WorldWideScience

Sample records for underwater spin facility

  1. A Register of Underwater Acoustic Facilities. Volume 1. Western Europe

    Science.gov (United States)

    1987-03-01

    The facility, shown in Figure 3-20, is used almost entirely for propeller research. MANAGING DIHECTGR ARNOLD HANSEN ASST. DIRECTOR OPERATION OF...Fraunhofer- Gesell - schaft (FhG), a company which incorporates 32 technical institutes throughout West Germany. The central office for FhG is located in

  2. Autonomous underwater handling system for service, measurement and cutting tasks for the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Hahn, M.; Haferkamp, H.; Bach, W.; Rose, N.

    1992-01-01

    For about 10 years the Institute for Material Science at the Hanover University has worked on projects of underwater cutting and welding. Increasing tasks to be done in nuclear facilities led to the development of special handling systems to support and handle the cutting tools. Also sensors and computers for extensive and complex tasks were integrated. A small sized freediving handling system, equipped with 2 video cameras, ultrasonic and radiation sensors and a plasma cutting torch for inspection and decommissioning tasks in nuclear facilities is described in this paper. (Author)

  3. Remote-Controlled Inspection Robot for Nuclear Facilities in Underwater Environment

    International Nuclear Information System (INIS)

    Yasuhiro Miwa; Syuichi Satoh; Naoya Hirose

    2002-01-01

    A remote-controlled inspection robot for nuclear facilities was developed. This is a underwater robot technology combined with inspection and flaw removal technologies. This report will describe the structure and performance of this robot. The inspection robot consists of two parts. The one is driving equipment, and the other is inspection and grinding units. It can swim in the tank, move around the tank wall, and stay on the inspection area. After that it starts inspection and flaw removal with a special grinding wheel. This technology had been developed to inspect some Radioactive Waste (RW) tanks in operating nuclear power plants. There are many RW tanks in these plants, which human workers can be hard to access because of a high level dose. This technology is too useful for inspection works of human-inaccessible areas. And also, in conventional inspection process, some worker go into the tank and set up scaffolding after full drainage and decontamination. It spends too much time for these preparations. If tank inspection and flaw removal can be performed in underwater, the outage period will be reduced. Remote-controlled process can be performed in underwater. This is the great advantage for plant owners. Since 1999 we have been applying this inspection robot to operating nuclear 11 facilities in Japan. (authors)

  4. Underwater Vehicle

    National Research Council Canada - National Science Library

    Dick, James L

    2007-01-01

    There is thus provided an underwater vehicle having facility for maneuvering alongside a retrieving vehicle, as by manipulation of bow and stern planes, for engaging a hull surface of the retrieving...

  5. Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

    1994-10-01

    This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

  6. Underwater-manipulation system for measuring- and cutting tasks in dismantling decommissioned nuclear facilities. Final report

    International Nuclear Information System (INIS)

    Stegemann, D.; Reimche, W.; Hansch, M.; Spitzer, M.

    1995-01-01

    Not only manipulators are necessary for dismantling and inspection of structure parts in decomissioned nuclear facilities, but flexible underwater-vehicles. Free-diving underwater-vehicles for inspection and dismantling tasks are still not developed and tested. Aim of the project is the development of sensors and devices for the position determination and the depth regulation. For inspection tasks an ultrasonic measurement and dosimeter device shall be built up. A measurement device has been developed which evaluates the ultrasonic time of flight from a transmitter at the vehicle to several receivers, installed in the reactor pressure vessel. The depth regulation is based on a pressure sensor and the direct control of the thrusters. The ultrasonic measurements are realized by an adapted ultrasonic card, the γ-dosimetry with an ionization chamber and a pA-amplifier. An acoustic orientation system was built up, which measures very accurately with one transmitter mounted on the vehicle and four receivers. Problem occur by reflection from the walls of the basin. The depth regulation is working faultless. The ultrasonic device is preferably used for distance measurement. The radiation measurement device was tested and mounted in the vehicle. (orig./HP) [de

  7. Repairs on underwater spent fuel transfer buggy and review of other underwater facilities of Cirus rod cutting building

    International Nuclear Information System (INIS)

    Rao, D.V.H.; Ganeshan, P.; Khadilkar, M.G.

    1994-01-01

    Cirus rod cutting building is a pool of water in concrete unlined bays. This houses several equipment required for processing of spent fuel and other experimental assemblies. These have been in use for over three decades. Recently the fuel transfer buggy had a major breakdown and the repair involved elaborate planning preparation and special methods to ensure safe working condition and to minimise manrem consumption. This also provided an opportunity to assess the condition of other underwater components in radiation environment which were hitherto inaccessible. This paper highlights the repair work carried on buggy and also the effect of ageing on some of the equipment vis a vis the possibility of their life extension. (author). 7 figs

  8. Underwater sounds near a fuel receiving facility in western Hong Kong: relevance to dolphins.

    Science.gov (United States)

    Würsig, B; Greene, C R

    2002-08-01

    Western Hong Kong is home to two species of marine mammals: Indo-Pacific humpbacked dolphins (Sousa chinensis) and finless porpoises (Neophocaena phocaenoides). Both are threatened in many parts of their range in southeast Asia [for example, International Biological Research Institute Reports 9 (1997), 41; Asian Marine Biology 14 (1997) 111]. In 1998, when the new Hong Kong International Airport opened in western Hong Kong, small tankers (about 100 m long, cargo capacity about 6300 metric tons) began delivering fuel to the Aviation Fuel Receiving Facility (AFRF) just off Sha Chau Island, north of the airport. Calibrated sound recordings were taken over a 4-day period from a quiet, anchored boat at distances 80-2000 m from aviation fuel delivery activities at the AFRF. From the recordings, 143 sections were selected for analysis. Narrowband spectral densities on the sound pressures were computed, and one-third octave band levels were derived for center frequencies from 10 to 16,000 Hz. Broadband levels, viz. 10-20,000 Hz. were also computed. The results showed that the Sha Chau area is normally noisy underwater, with the lowest broadband levels measured corresponding to those expected during a storm at sea (sea state 6). This background noise is believed to come largely from heavy vessel traffic in the Urmston Road to the north and east of Sha Chau and from vessels in the Pearl River Estuary to the West. The sound levels from the AFRF tankers are comparable to the levels measured from similar- and smaller-sized supply vessels supporting offshore oil exploration. The strongest sounds recorded were from a tanker leaving the AFRF at distance 100 m from the hydrophone, for which the one-third octave band level at 100 Hz was 141 dB re 1 microPa (spectrum level 127 dB re 1 microPa2/Hz) and the 10-20,000 Hz broadband level was 146 dB. At distances of 100 m or more and frequencies above 300 Hz, the one-third octave band levels were less than 130 dB (spectrum level 111 dB re

  9. Feasibility study of the underwater neutron radiography facility using the University of Utah 100 kW TRIGA (UUTR) reactor

    International Nuclear Information System (INIS)

    Choe, D.; Xiao, S.; Jevremovic, T.; Yang, X.

    2010-01-01

    The University of Utah 100 kW TRIGA (UUTR) reactor provides usable neutron yields for neutron radiography. Currently, UUTR reactor has three irradiators (Central, Pneumatic, and Thermal irradiators) and one Fast neutron Irradiation Facility (FNIF). These irradiators are very small so they are not suitable for neutron radiography. UUTR has three beam ports but they are not available due to the structure of the core. All sides of the core are occupied by FNIF, Thermal Irradiator, and three ion chambers. The only available position for underwater vertical beam port is on the top of the FNIF. There are two factors necessary to fulfill to be able to realize vertical underwater beam port: noninterruption to other facilities and radiation shielding. Designing the vertical beam port as movable ensures good access to the core and pool, while still providing a good neutron radiography environment. Keeping the top of the beam port below the surface of the pool the water represents biological shield. Neutron radiographs, with a simple setup of efficient neutron converters and digital camera systems, can produce acceptable resolution with an exposure time as short as a few minutes. It is important to validate the design with calculations before constructing the beam port. The design of the beam port is modeled using the MCNP5 transport code. A minimum of 10 5 neutrons/cm 2 -sec thermal neutron flux is required for high resolution neutron radiography. Currently, the UUTRIGA is in the process of upgrading its power from 100 kW to 250 kW. Upon the completion of the upgrading, the maximum neutron flux in the core will be ∼7x10 12 neutrons/cm 2 -sec. This paper discusses a modeling and evaluation of capability for a neutron radiography facility. (author)

  10. Prospects for a Muon Spin Resonance Facility in the MuCool Test Area

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, John A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-04-12

    This paper investigates the feasibility of re-purposing the MuCool Test Area beamline and experimental hall to support a Muon Spin Resonance facility, which would make it the only such facility in the US. This report reviews the basic muon production concepts studied and operationally implemented at TRIUMF, PSI, and RAL and their application to the MTA facility. Two scenarios were determined feasible. One represents an initial minimal-shielding and capital-cost investment stage with a single secondary muon beamline that transports the primary beam to an existing high-intensity beam absorber located outside of the hall. Another, upgraded stage, involves an optimized production target pile and high-intensity absorber installed inside the experimental hall and potentially multiple secondary muon lines. In either scenario, with attention to target design, the MTA can host enabling and competitive Muon Spin Resonance experiments

  11. Facility for studying spin dependence in pion production near threshold

    CERN Document Server

    Rinckel, T; Meyer, H O; Balewski, J T; Doskow, J; Pollock, R E; Von Przewoski, B; Sperisen, F; Daehnick, W W; Flammang, R W; Saha, S K; Haeberli, W; Lorentz, B; Rathmann, F; Schwartz, B; Wise, T; Pancella, P V

    2000-01-01

    We describe an experimental setup for the measurement of polarization observables in pion production near threshold. Experiments carried out with this facility use a polarized proton beam in the Indiana University Cooler storage ring, and an internal, polarized hydrogen target. The detector system measures energy, direction and velocity of multiple outgoing charged particles that are within a forward cone of about 32 deg. opening angle. An array of scintillators also allows the detection of neutrons. In addition to the technical details of the apparatus, we describe the procedure for data acquisition, as well as some aspects of the analysis.

  12. Underwater sound emissions and effects of the pile driving of the OWEZ windfarm facility near Egmond aan Zee (Tconstruct)

    NARCIS (Netherlands)

    Haan, de D.; Burggraaf, D.; Ybema, M.S.; Hille Ris Lambers, R.

    2007-01-01

    The aim of this part of the Monitoring and Evaluation Program NSW (MEP-NSW), i.e. “acoustic measurements”, is to measure and analyze underwater sound emissions from the construction of the OWEZ wind farm and to investigate the effects to marine animals (in particular fish, harbour porpoises and

  13. Underwater robots

    CERN Document Server

    Antonelli, Gianluca

    2014-01-01

    This book, now at the third edition, addresses the main control aspects in underwater manipulation tasks. The mathematical model with significant impact on the control strategy is discussed. The problem of controlling a 6-degrees-of-freedoms autonomous underwater vehicle is deeply investigated and a survey of fault detection/tolerant strategies for unmanned underwater vehicles is provided. Inverse kinematics, dynamic and interaction control for underwater vehicle-manipulator systems are then discussed. The code used to generate most of the numerical simulations is made available and briefly discussed.       

  14. Underwater videography and photography in Gulf of Kachchh. Sponsored by Gujarat Ecological Society, Vadodara, Gujarat

    Digital Repository Service at National Institute of Oceanography (India)

    Marine Archaeology Centre (MAC) has been carrying out underwater explorations and excavations of ancient ports and sunken shipwrecks to preserve underwater cultural heritage. MAC has the infrastructure facility to carry out underwater investigations...

  15. Google™ underwater

    Science.gov (United States)

    Showstack, Randy

    2012-10-01

    The first underwater panoramic images were added to Google Maps™, the company announced on 25 September. This first “underwater Street View collection,” launched in partnership with the Caitlin Seaview Survey, provides people with the opportunity to “become the next virtual Jacques Cousteau.” For more information, see: maps.google.com/ocean.

  16. Underwater optical wireless communication network

    Science.gov (United States)

    Arnon, Shlomi

    2010-01-01

    The growing need for underwater observation and subsea monitoring systems has stimulated considerable interest in advancing the enabling technologies of underwater wireless communication and underwater sensor networks. This communication technology is expected to play an important role in investigating climate change, in monitoring biological, biogeochemical, evolutionary, and ecological changes in the sea, ocean, and lake environments, and in helping to control and maintain oil production facilities and harbors using unmanned underwater vehicles (UUVs), submarines, ships, buoys, and divers. However, the present technology of underwater acoustic communication cannot provide the high data rate required to investigate and monitor these environments and facilities. Optical wireless communication has been proposed as the best alternative to meet this challenge. Models are presented for three kinds of optical wireless communication links: (a) a line-of-sight link, (b) a modulating retroreflector link, and (c) a reflective link, all of which can provide the required data rate. We analyze the link performance based on these models. From the analysis, it is clear that as the water absorption increases, the communication performance decreases dramatically for the three link types. However, by using the scattered light it was possible to mitigate this decrease in some cases. It is concluded from the analysis that a high-data-rate underwater optical wireless network is a feasible solution for emerging applications such as UUV-to-UUV links and networks of sensors, and extended ranges in these applications could be achieved by applying a multi-hop concept.

  17. Calibration of Underwater Sound Transducers

    OpenAIRE

    H.R.S. Sastry

    1983-01-01

    The techniques of calibration of underwater sound transducers for farfield, near-field and closed environment conditions are reviewed in this paper .The design of acoustic calibration tank is mentioned. The facilities available at Naval Physical & Oceanographic Laboratory, Cochin for calibration of transducers are also listed.

  18. Underwater manipulator

    Science.gov (United States)

    Schrum, P.B.; Cohen, G.H.

    1993-04-20

    Self-contained, waterproof, water-submersible, remote-controlled apparatus is described for manipulating a device, such as an ultrasonic transducer for measuring crack propagation on an underwater specimen undergoing shock testing. The subject manipulator includes metal bellows for transmittal of angular motions without the use of rotating shaft seals or O-rings. Inside the manipulator, a first stepper motor controls angular movement. In the preferred embodiment, the bellows permit the first stepper motor to move an ultrasonic transducer [plus minus]45 degrees in a first plane and a second bellows permit a second stepper motor to move the transducer [plus minus]10 degrees in a second plane orthogonal to the first. In addition, an XY motor-driven table provides XY motion.

  19. Underwater manipulator

    International Nuclear Information System (INIS)

    Schrum, P.B.; Cohen, G.H.

    1993-01-01

    Self-contained, waterproof, water-submersible, remote-controlled apparatus is described for manipulating a device, such as an ultrasonic transducer for measuring crack propagation on an underwater specimen undergoing shock testing. The subject manipulator includes metal bellows for transmittal of angular motions without the use of rotating shaft seals or O-rings. Inside the manipulator, a first stepper motor controls angular movement. In the preferred embodiment, the bellows permit the first stepper motor to move an ultrasonic transducer ±45 degrees in a first plane and a second bellows permit a second stepper motor to move the transducer ±10 degrees in a second plane orthogonal to the first. In addition, an XY motor-driven table provides XY motion

  20. Underwater Sound Reference Division

    Data.gov (United States)

    Federal Laboratory Consortium — The Underwater Sound Reference Division (USRD) serves as the U.S. standardizing activity in the area of underwater acoustic measurements, as the National Institute...

  1. An underwater optical wireless communication network

    Science.gov (United States)

    Arnon, Shlomi

    2009-08-01

    The growing need for underwater observation and sub-sea monitoring systems has stimulated considerable interest in advancing the enabling technologies of underwater wireless communication and underwater sensor networks. This communication technology is expected to play an important role in investigating climate change, in monitoring biological, bio-geochemical, evolutionary and ecological changes in the sea, ocean and lake environments and in helping to control and maintain oil production facilities and harbors using unmanned underwater vehicles (UUVs), submarines, ships, buoys, and divers. However, the present technology of underwater acoustic communication cannot provide the high data rate required to investigate and monitor these environments and facilities. Optical wireless communication has been proposed as the best alternative to meet this challenge. We present models of three kinds of optical wireless communication links a) a line-of-sight link, b) a modulating retro-reflector link and c) a reflective link, all of which can provide the required data rate. We analyze the link performance based on these models. From the analysis, it is clear that as the water absorption increases, the communication performance decreases dramatically for the three link types. However, by using the scattered lighted it was possible to mitigate this decrease in some cases. We conclude from the analysis that a high data rate underwater optical wireless network is a feasible solution for emerging applications such as UUV to UUV links and networks of sensors, and extended ranges in these applications could be achieved by applying a multi-hop concept.

  2. Development of underwater laser cutting technique for steel and ...

    Indian Academy of Sciences (India)

    Laser cutting; underwater laser cutting; fibre optic beam delivery; Nd:YAG laser; material processing; heat affected zone; microstructure. PACS Nos 42.62.Cf; 42.62.-b; 42.55.Rz; 42.81.Ai; 42.81.-i. 1. Introduction. Underwater laser cutting and welding has many applications in nuclear facilities and shiping industry and is a ...

  3. Development and demonstration of the safe dismantling of metal components from the decommissioning of nuclear facilities by means of underwater plasma arc cutting. Development of a measurement and control system for a underwater plasma arc cutting device for the safe dismantling of metallic components from the decommissioning of nuclear facility. Final report

    International Nuclear Information System (INIS)

    Haferkamp, H.; Bach, F.W.; Steiner, H.; Kah, S.

    1992-01-01

    For the decommissioning of nuclear installations, methods and tools for the dismantling of complicated metallic components with great material thickness are needed. The method of underwater plasma arc cutting offers the possibility for the dismantling of highly activated components because of the shielding effect of water. Up to now the tools for the underwater method are only available for simple contours. Target of the project was the development of a plasma arc cutting technique for the dismantling of complicated components and of a control and measurement system. (orig./DG) [de

  4. Underwater Geotechnical Foundations

    National Research Council Canada - National Science Library

    Lee, Landris

    2001-01-01

    This report provides an overview and description of the design and construction of underwater geotechnical foundations and offers preliminary guidance based on past and current technology applications...

  5. Underwater Scene Composition

    Science.gov (United States)

    Kim, Nanyoung

    2009-01-01

    In this article, the author describes an underwater scene composition for elementary-education majors. This project deals with watercolor with crayon or oil-pastel resist (medium); the beauty of nature represented by fish in the underwater scene (theme); texture and pattern (design elements); drawing simple forms (drawing skill); and composition…

  6. Hydrophilic Cu2O nanostructured thin films prepared by facile spin coating method: Investigation of surface energy and roughness

    International Nuclear Information System (INIS)

    Eskandari, A.; Sangpour, P.; Vaezi, M.R.

    2014-01-01

    We demonstrate a facile, uniform and large scale chemical route to synthesize the cuprous oxide (Cu 2 O) nanostructured thin film via spin coating technique. The samples were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), simultaneous thermal analysis (STA) and UV–visible spectra. Based on the results, the transparent Cu 2 O thin films were formed at the low temperature (275 °C) due to employed N 2 atmosphere in annealing processes. The average roughness is decreased by increasing the number of layers from 11 to 6.4 nm for 1 and 5 times of successive deposition of copper oxide, respectively. Afterward, by increasing the cycle of deposition, the roughness increased (∼87%) owning to the transformation of the growth mechanism of thin films from Volmer–Weber to Stranski–Krastanov mode. Moreover, the prepared films were extremely hydrophilic with water contact angle about 45° and surface energy 54.26 mJ m −2 after 10-cycle coating. The smooth and low energy surface with this technique could be tailored for photoelectrochemical applications such as water splitting. - Highlights: • Hydrophilic Cu 2 O nanostructured thin films synthesized by a facile method. • By increasing the cycle of deposition, finer particles obtained. • Surface energy and contact angle strongly depend on the film formation mechanism. • Transformation of the thin films growth mechanism was studied

  7. Underwater Coatings for Contamination Control

    International Nuclear Information System (INIS)

    Julia L. Tripp; Kip Archibald; Ann-Marie Phillips; Joseph Campbell

    2004-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is deactivating several fuel storage basins. Airborne contamination is a concern when the sides of the basins are exposed and allowed to dry during water removal. One way of controlling this airborne contamination is to fix the contamination in place while the pool walls are still submerged. There are many underwater coatings available on the market that are used in marine, naval and other applications. A series of tests were run to determine whether the candidate underwater fixatives are easily applied and adhere well to the substrates (pool wall materials) found in INEEL fuel pools. The four pools considered included (1) Test Area North (TAN-607) with epoxy painted concrete walls; (2) Idaho Nuclear Technology and Engineering Center (INTEC) (CPP-603) with bare concrete walls; (3) Materials Test Reactor (MTR) Canal with stainless steel lined concrete walls; and (4) Power Burst Facility (PBF-620) with stainless steel lined concrete walls on the bottom and epoxy painted carbon steel lined walls on the upper portions. Therefore, the four materials chosen for testing included bare concrete, epoxy painted concrete, epoxy painted carbon steel, and stainless steel. The typical water temperature of the pools varies from 55 F to 80 F dependent on the pool and the season. These tests were done at room temperature. The following criteria were used during this evaluation. The underwater coating must: (1) Be easy to apply; (2) Adhere well to the four surfaces of interest; (3) Not change or have a negative impact on water chemistry or clarity; (4) Not be hazardous in final applied form; and (5) Be proven in other underwater applications. In addition, it is desirable for the coating to have a high pigment or high cross-link density to prevent radiation from penetrating. This paper will detail the testing completed and the test results. A proprietary two-part, underwater epoxy owned by S. G. Pinney and Associates

  8. Underwater welding using remote controlled robots. Development of remote underwater welding technology with a high power YAG laser

    International Nuclear Information System (INIS)

    Miwa, Yasuhiro; Sato, Syuuichi; Kojima, Toshio; Owaki, Katsura; Hirose, Naoya

    2002-01-01

    As components in nuclear power plant have been periodically carried out their inspection and repair to keep their integrity, on radioactive liquid wastes storage facility, because of difficulty on their inspection by human beings, some are remained without inspection, and even when capable of inspection, conversion from human works to remote operations is desired from a viewpoint of their operation efficiency upgrading. For response to these needs, some developments on a technology capable of carrying out inspection of their inside at underwater environment and repairing welding with YAG laser by means of remote operation, have been performed. Remote underwater inspection and repair technology is a combination technology of already applied underwater mobile technique (underwater inspection robot) with underwater YAG laser welding technique which is recently at actual using level. Therefore, this technology is composed of an inspection robot and a repair welding robot. And, testing results using the underwater inspection robot and welding test results using the underwater repair welding robot, were enough preferable to obtain forecasting applicable to actual apparatuses. This technology is especially effective for inspection and repair of inside of nuclear fuel cycle apparatuses and relatively high dose apparatuses, and can be thought to be applicable also to large capacity tanks, tanks dealing with harmful matters, underwater structures, and so on, in general industries. (G.K.)

  9. Underwater 3D filming

    Directory of Open Access Journals (Sweden)

    Roberto Rinaldi

    2014-12-01

    Full Text Available After an experimental phase of many years, 3D filming is now effective and successful. Improvements are still possible, but the film industry achieved memorable success on 3D movie’s box offices due to the overall quality of its products. Special environments such as space (“Gravity” and the underwater realm look perfect to be reproduced in 3D. “Filming in space” was possible in “Gravity” using special effects and computer graphic. The underwater realm is still difficult to be handled. Underwater filming in 3D was not that easy and effective as filming in 2D, since not long ago. After almost 3 years of research, a French, Austrian and Italian team realized a perfect tool to film underwater, in 3D, without any constrains. This allows filmmakers to bring the audience deep inside an environment where they most probably will never have the chance to be.

  10. Underwater Glider System Study

    OpenAIRE

    Jenkins, Scott A; Humphreys, Douglas E; Sherman, Jeff; Osse, Jim; Jones, Clayton; Leonard, Naomi; Graver, Joshua; Bachmayer, Ralf; Clem, Ted; Carroll, Paul; Davis, Philip; Berry, Jon; Worley, Paul; Wasyl, Joseph

    2003-01-01

    The goals of this study are to determine how to advance from present capabilities of underwater glider (and hybrid motorglider) technology to what could be possible within the next few years; and to identify critical research issues that must be resolved to make such advancements possible. These goals were pursued by merging archival flight data with numerical model results and system spreadsheet analysis to extrapolate from the present state-of-the–art in underwater (UW) gliders to potential...

  11. Remote Underwater Characterization System - Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    Willis, Walter David

    1999-01-01

    Characterization and inspection of water-cooled and moderated nuclear reactors and fuel storage pools requires equipment capable of operating underwater. Similarly, the deactivation and decommissioning of older nuclear facilities often requires the facility owner to accurately characterize underwater structures and equipment which may have been sitting idle for years. The underwater characterization equipment is often required to operate at depths exceeding 20 ft (6.1 m) and in relatively confined or congested spaces. The typical baseline approach has been the use of radiation detectors and underwater cameras mounted on long poles, or stationary cameras with pan and tilt features mounted on the sides of the underwater facility. There is a perceived need for an inexpensive, more mobile method of performing close-up inspection and radiation measurements in confined spaces underwater. The Remote Underwater Characterization System (RUCS) is a small, remotely operated submersible vehicle intended to serve multiple purposes in underwater nuclear operations. It is based on the commercially-available ''Scallop'' vehicle, but has been modified by Department of Energy's Robotics Technology Development Program to add auto-depth control, and vehicle orientation and depth monitoring at the operator control panel. The RUCS is designed to provide visual and gamma radiation characterization, even in confined or limited access areas. It was demonstrated in August 1998 at Idaho National Engineering and environmental Laboratory (INEEL) as part of the INEEL Large Scale Demonstration and Deployment Project. During the demonstration it was compared in a ''head-to-head'' fashion with the baseline characterization technology. This paper summarizes the results of the demonstration and lessons learned; comparing and contrasting both technologies in the areas of cost, visual characterization, radiological characterization, and overall operations

  12. "Boxnep" advanced modular underwater robot

    OpenAIRE

    Buluev, Ilia

    2016-01-01

    The article discusses the relevance of the underwater vehicles' ability to solve a wide range of problems. The idea put in the basis of this research is designing a modular underwater robot. It allows to mount various equipment and test it in underwater environment. The paper deals with the concept of the robot and its characteristics.

  13. Resources for Underwater Robotics Education

    Science.gov (United States)

    Wallace, Michael L.; Freitas, William M.

    2016-01-01

    4-H clubs can build and program underwater robots from raw materials. An annotated resource list for engaging youth in building underwater remotely operated vehicles (ROVs) is provided. This article is a companion piece to the Research in Brief article "Building Teen Futures with Underwater Robotics" in this issue of the "Journal of…

  14. Spacecraft Spin Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides the capability to correct unbalances of spacecraft by using dynamic measurement techniques and static/coupled measurements to provide products of...

  15. Physics lab in spin

    CERN Multimedia

    Hawkes, N

    1999-01-01

    RAL is fostering commerical exploitation of its research and facilities in two main ways : spin-out companies exploit work done at the lab, spin-in companies work on site taking advantage of the facilities and the expertise available (1/2 page).

  16. Underwater laser detection system

    Science.gov (United States)

    Gomaa, Walid; El-Sherif, Ashraf F.; El-Sharkawy, Yasser H.

    2015-02-01

    The conventional method used to detect an underwater target is by sending and receiving some form of acoustic energy. But the acoustic systems have limitations in the range resolution and accuracy; while, the potential benefits of a laserbased underwater target detection include high directionality, high response, and high range accuracy. Lasers operating in the blue-green region of the light spectrum(420 : 570nm)have a several applications in the area of detection and ranging of submersible targets due to minimum attenuation through water ( less than 0.1 m-1) and maximum laser reflection from estimated target (like mines or submarines) to provide a long range of detection. In this paper laser attenuation in water was measured experimentally by new simple method by using high resolution spectrometer. The laser echoes from different targets (metal, plastic, wood, and rubber) were detected using high resolution CCD camera; the position of detection camera was optimized to provide a high reflection laser from target and low backscattering noise from the water medium, digital image processing techniques were applied to detect and discriminate the echoes from the metal target and subtract the echoes from other objects. Extraction the image of target from the scattering noise is done by background subtraction and edge detection techniques. As a conclusion, we present a high response laser imaging system to detect and discriminate small size, like-mine underwater targets.

  17. Underwater Gliders: A Review

    Directory of Open Access Journals (Sweden)

    Javaid Muhammad Yasar

    2014-07-01

    Full Text Available Underwater gliders are a type of underwater vehicle that transverse the oceans by shifting its buoyancy, during which its wings develop a component of the downward motion in the horizontal plane, thus producing a forward force. They are primarily used in oceanography sensing and data collection and play an important role in ocean research and development. Although there have been considerable developments in these gliders since the development of the first glider concept in 1989, to date, no review of these gliders have been done. This paper reviews existing underwater gliders, with emphasis on their respective working principles, range and payload capacity. All information on gliders available in the public domain or published in literature from the year 2000-2013 was reviewed. The majority of these gliders have an operational depth of 1000 m and a payload of less than 25 kg. The exception is a blend-body shape glider, which has a payload of approximately 800 kg and an operational depth around about 300 m. However, the commercialization of these gliders has been limited with only three know examples that have been successfully commercialized.

  18. HullBUG Technology Development for Underwater Hull Cleaning

    Science.gov (United States)

    2015-05-14

    period an effort was also made to estimate the cost of a reasonably simple test device that consists of a motor, bearing support and underwater...planned for use at that facility. FIT Test Vehicle Successful operation of the HullBUG system on the sailing vessel Adele was performed in

  19. Radon dynamics in underwater thermal radon therapy

    International Nuclear Information System (INIS)

    Lettner, H.; Hofmann, W.; Winkler, R.; Rolle, R.; Foisner, W.

    1998-01-01

    At a facility for underwater thermal radon therapy in Bad Hofgastein, experiments were carried out with the aim of establishing radon in the air exhaled by the treated patients and of radon decay products on the skin of the patients. The time course of radon concentration in the exhaled air shows a maximum a few minutes after entering the bath, then the Rn concentration remains constant over the remaining time spent in the bath. Taking into account several simplifying assumptions, the average dose to the epidermis from radon daughters is about 50 μGy. (A.K.)

  20. Carbon Nanotube Underwater Acoustic Thermophone

    Science.gov (United States)

    2016-09-23

    Attorney Docket No. 300009 1 of 8 A CARBON NANOTUBE UNDERWATER ACOUSTIC THERMOPHONE STATEMENT OF GOVERNMENT INTEREST [0001] The...the Invention [0003] The present invention is an acoustically transparent carbon nanotube thermophone. (2) Description of the Prior Art [0004...amplitude of the resulting sound waves. [0006] Recently, there has been development of underwater acoustic carbon nanotube (CNT) yarn sheets capable

  1. Underwater gas tornado

    Science.gov (United States)

    Byalko, Alexey V.

    2013-07-01

    We present the first experimental observation of a new hydrodynamic phenomenon, the underwater tornado. Simple measurements show that the tornado forms a vortex of the Rankine type, i.e. the rising gas rotates as a solid body and the liquid rotates with a velocity decreasing hyperbolically with the radius. We obtain the dependence of the tornado radius a on the gas stream value j theoretically: a ∼ j2/5. Processing of a set of experiments yielded the value 0.36 for the exponent in this expression. We also report the initial stages of the theoretical study of this phenomenon.

  2. A simple inexpensive method for estimating underwater weight.

    Science.gov (United States)

    Thomas, T. R.; Cook, P. L.

    1978-01-01

    A description is given of a simple, inexpensive and versatile method for estimating underwater weight. The use of a portable stock tank allows the determination of % Fat by underwater weighing without requiring a swimming pool, built-in tank, or special facility. Twenty-eight college students were weighed on two separate testing sessions 24-48 hours apart. Ten trials were performed at each session. The mean of the last five trials was used in determining underwater weight. The test-retest reliability coefficient was high, r = 0.98, and most of the successive trial correlations were above 0.99. The mean % Fat for the women (N = 9) was 22.2 +/- 5.9 and for the men (N = 19) was 13.7 +/- 5.1. Images Figure 1 PMID:630178

  3. Rapid and Facile Formation of P3HT Organogels via Spin Coating: Tuning Functional Properties of Organic Electronic Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cameron S. [Univ. of Tennessee, Knoxville, TN (United States); Yin, Wen [Univ. of Tennessee, Knoxville, TN (United States); Holt, Adam P. [Univ. of Tennessee, Knoxville, TN (United States); Sangoro, Joshua R. [Univ. of Tennessee, Knoxville, TN (United States); Sokolov, Alexei P. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dadmun, Mark D. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-18

    Poly(3-hexyl thiophene) (P3HT) is widely regarded as the benchmark polymer when studying the physics of conjugated polymers used in organic electronic devices. P3HT can self-assemble via stacking of its backbone, leading to an assembly and growth of P3HT fi brils into 3D percolating organogels. These structures are capable of bridging the electrodes, providing multiple pathways for charge transport throughout the active layer. Here, a novel set of conditions is identified and discussed for P3HT organogel network formation via spin coating by monitoring the spin-coating process from various solvents. The development of organogel formation is detected by in situ static light scattering, which measures both the thinning rate by refl ectance and structural development in the fi lm via off-specular scattering during fi lm formation. Optical microscopy and thermal annealing experiments provide ex situ confi rmation of organogel fabrication. The role of solution characteristics, including solvent boiling point, P3HT solubility, and initial P3HT solution concentration on organogel formation, is examined to correlate these parameters to the rate of film formation, organogel-onset concentration, and overall network size. The correlation of film properties to the fabrication parameters is also analyzed within the context of the hole mobility and density-of-states measured by impedance spectroscopy.

  4. Underwater Hearing in Turtles.

    Science.gov (United States)

    Willis, Katie L

    2016-01-01

    The hearing of turtles is poorly understood compared with the other reptiles. Although the mechanism of transduction of sound into a neural signal via hair cells has been described in detail, the rest of the auditory system is largely a black box. What is known is that turtles have higher hearing thresholds than other reptiles, with best frequencies around 500 Hz. They also have lower underwater hearing thresholds than those in air, owing to resonance of the middle ear cavity. Further studies demonstrated that all families of turtles and tortoises share a common middle ear cavity morphology, with scaling best suited to underwater hearing. This supports an aquatic origin of the group. Because turtles hear best under water, it is important to examine their vulnerability to anthropogenic noise. However, the lack of basic data makes such experiments difficult because only a few species of turtles have published audiograms. There are also almost no behavioral data available (understandable due to training difficulties). Finally, few studies show what kinds of sounds are behaviorally relevant. One notable paper revealed that the Australian snake-necked turtle (Chelodina oblonga) has a vocal repertoire in air, at the interface, and under water. Findings like these suggest that there is more to the turtle aquatic auditory scene than previously thought.

  5. OFDM for underwater acoustic communications

    CERN Document Server

    Zhou, Shengli

    2014-01-01

    A blend of introductory material and advanced signal processing and communication techniques, of critical importance to underwater system and network development This book, which is the first to describe the processing techniques central to underwater OFDM, is arranged into four distinct sections: First, it describes the characteristics of underwater acoustic channels, and stresses the difference from wireless radio channels. Then it goes over the basics of OFDM and channel coding. The second part starts with an overview of the OFDM receiver, and develops various modules for the receiver des

  6. Remote Underwater Characterization System - Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    Willis, W.D.

    1999-01-01

    Characterization and inspection of water-cooled and moderated nuclear reactors and fuel storage pools requires equipment capable of operating underwater. Similarly, the deactivation and decommissioning of older nuclear facilities often requires the facility owner to accurately characterize underwater structures and equipment which may have been sitting idle for years. The Remote Underwater Characterization System (RUCS) is a small, remotely operated submersible vehicle intended to serve multiple purposes in underwater nuclear operations. It is based on the commercially-available Scallop vehicle 1 , but has been modified by the Department of Energys Robotics Technology Development Program to add auto-depth control, and vehicle orientation and depth monitoring at the operator control panel. The RUCS is designed to provide visual and gamma radiation characterization, even in confined or limited access areas. It was demonstrated in August 1998 at the Idaho National Engineering and Environmental Laboratory (INEEL) as part of the INEEL Large Scale Demonstration and Deployment Project. During the demonstration it was compared in a ''head-to-head fashion with the baseline characterization technology. This paper summarizes the results of the demonstration and lessons learned; comparing and contrasting both technologies in the areas of cost, visual characterization, radiological characterization, and overall operations

  7. Underwater plasma arc cutting

    International Nuclear Information System (INIS)

    Leautier, R.; Pilot, G.

    1991-01-01

    This report describes the work done to develop underwater plasma arc cutting techniques, to characterise aerosols from cutting operations on radioactive and non-radioactive work-pieces, and to develop suitable ventilation and filtration techniques. The work has been carried out in the framework of a contract between CEA-CEN Cadarache and the Commission of European Communities. Furthermore, this work has been carried out in close cooperation with CEA-CEN Saclay mainly for secondary emissions and radioactive analysis. The contract started in May 1986 and was completed in December 1988 by a supplementary agreement. This report has been compiled from several progress reports submitted during the work period, contains the main findings of the work and encloses the results of comparative tests on plasma arc cutting

  8. Safety aspects for underwater vehicles

    Digital Repository Service at National Institute of Oceanography (India)

    Madhan, R.; Navelkar, G.S.; Desa, E.S.; Afzulpurkar, S.; Prabhudesai, S.P.; Dabholkar, N.; Mascarenhas, A.A.M.Q.; Maurya, P.

    . This stresses for implementation of multiple safety measures of a high degree so that the platform operates continuously in a fail-safe mode. This paper discusses issues on safety measures implemented on the autonomous underwater platforms namely MAYA AUV...

  9. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy.

    Science.gov (United States)

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R

    2014-04-01

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  10. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy

    International Nuclear Information System (INIS)

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R.

    2014-01-01

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  11. Underwater cutting techniques developments

    International Nuclear Information System (INIS)

    Bach, F.-W.

    1990-01-01

    The primary circuit structures of different nuclear powerplants are constructed out of stainless steels, ferritic steels, plated ferritic steels and alloys of aluminium. According to the level of the specific radiation of these structures, it is necessary for dismantling to work with remote controlled cutting techniques. The most successful way to protect the working crew against exposure of radiation is to operate underwater in different depths. The following thermal cutting processes are more or less developed to work under water: For ferritic steels only - flame cutting; For ferritic steels, stainless steels, cladded steels and aluminium alloys - oxy-arc-cutting, arc-waterjet-cutting with a consumable electrode, arc-saw-cutting, plasma-arc-cutting and plasma-arc-saw. The flame cutting is a burning process, all the other processes are melt-cutting processes. This paper explains the different techniques, giving a short introduction of the theory, a discussion of the possibilities with the advantages and disadvantages of these processes giving a view into the further research work in this interesting field. (author)

  12. Design of Autonomous Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Tadahiro Hyakudome

    2011-03-01

    Full Text Available There are concerns about the impact that global warming will have on our environment, and which will inevitably result in expanding deserts and rising water levels. While a lot of underwater vehicles are utilized, AUVs (Autonomous Underwater Vehicle were considered and chosen, as the most suitable tool for conduction survey concerning these global environmental problems. AUVs can comprehensive survey because the vehicle does not have to be connected to the support vessel by tether cable. When such underwater vehicles are made, it is necessary to consider about the following things. 1 Seawater and Water Pressure Environment, 2 Sink, 3 There are no Gas or Battery Charge Stations, 4 Global Positioning System cannot use, 5 Radio waves cannot use. In the paper, outline of above and how deal about it are explained.

  13. Underwater laser imaging system (UWLIS)

    Energy Technology Data Exchange (ETDEWEB)

    DeLong, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Practical limitations with underwater imaging systems area reached when the noise in the back scattered radiation generated in the water between the imaging system and the target obscures the spatial contrast and resolution necessary for target discovery and identification. The advent of high power lasers operating in the blue-green portion of the visible spectrum (oceanic transmission window) has led to improved experimental illumination systems for underwater imaging. Range-gated and synchronously scanned devices take advantage of the unique temporal and spatial coherence properties of laser radiation, respectively, to overcome the deleterious effects of common volume back scatter.

  14. Underwater measurements of muon intensity

    Science.gov (United States)

    Fedorov, V. M.; Pustovetov, V. P.; Trubkin, Y. A.; Kirilenkov, A. V.

    1985-01-01

    Experimental measurements of cosmic ray muon intensity deep underwater aimed at determining a muon absorption curve are of considerable interest, as they allow to reproduce independently the muon energy spectrum at sea level. The comparison of the muon absorption curve in sea water with that in rock makes it possible to determine muon energy losses caused by nuclear interactions. The data available on muon absorption in water and that in rock are not equivalent. Underground measurements are numerous and have been carried out down to the depth of approx. 15km w.e., whereas underwater muon intensity have been measured twice and only down to approx. 3km deep.

  15. An Underwater Color Image Quality Evaluation Metric.

    Science.gov (United States)

    Yang, Miao; Sowmya, Arcot

    2015-12-01

    Quality evaluation of underwater images is a key goal of underwater video image retrieval and intelligent processing. To date, no metric has been proposed for underwater color image quality evaluation (UCIQE). The special absorption and scattering characteristics of the water medium do not allow direct application of natural color image quality metrics especially to different underwater environments. In this paper, subjective testing for underwater image quality has been organized. The statistical distribution of the underwater image pixels in the CIELab color space related to subjective evaluation indicates the sharpness and colorful factors correlate well with subjective image quality perception. Based on these, a new UCIQE metric, which is a linear combination of chroma, saturation, and contrast, is proposed to quantify the non-uniform color cast, blurring, and low-contrast that characterize underwater engineering and monitoring images. Experiments are conducted to illustrate the performance of the proposed UCIQE metric and its capability to measure the underwater image enhancement results. They show that the proposed metric has comparable performance to the leading natural color image quality metrics and the underwater grayscale image quality metrics available in the literature, and can predict with higher accuracy the relative amount of degradation with similar image content in underwater environments. Importantly, UCIQE is a simple and fast solution for real-time underwater video processing. The effectiveness of the presented measure is also demonstrated by subjective evaluation. The results show better correlation between the UCIQE and the subjective mean opinion score.

  16. Underwater nuclear power plant structure

    International Nuclear Information System (INIS)

    Severs, S.; Toll, H.V.

    1982-01-01

    A structure for an underwater nuclear power generating plant comprising a triangular platform formed of tubular leg and truss members upon which are attached one or more large spherical pressure vessels and one or more small cylindrical auxiliary pressure vessels. (author)

  17. Underwater Robots Surface in Utah

    Science.gov (United States)

    Hurd, Randy C.; Hacking, Kip S.; Damarjian, Jennifer L.; Wright, Geoffrey A.; Truscott, Tadd

    2015-01-01

    Underwater robots (or ROVs: Remotely Operated Vehicles as they are typically called in industry) have recently become a very popular instructional STEM activity. Nationally, ROVs have been used in science and technology classrooms for several years in cities such as Seattle, San Diego, Virginia Beach, and other coastal areas. In the past two…

  18. Marine underwater in submarine

    International Nuclear Information System (INIS)

    Demarthon, F.; Dupuy-Maury, F.

    2004-01-01

    This dossier summarizes the 50 years of the French history of submarine nuclear propulsion. It presents the respective missions of the different types of submarines (dissuasion, protection), the inside structure, the maintenance works, the reactor and propulsion system, the new generation of nuclear submarines and the facilities for the on-shore testing of the reactor components. (J.S.)

  19. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2012-01-01

    In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.

  20. Network Computing for Distributed Underwater Acoustic Sensors

    Science.gov (United States)

    2014-03-31

    Physical layer in UASNs Our main investigations are about underwater communications using acoustic waves. Elec- tromagnetic and optical waves do not...Shengli, Z., and Jun-Hong, C. (2008), Prospects and problems of wireless communication for underwater sensor networks, Wirel. Commun . Mob. Comput., 8(8... Wireless Communications , 9(9), 2934–2944. [21] Pompili, D. and Akyildiz, I. (2010), A multimedia cross-layer protocol for underwater acoustic sensor networks

  1. Cooperative OFDM underwater acoustic communications

    CERN Document Server

    Cheng, Xilin; Cheng, Xiang

    2016-01-01

    Following underwater acoustic channel modeling, this book investigates the relationship between coherence time and transmission distances. It considers the power allocation issues of two typical transmission scenarios, namely short-range transmission and medium-long range transmission. For the former scenario, an adaptive system is developed based on instantaneous channel state information. The primary focus is on cooperative dual-hop orthogonal frequency division multiplexing (OFDM). This book includes the decomposed fountain codes designed to enable reliable communications with higher energy efficiency. It covers the Doppler Effect, which improves packet transmission reliability for effective low-complexity mirror-mapping-based intercarrier interference cancellation schemes capable of suppressing the intercarrier interference power level. Designed for professionals and researchers in the field of underwater acoustic communications, this book is also suitable for advanced-level students in electrical enginee...

  2. International Conference on Underwater Environment

    CERN Document Server

    Jaulin, Luc; Creuze, Vincent; Debese, Nathalie; Quidu, Isabelle; Clement, Benoît; Billon-Coat, Annick

    2016-01-01

    This volume constitutes the results of the International Conference on Underwater Environment, MOQESM’14, held at “Le Quartz” Conference Center in Brest, France, on October 14-15, 2014, within the framework of the 9th Sea Tech Week, International Marine Science and Technology Event. The objective of MOQESM'14 was to bring together researchers from both academia and industry, interested in marine robotics and hydrography with application to the coastal environment mapping and underwater infrastructures surveys. The common thread of the conference is the combination of technical control, perception, and localization, typically used in robotics, with the methods of mapping and bathymetry. The papers presented in this book focus on two main topics. Firstly, coastal and infrastructure mapping is addressed, focusing not only on hydrographic systems, but also on positioning systems, bathymetry, and remote sensing. The proposed methods rely on acoustic sensors such as side scan sonars, multibeam echo sounders, ...

  3. Underwater EVA training in the WETF with astronaut Robert L. Stewart

    Science.gov (United States)

    1983-01-01

    Underwater extravehicular activity (EVA) training in the weightless environment training facility (WETF) with astronaut Robert L. Stewart. Stewart is simulating a planned EVA using the mobile foot restraint device and a one-G version of the Canadian-built remote manipulator system.

  4. Status on underwater plasma arc cutting in KHI, 3

    International Nuclear Information System (INIS)

    Abe, Tadashi; Aota, Toshiichi; Nishizaki, Tadashi; Nakayama, Shigeru; Yamashita, Seiji

    1983-01-01

    In Kawasaki Heavy Industries, Ltd., the development of a remote dismantling system by underwater plasma arc cutting process has been advanced, expecting its application to the dismantling and removal of nuclear reactor facilities. In the previous two reports, the fundamental experimental results such as the comparison of the cutting capability in air and in water were shown, but this time, the remote automatic cutting of wedge-shaped specimens was carried out, using a newly installed manipulator for underwater works, therefore its outline is reported. Also the cutting experiment by overhead position and vertical position was performed by using the same equipment, and comparison was made with the cutting capability by downhand and horizontal positions. It is important to grasp the cutting characteristics in the case of upward advancing and downward advancing cuttings by overhead and vertical positions when the cutting of pressure vessels and horizontal pipes into rings is supposed. The experimental apparatus, the cutting conditions, the testing method and the test results of the cutting capability test, the test of changing direction during cutting, and the remote cutting of pipes into rings are described. The underwater plasma arc cutting can cut all metals, the cutting speed is relatively high, and the apparatus is simple and compact. (Kako, I.)

  5. Model based image restoration for underwater images

    Science.gov (United States)

    Stephan, Thomas; Frühberger, Peter; Werling, Stefan; Heizmann, Michael

    2013-04-01

    The inspection of offshore parks, dam walls and other infrastructure under water is expensive and time consuming, because such constructions must be inspected manually by divers. Underwater buildings have to be examined visually to find small cracks, spallings or other deficiencies. Automation of underwater inspection depends on established water-proved imaging systems. Most underwater imaging systems are based on acoustic sensors (sonar). The disadvantage of such an acoustic system is the loss of the complete visual impression. All information embedded in texture and surface reflectance gets lost. Therefore acoustic sensors are mostly insufficient for these kind of visual inspection tasks. Imaging systems based on optical sensors feature an enormous potential for underwater applications. The bandwidth from visual imaging systems reach from inspection of underwater buildings via marine biological applications through to exploration of the seafloor. The reason for the lack of established optical systems for underwater inspection tasks lies in technical difficulties of underwater image acquisition and processing. Lightening, highly degraded images make a computational postprocessing absolutely essential.

