODC Accession 0117838)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117838 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  12. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Bell M. Shimada in the North Pacific Ocean from 2017-03-29 to 2017-04-20 (NCEI Accession 0164320)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164320 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  13. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Pisces in the Gulf of Mexico from 2013-10-22 to 2013-12-07 (NCEI Accession 0142630)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0142630 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  14. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Bell M. Shimada in the North Pacific Ocean from 2016-03-23 to 2016-04-23 (NCEI Accession 0150875)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0150875 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  15. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Bell M. Shimada in the North Pacific Ocean on 2016-06-26 (NCEI Accession 0162236)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0162236 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  16. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Pisces in the Gulf of Mexico and North Atlantic Ocean from 2015-05-12 to 2015-06-10 (NCEI Accession 0129440)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0129440 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  17. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Bell M. Shimada in the North Pacific Ocean from 2016-10-05 to 2016-10-12 (NCEI Accession 0164962)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164962 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  18. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Pisces in the North Atlantic Ocean from 2016-09-21 to 2016-09-29 (NCEI Accession 0164083)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164083 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  19. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Bell M. Shimada in the North Pacific Ocean from 2015-05-29 to 2015-06-10 (NCEI Accession 0129494)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0129494 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  20. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Bell M. Shimada in the North Pacific Ocean from 2015-01-31 to 2015-02-04 (NODC Accession 0125756)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0125756 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  1. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Bell M. Shimada in the North Pacific Ocean from 2016-06-13 to 2016-06-26 (NCEI Accession 0162235)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0162235 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  2. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Bell M. Shimada in the North Pacific Ocean from 2017-06-19 to 2017-07-20 (NCEI Accession 0164782)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164782 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  3. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Pisces in the Gulf of Mexico from 2014-08-22 to 2014-09-12 (NODC Accession 0121982)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0121982 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  4. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Pisces in the Caribbean Sea, Gulf of Mexico and North Atlantic Ocean from 2015-10-12 to 2015-11-24 (NCEI Accession 0138341)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0138341 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  5. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Oregon II in the Gulf of Mexico and North Atlantic Ocean from 2015-07-25 to 2015-09-27 (NCEI Accession 0132051)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0132051 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  6. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Bering Sea, Gulf of Alaska and North Pacific Ocean from 2017-06-08 to 2017-07-15 (NCEI Accession 0165028)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0165028 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  7. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Okeanos Explorer in the North Pacific Ocean from 2015-10-07 to 2015-10-16 (NCEI Accession 0150689)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0150689 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  8. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Reuben Lasker in the North Pacific Ocean from 2017-03-21 to 2017-04-22 (NCEI Accession 0164340)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164340 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  9. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Bering Sea, Gulf of Alaska and North Pacific Ocean from 2016-03-09 to 2016-03-24 (NCEI Accession 0150822)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0150822 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  10. Underway meteorological, navigational, optical, physical, time series and trawl data collected aboard NOAA Ship Bell M. Shimada in the North Pacific Ocean from 2013-04-06 to 2013-04-30 (NCEI Accession 0115912)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115912 contains raw underway meteorological, navigational, optical, physical, time series and trawl data logged by the Scientific Computer System...

  11. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Okeanos Explorer in the North Atlantic Ocean from 2014-08-09 to 2014-10-07 (NODC Accession 0125346)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0125346 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  12. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Reuben Lasker in the North Pacific Ocean from 2016-01-06 to 2016-01-30 (NCEI Accession 0150692)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0150692 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  13. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Gulf of Alaska from 2017-03-01 to 2017-03-10 (NCEI Accession 0165011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0165011 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  14. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Hi'ialakai in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2017-03-26 to 2017-06-21 (NCEI Accession 0164429)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164429 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  15. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Thomas Jefferson in the North Atlantic Ocean from 2013-09-24 to 2013-11-04 (NODC Accession 0123614)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0123614 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  16. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Bering Sea, Gulf of Alaska and North Pacific Ocean from 2017-05-11 to 2017-06-02 (NCEI Accession 0165021)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0165021 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  17. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Gordon Gunter in the Gulf of Mexico and North Atlantic Ocean from 2014-07-04 to 2014-07-31 (NODC Accession 0120740)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0120740 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  18. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Coastal Waters of Southeast Alaska and British Columbia from 2016-01-25 to 2016-01-27 (NCEI Accession 0164857)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164857 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  19. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Bell M. Shimada in the North Pacific Ocean from 2015-05-05 to 2015-05-18 (NCEI Accession 0128172)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0128172 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  20. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Ronald H. Brown in the North Pacific Ocean from 2016-03-29 to 2016-04-25 (NCEI Accession 0155759)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0155759 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  1. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Oregon II in the Gulf of Mexico from 2014-06-07 to 2014-07-19 (NODC Accession 0120616)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0120616 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  2. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Gulf of Alaska and North Pacific Ocean from 2014-02-21 to 2014-03-01 (NODC Accession 0125086)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0125086 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  3. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Gordon Gunter in the Gulf of Mexico from 2016-10-23 to 2016-11-22 (NCEI Accession 0164155)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164155 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  4. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Bering Sea, Gulf of Alaska and North Pacific Ocean from 2016-03-02 to 2016-03-09 (NCEI Accession 0150732)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0150732 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  5. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Bell M. Shimada in the North Pacific Ocean from 2015-10-06 to 2015-10-13 (NCEI Accession 0164861)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164861 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  6. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Bell M. Shimada in the North Pacific Ocean from 2017-02-17 to 2017-02-25 (NCEI Accession 0164313)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164313 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  7. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Fairweather in the Coastal Waters of SE Alaska and North Pacific Ocean from 2015-09-18 to 2015-11-13 (NCEI Accession 0137857)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0137857 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  8. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Hi'ialakai in the North Pacific Ocean and South Pacific Ocean from 2015-01-22 to 2015-05-04 (NCEI Accession 0127322)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0127322 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  9. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Thomas Jefferson in the North Atlantic Ocean from 2014-06-10 to 2014-06-12 (NCEI Accession 0123771)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0123771 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  10. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Thomas Jefferson in the North Atlantic Ocean from 2014-04-28 to 2014-10-04 (NODC Accession 0123772)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0123772 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  11. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Nancy Foster in the Caribbean Sea and North Atlantic Ocean from 2014-03-05 to 2014-04-08 (NODC Accession 0125563)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0125563 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  12. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Gordon Gunter in the North Atlantic Ocean from 2017-05-29 to 2017-06-07 (NCEI Accession 0164440)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164440 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  13. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Gordon Gunter in the Gulf of Mexico and North Atlantic Ocean from 2016-04-10 to 2016-04-20 (NCEI Accession 0165360)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0165360 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  14. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Pisces in the North Atlantic Ocean from 2017-07-08 to 2017-07-26 (NCEI Accession 0165226)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0165226 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  15. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Okeanos Explorer in the Gulf of Mexico and North Atlantic Ocean from 2014-05-07 to 2014-05-22 (NODC Accession 0125618)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0125618 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  16. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Hi'ialakai in the North Pacific Ocean from 2015-07-09 to 2015-07-16 (NCEI Accession 0129903)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0129903 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  17. Underway meteorological, time series, navigational, physical and optical data collected aboard NOAA Ship Okeanos Explorer in the Gulf of Mexico and North Atlantic Ocean from 2014-02-24 to 2014-03-18 (NCEI Accession 0123616)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0123616 contains raw underway meteorological, time series, navigational, physical and optical data logged by the Scientific Computer System (SCS)...

  18. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Ronald H. Brown in the Arctic Ocean, Beaufort Sea and others from 2015-08-06 to 2015-09-04 (NCEI Accession 0141104)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0141104 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  19. Underway meteorological and navigational data collected aboard NOAA Ship Ferdinand R. Hassler in the North Atlantic Ocean from 2015-06-29 to 2015-07-26 (NCEI Accession 0138028)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0138028 contains raw underway meteorological and navigational data logged by the Scientific Computer System (SCS) aboard NOAA Ship Ferdinand R....

  20. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Nancy Foster in the North Atlantic Ocean from 2015-08-09 to 2015-08-16 (NCEI Accession 0130917)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0130917 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  1. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Nancy Foster in the North Atlantic Ocean from 2013-07-12 to 2013-07-21 (NODC Accession 0113448)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113448 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  2. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Okeanos Explorer in the Caribbean Sea and North Atlantic Ocean from 2015-02-24 to 2015-04-30 (NCEI Accession 0128116)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0128116 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  3. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Bering Sea, Gulf of Alaska and North Pacific Ocean from 2015-04-24 to 2015-05-10 (NCEI Accession 0130737)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0130737 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  4. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Bering Sea, Gulf of Alaska and North Pacific Ocean from 2015-05-14 to 2015-06-05 (NCEI Accession 0130586)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0130586 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  5. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Ronald H. Brown in the North Atlantic Ocean, Rio de la Plata and others from 2017-02-11 to 2017-03-15 (NCEI Accession 0164157)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164157 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  6. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Elton Sette in the North Pacific Ocean and Philippine Sea from 2014-07-24 to 2014-08-25 (NODC Accession 0123095)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0123095 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  7. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Pisces in the North Atlantic Ocean from 2016-11-12 to 2016-11-18 (NCEI Accession 0164093)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164093 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  8. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Bell M. Shimada in the North Pacific Ocean from 2016-08-19 to 2016-09-30 (NCEI Accession 0164088)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164088 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  9. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Oregon II in the Gulf of Mexico from 2015-10-08 to 2015-11-21 (NCEI Accession 0138304)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0138304 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  10. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Bell M. Shimada in the North Pacific Ocean from 2016-05-14 to 2016-05-28 (NCEI Accession 0164090)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164090 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  11. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Gordon Gunter in the Gulf of Mexico from 2016-10-31 to 2016-11-03 (NCEI Accession 0164446)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164446 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  12. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Gordon Gunter in the North Atlantic Ocean from 2017-06-10 to 2017-06-23 (NCEI Accession 0164441)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164441 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  13. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Gordon Gunter in the North Atlantic Ocean from 2016-06-30 to 2016-07-16 (NCEI Accession 0165361)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0165361 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  14. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Nancy Foster in the North Atlantic Ocean from 2015-09-02 to 2015-09-10 (NCEI Accession 0137334)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0137334 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  15. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Thomas Jefferson in the North Atlantic Ocean from 2017-07-11 to 2017-07-22 (NCEI Accession 0164798)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164798 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  16. Underway meteorological, navigational and physical data collected aboard NOAA Ship Ferdinand R. Hassler in the North Atlantic Ocean from 2015-07-27 to 2015-09-21 (NCEI Accession 0138016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0138016 contains raw underway meteorological, navigational and physical data logged by the Scientific Computer System (SCS) aboard NOAA Ship Ferdinand...

  17. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Thomas Jefferson in the North Atlantic Ocean from 2015-06-24 to 2015-07-03 (NCEI Accession 0142627)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0142627 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  18. Underway meteorological, navigational, physical, profile and time series data collected aboard NOAA Ship Henry B. Bigelow in the North Atlantic Ocean from 2012-02-27 to 2012-05-04 (NODC Accession 0125710)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0125710 contains raw underway meteorological, navigational, physical, profile and time series data logged by the Scientific Computer System (SCS)...

  19. Underway meteorological, navigational, physical, profile and time series data collected aboard NOAA Ship Henry B. Bigelow in the North Atlantic Ocean from 2017-06-08 to 2017-06-22 (NCEI Accession 0164795)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164795 contains raw underway meteorological, navigational, physical, profile and time series data logged by the Scientific Computer System (SCS)...

  20. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Henry B. Bigelow in the North Atlantic Ocean from 2017-07-06 to 2017-07-19 (NCEI Accession 0164783)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164783 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  1. Underway meteorological, navigational, physical, profile and time series data collected aboard NOAA Ship Henry B. Bigelow in the North Atlantic Ocean from 2012-06-18 to 2012-06-28 (NODC Accession 0125666)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0125666 contains raw underway meteorological, navigational, physical, profile and time series data logged by the Scientific Computer System (SCS)...

  2. Underway meteorological, navigational, physical, profile and time series data collected aboard NOAA Ship Henry B. Bigelow in the North Atlantic Ocean from 2013-07-01 to 2013-08-18 (NODC Accession 0115902)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115902 contains raw underway meteorological, navigational, physical, profile and time series data logged by the Scientific Computer System (SCS)...

  3. Underway meteorological, navigational, physical, profile and time series data collected aboard NOAA Ship Henry B. Bigelow in the North Atlantic Ocean from 2015-05-19 to 2015-06-03 (NCEI Accession 0129421)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0129421 contains raw underway meteorological, navigational, physical, profile and time series data logged by the Scientific Computer System (SCS)...

  4. Underway meteorological, navigational, physical, profile and time series data collected aboard NOAA Ship Henry B. Bigelow in the North Atlantic Ocean from 2014-07-24 to 2014-07-30 (NODC Accession 0125266)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0125266 contains raw underway meteorological, navigational, physical, profile and time series data logged by the Scientific Computer System (SCS)...

  5. Underway meteorological, navigational, physical, profile and time series data collected aboard NOAA Ship Henry B. Bigelow in the North Atlantic Ocean from 2013-06-10 to 2013-06-24 (NODC Accession 0115702)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115702 contains raw underway meteorological, navigational, physical, profile and time series data logged by the Scientific Computer System (SCS)...

  6. Underway meteorological, navigational, physical, profile and time series data collected aboard NOAA Ship Henry B. Bigelow in the Bay of Fundy and North Atlantic Ocean from 2013-09-06 to 2013-11-19 (NCEI Accession 0115901)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115901 contains raw underway meteorological, navigational, physical, profile and time series data logged by the Scientific Computer System (SCS)...

  7. Underway meteorological, navigational, physical, profile and time series data collected aboard NOAA Ship Henry B. Bigelow in the North Atlantic Ocean from 2012-05-31 to 2012-06-14 (NODC Accession 0125709)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0125709 contains raw underway meteorological, navigational, physical, profile and time series data logged by the Scientific Computer System (SCS)...

  8. Underway meteorological, navigational, physical, profile and time series data collected aboard NOAA Ship Henry B. Bigelow in the North Atlantic Ocean from 2015-07-27 to 2015-08-07 (NCEI Accession 0130538)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0130538 contains raw underway meteorological, navigational, physical, profile and time series data logged by the Scientific Computer System (SCS)...

  9. Underway meteorological, navigational, physical, profile and time series data collected aboard NOAA Ship Henry B. Bigelow in the North Atlantic Ocean from 2012-08-07 to 2012-08-24 (NODC Accession 0125711)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0125711 contains raw underway meteorological, navigational, physical, profile and time series data logged by the Scientific Computer System (SCS)...

  10. Underway meteorological, navigational, physical, profile and time series data collected aboard NOAA Ship Henry B. Bigelow in the North Atlantic Ocean from 2012-07-04 to 2012-07-18 (NODC Accession 0125758)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0125758 contains raw underway meteorological, navigational, physical, profile and time series data logged by the Scientific Computer System (SCS)...

