WorldWideScience

Sample records for underwater landslides comparison

  1. COMPARISON of FUZZY-BASED MODELS in LANDSLIDE HAZARD MAPPING

    Directory of Open Access Journals (Sweden)

    N. Mijani

    2017-09-01

    Full Text Available Landslide is one of the main geomorphic processes which effects on the development of prospect in mountainous areas and causes disastrous accidents. Landslide is an event which has different uncertain criteria such as altitude, slope, aspect, land use, vegetation density, precipitation, distance from the river and distance from the road network. This research aims to compare and evaluate different fuzzy-based models including Fuzzy Analytic Hierarchy Process (Fuzzy-AHP, Fuzzy Gamma and Fuzzy-OR. The main contribution of this paper reveals to the comprehensive criteria causing landslide hazard considering their uncertainties and comparison of different fuzzy-based models. The quantify of evaluation process are calculated by Density Ratio (DR and Quality Sum (QS. The proposed methodology implemented in Sari, one of the city of Iran which has faced multiple landslide accidents in recent years due to the particular environmental conditions. The achieved results of accuracy assessment based on the quantifier strated that Fuzzy-AHP model has higher accuracy compared to other two models in landslide hazard zonation. Accuracy of zoning obtained from Fuzzy-AHP model is respectively 0.92 and 0.45 based on method Precision (P and QS indicators. Based on obtained landslide hazard maps, Fuzzy-AHP, Fuzzy Gamma and Fuzzy-OR respectively cover 13, 26 and 35 percent of the study area with a very high risk level. Based on these findings, fuzzy-AHP model has been selected as the most appropriate method of zoning landslide in the city of Sari and the Fuzzy-gamma method with a minor difference is in the second order.

  2. Edge waves excited by underwater landslides : scenarios in the sea of Marmara

    Science.gov (United States)

    Sinan Özeren, Mehmet; Postacioglu, Nazmi; Canlı, Umut; Gasperini, Luca

    2014-05-01

    In this work we quantify the travel distance of edge waves created by submarine landslide over slopes of finite length. Edge waves, if generated, can constitute severe coastal hazard because they can travel long distances along the shores. In the Sea of Marmara there are several submarine masses susceptible to slide in case of a big earthquake on the Main Marmara Fault and some damage scenarios might involve edge waves. The edge waves generated by landslide Tsunamis over slopes of infinite lenghts are recently studied by Sammarco and Renzi (Landslide tsunamis propagating along a plane beach, 2008, Journal of Fluid Mech.). However the infinite slope length assumption causes a perfect confinement of the waves over the coastal slope, thereby overestimating the edge wave damage. Because of this, in their work there is no alongshore length scale over which these waves can lose their energy. In the real worls, the off-shore limiting depth will be finite and the off-shore direction wave vector will not be completely complex, pointing to radiation damping of these edge waves. In this work we analytically quantify the amount of this damping and we estimate the travel distance of the edge waves along the shoreline as a function of the limiting depth. We examine some some scenarios in the north coast of the Sea of Marmara and the northern shelf to quantify the edge waves. Since the method does not require high-resolution numerical computing, it can be used to calculate the edge-wave related risk factor anywhere with submarine landslide risk.

  3. Comparison of event landslide inventories: the Pogliaschina catchment test case, Italy

    Science.gov (United States)

    Mondini, A. C.; Viero, A.; Cavalli, M.; Marchi, L.; Herrera, G.; Guzzetti, F.

    2014-07-01

    Event landslide inventory maps document the extent of populations of landslides caused by a single natural trigger, such as an earthquake, an intense rainfall event, or a rapid snowmelt event. Event inventory maps are important for landslide susceptibility and hazard modelling, and prove useful to manage residual risk after a landslide-triggering event. Standards for the preparation of event landslide inventory maps are lacking. Traditional methods are based on the visual interpretation of stereoscopic aerial photography, aided by field surveys. New and emerging techniques exploit remotely sensed data and semi-automatic algorithms. We describe the production and comparison of two independent event inventories prepared for the Pogliaschina catchment, Liguria, Northwest Italy. The two inventories show landslides triggered by an intense rainfall event on 25 October 2011, and were prepared through the visual interpretation of digital aerial photographs taken 3 days and 33 days after the event, and by processing a very-high-resolution image taken by the WorldView-2 satellite 4 days after the event. We compare the two inventories qualitatively and quantitatively using established and new metrics, and we discuss reasons for the differences between the two landslide maps. We expect that the results of our work can help in deciding on the most appropriate method to prepare reliable event inventory maps, and outline the advantages and the limitations of the different approaches.

  4. Comparison of landslide hazard and risk assessment practices in Europe

    Science.gov (United States)

    Corominas, J.; Mavrouli, O.

    2012-04-01

    An overview is made of the landslide hazard and risk assessment practices that are officially promoted or applied in Europe by administration offices, geological surveys, and decision makers (recommendations, regulations and codes). The reported countries are: Andorra, Austria, France, Italy (selected river basins), Romania, Spain (Catalonia), Switzerland and United Kingdom. The objective here was to compare the different practices for hazard and risk evaluation with respect to the official policies, the methodologies used (qualitative and quantitative), the provided outputs and their contents, and the terminology and map symbols used. The main observations made are illustrated with examples and the possibility of harmonization of the policies and the application of common practices to bridge the existing gaps is discussed. Some of the conclusions reached include the following: zoning maps are legally binding for public administrators and land owners only in some cases and generally when referring to site-specific or local scales rather than regional or national ones; so far, information is mainly provided on landslide susceptibility and hazard and risk assessment is performed only in a few countries; there is a variation in the use of scales between countries; the classification criteria for landslide types and mechanisms present large diversity even within the same country (in some cases no landslide mechanisms are specified while in others there is an exhaustive list); the techniques to obtain input data for the landslide inventory and susceptibility maps vary from basic to sophisticated, resulting in various levels of data quality and quantity; the procedures followed for hazard and risk assessment include analytical procedures supported by computer simulation, weighted-indicators, expert judgment and field survey-based, or a combination of all; there is an important variation between hazard and risk matrices with respect to the used parameters, the thresholds

  5. Spatial prediction models for landslide hazards: review, comparison and evaluation

    Directory of Open Access Journals (Sweden)

    A. Brenning

    2005-01-01

    Full Text Available The predictive power of logistic regression, support vector machines and bootstrap-aggregated classification trees (bagging, double-bagging is compared using misclassification error rates on independent test data sets. Based on a resampling approach that takes into account spatial autocorrelation, error rates for predicting 'present' and 'future' landslides are estimated within and outside the training area. In a case study from the Ecuadorian Andes, logistic regression with stepwise backward variable selection yields lowest error rates and demonstrates the best generalization capabilities. The evaluation outside the training area reveals that tree-based methods tend to overfit the data.

  6. In-air versus underwater comparison of 3D reconstruction accuracy using action sport cameras.

    Science.gov (United States)

    Bernardina, Gustavo R D; Cerveri, Pietro; Barros, Ricardo M L; Marins, João C B; Silvatti, Amanda P

    2017-01-25

    Action sport cameras (ASC) have achieved a large consensus for recreational purposes due to ongoing cost decrease, image resolution and frame rate increase, along with plug-and-play usability. Consequently, they have been recently considered for sport gesture studies and quantitative athletic performance evaluation. In this paper, we evaluated the potential of two ASCs (GoPro Hero3+) for in-air (laboratory) and underwater (swimming pool) three-dimensional (3D) motion analysis as a function of different camera setups involving the acquisition frequency, image resolution and field of view. This is motivated by the fact that in swimming, movement cycles are characterized by underwater and in-air phases what imposes the technical challenge of having a split volume configuration: an underwater measurement volume observed by underwater cameras and an in-air measurement volume observed by in-air cameras. The reconstruction of whole swimming cycles requires thus merging of simultaneous measurements acquired in both volumes. Characterizing and optimizing the instrumental errors of such a configuration makes mandatory the assessment of the instrumental errors of both volumes. In order to calibrate the camera stereo pair, black spherical markers placed on two calibration tools, used both in-air and underwater, and a two-step nonlinear optimization were exploited. The 3D reconstruction accuracy of testing markers and the repeatability of the estimated camera parameters accounted for system performance. For both environments, statistical tests were focused on the comparison of the different camera configurations. Then, each camera configuration was compared across the two environments. In all assessed resolutions, and in both environments, the reconstruction error (true distance between the two testing markers) was less than 3mm and the error related to the working volume diagonal was in the range of 1:2000 (3×1.3×1.5m 3 ) to 1:7000 (4.5×2.2×1.5m 3 ) in agreement with the

  7. Comparison between intensity- duration thresholds and cumulative rainfall thresholds for the forecasting of landslide

    Science.gov (United States)

    Lagomarsino, Daniela; Rosi, Ascanio; Rossi, Guglielmo; Segoni, Samuele; Catani, Filippo

    2014-05-01

    This work makes a quantitative comparison between the results of landslide forecasting obtained using two different rainfall threshold models, one using intensity-duration thresholds and the other based on cumulative rainfall thresholds in an area of northern Tuscany of 116 km2. The first methodology identifies rainfall intensity-duration thresholds by means a software called MaCumBA (Massive CUMulative Brisk Analyzer) that analyzes rain-gauge records, extracts the intensities (I) and durations (D) of the rainstorms associated with the initiation of landslides, plots these values on a diagram, and identifies thresholds that define the lower bounds of the I-D values. A back analysis using data from past events can be used to identify the threshold conditions associated with the least amount of false alarms. The second method (SIGMA) is based on the hypothesis that anomalous or extreme values of rainfall are responsible for landslide triggering: the statistical distribution of the rainfall series is analyzed, and multiples of the standard deviation (σ) are used as thresholds to discriminate between ordinary and extraordinary rainfall events. The name of the model, SIGMA, reflects the central role of the standard deviations in the proposed methodology. The definition of intensity-duration rainfall thresholds requires the combined use of rainfall measurements and an inventory of dated landslides, whereas SIGMA model can be implemented using only rainfall data. These two methodologies were applied in an area of 116 km2 where a database of 1200 landslides was available for the period 2000-2012. The results obtained are compared and discussed. Although several examples of visual comparisons between different intensity-duration rainfall thresholds are reported in the international literature, a quantitative comparison between thresholds obtained in the same area using different techniques and approaches is a relatively undebated research topic.

  8. Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat—Turkey)

    Science.gov (United States)

    Yilmaz, Işık

    2009-06-01

    The purpose of this study is to compare the landslide susceptibility mapping methods of frequency ratio (FR), logistic regression and artificial neural networks (ANN) applied in the Kat County (Tokat—Turkey). Digital elevation model (DEM) was first constructed using GIS software. Landslide-related factors such as geology, faults, drainage system, topographical elevation, slope angle, slope aspect, topographic wetness index (TWI) and stream power index (SPI) were used in the landslide susceptibility analyses. Landslide susceptibility maps were produced from the frequency ratio, logistic regression and neural networks models, and they were then compared by means of their validations. The higher accuracies of the susceptibility maps for all three models were obtained from the comparison of the landslide susceptibility maps with the known landslide locations. However, respective area under curve (AUC) values of 0.826, 0.842 and 0.852 for frequency ratio, logistic regression and artificial neural networks showed that the map obtained from ANN model is more accurate than the other models, accuracies of all models can be evaluated relatively similar. The results obtained in this study also showed that the frequency ratio model can be used as a simple tool in assessment of landslide susceptibility when a sufficient number of data were obtained. Input process, calculations and output process are very simple and can be readily understood in the frequency ratio model, however logistic regression and neural networks require the conversion of data to ASCII or other formats. Moreover, it is also very hard to process the large amount of data in the statistical package.

  9. Numerical modelling comparison of slow landslides: the Portalet case study (Central Pyrenees-Spain)

    Science.gov (United States)

    Fernandez-Merodo, Jose Antonio; Garcia-Davalillo, Juan Carlos; Herrera, Gerardo

    2013-04-01

    water table rises during rain events. In the last eight years the cumulative surface displacement exceeds two meters. The comparison made in this paper provides that after a careful and difficult calibration, the proposed models reproduce qualitatively and quantitatively, more or less accurately depending on the complexity of the model, the observed deformation patterns. These models can give successful short-term and medium-term predictions during stages of primary and secondary creep, i.e. at nearly constant strain rate. However, long-time predictions remain uncertain, stability depends strongly on the position of the water table depth and new failures during tertiary creep due to soil temporal micro-structural degradation are difficult to calibrate. References [1] G.Herrera, J.A.Fernández-Merodo, J.Mulas, M.Pastor y G.Luzi. "A landslide forecasting model using ground based SAR data: the Portalet case study". Engineering geology 2009, vol. 105, n° 3-4, pp: 220-230 (10 pág.) DOI: 10.1016/j.enggeo.2009.02.009 [2] J.A.Fernández-Merodo, G.Herrera, P.Mira, J.Mulas, M.Pastor, L.Noferini, D.Mecatti, G.Luzi. "Modelling the Portalet landslide mobility (Formigal, Spain)". International Congress on Environmental Modelling and Software (iEMSs 2008). ISBN: 978-84-7653-074-0 [3] J.A.Fernández-Merodo, J.C.García-Davalillo, G.Herrera, P.Mira, M.Pastor. "2D viscoplastic finite element modelling of slow landslides: the Portalet case study (Spain)". Landslides 2012, DOI: 10.1007/s10346-012-0370-4

  10. Comparison of Satellite Rainfall Estimates and Rain Gauge Measurements in Italy, and Impact on Landslide Modeling

    Directory of Open Access Journals (Sweden)

    Mauro Rossi

    2017-12-01

    Full Text Available Landslides can be triggered by intense or prolonged rainfall. Rain gauge measurements are commonly used to predict landslides even if satellite rainfall estimates are available. Recent research focuses on the comparison of satellite estimates and gauge measurements. The rain gauge data from the Italian network (collected in the system database “Verifica Rischio Frana”, VRF are compared with the National Aeronautics and Space Administration (NASA Tropical Rainfall Measuring Mission (TRMM products. For the purpose, we couple point gauge and satellite rainfall estimates at individual grid cells, evaluating the correlation between gauge and satellite data in different morpho-climatological conditions. We then analyze the statistical distributions of both rainfall data types and the rainfall events derived from them. Results show that satellite data underestimates ground data, with the largest differences in mountainous areas. Power-law models, are more appropriate to correlate gauge and satellite data. The gauge and satellite-based products exhibit different statistical distributions and the rainfall events derived from them differ. In conclusion, satellite rainfall cannot be directly compared with ground data, requiring local investigation to account for specific morpho-climatological settings. Results suggest that satellite data can be used for forecasting landslides, only performing a local scaling between satellite and ground data.

  11. 3D RECONSTRUCTION OF AN UNDERWATER ARCHAELOGICAL SITE: COMPARISON BETWEEN LOW COST CAMERAS

    Directory of Open Access Journals (Sweden)

    A. Capra

    2015-04-01

    Full Text Available The 3D reconstruction with a metric content of a submerged area, where objects and structures of archaeological interest are found, could play an important role in the research and study activities and even in the digitization of the cultural heritage. The reconstruction of 3D object, of interest for archaeologists, constitutes a starting point in the classification and description of object in digital format and for successive fruition by user after delivering through several media. The starting point is a metric evaluation of the site obtained with photogrammetric surveying and appropriate 3D restitution. The authors have been applying the underwater photogrammetric technique since several years using underwater digital cameras and, in this paper, digital low cost cameras (off-the-shelf. Results of tests made on submerged objects with three cameras are presented: © Canon Power Shot G12, © Intova Sport HD e © GoPro HERO 2. The experimentation had the goal to evaluate the precision in self-calibration procedures, essential for multimedia underwater photogrammetry, and to analyze the quality of 3D restitution. Precisions obtained in the calibration and orientation procedures was assessed by using three cameras, and an homogeneous set control points. Data were processed with © Agisoft Photoscan. Successively, 3D models were created and the comparison of the models derived from the use of different cameras was performed. Different potentialities of the used cameras are reported in the discussion section. The 3D restitution of objects and structures was integrated with sea bottom floor morphology in order to achieve a comprehensive description of the site. A possible methodology of survey and representation of submerged objects is therefore illustrated, considering an automatic and a semi-automatic approach.

  12. D Reconstruction of AN Underwater Archaelogical Site: Comparison Between Low Cost Cameras

    Science.gov (United States)

    Capra, A.; Dubbini, M.; Bertacchini, E.; Castagnetti, C.; Mancini, F.

    2015-04-01

    The 3D reconstruction with a metric content of a submerged area, where objects and structures of archaeological interest are found, could play an important role in the research and study activities and even in the digitization of the cultural heritage. The reconstruction of 3D object, of interest for archaeologists, constitutes a starting point in the classification and description of object in digital format and for successive fruition by user after delivering through several media. The starting point is a metric evaluation of the site obtained with photogrammetric surveying and appropriate 3D restitution. The authors have been applying the underwater photogrammetric technique since several years using underwater digital cameras and, in this paper, digital low cost cameras (off-the-shelf). Results of tests made on submerged objects with three cameras are presented: Canon Power Shot G12, Intova Sport HD e GoPro HERO 2. The experimentation had the goal to evaluate the precision in self-calibration procedures, essential for multimedia underwater photogrammetry, and to analyze the quality of 3D restitution. Precisions obtained in the calibration and orientation procedures was assessed by using three cameras, and an homogeneous set control points. Data were processed with Agisoft Photoscan. Successively, 3D models were created and the comparison of the models derived from the use of different cameras was performed. Different potentialities of the used cameras are reported in the discussion section. The 3D restitution of objects and structures was integrated with sea bottom floor morphology in order to achieve a comprehensive description of the site. A possible methodology of survey and representation of submerged objects is therefore illustrated, considering an automatic and a semi-automatic approach.

  13. 3D MODELS COMPARISON OF COMPLEX SHELL IN UNDERWATER AND DRY ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    S. Troisi

    2015-04-01

    Full Text Available In marine biology the shape, morphology, texture and dimensions of the shells and organisms like sponges and gorgonians are very important parameters. For example, a particular type of gorgonian grows every year only few millimeters; this estimation was conducted without any measurement instrument but it has been provided after successive observational studies, because this organism is very fragile: the contact could compromise its structure and outliving. Non-contact measurement system has to be used to preserve such organisms: the photogrammetry is a method capable to assure high accuracy without contact. Nevertheless, the achievement of a 3D photogrammetric model of complex object (as gorgonians or particular shells is a challenge in normal environments, either with metric camera or with consumer camera. Indeed, the successful of automatic target-less image orientation and the image matching algorithms is strictly correlated to the object texture properties and of camera calibration quality as well. In the underwater scenario, the environment conditions strongly influence the results quality; in particular, water’s turbidity, the presence of suspension, flare and other optical aberrations decrease the image quality reducing the accuracy and increasing the noise on the 3D model. Furthermore, seawater density variability influences its refraction index and consequently the interior orientation camera parameters. For this reason, the camera calibration has to be performed in the same survey conditions. In this paper, a comparison between the 3D models of a Charonia Tritonis shell are carried out through surveys conducted both in dry and underwater environments.

  14. Comparison and Evolution of Extreme Rainfall-Induced Landslides in Taiwan

    Directory of Open Access Journals (Sweden)

    Chunhung WU

    2017-11-01

    Full Text Available This study analyzed the characteristics of, and locations prone to, extreme rainfall-induced landslides in three watersheds in Taiwan, as well as the long-term evolution of landslides in the Laonong River watershed (LRW, based on multiannual landslide inventories during 2003–2014. Extreme rainfall-induced landslides were centralized beside sinuous or meandering reaches, especially those with large sediment deposition. Landslide-prone strata during extreme rainfall events were sandstone and siltstone. Large-scale landslides were likely to occur when the maximum 6-h accumulated rainfall exceeded 420 mm. All of the large-scale landslides induced by short-duration and high-intensity rainfall developed from historical small-scale landslides beside the sinuous or meandering reaches or in the source area of rivers. However, most of the large-scale landslides induced by long-duration and high-intensity rainfall were new but were still located beside sinuous or meandering reaches or near the source. The frequency density of landslides under long-duration and high-intensity rainfall was larger by one order than those under short-duration rainfall, and the β values in the landslide frequency density-area analysis ranged from 1.22 to 1.348. The number of downslope landslides was three times larger than those of midslope and upslope landslides. The extreme rainfall-induced landslides occurred in the erosion gullies upstream of the watersheds, whereas those beside rivers were downstream. Analysis of the long-term evolution of landslides in the LRW showed that the geological setting, sinuousness of reaches, and sediment yield volume determined their location and evolution. Small-scale landslides constituted 71.9–96.2% of the total cases from 2003 to 2014, and were more easily induced after Typhoon Morakot (2009. The frequency density of landslides after Morakot was greater by one order than before, with 61% to 68% of total landslides located in the

  15. Comparison of the landslide susceptibility models in Taipei Water Source Domain, Taiwan

    Science.gov (United States)

    WU, C. Y.; Yeh, Y. C.; Chou, T. H.

    2017-12-01

    Taipei Water Source Domain, locating at the southeast of Taipei Metropolis, is the main source of water resource in this region. Recently, the downstream turbidity often soared significantly during the typhoon period because of the upstream landslides. The landslide susceptibilities should be analysed to assess the influence zones caused by different rainfall events, and to ensure the abilities of this domain to serve enough and quality water resource. Generally, the landslide susceptibility models can be established based on either a long-term landslide inventory or a specified landslide event. Sometimes, there is no long-term landslide inventory in some areas. Thus, the event-based landslide susceptibility models are established widely. However, the inventory-based and event-based landslide susceptibility models may result in dissimilar susceptibility maps in the same area. So the purposes of this study were to compare the landslide susceptibility maps derived from the inventory-based and event-based models, and to interpret how to select a representative event to be included in the susceptibility model. The landslide inventory from Typhoon Tim in July, 1994 and Typhoon Soudelor in August, 2015 was collected, and used to establish the inventory-based landslide susceptibility model. The landslides caused by Typhoon Nari and rainfall data were used to establish the event-based model. The results indicated the high susceptibility slope-units were located at middle upstream Nan-Shih Stream basin.

  16. Comparison and applicability of landslide susceptibility models based on landslide ratio-based logistic regression, frequency ratio, weight of evidence, and instability index methods in an extreme rainfall event

    Science.gov (United States)

    Wu, Chunhung

    2016-04-01

    Few researches have discussed about the applicability of applying the statistical landslide susceptibility (LS) model for extreme rainfall-induced landslide events. The researches focuses on the comparison and applicability of LS models based on four methods, including landslide ratio-based logistic regression (LRBLR), frequency ratio (FR), weight of evidence (WOE), and instability index (II) methods, in an extreme rainfall-induced landslide cases. The landslide inventory in the Chishan river watershed, Southwestern Taiwan, after 2009 Typhoon Morakot is the main materials in this research. The Chishan river watershed is a tributary watershed of Kaoping river watershed, which is a landslide- and erosion-prone watershed with the annual average suspended load of 3.6×107 MT/yr (ranks 11th in the world). Typhoon Morakot struck Southern Taiwan from Aug. 6-10 in 2009 and dumped nearly 2,000 mm of rainfall in the Chishan river watershed. The 24-hour, 48-hour, and 72-hours accumulated rainfall in the Chishan river watershed exceeded the 200-year return period accumulated rainfall. 2,389 landslide polygons in the Chishan river watershed were extracted from SPOT 5 images after 2009 Typhoon Morakot. The total landslide area is around 33.5 km2, equals to the landslide ratio of 4.1%. The main landslide types based on Varnes' (1978) classification are rotational and translational slides. The two characteristics of extreme rainfall-induced landslide event are dense landslide distribution and large occupation of downslope landslide areas owing to headward erosion and bank erosion in the flooding processes. The area of downslope landslide in the Chishan river watershed after 2009 Typhoon Morakot is 3.2 times higher than that of upslope landslide areas. The prediction accuracy of LS models based on LRBLR, FR, WOE, and II methods have been proven over 70%. The model performance and applicability of four models in a landslide-prone watershed with dense distribution of rainfall

  17. Landslide susceptibility mapping in Mawat area, Kurdistan Region, NE Iraq: a comparison of different statistical models

    Science.gov (United States)

    Othman, A. A.; Gloaguen, R.; Andreani, L.; Rahnama, M.

    2015-03-01

    During the last decades, expansion of settlements into areas prone to landslides in Iraq has increased the importance of accurate hazard assessment. Susceptibility mapping provides information about hazardous locations and thus helps to potentially prevent infrastructure damage due to mass wasting. The aim of this study is to evaluate and compare frequency ratio (FR), weight of evidence (WOE), logistic regression (LR) and probit regression (PR) approaches in combination with new geomorphological indices to determine the landslide susceptibility index (LSI). We tested these four methods in Mawat area, Kurdistan Region, NE Iraq, where landslides occur frequently. For this purpose, we evaluated 16 geomorphological, geological and environmental predicting factors mainly derived from the advanced spaceborne thermal emission and reflection radiometer (ASTER) satellite. The available reference inventory includes 351 landslides representing a cumulative surface of 3.127 km2. This reference inventory was mapped from QuickBird data by manual delineation and partly verified by field survey. The areas under curve (AUC) of the receiver operating characteristic (ROC), and relative landslide density (R index) show that all models perform similarly and that focus should be put on the careful selection of proxies. The results indicate that the lithology and the slope aspects play major roles for landslide occurrences. Furthermore, this paper demonstrates that using hypsometric integral as a prediction factor instead of slope curvature gives better results and increases the accuracy of the LSI.

  18. The comparison of landslide ratio-based and general logistic regression landslide susceptibility models in the Chishan watershed after 2009 Typhoon Morakot

    Science.gov (United States)

    WU, Chunhung

    2015-04-01

    The research built the original logistic regression landslide susceptibility model (abbreviated as or-LRLSM) and landslide ratio-based ogistic regression landslide susceptibility model (abbreviated as lr-LRLSM), compared the performance and explained the error source of two models. The research assumes that the performance of the logistic regression model can be better if the distribution of landslide ratio and weighted value of each variable is similar. Landslide ratio is the ratio of landslide area to total area in the specific area and an useful index to evaluate the seriousness of landslide disaster in Taiwan. The research adopted the landside inventory induced by 2009 Typhoon Morakot in the Chishan watershed, which was the most serious disaster event in the last decade, in Taiwan. The research adopted the 20 m grid as the basic unit in building the LRLSM, and six variables, including elevation, slope, aspect, geological formation, accumulated rainfall, and bank erosion, were included in the two models. The six variables were divided as continuous variables, including elevation, slope, and accumulated rainfall, and categorical variables, including aspect, geological formation and bank erosion in building the or-LRLSM, while all variables, which were classified based on landslide ratio, were categorical variables in building the lr-LRLSM. Because the count of whole basic unit in the Chishan watershed was too much to calculate by using commercial software, the research took random sampling instead of the whole basic units. The research adopted equal proportions of landslide unit and not landslide unit in logistic regression analysis. The research took 10 times random sampling and selected the group with the best Cox & Snell R2 value and Nagelkerker R2 value as the database for the following analysis. Based on the best result from 10 random sampling groups, the or-LRLSM (lr-LRLSM) is significant at the 1% level with Cox & Snell R2 = 0.190 (0.196) and Nagelkerke R2

  19. Comparison of Structurally Controlled Landslide Hazard Simulation to the Co-seismic Landslides Caused by the M 7.2 2013 Bohol Earthquake.

    Science.gov (United States)

    Galang, J. A. M. B.; Eco, R. C.; Lagmay, A. M. A.

    2014-12-01

    The M_w 7.2 October 15, 2013 Bohol earthquake is one of the more destructive earthquake to hit the Philippines in the 21st century. The epicenter was located in Sagbayan municipality, central Bohol and was generated by a previously unmapped reverse fault called the "Inabanga Fault". The earthquake resulted in 209 fatalities and over 57 million USD worth of damages. The earthquake generated co-seismic landslides most of which were related to fault structures. Unlike rainfall induced landslides, the trigger for co-seismic landslides happen without warning. Preparations for this type of landslides rely heavily on the identification of fracture-related slope instability. To mitigate the impacts of co-seismic landslide hazards, morpho-structural orientations of discontinuity sets were mapped using remote sensing techniques with the aid of a Digital Terrain Model (DTM) obtained in 2012. The DTM used is an IFSAR derived image with a 5-meter pixel resolution and approximately 0.5 meter vertical accuracy. Coltop 3D software was then used to identify similar structures including measurement of their dip and dip directions. The chosen discontinuity sets were then keyed into Matterocking software to identify potential rock slide zones due to planar or wedged discontinuities. After identifying the structurally-controlled unstable slopes, the rock mass propagation extent of the possible rock slides was simulated using Conefall. Separately, a manually derived landslide inventory has been performed using post-earthquake satellite images and LIDAR. The results were compared to the landslide inventory which identified at least 873 landslides. Out of the 873 landslides identified through the inventory, 786 or 90% intersect the simulated structural-controlled landslide hazard areas of Bohol. The results show the potential of this method to identify co-seismic landslide hazard areas for disaster mitigation. Along with computer methods to simulate shallow landslides, and debris flow

  20. Landslide prediction system for rainfall induced landslides in Slovenia (Masprem

    Directory of Open Access Journals (Sweden)

    Mateja Jemec Auflič

    2016-12-01

    Full Text Available In this paper we introduce a landslide prediction system for modelling the probabilities of landslides through time in Slovenia (Masprem. The system to forecast rainfall induced landslides is based on the landslide susceptibility map, landslide triggering rainfall threshold values and the precipitation forecasting model. Through the integrated parameters a detailed framework of the system, from conceptual to operational phases, is shown. Using fuzzy logic the landslide prediction is calculated. Potential landslide areas are forecasted on a national scale (1: 250,000 and on a local scale (1: 25,000 for fie selected municipalities where the exposure of inhabitants, buildings and different type of infrastructure is displayed, twice daily. Due to different rainfall patterns that govern landslide occurrences, the system for landslide prediction considers two different rainfall scenarios (M1 and M2. The landslides predicted by the two models are compared with a landslide inventory to validate the outputs. In this study we highlight the rainfall event that lasted from the 9th to the 14th of September 2014 when abundant precipitation triggered over 800 slope failures around Slovenia and caused large material damage. Results show that antecedent rainfall plays an important role, according to the comparisons of the model (M1 where antecedent rainfall is not considered. Although in general the landslides areas are over-predicted and largely do not correspond to the landslide inventory, the overall performance indicates that the system is able to capture the crucial factors in determining the landslide location. Additional calibration of input parameters and the landslide inventory as well as improved spatially distributed rainfall forecast data can further enhance the model's prediction.

  1. Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods

    Science.gov (United States)

    Pourghasemi, Hamid Reza; Rossi, Mauro

    2017-10-01

    Landslides are identified as one of the most important natural hazards in many areas throughout the world. The essential purpose of this study is to compare general linear model (GLM), general additive model (GAM), multivariate adaptive regression spline (MARS), and modified analytical hierarchy process (M-AHP) models and assessment of their performances for landslide susceptibility modeling in the west of Mazandaran Province, Iran. First, landslides were identified by interpreting aerial photographs, and extensive field works. In total, 153 landslides were identified in the study area. Among these, 105 landslides were randomly selected as training data (i.e. used in the models training) and the remaining 48 (30 %) cases were used for the validation (i.e. used in the models validation). Afterward, based on a deep literature review on 220 scientific papers (period between 2005 and 2012), eleven conditioning factors including lithology, land use, distance from rivers, distance from roads, distance from faults, slope angle, slope aspect, altitude, topographic wetness index (TWI), plan curvature, and profile curvature were selected. The Certainty Factor (CF) model was used for managing uncertainty in rule-based systems and evaluation of the correlation between the dependent (landslides) and independent variables. Finally, the landslide susceptibility zonation was produced using GLM, GAM, MARS, and M-AHP models. For evaluation of the models, the area under the curve (AUC) method was used and both success and prediction rate curves were calculated. The evaluation of models for GLM, GAM, and MARS showed 90.50, 88.90, and 82.10 % for training data and 77.52, 70.49, and 78.17 % for validation data, respectively. Furthermore, The AUC value of the produced landslide susceptibility map using M-AHP showed a training value of 77.82 % and validation value of 82.77 % accuracy. Based on the overall assessments, the proposed approaches showed reasonable results for landslide

  2. Comparison of the Structurally Controlled Landslides Numerical Model Results to the M 7.2 2013 Bohol Earthquake Co-seismic Landslides

    Science.gov (United States)

    Macario Galang, Jan Albert; Narod Eco, Rodrigo; Mahar Francisco Lagmay, Alfredo

    2015-04-01

    The M 7.2 October 15, 2013 Bohol earthquake is the most destructive earthquake to hit the Philippines since 2012. The epicenter was located in Sagbayan municipality, central Bohol and was generated by a previously unmapped reverse fault called the "Inabanga Fault". Its name, taken after the barangay (village) where the fault is best exposed and was first seen. The earthquake resulted in 209 fatalities and over 57 billion USD worth of damages. The earthquake generated co-seismic landslides most of which were related to fault structures. Unlike rainfall induced landslides, the trigger for co-seismic landslides happen without warning. Preparedness against this type of landslide therefore, relies heavily on the identification of fracture-related unstable slopes. To mitigate the impacts of co-seismic landslide hazards, morpho-structural orientations or discontinuity sets were mapped in the field with the aid of a 2012 IFSAR Digital Terrain Model (DTM) with 5-meter pixel resolution and software was then used to identify similar structures including measurement of their dip and dip directions. The chosen discontinuity sets were then keyed into Matterocking software to identify potential rock slide zones due to planar or wedged discontinuities. After identifying the structurally-controlled unstable slopes, the rock mass propagation extent of the possible rock slides was simulated using Conefall. The results were compared to a post-earthquake landslide inventory of 456 landslides. Out the total number of landslides identified from post-earthquake high-resolution imagery, 366 or 80% intersect the structural-controlled hazard areas of Bohol. The results show the potential of this method to identify co-seismic landslide hazard areas for disaster mitigation. Along with computer methods to simulate shallow landslides, and debris flow paths, located structurally-controlled unstable zones can be used to mark unsafe areas for settlement. The method can be further improved with the

  3. Comparison of spatial models for foreground-background segmentation in underwater videos

    OpenAIRE

    Radolko, Martin

    2015-01-01

    The low-level task of foreground-background segregation is an important foundation for many high-level computer vision tasks and has been intensively researched in the past. Nonetheless, unregulated environments usually impose challenging problems, especially the difficult and often neglected underwater environment. There, among others, the edges are blurred, the contrast is impaired and the colors attenuated. Our approach to this problem uses an efficient Background Subtraction algorithm and...

  4. Comparison between monitored and modeled pore water pressure and safety factor in a slope susceptible to shallow landslides

    Science.gov (United States)

    Bordoni, Massimiliano; Meisina, Claudia; Zizioli, Davide; Valentino, Roberto; Bittelli, Marco; Chersich, Silvia

    2014-05-01

    -high topographic gradient (ranging from 22 to 35°). The bedrock is made up of gravel, sand and poorly cemented conglomerates; superficial soils, derived by the weathered bedrock, are prevalently clayey-sandy silts and clayey-silty sands with different amounts of pebbles and carbonate concretions. A geotechnical, mechanical, pedological and mineralogical characterization of superficial deposits was performed. Laboratory reconstruction of hysteretic soil water characteristic curves was also carried out to determine the main soil hydrological properties. The experimental station consists in a pluviometer, a thermo-hygrometer, a barometer, an anemometer and a net radiometer. Six TDR probes equipped with a multiplexer are installed at 0.2, 0.4, 0.6, 1, 1.2, 1.4 m from ground level to measure volumetric water content; to measure pore water pressure, three tensiometers and three heat dissipation sensors are installed at 0.2, 0.6, 1.2 m from ground level. The data are collected by a CR1000 datalogger (Campbell Sci. Inc.) each 10 minutes. In this work the results of the comparison between monitored and modeled pore water pressures and the safety factor in different conditions are analyzed in order to understand the hydro-mechanical properties that could predispose the triggering mechanism of shallow instabilities and the processes that have to be taken into account in the evaluation of shallow landslides susceptibility.