  6. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2017-01-01

    Since the discovery of the giant magnetoresistance effect in magnetic multilayers in 1988, a new branch of physics and technology, called spin-electronics or spintronics, has emerged, where the flow of electrical charge as well as the flow of electron spin, the so-called “spin current,” are manipulated and controlled together. The physics of magnetism and the application of spin current have progressed in tandem with the nanofabrication technology of magnets and the engineering of interfaces and thin films. This book aims to provide an introduction and guide to the new physics and applications of spin current, with an emphasis on the interaction between spin and charge currents in magnetic nanostructures.

  7. 4th Pacific Rim Underwater Acoustics Conference

    CERN Document Server

    Xu, Wen; Cheng, Qianliu; Zhao, Hangfang

    2016-01-01

    These proceedings are a collection of 16 selected scientific papers and reviews by distinguished international experts that were presented at the 4th Pacific Rim Underwater Acoustics Conference (PRUAC), held in Hangzhou, China in October 2013. The topics discussed at the conference include internal wave observation and prediction; environmental uncertainty and coupling to sound propagation; environmental noise and ocean dynamics; dynamic modeling in acoustic fields; acoustic tomography and ocean parameter estimation; time reversal and matched field processing; underwater acoustic localization and communication as well as measurement instrumentations and platforms. These proceedings provide insights into the latest developments in underwater acoustics, promoting the exchange of ideas for the benefit of future research.

  8. Development of an Industry Dynamometer/Spin Test Facility--Equipment Only: Cooperative Research and Development Final Report, CRADA Number CRD-05-164

    Energy Technology Data Exchange (ETDEWEB)

    McDade, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    The Department of Energy/National Renewable Energy Laboratory (DOE/NREL) owns and operates a megawatt-scale dynamometer used for testing wind turbine drive trains up to 1.5 megawatt (MW) in rated capacity. At this time, this unit is the only unit of its type in the United States, available for use by the American Wind Industry. Currently this dynamometer is heavily backlogged and unavailable to provide testing needed by various wind industry members. DOE/NREL is in possession of two critical pieces of equipment that may be used to develop an alternative Dynamometer facility, but does not have the funds or other resources necessary to develop such a facility. The Participant possesses complimentary facilities and infrastructure that when combined with the NREL equipment can create such a test facility. The Participant is also committed to expending funds to develop and operate such a facility to the subsequent benefit of the Wind Industry and DOE Wind Energy program. In exchange for DOE/NREL providing the critical equipment, the Participant will grant DOE/NREL a minimum of 90 days of testing time per year in the new facility while incurring no facilities fees.

  9. A new technique for robot vision in autonomous underwater vehicles using the color shift in underwater imaging

    Science.gov (United States)

    2017-06-01

    FOR ROBOT VISION IN AUTONOMOUS UNDERWATER VEHICLES USING THE COLOR SHIFT IN UNDERWATER IMAGING by Jake A. Jones June 2017 Thesis Advisor... VEHICLES USING THE COLOR SHIFT IN UNDERWATER IMAGING 5. FUNDING NUMBERS 6. AUTHOR(S) Jake A. Jones 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS...underwater vehicles (AUVs), robot vision, autonomy, visual odometry, underwater color shift, optical properties of water 15. NUMBER OF PAGES 75 16

  10. Spin Electronics

    Science.gov (United States)

    2003-08-01

    applications, a ferromagnetic metal may be used as a source of spin-polarized electronics to be injected into a semiconductor, a superconductor or a...physical phenomena in II-VI and III-V semiconductors. In II-VI systems, the Mn2+ ions act to boost the electron spin precession up to terahertz ...conductors, proximity effect between ferromagnets and superconductors , and the effects of spin injection on the physical properties of the

  11. Spin doctoring

    OpenAIRE

    Vozková, Markéta

    2011-01-01

    1 ABSTRACT The aim of this text is to provide an analysis of the phenomenon of spin doctoring in the Euro-Atlantic area. Spin doctors are educated people in the fields of semiotics, cultural studies, public relations, political communication and especially familiar with the infrastructure and the functioning of the media industry. Critical reflection of manipulative communication techniques puts spin phenomenon in historical perspective and traces its practical use in today's social communica...

  12. Jellyfish inspired underwater unmanned vehicle

    Science.gov (United States)

    Villanueva, Alex; Bresser, Scott; Chung, Sanghun; Tadesse, Yonas; Priya, Shashank

    2009-03-01

    An unmanned underwater vehicle (UUV) was designed inspired by the form and functionality of a Jellyfish. These natural organisms were chosen as bio-inspiration for a multitude of reasons including: efficiency of locomotion, lack of natural predators, proper form and shape to incorporate payload, and varying range of sizes. The structure consists of a hub body surrounded by bell segments and microcontroller based drive system. The locomotion of UUV was achieved by shape memory alloy "Biometal Fiber" actuation which possesses large strain and blocking force with adequate response time. The main criterion in design of UUV was the use of low-profile shape memory alloy actuators which act as artificial muscles. In this manuscript, we discuss the design of two Jellyfish prototypes and present experimental results illustrating the performance and power consumption.

  13. Underwater sympathetic detonation of pellet explosive

    Science.gov (United States)

    Kubota, Shiro; Saburi, Tei; Nagayama, Kunihito

    2017-06-01

    The underwater sympathetic detonation of pellet explosives was taken by high-speed photography. The diameter and the thickness of the pellet were 20 and 10 mm, respectively. The experimental system consists of the precise electric detonator, two grams of composition C4 booster and three pellets, and these were set in water tank. High-speed video camera, HPV-X made by Shimadzu was used with 10 Mfs. The underwater explosions of the precise electric detonator, the C4 booster and a pellet were also taken by high-speed photography to estimate the propagation processes of the underwater shock waves. Numerical simulation of the underwater sympathetic detonation of the pellet explosives was also carried out and compared with experiment.

  14. Underwater Grass Comeback Helps Chesapeake Bay

    Science.gov (United States)

    The fortified Susquehanna Flats, the largest bed of underwater grasses in the Chesapeake Bay, seems able to withstand a major weather punch. Its resilience is contributing to an overall increase in the Bay’s submerged aquatic vegetation.

  15. Underwater Object Segmentation Based on Optical Features

    Directory of Open Access Journals (Sweden)

    Zhe Chen

    2018-01-01

    Full Text Available Underwater optical environments are seriously affected by various optical inputs, such as artificial light, sky light, and ambient scattered light. The latter two can block underwater object segmentation tasks, since they inhibit the emergence of objects of interest and distort image information, while artificial light can contribute to segmentation. Artificial light often focuses on the object of interest, and, therefore, we can initially identify the region of target objects if the collimation of artificial light is recognized. Based on this concept, we propose an optical feature extraction, calculation, and decision method to identify the collimated region of artificial light as a candidate object region. Then, the second phase employs a level set method to segment the objects of interest within the candidate region. This two-phase structure largely removes background noise and highlights the outline of underwater objects. We test the performance of the method with diverse underwater datasets, demonstrating that it outperforms previous methods.

  16. Sensor network architectures for monitoring underwater pipelines.

    Science.gov (United States)

    Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren

    2011-01-01

    This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (radio frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring.

  17. Underwater photogrammetry successful in Spain and France

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Underwater photogrammetry has been used to measure distortions in fuel assembly alignment pins in the upper internals of the Almarez and Dampierre PWRs. Photogrammetry is a three-dimensional precision measurement method using photographic techniques for the on-site measurement phase. On the strength of the operations at the two PWRs, underwater photogrammetry is now considered as a practical and effective technique for dimensional inspection at nuclear plants. (U.K.)

  18. Underwater noise levels in UK waters

    OpenAIRE

    Merchant, Nathan D.; Brookes, Kate L.; Faulkner, Rebecca C.; Bicknell, Anthony W. J.; Godley, Brendan J.; Witt, Matthew J.

    2016-01-01

    Underwater noise from human activities appears to be rising, with ramifications for acoustically sensitive marine organisms and the functioning of marine ecosystems. Policymakers are beginning to address the risk of ecological impact, but are constrained by a lack of data on current and historic noise levels. Here, we present the first nationally coordinated effort to quantify underwater noise levels, in support of UK policy objectives under the EU Marine Strategy Framework Directive (MSFD). ...

  19. Underwater gait analysis in Parkinson's disease.

    Science.gov (United States)

    Volpe, Daniele; Pavan, Davide; Morris, Meg; Guiotto, Annamaria; Iansek, Robert; Fortuna, Sofia; Frazzitta, Giuseppe; Sawacha, Zimi

    2017-02-01

    Although hydrotherapy is one of the physical therapies adopted to optimize gait rehabilitation in people with Parkinson disease, the quantitative measurement of gait-related outcomes has not been provided yet. This work aims to document the gait improvements in a group of parkinsonians after a hydrotherapy program through 2D and 3D underwater and on land gait analysis. Thirty-four parkinsonians and twenty-two controls were enrolled, divided into two different cohorts. In the first one, 2 groups of patients underwent underwater or land based walking training; controls underwent underwater walking training. Hence pre-treatment 2D underwater and on land gait analysis were performed, together with post-treatment on land gait analysis. Considering that current literature documented a reduced movement amplitude in parkinsonians across all lower limb joints in all movement planes, 3D underwater and on land gait analysis were performed on a second cohort of subjects (10 parkinsonians and 10 controls) who underwent underwater gait training. Baseline land 2D and 3D gait analysis in parkinsonians showed shorter stride length and slower speed than controls, in agreement with previous findings. Comparison between underwater and on land gait analysis showed reduction in stride length, cadence and speed on both parkinsonians and controls. Although patients who underwent underwater treatment exhibited significant changes on spatiotemporal parameters and sagittal plane lower limb kinematics, 3D gait analysis documented a significant (p<0.05) improvement in all movement planes. These data deserve attention for research directions promoting the optimal recovery and maintenance of walking ability. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  20. Overview of spin physics

    Energy Technology Data Exchange (ETDEWEB)

    Yokosawa, A.

    1992-12-23

    Spin physics activities at medium and high energies became significantly active when polarized targets and polarized beams became accessible for hadron-hadron scattering experiments. My overview of spin physics will be inclined to the study of strong interaction using facilities at Argonne ZGS, Brookhaven AGS (including RHIC), CERN, Fermilab, LAMPF, an SATURNE. In 1960 accelerator physicists had already been convinced that the ZGS could be unique in accelerating a polarized beam; polarized beams were being accelerated through linear accelerators elsewhere at that time. However, there was much concern about going ahead with the construction of a polarized beam because (i) the source intensity was not high enough to accelerate in the accelerator, (ii) the use of the accelerator would be limited to only polarized-beam physics, that is, proton-proton interaction, and (iii) p-p elastic scattering was not the most popular topic in high-energy physics. In fact, within spin physics, [pi]-nucleon physics looked attractive, since the determination of spin and parity of possible [pi]p resonances attracted much attention. To proceed we needed more data beside total cross sections and elastic differential cross sections; measurements of polarization and other parameters were urgently needed. Polarization measurements had traditionally been performed by analyzing the spin of recoil protons. The drawbacks of this technique are: (i) it involves double scattering, resulting in poor accuracy of the data, and (ii) a carbon analyzer can only be used for a limited region of energy.

  1. Affordable underwater wireless optical communication using LEDs

    Science.gov (United States)

    Pilipenko, Vladimir; Arnon, Shlomi

    2013-09-01

    In recent years the need for high data rate underwater wireless communication (WC) has increased. Nowadays, the conventional technology for underwater communication is acoustic. However, the maximum data rate that acoustic technology can provide is a few kilobits per second. On the other hand, emerging applications such as underwater imaging, networks of sensors and swarms of underwater vehicles require much faster data rates. As a result, underwater optical WC, which can provide much higher data rates, has been proposed as an alternative means of communication. In addition to high data rates, affordable communication systems become an important feature in the development requirements. The outcome of these requirements is a new system design based on off-the-shelf components such as blue and green light emitting diodes (LEDs). This is due to the fact that LEDs offer solutions characterized by low cost, high efficiency, reliability and compactness. However, there are some challenges to be met when incorporating LEDs as part of the optical transmitter, such as low modulation rates and non linearity. In this paper, we review the main challenges facing the incorporation of LEDs as an integral part of underwater WC systems and propose some techniques to mitigate the LED limitations in order to achieve high data rate communication

  2. Spin glasses

    CERN Document Server

    Bovier, Anton

    2007-01-01

    Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.

  3. Topological phononic states of underwater sound based on coupled ring resonators

    Energy Technology Data Exchange (ETDEWEB)

    He, Cheng; Li, Zheng; Ni, Xu; Sun, Xiao-Chen; Yu, Si-Yuan [National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093 (China); Lu, Ming-Hui, E-mail: luminghui@nju.edu.cn; Liu, Xiao-Ping; Chen, Yan-Feng [National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2016-01-18

    We report a design of topological phononic states for underwater sound using arrays of acoustic coupled ring resonators. In each individual ring resonator, two degenerate acoustic modes, corresponding to clockwise and counter-clockwise propagation, are treated as opposite pseudospins. The gapless edge states arise in the bandgap resulting in protected pseudospin-dependent sound transportation, which is a phononic analogue of the quantum spin Hall effect. We also investigate the robustness of the topological sound state, suggesting that the observed pseudospin-dependent sound transportation remains unless the introduced defects facilitate coupling between the clockwise and counter-clockwise modes (in other words, the original mode degeneracy is broken). The topological engineering of sound transportation will certainly promise unique design for next generation of acoustic devices in sound guiding and switching, especially for underwater acoustic devices.

  4. Wet-spinning of PEDOT:PSS/Functionalized-SWNTs Composite: a Facile Route Toward Production of Strong and Highly Conducting Multifunctional Fibers

    Science.gov (United States)

    Jalili, Rouhollah; Razal, Joselito M.; Wallace, Gordon G.

    2013-12-01

    With the aim of fabricating multifunctional fibers with enhanced mechanical properties, electrical conductivity and electrochemical performance, we develop wet-spinning of composite formulation based on functionalized PEG-SWNT and PEDOT:PSS. The method of addition and loading are directly correlated to the quality and the ease of spinnability of the formulation and to the mechanical and electrical properties of the resultant fibers. Both the fiber modulus (Y) and strength (σ) scaled linearly with PEG-SWNT volume fraction (Vf). A remarkable reinforcement rate of dY/dVf = 417 GPa and dσ/dVf = 4 GPa were obtained when PEG-SWNTs at Vf stress, respectively. We also show the enhancement of electrochemical supercapacitor performance of composite fibers. These outstanding mechanical, electrical and electrochemical performances place these fibers among the best performing multifunctional composite fibers.

  5. Underwater Leidenfrost nanochemistry for creation of size-tailored zinc peroxide cancer nanotherapeutics

    Science.gov (United States)

    Elbahri, Mady; Abdelaziz, Ramzy; Disci-Zayed, Duygu; Homaeigohar, Shahin; Sosna, Justyna; Adam, Dieter; Kienle, Lorenz; Dankwort, Torben; Abdelaziz, Moheb

    2017-05-01

    The dynamic underwater chemistry seen in nature is inspiring for the next generation of eco-friendly nanochemistry. In this context, green synthesis of size-tailored nanoparticles in a facile and scalable manner via a dynamic process is an interesting challenge. Simulating the volcano-induced dynamic chemistry of the deep ocean, here we demonstrate the Leidenfrost dynamic chemistry occurring in an underwater overheated confined zone as a new tool for customized creation of nanoclusters of zinc peroxide. The hydrodynamic nature of the phenomenon ensures eruption of the nanoclusters towards a much colder region, giving rise to growth of monodisperse, size-tailored nanoclusters. Such nanoparticles are investigated in terms of their cytotoxicity on suspension and adherent cells to prove their applicability as cancer nanotherapeutics. Our research can pave the way for employment of the dynamic green nanochemistry in facile, scalable fabrication of size-tailored nanoparticles for biomedical applications.

  6. Underwater Coatings Testing for INEEL Fuel Basin Applications

    Energy Technology Data Exchange (ETDEWEB)

    Julia L. Tripp

    2004-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is deactivating several fuel storage basins. Airborne contamination is a concern when the sides of the basins are exposed and allowed to dry during water removal. One way of controlling this airborne contamination is to fix the contamination in place while the pool walls are still submerged. There are many underwater coatings available on the market that are used in marine, naval and other applications. A series of tests were run to determine whether the candidate underwater fixatives are easily applied and adhere well to the substrates (pool wall materials) found in INEEL fuel pools. The four pools considered included (1) Test Area North (TAN-607) with epoxy painted concrete walls; (2) Idaho Nuclear Technology and Engineering Center (INTEC) (CPP-603) with bare concrete walls; (3) Materials Test Reactor (MTR) Canal with stainless steel lined concrete walls; and (4) Power Burst Facility (PBF-620) with stainless steel lined concrete walls on the bottom and epoxy painted carbon steel lined walls on the upper portions. Therefore, the four materials chosen for testing included bare concrete, epoxy painted concrete, epoxy painted carbon steel, and stainless steel. The typical water temperature of the pools varies from 55 F to 80 F dependent on the pool and the season. These tests were done at room temperature.

  7. TOPICAL REVIEW: Spin current, spin accumulation and spin Hall effect

    Directory of Open Access Journals (Sweden)

    Saburo Takahashi and Sadamichi Maekawa

    2008-01-01

    Full Text Available Nonlocal spin transport in nanostructured devices with ferromagnetic injector (F1 and detector (F2 electrodes connected to a normal conductor (N is studied. We reveal how the spin transport depends on interface resistance, electrode resistance, spin polarization and spin diffusion length, and obtain the conditions for efficient spin injection, spin accumulation and spin current in the device. It is demonstrated that the spin Hall effect is caused by spin–orbit scattering in nonmagnetic conductors and gives rise to the conversion between spin and charge currents in a nonlocal device. A method of evaluating spin–orbit coupling in nonmagnetic metals is proposed.

  8. Spin electronics

    CERN Document Server

    Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael

    2004-01-01

    This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...

  9. Spin glasses

    International Nuclear Information System (INIS)

    Fischer, K.H.; Hertz, J.A.

    1993-01-01

    Spin glasses, simply defined by the authors as a collection of spins (i.e., magnetic moments) whose low-temperature state is a frozen disordered one, represent one of the fascinating new fields of study in condensed matter physics, and this book is the first to offer a comprehensive account of the subject. Included are discussions of the most important developments in theory, experimental work, and computer modeling of spin glasses, all of which have taken place essentially within the last two decades. The first part of the book gives a general introduction to the basic concepts and a discussion of mean field theory, while the second half concentrates on experimental results, scaling theory, and computer simulation of the structure of spin glasses

  10. Underwater Noise Modeling in Lithuanian Area of the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Donatas Bagočius

    2017-09-01

    Full Text Available Along with rising awareness of public and scientific societies about environmental and ecological impacts of underwater noise, the need for underwater noise modelling in the shallow Lithuanian area of Baltic Sea emerged. Marine Strategy Framework Directive issues regarding underwater noise indicators refers to possibility of evaluation of Good Environmental State using underwater noise measurements as well as possibility to model underwater noise. Main anthropogenic underwater noise contributor in the Seas is the shipping lanes as known due to date, with no exclusion of Lithuanian Baltic Sea area. In this manuscript, it is presented the methods of development of simplistic underwater ambient noise model purposed for computation of underwater soundscape in shallow area of the Lithuanian Baltic Sea.

  11. Underwater Sensor Networks: A New Energy Efficient and Robust Architecture

    NARCIS (Netherlands)

    Climent, Salvador; Capella, Juan Vincente; Meratnia, Nirvana; Serrano, Juan José

    2012-01-01

    The specific characteristics of underwater environments introduce new challenges for networking protocols. In this paper, a specialized architecture for underwater sensor networks (UWSNs) is proposed and evaluated. Experiments are conducted in order to analyze the suitability of this protocol for

  12. Magnetohydrodynamic underwater vehicular propulsion systems

    International Nuclear Information System (INIS)

    Swallom, D.W.; Sadovnik, I.; Gibbs, J.S.; Gurol, H.; Nguyen, L.

    1990-01-01

    The development of magnetohydrodynamic propulsion systems for underwater vehicles is discussed. According to the authors, it is a high risk endeavor that offers the possibility of a number of significant advantages over conventional propeller propulsion systems. These advantages may include the potential for greater stealth characteristics, increased maneuverability, enhanced survivability, elimination of cavitation limits, and addition of a significant emergency propulsion system. The possibility of increased stealth is by far the most important advantage. A conceptual design study has been completed with numerical results that shows that these advantages may be obtained with a magnetohydrodynamic propulsion system in an annular configuration externally surrounding a generic study submarine that is neutrally buoyant and can operate with the existing submarine propulsion system power plant. The classical submarine mission requirements make the use of these characteristics of the magnetohydrodynamic propulsion system particularly appropriate for submarine missions. The magnetohydrodynamic annular propulsion system for a generic attack class submarine has been designed to take advantage of the magnetohydrodynamic thruster characteristics

  13. Routing strategies for underwater gliders

    Science.gov (United States)

    Davis, Russ E.; Leonard, Naomi E.; Fratantoni, David M.

    2009-02-01

    Gliders are autonomous underwater vehicles that achieve long operating range by moving at speeds comparable to those of, or slower than, typical ocean currents. This paper addresses routing gliders to rapidly reach a specified waypoint or to maximize the ability to map a measured field, both in the presence of significant currents. For rapid transit in a frozen velocity field, direct minimization of travel time provides a trajectory "ray" equation. A simpler routing algorithm that requires less information is also discussed. Two approaches are developed to maximize the mapping ability, as measured by objective mapping error, of arrays of vehicles. In order to produce data sets that are readily interpretable, both approaches focus sampling near predetermined "ideal tracks" by measuring mapping skill only on those tracks, which are laid out with overall mapping skill in mind. One approach directly selects each vehicle's headings to maximize instantaneous mapping skill integrated over the entire array. Because mapping skill decreases when measurements are clustered, this method automatically coordinates glider arrays to maintain spacing. A simpler method that relies on manual control for array coordination employs a first-order control loop to balance staying close to the ideal track and maintaining vehicle speed to maximize mapping skill. While the various techniques discussed help in dealing with the slow speed of gliders, nothing can keep performance from being degraded when current speeds are comparable to vehicle speed. This suggests that glider utility could be greatly enhanced by the ability to operate high speeds for short periods when currents are strong.

  14. Astronaut Bruce McCandless during an underwater test MMU/FSS in bldg 29 WETF

    Science.gov (United States)

    1981-01-01

    Astronaut Bruce McCandless during an underwater test of the Manned Maneuvering Unit (MMU) Flight Support Station (FSS) donning and doffing in the Bldg 29 Weightless Environment Training Facility (WETF). View is of McCandless practicing donning and doffing the MMU. This scene is of a crewmember getting backed into the MMU and released from the flight support station (FSS) in the cargo bay for the beginning of his Extravehicular Activity (EVA).

  15. Femtosecond laser fabrication of robust underwater superoleophobic and anti-oil surface on sapphire

    Science.gov (United States)

    Chu, Dongkai; Yin, Kai; Dong, Xinran; Luo, Zhi; Duan, Ji-An

    2017-11-01

    Due to the presence of unique micro/nanostructures on the surface, fish's scale exhibits underwater superoleophobicity and keeps clean even in oil-polluted water. Inspired from this, we propose a facile method for the fabrication of underwater superoleophobic and anti-oil sapphire surface with line-patterned nanostructures by femtosecond laser. The as-prepared surface shows great superoleophobicity that the oil contact angles can reach up to 153° for 1, 2-dichloroethane droplets in water and low oil-adhesion. At the same time, the relationship between the microgrooves' period and surface wettability is studied, and the results indicate that the underwater superoleophobicity and low oil-adhesion can be achieved using a wide range of processing parameters. Meanwhile, the obtained surface is demonstrated to exhibit excellent stability. Moreover, the self-cleaning anti-oil ability of the as-prepared surface is conducted, and the potential mechanism of which is discussed. This technique has potential applications for the fabrication of underwater oil repelling devices and microfluidics.

  16. Survivability design for a hybrid underwater vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Biao; Wu, Chao; Li, Xiang; Zhao, Qingkai; Ge, Tong [State Key Lab of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-03-10

    A novel hybrid underwater robotic vehicle (HROV) capable of working to the full ocean depth has been developed. The battery powered vehicle operates in two modes: operate as an untethered autonomous vehicle in autonomous underwater vehicle (AUV) mode and operate under remote control connected to the surface vessel by a lightweight, fiber optic tether in remotely operated vehicle (ROV) mode. Considering the hazardous underwater environment at the limiting depth and the hybrid operating modes, survivability has been placed on an equal level with the other design attributes of the HROV since the beginning of the project. This paper reports the survivability design elements for the HROV including basic vehicle design of integrated navigation and integrated communication, emergency recovery strategy, distributed architecture, redundant bus, dual battery package, emergency jettison system and self-repairing control system.

  17. Survivability design for a hybrid underwater vehicle

    International Nuclear Information System (INIS)

    Wang, Biao; Wu, Chao; Li, Xiang; Zhao, Qingkai; Ge, Tong

    2015-01-01

    A novel hybrid underwater robotic vehicle (HROV) capable of working to the full ocean depth has been developed. The battery powered vehicle operates in two modes: operate as an untethered autonomous vehicle in autonomous underwater vehicle (AUV) mode and operate under remote control connected to the surface vessel by a lightweight, fiber optic tether in remotely operated vehicle (ROV) mode. Considering the hazardous underwater environment at the limiting depth and the hybrid operating modes, survivability has been placed on an equal level with the other design attributes of the HROV since the beginning of the project. This paper reports the survivability design elements for the HROV including basic vehicle design of integrated navigation and integrated communication, emergency recovery strategy, distributed architecture, redundant bus, dual battery package, emergency jettison system and self-repairing control system

  18. Recent developments in underwater repair welding

    International Nuclear Information System (INIS)

    Offer, H.P.; Chapman, T.L.; Willis, E.R.; Maslakowski, J.; Van Diemen, P.; Smith, B.W.

    2001-01-01

    As nuclear plants age and reactor internal components begin to show increased evidence of age-related phenomena such as corrosion and fatigue, interest in the development of cost-effective mitigation and repair remedies grows. One technology currently receiving greater development and application program focus is underwater welding. Underwater welding, as used herein, is the application of weld metal to a substrate surface that is wet, but locally dry in the immediate area surrounding the welding torch. The locally dry environment is achieved by the use of a mechanical device that is specifically designed for water exclusion from the welding torch, surface to be welded, and the welding groove. This paper will explore recent developments in the use of underwater welding as a mitigation and repair technique. (author)

  19. Efficient Modelling Methodology for Reconfigurable Underwater Robots

    DEFF Research Database (Denmark)

    Nielsen, Mikkel Cornelius; Blanke, Mogens; Schjølberg, Ingrid

    2016-01-01

    This paper considers the challenge of applying reconfigurable robots in an underwater environment. The main result presented is the development of a model for a system comprised of N, possibly heterogeneous, robots dynamically connected to each other and moving with 6 Degrees of Freedom (DOF......). This paper presents an application of the Udwadia-Kalaba Equation for modelling the Reconfigurable Underwater Robots. The constraints developed to enforce the rigid connection between robots in the system is derived through restrictions on relative distances and orientations. To avoid singularities...... in the orientation and, thereby, allow the robots to undertake any relative configuration the attitude is represented in Euler parameters....

  20. Underwater laser cutting of metallic structures

    International Nuclear Information System (INIS)

    Alfille, J.P.; Schildknecht, J.; Ramaswami, V.S.

    1993-01-01

    In the frame of an european contract, the feasibility of the underwater cutting with a CO 2 laser power is studied. The aim of this work is the dismantling metallic structures of reactors pools. The paper analyzes the general concept of the experimental device, the underwater cutting head, the experimenting vessel, examples of cuttings in dismantling situation with a 500 W CO 2 laser, and examples of cuttings with a 5 kW CO 2 laser. (author). 2 refs., 9 figs., 2 tabs

  1. Underwater noise from offshore oil production vessels.

    Science.gov (United States)

    Erbe, Christine; McCauley, Robert; McPherson, Craig; Gavrilov, Alexander

    2013-06-01

    Underwater acoustic recordings of six Floating Production Storage and Offloading (FPSO) vessels moored off Western Australia are presented. Monopole source spectra were computed for use in environmental impact assessments of underwater noise. Given that operations on the FPSOs varied over the period of recording, and were sometimes unknown, the authors present a statistical approach to noise level estimation. No significant or consistent aspect dependence was found for the six FPSOs. Noise levels did not scale with FPSO size or power. The 5th, 50th (median), and 95th percentile source levels (broadband, 20 to 2500 Hz) were 188, 181, and 173 dB re 1 μPa @ 1 m, respectively.

  2. Muon spin rotation studies

    Science.gov (United States)

    1984-01-01

    The bulk of the muon spin rotation research work centered around the development of the muon spin rotation facility at the Alternating Gradient Synchrotron (AGS) of Brookhaven National Laboratory (BNL). The collimation system was both designed and fabricated at Virginia State University. This improved collimation system, plus improvements in detectors and electronics enabled the acquisition of spectra free of background out to 15 microseconds. There were two runs at Brookhaven in 1984, one run was devoted primarily to beam development and the other run allowed several successful experiments to be performed. The effect of uniaxial strain on an Fe(Si) crystal at elevated temperature (360K) was measured and the results are incorporated herein. A complete analysis of Fe pulling data taken earlier is included.

  3. IVO develops a new repair technique for underwater sites. Viscous doughlike substance underwater cracks

    Energy Technology Data Exchange (ETDEWEB)

    Klingstedt, G.; Leisio, C. [ed.

    1998-07-01

    A viscous sealant is revolutionizing repair of the stone and concrete masonry of underwater dams, bridges and canals. There is now no need for expensive and time-consuming cofferdams, since a diver can extrude quick-setting mortar into underwater structures needing repair. This technique has worked well in recent years in various parts of Finland even in strongly flowing water. IVO experts are now starting to look more beyond the borders of Finland

  4. Underwater Advanced Time-Domain Electromagnetic System

    Science.gov (United States)

    2017-03-03

    sufficiently waterproofed ...................................................................... 20 Objective: Calibration method can be used both topside... additional background variability is observed at early times, as illustrated in Figure 15. The layout of this figure is the same as Figure 14. Now the...are discussed in the following sections and summarized in Table 5. Objective: System is sufficiently waterproofed The array remained underwater up to

  5. Underwater Adhesives Retrofit Pipelines with Advanced Sensors

    Science.gov (United States)

    2015-01-01

    Houston-based Astro Technology Inc. used a partnership with Johnson Space Center to pioneer an advanced fiber-optic monitoring system for offshore oil pipelines. The company's underwater adhesives allow it to retrofit older deepwater systems in order to measure pressure, temperature, strain, and flow properties, giving energy companies crucial data in real time and significantly decreasing the risk of a catastrophe.

  6. Detection of Underwater UXOs in Mud

    Science.gov (United States)

    2013-04-01

    2nd International Conference on Underwater Acoustic Measurements, Crete, Greece, 2007. 16 [10] P.T. Gough and D.W. Hawkins “Imaging algorithms...course. Runs 275 and 325 folla.v the same trad < and run 322 foUows a track on the opposite side of the swath. The LF SAS image of run 325 is shown

  7. Adaptive turbo equalization for underwater acoustic communication

    NARCIS (Netherlands)

    Cannelli, L; Leus, G.; Dol, H.S.; Walree, P.A. van

    2013-01-01

    In this paper a multiband transceiver designed for underwater channels is presented. Multi-branch filtering at the receiver is used to leverage the diversity offered by a multi-scale multi-lag scenario. The multi-branch bank of filters is constructed by estimating scale and delay coefficients

  8. Underwater noise generated by offshore pile driving

    NARCIS (Netherlands)

    Tsouvalas, A.

    2015-01-01

    Anthropogenic noise emission in the marine environment has always been an environmental issue of serious concern. In particular, the noise generated during the installation of foundation piles is considered to be one of the most significant sources of underwater noise pollution. This is mainly

  9. Evolution: Fossil Ears and Underwater Sonar.

    Science.gov (United States)

    Lambert, Olivier

    2016-08-22

    A key innovation in the history of whales was the evolution of a sonar system together with high-frequency hearing. Fossils of an archaic toothed whale's inner ear bones provide clues for a stepwise emergence of underwater echolocation ability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Impacts of underwater noise on marine vertebrates

    NARCIS (Netherlands)

    Liebschner, Alexander; Seibel, Henrike; Teilmann, Jonas; Wittekind, Dietrich; Parmentier, Eric; Dähne, Michael; Dietz, Rune; Driver, Jörg; Elk, van Cornelis; Everaarts, Eligius; Findeisen, Henning; Kristensen, Jacob; Lehnert, Kristina; Lucke, Klaus; Merck, Thomas; Müller, Sabine; Pawliczka, Iwona; Ronnenberg, Katrin; Rosenberger, Tanja; Ruser, Andreas; Tougaard, Jakob; Schuster, Max; Sundermeyer, Janne; Sveegaard, Signe; Siebert, Ursula

    2016-01-01

    The project conducts application-oriented research on impacts of underwater noise on marine vertebrates in the North and Baltic Seas. In distinct subprojects, the hearing sensitivity of harbor porpoises and gray seals as well as the acoustic tolerance limit of harbor porpoises to impulsive noise

  11. Interference Spins

    DEFF Research Database (Denmark)

    Popovski, Petar; Simeone, Osvaldo; Nielsen, Jimmy Jessen

    2015-01-01

    on traffic load and interference condition leads to performance gains. In this letter, a general network of multiple interfering two-way links is studied under the assumption of a balanced load in the two directions for each link. Using the notion of interference spin, we introduce an algebraic framework...

  12. Spinning worlds

    NARCIS (Netherlands)

    Schwarz, H.

    2017-01-01

    The thesis "Spinning Worlds" is about the characterisation of two types of gas-giant exoplanets: Hot Jupiters, with orbital periods of fewer than five days, and young, wide-orbit gas giants, with orbital periods as long as thousands of years. The thesis is based on near-infrared observations of 1

  13. Admixture enhanced controlled low-strength material for direct underwater injection with minimal cross-contamination

    International Nuclear Information System (INIS)

    Hepworth, H.K.; Davidson, J.S.; Hooyman, J.L.

    1997-01-01

    Commercially available admixtures have been developed for placing traditional concrete products under water. This paper evaluates adapting anti-washout admixture (AWA) and high range water reducing admixture (HRWRA) products to enhance controlled low-strength materials (CLSMs) for underwater placement. A simple experimental scale model (based on dynamic and geometric similitude) of typical grout pump emplacement equipment has been developed to determine the percentage of cementing material washed out. The objective of this study was to identify proportions of admixtures and underwater CLSM emplacement procedures which would minimize the cross-contamination of the displaced water while maintaining the advantages of CLSM. Since the displaced water from radioactively contaminated systems must be subsequently treated prior to release to the environment, the amount of cross-contamination is important for cases in which cementing material could form hard sludges in a water treatment facility and contaminate the in-place CLSM stabilization medium

  14. Stability analysis of hybrid-driven underwater glider

    Science.gov (United States)

    Niu, Wen-dong; Wang, Shu-xin; Wang, Yan-hui; Song, Yang; Zhu, Ya-qiang

    2017-10-01

    Hybrid-driven underwater glider is a new type of unmanned underwater vehicle, which combines the advantages of autonomous underwater vehicles and traditional underwater gliders. The autonomous underwater vehicles have good maneuverability and can travel with a high speed, while the traditional underwater gliders are highlighted by low power consumption, long voyage, long endurance and good stealth characteristics. The hybrid-driven underwater gliders can realize variable motion profiles by their own buoyancy-driven and propeller propulsion systems. Stability of the mechanical system determines the performance of the system. In this paper, the Petrel-II hybrid-driven underwater glider developed by Tianjin University is selected as the research object and the stability of hybrid-driven underwater glider unitedly controlled by buoyancy and propeller has been targeted and evidenced. The dimensionless equations of the hybrid-driven underwater glider are obtained when the propeller is working. Then, the steady speed and steady glide path angle under steady-state motion have also been achieved. The steady-state operating conditions can be calculated when the hybrid-driven underwater glider reaches the desired steady-state motion. And the steadystate operating conditions are relatively conservative at the lower bound of the velocity range compared with the range of the velocity derived from the method of the composite Lyapunov function. By calculating the hydrodynamic coefficients of the Petrel-II hybrid-driven underwater glider, the simulation analysis has been conducted. In addition, the results of the field trials conducted in the South China Sea and the Danjiangkou Reservoir of China have been presented to illustrate the validity of the analysis and simulation, and to show the feasibility of the method of the composite Lyapunov function which verifies the stability of the Petrel-II hybrid-driven underwater glider.

  15. 16th Workshop on High Energy Spin Physics

    CERN Document Server

    2016-01-01

    The Workshop will cover a wide range of spin phenomena at high and intermediate energies such as: recent experimental data on spin physics the nucleon spin structure and GPD's spin physics and QCD spin physics in the Standard Model and beyond T-odd spin effects polarization and heavy ion physics spin in gravity and astrophysics the future spin physics facilities spin physics at NICA polarimeters for high energy polarized beams acceleration and storage of polarized beams the new polarization technology related subjects The Workshop will be held in the Bogoliubov Laboratory of Theoretical Physics of the Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia. The program of the workshop will include plenary and parallel (if necessary) sessions. Plenary sessions will be held in the Conference Hall. Parallel sections will take place in the same building. There will be invited talks (up to 40 min) and original reports (20 min). The invited speakers will present new experimental and theoretical re...

  16. In a spin at Brookhaven spin physics

    CERN Document Server

    Makdisi, Y I

    2003-01-01

    The mysterious quantity that is spin took centre stage at Brookhaven for the SPIN2002 meeting last September. The 15th biennial International Spin Physics Symposium (SPIN2002) was held at Brookhaven National Laboratory on 9-14 September 2002. Some 250 spin enthusiasts attended, including experimenters and theorists in both nuclear and high-energy physics, as well as accelerator physicists and polarized target and polarized source experts. The six-day symposium included 23 plenary talks and 150 parallel talks. SPIN2002 was preceded by a one-day spin physics tutorial for students, postdocs, and anyone else who felt the need for a refresher course. (2 refs).

  17. Spin-Circuit Representation of Spin Pumping

    Science.gov (United States)

    Roy, Kuntal

    2017-07-01

    Circuit theory has been tremendously successful in translating physical equations into circuit elements in an organized form for further analysis and proposing creative designs for applications. With the advent of new materials and phenomena in the field of spintronics and nanomagnetics, it is imperative to construct the spin-circuit representations for different materials and phenomena. Spin pumping is a phenomenon by which a pure spin current can be injected into the adjacent layers. If the adjacent layer is a material with a high spin-orbit coupling, a considerable amount of charge voltage can be generated via the inverse spin Hall effect allowing spin detection. Here we develop the spin-circuit representation of spin pumping. We then combine it with the spin-circuit representation for the materials having spin Hall effect to show that it reproduces the standard results as in the literature. We further show how complex multilayers can be analyzed by simply writing a netlist.

  18. Spin Coherence in Semiconductor Nanostructures

    National Research Council Canada - National Science Library

    Flatte, Michael E

    2006-01-01

    ... dots, tuning of spin coherence times for electron spin, tuning of dipolar magnetic fields for nuclear spin, spontaneous spin polarization generation and new designs for spin-based teleportation and spin transistors...

  19. Hydrodynamic Coefficients Identification and Experimental Investigation for an Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Shaorong XIE

    2014-02-01

    Full Text Available Hydrodynamic coefficients are the foundation of unmanned underwater vehicles modeling and controller design. In order to reduce identification complexity and acquire necessary hydrodynamic coefficients for controllers design, the motion of the unmanned underwater vehicle was separated into vertical motion and horizontal motion models. Hydrodynamic coefficients were regarded as mapping parameters from input forces and moments to output velocities and acceleration of the unmanned underwater vehicle. The motion models of the unmanned underwater vehicle were nonlinear and Genetic Algorithm was adopted to identify those hydrodynamic coefficients. To verify the identification quality, velocities and acceleration of the unmanned underwater vehicle was measured using inertial sensor under the same conditions as Genetic Algorithm identification. Curves similarity between measured velocities and acceleration and those identified by Genetic Algorithm were used as optimizing standard. It is found that the curves similarity were high and identified hydrodynamic coefficients of the unmanned underwater vehicle satisfied the measured motion states well.

  20. Delay Tolerance in Underwater Wireless Communications: A Routing Perspective

    Directory of Open Access Journals (Sweden)

    Safdar Hussain Bouk

    2016-01-01

    Full Text Available Similar to terrestrial networks, underwater wireless networks (UWNs also aid several critical tasks including coastal surveillance, underwater pollution detection, and other maritime applications. Currently, once underwater sensor nodes are deployed at different levels of the sea, it is nearly impossible or very expensive to reconfigure the hardware, for example, battery. Taking this issue into account, considerable amount of research has been carried out to ensure minimum energy costs and reliable communication between underwater nodes and base stations. As a result, several different network protocols were proposed for UWN, including MAC, PHY, transport, and routing. Recently, a new paradigm was introduced claiming that the intermittent nature of acoustic channel and signal resulted in designing delay tolerant routing schemes for the UWN, known as an underwater delay tolerant network. In this paper, we provide a comprehensive survey of underwater routing protocols with emphasis on the limitations, challenges, and future open issues in the context of delay tolerant network routing.

  1. Evaluation of Underwater Adhesives and Friction Coatings for In Situ Attachment of Fiber Optic Sensor System for Subsea Applications

    Science.gov (United States)

    Tang, Henry H.; Le, Suy Q.; Orndoff, Evelyne S.; Smith, Frederick D.; Tapia, Alma S.; Brower, David V.

    2012-01-01

    Integrity and performance monitoring of subsea pipelines and structures provides critical information for managing offshore oil and gas production operation and preventing environmentally damaging and costly catastrophic failure. Currently pipeline monitoring devices require ground assembly and installation prior to the underwater deployment of the pipeline. A monitoring device that could be installed in situ on the operating underwater structures could enhance the productivity and improve the safety of current offshore operation. Through a Space Act Agreement (SAA) between the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) and Astro Technology, Inc. (ATI), JSC provides technical expertise and testing facilities to support the development of fiber optic sensor technologies by ATI. This paper details the first collaboration effort between NASA JSC and ATI in evaluating underwater applicable adhesives and friction coatings for attaching fiber optic sensor system to subsea pipeline. A market survey was conducted to examine different commercial ]off ]the ]shelf (COTS) underwater adhesive systems and to select adhesive candidates for testing and evaluation. Four COTS epoxy based underwater adhesives were selected and evaluated. The adhesives were applied and cured in simulated seawater conditions and then evaluated for application characteristics and adhesive strength. The adhesive that demonstrated the best underwater application characteristics and highest adhesive strength were identified for further evaluation in developing an attachment system that could be deployed in the harsh subsea environment. Various friction coatings were also tested in this study to measure their shear strengths for a mechanical clamping design concept for attaching fiber optic sensor system. A COTS carbide alloy coating was found to increase the shear strength of metal to metal clamping interface by up to 46 percent. This study provides valuable data for

  2. An Evaluation of Potential Operating Systems for Autonomous Underwater Vehicles

    Science.gov (United States)

    2013-02-01

    remote control of such vehicles requires the use of a tether , limiting the vehicle’s range; however operating underwater vehicles autonomously requires...URBI Universal Robot Body Interface UUV Unmanned Underwater Vehicle UNCLASSIFIED xi DSTO–TN–1194 UNCLASSIFIED THIS PAGE IS INTENTIONALLY BLANK xii... underwater environment, where many platforms are still reliant upon an umbilical tether for power and high bandwidth communications. This tether

  3. On the Performance of the Underwater Acoustic Sensor Networks

    Science.gov (United States)

    2015-05-01

    waves for Underwater Wireless Communication (UWC); radio waves, optical waves, and acoustic waves are few to name. Radio waves are good for extra low...2211 underwater communication , wireless sensors, mutual information REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR...Cotae, “On the Performance of the Underwater Wireless Communication Sensor Networks: Work in Progress” ASEE Mid-Atlantic Fall 2014 Conference

  4. Underwater laser beam welding of Alloy 690

    International Nuclear Information System (INIS)

    Hino, Takehisa; Tamura, Masataka; Kono, Wataru; Kawano, Shohei; Yoda, Masaki

    2009-01-01

    Stress Corrosion Clacking (SCC) has been reported at Alloy 600 welds between nozzles and safe-end in Pressurized Water Reactor (PWR) plant. Alloy 690, which has higher chromium content than Alloy 600, has been applied for cladding on Alloy 600 welds for repairing damaged SCC area. Toshiba has developed Underwater Laser Beam Welding technique. This method can be conducted without draining, so that the repairing period and the radiation exposure during the repair can be dramatically decreased. In some old PWRs, high-sulfur stainless steel is used as the materials for this section. It has a high susceptibility of weld cracks. Therefore, the optimum welding condition of Alloy 690 on the high-sulfur stainless steel was investigated with our Underwater Laser Beam Welding unit. Good cladding layer, without any crack, porosity or lack of fusion, could be obtained. (author)

  5. Cymbal and BB underwater transducers and arrays

    Energy Technology Data Exchange (ETDEWEB)

    Newnham, R.E.; Zhang, J.; Alkoy, S.; Meyer, R.; Hughes, W.J.; Hladky-Hennion, A.C.; Cochran, J.; Markley, D. [Materials Research Laboratory, Penn State University, University Park, PA 16802 (United States)

    2002-09-01

    The cymbal is a miniaturized class V flextensional transducer that was developed for use as a shallow water sound projector and receiver. Single elements are characterized by high Q, low efficiency, and medium power output capability. Its low cost and thin profile allow the transducer to be assembled into large flexible arrays. Efforts were made to model both single elements and arrays using the ATILA code and the integral equation formulation (EQI).Millimeter size microprobe hydrophones (BBs) have been designed and fabricated from miniature piezoelectric hollow ceramic spheres for underwater applications such as mapping acoustic fields of projectors, and flow noise sensors for complex underwater structures. Green spheres are prepared from soft lead zirconate titanate powders using a coaxial nozzle slurry process. A compact hydrophone with a radially-poled sphere is investigated using inside and outside electrodes. Characterization of these hydrophones is done through measurement of hydrostatic piezoelectric charge coefficients, free field voltage sensitivities and directivity beam patterns. (orig.)

  6. Underwater noise modelling for environmental impact assessment

    Energy Technology Data Exchange (ETDEWEB)

    Farcas, Adrian [Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, NR33 0HT (United Kingdom); Thompson, Paul M. [Lighthouse Field Station, Institute of Biological and Environmental Sciences, University of Aberdeen, Cromarty IV11 8YL (United Kingdom); Merchant, Nathan D., E-mail: nathan.merchant@cefas.co.uk [Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, NR33 0HT (United Kingdom)

    2016-02-15

    Assessment of underwater noise is increasingly required by regulators of development projects in marine and freshwater habitats, and noise pollution can be a constraining factor in the consenting process. Noise levels arising from the proposed activity are modelled and the potential impact on species of interest within the affected area is then evaluated. Although there is considerable uncertainty in the relationship between noise levels and impacts on aquatic species, the science underlying noise modelling is well understood. Nevertheless, many environmental impact assessments (EIAs) do not reflect best practice, and stakeholders and decision makers in the EIA process are often unfamiliar with the concepts and terminology that are integral to interpreting noise exposure predictions. In this paper, we review the process of underwater noise modelling and explore the factors affecting predictions of noise exposure. Finally, we illustrate the consequences of errors and uncertainties in noise modelling, and discuss future research needs to reduce uncertainty in noise assessments.

  7. Ocean Research Enabled by Underwater Gliders

    Science.gov (United States)

    Rudnick, Daniel L.

    2016-01-01

    Underwater gliders are autonomous underwater vehicles that profile vertically by changing their buoyancy and use wings to move horizontally. Gliders are useful for sustained observation at relatively fine horizontal scales, especially to connect the coastal and open ocean. In this review, research topics are grouped by time and length scales. Large-scale topics addressed include the eastern and western boundary currents and the regional effects of climate variability. The accessibility of horizontal length scales of order 1 km allows investigation of mesoscale and submesoscale features such as fronts and eddies. Because the submesoscales dominate vertical fluxes in the ocean, gliders have found application in studies of biogeochemical processes. At the finest scales, gliders have been used to measure internal waves and turbulent dissipation. The review summarizes gliders' achievements to date and assesses their future in ocean observation.

  8. A MAC protocol for underwater sensors networks

    OpenAIRE

    Santos, Rodrigo; Orozco, Javier; Ochoa, Sergio; Meseguer Pallarès, Roc; Eggly, Gabriel

    2015-01-01

    “The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-26401-1_37." Underwater sensor networks are becoming an important field of research, because of its everyday increasing application scope. Examples of their application areas are environmental and pollution monitoring (mainly oil spills), oceanographic data collection, support for submarine geo-localization, ocean sampling and early tsunamis alert. It is well-known the challenge that represents to perfo...