  11. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Henry B. Bigelow in the North Atlantic Ocean from 2015-11-12 to 2015-11-17 (NCEI Accession 0138157)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0138157 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  12. Underway meteorological, navigational, physical, profile and time series data collected aboard NOAA Ship Henry B. Bigelow in the North Atlantic Ocean from 2012-09-04 to 2012-11-11 (NODC Accession 0125919)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0125919 contains raw underway meteorological, navigational, physical, profile and time series data logged by the Scientific Computer System (SCS)...

  13. Underway meteorological, navigational, physical, profile and time series data collected aboard NOAA Ship Henry B. Bigelow in the North Atlantic Ocean from 2014-08-05 to 2014-08-16 (NODC Accession 0125265)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0125265 contains raw underway meteorological, navigational, physical, profile and time series data logged by the Scientific Computer System (SCS)...

  14. Underway meteorological, navigational, physical, profile and time series data collected aboard NOAA Ship Henry B. Bigelow in the North Atlantic Ocean from 2015-06-10 to 2015-07-02 (NCEI Accession 0129527)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0129527 contains raw underway meteorological, navigational, physical, profile and time series data logged by the Scientific Computer System (SCS)...

  15. Underway meteorological, navigational, physical, profile and time series data collected aboard NOAA Ship Henry B. Bigelow in the North Atlantic Ocean from 2013-03-14 to 2013-05-09 (NODC Accession 0115052)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115052 contains raw underway meteorological, navigational, physical, profile and time series data logged by the Scientific Computer System (SCS)...

  16. Underway meteorological, navigational, physical, profile and time series data collected aboard NOAA Ship Henry B. Bigelow in the North Atlantic Ocean from 2016-07-18 to 2016-08-25 (NCEI Accession 0162239)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0162239 contains raw underway meteorological, navigational, physical, profile and time series data logged by the Scientific Computer System (SCS)...

  17. Underway meteorological, navigational, physical, profile and time series data collected aboard NOAA Ship Henry B. Bigelow in the North Atlantic Ocean from 2014-06-18 to 2014-07-01 (NODC Accession 0125584)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0125584 contains raw underway meteorological, navigational, physical, profile and time series data logged by the Scientific Computer System (SCS)...

  18. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Bell M. Shimada in the North Pacific Ocean from 2014-09-25 to 2014-09-30 (NCEI Accession 0136936)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0136936 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  19. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Bell M. Shimada in the North Pacific Ocean from 2014-04-15 to 2014-05-12 (NODC Accession 0118545)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0118545 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  20. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Oregon II in the Gulf of Mexico from 2015-05-01 to 2015-05-31 (NCEI Accession 0129419)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0129419 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  1. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Pisces in the North Atlantic Ocean from 2014-07-06 to 2014-08-02 (NODC Accession 0121197)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0121197 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  2. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Hi'ialakai in the North Pacific Ocean from 2014-06-16 to 2014-07-12 (NODC Accession 0120277)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0120277 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  3. Underway meteorological, navigational, physical, profile and time series data collected aboard NOAA Ship Hi'ialakai in the North Pacific Ocean and Philippine Sea from 2014-05-11 to 2014-05-22 (NODC Accession 0119200)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0119200 contains raw underway meteorological, navigational, physical, profile and time series data logged by the Scientific Computer System (SCS)...

  4. Underway meteorological, navigational, physical, profile and time series data collected aboard NOAA Ship Hi'ialakai in the North Pacific Ocean and Philippine Sea from 2014-03-05 to 2014-06-02 (NODC Accession 0119156)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0119156 contains raw underway meteorological, navigational, physical, profile and time series data logged by the Scientific Computer System (SCS)...

  5. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Hi'ialakai in the North Pacific Ocean from 2013-09-05 to 2013-09-20 (NODC Accession 0113248)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113248 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  6. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Hi'ialakai in the North Pacific Ocean from 2014-08-07 to 2014-09-01 (NODC Accession 0121622)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0121622 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  7. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Hi'ialakai in the North Pacific Ocean from 2013-07-09 to 2013-07-16 (NODC Accession 0113243)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113243 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  8. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Hi'ialakai in the North Pacific Ocean from 2013-06-26 to 2013-07-03 (NODC Accession 0099244)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0099244 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  9. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Hi'ialakai in the North Pacific Ocean from 2014-07-15 to 2014-07-23 (NODC Accession 0120634)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0120634 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  10. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Hi'ialakai in the North Pacific Ocean from 2017-08-11 to 2017-08-29 (NCEI Accession 0165395)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0165395 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  11. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Elton Sette in the North Pacific Ocean from 2017-05-12 to 2017-06-04 (NCEI Accession 0164079)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164079 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  12. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Elton Sette in the North Pacific Ocean from 2016-08-03 to 2016-08-25 (NCEI Accession 0164097)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164097 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  13. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Fairweather in the Coastal Waters of Southeast Alaska and British Columbia and North Pacific Ocean from 2016-05-25 to 2016-06-18 (NCEI Accession 0162234)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0162234 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  14. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Bell M. Shimada in the North Pacific Ocean from 2016-01-09 to 2016-02-09 (NCEI Accession 0150817)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0150817 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  15. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Hi'ialakai in the North Pacific Ocean from 2015-06-14 to 2015-07-03 (NCEI Accession 0129549)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0129549 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  16. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Oscar Elton Sette in the North Pacific Ocean and Philippine Sea from 2015-04-20 to 2015-06-05 (NCEI Accession 0129910)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0129910 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  17. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Oregon II in the Gulf of Mexico from 2016-03-31 to 2016-04-22 (NCEI Accession 0150823)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0150823 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  18. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Oregon II in the Gulf of Mexico from 2017-03-20 to 2017-04-20 (NCEI Accession 0164319)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164319 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  19. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Nancy Foster in the Gulf of Mexico and North Atlantic Ocean from 2013-09-10 to 2013-09-20 (NODC Accession 0113488)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113488 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  20. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Bering Sea from 2014-06-12 to 2014-08-14 (NODC Accession 0124303)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0124303 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  1. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Gordon Gunter in the North Atlantic Ocean from 2014-05-05 to 2014-05-09 (NCEI Accession 0149716)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0149716 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  2. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Bering Sea, Gulf of Alaska and North Pacific Ocean from 2016-09-30 to 2016-10-07 (NCEI Accession 0165090)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0165090 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  3. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Bering Sea from 2016-09-24 to 2016-10-01 (NCEI Accession 0165089)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0165089 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  4. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Bering Sea, Gulf of Alaska and North Pacific Ocean from 2017-04-22 to 2017-05-08 (NCEI Accession 0165013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0165013 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  5. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Hi'ialakai in the North Pacific Ocean from 2015-10-14 to 2015-10-26 (NCEI Accession 0137364)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0137364 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  6. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Rainier in the Gulf of Alaska from 2014-06-04 to 2014-06-20 (NCEI Accession 0141106)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0141106 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  7. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Hi'ialakai in the North Pacific Ocean from 2015-07-27 to 2015-08-27 (NCEI Accession 0133933)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0133933 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  8. Underway meteorological, navigational, physical, profile and time series data collected aboard NOAA Ship Ronald H. Brown in the Arctic Ocean and North Pacific Ocean from 2015-01-14 to 2015-02-13 (NODC Accession 0126056)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0126056 contains raw underway meteorological, navigational, physical, profile and time series data logged by the Scientific Computer System (SCS)...

  9. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Okeanos Explorer in the North Pacific Ocean from 2015-07-10 to 2015-09-03 (NCEI Accession 0141435)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0141435 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  10. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Gordon Gunter in the Gulf of Mexico from 2016-09-02 to 2016-10-01 (NCEI Accession 0164082)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164082 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  11. Underway meteorological, navigational, optical and physical data collected aboard NOAA Ship Oscar Elton Sette in the North Pacific Ocean from 2013-09-11 to 2013-09-30 (NODC Accession 0117012)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117012 contains raw underway meteorological, navigational, optical and physical data logged by the Scientific Computer System (SCS) aboard NOAA Ship...

  12. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Nancy Foster in the North Atlantic Ocean from 2016-04-28 to 2016-05-03 (NCEI Accession 0164860)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0164860 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  13. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Oregon II in the Gulf of Mexico from 2013-10-24 to 2013-11-22 (NODC Accession 0116135)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0116135 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  14. High-performance liquid chromatographic method for guanylhydrazone compounds.

    Science.gov (United States)

    Cerami, C; Zhang, X; Ulrich, P; Bianchi, M; Tracey, K J; Berger, B J

    1996-01-12

    A high-performance liquid chromatographic method has been developed for a series of aromatic guanylhydrazones that have demonstrated therapeutic potential as anti-inflammatory agents. The compounds were separated using octadecyl or diisopropyloctyl reversed-phase columns, with an acetonitrile gradient in water containing heptane sulfonate, tetramethylammonium chloride, and phosphoric acid. The method was used to reliably quantify levels of analyte as low as 785 ng/ml, and the detector response was linear to at least 50 micrograms/ml using a 100 microliters injection volume. The assay system was used to determine the basic pharmacokinetics of a lead compound, CNI-1493, from serum concentrations following a single intravenous injection in rats.

  15. Effects of chromatographic fractions of Euphorbia hirta on the rat ...

    African Journals Online (AJOL)

    The ethanolic extract of this plant was subjected to chromatographic separation using the vacuum liquid chromatographic technique, a modified form of classical column chromatography. With the aid of thin layer chromatography, six fractions of this plant were obtained and were administered to rats in graded doses of ...

  16. Gas-Chromatographic Determination Of Water In Freon PCA

    Science.gov (United States)

    Melton, Donald M.

    1994-01-01

    Gas-chromatographic apparatus measures small concentrations of water in specimens of Freon PCA. Testing by use of apparatus faster and provides greater protection against accidental contamination of specimens by water in testing environment. Automated for unattended operation. Also used to measure water contents of materials, other than Freon PCA. Innovation extended to development of purgeable sampling accessory for gas chromatographs.

  17. Phytochemical screening and thin layer chromatographic profile of ...

    African Journals Online (AJOL)

    The present study investigates the phytochemicals and thin layer chromatographic profile of. Nauclea diderrichii (Rubiaceae) leaf extracts. Phytochemical in the hexane, ethyl acetate and methanol extracts were determined using standard chemical tests. Thin layer chromatographic techniques were carried out using various ...

  18. Fast gas chromatographic separation of biodiesel.

    Science.gov (United States)

    Pauls, R E

    2011-05-01

    A high-speed gas chromatographic method has been developed to determine the FAME distribution of B100 biodiesel. The capillary column used in this work has dimensions of 20 m × 0.100 mm and is coated with a polyethylene glycol film. Analysis times are typically on the order of 4-5 min depending upon the composition of the B100. The application of this method to a variety of vegetable and animal derived B100 is demonstrated. Quantitative results obtained with this method were in close agreement with those obtained by a more conventional approach on a 100 m column. The method, coupled with solid-phase extraction, was also found suitable to determine the B100 content of biodiesel-diesel blends.

  19. Visualized Characterization for Cerebral Response of Acupuncture Deqi: Paradox Underway

    Directory of Open Access Journals (Sweden)

    Jie Yang

    2013-01-01

    Full Text Available Acupuncture as an oriental natural healing therapy with prolonged history has been extensively utilized in the management of great numbers of disorders. Deqi, a renowned acupuncture needling sensation, is profoundly regarded as the predictor and also the prerequisite of a preferable acupuncture treatment efficacy. Till now, there is still no consistency being reached towards the mechanism of acupuncture Deqi as a result of the discrepancy for publicly acknowledged evidence. Recent visualized research on Deqi using modern technologies has demonstrated possible central mechanism towards it. However, there is a conspicuous paradox underway in the research of cerebral response to acupuncture Deqi. This paper provided a view of up-to-date studies using visualized tools to characterize the brain response to acupuncture Deqi, such as functional magnetic resonance imaging (fMRI and positron emission tomography/computed tomography (PET/CT. The paradox was extruded to highlight certain reasons from a TCM view. It is hypothesized that acupoints located at different dermal sites, state of participant, and needling manipulation can all contribute to the current paradox. Hence, further studies on acupuncture Deqi should pay more attention to the strategy of experiment design with generalized measurement, valid sham control methods, and more to subjects in diseased condition.

  20. Secretory immunoglobulin purification from whey by chromatographic techniques.

    Science.gov (United States)

    Matlschweiger, Alexander; Engelmaier, Hannah; Himmler, Gottfried; Hahn, Rainer

    2017-08-15

    Secretory immunoglobulins (SIg) are a major fraction of the mucosal immune system and represent potential drug candidates. So far, platform technologies for their purification do not exist. SIg from animal whey was used as a model to develop a simple, efficient and potentially generic chromatographic purification process. Several chromatographic stationary phases were tested. A combination of two anion-exchange steps resulted in the highest purity. The key step was the use of a small-porous anion exchanger operated in flow-through mode. Diffusion of SIg into the resin particles was significantly hindered, while the main impurities, IgG and serum albumin, were bound. In this step, initial purity was increased from 66% to 89% with a step yield of 88%. In a second anion-exchange step using giga-porous material, SIg was captured and purified by step or linear gradient elution to obtain fractions with purities >95%. For the step gradient elution step yield of highly pure SIg was 54%. Elution of SIgA and SIgM with a linear gradient resulted in a step yield of 56% and 35%, respectively. Overall yields for both anion exchange steps were 43% for the combination of flow-through and step elution mode. Combination of flow-through and linear gradient elution mode resulted in a yield of 44% for SIgA and 39% for SIgM. The proposed process allows the purification of biologically active SIg from animal whey in preparative scale. For future applications, the process can easily be adopted for purification of recombinant secretory immunoglobulin species. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from surface underway observations using carbon dioxide gas analyzer, shower head equilibrator and other instruments from R/V Wecoma in the U.S. West Coast California Current System during the 2011 West Coast Ocean Acidification Cruise (WCOA2011) from 2011-08-12 to 2011-08-30 (NODC Accession 0123607)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains the surface underway pCO2 data of the first dedicated West Coast Ocean Acidification cruise (WCOA2011). The cruise took place August...

  2. Recent Advances in Water Analysis with Gas Chromatograph Mass Spectrometers

    Science.gov (United States)

    MacAskill, John A.; Tsikata, Edem

    2014-01-01

    We report on progress made in developing a water sampling system for detection and analysis of volatile organic compounds in water with a gas chromatograph mass spectrometer (GCMS). Two approaches are described herein. The first approach uses a custom water pre-concentrator for performing trap and purge of VOCs from water. The second approach uses a custom micro-volume, split-splitless injector that is compatible with air and water. These water sampling systems will enable a single GC-based instrument to analyze air and water samples for VOC content. As reduced mass, volume, and power is crucial for long-duration, manned space-exploration, these water sampling systems will demonstrate the ability of a GCMS to monitor both air and water quality of the astronaut environment, thereby reducing the amount of required instrumentation for long duration habitation. Laboratory prototypes of these water sampling systems have been constructed and tested with a quadrupole ion trap mass spectrometer as well as a thermal conductivity detector. Presented herein are details of these water sampling system with preliminary test results.