  5. A COMPARISON BETWEEN ACTIVE AND PASSIVE TECHNIQUES FOR UNDERWATER 3D APPLICATIONS

    Directory of Open Access Journals (Sweden)

    G. Bianco

    2012-09-01

    Full Text Available In the field of 3D scanning, there is an increasing need for more accurate technologies to acquire 3D models of close range objects. Underwater exploration, for example, is very hard to perform due to the hostile conditions and the bad visibility of the environment. Some application fields, like underwater archaeology, require to recover tridimensional data of objects that cannot be moved from their site or touched in order to avoid possible damages. Photogrammetry is widely used for underwater 3D acquisition, because it requires just one or two digital still or video cameras to acquire a sequence of images taken from different viewpoints. Stereo systems composed by a pair of cameras are often employed on underwater robots (i.e. ROVs, Remotely Operated Vehicles and used by scuba divers, in order to survey archaeological sites, reconstruct complex 3D structures in aquatic environment, estimate in situ the length of marine organisms, etc. The stereo 3D reconstruction is based on the triangulation of corresponding points on the two views. This requires to find in both images common points and to match them (correspondence problem, determining a plane that contains the 3D point on the object. Another 3D technique, frequently used in air acquisition, solves this point-matching problem by projecting structured lighting patterns to codify the acquired scene. The corresponding points are identified associating a binary code in both images. In this work we have tested and compared two whole-field 3D imaging techniques (active and passive based on stereo vision, in underwater environment. A 3D system has been designed, composed by a digital projector and two still cameras mounted in waterproof housing, so that it can perform the various acquisitions without changing the configuration of optical devices. The tests were conducted in a water tank in different turbidity conditions, on objects with different surface properties. In order to simulate a typical

  6. Underwater robots

    CERN Document Server

    Antonelli, Gianluca

    2014-01-01

    This book, now at the third edition, addresses the main control aspects in underwater manipulation tasks. The mathematical model with significant impact on the control strategy is discussed. The problem of controlling a 6-degrees-of-freedoms autonomous underwater vehicle is deeply investigated and a survey of fault detection/tolerant strategies for unmanned underwater vehicles is provided. Inverse kinematics, dynamic and interaction control for underwater vehicle-manipulator systems are then discussed. The code used to generate most of the numerical simulations is made available and briefly discussed.       

  7. Underwater Ranging

    OpenAIRE

    S. P. Gaba

    1984-01-01

    The paper deals with underwater laser ranging system, its principle of operation and maximum depth capability. The sources of external noise and methods to improve signal-to-noise ratio are also discussed.

  8. Performance and strategy comparisons of human listeners and logistic regression in discriminating underwater targets.

    Science.gov (United States)

    Yang, Lixue; Chen, Kean

    2015-11-01

    To improve the design of underwater target recognition systems based on auditory perception, this study compared human listeners with automatic classifiers. Performances measures and strategies in three discrimination experiments, including discriminations between man-made and natural targets, between ships and submarines, and among three types of ships, were used. In the experiments, the subjects were asked to assign a score to each sound based on how confident they were about the category to which it belonged, and logistic regression, which represents linear discriminative models, also completed three similar tasks by utilizing many auditory features. The results indicated that the performances of logistic regression improved as the ratio between inter- and intra-class differences became larger, whereas the performances of the human subjects were limited by their unfamiliarity with the targets. Logistic regression performed better than the human subjects in all tasks but the discrimination between man-made and natural targets, and the strategies employed by excellent human subjects were similar to that of logistic regression. Logistic regression and several human subjects demonstrated similar performances when discriminating man-made and natural targets, but in this case, their strategies were not similar. An appropriate fusion of their strategies led to further improvement in recognition accuracy.

  9. Hearing in the Juvenile Green Sea Turtle (Chelonia mydas: A Comparison of Underwater and Aerial Hearing Using Auditory Evoked Potentials.

    Directory of Open Access Journals (Sweden)

    Wendy E D Piniak

    Full Text Available Sea turtles spend much of their life in aquatic environments, but critical portions of their life cycle, such as nesting and hatching, occur in terrestrial environments, suggesting that it may be important for them to detect sounds in both air and water. In this study we compared underwater and aerial hearing sensitivities in five juvenile green sea turtles (Chelonia mydas by measuring auditory evoked potential responses to tone pip stimuli. Green sea turtles detected acoustic stimuli in both media, responding to underwater stimuli between 50 and 1600 Hz and aerial stimuli between 50 and 800 Hz, with maximum sensitivity between 200 and 400 Hz underwater and 300 and 400 Hz in air. When underwater and aerial hearing sensitivities were compared in terms of pressure, green sea turtle aerial sound pressure thresholds were lower than underwater thresholds, however they detected a wider range of frequencies underwater. When thresholds were compared in terms of sound intensity, green sea turtle sound intensity level thresholds were 2-39 dB lower underwater particularly at frequencies below 400 Hz. Acoustic stimuli may provide important environmental cues for sea turtles. Further research is needed to determine how sea turtles behaviorally and physiologically respond to sounds in their environment.

  10. Landslide Regions

    Data.gov (United States)

    Department of Homeland Security — These data are a digital version of U.S. Geological Survey Professional Paper 1183, Landslide Overview Map of the Conterminous United States. The map and digital...

  11. Methodologies for the assessment of earthquake-triggered landslides hazard. A comparison of Logistic Regression and Artificial Neural Network models.

    Science.gov (United States)

    García-Rodríguez, M. J.; Malpica, J. A.; Benito, B.

    2009-04-01

    In recent years, interest in landslide hazard assessment studies has increased substantially. They are appropriate for evaluation and mitigation plan development in landslide-prone areas. There are several techniques available for landslide hazard research at a regional scale. Generally, they can be classified in two groups: qualitative and quantitative methods. Most of qualitative methods tend to be subjective, since they depend on expert opinions and represent hazard levels in descriptive terms. On the other hand, quantitative methods are objective and they are commonly used due to the correlation between the instability factors and the location of the landslides. Within this group, statistical approaches and new heuristic techniques based on artificial intelligence (artificial neural network (ANN), fuzzy logic, etc.) provide rigorous analysis to assess landslide hazard over large regions. However, they depend on qualitative and quantitative data, scale, types of movements and characteristic factors used. We analysed and compared an approach for assessing earthquake-triggered landslides hazard using logistic regression (LR) and artificial neural networks (ANN) with a back-propagation learning algorithm. One application has been developed in El Salvador, a country of Central America where the earthquake-triggered landslides are usual phenomena. In a first phase, we analysed the susceptibility and hazard associated to the seismic scenario of the 2001 January 13th earthquake. We calibrated the models using data from the landslide inventory for this scenario. These analyses require input variables representing physical parameters to contribute to the initiation of slope instability, for example, slope gradient, elevation, aspect, mean annual precipitation, lithology, land use, and terrain roughness, while the occurrence or non-occurrence of landslides is considered as dependent variable. The results of the landslide susceptibility analysis are checked using landslide

  12. Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India)

    Science.gov (United States)

    Das, Iswar; Sahoo, Sashikant; van Westen, Cees; Stein, Alfred; Hack, Robert

    2010-02-01

    Landslide studies are commonly guided by ground knowledge and field measurements of rock strength and slope failure criteria. With increasing sophistication of GIS-based statistical methods, however, landslide susceptibility studies benefit from the integration of data collected from various sources and methods at different scales. This study presents a logistic regression method for landslide susceptibility mapping and verifies the result by comparing it with the geotechnical-based slope stability probability classification (SSPC) methodology. The study was carried out in a landslide-prone national highway road section in the northern Himalayas, India. Logistic regression model performance was assessed by the receiver operator characteristics (ROC) curve, showing an area under the curve equal to 0.83. Field validation of the SSPC results showed a correspondence of 72% between the high and very high susceptibility classes with present landslide occurrences. A spatial comparison of the two susceptibility maps revealed the significance of the geotechnical-based SSPC method as 90% of the area classified as high and very high susceptible zones by the logistic regression method corresponds to the high and very high class in the SSPC method. On the other hand, only 34% of the area classified as high and very high by the SSPC method falls in the high and very high classes of the logistic regression method. The underestimation by the logistic regression method can be attributed to the generalisation made by the statistical methods, so that a number of slopes existing in critical equilibrium condition might not be classified as high or very high susceptible zones.

  13. Comparison of landslide forecasting services in Piedmont (Italy) and Norway, illustrated by events in late spring 2013

    Science.gov (United States)

    Devoli, Graziella; Tiranti, Davide; Cremonini, Roberto; Sund, Monica; Boje, Søren

    2018-05-01

    Only few countries operate systematically national and regional forecasting services for rainfall-induced landslides (i.e., debris flows, debris avalanches and shallow slides), among them Norway and Italy. In Norway, the Norwegian Water Resources and Energy Directorate (NVE) operates a landslide forecasting service at national level. In Italy, the Regional Agency for Environmental Protection, ARPA Piemonte, is responsible for issuing landslide warnings for the Piedmont region, located in northwestern Italy. A daily hazard assessment is performed, describing both expected awareness level and type of landslide hazard for a selected warning region. Both services provide regular landslide hazard assessments based on a combination of quantitative thresholds and daily rainfall forecasts together with qualitative expert analysis. Daily warning reports are published at http://www.arpa.piemonte.gov.it/rischinaturali and http://www.varsom.no, last access: 7 May 2018. In spring 2013, ARPA Piemonte and the NVE issued warnings for hydro-meteorological hazards due to the arrival of a deep and large low-pressure system, called herein Vb cyclone. This kind of weather system is known to produce the largest floods in Europe. Less known is that this weather pattern can trigger landslides as well. In this study, we present the experiences of NVE and ARPA Piemonte in the late spring of 2013. The Vb cyclone influenced weather throughout Europe over a long period, from the end of April until the beginning of June 2013. However, major affects were observed in the first half part of this period in Piedmont, while in Norway, major damage was reported from 15 May to 2 June 2013. Floods and landslides significantly damaged roads, railways, buildings and other infrastructure in both countries. This case study shows that large synoptic pattern can produce different natural hazards in different parts of Europe, from sandstorms at low latitudes, to flood and landslides when the system moves

  14. Comparison of landslide forecasting services in Piedmont (Italy and Norway, illustrated by events in late spring 2013

    Directory of Open Access Journals (Sweden)

    G. Devoli

    2018-05-01

    Full Text Available Only few countries operate systematically national and regional forecasting services for rainfall-induced landslides (i.e., debris flows, debris avalanches and shallow slides, among them Norway and Italy. In Norway, the Norwegian Water Resources and Energy Directorate (NVE operates a landslide forecasting service at national level. In Italy, the Regional Agency for Environmental Protection, ARPA Piemonte, is responsible for issuing landslide warnings for the Piedmont region, located in northwestern Italy. A daily hazard assessment is performed, describing both expected awareness level and type of landslide hazard for a selected warning region. Both services provide regular landslide hazard assessments based on a combination of quantitative thresholds and daily rainfall forecasts together with qualitative expert analysis. Daily warning reports are published at http://www.arpa.piemonte.gov.it/rischinaturali and http://www.varsom.no, last access: 7 May 2018. In spring 2013, ARPA Piemonte and the NVE issued warnings for hydro-meteorological hazards due to the arrival of a deep and large low-pressure system, called herein Vb cyclone. This kind of weather system is known to produce the largest floods in Europe. Less known is that this weather pattern can trigger landslides as well. In this study, we present the experiences of NVE and ARPA Piemonte in the late spring of 2013. The Vb cyclone influenced weather throughout Europe over a long period, from the end of April until the beginning of June 2013. However, major affects were observed in the first half part of this period in Piedmont, while in Norway, major damage was reported from 15 May to 2 June 2013. Floods and landslides significantly damaged roads, railways, buildings and other infrastructure in both countries. This case study shows that large synoptic pattern can produce different natural hazards in different parts of Europe, from sandstorms at low latitudes, to flood and landslides when

  15. A comparison between univariate probabilistic and multivariate (logistic regression) methods for landslide susceptibility analysis: the example of the Febbraro valley (Northern Alps, Italy)

    Science.gov (United States)

    Rossi, M.; Apuani, T.; Felletti, F.

    2009-04-01

    cumulative distribution curves, one related to the landslides (number of landslides in each susceptibility class) and one to the basin (number of pixel covering each class). Comparing the curves for each method, it results that the two approaches (univariate and multivariate) are appropriate, providing acceptable results. In both maps the distribution of high susceptibility condition is mainly localized on the left slope of the catchment in agreement with the field evidences. The comparison between the methods was obtained by subtraction of the two maps. This operation shows that about 40% of the basin is classified by the same class of susceptibility. In general the univariate probabilistic method tends to overestimate the areal extension of the high susceptibility class with respect to the maps obtained by the logistic regression method.

  16. Accuracy assessment of landslide prediction models

    International Nuclear Information System (INIS)

    Othman, A N; Mohd, W M N W; Noraini, S

    2014-01-01

    The increasing population and expansion of settlements over hilly areas has greatly increased the impact of natural disasters such as landslide. Therefore, it is important to developed models which could accurately predict landslide hazard zones. Over the years, various techniques and models have been developed to predict landslide hazard zones. The aim of this paper is to access the accuracy of landslide prediction models developed by the authors. The methodology involved the selection of study area, data acquisition, data processing and model development and also data analysis. The development of these models are based on nine different landslide inducing parameters i.e. slope, land use, lithology, soil properties, geomorphology, flow accumulation, aspect, proximity to river and proximity to road. Rank sum, rating, pairwise comparison and AHP techniques are used to determine the weights for each of the parameters used. Four (4) different models which consider different parameter combinations are developed by the authors. Results obtained are compared to landslide history and accuracies for Model 1, Model 2, Model 3 and Model 4 are 66.7, 66.7%, 60% and 22.9% respectively. From the results, rank sum, rating and pairwise comparison can be useful techniques to predict landslide hazard zones

  17. H2-O2 fuel cell and advanced battery power systems for autonomous underwater vehicles: performance envelope comparisons

    International Nuclear Information System (INIS)

    Schubak, G.E.; Scott, D.S.

    1993-01-01

    Autonomous underwater vehicles have traditionally been powered by low energy density lead-acid batteries. Recently, advanced battery technologies and H 2 -O 2 fuel cells have become available, offering significant improvements in performance. This paper compares the solid polymer fuel cell to the lithium-thionyl chloride primary battery, sodium-sulfur battery, and lead acid battery for a variety of missions. The power system performance is simulated using computer modelling techniques. Performance envelopes are constructed, indicating domains of preference for competing power system technologies. For most mission scenarios, the solid polymer fuel cell using liquid reactant storage is the preferred system. Nevertheless, the advanced battery systems are competitive with the fuel cell systems using gaseous hydrogen storage, and they illustrate preferred performance for missions requiring high power density. 11 figs., 4 tabs., 15 refs

  18. Global Landslide Catalog Export

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Landslide Catalog (GLC) was developed with the goal of identifying rainfall-triggered landslide events around the world, regardless of size, impacts or...

  19. Global Landslide Hazard Distribution

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Landslide Hazard Distribution is a 2.5 minute grid of global landslide and snow avalanche hazards based upon work of the Norwegian Geotechnical Institute...

  20. Experience in landslide control

    Energy Technology Data Exchange (ETDEWEB)

    Koz' min, L S

    1983-06-01

    The problems of slope stability in the Krasnoyarskugol' surface mines are discussed. Methods used for slide prevention and slide control from 1977 to 1982 are analyzed. Landslides were caused by weathering of the argillite layer in the coal seam roof. Sliding plane was parallel to the coal seam roof. At a later stage of landslide prevention sliding planes were in the coal seam floor (which consisted of weak rock layers). Range of landslides was evaluated. Losses caused by landslides were discussed: working time losses, losses of coal, damaged equipment. Landslide hazards were controlled by reducing slope angle and by changing cut geometry. Cross section of the cut with a spoil bank prone to landslides is shown in a scheme. Reducing angle of slope inclination, using strong rock layers as the spoil bank base and changing cut geometry eliminated landslides in 1982. Recommendations on landslide control in coal surface mines with layers of weak rocks influenced by weathering are made.

  1. LANDSLIDES IN SUCEAVA COUNTY

    Directory of Open Access Journals (Sweden)

    Dan Zarojanu

    2017-07-01

    Full Text Available In the county of Suceava, the landslides are a real and permanent problem. This paper presents the observations of landslides over the last 30 years in Suceava County, especially their morphology, theirs causes and the landslide stopping measures. It presents also several details regarding the lanslides from the town of Suceava, of Frasin and the village of Brodina.

  2. Susceptibility assessment of landslides: A comparison of two GIS-based methods in the region of Al Hoceima (Eastern Rif, Morocco.

    Directory of Open Access Journals (Sweden)

    El Fahchouch A. N.

    2018-01-01

    Full Text Available The evaluation of the degree of susceptibility to landslides has become a major concern in mountainous areas, it is a key component of manager policies efforts in disaster prevention, mitigate risk and manage the consequences. The region of Al Hoceima is one of most mountain regions in Morocco, and is highly exposed landslides events. For this reason, the area was selected in order to determine its susceptibility to landslides using two methods. The purpose of this study is to evaluate and to compare the results of multivariate (logical regression and bivariate (landslide susceptibility methods in Geographical Information System (GIS based landslide susceptibility assessment procedures. In order to achieve this goal, the selected methods were compared by the Seed Cell Area Indexes (SCAI and by the spatial locations of the resultant susceptibility pixels. We found that both of the methods converge in 80% of the area; however, the weighting algorithm in the bivariate technique (landslide susceptibility method had some severe deficiencies, as the resultant hazard classes in overweighed areas did not converge with the factual landslide inventory map. The result of the multivariate technique (logical regression was more sensitive to the different local features of the test zone and it resulted in more accurate and homogeneous susceptibility maps. This information may have direct applications in landslides susceptibility research programs and can assist decision-makers in the implementation of preventive management strategies in the most sensitive areas.

  3. Blind equalization for underwater communications

    NARCIS (Netherlands)

    Blom, K.C.H.

    2014-01-01

    Underwater wireless (sensor) networks would vastly improve man's ability to explore and exploit remote aquatic environments. Despite underwater sensor and vehicle technology being relatively mature, underwater communications is still a major challenge. The most challenging characteristics of the

  4. Observed Variability of Tsunamigenic Potential of Enormous Submarine Landslides Explained Through Modeling - A Comparison of the Holocene Storegga and Trænadjupet Events.

    Science.gov (United States)

    Løvholt, F.; Kim, J.; Laberg, J. S.

    2016-12-01

    The continental margin offshore Norway have experienced a range of giant submarine landslides having volumes ranging from hundreds to thousands of km3. The most recent and well documented of these events, are the 4500 BP Trænadjupet and the 8100 BP Storegga landslides. Both of these landslides are clay-rich, and involve common features such as retrogressive mass and momentum release mechanisms and weak layers that affect the tsunami generation. The retrogressive behaviour involved the release of several slide blocks which made the multistage failure and landslide evolution complex. The Storegga Slide reveals a rich and well documented onshore footprint in terms of paleotsunami deposits along the coastlines of Denmark, UK, the Faroe Islands, and Norway. In striking contrast, there exists no firm evidence of similar paleotsunami deposits from the younger Trænadjupet landslide. Here, we use a suit of new retrogressive and viscoplastic landslide models to simulate the run-out of both of these landslide events, and then couple the landslide to dispersive tsunami models. By using the new landslide models, we are able to obtain a better agreement with the observed paleotsunami deposits from the Storegga Slide compared to previous studies, and at the same time, to link the results to a landslide model that comply better with the slide morphology. Using the landslide model and soil parameters established for the Storegga Slide as the starting point, we set up a similar set of model scenarios for the Trænadjupet Slide. We discuss how the scenarios for the Trænadjupet landslide with different soil parameters produce different landslide velocities and tsunami heights. We then compare the resulting tsunami heights with constraints from the lack of onshore tsunami observations taking into account the contemporary shoreline position. Finally we briefly discuss the findings from the modeling in terms of both differences in tsunami observations and landslide morphology. The

  5. Landslides in the western Columbia Gorge, Skamania County, Washington

    Science.gov (United States)

    Pierson, Thomas C.; Evarts, Russell C.; Bard, Joseph A.

    2016-11-04

    SummaryRecent light detection and ranging (lidar) imagery has allowed us to identify and map a large number of previously unrecognized landslides, or slides, in heavily forested terrain in the western Columbia Gorge, Skamania County, Washington, and it has revealed that the few previously recognized areas of instability are actually composites of multiple smaller landslides. The high resolution of the imagery further reveals that landslides in the map area have complex movement histories and span a wide range of relative ages. Movement histories are inferred from relative landslide locations and crosscutting relations of surface features. Estimated age ranges are based on (1) limited absolute dating; (2) relative fineness of landscape surface textures, calibrated by comparison with surfaces of currently active and dated landslides as interpreted from interferometric synthetic aperture radar (InSAR), global positioning system (GPS), and historical records; (3) sharpness and steepness of larger-scale surface morphologic features, calibrated by comparison with similar dated features in other regions; (4) degree of surface erosion; and (5) evidence of erosion or deposition by late Pleistocene (15–22 ka) Missoula floods at or below 200 m altitude. The relative age categories are recent (0 to ~1,000 years old), intermediate-age (~1,000 to ~15,000 years old), and old (>~15,000 years old). Within the 221.5 km2 map area, we identified 215 discrete landslides, covering 140.9 km2 (64 percent of the map area). At least 12 of the recent landslides are currently moving or have moved within the last two decades. Mapping for this study expanded the area of previously recognized unstable terrain by 56 percent. Landslide geometries suggest that more than half (62 percent) of these slope failures are translational landslides or composite landslides with translational elements, with failure occurring along gently sloping bedding planes in zones of deeply weathered, locally clay rich

  6. Underwater welding of steel

    International Nuclear Information System (INIS)

    Ibarra, S.; Olson, D.L.

    1992-01-01

    A fundamental basis to understand the behavior of wet underwater welding of steel is introduced. Both the pyrometallurgical and physical metallurgy concepts are discussed. Modifications of welding consumables and practice are suggested. This chapter promotes further contributions of meatllurgical research to improve and promote wet underwater welding. (orig.)

  7. Underwater Scene Composition

    Science.gov (United States)

    Kim, Nanyoung

    2009-01-01

    In this article, the author describes an underwater scene composition for elementary-education majors. This project deals with watercolor with crayon or oil-pastel resist (medium); the beauty of nature represented by fish in the underwater scene (theme); texture and pattern (design elements); drawing simple forms (drawing skill); and composition…

  8. Underwater Acoustic Networking Techniques

    CERN Document Server

    Otnes, Roald; Casari, Paolo; Goetz, Michael; Husøy, Thor; Nissen, Ivor; Rimstad, Knut; van Walree, Paul; Zorzi, Michele

    2012-01-01

    This literature study presents an overview of underwater acoustic networking. It provides a background and describes the state of the art of all networking facets that are relevant for underwater applications. This report serves both as an introduction to the subject and as a summary of existing protocols, providing support and inspiration for the development of network architectures.

  9. Underwater Acoustic Tracer System

    Science.gov (United States)

    2009-03-13

    for controlling and utilizing supercavitating projectile dynamics to produce a distinctive radiated noise signal. (2) Description of the Prior Art...metallic objects which travel relatively closely to a magnetic pickup. For larger, high speed, underwater projectiles, supercavitating underwater vehicles...have been proposed for use. The conditions for supercavitation are known in the art. Supercavitation allows for higher speeds to be sustainable

  10. Design of underwater work systems

    International Nuclear Information System (INIS)

    Lovelace, R.B.

    1980-01-01

    In the near future, underwater vehicles will replace divers as the principal means for inspection and maintenance work. These vehicles will provide a maneuverable work platform for an underwater viewing system and manipulator/tool package. Some of the problems faced by the underwater designer, and some areas to consider in the design of an integrated underwater work system, are considered

  11. A small-scale comparison of Iceland scallop size distributions obtained from a camera based autonomous underwater vehicle and dredge survey.

    Directory of Open Access Journals (Sweden)

    Warsha Singh

    Full Text Available An approach is developed to estimate size of Iceland scallop shells from AUV photos. A small-scale camera based AUV survey of Iceland scallops was conducted at a defined site off West Iceland. Prior to height estimation of the identified shells, the distortions introduced by the vehicle orientation and the camera lens were corrected. The average AUV pitch and roll was 1.3 and 2.3 deg that resulted in <2% error in ground distance rendering these effects negligible. A quadratic polynomial model was identified for lens distortion correction. This model successfully predicted a theoretical grid from a frame photographed underwater, representing the inherent lens distortion. The predicted shell heights were scaled for the distance from the bottom at which the photos were taken. This approach was validated by height estimation of scallops of known sizes. An underestimation of approximately 0.5 cm was seen, which could be attributed to pixel error, where each pixel represented 0.24 x 0.27 cm. After correcting for this difference the estimated heights ranged from 3.8-9.3 cm. A comparison of the height-distribution from a small-scale dredge survey carried out in the vicinity showed non-overlapping peaks in size distribution, with scallops of a broader size range visible in the AUV survey. Further investigations are necessary to evaluate any underlying bias and to validate how representative these surveys are of the true population. The low resolution images made identification of smaller scallops difficult. Overall, the observations of very few small scallops in both surveys could be attributed to low recruitment levels in the recent years due to the known scallop parasite outbreak in the region.

  12. A small-scale comparison of Iceland scallop size distributions obtained from a camera based autonomous underwater vehicle and dredge survey.

    Science.gov (United States)

    Singh, Warsha; Örnólfsdóttir, Erla B; Stefansson, Gunnar

    2014-01-01

    An approach is developed to estimate size of Iceland scallop shells from AUV photos. A small-scale camera based AUV survey of Iceland scallops was conducted at a defined site off West Iceland. Prior to height estimation of the identified shells, the distortions introduced by the vehicle orientation and the camera lens were corrected. The average AUV pitch and roll was 1.3 and 2.3 deg that resulted in <2% error in ground distance rendering these effects negligible. A quadratic polynomial model was identified for lens distortion correction. This model successfully predicted a theoretical grid from a frame photographed underwater, representing the inherent lens distortion. The predicted shell heights were scaled for the distance from the bottom at which the photos were taken. This approach was validated by height estimation of scallops of known sizes. An underestimation of approximately 0.5 cm was seen, which could be attributed to pixel error, where each pixel represented 0.24 x 0.27 cm. After correcting for this difference the estimated heights ranged from 3.8-9.3 cm. A comparison of the height-distribution from a small-scale dredge survey carried out in the vicinity showed non-overlapping peaks in size distribution, with scallops of a broader size range visible in the AUV survey. Further investigations are necessary to evaluate any underlying bias and to validate how representative these surveys are of the true population. The low resolution images made identification of smaller scallops difficult. Overall, the observations of very few small scallops in both surveys could be attributed to low recruitment levels in the recent years due to the known scallop parasite outbreak in the region.

  13. Assessing landslide exposure in areas with limited landslide information

    NARCIS (Netherlands)

    Pellicani, R.; van Westen, C.J.; Spilotro, G.

    2014-01-01

    Landslide risk assessment is often a difficult task due to the lack of temporal data on landslides and triggering events (frequency), run-out distance, landslide magnitude and vulnerability. The probability of occurrence of landslides is often very difficult to predict, as well as the expected

  14. Tsunamis generated by unconfined deformable granular landslides in various topographic configurations

    Science.gov (United States)

    McFall, B. C.; Mohammed, F.; Fritz, H. M.

    2012-04-01

    Tsunamis generated by landslides and volcanic island collapses account for some of the most catastrophic events. Major tsunamis caused by landslides or volcanic island collapse were recorded at Krakatoa in 1883, Grand Banks, Newfoundland in 1929, Lituya Bay, Alaska in 1958, Papua New Guinea in 1998, and Java in 2006. Source and runup scenarios based on real world events are physically modeled in the three dimensional NEES tsunami wave basin (TWB) at Oregon State University (OSU). A novel pneumatic landslide tsunami generator (LTG) was deployed to simulate landslides with varying geometry and kinematics. The LTG consists of a sliding box filled with up to 1,350 kg of naturally rounded river gravel which is accelerated by means of four pneumatic pistons down the 2H: 1V slope, launching the granular landslide towards the water at velocities of up to 5 m/s. Topographical and bathymetric features can greatly affect wave characteristics and runup heights. Landslide tsunamis are studied in different topographic and bathymetric configurations: far field propagation and runup, a narrow fjord and curved headland configurations, and a conical island setting representing landslides off an island or a volcanic flank collapse. Water surface elevations were measured using an array of resistance wave gauges. The granulate landslide width, thickness and front velocity were measured using above and underwater cameras. Landslide 3-dimensional surface reconstruction and surface velocity properties were measured using a stereo particle image velocimetry (PIV) setup. The speckled pattern on the surface of the granular landslide allows for cross-correlation based PIV analysis. Wave runup was measured with resistance wave gauges along the slope and verified with video image processing. The measured landslide and tsunami data serve to validate and advance 3-dimensional numerical landslide tsunami and prediction models.

  15. ASSESSING THE AGREEMENT BETWEEN EO-BASED SEMI-AUTOMATED LANDSLIDE MAPS WITH FUZZY MANUAL LANDSLIDE DELINEATION

    Directory of Open Access Journals (Sweden)

    F. Albrecht

    2017-09-01

    Full Text Available Landslide mapping benefits from the ever increasing availability of Earth Observation (EO data resulting from programmes like the Copernicus Sentinel missions and improved infrastructure for data access. However, there arises the need for improved automated landslide information extraction processes from EO data while the dominant method is still manual delineation. Object-based image analysis (OBIA provides the means for the fast and efficient extraction of landslide information. To prove its quality, automated results are often compared to manually delineated landslide maps. Although there is awareness of the uncertainties inherent in manual delineations, there is a lack of understanding how they affect the levels of agreement in a direct comparison of OBIA-derived landslide maps and manually derived landslide maps. In order to provide an improved reference, we present a fuzzy approach for the manual delineation of landslides on optical satellite images, thereby making the inherent uncertainties of the delineation explicit. The fuzzy manual delineation and the OBIA classification are compared by accuracy metrics accepted in the remote sensing community. We have tested this approach for high resolution (HR satellite images of three large landslides in Austria and Italy. We were able to show that the deviation of the OBIA result from the manual delineation can mainly be attributed to the uncertainty inherent in the manual delineation process, a relevant issue for the design of validation processes for OBIA-derived landslide maps.

  16. Assessing the Agreement Between Eo-Based Semi-Automated Landslide Maps with Fuzzy Manual Landslide Delineation

    Science.gov (United States)

    Albrecht, F.; Hölbling, D.; Friedl, B.

    2017-09-01

    Landslide mapping benefits from the ever increasing availability of Earth Observation (EO) data resulting from programmes like the Copernicus Sentinel missions and improved infrastructure for data access. However, there arises the need for improved automated landslide information extraction processes from EO data while the dominant method is still manual delineation. Object-based image analysis (OBIA) provides the means for the fast and efficient extraction of landslide information. To prove its quality, automated results are often compared to manually delineated landslide maps. Although there is awareness of the uncertainties inherent in manual delineations, there is a lack of understanding how they affect the levels of agreement in a direct comparison of OBIA-derived landslide maps and manually derived landslide maps. In order to provide an improved reference, we present a fuzzy approach for the manual delineation of landslides on optical satellite images, thereby making the inherent uncertainties of the delineation explicit. The fuzzy manual delineation and the OBIA classification are compared by accuracy metrics accepted in the remote sensing community. We have tested this approach for high resolution (HR) satellite images of three large landslides in Austria and Italy. We were able to show that the deviation of the OBIA result from the manual delineation can mainly be attributed to the uncertainty inherent in the manual delineation process, a relevant issue for the design of validation processes for OBIA-derived landslide maps.

  17. Single underwater image enhancement based on color cast removal and visibility restoration

    Science.gov (United States)

    Li, Chongyi; Guo, Jichang; Wang, Bo; Cong, Runmin; Zhang, Yan; Wang, Jian

    2016-05-01

    Images taken under underwater condition usually have color cast and serious loss of contrast and visibility. Degraded underwater images are inconvenient for observation and analysis. In order to address these problems, an underwater image-enhancement method is proposed. A simple yet effective underwater image color cast removal algorithm is first presented based on the optimization theory. Then, based on the minimum information loss principle and inherent relationship of medium transmission maps of three color channels in an underwater image, an effective visibility restoration algorithm is proposed to recover visibility, contrast, and natural appearance of degraded underwater images. To evaluate the performance of the proposed method, qualitative comparison, quantitative comparison, and color accuracy test are conducted. Experimental results demonstrate that the proposed method can effectively remove color cast, improve contrast and visibility, and recover natural appearance of degraded underwater images. Additionally, the proposed method is comparable to and even better than several state-of-the-art methods.

  18. Optimization of an Intelligent Controller for an Unmanned Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    M. Fauzi Nor Shah

    2011-08-01

    Full Text Available Underwater environment poses a difficult challenge for autonomous underwater navigation. A standard problem of underwater vehicles is to maintain it position at a certain depth in order to perform desired operations. An effective controller is required for this purpose and hence the design of a depth controller for an unmanned underwater vehicle is described in this paper. The control algorithm is simulated by using the marine guidance navigation and control simulator. The project shows a radial basis function metamodel can be used to tune the scaling factors of a fuzzy logic controller. By using offline optimization approach, a comparison between genetic algorithm and metamodeling has been done to minimize the integral square error between the set point and the measured depth of the underwater vehicle. The results showed that it is possible to obtain a reasonably good error using metamodeling approach in much a shorter time compared to the genetic algorithm approach.

  19. Underwater 3D filming

    Directory of Open Access Journals (Sweden)

    Roberto Rinaldi

    2014-12-01

    Full Text Available After an experimental phase of many years, 3D filming is now effective and successful. Improvements are still possible, but the film industry achieved memorable success on 3D movie’s box offices due to the overall quality of its products. Special environments such as space (“Gravity” and the underwater realm look perfect to be reproduced in 3D. “Filming in space” was possible in “Gravity” using special effects and computer graphic. The underwater realm is still difficult to be handled. Underwater filming in 3D was not that easy and effective as filming in 2D, since not long ago. After almost 3 years of research, a French, Austrian and Italian team realized a perfect tool to film underwater, in 3D, without any constrains. This allows filmmakers to bring the audience deep inside an environment where they most probably will never have the chance to be.

  20. Underwater wireless communication system

    International Nuclear Information System (INIS)

    Goh, J H; Shaw, A; Al-Shamma'a, A I

    2009-01-01

    Underwater communication has a range of applications including remotely operated vehicle (ROV) and autonomous underwater vehicle (AUV) communication and docking in the offshore industry. Current underwater transmission techniques is primarily utilise sound waves for large distance at lower frequencies and the velocity of sound in water is approximately 1500m/s the resultant communications have problems with multi-path propagation and low bandwidth problems. The use of electromagnetic (EM) techniques underwater has largely been overlooked because of the attenuation due to the conductivity of seawater. However, for short range applications, the higher frequencies and much higher velocity can prove advantageous. This paper will outline a project which will utilise recent investigations that demonstrate EM wave propagation up to the MHz frequency range is possible in seawater.