  9. Passive Mode Carbon Nanotube Underwater Acoustic Transducer

    Science.gov (United States)

    2016-09-20

    irreversible Joule heat) by an electric light bulb . The reciprocal (or reverse) of this process by supplying heat and shining light to the same electric bulb ...limit the invention to the precise form disclosed; and obviously many modifications and variations are possible in light of the above teaching...300151 1 of 14 PASSIVE MODE CARBON NANOTUBE UNDERWATER ACOUSTIC TRANSDUCER STATEMENT OF GOVERNMENT INTEREST [0001] The invention described

  10. Underwater suction device for irradiated materials

    International Nuclear Information System (INIS)

    Qurnell, F.D.; Peloquin, A.V.

    1982-01-01

    An underwater suction device for collecting irradiated materials in a pool of water includes injection and suction tubes and a removable, disposable filter for capturing irradiated materials. Pressurized water is injected into the suction tube through a jet pump nozzle to establish a suction flow through the tube. The suction device is manoeuverable by a pole, which is pivotally connected to the suction device by a latching mechanism. (author)

  11. Tethered Antennas for Unmanned Underwater Vehicles

    Science.gov (United States)

    2009-04-27

    Concepts The first design (Figure 1) was based on the concept of an airfoil kite. The shape of the tow body was built around a NACA5515 hydrofoil to...Underwater Vehicles Brooke Ocean Technology (USA) Inc. 6 Figure 1: Hydrofoil Design The second design was based on that of a boat hull...communications. A sharp bow was utilized to cut through the water to reduce drag when on the surface. Like the hydrofoil design the top profile was

  12. MEDITERRANEAN: Underwater neutrinos get off the ground

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Now funded is the initial stage of NESTOR, an imaginative new programme for a dedicated underwater neutrino astroparticle physics laboratory. Located in the international waters off the southernmost corner of continental Europe near the town of Pylos in S.W. Greece, NESTOR (NEutrinos from Supernovae and TeV sources Ocean Range) recalls the wise king of Pylos who counselled the Greeks during the Trojan war, an excellent tradition for new scientific goals of detecting neutrinos

  13. Role of Confined Water in Underwater Adhesion

    Science.gov (United States)

    Dhinojwala, Ali

    Surface bound water is a strong deterrent for forming strong bonds between two surfaces underwater and expelling that bound water is important for strong adhesion. I will discuss examples of different strategies used by geckos, spiders, and mussels to handle this last layer of bound water. Recent results using infrared-visible sum frequency generation spectroscopy to probe the structure of this bound water will be discussed. National Science Foundation.

  14. Obstacle avoidance in underwater glider path planning

    OpenAIRE

    Isern González, Josep; Hernández Sosa, Daniel; Fernández Perdomo, Enrique; Cabrera Gámez, Jorge; Domínguez Brito, Antonio Carlos; Prieto Marañón, Víctor

    2012-01-01

    Underwater gliders have revealed as a valuable scientific platform, with a growing number of successful environmental sampling applications. They are specially suited for long range missions due to their unmatched autonomy level, although their low surge speed make them strongly affected by ocean currents. Path planning constitute a real concern for this type of vehicle, as it may reduce the time taken to reach a given waypoint or save power. In such a dynamic environment it is not easy to fi...

  15. A Recovery System for Unmanned Underwater Vehicles

    Science.gov (United States)

    2017-09-28

    300170 1 of 10 A RECOVERY SYSTEM FOR UNMANNED UNDERWATER VEHICLES STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may...6 of 10 forces cannot be easily predicted and can be strong enough to require a significantly larger handling system and significantly more...the sea state, the ship handling system , the capture mechanism and the design of the capture mechanism 400. [0024] The water jets 100 will increase

  16. Research on Operational Aspects of Large Autonomous Underwater Glider Fleets

    National Research Council Canada - National Science Library

    Fratantoni, David M

    2007-01-01

    This program supported research on the operational and management issues stemming from application of large fleets of autonomous underwater gliders to oceanographic research and rapid environmental...

  17. Underwater hearing in the great cormorant (Phalacrocorax carbo sinensis)

    DEFF Research Database (Denmark)

    Hansen, Kirstin Anderson; Larsen, Ole Næsbye; Wahlberg, Magnus

    2016-01-01

    The underwater hearing threshold of a great cormorant (Phalacrocroax carbo sinensis) was measured at 2 kHz using psychophysical methods. Previous in-air and underwater testing suggests that cormorants have rather poor in-air hearing compared to other birds of similar size (Johansen, 2016). Prelim......The underwater hearing threshold of a great cormorant (Phalacrocroax carbo sinensis) was measured at 2 kHz using psychophysical methods. Previous in-air and underwater testing suggests that cormorants have rather poor in-air hearing compared to other birds of similar size (Johansen, 2016...

  18. Calibration Techniques for Accurate Measurements by Underwater Camera Systems.

    Science.gov (United States)

    Shortis, Mark

    2015-12-07

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems.

  19. Calibration Techniques for Accurate Measurements by Underwater Camera Systems

    Directory of Open Access Journals (Sweden)

    Mark Shortis

    2015-12-01

    Full Text Available Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems.

  20. Automatic stabilization of underwater robots in the time manipulation operations

    International Nuclear Information System (INIS)

    Filaretov, V.F.; Koval, E.V.

    1994-01-01

    When carrying out underwater technical works by means of an underwater vehicles having a manipulator it is desirable to perform manipulation operations in the regime of the underwater vehicle hovering above the object without durable and complicated operations up its rigid fixation. Underwater vehicle stabilization is achieved by compensation all the effects on the vehicle caused by the operating manipulator in water medium. This automatic stabilization is formed due to input of the required control signals into corresponding vehicle propellers proportional to calculated components of the generalized forces and moments. The propellers should form stops reacting against effects

  1. Contour Tracking Control for the REMUS Autonomous Underwater Vehicle

    National Research Council Canada - National Science Library

    Van Reet, Alan R

    2005-01-01

    In the interest of enhancing the capabilities of autonomous underwater vehicles used in US Naval Operations, controlling vehicle position to follow depth contours presents exciting potential for navigation...

  2. Autopilot Using Differential Thrust for ARIES Autonomous Underwater Vehicle

    National Research Council Canada - National Science Library

    Sarton, Christopher

    2003-01-01

    .... Unfortunately, communication antennas must point to specific satellites in this system and thus underwater vehicles must steer a specific course on the surface during the communication process...

  3. Underwater Acoustic Target Tracking: A Review.

    Science.gov (United States)

    Luo, Junhai; Han, Ying; Fan, Liying

    2018-01-02

    Advances in acoustic technology and instrumentation now make it possible to explore marine resources. As a significant component of ocean exploration, underwater acoustic target tracking has aroused wide attention both in military and civil fields. Due to the complexity of the marine environment, numerous techniques have been proposed to obtain better tracking performance. In this paper, we survey over 100 papers ranging from innovative papers to the state-of-the-art in this field to present underwater tracking technologies. Not only the related knowledge of acoustic tracking instrument and tracking progress is clarified in detail, but also a novel taxonomy method is proposed. In this paper, algorithms for underwater acoustic target tracking are classified based on the methods used as: (1) instrument-assisted methods; (2) mode-based methods; (3) tracking optimization methods. These algorithms are compared and analyzed in the aspect of dimensions, numbers, and maneuvering of the tracking target, which is different from other survey papers. Meanwhile, challenges, countermeasures, and lessons learned are illustrated in this paper.

  4. Underwater detection by using ultrasonic sensor

    Science.gov (United States)

    Bakar, S. A. A.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.

    2017-09-01

    This paper described the low cost implementation of hardware and software in developing the system of ultrasonic which can visualize the feedback of sound in the form of measured distance through mobile phone and monitoring the frequency of detection by using real time graph of Java application. A single waterproof transducer of JSN-SR04T had been used to determine the distance of an object based on operation of the classic pulse echo detection method underwater. In this experiment, the system was tested by placing the housing which consisted of Arduino UNO, Bluetooth module of HC-06, ultrasonic sensor and LEDs at the top of the box and the transducer was immersed in the water. The system which had been tested for detection in vertical form was found to be capable of reporting through the use of colored LEDs as indicator to the relative proximity of object distance underwater form the sensor. As a conclusion, the system can detect the presence of an object underwater within the range of ultrasonic sensor and display the measured distance onto the mobile phone and the real time graph had been successfully generated.

  5. Modeling and Control of Underwater Robotic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Schjoelberg, I:

    1996-12-31

    This doctoral thesis describes modeling and control of underwater vehicle-manipulator systems. The thesis also presents a model and a control scheme for a system consisting of a surface vessel connected to an underwater robotic system by means of a slender marine structure. The equations of motion of the underwater vehicle and manipulator are described and the system kinematics and properties presented. Feedback linearization technique is applied to the system and evaluated through a simulation study. Passivity-based controllers for vehicle and manipulator control are presented. Stability of the closed loop system is proved and simulation results are given. The equation of motion for lateral motion of a cable/riser system connected to a surface vessel at the top end and to a thruster at the bottom end is described and stability analysis and simulations are presented. The equations of motion in 3 degrees of freedom of the cable/riser, surface vessel and robotic system are given. Stability analysis of the total system with PD-controllers is presented. 47 refs., 32 figs., 7 tabs.

  6. Underwater Noise Modelling of Wave Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Future large-scale implementation of wave energy converts (WECs) will introduce an anthropogenic activity in the ocean which may contribute to underwater noise. The Ocean houses several marine species with acoustic sensibility; consequently the potential impact of the underwater noise needs to be addressed. At present, there are no acoustic impact studies based on acquired data. The WEAM project (Wave Energy Acoustic Monitoring) aims at developing an underwater noise monitoring plan for WECs. The development of an acoustic monitoring plan must consider the sound propagation in the ocean, identify noise sources, understand the operational characteristics and select adequate instrumentation. Any monitoring strategy must involve in-situ measurements. However, the vast distances which sound travels within the ocean, can make in-situ measurements covering the entire area of interest, impracticable. This difficulty can be partially overcome through acoustic numerical modelling. This paper presents a synthetic study, on the application of acoustic forward modelling and the evaluation of the impact of noise produced by wave energy devices on marine mammals using criteria based on audiograms of dolphins, or other species. The idea is to illustrate the application of that methodology, and to show to what extent it allows for estimating distances of impacts due to acoustic noise.

  7. Heat and spin interconversion

    International Nuclear Information System (INIS)

    Ohnuma, Yuichi; Matsuo, Mamoru; Maekawa, Sadamichi; Saitoh, Eeiji

    2017-01-01

    Spin Seebeck and spin Peltier effects, which are mutual conversion phenomena of heat and spin, are discussed on the basis of the microscopic theory. First, the spin Seebeck effect, which is the spin-current generation due to heat current, is discussed. The recent progress in research on the spin Seebeck effect are introduced. We explain the origin of the observed sign changes of the spin Seebeck effect in compensated ferromagnets. Next, the spin Peltier effect, which is the heat-current generation due to spin current, is discussed. Finally, we show that the spin Seebeck and spin Peltier effects are summarized by Onsager's reciprocal relation and derive Kelvin's relation for the spin and heat transports. (author)

  8. Development of underwater laser cutting technique for steel and ...

    Indian Academy of Sciences (India)

    We have developed underwater cutting technique for 4.2 mm thick zircaloy pressure tubes and up to 6 mm thick steel using fibre-coupled 250 W average power pulsed Nd:YAG laser. This underwater cutting technique will be highly useful in various nuclear applications as well as in dismantling/repair of ship and pipe lines ...

  9. Visual-adaptation-mechanism based underwater object extraction

    Science.gov (United States)

    Chen, Zhe; Wang, Huibin; Xu, Lizhong; Shen, Jie

    2014-03-01

    Due to the major obstacles originating from the strong light absorption and scattering in a dynamic underwater environment, underwater optical information acquisition and processing suffer from effects such as limited range, non-uniform lighting, low contrast, and diminished colors, causing it to become the bottleneck for marine scientific research and projects. After studying and generalizing the underwater biological visual mechanism, we explore its advantages in light adaption which helps animals to precisely sense the underwater scene and recognize their prey or enemies. Then, aiming to transform the significant advantage of the visual adaptation mechanism into underwater computer vision tasks, a novel knowledge-based information weighting fusion model is established for underwater object extraction. With this bionic model, the dynamical adaptability is given to the underwater object extraction task, making them more robust to the variability of the optical properties in different environments. The capability of the proposed method to adapt to the underwater optical environments is shown, and its outperformance for the object extraction is demonstrated by comparison experiments.

  10. Self-localization for underwater inspection robot in reactor systems

    International Nuclear Information System (INIS)

    Kobayashi, Futoshi; Kojima, Fumio

    2007-01-01

    An underwater inspection robot has been needed for preventive maintenance in a nuclear power plant. This paper deals with a self-localization method for the underwater inspection robot. In this method, the position and the orientation of the robot are estimated by using the particle filter. For showing the effectiveness of the proposed method, an experiment with real robot is demonstrated. (author)

  11. WODA technical guidance on underwater sound from dredging

    NARCIS (Netherlands)

    Thomsen, F.; Borsani, F.; Clarke, D.; Jong, C. de; Wit, P. de; Goethals, F.; Holtkamp, M.; Martin, E.S.; Spadaro, P.; Raalte, G. van; Victor, G.Y.V.; Jensen, A.

    2016-01-01

    The World Organization of Dredging Associations (WODA) has identified underwater sound as an environmental issue that needs further consideration. A WODA Expert Group on Underwater Sound (WEGUS) prepared a guidance paper in 2013 on dredging sound, including a summary of potential impacts on aquatic

  12. Characterization of ships as sources of underwater noise

    NARCIS (Netherlands)

    Jong, C.A.F. de

    2009-01-01

    There is a growing interest in the possible impact of anthropogenic underwater noise on marine life [1]. One of the concerns is the increasing contribution of shipping noise, with the growing number and size of commercial ships. Traditionally, underwater radiated noise control was only of interest

  13. The WODA guidance paper on underwater sound from dredging (abstract)

    NARCIS (Netherlands)

    Thomsen, F.; Borsani, F.; Clarke, D.; Jong, C.A.F. de; Witt, P. de; Holtkamp, M.; Goethals, F.; San Martin, E.; Spadaro, P.; Raalte, G. van; Jensen, A.

    2013-01-01

    The World Organisation of Dredging Associations (WODA) has identified underwater sound as an environmental issue that needs further consideration. A WODA Expert Group on Underwater Sound (WEGUS) was established to provide a guidance paper on dredging sound, impact on aquatic biota and advice on

  14. Nuclear spin pumping and electron spin susceptibilities

    NARCIS (Netherlands)

    Danon, J.; Nazarov, Y.V.

    2011-01-01

    In this work we present a new formalism to evaluate the nuclear spin dynamics driven by hyperfine interaction with nonequilibrium electron spins. To describe the dynamics up to second order in the hyperfine coupling it suffices to evaluate the susceptibility and fluctuations of the electron spin.

  15. Capacitive Micromachined Ultrasonic Transducers (CMUTs for Underwater Imaging Applications

    Directory of Open Access Journals (Sweden)

    Jinlong Song

    2015-09-01

    Full Text Available A capacitive micromachined ultrasonic transducer structure for use in underwater imaging is designed, fabricated and tested in this paper. In this structure, a silicon dioxide insulation layer is inserted between the top electrodes and the vibration membrane to prevent ohmic contact. The capacitance-voltage (C-V characteristic curve shows that the transducer offers suitable levels of hysteresis and repeatability performance. The −6 dB center frequency is 540 kHz and the transducer has a bandwidth of 840 kHz for a relative bandwidth of 155%. Underwater pressure of 143.43 Pa is achieved 1 m away from the capacitive micromachined ultrasonic transducer under 20  excitation. Two-dimensional underwater ultrasonic imaging, which is able to prove that a rectangular object is present underwater, is achieved. The results presented here indicate that our work will be highly beneficial for the establishment of an underwater ultrasonic imaging system.

  16. Underwater Sensor Network Redeployment Algorithm Based on Wolf Search.

    Science.gov (United States)

    Jiang, Peng; Feng, Yang; Wu, Feng

    2016-10-21

    This study addresses the optimization of node redeployment coverage in underwater wireless sensor networks. Given that nodes could easily become invalid under a poor environment and the large scale of underwater wireless sensor networks, an underwater sensor network redeployment algorithm was developed based on wolf search. This study is to apply the wolf search algorithm combined with crowded degree control in the deployment of underwater wireless sensor networks. The proposed algorithm uses nodes to ensure coverage of the events, and it avoids the prematurity of the nodes. The algorithm has good coverage effects. In addition, considering that obstacles exist in the underwater environment, nodes are prevented from being invalid by imitating the mechanism of avoiding predators. Thus, the energy consumption of the network is reduced. Comparative analysis shows that the algorithm is simple and effective in wireless sensor network deployment. Compared with the optimized artificial fish swarm algorithm, the proposed algorithm exhibits advantages in network coverage, energy conservation, and obstacle avoidance.

  17. Design and implementation of an underwater sound recording device

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Jayson J.; Myers, Joshua R.; Carlson, Thomas J.; Deng, Zhiqun; Rohrer, John S.; Caviggia, Kurt A.

    2011-09-19

    The purpose of this study was to design and build two versions of an underwater sound recording device. The device designed is referred to as the Underwater Sound Recorder (USR), which can be connected to one or two hydrophones or other underwater sound sensors. The URS contains a 26 dB preamplifier and a user selectable gain that permits additional amplification of input to the system from 26 dB to 46 dB. Signals within the frequency range up to 15 kHz may be recorded using the USR. Examples of USR applications are monitoring underwater processes that have the potential to create large pressure waves that could potentially harm fish or other aquatic life, such as underwater explosions or pile driving. Additional applications are recording sound generated by vessels or the vocalizations of some marine mammals, such as the calls from many species of whales.

  18. A man-made object detection for underwater TV

    Science.gov (United States)

    Cheng, Binbin; Wang, Wenwu; Chen, Yao

    2018-03-01

    It is a great challenging task to complete an automatic search of objects underwater. Usually the forward looking sonar is used to find the target, and then the initial identification of the target is completed by the side-scan sonar, and finally the confirmation of the target is accomplished by underwater TV. This paper presents an efficient method for automatic extraction of man-made sensitive targets in underwater TV. Firstly, the image of underwater TV is simplified with taking full advantage of the prior knowledge of the target and the background; then template matching technology is used for target detection; finally the target is confirmed by extracting parallel lines on the target contour. The algorithm is formulated for real-time execution on limited-memory commercial-of-the-shelf platforms and is capable of detection objects in underwater TV.

  19. Water waves generated by underwater explosion

    CERN Document Server

    Mehaute, Bernard Le

    1996-01-01

    This is the first book on explosion-generated water waves. It presents the theoretical foundations and experimental results of the generation and propagation of impulsively generated waves resulting from underwater explosions. Many of the theories and concepts presented herein are applicable to other types of water waves, in particular, tsunamis and waves generated by the fall of a meteorite. Linear and nonlinear theories, as well as experimental calibrations, are presented for cases of deep and shallow water explosions. Propagation of transient waves on dissipative, nonuniform bathymetries to

  20. Hemispherical optical dome for underwater communication

    Science.gov (United States)

    Shiri, Ron S.; Lunde, Emily L.; Coronado, Patrick L.; Quijada, Manuel A.

    2017-08-01

    For many years, acoustic systems have been used as the primary method for underwater communication; however, the data transfer rate of such systems is low because sound propagates slowly through water. A higher throughput can be achieved using visible light to transmit data underwater. The first issue with this approach is that there is generally a large loss of the light signal due to scattering and absorption in water, even though there is an optimal wavelength for transmission in the blue or green wavelengths of the visible spectrum. The second issue is that a simple communication system, consisting only of a highly directional source/transmitter and small optical detector/receiver, has a very narrow field of view. The goal of this project is to improve an optical, underwater communication system by increasing the effective field of view of the receiving optics. To this end, we make two changes to the simple system: (1) An optical dome was added near the receiver. An array of lenses is placed radially on the surface of the dome, reminiscent of the compound eye of an insect. The lenses make the source and detector planes conjugate, and each lens adds a new region of the source plane to the instrument's total field of view. (2) The receiver was expanded to include multiple photodiodes. With these two changes, the receiver has much more tolerance to misalignments (in position and angle) of the transmitter. Two versions of the optical dome (with 6" and 8" diameters) were designed using PTC's Creo CAD software and modeled using Synopsys' CODE V optical design software. A series of these transparent hemispherical domes, with both design diameters, were manufactured using a 5-axis mill. The prototype was then retrofitted with lenses and compared with the computer-generated model to demonstrate the effectiveness of this solution. This work shows that the dome design improves the optical field of view of the underwater communication system considerably. Furthermore, with

  1. Underwater Sound Propagation from Marine Pile Driving.

    Science.gov (United States)

    Reyff, James A

    2016-01-01

    Pile driving occurs in a variety of nearshore environments that typically have very shallow-water depths. The propagation of pile-driving sound in water is complex, where sound is directly radiated from the pile as well as through the ground substrate. Piles driven in the ground near water bodies can produce considerable underwater sound energy. This paper presents examples of sound propagation through shallow-water environments. Some of these examples illustrate the substantial variation in sound amplitude over time that can be critical to understand when computing an acoustic-based safety zone for aquatic species.

  2. Navigation System Fault Diagnosis for Underwater Vehicle

    DEFF Research Database (Denmark)

    Falkenberg, Thomas; Gregersen, Rene Tavs; Blanke, Mogens

    2014-01-01

    This paper demonstrates fault diagnosis on unmanned underwater vehicles (UUV) based on analysis of structure of the nonlinear dynamics. Residuals are generated using dierent approaches in structural analysis followed by statistical change detection. Hypothesis testing thresholds are made signal...... based to cope with non-ideal properties seen in real data. Detection of both sensor and thruster failures are demonstrated. Isolation is performed using the residual signature of detected faults and the change detection algorithm is used to assess severity of faults by estimating their magnitude...

  3. Adaptive Target Tracking for Underwater Maneuvering Targets.

    Science.gov (United States)

    1979-12-01

    concenetrate on the bearings-only approach. In this method the Observer monitors his bearing to the Source, over a period of time. Usually the Observer must...developed in [ 5] was earlier applied with much success to tracking maneuvering air targets. This approach will now be applied in the underwater environment...April 1977. [11] A. H. Jazwinski, Stochastic Processes and Filtering Theory, Academic Press, New York, 1970. [12] D. H. Halliday, and R. Resnick, Physics, John Wiley & Sons, Inc., New York, 1966. hI

  4. Magnetic Nanostructures Spin Dynamics and Spin Transport

    CERN Document Server

    Farle, Michael

    2013-01-01

    Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.

  5. 46 CFR 115.650 - Alternative Hull Examination (AHE) Program options: Divers or underwater ROV.

    Science.gov (United States)

    2010-10-01

    ...: Divers or underwater ROV. 115.650 Section 115.650 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Alternative Hull Examination (AHE) Program options: Divers or underwater ROV. To complete your underwater survey, you may use divers or an underwater remotely operated vehicle (ROV). (a) If you use divers to...

  6. Laboratory Evaluation of Underwater Grouting of CPP-603 Basins

    International Nuclear Information System (INIS)

    Johnson, V.J.; Pao, J.H.; Demmer, R.L.; Tripp, J.L.

    2002-01-01

    A project is underway to deactivate a Fuel Storage Basin. The project specifies the requirements and identifies the tasks that will be performed for deactivation of the CPP- 603 building at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory. The Fuel Receiving and Storage Building (CPP- 603) was originally used to receive and store spent nuclear fuel from various facilities. The area to undergo deactivation includes the three spent nuclear fuel storage basins and a transfer canal (1.5 million gallons of water storage). Deactivation operations at the task site include management of the hot storage boxes and generic fuel objects, removal of the fuel storage racks, basin sludge, water evaporation and basin grouting, and interior equipment, tanks, and associated components. This includes a study to develop a grout formulation and placement process for this deactivation project. Water will be allowed to passively evaporate to r educe the spread of contamination from the walls of the basin. The basins will be filled with grout, underwater, as the water evaporates to maintain the basin water at a safe level. The objective of the deactivation project is to eliminate potential exposure to hazardous and radioactive materials and eliminate potential safety hazards associated with the CPP-603 building

  7. Underwater pipeline impact localization using piezoceramic transducers

    Science.gov (United States)

    Zhu, Junxiao; Ho, Siu Chun Michael; Patil, Devendra; Wang, Ning; Hirsch, Rachel; Song, Gangbing

    2017-10-01

    Reports indicated that impact events accounted for 47% of offshore pipeline failures, which calls for impact detection and localization for subsea pipelines. In this paper, an innovative method for rapid localization of impacts on underwater pipelines utilizing a novel determination technique for both arrival-time and group velocity (ATGV) of ultrasonic guided waves with lead zirconate titanate (PZT) transducers is described. PZT transducers mounted on the outer surface of a model pipeline were utilized to measure ultrasonic guided waves generated by impact events. Based on the signals from PZT sensors, the ATGV technique integrates wavelet decomposition, Hilbert transform and statistical analysis to pinpoint the arrival-time of the designated ultrasonic guided waves with a specific group velocity. Experimental results have verified the effectiveness and the localization accuracy for eight impact points along a model underwater pipeline. All estimations errors were small and were comparable with the wavelength of the designated ultrasonic guided waves. Furthermore, the method is robust against the low frequency structural vibration introduced by other external forces.

  8. GAS FLOW IN UNDERWATER BREATHING INSTALLATIONS

    Directory of Open Access Journals (Sweden)

    Anca CONSTANTIN

    2017-11-01

    Full Text Available The open circuit underwater breathing apparatus can be a one or two-stage regulator used in scuba diving or a two-stage regulator used in surface supplied installations. These installations are proper in underwater sites at small depth. The pneumatic circuit of a two-stage regulator is composed mainly of a first stage regulator mounted on the air cylinders and a second stage carried by the diver in his mouth. The two regulators are linked together by a medium pressure hose. The circuit opens when the depression created by the diver’s inhalation, in the second stage body, reaches a certain value. The second stage opening causes a transient movement, namely an expansion wave that propagates through the medium pressure hose to the first stage regulator. The first stage regulator opens and the air in the cylinders is allowed to flow to the diver. The longer the hose, the greater the duration of the expansion wave propagation. Investigations on the wave propagation offer data on the inspiration unsteady motion duration which influences the respiratory effort of the diver.

  9. An explanatory model of underwater adaptation

    Directory of Open Access Journals (Sweden)

    Joaquín Colodro

    Full Text Available The underwater environment is an extreme environment that requires a process of human adaptation with specific psychophysiological demands to ensure survival and productive activity. From the standpoint of existing models of intelligence, personality and performance, in this explanatory study we have analyzed the contribution of individual differences in explaining the adaptation of military personnel in a stressful environment. Structural equation analysis was employed to verify a model representing the direct effects of psychological variables on individual adaptation to an adverse environment, and we have been able to confirm, during basic military diving courses, the structural relationships among these variables and their ability to predict a third of the variance of a criterion that has been studied very little to date. In this way, we have confirmed in a sample of professionals (N = 575 the direct relationship of emotional adjustment, conscientiousness and general mental ability with underwater adaptation, as well as the inverse relationship of emotional reactivity. These constructs are the psychological basis for working under water, contributing to an improved adaptation to this environment and promoting risk prevention and safety in diving activities.

  10. Modelling cavitating flow around underwater missiles

    Directory of Open Access Journals (Sweden)

    Fabien Petitpas

    2011-12-01

    Full Text Available The diffuse interface model of Saurel et al. (2008 is used for the computation of compressible cavitating flows around underwater missiles. Such systems use gas injection and natural cavitation to reduce drag effects. Consequently material interfaces appear separating liquid and gas. These interfaces may have a really complex dynamics such that only a few formulations are able to predict their evolution. Contrarily to front tracking or interface reconstruction method the interfaces are computed as diffused numerical zones, that are captured in a routinely manner, as is done usually with gas dynamics solvers for shocks and contact discontinuity. With the present approach, a single set of partial differential equations is solved everywhere, with a single numerical scheme. This leads to very efficient solvers. The algorithm derived in Saurel et al. (2009 is used to compute cavitation pockets around solid bodies. It is first validated against experiments done in cavitation tunnel at CNU. Then it is used to compute flows around high speed underwater systems (Shkval-like missile. Performance data are then computed showing method ability to predict forces acting on the system.

  11. Hydrogel microphones for stealthy underwater listening

    Science.gov (United States)

    Gao, Yang; Song, Jingfeng; Li, Shumin; Elowsky, Christian; Zhou, You; Ducharme, Stephen; Chen, Yong Mei; Zhou, Qin; Tan, Li

    2016-08-01

    Exploring the abundant resources in the ocean requires underwater acoustic detectors with a high-sensitivity reception of low-frequency sound from greater distances and zero reflections. Here we address both challenges by integrating an easily deformable network of metal nanoparticles in a hydrogel matrix for use as a cavity-free microphone. Since metal nanoparticles can be densely implanted as inclusions, and can even be arranged in coherent arrays, this microphone can detect static loads and air breezes from different angles, as well as underwater acoustic signals from 20 Hz to 3 kHz at amplitudes as low as 4 Pa. Unlike dielectric capacitors or cavity-based microphones that respond to stimuli by deforming the device in thickness directions, this hydrogel device responds with a transient modulation of electric double layers, resulting in an extraordinary sensitivity (217 nF kPa-1 or 24 μC N-1 at a bias of 1.0 V) without using any signal amplification tools.

  12. Hybrid Underwater Vehicle: ARV Design and Development

    Directory of Open Access Journals (Sweden)

    Zhigang DENG

    2014-02-01

    Full Text Available The development of SMU-I, a new autonomous & remotely-operated vehicle (ARV is described. Since it has both the characteristics of autonomous underwater vehicle (AUV and remote operated underwater vehicle (ROV, it is able to achieve precision fix station operation and manual timely intervention. In the paper the initial design of basic components, such as vehicle, propulsion, batteries etc. and the control design of motion are introduced and analyzed. ROV’s conventional cable is replaced by a fiber optic cable, which makes it available for high-bandwidth real-time video, data telemetry and high-quality teleoperation. Furthermore, with the aid of the manual real-time remote operation and ranging sonar, it also resolves the AUV’s conflicting issue, which can absolutely adapt the actual complex sea environment and satisfy the unknown mission need. The whole battery system is designed as two-battery banks, whose voltages and temperatures are monitored through CAN (controller area network bus to avoid battery fire and explosion. A fuzzy-PID controller is designed for its motion control, including depth control and direction control. The controller synthesizes the advantage of fuzzy control and PID control, utilizes the fuzzy rules to on-line tune the parameters of PID controller, and achieves a better control effect. Experiment results demonstrate to show the effectiveness of the test-bed.

  13. Software architecture of biomimetic underwater vehicle

    Science.gov (United States)

    Praczyk, Tomasz; Szymak, Piotr

    2016-05-01

    Autonomous underwater vehicles are vehicles that are entirely or partly independent of human decisions. In order to obtain operational independence, the vehicles have to be equipped with a specialized software. The main task of the software is to move the vehicle along a trajectory with collision avoidance. Moreover, the software has also to manage different devices installed on the vehicle board, e.g. to start and stop cameras, sonars etc. In addition to the software embedded on the vehicle board, the software responsible for managing the vehicle by the operator is also necessary. Its task is to define mission of the vehicle, to start, to stop the mission, to send emergency commands, to monitor vehicle parameters, and to control the vehicle in remotely operated mode. An important objective of the software is also to support development and tests of other software components. To this end, a simulation environment is necessary, i.e. simulation model of the vehicle and all its key devices, the model of the sea environment, and the software to visualize behavior of the vehicle. The paper presents architecture of the software designed for biomimetic autonomous underwater vehicle (BAUV) that is being constructed within the framework of the scientific project financed by Polish National Center of Research and Development.

  14. STABILITY OF UNDERWATER STRUCTURE UNDER WAVE ATTACK

    Directory of Open Access Journals (Sweden)

    C. Paotonan

    2012-02-01

    Full Text Available Geotube is, among others, a type of coastal structure that is increasingly accepted for coastal protection especially underwater breakwater. Besides its relatively low cost, it has other advantages such as flexibility, ease of construction and the fact that it can be filled with local sand material. Similar to all other coastal structures, it should also be stable under wave attack. A simple theoretical approach based on linear wave was adopted to estimate the stability of such structure. The theoretical solution was then compared with an experimental study. The experimental study was conducted at the Hydraulics and Hydrology Laboratory of Universitas Gadjah Mada. However, instead of a real geotube, PVC pipe was used where the weight of the PVC was varied by adjusting the volume of sand in the pipe. The result indicated that the agreement between the theoretical solution and the experiment was encouraging. The analytical solution may be utilized to predict underwater pipe stability under wave attack with certain degree of accuracy.

  15. Underwater noise levels in UK waters.

    Science.gov (United States)

    Merchant, Nathan D; Brookes, Kate L; Faulkner, Rebecca C; Bicknell, Anthony W J; Godley, Brendan J; Witt, Matthew J

    2016-11-10

    Underwater noise from human activities appears to be rising, with ramifications for acoustically sensitive marine organisms and the functioning of marine ecosystems. Policymakers are beginning to address the risk of ecological impact, but are constrained by a lack of data on current and historic noise levels. Here, we present the first nationally coordinated effort to quantify underwater noise levels, in support of UK policy objectives under the EU Marine Strategy Framework Directive (MSFD). Field measurements were made during 2013-2014 at twelve sites around the UK. Median noise levels ranged from 81.5-95.5 dB re 1 μPa for one-third octave bands from 63-500 Hz. Noise exposure varied considerably, with little anthropogenic influence at the Celtic Sea site, to several North Sea sites with persistent vessel noise. Comparison of acoustic metrics found that the RMS level (conventionally used to represent the mean) was highly skewed by outliers, exceeding the 97 th percentile at some frequencies. We conclude that environmental indicators of anthropogenic noise should instead use percentiles, to ensure statistical robustness. Power analysis indicated that at least three decades of continuous monitoring would be required to detect trends of similar magnitude to historic rises in noise levels observed in the Northeast Pacific.

  16. Underwater Wireless Acousto-Optic Waveguide (UWAOW)

    Science.gov (United States)

    Giuliano, Giovanni; Kent, Lionel W. J.; Laycock, Leslie C.

    2017-10-01

    The present study originated in the lack of research into achieving underwater total internal reflection (TIR) via the acousto-optic effect. The uniqueness of this technique exists in the fact that it is based on a high sound pressure level which induces a localised change in refractive index of seawater sufficient to achieve total internal reflection within the communication channel. Different transducer systems for generating the pressure wave have been investigated and take the form of a wave which may be either a standing wave, or a novel beamforming technique. The former is based on an array of transducers and with an acoustic mirror at the receiver in order to establish the standing wave. The alternative approach relies on the high intrinsic directionality of a novel beamformer where an annular transducer array is examined as an acoustic source. In this paper, the main characteristics of the acoustic optic waveguide will be presented. This will include both sound and light propagation in the ocean, TIR, novel beam propagation, the refractive index of water as a function of the externally applied acoustic pressure, and the acoustic technology. The modelled results, the limitations imposed by the challenging medium, and the system requirements required to obtain an Underwater Wireless Acousto-Optic Waveguide (UWAOW) will be also addressed.

  17. Decoherence dynamics of a single spin versus spin ensemble

    NARCIS (Netherlands)

    Dobrovitski, V.V.; Feiguin, A.E.; Awschalom, D.D.; Hanson, R.

    2008-01-01

    We study decoherence of central spins by a spin bath, focusing on the difference between measurement of a single central spin and measurement of a large number of central spins (as found in typical spin-resonance experiments). For a dilute spin bath, the single spin demonstrates Gaussian

  18. PREFACE: SPIN2010 - Preface for Conference Proceedings

    Science.gov (United States)

    Ströher, Hans; Rathmann, Frank

    2011-03-01

    SPIN2010, the 19th International Spin Physics Symposium, took place between 27 September and 2 October, 2010 on the campus of Forschungszentrum Jülich GmbH (FZJ) in Jülich, Germany. The scientific program of this Symposium included many topics related to spin phenomena in particle and nuclear physics as well as those in related fields. The International Spin Physics Symposium series has combined the High Energy Spin Symposia and the Nuclear Polarization Conferences since 2000. The most recent two Symposia were held in Virginia, USA (October 2008) and in Kyoto, Japan (October 2006). The meeting was opened by the chairman of the Board of Management of Jülich Forschungszentrum, Professor Achim Bachem, who cordially welcomed the participants from all over the world and gave a brief introduction to the Center and the research conducted there. The scientific program consisted of plenary sessions and parallel sessions and included the following topics: Fundamental symmetries and spin Spin structure of hadrons Spin physics beyond the Standard Model Spin in hadronic reactions Spin physics with photons and leptons Spin physics in nuclear reactions and nuclei Acceleration, storage, and polarimetry of polarized beams Polarized ion and lepton sources and targets Future facilities and experiments Medical and technological applications of spin physics The 6-day symposium had about 300 participants. In total 35 plenary talks (including 3 summaries of other spin physics meetings) and 163 contributed talks were given. The contents of many of these can be found in the present contributions, arranged according to the above topics and the time sequence. In addition, a public lecture on "Drall in der Quantenwelt", presented by H O Meyer (Bloomington) was received very well. Participants had the option to visit the Cooler synchrotron COSY at the Nuclear Physics Institute (IKP) and the 9.4 T MRT-PET hybrid scanner at the Institute of Neuroscience and Medicine (INM), two unique

  19. A Speed Control Method for Underwater Vehicle under Hydraulic Flexible Traction

    OpenAIRE

    Zhao, Yin; Xia, Ying-kai; Chen, Ying; Xu, Guo-Hua

    2015-01-01

    Underwater vehicle speed control methodology method is the focus of research in this study. Driven by a hydraulic flexible traction system, the underwater vehicle advances steadily on underwater guide rails, simulating an underwater environment for the carried device. Considering the influence of steel rope viscoelasticity and the control system traction structure feature, a mathematical model of the underwater vehicle driven by hydraulic flexible traction system is established. A speed contr...

  20. Underwater television camera for monitoring inner side of pressure vessel

    International Nuclear Information System (INIS)

    Takayama, Kazuhiko.

    1997-01-01

    An underwater television support device equipped with a rotatable and vertically movable underwater television camera and an underwater television camera controlling device for monitoring images of the inside of the reactor core photographed by the underwater television camera to control the position of the underwater television camera and the underwater light are disposed on an upper lattice plate of a reactor pressure vessel. Both of them are electrically connected with each other by way of a cable to rapidly observe the inside of the reactor core by the underwater television camera. The reproducibility is extremely satisfactory by efficiently concentrating the position of the camera and image information upon inspection and observation. As a result, the steps for periodical inspection can be reduced to shorten the days for the periodical inspection. Since there is no requirement to withdraw fuel assemblies over a wide reactor core region, and the device can be used with the fuel assemblies being left as they are in the reactor, it is suitable for inspection of detectors for nuclear instrumentation. (N.H.)

  1. Underwater fiber-wireless communication with a passive front end

    Science.gov (United States)

    Xu, Jing; Sun, Bin; Lyu, Weichao; Kong, Meiwei; Sarwar, Rohail; Han, Jun; Zhang, Wei; Deng, Ning

    2017-11-01

    We propose and experimentally demonstrate a novel concept on underwater fiber-wireless (Fi-Wi) communication system with a fully passive wireless front end. A low-cost step-index (SI) plastic optical fiber (POF) together with a passive collimating lens at the front end composes the underwater Fi-Wi architecture. We have achieved a 1.71-Gb/s transmission at a mean BER of 4.97 × 10-3 (1.30 × 10-3 when using power loading) over a 50-m SI-POF and 2-m underwater wireless channel using orthogonal frequency division multiplexing (OFDM). Although the wireless part is very short, it actually plays a crucial role in practical underwater implementation, especially in deep sea. Compared with the wired solution (e.g. using a 52-m POF cable without the UWOC part), the proposed underwater Fi-Wi scheme can save optical wet-mate connectors that are sophisticated, very expensive and difficult to install in deep ocean. By combining high-capacity robust POF with the mobility and ubiquity of underwater wireless optical communication (UWOC), the proposed underwater Fi-Wi technology will find wide application in ocean exploration.

  2. Towards a Hybrid Approach to Context Reasoning for Underwater Robots

    Directory of Open Access Journals (Sweden)

    Xin Li

    2017-02-01

    Full Text Available Ontologies have been widely used to facilitate semantic interoperability and serve as a common information model in many applications or domains. The Smart and Networking Underwater Robots in Cooperation Meshes (SWARMs project, aiming to facilitate coordination and cooperation between heterogeneous underwater vehicles, also adopts ontologies to formalize information that is necessarily exchanged between vehicles. However, how to derive more useful contexts based on ontologies still remains a challenge. In particular, the extreme nature of the underwater environment introduces uncertainties in context data, thus imposing more difficulties in context reasoning. None of the existing context reasoning methods could individually deal with all intricacies in the underwater robot field. To this end, this paper presents the first proposal applying a hybrid context reasoning mechanism that includes ontological, rule-based, and Multi-Entity Bayesian Network (MEBN reasoning methods to reason about contexts and their uncertainties in the underwater robot field. The theoretical foundation of applying this reasoning mechanism in underwater robots is given by a case study on the oil spill monitoring. The simulated reasoning results are useful for further decision-making by operators or robots and they show that the consolidation of different reasoning methods is a promising approach for context reasoning in underwater robots.

  3. Spin-polarized spin excitation spectroscopy

    International Nuclear Information System (INIS)

    Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J

    2010-01-01

    We report on the spin dependence of elastic and inelastic electron tunneling through transition metal atoms. Mn, Fe and Cu atoms were deposited onto a monolayer of Cu 2 N on Cu(100) and individually addressed with the probe tip of a scanning tunneling microscope. Electrons tunneling between the tip and the substrate exchange energy and spin angular momentum with the surface-bound magnetic atoms. The conservation of energy during the tunneling process results in a distinct onset threshold voltage above which the tunneling electrons create spin excitations in the Mn and Fe atoms. Here we show that the additional conservation of spin angular momentum leads to different cross-sections for spin excitations depending on the relative alignment of the surface spin and the spin of the tunneling electron. For this purpose, we developed a technique for measuring the same local spin with a spin-polarized and a non-spin-polarized tip by exchanging the last apex atom of the probe tip between different transition metal atoms. We derive a quantitative model describing the observed excitation cross-sections on the basis of an exchange scattering process.

  4. Magnons, Spin Current and Spin Seebeck Effect

    Science.gov (United States)

    Maekawa, Sadamichi

    2012-02-01

    When metals and semiconductors are placed in a temperature gradient, the electric voltage is generated. This mechanism to convert heat into electricity, the so-called Seebeck effect, has attracted much attention recently as the mechanism for utilizing wasted heat energy. [1]. Ferromagnetic insulators are good conductors of spin current, i.e., the flow of electron spins [2]. When they are placed in a temperature gradient, generated are magnons, spin current and the spin voltage [3], i.e., spin accumulation. Once the spin voltage is converted into the electric voltage by inverse spin Hall effect in attached metal films such as Pt, the electric voltage is obtained from heat energy [4-5]. This is called the spin Seebeck effect. Here, we present the linear-response theory of spin Seebeck effect based on the fluctuation-dissipation theorem [6-8] and discuss a variety of the devices. [4pt] [1] S. Maekawa et al, Physics of Transition Metal Oxides (Springer, 2004). [0pt] [2] S. Maekawa: Nature Materials 8, 777 (2009). [0pt] [3] Concept in Spin Electronics, eds. S. Maekawa (Oxford University Press, 2006). [0pt] [4] K. Uchida et al., Nature 455, 778 (2008). [0pt] [5] K. Uchida et al., Nature Materials 9, 894 (2010) [0pt] [6] H. Adachi et al., APL 97, 252506 (2010) and Phys. Rev. B 83, 094410 (2011). [0pt] [7] J. Ohe et al., Phys. Rev. B (2011) [0pt] [8] K. Uchida et al., Appl. Phys. Lett. 97, 104419 (2010).

  5. A Secure Communication Suite for Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Angelica Lo Duca

    2012-11-01

    Full Text Available In this paper we describe a security suite for Underwater Acoustic Sensor Networks comprising both fixed and mobile nodes. The security suite is composed of a secure routing protocol and a set of cryptographic primitives aimed at protecting the confidentiality and the integrity of underwater communication while taking into account the unique characteristics and constraints of the acoustic channel. By means of experiments and simulations based on real data, we show that the suite is suitable for an underwater networking environment as it introduces limited, and sometimes negligible, communication and power consumption overhead.

  6. Application of YAG laser processing in underwater welding and cutting

    International Nuclear Information System (INIS)

    Ohwaki, Katsura; Morita, Ichiro; Kojima, Toshio; Sato, Shuichi

    2002-01-01

    The high-power YAG laser is a new fabrication tool. The laser torch is easy to combine with complex with complex mechanics because of beam delivery through optical fiber. A direct underwater laser welding technology has been developed and applied to the preservation, maintenance and removal of nuclear power plants. For subdividing or removing operations for retirement of plants, the laser cutting properties were confirmed to allow a maximum cutting thickness of 80 mm. For repairing inner surface of stainless steel tanks, an underwater laser welding system using a remote-controlled robot was developed and the high quality of underwater laser welding was confirmed. (author)

  7. Centralised versus Decentralised Control Reconfiguration for Collaborating Underwater Robots

    DEFF Research Database (Denmark)

    Furno, Lidia; Nielsen, Mikkel Cornelius; Blanke, Mogens

    2015-01-01

    The present paper introduces an approach to fault-tolerant reconfiguration for collaborating underwater robots. Fault-tolerant reconfiguration is obtained using the virtual actuator approach, Steen (2005). The paper investigates properties of a centralised versus a decentralised implementation...... an underwater drill needs to be transported and positioned by three collaborating robots as part of an underwater autonomous operation....... and assesses the capabilities under communication constraints between the individual robots. In the centralised case, each robot sends information related to its own status to a unique virtual actuator that computes the necessary reconfiguration. In the decentralised case, each robot is equipped with its own...

  8. Adaptive Decentralized Control of Mobile Underwater Sensor Networks and Robots for Modeling Underwater Phenomena

    Directory of Open Access Journals (Sweden)

    Carrick Detweiler

    2014-05-01

    Full Text Available Understanding the dynamics of bodies of water and their impact on the global environment requires sensing information over the full volume of water. In this article, we develop a gradient-based decentralized controller that dynamically adjusts the depth of a network of underwater sensors to optimize sensing for computing maximally detailed volumetric models. We prove that the controller converges to a local minimum and show how the controller can be extended to work with hybrid robot and sensor network systems. We implement the controller on an underwater sensor network with depth adjustment capabilities. Through simulations and in-situ experiments, we verify the functionality and performance of the system and algorithm.

  9. Task Allocation and Path Planning for Collaborative Autonomous Underwater Vehicles Operating through an Underwater Acoustic Network

    Directory of Open Access Journals (Sweden)

    Yueyue Deng

    2013-01-01

    Full Text Available Dynamic and unstructured multiple cooperative autonomous underwater vehicle (AUV missions are highly complex operations, and task allocation and path planning are made significantly more challenging under realistic underwater acoustic communication constraints. This paper presents a solution for the task allocation and path planning for multiple AUVs under marginal acoustic communication conditions: a location-aided task allocation framework (LAAF algorithm for multitarget task assignment and the grid-based multiobjective optimal programming (GMOOP mathematical model for finding an optimal vehicle command decision given a set of objectives and constraints. Both the LAAF and GMOOP algorithms are well suited in poor acoustic network condition and dynamic environment. Our research is based on an existing mobile ad hoc network underwater acoustic simulator and blind flooding routing protocol. Simulation results demonstrate that the location-aided auction strategy performs significantly better than the well-accepted auction algorithm developed by Bertsekas in terms of task-allocation time and network bandwidth consumption. We also demonstrate that the GMOOP path-planning technique provides an efficient method for executing multiobjective tasks by cooperative agents with limited communication capabilities. This is in contrast to existing multiobjective action selection methods that are limited to networks where constant, reliable communication is assumed to be available.

  10. Spin-Mechatronics

    Science.gov (United States)

    Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi

    2017-01-01

    We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.

  11. Status of the ANTARES underwater neutrino telescope

    CERN Document Server

    Hallewell, G D

    2003-01-01

    The ANTARES Collaboration is constructing a deep underwater neutrino detector for operation at -2400 m off the French Mediterranean coast near Toulon. The detector, which will begin operation in 2004, will have an aperture of approx 0.1 km sup 2 , and will contain 900 photomultiplier tubes. The photomultiplier axes will be angled 45 deg. downward toward the seabed to observe the Cherenkov emissions of upward-going muons created by the interactions in or near the detector of high energy neutrinos traversing the Earth. These neutrinos arrive undeviated from a variety of galactic and extragalactic sources of astrophysical interest, and might be produced in the possible annihilation of dark matter neutralinos. The design and present status of the detector are summarized. Results from site evaluation and the development of supporting instrumentation are outlined.