  3. Chromatographic Separation of Vitamin E Enantiomers

    Directory of Open Access Journals (Sweden)

    Ju-Yen Fu

    2017-02-01

    Full Text Available Vitamin E is recognized as an essential vitamin since its discovery in 1922. Most vegetable oils contain a mixture of tocopherols and tocotrienols in the vitamin E composition. Structurally, tocopherols and tocotrienols share a similar chromanol ring and a side chain at the C-2 position. Owing to the three chiral centers in tocopherols, they can appear as eight different stereoisomers. Plant sources of tocopherol are naturally occurring in the form of RRR while synthetic tocopherols are usually in the form of all-racemic mixture. Similarly, with only one chiral center, natural tocotrienols occur as the R-isoform. In this review, we aim to discuss a few chromatographic methods that had been used to separate the stereoisomers of tocopherols and tocotrienols. These methods include high performance liquid chromatography, gas chromatography and combination of both. The review will focus on method development including selection of chiral columns, detection method and choice of elution solvent in the context of separation efficiency, resolution and chiral purity. The applications for separation of enantiomers in vitamin E will also be discussed especially in terms of the distinctive biological potency among the stereoisoforms.

  4. Method for chromatographically recovering scandium and yttrium

    International Nuclear Information System (INIS)

    Snyder, T.S.; Stoltz, R.A.

    1991-01-01

    This paper describes a method for chromatographically recovering scandium and yttrium from the residue of a sand chlorinator. It comprises: providing a residue from a sand chlorinator, the residue containing scandium, yttrium, sodium, calcium and at least one radioactive metal of the group consisting of radium, thorium and uranium; digesting the residue with an acid to produce an aqueous liquid containing scandium, yttrium, sodium, calcium and at least one radioactive metal of the group consisting of radium, thorium and uranium; feeding the metal containing liquid through a cation exchanger; eluding the cation exchanger with an acid eluant to to produce: a first eluate containing at least half of the total weight of the calcium and sodium in the feed liquid; a second eluate containing at least half of the total weight of the one or more radioactive metals in the feed liquid; a third eluate containing at least half of the yttrium in the feed liquid, and a fourth eluate containing at least half of the weight of the scandium in the feed liquid

  5. Chromatographic Techniques for Rare Earth Elements Analysis

    Science.gov (United States)

    Chen, Beibei; He, Man; Zhang, Huashan; Jiang, Zucheng; Hu, Bin

    2017-04-01

    The present capability of rare earth element (REE) analysis has been achieved by the development of two instrumental techniques. The efficiency of spectroscopic methods was extraordinarily improved for the detection and determination of REE traces in various materials. On the other hand, the determination of REEs very often depends on the preconcentration and separation of REEs, and chromatographic techniques are very powerful tools for the separation of REEs. By coupling with sensitive detectors, many ambitious analytical tasks can be fulfilled. Liquid chromatography is the most widely used technique. Different combinations of stationary phases and mobile phases could be used in ion exchange chromatography, ion chromatography, ion-pair reverse-phase chromatography and some other techniques. The application of gas chromatography is limited because only volatile compounds of REEs can be separated. Thin-layer and paper chromatography are techniques that cannot be directly coupled with suitable detectors, which limit their applications. For special demands, separations can be performed by capillary electrophoresis, which has very high separation efficiency.

  6. Chromatographic and electrophoretic methods for nanodisc purification and analysis

    DEFF Research Database (Denmark)

    Justesen, Bo Højen; Günther-Pomorski, Thomas

    2014-01-01

    of proper reconstitution are still major challenges during the sample preparation. This review gives an overview of the methods used for purifying and analyzing nanodiscs and nanodisc-reconstituted membrane proteins, with an emphasis on the chromatographic and electrophoretic approaches....

  7. Chromatographic measurement of hydrogen isotopic and permanent gas impurities in tritium

    International Nuclear Information System (INIS)

    Warner, D.K.; Kinard, C.; Bohl, D.C.

    1976-01-01

    This paper describes a gas chromatograph that was designed for dedicated analysis of hydrogen isotopic and permanent gas impurities in tritium and tritium-deuterium mixtures. The instrument that was developed substantially improved the accuracy and precision of hydrogen isotopic analysis in the 20 ppM to one mole percent range as compared with other analytical methods. Several unique design features of the instrument were required due to the radiation and isotopic exchange properties of the tritium in the samples; descriptions of these features are presented along with details of the complete chromatographic system. The experimental procedures used to calibrate the detector and statistically evaluate its performance are given, and the sources of analytical error are cited. The limitations of the present system are also discussed

  8. Comparison of thin layer chromatographic and gas chromatographic determination of propoxur residues in a cocoa ecosystem

    International Nuclear Information System (INIS)

    Yeboah, P.O.; Lowor, S.; Akpabli, C.K.

    2005-01-01

    The fate of propoxur in a cocoa ecosystem has been studied using thin layer chromatographic (TLC) and gas chromatographic (GC) methods. Residues of propoxur as determined by both TLC and GC were not significantly different. TLC analysis of propoxur residues in soil, cocoa leaves and pods did not require any rigorous cleanup since residues measured from cleaned extracts and without cleanup were not significantly different. The residue levels of propoxur in the soil were found to decrease rapidly and, by the 21st day, none was detected in the topsoil (0-15 cm). Evidence of leaching of propoxur residues in the soil has also been demonstrated. The amount left in the top soil after the first seven days were 27%, 23% and 24% of the initial one as determined by the TLC without cleanup, TLC with cleanup and GLC, respectively. No propoxur residue was detected in topsoil 21 days after spraying. About 38% of pesticides detected on the cocoa pod on the day of treatment remained on the pod seven days after treatment. The residue detected on the leaves on the day of treatment was higher than that in or on the soil. This decreased rapidly to 1.7% in 21 days compared to 16% for the soil and 23% for the pod. (author)

  9. Thermodynamic vs. extrathermodynamic modeling of chromatographic retention.

    Science.gov (United States)

    Kaliszan, Roman; Wiczling, Paweł; Markuszewski, Michał J; Al-Haj, Mehdi A

    2011-08-05

    To predict a given physicochemical or biological property, and hence, to design rationally requested chemical entity, the relationships must be identified between the chemical structure and the desired property. Unfortunately, classical thermodynamics never predicts any property by itself, even so simple one like chromatographic retention. Therefore progress in understanding and describing molecular equilibrium between phases requires a combination of experimental measurements and correlations by means of empirical equations and approximate theories. In this work the retention prediction performance was tested of the well thermodynamically founded solvophobic theory of Horváth and co-workers of reversed-phase HPLC. The retention parameters of four series of analytes were modeled with regard to their chemical structure by: (1) observing the rules of classical thermodynamics; (2) applying an extrathermodynamically derived correction to the model based on the thermodynamic hermeneutics; (3) using extrathermodynamic, chemical intuition-based Quantitative Structure-Retention Relationships (QSRR). The combined thermodynamic/extrathermodynamic model with empirical correction accounting for the number of polar atoms provided an improvement of the agreement between the observed and the predicted retention parameters. However, a purely extrathermodynamic QSRR model, employing analyte descriptors from calculation chemistry, produced similar retention predictions. Both thermodynamic and QSRR models accounted well for abilities of analyte to participate in nonspecific, dispersive intermolecular interactions. Less reliable appeared descriptors of analyte polarity. The approach presented here can be further developed to search for proper polarity parameters, necessary to correctly predict complex physicochemical and biological properties of chemical compounds. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. The use of diatomite microcolumns for the chromatographic separation of steroids prior to radioimmunoassay

    International Nuclear Information System (INIS)

    Abraham, G.E.

    1975-01-01

    Since most anti-steroid antibodies are not usually specific enough to permit direct radioimmunoassay of these compounds, chromatographic purification is required to achieve reliability Celite microcolumns were used for the separation of a wide range of steroids prior to radioimmunoassay. Depending on the polarity of the steroids to be separated, various mixtures of solvents are used as stationary and mobile phases. This system is rapid, easy, economical and reliable

  11. Radio-chromatographic determination of plasmatic adenosine deaminase (A.D.)

    International Nuclear Information System (INIS)

    Chivot, J.J.; Depernet, D.; Caen, J.

    1970-01-01

    We were able, by using a radio-chromatographic method, to measure an adenosine deaminase activity in normal human heparinized platelet-poor plasma, which can degrade 0.016 μM adenosine. This activity suppressed by heating 56 C for 30 minutes is inhibited by high concentrations of urea and is proportional to the amount of plasma, source of enzyme, in the systems. (authors) [fr

  12. Improved stochastic resonance algorithm for enhancement of signal-to-noise ratio of high-performance liquid chromatographic signal

    Energy Technology Data Exchange (ETDEWEB)

    Xie Shaofei [Center for Instrumental Analysis, China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009 (China); Xiang Bingren [Center for Instrumental Analysis, China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009 (China)]. E-mail: cpuxsf@hotmail.com; Deng Haishan [Center for Instrumental Analysis, China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009 (China); Xiang Suyun [Center for Instrumental Analysis, China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009 (China); Lu Jun [Center for Instrumental Analysis, China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009 (China)

    2007-02-28

    Based on the theory of stochastic resonance, an improved stochastic resonance algorithm with a new criterion for optimizing system parameters to enhance signal-to-noise ratio (SNR) of HPLC/UV chromatographic signal for trace analysis was presented in this study. Compared with the conventional criterion in stochastic resonance, the proposed one can ensure satisfactory SNR as well as good peak shape of chromatographic peak in output signal. Application of the criterion to experimental weak signals of HPLC/UV was investigated and the results showed an excellent quantitative relationship between different concentrations and responses.

  13. High performance liquid chromatographic determination of glucosamine in rat plasma.

    Science.gov (United States)

    Aghazadeh-Habashi, Ali; Sattari, Saeed; Pasutto, Franco; Jamali, Fakhreddin

    2002-01-01

    A high performance liquid chromatographic method was developed for the determination of glucosamine (GlcN) in rat plasma. Internal standard, galactosamine, was added to 100 micro L of plasma containing GlcN followed by precipitation of plasma proteins with acetonitrile. Evaporation of the decanted supernatant solution was accelerated by the addition of methanol. GlcN was derivatized by addition of a solution containing 1-naphthyl isothiocyanate. Sample cleanup included passage through an anion exchange cartridge. Analysis was accomplished by injection of 0.1 mL of the sample solution into an isocratic HPLC system consisting of a C18 column, a mobile phase of acetonitrile: water: acetic acid: triethylamine (4.5: 95.5:0.1:0.05), a flow rate of 0.9 mL/min, and a UV detector set at 254 nm. Galactosamine and GlcN appeared 26 and 29 min post-injection, respectively. The assay was linear over the range of 1.25-400 micro g/mL (CV<10%) with a detection limit of 0.63 microg/mL and a limit of quantification of 1.25 microg/mL. The method was applied to the determination of GlcN in rat plasma after oral administration of 350 mg/kg of GlcN hydrochloride. The present assay is specific, sensitive, precise, and accurate and is suitable for pharmacokinetic studies.

  14. Rolling Deck to Repository (R2R): Fleetwide Standard Underway Data Products

    Science.gov (United States)

    Sweeney, A. D.; Clark, P. D.; Miller, S. P.; Stocks, K.; Arko, R. A.; Ferrini, V.

    2009-12-01

    The Rolling Deck to Repository (R2R) project was recently launched with the ambitious goal of documenting “routine underway data” from the US academic research fleet and delivering those data to established national archives. Data distributions will be submitted by 18 operating institutions for 30 vessels, from hundreds of cruises per year. R2R will be responsible for digital data collected with instruments that are part of the ship’s permanent equipment and are routinely operated and recorded by the ship’s technicians. Examples include navigation, multibeam, subbottom, gravimeter, magnetics, ADCP, CTD, meteorology, etc. It is anticipated that most underway data will be promptly and publicly released. However R2R will have the ability to securely embargo any specific datasets identified in advance by the chief scientist, for a proprietary hold period of up to two years as mandated by the NSF 04-004 Division of Ocean Sciences Data and Sample Policy. It is important to note that there are data types that R2R will not address. For example, the chief scientist will continue to be responsible for the documentation and archiving of data from specific instruments brought on board by the scientific party, not part of the ship’s standard equipment. Similarly, data collected with National Facility assets including the National Deep Submergence Facility (NDSF), Ocean Bottom Seismograph Instrument Pool (OBSIP) and the National Marine Seismic Facility (NMSF) will continue to be submitted to the appropriate archiving facility directly by those facilities, rather than through R2R. Soon after the shipboard data is received by R2R, the entire original distribution will be safely stored in a deep archive for long-term preservation, and a cataloging process will be undertaken to assemble data sets for delivery to National Data Centers, as described more fully in the invited presentation by Robert Arko, “Rolling Deck to Repository: Technical Design - Experiences and

  15. Gas chromatograph analysis on closed air and nitrogen oxide storage atmospheres of recalcitrant seeds of Quercus Alba

    Science.gov (United States)

    Storage of recalcitrant seeds remains an unsolved problem. This study investigated the quantitative gas analysis of nitrous oxide (N2O) and air atmospheres on the recalcitrant seeds of Quercus alba by using gas chromatograph. Ten seeds were placed in each sealed atmospheric system of air and 98/2% N...

  16. The counterintuitive role of extra-column volume in the determination of column efficiency and scaling of chromatographic processes

    NARCIS (Netherlands)

    Schultze-Jena, A.; Boon, M.A.; Bussmann, P.J.T.; Janssen, A.E.M.; Padt, A. van der

    2017-01-01

    In industrial liquid separation processes chromatography often has a key function in the optimization of yield and purity. For the design of an industrial system, chromatographic processes are generally simulated using mathematical models, tested and optimized at laboratory level, and then scaled up

  17. The counterintuitive role of extra-column volume in the determination of column efficiency and scaling of chromatographic processes

    NARCIS (Netherlands)

    Schultze-Jena, A.; Boon, M.A.; Bussmann, P.J.Th.; Janssen, A.E.M.; Padt, van der A.

    2017-01-01

    In industrial liquid separation processes chromatography often has a key function in the optimization of yield and purity. For the design of an industrial system, chromatographic processes are generally simulated using mathematical models, tested and optimized at laboratory level, and then scaled

  18. High performance liquid chromatographic determination of vitamin D in fortified milks, margarine, and infant formulas.