  1. Smelling and Tasting Underwater.

    Science.gov (United States)

    Atema, Jelle

    1980-01-01

    Discusses differences between smell and taste, comparing these senses in organisms in aquatic and terrestrial environments. Describes the chemical environment underwater and in air, differences in chemoreceptors to receive stimuli, and the organs, brain, and behavior involved in chemoreception. (CS)

  2. Tsunami Generation and Propagation by 3D deformable Landslides and Application to Scenarios

    Science.gov (United States)

    McFall, Brian C.; Fritz, Hermann M.

    2014-05-01

    Tsunamis generated by landslides and volcano flank collapse account for some of the most catastrophic natural disasters recorded and can be particularly devastative in the near field region due to locally high wave amplitudes and runup. The events of 1958 Lituya Bay, 1963 Vajont reservoir, 1980 Spirit Lake, 2002 Stromboli and 2010 Haiti demonstrate the danger of tsunamis generated by landslides or volcano flank collapses. Unfortunately critical field data from these events is lacking. Source and runup scenarios based on real world events are physically modeled using generalized Froude similarity in the three dimensional NEES tsunami wave basin at Oregon State University. A novel pneumatic landslide tsunami generator (LTG) was deployed to simulate landslides with varying geometry and kinematics. The bathymetric and topographic scenarios tested with the LTG are the basin-wide propagation and runup, fjord, curved headland fjord and a conical island setting representing a landslide off an island or a volcano flank collapse. The LTG consists of a sliding box filled with 1,350 kg of landslide material which is accelerated by means of four pneumatic pistons down a 2H:1V slope. The landslide is launched from the sliding box and continues to accelerate by gravitational forces up to velocities of 5 m/s. The landslide Froude number at impact with the water is in the range 1 landslides to study the granulometry effects: naturally rounded river gravel and cobble mixtures. Water surface elevations are recorded by an array of resistance wave gauges. The landslide deformation is measured from above and underwater camera recordings. The landslide deposit is measured on the basin floor with a multiple transducer acoustic array (MTA). Landslide surface reconstruction and kinematics are determined with a stereo particle image velocimetry (PIV) system. Wave runup is recorded with resistance wave gauges along the slope and verified

  3. Autonomous Underwater Gliders

    OpenAIRE

    Wood,; Stephen,

    2009-01-01

    Autonomous Underwater Vehicles are only now being marketed as robust commercial vehicles for many industries, and of these vehicles underwater gliders are becoming the new tool for oceanographers. Satellites have provided scientists and marine specialists with measurements of the sea surface such as temperature since the late 1970s, and data via subsurface oceanographic moorings since the 1950's. As stated by David Smeed of the National Oceanography Centre, Southampton, England, that "gliders...

  4. Underwater Gliders: A Review

    OpenAIRE

    Javaid Muhammad Yasar; Ovinis Mark; Nagarajan T; Hashim Fakhruldin B M

    2014-01-01

    Underwater gliders are a type of underwater vehicle that transverse the oceans by shifting its buoyancy, during which its wings develop a component of the downward motion in the horizontal plane, thus producing a forward force. They are primarily used in oceanography sensing and data collection and play an important role in ocean research and development. Although there have been considerable developments in these gliders since the development of the first glider concept in 1989, to date, no ...

  5. Landslides of Palestinian Region

    Science.gov (United States)

    Alwahsh, H.

    2013-12-01

    Natural disasters are extreme sudden events caused by environmental and natural actors that take away the lives of many thousands of people each year and damage large amount of properties. They strike anywhere on earth, often without any warning. A risk maps of natural disaster are very useful to identify the places that might be adversely affected in the event of natural disaster. The earthquakes are one of natural disaster that have the greatest hazards and will cause loss of life and properties due to damaging the structures of building, dams, bridges. In addition, it will affect local geology and soil conditions. The site effects play an important role in earthquake risk because of its amplification or damping simulation. Another parameter in developing risk map is landslide, which is also one of the most important topics in site effect hazards. Palestine region has been suffering landslide hazards because of the topographical and geological conditions of this region. Most Palestine consists of mountainous area, which has great steep slopes and the type of soil is mainly grayish to yellowish silty clay (Marl Soil). Due to the above mentioned factors many landslides have been occurred from Negev south to the northern borders of Palestine. An example of huge and destruction landslide in a Palestine authority is the landslide in the White Mountain area in the city of Nablus, which occurred in 1997. The geotechnical and geophysical investigation as well as slope stability analysis should be considered in making landslide maps that are necessary to develop risk levels of the natural disaster. Landslides occurred in slopes that are created naturally or by human beings. Failure of soil mass occurs, and hence landslide of soil mass happen due to sliding of soil mass along a plane or curved surface. In general, the slopes become unstable when the shear stresses (driving force) generated in the soil mass exceed the available shearing resistance on the rupture surface

  6. Mechanisms of Forest Restoration in Landslide Treatment Areas

    Directory of Open Access Journals (Sweden)

    Yi-Chang Chen

    2014-09-01

    Full Text Available Reforestation after a landslide facilitates competition between herbaceous plants and arborous plants. Tangible variations in grassland areas in regions susceptible to landslides can only be found within collections of trees. A landslide area in the Sule Watershed was investigated. Relative illuminance results reveal that the Rhodes grass (Chloris gayana Kunth biomass in this landslide area increases with relative illuminance. A comparison of regions with tree islands indicates that the size of the grassland areas decreased and the number of tree islands increased during 2005–2010. Furthermore, a germination experiment in a soil-seed bank indicates that more woody plant species exist around the tree island than in other areas in the landslide region. Trees in a tree island change the micro-climate of the landslide region, and they gather as many nutrients and as much moisture as possible, enabling vegetation to expand around the tree island. Additionally, the area with Rhodes grass and its biomass declined annually in the tree island region. Investigation results show that tree islands and soil-seed banks are suited to reforestation in landslide regions. The pioneering research will assist regional landslide management in Taiwan.

  7. Geomorphological mapping of shallow landslides using UAVs

    Science.gov (United States)

    Fiorucci, Federica; Giordan, Daniele; Dutto, Furio; Rossi, Mauro; Guzzetti, Fausto

    2015-04-01

    The mapping of event shallow landslides is a critical activity, due to the large number of phenomena, mostly with small dimension, affecting extensive areas. This is commonly done through aerial photo-interpretation or through field surveys. Nowadays, landslide maps can be realized exploiting other methods/technologies: (i) airborne LiDARs, (ii) stereoscopic satellite images, and (iii) unmanned aerial vehicles (UAVs). In addition to the landslide maps, these methods/technologies allow the generation of updated Digital Terrain Models (DTM). In December 2013, in the Collazzone area (Umbria, Central Italy), an intense rainfall event triggered a large number of shallow landslides. To map the landslides occurred in the area, we exploited data and images obtained through (A) an airborne LiDAR survey, (B) a remote controlled optocopter (equipped with a Canon EOS M) survey, and (C) a stereoscopic satellite WorldView II MS. To evaluate the mapping accuracy of these methods, we select two landslides and we mapped them using a GPS RTK instrumentation. We consider the GPS survey as the benchmark being the most accurate system. The results of the comparison allow to highlight pros and cons of the methods/technologies used. LiDAR can be considered the most accurate system and in addition it allows the extraction and the classification of the digital surface models from the surveyed point cloud. Conversely, LiDAR requires additional time for the flight planning, and specific data analysis user capabilities. The analysis of the satellite WorldView II MS images facilitates the landslide mapping over large areas, but at the expenses of a minor resolution to detect the smaller landslides and their boundaries. UAVs can be considered the cheapest and fastest solution for the acquisition of high resolution ortho-photographs on limited areas, and the best solution for a multi-temporal analysis of specific landslide phenomena. Limitations are due to (i) the needs of optimal climatic

  8. Resources for Underwater Robotics Education

    Science.gov (United States)

    Wallace, Michael L.; Freitas, William M.

    2016-01-01

    4-H clubs can build and program underwater robots from raw materials. An annotated resource list for engaging youth in building underwater remotely operated vehicles (ROVs) is provided. This article is a companion piece to the Research in Brief article "Building Teen Futures with Underwater Robotics" in this issue of the "Journal of…

  9. Multi-layer protective armour for underwater shock wave mitigation

    OpenAIRE

    Ahmed Hawass; Hosam Mostafa; Ahmed Elbeih

    2015-01-01

    The effect of underwater shock wave on different target plates has been studied. An underwater shock wave generator (shock tube) was used to study the interactions between water and different constructed targets which act as shock wave mitigation. Target plates, composed of sandwich of two aluminum sheets with rubber and foam in between, were prepared and studied. For comparison, the target plates composed of triple aluminum sheets were tested. The study includes the testing of the selected p...

  10. Underwater 3D filming

    OpenAIRE

    Rinaldi, Roberto

    2014-01-01

    After an experimental phase of many years, 3D filming is now effective and successful. Improvements are still possible, but the film industry achieved memorable success on 3D movie’s box offices due to the overall quality of its products. Special environments such as space (“Gravity” ) and the underwater realm look perfect to be reproduced in 3D. “Filming in space” was possible in “Gravity” using special effects and computer graphic. The underwater realm is still difficult to be handled. Unde...

  11. The role of multicollinearity in landslide susceptibility assessment by means of Binary Logistic Regression: comparison between VIF and AIC stepwise selection

    Science.gov (United States)

    Cama, Mariaelena; Cristi Nicu, Ionut; Conoscenti, Christian; Quénéhervé, Geraldine; Maerker, Michael

    2016-04-01

    Landslide susceptibility can be defined as the likelihood of a landslide occurring in a given area on the basis of local terrain conditions. In the last decades many research focused on its evaluation by means of stochastic approaches under the assumption that 'the past is the key to the future' which means that if a model is able to reproduce a known landslide spatial distribution, it will be able to predict the future locations of new (i.e. unknown) slope failures. Among the various stochastic approaches, Binary Logistic Regression (BLR) is one of the most used because it calculates the susceptibility in probabilistic terms and its results are easily interpretable from a geomorphological point of view. However, very often not much importance is given to multicollinearity assessment whose effect is that the coefficient estimates are unstable, with opposite sign and therefore difficult to interpret. Therefore, it should be evaluated every time in order to make a model whose results are geomorphologically correct. In this study the effects of multicollinearity in the predictive performance and robustness of landslide susceptibility models are analyzed. In particular, the multicollinearity is estimated by means of Variation Inflation Index (VIF) which is also used as selection criterion for the independent variables (VIF Stepwise Selection) and compared to the more commonly used AIC Stepwise Selection. The robustness of the results is evaluated through 100 replicates of the dataset. The study area selected to perform this analysis is the Moldavian Plateau where landslides are among the most frequent geomorphological processes. This area has an increasing trend of urbanization and a very high potential regarding the cultural heritage, being the place of discovery of the largest settlement belonging to the Cucuteni Culture from Eastern Europe (that led to the development of the great complex Cucuteni-Tripyllia). Therefore, identifying the areas susceptible to

  12. Landslides - Cause and effect

    Science.gov (United States)

    Radbruch-Hall, D. H.; Varnes, D.J.

    1976-01-01

    Landslides can cause seismic disturbances; landslides can also result from seismic disturbances, and earthquake-induced slides have caused loss of life in many countries. Slides can cause disastrous flooding, particularly when landslide dams across streams are breached, and flooding may trigger slides. Slope movement in general is a major process of the geologic environment that places constraints on engineering development. In order to understand and foresee both the causes and effects of slope movement, studies must be made on a regional scale, at individual sites, and in the laboratory. Areal studies - some embracing entire countries - have shown that certain geologic conditions on slopes facilitate landsliding; these conditions include intensely sheared rocks; poorly consolidated, fine-grained clastic rocks; hard fractured rocks underlain by less resistant rocks; or loose accumulations of fine-grained surface debris. Field investigations as well as mathematical- and physical-model studies are increasing our understanding of the mechanism of slope movement in fractured rock, and assist in arriving at practical solutions to landslide problems related to all kinds of land development for human use. Progressive failure of slopes has been studied in both soil and rock mechanics. New procedures have been developed to evaluate earthquake response of embankments and slopes. The finite element method of analysis is being extensively used in the calculation of slope stability in rock broken by joints, faults, and other discontinuities. ?? 1976 International Association of Engineering Geology.

  13. The landslide problem

    Directory of Open Access Journals (Sweden)

    G. Shanmugam

    2015-04-01

    Full Text Available The synonymous use of the general term “landslide”, with a built-in reference to a sliding motion, for all varieties of mass-transport deposits (MTD, which include slides, slumps, debrites, topples, creeps, debris avalanches etc. in subaerial, sublacustrine, submarine, and extraterrestrial environments has created a multitude of conceptual and nomenclatural problems. In addition, concepts of triggers and long-runout mechanisms of mass movements are loosely applied without rigor. These problems have enormous implications for studies in process sedimentology, sequence stratigraphy, palaeogeography, petroleum geology, and engineering geology. Therefore, the objective of this critical review is to identify key problems and to provide conceptual clarity and possible solutions. Specific issues are the following: (1 According to “limit equilibrium analyses” in soil mechanics, sediment failure with a sliding motion is initiated over a shear surface when the factor of safety for slope stability (F is less than 1. However, the term landslide is not meaningful for debris flows with a flowing motion. (2 Sliding motion can be measured in oriented core and outcrop, but such measurement is not practical on seismic profiles or radar images. (3 Although 79 MTD types exist in the geological and engineering literature, only slides, slumps, and debrites are viable depositional facies for interpreting ancient stratigraphic records. (4 The use of the term landslide for highvelocity debris avalanches is inappropriate because velocities of mass-transport processes cannot be determined in the rock record. (5 Of the 21 potential triggering mechanisms of sediment failures, frequent short-term events that last for only a few minutes to several hours or days (e.g., earthquakes, meteorite impacts, tsunamis, tropical cyclones, etc. are more relevant in controlling deposition of deep-water sands than sporadic long-term events that last for thousands to millions of

  14. Surveying perceptions of landslide risk management in Norway

    Science.gov (United States)

    Chiu, Jessica Ka Yi; Eidsvig, Unni

    2016-04-01

    -institutional organisation as well as allocation and use of financial resources for dealing with landslides at local levels. Although the survey was considered too difficult by some of the respondents, it can be regarded as a starting point to develop a common terminology/language in landslide risk management in Norway that allows mutual understandings among people with different backgrounds. The approach of surveying perceptions of landslide risk management can also be expanded to the public to enable comparisons of perceptions between experts and the public. Furthermore, the methodology can be applied to other types of natural hazards in Norway, such as floods. This project is supported by Klima2050 (http://www.klima2050.no/).

  15. Physical Modeling of Tsunamis Generated By 3D Deformable Landslides in Various Scenarios From Fjords to Conical Islands

    Science.gov (United States)

    McFall, B. C.; Fritz, H. M.

    2013-12-01

    Tsunamis generated by landslides and volcano flank collapse can be particularly devastative in the near field region due to locally high wave amplitudes and runup. The events of 1958 Lituya Bay, 1963 Vajont reservoir, 1980 Spirit Lake, 2002 Stromboli and 2010 Haiti demonstrate the danger of tsunamis generated by landslides or volcano flank collapses. Unfortunately critical field data from these events is lacking. Source and runup scenarios based on real world events are physically modeled using generalized Froude similarity in the three dimensional NEES tsunami wave basin at Oregon State University. A novel pneumatic landslide tsunami generator (LTG) was deployed to simulate landslides with varying geometry and kinematics. Two different materials are used to simulate landslides to study the granulometry effects: naturally rounded river gravel and cobble mixtures. The LTG consists of a sliding box filled with 1,350 kg of landslide material which is accelerated by means of four pneumatic pistons down a 2H:1V slope. The landslide is launched from the sliding box and continues to accelerate by gravitational forces up to velocities of 5 m/s. The landslide Froude number at impact with the water is in the range 1 landslide off an island or a volcano flank collapse. Water surface elevations are recorded by an array of resistance wave gauges. The landslide deformation is measured from above and underwater camera recordings. The landslide deposit is measured on the basin floor with a multiple transducer acoustic array (MTA). Landslide surface reconstruction and kinematics are determined with a stereo particle image velocimetry (PIV) system. Wave runup is recorded with resistance wave gauges along the slope and verified with video image processing. The measured landslide and wave parameters are

  16. Comparison of expert and nonexpert swimmers' opinions about the value, potency, and activity of four standard swimming strokes and underwater undulatory swimming.

    Science.gov (United States)

    Collard, L; Oboeuf, A

    2009-04-01

    Underwater undulatory swimming (UUS) is often perceived to be a nonessential aspect of aquatic propulsion. Given their solid theoretical and practical training in swimming, physical education students should be capable of judging the true value of the "fifth stroke," since it appears to be the most efficient technique in high level, competitive swimming. To compare opinions and connotations associated with the stroke and the four official strokes (butterfly, backstroke, breaststroke, and crawl), 198 students (32 of whom were expert swimmers; M age = 20.6 yr., SD = 1.2), were surveyed using the semantic differential of Osgood, Suci, and Tannenbaum. Although answers of expert and nonexpert swimmers differed significantly (p stroke was less attractive, less powerful, and less rapid than the four surface strokes (d = 2.88 for the expert swimmers). Putting one arm in front of the other and repeating the sequence still remains the most solidly held representation of "the right way" to swim. However, the high observed standard deviations for the underwater undulatory stimulus (SD > or = 1.1 with SD max = 3 for the expert swimmers) attests to the view being less strongly held by swimming specialists.

  17. Colour reconstruction of underwater images

    OpenAIRE

    Hoth, Julian; Kowalczyk, Wojciech

    2017-01-01

    Objects look very different in the underwater environment compared to their appearance in sunlight. Images with correct colouring simplify the detection of underwater objects and may allow the use of visual SLAM algorithms developed for land-based robots underwater. Hence, image processing is required. Current algorithms focus on the colour reconstruction of scenery at diving depth where different colours can still be distinguished. At greater depth this is not the case. In this study it is i...

  18. Underwater Welding Techniques

    OpenAIRE

    Esam F. Alajmi; Ahmad A. Alqenaei

    2017-01-01

    Welding demand in offshore and marine applications is increased with the increasing in oil and gas activities as well as increasing in the marine transportation and industrial applications. Applications of underwater welding well be increased in Kuwait in the coming years due to the strategic directive of the country toward starting the offshore oil and gas exploration and production, and the increase in marine transportation projects. Therefore, there is a need to understand the concept of u...

  19. New imaging of submarine landslides from the 1964 earthquake near Whittier, Alaska, and a comparison to failures in other Alaskan fjords

    Science.gov (United States)

    Haeussler, Peter J.; Parsons, Thomas E.; Finlayson, David P.; Hart, Patrick J.; Chaytor, Jason D.; Ryan, Holly F; Lee, Homa J.; Labay, Keith A.; Peterson, Andrew; Liberty, Lee

    2014-01-01

    The 1964 Alaska M w 9.2 earthquake triggered numerous submarine slope failures in fjords of southern Alaska. These failures generated local tsunamis, such as at Whittier, where they inundated the town within 4 min of the beginning of shaking. Run-up was up to 32 m, with 13 casualties. We collected new multibeam bathymetry and high-resolution sparker seismic data in Passage Canal, and we examined bathymetry changes before and after the earthquake. The data reveal the debris flow deposit from the 1964 landslides, which covers the western 5 km of the fjord bottom. Individual blocks in the flow are up to 145-m wide and 25-m tall. Bathymetry changes show the mass transfer deposits originated from the fjord head and Whittier Creek deltas and had a volume of about 42 million m3. The 1964 deposit has an average thickness of ∼5.4 m. Beyond the debris flow, the failures likely deposited a ∼4.6-m thick megaturbidite in a distal basin. We have studied the 1964 submarine landslides in three fjords. All involved failure of the fjord-head delta. All failures eroded basin-floor sediments and incorporated them as they travelled. All the failures deposited blocks, but their size and travel distances varied greatly. We find a correlation between maximum block size and maximum tsunami run-up regardless of the volume of the slides. Lastly, the fjord’s margins were influenced by increased supply of glacial sediments during the little ice age, which along with a long interseismic interval (∼900 years) may have caused the 1964 earthquake to produce particularly numerous and large submarine landslides.

  20. Underwater Gliders: A Review

    Directory of Open Access Journals (Sweden)

    Javaid Muhammad Yasar

    2014-07-01

    Full Text Available Underwater gliders are a type of underwater vehicle that transverse the oceans by shifting its buoyancy, during which its wings develop a component of the downward motion in the horizontal plane, thus producing a forward force. They are primarily used in oceanography sensing and data collection and play an important role in ocean research and development. Although there have been considerable developments in these gliders since the development of the first glider concept in 1989, to date, no review of these gliders have been done. This paper reviews existing underwater gliders, with emphasis on their respective working principles, range and payload capacity. All information on gliders available in the public domain or published in literature from the year 2000-2013 was reviewed. The majority of these gliders have an operational depth of 1000 m and a payload of less than 25 kg. The exception is a blend-body shape glider, which has a payload of approximately 800 kg and an operational depth around about 300 m. However, the commercialization of these gliders has been limited with only three know examples that have been successfully commercialized.

  1. Landslides along Highways: GIS-based Inventory and Planning Issues

    Science.gov (United States)

    Jaeger, Ann-Kathrin; Klose, Martin; Damm, Bodo

    2015-04-01

    assess landslide impacts and the effectiveness of measures for their mitigation. The landslide inventory is part of an ongoing study concerned with the problems of damage financing at low-volume roads in mountain areas with shrinking populations and fiscal deficits. Using the example of the Harz Mountains, a key research question refers to a comparison of the costs necessary to spend for safe road operations with the benefits from providing traffic connections to landslide-prone rural communities. This study combines the damage and loss data stored in the inventory with different data sets on traffic density, local population, and road financing. The research results contribute to the development of planning strategies for cost-efficient maintenance of highway infrastructures exposed to landslide hazards. References Bhandary, N.P., Yatabe, R., Dahal, R.K., Hasegawa, S., Inagaki, H., 2013. Areal distribution of large-scale landslides along highway corridors in central Nepal. Georisk 7, 1-20. Hungr, O., Evans, S.G., Hazzard, J., 1999. Magnitude and frequency of rock falls and rockslides along the main transportation corridors of southwestern British Columbia. Canadian Geotechnical Journal 36, 224-238 Klose, M., Damm, B., Terhorst, B., 2014b. Landslide cost modeling for transportation infrastructures: a methodological approach. Landslides, DOI 10.1007/s10346-014-0481-1. Saha, A.K., Arora, M.K., Gupta, R.P., Virdi, M.L., Csaplovics, E., 2005. GIS-based route planning in landslide-prone areas. International Journal of Geographical Information Science 19, 1149-1175.

  2. Identifying Spatio-Temporal Landslide Hotspots on North Island, New Zealand, by Analyzing Historical and Recent Aerial Photography

    Directory of Open Access Journals (Sweden)

    Daniel Hölbling

    2016-11-01

    Full Text Available Accurate mapping of landslides and the reliable identification of areas most affected by landslides are essential for advancing the understanding of landslide erosion processes. Remote sensing data provides a valuable source of information on the spatial distribution and location of landslides. In this paper we present an approach for identifying landslide-prone “hotspots” and their spatio-temporal variability by analyzing historical and recent aerial photography from five different dates, ranging from 1944 to 2011, for a study site near the town of Pahiatua, southeastern North Island, New Zealand. Landslide hotspots are identified from the distribution of semi-automatically detected landslides using object-based image analysis (OBIA, and compared to hotspots derived from manually mapped landslides. When comparing the overlapping areas of the semi-automatically and manually mapped landslides the accuracy values of the OBIA results range between 46% and 61% for the producer’s accuracy and between 44% and 77% for the user’s accuracy. When evaluating whether a manually digitized landslide polygon is only intersected to some extent by any semi-automatically mapped landslide, we observe that for the natural-color images the landslide detection rate is 83% for 2011 and 93% for 2005; for the panchromatic images the values are slightly lower (67% for 1997, 74% for 1979, and 72% for 1944. A comparison of the derived landslide hotspot maps shows that the distribution of the manually identified landslides and those mapped with OBIA is very similar for all periods; though the results also reveal that mapping landslide tails generally requires visual interpretation. Information on the spatio-temporal evolution of landslide hotspots can be useful for the development of location-specific, beneficial intervention measures and for assessing landscape dynamics.

  3. Application of radioisotopes in investigating landslides

    International Nuclear Information System (INIS)

    Turcek, P.; Ravinger, R.; Hulla, J.

    1983-01-01

    Radiotracer techniques have been used for geological investigations of landslide areas. It was possible to localize a landslide area and a weakened zone. Based on the results forecasts have been made of further possible landslide in the area

  4. Landsliding in partially saturated materials

    Science.gov (United States)

    Godt, J.W.; Baum, R.L.; Lu, N.

    2009-01-01

    [1] Rainfall-induced landslides are pervasive in hillslope environments around the world and among the most costly and deadly natural hazards. However, capturing their occurrence with scientific instrumentation in a natural setting is extremely rare. The prevailing thinking on landslide initiation, particularly for those landslides that occur under intense precipitation, is that the failure surface is saturated and has positive pore-water pressures acting on it. Most analytic methods used for landslide hazard assessment are based on the above perception and assume that the failure surface is located beneath a water table. By monitoring the pore water and soil suction response to rainfall, we observed shallow landslide occurrence under partially saturated conditions for the first time in a natural setting. We show that the partially saturated shallow landslide at this site is predictable using measured soil suction and water content and a novel unified effective stress concept for partially saturated earth materials. Copyright 2009 by the American Geophysical Union.

  5. Multi - band Persistent Scatterer Interferometry data integration for landslide analysis

    Science.gov (United States)

    Bianchini, Silvia; Mateos, Rosa; Mora, Oscar; García, Inma; Sánchez, Ciscu; Sanabria, Margarita; López, Maite; Mulas, Joaquin; Hernández, Mario; Herrera, Gerardo

    2013-04-01

    We present a methodology to perform a geomorphological assessment of ground movements over wide areas, by improving Persistent Scatterer Interferometry (PSI) analysis for landslide studies. The procedure relies on the integrated use of multi-band EO data acquired by different satellite sensors in different time intervals, to provide a detailed investigation of ground displacements. The methodology, throughout the cross-comparison and integration of PS data in different microwave bands (ALOS in L-band, ERS1/2 and ENVISAT in C-band, COSMOSKY-MED in X-band), is applied on the Tramontana Range in the northwestern part of Mallorca island (Spain), extensively affected by mass movements across time, especially during the last years. We increase the confidence degree of the available interferometric data and we homogenize all PS targets by implementing and classifying them through common criteria. Therefore, PSI results are combined with geo-thematic data and pre-existing landslide inventories of the study area, in order to improve the landslide database, providing additional information on the detected ground displacements. The results of this methodology are used to elaborate landslide activity maps, permitting to jointly exploit heterogeneous PS data for analyzing landslides at regional scale. Moreover, from a geomorphological perspective, the proposed approach exploits the implemented PS data to achieve a reliable spatial analysis of movement rates, whatever referred to certain landslide phenomena or to other natural processes, in order to perform ground motion activity maps within a wide area.

  6. Vulnerability assessment for reinforced concrete buildings exposed to landslides

    International Nuclear Information System (INIS)

    Mavrouli, O.; Corominas, J.; Fotopoulou, S.; Pitilakis, K.; Zuccaro, G.; Cacace, F.; De Gregorio, D.; Santo, A.; Di Crescenzo, G.; Foerster, E.; Ulrich, T.

    2014-01-01

    The methodologies available for the analytical quantification of the vulnerability of buildings which are subject to actions resulting from slope instabilities and landslides are relatively limited in comparison with other components of quantitative landslide risk assessment. This paper provides a general methodology for calculating the vulnerabilities of reinforced concrete frame structures that are subject to three types of slope instability: slow-moving landslides, rapid flow-type slides and rock falls. The vulnerability is expressed using sets of fragility curves. A description of the general framework and of the specialised procedures employed is presented here, separately for each landslide mechanism, through the example of a single-bay one-storey reinforced concrete frame. The properties of the frame are taken into account as variables with associated uncertainties. The derived vulnerability curves presented here can be used directly by risk assessment practitioners without having to repeat the procedure, given the expected range of landslide intensities and for similar building typologies and ranges of structural characteristics. This permits the applicability of the calculated vulnerability to a wide variety of similar frames for a range of landslide intensity parameters. (authors)

  7. Remote landslide mapping using a laser rangefinder binocular and GPS

    Directory of Open Access Journals (Sweden)

    M. Santangelo

    2010-12-01

    Full Text Available We tested a high-quality laser rangefinder binocular coupled with a GPS receiver connected to a Tablet PC running dedicated software to help recognize and map in the field recent rainfall-induced landslides. The system was tested in the period between March and April 2010, in the Monte Castello di Vibio area, Umbria, Central Italy. To test the equipment, we measured thirteen slope failures that were mapped previously during a visual reconnaissance field campaign conducted in February and March 2010. For reference, four slope failures were also mapped by walking the GPS receiver along the landslide perimeter. Comparison of the different mappings revealed that the geographical information obtained remotely for each landslide by the rangefinder binocular and GPS was comparable to the information obtained by walking the GPS around the landslide perimeter, and was superior to the information obtained through the visual reconnaissance mapping. Although our tests were not exhaustive, we maintain that the system is effective to map recent rainfall induced landslides in the field, and we foresee the possibility of using the same (or similar system to map landslides, and other geomorphological features, in other areas.

  8. Geomodels of coseismic landslides environments in Central Chile.

    Science.gov (United States)

    Serey, A.; Sepulveda, S. A.; Murphy, W.; Petley, D. N.

    2017-12-01

    Landslides are a major source of fatalities and damage during strong earthquakes in mountain areas. Detailed geomodels of coseismic landslides environments are essential parts of seismic landslide hazard analyses. The development of a site specific geological model is required, based on consideration of the regional and local geological and geomorphological history and the current ground surface conditions. An engineering geological model is any approximation of the geological conditions, at varying scales, created for the purpose of solving an engineering problem. In our case, the objective is the development of a methodology for earthquake-induced landslide hazard assessment applicable to urban/territorial planning and disaster prevention strategies assessment at a regional scale adapted for the Chilean tectonic conditions. We have developed the only 2 complete inventories of landslides triggered by earthquakes in Chile. The first from the Mw 6.2, shallow crustal Aysén earthquake in 2007. Second one from the Mw 8.8, megathrust subduction Maule earthquake in 2010. From the comparison of these 2 inventories with others from abroad, as well as analysis of large, prehistoric landslide inventories proposed as likely induced by seismic activity we have determined topographic, geomorphological, geological and seismic controlling factors in the occurrence of earthquake-triggered landslides. With the information collected we have defined different environments for generation of coseismic landslides based on the construction of geomodels. As a result we have built several geomodels in the Santiago Cordillera in central Chile (33°S), based upon the San Ramón Fault, a west-vergent reverse fault that outcrops at the edge of Santiago basin recently found to be active and a likely source of seismic activity in the future, with potential of triggering landslides in the Santiago mountain front as well as inland into the Mapocho and Maipo Cordilleran valleys. In conclusion

  9. The National Landslide Information Center; data to reduce landslide damage

    Science.gov (United States)

    Brown, W. M.

    1992-01-01

    Almost every day a landslide disasters occurs somewhere in the world. Nearly any time there is heavy rainfall, an earthquake, a volcanic eruption, strong wave action on a shoreline, or some ill-considered alteration of sloping land by humans, landslides occur.

  10. On the characteristics of landslide tsunamis.

    Science.gov (United States)

    Løvholt, F; Pedersen, G; Harbitz, C B; Glimsdal, S; Kim, J

    2015-10-28

    This review presents modelling techniques and processes that govern landslide tsunami generation, with emphasis on tsunamis induced by fully submerged landslides. The analysis focuses on a set of representative examples in simplified geometries demonstrating the main kinematic landslide parameters influencing initial tsunami amplitudes and wavelengths. Scaling relations from laboratory experiments for subaerial landslide tsunamis are also briefly reviewed. It is found that the landslide acceleration determines the initial tsunami elevation for translational landslides, while the landslide velocity is more important for impulsive events such as rapid slumps and subaerial landslides. Retrogressive effects stretch the tsunami, and in certain cases produce enlarged amplitudes due to positive interference. In an example involving a deformable landslide, it is found that the landslide deformation has only a weak influence on tsunamigenesis. However, more research is needed to determine how landslide flow processes that involve strong deformation and long run-out determine tsunami generation. © 2015 The Authors.

  11. Underwater running device

    International Nuclear Information System (INIS)

    Kogure, Sumio; Matsuo, Takashiro; Yoshida, Yoji

    1996-01-01

    An underwater running device for an underwater inspection device for detecting inner surfaces of a reactor or a water vessel has an outer frame and an inner frame, and both of them are connected slidably by an air cylinder and connected rotatably by a shaft. The outer frame has four outer frame legs, and each of the outer frame legs is equipped with a sucker at the top end. The inner frame has four inner frame legs each equipped with a sucker at the top end. The outer frame legs and the inner frame legs are each connected with the outer frame and the inner frame by the air cylinder. The outer and the inner frame legs can be elevated or lowered (or extended or contracted) by the air cylinder. The sucker is connected with a jet pump-type negative pressure generator. The device can run and move by repeating attraction and releasing of the outer frame legs and the inner frame legs alternately while maintaining the posture of the inspection device stably. (I.N.)

  12. GIS and statistical analysis for landslide susceptibility mapping in the Daunia area, Italy

    Science.gov (United States)

    Mancini, F.; Ceppi, C.; Ritrovato, G.

    2010-09-01

    This study focuses on landslide susceptibility mapping in the Daunia area (Apulian Apennines, Italy) and achieves this by using a multivariate statistical method and data processing in a Geographical Information System (GIS). The Logistic Regression (hereafter LR) method was chosen to produce a susceptibility map over an area of 130 000 ha where small settlements are historically threatened by landslide phenomena. By means of LR analysis, the tendency to landslide occurrences was, therefore, assessed by relating a landslide inventory (dependent variable) to a series of causal factors (independent variables) which were managed in the GIS, while the statistical analyses were performed by means of the SPSS (Statistical Package for the Social Sciences) software. The LR analysis produced a reliable susceptibility map of the investigated area and the probability level of landslide occurrence was ranked in four classes. The overall performance achieved by the LR analysis was assessed by local comparison between the expected susceptibility and an independent dataset extrapolated from the landslide inventory. Of the samples classified as susceptible to landslide occurrences, 85% correspond to areas where landslide phenomena have actually occurred. In addition, the consideration of the regression coefficients provided by the analysis demonstrated that a major role is played by the "land cover" and "lithology" causal factors in determining the occurrence and distribution of landslide phenomena in the Apulian Apennines.