  12. Transducers and arrays for underwater sound

    CERN Document Server

    Butler, John L

    2016-01-01

    This improved and updated second edition covers the theory, development, and design of electro-acoustic transducers for underwater applications. This highly regarded text discusses the basics of piezoelectric and magnetostrictive transducers that are currently being used as well as promising new designs. It presents the basic acoustics as well as the specific acoustics data needed in transducer design and evaluation. A broad range of designs of projectors and hydrophones are described in detail along with methods of modeling, evaluation, and measurement. Analysis of projector and hydrophone transducer arrays, including the effects of mutual radiation impedance and numerical models for elements and arrays, are also covered. The book includes new advances in transducer design and transducer materials and has been completely reorganized to be suitable for use as a textbook, as well as a reference or handbook. The new edition contains updates to the first edition, end-of-chapter exercises, and solutions to select...

  13. The NESTOR underwater neutrino telescope project

    Energy Technology Data Exchange (ETDEWEB)

    Rapidis, Petros A. [Institute of Nuclear Physics, National Center for Scientific Research ' Demokritos' , Athens 15310 (Greece)], E-mail: rapidis@inp.demokritos.gr

    2009-04-11

    The NESTOR collaboration is continuing its efforts towards deploying an underwater neutrino telescope. Further site studies (e.g. water light transmission measurements, sedimentation rates, etc.) are being carried out within the context of characterizing a site that may host the proposed KM3NeT infrastructure. In addition, following the successful deployment of a single floor of a NESTOR tower in 2003, five floors are now in the final stages of preparation. The use of these five floors in a form of a truncated tower together with four autonomous strings to be located some 300 m away from the tower is being contemplated. This arrangement, named NuBE (for Neutrino Burst Experiment), that may allow the detection neutrinos in coincidence with Gamma Ray Bursts, will be described.

  14. A Validation Process for Underwater Localization Algorithms

    Directory of Open Access Journals (Sweden)

    Marc Hildebrandt

    2014-09-01

    Full Text Available This paper describes the validation process of a localization algorithm for underwater vehicles. In order to develop new localization algorithms, it is essential to characterize them with regard to their accuracy, long-term stability and robustness to external sources of noise. This is only possible if a gold-standard reference localization (GSRL is available against which any new localization algorithm (NLA can be tested. This process requires a vehicle which carries all the required sensor and processing systems for both the GSRL and the NLA. This paper will show the necessity of such a validation process, briefly sketch the test vehicle and its capabilities, describe the challenges in computing the localizations of both the GSRL and the NLA simultaneously for comparison, and conclude with experimental data of real-world trials.

  15. Improved Underwater Excitation-Emission Matrix Fluorometer

    Science.gov (United States)

    Moore, Casey; daCunha, John; Rhoades, Bruce; Twardowski, Michael

    2007-01-01

    A compact, high-resolution, two-dimensional excitation-emission matrix fluorometer (EEMF) has been designed and built specifically for use in identifying and measuring the concentrations of organic compounds, including polluting hydrocarbons, in natural underwater settings. Heretofore, most EEMFs have been designed and built for installation in laboratories, where they are used to analyze the contents of samples collected in the field and brought to the laboratories. Because the present EEMF can be operated in the field, it is better suited to measurement of spatially and temporally varying concentrations of substances of interest. In excitation-emission matrix (EEM) fluorometry, fluorescence is excited by irradiating a sample at one or more wavelengths, and the fluorescent emission from the sample is measured at multiple wavelengths. When excitation is provided at only one wavelength, the technique is termed one-dimensional (1D) EEM fluorometry because the resulting matrix of fluorescence emission data (the EEM) contains only one row or column. When excitation is provided at multiple wavelengths, the technique is termed two-dimensional (2D) EEM fluorometry because the resulting EEM contains multiple rows and columns. EEM fluorometry - especially the 2D variety - is well established as a means of simultaneously detecting numerous dissolved and particulate compounds in water. Each compound or pool of compounds has a unique spectral fluorescence signature, and each EEM is rich in information content, in that it can contain multiple fluorescence signatures. By use of deconvolution and/or other mixture-analyses techniques, it is often possible to isolate the spectral signature of compounds of interest, even when their fluorescence spectra overlap. What distinguishes the present 2D EEMF over prior laboratory-type 2D EEMFs are several improvements in packaging (including a sealed housing) and other aspects of design that render it suitable for use in natural underwater

  16. Adaptive control of nonlinear underwater robotic systems

    Directory of Open Access Journals (Sweden)

    Thor I. Fossen

    1991-04-01

    Full Text Available The problem of controlling underwater mobile robots in 6 degrees of freedom (DOF is addressed. Uncertainties in the input matrix due to partly known nonlinear thruster characteristics are modeled as multiplicative input uncertainty. This paper proposes two methods to compensate for the model uncertainties: (1 an adaptive passivity-based control scheme and (2 deriving a hybrid (adaptive and sliding controller. The hybrid controller consists of a switching term which compensates for uncertainties in the input matrix and an on-line parameter estimation algorithm. Global stability is ensured by applying Barbalat's Lyapunovlike lemma. The hybrid controller is simulated for the horizontal motion of the Norwegian Experimental Remotely Operated Vehicle (NEROV.

  17. Collision Detection for Underwater ROV Manipulator Systems.

    Science.gov (United States)

    Sivčev, Satja; Rossi, Matija; Coleman, Joseph; Omerdić, Edin; Dooly, Gerard; Toal, Daniel

    2018-04-06

    Work-class ROVs equipped with robotic manipulators are extensively used for subsea intervention operations. Manipulators are teleoperated by human pilots relying on visual feedback from the worksite. Operating in a remote environment, with limited pilot perception and poor visibility, manipulator collisions which may cause significant damage are likely to happen. This paper presents a real-time collision detection algorithm for marine robotic manipulation. The proposed collision detection mechanism is developed, integrated into a commercial ROV manipulator control system, and successfully evaluated in simulations and experimental setup using a real industry standard underwater manipulator. The presented collision sensing solution has a potential to be a useful pilot assisting tool that can reduce the task load, operational time, and costs of subsea inspection, repair, and maintenance operations.

  18. The NESTOR underwater neutrino telescope project

    International Nuclear Information System (INIS)

    Rapidis, Petros A.

    2009-01-01

    The NESTOR collaboration is continuing its efforts towards deploying an underwater neutrino telescope. Further site studies (e.g. water light transmission measurements, sedimentation rates, etc.) are being carried out within the context of characterizing a site that may host the proposed KM3NeT infrastructure. In addition, following the successful deployment of a single floor of a NESTOR tower in 2003, five floors are now in the final stages of preparation. The use of these five floors in a form of a truncated tower together with four autonomous strings to be located some 300 m away from the tower is being contemplated. This arrangement, named NuBE (for Neutrino Burst Experiment), that may allow the detection neutrinos in coincidence with Gamma Ray Bursts, will be described.

  19. Spin physics at RHIC: Present and future

    Indian Academy of Sciences (India)

    a high intensity polarized electron/positron beam facility at BNL which would enable deep inelastic scattering (DIS) ... written down by Bjorken a couple of decades earlier, using operator product expansion. (OPE). The relation, known .... at RHIC via the production of mesons as well as Drell–Yan process. Other single-spin.

  20. Spin physics at RHIC: Present and future

    Indian Academy of Sciences (India)

    I will review the progress made by the RHIC spin program, followed by the physics goals for the next few years. After that I will present a brief overview of a proposal to build a high intensity polarized electron/positron beam facility at BNL which would enable deep inelastic scattering (DIS) experiments to be pursued at BNL ...

  1. Morphing hull implementation for unmanned underwater vehicles

    International Nuclear Information System (INIS)

    Miller, Timothy F; Gandhi, Farhan; Rufino, Russell J

    2013-01-01

    There has been much interest and work in the area of morphing aircraft since the 1980s. Morphing could also potentially benefit unmanned underwater vehicles (UUVs). The current paper envisions a UUV with an interior pressure hull and a variable diameter outer flexible hull with fuel stored in the annulus between, and presents a mechanism to realize diameter change of the outer hull. The outer hull diameter of UUVs designed for very long endurance/range could be progressively reduced as fuel was consumed, thereby reducing drag and further increasing endurance and range capability. Diameter morphing could also be advantageous for compact storage of UUVs. A prototype is fabricated to represent an axial section of such a morphing diameter UUV. Diameter change is achieved using eight morphing trusses arranged equidistant around the circumference of the representative interior rigid hull. Each morphing truss has a lower rail (attached to the rigid hull) and an upper rail with V-linkages between, at either ends of the rail. Horizontal motion of the feet of the V-linkages (sliding in the lower rail) results in vertical motion of the upper rail which in turn produces diameter change of the outer hull. For the prototype built and tested, a 63% increase in outer diameter from 12.75″ to 20.75″ was achieved. The introduction of a stretched latex representative flexible skin around the outer rails increased actuation force requirement and led to a propensity for the wheel-in-track sliders in the morphing truss to bind. It is anticipated that this could be overcome with higher precision manufacturing. In addition to symmetric actuation of the morphing trusses resulting in diameter change, the paper also shows that with asymmetric actuation the hull cross-section shape can be changed (for example, from a circular section for underwater operation to a V-section for surface operations). (paper)

  2. On sampling the ocean using underwater gliders

    Science.gov (United States)

    Rudnick, Daniel L.; Cole, Sylvia T.

    2011-08-01

    The sampling characteristics of an underwater glider are addressed through comparison with contemporaneous measurements from a ship survey using a towed vehicle. The comparison uses the underwater glider Spray and the towed vehicle SeaSoar north of Hawaii along 158°W between 22.75°N and 34.5°N. A Spray dive from the surface to 1000 m and back took 5.6 h and covered 5.3 km, resulting in a horizontal speed of 0.26 m s-1. SeaSoar undulated between the surface and 400 m, completing a cycle in 11 min while covering 2.6 km, for a speed of 3.9 m s-1. Adjacent profiles of temperature and salinity are compared between the two platforms to prove that each is accurate. Spray and SeaSoar data are compared through sections, isopycnal spatial series, and wave number spectra. The relative slowness of the glider results in the projection of high-frequency oceanic variability, such as internal waves, onto spatial structure. The projection is caused by Doppler smearing because of finite speed and aliasing due to discrete sampling. The projected variability is apparent in properties measured on depth surfaces or in isopycnal depth. No projected variability is seen in observations of properties on constant density surfaces because internal waves are intrinsically filtered. Wave number spectra suggest that projected variability affects properties at constant depth at wavelengths shorter than 30 km. These results imply that isobaric quantities, like geostrophic shear, are valid at wavelengths longer than 30 km, while isopycnal quantities, like spice, may be analyzed for scales as small as a glider measures.

  3. Short Communication Evaluation of an underwater biopsy probe for ...

    African Journals Online (AJOL)

    lethal methods may become an increasingly useful tool to investigate shark populations where researchers encounter logistical or conservation-related constraints. Keywords: biopsy probe, laser photogrammetry, non-lethal sampling, underwater ...

  4. Digital sonar design in underwater acoustics principles and applications

    CERN Document Server

    Li, Qihu

    2012-01-01

    "Digital Sonar Design in Underwater Acoustics Principles and Applications" provides comprehensive and up-to-date coverage of research on sonar design, including the basic theory and techniques of digital signal processing, basic concept of information theory, ocean acoustics, underwater acoustic signal propagation theory, and underwater signal processing theory. This book discusses the general design procedure and approaches to implementation, the design method, system simulation theory and techniques, sonar tests in the laboratory, lake and sea, and practical validation criteria and methods for digital sonar design. It is intended for researchers in the fields of underwater signal processing and sonar design, and also for navy officers and ocean explorers. Qihu Li is a professor at the Institute of Acoustics, Chinese Academy of Sciences, and an academician of the Chinese Academy of Sciences.

  5. Automated Underwater Image Restoration and Retrieval of Related Optical Properties

    National Research Council Canada - National Science Library

    Hou, Weilin; Gray, Deric J; Weidemann, Alan D; Fournier, Georges R; Forand, J. L

    2007-01-01

    ...) in the spatial domain and the modulation transfer function (MTF) in the frequency domain. Due to the intensity variations involved in underwater sensing, denoising is carefully carried out by wavelet decompositions...

  6. Wireless Underwater Monitoring Systems Based on Energy Harvestings

    Directory of Open Access Journals (Sweden)

    Sea-Hee HWANGBO

    2013-01-01

    Full Text Available One of the important research fields for aquatic exploitation and conservation is underwater wireless sensor network. Since limited energy source for underwater nodes and devices is a main open problem, in this paper, we propose wireless underwater monitoring systems powered by energy harvester which resolves the energy constraint. The target system generates renewable energy from energy harvester and shares the energy with underwater sensor nodes. For the realization of the system, key components to be investigated are discriminated as follows: acoustic modem, actuator, smart battery charge controller, energy harvester and wireless power transfer module. By developing acoustic modem, actuator and smart battery charge controller and utilizing off-the-shelf energy harvester and wireless power transfer module, we design and implement a prototype of the system. Also, we verify the feasibility of concept of target system by conducting indoor and outdoor experiments.

  7. Trade-off Analysis of Underwater Acoustic Sensor Networks

    Science.gov (United States)

    Tuna, G.; Das, R.

    2017-09-01

    In the last couple of decades, Underwater Acoustic Sensor Networks (UASNs) were started to be used for various commercial and non-commercial purposes. However, in underwater environments, there are some specific inherent constraints, such as high bit error rate, variable and large propagation delay, limited bandwidth capacity, and short-range communications, which severely degrade the performance of UASNs and limit the lifetime of underwater sensor nodes as well. Therefore, proving reliability of UASN applications poses a challenge. In this study, we try to balance energy consumption of underwater acoustic sensor networks and minimize end-to-end delay using an efficient node placement strategy. Our simulation results reveal that if the number of hops is reduced, energy consumption can be reduced. However, this increases end-to-end delay. Hence, application-specific requirements must be taken into consideration when determining a strategy for node deployment.

  8. Object detection from images obtained through underwater turbulence medium

    Science.gov (United States)

    Furhad, Md. Hasan; Tahtali, Murat; Lambert, Andrew

    2017-09-01

    Imaging through underwater experiences severe distortions due to random fluctuations of temperature and salinity in water, which produces underwater turbulence through diffraction limited blur. Lights reflecting from objects perturb and attenuate contrast, making the recognition of objects of interest difficult. Thus, the information available for detecting underwater objects of interest becomes a challenging task as they have inherent confusion among the background, foreground and other image properties. In this paper, a saliency-based approach is proposed to detect the objects acquired through an underwater turbulent medium. This approach has drawn attention among a wide range of computer vision applications, such as image retrieval, artificial intelligence, neuro-imaging and object detection. The image is first processed through a deblurring filter. Next, a saliency technique is used on the image for object detection. In this step, a saliency map that highlights the target regions is generated and then a graph-based model is proposed to extract these target regions for object detection.

  9. Filming Underwater in 3d Respecting Stereographic Rules

    Science.gov (United States)

    Rinaldi, R.; Hordosch, H.

    2015-04-01

    After an experimental phase of many years, 3D filming is now effective and successful. Improvements are still possible, but the film industry achieved memorable success on 3D movie's box offices due to the overall quality of its products. Special environments such as space ("Gravity") and the underwater realm look perfect to be reproduced in 3D. "Filming in space" was possible in "Gravity" using special effects and computer graphic. The underwater realm is still difficult to be handled. Underwater filming in 3D was not that easy and effective as filming in 2D, since not long ago. After almost 3 years of research, a French, Austrian and Italian team realized a perfect tool to film underwater, in 3D, without any constrains. This allows filmmakers to bring the audience deep inside an environment where they most probably will never have the chance to be.

  10. Collision Avoidance of Moving Obstacles for Underwater Robots

    Directory of Open Access Journals (Sweden)

    KWON KYOUNG YOUB

    2006-10-01

    Full Text Available A fuzzy logic for autonomous navigation of underwater robot is proposed in this paper. The VFF(Virtual Force Field algorithm, which is widely used in the field of mobile robot, is modified for application to the autonomous navigation of underwater robot. This Modified Virtual Force Field(MVFF algorithm using the fuzzy logic can be used in either track keeping or obstacle avoidance. Fuzzy logics are devised to handle various situations which can be faced during autonomous navigation of underwater robot. A graphic simulator based on OpenGL for an autonomous navigation has been developed. The good performance of the proposed MVFF algorithm is verified through computer simulations on an underwater robot.

  11. Multi-layer protective armour for underwater shock wave mitigation

    Directory of Open Access Journals (Sweden)

    Ahmed Hawass

    2015-12-01

    The strain gauge data and displacement sensors results showed that the multi-layer plates have higher level of underwater shock wave mitigation than the triple aluminum plates with strain and deflection of nearly 50%.

  12. Underwater image enhancement through depth estimation based on random forest

    Science.gov (United States)

    Tai, Shen-Chuan; Tsai, Ting-Chou; Huang, Jyun-Han

    2017-11-01

    Light absorption and scattering in underwater environments can result in low-contrast images with a distinct color cast. This paper proposes a systematic framework for the enhancement of underwater images. Light transmission is estimated using the random forest algorithm. RGB values, luminance, color difference, blurriness, and the dark channel are treated as features in training and estimation. Transmission is calculated using an ensemble machine learning algorithm to deal with a variety of conditions encountered in underwater environments. A color compensation and contrast enhancement algorithm based on depth information was also developed with the aim of improving the visual quality of underwater images. Experimental results demonstrate that the proposed scheme outperforms existing methods with regard to subjective visual quality as well as objective measurements.

  13. Navigation of autonomous underwater vehicle using extended kalman filter

    Digital Repository Service at National Institute of Oceanography (India)

    Ranjan, T.N.; Nherakkol, A.; Navelkar, G.S.

    To navigate the Autonomous Underwater Vehicle (AUV) accurately is one of the most important aspects in its application. A truly autonomous vehicle must determine its position which requires the optimal integration of all available attitude...

  14. Euclidean reconstruction of natural underwater scenes using optic imagery sequence

    Science.gov (United States)

    Hu, Han

    The development of maritime applications require monitoring, studying and preserving of detailed and close observation on the underwater seafloor and objects. Stereo vision offers advanced technologies to build 3D models from 2D still overlapping optic images in a relatively inexpensive way. However, while image stereo matching is a necessary step in 3D reconstruction procedure, even the most robust dense matching techniques are not guaranteed to work for underwater images due to the challenging aquatic environment. In this thesis, in addition to a detailed introduction and research on the key components of building 3D models from optic images, a robust modified quasi-dense matching algorithm based on correspondence propagation and adaptive least square matching for underwater images is proposed and applied to some typical underwater image datasets. The experiments demonstrate the robustness and good performance of the proposed matching approach.

  15. A CAMAC-resident microprocessor for the monitoring of polarimeter spin states

    International Nuclear Information System (INIS)

    Reid, D.; DuPlantis, D.; Yoder, N.; Dale, D.

    1992-01-01

    A CAMAC module for the reporting of polarimeter spin states is being developed using a resident microcontroller. The module will allow experimenters at the Indiana University Cyclotron Facility to monitor spin states and correlate spin information with other experimental data. The use of a microprocessor allows for adaptation of the module as new requirements ensue without change to the printed circuit board layout. (author)

  16. Two-dimensional spin diffusion in multiterminal lateral spin valves

    Science.gov (United States)

    Saha, D.; Basu, D.; Holub, M.; Bhattacharya, P.

    2008-01-01

    The effects of two-dimensional spin diffusion on spin extraction in lateral semiconductor spin valves have been investigated experimentally and theoretically. A ferromagnetic collector terminal of variable size is placed between the ferromagnetic electron spin injector and detector of a conventional lateral spin valve for spin extraction. It is observed that transverse spin diffusion beneath the collector terminal plays an important role along with the conventional longitudinal spin diffusion in describing the overall transport of spin carriers. Two-dimensional spin diffusion reduces the perturbation of the channel electrochemical potentials and improves spin extraction.

  17. Underwater acoustic communications. From point-to-point to networks

    OpenAIRE

    Jesus, S. M.

    2013-01-01

    This is a review presentation that addresses recent developments in underwater acoustic telemetry as a tool for ocean observation, monitoring and protection. Distributed sensing is a paradigm with important reflections in oceanic technology where bottom installed structures can not always be connected to a central hub through cabled networks. Moreover, recent developments in ocean robotics lead to the off-the-shelf availability of autonomous underwater vehicles that rely on wireless communica...

  18. Estimation of underwater acoustic fields at high frequencies

    OpenAIRE

    Temsamani, A.B.; Vandenplas, S.; Van Biesen, L.

    2001-01-01

    In this work a parametric modeling of the underwater acoustic field is investigated in a laboratory scale at high frequencies (150-850 kHz). The aim is to develop experimentally verifiable theoretical models to investigate the acoustic field propagation in elastic and viscoelastic or porous media. To achieve this goal, the efforts have been directed to three integral parts pertaining to the development of the methods. The first part deals with the modeling of the underwater acoustic field fol...

  19. Strong tracking adaptive Kalman filters for underwater vehicle dead reckoning

    Science.gov (United States)

    Xiao, Kun; Fang, Shao-Ji; Pang, Yong-Jie

    2007-06-01

    To impove underwater vehicle dead reckoning, a developed strong tracking adaptive kalman filter is proposed. The filter is improved with an additional adaptive factor and an estimator of measurement noise covariance. Since the magnitude of fading factor is changed adaptively, the tracking ability of the filter is still enhanced in low velocity condition of underwater vehicles. The results of simulation tests prove the presented filter effective.

  20. Underwater striling engine design with modified one-dimensional model

    OpenAIRE

    Li, Daijin; Qin, Kan; Luo, Kai

    2015-01-01

    Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs) is discussed. And a one-dimensional mod...

  1. Characterization of ships as sources of underwater noise

    OpenAIRE

    Jong, C.A.F. de

    2009-01-01

    There is a growing interest in the possible impact of anthropogenic underwater noise on marine life [1]. One of the concerns is the increasing contribution of shipping noise, with the growing number and size of commercial ships. Traditionally, underwater radiated noise control was only of interest for naval [2,3] and fishery research vessels [4]. Due to the potential environmental impact, it becomes also relevant for commercial shipping. The challenge is to bring the expertise from the naval ...

  2. Terminal homing position estimation forAutonomous underwater vehicle docking

    Science.gov (United States)

    2017-06-01

    79  ix LIST OF FIGURES Figure 1.  NPS REMUS 100 with WHOI Docking Station. Source: [1...underwater missions were short and quick . Now, with advanced technology, underwater missions can be as long as the user desires. The new AUVs have...the full information problem. In order to use the MHE approach for real-time applications, the optimization process should be quick and accurate

  3. A potential flow based flight simulator for an underwater glider

    OpenAIRE

    Phoemsapthawee, Surasak; Le Boulluec, Marc; Laurens, Jean-marc; Deniset, Francois

    2013-01-01

    Underwater gliders are recent innovative types of autonomous underwater vehicles (AUVs) used in ocean exploration and observation. They adjust their buoyancy to dive and to return to the ocean surface. During the change of altitude, they use the hydrodynamic forces developed by their wings to move forward. Their flights are controlled by changing the position of their centers of gravity and their buoyancy to adjust their trim and heel angles. For better flight control, the understanding of th...

  4. Analytical and Numerical Optimal Motion Planning for an Underwater Glider

    OpenAIRE

    Kraus, Robert J.

    2010-01-01

    The use of autonomous underwater vehicles (AUVs) for oceanic observation and research is becoming more common. Underwater gliders are a specific class of AUV that do not use conventional propulsion. Instead they change their buoyancy and center of mass location to control attitude and trajectory. The vehicles spend most of their time in long, steady glides, so even minor improvements in glide range can be magnified over multiple dives. This dissertation presents a rigid-body dynamic system...

  5. Boundary curvature effects on gas bubble oscillations in underwater explosion

    OpenAIRE

    Matsumoto, Kazuhiro

    1996-01-01

    The oscillation of a gas bubble produced as a result of underwater explosion could cause the severe whipping damage on nearby marine vehicle. The effects of rigid boundary curvatures to explosive gas bubble oscillation behavior in underwater were investigated. The analyses were conducted using a multimaterial Lagrangian-Eulerian finite element code, MSC/DYTRAN. The incident shock wave pressure, bubble pulse pressure, gas bubble radius and period were calculated for the case of detonation of a...

  6. Deep Learning Methods for Underwater Target Feature Extraction and Recognition

    Directory of Open Access Journals (Sweden)

    Gang Hu

    2018-01-01

    Full Text Available The classification and recognition technology of underwater acoustic signal were always an important research content in the field of underwater acoustic signal processing. Currently, wavelet transform, Hilbert-Huang transform, and Mel frequency cepstral coefficients are used as a method of underwater acoustic signal feature extraction. In this paper, a method for feature extraction and identification of underwater noise data based on CNN and ELM is proposed. An automatic feature extraction method of underwater acoustic signals is proposed using depth convolution network. An underwater target recognition classifier is based on extreme learning machine. Although convolution neural networks can execute both feature extraction and classification, their function mainly relies on a full connection layer, which is trained by gradient descent-based; the generalization ability is limited and suboptimal, so an extreme learning machine (ELM was used in classification stage. Firstly, CNN learns deep and robust features, followed by the removing of the fully connected layers. Then ELM fed with the CNN features is used as the classifier to conduct an excellent classification. Experiments on the actual data set of civil ships obtained 93.04% recognition rate; compared to the traditional Mel frequency cepstral coefficients and Hilbert-Huang feature, recognition rate greatly improved.

  7. Underwater and in-air sounds from a small hovercraft

    Science.gov (United States)

    Blackwell, Susanna B.; Greene, Charles R.

    2005-12-01

    Underwater and in-air recordings were made from a boat anchored near Prudhoe Bay, Alaska, while a Griffon 2000TD hovercraft drove by at or near full power on four passes. At the closest point of approach (CPA, 6.5 m), underwater broadband (10-10 000 Hz) levels reached 133 and 131 dB re: 1 μPa at depths of 1 and 7 m, respectively. In-air unweighted and A-weighted broadband (10-10 000 Hz) levels reached 104 and 97 dB re: 20 μPa, respectively. The hovercraft produced sound at a wide range of frequencies. Both underwater and in air, the largest spectral peak was near 87 Hz, which corresponded to the blade rate of the thrust propeller. In addition, the spectral composition included several harmonics of this frequency. The shaft or blade rate of the lift fan was barely detectable underwater despite its proximity to the water. The hovercraft was considerably quieter underwater than similar-sized conventional vessels and may be an attractive alternative when there is concern over underwater sounds.

  8. Optimal Node Placement in Underwater Acoustic Sensor Network

    KAUST Repository

    Felemban, Muhamad

    2011-10-01

    Almost 70% of planet Earth is covered by water. A large percentage of underwater environment is unexplored. In the past two decades, there has been an increase in the interest of exploring and monitoring underwater life among scientists and in industry. Underwater operations are extremely difficult due to the lack of cheap and efficient means. Recently, Wireless Sensor Networks have been introduced in underwater environment applications. However, underwater communication via acoustic waves is subject to several performance limitations, which makes the relevant research issues very different from those on land. In this thesis, we investigate node placement for building an initial Underwater Wireless Sensor Network infrastructure. Firstly, we formulated the problem into a nonlinear mathematic program with objectives of minimizing the total transmission loss under a given number of sensor nodes and targeted volume. We conducted experiments to verify the proposed formulation, which is solved using Matlab optimization tool. We represented each node with a truncated octahedron to fill out the 3D space. The truncated octahedrons are tiled in the 3D space with each node in the center where locations of the nodes are given using 3D coordinates. Results are supported using ns-3 simulator. Results from simulation are consistent with the obtained results from mathematical model with less than 10% error.

  9. Performance Evaluation of Hybrid Acoustic-Optical Underwater Swarm Networks

    Directory of Open Access Journals (Sweden)

    Samuela PERSIA

    2016-04-01

    Full Text Available The Underwater Swarm is a particular Underwater Network configuration characterized by nodes very close one to each other, with mobility capability. The structure of the network is that of a distributed network, in which the nodes, through the exchange of control information, will take decisions in collaborative manner. This type of network raises challenges for its effective design and development, for which the only use of acoustic communication as traditionally suggested in underwater communication could be not enough. A new emerging solution could be a hybrid solution that combines the use of acoustic and optical channel in order to overcome the acoustic channel limitations in underwater environment. In this work, we want to investigate how the acoustic and optical communications influence the Underwater Swarm performance by considering the Low Layers Protocols (Physical Layer, Data Link Layer and Network Layer effects over the two different propagation technologies. Performance simulations have been carried out to suggest how the new hybrid system could be designed. This study will permit to provide useful analysis for the real implementation of an Underwater Swarm based on hybrid communication technology.

  10. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H.B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  11. Spin at Lausanne

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    From 25 September to 1 October, some 150 spin enthusiasts gathered in Lausanne for the 1980 International Symposium on High Energy Physics with Polarized Beams and Polarized Targets. The programme was densely packed, covering physics interests with spin as well as the accelerator and target techniques which make spin physics possible

  12. Spin-torque transistor

    NARCIS (Netherlands)

    Bauer, G.E.W.; Brataas, A.; Tserkovnyak, Y.; Van Wees, B.J.

    2003-01-01

    A magnetoelectronic thin-film transistor is proposed that can display negative differential resistance and gain. The working principle is the modulation of the soure–drain current in a spin valve by the magnetization of a third electrode, which is rotated by the spin-torque created by a control spin

  13. Technology Advances Enabling a New Class of Hybrid Underwater Vehicles

    Science.gov (United States)

    Bowen, A.

    2016-02-01

    Both tethered (ROV) and untethered (AUV) systems have proven to be highly valuable tools for a range of application undersea. Certain enabling technologies coupled with recent advances in robotic systems make it possible to consider supplementing many of the functions performed by these platforms with appropriately designed semi-autonomous vehicles that may be less expensive operate than traditional deep-water ROVs. Such vehicles can be deployed from smaller ships and may lead to sea-floor resident systems able to perform a range of interventions under direct human control when required. These systems are effectively a hybrid cross between ROV and AUV vehicles and poised to enable an important new class of undersea vehicle. It is now possible to radically redefine the meaning of the words "tethered vehicle" to include virtual tethering via acoustic and optical means or through the use of small diameter re-useable tethers, providing not power but only high bandwidth communications. The recent developments at Woods Hole Oceanographic Institution (WHOI), paves the way for a derivative vehicle type able to perform a range of interventions in deep water. Such battery-powered, hybrid-tethered vehicles will be able to perform tasks that might otherwise require a conventional ROV. These functions will be possible from less complex ships because of a greatly reduced dependence on large, heavy tethers and associated vehicle handling equipment. In certain applications, such vehicles can be resident within subsea facilities, able to provide operators with near instant access when required. Several key emerging technologies and capabilities make such a vehicle possible. Advances in both acoustic and optical "wireless" underwater communications and mico-tethers as pioneered by the HROV Nereus offer the potential to transform ROV type operations and thus offer planners and designers an important new dimension to subsea robotic intervention

  14. Spin physics in semiconductors

    CERN Document Server

    2017-01-01

    This book offers an extensive introduction to the extremely rich and intriguing field of spin-related phenomena in semiconductors. In this second edition, all chapters have been updated to include the latest experimental and theoretical research. Furthermore, it covers the entire field: bulk semiconductors, two-dimensional semiconductor structures, quantum dots, optical and electric effects, spin-related effects, electron-nuclei spin interactions, Spin Hall effect, spin torques, etc. Thanks to its self-contained style, the book is ideally suited for graduate students and researchers new to the field.

  15. Autonomous Underwater Vehicle Magnetic Mapping System

    Science.gov (United States)

    Steigerwalt, R.; Johnson, R. M.; Trembanis, A. C.; Schmidt, V. E.; Tait, G.

    2012-12-01

    An Autonomous Underwater Vehicle (AUV) Magnetic Mapping (MM) System has been developed and tested for military munitions detection as well as pipeline locating, wreck searches, and geologic surveys in underwater environments. The system is comprised of a high sensitivity Geometrics G-880AUV cesium vapor magnetometer integrated with a Teledyne-Gavia AUV and associated Doppler enabled inertial navigation further utilizing traditional acoustic bathymetric and side scan imaging. All onboard sensors and associated electronics are managed through customized crew members to autonomously operate through the vehicles primary control module. Total field magnetic measurements are recorded with asynchronous time-stamped data logs which include position, altitude, heading, pitch, roll, and electrical current usage. Pre-planned mission information can be uploaded to the system operators to define data collection metrics including speed, height above seafloor, and lane or transect spacing specifically designed to meet data quality objectives for the survey. As a result of the AUVs modular design, autonomous navigation and rapid deployment capabilities, the AUV MM System provides cost savings over current surface vessel surveys by reducing the mobilization/demobilization effort, thus requiring less manpower for operation and reducing or eliminating the need for a surface support vessel altogether. When the system completes its mission, data can be remotely downloaded via W-LAN and exported for use in advanced signal processing platforms. Magnetic compensation software has been concurrently developed to accept electrical current measurements directly from the AUV to address distortions from permanent and induced magnetization effects on the magnetometer. Maneuver and electrical current compensation terms can be extracted from the magnetic survey missions to perform automated post-process corrections. Considerable suppression of system noise has been observed over traditional

  16. Underwater Animal Monitoring Magnetic Sensor System

    KAUST Repository

    Kaidarova, Altynay

    2017-10-01

    Obtaining new insights into the behavior of free-living marine organisms is fundamental for conservation efforts and anticipating the impact of climate change on marine ecosystems. Despite the recent advances in biotelemetry, collecting physiological and behavioral parameters of underwater free-living animals remains technically challenging. In this thesis, we develop the first magnetic underwater animal monitoring system that utilizes Tunnel magnetoresistance (TMR) sensors, the most sensitive solid-state sensors today, coupled with flexible magnetic composites. The TMR sensors are composed of CoFeB free layers and MgO tunnel barriers, patterned using standard optical lithography and ion milling procedures. The short and long-term stability of the TMR sensors has been studied using statistical and Allan deviation analysis. Instrumentation noise has been reduced using optimized electrical interconnection schemes. We also develop flexible NdFeB-PDMS composite magnets optimized for applications in corrosive marine environments, and which can be attached to marine animals. The magnetic and mechanical properties are studied for different NdFeB powder concentrations and the performance of the magnetic composites for different exposure times to sea water is systematically investigated. Without protective layer, the composite magnets loose more than 50% of their magnetization after 51 days in seawater. The durability of the composite magnets can be considerably improved by using polymer coatings which are protecting the composite magnet, whereby Parylene C is found to be the most effective solution, providing simultaneously corrosion resistance, flexibility, and enhanced biocompatibility. A Parylene C film of 2μm thickness provides the sufficient protection of the magnetic composite in corrosive aqueous environments for more than 70 days. For the high level performance of the system, the theoretically optimal position of the composite magnets with respect to the sensing

  17. Underwater Optical Wireless Channel Modeling Using Monte-Carlo Method

    Science.gov (United States)

    Saini, P. Sri; Prince, Shanthi

    2011-10-01

    At present, there is a lot of interest in the functioning of the marine environment. Unmanned or Autonomous Underwater Vehicles (UUVs or AUVs) are used in the exploration of the underwater resources, pollution monitoring, disaster prevention etc. Underwater, where radio waves do not propagate, acoustic communication is being used. But, underwater communication is moving towards Optical Communication which has higher bandwidth when compared to Acoustic Communication but has shorter range comparatively. Underwater Optical Wireless Communication (OWC) is mainly affected by the absorption and scattering of the optical signal. In coastal waters, both inherent and apparent optical properties (IOPs and AOPs) are influenced by a wide array of physical, biological and chemical processes leading to optical variability. The scattering effect has two effects: the attenuation of the signal and the Inter-Symbol Interference (ISI) of the signal. However, the Inter-Symbol Interference is ignored in the present paper. Therefore, in order to have an efficient underwater OWC link it is necessary to model the channel efficiently. In this paper, the underwater optical channel is modeled using Monte-Carlo method. The Monte Carlo approach provides the most general and most flexible technique for numerically solving the equations of Radiative transfer. The attenuation co-efficient of the light signal is studied as a function of the absorption (a) and scattering (b) coefficients. It has been observed that for pure sea water and for less chlorophyll conditions blue wavelength is less absorbed whereas for chlorophyll rich environment red wavelength signal is absorbed less comparative to blue and green wavelength.

  18. Durable underwater superoleophobic PDDA/halloysite nanotubes decorated stainless steel mesh for efficient oil-water separation

    Science.gov (United States)

    Hou, Kun; Zeng, Yicheng; Zhou, Cailong; Chen, Jiahui; Wen, Xiufang; Xu, Shouping; Cheng, Jiang; Lin, Yingguang; Pi, Pihui

    2017-09-01

    A durable underwater superoleophobic mesh was conveniently prepared by layer-by-layer (LBL) assembly of poly (diallyldimethylammonium chloride) (PDDA) and halloysite nanotubes (HNTs) on a stainless steel mesh. The hierarchical structure and roughness of the PDDA/HNTs coating surface were controlled by adjusting the number of layer deposition cycles. When the PDDA/HNTs coating with 10 deposition cycles was decorated on the mesh with pore size of about 54 μm, the underwater superoleophobic mesh was obtained. The as-prepared underwater superoleophobic PDDA/HNTs decorated mesh exhibits outstanding oil-water separation performance with a separation efficiency of over 97% for various oil/water mixtures, which allowed water to pass through while repelled oil completely. In addition, the as-prepared decorated mesh still maintained high separation efficiency above 97% after repeated 20 separation times for hexane/water mixture or chloroform/water mixture. More importantly, the as-prepared decorated mesh is durable enough to resist chemical and mechanical challenges, such as strong alkaline, salt aqueous and sand abrasion. Therefore, the as-prepared decorated mesh has practical utility in oil-water separation due to its stable oil-water performance, remarkable chemical and mechanical durability and the facile and eco-friendly preparation process.

  19. The Triple Axis and SPINS Spectrometers.

    Science.gov (United States)

    Trevino, S F

    1993-01-01

    In this paper are described the triple axis and spin polarized inelastic neutron scattering (SPINS) spectrometers which are installed at the NIST Cold Neutron Research Facility (CNRF). The general principle of operation of these two instruments is described in sufficient detail to allow the reader to make an informed decision as to their usefulness for his needs. However, it is the intention of the staff at the CNRF to provide the expert resources for their efficient use in any given situation. Thus, this work is not intended as a user manual but rather as a guide into the range of applicability of the two instruments.

  20. Innovative spin precessor for intermediate energy protons

    International Nuclear Information System (INIS)

    Hoffman, E.W.

    1979-01-01

    A spin precessor has been designed to provide arbitrary orientation of the polarization in the external proton beam at LAMPF. The device utilizes two superconducting solenoids, three conventional dipoles, and conversion of polarized H - to H + to provide an achromatic, undeflected beam with tunable spin orientation over a range of energies from 400 MeV to 800 MeV. A portion of this device is being installed to provide compatibility between two facilities which simultaneously use two branches of the external proton beam at LAMPF

  1. The triple axis and SPINS spectrometers

    International Nuclear Information System (INIS)

    Trevino, S.F.

    1993-01-01

    In this paper are described the triple axis and spin polarized inelastic neutron scattering (SPINS) spectrometers which are installed at the NIST Cold Neutron Research Facility (CNRF). The general principle of operation of these two instruments is described in sufficient detail to allow the reader to make an informed decision as to their usefulness for his needs. However, it is the intention of the staff at the CNRF to provide the expert resources for their efficient use in any given situation. Thus, this work is not intended as a user manual but rather as a guide into the range of applicability of the two instruments

  2. A Framework for Evaluating Advanced Search Concepts for Multiple Autonomous Underwater Vehicle (AUV) Mine Countermeasures (MCM)

    National Research Council Canada - National Science Library

    Gooding, Trent

    2001-01-01

    .... In recent years, autonomous underwater vehicles (AUV) have emerged as a viable technology for conducting underwater search, survey, and clearance operations in support of the mine countermeasures (MCM) mission...

  3. A comparative view of routing protocols for underwater wireless sensor networks

    NARCIS (Netherlands)

    Bayrakdar, Y.; Meratnia, Nirvana; Kantarci, Aylin

    2011-01-01

    Design of efficient routing protocols for underwater sensor networks is challenging because of the distinctive characteristics of the water medium. Currently, many routing protocols are available for terrestrial wireless sensor networks. However, specific properties of underwater medium such as

  4. US-Japan Cooperative Research on Biology-Inspired Precision Maneuvering of Underwater Vehicles

    National Research Council Canada - National Science Library

    Kato, Naomi

    2004-01-01

    .... We constructed an underwater vehicle equipped with two pairs of mechanical pectoral fins and pectoral fin controllers to examine the swimming performance of the underwater vehicle in still water...

  5. Predictive Model for the Analysis of the Effects of Underwater Impulsive Sources on Marine Life

    National Research Council Canada - National Science Library

    Lazauski, Colin J

    2007-01-01

    A method is provided to predict the biological consequences to marine animals from exposure to multiple underwater impulsive sources by simulating underwater explosions over a defined period of time...

  6. Spin dynamics in relativistic ionization with highly charged ions in super-strong laser fields

    International Nuclear Information System (INIS)

    Klaiber, Michael; Yakaboylu, Enderalp; Bauke, Heiko; Hatsagortsyan, Karen Z; Müller, Carsten; Paulus, Gerhard G

    2014-01-01

    Spin dynamics and induced spin effects in above-threshold ionization of hydrogenlike highly charged ions in super-strong laser fields are investigated. Spin-resolved ionization rates in the tunnelling regime are calculated by employing two versions of a relativistic Coulomb-corrected strong-field approximation (SFA). An intuitive simpleman model is developed which explains the derived scaling laws for spin flip and spin asymmetry effects. The intuitive model as well as our ab initio numerical simulations support the analytical results for the spin effects obtained in the dressed SFA where the impact of the laser field on the electron spin evolution in the bound state is taken into account. In contrast, the standard SFA is shown to fail in reproducing spin effects in ionization even at a qualitative level. The anticipated spin-effects are expected to be measurable with modern laser techniques combined with an ion storage facility. (paper)

  7. Shape optimisation of an underwater Bernoulli gripper

    Science.gov (United States)

    Flint, Tim; Sellier, Mathieu

    2015-11-01

    In this work, we are interested in maximising the suction produced by an underwater Bernoulli gripper. Bernoulli grippers work by exploiting low pressure regions caused by the acceleration of a working fluid through a narrow channel, between the gripper and a surface, to provide a suction force. This mechanism allows for non-contact adhesion to various surfaces and may be used to hold a robot to the hull of a ship while it inspects welds for example. A Bernoulli type pressure analysis was used to model the system with a Darcy friction factor approximation to include the effects of frictional losses. The analysis involved a constrained optimisation in order to avoid cavitation within the mechanism which would result in decreased performance and damage to surfaces. A sensitivity based method and gradient descent approach was used to find the optimum shape of a discretised surface. The model's accuracy has been quantified against finite volume computational fluid dynamics simulation (ANSYS CFX) using the k- ω SST turbulence model. Preliminary results indicate significant improvement in suction force when compared to a simple geometry by retaining a pressure just above that at which cavitation would occur over as much surface area as possible. Doctoral candidate in the Mechanical Engineering Department of the University of Canterbury, New Zealand.

  8. Underwater radiated noise from modern commercial ships.

    Science.gov (United States)

    McKenna, Megan F; Ross, Donald; Wiggins, Sean M; Hildebrand, John A

    2012-01-01

    Underwater radiated noise measurements for seven types of modern commercial ships during normal operating conditions are presented. Calibrated acoustic data (autonomous seafloor-mounted acoustic recorder were combined with ship passage information from the Automatic Identification System. This approach allowed for detailed measurements (i.e., source level, sound exposure level, and transmission range) on ships of opportunity. A key result was different acoustic levels and spectral shapes observed from different ship-types. A 54 kGT container ship had the highest broadband source level at 188 dB re 1 μPa@1m; a 26 kGT chemical tanker had the lowest at 177 dB re 1 μPa@1m. Bulk carriers had higher source levels near 100 Hz, while container ship and tanker noise was predominantly below 40 Hz. Simple models to predict source levels of modern merchant ships as a group from particular ship characteristics (e.g., length, gross tonnage, and speed) were not possible given individual ship-type differences. Furthermore, ship noise was observed to radiate asymmetrically. Stern aspect noise levels are 5 to 10 dB higher than bow aspect noise levels. Collectively, these results emphasize the importance of including modern ship-types in quantifying shipping noise for predictive models of global, regional, and local marine environments. © 2012 Acoustical Society of America.

  9. The Modular Optical Underwater Survey System

    Directory of Open Access Journals (Sweden)

    Ruhul Amin

    2017-10-01

    Full Text Available The Pacific Islands Fisheries Science Center deploys the Modular Optical Underwater Survey System (MOUSS to estimate the species-specific, size-structured abundance of commercially-important fish species in Hawaii and the Pacific Islands. The MOUSS is an autonomous stereo-video camera system designed for the in situ visual sampling of fish assemblages. This system is rated to 500 m and its low-light, stereo-video cameras enable identification, counting, and sizing of individuals at a range of 0.5–10 m. The modular nature of MOUSS allows for the efficient and cost-effective use of various imaging sensors, power systems, and deployment platforms. The MOUSS is in use for surveys in Hawaii, the Gulf of Mexico, and Southern California. In Hawaiian waters, the system can effectively identify individuals to a depth of 250 m using only ambient light. In this paper, we describe the MOUSS’s application in fisheries research, including the design, calibration, analysis techniques, and deployment mechanism.

  10. Autonomous Underwater Vehicle Thermoelectric Power Generation

    Science.gov (United States)

    Buckle, J. R.; Knox, A.; Siviter, J.; Montecucco, A.

    2013-07-01

    Autonomous underwater vehicles (AUVs) are a vital part of the oceanographer's toolbox, allowing long-term measurements across a range of ocean depths of a number of ocean properties such as salinity, fluorescence, and temperature profile. Buoyancy-based gliding, rather than direct propulsion, dramatically reduces AUV power consumption and allows long-duration missions on the order of months rather than hours or days, allowing large distances to be analyzed or many successive analyses of a certain area without the need for retrieval. Recent versions of these gliders have seen the buoyancy variation system change from electrically powered to thermally powered using phase-change materials, however a significant battery pack is still required to power communications and sensors, with power consumption in the region of 250 mW. The authors propose a novel application of a thermoelectric generation system, utilizing the depth-related variation in oceanic temperature. A thermal energy store provides a temperature differential across which a thermoelectric device can generate from repeated dives, with the primary purpose of extending mission range. The system is modeled in Simulink to analyze the effect of variation in design parameters. The system proves capable of generating all required power for a modern AUV.

  11. Data extraction system for underwater particle holography

    Science.gov (United States)

    Nebrensky, J. J.; Craig, Gary; Hobson, Peter R.; Lampitt, R. S.; Nareid, Helge; Pescetto, A.; Trucco, Andrea; Watson, John

    2000-08-01

    Pulsed laser holography in an extremely powerful technique for the study of particle fields as it allows instantaneous, non-invasive high- resolution recording of substantial volumes. By relaying the real image one can obtain the size, shape, position and - if multiple exposures are made - velocity of every object in the recorded field. Manual analysis of large volumes containing thousands of particles is, however, an enormous and time-consuming task, with operator fatigue an unpredictable source of errors. Clearly the value of holographic measurements also depends crucially on the quality of the reconstructed image: not only will poor resolution degrade the size and shape measurements, but aberrations such as coma and astigmatism can change the perceived centroid of a particle, affecting position and velocity measurements. For large-scale applications of particle field holography, specifically the in situ recording of marine plankton with Holocam, we have developed an automated data extraction system that can be readily switched between the in-line and off-axis geometries and provides optimised reconstruction from holograms recorded underwater. As a videocamera is automatically stepped through the 200 by 200 by 1000mm sample volume, image processing and object tracking routines locate and extract particle images for further classification by a separate software module.