    Science.gov (United States)

    Thompson, J N; Hatina, G; Maxwell, W B; Duval, S

    1982-05-01

    Fortified milks were saponified overnight at room temperature with 1% ethanolic pyrogallol and KOH. The digest was extracted with hexane after adding water and ethanol, and the extract was washed consecutively with 5% KOH, water, and 55% aqueous ethanol to remove polar lipids. After evaporation, the residue was first chromatographed on a column of 5 micrometer silica. A fraction containing vitamin D was collected, evaporated, and rechromatographed on a reverse phase column for the separation and quantitation of vitamins D2 and D3. Recovery was 96-99% and the coefficient of variation was 3% (8 replicates). Infant formula was diluted and then saponified and extracted as in the analysis of milk. Margarine was saponified by shaking overnight with 1% ethanolic pyrogallol and 80% KOH. Water and ethanol were added to the digest before extraction. Extracts from formula and margarine were chromatographed as milk except, before HPLC, the extract was dissolved in isopropanol-hexane (1 + 99) and passed through 5 cm alumina in a Pasteur pipet, and the concentration of isopropanol in the first high performance liquid chromatographic (HPLC) solvent system was halved to improve the separation of vitamin D from other absorbing lipids. Usually several peaks were obtained during the final HPLC analysis, and the identification of vitamins D2 and D3 was less certain than in the analysis of milk. The coefficients of variation for formula and margarine were 6% (5 replicates) and 9% (6 replicates), respectively.

  19. Comprehensive description of the photodegradation of bromophenols using chromatographic monitoring and chemometric tools.

    Science.gov (United States)

    Mas, Sílvia; Carbó, Albert; Lacorte, Sílvia; de Juan, Anna; Tauler, Romà

    2011-01-30

    A general procedure for the study of complex photodegradation processes of environmental pollutants based on chromatographic monitoring and chemometric method is proposed. The procedure consists of multiset data analysis of aliquots collected at different reaction times and injected in High-Performance Liquid Chromatography coupled to diode array detection and mass spectrometry (HPLC-DAD-MS). In this study, photodegradation of six bromophenols with different degrees of bromination has been investigated in order to find out their photodegradation pathways and kinetics and to show the potential of the procedure proposed. Multivariate curve resolution-alternating least squares (MCR-ALS) has been used to resolve chromatographic elution profiles and pure spectra of species involved in the photodegradation process and, hence, to elucidate the photodegradation mechanism and to propose the chemical structure of the main photoproducts. This study shows that chromatographic monitoring is the preferred option when photochemical systems with large number of components with similar spectra and kinetic evolution are analyzed. This work reveals the advantages of the double DAD and MS detection to provide mechanistic and structural information about these complex photodegradation processes. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Physicochemical and chromatographic method of characterization of Matricaria recutita tinctures

    Directory of Open Access Journals (Sweden)

    Jonathan Parra

    2016-02-01

    Full Text Available Context: The pharmacological activity of medicinal products containing plant materials depends on their specific components. However, these components are not characterized in their entirety in all cases. Therefore, manufacturing processes must be duly characterized and validated. Aims: To characterize a chamomile (Matricaria recutita tincture through chemometric analysis of chromatographic data in order to establish quality parameters for its production. Methods: Various chamomile tinctures were manufactured and the precision and robustness of the production process for each was verified. The physicochemical properties of the tinctures were characterized and their chromatographic digital fingerprints analysed through chemometric methods. Results: A good correlation between the physicochemical characterization and the chromatographic analysis was demonstrated. The preparation methodology was proved to be repeatable as long as the source of the plant material is not altered. Conclusions: The principal component multivariate analysis of chromatograms was a helpful and simple tool for the characterization and traceability of the production method.

  1. Chemical characterization of Brickellia cavanillesii (Asteraceae) using gas chromatographic methods

    OpenAIRE

    Eshiet, Etetor R; Zhu, Jinqiu; Anderson, Todd A; Smith, Ernest E

    2013-01-01

    A methanol extract of lyophilized Brickellia cavanillesii was quantitatively analyzed using gas chromatographic (GC) techniques. The chromatographic methods employed were (i) GC-flame ionization detector (GC-FID), (ii) GC-mass spectrometry (GC-MS), and (iii) purge and trap GC-MS (P&T GC-MS). Thirteen compounds were identified with a quality match of 90% and above using GC-MS. The compounds were (1) Cyclohexene, 6-ethenyl-6-methyl-1-(1-methylethyl)-3-(1-methylethylidene)-, (S)-; (2) Bicylo (2....

  2. Chromatographic method of measurement of helium concentration in underground waters for dating in hydrological questions

    International Nuclear Information System (INIS)

    Najman, J.

    2008-04-01

    Research methods which use natural environmental indicators are widely applied in hydrology. Different concentrations of indicators and their isotopic components in ground waters allow to determine the genesis of waters and are valuable source of information about the water flow dynamics. One of the significant indicator is helium. The concentration of 4 He (helium) in ground water is a fine indicator in water dating in a range from a hundreds to millions of years (Aeschbach-Hertig i in., 1999; Andrews i in., 1989; Castro i in., 2000; Zuber i in., 2007). 4 He is also used for dating young waters of age about 10 years (Solomon i in., 1996). Thesis consist the description of elaborated in IFJ PAN in Krakow chromatographic measurement method of helium concentration in ground waters in aim of dating. Chapter 1 contain short introduction about ground water dating and chapter 2 description of helium property and chosen applications of helium for example in technology and earthquake predictions. Helium sources in ground waters are described in chapter 3. Helium concentration in water after infiltration (originated from atmosphere) to the ground water system depends mainly on the helium concentration coming from the equilibration with the atmosphere increased by additional concentration from '' excess air ''. With the increasing resistance time of ground water during the flow, radiogenic, non-atmospheric component of helium dissolves also in water. In chapter 4 two measurement methods of helium concentration in ground waters were introduced: mass spectrometric and gas chromatographic method. Detailed description of elaborated chromatographic measurement method of helium concentration in ground water contain chapter 5. To verify developed method the concentration of helium in ground waters from the regions of Krakow and Busko Zdroj were measured. For this waters the concentrations of helium are known from the earlier mass spectrometric measurements. The results of

  3. Chromatographic quality control procedures for /sup 99m/Tc-diagnostic agents

    International Nuclear Information System (INIS)

    Marinelli, M.; Pozzato, R.; Garuti, P.; Zucchini, G.L.

    1986-01-01

    The purpose of this work was to experiment simple and rapid chromatographic systems, based on paper and thin-layer techniques, to test the radiochemical purity of some common /sup 99m/Tc diagnostic agents, and select those systems able to prevent the anomalies due to oxidation and artifact production. The agents were examined under conditions which usually bring about the above mentioned anomalies, then the results were compared with those obtained under controlled conditions. Quali- and quantitative detection of the activity present on the chromatograms was carried out using the equipment available in nuclear medicine departments

  4. Liquid Chromatographic Determination of Alternaria Toxins in Carrots

    NARCIS (Netherlands)

    Solfrizzo, M.; Girolamo, De A.; Vitti, C.; Bulk, van den R.W.

    2004-01-01

    A liquid chromatographic (LC) method was developed for the determination of Alternaria radicina and A. alternata toxins in carrots. Toxins were extracted from carrot with an acidified mixture of water¿methanol¿acetonitrile. The filtered extract was divided in 2 parts that were purified by

  5. Chromatographic separation of alkaline phosphatase from dental enamel

    DEFF Research Database (Denmark)

    Moe, D; Kirkeby, S; Salling, E

    1989-01-01

    Alkaline phosphatase (AP) was prepared from partly mineralized bovine enamel by extraction in phosphate buffer, centrifugation and various chromatographic techniques. Chromatofocusing showed that the enamel enzyme possessed five isoelectric points at the acid pH level ranging from pH 5.7 to pH 4...

  6. Sensitive high performance liquid chromatographic method for the ...

    African Journals Online (AJOL)

    A new simple, sensitive, cost-effective and reproducible high performance liquid chromatographic (HPLC) method for the determination of proguanil (PG) and its metabolites, cycloguanil (CG) and 4-chlorophenylbiguanide (4-CPB) in urine and plasma is described. The extraction procedure is a simple three-step process ...

  7. Development and Validation of a Liquid Chromatographic Method ...

    African Journals Online (AJOL)

    A liquid chromatographic method for the simultaneous determination of six human immunodeficiency virus (HIV) protease inhibitors, indinavir, saquinavir, ritonavir, amprenavir, nelfinavir and lopinavir, was developed and validated. Optimal separation was achieved on a PLRP-S 100 Å, 250 x 4.6 mm I.D. column maintained ...

  8. Radioimmunoassay of methaqualone in human urine compared with chromatographic methods

    International Nuclear Information System (INIS)

    Mule, S.J.; Kogan, M.; Jukofsky, D.

    1978-01-01

    The 125 I-radioimmunoassay for methaqualone in human urine was evaluated by a comparison with newly modified gas-liquid chromatographic and thin-layer chromatographic methods. The statistically significant sensitivity value for the radioimmunoassay was at 2 μg of methaqualone per liter of urine. The coefficient of variation was 2.88 -+ 0.16% intraassay. There was cross-reactivity only with metabolites of methaqualone, 4'-hydroxymethaqualone being twice as sensitively measured as methaqualone. There was complete agreement between results by radioimmunoassay and by gas-liquid chromatography in 96.7% of the samples analyzed. Only 1.2% of the radioimmunoassay values were false positives, and 2.1% false negatives (phi = 0.8917, P < 0.001). Comparisons between the thin-layer chromatographic data and the gas--liquid chromatographic or radioimmunoassay data showed less agreement because of the 50- to 200-fold higher sensitivity of the latter techniques. Gas--liquid chromatography therefore appears to represent the best reference method for the evaluation of the radioimmunoassay, which appears to be a very sensitive and reliable technique for detecting methaqualone and its metabolites in human urine

  9. Transport Characteristics of Porous Solids Derived from Chromatographic Measurements

    Czech Academy of Sciences Publication Activity Database

    Šolcová, Olga; Schneider, Petr

    2002-01-01

    Roč. 144, - (2002), s. 475-482 ISSN 0167-2991 R&D Projects: GA ČR GA104/01/0546; GA AV ČR IAA4072915 Keywords : transport parameters * diffusion coefficients * chromatographic column Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.468, year: 2002

  10. Optimizing Chromatographic Separation: An Experiment Using an HPLC Simulator

    Science.gov (United States)

    Shalliker, R. A.; Kayillo, S.; Dennis, G. R.

    2008-01-01

    Optimization of a chromatographic separation within the time constraints of a laboratory session is practically impossible. However, by employing a HPLC simulator, experiments can be designed that allow students to develop an appreciation of the complexities involved in optimization procedures. In the present exercise, a HPLC simulator from "JCE…

  11. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Bell M. Shimada in the Coastal Waters of SE Alaska and North Pacific Ocean from 2014-06-24 to 2014-09-14 (NCEI Accession 0121964)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0121964 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  12. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Coastal Waters of SE Alaska, Gulf of Alaska and North Pacific Ocean from 2016-02-03 to 2016-02-09 (NCEI Accession 0150730)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0150730 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  13. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Bell M. Shimada in the Coastal Waters of SE Alaska and North Pacific Ocean from 2015-02-11 to 2015-03-03 (NODC Accession 0126536)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0126536 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  14. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Coastal Waters of Southeast Alaska and British Columbia, Gulf of Alaska and North Pacific Ocean from 2017-01-26 to 2017-02-01 (NCEI Accession 0165022)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0165022 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  15. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Coastal Waters of Southeast Alaska and British Columbia, Gulf of Alaska and North Pacific Ocean from 2016-10-13 to 2016-10-19 (NCEI Accession 0165091)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0165091 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  16. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Coastal Waters of SE Alaska, Gulf of Alaska and North Pacific Ocean from 2015-01-24 to 2015-01-30 (NODC Accession 0126876)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0126876 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  17. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Ronald H. Brown in the Coastal Waters of SE Alaska, Gulf of Alaska and North Pacific Ocean from 2015-07-14 to 2015-08-03 (NCEI Accession 0130369)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0130369 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  18. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Bell M. Shimada in the Coastal Waters of Southeast Alaska and British Columbia and North Pacific Ocean from 2015-09-16 to 2015-10-13 (NCEI Accession 0135733)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0135733 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  19. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Bell M. Shimada in the Coastal Waters of Southeast Alaska and British Columbia and North Pacific Ocean from 2016-06-30 to 2016-08-14 (NCEI Accession 0162237)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0162237 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  20. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Bell M. Shimada in the Coastal Waters of SE Alaska and North Pacific Ocean from 2016-03-16 to 2016-03-20 (NCEI Accession 0151240)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0151240 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  1. Underway meteorological, navigational, physical and time series data collected aboard NOAA Ship Ronald H. Brown in the Coastal Waters of Southeast Alaska and British Columbia, Columbia River estuary - Washington/Oregon and North Pacific Ocean from 2016-05-05 to 2016-06-07 (NCEI Accession 0155887)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0155887 contains raw underway meteorological, navigational, physical and time series data logged by the Scientific Computer System (SCS) aboard NOAA...

  2. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Coastal Waters of SE Alaska, Gulf of Alaska and North Pacific Ocean from 2016-01-30 to 2016-02-09 (NCEI Accession 0150729)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0150729 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  3. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Coastal Waters of SE Alaska, Gulf of Alaska and North Pacific Ocean from 2013-04-04 to 2013-04-15 (NODC Accession 0124185)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0124185 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  4. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Coastal Waters of SE Alaska, Gulf of Alaska and North Pacific Ocean from 2013-09-24 to 2013-11-03 (NODC Accession 0124206)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0124206 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  5. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from the coastal surface underway observations using carbon dioxide gas analyzer, shower head equilibrator and other instruments from NOAA Ship Gordon Gunter in the North Atlantic Ocean, US North-East coast during 2017 (NCEI Accession 0163566)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In March, 2008, the Ocean Carbon Cycle (OCC) group at NOAA's Atlantic Oceanographic and Meteorological Laboratory (AOML) installed an underway system to measure...

  6. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Reuben Lasker in the Coastal Waters of SE Alaska, North Atlantic Ocean and North Pacific Ocean from 2015-10-26 to 2015-11-09 (NCEI Accession 0150690)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0150690 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  7. Underway meteorological, navigational, optical, physical, profile and time series data collected aboard NOAA Ship Bell M. Shimada in the Coastal Waters of SE Alaska and North Pacific Ocean from 2015-06-20 to 2015-09-10 (NCEI Accession 0131258)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0131258 contains raw underway meteorological, navigational, optical, physical, profile and time series data logged by the Scientific Computer System...

  8. Underway meteorological, navigational, optical, physical and time series data collected aboard NOAA Ship Oscar Dyson in the Coastal Waters of SE Alaska, Gulf of Alaska and North Pacific Ocean from 2013-01-28 to 2013-02-03 (NODC Accession 0124297)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0124297 contains raw underway meteorological, navigational, optical, physical and time series data logged by the Scientific Computer System (SCS)...