  13. A spatial database for landslides in northern Bavaria: A methodological approach

    Science.gov (United States)

    Jäger, Daniel; Kreuzer, Thomas; Wilde, Martina; Bemm, Stefan; Terhorst, Birgit

    2018-04-01

    Landslide databases provide essential information for hazard modeling, damages on buildings and infrastructure, mitigation, and research needs. This study presents the development of a landslide database system named WISL (Würzburg Information System on Landslides), currently storing detailed landslide data for northern Bavaria, Germany, in order to enable scientific queries as well as comparisons with other regional landslide inventories. WISL is based on free open source software solutions (PostgreSQL, PostGIS) assuring good correspondence of the various softwares and to enable further extensions with specific adaptions of self-developed software. Apart from that, WISL was designed to be particularly compatible for easy communication with other databases. As a central pre-requisite for standardized, homogeneous data acquisition in the field, a customized data sheet for landslide description was compiled. This sheet also serves as an input mask for all data registration procedures in WISL. A variety of "in-database" solutions for landslide analysis provides the necessary scalability for the database, enabling operations at the local server. In its current state, WISL already enables extensive analysis and queries. This paper presents an example analysis of landslides in Oxfordian Limestones in the northeastern Franconian Alb, northern Bavaria. The results reveal widely differing landslides in terms of geometry and size. Further queries related to landslide activity classifies the majority of the landslides as currently inactive, however, they clearly possess a certain potential for remobilization. Along with some active mass movements, a significant percentage of landslides potentially endangers residential areas or infrastructure. The main aspect of future enhancements of the WISL database is related to data extensions in order to increase research possibilities, as well as to transfer the system to other regions and countries.

  14. OFDM for underwater acoustic communications

    CERN Document Server

    Zhou, Shengli

    2014-01-01

    A blend of introductory material and advanced signal processing and communication techniques, of critical importance to underwater system and network development This book, which is the first to describe the processing techniques central to underwater OFDM, is arranged into four distinct sections: First, it describes the characteristics of underwater acoustic channels, and stresses the difference from wireless radio channels. Then it goes over the basics of OFDM and channel coding. The second part starts with an overview of the OFDM receiver, and develops various modules for the receiver des

  15. Underwater plasma arc cutting

    International Nuclear Information System (INIS)

    Leautier, R.; Pilot, G.

    1991-01-01

    This report describes the work done to develop underwater plasma arc cutting techniques, to characterise aerosols from cutting operations on radioactive and non-radioactive work-pieces, and to develop suitable ventilation and filtration techniques. The work has been carried out in the framework of a contract between CEA-CEN Cadarache and the Commission of European Communities. Furthermore, this work has been carried out in close cooperation with CEA-CEN Saclay mainly for secondary emissions and radioactive analysis. The contract started in May 1986 and was completed in December 1988 by a supplementary agreement. This report has been compiled from several progress reports submitted during the work period, contains the main findings of the work and encloses the results of comparative tests on plasma arc cutting

  16. Safety aspects for underwater vehicles

    Digital Repository Service at National Institute of Oceanography (India)

    Madhan, R.; Navelkar, G.S.; Desa, E.S.; Afzulpurkar, S.; Prabhudesai, S.P.; Dabholkar, N.; Mascarenhas, A.A.M.Q.; Maurya, P.

    instrumentation is intelligent small Autonomous Underwater Vehicles (AUV’s), autonomous profilers, gliders [1], etc. The ultimate aim in all autonomous platforms research and development is to reach the stage of unescorted missions with minimum failures...

  17. A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping.

    Science.gov (United States)

    Feizizadeh, Bakhtiar; Shadman Roodposhti, Majid; Jankowski, Piotr; Blaschke, Thomas

    2014-12-01

    Landslide susceptibility mapping (LSM) is making increasing use of GIS-based spatial analysis in combination with multi-criteria evaluation (MCE) methods. We have developed a new multi-criteria decision analysis (MCDA) method for LSM and applied it to the Izeh River basin in south-western Iran. Our method is based on fuzzy membership functions (FMFs) derived from GIS analysis. It makes use of nine causal landslide factors identified by local landslide experts. Fuzzy set theory was first integrated with an analytical hierarchy process (AHP) in order to use pairwise comparisons to compare LSM criteria for ranking purposes. FMFs were then applied in order to determine the criteria weights to be used in the development of a landslide susceptibility map. Finally, a landslide inventory database was used to validate the LSM map by comparing it with known landslides within the study area. Results indicated that the integration of fuzzy set theory with AHP produced significantly improved accuracies and a high level of reliability in the resulting landslide susceptibility map. Approximately 53% of known landslides within our study area fell within zones classified as having "very high susceptibility", with the further 31% falling into zones classified as having "high susceptibility".

  18. Seismic monitoring of soft-rock landslides: the Super-Sauze and Valoria case studies

    Science.gov (United States)

    Tonnellier, Alice; Helmstetter, Agnès; Malet, Jean-Philippe; Schmittbuhl, Jean; Corsini, Alessandro; Joswig, Manfred

    2013-06-01

    This work focuses on the characterization of seismic sources observed in clay-shale landslides. Two landslides are considered: Super-Sauze (France) and Valoria (Italy). The two landslides are developed in reworked clay-shales but differ in terms of dimensions and displacement rates. Thousands of seismic signals have been identified by a small seismic array in spite of the high-seismic attenuation of the material. Several detection methods are tested. A semi-automatic detection method is validated by the comparison with a manual detection. Seismic signals are classified in three groups based on the frequency content, the apparent velocity and the differentiation of P and S waves. It is supposed that the first group of seismic signals is associated to shearing or fracture events within the landslide bodies, while the second group may correspond to rockfalls or debris flows. A last group corresponds to external earthquakes. Seismic sources are located with an automatic beam-forming location method. Sources are clustered in several parts of the landslide in agreement with geomorphological observations. We found that the rate of rockfall and fracture events increases after periods of heavy rainfall or snowmelt. The rate of microseismicity and rockfall activity is also positively correlated with landslide displacement rates. External earthquakes did not influence the microseismic activity or the landslide movement, probably because the earthquake ground motion was too weak to trigger landslide events during the observation periods.

  19. A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping

    Science.gov (United States)

    Feizizadeh, Bakhtiar; Shadman Roodposhti, Majid; Jankowski, Piotr; Blaschke, Thomas

    2014-01-01

    Landslide susceptibility mapping (LSM) is making increasing use of GIS-based spatial analysis in combination with multi-criteria evaluation (MCE) methods. We have developed a new multi-criteria decision analysis (MCDA) method for LSM and applied it to the Izeh River basin in south-western Iran. Our method is based on fuzzy membership functions (FMFs) derived from GIS analysis. It makes use of nine causal landslide factors identified by local landslide experts. Fuzzy set theory was first integrated with an analytical hierarchy process (AHP) in order to use pairwise comparisons to compare LSM criteria for ranking purposes. FMFs were then applied in order to determine the criteria weights to be used in the development of a landslide susceptibility map. Finally, a landslide inventory database was used to validate the LSM map by comparing it with known landslides within the study area. Results indicated that the integration of fuzzy set theory with AHP produced significantly improved accuracies and a high level of reliability in the resulting landslide susceptibility map. Approximately 53% of known landslides within our study area fell within zones classified as having “very high susceptibility”, with the further 31% falling into zones classified as having “high susceptibility”. PMID:26089577

  20. A satellite-based global landslide model

    Directory of Open Access Journals (Sweden)

    A. Farahmand

    2013-05-01

    Full Text Available Landslides are devastating phenomena that cause huge damage around the world. This paper presents a quasi-global landslide model derived using satellite precipitation data, land-use land cover maps, and 250 m topography information. This suggested landslide model is based on the Support Vector Machines (SVM, a machine learning algorithm. The National Aeronautics and Space Administration (NASA Goddard Space Flight Center (GSFC landslide inventory data is used as observations and reference data. In all, 70% of the data are used for model development and training, whereas 30% are used for validation and verification. The results of 100 random subsamples of available landslide observations revealed that the suggested landslide model can predict historical landslides reliably. The average error of 100 iterations of landslide prediction is estimated to be approximately 7%, while approximately 2% false landslide events are observed.

  1. Underwater radiation measuring device

    International Nuclear Information System (INIS)

    Seki, Noriyuki; Suzuki, Yasuo

    1998-01-01

    The present invention provides a device for measuring, under water, radiation from spent fuels (long members to be detected) of nuclear power plants and reprocessing facilities. Namely, a detecting insertion tube (insertion tube) is disposed so as to be in parallel with axial direction of the long member to be detected stored underwater. A γ-ray detector is inserted to the inside of the insertion tube. A driving mechanism is disposed for moving the γ-ray detector in axial direction inside of the insertion tube. The driving mechanism preferably has a system that it moves the γ-ray detector by winding a detection signal cable around a driving drum. The driving mechanism is formed by inserting and securing a driving tube having screws formed on the side surface and inserting it into the insertion tube. It may have a system of moving the γ-ray detector together with the driving tube while engaging the teeth of a driving transfer mechanism with the screws of the driving tube. (I.S.)

  2. An underwater shear compactor

    International Nuclear Information System (INIS)

    Biver, E.; Sims, J.

    1997-01-01

    This paper, originally presented at the WM'96 Conference in Tucson Arizona, describes a concept of a specialised decommissioning tool designed to operate underwater and to reduce the volume of radioactive components by shearing and compacting. The shear compactor was originally conceived to manage the size reduction of a variety of decommissioned stainless steel tubes stored within a reactor fuel cooling pond and which were consuming a substantial volume of the pond. The main objective of this tool was to cut the long tubes into shorter lengths and to compact them into a flat rectangular form which could be stacked on the pond floor, thus saving valuable space. The development programme, undertaken on this project, investigated a wide range of factors which could contribute to an extended cutting blade performance, ie: materials of construction, cutting blade shape and cutting loads required, shock effects, etc. The second phase was to review other aspects of the design, such as radiological protection, cutting blade replacement, maintenance, pond installation and resultant wall loads, water hydraulics, collection of products of shearing/compacting operations, corrosion of the equipment, control system, operational safety and the ability of the equipment to operate in dry environments. The paper summarises the extended work programme involved with this shear compactor tool. (author)

  3. Underwater cutting techniques developments

    International Nuclear Information System (INIS)

    Bach, F.-W.

    1990-01-01

    The primary circuit structures of different nuclear powerplants are constructed out of stainless steels, ferritic steels, plated ferritic steels and alloys of aluminium. According to the level of the specific radiation of these structures, it is necessary for dismantling to work with remote controlled cutting techniques. The most successful way to protect the working crew against exposure of radiation is to operate underwater in different depths. The following thermal cutting processes are more or less developed to work under water: For ferritic steels only - flame cutting; For ferritic steels, stainless steels, cladded steels and aluminium alloys - oxy-arc-cutting, arc-waterjet-cutting with a consumable electrode, arc-saw-cutting, plasma-arc-cutting and plasma-arc-saw. The flame cutting is a burning process, all the other processes are melt-cutting processes. This paper explains the different techniques, giving a short introduction of the theory, a discussion of the possibilities with the advantages and disadvantages of these processes giving a view into the further research work in this interesting field. (author)

  4. Development of underwater laser cutting technology

    International Nuclear Information System (INIS)

    Sato, Seiichi; Inaba, Takanori; Inose, Koutarou; Matsumoto, Naoyuki; Sakakibara, Yuji

    2015-01-01

    In is desirable to use remote underwater device for the decommissioning work of highly radioactive components such as the nuclear internals from a view point of reducing the ranitidine exposure to the worker. Underwater laser cutting technology has advantages. First advantage in underwater laser cutting technology is that low reaction force during cutting, namely, remote operability is superior. Second point is that underwater laser cutting generates a little amount of secondary waste, because cutting kerf size is very small. Third point is that underwater laser cutting has low risk of the process delay, because device trouble is hard to happen. While underwater laser cutting has many advantages, the careful consideration in the safe treatment of the offgas which underwater laser cutting generates is necessary. This paper describes outline of underwater laser cutting technology developed by IHI Corporation (IHI) and that this technology is effective in various dismantling works in water. (author)

  5. Underwater Gliders by Dr. Kevin Smith [video

    OpenAIRE

    Naval Postgraduate School Physics

    2015-01-01

    NPS Physics NPS Physics Research Projects Underwater glider research is currently underway in the physics department at the naval postgraduate in Monterey Ca. Dr. Kevin Smith is a specialist in underwater acoustics and sonar systems. He and his team are currently focused on autonomous underwater gliders and developing systems capable of detecting parameters in the ocean and listening for various sources of sound.

  6. Landslide triggering by rain infiltration

    Science.gov (United States)

    Iverson, Richard M.

    2000-01-01

    Landsliding in response to rainfall involves physical processes that operate on disparate timescales. Relationships between these timescales guide development of a mathematical model that uses reduced forms of Richards equation to evaluate effects of rainfall infiltration on landslide occurrence, timing, depth, and acceleration in diverse situations. The longest pertinent timescale is A/D0, where D0 is the maximum hydraulic diffusivity of the soil and A is the catchment area that potentially affects groundwater pressures at a prospective landslide slip surface location with areal coordinates x, y and depth H. Times greater than A/D0 are necessary for establishment of steady background water pressures that develop at (x, y, H) in response to rainfall averaged over periods that commonly range from days to many decades. These steady groundwater pressures influence the propensity for landsliding at (x, y, H), but they do not trigger slope failure. Failure results from rainfall over a typically shorter timescale H2/D0 associated with transient pore pressure transmission during and following storms. Commonly, this timescale ranges from minutes to months. The shortest timescale affecting landslide responses to rainfall is √(H/g), where g is the magnitude of gravitational acceleration. Postfailure landslide motion occurs on this timescale, which indicates that the thinnest landslides accelerate most quickly if all other factors are constant. Effects of hydrologic processes on landslide processes across these diverse timescales are encapsulated by a response function, R(t*) = √(t*/π) exp (-1/t*) - erfc (1/√t*), which depends only on normalized time, t*. Use of R(t*) in conjunction with topographic data, rainfall intensity and duration information, an infinite-slope failure criterion, and Newton's second law predicts the timing, depth, and acceleration of rainfall-triggered landslides. Data from contrasting landslides that exhibit rapid, shallow

  7. Design of Autonomous Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Tadahiro Hyakudome

    2011-03-01

    Full Text Available There are concerns about the impact that global warming will have on our environment, and which will inevitably result in expanding deserts and rising water levels. While a lot of underwater vehicles are utilized, AUVs (Autonomous Underwater Vehicle were considered and chosen, as the most suitable tool for conduction survey concerning these global environmental problems. AUVs can comprehensive survey because the vehicle does not have to be connected to the support vessel by tether cable. When such underwater vehicles are made, it is necessary to consider about the following things. 1 Seawater and Water Pressure Environment, 2 Sink, 3 There are no Gas or Battery Charge Stations, 4 Global Positioning System cannot use, 5 Radio waves cannot use. In the paper, outline of above and how deal about it are explained.

  8. UNDERWATER COATINGS FOR CONTAMINATION CONTROL

    International Nuclear Information System (INIS)

    Julia L. Tripp; Kip Archibald; Ann Marie Phillips; Joseph Campbell

    2004-01-01

    The Idaho National Laboratory (INL) deactivated several aging nuclear fuel storage basins. Planners for this effort were greatly concerned that radioactive contamination present on the basin walls could become airborne as the sides of the basins became exposed during deactivation and allowed to dry after water removal. One way to control this airborne contamination was to fix the contamination in place while the pool walls were still submerged. There are many underwater coatings available on the market for marine, naval and other applications. A series of tests were run to determine whether the candidate underwater fixatives were easily applied and adhered well to the substrates (pool wall materials) found in INL fuel pools. Lab-scale experiments were conducted by applying fourteen different commercial underwater coatings to four substrate materials representative of the storage basin construction materials, and evaluating their performance. The coupons included bare concrete, epoxy painted concrete, epoxy painted carbon steel, and stainless steel. The evaluation criteria included ease of application, adherence to the four surfaces of interest, no change on water clarity or chemistry, non-hazardous in final applied form and be proven in underwater applications. A proprietary two-part, underwater epoxy owned by S. G. Pinney and Associates was selected from the underwater coatings tested for application to all four pools. Divers scrubbed loose contamination off the basin walls and floors using a ship hull scrubber and vacuumed up the sludge. The divers then applied the coating using a special powered roller with two separate heated hoses that allowed the epoxy to mix at the roller surface was used to eliminate pot time concerns. The walls were successfully coated and water was removed from the pools with no detectable airborne contamination releases

  9. Operational experience in underwater photogrammetry

    Science.gov (United States)

    Leatherdale, John D.; John Turner, D.

    Underwater photogrammetry has become established as a cost-effective technique for inspection and maintenance of platforms and pipelines for the offshore oil industry. A commercial service based in Scotland operates in the North Sea, USA, Brazil, West Africa and Australia. 70 mm cameras and flash units are built for the purpose and analytical plotters and computer graphics systems are used for photogrammetric measurement and analysis of damage, corrosion, weld failures and redesign of underwater structures. Users are seeking simple, low-cost systems for photogrammetric analysis which their engineers can use themselves.

  10. Underwater laser imaging system (UWLIS)

    Energy Technology Data Exchange (ETDEWEB)

    DeLong, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Practical limitations with underwater imaging systems area reached when the noise in the back scattered radiation generated in the water between the imaging system and the target obscures the spatial contrast and resolution necessary for target discovery and identification. The advent of high power lasers operating in the blue-green portion of the visible spectrum (oceanic transmission window) has led to improved experimental illumination systems for underwater imaging. Range-gated and synchronously scanned devices take advantage of the unique temporal and spatial coherence properties of laser radiation, respectively, to overcome the deleterious effects of common volume back scatter.

  11. A hydroclimatological approach to predicting regional landslide probability using Landlab

    Science.gov (United States)

    Strauch, Ronda; Istanbulluoglu, Erkan; Nudurupati, Sai Siddhartha; Bandaragoda, Christina; Gasparini, Nicole M.; Tucker, Gregory E.

    2018-02-01

    We develop a hydroclimatological approach to the modeling of regional shallow landslide initiation that integrates spatial and temporal dimensions of parameter uncertainty to estimate an annual probability of landslide initiation based on Monte Carlo simulations. The physically based model couples the infinite-slope stability model with a steady-state subsurface flow representation and operates in a digital elevation model. Spatially distributed gridded data for soil properties and vegetation classification are used for parameter estimation of probability distributions that characterize model input uncertainty. Hydrologic forcing to the model is through annual maximum daily recharge to subsurface flow obtained from a macroscale hydrologic model. We demonstrate the model in a steep mountainous region in northern Washington, USA, over 2700 km2. The influence of soil depth on the probability of landslide initiation is investigated through comparisons among model output produced using three different soil depth scenarios reflecting the uncertainty of soil depth and its potential long-term variability. We found elevation-dependent patterns in probability of landslide initiation that showed the stabilizing effects of forests at low elevations, an increased landslide probability with forest decline at mid-elevations (1400 to 2400 m), and soil limitation and steep topographic controls at high alpine elevations and in post-glacial landscapes. These dominant controls manifest themselves in a bimodal distribution of spatial annual landslide probability. Model testing with limited observations revealed similarly moderate model confidence for the three hazard maps, suggesting suitable use as relative hazard products. The model is available as a component in Landlab, an open-source, Python-based landscape earth systems modeling environment, and is designed to be easily reproduced utilizing HydroShare cyberinfrastructure.

  12. A hydroclimatological approach to predicting regional landslide probability using Landlab

    Directory of Open Access Journals (Sweden)

    R. Strauch

    2018-02-01

    Full Text Available We develop a hydroclimatological approach to the modeling of regional shallow landslide initiation that integrates spatial and temporal dimensions of parameter uncertainty to estimate an annual probability of landslide initiation based on Monte Carlo simulations. The physically based model couples the infinite-slope stability model with a steady-state subsurface flow representation and operates in a digital elevation model. Spatially distributed gridded data for soil properties and vegetation classification are used for parameter estimation of probability distributions that characterize model input uncertainty. Hydrologic forcing to the model is through annual maximum daily recharge to subsurface flow obtained from a macroscale hydrologic model. We demonstrate the model in a steep mountainous region in northern Washington, USA, over 2700 km2. The influence of soil depth on the probability of landslide initiation is investigated through comparisons among model output produced using three different soil depth scenarios reflecting the uncertainty of soil depth and its potential long-term variability. We found elevation-dependent patterns in probability of landslide initiation that showed the stabilizing effects of forests at low elevations, an increased landslide probability with forest decline at mid-elevations (1400 to 2400 m, and soil limitation and steep topographic controls at high alpine elevations and in post-glacial landscapes. These dominant controls manifest themselves in a bimodal distribution of spatial annual landslide probability. Model testing with limited observations revealed similarly moderate model confidence for the three hazard maps, suggesting suitable use as relative hazard products. The model is available as a component in Landlab, an open-source, Python-based landscape earth systems modeling environment, and is designed to be easily reproduced utilizing HydroShare cyberinfrastructure.

  13. Global Landslide Total Economic Loss Risk Deciles

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Landslide Total Economic Loss Risk Deciles is a 2.5 minute grid of global landslide total economic loss risks. A process of spatially allocating Gross...

  14. Underwater 3D Surface Measurement Using Fringe Projection Based Scanning Devices.

    Science.gov (United States)

    Bräuer-Burchardt, Christian; Heinze, Matthias; Schmidt, Ingo; Kühmstedt, Peter; Notni, Gunther

    2015-12-23

    In this work we show the principle of optical 3D surface measurements based on the fringe projection technique for underwater applications. The challenges of underwater use of this technique are shown and discussed in comparison with the classical application. We describe an extended camera model which takes refraction effects into account as well as a proposal of an effective, low-effort calibration procedure for underwater optical stereo scanners. This calibration technique combines a classical air calibration based on the pinhole model with ray-based modeling and requires only a few underwater recordings of an object of known length and a planar surface. We demonstrate a new underwater 3D scanning device based on the fringe projection technique. It has a weight of about 10 kg and the maximal water depth for application of the scanner is 40 m. It covers an underwater measurement volume of 250 mm × 200 mm × 120 mm. The surface of the measurement objects is captured with a lateral resolution of 150 μm in a third of a second. Calibration evaluation results are presented and examples of first underwater measurements are given.

  15. Cavola experiment site: geophysical investigations and deployment of a dense seismic array on a landslide

    OpenAIRE

    L. Martelli; M. Cercato; P. Augliera; G. Di Giulio; G. Milana; J. Haines; P. Bordoni; F. Cara; undefined Cavola Experiment Team

    2007-01-01

    Geophysical site investigations have been performed in association with deployment of a dense array of 95 3-component seismometers on the Cavola landslide in the Northern Apennines. The aim of the array is to study propagation of seismic waves in the heterogeneous medium through comparison of observation and modelling. The small-aperture array (130 m×56 m) operated continuously for three months in 2004. Cavola landslide consists of a clay body sliding over mudstone-shale b...

  16. Dendrogeomorphology in landslide analysis: State of art

    Energy Technology Data Exchange (ETDEWEB)

    Margottini, C [ENEA, Casaccia (Italy). Area Energia Ambiente e Salute; Fantucci, R

    1994-01-01

    This article summarizes the uses of dendrogeomorphological techniques in landslide analysis. It shows how to study different landslides events through the analysis of living trees. Living trees record any slope inclination variation as if they were natural inclinometers moreover they can be used to date landslide and their stabilization process with time.

  17. Comparison and validation of shallow landslides susceptibility maps generated by bi-variate and multi-variate linear probabilistic GIS-based techniques. A case study from Ribeira Quente Valley (S. Miguel Island, Azores)

    Science.gov (United States)

    Marques, R.; Amaral, P.; Zêzere, J. L.; Queiroz, G.; Goulart, C.

    2009-04-01

    Slope instability research and susceptibility mapping is a fundamental component of hazard assessment and is of extreme importance for risk mitigation, land-use management and emergency planning. Landslide susceptibility zonation has been actively pursued during the last two decades and several methodologies are still being improved. Among all the methods presented in the literature, indirect quantitative probabilistic methods have been extensively used. In this work different linear probabilistic methods, both bi-variate and multi-variate (Informative Value, Fuzzy Logic, Weights of Evidence and Logistic Regression), were used for the computation of the spatial probability of landslide occurrence, using the pixel as mapping unit. The methods used are based on linear relationships between landslides and 9 considered conditioning factors (altimetry, slope angle, exposition, curvature, distance to streams, wetness index, contribution area, lithology and land-use). It was assumed that future landslides will be conditioned by the same factors as past landslides in the study area. The presented work was developed for Ribeira Quente Valley (S. Miguel Island, Azores), a study area of 9,5 km2, mainly composed of volcanic deposits (ash and pumice lapilli) produced by explosive eruptions in Furnas Volcano. This materials associated to the steepness of the slopes (38,9% of the area has slope angles higher than 35°, reaching a maximum of 87,5°), make the area very prone to landslide activity. A total of 1.495 shallow landslides were mapped (at 1:5.000 scale) and included in a GIS database. The total affected area is 401.744 m2 (4,5% of the study area). Most slope movements are translational slides frequently evolving into debris-flows. The landslides are elongated, with maximum length generally equivalent to the slope extent, and their width normally does not exceed 25 m. The failure depth rarely exceeds 1,5 m and the volume is usually smaller than 700 m3. For modelling

  18. Landslide susceptibility and risk assessment: specificities for road networks

    Science.gov (United States)

    Pellicani, Roberta; Argentiero, Ilenia; Parisi, Alessandro; Spilotro, Giuseppe

    2017-04-01

    hazard, which is a function of the return time, due to the lack of temporal data, was evaluated as a function of the landslide intensity (velocity and areal extent) and susceptibility. The direct consequences of instability on the roads were defined by combining exposure and vulnerability in a matrix. Exposure was evaluated in terms of amount of traffic, which was calculated along each road stretch, connecting two or more urban areas, as a function of the average of population of each centers. Vulnerability, which expresses the degree of damage, was assessed in function of the presence of criticalities along roads, which were ranked according to the severity of damages and type of performed reparation works. The consequences, combined with the hazard levels, allowed to assess the landslide risk, classified in low, medium and high levels. The risk map highlighted that about the 30% (392 km) of the examined road corridors is affected by high risk levels. The comparison between the risk map and the landslide inventory recognized along roads has also revealed that the 49.5% of landslides affects sections where the risk was evaluated high. The obtained risk classification of the roads represents a support for decision making and allows to identify the priorities for designing appropriate landslide mitigation plans.

  19. Underwater noise due to precipitation

    DEFF Research Database (Denmark)

    Crum, Lawrence A.; Pumphrey, Hugh C.; Prosperetti, Andrea

    1989-01-01

    In 1959, G. Franz published a thorough investigation of the underwater sound produced by liquid drop impacts [G. Franz, J. Acoust. Soc. Am. 31, 1080 (1959)]. He discovered that, under certain conditions, a gas bubble was entrained by the impacting droplet, and the subsequent oscillation of this b...

  20. Underwater nuclear power plant structure

    International Nuclear Information System (INIS)

    Severs, S.; Toll, H.V.

    1982-01-01

    A structure for an underwater nuclear power generating plant comprising a triangular platform formed of tubular leg and truss members upon which are attached one or more large spherical pressure vessels and one or more small cylindrical auxiliary pressure vessels. (author)

  1. Underwater Robots Surface in Utah

    Science.gov (United States)

    Hurd, Randy C.; Hacking, Kip S.; Damarjian, Jennifer L.; Wright, Geoffrey A.; Truscott, Tadd

    2015-01-01

    Underwater robots (or ROVs: Remotely Operated Vehicles as they are typically called in industry) have recently become a very popular instructional STEM activity. Nationally, ROVs have been used in science and technology classrooms for several years in cities such as Seattle, San Diego, Virginia Beach, and other coastal areas. In the past two…

  2. Landslide Hazard in Georgia

    Science.gov (United States)

    Gaprindashvili, George; Tsereteli, Emil; Gaprindashvili, Merab

    2014-05-01

    In the last decades of the XX century, protect the population from geological hazards, to maintain land and safe operation of the engineering facilities has become the most important social - economic, demographic, political and environmental problems for the whole world. Georgia, with its scales of origination of the natural-catastrophic processes (landslide, mudflow, rockfall, erosion and etc.), their re-occurrence and with the negative results inflicted by these processes to the population, agricultural lands and engineering objects, is one of the most complex mountainous region. The extremely sensitive conditions were conditioned by: 1. Activation of highly intense earthquakes; 2. Activation of the negative meteorological events provoking the disaster processes on the background of global climatic changes and their abnormally frequent occurrence (mostly increased atmospheric precipitations, temperature and humidity); 3. Large-scale Human impact on the environment. Following the problem urgency, a number of departmental and research institutions have made their operations more intense in the given direction within the limits of their competence. First of all, the activity of the Department of Geology of Georgia (which is at present included in the National Environmental Agency of the Ministry of Environment and Natural Resources Protection), which mapped, identified and cataloged the hazardous processes on the territory of the country and identified the spatial limits and developmental regularities of these processes for tens of years. The increased risk of Geological catastrophes in Georgia first of all is caused by insufficient information between society and responsible persons toward this event. The existed situation needs the base assessment of natural disasters level, the identification of events, to determine their caused reasons, to develop special maps in GIS system, and continuous functioning of geo monitoring researches for develop safety early

  3. A landslide susceptibility map of Africa

    Science.gov (United States)

    Broeckx, Jente; Vanmaercke, Matthias; Duchateau, Rica; Poesen, Jean

    2017-04-01

    Studies on landslide risks and fatalities indicate that landslides are a global threat to humans, infrastructure and the environment, certainly in Africa. Nonetheless our understanding of the spatial patterns of landslides and rockfalls on this continent is very limited. Also in global landslide susceptibility maps, Africa is mostly underrepresented in the inventories used to construct these maps. As a result, predicted landslide susceptibilities remain subject to very large uncertainties. This research aims to produce a first continent-wide landslide susceptibility map for Africa, calibrated with a well-distributed landslide dataset. As a first step, we compiled all available landslide inventories for Africa. This data was supplemented by additional landslide mapping with Google Earth in underrepresented regions. This way, we compiled 60 landslide inventories from the literature (ca. 11000 landslides) and an additional 6500 landslides through mapping in Google Earth (including 1500 rockfalls). Various environmental variables such as slope, lithology, soil characteristics, land use, precipitation and seismic activity, were investigated for their significance in explaining the observed spatial patterns of landslides. To account for potential mapping biases in our dataset, we used Monte Carlo simulations that selected different subsets of mapped landslides, tested the significance of the considered environmental variables and evaluated the performance of the fitted multiple logistic regression model against another subset of mapped landslides. Based on these analyses, we constructed two landslide susceptibility maps for Africa: one for all landslide types and one excluding rockfalls. In both maps, topography, lithology and seismic activity were the most significant variables. The latter factor may be surprising, given the overall limited degree of seismicity in Africa. However, its significance indicates that frequent seismic events may serve as in important

  4. Comparative assessment of landslide susceptibility. Case study: the Niraj river basin (Transylvania depression, Romania

    Directory of Open Access Journals (Sweden)

    RoŞca Sanda

    2016-05-01

    Full Text Available This study represents a comparison between two independent models used to evaluate landslide susceptibility in Romania: first, the model derived from the Romanian Governmental Decision no. 447/2003 (H.G. 447 and second, the bivariate statistical analysis. Considering the numerous objections to the first approach, which is also imposed by law, the accuracy of the results was analyzed using an alternative method which takes into consideration the reality from the field to a greater extent (the inventory of the existing landslides. The case study is focused on the Niraj catchment area (658 km2, a representative area for frequent landslide occurrence. The H.G. 447 model implies the estimation of the importance of eight factors involved in landslide occurrence: lithology, geomorphology, structure, hydro-climatic factors, hydrogeology, seismicity, forest cover and the anthropogenic factor. A thematic map was generated and analyzed for each one of the eight factors influencing slope instability and a specific coefficient was assigned. The statistical model, based on the bivariate probability analysis, was applied in order to predict the spatial distribution of the susceptibility classes. The probability of landslide occurrence was estimated based on the assumption that the prediction of the spatial distributions of landslides starts from the existing ones. In order to validate the model, the resulting maps were compared with the existing landslide maps: the relative landslide density index (R and the relative operation curve (ROC value were calculated, which indicate that the statistical model emphasizes a better correlation between the susceptibility classes and the active landslides (ROC value 0.972, the causative factors selected being relevant for the applied models.

  5. Directions of the US Geological Survey Landslide Hazards Reduction Program

    Science.gov (United States)

    Wieczorek, G.F.

    1993-01-01

    The US Geological Survey (USGS) Landslide Hazards Reduction Program includes studies of landslide process and prediction, landslide susceptibility and risk mapping, landslide recurrence and slope evolution, and research application and technology transfer. Studies of landslide processes have been recently conducted in Virginia, Utah, California, Alaska, and Hawaii, Landslide susceptibility maps provide a very important tool for landslide hazard reduction. The effects of engineering-geologic characteristics of rocks, seismic activity, short and long-term climatic change on landslide recurrence are under study. Detailed measurement of movement and deformation has begun on some active landslides. -from Author

  6. Rainfall thresholds as a landslide indicator for engineered slopes on the Irish Rail network

    Science.gov (United States)

    Martinović, Karlo; Gavin, Kenneth; Reale, Cormac; Mangan, Cathal

    2018-04-01

    Rainfall thresholds express the minimum levels of rainfall that need to be reached or exceeded in order for landslides to occur in a particular area. They are a common tool in expressing the temporal portion of landslide hazard analysis. Numerous rainfall thresholds have been developed for different areas worldwide, however none of these are focused on landslides occurring on the engineered slopes on transport infrastructure networks. This paper uses empirical method to develop the rainfall thresholds for landslides on the Irish Rail network earthworks. For comparison, rainfall thresholds are also developed for natural terrain in Ireland. The results show that particular thresholds involving relatively low rainfall intensities are applicable for Ireland, owing to the specific climate. Furthermore, the comparison shows that rainfall thresholds for engineered slopes are lower than those for landslides occurring on the natural terrain. This has severe implications as it indicates that there is a significant risk involved when using generic weather alerts (developed largely for natural terrain) for infrastructure management, and showcases the need for developing railway and road specific rainfall thresholds for landslides.

  7. Preparation of earthquake-triggered landslide inventory maps using remote sensing and GIS technologies: Principles and case studies

    Directory of Open Access Journals (Sweden)

    Chong Xu

    2015-11-01

    Full Text Available Inventory maps of earthquake-triggered landslides can be constructed using several methods, which are often subject to obvious differences due to lack of commonly accepted criteria or principles. To solve this problem, the author describes the principles for preparing inventory maps of earthquake-triggered landslides, focusing on varied methods and their criteria. The principles include the following key points: all landslides should be mapped as long as they can be recognized from images; both the boundary and source area position of landslides should be mapped; spatial distribution pattern of earthquake-triggered landslides should be continuous; complex landslides should be divided into distinct groups; three types of errors such as precision of the location and boundary of landslides, false positive errors, and false negative errors of earthquake-triggered landslide inventories should be controlled and reduced; and inventories of co-seismic landslides should be constructed by the visual interpretation method rather than automatic extraction of satellite images or/and aerial photographs. In addition, selection of remote sensing images and creation of landslides attribute database are also discussed in this paper. Then the author applies these principles to produce inventory maps of four events: the 12 May 2008 Wenchuan, China Mw 7.9, 14 April 2010 Yushu, China Mw 6.9, 12 January 2010 Haiti Mw 7.0, and 2007 Aysén Fjord, Chile Mw 6.2. The results show obvious differences in comparison with previous studies by other researchers, which again attest to the necessity of establishment of unified principles for preparation of inventory maps of earthquake-triggered landslides.