  12. Muon spin relaxation in random spin systems

    International Nuclear Information System (INIS)

    Toshimitsu Yamazaki

    1981-01-01

    The longitudinal relaxation function Gsub(z)(t) of the positive muon can reflect dynamical characters of local field in a unique way even when the correlation time is longer than the Larmor period of local field. This method has been applied to studies of spin dynamics in spin glass systems, revealing sharp but continuous temperature dependence of the correlation time. Its principle and applications are reviewed. (author)

  13. Research of Algorithms for Approaching and Docking Underwater Vehicle with Underwater Station

    Directory of Open Access Journals (Sweden)

    Pshikhopov Vyacheslav

    2015-01-01

    Full Text Available Authors consider problem of maintenance and service of underwater vehicles. Usually, underwater station or accompanying ship is required for such operations. Docking is one of the most difficult tasks on the vehicle path from the outer space to the servicing bay. Algorithms allowing docking were presented in the earlier paper, and in this paper authors prove their stability. Movement control is based upon the path regulator. The stability of the closed-loop system according to Liapunov with the given control and limitations is proven. Equations, showing that vehicle will complete the positioning task with account to given limitations and staying stable are given. The criterion for switching movement and “positioning to point” algorithms is proposed. Achievement of the developed criterion was researched theoretically and in computer simulation. Experiments provide deviation of actual coordinates and velocity from the required ones and proved that achieving of criterion is enough to claim that system will be stable while performing algorithms with limitations for controls.

  14. Autonomous docking control of visual-servo type underwater vehicle system aiming at underwater automatic charging

    International Nuclear Information System (INIS)

    Yanou, Akira; Ohnishi, Shota; Ishiyama, Shintaro; Minami, Mamoru

    2015-01-01

    A visual-servo type remotely operated vehicle (ROV) system with binocular wide-angle lens was developed to survey submarine resources, decontaminate radiation from mud in dam lake and so on. This paper explores the experiments on regulator performance and underwater docking of the robot system utilizing Genetic Algorithm (GA) for real-time recognition of the robot's relative position and posture through 3D marker. The visual servoing performances have been verified as follows; (1) The stability performances of the proposed regulator system have been evaluated by exerting abrupt distrubane force while the ROV is controlled by visual servoing. (2) The proposed system can track time-variant desired target position in x-axis (front-back direction of the robot). (3) The underwater docking can be completed by switching visual servoing and docking modes based on the error threshold, and by giving time-varying desired target position and orientation to the controller as a desired pose. (author)

  15. Modeling and Simulation of Underwater Flexible Manipulator as Raleigh Beam Using Bond Graph

    OpenAIRE

    Sumit Kumar; Sunil Kumar; Chandan Deep Singh

    2015-01-01

    This paper presents modeling and simulation of flexible robot in an underwater environment. The underwater environment completely contrasts with ground or space environment. The robot in an underwater situation is subjected to various dynamic forces like buoyancy forces, hydrostatic and hydrodynamic forces. The underwater robot is modeled as Rayleigh beam. The developed model further allows estimating the deflection of tip in two directions. The complete dynamics of the u...

  16. Design and implementation of an underwater sound recording device.

    Science.gov (United States)

    Martinez, Jayson J; Myers, Josh R; Carlson, Thomas J; Deng, Z Daniel; Rohrer, John S; Caviggia, Kurt A; Woodley, Christa M; Weiland, Mark A

    2011-01-01

    To monitor the underwater sound and pressure waves generated by anthropogenic activities such as underwater blasting and pile driving, an autonomous system was designed to record underwater acoustic signals. The underwater sound recording device (USR) allows for connections of two hydrophones or other dynamic pressure sensors, filters high frequency noise out of the collected signals, has a gain that can be independently set for each sensor, and allows for 2 h of data collection. Two versions of the USR were created: a submersible model deployable to a maximum depth of 300 m, and a watertight but not fully submersible model. Tests were performed on the USR in the laboratory using a data acquisition system to send single-frequency sinusoidal voltages directly to each component. These tests verified that the device operates as designed and performs as well as larger commercially available data acquisition systems, which are not suited for field use. On average, the designed gain values differed from the actual measured gain values by about 0.35 dB. A prototype of the device was used in a case study to measure blast pressures while investigating the effect of underwater rock blasting on juvenile Chinook salmon and rainbow trout. In the case study, maximum positive pressure from the blast was found to be significantly correlated with frequency of injury for individual fish. The case study also demonstrated that the device withstood operation in harsh environments, making it a valuable tool for collecting field measurements.

  17. Design and Implementation of an Underwater Sound Recording Device

    Directory of Open Access Journals (Sweden)

    Christa M. Woodley

    2011-09-01

    Full Text Available To monitor the underwater sound and pressure waves generated by anthropogenic activities such as underwater blasting and pile driving, an autonomous system was designed to record underwater acoustic signals. The underwater sound recording device (USR allows for connections of two hydrophones or other dynamic pressure sensors, filters high frequency noise out of the collected signals, has a gain that can be independently set for each sensor, and allows for 2 h of data collection. Two versions of the USR were created: a submersible model deployable to a maximum depth of 300 m, and a watertight but not fully submersible model. Tests were performed on the USR in the laboratory using a data acquisition system to send single-frequency sinusoidal voltages directly to each component. These tests verified that the device operates as designed and performs as well as larger commercially available data acquisition systems, which are not suited for field use. On average, the designed gain values differed from the actual measured gain values by about 0.35 dB. A prototype of the device was used in a case study to measure blast pressures while investigating the effect of underwater rock blasting on juvenile Chinook salmon and rainbow trout. In the case study, maximum positive pressure from the blast was found to be significantly correlated with frequency of injury for individual fish. The case study also demonstrated that the device withstood operation in harsh environments, making it a valuable tool for collecting field measurements.

  18. Underwater topography acquired by remote sensing based on SOFM

    Science.gov (United States)

    Zhao, Jianhu; Zhou, Fengnian; Zhang, Hongmei; Li, Juanjuan

    2008-12-01

    In large-scope marine investigation, the traditional bathymetric measurement can not meet the requirement of rapid data acquisition with lower cost of financial and material resources, while remote sensing (RS) technology provides a perfect way in the work. RS can not only provide quickly and efficiently the information of underwater topography with respect to the traditional method, but also present corresponding underwater topography with different-period RS images. In this paper, we depict in detail the procedures and some key techniques in acquiring underwater topography by remote sensing inversion technology based on self-organization feature mapping (SOFM). Firstly, we introduce some basic theories about the acquisition of underwater topography by the RS inversion technology. Besides, we discuss the data acquisition and preparation in the work. Moreover, we implement correlation analysis and find out the sensitive bands used for building RS inversion model. In virtue of SOFM, we construct the mapping relation between water depth and the reflectivity of sensitive band in the studied area, and test the it in two experimental water areas. The model achieves satisfying accuracy and can meet the requirement of given bathymetric scale. Finally the mapping relation is used for the water depth inversion in the studied water area. We also use the water depth from the model to draw the underwater topographic map in the water area.

  19. A bio-inspired electrocommunication system for small underwater robots.

    Science.gov (United States)

    Wang, Wei; Liu, Jindong; Xie, Guangming; Wen, Li; Zhang, Jianwei

    2017-03-29

    Weakly electric fishes (Gymnotid and Mormyrid) use an electric field to communicate efficiently (termed electrocommunication) in the turbid waters of confined spaces where other communication modalities fail. Inspired by this biological phenomenon, we design an artificial electrocommunication system for small underwater robots and explore the capabilities of such an underwater robotic communication system. An analytical model for electrocommunication is derived to predict the effect of the key parameters such as electrode distance and emitter current of the system on the communication performance. According to this model, a low-dissipation, and small-sized electrocommunication system is proposed and integrated into a small robotic fish. We characterize the communication performance of the robot in still water, flowing water, water with obstacles and natural water conditions. The results show that underwater robots are able to communicate electrically at a speed of around 1 k baud within about 3 m with a low power consumption (less than 1 W). In addition, we demonstrate that two leader-follower robots successfully achieve motion synchronization through electrocommunication in the three-dimensional underwater space, indicating that this bio-inspired electrocommunication system is a promising setup for the interaction of small underwater robots.

  20. Feasibility of in situ beta ray measurements in underwater environment.

    Science.gov (United States)

    Park, Hye Min; Park, Ki Hyun; Kang, Sung Won; Joo, Koan Sik

    2017-09-01

    We describe an attempt at the development of an in situ detector for beta ray measurements in underwater environment. The prototype of the in situ detector is based on a CaF2: Eu scintillator using crystal light guide and Si photomultiplier. Tests were conducted using various reference sources for evaluating the linearity and stability of the detector in underwater environment. The system is simple and stable for long-term monitoring, and consumes low power. We show here an effective detection distance of 7 mm and a 2.273 MeV end-point energy spectrum of 90 Sr/ 90 Y when using the system underwater. The results demonstrate the feasibility of in situ beta ray measurements in underwater environment and can be applied for designing an in situ detector for radioactivity measurement in underwater environment. The in situ detector can also have other applications such as installation on the marine monitoring platform and quantitative analysis of radionuclides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A Review of the Emerging Field of Underwater Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Emily Chua

    2016-11-01

    Full Text Available Mass spectrometers are versatile sensor systems, owing to their high sensitivity and ability to simultaneously measure multiple chemical species. Over the last two decades, traditional laboratory-based membrane inlet mass spectrometers have been adapted for underwater use. Underwater mass spectrometry has drastically improved our capability to monitor a broad suite of gaseous compounds (e.g., dissolved atmospheric gases, light hydrocarbons, and volatile organic compounds in the aquatic environment. Here we provide an overview of the progress made in the field of underwater mass spectrometry since its inception in the 1990s to the present. In particular, we discuss the approaches undertaken by various research groups in developing in situ mass spectrometers. We also provide examples to illustrate how underwater mass spectrometers have been used in the field. Finally, we present future trends in the field of in situ mass spectrometry. Most of these efforts are aimed at improving the quality and spatial and temporal scales of chemical measurements in the ocean. By providing up-to-date information on underwater mass spectrometry, this review offers guidance for researchers interested in adapting this technology as well as goals for future progress in the field.

  2. Design and Evaluation Methods for Underwater Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Lin

    1996-12-31

    This thesis on underwater control systems is written with the designer in mind, assuming that the reader has some knowledge of control theory. It can be used as a text for undergraduate students and engineers. To help readers better understand the system they will be working with, the thesis is organised in a stepwise way. The reader will gain basic knowledge about underwater operations, equipment and control systems. Then the reader will be able to follow the steps to develop a required control system for an underwater equipment by first understanding the characteristics of the design problem, customer requirement, functional requirement, and possible solution, and then to present a mathematical model of the control problem. Having developed the concept, the thesis guides the reader to develop evaluation criteria and different ways to make the decision. The thesis gives an overview of how to achieve a successful design rather than giving the techniques for detailed control system design. Chapter 1 describes underwater operations and systems. Chapter 2 discusses issues of underwater control systems and control methods. Chapter 3 deals with design method and control systems theory, focusing on human-centered control. Chapter 4 discusses methods used to evaluate and rank products, and chapter 5 applies the methods to an example. 113 refs., 115 figs., 80 tabs.

  3. An Underwater Superoleophobic Sepiolite Fibrous Membrane (SFM) for Oil­‐in­‐water Emulsion Separation

    KAUST Repository

    Yao, Pinjiang

    2014-12-01

    Separating oil/water emulsions is significant for the ecosystem and the petroleum and processing industry. To this end, we prepared an underwater superoleophobic membrane inspired by unique wettability of the fish scales. This membrane was fabricated by a facile vacuum filtration process of sepiolite nanofibers and chitosan, and after the cross-linking via glutaraldehyde, a self-standing membrane was obtained. The as-prepared membrane exhibited excellent capability of separating both the surfactant-free and surfactant-stabilized oil-in-water emulsions with high efficiency. This sepiolite fibrous membrane offers a convenient, reliable and efficient way for the large-scale de-emulsification process.

  4. Underwater inspection and maintenance programs within nuclear and non-nuclear related operating systems

    International Nuclear Information System (INIS)

    Vallance, C.; Goulet, B.; Black, S.

    2008-01-01

    The increasing age of the nuclear and non-nuclear power generating facilities requires extended inspection, repair and maintenance (IRM) activities to prolong the operation of these facilities past their original design life. Commercial divers are often utilized to perform critical work at nuclear power plants, fuel reprocessing plants, waste storage facilities, and research institutions. These various tasks include inspection, welding, mechanical modifications and repairs, coating applications, and work associated with plant decommissioning. Programs may take place in areas such as the reactor vessel, equipment pool, spent fuel pool, and suppression chamber using manned intervention and remotely operated vehicles. Some of these tasks can also be conducted using remotely operated vehicles (ROV's). Although specialist robots are not uncommon to the nuclear industry, the use of free-swimming vehicle's and remote systems for the inspection of underwater assets has increased due to improvements of the supporting technologies and information requirements needed to extend the life of these facilities. This paper will provide an overview of the procedures and equipment necessary to perform unique work tasks using manned and unmanned techniques. (author)

  5. The susceptibilities in the spin-S Ising model

    International Nuclear Information System (INIS)

    Ainane, A.; Saber, M.

    1995-08-01

    The susceptibilities of the spin-S Ising model are evaluated using the effective field theory introduced by Tucker et al. for studying general spin-S Ising model. The susceptibilities are studied for all spin values from S = 1/2 to S = 5/2. (author). 12 refs, 4 figs

  6. Underwater wireless optical communications: From system-level demonstrations to channel modelling

    KAUST Repository

    Oubei, Hassan M.

    2018-01-09

    In this paper, we discuss about recent experimental advances in underwater wireless optical communications (UWOC) over various underwater channel water types using different modulation schemes as well as modelling and describing the statistical properties of turbulence-induced fading in underwater wireless optical channels using laser beam intensity fluctuations measurements.

  7. 76 FR 31233 - Safety Zone; Underwater Hazard, Gravesend Bay, Brooklyn, NY

    Science.gov (United States)

    2011-05-31

    ...-AA00 Safety Zone; Underwater Hazard, Gravesend Bay, Brooklyn, NY AGENCY: Coast Guard, DHS. ACTION... maritime public and safety of navigation from recently discovered underwater explosive hazards in Gravesend... published a notice of proposed rulemaking (NPRM) entitled ``Safety Zone; Underwater Hazard, Gravesend Bay...

  8. Efficient Weibull channel model for salinity induced turbulent underwater wireless optical communications

    KAUST Repository

    Oubei, Hassan M.

    2017-12-13

    Recent advances in underwater wireless optical communications necessitate a better understanding of the underwater channel. We propose the Weibull model to characterize the fading of salinity induced turbulent underwater wireless optical channels. The model shows an excellent agreement with the measured data under all channel conditions.

  9. Cathodic Protection Model Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs Navy design and engineering of ship and submarine impressed current cathodic protection (ICCP) systems for underwater hull corrosion control and...

  10. Higher spin gauge theories

    CERN Document Server

    Henneaux, Marc; Vasiliev, Mikhail A

    2017-01-01

    Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...

  11. Spin caloritronics in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Angsula; Frota, H. O. [Department of Physics, Federal University of Amazonas, Av. Rodrigo Octavio 3000-Japiim, 69077-000 Manaus, AM (Brazil)

    2015-06-14

    Spin caloritronics, the combination of spintronics with thermoelectrics, exploiting both the intrinsic spin of the electron and its associated magnetic moment in addition to its fundamental electronic charge and temperature, is an emerging technology mainly in the development of low-power-consumption technology. In this work, we study the thermoelectric properties of a Rashba dot attached to two single layer/bilayer graphene sheets as leads. The temperature difference on the two graphene leads induces a spin current, which depends on the temperature and chemical potential. We demonstrate that the Rashba dot behaves as a spin filter for selected values of the chemical potential and is able to filter electrons by their spin orientation. The spin thermopower has also been studied where the effects of the chemical potential, temperature, and also the Rashba term have been observed.

  12. Spin caloritronics in graphene

    Science.gov (United States)

    Frota, H. O.; Ghosh, Angsula

    2014-08-01

    Spin caloritronics, the combination of spintronics with thermoelectrics, based on spin and heat transport has attracted a great attention mainly in the development of low-power-consumption technology. In this work we study the thermoelectric properties of a quantum dot attached to two single layer graphene sheets as leads. The temperature difference on the two graphene leads induces a spin current which depends on the temperature and chemical potential. We demonstrate that the quantum dot behaves as a spin filter for selected values of the chemical potential and is able to filter electrons by their spin orientation. The spin thermopower has also been studied where the effects of the chemical potential, temperature and also the Coulomb repulsion due to the double occupancy of an energy level have been observed.

  13. Facilities & Leadership

    Data.gov (United States)

    Department of Veterans Affairs — The facilities web service provides VA facility information. The VA facilities locator is a feature that is available across the enterprise, on any webpage, for the...

  14. Chaos-Based Underwater Communication With Arbitrary Transducers and Bandwidth

    Directory of Open Access Journals (Sweden)

    Chao Bai

    2018-01-01

    Full Text Available In this work, an enhanced differential chaos shift keying (DCSK, based on a first order hybrid chaotic system, is being proposed for a high reliability underwater acoustic communication system. It can be integrated into systems that use standard existing transducers. We show that a coherent operation between the received signal and the time reversal of the basis function in a first order hybrid chaotic system maximizes the signal to noise ratio at the receiver. Concurrently, DCSK configuration is used to resist the distortion caused by the complex underwater acoustic channel. Our simulation results show that the proposed method has lower bit error rate (BER. In addition, it shows higher communication reliability over underwater acoustic channel as compared to the conventional DCSK using logistic map and its variant forms such as Correlation Delay Shift Keying (CDSK, Phase-Separate DCSK (PS-DCSK, High Efficiency DCSK (HE-DCSK, and Reference Modulated DCSK (RM-DCSK.

  15. Underwater video enhancement using multi-camera super-resolution

    Science.gov (United States)

    Quevedo, E.; Delory, E.; Callicó, G. M.; Tobajas, F.; Sarmiento, R.

    2017-12-01

    Image spatial resolution is critical in several fields such as medicine, communications or satellite, and underwater applications. While a large variety of techniques for image restoration and enhancement has been proposed in the literature, this paper focuses on a novel Super-Resolution fusion algorithm based on a Multi-Camera environment that permits to enhance the quality of underwater video sequences without significantly increasing computation. In order to compare the quality enhancement, two objective quality metrics have been used: PSNR (Peak Signal-to-Noise Ratio) and the SSIM (Structural SIMilarity) index. Results have shown that the proposed method enhances the objective quality of several underwater sequences, avoiding the appearance of undesirable artifacts, with respect to basic fusion Super-Resolution algorithms.

  16. The Research of Optical Turbulence Model in Underwater Imaging System

    Directory of Open Access Journals (Sweden)

    Liying Sun

    2014-01-01

    Full Text Available In order to research the effect of turbulence on underwater imaging system and image restoration, the underwater turbulence model is simulated by computer fluid dynamics. This model is obtained in different underwater turbulence intensity, which contains the pressure data that influences refractive index distribution. When the pressure value is conversed to refractive index, the refractive index distribution can be received with the refraction formula. In the condition of same turbulent intensity, the distribution of refractive index presents gradient in the whole region, with disorder and mutations in the local region. With the turbulence intensity increase, the holistic variation of the refractive index in the image is larger, and the refractive index change more tempestuously in the local region. All the above are illustrated by the simulation results with he ray tracing method and turbulent refractive index model. According to different turbulence intensity analysis, it is proved that turbulence causes image distortion and increases noise.

  17. Underwater Imaging Using a 1 × 16 CMUT Linear Array.

    Science.gov (United States)

    Zhang, Rui; Zhang, Wendong; He, Changde; Zhang, Yongmei; Song, Jinlong; Xue, Chenyang

    2016-03-01

    A 1 × 16 capacitive micro-machined ultrasonic transducer linear array was designed, fabricated, and tested for underwater imaging in the low frequency range. The linear array was fabricated using Si-SOI bonding techniques. Underwater transmission performance was tested in a water tank, and the array has a resonant frequency of 700 kHz, with pressure amplitude 182 dB (μPa·m/V) at 1 m. The -3 dB main beam width of the designed dense linear array is approximately 5 degrees. Synthetic aperture focusing technique was applied to improve the resolution of reconstructed images, with promising results. Thus, the proposed array was shown to be suitable for underwater imaging applications.

  18. Underwater Imaging Using a 1 × 16 CMUT Linear Array

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2016-03-01

    Full Text Available A 1 × 16 capacitive micro-machined ultrasonic transducer linear array was designed, fabricated, and tested for underwater imaging in the low frequency range. The linear array was fabricated using Si-SOI bonding techniques. Underwater transmission performance was tested in a water tank, and the array has a resonant frequency of 700 kHz, with pressure amplitude 182 dB (μPa·m/V at 1 m. The −3 dB main beam width of the designed dense linear array is approximately 5 degrees. Synthetic aperture focusing technique was applied to improve the resolution of reconstructed images, with promising results. Thus, the proposed array was shown to be suitable for underwater imaging applications.

  19. H∞ control for path tracking of autonomous underwater vehicle motion

    Directory of Open Access Journals (Sweden)

    Lin-Lin Wang

    2015-05-01

    Full Text Available In order to simplify the design of path tracking controller and solve the problem relating to nonlinear dynamic model of autonomous underwater vehicle motion planning, feedback linearization method is first adopted to transform the nonlinear dynamic model into an equivalent pseudo-linear dynamic model in horizontal coordinates. Then considering wave disturbance effect, mixed-sensitivity method of H∞ robust control is applied to design state-feedback controller for this equivalent dynamic model. Finally, control law of pseudo-linear dynamic model is transformed into state (surge velocity and yaw angular rate tracking control law of nonlinear dynamic model through inverse coordinate transformation. Simulation indicates that autonomous underwater vehicle path tracking is successfully implemented with this proposed method, and the influence of parameter variation in autonomous underwater vehicle dynamic model on its tracking performance is reduced by H∞ controller. All the results show that the method proposed in this article is effective and feasible.

  20. An underwater optical wireless communication system based on LED source

    Science.gov (United States)

    Rao, Jionghui; Wei, Wei; Wang, Feng; Zhang, Xiaohui

    2011-11-01

    Compared with other communication methods, optical wireless communication (OWC) holds the merits of higher transmitting rate and sufficient secrecy. So it is an efficacious communicating measure for data transmitting between underwater carriers. However, due to the water attenuation and the transmitter & the receiver (TX/RX) collimation, this application is restrained in underwater mobile carriers. A prototype for underwater OWC was developed, in which a high-powered green LED array was used as the light source which partly raveled the TX/RX collimation out. A small pumped-multiple-tube (PMT) was used as the detector to increase the communicating range, and FPGA chips were employed to code and decode the communicating data. The data rate of the prototype approached to 4 Mb/s at 8.4m and 1 Mb/s at 22m where voice and Morse communications were achieved in a scope of 30 degree TX/RX angle.

  1. Broadband focusing of underwater sound using a transparent pentamode lens.

    Science.gov (United States)

    Su, Xiaoshi; Norris, Andrew N; Cushing, Colby W; Haberman, Michael R; Wilson, Preston S

    2017-06-01

    An inhomogeneous acoustic metamaterial lens based on spatial variation of refractive index for broadband focusing of underwater sound is reported. The index gradient follows a modified hyperbolic secant profile designed to reduce aberration and suppress side lobes. The gradient index (GRIN) lens is comprised of transversely isotropic hexagonal microstructures with tunable quasi-static bulk modulus and mass density. In addition, the unit cells are impedance-matched to water and have in-plane shear modulus negligible compared to the effective bulk modulus. The flat GRIN lens is fabricated by cutting hexagonal centimeter scale hollow microstructures in aluminum plates, which are then stacked and sealed from the exterior water. Broadband focusing effects are observed within the homogenization regime of the lattice in both finite element simulations and underwater measurements (20-40 kHz). This design approach has potential applications in medical ultrasound imaging and underwater acoustic communications.

  2. Underwater Acoustic Communication Quality Evaluation Model Based on USV

    Directory of Open Access Journals (Sweden)

    Zhichao Lv

    2018-01-01

    Full Text Available The unmanned surface vehicle (USV integrated with acoustic modems has some advantages such as easy integration, rapid placement, and low cost, which becomes a kind of selective novel node in the underwater acoustic (UWA communication network and a kind of underwater or overwater communication relay as well. However, it is difficult to ensure the communication quality among the nodes on the network due to the random underwater acoustic channel, the severe marine environment, and the complex mobile node system. Aiming to model the communication characteristics of the USV, the multipath effect and Doppler effect are main concerns for the UWA communication in this paper, so that the ray beam method is utilized, the channel transmission function and the channel gain are obtained, and the mobile communication quality evaluation model is built. The simulation and lake experiments verify that the built mobile UWA communication quality evaluation model on USV can provide preference and technique support for USV applications.

  3. Course Outline for a SCUBA Diving Speciality "UNDERWATER Survey DIVER"

    Science.gov (United States)

    Papadimitriou, K.

    2015-04-01

    The purpose of this paper is to outline a course for the training of divers with a special interest in underwater surveying (e.g. surveyors, archaeologists, biologists, geologists, photographers/videographers). This outline presents: i) the Courses' Standards ii) the Learning Objectives for the related Knowledge Development, iii) the Skills that have to be conducted, iv) the Performance Requirements for the students and v) the Open Water Considerations for the Training Dives. It is expected that the resulting course outline will be used as a reference for the training of certified divers who want to become underwater surveyors, providing them basic knowledge and skills to survey adequate data for the detailed documentation of submerged features. Moreover the combination of knowledge (what) and the skills (how) that are presented during the proposed course attempt to define a protocol for the recording of underwater features in favor of mapping and 3D modeling.

  4. Underwater Time Service and Synchronization Based on Time Reversal Technique

    Science.gov (United States)

    Lu, Hao; Wang, Hai-bin; Aissa-El-Bey, Abdeldjalil; Pyndiah, Ramesh

    2010-09-01

    Real time service and synchronization are very important to many underwater systems. But the time service and synchronization in existence cannot work well due to the multi-path propagation and random phase fluctuation of signals in the ocean channel. The time reversal mirror technique can realize energy concentration through self-matching of the ocean channel and has very good spatial and temporal focusing properties. Based on the TRM technique, we present the Time Reversal Mirror Real Time service and synchronization (TRMRT) method which can bypass the processing of multi-path on the server side and reduce multi-path contamination on the client side. So TRMRT can improve the accuracy of time service. Furthermore, as an efficient and precise method of time service, TRMRT could be widely used in underwater exploration activities and underwater navigation and positioning systems.

  5. Optimal Node Placement in Underwater Wireless Sensor Networks

    KAUST Repository

    Felamban, M.

    2013-03-25

    Wireless Sensor Networks (WSN) are expected to play a vital role in the exploration and monitoring of underwater areas which are not easily reachable by humans. However, underwater communication via acoustic waves is subject to several performance limitations that are very different from those used for terresstrial networks. In this paper, we investigate node placement for building an initial underwater WSN infrastructure. We formulate this problem as a nonlinear mathematical program with the objective of minimizing the total transmission loss under a given number of sensor nodes and targeted coverage volume. The obtained solution is the location of each node represented via a truncated octahedron to fill out the 3D space. Experiments are conducted to verify the proposed formulation, which is solved using Matlab optimization tool. Simulation is also conducted using an ns-3 simulator, and the simulation results are consistent with the obtained results from mathematical model with less than 10% error.

  6. A potential flow based flight simulator for an underwater glider

    Science.gov (United States)

    Phoemsapthawee, Surasak; Le Boulluec, Marc; Laurens, Jean-Marc; Deniset, François

    2013-03-01

    Underwater gliders are recent innovative types of autonomous underwater vehicles (AUVs) used in ocean exploration and observation. They adjust their buoyancy to dive and to return to the ocean surface. During the change of altitude, they use the hydrodynamic forces developed by their wings to move forward. Their flights are controlled by changing the position of their centers of gravity and their buoyancy to adjust their trim and heel angles. For better flight control, the understanding of the hydrodynamic behavior and the flight mechanics of the underwater glider is necessary. A 6-DOF motion simulator is coupled with an unsteady potential flow model for this purpose. In some specific cases, the numerical study demonstrates that an inappropriate stabilizer dimension can cause counter-steering behavior. The simulator can be used to improve the automatic flight control. It can also be used for the hydrodynamic design optimization of the devices.

  7. Development and experiments of the Sea-Wing underwater glider

    Science.gov (United States)

    Yu, Jian-Cheng; Zhang, Ai-Qun; Jin, Wen-Ming; Chen, Qi; Tian, Yu; Liu, Chong-Jie

    2011-12-01

    Underwater gliders, which glide through water columns by use of a pair of wings, are efficient long-distance, long-duration marine environment observatory platforms. The Sea-Wing underwater glider, developed by the Shenyang Institute of Automation, CAS, is designed for the application of deep-sea environment variables observation. The system components, the mechanical design, and the control system design of the Sea-Wing underwater glider are described in this paper. The pitch and roll adjusting models are derived based on the mechanical design, and the adjusting capabilities for the pitch and roll are analyzed according to the models. Field experiments have been carried out for validating the gliding motion and the ability of measuring ocean environment variables. Experimental results of the motion performances of the glider are presented.

  8. Spin and Maximal Acceleration

    Directory of Open Access Journals (Sweden)

    Giorgio Papini

    2017-12-01

    Full Text Available We study the spin current tensor of a Dirac particle at accelerations close to the upper limit introduced by Caianiello. Continual interchange between particle spin and angular momentum is possible only when the acceleration is time-dependent. This represents a stringent limit on the effect that maximal acceleration may have on spin physics in astrophysical applications. We also investigate some dynamical consequences of maximal acceleration.

  9. Spin Hall effect devices

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Tomáš; Wunderlich, Joerg; Olejník, Kamil

    2012-01-01

    Roč. 11, č. 5 (2012), s. 382-390 ISSN 1476-1122 EU Projects: European Commission(XE) 268066 - 0MSPIN; European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : spin Hall effect * spintronics * spin transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 35.749, year: 2012

  10. Spin coating apparatus

    Science.gov (United States)

    Torczynski, John R.

    2000-01-01

    A spin coating apparatus requires less cleanroom air flow than prior spin coating apparatus to minimize cleanroom contamination. A shaped exhaust duct from the spin coater maintains process quality while requiring reduced cleanroom air flow. The exhaust duct can decrease in cross section as it extends from the wafer, minimizing eddy formation. The exhaust duct can conform to entrainment streamlines to minimize eddy formation and reduce interprocess contamination at minimal cleanroom air flow rates.

  11. A self-cleaning underwater superoleophobic mesh for oil-water separation

    KAUST Repository

    Zhang, Lianbin

    2013-07-31

    Oil-water separation has recently become a global challenging task because of the frequent occurrence of oil spill accidents due to the offshore oil production and transportation, and there is an increasing demand for the development of effective and inexpensive approaches for the cleaning-up of the oily pollution in water system. In this study, a self-cleaning underwater superoleophobic mesh that can be used for oil-water separation is prepared by the layer-by-layer (LbL) assembly of sodium silicate and TiO2 nanoparticles on the stainless steel mesh. The integration of the self-cleaning property into the all-inorganic separation mesh by using TiO2 enables the convenient removal of the contaminants by ultraviolet (UV) illumination, and allows for the facile recovery of the separation ability of the contaminated mesh, making it promising for practial oil-water separation applications.

  12. A controllable spin prism

    International Nuclear Information System (INIS)

    Hakioglu, T

    2009-01-01

    Based on Khodas et al (2004 Phys. Rev. Lett. 92 086602), we propose a device acting like a controllable prism for an incident spin. The device is a large quantum well where Rashba and Dresselhaus spin-orbit interactions are present and controlled by the plunger gate potential, the electric field and the barrier height. A totally destructive interference can be manipulated externally between the Rashba and Dresselhaus couplings. The spin-dependent transmission/reflection amplitudes are calculated as the control parameters are changed. The device operates as a spin prism/converter/filter in different regimes and may stimulate research in promising directions in spintronics in analogy with linear optics.

  13. Quantum spin Hall phases

    International Nuclear Information System (INIS)

    Murakami, Shuichi

    2009-01-01

    We review our recent theoretical works on the quantum spin Hall effect. First we compare edge states in various 2D systems, and see whether they are robust or fragile against perturbations. Through the comparisons we see the robust nature of edge states in 2D quantum spin Hall phases. We see how it is protected by the Z 2 topological number, and reveal the nature of the Z 2 topological number by studying the phase transition between the quantum spin Hall and insulator phases. We also review our theoretical proposal of the ultrathin bismuth film as a candidate to the 2D quantum spin Hall system. (author)

  14. PREFACE: Spin Electronics

    Science.gov (United States)

    Dieny, B.; Sousa, R.; Prejbeanu, L.

    2007-04-01

    Conventional electronics has in the past ignored the spin on the electron, however things began to change in 1988 with the discovery of giant magnetoresistance in metallic thin film stacks which led to the development of a new research area, so called spin-electronics. In the last 10 years, spin-electronics has achieved a number of breakthroughs from the point of view of both basic science and application. Materials research has led to several major discoveries: very large tunnel magnetoresistance effects in tunnel junctions with crystalline barriers due to a new spin-filtering mechanism associated with the spin-dependent symmetry of the electron wave functions new magnetic tunnelling barriers leading to spin-dependent tunnelling barrier heights and acting as spin-filters magnetic semiconductors with increasingly high ordering temperature. New phenomena have been predicted and observed: the possibility of acting on the magnetization of a magnetic nanostructure with a spin-polarized current. This effect, due to a transfer of angular momentum between the spin polarized conduction electrons and the local magnetization, can be viewed as the reciprocal of giant or tunnel magnetoresistance. It can be used to switch the magnetization of a magnetic nanostructure or to generate steady magnetic excitations in the system. the possibility of generating and manipulating spin current without charge current by creating non-equilibrium local accumulation of spin up or spin down electrons. The range of applications of spin electronics materials and phenomena is expanding: the first devices based on giant magnetoresistance were the magnetoresistive read-heads for computer disk drives. These heads, introduced in 1998 with current-in plane spin-valves, have evolved towards low resistance tunnel magnetoresistice heads in 2005. Besides magnetic recording technology, these very sensitive magnetoresistive sensors are finding applications in other areas, in particular in biology. magnetic

  15. Local Noncollinear Spin Analysis.

    Science.gov (United States)

    Abate, Bayileyegn A; Joshi, Rajendra P; Peralta, Juan E

    2017-12-12

    In this work, we generalize the local spin analysis of Clark and Davidson [J. Chem. Phys. 2001 115 (16), 7382] for the partitioning of the expectation value of the molecular spin square operator, ⟨Ŝ 2 ⟩, into atomic contributions, ⟨Ŝ A ·Ŝ B ⟩, to the noncollinear spin case in the framework of density functional theory (DFT). We derive the working equations, and we show applications to the analysis of the noncollinear spin solutions of typical spin-frustrated systems and to the calculation of magnetic exchange couplings. In the former case, we employ the triangular H 3 He 3 test molecule and a Mn 3 complex to show that the local spin analysis provides additional information that complements the standard one-particle spin population analysis. For the calculation of magnetic exchange couplings, J AB , we employ the local spin partitioning to extract ⟨Ŝ A ·Ŝ B ⟩ as a function of the interatomic spin orientation given by the angle θ. This, combined with the dependence of the electronic energy with θ, provides a methodology to extract J AB from DFT calculations that, in contrast to conventional energy differences based methods, does not require the use of ad hoc S A and S B values.

  16. Spin glasses (II)

    International Nuclear Information System (INIS)

    Fischer, K.H.

    1985-01-01

    Experimental results of spin glass studies are reviewed and related to existing theories. Investigations of spin glasses are concentrated on atomic structure, metallurgical treatment, and high-temperature susceptibility of alloys, on magnetic properties at low temperature and near the freezing temperature, on anisotropy behaviour measured by ESR, NMR and torque, on specific heat, Moessbauer effect, neutron scattering and muon-spin depolarization experiments, ultrasound and transport properties. Some new theories of spin glasses are discussed which have been developed since Part I appeared

  17. Biochemistry Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Biochemistry Facility provides expert services and consultation in biochemical enzyme assays and protein purification. The facility currently features 1) Liquid...

  18. Underwater Visual Computing: The Grand Challenge Just around the Corner.

    Science.gov (United States)

    von Lukas, Uwe Freiherr

    2016-01-01

    Visual computing technologies have traditionally been developed for conventional setups where air is the surrounding medium for the user, the display, and/or the camera. However, given mankind's increasingly need to rely on the oceans to solve the problems of future generations (such as offshore oil and gas, renewable energies, and marine mineral resources), there is a growing need for mixed-reality applications for use in water. This article highlights the various research challenges when changing the medium from air to water, introduces the concept of underwater mixed environments, and presents recent developments in underwater visual computing applications.

  19. Ancient Dwarka: Study based on recent underwater archaeological investigations

    Digital Repository Service at National Institute of Oceanography (India)

    Gaur, A.S.; Sundaresh; Tripati, S.

    -1 Migration & Diffusion, Vol. 6, Issue Number 21, 2005 ANCIENT DWARKA: STUDY BASED ON RECENT UNDERWATER ARCHAEOLOGICAL INVESTIGATIONS by A.S. Gaur, Sundaresh and Sila Tripati Summary Dwarka, one of the best-studied underwater sites in India, has...). Dwarka has been the attraction for historians since the beginning of the 20th century. The ancient town Dwarka has been described as 56 Migration & Diffusion, Vol 6, Issue Number 21, 2005 Fig.l: Dwarka is headquarter of the Okhamandal taluka in Jamnagar...

  20. Underwater Shock Response Analysis of a Floating Vessel

    Directory of Open Access Journals (Sweden)

    J.E. van Aanhold

    1998-01-01

    Full Text Available The response of a surface vessel to underwater shock has been calculated using an explicit finite element analysis. The analysis model is two-dimensional and contains the floating steel structure, a large surrounding water volume and the free surface. The underwater shock is applied in the form of a plane shock wave and cavitation is considered in the analysis. Advanced computer graphics, in particular video animations, provide a powerful and indispensable means for the presentation and evaluation of the analysis results.

  1. Noise in tunneling spin current across coupled quantum spin chains

    OpenAIRE

    Aftergood, Joshua; Takei, So

    2017-01-01

    We theoretically study the spin current and its dc noise generated between two spin-1/2 spin chains weakly coupled at a single site in the presence of an over-population of spin excitations and a temperature elevation in one subsystem relative to the other, and compare the corresponding transport quantities across two weakly coupled magnetic insulators hosting magnons. In the spin chain scenario, we find that applying a temperature bias exclusively leads to a vanishing spin current and a conc...

  2. Underwater maintenance guide: A guide to diving and remotely operated vehicle operations for nuclear maintenance personnel

    International Nuclear Information System (INIS)

    Jenco, J.

    1990-12-01

    This Underwater Maintenance Guide has been developed to provide utility plant personnel with a single-source reference to underwater services. These services, which include both manned diving and remotely-operated vehicle operations, are required to perform certain underwater maintenance functions at nuclear power generating stations. This Guide provides an introduction to those underwater services and their general operations, as well as overviews of specific work tasks which have been identified thus far. This information is intended to familiarize utility maintenance personnel with the general scope and capabilities of underwater services, without encroaching upon the contractor's flexibility to develop responses to individual maintenance tasks

  3. Effect of spin rotation coupling on spin transport

    International Nuclear Information System (INIS)

    Chowdhury, Debashree; Basu, B.

    2013-01-01

    We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k → ⋅p → perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k → ⋅p → framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied

  4. Spin labels. Applications in biology

    International Nuclear Information System (INIS)

    Frangopol, T.P.; Frangopol, M.; Ionescu, S.M.; Pop, I.V.; Benga, G.

    1980-11-01

    The main applications of spin labels in the study of biomembranes, enzymes, nucleic acids, in pharmacology, spin immunoassay are reviewed along with the fundamentals of the spin label method. 137 references. (author)

  5. Underwater characterization of control rods for waste disposal using SMOPY

    International Nuclear Information System (INIS)

    Gallozzi-Ulmann, A.; Couturier, P.; Amgarou, K.; Rothan, D.; Menaa, N.; Chard, P.

    2015-01-01

    Storage of spent fuel assemblies in cooling ponds requires careful control of the geometry and proximity of adjacent assemblies. Measurement of the fuel burnup makes it possible to optimise the storage arrangement of assemblies taking into account the effect of the burnup on the criticality safety margins ('burnup credit'). Canberra has developed a measurement system for underwater measurement of spent fuel assemblies. This system, known as 'SMOPY', performs burnup measurements based on gamma spectroscopy (collimated CZT detector) and neutron counting (fission chamber). The SMOPY system offers a robust and waterproof detection system as well as the needed capability of performing radiometric measurements in the harsh high dose - rate environments of the cooling ponds. The gamma spectroscopy functionality allows powerful characterization measurements to be performed, in addition to burnup measurement. Canberra has recently performed waste characterisation measurements at a Nuclear Power Plant. Waste activity assessment is important to control costs and risks of shipment and storage, to ensure that the activity level remains in the range allowed by the facility, and to declare activity data to authorities. This paper describes the methodology used for the SMOPY measurements and some preliminary results of a radiological characterisation of AIC control rods. After describing the features and normal operation of the SMOPY system, we describe the approach used for establishing an optimum control rod geometric scanning approach (optimum count time and speed) and the method of the gamma spectrometry measurements as well as neutron check measurements used to verify the absence of neutron sources in the waste. We discuss the results obtained including 60 Co, 110m Ag and 108m Ag activity profiles (along the length of the control rods) and neutron results including Total Measurement Uncertainty evaluations. Full self-consistency checks were performed and

  6. Spin Switching via Quantum Dot Spin Valves

    Science.gov (United States)

    Gergs, N. M.; Bender, S. A.; Duine, R. A.; Schuricht, D.

    2018-01-01

    We develop a theory for spin transport and magnetization dynamics in a quantum dot spin valve, i.e., two magnetic reservoirs coupled to a quantum dot. Our theory is able to take into account effects of strong correlations. We demonstrate that, as a result of these strong correlations, the dot gate voltage enables control over the current-induced torques on the magnets and, in particular, enables voltage-controlled magnetic switching. The electrical resistance of the structure can be used to read out the magnetic state. Our model may be realized by a number of experimental systems, including magnetic scanning-tunneling microscope tips and artificial quantum dot systems.

  7. Spin, mass, and symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E. [Stanford Univ., CA (United States)

    1994-12-01

    When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics.

  8. More spinoff from spin

    International Nuclear Information System (INIS)

    Masaike, Akira

    1993-01-01

    Despite playing a major role in today's Standard Model, spin - the intrinsic angular momentum carried by particles - is sometimes dismissed as an inessential complication. However several major spin questions with important implications for the Standard Model remain unanswered, and recent results and new technological developments made the 10th International Symposium on High Energy Spin Physics, held in Nagoya, Japan, in November, highly topical. The symposium covered a wide range of physics, reflecting the diversity of spin effects, however four main themes were - the spin content of the nucleon, tests of symmetries and physics beyond standard models, intermediate energy physics, and spin technologies. Opening the meeting, T. Kinoshita reviewed the status of measurements of the anomalous magnetic moment (g-2) of the electron and the muon. The forthcoming experiment at Brookhaven (September 1991, page 23) will probe beyond the energy ranges open to existing electronpositron colliders. For example muon substructure will be opened up to 5 TeV and Ws to 2 TeV. R.L. Jaffe classified quark-parton distributions in terms of their spin dependence, pointing out their leftright attributes, and emphasized the importance of measuring transverse spin distributions through lepton pair production

  9. Spin Hall noise

    NARCIS (Netherlands)

    Kamra, A.; Witek, F.P.; Meyer, S.; Huebl, H.; Geprägs, S.; Gross, R.; Bauer, G.E.W.; Goennenwein, S.T.B.

    2014-01-01

    We measure the low-frequency thermal fluctuations of pure spin current in a platinum film deposited on yttrium iron garnet via the inverse spin Hall effect (ISHE)-mediated voltage noise as a function of the angle ? between the magnetization and the transport direction. The results are consistent

  10. Antiferromagnetic spin Seebeck effect.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Stephen M.; Zhang, Wei; KC, Amit; Borisov, Pavel; Pearson, John E.; Jiang, J. Samuel; Lederman, David; Hoffmann, Axel; Bhattacharya, Anand

    2016-03-03

    We report on the observation of the spin Seebeck effect in antiferromagnetic MnF2. A device scale on-chip heater is deposited on a bilayer of MnF2 (110) (30nm)/Pt (4 nm) grown by molecular beam epitaxy on a MgF2(110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF2 through the inverse spin Hall effect. The low temperature (2–80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in the spin Seebeck signal when large magnetic fields (>9T) are applied parallel to the easy axis of the MnF2 thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected.

  11. Spin, mass, and symmetry

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1994-01-01

    When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics

  12. The Improved Kriging Interpolation Algorithm for Local Underwater Terrain Based on Fractal Compensation

    Directory of Open Access Journals (Sweden)

    Pengyun Chen

    2014-01-01

    Full Text Available The interpolation-reconstruction of local underwater terrain using the underwater digital terrain map (UDTM is an important step for building an underwater terrain matching unit and directly affects the accuracy of underwater terrain matching navigation. The Kriging method is often used in terrain interpolation, but, with this method, the local terrain features are often lost. Therefore, the accuracy cannot meet the requirements of practical application. Analysis of the geographical features is performed on the basis of the randomness and self-similarity of underwater terrain. We extract the fractal features of local underwater terrain with the fractal Brownian motion model, compensating for the possible errors of the Kriging method with fractal theory. We then put forward an improved Kriging interpolation method based on this fractal compensation. Interpolation-reconstruction tests show that the method can simulate the real underwater terrain features well and that it has good usability.

  13. Single underwater image enhancement based on color cast removal and visibility restoration

    Science.gov (United States)

    Li, Chongyi; Guo, Jichang; Wang, Bo; Cong, Runmin; Zhang, Yan; Wang, Jian

    2016-05-01

    Images taken under underwater condition usually have color cast and serious loss of contrast and visibility. Degraded underwater images are inconvenient for observation and analysis. In order to address these problems, an underwater image-enhancement method is proposed. A simple yet effective underwater image color cast removal algorithm is first presented based on the optimization theory. Then, based on the minimum information loss principle and inherent relationship of medium transmission maps of three color channels in an underwater image, an effective visibility restoration algorithm is proposed to recover visibility, contrast, and natural appearance of degraded underwater images. To evaluate the performance of the proposed method, qualitative comparison, quantitative comparison, and color accuracy test are conducted. Experimental results demonstrate that the proposed method can effectively remove color cast, improve contrast and visibility, and recover natural appearance of degraded underwater images. Additionally, the proposed method is comparable to and even better than several state-of-the-art methods.

  14. An Underwater Image Enhancement Algorithm for Environment Recognition and Robot Navigation

    Directory of Open Access Journals (Sweden)

    Kun Xie

    2018-03-01

    Full Text Available There are many tasks that require clear and easily recognizable images in the field of underwater robotics and marine science, such as underwater target detection and identification of robot navigation and obstacle avoidance. However, water turbidity makes the underwater image quality too low to recognize. This paper proposes the use of the dark channel prior model for underwater environment recognition, in which underwater reflection models are used to obtain enhanced images. The proposed approach achieves very good performance and multi-scene robustness by combining the dark channel prior model with the underwater diffuse model. The experimental results are given to show the effectiveness of the dark channel prior model in underwater scenarios.

  15. The spin structure of the nucleon

    International Nuclear Information System (INIS)

    Deur, A.

    2008-02-01

    This document describes the recent experimental results on the spin structure of the nucleon obtained with the electron accelerator Thomas Jefferson National Facility (Jefferson Lab), Virginia. We first discuss the goal of studying the nucleon spin structure and give the basis and phenomenology of high energy lepton scattering. Then, we discuss with some details a few sum rules concerning the spin structure of the nucleon. Those are important tools for studying the nucleon spin structure at Jefferson Lab. We then describe the present experimental situation and analyze the results. We have been able to determine an effective coupling constant for the strong interaction for any regime of quantum chromodynamics which proves that QCD is an approximately conformal theory. We conclude on the perspectives for this field of research, in particular with the 12 GeV energy upgrade of Jefferson Lab. The top priority will be the measurement of generalised parton distributions. The only issue that will stay misunderstood is the role of the very low x domain on the spin structure of the nucleon

  16. Spin Waves in Terbium

    DEFF Research Database (Denmark)

    Jensen, J.; Houmann, Jens Christian Gylden; Bjerrum Møller, Hans

    1975-01-01

    with increasing temperatures implies that the two-ion coupling is effectively isotropic above ∼ 150 K. We present arguments for concluding that, among the mechanisms which may introduce anisotropic two-ion couplings in the rare-earth metals, the modification of the indirect exchange interaction by the spin......The energies of spin waves propagating in the c direction of Tb have been studied by inelastic neutron scattering, as a function of a magnetic field applied along the easy and hard directions in the basal plane, and as a function of temperature. From a general spin Hamiltonian, consistent...... with the symmetry, we deduce the dispersion relation for the spin waves in a basal-plane ferromagnet. This phenomenological spin-wave theory accounts for the observed behavior of the magnon energies in Tb. The two q⃗-dependent Bogoliubov components of the magnon energies are derived from the experimental results...