  9. From Knowledge-Inquiry to Wisdom-Inquiry: Is the Revolution Underway?

    Science.gov (United States)

    Iredale, Mathew

    2007-01-01

    In the final paragraph of his 1984 book "From knowledge to wisdom, a revolution in the aims and methods of science," the philosopher Nicholas Maxwell boldly declared that an intellectual revolution was underway in the aims and methods of science, and academic inquiry in general, from what he termed knowledge-inquiry to wisdom-inquiry.…

  10. 15 signals evidence the energy transition is underway

    International Nuclear Information System (INIS)

    2016-09-01

    World leaders approved a universal climate agreement in Paris last year, drawing a line in the sand for the transformation of the world's energy system into a clean and sustainable form. Signs that a global energy transition is happening are everywhere to be seen: in the growth of renewables, the rise of city-level climate actions, the stagnation of CO 2 emissions and in companies who are committing to science based targets as the foundation of their climate actions, to name just a few. We felt it important to highlight 15 key signs or 'signals' of the energy transition, to help raise awareness that the transition to a new, sustainable, equitable, just and fair global energy system has irrevocably begun. What is needed now is to accelerate the transition and scale it up to have a chance of keeping global temperature rise to well below 2 deg. C, trying for 1.5 deg. C, as countries committed to in the Paris Agreement just eight months ago. Global meetings such as the G20 meeting taking place in China on 4-5 September; and the next UN climate talks starting in Marrakech on 7 November gives opportunity to all stakeholders to say how and what they can contribute to accelerating the transition. Ending fossil fuel subsidies, supporting the deployment of renewables and energy efficiency, increasing green finance and putting a just price on carbon are just some of the actions that can be taken right now to put pace into the transition. As 2016 heads into the record books as likely the hottest year ever recorded in history, it is a reminder that we have precious little time left to act to keep global temperatures well below 2 deg. C. We have the Paris Agreement to guide our way. Now we need to implement it. Now is the time for action

  11. Zero-determinant strategy: An underway revolution in game theory

    International Nuclear Information System (INIS)

    Hao Dong; Rong Zhi-Hai; Zhou Tao

    2014-01-01

    Repeated games describe situations where players interact with each other in a dynamic pattern and make decisions according to outcomes of previous stage games. Very recently, Press and Dyson have revealed a new class of zero-determinant (ZD) strategies for the repeated games, which can enforce a fixed linear relationship between expected payoffs of two players, indicating that a smart player can control her unwitting co-player's payoff in a unilateral way [Proc. Acad. Natl. Sci. USA 109, 10409 (2012)]. The theory of ZD strategies provides a novel viewpoint to depict interactions among players, and fundamentally changes the research paradigm of game theory. In this brief survey, we first introduce the mathematical framework of ZD strategies, and review the properties and constrains of two specifications of ZD strategies, called pinning strategies and extortion strategies. Then we review some representative research progresses, including robustness analysis, cooperative ZD strategy analysis, and evolutionary stability analysis. Finally, we discuss some significant extensions to ZD strategies, including the multi-player ZD strategies, and ZD strategies under noise. Challenges in related research fields are also listed. (topical review - statistical physics and complex systems)

  12. Fundamental studies of chalcogenide nanocrystals, carbonaceous nanoparticles, and chromatographic materials

    Science.gov (United States)

    Baker, Jared Scott

    2011-12-01

    The development of novel nanomaterials and the understanding of their fundamental physical and chemical properties represent an exciting area of research. These materials are continuously being sought for ever-increasing applications; finding their way into uses that influence mankind on a daily basis. Combining elements from traditional nanoparticle characterization with electrophoretic-based techniques, this dissertation presents the analysis of carbon nanoparticles (CNPs) generated from a novel source (candle soot) as well as a unique perspective on the reactivity and degradation process of magic-sized cadmium chalcogenide nanocrystals. One potential application of CNPs is their use as an alternative fluorophore in a separation-based sensor system. Laser-induced-fluorescence (LIF) is a commonly used manner of detection in this type of platform, but is limited in many cases by problems associated with the fluorophore. Carbon-based nanoparticles have the potential to improve upon traditional fluorophores in applications that make use of LIF as the detection scheme. CNPs were extracted from the carbonaceous material produced by the incomplete combustion of a candle. The soot was submitted to an oxidizing treatment and extraction/filtration procedures rendering watersoluble luminescent species. Electron microscopy was used to identify globular, amorphous structures in the nanometer size-range. An aqueous suspension of CNPs demonstrated excellent stability in terms of its electronic properties, showing little change in absorption and emission spectra upon storage under ambient conditions over a two-year period. Capitalizing on the strengths of capillary electrophoresis (CE) as a characterization technique, we have analyzed the negatively-charged CNPs in terms of charge and size by studying the influence of variable CE conditions on the resulting separation. Separations at different pH revealed a highly complex mixture of CNPs, containing species with large

  13. Warping methods for spectroscopic and chromatographic signal alignment: a tutorial.

    Science.gov (United States)

    Bloemberg, Tom G; Gerretzen, Jan; Lunshof, Anton; Wehrens, Ron; Buydens, Lutgarde M C

    2013-06-05

    Warping methods are an important class of methods that can correct for misalignments in (a.o.) chemical measurements. Their use in preprocessing of chromatographic, spectroscopic and spectrometric data has grown rapidly over the last decade. This tutorial review aims to give a critical introduction to the most important warping methods, the place of warping in preprocessing and current views on the related matters of reference selection, optimization, and evaluation. Some pitfalls in warping, notably for liquid chromatography-mass spectrometry (LC-MS) data and similar, will be discussed. Examples will be given of the application of a number of freely available warping methods to a nuclear magnetic resonance (NMR) spectroscopic dataset and a chromatographic dataset. As part of the Supporting Information, we provide a number of programming scripts in Matlab and R, allowing the reader to work the extended examples in detail and to reproduce the figures in this paper. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. New portable micro gas chromatograph for environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Overton, E.B.; Carney, K.R.; Dharmasena, H.P.; Mainga, A.M.; Ehrmann, U. [Louisiana State Univ., Baton Rouge, LA (United States). Inst. for Environmental Studies

    1994-12-31

    Efforts directed at developing a truly portable method for the analysis of semivolatile compounds have led to the construction and testing of a new generation of micro-GC instrumentation. Building on the successful application of microbore GC columns for in-field analysis of volatile organic compounds, the instrument development group at the LSU-Institute for Environmental Studies has developed a hand portable GC capable of analyzing samples containing compounds with retention indices (100% dimethylpolysiloxane column) up to at least 2,000 in less than 4 minutes, using less than 50 watts (peak) of electrical power. In addition to the ability to analyze semivolatile compounds, the chromatograph is capable of analyzing volatile organics competitively with the most sophisticated of the current commercial portable GCs. The presentation will evaluate chromatographic performance of the instrument at its latest stage of development and demonstrate some applications to environmental analysis using the prototype instrument.

  15. Liquid chromatographic-tandem mass spectrometric assay for ...

    African Journals Online (AJOL)

    Methods: Blood and urine samples were obtained from healthy volunteers who admitted to not being on any medications. The investigated analytes were chromatographically separated on a C18 column (Luna®-PFP 100Å column, 50 mm × 2.0 mm i.d., 3.0 μm) with the aid of a mobile phase containing A; acetonitrile (ACN) ...

  16. Chromatographic fingerprint investigation for quality evaluation and control of Shengui hair-growth tincture.

    Science.gov (United States)

    Yang, Hong; Zhao, Chenxi; Wang, Xiaomei; Liang, Yizeng; Zeng, Yingxu; Wu, Hai; Xu, Qingsong; Lv, Huiying

    2010-03-01

    The quality assessment and control of traditional Chinese medicines (TCM) has received a great deal of attention worldwide with its tremendous increasing use. Chromatographic fingerprinting is thought to be a good approach for this task and has been used for the quality assessment and control of many herbal medicines. However, there are only a few reports on the quality control of TCM preparation by chromatographic fingerprinting. In the present work, gas chromatography-mass spectrometry (GC-MS) combined with chemometric methods were used for the chromatographic fingerprint analysis and characterization of Shengui hair-growth tincture (SGHGT), which is a complex TCM prescription made from 9 herbs. Thirteen "common peaks" were identified by MS and a comparison of retention indices. The software "The Traditional Chinese Medicine Quality Control System 1.0" (TCMQCS, developed by Research Center of Modernization of Chinese Herbal Medicine, Central South University) was used to evaluate the similarities. Principal component analysis (PCA) was used for the classification of 23 batches of SGHGT samples provided by Hunan Fusheng Hairgrowth Pharmaceutical Factory. The 23 batches of samples made in different years had similar GC-MS fingerprints. Four clusters were obtained from PCA treatment according to their production year. The proposed method was validated in precision and repeatability through the calculation of relative retention times and relative peak areas of the 13 common compounds to the reference compound eugenol. The result indicated that the method is feasible and applicable for the quality control of SGHGT. SUPPORTING INFORMATION available online at http://www.thieme-connect.de/ejournals/toc/plantamedica. Copyright Georg Thieme Verlag KG Stuttgart New York.

  17. Reversed-phase ion-pair chromatographic analysis of tetracycline antibiotics. Application to discolored teeth.

    Science.gov (United States)

    Tanase, S; Tsuchiya, H; Yao, J; Ohmoto, S; Takagi, N; Yoshida, S

    1998-03-20

    A high-performance liquid chromatographic method with diode array detection was developed to simultaneously separate tetracycline antibiotics and applied to the analysis of discolored teeth. By a reversed-phase ion-pair chromatographic system using pentanesulfonate as a counter ion, minocycline, oxytetracycline, tetracycline and demeclocycline were eluted in this order, and they showed base-line separation within 9 min. When using oxytetracycline as an internal standard, the quantitative ranges were between 2.5 ng/ml and 7.5 microg/ml. Powdered dentine (10 mg) and enamel (40 mg) prepared from discolored primary teeth were sonicated in 0.25 ml of 10 mM HCl containing oxytetracycline (0.75 microg/ml) and 50 mM EDTA-2Na, thereafter the supernatants were chromatographed. Eluates from both discolored tooth samples were identified as minocycline based on diode array spectra of their peaks, while minocycline was not detected in any samples from nondiscolored normal teeth, indicating that discoloration of the tested teeth was due to minocycline incorporated into dentine and enamel. Replicate quantitative analyses of the identical tooth substances showed that intra- and inter-assay C.V.s were 2.63 and 4.95% for dentine, and 5.42 and 10.88% for enamel. Application of the developed method to nine discolored teeth revealed that the incorporated minocycline ranged from 20.13 to 84.62 ng/mg of dentine and 0.89 to 7.87 ng/mg of enamel.

  18. Aspect-dependent radiated noise analysis of an underway autonomous underwater vehicle.

    Science.gov (United States)

    Gebbie, John; Siderius, Martin; Allen, John S

    2012-11-01

    This paper presents an analysis of the acoustic emissions emitted by an underway REMUS-100 autonomous underwater vehicle (AUV) that were obtained near Honolulu Harbor, HI using a fixed, bottom-mounted horizontal line array (HLA). Spectral analysis, beamforming, and cross-correlation facilitate identification of independent sources of noise originating from the AUV. Fusion of navigational records from the AUV with acoustic data from the HLA allows for an aspect-dependent presentation of calculated source levels of the strongest propulsion tone.

  19. Improved Submariner Eyewear for Routine Wear and Emergency Equipment Use Underway

    Science.gov (United States)

    2010-01-15

    regulations governing the protection of human subjects. Approved for Public Release; Distribution Unlimited. ii [THIS PAGE...participants’ eyeglass prescription. The new test eyewear was delivered to the subjects just prior to underway. Participants received two pairs of...to wear, but my own eyeglasses work better for me. • I felt that overall the wired frames were well suited to boat use, though I would change a

  20. Comparison of the ion exclusion chromatographic method with the Monier-Williams method for determination of total sulfite in foods.

    Science.gov (United States)

    Kim, H J

    1989-01-01

    Experimental data comparing the alkali extraction/ion exclusion chromatographic method with the Monier-Williams method for determination of total sulfite are presented in (a) enzymatic and nonenzymatic browning systems, (b) vegetables containing naturally occurring sulfite, and (c) a carbohydrate-type food additive, erythorbic acid. Excellent agreement, with a linear correlation coefficient of 0.99, was observed in fresh potato samples homogenized with sulfite and allowed to react for different time intervals (enzymatic browning system). A good overall correlation was observed in dehydrated, sulfited apple samples heated for different times (nonenzymatic browning system); however, as heating time increased, higher results were obtained by the Monier-Williams method than by the alkali extraction/ion exclusion chromatographic method. The results of determining sulfite in the alkali trapping solution following acid distillation or acid treatment without heat suggested that this deviation was due to a fraction of sulfite bound to the browning reaction products in such a way that it was released by acid distillation but not by alkali extraction or acid treatment without heat. Similar behavior was demonstrated in cabbage with naturally occurring sulfite, which was released by acid distillation but not by alkali extraction or acid treatment without heat. The ion exclusion chromatographic method could overcome interference by the volatile caramelization reaction products in the Monier-Williams determination of erythorbic acid.

  1. Protein selectivity with immobilized metal ion-tacn sorbents: chromatographic studies with human serum proteins and several other globular proteins.

    Science.gov (United States)

    Jiang, W; Graham, B; Spiccia, L; Hearn, M T

    1998-01-01

    The chromatographic selectivity of the immobilized chelate system, 1,4,7-triazocyclononane (tacn), complexed with the borderline metal ions Cu2+, Cr3+, Mn2+, Co2+, Zn2+, and Ni2+ has been investigated with hen egg white lysozyme, horse heart cytochrome c, and horse skeletal muscle myoglobin, as well as proteins present in partially fractionated preparations of human plasma. The effects of ionic strength and pH of the loading and elution buffers on protein selectivities of these new immobilized metal ion affinity chromatographic (IMAC) systems have been examined. The results confirm that immobilized Mn;pl-tacn sorbents exhibit a novel type of IMAC behavior with proteins. In particular, the chromatographic properties of these immobilized M(n+)-tacn ligand systems were significantly different compared to the IMAC behavior observed with other types of immobilized tri- and tetradentate chelating ligands, such as iminodiacetic acid, O-phosphoserine, or nitrilotriacetic acid, when complexed with borderline metal ions. The experimental results have consequently been evaluated in terms of the additional contributions to the interactive processes mediated by effects other than solely the conventional lone pair Lewis soft acid-Lewis soft base coordination interactions, typically found for the IMAC of proteins with borderline and soft metal ions, such as Cu2+ or Ni2+.