  8. Cooperative OFDM underwater acoustic communications

    CERN Document Server

    Cheng, Xilin; Cheng, Xiang

    2016-01-01

    Following underwater acoustic channel modeling, this book investigates the relationship between coherence time and transmission distances. It considers the power allocation issues of two typical transmission scenarios, namely short-range transmission and medium-long range transmission. For the former scenario, an adaptive system is developed based on instantaneous channel state information. The primary focus is on cooperative dual-hop orthogonal frequency division multiplexing (OFDM). This book includes the decomposed fountain codes designed to enable reliable communications with higher energy efficiency. It covers the Doppler Effect, which improves packet transmission reliability for effective low-complexity mirror-mapping-based intercarrier interference cancellation schemes capable of suppressing the intercarrier interference power level. Designed for professionals and researchers in the field of underwater acoustic communications, this book is also suitable for advanced-level students in electrical enginee...

  9. International Conference on Underwater Environment

    CERN Document Server

    Jaulin, Luc; Creuze, Vincent; Debese, Nathalie; Quidu, Isabelle; Clement, Benoît; Billon-Coat, Annick

    2016-01-01

    This volume constitutes the results of the International Conference on Underwater Environment, MOQESM’14, held at “Le Quartz” Conference Center in Brest, France, on October 14-15, 2014, within the framework of the 9th Sea Tech Week, International Marine Science and Technology Event. The objective of MOQESM'14 was to bring together researchers from both academia and industry, interested in marine robotics and hydrography with application to the coastal environment mapping and underwater infrastructures surveys. The common thread of the conference is the combination of technical control, perception, and localization, typically used in robotics, with the methods of mapping and bathymetry. The papers presented in this book focus on two main topics. Firstly, coastal and infrastructure mapping is addressed, focusing not only on hydrographic systems, but also on positioning systems, bathymetry, and remote sensing. The proposed methods rely on acoustic sensors such as side scan sonars, multibeam echo sounders, ...

  10. Cutting method and device underwater

    International Nuclear Information System (INIS)

    Takano, Genta; Kamei, Hiromasa; Beppu, Seiji

    1998-01-01

    A place of material to be cut is surrounded by an openable/closable box. The material to be cut is cut underwater, and materials generated in this case are removed from the cut portion by a pressurized water jet. The removed materials are sucked and recovered together with water in the box. Among the materials caused by the cutting underwater, solid materials not floating on water are caused to stay in the midway of a sucking and recovering channel. A large sucking force might be required for the entire region of the sucking and recovering channel when sucking and recovering large sized solid materials not floating on water, but even large sized materials can be recovered easily according to the present invention since they are recovered after being sucked and stayed in the midway of the sucking and recovering channel. (N.H.)

  11. Landslide databases for applied landslide impact research: the example of the landslide database for the Federal Republic of Germany

    Science.gov (United States)

    Damm, Bodo; Klose, Martin

    2014-05-01

    This contribution presents an initiative to develop a national landslide database for the Federal Republic of Germany. It highlights structure and contents of the landslide database and outlines its major data sources and the strategy of information retrieval. Furthermore, the contribution exemplifies the database potentials in applied landslide impact research, including statistics of landslide damage, repair, and mitigation. The landslide database offers due to systematic regional data compilation a differentiated data pool of more than 5,000 data sets and over 13,000 single data files. It dates back to 1137 AD and covers landslide sites throughout Germany. In seven main data blocks, the landslide database stores besides information on landslide types, dimensions, and processes, additional data on soil and bedrock properties, geomorphometry, and climatic or other major triggering events. A peculiarity of this landslide database is its storage of data sets on land use effects, damage impacts, hazard mitigation, and landslide costs. Compilation of landslide data is based on a two-tier strategy of data collection. The first step of information retrieval includes systematic web content mining and exploration of online archives of emergency agencies, fire and police departments, and news organizations. Using web and RSS feeds and soon also a focused web crawler, this enables effective nationwide data collection for recent landslides. On the basis of this information, in-depth data mining is performed to deepen and diversify the data pool in key landslide areas. This enables to gather detailed landslide information from, amongst others, agency records, geotechnical reports, climate statistics, maps, and satellite imagery. Landslide data is extracted from these information sources using a mix of methods, including statistical techniques, imagery analysis, and qualitative text interpretation. The landslide database is currently migrated to a spatial database system

  12. Status on underwater plasma arc cutting in KHI, 3

    International Nuclear Information System (INIS)

    Abe, Tadashi; Aota, Toshiichi; Nishizaki, Tadashi; Nakayama, Shigeru; Yamashita, Seiji

    1983-01-01

    In Kawasaki Heavy Industries, Ltd., the development of a remote dismantling system by underwater plasma arc cutting process has been advanced, expecting its application to the dismantling and removal of nuclear reactor facilities. In the previous two reports, the fundamental experimental results such as the comparison of the cutting capability in air and in water were shown, but this time, the remote automatic cutting of wedge-shaped specimens was carried out, using a newly installed manipulator for underwater works, therefore its outline is reported. Also the cutting experiment by overhead position and vertical position was performed by using the same equipment, and comparison was made with the cutting capability by downhand and horizontal positions. It is important to grasp the cutting characteristics in the case of upward advancing and downward advancing cuttings by overhead and vertical positions when the cutting of pressure vessels and horizontal pipes into rings is supposed. The experimental apparatus, the cutting conditions, the testing method and the test results of the cutting capability test, the test of changing direction during cutting, and the remote cutting of pipes into rings are described. The underwater plasma arc cutting can cut all metals, the cutting speed is relatively high, and the apparatus is simple and compact. (Kako, I.)

  13. Application of Physically based landslide susceptibility models in Brazil

    Science.gov (United States)

    Carvalho Vieira, Bianca; Martins, Tiago D.

    2017-04-01

    Shallow landslides and floods are the processes responsible for most material and environmental damages in Brazil. In the last decades, some landslides events induce a high number of deaths (e.g. Over 1000 deaths in one event) and incalculable social and economic losses. Therefore, the prediction of those processes is considered an important tool for land use planning tools. Among different methods the physically based landslide susceptibility models having been widely used in many countries, but in Brazil it is still incipient when compared to other ones, like statistical tools and frequency analyses. Thus, the main objective of this research was to assess the application of some Physically based landslide susceptibility models in Brazil, identifying their main results, the efficiency of susceptibility mapping, parameters used and limitations of the tropical humid environment. In order to achieve that, it was evaluated SHALSTAB, SINMAP and TRIGRS models in some studies in Brazil along with the Geotechnical values, scales, DEM grid resolution and the results based on the analysis of the agreement between predicted susceptibility and the landslide scar's map. Most of the studies in Brazil applied SHALSTAB, SINMAP and to a lesser extent the TRIGRS model. The majority researches are concentrated in the Serra do Mar mountain range, that is a system of escarpments and rugged mountains that extends more than 1,500 km along the southern and southeastern Brazilian coast, and regularly affected by heavy rainfall that generates widespread mass movements. Most part of these studies used conventional topographic maps with scales ranging from 1:2000 to 1:50000 and DEM-grid resolution between 2 and 20m. Regarding the Geotechnical and hydrological values, a few studies use field collected data which could produce more efficient results, as indicated by international literature. Therefore, even though they have enormous potential in the susceptibility mapping, even for comparison

  14. Taiwan's underwater cultural heritage documentation management

    Science.gov (United States)

    Tung, Y.-Y.

    2015-09-01

    Taiwan is an important trading and maritime channels for many countries since ancient time. Numerous relics lie underwater due to weather, wars, and other factors. In the year of 2006, Bureau of Cultural Heritage (BOCH) entrusted the Underwater Archaeological Team of Academia Sinica to execute the underwater archaeological investigation projects. Currently, we verified 78 underwater targets, with 78 site of those had been recognized as shipwrecks sites. Up to date, there is a collection of 638 underwater objects from different underwater archaeological sites. Those artefacts are distributed to different institutions and museums. As very diverse management methods/systems are applied for every individual institution, underwater cultural heritage data such as survey, excavation report, research, etc. are poorly organized and disseminated for use. For better communication regarding to Taiwan's underwater cultural heritage in every level, a universal format of documentation should be established. By comparing the existing checklist used in Taiwan with guidelines that are followed in other countries, a more intact and appropriate underwater cultural heritage condition documentation system can be established and adapted in Taiwan.

  15. Cosmic ray muons and their associated shower particles underwater

    International Nuclear Information System (INIS)

    Anderson, S.N.

    1978-01-01

    The nucleonic contamination of the underwater cosmic ray muon flux is studied as a function of depth. Stacks of Ilford G-5 photographic emulsions were assembled and processed in an underground laboratory (9 hg/cm 2 below sea level). In between the assembly and the development they were exposed, stored in small pressure chambers, at various depths underwater for periods of time up to six months. At each depth approximately 10 cm 3 of emulsion were scanned for stopping particles and nuclear disintegrations. Altogether approximately 2000 stopping muons, 50 stopping mesons, and 200 recoil protons were found and analyzed. Comparison with theories as to how the underground cosmic ray muon beam produces a secondary flux of nuclearly active particles are made. Additionally measurements on the residue flux at 440mwe underground are made. Projected rates from the shallow depth studies are used to analyze the results at large depth. Anomalous particle production is observed at the large depth

  16. Do landslides follow landslides? Insights in path dependency from a multi-temporal landslide inventory

    NARCIS (Netherlands)

    Samia, Jalal; Temme, Arnaud; Bregt, Arnold; Wallinga, Jakob; Guzzetti, Fausto; Ardizzone, Francesca; Rossi, Mauro

    2017-01-01

    Landslides are a major category of natural disasters, causing loss of lives, livelihoods and property. The critical roles played by triggering (such as extreme rainfall and earthquakes), and intrinsic factors (such as slope steepness, soil properties and lithology) have previously successfully

  17. Underwater Coatings for Contamination Control

    International Nuclear Information System (INIS)

    Julia L. Tripp; Kip Archibald; Ann-Marie Phillips; Joseph Campbell

    2004-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is deactivating several fuel storage basins. Airborne contamination is a concern when the sides of the basins are exposed and allowed to dry during water removal. One way of controlling this airborne contamination is to fix the contamination in place while the pool walls are still submerged. There are many underwater coatings available on the market that are used in marine, naval and other applications. A series of tests were run to determine whether the candidate underwater fixatives are easily applied and adhere well to the substrates (pool wall materials) found in INEEL fuel pools. The four pools considered included (1) Test Area North (TAN-607) with epoxy painted concrete walls; (2) Idaho Nuclear Technology and Engineering Center (INTEC) (CPP-603) with bare concrete walls; (3) Materials Test Reactor (MTR) Canal with stainless steel lined concrete walls; and (4) Power Burst Facility (PBF-620) with stainless steel lined concrete walls on the bottom and epoxy painted carbon steel lined walls on the upper portions. Therefore, the four materials chosen for testing included bare concrete, epoxy painted concrete, epoxy painted carbon steel, and stainless steel. The typical water temperature of the pools varies from 55 F to 80 F dependent on the pool and the season. These tests were done at room temperature. The following criteria were used during this evaluation. The underwater coating must: (1) Be easy to apply; (2) Adhere well to the four surfaces of interest; (3) Not change or have a negative impact on water chemistry or clarity; (4) Not be hazardous in final applied form; and (5) Be proven in other underwater applications. In addition, it is desirable for the coating to have a high pigment or high cross-link density to prevent radiation from penetrating. This paper will detail the testing completed and the test results. A proprietary two-part, underwater epoxy owned by S. G. Pinney and Associates

  18. Landslide Catastrophes and Disaster Risk Reduction: A GIS Framework for Landslide Prevention and Management

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2010-09-01

    Full Text Available As catastrophic phenomena, landslides often cause large-scale socio-economic destruction including loss of life, economic collapse, and human injury. In addition, landslides can impair the functioning of critical infrastructure and destroy cultural heritage and ecological systems. In order to build a more landslide resistant and resilient society, an original GIS-based decision support system is put forth in order to help emergency managers better prepare for and respond to landslide disasters. The GIS-based landslide monitoring and management system includes a Central Repository System (CRS, Disaster Data Processing Modules (DDPM, a Command and Control System (CCS and a Portal Management System (PMS. This architecture provides valuable insights into landslide early warning, landslide risk and vulnerability analyses, and critical infrastructure damage assessments. Finally, internet-based communications are used to support landslide disaster modelling, monitoring and management.

  19. Broadband analysis of landslides seismic signal : example of the Oso-Steelhead landslide and other recent events

    Science.gov (United States)

    Hibert, C.; Stark, C. P.; Ekstrom, G.

    2014-12-01

    Landslide failures on the scale of mountains are spectacular, dangerous, and spontaneous, making direct observations hard to obtain. Measurement of their dynamic properties during runout is a high research priority, but a logistical and technical challenge. Seismology has begun to help in several important ways. Taking advantage of broadband seismic stations, recent advances now allow: (i) the seismic detection and location of large landslides in near-real-time, even for events in very remote areas that may have remain undetected, such as the 2014 Mt La Perouse supraglacial failure in Alaska; (ii) inversion of long-period waves generated by large landslides to yield an estimate of the forces imparted by the bulk accelerating mass; (iii) inference of the landslide mass, its center-of-mass velocity over time, and its trajectory.Key questions persist, such as: What can the short-period seismic data tell us about the high-frequency impacts taking place within the granular flow and along its boundaries with the underlying bedrock? And how does this seismicity relate to the bulk acceleration of the landslide and the long-period seismicity generated by it?Our recent work on the joint analysis of short- and long-period seismic signals generated by past and recent events, such as the Bingham Canyon Mine and the Oso-Steelhead landslides, provides new insights to tackle these issues. Qualitative comparison between short-period signal features and kinematic parameters inferred from long-period surface wave inversion helps to refine interpretation of the source dynamics and to understand the different mechanisms for the origin of the short-period wave radiation. Our new results also suggest that quantitative relationships can be derived from this joint analysis, in particular between the short-period seismic signal envelope and the inferred momentum of the center-of-mass. In the future, these quantitative relationships may help to constrain and calibrate parameters used in

  20. Physical Modeling of Landslide Generated Tsunamis and the 50th Anniversary of the Vajont Dam Disaster

    Science.gov (United States)

    McFall, Brian C.; Mohammed, Fahad; Fritz, Hermann M.

    2013-04-01

    deployed to simulate landslides with varying geometry and kinematics. The LTG consists of a sliding box filled with up to 1,350 kg of naturally rounded river gravel which is accelerated by means of four pneumatic pistons down the 2H: 1V slope, launching the granular landslide towards the water at velocities of up to 5 m/s. Topographical and bathymetric features can greatly affect wave characteristics and runup heights. Landslide tsunamis are studied in different topographic and bathymetric configurations: far field propagation and runup, a narrow fjord and curved headland configurations, and a conical island setting representing landslides off an island or a volcanic flank collapse. Water surface elevations were measured using an array of resistance wave gauges. The granulate landslide shape and front velocity were measured using above and underwater cameras. Three-dimensional landslide surfaces with surface velocities were reconstruction using a stereo particle image velocimetry (PIV) setup. The speckled pattern on the surface of the granular landslide allows for cross-correlation based PIV analysis. Wave runup was measured with resistance wave gauges along the slope and verified with video image processing. The measured landslide and tsunami data serve to validate and advance 3-dimensional numerical landslide tsunami and prediction models.

  1. Landslide susceptibility zonation in part of Tehri reservoir region

    Indian Academy of Sciences (India)

    Fuzzy logic; landslide susceptibility; frequency ratio. ... zones using landslide frequency ratio and fuzzy logic in GIS environment is presented for Tehri ... Temporal remote sensing data was used to prepare important landslide causative factor ...

  2. Landslides Hazard Assessment Using Different Approaches

    Directory of Open Access Journals (Sweden)

    Coman Cristina

    2017-06-01

    Full Text Available Romania represents one of Europe’s countries with high landslides occurrence frequency. Landslide hazard maps are designed by considering the interaction of several factors which, by their joint action may affect the equilibrium state of the natural slopes. The aim of this paper is landslides hazard assessment using the methodology provided by the Romanian national legislation and a very largely used statistical method. The final results of these two analyses are quantitative or semi-quantitative landslides hazard maps, created in geographic information system environment. The data base used for this purpose includes: geological and hydrogeological data, digital terrain model, hydrological data, land use, seismic action, anthropic action and an inventory of active landslides. The GIS landslides hazard models were built for the geographical area of the Iasi city, located in the north-east side of Romania.

  3. Landslide hazard and risk assessment using semi-automatically created landslide inventories

    NARCIS (Netherlands)

    Martinez, J.A.; van Westen, C.J.; Kerle, N.; Jetten, V.G.; Kumar, K.V.

    2013-01-01

    Landslide inventories prepared manually from remote sensing data or through field surveys have shown to be useful for preparation of landslide susceptibility and hazard maps. Recent literatures show several studies have been carried out to prepare landslide inventories from satellite data by

  4. Investigation of the Propagation Characteristics of Underwater Shock Waves in Underwater Drilling Blasting

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2018-01-01

    Full Text Available During the first-stage project of the main channel of Ningbo-Zhoushan Port’s Shipu Harbor, underwater shock waves were monitored. By analyzing a typical measured pressure time history curve, the characteristics of underwater shock waves in an engineering context were obtained. We obtained a traditional exponential attenuation formula for underwater shock waves based on the measured data, simplified the model of underwater drilling blasting based on engineering practice, deduced a revised formula for underwater shock wave peak overpressure on the basis of dimensional analysis, established a linear fitting model, and obtained the undetermined coefficients of the revised formula using a linear regression analysis. In addition, the accuracies of the two formulas used to predict underwater shock wave peak overpressure and the significance order of influence and influence mechanism of factors included in the revised formula on the underwater shock wave peak overpressure were discussed.

  5. Real Estate Development at Landslides

    Directory of Open Access Journals (Sweden)

    Hakan Kaya

    2015-03-01

    Full Text Available The desire to grow and develop at a fast pace without regard for scientific conditions is an obsession, particularly of developing countries like Turkey. However, any development achieved in ignorance of the scientific process and sustainability leads to higher costs as well as serious losses in terms of human and other life. Our area of study is one of the best examples of the negative effects of this type of development. The area under study covers the landslide sites located on the southwest of Istanbul (the Büyükçekmece, Beylikdüzü, Avcılar and Esenyurt districts which is the largest city in Turkey. In this study, we tried to probe into the real estate development process of the landslide sites, the measures taken or failed to be taken in this process, the humanitarian and economic conditions involved and the things required to be done.

  6. Landslide in claystone derived soil

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, A M

    1979-07-01

    This article describes a landslide that occured in the Pittsburgh area in a soil deposit derived from the Pittsburgh Redbed Claystone when a cut was made at the toe. (The Pittsburgh Redbed Claystone is the parent of much of the soil material involved in the Pittsburgh area and occurs about mid way between the base of Pittsburgh Coal and the top of the Upper Freepost Coal). The topography before the slide was known and the geometry of the slide mass was established. Slope stability analysis indicated that the landslide could have been predicted using effective stress-shear-strength parameters of s of 12 to 13 and c is 0, where s is angle of shearing resistance and c is cohesion intercept in terms of effective stresses.

  7. Time Series UAV Image-Based Point Clouds for Landslide Progression Evaluation Applications.

    Science.gov (United States)

    Al-Rawabdeh, Abdulla; Moussa, Adel; Foroutan, Marzieh; El-Sheimy, Naser; Habib, Ayman

    2017-10-18

    Landslides are major and constantly changing threats to urban landscapes and infrastructure. It is essential to detect and capture landslide changes regularly. Traditional methods for monitoring landslides are time-consuming, costly, dangerous, and the quality and quantity of the data is sometimes unable to meet the necessary requirements of geotechnical projects. This motivates the development of more automatic and efficient remote sensing approaches for landslide progression evaluation. Automatic change detection involving low-altitude unmanned aerial vehicle image-based point clouds, although proven, is relatively unexplored, and little research has been done in terms of accounting for volumetric changes. In this study, a methodology for automatically deriving change displacement rates, in a horizontal direction based on comparisons between extracted landslide scarps from multiple time periods, has been developed. Compared with the iterative closest projected point (ICPP) registration method, the developed method takes full advantage of automated geometric measuring, leading to fast processing. The proposed approach easily processes a large number of images from different epochs and enables the creation of registered image-based point clouds without the use of extensive ground control point information or further processing such as interpretation and image correlation. The produced results are promising for use in the field of landslide research.

  8. Fuzzy Shannon Entropy: A Hybrid GIS-Based Landslide Susceptibility Mapping Method

    Directory of Open Access Journals (Sweden)

    Majid Shadman Roodposhti

    2016-09-01

    Full Text Available Assessing Landslide Susceptibility Mapping (LSM contributes to reducing the risk of living with landslides. Handling the vagueness associated with LSM is a challenging task. Here we show the application of hybrid GIS-based LSM. The hybrid approach embraces fuzzy membership functions (FMFs in combination with Shannon entropy, a well-known information theory-based method. Nine landslide-related criteria, along with an inventory of landslides containing 108 recent and historic landslide points, are used to prepare a susceptibility map. A random split into training (≈70% and testing (≈30% samples are used for training and validation of the LSM model. The study area—Izeh—is located in the Khuzestan province of Iran, a highly susceptible landslide zone. The performance of the hybrid method is evaluated using receiver operating characteristics (ROC curves in combination with area under the curve (AUC. The performance of the proposed hybrid method with AUC of 0.934 is superior to multi-criteria evaluation approaches using a subjective scheme in this research in comparison with a previous study using the same dataset through extended fuzzy multi-criteria evaluation with AUC value of 0.894, and was built on the basis of decision makers’ evaluation in the same study area.

  9. Probabilistic forecasting of shallow, rainfall-triggered landslides using real-time numerical weather predictions

    Directory of Open Access Journals (Sweden)

    J. Schmidt

    2008-04-01

    Full Text Available A project established at the National Institute of Water and Atmospheric Research (NIWA in New Zealand is aimed at developing a prototype of a real-time landslide forecasting system. The objective is to predict temporal changes in landslide probability for shallow, rainfall-triggered landslides, based on quantitative weather forecasts from numerical weather prediction models. Global weather forecasts from the United Kingdom Met Office (MO Numerical Weather Prediction model (NWP are coupled with a regional data assimilating NWP model (New Zealand Limited Area Model, NZLAM to forecast atmospheric variables such as precipitation and temperature up to 48 h ahead for all of New Zealand. The weather forecasts are fed into a hydrologic model to predict development of soil moisture and groundwater levels. The forecasted catchment-scale patterns in soil moisture and soil saturation are then downscaled using topographic indices to predict soil moisture status at the local scale, and an infinite slope stability model is applied to determine the triggering soil water threshold at a local scale. The model uses uncertainty of soil parameters to produce probabilistic forecasts of spatio-temporal landslide occurrence 48~h ahead. The system was evaluated for a damaging landslide event in New Zealand. Comparison with landslide densities estimated from satellite imagery resulted in hit rates of 70–90%.

  10. Quick clay and landslides of clayey soils.

    Science.gov (United States)

    Khaldoun, Asmae; Moller, Peder; Fall, Abdoulaye; Wegdam, Gerard; De Leeuw, Bert; Méheust, Yves; Otto Fossum, Jon; Bonn, Daniel

    2009-10-30

    We study the rheology of quick clay, an unstable soil responsible for many landslides. We show that above a critical stress the material starts flowing abruptly with a very large viscosity decrease caused by the flow. This leads to avalanche behavior that accounts for the instability of quick clay soils. Reproducing landslides on a small scale in the laboratory shows that an additional factor that determines the violence of the slides is the inhomogeneity of the flow. We propose a simple yield stress model capable of reproducing the laboratory landslide data, allowing us to relate landslides to the measured rheology.

  11. Radiometric method and abnormal explanation of landslide survey

    International Nuclear Information System (INIS)

    Ye Shulin; Sun Zhanxue; Luo Liangsheng

    2003-01-01

    Radioactivity exploration mechanism of landslide is researched. Radioactive measure technical and its anomaly explanation models of application is introduced. Test verification result of landslide body geological form (boundary and landslide body thickness) in the district of Wanzhou 233 of Chongqing city ancients landslide and the Yunyang new county Zhaiba landslide shows, it can be used in determining the body boundary (reason) line, investigating the underground current direction and landslide body moving direction, explaining that calculation of weathered zone thickness of landslide body. It can also increase the geological effect of landslide exploration in adaption with geology and drilling

  12. Three-dimensional surface deformation derived from airborne interferometric UAVSAR: Application to the Slumgullion Landslide

    Science.gov (United States)

    Delbridge, Brent G.; Burgmann, Roland; Fielding, Eric; Hensley, Scott; Schulz, William

    2016-01-01

    In order to provide surface geodetic measurements with “landslide-wide” spatial coverage, we develop and validate a method for the characterization of 3-D surface deformation using the unique capabilities of the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) airborne repeat-pass radar interferometry system. We apply our method at the well-studied Slumgullion Landslide, which is 3.9 km long and moves persistently at rates up to ∼2 cm/day. A comparison with concurrent GPS measurements validates this method and shows that it provides reliable and accurate 3-D surface deformation measurements. The UAVSAR-derived vector velocity field measurements accurately capture the sharp boundaries defining previously identified kinematic units and geomorphic domains within the landslide. We acquired data across the landslide during spring and summer and identify that the landslide moves more slowly during summer except at its head, presumably in response to spatiotemporal variations in snowmelt infiltration. In order to constrain the mechanics controlling landslide motion from surface velocity measurements, we present an inversion framework for the extraction of slide thickness and basal geometry from dense 3-D surface velocity fields. We find that the average depth of the Slumgullion Landslide is 7.5 m, several meters less than previous depth estimates. We show that by considering a viscoplastic rheology, we can derive tighter theoretical bounds on the rheological parameter relating mean horizontal flow rate to surface velocity. Using inclinometer data for slow-moving, clay-rich landslides across the globe, we find a consistent value for the rheological parameter of 0.85 ± 0.08.

  13. ROV Based Underwater Blurred Image Restoration

    Institute of Scientific and Technical Information of China (English)

    LIU Zhishen; DING Tianfu; WANG Gang

    2003-01-01

    In this paper, we present a method of ROV based image processing to restore underwater blurry images from the theory of light and image transmission in the sea. Computer is used to simulate the maximum detection range of the ROV under different water body conditions. The receiving irradiance of the video camera at different detection ranges is also calculated. The ROV's detection performance under different water body conditions is given by simulation. We restore the underwater blurry images using the Wiener filter based on the simulation. The Wiener filter is shown to be a simple useful method for underwater image restoration in the ROV underwater experiments. We also present examples of restored images of an underwater standard target taken by the video camera in these experiments.

  14. Quantum imaging for underwater arctic navigation

    Science.gov (United States)

    Lanzagorta, Marco

    2017-05-01

    The precise navigation of underwater vehicles is a difficult task due to the challenges imposed by the variable oceanic environment. It is particularly difficult if the underwater vehicle is trying to navigate under the Arctic ice shelf. Indeed, in this scenario traditional navigation devices such as GPS, compasses and gyrocompasses are unavailable or unreliable. In addition, the shape and thickness of the ice shelf is variable throughout the year. Current Arctic underwater navigation systems include sonar arrays to detect the proximity to the ice. However, these systems are undesirable in a wartime environment, as the sound gives away the position of the underwater vehicle. In this paper we briefly describe the theoretical design of a quantum imaging system that could allow the safe and stealthy navigation of underwater Arctic vehicles.

  15. LAKE BAIKAL: Underwater neutrino detector

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    A new underwater detector soon to be deployed in Lake Baikal in Siberia, the world's deepest lake with depths down to 1.7 kilometres, could help probe the deepest mysteries of physics. One of the big unsolved problems of astrophysics is the origin of very energetic cosmic rays. However there are many ideas on how particles could be accelerated by exotic concentrations of matter and provide the majority of the Galaxy's high energy particles. Clarification would come from new detectors picking up the energetic photons and neutrinos from these sources

  16. Landslide Economics: Concepts and Case Studies

    Science.gov (United States)

    Klose, Martin; Damm, Bodo

    2015-04-01

    Landslide economics is vital for fundamental understanding of landslide risk as dealing with two important topics: (i) impact assessment, either as damage statistics or cost modeling, and (ii) vulnerability assessment, i.e., the study of exposure, sensitivity, and resilience to landslide damage, ideally from both sociotechnical and financial perspective (e.g., Crovelli and Coe, 2009; Wills et al., 2014). Many aspects addressed in landslide economics have direct influence on landslide risk, including: (i) human activity is often a major causative factor of landslides, not only by predisposing or triggering them, but also as a result of inadequate (low-cost) landslide mitigation; (ii) the level of tolerable or acceptable risk, a measure driving a large part of landslide costs in industrialized countries, is highly variable, differing between individuals, public or private organizations, and societies, with its nature being to change over time; and (iii) decision makers are faced with finding the right balance in landslide mitigation, thus need to weight diverse geological and socioeconomic factors that control its effectiveness in both technical and financial terms (e.g., Klose et al., 2014a). A large part of the complexity in assessing landslide risk as measured by economic costs is due to unique problems in understanding of (i) what types of landslide damage affect human activity and infrastructure in which way, (ii) how society contributes and responds to various kinds of damage, and (iii) how landslide damage is valued in monetary terms. Landslide economics shows the potential to take account of these sociocultural factors to the benefit of risk analysis (e.g., Klose et al., 2014b). The present contribution introduces local and regional case studies in which different economic issues of landslide risk are highlighted using the example of public infrastructures in NW Germany. A special focus is on the following topics: (i) risk culture and created risk, (ii

  17. Modelling the landslide area and sediment discharge in landslide-dominated region, Taiwan

    Science.gov (United States)

    Teng, Tse-Yang; Huang, -Chuan, Jr.; Lee, Tsung-Yu; Chen, Yi-Chin; Jan, Ming-Young; Liu, Cheng-Chien

    2016-04-01

    Many studies have indicated the magnified increase of rainfall intensification, landsliding and subsequent sediment discharge due to the global warming effect. However, a few works synthesized the "chain reaction" from rainfall, landsliding to sediment discharge at the same time because of the limited observations of landslide area and sediment discharge during episodes. Besides, the sediment transport strongly depends on the sediment supply and stream power which interact conditionally. In this study, our goal is to build a model that can simulate time-series landslide area and subsequent sediment discharge. The synthesized model would be applied onto Tsengwen Reservoir watershed in southern Taiwan, where lots of landslides occur every year. Unlike other studies, our landslide model considers not only rainfall effect but also previous landslide status, which may be applied to landslide-dominated regions and explains the irrelevant relationship between typhoon rainfall and landslide area. Furthermore, our sediment transport model considers the sediment budget which couples transport- and supply-limited of sediment. The result shows that the simulated time-series landslide area and the sediment transport agree with the observation and the R2 are 0.88 and 0.56, respectively. Reactivated ratio of previous landslide area is 72.7% which indicates the high reoccurrence of historical landslide in landslide-dominated regions. We divided nine historical typhoons into three periods to demonstrate the effect of sediment supply/supply-limited condition upon sediment transport. For instance, the rainfall is smaller in period 3 than in period 1 but the sediment transport is higher in period 3 due to the catastrophic landslide (typhoon Morakot) during period 2. We argue that quantifying sediment transport should couple not only with water discharge but sediment budget, which is rarely considered in calculating sediment transport. Moreover, the parameterization of the controlling

  18. A new technique for robot vision in autonomous underwater vehicles using the color shift in underwater imaging

    Science.gov (United States)

    2017-06-01

    FOR ROBOT VISION IN AUTONOMOUS UNDERWATER VEHICLES USING THE COLOR SHIFT IN UNDERWATER IMAGING by Jake A. Jones June 2017 Thesis Advisor...techniques to determine the distances from each pixel to the camera. 14. SUBJECT TERMS unmanned undersea vehicles (UUVs), autonomous ... AUTONOMOUS UNDERWATER VEHICLES USING THE COLOR SHIFT IN UNDERWATER IMAGING Jake A. Jones Lieutenant Commander, United States Navy B.S

  19. Landsliding and its multiscale influence on mountainscapes

    NARCIS (Netherlands)

    Restrepo, C.; Walker, L.R.; Bussmann, R.; Claessens, L.

    2009-01-01

    Landsliding is a complex process that modifies mountainscapes worldwide. Its severe and sometimes long-lasting negative effects contrast with the less-documented positive effects on ecosystems, raising numerous questions about the dual role of landsliding, the feedbacks between biotic and geomorphic

  20. Dynamics and Control of Underwater Gliders I: Steady Motions

    OpenAIRE

    Mahmoudian, N.; Geisbert, J.; Woolsey, C.

    2007-01-01

    This paper describes analysis of steady motions for underwater gliders, a type of highly efficient underwater vehicle which uses gravity for propulsion. Underwater gliders are winged underwater vehicles which locomote by modulating their buoyancy and their attitude. Several such vehicles have been developed and have proven their worth as efficient long-distance, long-duration ocean sampling platforms. To date, the primary emphasis in underwater glider development has been on locomotive effici...

  1. Landslide research in the South Wales coalfield

    International Nuclear Information System (INIS)

    Bentley, S.P.; Siddle, H.J.

    1996-01-01

    The areal density of landslides in the coalfield of South Wales is one of the highest in the UK. During the past 100 years landsliding has had considerable impact, causing structural damage and loss of life. Most of the landslides were initiated under periglacial conditions but many became reactivated due to the activities of man, particularly, during the late 19th century when widespread urban and industrial development commenced in the Welsh valleys. A number of the area's larger landslides are first-time slides which occurred during the past 100 years. This paper sets out to chart the history of landslide research in the coalfield, which began through work by mining engineers. 47 refs., 6 figs., 2 tabs

  2. Assessing Landslide Hazard Using Artificial Neural Network

    DEFF Research Database (Denmark)

    Farrokhzad, Farzad; Choobbasti, Asskar Janalizadeh; Barari, Amin

    2011-01-01

    failure" which is main concentration of the current research and "liquefaction failure". Shear failures along shear planes occur when the shear stress along the sliding surfaces exceed the effective shear strength. These slides have been referred to as landslide. An expert system based on artificial...... and factor of safety. It can be stated that the trained neural networks are capable of predicting the stability of slopes and safety factor of landslide hazard in study area with an acceptable level of confidence. Landslide hazard analysis and mapping can provide useful information for catastrophic loss...... reduction, and assist in the development of guidelines for sustainable land use planning. The analysis is used to identify the factors that are related to landslides and to predict the landslide hazard in the future based on such a relationship....

  3. Swarm Underwater Acoustic 3D Localization: Kalman vs Monte Carlo

    Directory of Open Access Journals (Sweden)

    Sergio Taraglio

    2015-07-01

    Full Text Available Two three-dimensional localization algorithms for a swarm of underwater vehicles are presented. The first is grounded on an extended Kalman filter (EKF scheme used to fuse some proprioceptive data such as the vessel's speed and some exteroceptive measurements such as the time of flight (TOF sonar distance of the companion vessels. The second is a Monte Carlo particle filter localization processing the same sensory data suite. The results of several simulations using the two approaches are presented, with comparison. The case of a supporting surface vessel is also considered. An analysis of the robustness of the two approaches against some system parameters is given.

  4. Landslides risk mitigation along lifelines

    Science.gov (United States)

    Capparelli, G.; Versace, P.; Artese, G.; Costanzo, S.; Corsonello, P.; Di Massa, G.; Mendicino, G.; Maletta, D.; Leone, S.; Muto, F.; Senatore, A.; Troncone, A.; Conte, E.; Galletta, D.