  17. Spin Hall and spin swapping torques in diffusive ferromagnets

    KAUST Repository

    Pauyac, C. O.

    2017-12-08

    A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precessional effects displays a complex spatial dependence that can be exploited to generate torques and nucleate/propagate domain walls in centrosymmetric geometries without use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.

  18. An Energy Harvesting Underwater Acoustic Transmitter for Aquatic Animals

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huidong; Tian, Chuan; Lu, Jun; Myjak, Mitchell J.; Martinez, Jayson J.; Brown, Richard S.; Deng, Zhiqun

    2016-09-20

    This paper presents a self-powered underwater acoustic transmitter using a piezoelectric beam to harvest the mechanical energy from fish swimming. This transmitter does not require a battery and is demonstrated in live fish. It transmits an acoustic waveform as the implanted fish swims. It enables long-term monitoring of aquatic animals.

  19. Different survival strategies amongst plants to cope with underwater conditions

    NARCIS (Netherlands)

    Van Veen, Hans; Vashisht, Divya; Voesenek, Laurentius A C J; Sasidharan, Rashmi

    2014-01-01

    Many plants experience flooding at some point during their life cycle. The underwater environment creates a carbon and energy crisis for the plant, for which two successful strategies have been identified, quiescence and escape. During quiescence, growth is actively reduced until the water levels

  20. Optimal BRUVs (baited remote underwater video system) survey ...

    African Journals Online (AJOL)

    Marine protected areas (MPAs) play an important role in coastal conservation, but there is presently no uniformly applied methodology for monitoring the efficacy of coastal fish protection. Whereas underwater visual census and controlled angling surveys have been used, their skilled-labour requirements and environmental ...

  1. Moving in extreme environments: inert gas narcosis and underwater activities.

    Science.gov (United States)

    Clark, James E

    2015-01-01

    Exposure to the underwater environment for pleasure or work poses many challenges on the human body including thermal stress, barotraumas, decompression sickness as well as the acute effects of breathing gases under pressure. With the popularity of recreational self-contained underwater breathing apparatus (SCUBA) diving on the increase and deep inland dive sites becoming more accessible, it is important that we understand the effects of breathing pressurised gas at depth can have on the body. One of the common consequences of hyperbaric gas is the narcotic effect of inert gas. Nitrogen (a major component of air) under pressure can impede mental function and physical performance at depths of as little as 10 m underwater. With increased depth, symptoms can worsen to include confusion, disturbed coordination, lack of concentration, hallucinations and unconsciousness. Narcosis has been shown to contribute directly to up to 6% of deaths in divers and is likely to be indirectly associated with other diving incidents at depth. This article explores inert gas narcosis, the effect on divers' movement and function underwater and the proposed physiological mechanisms. Also discussed are some of the factors that affect the susceptibility of divers to the condition. In conclusion, understanding the cause of this potentially debilitating problem is important to ensure that safe diving practices continue.

  2. QFD-based conceptual design of an autonomous underwater robot

    Directory of Open Access Journals (Sweden)

    Thip Pasawang

    2015-12-01

    Full Text Available Autonomous underwater robots in the past few years have been designed according to the individual concepts and experiences of the researchers. To design a robot, which meets all the requirements of potential users, is an advanced work. Hence, a systematic design method that could include users’ preferences and requirements is needed. This paper presents the quality function deployment (QFD technique to design an autonomous underwater robot focusing on the Thai Navy military mission. Important user requirements extracted from the QFD method are the ability to record videos, operating at depth up to 10 meters, the ability to operate remotely with cable and safety concerns related to water leakages. Less important user requirements include beauty, using renewable energy, operating remotely with radio and ability to work during night time. The important design parameters derived from the user requirements are a low cost-controller, an autonomous control algorithm, a compass sensor and vertical gyroscope, and a depth sensor. Of low-importance ranked design parameters include the module design, use clean energy, a low noise electric motor, remote surveillance design, a pressure hull, and a beautiful hull form design. The study results show the feasibility of using QFD techniques to systematically design the autonomous underwater robot to meet user requirements. Mapping between the design and expected parameters and a conceptual drafting design of an autonomous underwater robot are also presented.

  3. Evaluation of Underwater Image Enhancement Algorithms under Different Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Marino Mangeruga

    2018-01-01

    Full Text Available Underwater images usually suffer from poor visibility, lack of contrast and colour casting, mainly due to light absorption and scattering. In literature, there are many algorithms aimed to enhance the quality of underwater images through different approaches. Our purpose was to identify an algorithm that performs well in different environmental conditions. We have selected some algorithms from the state of the art and we have employed them to enhance a dataset of images produced in various underwater sites, representing different environmental and illumination conditions. These enhanced images have been evaluated through some quantitative metrics. By analysing the results of these metrics, we tried to understand which of the selected algorithms performed better than the others. Another purpose of our research was to establish if a quantitative metric was enough to judge the behaviour of an underwater image enhancement algorithm. We aim to demonstrate that, even if the metrics can provide an indicative estimation of image quality, they could lead to inconsistent or erroneous evaluations.

  4. Biophysics of underwater hearing in the clawed frog, Xenopus laevis

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, J; Elepfandt, A

    1995-01-01

    Anesthetized clawed frogs (Xenopus laevis) were stimulated with underwater sound and the tympanic disk vibrations were studied using laser vibrometry. The tympanic disk velocities ranged from 0.01 to 0.5 mm/s (at a sound pressure of 2 Pa) in the frequency range of 0.4-4 kHz and were 20-40 dB higher...

  5. Estimate-Merge-Technique-based algorithms to track an underwater ...

    Indian Academy of Sciences (India)

    D V A N Ravi Kumar

    2017-07-04

    Jul 4, 2017 ... Abstract. Bearing-only passive target tracking is a well-known underwater defence issue dealt in the recent past with the conventional nonlinear estimators like extended Kalman filter (EKF) and unscented Kalman filter. (UKF). It is being treated now-a-days with the derivatives of EKF, UKF and a highly ...

  6. Netcentric underwater warfare; The Remedy for 'Silent Subs'?

    NARCIS (Netherlands)

    Ort, C.M.; Beerens, S.P.; Theije, P.A.M. de

    2004-01-01

    Although in most recent crises around the world it would appear from a superficial glance that there was no imminent underwater threat, a closer look shows differently. In the War on Iraq, for instance, a large allied effort was spent on eliminating the very real mine threat that endangered the

  7. Interaction tools for underwater shock analysis in naval platform design

    NARCIS (Netherlands)

    Aanhold, J.E.; Tuitman, J.T.; Trouwborst, W.; Vaders, J.A.A.

    2016-01-01

    In order to satisfy the need for good quality UNDerwater EXplosion (UNDEX) response estimates of naval platforms, TNO developed two 3D simulation tools: the Simplified Interaction Tool (SIT) and the hydro/structural code 3DCAV. Both tools are an add-on to LS-DYNA. SIT is a module of user routines

  8. Network lifetime-aware data collection in Underwater Sensor ...

    Indian Academy of Sciences (India)

    Development of energy-efficient data collection and routing schemes for Underwater Wireless Sensor Networks (UWSNs) is a challenging issue due to the peculiarities of the underlying physical layer technology. Since the recharging or replacement of sensor nodes is almost impossible after deployment, the critical issue of ...

  9. The effect of floating deck structures on underwater radiated noise

    NARCIS (Netherlands)

    Bosschaart, C.; Jansen, H.W.; Jong, C.A.F. de; Basten, T.

    2017-01-01

    A concept for underwater machinery noise mitigation of future civil and military ships is the application of a common deck structure, supporting multiple machines, which is installed on resilient mounts on the ship's foundation structure. TNO is addressing the availability and testing of tools to be

  10. Underwater sound produced by individual drop impacts and rainfall

    DEFF Research Database (Denmark)

    Pumphrey, Hugh C.; Crum, L. A.; Jensen, Leif Bjørnø

    1989-01-01

    ; the second occurs for some impacts but not others. A range of conditions is described in which a bubble is produced for every drop impact, and it is shown that these conditions are likely to be met by a significant fraction of the raindrops in a typical shower. Underwater sound produced by artificial as well...

  11. Student-Built Underwater Video and Data Capturing Device

    Science.gov (United States)

    Whitt, F.

    2016-12-01

    Students from Stockbridge High School Robotics Team invention is a low cost underwater video and data capturing device. This system is capable of shooting time-lapse photography and/or video for up to 3 days of video at a time. It can be used in remote locations without having to change batteries or adding additional external hard drives for data storage. The video capturing device has a unique base and mounting system which houses a pi drive and a programmable raspberry pi with a camera module. This system is powered by two 12 volt batteries, which makes it easier for users to recharge after use. Our data capturing device has the same unique base and mounting system as the underwater camera. The data capturing device consists of an Arduino and SD card shield that is capable of collecting continuous temperature and pH readings underwater. This data will then be logged onto the SD card for easy access and recording. The low cost underwater video and data capturing device can reach depths up to 100 meters while recording 36 hours of video on 1 terabyte of storage. It also features night vision infrared light capabilities. The cost to build our invention is $500. The goal of this was to provide a device that can easily be accessed by marine biologists, teachers, researchers and citizen scientists to capture photographic and water quality data in marine environments over extended periods of time.

  12. ULTRA: Underwater Localization for Transit and Reconnaissance Autonomy

    Science.gov (United States)

    Huntsberger, Terrance L.

    2013-01-01

    This software addresses the issue of underwater localization of unmanned vehicles and the inherent drift in their onboard sensors. The software gives a 2 to 3 factor of improvement over the state-of-the-art underwater localization algorithms. The software determines the localization (position, heading) of an AUV (autonomous underwater vehicle) in environments where there is no GPS signal. It accomplishes this using only the commanded position, onboard gyros/accelerometers, and the bathymetry of the bottom provided by an onboard sonar system. The software does not rely on an onboard bathymetry dataset, but instead incrementally determines the position of the AUV while mapping the bottom. In order to enable long-distance underwater navigation by AUVs, a localization method called ULTRA uses registration of the bathymetry data products produced by the onboard forward-looking sonar system for hazard avoidance during a transit to derive the motion and pose of the AUV in order to correct the DR (dead reckoning) estimates. The registration algorithm uses iterative point matching (IPM) combined with surface interpolation of the Iterative Closest Point (ICP) algorithm. This method was used previously at JPL for onboard unmanned ground vehicle localization, and has been optimized for efficient computational and memory use.

  13. A highly versatile autonomous underwater vehicle with biomechanical propulsion

    NARCIS (Netherlands)

    Simons, D.G.; Bergers, M.M.C.; Henrion, S.; Hulzenga, J.I.J.; Jutte, R.W.; Pas, W.M.G.; Van Schravendijk, M.; Vercruyssen, T.G.A.; Wilken, A.P.

    2009-01-01

    An autonomous underwater vehicle with a biomechanical propulsion system is a possible answer to the demand for small, silent sensor platforms in many fields. The design of Galatea, a bio-mimetic AUV, involves four aspects: hydrodynamic shape, the propulsion, the motion control systems and payload.

  14. Sources of underwater sound and their characterisation (abstract)

    NARCIS (Netherlands)

    Ainslie, M.A.; Jong, C.A.F. de

    2013-01-01

    After centuries of speculation, punctuated by occasional theoretical or experimental advances, the first intensive research into underwater sound took place 100 years ago, applied initially to provide advance warning of icebergs after the loss of RMS Titanic in 1912, and later to counter the U-boat

  15. Underwater Wireless Optical Communication System Using Blue LEDs

    Science.gov (United States)

    Lin, Aobo; Tong, Zheng; Song, Yuhang; Kong, Meiwei; Xu, Jing

    2016-02-01

    We demonstrate a self-designed underwater wireless optical communication system using blue LEDs. The performance of the transmitter and receiver was experimentally investigated. Four different square wave signals (10 KHz, 100 KHz, 500 KHz and 1 MHz) were successfully transmitted via a short water channel at the first phase.

  16. BER evaluations for multimode beams in underwater turbulence

    Science.gov (United States)

    Altay Arpali, Serap; Baykal, Yahya; Arpali, Çağlar

    2016-07-01

    In underwater optical communication links, bit error rate (BER) is an important performance criterion. For this purpose, the effects of oceanic turbulence on multimode laser beam incidences are studied and compared in terms of average BER (), which is related to the scintillation index. Based on the log-normal distribution, is analysed for underwater turbulence parameters, including the rate of dissipation of the mean squared temperature, the rate of dissipation of the turbulent kinetic energy, the parameter that determines the relative strength of temperature and salinity in driving index fluctuations, the Kolmogorov microscale length and other link parameters such as link length, wavelength and laser source size. It is shown that use of multimode improves the system performance of optical wireless communication systems operating in an underwater medium. For all the investigated multimode beams, decreasing link length, source size, the relative strength of temperature and salinity in driving the index fluctuations, the rate of dissipation of the mean squared temperature and Kolmogorov microscale length improve the . Moreover, lower values are obtained for the increasing wavelength of operation and the rate of dissipation of the turbulent kinetic energy in underwater turbulence.

  17. Experimental Assessment of Underwater Radiated Sound of Different Ship Types

    NARCIS (Netherlands)

    Jansen, H.W.; Jong, C.A.F. de

    2015-01-01

    The aim of the SONIC project is to develop tools to investigate and mitigate the effects of underwater noise generated by shipping. One way to study the contribution of shipping noise to the background noise in the seas is to produce shipping noise maps. The SONIC project delivers the required

  18. AEKF-SLAM: A New Algorithm for Robotic Underwater Navigation.

    Science.gov (United States)

    Yuan, Xin; Martínez-Ortega, José-Fernán; Fernández, José Antonio Sánchez; Eckert, Martina

    2017-05-21

    In this work, we focus on key topics related to underwater Simultaneous Localization and Mapping (SLAM) applications. Moreover, a detailed review of major studies in the literature and our proposed solutions for addressing the problem are presented. The main goal of this paper is the enhancement of the accuracy and robustness of the SLAM-based navigation problem for underwater robotics with low computational costs. Therefore, we present a new method called AEKF-SLAM that employs an Augmented Extended Kalman Filter (AEKF)-based SLAM algorithm. The AEKF-based SLAM approach stores the robot poses and map landmarks in a single state vector, while estimating the state parameters via a recursive and iterative estimation-update process. Hereby, the prediction and update state (which exist as well in the conventional EKF) are complemented by a newly proposed augmentation stage. Applied to underwater robot navigation, the AEKF-SLAM has been compared with the classic and popular FastSLAM 2.0 algorithm. Concerning the dense loop mapping and line mapping experiments, it shows much better performances in map management with respect to landmark addition and removal, which avoid the long-term accumulation of errors and clutters in the created map. Additionally, the underwater robot achieves more precise and efficient self-localization and a mapping of the surrounding landmarks with much lower processing times. Altogether, the presented AEKF-SLAM method achieves reliably map revisiting, and consistent map upgrading on loop closure.

  19. Synthesis and Development of Gold Polypyrrole Actuator for Underwater Application

    Science.gov (United States)

    Panda, S. K.; Bandopadhya, D.

    2018-02-01

    Electro-active polymer (EAP) such as Polypyrrole has gained much attention in the category of functional materials for fabrication of both active actuator and sensor. Particularly, PPy actuator has shown potential in fluid medium application because of high strain, large bending displacement and work density. This paper focuses on developing a low cost active actuator promising in delivering high performance in underwater environment. The proposed Au-pyrrole actuator is synthesized by adopting the layer-by-layer electrochemical polymerization technique and is fabricated as strip actuator from aqueous solution of Pyrrole and NaDBS in room temperature. In the follow-up, topographical analysis has been carried out using SEM and FESEM instruments showing surface morphology and surface integrity of chemical components of the structure. Several experiments have been conducted under DC input voltage evaluating performance effectiveness such as underwater bending displacement and tip force etc. This is observed that the actuator exhibits quite similar stress profile as of natural muscle, endowed with high modulus makes them effective in working nearly 10,000 cycles underwater environment. In addition, the bending displacement up to 5.4 mm with a low input voltage 1.3 V makes the actuator suitable for underwater micro-robotics applications.

  20. Swimming, swarming and sensing. Bio-inspired underwater robotics

    NARCIS (Netherlands)

    Henrion, S.; Vercruyssen, T.; Müller, U.K.

    2014-01-01

    For operations in complex underwater environments, bio-inspired robots offer manoeuvrability, stealth and autonomy. They integrate propulsion and control systems into one multi-purpose undulatory propeller. By generating large counteracting forces, undulating fins generate a wide range of net

  1. MA-23-6000: underwater bilateral servo master slave manipulator

    International Nuclear Information System (INIS)

    Vertut, Jean

    The different types of manipulators, recent data on their dexterity and the underwater work possible with servo master slave manipulators are reviewed. The general specifications of the manipulator MA 23-6000 designed for the machine ERIC II are given [fr

  2. A network coding based routing protocol for underwater sensor networks.

    Science.gov (United States)

    Wu, Huayang; Chen, Min; Guan, Xin

    2012-01-01

    Due to the particularities of the underwater environment, some negative factors will seriously interfere with data transmission rates, reliability of data communication, communication range, and network throughput and energy consumption of underwater sensor networks (UWSNs). Thus, full consideration of node energy savings, while maintaining a quick, correct and effective data transmission, extending the network life cycle are essential when routing protocols for underwater sensor networks are studied. In this paper, we have proposed a novel routing algorithm for UWSNs. To increase energy consumption efficiency and extend network lifetime, we propose a time-slot based routing algorithm (TSR).We designed a probability balanced mechanism and applied it to TSR. The theory of network coding is introduced to TSBR to meet the requirement of further reducing node energy consumption and extending network lifetime. Hence, time-slot based balanced network coding (TSBNC) comes into being. We evaluated the proposed time-slot based balancing routing algorithm and compared it with other classical underwater routing protocols. The simulation results show that the proposed protocol can reduce the probability of node conflicts, shorten the process of routing construction, balance energy consumption of each node and effectively prolong the network lifetime.

  3. Advanced flooding-based routing protocols for underwater sensor networks

    NARCIS (Netherlands)

    Isufi, E.; Dol, H.; Leus, G.J.T.

    2016-01-01

    Flooding-based protocols are a reliable solution to deliver packets in underwater sensor networks. However, these protocols potentially involve all the nodes in the forwarding process. Thus, the performance and energy efficiency are not optimal. In this work, we propose some advances of a

  4. Network lifetime-aware data collection in Underwater Sensor ...

    Indian Academy of Sciences (India)

    Jalaja Janardanan Kartha

    2017-09-07

    Sep 7, 2017 ... We model the problem as a constrained optimization prob- lem, considering the peculiarities of the underwater environ- ment, resource limitations and application requirements. In particular, we formulate an optimization problem that maxi- mizes the lifetime of the UWSN, subject to node energy con- straints ...

  5. Real-time underwater image enhancement: An improved approach ...

    Indian Academy of Sciences (India)

    fers extensively from visual image processing, primarily due to three major underwater channel impairments, i.e. ... visual quality of the image by mitigating color cast with subsequent contrast enhancement. In the proposed method, ...... sincere thanks to all Robotics & Automation Group mem- bers for their help and support.

  6. Enrichment of colloidal solutions by nanoparticles in underwater spark discharge

    International Nuclear Information System (INIS)

    Lopat'ko, K.; Aftandiliants, Y.; Veklich, A.; Boretskij, V.; Taran, N.; Batsmanova, L.; Trach, V.; Tugai, T.

    2015-01-01

    The underwater spark discharge between manganese granules was studied. Optical emission spectroscopy methods were used for diagnostics of such discharge plasma. The colloidal solution with manganese nanoparticles was produced by this discharge. The biological applications of this colloid were analyzed. The mechanism of metallic nanoparticle action and their transformation at interacting with biological objects were studied in Alternaria alternata culture

  7. Survey of Temperature Measurement Techniques For Studying Underwater Shock Waves

    Science.gov (United States)

    Danehy, Paul M.; Alderfer, David W.

    2004-01-01

    Several optical methods for measuring temperature near underwater shock waves are reviewed and compared. The relative merits of the different techniques are compared, considering accuracy, precision, ease of use, applicable temperature range, maturity, spatial resolution, and whether or not special additives are required.

  8. “Diving for dope” : Controlling underwater drug trafficking

    NARCIS (Netherlands)

    Eski, Y.

    2017-01-01

    This paper will offer an ethnographic account of the everyday reality of controlling illegal underwater drug trafficking in the global Port of Rotterdam (PoR). In so doing, it will explore what it means for customs diving officers to do drug inspections under challenging circumstances in order to

  9. Underwater Optical Wireless Communications, Networking, and Localization: A Survey

    KAUST Repository

    Saeed, Nasir

    2018-02-28

    Underwater wireless communications can be carried out through acoustic, radio frequency (RF), and optical waves. Compared to its bandwidth limited acoustic and RF counterparts, underwater optical wireless communications (UOWCs) can support higher data rates at low latency levels. However, severe aquatic channel conditions (e.g., absorption, scattering, turbulence, etc.) pose great challenges for UOWCs and significantly reduce the attainable communication ranges, which necessitates efficient networking and localization solutions. Therefore, we provide a comprehensive survey on the challenges, advances, and prospects of underwater optical wireless networks (UOWNs) from a layer by layer perspective which includes: 1) Potential network architectures; 2) Physical layer issues including propagation characteristics, channel modeling, and modulation techniques 3) Data link layer problems covering link configurations, link budgets, performance metrics, and multiple access schemes; 4) Network layer topics containing relaying techniques and potential routing algorithms; 5) Transport layer subjects such as connectivity, reliability, flow and congestion control; 6) Application layer goals and state-of-the-art UOWN applications, and 7) Localization and its impacts on UOWN layers. Finally, we outline the open research challenges and point out the future directions for underwater optical wireless communications, networking, and localization research.

  10. Network lifetime-aware data collection in Underwater Sensor ...

    Indian Academy of Sciences (India)

    Jalaja Janardanan Kartha

    2017-09-07

    Sep 7, 2017 ... ditions and providing useful performance indicators prior to network deployment. Keywords. Underwater Sensor Networks .... There exists the possibility of controlling the extent of multi-hop routing that is feasible for ... standard tools; (iii) investigating the performance metrics of the proposed framework; (iv) ...

  11. AEKF-SLAM: A New Algorithm for Robotic Underwater Navigation

    Directory of Open Access Journals (Sweden)

    Xin Yuan

    2017-05-01

    Full Text Available In this work, we focus on key topics related to underwater Simultaneous Localization and Mapping (SLAM applications. Moreover, a detailed review of major studies in the literature and our proposed solutions for addressing the problem are presented. The main goal of this paper is the enhancement of the accuracy and robustness of the SLAM-based navigation problem for underwater robotics with low computational costs. Therefore, we present a new method called AEKF-SLAM that employs an Augmented Extended Kalman Filter (AEKF-based SLAM algorithm. The AEKF-based SLAM approach stores the robot poses and map landmarks in a single state vector, while estimating the state parameters via a recursive and iterative estimation-update process. Hereby, the prediction and update state (which exist as well in the conventional EKF are complemented by a newly proposed augmentation stage. Applied to underwater robot navigation, the AEKF-SLAM has been compared with the classic and popular FastSLAM 2.0 algorithm. Concerning the dense loop mapping and line mapping experiments, it shows much better performances in map management with respect to landmark addition and removal, which avoid the long-term accumulation of errors and clutters in the created map. Additionally, the underwater robot achieves more precise and efficient self-localization and a mapping of the surrounding landmarks with much lower processing times. Altogether, the presented AEKF-SLAM method achieves reliably map revisiting, and consistent map upgrading on loop closure.

  12. Underwater sound due to a subsea high speed turbo compressor

    NARCIS (Netherlands)

    Binnerts, B.; Benda-Beckmann, A.M. von; Beek, P.J.G. van

    2014-01-01

    In the oil & gas industry there is a trend towards more subsea activities. To improve gas recovery from existing and new fields at greater depths, the produced gas will be compressed, processed and transported via subsea templates and underwater networks (pipelines, flexible risers, etc.). Besides

  13. Non-line-of-sight underwater optical wireless communication network.

    Science.gov (United States)

    Arnon, Shlomi; Kedar, Debbie

    2009-03-01

    The growing need for ocean observation systems has stimulated considerable interest within the research community in advancing the enabling technologies of underwater wireless communication and underwater sensor networks. Sensors and ad hoc sensor networks are the emerging tools for performing extensive data-gathering operations on land, and solutions in the subsea setting are being sought. Efficient communication from the sensors and within the network is critical, but the underwater environment is extremely challenging. Addressing the special features of underwater wireless communication in sensor networks, we propose a novel non-line-of-sight network concept in which the link is implemented by means of back-reflection of the propagating optic signal at the ocean-air interface and derive a mathematical model of the channel. Point-to-multipoint links can be achieved in an energy efficient manner and broadcast broadband communications, such as video transmissions, can be executed. We show achievable bit error rates as a function of sensor node separation and demonstrate the feasibility of this concept using state-of-the-art silicon photomultiplier detectors.

  14. Baited remote underwater video system (BRUVs) survey of ...

    African Journals Online (AJOL)

    This is the first baited remote underwater video system (BRUVs) survey of the relative abundance, diversity and seasonal distribution of chondrichthyans in False Bay. Nineteen species from 11 families were recorded across 185 sites at between 4 and 49 m depth. Diversity was greatest in summer, on reefs and in shallow ...

  15. Development of underwater laser cutting technique for steel and ...

    Indian Academy of Sciences (India)

    metal vapour from the cut kerf is spread in air. In cutting of irradiated material, debris and metal vapour creates airborne activity, which may be harmful for people working nearby, whereas, underwater cutting is advantageous in terms of a narrow. HAZ adjacent to the laser cut surface providing better samples for the analysis.

  16. OceanVideoLab: A Tool for Exploring Underwater Video

    Science.gov (United States)

    Ferrini, V. L.; Morton, J. J.; Wiener, C.

    2016-02-01

    Video imagery acquired with underwater vehicles is an essential tool for characterizing seafloor ecosystems and seafloor geology. It is a fundamental component of ocean exploration that facilitates real-time operations, augments multidisciplinary scientific research, and holds tremendous potential for public outreach and engagement. Acquiring, documenting, managing, preserving and providing access to large volumes of video acquired with underwater vehicles presents a variety of data stewardship challenges to the oceanographic community. As a result, only a fraction of underwater video content collected with research submersibles is documented, discoverable and/or viewable online. With more than 1 billion users, YouTube offers infrastructure that can be leveraged to help address some of the challenges associated with sharing underwater video with a broad global audience. Anyone can post content to YouTube, and some oceanographic organizations, such as the Schmidt Ocean Institute, have begun live-streaming video directly from underwater vehicles. OceanVideoLab (oceanvideolab.org) was developed to help improve access to underwater video through simple annotation, browse functionality, and integration with related environmental data. Any underwater video that is publicly accessible on YouTube can be registered with OceanVideoLab by simply providing a URL. It is strongly recommended that a navigational file also be supplied to enable geo-referencing of observations. Once a video is registered, it can be viewed and annotated using a simple user interface that integrates observations with vehicle navigation data if provided. This interface includes an interactive map and a list of previous annotations that allows users to jump to times of specific observations in the video. Future enhancements to OceanVideoLab will include the deployment of a search interface, the development of an application program interface (API) that will drive the search and enable querying of

  17. Underwater and surface strategies of 200 m world level swimmers.

    Science.gov (United States)

    Veiga, Santiago; Roig, Andreu

    2016-01-01

    Pacing strategies of elite swimmers have been consistently characterised from the average lap velocities. In the present study, we examined the racing strategies of 200 m world class-level swimmers with regard to their underwater and surface lap components. The finals and semi-finals of the 200 m races at the 2013 World Swimming Championships (Barcelona, Spain) were analysed by an innovative image-processing system (InThePool® 2.0). Free swimming velocities of elite swimmers typically decreased throughout the 200 m race laps (-0.12 m · s(-1), 95% CI -0.11 to -0.14 m · s(-1), P = 0.001, η(2) = 0.81), whereas underwater velocities, which were faster than free swimming, were not meaningfully affected by the race progress (0.02 m · s(-1), -0.01 to 0.04 m · s(-1), P = 0.01, η(2) = 0.04). When swimming underwater, elite swimmers typically travelled less distance (-0.66 m, -0.83 to -0.49 m, P = 0.001, η(2) = 0.34) from the first to the third turn of the race, although underwater distances were maintained on the backstroke and butterfly races. These strategies allowed swimmers to maintain their average velocity in the last lap despite a decrease in the free swimming velocity. Elite coaches and swimmers are advised to model their racing strategies by considering both underwater and surface race components.

  18. Resonant Tunneling Spin Pump

    Science.gov (United States)

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  19. Nuclear spins in nanostructures

    International Nuclear Information System (INIS)

    Coish, W.A.; Baugh, J.

    2009-01-01

    We review recent theoretical and experimental advances toward understanding the effects of nuclear spins in confined nanostructures. These systems, which include quantum dots, defect centers, and molecular magnets, are particularly interesting for their importance in quantum information processing devices, which aim to coherently manipulate single electron spins with high precision. On one hand, interactions between confined electron spins and a nuclear-spin environment provide a decoherence source for the electron, and on the other, a strong effective magnetic field that can be used to execute local coherent rotations. A great deal of effort has been directed toward understanding the details of the relevant decoherence processes and to find new methods to manipulate the coupled electron-nuclear system. A sequence of spectacular new results have provided understanding of spin-bath decoherence, nuclear spin diffusion, and preparation of the nuclear state through dynamic polarization and more general manipulation of the nuclear-spin density matrix through ''state narrowing.'' These results demonstrate the richness of this physical system and promise many new mysteries for the future. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  20. Spin drift and spin diffusion currents in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Idrish Miah, M [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)], E-mail: m.miah@griffith.edu.au

    2008-09-15

    On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  1. Spin drift and spin diffusion currents in semiconductors

    Directory of Open Access Journals (Sweden)

    M Idrish Miah

    2008-01-01

    Full Text Available On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  2. Spin drift and spin diffusion currents in semiconductors

    International Nuclear Information System (INIS)

    Idrish Miah, M

    2008-01-01

    On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  3. Higher spins and holography

    Science.gov (United States)

    Kraus, Per; Ross, Simon F.

    2013-05-01

    The principles of quantum mechanics and relativity impose rigid constraints on theories of massless particles with nonzero spin. Indeed, Yang-Mills theory and General Relativity are the unique solution in the case of spin-1 and spin-2. In asymptotically flat spacetime, there are fundamental obstacles to formulating fully consistent interacting theories of particles of spin greater than 2. However, indications are that such theories are just barely possible in asymptotically anti-de Sitter or de Sitter spacetimes, where the non-existence of an S-matrix provides an escape from the theorems restricting theories in Minkowski spacetime. These higher spin gravity theories are therefore of great intrinsic interest, since they, along with supergravity, provide the only known field theories generalizing the local invariance principles of Yang-Mills theory and General Relativity. While work on higher spin gravity goes back several decades, the subject has gained broader appeal in recent years due to its appearance in the AdS/CFT correspondence. In three and four spacetime dimensions, there exist duality proposals linking higher spin gravity theories to specific conformal field theories living in two and three dimensions respectively. The enlarged symmetry algebra of the conformal field theories renders them exactly soluble, which makes them excellent laboratories for understanding in detail the holographic mechanism behind AdS/CFT duality. Steady progress is also being made on better understanding the space of possible higher spin gravity theories and their physical content. This work includes classifying the possible field multiplets and their interactions, constructing exact solutions of the nonlinear field equations, and relating higher spin theories to string theory. A full understanding of these theories will involve coming to grips with the novel symmetry principles that enlarge those of General Relativity and Yang-Mills theory, and one can hope that this will provide

  4. Spin transfer torque with spin diffusion in magnetic tunnel junctions

    KAUST Repository

    Manchon, Aurelien

    2012-08-09

    Spin transport in magnetic tunnel junctions in the presence of spin diffusion is considered theoretically. Combining ballistic tunneling across the barrier and diffusive transport in the electrodes, we solve the spin dynamics equation in the metallic layers. We show that spin diffusion mixes the transverse spin current components and dramatically modifies the bias dependence of the effective spin transfer torque. This leads to a significant linear bias dependence of the out-of-plane torque, as well as a nonconventional thickness dependence of both spin torque components.

  5. Electron spin and nuclear spin manipulation in semiconductor nanosystems

    International Nuclear Information System (INIS)

    Hirayama, Yoshiro; Yusa, Go; Sasaki, Satoshi

    2006-01-01

    Manipulations of electron spin and nuclear spin have been studied in AlGaAs/GaAs semiconductor nanosystems. Non-local manipulation of electron spins has been realized by using the correlation effect between localized and mobile electron spins in a quantum dot- quantum wire coupled system. Interaction between electron and nuclear spins was exploited to achieve a coherent control of nuclear spins in a semiconductor point contact device. Using this device, we have demonstrated a fully coherent manipulation of any two states among the four spin levels of Ga and As nuclei. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Spins in chemistry

    CERN Document Server

    McWeeny, Roy

    2004-01-01

    Originally delivered as a series of lectures, this volume systematically traces the evolution of the ""spin"" concept from its role in quantum mechanics to its assimilation into the field of chemistry. Author Roy McWeeny presents an in-depth illustration of the deductive methods of quantum theory and their application to spins in chemistry, following the path from the earliest concepts to the sophisticated physical methods employed in the investigation of molecular structure and properties. Starting with the origin and development of the spin concept, the text advances to an examination of sp

  7. Frustrated spin systems

    CERN Document Server

    2013-01-01

    This book covers all principal aspects of currently investigated frustrated systems, from exactly solved frustrated models to real experimental frustrated systems, going through renormalization group treatment, Monte Carlo investigation of frustrated classical Ising and vector spin models, low-dimensional systems, spin ice and quantum spin glass. The reader can - within a single book - obtain a global view of the current research development in the field of frustrated systems.This new edition is updated with recent theoretical, numerical and experimental developments in the field of frustrated

  8. Spin Hall effect transistor

    Czech Academy of Sciences Publication Activity Database

    Wunderlich, Joerg; Park, B.G.; Irvine, A.C.; Zarbo, Liviu; Rozkotová, E.; Němec, P.; Novák, Vít; Sinova, Jairo; Jungwirth, Tomáš

    2010-01-01

    Roč. 330, č. 6012 (2010), s. 1801-1804 ISSN 0036-8075 R&D Projects: GA AV ČR KAN400100652; GA MŠk LC510 EU Projects: European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : spin Hall effect * spintronics * spin transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 31.364, year: 2010

  9. Spin tracking in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Luccio, A.U. [Brookhaven National Lab., Upton, NY (United States); Katayama, T. [Univ. of Tokyo (Japan); Wu, H. [Riken Inst., Tokyo (Japan)

    1997-07-01

    In the acceleration of polarized protons in RHIC many spin depolarizing resonances are encountered. Helical Siberian snakes will be used to overcome depolarizing effects. The behavior of polarization can be studied by numerical tracking in a model accelerator. That allows one to check the strength of the resonances, to study the effect of snakes, to find safe lattice tune regions, and finally to study the operation of special devices like spin flippers. In this paper the authors describe numerical spin tracking. Results show that, for the design corrected distorted orbit and the design beam emittance, the polarization of the beam will be preserved in the whole range of proton energies in RHIC.

  10. SPINning parallel systems software

    International Nuclear Information System (INIS)

    Matlin, O.S.; Lusk, E.; McCune, W.

    2002-01-01

    We describe our experiences in using Spin to verify parts of the Multi Purpose Daemon (MPD) parallel process management system. MPD is a distributed collection of processes connected by Unix network sockets. MPD is dynamic processes and connections among them are created and destroyed as MPD is initialized, runs user processes, recovers from faults, and terminates. This dynamic nature is easily expressible in the Spin/Promela framework but poses performance and scalability challenges. We present here the results of expressing some of the parallel algorithms of MPD and executing both simulation and verification runs with Spin

  11. 76 FR 44985 - Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by Flooding

    Science.gov (United States)

    2011-07-27

    ... of underwater pipe should include the use of visual inspection by divers or instrumented detection... operators of gas and hazardous liquid pipelines to communicate the potential for damage to pipeline... facilities to determine and take appropriate action concerning changes in class location, failures, leakage...

  12. Fabrication Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Fabrication Facilities are a direct result of years of testing support. Through years of experience, the three fabrication facilities (Fort Hood, Fort Lewis, and...

  13. Waste Facilities

    Data.gov (United States)

    Vermont Center for Geographic Information — This dataset was developed from the Vermont DEC's list of certified solid waste facilities. It includes facility name, contact information, and the materials...

  14. Towards Enhanced Underwater Lidar Detection via Source Separation

    Science.gov (United States)

    Illig, David W.

    Interest in underwater optical sensors has grown as technologies enabling autonomous underwater vehicles have been developed. Propagation of light through water is complicated by the dual challenges of absorption and scattering. While absorption can be reduced by operating in the blue-green region of the visible spectrum, reducing scattering is a more significant challenge. Collection of scattered light negatively impacts underwater optical ranging, imaging, and communications applications. This thesis concentrates on the ranging application, where scattering reduces operating range as well as range accuracy. The focus of this thesis is on the problem of backscatter, which can create a "clutter" return that may obscure submerged target(s) of interest. The main contributions of this thesis are explorations of signal processing approaches to increase the separation between the target and backscatter returns. Increasing this separation allows detection of weak targets in the presence of strong scatter, increasing both operating range and range accuracy. Simulation and experimental results will be presented for a variety of approaches as functions of water clarity and target position. This work provides several novel contributions to the underwater lidar field: 1. Quantification of temporal separation approaches: While temporal separation has been studied extensively, this work provides a quantitative assessment of the extent to which both high frequency modulation and spatial filter approaches improve the separation between target and backscatter. 2. Development and assessment of frequency separation: This work includes the first frequency-based separation approach for underwater lidar, in which the channel frequency response is measured with a wideband waveform. Transforming to the time-domain gives a channel impulse response, in which target and backscatter returns may appear in unique range bins and thus be separated. 3. Development and assessment of statistical

  15. Spin squeezing and quantum correlations

    Indian Academy of Sciences (India)

    2 states. A coherent spin-s state. (CSS) θ φ can then be thought of as having no quantum correlations as the constituent. 2s elementary spins point in the same direction ˆn(θ φ) which is the mean spin direction. 2. State classification and squeezing. In order to discuss squeezing, we begin with the squeezing condition itself.

  16. Geometry of spin coherent states

    Science.gov (United States)

    Chryssomalakos, C.; Guzmán-González, E.; Serrano-Ensástiga, E.

    2018-04-01

    Spin states of maximal projection along some direction in space are called (spin) coherent, and are, in many respects, the ‘most classical’ available. For any spin s, the spin coherent states form a 2-sphere in the projective Hilbert space \

  17. Spin Hall effect and spin swapping in diffusive superconductors

    Science.gov (United States)

    Espedal, Camilla; Lange, Peter; Sadjina, Severin; Mal'shukov, A. G.; Brataas, Arne

    2017-02-01

    We consider the spin-orbit-induced spin Hall effect and spin swapping in diffusive superconductors. By employing the nonequilibrium Keldysh Green's function technique in the quasiclassical approximation, we derive coupled transport equations for the spectral spin and particle distributions and for the energy density in the elastic scattering regime. We compute four contributions to the spin Hall conductivity, namely, skew scattering, side jump, anomalous velocity, and the Yafet contribution. The reduced density of states in the superconductor causes a renormalization of the spin Hall angle. We demonstrate that all four of these contributions to the spin Hall conductivity are renormalized in the same way in the superconducting state. In its simplest manifestation, spin swapping transforms a primary spin current into a secondary spin current with swapped current and polarization directions. We find that the spin-swapping coefficient is not explicitly but only implicitly affected by the superconducting gap through the renormalized diffusion coefficients. We discuss experimental consequences for measurements of the (inverse) spin Hall effect and spin swapping in four-terminal geometries. In our geometry, below the superconducting transition temperature, the spin-swapping signal is increased an order of magnitude while changes in the (inverse) spin Hall signal are moderate.

  18. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris, E-mail: hammel@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-05-07

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  19. Rf Depolarizing Resonances In The Presence Of A Full Siberian Snake And Full Snake Spin-flipping

    CERN Document Server

    Blinov, B B

    2000-01-01

    Frequent polarization reversals, or spin-flips, of a stored polarized beam in high energy scattering asymmetry experiments may greatly reduce systematic errors of spin asymmetry measurements. A spin-flipping technique is being developed by using rf magnets running at a frequency close to the spin precession frequency, thereby creating spin-depolarizing resonances; the spin can then be flipped by ramping the rf magnet's frequency through the resonance. We studied, at the Indiana University Cyclotron Facility Cooler Ring, properties of such rf depolarizing resonances in the presence of a nearly-full Siberian snake and their possible application for spin- flipping. By using an rf-solenoid magnet, we reached a 98.7 ± 1% efficiency of spin-flipping. However, an rf-dipole magnet is more practical at high energies; hence, studies of spin-flipping by an rf-dipole are underway at IUCF.

  20. Higher Spins & Strings

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The conjectured relation between higher spin theories on anti de-Sitter (AdS) spaces and weakly coupled conformal field theories is reviewed. I shall then outline the evidence in favour of a concrete duality of this kind, relating a specific higher spin theory on AdS3 to a family of 2d minimal model CFTs. Finally, I shall explain how this relation fits into the framework of the familiar stringy AdS/CFT correspondence.

  1. Quantum spin quadrumer

    Science.gov (United States)

    Khatua, Subhankar; Shankar, R.; Ganesh, R.

    2018-02-01

    A fundamental motif in frustrated magnetism is the fully mutually coupled cluster of N spins, with each spin coupled to every other spin. Clusters with N =2 and 3 have been extensively studied as building blocks of square and triangular lattice antiferromagnets. In both cases, large-S semiclassical descriptions have been fruitfully constructed, providing insights into the physics of macroscopic magnetic systems. Here, we develop a semiclassical theory for the N =4 cluster. This problem has rich mathematical structure with a ground-state space that has nontrivial topology. We show that ground states are appropriately parametrized by a unit vector order parameter and a rotation matrix. Remarkably, in the low-energy description, the physics of the cluster reduces to that of an emergent free spin-S spin and a rigid rotor. This successfully explains the spectrum of the quadrumer and its associated degeneracies. However, this mapping does not hold in the vicinity of collinear ground states due to a subtle effect that arises from the nonmanifold nature of the ground-state space. We demonstrate this by an analysis of soft fluctuations, showing that collinear states have a larger number of soft modes. Nevertheless, as these singularities only occur on a subset of measure zero, the mapping to a spin and a rotor provides a good description of the quadrumer. We interpret thermodynamic properties of the quadrumer that are accessible in molecular magnets, in terms of the rotor and spin degrees of freedom. Our study paves the way for field theoretic descriptions of systems such as pyrochlore magnets.

  2. Spider Spinning for Dummies

    Science.gov (United States)

    Bird, Richard S.

    Spider spinning is a snappy name for the problem of listing the ideals of a totally acyclic poset in such a way that each ideal is computed from its predecessor in constant time. Such an algorithm is said to be loopless. Our aim in these lectures is to show how to calculate a loopless algorithm for spider spinning. The calculation makes use of the fundamental laws of functional programming and the real purpose of the exercise is to show these laws in action.

  3. Analysing deterioration of marble stones exposed to underwater conditions

    Science.gov (United States)

    Cámara, Beatriz; Álvarez de Buergo, Mónica; Bethencourt, Manuel; Freire-Lista, David; Fort, Rafael

    2016-04-01

    The peculiar conditions of the marine environment make the conservation of underwater archaeological sites an extremely complex procedure. This is due to the fact that the prevailing conditions in this environment promote the development of deterioration phenomena in submerged artefacts through the synergistic action of physical, chemical and biological factors. The objective of the present investigation was to determine how petrophysical properties of cultural heritage materials can be affected by being exposed to the specific underwater conditions of the sea bottom, and so, to evaluate how this can affect, in a long term, in their durability and evolution when they part of an archaeological site. For this purpose, two types of marble (the Italian Carrara and the Spanish Macael) were subjected to an experiment consisting of exposing stone materials for one and a half year to underwater conditions. The experimental test was located in an archaeological site in the Bay of Cadiz (southern Spain), Bajo del Chapitel (recognized as Cultural Interest), which includes remains of shipwrecks from different periods. In this site, samples were submerged to 12 m depth and placed in the sea bottom simulating the different positions in which underwater archaeological objects can be found (fully exposed, half buried and covered). Petrophysical characterisation involved determination of the apparent and bulk densities, water saturation (maximum water content a material may contain), open porosity (porosity accessible to water), chromatic parameters and ultrasonic velocity. Before measuring, samples were subjected to mechanical cleaning (in those samples with biological colonization) and to removal of salt deposits. Results showed significant differences in these petrophysical properties after underwater submersion, which were directly related to the type of underwater exposure condition. Comparative analysis of petrophysical properties, like the one conducted in this study

  4. Underwater inspection robot - AIRIS 21''trademark''

    International Nuclear Information System (INIS)

    Koji, K.

    1999-01-01

    Highly reliable, cost-effective and extended examination coverage are three big demands for newly developed ISI equipment. AIRIS 21 (advanced inspection system for reactor pressure vessel and internals) which is a state-of-the-art next generation device, has been developed to reply to these demands. The device can reduce the inspection cost and increase the reliability and inspection coverage. The AIRIS 21 swims in the water toward an area to be inspected and sticks to the vessel wall using two propellers. After it sticks on the wall, the spinning speed of propellers is controlled to keep the device on the wall with constant vacuum force. Then it travels on the wall freely by two driving wheels and one trip measuring wheel. This manner of new examination system is quite different from the other conventional BWR-ID systems. This new inspection system is dramatically reduced its size [W550 x L600 x H55 (mm)] and weight [13.6 (kg)] compared with conventional system, and also saves ISI from being a critical path work because it needs no special tools, such as a large crane for handling. With AIRIS 21, it is possible to perform ID inspection of RPV welds in parallel with fuel shuffling and other core activities. (orig.)

  5. Classification of underwater targets from autonomous underwater vehicle sampled bistatic acoustic scattered fields.

    Science.gov (United States)

    Fischell, Erin M; Schmidt, Henrik

    2015-12-01

    One of the long term goals of autonomous underwater vehicle (AUV) minehunting is to have multiple inexpensive AUVs in a harbor autonomously classify hazards. Existing acoustic methods for target classification using AUV-based sensing, such as sidescan and synthetic aperture sonar, require an expensive payload on each outfitted vehicle and post-processing and/or image interpretation. A vehicle payload and machine learning classification methodology using bistatic angle dependence of target scattering amplitudes between a fixed acoustic source and target has been developed for onboard, fully autonomous classification with lower cost-per-vehicle. To achieve the high-quality, densely sampled three-dimensional (3D) bistatic scattering data required by this research, vehicle sampling behaviors and an acoustic payload for precision timed data acquisition with a 16 element nose array were demonstrated. 3D bistatic scattered field data were collected by an AUV around spherical and cylindrical targets insonified by a 7-9 kHz fixed source. The collected data were compared to simulated scattering models. Classification and confidence estimation were shown for the sphere versus cylinder case on the resulting real and simulated bistatic amplitude data. The final models were used for classification of simulated targets in real time in the LAMSS MOOS-IvP simulation package [M. Benjamin, H. Schmidt, P. Newman, and J. Leonard, J. Field Rob. 27, 834-875 (2010)].

  6. Spin-engineered quantum dots

    OpenAIRE

    Fleurov, V.; Ivanov, V. A.; Peeters, F. M.; Vagner, I. D.

    2001-01-01

    Spatially nonhomogeneously spin polarized nuclei are proposed as a new mechanism to monitor electron states in a nanostructure, or as a means to createn and, if necessary, reshape such nanostructures in the course of the experiment. We found that a polarization of nulear spins may lift the spin polarization of the electron states in a nanostructure and, if sufficiently strong, leads to a polarization of the electron spins. Polarized nuclear spins may form an energy landscape capable of bindin...

  7. Theory of spin Hall effect

    OpenAIRE

    Chudnovsky, Eugene M.

    2007-01-01

    An extension of Drude model is proposed that accounts for spin and spin-orbit interaction of charge carriers. Spin currents appear due to combined action of the external electric field, crystal field and scattering of charge carriers. The expression for spin Hall conductivity is derived for metals and semiconductors that is independent of the scattering mechanism. In cubic metals, spin Hall conductivity $\\sigma_s$ and charge conductivity $\\sigma_c$ are related through $\\sigma_s = [2 \\pi \\hbar...