  2. Ionic liquid functionalization of semi-packed columns for high-performance gas chromatographic separations.

    Science.gov (United States)

    Regmi, Bishnu P; Chan, Ryan; Agah, Masoud

    2017-08-11

    Gas chromatography columns fabricated using microelectromechanical system (MEMS) technology provide a number of clear advantages. However, successful deposition of stationary phases having a wide application range remains an important technical challenge. In this paper, we report, for the first time, on the deposition of room temperature ionic liquids (RTILs)-a versatile class of stationary phases-inside the channels of semi-packed columns (SPCs) for high-performance gas chromatographic separation of complex chemical mixtures. A 1m long, 240μm deep, 190μm wide column comprising an array circular micropillars of 20μm in diameter and 40μm post spacing was fabricated using MEMS processes. Two RTILs were immobilized inside these columns using a dynamic coating method, and the columns were tested for separation of three different mixtures: a 15-component mixture of hazardous chemical pollutants, an 8-component mixture of fatty acid methyl esters, and a sample of gasoline. These columns displayed sharp and symmetrical peaks, significant selectivity variation between the two columns, and rapid separation times. The columns yielded high separation efficiencies measured by approximately 2300 plates/m under isothermal conditions. This work highlights the potential of RTILs to be used as excellent stationary phases for SPCs, thereby dramatically expanding the range of complex mixtures that could be analyzed using a micro gas chromatograph. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Effects of {gamma}-irradiation on caprolactam level from multilayer PA-6 films for food packaging: Development and validation of a gas chromatographic method

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Henrique Peres; Felix, Juliana Silva [Department of Food and Nutrition, School of Pharmaceutical Science, Sao Paulo State University, PO Box 502, 14801-902 Araraquara, SP (Brazil); Manzoli, Jose Eduardo [Nuclear and Energetic Research Institute (IPEN), Sao Paulo, SP (Brazil); Padula, Marisa [Packaging Technology Center/Food Technology Institute (CETEA/ITAL), Campinas, SP (Brazil); Monteiro, Magali [Department of Food and Nutrition, School of Pharmaceutical Science, Sao Paulo State University, PO Box 502, 14801-902 Araraquara, SP (Brazil)], E-mail: monteiro@fcfar.unesp.br

    2008-07-15

    A gas chromatographic method to determine caprolactam in multilayer PA-6 films used for meat foodstuffs and cheese was developed and validated. A wide linear range (0.8-400 {mu}g/ml), RSD{<=}4.1% and recovery higher than 90.0% were obtained for the chromatographic system, while precision and accuracy of the method showed RSD{<=}3.8%, recovery from 95.5-100.0% and LOQ of 32 {mu}g/g. Irradiated (3, 7 and 12 kGy) and non-irradiated commercial films were analyzed. Most of them increased caprolactam levels with the increase of irradiation doses.

  4. Effects of γ-irradiation on caprolactam level from multilayer PA-6 films for food packaging: Development and validation of a gas chromatographic method

    Science.gov (United States)

    Araújo, Henrique Peres; Félix, Juliana Silva; Manzoli, José Eduardo; Padula, Marisa; Monteiro, Magali

    2008-07-01

    A gas chromatographic method to determine caprolactam in multilayer PA-6 films used for meat foodstuffs and cheese was developed and validated. A wide linear range (0.8-400 μg/ml), RSD⩽4.1% and recovery higher than 90.0% were obtained for the chromatographic system, while precision and accuracy of the method showed RSD⩽3.8%, recovery from 95.5-100.0% and LOQ of 32 μg/g. Irradiated (3, 7 and 12 kGy) and non-irradiated commercial films were analyzed. Most of them increased caprolactam levels with the increase of irradiation doses.

  5. Chromatographic fingerprint similarity analysis for pollutant source identification

    International Nuclear Information System (INIS)

    Xie, Juan-Ping; Ni, Hong-Gang

    2015-01-01

    In the present study, a similarity analysis method was proposed to evaluate the source-sink relationships among environmental media for polybrominated diphenyl ethers (PBDEs), which were taken as the representative contaminants. Chromatographic fingerprint analysis has been widely used in the fields of natural products chemistry and forensic chemistry, but its application to environmental science has been limited. We established a library of various sources of media containing contaminants (e.g., plastics), recognizing that the establishment of a more comprehensive library allows for a better understanding of the sources of contamination. We then compared an environmental complex mixture (e.g., sediment, soil) with the profiles in the library. These comparisons could be used as the first step in source tracking. The cosine similarities between plastic and soil or sediment ranged from 0.53 to 0.68, suggesting that plastic in electronic waste is an important source of PBDEs in the environment, but it is not the only source. A similarity analysis between soil and sediment indicated that they have a source-sink relationship. Generally, the similarity analysis method can encompass more relevant information of complex mixtures in the environment than a profile-based approach that only focuses on target pollutants. There is an inherent advantage to creating a data matrix containing all peaks and their relative levels after matching the peaks based on retention times and peak areas. This data matrix can be used for source identification via a similarity analysis without quantitative or qualitative analysis of all chemicals in a sample. - Highlights: • Chromatographic fingerprint analysis can be used as the first step in source tracking. • Similarity analysis method can encompass more relevant information of pollution. • The fingerprints strongly depend on the chromatographic conditions. • A more effective and robust method for identifying similarities is required

  6. Retention Study of Flavonoids Under Different Chromatographic Modes.

    Science.gov (United States)

    Sentkowska, Aleksandra; Biesaga, Magdalena; Pyrzynska, Krystyna

    2016-04-01

    The goal of this study was to investigate the chromatographic behavior of selected flavonoids from their different subgroups (flavonols, flavanones, flavones and isoflavones) in hydrophilic interaction liquid chromatography (HILIC). Chromatographic measurements were made on two different HILIC columns: cross-linked DIOL (Luna HILIC) and zwitterionic sulfoalkylbetaine (SeQuant ZIC-HILIC). Separation parameters such as the content of acetonitrile and pH of an eluent were studied. On the ZIC column, the retention factors of flavonoids increased with decreasing water content in the mobile phase. The increase in pH of the aqueous component mainly affects the polarity of the analytes. DIOL stationary phase shows more or less apparent dual retention mechanism, HILIC at the acetonitrile (ACN) content ≥75% and reversed phase (RP) with lower content of organic modifier. In the presence of ammonium acetate in the mobile phase, the retention of flavonoids onto the DIOL column increases without change in the selectivity of the separations. The similar effect, but considerably smaller was observed for aglycones on the ZIC column. The retention of studied glycosides (hesperidin, rutin) decreases in the presence of salt in the mobile phase. The significantly higher mass spectrometry sensitivity was observed under HILIC conditions in comparison with the most often used RP LC due to much higher content of ACN in the mobile phase. Finally, under optimal chromatographic conditions, the method was validated and applied for the determination of flavonoids in chamomile (Matricaria chamomilla L.) infusion. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Sea surface temperature and salinity from the Global Ocean Surface Underway Data (GOSUD) from 1980-01-03 to present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains the Global Ocean Surface Underway Data (GOSUD) from 1980-01-03 to present as submitted to NOAA/NCEI. The data includes information about sea...

  8. Quantitative structure-chromatographic retention correlations of quinoline derivatives.

    Science.gov (United States)

    Nekrasova, Nadezhda A; Kurbatova, Svetlana V

    2017-04-07

    The aim of our study was to investigate relationships between quinoline derivatives structure and their retention under reversed-phase liquid chromatography conditions. Retention factors of quinolines were experimentally measured and various geometrical and physicochemical parameters representing analytes molecular structure were calculated. Equations connecting chromatographic data with computed characteristics for the set of 17 investigated compounds were constructed. It was shown that the most precise dependencies include combination of physico-chemical and geometrical parameters. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Chromatographic purification of tritiated steroids prior to use in radioimmunoassay

    International Nuclear Information System (INIS)

    Manlimos, F.S.; Abraham, G.E.

    1975-01-01

    The purity of tritiated steroids used as reagents in radioimmunoassay plays an important role in the reliability of the assay. These radioactive reagents should be assessed for purity upon receipt and the purity should be checked periodically afterward. For such purposes, we have used chromatographic purification on Celite microcolumns. By changing the polarity of the stationary and mobile phases, 20 different tritiated steroids with a wide range of polarity could be purified on these microcolumns. This approach is easy, rapid, economical, and reliable. (U.S.)

  10. Large scale chromatographic separations using continuous displacement chromatography (CDC)

    International Nuclear Information System (INIS)

    Taniguchi, V.T.; Doty, A.W.; Byers, C.H.

    1988-01-01

    A process for large scale chromatographic separations using a continuous chromatography technique is described. The process combines the advantages of large scale batch fixed column displacement chromatography with conventional analytical or elution continuous annular chromatography (CAC) to enable large scale displacement chromatography to be performed on a continuous basis (CDC). Such large scale, continuous displacement chromatography separations have not been reported in the literature. The process is demonstrated with the ion exchange separation of a binary lanthanide (Nd/Pr) mixture. The process is, however, applicable to any displacement chromatography separation that can be performed using conventional batch, fixed column chromatography

  11. Gas chromatographic method fr determination of carbon in metallic uranium

    International Nuclear Information System (INIS)

    Nikol'skij, V.A.; Markov, V.K.; Evseeva, T.I.; Cherstvenkova, E.P.

    1983-01-01

    Gas chromatographic device to determine carbon in metal uranium is developed. Burnout unite, permitting to load in the burnout tube simultaneously quite a few (up to 20) weight amounts of materials to be burned is a characteristic feature of the device. As a result amendments for control experiment and determination limit are decreased. The time of a single determination is also reduced. Conditions of carbon burn out from metal uranium are studied and temperature and time of complete extraction of carbon in the form of dioxide from weight amount into gaseous phase are established

  12. Chromatographic Methods for the Analysis of Polyphenols in Wines

    Directory of Open Access Journals (Sweden)

    Medić-Šarić, M.

    2009-03-01

    Full Text Available Wine is an excellent source of various classes of polyphenols, including phenolic acids, flavonoids, and trihydroxystilbene resveratrol (Fig.1. Polyphenols play a major role in wine quality since they contribute to the sensory characteristics of wine, particularly color and astringency. A recent interest in these substances has been stimulated by abundant evidence of their beneficial effects on human health, such as anticarcinogenic, antiinflamatory and antimicrobial activities. Therefore, numerous studies have been performed in the attempt to analyze polyphenols in wine. This paper reviews the current advances in the determination of polyphenols in wine by the major chromatographic techniques such as thin-layer chromatography (TLC and high-performance liquid chromatography (HPLC.The great complexity of the polyphenolic content of wine and the difficulty in obtaining some of the standards usually require sample preparation before analysis. Two methods for sample preparation, liquid-liquid extraction and solid-phase extraction, are most commonly applied. Hydrolysis is applied frequently, but not exclusively, to remove the sugar moieties from glycosides.TLC on silica gel plates is useful for the rapid and low-cost separation and identification of the polyphenols present in wine (Fig. 2. Densitometric quantitative analysis of polyphenols in wine extracts is usually performed by scanning the TLC plates with UV light at wavelengths of 350–365 nm or 250–260 nm (Fig. 3. For the evaluation of the most efficient mobile phase and an optimal choice of the combination of two or more mobile phases, two methods may be applied: information theory and numerical taxonomy. HPLC currently represents the most popular technique for the analysis of polyphenols in wine. For this purpose, a reversed-phase HPLC method that uses gradient elution with binary elution system is usually employed. Routine detection is based on measurement of UV-Vis absorption with a diode

  13. Separation and determination of high-carbon alcohols using method of column chromatographic and gas-chromatographic analysis

    International Nuclear Information System (INIS)

    Kang Zhongrong; Li Biping; Zeng Yongchang

    1988-01-01

    This paper describes the separation and determination of high-carbon alcohols from amine extractant by using the method of column chromatography of aluminium oxide and gas-chromatographic analysis. The total conent of high-carbon alcohols is determined by the method of column chromatography, while the components of the high-carbon alcohols and their relative contents are determined by the method of gas-chromatography. A simple reliable and practical method is provided for the analysis of high-carbon alcohol from the amine extractant in this paper

  14. Fundulus heteroclitus gonadotropins.5: Small scale chromatographic fractionation of pituitary extracts into components with different steroidogenic activities using homologous bioassays

    Directory of Open Access Journals (Sweden)

    Petrino Teresa R

    2004-03-01

    Full Text Available Abstract Fractionation and characterization of gonadotropins (GtH from Fundulus heteroclitus pituitary extracts were carried out using a biocompatible liquid chromatographic procedure (Pharmacia FPLC system. Chromatographic fractions were monitored for gonadotropic activities (induction of oocyte maturation and steroid production using homologous follicle bioassays in vitro. Size-exclusion chromatography eluted gonadotropic activity in one major protein peak (Mr ~ 30,000. Anion-exchange and hydrophobic-interaction chromatography (HIC yielded two distinct peaks of 17beta-estradiol (E2- and 17alpha-hydroxy,20beta-dihydroprogesterone (DHP-promoting activity with associated oocyte maturation. Two-dimensional chromatography (chromatofocusing followed by HIC resolved pituitary extracts into two active fractions; both induced E2 synthesis, but one was relatively poor in eliciting DHP and testosterone production. Thus, using homologous bioassays, at least two quantitatively different gonadotropic (steroidogenic activities: an E2-promoting gonadotropin (GtH I-like and a DHP-promoting gonadotropin (GtH II-like, which has a lower isoelectric point but greater hydrophobicity than the former, can be distinguished from F. heteroclitus pituitaries by a variety of chromatographic procedures. This study complements previous biochemical and molecular data in F. heteroclitus and substantiates the duality of GtH function in a multiple-spawning teleost.

  15. Multivariate analyses of NP-TLC chromatographic retention data for grouping of structurally-related plant secondary metabolites.

    Science.gov (United States)

    Shawky, Eman

    2016-09-01

    The chromatographic behavior of 28 plant secondary metabolites belonging to four chemically similar classes (alkaloids, flavonoids, flavone glycosides and sesquiterpenes) was studied by normal-phase thin-layer chromatography (NP-TLC) under 5 different chromatographic systems commonly used in plant drug analysis with the aim to explore whether the retention properties of these metabolites can determine the chemical group they belong to. The use of RM values as the retention parameter is implemented as a relatively new approach in plant analysis. Principal component analysis (PCA), hierarchical clustering heat maps and discriminant analysis (DA), were used for statistical evaluation of the chromatographic data and extraction of similarities between chemically related compounds. The twenty eight metabolites were classified into four groups by principal component analysis. The heat map of hierarchical clustering revealed that all metabolites were clustered into four groups, except for caffeine, while linear discriminant analysis showed that 96.4% of metabolites are predicted correctly as the groupings identified by chemical class in original and cross-validated data. The main advantage of the approach described in current paper is its simplicity which can assist with preliminary identification of metabolites in complex plant extracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Similarity analyses of chromatographic herbal fingerprints: A review

    International Nuclear Information System (INIS)

    Goodarzi, Mohammad; Russell, Paul J.; Vander Heyden, Yvan

    2013-01-01

    Graphical abstract: -- Highlights: •Similarity analyses of herbal fingerprints are reviewed. •Different (dis)similarity approaches are discussed. •(Dis)similarity-metrics and exploratory-analysis approaches are illustrated. •Correlation and distance-based measures are overviewed. •Similarity analyses illustrated by several case studies. -- Abstract: Herbal medicines are becoming again more popular in the developed countries because being “natural” and people thus often assume that they are inherently safe. Herbs have also been used worldwide for many centuries in the traditional medicines. The concern of their safety and efficacy has grown since increasing western interest. Herbal materials and their extracts are very complex, often including hundreds of compounds. A thorough understanding of their chemical composition is essential for conducting a safety risk assessment. However, herbal material can show considerable variability. The chemical constituents and their amounts in a herb can be different, due to growing conditions, such as climate and soil, the drying process, the harvest season, etc. Among the analytical methods, chromatographic fingerprinting has been recommended as a potential and reliable methodology for the identification and quality control of herbal medicines. Identification is needed to avoid fraud and adulteration. Currently, analyzing chromatographic herbal fingerprint data sets has become one of the most applied tools in quality assessment of herbal materials. Mostly, the entire chromatographic profiles are used to identify or to evaluate the quality of the herbs investigated. Occasionally only a limited number of compounds are considered. One approach to the safety risk assessment is to determine whether the herbal material is substantially equivalent to that which is either readily consumed in the diet, has a history of application or has earlier been commercialized i.e. to what is considered as reference material. In order