    2012-04-01

    The paper describes an integrated, innovative and efficient solution to manage risk issues associated to landslides interfering with infrastructures. The research project was submitted for financial support in the framework of the Multi -regional Operational Programme 2007-13: Research and Competitiveness funded by the Ministry of Research (MIUR) and co-funded by the European Regional Development Fund. The project is aimed to developing and demonstrating an integrated system of monitoring, early warning and mitigation of landslides risk. The final goal is to timely identify potentially dangerous landslides, and to activate all needed impact mitigation measures, including the information delivery. The essential components of the system include monitoring arrays, telecommunication networks and scenario simulation models, assisted by a data acquisition and processing centre, and a traffic control centres. Upon integration, the system will be experimentally validated and demonstrated over ca. 200 km of three highway sections, crossing the regions of Campania, Basilicata, Calabria and Sicily. Progress in the state of art is represented by the developments in the field of environmental monitoring and in the mathematical modeling of landslides and by the development of services for traffic management. The approach to the problem corresponds to a "systemic logics" where each developed component foresees different interchangeable technological solutions to maximize the operational flexibility. The final system may be configured as a simple to complex structure, including different configurations to deal with different scenarios. Specifically, six different monitoring systems will be realized: three "point" systems, made up of a network of locally measuring sensors, and three "area" systems to remotely measure the displacements of large areas. Each network will be fully integrated and connected to a unique data transmission system. Standardized and shared procedures for the

  5. 4th Pacific Rim Underwater Acoustics Conference

    CERN Document Server

    Xu, Wen; Cheng, Qianliu; Zhao, Hangfang

    2016-01-01

    These proceedings are a collection of 16 selected scientific papers and reviews by distinguished international experts that were presented at the 4th Pacific Rim Underwater Acoustics Conference (PRUAC), held in Hangzhou, China in October 2013. The topics discussed at the conference include internal wave observation and prediction; environmental uncertainty and coupling to sound propagation; environmental noise and ocean dynamics; dynamic modeling in acoustic fields; acoustic tomography and ocean parameter estimation; time reversal and matched field processing; underwater acoustic localization and communication as well as measurement instrumentations and platforms. These proceedings provide insights into the latest developments in underwater acoustics, promoting the exchange of ideas for the benefit of future research.

  6. Constraining relationships between rainfall and landsliding with satellite derived rainfall measurements and landslide inventories.

    Science.gov (United States)

    Marc, Odin; Malet, Jean-Philippe; Stumpf, Andre; Gosset, Marielle

    2017-04-01

    In mountainous and hilly regions, landslides are an important source of damage and fatalities. Landsliding correlates with extreme rainfall events and may increase with climate change. Still, how precipitation drives landsliding at regional scales is poorly understood quantitatively in part because constraining simultaneously landsliding and rainfall across large areas is challenging. By combining optical images acquired from satellite observation platforms and rainfall measurements from satellite constellations we are building a database of landslide events caused by with single storm events. We present results from storm-induced landslides from Brazil, Taiwan, Micronesia, Central America, Europe and the USA. We present scaling laws between rainfall metrics derived by satellites (total rainfall, mean intensity, antecedent rainfall, ...) and statistical descriptors of landslide events (total area and volume, size distribution, mean runout, ...). Total rainfall seems to be the most important parameter driving non-linearly the increase in total landslide number, and area and volume. The maximum size of bedrock landslides correlates with the total number of landslides, and thus with total rainfall, within the limits of available topographic relief. In contrast, the power-law scaling exponent of the size distribution, controlling the relative abundance of small and large landslides, appears rather independent of the rainfall metrics (intensity, duration and total rainfall). These scaling laws seem to explain both the intra-storm pattern of landsliding, at the scale of satellite rainfall measurements ( 25kmx25km), and the different impacts observed for various storms. Where possible, we evaluate the limits of standard rainfall products (TRMM, GPM, GSMaP) by comparing them to in-situ data. Then we discuss how slope distribution and other geomorphic factors (lithology, soil presence,...) modulate these scaling laws. Such scaling laws at the basin scale and based only on a

  7. Birth, growth and progresses through the last twelve years of a regional scale landslide warning system

    Science.gov (United States)

    Fanti, Riccardo; Segoni, Samuele; Rosi, Ascanio; Lagomarsino, Daniela; Catani, Filippo

    2017-04-01

    recordings and landslides occurred) and to use them to define more robust relationships between rainfalls and landslide triggering, with the final aim to increase the forecasting effectiveness of the warning system. The updated rainfall and landslide database were used to periodically perform a quantitative validation and to analyze the errors affecting the system forecasts. The errors characterization was used to implement a continuous process of updating and modification of SIGMA, that included: - Main model upgrades (generalization from a pilot test site to the whole Emilia Romagna region; calibration against well documented landslide events to define specific σ levels for each territorial units; definition of different alert levels according to the number of expected - Ordinary updates (periodically, the new landslide and rainfall data were used to re-calibrate the thresholds, taking into account a more robust sample). - Model tuning (set up of the optimal version of the decisional algorithm, including different definitions of "long" and "short" periods; selection of the optimal reference rain gauge for each Territorial Unit; modification of the boundaries of some territorial - Additional features (definition of a module that takes into account the effect of snow melt and snow accumulation; coupling with a landslide susceptibility model to improve the spatial accuracy of the model). - Various performance tests (including the comparison with alternate versions of SIGMA or with thresholds based on rainfall intensity and duration). This process has led to an evolution of the warning system and to a documented improvement of its forecasting effectiveness. Landslide forecasting at regional scale is a very complex task, but as time passes by and with the systematic gathering of new substantial data and the continuous progresses of research, uncertainties can be progressively reduced and a warning system can be set that increases its performances and reliability with time.

  8. Landslides in the area of the Jastrzebie town protective pillar

    Energy Technology Data Exchange (ETDEWEB)

    Rybicki, S

    1986-01-01

    Analyzes 76 landslides in the area of the safety pillar of Jastrzebie in the Rybnik coal region. Of 76 landslides 60% fell on natural slopes with an angle of 25-50 degrees, 22% on natural slopes with a 5-25 degree angle, 10% on man-made cuts and 8% on embankments. About 78% of the landslides was associated with water bearing layers. Of the 76 landslides 32 were situated in the safety pillar and 44 close to the pillar. Thirty-three landslides were closely associated with underground mining: 30 landslides were caused by longwall mining (landslide position was related to working face position), a further 3 were associated with mining in general. Statistical data on landslides associated with underground coal mining are analyzed: landslide area, angle of slope inclination, height, landslide range, water conditions, types of soils, types of mining areas classified according to effects of mining damage. 8 refs.

  9. Unmanned aerial vehicle (UAV)-based monitoring of a landslide: Gallenzerkogel landslide (Ybbs-Lower Austria) case study.

    Science.gov (United States)

    Eker, Remzi; Aydın, Abdurrahim; Hübl, Johannes

    2017-12-19

    In the present study, UAV-based monitoring of the Gallenzerkogel landslide (Ybbs, Lower Austria) was carried out by three flight missions. High-resolution digital elevation models (DEMs), orthophotos, and density point clouds were generated from UAV-based aerial photos via structure-from-motion (SfM). According to ground control points (GCPs), an average of 4 cm root mean square error (RMSE) was found for all models. In addition, light detection and ranging (LIDAR) data from 2009, representing the prefailure topography, was utilized as a digital terrain model (DTM) and digital surface model (DSM). First, the DEM of difference (DoD) between the first UAV flight data and the LIDAR-DTM was determined and according to the generated DoD deformation map, an elevation difference of between - 6.6 and 2 m was found. Over the landslide area, a total of 4380.1 m 3 of slope material had been eroded, while 297.4 m 3 of the material had accumulated within the most active part of the slope. In addition, 688.3 m 3 of the total eroded material had belonged to the road destroyed by the landslide. Because of the vegetation surrounding the landslide area, the Multiscale Model-to-Model Cloud Comparison (M3C2) algorithm was then applied to compare the first and second UAV flight data. After eliminating both the distance uncertainty values of higher than 15 cm and the nonsignificant changes, the M3C2 distance obtained was between - 2.5 and 2.5 m. Moreover, the high-resolution orthophoto generated by the third flight allowed visual monitoring of the ongoing control/stabilization work in the area.

  10. Underwater Object Segmentation Based on Optical Features

    Directory of Open Access Journals (Sweden)

    Zhe Chen

    2018-01-01

    Full Text Available Underwater optical environments are seriously affected by various optical inputs, such as artificial light, sky light, and ambient scattered light. The latter two can block underwater object segmentation tasks, since they inhibit the emergence of objects of interest and distort image information, while artificial light can contribute to segmentation. Artificial light often focuses on the object of interest, and, therefore, we can initially identify the region of target objects if the collimation of artificial light is recognized. Based on this concept, we propose an optical feature extraction, calculation, and decision method to identify the collimated region of artificial light as a candidate object region. Then, the second phase employs a level set method to segment the objects of interest within the candidate region. This two-phase structure largely removes background noise and highlights the outline of underwater objects. We test the performance of the method with diverse underwater datasets, demonstrating that it outperforms previous methods.

  11. High-throughput landslide modelling using computational grids

    Science.gov (United States)

    Wallace, M.; Metson, S.; Holcombe, L.; Anderson, M.; Newbold, D.; Brook, N.

    2012-04-01

    physicists and geographical scientists are collaborating to develop methods for providing simple and effective access to landslide models and associated simulation data. Particle physicists have valuable experience in dealing with data complexity and management due to the scale of data generated by particle accelerators such as the Large Hadron Collider (LHC). The LHC generates tens of petabytes of data every year which is stored and analysed using the Worldwide LHC Computing Grid (WLCG). Tools and concepts from the WLCG are being used to drive the development of a Software-as-a-Service (SaaS) platform to provide access to hosted landslide simulation software and data. It contains advanced data management features and allows landslide simulations to be run on the WLCG, dramatically reducing simulation runtimes by parallel execution. The simulations are accessed using a web page through which users can enter and browse input data, submit jobs and visualise results. Replication of the data ensures a local copy can be accessed should a connection to the platform be unavailable. The platform does not know the details of the simulation software it runs, so it is therefore possible to use it to run alternative models at similar scales. This creates the opportunity for activities such as model sensitivity analysis and performance comparison at scales that are impractical using standalone software.

  12. Mechanical-mathematical modeling for landslide process

    Science.gov (United States)

    Svalova, V.

    2009-04-01

    Landslides process is one of the most widespread and dangerous processes in the urbanized territories. In Moscow the landslips occupy about 3 % of the most valuable territory of city. There are near 20 places of deep landslides and some hundreds of shallow landslides in Moscow. In Russia many towns are located near rivers on high coastal sides. There are many churches and historical buildings on high costs of Volga River and Moscow River. The organization of monitoring is necessary for maintenance of normal functioning of city infrastructure in a coastal zone and duly realization of effective protective actions. Last years the landslide process activization took place in Moscow. The right coast of river Moscow on its significant extent within the limits of city Moscow is struck by deep block landslides with depth up to 90 - 100 m which formation occurred in preglacial time with basis of sliding in Callovian-Oxford clays of Jurassic system on 25 - 30 m below modern level of the river . One of landslide sites is on Vorob'evy mountains, on a high slope of the right coast of the river Moscow with height of 65 m. There is a historical monument - «Andreevsky monastery», based in 1648. Also there are the complex of buildings of Presidium of the Russian Academy of Sciences, constructed in 70 - 80th years of 20-th century, bridge with station of underground "Vorob'evy mountain", constructions of sport complexes. Landslide slope is in active condition, and there are many attributes of activization of deep block landslide. In June 2007 a rather big landslide took place there near ski-jump. Another landslide site is in a southeast part of Moscow, occupying the right coast of river Moscow near museum - reserve "Kolomenskoye". The slope in this place has height of 38 - 40 m. Motions of deep landslips have begun from 1960 in connection with construction of collectors. In 70th years of XX century there was a strong activization of a slope with formation of cracks by extent up to

  13. Underwater photogrammetry successful in Spain and France

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Underwater photogrammetry has been used to measure distortions in fuel assembly alignment pins in the upper internals of the Almarez and Dampierre PWRs. Photogrammetry is a three-dimensional precision measurement method using photographic techniques for the on-site measurement phase. On the strength of the operations at the two PWRs, underwater photogrammetry is now considered as a practical and effective technique for dimensional inspection at nuclear plants. (U.K.)

  14. Analysis of rainfall-induced shallow landslides in Jamne and Jaszcze stream valleys (Polish Carpathians – preliminary results

    Directory of Open Access Journals (Sweden)

    Zydroń Tymoteusz

    2016-03-01

    Full Text Available Analysis of rainfall-induced shallow landslides in Jamne and Jaszcze stream valleys (Polish Carpathians - preliminary results. Preliminary shallow landslide susceptibility mapping of the Jamne and Jaszcze stream valleys, located in the Polish Flysch Carpathians, is presented in the paper. For the purpose of mapping, there were used SINMAP and Iverson’s models integrating infiltration and slope stability calculations. The calibration of the used models parameters, obtained from limited field and laboratory tests, was performed using data from 8-9 July 1997, when as a consequence of a very intense rainfall, 94 shallow landslides were observed on meadows and arable lands. A comparison of the slope stability calculation results and the localisation of the noticed shallow landslides showed satisfactory agreement between localisation of the observed and computed unstable areas. However, it was concluded that better simulation results were obtained using Iverson’s model.

  15. 3D Laser Scanner for Underwater Manipulation

    Directory of Open Access Journals (Sweden)

    Albert Palomer

    2018-04-01

    Full Text Available Nowadays, research in autonomous underwater manipulation has demonstrated simple applications like picking an object from the sea floor, turning a valve or plugging and unplugging a connector. These are fairly simple tasks compared with those already demonstrated by the mobile robotics community, which include, among others, safe arm motion within areas populated with a priori unknown obstacles or the recognition and location of objects based on their 3D model to grasp them. Kinect-like 3D sensors have contributed significantly to the advance of mobile manipulation providing 3D sensing capabilities in real-time at low cost. Unfortunately, the underwater robotics community is lacking a 3D sensor with similar capabilities to provide rich 3D information of the work space. In this paper, we present a new underwater 3D laser scanner and demonstrate its capabilities for underwater manipulation. In order to use this sensor in conjunction with manipulators, a calibration method to find the relative position between the manipulator and the 3D laser scanner is presented. Then, two different advanced underwater manipulation tasks beyond the state of the art are demonstrated using two different manipulation systems. First, an eight Degrees of Freedom (DoF fixed-base manipulator system is used to demonstrate arm motion within a work space populated with a priori unknown fixed obstacles. Next, an eight DoF free floating Underwater Vehicle-Manipulator System (UVMS is used to autonomously grasp an object from the bottom of a water tank.

  16. 3D Laser Scanner for Underwater Manipulation.

    Science.gov (United States)

    Palomer, Albert; Ridao, Pere; Youakim, Dina; Ribas, David; Forest, Josep; Petillot, Yvan

    2018-04-04

    Nowadays, research in autonomous underwater manipulation has demonstrated simple applications like picking an object from the sea floor, turning a valve or plugging and unplugging a connector. These are fairly simple tasks compared with those already demonstrated by the mobile robotics community, which include, among others, safe arm motion within areas populated with a priori unknown obstacles or the recognition and location of objects based on their 3D model to grasp them. Kinect-like 3D sensors have contributed significantly to the advance of mobile manipulation providing 3D sensing capabilities in real-time at low cost. Unfortunately, the underwater robotics community is lacking a 3D sensor with similar capabilities to provide rich 3D information of the work space. In this paper, we present a new underwater 3D laser scanner and demonstrate its capabilities for underwater manipulation. In order to use this sensor in conjunction with manipulators, a calibration method to find the relative position between the manipulator and the 3D laser scanner is presented. Then, two different advanced underwater manipulation tasks beyond the state of the art are demonstrated using two different manipulation systems. First, an eight Degrees of Freedom (DoF) fixed-base manipulator system is used to demonstrate arm motion within a work space populated with a priori unknown fixed obstacles. Next, an eight DoF free floating Underwater Vehicle-Manipulator System (UVMS) is used to autonomously grasp an object from the bottom of a water tank.

  17. TRIGRS Application for landslide susceptibility mapping

    Science.gov (United States)

    Sugiarti, K.; Sukristiyanti, S.

    2018-02-01

    Research on landslide susceptibility has been carried out using several different methods. TRIGRS is a modeling program for landslide susceptibility by considering pore water pressure changes due to infiltration of rainfall. This paper aims to present a current state-of-the-art science on the development and application of TRIGRS. Some limitations of TRIGRS, some developments of it to improve its modeling capability, and some examples of the applications of some versions of it to model the effect of rainfall variation on landslide susceptibility are reviewed and discussed.

  18. Distributed optical fibre sensing for early detection of shallow landslides triggering.

    Science.gov (United States)

    Schenato, Luca; Palmieri, Luca; Camporese, Matteo; Bersan, Silvia; Cola, Simonetta; Pasuto, Alessandro; Galtarossa, Andrea; Salandin, Paolo; Simonini, Paolo

    2017-10-31

    A distributed optical fibre sensing system is used to measure landslide-induced strains on an optical fibre buried in a large scale physical model of a slope. The fibre sensing cable is deployed at the predefined failure surface and interrogated by means of optical frequency domain reflectometry. The strain evolution is measured with centimetre spatial resolution until the occurrence of the slope failure. Standard legacy sensors measuring soil moisture and pore water pressure are installed at different depths and positions along the slope for comparison and validation. The evolution of the strain field is related to landslide dynamics with unprecedented resolution and insight. In fact, the results of the experiment clearly identify several phases within the evolution of the landslide and show that optical fibres can detect precursory signs of failure well before the collapse, paving the way for the development of more effective early warning systems.

  19. Fostering the uptake of satellite Earth Observation data for landslide hazard understanding: the CEOS Landslide Pilot

    Science.gov (United States)

    Kirschbaum, Dalia; Malet, Jean-Philippe; Roessner, Sigrid

    2017-04-01

    Landslides occur around the world, on every continent, and play an important role in the evolution of landscapes. They also represent a serious hazard in many areas of the world. Despite their importance, it has been estimated that past landslide and landslide potential maps cover less than 1% of the slopes in these landmasses. Systematic information on the type, abundance, and distribution of existing landslides is lacking. Even in countries where landslide information is abundant (e.g. Italy), the vast majority of landslides caused by meteorological (intense or prolonged rainfall, rapid snowmelt) or geophysical (earthquake) triggers go undetected. This paucity of knowledge has consequences on the design of effective remedial and mitigation measures. Systematic use of Earth observation (EO) data and technologies can contribute effectively to detect, map, and monitor landslides, and landslide prone hillsides, in different physiographic and climatic regions. The CEOS (Committee on Earth Observation Satellites) Working Group on Disasters has recently launched a Landslide Pilot (period 2017-2019) with the aim to demonstrate the effective exploitation of satellite EO across the full cycle of landslide disaster risk management, including preparedness, response, and recovery at global, regional, and local scales, with a distinct multi-hazard focus on cascading impacts and risks. The Landslide Pilot is focusing efforts on three objectives: 1. Establish effective practices for merging different Earth Observation data (e.g. optical and radar) to better monitor and map landslide activity over time and space. 2. Demonstrate how landslide products, models, and services can support disaster risk management for multi-hazard and cascading landslide events. 3. Engage and partner with data brokers and end users to understand requirements and user expectations and get feedback through the activities described in objectives 1-2. The Landslide Pilot was endorsed in April 2016 and work

  20. An analysis of on time evolution of landslide

    Science.gov (United States)

    Tsai, Chienwei; Lien, Huipang

    2017-04-01

    In recent years, the extreme hydrological phenomenon in Taiwan is obvious. Because the increase of heavy rainfall frequency has resulted in severe landslide disaster, the watershed management is very important and how to make the most effective governance within the limited funds is the key point. In recent years many scholars to develop empirical models said that virtually rainfall factors exist and as long as rainfall conditions are met the minimum requirements of the model, landslide will occur. However, rainfall is one of the elements to the landslide, but not the only one element. Rainfall, geology and earthquake all contributed to the landslide as well. Preliminary research found that many landslides occur at the same location constantly and after repeating landslide, the slope had the characteristic of landslide immunity over time, even if the rainfall exceeded the standard, the landslide could not be triggered in the near term. This study investigated the surface conditions of slope that occur repeated landslide. It is difficult to be the basis of subsequent anti-disaster if making rainfall is the only condition to contribute to the landslide. This study analyzes 50 landslides in 2004 2013. Repeated landslide is defined as existed landslide in satellite images of reference period which it's bare area is shrinking or disappearing gradually but the restoration occur landslide again in some period time. The statistical analysis of the study found that 96% of landslide has repeated landslide and on average repeated landslide occurs 3.4 years in 10 years by one year as the unit. The highest of repeated landslide happened in 2010. It would presume that Typhoon Morakot in 2010 brought torrential rain which suffered southern mountain areas severely so the areas occurred repeated landslide.

  1. Fuzzy rule-based landslide susceptibility mapping in Yığılca Forest District (Northwest of Turkey

    Directory of Open Access Journals (Sweden)

    Abdurrahim Aydın

    2016-07-01

    Full Text Available Landslide susceptibility map of Yığılca Forest District was formed based on developed fuzzy rules using GIS-based FuzzyCell software. An inventory of 315 landslides was updated through fieldworks after inventory map previously generated by the authors. Based on the landslide susceptibility mapping study previously made in the same area, for the comparison of two maps, same 8 landslide conditioning parameters were selected and then fuzzified for the landslide susceptibility mapping: land use, lithology, elevation, slope, aspect, distance to streams, distance to roads, and plan curvature. Mamdani model was selected as fuzzy inference system. After fuzzy rules definition, Center of Area (COA was selected as defuzzification method in model. The output of developed model was normalized between 0 and 1, and then divided five classes such as very low, low, moderate, high, and very high. According to developed model based 8 conditioning parameters, landslide susceptibility in Yığılca Forest District varies between 32 and 67 (in range of 0-100 with 0.703 Area Under the Curve (AUC value. According to classified landslide susceptibility map, in Yığılca Forest District, 32.89% of the total area has high and very high susceptibility while 29.59% of the area has low and very low susceptibility and the rest located in moderate susceptibility. The result of developed fuzzy rule based model compared with previously generated landslide map with logistic regression (LR. According to comparison of the results of two studies, higher differences exist in terms of AUC value and dispersion of susceptibility classes. This is because fuzzy rule based model completely depends on how parameters are classified and fuzzified and also depends on how truly the expert composed the rules. Even so, GIS-based fuzzy applications provide very valuable facilities for reasoning, which makes it possible to take into account inaccuracies and uncertainties.

  2. Underwater welding and repair technologies applied in PWR environment

    International Nuclear Information System (INIS)

    Scandella, Fabrice; Carpreau, Jean-Michel

    2012-01-01

    The authors describe several welding processes and technologies which have been used for underwater applications and which can be applied when repairing components of a PWR type reactor. They address, describe and discuss wet arc welding processes, the peculiarities of underwater welding, and the use of various processes such as 111, 114 and 135 processes, underwater welding with the hybrid plasma MIG-MAG process, underwater welding with the laser wire process, underwater welding with the FSW, FSP or UWFSW processes, underwater welding with variants of the friction welding process (friction surfacing, taper stitch welding, hydro-pillar processing

  3. Landslide: Mineralogical and Physical Investigation

    Science.gov (United States)

    Tudor, Viluș; Grozav, Adia; Rogobete, Gheorghe

    2017-10-01

    In order to construct a road bed foundation, if land has moved, on an area with old landslides, there is a high chance of it moving again. The investigation was made in a region with hilly relief, in which the parent materials of soils are argillaceous marls of Pliocene age. Because the slope is scarped and the versant has been cut, the soil mass slide favoured of the particle-size distribution dominated by heavy clay. With a reiteratedly percolative moisture regime, the soil material is saturated in water fora long period (700-800 mm precipitation/year), and that can increase the slope mass, thereby increasing the driving forces. In a soil profile situated on the top of the hill, with landslide for about 40 m length of the road, disturbed and undisturbed soil samples were analysed physic-chemical and mineralogical. For the heavy and light minerals from the sand fraction a polarized light analyser is used, and for clay minerals X-ray, differential thermal and infrared absorption method are used. The particle-size distribution in the soil profile is dominated by the clay fraction, which reached 53.2% in the ABt horizon and 63.0% in the Bt horizon (67-93 cm depth). The structure of the light minerals, consists of quartz (41-58%); feldspar (10.16-18.10%); muscovite (14.10-26.04). The heavy minerals are oxides (2.61-15.26%), hornblende (0.58-2.87%) and biotite (0.51-2.68%). It must be mentioned the presence of the metamorphic minerals, with the source of the Poiana Rusca mountains. These minerals are epidote (1.01-1.86%), disthene (0.70-1.86%), staurolite (0.73-2.46%) and sillimanite (0.35-0.45%). The clay minerals, inherited from the parent material or formed during the soil-forming process are dominated by smectite, which represent (71-85%) from the total clay minerals, illite 10-21%, and Kaolinite, 4-12%. Rheological properties, like plastic index (53.8%), activity index (1.01%) and consistency index (0.99-1.00%) show that the shrinkage - swelling processes are

  4. Landslide inventory and susceptibility modelling using geospatial tools, in Hunza-Nagar valley, northern Pakistan

    NARCIS (Netherlands)

    Bacha, Alam Sher; Shafique, Muhammad; van der Werff, H.M.A.

    2018-01-01

    A comprehensive landslide inventory and susceptibility maps are prerequisite for developing and implementing landslide mitigation strategies. Landslide susceptibility maps for the landslides prone regions in northern Pakistan are rarely available. The Hunza-Nagar valley in northern Pakistan is known

  5. Great landslide events in Italian artificial reservoirs

    Directory of Open Access Journals (Sweden)

    A. Panizzo

    2005-01-01

    Full Text Available The empirical formulations to forecast landslide generated water waves, recently defined in the framework of a research program funded by the Italian National Dam Office RID (Registro Italiano Dighe, are here used to study three real cases of subaerial landslides which fell down italian artificial reservoirs. It is well known that impulse water waves generated by landslides constitute a very dangerous menace for human communities living in the shoreline of the artificial basin or downstream the dam. In 1963, the menace became tragedy, when a 270 millions m3 landslide fell down the Vajont reservoir (Italy, generated an impulse wave which destroyed the city of Longarone, and killed 2000 people. The paper is aimed at presenting the very satisfactorily reproduction of the events at hand by using forecasting formulations.  

  6. Great landslide events in Italian artificial reservoirs

    Science.gov (United States)

    Panizzo, A.; de Girolamo, P.; di Risio, M.; Maistri, A.; Petaccia, A.

    2005-09-01

    The empirical formulations to forecast landslide generated water waves, recently defined in the framework of a research program funded by the Italian National Dam Office RID (Registro Italiano Dighe), are here used to study three real cases of subaerial landslides which fell down italian artificial reservoirs. It is well known that impulse water waves generated by landslides constitute a very dangerous menace for human communities living in the shoreline of the artificial basin or downstream the dam. In 1963, the menace became tragedy, when a 270 millions m3 landslide fell down the Vajont reservoir (Italy), generated an impulse wave which destroyed the city of Longarone, and killed 2000 people. The paper is aimed at presenting the very satisfactorily reproduction of the events at hand by using forecasting formulations.

  7. Development of geoportal for landslide monitoring

    Directory of Open Access Journals (Sweden)

    Sladić Dubravka

    2012-01-01

    Full Text Available The paper presents the implementation of geoportal for landslide monitoring which which includes two subsystems: a system for acquisition, storage and distribution of data on landslides and real time alert system. System for acquisition, storage and distribution of data on landslides include raster and vector spatial data on landslides affected areas, as well as metadata. Alert system in real time is associated with a sensor for detecting displacement, which performs constant measurements and signals in case of exceeding the reference value. The system was developed in accordance with the standards in the field of GIS: ISO 19100 series of standards and OpenGIS Consortium and is based on service-oriented architecture and principles of spatial data infrastructures. [Projekat Ministarstva nauke Republike Srbije, br. TR37017: Modeliranje stanja i strukture padinskih procesa primenom GNSS i tehnologija skeniranja laserom i georadarom

  8. Landslide hazard assessment in the Collazzone area, Umbria, Central Italy

    Directory of Open Access Journals (Sweden)

    F. Guzzetti

    2006-01-01

    Full Text Available We present the results of the application of a recently proposed model to determine landslide hazard. The model predicts where landslides will occur, how frequently they will occur, and how large they will be in a given area. For the Collazzone area, in the central Italian Apennines, we prepared a multi-temporal inventory map through the interpretation of multiple sets of aerial photographs taken between 1941 and 1997 and field surveys conducted in the period between 1998 and 2004. We then partitioned the 79 square kilometres study area into 894 slope units, and obtained the probability of spatial occurrence of landslides by discriminant analysis of thematic variables, including morphology, lithology, structure and land use. For each slope unit, we computed the expected landslide recurrence by dividing the total number of landslide events inventoried in the terrain unit by the time span of the investigated period. Assuming landslide recurrence was constant, and adopting a Poisson probability model, we determined the exceedance probability of having one or more landslides in each slope unit, for different periods. We obtained the probability of landslide size, a proxy for landslide magnitude, by analysing the frequency-area statistics of landslides, obtained from the multi-temporal inventory map. Lastly, assuming independence, we determined landslide hazard for each slope unit as the joint probability of landslide size, of landslide temporal occurrence, and of landslide spatial occurrence.

  9. An illustrated landslide handbook for developing nations

    Science.gov (United States)

    Highland, Lynn M.; Bobrowsky, Peter

    2008-01-01

    As landslides continue to be a hazard that account for large numbers of human and animal casualties, property loss, and infrastructure damage, as well as impacts on the natural environment, it is incumbent on developed nations that resources be allocated to educate affected populations in less developed nations, and provide them with tools to effectively manage this hazard. Given that the engineering, planning and zoning, and mitigation techniques for landslide hazard reduction are more accessible to developed nations, it is crucial that such landslide hazard management tools be communicated to less developed nations in a language that is not overly technical, and provides information on basic scientific explanations on where, why and how landslides occur. The experiences of the United States, Canada, and many other nations demonstrate that, landslide science education, and techniques for reducing damaging landslide impacts may be presented in a manner that can be understood by the layperson. There are various methods through which this may be accomplished–community-level education, technology transfer, and active one-on-one outreach to national and local governments, and non-governmental organizations (NGOs), who disseminate information throughout the general population. The population at large can also benefit from the dissemination of landslide information directly to individual community members. The United States Geological Survey and the Geological Survey of Canada have just published and will distribute a universal landslide handbook that can be easily made available to emergency managers, local governments, and individuals. The handbook, “The Landslide Handbook: A Guide to Understanding Landslides” is initially published as U.S. Geological Survey Circular 1325, in English, available in print, and accessible on the internet. It is liberally illustrated with schematics and photographs, and provides the means for a basic understanding of landslides, with

  10. Landslide susceptibility map: from research to application

    Science.gov (United States)

    Fiorucci, Federica; Reichenbach, Paola; Ardizzone, Francesca; Rossi, Mauro; Felicioni, Giulia; Antonini, Guendalina

    2014-05-01

    Susceptibility map is an important and essential tool in environmental planning, to evaluate landslide hazard and risk and for a correct and responsible management of the territory. Landslide susceptibility is the likelihood of a landslide occurring in an area on the basis of local terrain conditions. Can be expressed as the probability that any given region will be affected by landslides, i.e. an estimate of "where" landslides are likely to occur. In this work we present two examples of landslide susceptibility map prepared for the Umbria Region and for the Perugia Municipality. These two maps were realized following official request from the Regional and Municipal government to the Research Institute for the Hydrogeological Protection (CNR-IRPI). The susceptibility map prepared for the Umbria Region represents the development of previous agreements focused to prepare: i) a landslide inventory map that was included in the Urban Territorial Planning (PUT) and ii) a series of maps for the Regional Plan for Multi-risk Prevention. The activities carried out for the Umbria Region were focused to define and apply methods and techniques for landslide susceptibility zonation. Susceptibility maps were prepared exploiting a multivariate statistical model (linear discriminant analysis) for the five Civil Protection Alert Zones defined in the regional territory. The five resulting maps were tested and validated using the spatial distribution of recent landslide events that occurred in the region. The susceptibility map for the Perugia Municipality was prepared to be integrated as one of the cartographic product in the Municipal development plan (PRG - Piano Regolatore Generale) as required by the existing legislation. At strategic level, one of the main objectives of the PRG, is to establish a framework of knowledge and legal aspects for the management of geo-hydrological risk. At national level most of the susceptibility maps prepared for the PRG, were and still are obtained

  11. Human Injury Criteria for Underwater Blasts.

    Directory of Open Access Journals (Sweden)

    Rachel M Lance

    Full Text Available Underwater blasts propagate further and injure more readily than equivalent air blasts. Development of effective personal protection and countermeasures, however, requires knowledge of the currently unknown human tolerance to underwater blast. Current guidelines for prevention of underwater blast injury are not based on any organized injury risk assessment, human data or experimental data. The goal of this study was to derive injury risk assessments for underwater blast using well-characterized human underwater blast exposures in the open literature. The human injury dataset was compiled using 34 case reports on underwater blast exposure to 475 personnel, dating as early as 1916. Using severity ratings, computational reconstructions of the blasts, and survival information from a final set of 262 human exposures, injury risk models were developed for both injury severity and risk of fatality as functions of blast impulse and blast peak overpressure. Based on these human data, we found that the 50% risk of fatality from underwater blast occurred at 302±16 kPa-ms impulse. Conservatively, there is a 20% risk of pulmonary injury at a kilometer from a 20 kg charge. From a clinical point of view, this new injury risk model emphasizes the large distances possible for potential pulmonary and gut injuries in water compared with air. This risk value is the first impulse-based fatality risk calculated from human data. The large-scale inconsistency between the blast exposures in the case reports and the guidelines available in the literature prior to this study further underscored the need for this new guideline derived from the unique dataset of actual injuries in this study.

  12. Morphology and internal structure of a dormant landslide in a hilly area: The Collinabos landslide (Belgium )

    Science.gov (United States)

    Van Den Eeckhaut, M.; Verstraeten, G.; Poesen, J.

    2007-09-01

    This study attempts to reconstruct the history of the Collinabos landslide, a landslide with a fresh morphology that is representative for more than 150 dormant, deep-seated (> 3 m) landslides in the Flemish Ardennes (Belgium). A geomorphological map was created based on LIDAR (Light Detection and Ranging)-derived maps and detailed field surveys. The map showed that the landslide consisted of three zones with significant differences in surface topography. The northern landslide zone 1 is characterised by at least five reverse slopes, whereas zones 2 and 3, the southern landslide zones, have only two reverse slopes and a convex foot. Electric resistivity profiles measured in zones 1 and 2 revealed that the differences in surface topography were not related to differences in internal structure as both parts of the landslide were initiated as a rotational earth slide with a surface of rupture at 15 m deep, where the displaced material broke apart in two blocks. However, two shear surfaces of reactivations within landslide debris were only distinguished in the accumulation area of zone 1. The observed differences in surface morphology can be caused by a temporary conversion of a forest into cropland in zone 2. It is suggested that reverse slopes of smaller reactivations within landslide debris were obliterated during the agricultural activities. AMS radiocarbon dating of organic material found in ponds located in reverse slopes generally resulted in relatively recent dates (i.e. 1400-1950 Cal AD) suggesting that several of the small local reactivations occurred in that period. One dating at 8700-8440 Cal BP of organic matter collected in a reverse slope in zone 1 suggests that an initiation under periglacial conditions cannot be excluded for the Collinabos landslide. By combining different technologies, this study provides valuable information for a better understanding of dormant landslides.