  8. Tribological properties of fish scale inspired underwater superoleophobic hierarchical structure in aqueous environment

    Science.gov (United States)

    Lian, Zhongxu; Xu, Jinkai; Wan, Yanling; Li, Yiquan; Yu, Zhanjiang; Liu, Qimeng; Yu, Huadong

    2017-10-01

    Underwater superoleophobic surfaces are becoming increasingly important in regard to self-cleaning, anti-fouling, oil droplet transportation and water/oil separation. Although a great number of underwater superoleophobic surfaces have been demonstrated, their tribological properties remain impractical for the purposes of real-life applications. Herein, a two-step method of high speed wire electrical discharge machining and boiling water treatment was adopted to fabricate fish scale inspired underwater oil repellent hierarchical structure on an aluminum (Al) alloy 5083 surface. The hierarchical roughness and hydroxyl groups were obtained on the surface, and the surface exhibited the ability to prevent contact with organic fluids when submerged in water. Moreover, the tribological properties of underwater superoleophobic Al surfaces in aqueous environments were analyzed. The average friction coefficient of underwater superoleophobic surfaces was decreased compared with the polished Al surface. We believe that this research will contribute to the engineering application of underwater superoleophobic surfaces in the future.

  9. Spin-Current and Spin-Splitting in Helicoidal Molecules Due to Spin-Orbit Coupling

    Science.gov (United States)

    Caetano, R. A.

    2016-03-01

    The use of organic materials in spintronic devices has been seriously considered after recent experimental works have shown unexpected spin-dependent electrical properties. The basis for the confection of any spintronic device is ability of selecting the appropriated spin polarization. In this direction, DNA has been pointed out as a potential candidate for spin selection due to the spin-orbit coupling originating from the electric field generated by accumulated electrical charges along the helix. Here, we demonstrate that spin-orbit coupling is the minimum ingredient necessary to promote a spatial spin separation and the generation of spin-current. We show that the up and down spin components have different velocities that give rise to a spin-current. By using a simple situation where spin-orbit coupling is present, we provide qualitative justifications to our results that clearly point to helicoidal molecules as serious candidates to integrate spintronic devices.

  10. Spin Torques in Systems with Spin Filtering and Spin Orbit Interaction

    KAUST Repository

    Ortiz Pauyac, Christian

    2016-06-19

    In the present thesis we introduce the reader to the field of spintronics and explore new phenomena, such as spin transfer torques, spin filtering, and three types of spin-orbit torques, Rashba, spin Hall, and spin swapping, which have emerged very recently and are promising candidates for a new generation of memory devices in computer technology. A general overview of these phenomena is presented in Chap. 1. In Chap. 2 we study spin transfer torques in tunnel junctions in the presence of spin filtering. In Chap. 3 we discuss the Rashba torque in ferromagnetic films, and in Chap. 4 we study spin Hall effect and spin swapping in ferromagnetic films, exploring the nature of spin-orbit torques based on these mechanisms. Conclusions and perspectives are summarized in Chap. 5.

  11. Dolphin Sounds-Inspired Covert Underwater Acoustic Communication and Micro-Modem

    OpenAIRE

    Gang Qiao; Yunjiang Zhao; Songzuo Liu; Muhammad Bilal

    2017-01-01

    A novel portable underwater acoustic modem is proposed in this paper for covert communication between divers or underwater unmanned vehicles (UUVs) and divers at a short distance. For the first time, real dolphin calls are used in the modem to realize biologically inspired Covert Underwater Acoustic Communication (CUAC). A variety of dolphin whistles and clicks stored in an SD card inside the modem helps to realize different biomimetic CUAC algorithms based on the specified covert scenario. I...

  12. A PROPOSAL FOR A SUSTAINABLE MODEL BASED UPON UNDERWATER TOURISM RESEARCH IN AYVALIK

    Directory of Open Access Journals (Sweden)

    A. GÖKDENİZ

    2013-03-01

    Full Text Available Underwater sports are the activities being done with the aims of witnessing the beauties, hunting, taking photos, the ecology and the archaeology of underwater analysing or finding out the human being’s boundaries by improving the physical and psychological skills of men. The initial aim of this project is to increase the underwater flora and the fauna heritage of Ayvalık and to bring them in tourism. Ayvalık is on the west coast of Turkey. It is getting more and more famous with its underwater richness. Also, to form a new underwater sports centre in order to contribute to the improvement of the region. By providing visual attractiveness, the tourists related to underwater sports will pay attention to Ayvalık and underwater tourism will contribute much to the economy of the region. The aim of this project is to improve the underwater sports which is now a hobby than a sport. In Ayvalık Underwater World study, we dealt with 247 divers and 4 underwater sports club. In this study, we analysed the expectation, satisfaction, demographic and economic level of 247 divers about the services in the region. Interview technique has been used in the study on the 4 underwater sports clubs which are hosting divers. As a conclusion, a report has been prepared in which detailed information and proposals are presented by developing a sustainable marketing model concerned with the underwater sports for those who want to possess information, shareholders of the sector and make analyse about tourism.

  13. Real-Time Dynamic Model Learning and Adaptation for Underwater Vehicles

    Science.gov (United States)

    2013-09-01

    propeller on the vLBV300 SV Starboard, vertical propeller on the vLBV300 THAUS Tethered Hovering-Class Autonomous Underwater System UUV Unmanned...inhabitance of man and machine—the aim is to fundamentally enable the transformative capability of robots as underwater co-workers. The RDAS finds...be commanded via a high- or low-level computer interface, resulting in a tethered , hovering-class autonomous underwater system (THAUS). As

  14. Modeling and Simulation of Motion of an Underwater Robot Glider for Shallow-water Ocean Applications

    OpenAIRE

    Chen Wang; Amir Anvar

    2012-01-01

    This paper describes the modeling and simulation of an underwater robot glider used in the shallow-water environment. We followed the Equations of motion derived by [2] and simplified dynamic Equations of motion of an underwater glider according to our underwater glider. A simulation code is built and operated in the MATLAB Simulink environment so that we can make improvements to our testing glider design. It may be also used to validate a robot glider design.

  15. Evaluating underwater noise regulations for piling noise in Belgium and The Netherlands

    OpenAIRE

    Rumes, B.; Erkman, A.; Haelters, J.

    2016-01-01

    There is concern about possible effects on the marine ecosystem of high levels of underwater noise generated during pile driving for the construction of offshore wind farms. As a result, various national governments in Europe have identified limits of underwater sound levels, as such imposing in many cases the use of noise mitigation measures. In this paper we compare the regulations with regard to impulsive underwater noise in the Belgian wind farm zone with those in the Dutch wind energy zo...

  16. Target Localization in Underwater Acoustic Sensor Networks Using RSS Measurements

    Directory of Open Access Journals (Sweden)

    Shengming Chang

    2018-02-01

    Full Text Available This paper addresses the target localization problems based on received signal strength (RSS measurements in underwater acoustic wireless sensor network (UWSN. Firstly, the problems based on the maximum likelihood (ML criterion for estimating target localization in cases of both known and unknown transmit power are respectively derived, and fast implementation algorithms are proposed by transforming the non-convex problems into a generalized trust region subproblem (GTRS frameworks. A three-step procedure is also provided to enhance the estimation accuracy in the unknown target transmit power case. Furthermore, the Cramer–Rao lower bounds (CRLBs in both cases are derived. Computer simulation results show the superior performance of the proposed methods in the underwater environment.

  17. Autonomous Underwater Navigation and Optical Mapping in Unknown Natural Environments

    Directory of Open Access Journals (Sweden)

    Juan David Hernández

    2016-07-01

    Full Text Available We present an approach for navigating in unknown environments while, simultaneously, gathering information for inspecting underwater structures using an autonomous underwater vehicle (AUV. To accomplish this, we first use our pipeline for mapping and planning collision-free paths online, which endows an AUV with the capability to autonomously acquire optical data in close proximity. With that information, we then propose a reconstruction pipeline to create a photo-realistic textured 3D model of the inspected area. These 3D models are also of particular interest to other fields of study in marine sciences, since they can serve as base maps for environmental monitoring, thus allowing change detection of biological communities and their environment over time. Finally, we evaluate our approach using the Sparus II, a torpedo-shaped AUV, conducting inspection missions in a challenging, real-world and natural scenario.

  18. Underwater Environment SDAP Method Using Multi Single-Beam Sonars

    Directory of Open Access Journals (Sweden)

    Zheping Yan

    2013-01-01

    Full Text Available A new autopilot system for unmanned underwater vehicle (UUV using multi-single-beam sonars is proposed for environmental exploration. The proposed autopilot system is known as simultaneous detection and patrolling (SDAP, which addresses two fundamental challenges: autonomous guidance and control. Autonomous guidance, autonomous path planning, and target tracking are based on the desired reference path which is reconstructed from the sonar data collected from the environmental contour with the predefined safety distance. The reference path is first estimated by using a support vector clustering inertia method and then refined by Bézier curves in order to satisfy the inertia property of the UUV. Differential geometry feedback linearization method is used to guide the vehicle entering into the predefined path while finite predictive stable inversion control algorithm is employed for autonomous target approaching. The experimental results from sea trials have demonstrated that the proposed system can provide satisfactory performance implying its great potential for future underwater exploration tasks.

  19. Effect of Surface Coatings on Cylinders Exposed to Underwater Shock

    Directory of Open Access Journals (Sweden)

    Y.W. Kwon

    1994-01-01

    Full Text Available The response of a coated cylinder (metallic cylinder coated with a rubber material subjected to an underwater explosion is analyzed numerically. The dynamic response of the coated cylinder appears to be adversely affected when impacted by an underwater shock wave under certain conditions of geometry and material properties of the coating. When adversely affected, significant deviations in values of axial stress, hoop stress, and strain are observed. The coated cylinder exhibits a larger deformation and higher internal energy in the metallic material. Rubber coatings appeared to inhibit energy dissipation from the metallic material to the surrounding water medium. A parametric study of various coatings was performed on both aluminum and steel cylinders. The adverse effect of the coating decreased when the stiffness of the rubber layer increased, indicating the existence of a threshold value. The results of this study indicate that the stiffness of the coating is a critical factor to the shock hardening of the coated cylinder.

  20. A modified finite element procedure for underwater shock analysis

    International Nuclear Information System (INIS)

    Chan, S.K.

    1990-01-01

    Using the regular finite element method for analyzing wave propagation problems presents difficulties: (a) The finite element mesh gives spurious reflection of the traveling wave and (b) Since a finite element model has to have a finite boundary, the wave is reflected by the outside boundary. However, for underwater shock problems, only the response of the structure is of major interest, not the behavior of the wave itself, and the shock wave can be assumed to be spherical. By taking advantage of the limited scope of the underwater shock problem, a finite element procedure can be developed that eliminates the above difficulties. This procedure not only can give very accurate solutions but it may also include structural nonlinearities and effect of cavitation

  1. Monte Carlo study on pulse response of underwater optical channel

    Science.gov (United States)

    Li, Jing; Ma, Yong; Zhou, Qunqun; Zhou, Bo; Wang, Hongyuan

    2012-06-01

    Pulse response of the underwater wireless optical channel is significant for the analysis of channel capacity and error probability. Traditional vector radiative transfer theory (VRT) is not able to deal with the effect of receiving aperture. On the other hand, general water tank experiments cannot acquire an accurate pulse response due to the limited time resolution of the photo-electronic detector. We present a Monte Carlo simulation model to extract the time-domain pulse response undersea. In comparison with the VRT model, a more accurate pulse response for practical ocean communications could be achieved through statistical analysis of the received photons. The proposed model is more reasonable for the study of the underwater optical channel.

  2. Effect of eddy diffusivity ratio on underwater optical scintillation index.

    Science.gov (United States)

    Elamassie, Mohammed; Uysal, Murat; Baykal, Yahya; Abdallah, Mohamed; Qaraqe, Khalid

    2017-11-01

    The performance of underwater optical wireless communication systems is severely affected by the turbulence that occurs due to the fluctuations in the index of refraction. Most previous studies assume a simplifying, yet inaccurate, assumption in the turbulence spectrum model that the eddy diffusivity ratio is equal to unity. It is, however, well known that the eddy diffusivities of temperature and salt are different from each other in most underwater environments. In this paper, we obtain a simplified spatial power spectrum model of turbulent fluctuations of the seawater refraction index as an explicit function of eddy diffusivity ratio. Using the derived model, we obtain the scintillation index of optical plane and spherical waves and investigate the effect of the eddy diffusivity ratio.

  3. In-air and underwater hearing of the cormorant

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Wahlberg, Magnus; Christensen-Dalsgaard, Jakob

    Numerous studies have mapped the hearing abilities of birds in air but currently there is little or no data on how diving birds hear or react to sound under water. Therefore, it is unknown whether the ears and auditory system of diving birds are adapted to underwater hearing. In the present study...... 10 cm under water in a large water filled-tank while being artificially ventilated. ABR-responses to calibrated tone bursts produced by a woofer and an underwater speaker, respectively, were measured at different intensities and frequencies to obtain hearing threshold values in air and under water......Hz) under water. Generally, the cormorant ear was not very sensitive to sound, neither in air nor under water. The hearing abilities in water, however, were better than what would have been expected for a purely in-air adapted ear. (Supported by the Carlsberg Foundation 2009_01_0292 and the Danish Council...

  4. The Development of a Hybrid Underwater Micro Biped Robot

    Directory of Open Access Journals (Sweden)

    S. Guo

    2006-01-01

    Full Text Available There has been a great demand, in the medical field and in industrial applications, for a novel micro biped robot with multiple degrees of freedom that can swim smoothly in water or in aqueous medium. The fish-like micro-robot studied is a type of miniature device that is installed with sensing and actuating elements. This article describes the new structure and motion mechanism of a hybrid type of underwater micro-robot using an ion-conducting polymer film (ICPF actuator, and discusses the swimming and floating characteristics of the micro-robot in water, measured by changing the voltage frequency and the amplitude of the input voltage. Results indicate that the swimming speed of the proposed underwater micro-robot can be controlled by changing the frequency of the input voltage, and the direction (upward or downward can be manipulated by changing the frequency of the electric current applied and the amplitude of the voltage.

  5. Autonomous Underwater Navigation and Optical Mapping in Unknown Natural Environments

    Science.gov (United States)

    Hernández, Juan David; Istenič, Klemen; Gracias, Nuno; Palomeras, Narcís; Campos, Ricard; Vidal, Eduard; García, Rafael; Carreras, Marc

    2016-01-01

    We present an approach for navigating in unknown environments while, simultaneously, gathering information for inspecting underwater structures using an autonomous underwater vehicle (AUV). To accomplish this, we first use our pipeline for mapping and planning collision-free paths online, which endows an AUV with the capability to autonomously acquire optical data in close proximity. With that information, we then propose a reconstruction pipeline to create a photo-realistic textured 3D model of the inspected area. These 3D models are also of particular interest to other fields of study in marine sciences, since they can serve as base maps for environmental monitoring, thus allowing change detection of biological communities and their environment over time. Finally, we evaluate our approach using the Sparus II, a torpedo-shaped AUV, conducting inspection missions in a challenging, real-world and natural scenario. PMID:27472337

  6. H∞ control of a remotely operated underwater vehicle

    International Nuclear Information System (INIS)

    Conte, G.; Serrani, A.

    1994-01-01

    The paper discusses the application of H∞ control techniques to the design of a control system for a remotely operated underwater vehicle. As the main problem in defining a control strategy for such vehicles is the nonlinear and uncertain nature of the modeled dynamics, the robustness properties of H∞ controllers can in principle be used to provide stability and nominal performances for the closed loop system. Therefore, a control strategy based on a scheduling of such controllers has been proposed, and the overall performance of the closed loop system have been evaluated by means of nonlinear simulation in a broad range of working conditions, with particular attention to the effects of the underwater current that acts on the vehicle

  7. Development of underwater robot for taking off marine life

    International Nuclear Information System (INIS)

    Hirai, Harumi; Wakamatsu, Kazuhiko; Ueda, Ryohei; Edahiro, Kyosuke; Hayashi, Shunichi.

    1983-01-01

    Fouling by marine life growths in the cooling water system at seaside power generating stations is a major problem in the maintenance of a safe and efficient operation. Ingress of released growths into the condensers and coolers often jeopardizes their tube life and performance by clogging and/or tube corrosion. Many stations are obliged to remove periodically the growths manually after drying-out the system or by divers at considerable expenditure in time and money. A new remote-controlled underwater robot is developed for brushing marine life off cooling water intake channels of thermal and nuclear power generation plants. This robot consists of an underwater working unit, a power supply system, hydraulic hose take-up unit and controlling equipment. The full hydraulically powered robot, which can be used for both open and closed conduits, permits cleaning under water intake servicing condition. It drastically reduces both time and cost. (author)

  8. Nonlinear underwater robot controller design with adaptive disturbance prediction

    Directory of Open Access Journals (Sweden)

    Xin Songa

    2011-08-01

    Full Text Available A new hybrid adaptive control algorithm is proposed for the nonlinear system controller design of underwater robot. Compared with the previous works in the controller design of underwater robot, the main advantages of this work are: (1 A new disturbance prediction and compensation model is proposed; (2 A new adaptive fuzzy smoother is proposed for the control input; (3 A time-varying flow disturbance is considered for the control design which is always neglected in many previous works and several practical experiments under different environment were implemented to verify the control performance. The Lyapunov stability theory proves the stability and convergence of this new control system. Simulation and experiment results demonstrate the performance and the effectiveness of this new algorithm.

  9. Development of a tentacle propulsion technique for underwater application

    International Nuclear Information System (INIS)

    Alamgir, T; Rashid, M M; Khan, M R

    2013-01-01

    As robotic technology matures and more platforms are fielded in unstructured real-world situations, the more new areas of applications are being thought for robotic deployment. After successes in industrial robots, researchers are now trying to explore new robots with biological features of different biological creatures like, snake, bird, and spider for their stunning advantages. Underwater exploration using robots is a new avenue. Research on the tentacle robot for underwater application is a new field of research besides the other research in this arena. There are few researches on this topic are explored and mostly are on biological robot. Besides those researches this paper aims to propose and demonstrate another technique to build a tentacle for propulsion purposes. Therefore, in this paper will discuss more on mathematical development for the propulsion technique and its software verification technique in considering the environmental constrains

  10. Lung physiology at play: Hemoptysis due to underwater hockey

    Directory of Open Access Journals (Sweden)

    Meghan Aversa

    2014-01-01

    Full Text Available Hemoptysis can be a very concerning symptom, and the workup of a patient with hemoptysis may be expensive and invasive. Over the past decade, there has been increasing recognition of hemoptysis that occurs in highly trained athletes under conditions of extreme physical exertion and is explained by “pulmonary capillary stress failure”. This report highlights the physiological mechanisms of pulmonary capillary stress failure in the highly trained athlete, with emphasis on the predisposition to develop this condition in underwater sports. We describe the case of an otherwise healthy 34 year-old competitive underwater hockey player who reported hemoptysis following particularly strenuous games. We postulate that the hemoptysis was a result of the pulmonary capillary stress failure caused by the cumulative hemodynamic effects of a markedly elevated cardiac output, the increased central blood volume caused by the hydrostatic effects of submersion in water, and the negative intrathoracic pressure produced by voluntary diaphragmatic contractions.

  11. Electrostatic images for underwater anisotropic conductive half spaces

    International Nuclear Information System (INIS)

    Flykt, M.; Lindell, I.; Eloranta, E.

    1998-01-01

    A static image principle makes it possible to derive analytical solutions to some basic geometries for DC fields. The underwater environment is especially difficult both from the theoretical and practical point of view. However, there are increasing demands that also the underwater geological formations should be studied in detail. The traditional image of a point source lies at the mirror point of the original. When anisotropic media is involved, however, the image location can change and the image source may be a continues, sector-like distribution. In this paper some theoretical considerations are carried out in the case where the lower half space can have a very general anisotropy in terms of electrical conductivity, while the upper half space is assumed isotropic. The reflection potential field is calculated for different values of electrical conductivity. (orig.)

  12. NBL Pistol Grip Tool for Underwater Training of Astronauts

    Science.gov (United States)

    Liszka, Michael; Ashmore, Matthew; Behnke, Mark; Smith, Walter; Waterman, Tod

    2011-01-01

    A document discusses a lightweight, functional mockup of the Pistol Grip Tool for use during underwater astronaut training. Previous training tools have caused shoulder injuries. This new version is more than 50 percent lighter [in water, weight is 2.4 lb (=1.1 kg)], and can operate for a six-hour training session after 30 minutes of prep for submersion. Innovations in the design include the use of lightweight materials (aluminum and Delrin(Registered TradeMark)), creating a thinner housing, and the optimization of internal space with the removal of as much excess material as possible. This reduces tool weight and maximizes buoyancy. Another innovation for this tool is the application of a vacuum that seats the Orings in place and has shown to be reliable in allowing underwater usage for up to six hours.

  13. SOUNET: Self-Organized Underwater Wireless Sensor Network.

    Science.gov (United States)

    Kim, Hee-Won; Cho, Ho-Shin

    2017-02-02

    In this paper, we propose an underwater wireless sensor network (UWSN) named SOUNET where sensor nodes form and maintain a tree-topological network for data gathering in a self-organized manner. After network topology discovery via packet flooding, the sensor nodes consistently update their parent node to ensure the best connectivity by referring to the timevarying neighbor tables. Such a persistent and self-adaptive method leads to high network connectivity without any centralized control, even when sensor nodes are added or unexpectedly lost. Furthermore, malfunctions that frequently happen in self-organized networks such as node isolation and closed loop are resolved in a simple way. Simulation results show that SOUNET outperforms other conventional schemes in terms of network connectivity, packet delivery ratio (PDR), and energy consumption throughout the network. In addition, we performed an experiment at the Gyeongcheon Lake in Korea using commercial underwater modems to verify that SOUNET works well in a real environment.

  14. SOUNET: Self-Organized Underwater Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Hee-won Kim

    2017-02-01

    Full Text Available In this paper, we propose an underwater wireless sensor network (UWSN named SOUNET where sensor nodes form and maintain a tree-topological network for data gathering in a self-organized manner. After network topology discovery via packet flooding, the sensor nodes consistently update their parent node to ensure the best connectivity by referring to the timevarying neighbor tables. Such a persistent and self-adaptive method leads to high network connectivity without any centralized control, even when sensor nodes are added or unexpectedly lost. Furthermore, malfunctions that frequently happen in self-organized networks such as node isolation and closed loop are resolved in a simple way. Simulation results show that SOUNET outperforms other conventional schemes in terms of network connectivity, packet delivery ratio (PDR, and energy consumption throughout the network. In addition, we performed an experiment at the Gyeongcheon Lake in Korea using commercial underwater modems to verify that SOUNET works well in a real environment.

  15. Development of a tentacle propulsion technique for underwater application

    Science.gov (United States)

    Alamgir, T.; Rashid, M. M.; Khan, M. R.

    2013-12-01

    As robotic technology matures and more platforms are fielded in unstructured real-world situations, the more new areas of applications are being thought for robotic deployment. After successes in industrial robots, researchers are now trying to explore new robots with biological features of different biological creatures like, snake, bird, and spider for their stunning advantages. Underwater exploration using robots is a new avenue. Research on the tentacle robot for underwater application is a new field of research besides the other research in this arena. There are few researches on this topic are explored and mostly are on biological robot. Besides those researches this paper aims to propose and demonstrate another technique to build a tentacle for propulsion purposes. Therefore, in this paper will discuss more on mathematical development for the propulsion technique and its software verification technique in considering the environmental constrains.

  16. Spreading of sediment due to underwater blasting and dredging

    DEFF Research Database (Denmark)

    Nielsen, Morten Holtegaard; Bach, Lis; Bollwerk, Sandra

    2015-01-01

    leads to a wider spreading of the organic part of the sediment. Almost all material less than 2 μm, including surficial clay minerals and much organic material, was transported away from the construction site and its vicinity, which could imply mobilization and export of pollutants. Environmental...... impacts of suspended sediment from underwater blasting, which could include coverage of the benthos or increased turbidity, can be managed by timing the blast favourably relative to currents, waves and stratification. It is argued that the environmental impact of blasting can be minimized by decreasing...... out in connection with the construction of a new quay at the existing harbour of Sisimiut, Greenland. Subsequent to the largest of a series of underwater blasts, the distribution of suspended sediment in the water column at and around the construction site was observed using a CTD (Conductivity...

  17. Beam and spin dynamics of hadron beams in intermediate-energy ring accelerators

    International Nuclear Information System (INIS)

    Lehrach, Andreas

    2008-01-01

    In this thesis beam and spin dynamics of ring accelerators are described. After a general theoretical treatment methods for the beam optimization and polarization conservation are discussed. Then experiments on spin manipulation at the COSY facility are considered. Finally the beam simulation and accelerator lay-out for the HESR with regards to the FAIR experiment are described. (HSI)

  18. Superheated Water-Cooled Small Modular Underwater Reactor Concept

    OpenAIRE

    Koroush Shirvan; Mujid Kazimi

    2016-01-01

    A novel fully passive small modular superheated water reactor (SWR) for underwater deployment is designed to produce 160 MWe with steam at 500ºC to increase the thermodynamic efficiency compared with standard light water reactors. The SWR design is based on a conceptual 400-MWe integral SWR using the internally and externally cooled annular fuel (IXAF). The coolant boils in the external channels throughout the core to approximately the same quality as a conventional boiling water reactor and ...

  19. The control system of an autonomous underwater vehicle

    Directory of Open Access Journals (Sweden)

    Bjørn Jalving

    1995-04-01

    Full Text Available This paper presents the flight control system of an Autonomous Underwater Vehicle (AUV developed at the Norwegian Defence Research Establishment. A mathematical model of the vehicle is derived and discussed. The system is separated into lightly interacting subsystems and three autopilots are designed for steering, diving and speed control. The design of the separate controllers is based on PID techniques. Results from sea trials show robust performance and stability for the autopilot.

  20. A perspective on underwater photosynthesis in submerged terrestrial wetland plants

    Science.gov (United States)

    Colmer, Timothy D.; Winkel, Anders; Pedersen, Ole

    2011-01-01

    Background and aims Wetland plants inhabit flood-prone areas and therefore can experience episodes of complete submergence. Submergence impedes exchange of O2 and CO2 between leaves and the environment, and light availability is also reduced. The present review examines limitations to underwater net photosynthesis (PN) by terrestrial (i.e. usually emergent) wetland plants, as compared with submerged aquatic plants, with focus on leaf traits for enhanced CO2 acquisition. Scope Floodwaters are variable in dissolved O2, CO2, light and temperature, and these parameters influence underwater PN and the growth and survival of submerged plants. Aquatic species possess morphological and anatomical leaf traits that reduce diffusion limitations to CO2 uptake and thus aid PN under water. Many aquatic plants also have carbon-concentrating mechanisms to increase CO2 at Rubisco. Terrestrial wetland plants generally lack the numerous beneficial leaf traits possessed by aquatic plants, so submergence markedly reduces PN. Some terrestrial species, however, produce new leaves with a thinner cuticle and higher specific leaf area, whereas others have leaves with hydrophobic surfaces so that gas films are retained when submerged; both improve CO2 entry. Conclusions Submergence inhibits PN by terrestrial wetland plants, but less so in species that produce new leaves under water or in those with leaf gas films. Leaves with a thinner cuticle, or those with gas films, have improved gas diffusion with floodwaters, so that underwater PN is enhanced. Underwater PN provides sugars and O2 to submerged plants. Floodwaters often contain dissolved CO2 above levels in equilibrium with air, enabling at least some PN by terrestrial species when submerged, although rates remain well below those in air. PMID:22476500

  1. An Underwater Robot for the Maintenance of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Sung-Uk; Choi, Young-Soo; Jeong, Kyung-Min

    2007-01-01

    The safety and reliability of nuclear power plants has become more important than in the past. Inspection and maintenance of a component should be achieved continuously. Two reactor types PWR (Pressurized Water Reactor) and PHWR (Pressurized Heavy Water Reactor) are normally operated in Korea. In the case of a PWR, the presence of any loose part affects the safety of a nuclear power plant. A loose part, which could be from failed components or an item inadvertently left during a construction, refueling or maintenance like as metallic parts, bolts, nuts and washers, can damage any part by frequently impacting that part in the system. Therefore, work that detects a loose part and removes it from a the nuclear reactor vessel is very important. Moreover, the inspection of the RCS (reactor coolant system) of PWR is also important. The RCS has a role to cool down the reactor's temperature. But human workers can't access the RCS easily because of the complexity of the path and the radiation level. So a robotic system is needed to inspect the RCS closely. Research on an underwater robot for an inspection of a nuclear reactor vessel began in the 1990s. Since then, many underwater robots for a nuclear power plant have been developed. But the developed underwater robots were so heavy and also they only had one function that is to inspect the nuclear reactor vessel. In this paper, an underwater robotic system is developed for inspecting the bottom of the nuclear reactor vessel, hot legs and cold legs of reactor coolant system and also for removing some particles in them

  2. Optical Sensors and Methods for Underwater 3D Reconstruction

    Science.gov (United States)

    Massot-Campos, Miquel; Oliver-Codina, Gabriel

    2015-01-01

    This paper presents a survey on optical sensors and methods for 3D reconstruction in underwater environments. The techniques to obtain range data have been listed and explained, together with the different sensor hardware that makes them possible. The literature has been reviewed, and a classification has been proposed for the existing solutions. New developments, commercial solutions and previous reviews in this topic have also been gathered and considered. PMID:26694389

  3. An Underwater Robot for the Maintenance of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung-Uk; Choi, Young-Soo; Jeong, Kyung-Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-07-01

    The safety and reliability of nuclear power plants has become more important than in the past. Inspection and maintenance of a component should be achieved continuously. Two reactor types PWR (Pressurized Water Reactor) and PHWR (Pressurized Heavy Water Reactor) are normally operated in Korea. In the case of a PWR, the presence of any loose part affects the safety of a nuclear power plant. A loose part, which could be from failed components or an item inadvertently left during a construction, refueling or maintenance like as metallic parts, bolts, nuts and washers, can damage any part by frequently impacting that part in the system. Therefore, work that detects a loose part and removes it from a the nuclear reactor vessel is very important. Moreover, the inspection of the RCS (reactor coolant system) of PWR is also important. The RCS has a role to cool down the reactor's temperature. But human workers can't access the RCS easily because of the complexity of the path and the radiation level. So a robotic system is needed to inspect the RCS closely. Research on an underwater robot for an inspection of a nuclear reactor vessel began in the 1990s. Since then, many underwater robots for a nuclear power plant have been developed. But the developed underwater robots were so heavy and also they only had one function that is to inspect the nuclear reactor vessel. In this paper, an underwater robotic system is developed for inspecting the bottom of the nuclear reactor vessel, hot legs and cold legs of reactor coolant system and also for removing some particles in them.

  4. Technology Selection for Offshore Underwater Small Modular Reactors

    OpenAIRE

    Shirvan, Koroush; Ballinger, Ronald; Buongiorno, Jacopo; Forsberg, Charles; Kazimi, Mujid; Todreas, Neil

    2016-01-01

    This work examines the most viable nuclear technology options for future underwater designs that would meet high safety standards as well as good economic potential, for construction in the 2030–2040 timeframe. The top five concepts selected from a survey of 13 nuclear technologies were compared to a small modular pressurized water reactor (PWR) designed with a conventional layout. In order of smallest to largest primary system size where the reactor and all safety systems are contained, the ...

  5. Improvements in or relating to the inspection of underwater structures

    International Nuclear Information System (INIS)

    Caldecourt, L.R.; Evans, G.V.; Parsons, T.V.

    1980-01-01

    A radiation detector is described, for use in the inspection of underwater structures, which is capable of withstanding high pressures and arduous marine conditions. The ingress of water into the body of the radiation detector tube is prevented by the use of a resilient waterproof compound. Marine structures incorporating such radiation detectors are described, whereby the presence or density of flowing cement grout in the legs of an offshore platform may be determined. (U.K.)

  6. Averaging underwater noise levels for environmental assessment of shipping

    OpenAIRE

    Merchant, Nathan D.; Blondel, Philippe; Dakin, D. Tom; Dorocicz, John

    2012-01-01

    Rising underwater noise levels from shipping have raised concerns regarding chronic impacts to marine fauna. However, there is a lack of consensus over how to average local shipping noise levels for environmental impact assessment. This paper addresses this issue using 110 days of continuous data recorded in the Strait of Georgia, Canada. Probability densities of ∼ 10 7 1-s samples in selected 1/3 octave bands were approximately stationary across one-month subsamples. Median and mode levels v...

  7. Oil/gas collector/separator for underwater oil leaks

    International Nuclear Information System (INIS)

    Henning, C.D.

    1993-01-01

    An oil/gas collector/separator for underwater oil leaks is described comprising: a cylindrical tank; a hollow float member for supporting said tank in a substantially upright position; a skirt assembly secured to said hollow float member and extending in a direction away from said float member opposite said tank; means for removing oil from said tank; and means for removing gas from said tank

  8. A trajectory observer for camera-based underwater motion measurements

    DEFF Research Database (Denmark)

    Berg, Tor; Jouffroy, Jerome; Johansen, Vegar

    This work deals with the issue of estimating the trajectory of a vehicle or object moving underwater based on camera measurements. The proposed approach consists of a diffusion-based trajectory observer (Jouffroy and Opderbecke, 2004) processing whole segments of a trajectory at a time. Additiona....... Additionally, the observer contains a Tikhonov regularizer for smoothing the estimates. Then, a method for including the camera measurements in an appropriate manner is proposed....

  9. Assessment of underwater glider performance through viscous computational fluid dynamics

    OpenAIRE

    Lidtke, Artur Konrad; Turnock, Stephen; Downes, Jon

    2016-01-01

    The process of designing an apt hydrodynamic shape for a new underwater glider is discussed. Intermediate stages include selecting a suitable axi-symmetric hull shape, adding hydrofoils and appendages, and evaluating the performance of the final design. All of the hydrodynamic characteristics are obtained using computational fluid dynamics using the kT - kL - ω transition model. It is shown that drag reduction of the main glider hull is of crucial importance to the ultimate performance. Sugge...

  10. Optical Backscattering Measured by Airborne Lidar and Underwater Glider

    OpenAIRE

    James H. Churnside; Richard D. Marchbanks; Chad Lembke; Jordon Beckler

    2017-01-01

    The optical backscattering from particles in the ocean is an important quantity that has been measured by remote sensing techniques and in situ instruments. In this paper, we compare estimates of this quantity from airborne lidar with those from an in situ instrument on an underwater glider. Both of these technologies allow much denser sampling of backscatter profiles than traditional ship surveys. We found a moderate correlation (R = 0.28, p < 10−5), with differences that are partially ex...

  11. Localization Algorithms of Underwater Wireless Sensor Networks: A Survey

    Science.gov (United States)

    Han, Guangjie; Jiang, Jinfang; Shu, Lei; Xu, Yongjun; Wang, Feng

    2012-01-01

    In Underwater Wireless Sensor Networks (UWSNs), localization is one of most important technologies since it plays a critical role in many applications. Motivated by widespread adoption of localization, in this paper, we present a comprehensive survey of localization algorithms. First, we classify localization algorithms into three categories based on sensor nodes’ mobility: stationary localization algorithms, mobile localization algorithms and hybrid localization algorithms. Moreover, we compare the localization algorithms in detail and analyze future research directions of localization algorithms in UWSNs. PMID:22438752

  12. Optical spin generation/detection and spin transport lifetimes

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2011-01-01

    We generate electron spins in semiconductors by optical pumping. The detection of them is also performed by optical technique using time-resolved pump-probe photoluminescence polarization measurements in the presence of an external magnetic field perpendicular to the generated spin. The spin polarization in dependences of the pulse length, pump-probe delay and external magnetic field is studied. From the dependence of spin-polarization on the delay of the probe, the electronic spin transport lifetimes and the spin relaxation frequencies as a function of the strength of the magnetic field are estimated. The results are discussed based on hyperfine effects for interacting electrons.

  13. Optical spin generation/detection and spin transport lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2011-02-25

    We generate electron spins in semiconductors by optical pumping. The detection of them is also performed by optical technique using time-resolved pump-probe photoluminescence polarization measurements in the presence of an external magnetic field perpendicular to the generated spin. The spin polarization in dependences of the pulse length, pump-probe delay and external magnetic field is studied. From the dependence of spin-polarization on the delay of the probe, the electronic spin transport lifetimes and the spin relaxation frequencies as a function of the strength of the magnetic field are estimated. The results are discussed based on hyperfine effects for interacting electrons.

  14. Channel analysis for single photon underwater free space quantum key distribution.

    Science.gov (United States)

    Shi, Peng; Zhao, Shi-Cheng; Gu, Yong-Jian; Li, Wen-Dong

    2015-03-01

    We investigate the optical absorption and scattering properties of underwater media pertinent to our underwater free space quantum key distribution (QKD) channel model. With the vector radiative transfer theory and Monte Carlo method, we obtain the attenuation of photons, the fidelity of the scattered photons, the quantum bit error rate, and the sifted key generation rate of underwater quantum communication. It can be observed from our simulations that the most secure single photon underwater free space QKD is feasible in the clearest ocean water.

  15. Restoration and Enhancement of Underwater Images Based on Bright Channel Prior

    Directory of Open Access Journals (Sweden)

    Yakun Gao

    2016-01-01

    Full Text Available This paper proposed a new method of underwater images restoration and enhancement which was inspired by the dark channel prior in image dehazing field. Firstly, we proposed the bright channel prior of underwater environment. By estimating and rectifying the bright channel image, estimating the atmospheric light, and estimating and refining the transmittance image, eventually underwater images were restored. Secondly, in order to rectify the color distortion, the restoration images were equalized by using the deduced histogram equalization. The experiment results showed that the proposed method could enhance the quality of underwater images effectively.

  16. Synthesis of a Controller for Swarming Robots Performing Underwater Mine Countermeasures

    National Research Council Canada - National Science Library

    Tan, Yong

    2004-01-01

    This Trident Scholar project involved the synthesis of a swarm controller that is suitable for controlling movements of a group of autonomous robots performing underwater mine countermeasures (UMCM...

  17. Mapping Underwater Sound in the Dutch Part of the North Sea.

    Science.gov (United States)

    Sertlek, H Özkan; Aarts, Geert; Brasseur, Sophie; Slabbekoorn, Hans; ten Cate, Carel; von Benda-Beckmann, Alexander M; Ainslie, Michael A

    2016-01-01

    The European Union requires member states to achieve or maintain good environmental status for their marine territorial waters and explicitly mentions potentially adverse effects of underwater sound. In this study, we focused on producing maps of underwater sound from various natural and anthropogenic origins in the Dutch North Sea. The source properties and sound propagation are simulated by mathematical methods. These maps could be used to assess and predict large-scale effects on behavior and distribution of underwater marine life and therefore become a valuable tool in assessing and managing the impact of underwater sound on marine life.

  18. On the Accuracy Potential in Underwater/Multimedia Photogrammetry.

    Science.gov (United States)

    Maas, Hans-Gerd

    2015-07-24

    Underwater applications of photogrammetric measurement techniques usually need to deal with multimedia photogrammetry aspects, which are characterized by the necessity of handling optical rays that are refracted at interfaces between optical media with different refractive indices according to Snell's Law. This so-called multimedia geometry has to be incorporated into geometric models in order to achieve correct measurement results. The paper shows a flexible yet strict geometric model for the handling of refraction effects on the optical path, which can be implemented as a module into photogrammetric standard tools such as spatial resection, spatial intersection, bundle adjustment or epipolar line computation. The module is especially well suited for applications, where an object in water is observed by cameras in air through one or more planar glass interfaces, as it allows for some simplifications here. In the second part of the paper, several aspects, which are relevant for an assessment of the accuracy potential in underwater/multimedia photogrammetry, are discussed. These aspects include network geometry and interface planarity issues as well as effects caused by refractive index variations and dispersion and diffusion under water. All these factors contribute to a rather significant degradation of the geometric accuracy potential in underwater/multimedia photogrammetry. In practical experiments, a degradation of the quality of results by a factor two could be determined under relatively favorable conditions.

  19. An Autonomous Underwater Recorder Based on a Single Board Computer

    Science.gov (United States)

    Caldas-Morgan, Manuel; Alvarez-Rosario, Alexander; Rodrigues Padovese, Linilson

    2015-01-01

    As industrial activities continue to grow on the Brazilian coast, underwater sound measurements are becoming of great scientific importance as they are essential to evaluate the impact of these activities on local ecosystems. In this context, the use of commercial underwater recorders is not always the most feasible alternative, due to their high cost and lack of flexibility. Design and construction of more affordable alternatives from scratch can become complex because it requires profound knowledge in areas such as electronics and low-level programming. With the aim of providing a solution; a well succeeded model of a highly flexible, low-cost alternative to commercial recorders was built based on a Raspberry Pi single board computer. A properly working prototype was assembled and it demonstrated adequate performance levels in all tested situations. The prototype was equipped with a power management module which was thoroughly evaluated. It is estimated that it will allow for great battery savings on long-term scheduled recordings. The underwater recording device was successfully deployed at selected locations along the Brazilian coast, where it adequately recorded animal and manmade acoustic events, among others. Although power consumption may not be as efficient as that of commercial and/or micro-processed solutions, the advantage offered by the proposed device is its high customizability, lower development time and inherently, its cost. PMID:26076479

  20. Multiuser chirp modulation for underwater acoustic channel based on VTRM

    Directory of Open Access Journals (Sweden)

    Fei Yuan

    2017-05-01

    Full Text Available In this paper, an ascheme is proposed for multiuser underwater acoustic communication by using the multi-chirp rate signals. It differs from the well known TDMA (Time Division Multiple Access, FDMA (Frequency Division Multiple Access or CDMA (Code Division Multiple Access, by assigning each users with different chirp-rate carriers instead of the time, frequency or PN code. Multi-chirp rate signals can be separated from each other by FrFT (Fractional Fourier Transform, which can be regarded as the chirp-based decomposing, and superior to the match filter in the underwater acoustic channel. VTRM (Virtual Time Reverse Mirror is applied into the system to alleviate the ISI caused by the multipatch and make the equalization more simple. Results of computer simulations and pool experiments prove that the proposed multiuser underwater acoustic communication based on the multi-chirp rate exhibit well performance. Outfield experments carrie out in Xiamen Port show that using about 10 kHz bandwidth, four users could communicate at the same time with 425 bps with low BER and can match the UAC application.

  1. Measurement and Modeling of Narrowband Channels for Ultrasonic Underwater Communications

    Science.gov (United States)

    Cañete, Francisco J.; López-Fernández, Jesús; García-Corrales, Celia; Sánchez, Antonio; Robles, Encarnación; Rodrigo, Francisco J.; Paris, José F.

    2016-01-01

    Underwater acoustic sensor networks are a promising technology that allow real-time data collection in seas and oceans for a wide variety of applications. Smaller size and weight sensors can be achieved with working frequencies shifted from audio to the ultrasonic band. At these frequencies, the fading phenomena has a significant presence in the channel behavior, and the design of a reliable communication link between the network sensors will require a precise characterization of it. Fading in underwater channels has been previously measured and modeled in the audio band. However, there have been few attempts to study it at ultrasonic frequencies. In this paper, a campaign of measurements of ultrasonic underwater acoustic channels in Mediterranean shallow waters conducted by the authors is presented. These measurements are used to determine the parameters of the so-called κ-μ shadowed distribution, a fading model with a direct connection to the underlying physical mechanisms. The model is then used to evaluate the capacity of the measured channels with a closed-form expression. PMID:26907281

  2. Measurement and Modeling of Narrowband Channels for Ultrasonic Underwater Communications

    Directory of Open Access Journals (Sweden)

    Francisco J. Cañete

    2016-02-01

    Full Text Available Underwater acoustic sensor networks are a promising technology that allow real-time data collection in seas and oceans for a wide variety of applications. Smaller size and weight sensors can be achieved with working frequencies shifted from audio to the ultrasonic band. At these frequencies, the fading phenomena has a significant presence in the channel behavior, and the design of a reliable communication link between the network sensors will require a precise characterization of it. Fading in underwater channels has been previously measured and modeled in the audio band. However, there have been few attempts to study it at ultrasonic frequencies. In this paper, a campaign of measurements of ultrasonic underwater acoustic channels in Mediterranean shallow waters conducted by the authors is presented. These measurements are used to determine the parameters of the so-called κ-μ shadowed distribution, a fading model with a direct connection to the underlying physical mechanisms. The model is then used to evaluate the capacity of the measured channels with a closed-form expression.

  3. An Autonomous Underwater Recorder Based on a Single Board Computer.

    Science.gov (United States)

    Caldas-Morgan, Manuel; Alvarez-Rosario, Alexander; Rodrigues Padovese, Linilson

    2015-01-01

    As industrial activities continue to grow on the Brazilian coast, underwater sound measurements are becoming of great scientific importance as they are essential to evaluate the impact of these activities on local ecosystems. In this context, the use of commercial underwater recorders is not always the most feasible alternative, due to their high cost and lack of flexibility. Design and construction of more affordable alternatives from scratch can become complex because it requires profound knowledge in areas such as electronics and low-level programming. With the aim of providing a solution; a well succeeded model of a highly flexible, low-cost alternative to commercial recorders was built based on a Raspberry Pi single board computer. A properly working prototype was assembled and it demonstrated adequate performance levels in all tested situations. The prototype was equipped with a power management module which was thoroughly evaluated. It is estimated that it will allow for great battery savings on long-term scheduled recordings. The underwater recording device was successfully deployed at selected locations along the Brazilian coast, where it adequately recorded animal and manmade acoustic events, among others. Although power consumption may not be as efficient as that of commercial and/or micro-processed solutions, the advantage offered by the proposed device is its high customizability, lower development time and inherently, its cost.

  4. Underwater drag-reducing effect of superhydrophobic submarine model.

    Science.gov (United States)

    Zhang, Songsong; Ouyang, Xiao; Li, Jie; Gao, Shan; Han, Shihui; Liu, Lianhe; Wei, Hao

    2015-01-01

    To address the debates on whether superhydrophobic coatings can reduce fluid drag for underwater motions, we have achieved an underwater drag-reducing effect of large superhydrophobic submarine models with a feature size of 3.5 cm × 3.7 cm × 33.0 cm through sailing experiments of submarine models, modified with and without superhydrophobic surface under similar power supply and experimental conditions. The drag reduction rate reached as high as 15%. The fabrication of superhydrophobic coatings on a large area of submarine model surfaces was realized by immobilizing hydrophobic copper particles onto a precross-linked polydimethylsiloxane (PDMS) surface. The pre-cross-linking time was optimized at 20 min to obtain good superhydrophobicity for the underwater drag reduction effect by investigating the effect of pre-cross-linking on surface wettability and water adhesive property. We do believe that superhydrophobic coatings may provide a promising application in the field of drag-reducing of vehicle motions on or under the water surface.

  5. A MAC Protocol to Support Monitoring of Underwater Spaces †

    Science.gov (United States)

    Santos, Rodrigo; Orozco, Javier; Ochoa, Sergio F.; Meseguer, Roc; Eggly, Gabriel; Pistonesi, Marcelo F.

    2016-01-01

    Underwater sensor networks are becoming an important field of research, because of their everyday increasing application scope. Examples of their application areas are environmental and pollution monitoring (mainly oil spills), oceanographic data collection, support for submarine geolocalization, ocean sampling and early tsunamis alert. The challenge of performing underwater communications is well known, provided that radio signals are useless in this medium, and a wired solution is too expensive. Therefore, the sensors in these networks transmit their information using acoustic signals that propagate well under water. This data transmission type not only brings an opportunity, but also several challenges to the implementation of these networks, e.g., in terms of energy consumption, data transmission and signal interference. In order to help advance the knowledge in the design and implementation of these networks for monitoring underwater spaces, this paper proposes a MAC protocol for acoustic communications between the nodes, based on a self-organized time division multiple access mechanism. The proposal was evaluated using simulations of a real monitoring scenario, and the obtained results are highly encouraging. PMID:27355950

  6. A MAC Protocol to Support Monitoring of Underwater Spaces

    Directory of Open Access Journals (Sweden)

    Rodrigo Santos

    2016-06-01

    Full Text Available Underwater sensor networks are becoming an important field of research, because of their everyday increasing application scope. Examples of their application areas are environmental and pollution monitoring (mainly oil spills, oceanographic data collection, support for submarine geolocalization, ocean sampling and early tsunamis alert. The challenge of performing underwater communications is well known, provided that radio signals are useless in this medium, and a wired solution is too expensive. Therefore, the sensors in these networks transmit their information using acoustic signals that propagate well under water. This data transmission type not only brings an opportunity, but also several challenges to the implementation of these networks, e.g., in terms of energy consumption, data transmission and signal interference. In order to help advance the knowledge in the design and implementation of these networks for monitoring underwater spaces, this paper proposes a MAC protocol for acoustic communications between the nodes, based on a self-organized time division multiple access mechanism. The proposal was evaluated using simulations of a real monitoring scenario, and the obtained results are highly encouraging.