  17. Similarity analyses of chromatographic herbal fingerprints: A review

    Energy Technology Data Exchange (ETDEWEB)

    Goodarzi, Mohammad [Department of Analytical Chemistry and Pharmaceutical Technology, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels (Belgium); Russell, Paul J. [Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ (United Kingdom); Vander Heyden, Yvan, E-mail: yvanvdh@vub.ac.be [Department of Analytical Chemistry and Pharmaceutical Technology, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels (Belgium)

    2013-12-04

    Graphical abstract: -- Highlights: •Similarity analyses of herbal fingerprints are reviewed. •Different (dis)similarity approaches are discussed. •(Dis)similarity-metrics and exploratory-analysis approaches are illustrated. •Correlation and distance-based measures are overviewed. •Similarity analyses illustrated by several case studies. -- Abstract: Herbal medicines are becoming again more popular in the developed countries because being “natural” and people thus often assume that they are inherently safe. Herbs have also been used worldwide for many centuries in the traditional medicines. The concern of their safety and efficacy has grown since increasing western interest. Herbal materials and their extracts are very complex, often including hundreds of compounds. A thorough understanding of their chemical composition is essential for conducting a safety risk assessment. However, herbal material can show considerable variability. The chemical constituents and their amounts in a herb can be different, due to growing conditions, such as climate and soil, the drying process, the harvest season, etc. Among the analytical methods, chromatographic fingerprinting has been recommended as a potential and reliable methodology for the identification and quality control of herbal medicines. Identification is needed to avoid fraud and adulteration. Currently, analyzing chromatographic herbal fingerprint data sets has become one of the most applied tools in quality assessment of herbal materials. Mostly, the entire chromatographic profiles are used to identify or to evaluate the quality of the herbs investigated. Occasionally only a limited number of compounds are considered. One approach to the safety risk assessment is to determine whether the herbal material is substantially equivalent to that which is either readily consumed in the diet, has a history of application or has earlier been commercialized i.e. to what is considered as reference material. In order

  18. Optimization of a liquid chromatographic method for determination of oxytetracycline, tetracycline, and chlortetracycline in milk.

    Science.gov (United States)

    White, C R; Moats, W A; Kotula, K L

    1993-01-01

    A liquid chromatographic (LC) method was developed for the simultaneous identification and quantitation of oxytetracycline, tetracycline, and chlortetracycline in milk. Milk samples (5 mL) were deproteinized by adding 1 mL 1N HCl and 24 mL acetonitrile, and filtering. Dichloromethane and hexane were added to 15 mL filtrate to separate the water layer. The organic layer was washed with 1 mL deionized water, and the combined water layers were diluted to 4 mL. Sample aliquots of 1000 microL were then injected directly and analyzed on an LC system. The sensitivity limit of the method is 5 ppb for each antibiotic; no interferences are present at their retention times. Mean recoveries from milk spiked at 0.01-1 ppm ranged from 87 to 99%, and precision was good.

  19. Automated optimization and construction of chemometric models based on highly variable raw chromatographic data.

    Science.gov (United States)

    Sinkov, Nikolai A; Johnston, Brandon M; Sandercock, P Mark L; Harynuk, James J

    2011-07-04

    Direct chemometric interpretation of raw chromatographic data (as opposed to integrated peak tables) has been shown to be advantageous in many circumstances. However, this approach presents two significant challenges: data alignment and feature selection. In order to interpret the data, the time axes must be precisely aligned so that the signal from each analyte is recorded at the same coordinates in the data matrix for each and every analyzed sample. Several alignment approaches exist in the literature and they work well when the samples being aligned are reasonably similar. In cases where the background matrix for a series of samples to be modeled is highly variable, the performance of these approaches suffers. Considering the challenge of feature selection, when the raw data are used each signal at each time is viewed as an individual, independent variable; with the data rates of modern chromatographic systems, this generates hundreds of thousands of candidate variables, or tens of millions of candidate variables if multivariate detectors such as mass spectrometers are utilized. Consequently, an automated approach to identify and select appropriate variables for inclusion in a model is desirable. In this research we present an alignment approach that relies on a series of deuterated alkanes which act as retention anchors for an alignment signal, and couple this with an automated feature selection routine based on our novel cluster resolution metric for the construction of a chemometric model. The model system that we use to demonstrate these approaches is a series of simulated arson debris samples analyzed by passive headspace extraction, GC-MS, and interpreted using partial least squares discriminant analysis (PLS-DA). Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Multiple chromatographic fingerprinting and its application to the quality control of herbal medicines

    Energy Technology Data Exchange (ETDEWEB)

    Fan Xiaohui [Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310027 (China); Cheng Yiyu [Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310027 (China)]. E-mail: chengyy@zju.edu.cn; Ye Zhengliang [Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310027 (China); Lin Ruichao [National Institute for the Control of Pharmaceutical and Biological Products, Beijing 100050 (China); Qian Zhongzhi [Committee of Chinese Pharmacopoeia, Beijing 100061 (China)

    2006-01-12

    Recently, chromatographic fingerprinting has become one of the most powerful approaches to quality control of herbal medicines. However, the performance of reported chromatographic fingerprinting constructed by single chromatogram sometimes turns out to be inadequate for complex herbal medicines, such as multi-herb botanical drug products. In this study, multiple chromatographic fingerprinting, which consists of more than one chromatographic fingerprint and represents the whole characteristics of chemical constitutions of the complex medicine, is proposed as a potential strategy in this complicated case. As a typical example, a binary chromatographic fingerprinting of 'Danshen Dropping Pill' (DSDP), the best-sold traditional Chinese medicine in China, was developed. First, two HPLC fingerprints that, respectively, represent chemical characteristics of depsides and saponins of DSDP were developed, which were used to construct binary chromatographic fingerprints of DSDP. Moreover, the authentication and validation of the binary fingerprints were performed. Then, a data-level information fusion method was employed to capture the chemical information encoded in two chromatographic fingerprints. Based on the fusion results, the lot-to-lot consistency and frauds can be determined either using similarity measure or by chemometrics approach. The application of binary chromatographic fingerprinting to consistency assessment and frauds detection of DSDP clearly demonstrated that the proposed method was a powerful approach to quality control of complex herbal medicines.

  1. Multiple chromatographic fingerprinting and its application to the quality control of herbal medicines

    International Nuclear Information System (INIS)

    Fan Xiaohui; Cheng Yiyu; Ye Zhengliang; Lin Ruichao; Qian Zhongzhi

    2006-01-01

    Recently, chromatographic fingerprinting has become one of the most powerful approaches to quality control of herbal medicines. However, the performance of reported chromatographic fingerprinting constructed by single chromatogram sometimes turns out to be inadequate for complex herbal medicines, such as multi-herb botanical drug products. In this study, multiple chromatographic fingerprinting, which consists of more than one chromatographic fingerprint and represents the whole characteristics of chemical constitutions of the complex medicine, is proposed as a potential strategy in this complicated case. As a typical example, a binary chromatographic fingerprinting of 'Danshen Dropping Pill' (DSDP), the best-sold traditional Chinese medicine in China, was developed. First, two HPLC fingerprints that, respectively, represent chemical characteristics of depsides and saponins of DSDP were developed, which were used to construct binary chromatographic fingerprints of DSDP. Moreover, the authentication and validation of the binary fingerprints were performed. Then, a data-level information fusion method was employed to capture the chemical information encoded in two chromatographic fingerprints. Based on the fusion results, the lot-to-lot consistency and frauds can be determined either using similarity measure or by chemometrics approach. The application of binary chromatographic fingerprinting to consistency assessment and frauds detection of DSDP clearly demonstrated that the proposed method was a powerful approach to quality control of complex herbal medicines

  2. Gas chromatographic measurement in water-steam circuits

    International Nuclear Information System (INIS)

    Zschetke, J.; Nieder, R.

    1984-01-01

    A gas chromatographic technique for measurements in water-steam circuits, which has been well known for many years, has been improved by design modifications. A new type of equipment developed for special measuring tasks on nuclear engineering plant also has a general application. To date measurements have been carried out on the ''Otto Hahn'' nuclear powered ship, on the KNK and AVR experimental nuclear power plants at Karlsruhe and Juelich respectively and on experimental boiler circuits. The measurements at the power plants were carried out under different operating conditions. In addition measurements during the alkali operating mode and during combined cycle operation were carried out on the AVR reactor. It has been possible to draw new conclusion from the many measurements undertaken. (orig.) [de

  3. Experimental studies of uncertainties associated with chromatographic techniques.

    Science.gov (United States)

    Barwick, V J; Ellison, S L; Lucking, C L; Burn, M J

    2001-05-25

    The paper describes experiments for the evaluation of uncertainties associated with a number of chromatographic parameters. Studies of the analysis of vitamins by HPLC illustrate the estimation of the uncertainties associated with experimental "input" parameters such as the detector wavelength, column temperature and mobile phase flow-rate. Experimental design techniques, which allow the efficient study a number of parameters simultaneously, are described. Multiple linear regression was used to fit response surfaces to the data. The resulting equations were used in the estimation of the uncertainties. Three approaches to uncertainty calculation were compared--Kragten's spreadsheet, symmetric spreadsheet and algebraic differentiation. In cases where non-linearity in the model was significant, agreement between the uncertainty estimates was poor as the spreadsheet approaches do not include second-order uncertainty terms.

  4. Application of monolithic chromatographic supports in virus research.

    Science.gov (United States)

    Krajacic, Mladen; Ravnikar, Maja; Štrancar, Aleš; Gutiérrez-Aguirre, Ion

    2017-11-01

    Key properties of monolithic chromatographic supports, make them suitable for separation and/or concentration of large biomolecules, especially virus particles and viral genomes. One by one, the studies that have been completed so far, contributed to the knowledge that monolith chromatography has hardly any limitation to be applied in virus research. Viruses of different sizes, possessing icosahedral structure and symmetrical morphology, as well as rod-shaped or filamentous viruses with helical structure, even enveloped ones, all of them could be successfully managed by means of monolith chromatography. Same is true for viral genomes, primarily when being distinct from other nucleic acid forms present in a host cell. This review is exclusively focused on viruses. It describes the application of monolith chromatography to different problematics within the virus research field. The reviewed achievements offer new possibilities and trigger new aspects in virology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Liquid chromatographic determination of tetracycline residues in animal feeds.

    Science.gov (United States)

    Martinez, E E; Shimoda, W

    1988-01-01

    A liquid chromatographic method for the multiresidue determination of tetracyclines (TCs) in feeds is described. The levels of quantitation were 10 ppm each for tetracycline-HCl (TC), oxytetracycline (OTC), and chlortetracycline-HCl (CTC); the detection limit was 40 ppb for each. The calibration curves were linear between 2.5 and 100 ppm. The procedure involved double extraction with pH 2.0 and pH 4.5 McIlvain buffers, cleanup on a Sephadex LH-20 column, separation on a Nova-Pak C18 column, and detection at 370 nm. Recoveries of 10 micrograms/g of each TC in multiresidue feed samples ranged from 55.8 to 75.5% for OTC, 71.6 to 100% for TC, and 22.4 to 60.6% for CTC. The identities of the TCs were confirmed by thin layer chromatography.

  6. Study PWA8 resin for chromatographic uranium concentration

    International Nuclear Information System (INIS)

    Coceancigh, Herman; Ramella, J. L.; Marrero, Julieta; Jiménez Rebagliati, Raúl

    2013-01-01

    For many years nuclear industry have been using resins as filler of chromatographic columns. These methods are specific and give reliable results in different applications, for those reasons are extremely useful as separation process. Currently the nuclear industry is growing and this brings new issues such as the need of reduction of the amount of waste, the optimization of the production process and others that the chromatography could solve with great results. AMBERLITETM PWA8 resin is an anion exchange resin which can be used for the removal of uranium from drinking water. In addition to high exchange capacity, this resin has excellent physical stability and a wide range of pH in which is operational. With the idea of concentrating uranium from wastes solution as main goal we made different experiments to understand the AMBERLITETM PWA8 and obtain the most important characteristics like; pH working range; capacity; activation and elution procedures. These procedures were developed and optimized the capacity was determined using a batch experiment and we obtain that the maximum capacity is 882,5 U ug /resin gr at a pH of 4,2. Following on from these results chromatographic experiments were performed in which both were obtained the percentage of recovery and the concentration factor. The percent recovery (% R) calculated as the percentage ratio between the total mass and the load mass eluted (% R = eluted mass / total mass * 100) was 94% with a concentration factor of 5 times From these results it is intended to concentrate wastes solutions from the fuel cycle processes with two main goals: decreasing volume for storage and for future reusing of the uranium coming from production. (author)

  7. Chromatographic profiles of extractives from leaves of Eugenia uniflora

    Directory of Open Access Journals (Sweden)

    Isabelle C.F. Bezerra

    Full Text Available ABSTRACT Eugenia uniflora L., Myrtaceae, popularly known as “pitanga”, is used in traditional medicine due the properties attributed to its chemical content, these being mainly hydrolysable tannins and flavonoids. This study provides a qualitative and quantitative evaluation of chemical profile from leaves of E. uniflora. The HPLC analysis was carried out on a C18 column (4.6 mm × 250 mm, 5 µm by gradient elution with methanol and water (acidified with trifluoracetic acid; and silica gel Plates 60-F 254 with 10–12 µm and 5–6 µm particles, respectively for TLC and High HPTLC analysis. The chromatographic data obtained from HPLC, TLC and HPTLC presented bands and peaks related to flavonoids (myricitrin and derivatives and tannins (gallic and ellagic acids, which were observed from different samples. The chromatographic similarities enabled the building of a typical fingerprint for the herbal material. The similarity analysis of the sample data by Pearson correlation showed R values >0.9 among peaks (HPLC and bands (HPTLC. In addition, the analytical methodology developed by HPLC enabled the satisfactory quantification of marker substances [ellagic acid = 0.22% and 0.20% (m/m; gallic acid = 0.20% and 0.43%; myricitrin = 0.42 and 1.74% (m/m in herbal drug and crude extract, respectively]. The procedure was also validated in accordance with the assays required by Brazilian legislation. Thus, the HPTLC and HPLC methods developed in this study provide helpful and simple tools for the quality evaluation both qualitatively and quantitatively of raw materials and extractives from leaves of E. uniflora.