  13. Earthquake-triggered landslides in southwest China

    OpenAIRE

    X. L. Chen; Q. Zhou; H. Ran; R. Dong

    2012-01-01

    Southwest China is located in the southeastern margin of the Tibetan Plateau and it is a region of high seismic activity. Historically, strong earthquakes that occurred here usually generated lots of landslides and brought destructive damages. This paper introduces several earthquake-triggered landslide events in this region and describes their characteristics. Also, the historical data of earthquakes with a magnitude of 7.0 or greater, having occurred in this region, is col...

  14. EARLY DETECTION OF NEAR-FIELD TSUNAMIS USING UNDERWATER SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    L. E. Freitag

    2012-01-01

    Full Text Available We propose a novel approach for near-field tsunami detection, specifically for the area near the city of Padang, Indonesia. Padang is located on the western shore of Sumatra, directly across from the Mentawai segment of the Sunda Trench, where accumulated strain has not been released since the great earthquake of 1797. Consequently, the risk of a major tsunamigenic earthquake on this segment is high. Currently, no ocean-bottom pressure sensors are deployed in the Mentawai basin to provide a definitive tsunami warning for Padang. Timely warnings are essential to initiate evacuation procedures and minimize loss of human life. Our approach augments existing technology with a network of underwater sensors to detect tsunamis generated by an earthquake or landslide fast enough to provide at least 15 minutes of warning. Data from the underwater sensor network would feed into existing decision support systems that accept input from land and sea-based sensors and provide warning information to city and regional authorities.

  15. Modeling tsunamis induced by retrogressive submarine landslides

    Science.gov (United States)

    Løvholt, F.; Kim, J.; Harbitz, C. B.

    2015-12-01

    Enormous submarine landslides having volumes up to thousands of km3 and long run-out may cause tsunamis with widespread effects. Clay-rich landslides, such as Trænadjupet and Storegga offshore Norway commonly involve retrogressive mass and momentum release mechanisms that affect the tsunami generation. Therefore, such landslides may involve a large amount of smaller blocks. As a consequence, the failure mechanisms and release rate of the individual blocks are of importance for the tsunami generation. Previous attempts to model the tsunami generation due to retrogressive landslides are few, and limited to idealized conditions. Here, we review the basic effects of retrogression on tsunamigenesis in simple geometries. To this end, two different methods are employed for the landslide motion, a series block with pre-scribed time lags and kinematics, and a dynamic retrogressive model where the inter-block time lag is determined by the model. The effect of parameters such as time lag on wave-height, wave-length, and dispersion are discussed. Finally, we discuss how the retrogressive effects may have influenced the tsunamis due to large landslides such as the Storegga slide. The research leading to these results has received funding from the Research Council of Norway under grant number 231252 (Project TsunamiLand) and the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement 603839 (Project ASTARTE).

  16. A multi-annual landslide inventory for the assessment of shallow landslide susceptibility - Two test cases in Vorarlberg, Austria

    Science.gov (United States)

    Zieher, Thomas; Perzl, Frank; Rössel, Monika; Rutzinger, Martin; Meißl, Gertraud; Markart, Gerhard; Geitner, Clemens

    2016-04-01

    Geomorphological landslide inventories provide crucial input data for any study on the assessment of landslide susceptibility, hazard or risk. Several approaches for assessing landslide susceptibility have been proposed to identify areas particularly vulnerable to this natural hazard. What they have in common is the need for data of observed landslides. Therefore the first step of any study on landslide susceptibility is usually the compilation of a geomorphological landslide inventory using a geographical information system. Recent research has proved the feasibility of orthophoto interpretation for the preparation of an inventory aimed at the delineation of landslides with the use of distinctive signs in the imagery data. In this study a multi-annual landslide inventory focusing on shallow landslides (i.e. translational soil slides of 0-2 m in depth) was compiled for two study areas in Vorarlberg (Austria) from the interpretation of nine orthophoto series. In addition, derivatives of two generations of airborne laser scanning data aided the mapping procedure. Landslide scar areas were delineated on the basis of a high-resolution differential digital terrain model. The derivation of landslide volumes, depths and depth-to-length ratios are discussed. Results show that most mapped landslides meet the definition of a shallow landslide. The inventory therefore provides the data basis for the assessment of shallow landslide susceptibility and allows for the application of various modelling techniques.

  17. Landslides and engineering geology of the Seattle, Washington, area

    Science.gov (United States)

    Baum, Rex L.; Godt, Jonathan W.; Highland, Lynn M.

    2008-01-01

    This volume brings together case studies and summary papers describing the application of state-of-the-art engineering geologic methods to landslide hazard analysis for the Seattle, Washington, area. An introductory chapter provides a thorough description of the Quaternary and bedrock geology of Seattle. Nine additional chapters review the history of landslide mapping in Seattle, present case studies of individual landslides, describe the results of spatial assessments of landslide hazard, discuss hydrologic controls on landsliding, and outline an early warning system for rainfall-induced landslides.

  18. Optimal Node Placement in Underwater Wireless Sensor Networks

    KAUST Repository

    Felamban, M.; Shihada, Basem; Jamshaid, K.

    2013-01-01

    Wireless Sensor Networks (WSN) are expected to play a vital role in the exploration and monitoring of underwater areas which are not easily reachable by humans. However, underwater communication via acoustic waves is subject to several performance

  19. Underwater Sensor Networks: A New Energy Efficient and Robust Architecture

    NARCIS (Netherlands)

    Climent, Salvador; Capella, Juan Vincente; Meratnia, Nirvana; Serrano, Juan José

    2012-01-01

    The specific characteristics of underwater environments introduce new challenges for networking protocols. In this paper, a specialized architecture for underwater sensor networks (UWSNs) is proposed and evaluated. Experiments are conducted in order to analyze the suitability of this protocol for

  20. Underwater Calibration of Dome Port Pressure Housings

    Science.gov (United States)

    Nocerino, E.; Menna, F.; Fassi, F.; Remondino, F.

    2016-03-01

    Underwater photogrammetry using consumer grade photographic equipment can be feasible for different applications, e.g. archaeology, biology, industrial inspections, etc. The use of a camera underwater can be very different from its terrestrial use due to the optical phenomena involved. The presence of the water and camera pressure housing in front of the camera act as additional optical elements. Spherical dome ports are difficult to manufacture and consequently expensive but at the same time they are the most useful for underwater photogrammetry as they keep the main geometric characteristics of the lens unchanged. Nevertheless, the manufacturing and alignment of dome port pressure housing components can be the source of unexpected changes of radial and decentring distortion, source of systematic errors that can influence the final 3D measurements. The paper provides a brief introduction of underwater optical phenomena involved in underwater photography, then presents the main differences between flat and dome ports to finally discuss the effect of manufacturing on 3D measurements in two case studies.

  1. Landslide temporal analysis and susceptibility assessment as bases for landslide mitigation, Machu Picchu, Peru

    Czech Academy of Sciences Publication Activity Database

    Klimeš, Jan

    2013-01-01

    Roč. 70, č. 2 (2013), s. 913-925 ISSN 1866-6280 Institutional research plan: CEZ:AV0Z30460519 Keywords : landslide inventory * landslide frequency * susceptibility map Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.572, year: 2013

  2. Landslide mobility and hazards: implications of the 2014 Oso disaster

    Science.gov (United States)

    Iverson, Richard M.; George, David L.; Allstadt, Kate E.; Reid, Mark E.; Collins, Brian D.; Vallance, James W.; Schilling, Steve P.; Godt, Jonathan W.; Cannon, Charles; Magirl, Christopher S.; Baum, Rex L.; Coe, Jeffrey A.; Schulz, William; Bower, J. Brent

    2015-01-01

    Landslides reflect landscape instability that evolves over meteorological and geological timescales, and they also pose threats to people, property, and the environment. The severity of these threats depends largely on landslide speed and travel distance, which are collectively described as landslide “mobility”. To investigate causes and effects of mobility, we focus on a disastrous landslide that occurred on 22 March 2014 near Oso, Washington, USA, following a long period of abnormally wet weather. The landslide's impacts were severe because its mobility exceeded that of prior historical landslides at the site, and also exceeded that of comparable landslides elsewhere. The ∼8×106 m3 landslide originated on a gently sloping (landslide began after about 50 s of preliminary slope movement, and observational evidence supports the hypothesis that the high mobility of the landslide resulted from liquefaction of water-saturated sediment at its base. Numerical simulation of the event using a newly developed model indicates that liquefaction and high mobility can be attributed to compression- and/or shear-induced sediment contraction that was strongly dependent on initial conditions. An alternative numerical simulation indicates that the landslide would have been far less mobile if its initial porosity and water content had been only slightly lower. Sensitive dependence of landslide mobility on initial conditions has broad implications for assessment of landslide hazards.

  3. Centralised versus Decentralised Control Reconfiguration for Collaborating Underwater Robots

    DEFF Research Database (Denmark)

    Furno, Lidia; Nielsen, Mikkel Cornelius; Blanke, Mogens

    2015-01-01

    The present paper introduces an approach to fault-tolerant reconfiguration for collaborating underwater robots. Fault-tolerant reconfiguration is obtained using the virtual actuator approach, Steen (2005). The paper investigates properties of a centralised versus a decentralised implementation an...... an underwater drill needs to be transported and positioned by three collaborating robots as part of an underwater autonomous operation....

  4. Identification of Forested Landslides Using LiDar Data, Object-based Image Analysis, and Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Xianju Li

    2015-07-01

    Full Text Available For identification of forested landslides, most studies focus on knowledge-based and pixel-based analysis (PBA of LiDar data, while few studies have examined (semi- automated methods and object-based image analysis (OBIA. Moreover, most of them are focused on soil-covered areas with gentle hillslopes. In bedrock-covered mountains with steep and rugged terrain, it is so difficult to identify landslides that there is currently no research on whether combining semi-automated methods and OBIA with only LiDar derivatives could be more effective. In this study, a semi-automatic object-based landslide identification approach was developed and implemented in a forested area, the Three Gorges of China. Comparisons of OBIA and PBA, two different machine learning algorithms and their respective sensitivity to feature selection (FS, were first investigated. Based on the classification result, the landslide inventory was finally obtained according to (1 inclusion of holes encircled by the landslide body; (2 removal of isolated segments, and (3 delineation of closed envelope curves for landslide objects by manual digitizing operation. The proposed method achieved the following: (1 the filter features of surface roughness were first applied for calculating object features, and proved useful; (2 FS improved classification accuracy and reduced features; (3 the random forest algorithm achieved higher accuracy and was less sensitive to FS than a support vector machine; (4 compared to PBA, OBIA was more sensitive to FS, remarkably reduced computing time, and depicted more contiguous terrain segments; (5 based on the classification result with an overall accuracy of 89.11% ± 0.03%, the obtained inventory map was consistent with the referenced landslide inventory map, with a position mismatch value of 9%. The outlined approach would be helpful for forested landslide identification in steep and rugged terrain.

  5. Extraction of multi-scale landslide morphological features based on local Gi* using airborne LiDAR-derived DEM

    Science.gov (United States)

    Shi, Wenzhong; Deng, Susu; Xu, Wenbing

    2018-02-01

    For automatic landslide detection, landslide morphological features should be quantitatively expressed and extracted. High-resolution Digital Elevation Models (DEMs) derived from airborne Light Detection and Ranging (LiDAR) data allow fine-scale morphological features to be extracted, but noise in DEMs influences morphological feature extraction, and the multi-scale nature of landslide features should be considered. This paper proposes a method to extract landslide morphological features characterized by homogeneous spatial patterns. Both profile and tangential curvature are utilized to quantify land surface morphology, and a local Gi* statistic is calculated for each cell to identify significant patterns of clustering of similar morphometric values. The method was tested on both synthetic surfaces simulating natural terrain and airborne LiDAR data acquired over an area dominated by shallow debris slides and flows. The test results of the synthetic data indicate that the concave and convex morphologies of the simulated terrain features at different scales and distinctness could be recognized using the proposed method, even when random noise was added to the synthetic data. In the test area, cells with large local Gi* values were extracted at a specified significance level from the profile and the tangential curvature image generated from the LiDAR-derived 1-m DEM. The morphologies of landslide main scarps, source areas and trails were clearly indicated, and the morphological features were represented by clusters of extracted cells. A comparison with the morphological feature extraction method based on curvature thresholds proved the proposed method's robustness to DEM noise. When verified against a landslide inventory, the morphological features of almost all recent (historical (> 10 years) landslides were extracted. This finding indicates that the proposed method can facilitate landslide detection, although the cell clusters extracted from curvature images should

  6. Identification of a putative man-made object from an underwater crash site using CAD model superimposition.

    Science.gov (United States)

    Vincelli, Jay; Calakli, Fatih; Stone, Michael; Forrester, Graham; Mellon, Timothy; Jarrell, John

    2018-04-01

    In order to identify an object in video, a comparison with an exemplar object is typically needed. In this paper, we discuss the methodology used to identify an object detected in underwater video that was recorded during an investigation into Amelia Earhart's purported crash site. A computer aided design (CAD) model of the suspected aircraft component was created based on measurements made from orthogonally rectified images of a reference aircraft, and validated against historical photographs of the subject aircraft prior to the crash. The CAD model was then superimposed on the underwater video, and specific features on the object were geometrically compared between the CAD model and the video. This geometrical comparison was used to assess the goodness of fit between the purported object and the object identified in the underwater video. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Monsoon Rainfall and Landslides in Nepal

    Science.gov (United States)

    Dahal, R. K.; Hasegawa, S.; Bhandary, N. P.; Yatabe, R.

    2009-12-01

    A large number of human settlements on the Nepal Himalayas are situated either on old landslide mass or on landslide-prone areas. As a result, a great number of people are affected by large- and small-scale landslides all over the Himalayas especially during monsoon periods. In Nepal, only in the half monsoon period (June 10 to August 15), 70, 50 and 68 people were killed from landslides in 2007, 2008 and 2009, respectively. In this context, this paper highlights monsoon rainfall and their implications in the Nepal Himalaya. In Nepal, monsoon is major source of rainfall in summer and approximately 80% of the annual total rainfall occurs from June to September. The measured values of mean annual precipitation in Nepal range from a low of approximately 250 mm at area north of the Himalaya to many areas exceeding 6,000 mm. The mean annual rainfall varying between 1500 mm and 2500 mm predominate over most of the country. In Nepal, the daily distribution of precipitation during rainy season is also uneven. Sometime 10% of the total annual precipitation can occur in a single day. Similarly, 50% total annual rainfall also can occur within 10 days of monsoon. This type of uneven distribution plays an important role in triggering many landslides in Nepal. When spatial distribution of landslides was evaluated from record of more than 650 landslides, it is found that more landslides events were concentrated at central Nepal in the area of high mean annual rainfall. When monsoon rainfall and landslide relationship was taken into consideration, it was noticed that a considerable number of landslides were triggered in the Himalaya by continuous rainfall of 3 to 90 days. It has been noticed that continuous rainfall of few days (5 days or 7 days or 10 days) are usually responsible for landsliding in the Nepal Himalaya. Monsoon rains usually fall with interruptions of 2-3 days and are generally characterized by low intensity and long duration. Thus, there is a strong role of

  8. Survivability design for a hybrid underwater vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Biao; Wu, Chao; Li, Xiang; Zhao, Qingkai; Ge, Tong [State Key Lab of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-03-10

    A novel hybrid underwater robotic vehicle (HROV) capable of working to the full ocean depth has been developed. The battery powered vehicle operates in two modes: operate as an untethered autonomous vehicle in autonomous underwater vehicle (AUV) mode and operate under remote control connected to the surface vessel by a lightweight, fiber optic tether in remotely operated vehicle (ROV) mode. Considering the hazardous underwater environment at the limiting depth and the hybrid operating modes, survivability has been placed on an equal level with the other design attributes of the HROV since the beginning of the project. This paper reports the survivability design elements for the HROV including basic vehicle design of integrated navigation and integrated communication, emergency recovery strategy, distributed architecture, redundant bus, dual battery package, emergency jettison system and self-repairing control system.

  9. Survivability design for a hybrid underwater vehicle

    International Nuclear Information System (INIS)

    Wang, Biao; Wu, Chao; Li, Xiang; Zhao, Qingkai; Ge, Tong

    2015-01-01

    A novel hybrid underwater robotic vehicle (HROV) capable of working to the full ocean depth has been developed. The battery powered vehicle operates in two modes: operate as an untethered autonomous vehicle in autonomous underwater vehicle (AUV) mode and operate under remote control connected to the surface vessel by a lightweight, fiber optic tether in remotely operated vehicle (ROV) mode. Considering the hazardous underwater environment at the limiting depth and the hybrid operating modes, survivability has been placed on an equal level with the other design attributes of the HROV since the beginning of the project. This paper reports the survivability design elements for the HROV including basic vehicle design of integrated navigation and integrated communication, emergency recovery strategy, distributed architecture, redundant bus, dual battery package, emergency jettison system and self-repairing control system

  10. Application of underwater radon measurements in geology

    Energy Technology Data Exchange (ETDEWEB)

    Varhegyi, A.; Baranyi, I.; Gerzson, I. (Mecsek Ore Mining Enterprise, Pecs (Hungary)); Somogyi, G.; Hakl, J.; Hunyadi, I. (Magyar Tudomanyos Akademia, Debrecen (Hungary). Atommag Kutato Intezete)

    1988-01-01

    Based on the observed phenomenon of geogas migration in microbubble form from deeper regions, the authors have developed a new model for the vertical transport of radon released from deeper sources. The physical properties of the rock relating to the upflow of microbubbles below the groundwater level are considered and the radon transport parameter of rocks is introduced. The vertical distribution of radon concentration in the case of a multi-layered geological model is given and the penetration depth of underwater radon measurements is examined. Aspects of underwater radon detection by the nuclear track detector technique are analyzed. The radon transport model gives a new theoretical basis for several applications of radon measurements in geology. The advantages of underwater radon detection have already been proved in uranium exploration. Further geological applications are proposed in earthquake prediction, in volcanology, in the survey of active faults and thermal waters. (author).

  11. Landslide Kinematical Analysis through Inverse Numerical Modelling and Differential SAR Interferometry

    Science.gov (United States)

    Castaldo, R.; Tizzani, P.; Lollino, P.; Calò, F.; Ardizzone, F.; Lanari, R.; Guzzetti, F.; Manunta, M.

    2015-11-01

    The aim of this paper is to propose a methodology to perform inverse numerical modelling of slow landslides that combines the potentialities of both numerical approaches and well-known remote-sensing satellite techniques. In particular, through an optimization procedure based on a genetic algorithm, we minimize, with respect to a proper penalty function, the difference between the modelled displacement field and differential synthetic aperture radar interferometry (DInSAR) deformation time series. The proposed methodology allows us to automatically search for the physical parameters that characterize the landslide behaviour. To validate the presented approach, we focus our analysis on the slow Ivancich landslide (Assisi, central Italy). The kinematical evolution of the unstable slope is investigated via long-term DInSAR analysis, by exploiting about 20 years of ERS-1/2 and ENVISAT satellite acquisitions. The landslide is driven by the presence of a shear band, whose behaviour is simulated through a two-dimensional time-dependent finite element model, in two different physical scenarios, i.e. Newtonian viscous flow and a deviatoric creep model. Comparison between the model results and DInSAR measurements reveals that the deviatoric creep model is more suitable to describe the kinematical evolution of the landslide. This finding is also confirmed by comparing the model results with the available independent inclinometer measurements. Our analysis emphasizes that integration of different data, within inverse numerical models, allows deep investigation of the kinematical behaviour of slow active landslides and discrimination of the driving forces that govern their deformation processes.

  12. Evaluating performance of simplified physically based models for shallow landslide susceptibility

    Directory of Open Access Journals (Sweden)

    G. Formetta

    2016-11-01

    Full Text Available Rainfall-induced shallow landslides can lead to loss of life and significant damage to private and public properties, transportation systems, etc. Predicting locations that might be susceptible to shallow landslides is a complex task and involves many disciplines: hydrology, geotechnical science, geology, hydrogeology, geomorphology, and statistics. Two main approaches are commonly used: statistical or physically based models. Reliable model applications involve automatic parameter calibration, objective quantification of the quality of susceptibility maps, and model sensitivity analyses. This paper presents a methodology to systemically and objectively calibrate, verify, and compare different models and model performance indicators in order to identify and select the models whose behavior is the most reliable for particular case studies.The procedure was implemented in a package of models for landslide susceptibility analysis and integrated in the NewAge-JGrass hydrological model. The package includes three simplified physically based models for landslide susceptibility analysis (M1, M2, and M3 and a component for model verification. It computes eight goodness-of-fit indices by comparing pixel-by-pixel model results and measurement data. The integration of the package in NewAge-JGrass uses other components, such as geographic information system tools, to manage input–output processes, and automatic calibration algorithms to estimate model parameters. The system was applied for a case study in Calabria (Italy along the Salerno–Reggio Calabria highway, between Cosenza and Altilia. The area is extensively subject to rainfall-induced shallow landslides mainly because of its complex geology and climatology. The analysis was carried out considering all the combinations of the eight optimized indices and the three models. Parameter calibration, verification, and model performance assessment were performed by a comparison with a detailed landslide

  13. Modeling landslide recurrence in Seattle, Washington, USA

    Science.gov (United States)

    Salciarini, Diana; Godt, Jonathan W.; Savage, William Z.; Baum, Rex L.; Conversini, Pietro

    2008-01-01

    To manage the hazard associated with shallow landslides, decision makers need an understanding of where and when landslides may occur. A variety of approaches have been used to estimate the hazard from shallow, rainfall-triggered landslides, such as empirical rainfall threshold methods or probabilistic methods based on historical records. The wide availability of Geographic Information Systems (GIS) and digital topographic data has led to the development of analytic methods for landslide hazard estimation that couple steady-state hydrological models with slope stability calculations. Because these methods typically neglect the transient effects of infiltration on slope stability, results cannot be linked with historical or forecasted rainfall sequences. Estimates of the frequency of conditions likely to cause landslides are critical for quantitative risk and hazard assessments. We present results to demonstrate how a transient infiltration model coupled with an infinite slope stability calculation may be used to assess shallow landslide frequency in the City of Seattle, Washington, USA. A module called CRF (Critical RainFall) for estimating deterministic rainfall thresholds has been integrated in the TRIGRS (Transient Rainfall Infiltration and Grid-based Slope-Stability) model that combines a transient, one-dimensional analytic solution for pore-pressure response to rainfall infiltration with an infinite slope stability calculation. Input data for the extended model include topographic slope, colluvial thickness, initial water-table depth, material properties, and rainfall durations. This approach is combined with a statistical treatment of rainfall using a GEV (General Extreme Value) probabilistic distribution to produce maps showing the shallow landslide recurrence induced, on a spatially distributed basis, as a function of rainfall duration and hillslope characteristics.

  14. Costs and deaths of landslides in Europe

    Science.gov (United States)

    Haque, Ubydul; Blum, Philipp

    2016-04-01

    Landslides cause human and large economic losses worldwide and also in Europe. However, the quantification of associated costs and deaths is highly underestimated and still incomplete, thus the estimation of landslide costs and risk is still rather ambitious. Hence, in this study a spatio-temporal analysis of fatal landslides is presented for 27 European countries from 1995-2014. These landslides are mainly concentrated in mountainous areas. A total of 1370 fatalities are reported resulting from 476 landslides. The highest fatalities with 335 are observed in Turkey. In general, an increasing trend of fatal landslides is recognized starting in 2008. The latter is almost certainly triggered by an increase in natural extreme events such as storms (i.e. heavy rainfall) and floods. The highest annual economic loss is observed in Italy with 3.9 billion Euro per year. In contrast, in Germany the annual total loss is only about 0.3 billion Euro. The results of this study serves as an initial baseline information for further risk studies integrating landslide locations, local land use data, cost data, and will therefore certainly support the studied countries to better protect their citizens and assets. Acknowledgements We would like to acknowledge the valuable contributions by Paula F. da Silva, Peter Andersen, Jürgen Pilz, Ali Ardalan, Sergey R. Chalov, Jean-Philippe Malet, Mateja Jemec Auflič, Norina Andres, Eleftheria Poyiadji, Pedro C. Lamas, Wenyi Zhang, Igor Pesevski, Halldór G. Pétursson, Tayfun Kurt, Nikolai Dobrev, Juan Carlos García Davalillo, Matina Halkia, Stefano Ferri, George Gaprindashvili, Johanna Engström and David Keellings.

  15. Underwater laser cutting of metallic structures

    International Nuclear Information System (INIS)

    Alfille, J.P.; Schildknecht, J.; Ramaswami, V.S.

    1993-01-01

    In the frame of an european contract, the feasibility of the underwater cutting with a CO 2 laser power is studied. The aim of this work is the dismantling metallic structures of reactors pools. The paper analyzes the general concept of the experimental device, the underwater cutting head, the experimenting vessel, examples of cuttings in dismantling situation with a 500 W CO 2 laser, and examples of cuttings with a 5 kW CO 2 laser. (author). 2 refs., 9 figs., 2 tabs

  16. Determining rainfall thresholds that trigger landslides in Colombia

    International Nuclear Information System (INIS)

    Mayorga Marquez, Ruth

    2003-01-01

    Considering that rainfall is the natural event that more often triggers landslides, it is important to study the relationship between this phenomenon and the occurrence of earth mass movements, by determining rainfall thresholds that trigger landslides in different zones of Colombia. The research presents a methodology that allows proposing rainfall thresholds that trigger landslides in Colombia, by means of a relationship between the accumulated rain in the soil (antecedent rainfall) and the rain that falls the day of the landslide occurrence (event rainfall)

  17. Landslide disaster avoidance: learning from Leyte

    Science.gov (United States)

    Davies, T. R.

    2006-12-01

    On 17 February 2006 a gigantic rockslide triggered a debris avalanche that overran the barangay Guinsaugon, St. Bernard in Southern Leyte Province, Philippines, burying 154 victims, with 990 missing including 246 school children. Even with satellite imagery, GIS-based landslide susceptibility modelling and real-time meteorological and seismic data analysis, scientific prediction of every potentially fatal landslide is not possible in most parts of the world. This is particular the case in steep, unstable, densely-populated country in which heavy rain is common. So how can further events of this type be prevented from turning into disasters? A number of precursory phenomena were noted by local inhabitants at Guinsaugon: a crack around the slope that failed was noticed in May 2005; coconut trees near the northern foot of the landslide scarp began to lean increasingly in the down-slope direction in December 2005; a slope around the northern edge of the 17 February 2006 landslide scarp failed on December 17, 2005; in the 9 days prior to the rockslide, 640 mm of rain fell; 450 mm in a 3-day period. Such phenomena are commonly reported by local inhabitants before large landslides (e.g. Elm, Mayunmarca, and many others). In many cases, therefore, it is in principle possible for local people to avoid the consequences of the landslide if they know enough to act appropriately in response to the precursory phenomena. For this possibility to be realized, appropriate information must be provided to and assimilated by the local population. Useful ways of achieving this include pamphlets, video, TV and radio programs and visits from civil defence personnel. The information must be properly presented; scientific language will be ineffective. A communication pyramid, leading from government agencies to local leaders, can facilitate the rapid availability of the information to all potentially susceptible communities. If science can determine those areas not vulnerable to landslide

  18. Cross-slope Movement Patterns in Landslides

    Science.gov (United States)

    Petley, D.; Murphy, W.; Bulmer, M. H.; Keefer, D.

    2002-12-01

    There is growing evidence that there is a significant element of cross-slope movement in many large landslide systems. These movements may result in changing states of stress between landslide blocks that can establish complex displacement patterns. Such motions, which are not considered in traditional two-dimensional limit-equilibrium analyses, are important in the investigation of a variety of landslide types, such as those triggered by earthquakes. In addition, these movements may introduce considerable errors into the interpretation of strain patterns as derived from InSAR studies. Finally, even traditional interpretation techniques may lead to the amount of total displacement being underestimated. These observations suggest that a three dimensional form of analysis may be more appropriate for large landslide complexes. The significance of such cross-slope movements are being investigated using a detailed investigation of the Lishan landslide complex in Central Taiwan. This landslide system, which was reactivated in 1990 related to the construction of a hotel. The total recorded movements have been approximately 1.5 m over an area of sliding that is estimated to be 450 m wide and 200 m long. Extensive damage has been caused to roads and buildings within the town. Remediation work has resulted largely in the stabilization of the landslide complex. Detailed geomorphological mapping has revealed that the landslide complex is composed of two main components. The first, immediately upslope of the hotel construction site, is a relatively shallow earthflow. The second, which has formed a large headscarp upslope from the main road in the centre of the town, is a deeper translational slide. Both appear to have been reactivations of previous failures. While the displacement patterns of the earthflow indicate a relatively simple downslope movement, the vectors derived from kinematic analysis of surface features have indicated that the movement of the deeper

  19. UAV Based Agricultural Planning and Landslide Monitoring

    Directory of Open Access Journals (Sweden)

    Servet Yaprak

    2017-12-01

    Full Text Available The use of Unmanned Aerial Vehicle (UAV tools has become widespread in map production, land surveying, landslide, erosion monitoring, monitoring of agricultural activities, aerial crop surveying, forest fire detection and monitoring operations. In this study, GEO 2 UAV manufactured by TEKNOMER equipped with SONY A6000 camera has been used. The flight plan have been performed with 100 m altitude, with 80% longitudinal and 60% side overlapping. Ground Control Points (GCPs have been observed with Topcon and Trimble GNSS geodetic receivers. Recorded GNSS signals have been processed with LGO V.8.4 software to get sensitive location information. 985 photos have been taken for the 344 hectares the agricultural area. 291 photos have been taken for 50 hectares the landslide area. All photos were processed by PIX4D software. For the agricultural area, 25 GCPs and for the landslide area, 8 GCPs have been included in the evaluation. 3D images were produced with pixel matching algorithms. As a result, the RMS evaluation was obtained as ±0.054 m for the agricultural area and as ±0.018 m for the landslide area. UAV images have indisputable contributions to the management of catastrophes such as landslides and earthquakes, and it is impossible to make terrestrial measurements in areas where disaster impact continues.

  20. Landslide inventory for the Little North Santiam River Basin, Oregon

    Science.gov (United States)

    Sobieszczyk, Steven

    2010-01-01

    This geodatabase is an inventory of existing landslides in the Little North Santiam River Basin, Oregon (2009). Each landslide feature shown has been classified according to a number of specific characteristics identified at the time recorded in the GIS database. The classification scheme was developed by the Oregon Department of Geology and Mineral Industries (Burns and Madin, 2009). Several significant landslide characteristics recorded in the database are portrayed with symbology on this map. The specific characteristics shown for each landslide are the activity of landsliding, landslide features, deep or shallow failure, type of landslide movement, and confidence of landslide interpretation. These landslide characteristics are determined primarily on the basis of geomorphic features, or landforms, observed for each landslide. This work was completed as part of the Master's thesis "Turbidity Monitoring and LiDAR Imagery Indicate Landslides are Primary Source of Suspended-Sediment Load in the Little North Santiam River Basin, Oregon, Winter 2009-2010" by Steven Sobieszczyk, Portland State University and U.S. Geological Survey. Data layers in this geodatabase include: landslide deposit boundaries (Deposits); field-verfied location imagery (Photos); head scarp or scarp flanks (Scarp_Flanks); and secondary scarp features (Scarps).The geodatabase template was developed by the Oregon Department of Geology and Mineral Industries (Burns and Madin, 2009).

  1. The 22 March 2014 Oso landslide, Washington, USA

    Science.gov (United States)

    Wartman, Joseph; Montgomery, David R.; Anderson, Scott A.; Keaton, Jeffrey R.; Benoît, Jean; dela Chapelle, John; Gilbert, Robert

    2016-01-01

    The Oso, Washington, USA, landslide occurred on the morning of Saturday, 22 March 2014 and claimed the lives of 43 people. The landslide began within an 200-m-high hillslope comprised of unconsolidated glacial and previous landslide/colluvial deposits; it continued as a debris avalanche/debris flow that rapidly inundated a neighborhood of 35 single-family residences. An intense three-week rainfall that immediately preceded the event most likely played a role in triggering the landslide; and other factors that likely contributed to destabilization of the landslide mass include alteration of the local groundwater recharge and hydrogeological regime from previous landsliding, weakening and alteration of the landslide mass caused by previous landsliding, and changes in stress distribution resulting from removal and deposition of material from earlier landsliding. Field reconnaissance following the event revealed six distinctive zones and several subzones that are characterized on the basis of geomorphic expression, styles of deformation, geologic materials, and the types, size, and orientation of vegetation. Seismic recording of the landslide indicate that the event was marked by several vibration-generating episodes of mass movement. We hypothesize that the landslide occurred in two stages, with the first being a sequential remobilization of existing slide masses from the most recent (2006) landslide and from an ancient slide that triggered a devastating debris avalanche/debris flow. The second stage involved headward extension into previously unfailed material that occurred in response to unloading and redirection of stresses.

  2. Landslide Susceptibility Index Determination Using Aritificial Neural Network

    Science.gov (United States)

    Kawabata, D.; Bandibas, J.; Urai, M.

    2004-12-01

    The occurrence of landslide is the result of the interaction of complex and diverse environmental factors. The geomorphic features, rock types and geologic structure are especially important base factors of the landslide occurrence. Generating landslide susceptibility index by defining the relationship between landslide occurrence and that base factors using conventional mathematical and statistical methods is very difficult and inaccurate. This study focuses on generating landslide susceptibility index using artificial neural networks in Southern Japanese Alps. The training data are geomorphic (e.g. altitude, slope and aspect) and geologic parameters (e.g. rock type, distance from geologic boundary and geologic dip-strike angle) and landslides. Artificial neural network structure and training scheme are formulated to generate the index. Data from areas with and without landslide occurrences are used to train the network. The network is trained to output 1 when the input data are from areas with landslides and 0 when no landslide occurred. The trained network generates an output ranging from 0 to 1 reflecting the possibility of landslide occurrence based on the inputted data. Output values nearer to 1 means higher possibility of landslide occurrence. The artificial neural network model is incorporated into the GIS software to generate a landslide susceptibility map.

  3. Integration of landslide susceptibility products in the environmental plans

    Science.gov (United States)

    Fiorucci, Federica; Reichenbach, Paola; Rossi, Mauro; Cardinali, Mauro; Guzzetti, Fausto

    2015-04-01

    Landslides are one of the most destructive natural hazard that causes damages to urban area worldwide. The knowledge of where a landslide could occur is essential for the strategic management of the territory and for a good urban planning . In this contest landslide susceptibility zoning (LSZ) is crucial to provide information on the degree to which an area can be affected by future slope movements. Despite landslide susceptibility maps have been prepared extensively during the last decades, there are few examples of application is in the environmental plans (EP). In this work we present a proposal for the integration of the landslide inventory map with the following landslide susceptibility products: (i) landslide susceptibility zonation , (ii) the associated error map and (iii) the susceptibility uncertainty map. Moreover we proposed to incorporate detailed morphological studies for the evaluation of landslide risk associated to local parceling plan. The integration of all this information is crucial for the management of landslide risk in urban expansions forecasts. Municipality, province and regional administration are often not able to support the costs of landslide risk evaluation for extensive areas but should concentrate their financial resources to specific hazardous and unsafe situations defined by the result of the integration of landslide susceptibility products. Zonation and detail morphological analysis should be performed taking into account the existing laws and regulations, and could become a starting point to discuss new regulations for the landslide risk management.