  7. Underwater Electromagnetic Sensor Networks—Part I: Link Characterization †

    Science.gov (United States)

    Quintana-Díaz, Gara; Mena-Rodríguez, Pablo; Pérez-Álvarez, Iván; Jiménez, Eugenio; Dorta-Naranjo, Blas-Pablo; Zazo, Santiago; Pérez, Marina; Quevedo, Eduardo; Cardona, Laura; Hernández, J. Joaquín

    2017-01-01

    Underwater Wireless Sensor Networks (UWSNs) using electromagnetic (EM) technology in marine shallow waters are examined, not just for environmental monitoring but for further interesting applications. Particularly, the use of EM waves is reconsidered in shallow waters due to the benefits offered in this context, where acoustic and optical technologies have serious disadvantages. Sea water scenario is a harsh environment for radiocommunications, and there is no standard model for the underwater EM channel. The high conductivity of sea water, the effect of seabed and the surface make the behaviour of the channel hard to predict. This justifies the need of link characterization as the first step to approach the development of EM underwater sensor networks. To obtain a reliable link model, measurements and simulations are required. The measuring setup for this purpose is explained and described, as well as the procedures used. Several antennas have been designed and tested in low frequency bands. Agreement between attenuation measurements and simulations at different distances was analysed and made possible the validation of simulation setups and the design of different communications layers of the system. This leads to the second step of this work, where data and routing protocols for the sensor network are examined. PMID:28106843

  8. Computer Simulations Imply Forelimb-Dominated Underwater Flight in Plesiosaurs.

    Directory of Open Access Journals (Sweden)

    Shiqiu Liu

    2015-12-01

    Full Text Available Plesiosaurians are an extinct group of highly derived Mesozoic marine reptiles with a global distribution that spans 135 million years from the Early Jurassic to the Late Cretaceous. During their long evolutionary history they maintained a unique body plan with two pairs of large wing-like flippers, but their locomotion has been a topic of debate for almost 200 years. Key areas of controversy have concerned the most efficient biologically possible limb stroke, e.g. whether it consisted of rowing, underwater flight, or modified underwater flight, and how the four limbs moved in relation to each other: did they move in or out of phase? Previous studies have investigated plesiosaur swimming using a variety of methods, including skeletal analysis, human swimmers, and robotics. We adopt a novel approach using a digital, three-dimensional, articulated, free-swimming plesiosaur in a simulated fluid. We generated a large number of simulations under various joint degrees of freedom to investigate how the locomotory repertoire changes under different parameters. Within the biologically possible range of limb motion, the simulated plesiosaur swims primarily with its forelimbs using an unmodified underwater flight stroke, essentially the same as turtles and penguins. In contrast, the hindlimbs provide relatively weak thrust in all simulations. We conclude that plesiosaurs were forelimb-dominated swimmers that used their hind limbs mainly for maneuverability and stability.

  9. Underwater Remote Handling Equipment for Reactor Internals Maintenance

    International Nuclear Information System (INIS)

    Motohiko Kimura; Mitsuaki Shimamura; Tomoyuki Itoh; Nobuhiko Tanaka; Yasuhiro Yuguchi; Katsuhiko Naruse

    2002-01-01

    More than fifty nuclear reactors generate about thirty-five percent of electricity in Japan. The need to operate these reactors safely and in a stable manner constitutes a very important issue. On the other hand, aged reactors are increasing and they are not necessarily designed and constructed using the latest technology. Stress Corrosion Cracking (SCC) on reactor internal components has become a major concern regarding aged reactors in recent years. Usually maintenance work such as inspection, repair, and preventive maintenance for core components is done by using underwater remote handling and robotic technology. It becomes very important to develop not only new efficient technology for inspection, repair, and preventive maintenance for all suspect components and but also the associated application technology for execution in a reactor. We have been developing several kind of remote handling equipment for underwater maintenance work. This paper describes some results obtained in the area of underwater remote handling that can contribute to the progress of plant reliability. (authors)

  10. A Survey on Underwater Acoustic Sensor Network Routing Protocols

    Directory of Open Access Journals (Sweden)

    Ning Li

    2016-03-01

    Full Text Available Underwater acoustic sensor networks (UASNs have become more and more important in ocean exploration applications, such as ocean monitoring, pollution detection, ocean resource management, underwater device maintenance, etc. In underwater acoustic sensor networks, since the routing protocol guarantees reliable and effective data transmission from the source node to the destination node, routing protocol design is an attractive topic for researchers. There are many routing algorithms have been proposed in recent years. To present the current state of development of UASN routing protocols, we review herein the UASN routing protocol designs reported in recent years. In this paper, all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layer design routing protocol, and the intelligent algorithm based routing protocol. This is also the first paper that introduces intelligent algorithm-based UASN routing protocols. In addition, in this paper, we investigate the development trends of UASN routing protocols, which can provide researchers with clear and direct insights for further research.

  11. A Survey on Underwater Acoustic Sensor Network Routing Protocols.

    Science.gov (United States)

    Li, Ning; Martínez, José-Fernán; Meneses Chaus, Juan Manuel; Eckert, Martina

    2016-03-22

    Underwater acoustic sensor networks (UASNs) have become more and more important in ocean exploration applications, such as ocean monitoring, pollution detection, ocean resource management, underwater device maintenance, etc. In underwater acoustic sensor networks, since the routing protocol guarantees reliable and effective data transmission from the source node to the destination node, routing protocol design is an attractive topic for researchers. There are many routing algorithms have been proposed in recent years. To present the current state of development of UASN routing protocols, we review herein the UASN routing protocol designs reported in recent years. In this paper, all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layer design routing protocol, and the intelligent algorithm based routing protocol. This is also the first paper that introduces intelligent algorithm-based UASN routing protocols. In addition, in this paper, we investigate the development trends of UASN routing protocols, which can provide researchers with clear and direct insights for further research.

  12. Cardiovascular changes during SCUBA diving: an underwater Doppler echocardiographic study.

    Science.gov (United States)

    Marabotti, C; Scalzini, A; Menicucci, D; Passera, M; Bedini, R; L'Abbate, A

    2013-09-01

    Body immersion induces blood redistribution (from peripheral to intrathoracic vessels) and is a powerful autonomic stimulus (activating both parasympathetic and sympathetic systems). For these reasons, concerns have been raised about the safety of diving for subjects with previous heart disease. The aim of this study was to evaluate cardiovascular changes occurring during recreational SCUBA diving, as assessed by underwater Doppler echocardiography. Eighteen healthy experienced divers underwent a 2D Doppler echocardiography basally, during two 15' steps of still SCUBA diving at different depths (10 m followed by 5 m) and shortly after the end of immersion. During dive, left ventricular (LV) diastolic volume and early left ventricular filling significantly increased (5 m vs. basal: P dive vs. basal: P dive). This study documents that shallow-depth SCUBA diving induces LV enlargement and diastolic dysfunction. Direct underwater evaluation by Doppler echocardiography could be an appropriate tool for unmasking subjects at risk for underwater-related accidents. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  13. Measurement of Naval Ship Responses to Underwater Explosion Shock Loadings

    Directory of Open Access Journals (Sweden)

    Il-Kwon Park

    2003-01-01

    Full Text Available The shock-resistance capability of battle ships against a non-contact underwater explosion (UNDEX is a very critical factor of survivability. In July 1987 and April 2000, we successfully conducted UNDEX shock tests for a coastal mine hunter (MHC and a mine sweeper/hunter (MSH of Republic of Korea Navy (ROKN, at the Chinhae bay, Korea. Test planning for conducting these shock tests included responsibilities, methods, and procedures. Test instruments were developed and tested on a drop shock machine to confirm availability in the actual shock tests with emphasis on shock resistance, remote control and reliability. All vital systems of the ships were confirmed to be capable of normal operational condition without significant damages during the explosion shot. By analyzing the test results, the tactical operational safety zone of the ships in underwater explosion environments was estimated. In this paper, we described the results of measurement of naval ship responses to underwater explosion shock loadings including test planning, sensor locations, data reduction, explosive devices, instrumentation and damage assessments of MSH.

  14. Event localization in underwater wireless sensor networks using Monitoring Courses

    KAUST Repository

    Debont, Matthew John Robert

    2012-08-01

    We propose m-courses (Monitoring Courses), a novel solution to localize events in an underwater wireless sensor network. These networks consists of surface gateways and relay nodes. GPS can localize the position of surface gateways which can then distribute their locations through the network using acoustic modems. Relay nodes are deployed to remain static, but these untethered nodes may drift due to water currents, resulting in disruption of communication links. We develop a novel underwater alarm system using a cyclic graph model. In the event of link failure, a series of alarm packets are broadcast in the network. These alarms are then captured by the underwater m-courses, which can also be used to assure network connectivity and identify node failures. M-courses also allow the network to localize events and identify network issues locally before forwarding results upwards to a Surface Gateway node. This reduces communication overhead and allows for efficient management of nodes in a mobile network. Our results show that m-course routing reduces the number of sends required to report an event to a Surface Gateway by up to 80% when compared to a naïve routing implementation.

  15. Localization of Energy Harvesting Empowered Underwater Optical Wireless Sensor Networks

    KAUST Repository

    Saeed, Nasir

    2017-12-20

    In this paper, a received signal strength (RSS) based localization technique is developed for energy harvesting underwater optical wireless sensor networks (EH-UOWSNs), where the optical noise sources and channel impairments of seawater pose significant challenges for range estimation. Energy limitation is another major problem due to the limited battery power and difficulty in replacing or recharging the battery of an underwater sensor node. In the proposed framework, sensor nodes with insufficient battery, harvest the energy and starts communicating once it has sufficient energy storage. Network localization is carried out by measuring the RSSs of active nodes, which are modeled based on the underwater optical communication channel characteristics. Thereafter, block kernel matrices are computed for the RSS based range measurements. Unlike the traditional shortest-path approach, the proposed technique reduces the shortest path estimation for each block kernel matrix. Once the complete block kernel matrices are available, a closed form localization technique is developed to find the location of every optical sensor node in the network. Furthermore, an analytical expression for Cramer Rao lower bound (CRLB) is derived as a benchmark to compare the localization performance of the proposed technique. Finally, extensive simulations show that the proposed technique outperforms the well-known network localization techniques.

  16. Underwater Electromagnetic Sensor Networks, Part II: Localization and Network Simulations

    Directory of Open Access Journals (Sweden)

    Javier Zazo

    2016-12-01

    Full Text Available In the first part of the paper, we modeled and characterized the underwater radio channel in shallowwaters. In the second part,we analyze the application requirements for an underwaterwireless sensor network (U-WSN operating in the same environment and perform detailed simulations. We consider two localization applications, namely self-localization and navigation aid, and propose algorithms that work well under the specific constraints associated with U-WSN, namely low connectivity, low data rates and high packet loss probability. We propose an algorithm where the sensor nodes collaboratively estimate their unknown positions in the network using a low number of anchor nodes and distance measurements from the underwater channel. Once the network has been self-located, we consider a node estimating its position for underwater navigation communicating with neighboring nodes. We also propose a communication system and simulate the whole electromagnetic U-WSN in the Castalia simulator to evaluate the network performance, including propagation impairments (e.g., noise, interference, radio parameters (e.g., modulation scheme, bandwidth, transmit power, hardware limitations (e.g., clock drift, transmission buffer and complete MAC and routing protocols. We also explain the changes that have to be done to Castalia in order to perform the simulations. In addition, we propose a parametric model of the communication channel that matches well with the results from the first part of this paper. Finally, we provide simulation results for some illustrative scenarios.

  17. Validation of Underwater Sensor Package Using Feature Based SLAM

    Directory of Open Access Journals (Sweden)

    Christopher Cain

    2016-03-01

    Full Text Available Robotic vehicles working in new, unexplored environments must be able to locate themselves in the environment while constructing a picture of the objects in the environment that could act as obstacles that would prevent the vehicles from completing their desired tasks. In enclosed environments, underwater range sensors based off of acoustics suffer performance issues due to reflections. Additionally, their relatively high cost make them less than ideal for usage on low cost vehicles designed to be used underwater. In this paper we propose a sensor package composed of a downward facing camera, which is used to perform feature tracking based visual odometry, and a custom vision-based two dimensional rangefinder that can be used on low cost underwater unmanned vehicles. In order to examine the performance of this sensor package in a SLAM framework, experimental tests are performed using an unmanned ground vehicle and two feature based SLAM algorithms, the extended Kalman filter based approach and the Rao-Blackwellized, particle filter based approach, to validate the sensor package.

  18. Multibeam 3D Underwater SLAM with Probabilistic Registration

    Directory of Open Access Journals (Sweden)

    Albert Palomer

    2016-04-01

    Full Text Available This paper describes a pose-based underwater 3D Simultaneous Localization and Mapping (SLAM using a multibeam echosounder to produce high consistency underwater maps. The proposed algorithm compounds swath profiles of the seafloor with dead reckoning localization to build surface patches (i.e., point clouds. An Iterative Closest Point (ICP with a probabilistic implementation is then used to register the point clouds, taking into account their uncertainties. The registration process is divided in two steps: (1 point-to-point association for coarse registration and (2 point-to-plane association for fine registration. The point clouds of the surfaces to be registered are sub-sampled in order to decrease both the computation time and also the potential of falling into local minima during the registration. In addition, a heuristic is used to decrease the complexity of the association step of the ICP from O ( n 2 to O ( n . The performance of the SLAM framework is tested using two real world datasets: First, a 2.5D bathymetric dataset obtained with the usual down-looking multibeam sonar configuration, and second, a full 3D underwater dataset acquired with a multibeam sonar mounted on a pan and tilt unit.

  19. Response of ocean bottom dwellers exposed to underwater shock waves

    Science.gov (United States)

    Hosseini, S. H. R.; Kaiho, Kunio; Takayama, Kazuyoshi

    2016-01-01

    The paper reports results of experiments to estimate the mortality of ocean bottom dwellers, ostracoda, against underwater shock wave exposures. This study is motivated to verify the possible survival of ocean bottom dwellers, foraminifera, from the devastating underwater shock waves induced mass extinction of marine creatures which took place at giant asteroid impact events. Ocean bottom dwellers under study were ostracoda, the replacement of foraminifera, we readily sampled from ocean bottoms. An analogue experiment was performed on a laboratory scale to estimate the domain and boundary of over-pressures at which marine creatures' mortality occurs. Ostracods were exposed to underwater shock waves generated by the explosion of 100mg PETN pellets in a chamber at shock over-pressures ranging up to 44MPa. Pressure histories were measured simultaneously on 113 samples. We found that bottom dwellers were distinctively killed against overpressures of 12MPa and this value is much higher than the usual shock over-pressure threshold value for marine-creatures having lungs and balloons.

  20. Validation of Underwater Sensor Package Using Feature Based SLAM.

    Science.gov (United States)

    Cain, Christopher; Leonessa, Alexander

    2016-03-17

    Robotic vehicles working in new, unexplored environments must be able to locate themselves in the environment while constructing a picture of the objects in the environment that could act as obstacles that would prevent the vehicles from completing their desired tasks. In enclosed environments, underwater range sensors based off of acoustics suffer performance issues due to reflections. Additionally, their relatively high cost make them less than ideal for usage on low cost vehicles designed to be used underwater. In this paper we propose a sensor package composed of a downward facing camera, which is used to perform feature tracking based visual odometry, and a custom vision-based two dimensional rangefinder that can be used on low cost underwater unmanned vehicles. In order to examine the performance of this sensor package in a SLAM framework, experimental tests are performed using an unmanned ground vehicle and two feature based SLAM algorithms, the extended Kalman filter based approach and the Rao-Blackwellized, particle filter based approach, to validate the sensor package.

  1. Distributed Underwater Sensing: A Paradigm Change for the Future

    Science.gov (United States)

    Yang, T. C.

    Distributed netted underwater sensors (DNUS) present a paradigm change that has generated high interest all over the world. It utilizes many small spatially distributed, inexpensive sensors, and a certain number of mobile nodes, such as autonomous underwater vehicles (AUVs), forming a wireless acoustic network to relate data and provide real time monitoring of the ocean. Distributed underwater sensors can be used for oceanographic data collection, pollution monitoring, offshore exploration, disaster prevention, assisted navigation and tactical surveillance applications over wide areas. These functions were traditionally accomplished by a cabled system, such as an array of sensors deployed from a platform, or a large number of sensors moored on the ocean bottom, connected by a cable. The cabled systems are not only expensive but often require heavy ocean engineering (e.g., equipment to deploy heavy armored cables). In the future, as fabrication technology advances making low cost sensors a reality, DNUS is expected to be affordable and will become the undersea "OceanNet" for the marine industry like the current "internet" on land. This paper gives a layman view of the system concept, the state of the art, and future challenges. One of challenges, of particular interest to this conference, is to develop technologies for miniature-size sensors that are energy efficient, allowing long time deployment in the ocean.

  2. Power characterization of THUNDER actuators as underwater propulsors

    Science.gov (United States)

    Niezrecki, Christopher; Balakrishnan, Sivakumar

    2001-08-01

    Piezoelectric actuators have been used for active vibration control, noise suppression, health monitoring, etc. The large appeal in using smart material actuators stems from their high mechanical energy density. A relatively new actuator (THUNDER) has overcome the displacement hurdles that have plagued traditional piezoelectric based actuators. It is capable of providing a displacement on order of 0.5 cm. This allows the actuator to be used in some underwater applications, such as propulsion. To date the electrical power consumption and electromechanical efficiency of these actuators has not been quantified; specifically, applied as underwater propulsors. Some of the challenges in obtaining this information stems from the actuator's non traditional actuating architecture, high voltage requirements, and its electrical non-linearity. The work presented experimentally determines the electrical power consumption and mechanical displacement of THUNDER actuators used as underwater propulsors. It is found that the electrical power consumption of the clamshell actuator investigated is significantly less than that consumed by other autonomous under water vehicles. The potential thrust generated by such a device remains to be quantified.

  3. Underwater Electromagnetic Sensor Networks—Part I: Link Characterization

    Directory of Open Access Journals (Sweden)

    Gara Quintana-Díaz

    2017-01-01

    Full Text Available Underwater Wireless Sensor Networks (UWSNs using electromagnetic (EM technology in marine shallow waters are examined, not just for environmental monitoring but for further interesting applications. Particularly, the use of EM waves is reconsidered in shallow waters due to the benefits offered in this context, where acoustic and optical technologies have serious disadvantages. Sea water scenario is a harsh environment for radiocommunications, and there is no standard model for the underwater EM channel. The high conductivity of sea water, the effect of seabed and the surface make the behaviour of the channel hard to predict. This justifies the need of link characterization as the first step to approach the development of EM underwater sensor networks. To obtain a reliable link model, measurements and simulations are required. The measuring setup for this purpose is explained and described, as well as the procedures used. Several antennas have been designed and tested in low frequency bands. Agreement between attenuation measurements and simulations at different distances was analysed and made possible the validation of simulation setups and the design of different communications layers of the system. This leads to the second step of this work, where data and routing protocols for the sensor network are examined.

  4. Development of underwater YAG laser repair welding robots for tanks

    International Nuclear Information System (INIS)

    Miwa, Yasuhiro; Satoh, Syuichi; Ito, Kosuke; Kochi, Tsutomu; Kojima, Toshio; Ohwaki, Katsura; Morita, Ichiro

    1999-01-01

    A remote-controlled repair welding robot which uses YAG laser welding technology in underwater environment was developed. This is an underwater robot technology combined with a laser welding technology. This report will describe the structure and performance of this robot, and the welding test results. The repair welding robot consists of two parts. The one is driving equipment, and the other is welding unit. It can swim in the tank, move around the tank wall, and stay on the welding area. After that it starts YAG laser repair welding. The target of this technology is inner surface repair of some tanks made of austenitic stainless steel, for example RW (Radioactive Waste) tanks. A degradation by General Corrosion and so on might be occurred at inner surface of these tanks in BWR type nuclear power plants. If the damaged area is wide, repair welding works are done. Some workers go into the tank and set up scaffolding after full drainage. In many cases it spends too much time for draining water and repair welding preparation. If the repair welding works can be done in underwater environment, the outage period will be reduced. This is a great advantage. (author)

  5. Multibeam 3D Underwater SLAM with Probabilistic Registration.

    Science.gov (United States)

    Palomer, Albert; Ridao, Pere; Ribas, David

    2016-04-20

    This paper describes a pose-based underwater 3D Simultaneous Localization and Mapping (SLAM) using a multibeam echosounder to produce high consistency underwater maps. The proposed algorithm compounds swath profiles of the seafloor with dead reckoning localization to build surface patches (i.e., point clouds). An Iterative Closest Point (ICP) with a probabilistic implementation is then used to register the point clouds, taking into account their uncertainties. The registration process is divided in two steps: (1) point-to-point association for coarse registration and (2) point-to-plane association for fine registration. The point clouds of the surfaces to be registered are sub-sampled in order to decrease both the computation time and also the potential of falling into local minima during the registration. In addition, a heuristic is used to decrease the complexity of the association step of the ICP from O(n2) to O(n) . The performance of the SLAM framework is tested using two real world datasets: First, a 2.5D bathymetric dataset obtained with the usual down-looking multibeam sonar configuration, and second, a full 3D underwater dataset acquired with a multibeam sonar mounted on a pan and tilt unit.

  6. Validation of Underwater Sensor Package Using Feature Based SLAM

    Science.gov (United States)

    Cain, Christopher; Leonessa, Alexander

    2016-01-01

    Robotic vehicles working in new, unexplored environments must be able to locate themselves in the environment while constructing a picture of the objects in the environment that could act as obstacles that would prevent the vehicles from completing their desired tasks. In enclosed environments, underwater range sensors based off of acoustics suffer performance issues due to reflections. Additionally, their relatively high cost make them less than ideal for usage on low cost vehicles designed to be used underwater. In this paper we propose a sensor package composed of a downward facing camera, which is used to perform feature tracking based visual odometry, and a custom vision-based two dimensional rangefinder that can be used on low cost underwater unmanned vehicles. In order to examine the performance of this sensor package in a SLAM framework, experimental tests are performed using an unmanned ground vehicle and two feature based SLAM algorithms, the extended Kalman filter based approach and the Rao-Blackwellized, particle filter based approach, to validate the sensor package. PMID:26999142

  7. Thermoelectric spin voltage in graphene.

    Science.gov (United States)

    Sierra, Juan F; Neumann, Ingmar; Cuppens, Jo; Raes, Bart; Costache, Marius V; Valenzuela, Sergio O

    2018-02-01

    In recent years, new spin-dependent thermal effects have been discovered in ferromagnets, stimulating a growing interest in spin caloritronics, a field that exploits the interaction between spin and heat currents 1,2 . Amongst the most intriguing phenomena is the spin Seebeck effect 3-5 , in which a thermal gradient gives rise to spin currents that are detected through the inverse spin Hall effect 6-8 . Non-magnetic materials such as graphene are also relevant for spin caloritronics, thanks to efficient spin transport 9-11 , energy-dependent carrier mobility and unique density of states 12,13 . Here, we propose and demonstrate that a carrier thermal gradient in a graphene lateral spin valve can lead to a large increase of the spin voltage near to the graphene charge neutrality point. Such an increase results from a thermoelectric spin voltage, which is analogous to the voltage in a thermocouple and that can be enhanced by the presence of hot carriers generated by an applied current 14-17 . These results could prove crucial to drive graphene spintronic devices and, in particular, to sustain pure spin signals with thermal gradients and to tune the remote spin accumulation by varying the spin-injection bias.

  8. Noise in tunneling spin current across coupled quantum spin chains

    Science.gov (United States)

    Aftergood, Joshua; Takei, So

    2018-01-01

    We theoretically study the spin current and its dc noise generated between two spin-1 /2 spin chains weakly coupled at a single site in the presence of an over-population of spin excitations and a temperature elevation in one subsystem relative to the other, and we compare the corresponding transport quantities across two weakly coupled magnetic insulators hosting magnons. In the spin chain scenario, we find that applying a temperature bias exclusively leads to a vanishing spin current and a concomitant divergence in the spin Fano factor, defined as the spin current noise-to-signal ratio. This divergence is shown to have an exact analogy to the physics of electron scattering between fractional quantum Hall edge states and not to arise in the magnon scenario. We also reveal a suppression in the spin current noise that exclusively arises in the spin chain scenario due to the fermion nature of the spin-1/2 operators. We discuss how the spin Fano factor may be extracted experimentally via the inverse spin Hall effect used extensively in spintronics.

  9. A Dual Communication and Imaging Underwater Acoustic System

    Science.gov (United States)

    Fu, Tricia C.

    A dual communication and imaging underwater acoustic system is proposed and developed throughout this dissertation. Due to the wide variation in underwater channel characteristics, the research here focuses more on robustness to multipath in the shallow underwater acoustic environment, rather than high bit-rate applications and signaling schemes. Lower bit-rate (in the hundreds of bits per second (bps) to low kbps), applications such as the transfer of ecological telemetry data, e.g. conductivity or temperature data, are the primary focus of this dissertation. The parallels between direct sequence spread spectrum in digital communication and pulse-echo with pulse compression in imaging, and channel estimation in communication and range profile estimation in imaging are drawn, leading to a unified communications and imaging platform. A digital communication algorithm for channel order and channel coefficient estimation and symbol demodulation using Matching Pursuit (MP) with Generalized Multiple Hypothesis Testing (GMHT) is implemented in programmable DSP in real time with field experiment results in varying underwater environments for the single receiver (Rx), single transmitter (Tx) case. The custom and off-the-shelf hardware used in the single receiver, single transmitter set of experiments are detailed as well. This work is then extended to the single-input multiple-output (SIMO) case, and then to the full multiple-input multiple-output (MIMO) case. The results of channel estimation are used for simple range profile imaging reconstructions. Successful simulated and experimental results for both transducer array configurations are presented and analyzed. Non-real-time symbol demodulation and channel estimation is performed using experimental data from a scaled testing environment. New hardware based on cost-effective fish-finder transducers for a 6 Rx--1 Tx and 6 Rx--4 Tx transducer array is detailed. Lastly, in an application that is neither communication nor

  10. Preparation and characterization of underwater superoleophobic chitosan/poly(vinyl alcohol) coatings for self-cleaning and oil/water separation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qian; Fu, Youjia; Yan, Xiaoxia; Chang, Yanjiao; Ren, Lili; Zhou, Jiang

    2017-08-01

    Highlights: • Underwater superoleophobic CS/PVA coatings were prepared using a facile method. • Immersion in NaOH solution was crucial to enhance roughness of the coating surface. • Effects of coating composition on wettability of coating surface were investigated. • The CS/PVA coatings possess self-cleaning property. • The CS/PVA coatings can be used for oil/water separation with high efficiency. - Abstract: In this paper, chitosan (CS)/poly(vinyl alcohol) (PVA) coatings cross-linked with glutaraldehyde (GA) were prepared. Effects of the coating composition and NaOH solution treatment on surface morphology and topography were investigated by scanning electron microscope and atomic force microscope. It was found that the process of immersing the CS/PVA coatings into NaOH solution was crucial to enhance rough structure on the coating surface. The rough surface structure and the hydrophilic groups of CS and PVA made the CS/PVA coatings possess underwater superoleophobicity and low adhesion to oil. Oil contact angle of the prepared CS/PVA coatings was up to 161° and slide angle was only 3°. Moreover, the CS/PVA coatings showed stable superoleophobicity in high salt, strong acidic, and alkaline environments as well as underwater self-cleaning property and excellent transparency. The CS/PVA coatings could be used for gravity driven oil/water separation with high efficiency.

  11. Quantum spin transistor with a Heisenberg spin chain

    Science.gov (United States)

    Marchukov, O. V.; Volosniev, A. G.; Valiente, M.; Petrosyan, D.; Zinner, N. T.

    2016-01-01

    Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements. PMID:27721438

  12. Spinning fluids reactor

    Science.gov (United States)

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  13. Spin gating electrical current

    Science.gov (United States)

    Ciccarelli, C.; Zârbo, L. P.; Irvine, A. C.; Campion, R. P.; Gallagher, B. L.; Wunderlich, J.; Jungwirth, T.; Ferguson, A. J.

    2012-09-01

    The level of the chemical potential is a fundamental parameter of the electronic structure of a physical system, which consequently plays an important role in defining the properties of active electrical devices. We directly measure the chemical potential shift in the relativistic band structure of the ferromagnetic semiconductor (Ga,Mn)As, controlled by changes in its magnetic order parameter. Our device comprises a non-magnetic aluminum single electron channel capacitively coupled to the (Ga,Mn)As gate electrode. The chemical potential shifts of the gate are directly read out from the shifts in the Coulomb blockade oscillations of the single electron transistor. The experiments introduce a concept of spin gating electrical current. In our spin transistor spin manipulation is completely removed from the electrical current carrying channel.

  14. SPIN-selling

    CERN Document Server

    Rackham, Neil

    1995-01-01

    True or false? In selling high-value products or services: "closing" increases your chance of success; it is essential to describe the benefits of your product or service to the customer; objection handling is an important skill; and open questions are more effective than closed questions. All false, says Neil Rackham. He and his team studied more than 35,000 sales calls made by 10,000 sales people in 23 countries over 12 years. Their findings revealed that many of the methods developed for selling low-value goods just don't work for major sales. Rackham went on to introduce his SPIN-selling method, where SPIN describes the whole selling process - Situation questions, Problem questions, Implication questions, Need-payoff questions. SPIN-selling provides you with a set of simple and practical techniques which have been tried in many of today's leading companies with dramatic improvements to their sales performance.

  15. Chiral higher spin gravity

    Science.gov (United States)

    Krishnan, Chethan; Raju, Avinash

    2017-06-01

    We construct a candidate for the most general chiral higher spin theory with AdS3 boundary conditions. In the Chern-Simons language, on the left it has the Drinfeld-Sokolov reduced form, but on the right all charges and chemical potentials are turned on. Altogether (for the spin-3 case) these are 19 functions. Despite this, we show that the resulting metric has the form of the "most general" AdS3 boundary conditions discussed by Grumiller and Riegler. The asymptotic symmetry algebra is a product of a W3 algebra on the left and an affine s l (3 )k current algebra on the right, as desired. The metric and higher spin fields depend on all the 19 functions. We compare our work with previous results in the literature.

  16. Spin Waves in Terbium

    DEFF Research Database (Denmark)

    Jensen, J.; Houmann, Jens Christian Gylden

    1975-01-01

    The selection rules for the linear couplings between magnons and phonons propagating in the c direction of a simple basal-plane hcp ferromagnet are determined by general symmetry considerations. The acoustic-optical magnon-phonon interactions observed in the heavy-rare-earth metals have been...... explained by Liu as originating from the mixing of the spin states of the conduction electrons due to the spin-orbit coupling. We find that this coupling mechanism introduces interactions which violate the selection rules for a simple ferromagnet. The interactions between the magnons and phonons propagating...... in the c direction of Tb have been studied experimentally by means of inelastic neutron scattering. The magnons are coupled to both the acoustic- and optical-transverse phonons. By studying the behavior of the acoustic-optical coupling, we conclude that it is a spin-mixed-induced coupling as proposed...

  17. Spin Asymmetries on Nucleon Experiment at Jefferson Lab

    International Nuclear Information System (INIS)

    The Spin Asymmetries of the Nucleon Experiment (SANE) of Jefferson Lab is a comprehensive measurement of double spin asymmetries of the proton for both parallel and almost perpendicular spin configurations of the proton spin and the electron beam polarization directions. The experiment will provide both spin structure functions, g2 and g1 and spin observable A2 and A1 of the proton over Q2 region from 2.5 to 6.5 GeV2/c2 and Bjorken x region of 0.3 to 0.8. Using the polarized electron beam of Thomas Jefferson National Accelerator Facility and the polarized frozen NH3 target, the data were taken early 2009 in Hall C of Jefferson Lab. Scattered electrons from the inclusive reaction were detected by the Big Electron Telescope Array (BETA), a new non-magnetic detector with a large acceptance of 194 msr. The current analysis effort is focused on the proton spin structure functions g2 and g1. Physics motivations with the experimental methods will be presented with an overvew of the current status of the data analysis.

  18. SLAC workshop on high energy electroproduction and spin physics

    International Nuclear Information System (INIS)

    1992-01-01

    These Proceedings contain copies of the transparencies presented at the Workshop on High Energy Electroproduction and Spin Physics held at SLAC on February 5--8, 1992. The purpose of this Workshop was to bring people together to discuss the possibilities for new experiments using the SLAC high intensity electron and photon beams and the facilities of End Station A

  19. Spin flexoelectricity and chiral spin structures in magnetic films

    OpenAIRE

    Pyatakov, A. P.; Sergeev, A. S.; Mikailzade, F. A.; Zvezdin, A. K.

    2015-01-01

    In this short review a broad range of chiral phenomena observed in magnetic films (spin cycloid and skyrmion structures formation as well as chirality dependent domain wall motion) is considered under the perspective of spin flexoelectricity, i.e. the relation between bending of magnetization pattern and electric polarization. The similarity and the difference between the spin flexoelectricity and the newly emerged notion of spin flexomagnetism is discussed. The phenomenological arguments bas...

  20. Spinning geodesic Witten diagrams

    International Nuclear Information System (INIS)

    Dyer, Ethan; Freedman, Daniel Z.; Massachusetts Institute of Technology; Massachusetts Institute of Technology; Sully, James; McGill University, Montreal, QC

    2017-01-01

    We present an expression for the four-point conformal blocks of symmetric traceless operators of arbitrary spin as an integral over a pair of geodesics in Anti-de Sitter space, generalizing the geodesic Witten diagram formalism of Hijano et al. to arbitrary spin. As an intermediate step in the derivation, we identify a convenient basis of bulk threepoint interaction vertices which give rise to all possible boundary three point structures. Lastly, we highlight a direct connection between the representation of the conformal block as geodesic Witten diagram and the shadow operator formalism.

  1. Spin gating electrical current

    Czech Academy of Sciences Publication Activity Database

    Ciccarelli, C.; Zarbo, Liviu; Irvine, A.C.; Campion, R. P.; Gallagher, B. L.; Wunderlich, Joerg; Jungwirth, Tomáš; Ferguson, A.J.

    2012-01-01

    Roč. 101, č. 12 (2012), , , "122411-1"-"122411-4" ISSN 0003-6951 R&D Projects: GA AV ČR KJB100100802; GA AV ČR KAN400100652 EU Projects: European Commission(XE) 268066 - 0MSPIN; European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : ferromagnetic resonance * spin-orbit coupling * nanodevices Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.794, year: 2012 http://arxiv.org/abs/1203.2439

  2. Spin echo in synchrotrons

    Directory of Open Access Journals (Sweden)

    Alexander W. Chao

    2007-01-01

    Full Text Available As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency Δν_{spin} of the beam (particularly due to its energy spread is sufficiently large that the spin precession phases of individual particles smear out completely during the time τ between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference-overlap effect and a spin echo effect. This paper is to address these two effects. The interference-overlap effect occurs when Δν_{spin} is too small, or when τ is too short, to complete the smearing process. In this case, the two resonance crossings overlap each other, and the final polarization exhibits constructive or destructive interference patterns depending on the exact value of τ. Typically, the beam’s energy spread is large and this interference-overlap effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time τ after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when τ is very large, and could be a sensitive (albeit challenging way to experimentally test the intricate spin dynamics in a synchrotron

  3. Spin, gravity, and inertia.

    Science.gov (United States)

    Obukhov, Y N

    2001-01-08

    The gravitational effects in the relativistic quantum mechanics are investigated. The exact Foldy-Wouthuysen transformation is constructed for the Dirac particle coupled to the static spacetime metric. As a direct application, we analyze the nonrelativistic limit of the theory. The new term describing the specific spin (gravitational moment) interaction effect is recovered in the Hamiltonian. The comparison of the true gravitational coupling with the purely inertial case demonstrates that the spin relativistic effects do not violate the equivalence principle for the Dirac fermions.

  4. RF Path and Absorption Loss Estimation for Underwater Wireless Sensor Networks in Different Water Environments

    Directory of Open Access Journals (Sweden)

    Umair Mujtaba Qureshi

    2016-06-01

    Full Text Available Underwater Wireless Sensor Network (UWSN communication at high frequencies is extremely challenging. The intricacies presented by the underwater environment are far more compared to the terrestrial environment. The prime reason for such intricacies are the physical characteristics of the underwater environment that have a big impact on electromagnetic (EM signals. Acoustics signals are by far the most preferred choice for underwater wireless communication. Because high frequency signals have the luxury of large bandwidth (BW at shorter distances, high frequency EM signals cannot penetrate and propagate deep in underwater environments. The EM properties of water tend to resist their propagation and cause severe attenuation. Accordingly, there are two questions that need to be addressed for underwater environment, first what happens when high frequency EM signals operating at 2.4 GHz are used for communication, and second which factors affect the most to high frequency EM signals. To answer these questions, we present real-time experiments conducted at 2.4 GHz in terrestrial and underwater (fresh water environments. The obtained results helped in studying the physical characteristics (i.e., EM properties, propagation and absorption loss of underwater environments. It is observed that high frequency EM signals can propagate in fresh water at a shallow depth only and can be considered for a specific class of applications such as water sports. Furthermore, path loss, velocity of propagation, absorption loss and the rate of signal loss in different underwater environments are also calculated and presented in order to understand why EM signals cannot propagate in sea water and oceanic water environments. An optimal solk6ution for underwater communication in terms of coverage distance, bandwidth and nature of communication is presented, along with possible underwater applications of UWSNs at 2.4 GHz.

  5. Facilities Programming.

    Science.gov (United States)

    Bullis, Robert V.

    1992-01-01

    A procedure for physical facilities management written 17 years ago is still worth following today. Each of the steps outlined for planning, organizing, directing, controlling, and evaluating must be accomplished if school facilities are to be properly planned and constructed. However, lessons have been learned about energy consumption and proper…

  6. A stochastic picture of spin

    International Nuclear Information System (INIS)

    Faris, W.G.

    1981-01-01

    Dankel has shown how to incorporate spin into stochastic mechanics. The resulting non-local hidden variable theory gives an appealing picture of spin correlation experiments in which Bell's inequality is violated. (orig.)

  7. Development of an isotropic underwater device for color enhancement of gemstones

    International Nuclear Information System (INIS)

    Santos, Paulo S.; Fernandes, Vagner; Enokihara, Cyro T.; Calvo, Wilson A.P.; Vasquez, Pablo A.S.

    2013-01-01

    Over the past years a small-scale Gamma Irradiation Facility of the Nuclear and Energy Research Institute - IPEN has been provided services for color enhancement of Brazilian gemstones. Traditionally the gemstones are placed inside of closed screen steel bags, and then suspended deep inside the water pool by fixed steel cables in front of the Cobalt-60 sources. The processing of this material usually was performed every weekend when the facility was not operating to avoid problems related to the sources movement. The gemstones underwater irradiation is preferred among other reasons because increase their color stability and homogeneity. A hollow cylindrical device, length of 46 cm and external diameter of 38 cm built in perforated aluminum was developed to house approximately 25.0 kg (38.0 l.) of selected standard size quartz gemstones before the final cutting. The cylindrical device was constructed using defined size in order to fit a smaller cylindrical castle placed on the bottom of the pool containing 22 aligned linear radioactive sources totalizing 6.81x10 2 TBq (1.84x10 4 Ci). A mechanical winch fixed in an aluminum holder together with stainless steel cable and quick lock carabiners were used to descend in safety the loaded cylindrical device until to engage the device outside the smaller castle. Several dosimetric tests were performed using Harwell Red PMMA located in selected positions around the device to study the dose rate and the dose distribution. In most cases, quartz gemstones were irradiated with doses between 2 – 2.5 MGy. To achieve the desired dose values are necessary approximately 30 days of processing. One of major advantages is related to the irradiation treatment using the developed device because this does not interfere with the normal schedule operation of this facility as also the fact that is not necessary manipulate the gemstones by the end of the procedure. (author)

  8. Development of an isotropic underwater device for color enhancement of gemstones

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Paulo S.; Fernandes, Vagner; Enokihara, Cyro T.; Calvo, Wilson A.P.; Vasquez, Pablo A.S., E-mail: pavsalva@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Over the past years a small-scale Gamma Irradiation Facility of the Nuclear and Energy Research Institute - IPEN has been provided services for color enhancement of Brazilian gemstones. Traditionally the gemstones are placed inside of closed screen steel bags, and then suspended deep inside the water pool by fixed steel cables in front of the Cobalt-60 sources. The processing of this material usually was performed every weekend when the facility was not operating to avoid problems related to the sources movement. The gemstones underwater irradiation is preferred among other reasons because increase their color stability and homogeneity. A hollow cylindrical device, length of 46 cm and external diameter of 38 cm built in perforated aluminum was developed to house approximately 25.0 kg (38.0 l.) of selected standard size quartz gemstones before the final cutting. The cylindrical device was constructed using defined size in order to fit a smaller cylindrical castle placed on the bottom of the pool containing 22 aligned linear radioactive sources totalizing 6.81x10{sup 2} TBq (1.84x10{sup 4} Ci). A mechanical winch fixed in an aluminum holder together with stainless steel cable and quick lock carabiners were used to descend in safety the loaded cylindrical device until to engage the device outside the smaller castle. Several dosimetric tests were performed using Harwell Red PMMA located in selected positions around the device to study the dose rate and the dose distribution. In most cases, quartz gemstones were irradiated with doses between 2 – 2.5 MGy. To achieve the desired dose values are necessary approximately 30 days of processing. One of major advantages is related to the irradiation treatment using the developed device because this does not interfere with the normal schedule operation of this facility as also the fact that is not necessary manipulate the gemstones by the end of the procedure. (author)

  9. From "Below Dignity" to "Above It All": Origins and Early History of Underwater Neutral Buoyancy Simulation of Weightlessness for EVA Procedures Development and Training

    Science.gov (United States)

    Charles, John B.

    2013-01-01

    An attempt to clarify some vague memories of underwater studies of astronaut capabilities in space led Dr. John Charles to become acquainted with Sam Mattingly, one of the pioneers in the field, and to greater insights into Mattingly's work simulating Gemini EVAs in the mid-1960s. Charles recounted major accomplishments by Environmental Research Associates (ERA), Mattingly's company for contracting with NASA Langley on several early studies. ERA's work was considered within the context of contemporary efforts to simulate weightlessness and the widespread development of neutral buoyancy facilities after ERA's successful demonstration for Gemini 12.

  10. Antiferromagnetic spin-orbitronics

    KAUST Repository

    Manchon, Aurelien

    2015-05-01

    Antiferromagnets have long remained an intriguing and exotic state of matter, whose application has been restricted to enabling interfacial exchange bias in metallic and tunneling spin-valves [1]. Their role in the expanding field of applied spintronics has been mostly passive and the in-depth investigation of their basic properties mostly considered from a fundamental perspective.

  11. " The Story of Spin

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 11. The Story of Spin - From Spectroscopy to Relativistic Quantum Mechanics. N Mukunda. Book Review Volume 3 Issue 11 November 1998 pp 89-90. Fulltext. Click here to view fulltext PDF. Permanent link:

  12. Spin and isospin modes

    International Nuclear Information System (INIS)

    Suzuki, T.; Sagawa, H.

    2000-01-01

    Complete text of publication follows. Spin and isospin modes in nuclei are investigated. We discuss some of the following topics. 1. Spin-dipole excitations in 12 C and 16 O are studied (1). Effects of tensor and spin-orbit interactions on the distribution of the strengths are investigated, and neutral current neutrino scattering cross sections in 16 O are obtained for heavy-flavor neutrinos from the supernovae. 2. Gamow-Teller (GT) and spin-dipole (SD) modes in 208 Bi are investigated. Quenching and fragmentation of the GT strength are discussed (2). SD excitations and electric dipole (E1) transitions between the GT and SD states are studied (3). Calculated E1 strengths are compared with the sum rule values obtained within the 1p-1h and 1p-1h + 2p-2h configuration spaces. 3. Coulomb displacement energy (CDE) of the IAS of 14 Be is calculated, and the effects of the halo on the CDE and the configuration of the halo state are investigated. 4. Spreading width of IAS and isospin dependence of the width are investigated (4). Our formula for the width explains very well the observed isospin dependence (5). (author)

  13. On "spinning" membrane models

    NARCIS (Netherlands)

    Bergshoeff, E.; Sezgin, E.; Townsend, P.K.

    1988-01-01

    Several alternative actions for a bosonic membrane have recently been proposed. We show that a linearly realized locally world-volume-supersymmetric (spinning membrane) extension of any of these actions implies an analogous extension of the standard Dirac membrane action. We further show that a

  14. Nuclear spin-off

    International Nuclear Information System (INIS)

    1981-11-01

    This booklet gives examples of 'nuclear spin off', from research programmes carried out for the UKAEA, under the following headings; non destructive testing; tribology; environmental protection; flow measurement; material sciences; mechanical engineering; marine services; biochemical technology; electronic instrumentation. (U.K.)

  15. The invariance of spin

    International Nuclear Information System (INIS)

    Bramson, B.D.

    1978-01-01

    An isolated system in general relativity makes a transition between stationary states. It is shown that the spin vectors of the system, long before and long after the emission of radiation, are supertranslation invariant and, hence, independent of the choice of Minkowski observation space. (author)

  16. Spin Injection in Indium Arsenide

    Directory of Open Access Journals (Sweden)

    Mark eJohnson

    2015-08-01

    Full Text Available In a two dimensional electron system (2DES, coherent spin precession of a ballistic spin polarized current, controlled by the Rashba spin orbit interaction, is a remarkable phenomenon that’s been observed only recently. Datta and Das predicted this precession would manifest as an oscillation in the source-drain conductance of the channel in a spin-injected field effect transistor (Spin FET. The indium arsenide single quantum well materials system has proven to be ideal for experimental confirmation. The 2DES carriers have high mobility, low sheet resistance, and high spin orbit interaction. Techniques for electrical injection and detection of spin polarized carriers were developed over the last two decades. Adapting the proposed Spin FET to the Johnson-Silsbee nonlocal geometry was a key to the first experimental demonstration of gate voltage controlled coherent spin precession. More recently, a new technique measured the oscillation as a function of channel length. This article gives an overview of the experimental phenomenology of the spin injection technique. We then review details of the application of the technique to InAs single quantum well (SQW devices. The effective magnetic field associated with Rashba spin-orbit coupling is described, and a heuristic model of coherent spin precession is presented. The two successful empirical demonstrations of the Datta Das conductance oscillation are then described and discussed.

  17. Spin tunnelling in mesoscopic systems

    Indian Academy of Sciences (India)

    Spin tunnelling; spin path integrals; discrete phase integral method; diabolical points. ... technologies. Our purpose in this article is rather different. The molecular systems have total spin of the order of 10, and magnetocrystalline anisotropies of few tens of Kelvin ...... The point С' is of this new type, and here it may be said to.

  18. Spin transport in graphene nanostructures

    NARCIS (Netherlands)

    Guimaraes, M. H. D.; van den Berg, J. J.; Vera-Marun, I. J.; Zomer, P. J.; van Wees, B. J.

    2014-01-01

    Graphene is an interesting material for spintronics, showing long spin relaxation lengths even at room temperature. For future spintronic devices it is important to understand the behavior of the spins and the limitations for spin transport in structures where the dimensions are smaller than the

  19. Spin Transport in Bose Gases

    NARCIS (Netherlands)

    van Driel, H.J.

    2012-01-01

    In this Thesis, we show that in a rotating two-component Bose mixture, the spin drag between the two different spin species shows a Hall effect. This spin drag Hall effect can be observed experimentally by studying the out-of-phase dipole mode of the mixture. We determine the damping of this mode

  20. Spin Transport in Semiconductor heterostructures

    International Nuclear Information System (INIS)

    Marinescu, Domnita Catalina

    2011-01-01

    The focus of the research performed under this grant has been the investigation of spin transport in magnetic semiconductor heterostructures. The interest in these systems is motivated both by their intriguing physical properties, as the physical embodiment of a spin-polarized Fermi liquid, as well as by their potential applications as spintronics devices. In our work we have analyzed several different problems that affect the spin dynamics in single and bi-layer spin-polarized two-dimensional (2D) systems. The topics of interests ranged from the fundamental aspects of the electron-electron interactions, to collective spin and charge density excitations and spin transport in the presence of the spin-orbit coupling. The common denominator of these subjects is the impact at the macroscopic scale of the spin-dependent electron-electron interaction, which plays a much more subtle role than in unpolarized electron systems. Our calculations of several measurable parameters, such as the excitation frequencies of magneto-plasma modes, the spin mass, and the spin transresistivity, propose realistic theoretical estimates of the opposite-spin many-body effects, in particular opposite-spin correlations, that can be directly connected with experimental measurements.