  8. Different Chromatographic Methods for Simultaneous Determination of Mefenamic Acid and Two of Its Toxic Impurities.

    Science.gov (United States)

    Morcoss, Martha M; Abdelwahab, Nada S; Ali, Nouruddin W; Elsaady, Mohammed T

    2017-08-01

    Two sensitive, accurate and precise chromatographic methods mentioned as TLC-densitometric method and RP-HPLC-DAD method, were developed and validated for the simultaneous determination of mefenamic acid (MEF) and its two toxic impurities, benzoic acid (BA) and 2,3-dimethylaniline (DMA). In the proposed TLC-densitometric method a developing system consisting of chloroform:acetone:acetic acid:ammonia solution(70:30:2:2, v/v/v/v) was used, TLC aluminum plates 60 F254 was used as a stationary phase and the separated bands were UV-scanned at 225 nm. While the proposed RP-HPLC-DAD method depended on chromatographic separation on C18 column using 0.05 M KH2PO4 buffer: acetonitrile (40:60, v/v) as a mobile phase at constant flow rate of 1 mL/min with UV detection at 225 nm. Linear relationships were obtained in the ranges of 0.3-2, 0.3-2 and 0.3-1.8 μg/band (for TLC-densitometric method) and in the ranges of 7-50, 10-50 and 7-50 μg/mL (for HPLC-DAD method) for MEF, BA and DMA, respectively. Factors affecting the developed methods have been studied and optimized. Moreover ,the proposed methods were successfully applied for determination of the studied drug in its pharmaceutical dosage form. The methods showed no significance difference when compared with the reported method using F-test and Student's-t test. The low of detection and quantization limits of the proposed methods get them suitable for quality control and stability studies of MEF in pharmaceutical formulation. The developed methods have advantages of being more selective and sensitive than the published methods. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Chromatographic and electrophoretic methods for the analysis of phenethylamine [corrected] alkaloids in Citrus aurantium.

    Science.gov (United States)

    Pellati, Federica; Benvenuti, Stefania

    2007-08-17

    Citrus aurantium (bitter orange) is a plant belonging to the family Rutaceae, whose fruit extracts have been used recently for the treatment of obesity. The most important biologically active constituents of the C. aurantium fruits are phenethylamine alkaloids (i.e. octopamine, synephrine, tyramine, N-methyltyramine and hordenine). Synephrine is a primary synthesis compound with pharmacological activities such as vasoconstriction, elevation of blood pressure and relaxation of bronchial muscle. Synephrine is present in the peel and the edible part of Citrus fruit. Of the adrenergic amines of natural origin, synephrine has been found to be the main constituent of C. aurantium fruits and extracts; the other alkaloids are either absent or present in only low concentrations. It is known that synephrine and the other amines found in C. aurantium have adverse effects on the cardiovascular system, owing to adrenergic stimulation. In light of the great commercial proliferation of C. aurantium herbal medicines in recent years, this review provides an overview of various extraction, separation and detection techniques employed for the qualitative and quantitative determination of the alkaloids in C. aurantium and related species. The application of chromatographic and electrophoretic methods for the separation and determination of these active components in C. aurantium plant material and derivatives are described. Since synephrine is a chiral compound, enantioselective chromatographic and electrophoretic techniques for the analysis of synephrine enantiomers in natural products are presented. Furthermore, examples of identification of these active compounds in complex matrices by hyphenated methods, such as gas chromatography-mass spectrometry and high-performance liquid chromatography-mass spectrometry, are described. The advantages and limitations of these separation and identification methods are assessed and discussed.

  10. Comparison of twin-cell centrifugal partition chromatographic columns with different cell volume.

    Science.gov (United States)

    Goll, Johannes; Audo, Gregoire; Minceva, Mirjana

    2015-08-07

    Two twin-cell centrifugal partition chromatographic columns (SCPC 250 and SCPE-250-BIO, Armen Instrument, France) with the same column volume but different cell size and number were compared in terms of stationary phase retention and column efficiency. The columns were tested with two types of solvent systems: a commonly used organic solvent based biphasic system from the ARIZONA solvent system family and a polymer/salt based aqueous two phase system (ATPS). The efficiency of the columns was evaluated by pulse injection experiments of two benzenediols (pyrocatechol and hydroquinone) in the case of the ARIZONA system and a protein mixture (myoglobin and lysozyme) in the case of the ATPS. As result of high stationary phase retention, the column with the lower number of larger twin-cells (SCPE-250-BIO) is suitable for protein separations using ATPS. On the other hand, due to higher column efficiency, the column with the greater number of smaller cells (SCPC 250) is superior for batch elution separations performed with standard liquid-liquid chromatography organic solvent based biphasic systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. On-line gas chromatographic analysis of higher alcohol synthesis products from syngas.

    Science.gov (United States)

    Andersson, Robert; Boutonnet, Magali; Järås, Sven

    2012-07-20

    An on-line gas chromatographic (GC) system has been developed for rapid and accurate product analysis in catalytic conversion of syngas (a mixture of H₂ and CO) to alcohols, so called "higher alcohol synthesis (HAS)". Conversion of syngas to higher alcohols is an interesting second step in the route of converting coal, natural gas and possibly biomass to liquid alcohol fuel and chemicals. The presented GC system and method are developed for analysis of the products formed from syngas using alkali promoted MoS₂ catalysts, however it is not limited to these types of catalysts. During higher alcohol synthesis not only the wanted short alcohols (∼C₂-C₅) are produced, but also a great number of other products in smaller or greater amounts, they are mainly short hydrocarbons (olefins, paraffins, branched, non-branched), aldehydes, esters and ketones as well as CO₂, H₂O. Trace amounts of sulfur-containing compounds can also be found in the product effluent when sulfur-containing catalysts are used and/or sulfur-containing syngas is feed. In the presented GC system, most of them can be separated and analyzed within 60 min without the use of cryogenic cooling. Previously, product analysis in "higher alcohol synthesis" has in most cases been carried out partly on-line and partly off-line, where the light gases (gases at room temp) are analyzed on-line and liquid products (liquid at room temp) are collected in a trap for later analysis off-line. This method suffers from many drawbacks compared to a complete on-line GC system. In this paper an on-line system using an Agilent 7890 gas chromatograph equipped with two flame ionization detectors (FID) and a thermal conductivity detector (TCD), together with an Agilent 6890 with sulfur chemiluminescence dual plasma detector (SCD) is presented. A two-dimensional GC system with Deans switch (heart-cut) and two capillary columns (HP-FFAP and HP-Al₂O₃) was used for analysis of the organic products on the FIDs. Light

  12. Improvement in measurement of arsenic and selenium species by coupled high performance liquid chromatography-inductively coupled plasma mass spectrometry using time resolved analysis and chromatographic software; Amelioration dans la determination des formes chimiques de l`arsenic et du selenium par l`utilisation du couplage HPL-ICP-MS pilote par un systeme d`acquisition multi-elements

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, P.; Pereira, K. [Institut Pasteur de Lille, 59 - Villeneuve d`Ascq (France); Koller, D. [VG Elemental, Ion Path Road, Three Winsford, Cheshire (United States)

    1997-09-01

    A sensitive method for the accurate determination of arsenic and selenium species in water samples is described. The proposed procedure involves the use of directly coupled ion-pair, reversed-phase, high performance liquid chromatography and inductively coupled plasma mass spectrometry. Measurements are performed by the use of a unique data acquisition software program (time resolved analysis) by which rapid multi-element time based signals can be acquired and processed. Chromatographic data manipulations are performed by using a specialized software package. Under these conditions we are able to determine four arsenic species: arsenious acid (As III), mono-methyl-arsonic acid (MMA), dimethyl-arsonic acid (DMA), arsenic acid (As V) and two inorganic selenium species (Se IV and Se V) in the same injection at environmental concentration levels. The detection limits were 1.0 {mu}g L``-``1 and 5.0 {mu}g L``-``1 for arsenic and selenium species respectively. (authors) 19 refs.

  13. Use of coextraction and suppression of extraction in extraction-chromatographic separation of elements

    International Nuclear Information System (INIS)

    Karandashev, V.K.; Kuznetsov, R.A.; Grazhulene, S.S.; Usmanova, M.M.

    1988-01-01

    TBP, solutions of hydrobromic acid, indium and polytetrafluoroethylene powder, carrier for TBP, were used to study the effects of coextraction and extraction suppression on extraction-chromatographic behaviour of microamounts of elements in the presence of macroamounts of other elements. Possibility of using these effects under extraction-chromatographic element separation were considered. A new method for extraction-chromatographic separation of scandium microamounts from the mixture of large amount of elements (Y, Cd, Ce, Eu, Lu, Hf, Ta, W, Np and other) was suggested. 15 refs.; 3 figs

  14. Chemical Compositions, Chromatographic Fingerprints and Antioxidant Activities of Andrographis Herba

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    2014-11-01

    Full Text Available This paper describes the development of an HPLC-UV-MS method for quantitative determination of andrographolide and dehydroandrographolide in Andrographis Herba and establishment of its chromatographic fingerprint. The method was validated for linearity, limit of detection and quantification, inter- and intra-day precisions, repeatability, stability and recovery. All the validation results of quantitative determination and fingerprinting methods were satisfactory. The developed method was then applied to assay the contents of andrographolide and dehydroandrographolide and to acquire the fingerprints of all the collected Andrographis Herba samples. Furthermore, similarity analysis and principal component analysis were used to reveal the similarities and differences between the samples on the basis of the characteristic peaks. More importantly, the DPPH free radical-scavenging and ferric reducing capacities of the Andrographis Herba samples were assayed. By bivariate correlation analysis, we found that six compounds are positively correlated to DPPH free radical scavenging and ferric reducing capacities, and four compounds are negatively correlated to DPPH free radical scavenging and ferric reducing capacities.

  15. Extraction chromatographic studies on a strontium selective crown ether

    International Nuclear Information System (INIS)

    Pathak, P.N.; Mohapatra, P.K.; Kulkarni, M.J.; Manchanda, V.K.

    1998-08-01

    Selective adsorption of radiostrontium from nitric acid medium on a chromatographic resin material consisting of di-t-butyl cyclohexano 18 crown 6/n-octanol sorbed onto amberlite XAD-7 (particle size: 100-150μm) has been carried out. The column capacity is evaluated as ∼ 21 mg of Sr per gram of the resin material. The separation of radiostrontium from several metal ions present in environmental and biological samples viz. Li, Na, K, Mg, Ca, Al, Fe, Co, Ni, Zn and Cd has been achieved. A promising separation method for 90 Y from 90 Sr- 90 Y mixture has also been developed. Nitric acid concentration has no observable effect on the elution profile of 90 Y as the entire amount of the loaded 90 Y activity can be eluted by 1.5 ml of the acid in a wide concentration range (0. 1 - 10 M). Half-life of the eluted 90 Y sample is calculated as 63.75 ± 0.40 hours by following the decay profile. Repeated elutions using 1.5 ml of 3 M HNO 3 after loading 200 μCi of 90 Sr - 90 Y revealed that the product with ∼ 98% radiochemical purity could be obtained up to the 12th run beyond which the contamination due to 90 Sr increased significantly. (author)

  16. Brazilian organic sugarcane spirits: Physicochemical and chromatographic profile

    Directory of Open Access Journals (Sweden)

    Felipe Cimino Duarte

    Full Text Available ABSTRACT There has been a growing demand for products from organic agriculture for the food market. Brazil leads the production of sugarcane spirits and produces about 1.6 billion liters/year. New technologies have been sought throughout the supply chain to improve production, and organic raw material has been used in the production of sugar cane for the production of beverages. This study aimed to define the physicochemical and chromatographic profiles of eleven organic sugarcane spirits samples from various Brazilian states. The secondary components and contaminants were identified and quantified through physicochemical analyses, HPLC and gas chromatography (GC. A significant percentage of the organic sugarcane spirits samples contained concentrations of components that were above the limits required by the Ministry of Agriculture, Livestock and Provisioning (MAPA, specifically the esters (18.20%, copper and dry extract (9.10%. This contamination is caused by bad conditions employed during the production process, which are not in compliance with the good manufacturing practices determined and legislated by Brazilian law.

  17. High performance liquid chromatographic determination of mazindol in human plasma.

    Science.gov (United States)

    Kaddoumi, A; Mori, M; Nanashima, K; Kono, M; Nakashima, K

    2001-11-01

    A simple and convenient high performance liquid chromatographic method with UV detection is described for the determination of mazindol [5-(p-chlorophenyl)-2,5-dihydro-3H-imidazo[2,1-a]isoindol-5-ol] and its major metabolite, 2-(2-aminoethyl)-3-(p-chlorophenyl)-3-hydroxyphthalimidine (Met), in human plasma. The analytes were extracted with ethyl acetate from plasma samples and separated on a C18 column using acetonitrile-0.067 mol dm(-3) phosphate buffer (pH 3.5) (24 + 76 v/v) as a mobile phase. The eluates were monitored at 220 nm. Following complete validation and stability studies, the proposed method proved to be sensitive and precise. The limits of detection were 0.07 and 0.08 ng ml(-1) of plasma for mazindol and Met, respectively. The accuracy and recovery were in the ranges 94-102% and 91-102%, respectively, for both compounds. The intra- and inter-assay precisions were less than 7.6 and 9.2%, respectively, for both compounds. The stability of mazindol under different storage conditions, i.e., at room temperature (rt) and 4 degrees C and with freeze-thaw cycles, was also examined. Mazindol was unstable in plasma samples left at rt and 4 degrees C. The method was applied to the determination of mazindol and Met in the plasma of a patient treated for obesity with mazindol.

  18. Comparison of high-performance liquid chromatographic and thin-layer chromatographic methods for determination of aloin in herbal products containing Aloe vera.

    Science.gov (United States)

    Ramírez Durón, Rosalba; Ceniceros Almaguer, Lucía; Cavazos Rocha, Norma Cecilia; Silva Flores, Perla Giovanna; De Torres, Noemí Waksman

    2008-01-01

    Aloe vera is a medicinal plant used worldwide to treat a variety of conditions and, as such, has important commercial value. Aloin is a principal component of aloe vera leaves and is used for quality control of products containing it. A semiquantitative thin-layer chromatographic (TLC) method for determining the concentration of aloin in aloe-based products was validated. The results were similar to those of a validated high-performance liquid chromatographic method; therefore, TLC, which is a simple, sensitive, specific, rapid, and cheap method, may be ideal for use in any laboratory for routine analysis of commercial products containing aloe vera.

  19. HIGH PERFORMANCE LIQUID CHROMATOGRAPHIC SEPARATION OF THE ENANTIOMERS OF ORGANOPHOSPHORUS PESTICIDES ON POLYSACCHARIDE CHIRAL STATIONARY PHASES

    Science.gov (United States)

    High-performance liquid chromatographic separation of the individual enantiomers of 12 organophosphorus pesticides (OPs) was obtained on polysaccharide enantioselective HPLC columns using alkane-alcohol mobile phase. The OP pesticides were crotoxyphos, dialifor, fonofos, fenamiph...

  20. Derivatization reactions in the gas—liquid chromatographic analysis of drugs in biological fluids

    NARCIS (Netherlands)

    Hulshoff, A.; Lingeman, H.

    1984-01-01

    Alkylation, acylation, silylation and other derivatization reactions applied to the gas chromatographic analysis of drugs in biological matrices are reviewed. Reaction conditions are discussed in relation to reaction mechanisms. Detector-oriented labelling of drugs, and derivatization with chiral