  4. Spatial prediction of landslide hazard using discriminant analysis and GIS

    Science.gov (United States)

    Peter V. Gorsevski; Paul Gessler; Randy B. Foltz

    2000-01-01

    Environmental attributes relevant for spatial prediction of landslides triggered by rain and snowmelt events were derived from digital elevation model (DEM). Those data in conjunction with statistics and geographic information system (GIS) provided a detailed basis for spatial prediction of landslide hazard. The spatial prediction of landslide hazard in this paper is...

  5. Numerical modeling of landslides and generated seismic waves: The Bingham Canyon Mine landslides

    Science.gov (United States)

    Miallot, H.; Mangeney, A.; Capdeville, Y.; Hibert, C.

    2016-12-01

    Landslides are important natural hazards and key erosion processes. They create long period surface waves that can be recorded by regional and global seismic networks. The seismic signals are generated by acceleration/deceleration of the mass sliding over the topography. They consist in a unique and powerful tool to detect, characterize and quantify the landslide dynamics. We investigate here the processes at work during the two massive landslides that struck the Bingham Canyon Mine on the 10th April 2013. We carry a combined analysis of the generated seismic signals and the landslide processes computed with a 3D modeling on a complex topography. Forces computed by broadband seismic waveform inversion are used to constrain the study and particularly the force-source and the bulk dynamic. The source time function are obtained by a 3D model (Shaltop) where rheological parameters can be adjusted. We first investigate the influence of the initial shape of the sliding mass which strongly affects the whole landslide dynamic. We also see that the initial shape of the source mass of the first landslide constrains pretty well the second landslide source mass. We then investigate the effect of a rheological parameter, the frictional angle, that strongly influences the resulted computed seismic source function. We test here numerous friction laws as the frictional Coulomb law and a velocity-weakening friction law. Our results show that the force waveform fitting the observed data is highly variable depending on these different choices.

  6. Landslide Susceptibility Mapping Based on Selected Optimal Combination of Landslide Predisposing Factors in a Large Catchment

    Directory of Open Access Journals (Sweden)

    Qianqian Wang

    2015-12-01

    Full Text Available Landslides are usually initiated under complex geological conditions. It is of great significance to find out the optimal combination of predisposing factors and create an accurate landslide susceptibility map based on them. In this paper, the Information Value Model was modified to make the Modified Information Value (MIV Model, and together with GIS (Geographical Information System and AUC (Area Under Receiver Operating Characteristic Curve test, 32 factor combinations were evaluated separately, and factor combination group with members Slope, Lithology, Drainage network, Annual precipitation, Faults, Road and Vegetation was selected as the optimal combination group with an accuracy of 95.0%. Based on this group, a landslide susceptibility zonation map was drawn, where the study area was reclassified into five classes, presenting an accurate description of different levels of landslide susceptibility, with 79.41% and 13.67% of the validating field survey landslides falling in the Very High and High zones, respectively, mainly distributed in the south and southeast of the catchment. It showed that MIV model can tackle the problem of “no data in subclass” well, generate the true information value and show real running trend, which performs well in showing the relationship between predisposing factors and landslide occurrence and can be used for preliminary landslide susceptibility assessment in the study area.

  7. Effects of the partially movable control fin with end plate of underwater vehicle

    Directory of Open Access Journals (Sweden)

    Chul-Min Jung

    2017-01-01

    Full Text Available Underwater torpedo has control fin with very low aspect ratio due to launching from limited size of cylindrical torpedo tube. If the aspect ratio of control fin of underwater vehicle is very low three-dimensional flow around control fin largely reduces control forces. In this study, the end plate was applied to reduce the three-dimensional flow effects of partially movable control fin of underwater vehicle. Through numerical simulations the flow field around control fin was examined with and without end plate for different flap angles. The pressure, vorticity, lift and torque on the control fin were analyzed and compared to experiments. The comparison have shown a reasonable agreement between numerical and experimental results and the effect of end plate on a low aspect ratio control fin. When the end plate was attached to the movable control fin, the lift increased and the actuator shaft torque did not significantly change. As this means less consumption of the actuator shaft torque compared to the control fin that has the same control force, the inner actuator capacity can be reduced and energy consumption can be saved. Considering this, it is expected to be effectively applied to the control fin design of underwater vehicles such as torpedoes.

  8. Underwater image enhancement based on the dark channel prior and attenuation compensation

    Science.gov (United States)

    Guo, Qingwen; Xue, Lulu; Tang, Ruichun; Guo, Lingrui

    2017-10-01

    Aimed at the two problems of underwater imaging, fog effect and color cast, an Improved Segmentation Dark Channel Prior (ISDCP) defogging method is proposed to solve the fog effects caused by physical properties of water. Due to mass refraction of light in the process of underwater imaging, fog effects would lead to image blurring. And color cast is closely related to different degree of attenuation while light with different wavelengths is traveling in water. The proposed method here integrates the ISDCP and quantitative histogram stretching techniques into the image enhancement procedure. Firstly, the threshold value is set during the refinement process of the transmission maps to identify the original mismatching, and to conduct the differentiated defogging process further. Secondly, a method of judging the propagating distance of light is adopted to get the attenuation degree of energy during the propagation underwater. Finally, the image histogram is stretched quantitatively in Red-Green-Blue channel respectively according to the degree of attenuation in each color channel. The proposed method ISDCP can reduce the computational complexity and improve the efficiency in terms of defogging effect to meet the real-time requirements. Qualitative and quantitative comparison for several different underwater scenes reveals that the proposed method can significantly improve the visibility compared with previous methods.

  9. Human Factors Issues When Operating Underwater Remotely Operated Vehicles and Autonomous Underwater Vehicles

    Science.gov (United States)

    2011-03-01

    etiquette (Parasuraman & Miller, 2004). Through natural and intuitive communication, Johnson et al., (2007) hope that this interface will instill greater...and etiquette in high criticality automated systems. Communications of the ACM, 47(4), 51-55. Parasuraman, R., & Riley, V. (1997). Humans and... protocols for underwater wireless communications. IEEE Communications Magazine, pp. 97-102. Quazi, A. H., & Konrad, W. L. (1982, March 1982). Underwater

  10. IVO develops a new repair technique for underwater sites. Viscous doughlike substance underwater cracks

    Energy Technology Data Exchange (ETDEWEB)

    Klingstedt, G.; Leisio, C. [ed.

    1998-07-01

    A viscous sealant is revolutionizing repair of the stone and concrete masonry of underwater dams, bridges and canals. There is now no need for expensive and time-consuming cofferdams, since a diver can extrude quick-setting mortar into underwater structures needing repair. This technique has worked well in recent years in various parts of Finland even in strongly flowing water. IVO experts are now starting to look more beyond the borders of Finland

  11. Landslide-Generated Waves in a Dam Reservoir: The Effects of Landslide Rheology and Initial Submergence

    Science.gov (United States)

    Yavari Ramsheh, S.; Ataie-Ashtiani, B.

    2017-12-01

    Recent studies revealed that landslide-generated waves (LGWs) impose the largest tsunami hazard to our shorelines although earthquake-generated waves (EGWs) occur more often. Also, EGWs are commonly followed by a large number of landslide hazards. Dam reservoirs are more vulnerable to landslide events due to being located in mountainous areas. Accurate estimation of such hazards and their destructive consequences help authorities to reduce their risks by constructive measures. In this regard, a two-layer two-phase Coulomb mixture flow (2LCMFlow) model is applied to investigate the effects of landslide characteristics on LGWs for a real-sized simplification of the Maku dam reservoir, located in the North of Iran. A sensitivity analysis is performed on the role of landslide rheological and constitutive parameters and its initial submergence in LGW characteristics and formation patterns. The numerical results show that for a subaerial (SAL), a semi-submerged (SSL), and a submarine landslide (SML) with the same initial geometry, the SSLs can create the largest wave crest, up to 60% larger than SALs, for dense material. However, SMLs generally create the largest wave troughs and SALs travel the maximum runout distances beneath the water. Regarding the two-phase (solid-liquid) nature of the landslide, when interestial water is isolated from the water layer along the water/landslide interface, a LGW with up to 30% higher wave crest can be created. In this condition, increasing the pore water pressure within the granular layer results in up to 35% higher wave trough and 40% lower wave crest at the same time. These results signify the importance of appropriate description of two-phase nature and rheological behavior of landslides in accurate estimation of LGWs which demands further numerical, physical, and field studies about such phenomena.

  12. A logical framework for ranking landslide inventory maps

    Science.gov (United States)

    Santangelo, Michele; Fiorucci, Federica; Bucci, Francesco; Cardinali, Mauro; Ardizzone, Francesca; Marchesini, Ivan; Cesare Mondini, Alessandro; Reichenbach, Paola; Rossi, Mauro; Guzzetti, Fausto

    2014-05-01

    Landslides inventory maps are essential for quantitative landslide hazard and risk assessments, and for geomorphological and ecological studies. Landslide maps, including geomorphological, event based, multi-temporal, and seasonal inventory maps, are most commonly prepared through the visual interpretation of (i) monoscopic and stereoscopic aerial photographs, (ii) satellite images, (iii) LiDAR derived images, aided by more or less extensive field surveys. Landslide inventory maps are the basic information for a number of different scientific, technical and civil protection purposes, such as: (i) quantitative geomorphic analyses, (ii) erosion studies, (iii) deriving landslide statistics, (iv) urban development planning (v) landslide susceptibility, hazard and risk evaluation, and (vi) landslide monitoring systems. Despite several decades of activity in landslide inventory making, still no worldwide-accepted standards, best practices and protocols exist for the ranking and the production of landslide inventory maps. Standards for the preparation (and/or ranking) of landslide inventories should indicate the minimum amount of information for a landslide inventory map, given the scale, the type of images, the instrumentation available, and the available ancillary data. We recently attempted at a systematic description and evaluation of a total of 22 geomorphological inventories, 6 multi-temporal inventories, 10 event inventories, and 3 seasonal inventories, in the scale range between 1:10,000 and 1:500,000, prepared for areas in different geological and geomorphological settings. All of the analysed inventories were carried out by using image interpretation techniques, or field surveys. Firstly, a detailed characterisation was performed for each landslide inventory, mainly collecting metadata related (i) to the amount of information used for preparing the landslide inventory (i.e. images used, instrumentation, ancillary data, digitalisation method, legend, validation

  13. Reactivation hazard mapping for ancient landslides in West Belgium

    Directory of Open Access Journals (Sweden)

    O. Dewitte

    2006-01-01

    Full Text Available Several examples in western Europe have shown that, at least for deep-seated rotational slides, reactivation of formerly slipped masses is a more frequent phenomenon than the occurrence of new landslides, therefore representing a higher hazard. We selected a study area comprised of 13 landslides located in the Flemish Ardennes (West Belgium and predicted the hazard related to scarp retreat. The scarp reactivations were identified from the comparison of DTMs produced for 1952 and 1996. Robust results were obtained with the Gamma operator of a fuzzy set approach and a combination of geomorphic, topographic and land use data. We built first a prediction model from the relations linking the 1952–1996 retreat events to the conditioning parameters of 1952. The prediction rate of the resulting susceptibility map is estimated by a cross-validation procedure. We then applied the statistics of this model to the data of 1996 in order to produce a susceptibility map responding to the present-day conditions. Finally, we estimated the conditional probabilities of occurrence of future reactivations for the period 1996–2036.

  14. Underwater noise generated by offshore pile driving

    NARCIS (Netherlands)

    Tsouvalas, A.

    2015-01-01

    Anthropogenic noise emission in the marine environment has always been an environmental issue of serious concern. In particular, the noise generated during the installation of foundation piles is considered to be one of the most significant sources of underwater noise pollution. This is mainly

  15. Underwater image mosaicking and visual odometry

    Science.gov (United States)

    Sadjadi, Firooz; Tangirala, Sekhar; Sorber, Scott

    2017-05-01

    This paper summarizes the results of studies in underwater odometery using a video camera for estimating the velocity of an unmanned underwater vehicle (UUV). Underwater vehicles are usually equipped with sonar and Inertial Measurement Unit (IMU) - an integrated sensor package that combines multiple accelerometers and gyros to produce a three dimensional measurement of both specific force and angular rate with respect to an inertial reference frame for navigation. In this study, we investigate the use of odometry information obtainable from a video camera mounted on a UUV to extract vehicle velocity relative to the ocean floor. A key challenge with this process is the seemingly bland (i.e. featureless) nature of video data obtained underwater which could make conventional approaches to image-based motion estimation difficult. To address this problem, we perform image enhancement, followed by frame to frame image transformation, registration and mosaicking/stitching. With this approach the velocity components associated with the moving sensor (vehicle) are readily obtained from (i) the components of the transform matrix at each frame; (ii) information about the height of the vehicle above the seabed; and (iii) the sensor resolution. Preliminary results are presented.

  16. Efficient Modelling Methodology for Reconfigurable Underwater Robots

    DEFF Research Database (Denmark)

    Nielsen, Mikkel Cornelius; Blanke, Mogens; Schjølberg, Ingrid

    2016-01-01

    This paper considers the challenge of applying reconfigurable robots in an underwater environment. The main result presented is the development of a model for a system comprised of N, possibly heterogeneous, robots dynamically connected to each other and moving with 6 Degrees of Freedom (DOF). Th...

  17. Underwater Adhesives Retrofit Pipelines with Advanced Sensors

    Science.gov (United States)

    2015-01-01

    Houston-based Astro Technology Inc. used a partnership with Johnson Space Center to pioneer an advanced fiber-optic monitoring system for offshore oil pipelines. The company's underwater adhesives allow it to retrofit older deepwater systems in order to measure pressure, temperature, strain, and flow properties, giving energy companies crucial data in real time and significantly decreasing the risk of a catastrophe.

  18. MOSES, development of an Underwater Warfare Testbed

    NARCIS (Netherlands)

    Lentze, S.G.

    2001-01-01

    The TNO underwater warfare (UWW) research programme results in a large number of models used in operational research projects. To enhance the accessibility and re-use of these models for new projects, TNO-FEL has developed the modelling environment ‘MOSES - Maritime Operations Simulation and

  19. Human Injury Criteria for Underwater Blasts

    Science.gov (United States)

    2014-09-08

    further underscored the need for this new guideline based on injury data. Conference Name: Personal Armour Systems Symposium Conference Date...29.  Cole, R., Underwater Explosion. (Dover Publications, Inc ., New York, N.Y., 1948) 30.  Nakahara, M., Nagayama, K, Mori, Y, Japanese Journal...Abstract of the Undersea and Hyperbaric Medical Society, Inc . Annual Scientific Meeting, (1976).

  20. Impacts of underwater noise on marine vertebrates

    NARCIS (Netherlands)

    Liebschner, Alexander; Seibel, Henrike; Teilmann, Jonas; Wittekind, Dietrich; Parmentier, Eric; Dähne, Michael; Dietz, Rune; Driver, Jörg; Elk, van Cornelis; Everaarts, Eligius; Findeisen, Henning; Kristensen, Jacob; Lehnert, Kristina; Lucke, Klaus; Merck, Thomas; Müller, Sabine; Pawliczka, Iwona; Ronnenberg, Katrin; Rosenberger, Tanja; Ruser, Andreas; Tougaard, Jakob; Schuster, Max; Sundermeyer, Janne; Sveegaard, Signe; Siebert, Ursula

    2016-01-01

    The project conducts application-oriented research on impacts of underwater noise on marine vertebrates in the North and Baltic Seas. In distinct subprojects, the hearing sensitivity of harbor porpoises and gray seals as well as the acoustic tolerance limit of harbor porpoises to impulsive noise

  1. Assessing Landslide Characteristics and Developing a Landslide Potential Hazard Map in Rwanda and Uganda Using NASA Earth Observations

    Science.gov (United States)

    Sinclair, L.; Conner, P.; le Roux, J.; Finley, T.

    2015-12-01

    The International Emergency Disasters Database indicates that a total of 482 people have been killed and another 27,530 have been affected by landslides in Rwanda and Uganda, although the actual numbers are thought to be much higher. Data for individual countries are poorly tracked, but hotspots for devastating landslides occur throughout Rwanda and Uganda due to the local topography and soil type, intense rainfall events, and deforestation. In spite of this, there has been little research in this region that utilizes satellite imagery to estimate areas susceptible to landslides. This project utilized Landsat 8 Operational Land Imager (OLI) data and Google Earth to identify landslides that occurred within the study area. These landslides were then added to SERVIR's Global Landslide Catalog (GLC). Next, Landsat 8 OLI, the Tropical Rainfall Measuring Mission (TRMM), the Global Precipitation Measurement (GPM), and Shuttle Radar Topography Mission Version 2 (SRTM V2) data were used to create a Landslide Susceptibility Map. This was combined with population data from the Socioeconomic Data and Applications Center (SEDAC) to create a Landslide Hazard map. A preliminary assessment of the relative performance of GPM and TRMM in identifying landslide conditions was also performed. The additions to the GLC, the Landslide Susceptibility Map, the Landslide Hazard Map, and the preliminary assessment of satellite rainfall performance will be used by SERVIR and the Regional Centre for Mapping of Resources for Development (RCMRD) for disaster risk management, land use planning, and determining landslide conditions and moisture thresholds.

  2. Communication and cooperation in underwater acoustic networks

    Science.gov (United States)

    Yerramalli, Srinivas

    In this thesis, we present a study of several problems related to underwater point to point communications and network formation. We explore techniques to improve the achievable data rate on a point to point link using better physical layer techniques and then study sensor cooperation which improves the throughput and reliability in an underwater network. Robust point-to-point communications in underwater networks has become increasingly critical in several military and civilian applications related to underwater communications. We present several physical layer signaling and detection techniques tailored to the underwater channel model to improve the reliability of data detection. First, a simplified underwater channel model in which the time scale distortion on each path is assumed to be the same (single scale channel model in contrast to a more general multi scale model). A novel technique, which exploits the nature of OFDM signaling and the time scale distortion, called Partial FFT Demodulation is derived. It is observed that this new technique has some unique interference suppression properties and performs better than traditional equalizers in several scenarios of interest. Next, we consider the multi scale model for the underwater channel and assume that single scale processing is performed at the receiver. We then derive optimized front end pre-processing techniques to reduce the interference caused during single scale processing of signals transmitted on a multi-scale channel. We then propose an improvised channel estimation technique using dictionary optimization methods for compressive sensing and show that significant performance gains can be obtained using this technique. In the next part of this thesis, we consider the problem of sensor node cooperation among rational nodes whose objective is to improve their individual data rates. We first consider the problem of transmitter cooperation in a multiple access channel and investigate the stability of

  3. Low-cost small action cameras in stereo generates accurate underwater measurements of fish

    OpenAIRE

    Letessier, T. B.; Juhel, Jean-Baptiste; Vigliola, Laurent; Meeuwig, J. J.

    2015-01-01

    Small action cameras have received interest for use in underwater videography because of their low-cost, standardised housing, widespread availability and small size. Here, we assess the capacity of GoPro action cameras to provide accurate stereo-measurements of fish in comparison to the Sony handheld cameras that have traditionally been used for this purpose. Standardised stereo-GoPro and Sony systems were employed to capture measurements of known-length targets in a pool to explore the infl...

  4. Multidisciplinary study on anthropogenic landslides in Nepal

    Science.gov (United States)

    Puglia, Christopher; Derron, Marc-Henri; Nicolet, Pierrick; Sudmeier-Rieux, Karen; Jaboyedoff, Michel; Devkota, Sanjay

    2013-04-01

    Nepal is a country in which shallow landslide is a frequent phenomenon. Monsoon is the main triggering factor but anthropogenic influence is often significant too. Indeed, many infrastructures, such as roads or water pipes, are not built in a rigorous way because of a lack of funds and knowledge. In the present study we examine the technical, social and economic issues of landslide management for two sites in Nepal. The first site is located in Sanusiruwari VDC (Sindhupalchock district, central Nepal) and the second one in Namadi VDC (Ramecchap district, central Nepal). Both sites are affected by landslides induced by the construction of hydropower plants. These landslides may threaten the viability of the hydropower plants. At both sites the problems are quite similar, but the first site project is a private one and the second one is a public one implemented by the United Nations Development Programme (UNDP). For both sites, bioengineering methods using Vetiver (Vetyveria zizanioides) plantations is the main stabilization measure. To follow the progression of both landslides, fieldwork observations were conducted before and after the 2012 rainy season, including photogrammetric and distancemeter acquisitions. Main issues were discussed with communities and stakeholders of the hydropower projects through interviews and participatory risk mapping. Main issues include: lack of communication between the project managers and communities leading to conflict and the lack of maintenance of the bio-engineering sites, leading to less effective Vetiver growth and slope stabilization. Comparing the landslide management (technical, social and economic) of the two projects allows to point out some specific issues within an integrated risk perspective.

  5. Tracer techniques in landslide area surveys

    Energy Technology Data Exchange (ETDEWEB)

    Turcek, P [Slovenska Vysoka Skola Technicka, Bratislava (Czechoslovakia)

    1982-10-01

    One of the most important effects leading to slope movements is the action of surface and ground water on rocks. The rock movement usually occurs as a result of dilatation. The increased rock porosity in the area of the slide zone leads to higher permeability. The measurement of the ground water flow rate by the single borehole method using the /sup 131/I radiotracer in objects with perforated casings, installed in the landslide zone, can be used to locate sliding surfaces. The method was successfully applied in landslides at Miksova, Turany, Liskova and Podhradi where drainage measures were taken, the efficiency of which can be checked periodically.

  6. Cavola experiment site: geophysical investigations and deployment of a dense seismic array on a landslide

    Directory of Open Access Journals (Sweden)

    L. Martelli

    2007-06-01

    Full Text Available Geophysical site investigations have been performed in association with deployment of a dense array of 95 3-component seismometers on the Cavola landslide in the Northern Apennines. The aim of the array is to study propagation of seismic waves in the heterogeneous medium through comparison of observation and modelling. The small-aperture array (130 m×56 m operated continuously for three months in 2004. Cavola landslide consists of a clay body sliding over mudstone-shale basement, and has a record of historical activity, including destruction of a small village in 1960. The site investigations include down-hole logging of P- and S-wave travel times at a new borehole drilled within the array, two seismic refraction lines with both P-wave profiling and surface-wave analyses, geo-electrical profiles and seismic noise measurements. From the different approaches a consistent picture of the depths and seismic velocities for the landslide has emerged. Their estimates agree with resonance frequencies of seismic noise, and also with the logged depths to basement of 25 m at a new borehole and of 44 m at a pre-existing borehole. Velocities for S waves increase with depth, from 230 m/s at the surface to 625 m/s in basement immediately below the landslide.

  7. Landslide monitoring using multitemporal terrestrial laser scanning for ground displacement analysis

    Directory of Open Access Journals (Sweden)

    Maurizio Barbarella

    2015-07-01

    Full Text Available In the analysis of the temporal evolution of landslides and of related hydrogeological hazards, terrestrial laser scanning (TLS seems to be a very suitable technique for morphological description and displacement analysis. In this note we present some procedures designed to solve specific issues related to monitoring. A particular attention has been devoted to data georeferencing, both during survey campaigns and while performing statistical data analysis. The proper interpolation algorithm for digital elevation model generation has been chosen taking into account the features of the landslide morphology and of the acquired datasets. For a detailed analysis of the different dynamics of the hillslope, we identified some areas with homogeneous behaviour applying in a geographic information system (GIS environment a sort of rough segmentation to the grid obtained by differentiating two surfaces. This approach has allowed a clear identification of ground deformations, obtaining detailed quantitative information on surficial displacements. These procedures have been applied to a case study on a large landslide of about 10 hectares, located in Italy, which recently has severely damaged the national railway line. Landslide displacements have been monitored with TLS surveying for three years, from February 2010 to June 2012. Here we report the comparison results between the first and the last survey.

  8. An Ensemble Model for Co-Seismic Landslide Susceptibility Using GIS and Random Forest Method

    Directory of Open Access Journals (Sweden)

    Suchita Shrestha

    2017-11-01

    Full Text Available The Mw 7.8 Gorkha earthquake of 25 April 2015 triggered thousands of landslides in the central part of the Nepal Himalayas. The main goal of this study was to generate an ensemble-based map of co-seismic landslide susceptibility in Sindhupalchowk District using model comparison and combination strands. A total of 2194 co-seismic landslides were identified and were randomly split into 1536 (~70%, to train data for establishing the model, and the remaining 658 (~30% for the validation of the model. Frequency ratio, evidential belief function, and weight of evidence methods were applied and compared using 11 different causative factors (peak ground acceleration, epicenter proximity, fault proximity, geology, elevation, slope, plan curvature, internal relief, drainage proximity, stream power index, and topographic wetness index to prepare the landslide susceptibility map. An ensemble of random forest was then used to overcome the various prediction limitations of the individual models. The success rates and prediction capabilities were critically compared using the area under the curve (AUC of the receiver operating characteristic curve (ROC. By synthesizing the results of the various models into a single score, the ensemble model improved accuracy and provided considerably more realistic prediction capacities (91% than the frequency ratio (81.2%, evidential belief function (83.5% methods, and weight of evidence (80.1%.

  9. A global database of seismically and non-seismically triggered landslides for 2D/3D numerical modeling

    Science.gov (United States)

    Domej, Gisela; Bourdeau, Céline; Lenti, Luca; Pluta, Kacper

    2017-04-01

    statistical analysis on a vast and newly updated set of data and to create numerical models in the future. It is possible to define groups of landslides sharing the same characteristics, or cases belonging to different groups can be used to compare their responses to external loads. Thus, different options exist to create input data for numerical models. This is very promising especially considering the possibility of comparing 2D and 3D models having the same framework conditions (i.e. geometry, material, etc.). Comparison of 2D and 3D approaches might contribute to a better understanding of landsliding phenomena to improve the hazard prevention.

  10. Estimating the empirical probability of submarine landslide occurrence

    Science.gov (United States)

    Geist, Eric L.; Parsons, Thomas E.; Mosher, David C.; Shipp, Craig; Moscardelli, Lorena; Chaytor, Jason D.; Baxter, Christopher D. P.; Lee, Homa J.; Urgeles, Roger

    2010-01-01

    The empirical probability for the occurrence of submarine landslides at a given location can be estimated from age dates of past landslides. In this study, tools developed to estimate earthquake probability from paleoseismic horizons are adapted to estimate submarine landslide probability. In both types of estimates, one has to account for the uncertainty associated with age-dating individual events as well as the open time intervals before and after the observed sequence of landslides. For observed sequences of submarine landslides, we typically only have the age date of the youngest event and possibly of a seismic horizon that lies below the oldest event in a landslide sequence. We use an empirical Bayes analysis based on the Poisson-Gamma conjugate prior model specifically applied to the landslide probability problem. This model assumes that landslide events as imaged in geophysical data are independent and occur in time according to a Poisson distribution characterized by a rate parameter λ. With this method, we are able to estimate the most likely value of λ and, importantly, the range of uncertainty in this estimate. Examples considered include landslide sequences observed in the Santa Barbara Channel, California, and in Port Valdez, Alaska. We confirm that given the uncertainties of age dating that landslide complexes can be treated as single events by performing statistical test of age dates representing the main failure episode of the Holocene Storegga landslide complex.

  11. Evaluation of landslide monitoring in the Polish Carpathians

    Science.gov (United States)

    Collins, Brian D.; Baum, Rex L.; Mrozek, Teresa; Nescieruk, Piotr; Perski, Zbigniew; Raczkowski, Wojciech; Graniczny, Marek

    2011-01-01

    In response to the June 15, 2010 request from the Polish Geological Institute (PGI) to the U.S. Geological Survey (USGS) for assistance and advice regarding real-time landslide monitoring, landslide specialists from the USGS Landslide Hazard Program visited PGI headquarters and field sites in September 2010. During our visit we became familiar with characteristics of landslides in the Polish Carpathians, reviewed PGI monitoring techniques, and assessed needs for monitoring at recently activated landslides. Visits to several landslides that are monitored by PGI (the Just, Hańczowa, Szymbark, Siercza and Łasńica landslides) revealed that current data collection (monthly GPS and inclinometer surveys, hourly piezometers readings) is generally sufficient for collecting basic information about landslide displacement, depth, and groundwater conditions. Large landslides are typically hydrologically complex, and we would expect such complexity in Carpathian landslides, given the alternating shale and sandstone stratigraphy and complex geologic structures of the flysch bedrock. Consequently groundwater observations could be improved by installing several piezometers that sample the basal shear zone of each landslide being monitored by PGI. These could be supplemented by additional piezometers at shallower depths to help clarify general flow directions and hydraulic gradients. Remedial works at Hańczowa

  12. Rainstorms as a landslide-triggering factor in Slovenia

    Directory of Open Access Journals (Sweden)

    Marko Komac

    2005-12-01

    Full Text Available Rainfall plays an important role in the landslide triggering processes. Analyses of landslide occurrence in the area of Slovenia have shown that areas where intensive rainstorms occure (maximal daily rainfall for the 100 years period, and where the geologicalsettings are favourable, abundance of landslide can be expected. This clearly indicates the spatial and temporal dependence of landslide occurrence upon the intensive rainfall. Regarding the landslide occurrence, the intensity of maximal daily and average annual rainfall for the the 30 years period were analysed. Results have shown that daily rainfall intensity, which significantly influences the triggering of landslides, ranges from 100 to 150 mm, most probably above 130 mm. Despite the vague influence, if any at all,of the average annual rainfall, the threshold above which significant number of landslides occurs is 1000 mm.

  13. Water-Depth-Based Prediction Formula for the Blasting Vibration Velocity of Lighthouse Caused by Underwater Drilling Blasting

    Directory of Open Access Journals (Sweden)

    Wenbin Gu

    2017-01-01

    Full Text Available Lighthouses are the most important hydraulic structures that should be protected during underwater drilling blasting. Thus, the effect of blasting vibration on lighthouse should be studied. On the basis of the dimensional analysis, we deduced a revised formula for water depth based on Sodev’s empirical formula and established the linear fitting model. During the underwater reef project in the main channel of Shipu Harbor in the Ningbo–Zhoushan Port, the blasting vibration data of the lighthouse near the underwater blasting area were monitored. The undetermined coefficient, resolvable coefficient, and F value of the two formulas were then obtained. The comparison of the data obtained from the two formulas showed that they can effectively predict the blasting vibration on the lighthouse. The correction formula that considers water depth can obviously reduce prediction errors and accurately predict blasting vibration.

  14. Stability analysis of hybrid-driven underwater glider

    Science.gov (United States)

    Niu, Wen-dong; Wang, Shu-xin; Wang, Yan-hui; Song, Yang; Zhu, Ya-qiang

    2017-10-01

    Hybrid-driven underwater glider is a new type of unmanned underwater vehicle, which combines the advantages of autonomous underwater vehicles and traditional underwater gliders. The autonomous underwater vehicles have good maneuverability and can travel with a high speed, while the traditional underwater gliders are highlighted by low power consumption, long voyage, long endurance and good stealth characteristics. The hybrid-driven underwater gliders can realize variable motion profiles by their own buoyancy-driven and propeller propulsion systems. Stability of the mechanical system determines the performance of the system. In this paper, the Petrel-II hybrid-driven underwater glider developed by Tianjin University is selected as the research object and the stability of hybrid-driven underwater glider unitedly controlled by buoyancy and propeller has been targeted and evidenced. The dimensionless equations of the hybrid-driven underwater glider are obtained when the propeller is working. Then, the steady speed and steady glide path angle under steady-state motion have also been achieved. The steady-state operating conditions can be calculated when the hybrid-driven underwater glider reaches the desired steady-state motion. And the steadystate operating conditions are relatively conservative at the lower bound of the velocity range compared with the range of the velocity derived from the method of the composite Lyapunov function. By calculating the hydrodynamic coefficients of the Petrel-II hybrid-driven underwater glider, the simulation analysis has been conducted. In addition, the results of the field trials conducted in the South China Sea and the Danjiangkou Reservoir of China have been presented to illustrate the validity of the analysis and simulation, and to show the feasibility of the method of the composite Lyapunov function which verifies the stability of the Petrel-II hybrid-driven underwater glider.

  15. Analysis of Landslide Hazard Impact Using the Landslide Database for Germany

    Science.gov (United States)

    Klose, M.; Damm, B.

    2014-12-01

    The Federal Republic of Germany has long been among the few European countries that lack a national landslide database. Systematic collection and inventory of landslide data still shows a comprehensive research history in Germany, but only one focused on development of databases with local or regional coverage. This has changed in recent years with the launch of a database initiative aimed at closing the data gap existing at national level. The present contribution reports on this project that is based on a landslide database which evolved over the last 15 years to a database covering large parts of Germany. A strategy of systematic retrieval, extraction, and fusion of landslide data is at the heart of the methodology, providing the basis for a database with a broad potential of application. The database offers a data pool of more than 4,200 landslide data sets with over 13,000 single data files and dates back to 12th century. All types of landslides are covered by the database, which stores not only core attributes, but also various complementary data, including data on landslide causes, impacts, and mitigation. The current database migration to PostgreSQL/PostGIS is focused on unlocking the full scientific potential of the database, while enabling data sharing and knowledge transfer via a web GIS platform. In this contribution, the goals and the research strategy of the database project are highlighted at first, with a summary of best practices in database development providing perspective. Next, the focus is on key aspects of the methodology, which is followed by the results of different case studies in the German Central Uplands. The case study results exemplify database application in analysis of vulnerability to landslides, impact statistics, and hazard or cost modeling.

  16. Landslide Susceptibility Statistical Methods: A Critical and Systematic Literature Review

    Science.gov (United States)

    Mihir, Monika; Malamud, Bruce; Rossi, Mauro; Reichenbach, Paola; Ardizzone, Francesca

    2014-05-01

    Landslide susceptibility assessment, the subject of this systematic review, is aimed at understanding the spatial probability of slope failures under a set of geomorphological and environmental conditions. It is estimated that about 375 landslides that occur globally each year are fatal, with around 4600 people killed per year. Past studies have brought out the increasing cost of landslide damages which primarily can be attributed to human occupation and increased human activities in the vulnerable environments. Many scientists, to evaluate and reduce landslide risk, have made an effort to efficiently map landslide susceptibility using different statistical methods. In this paper, we do a critical and systematic landslide susceptibility literature review, in terms of the different statistical methods used. For each of a broad set of studies reviewed we note: (i) study geography region and areal extent, (ii) landslide types, (iii) inventory type and temporal period covered, (iv) mapping technique (v) thematic variables used (vi) statistical models, (vii) assessment of model skill, (viii) uncertainty assessment methods, (ix) validation methods. We then pulled out broad trends within our review of landslide susceptibility, particularly regarding the statistical methods. We found that the most common statistical methods used in the study of landslide susceptibility include logistic regression, artificial neural network, discriminant analysis and weight of evidence. Although most of the studies we reviewed assessed the model skill, very few assessed model uncertainty. In terms of geographic extent, the largest number of landslide susceptibility zonations were in Turkey, Korea, Spain, Italy and Malaysia. However, there are also many landslides and fatalities in other localities, particularly India, China, Philippines, Nepal and Indonesia, Guatemala, and Pakistan, where there are much fewer landslide susceptibility studies available in the peer-review literature. This

  17. Landslide susceptibility analysis using Probabilistic Certainty Factor ...

    Indian Academy of Sciences (India)

    done using many different methods and techniques. A detailed outline of .... of depressions where water is accumulated, espe- cially when the ..... The two decision rules that must be satisfied for a good landslide .... making the susceptibility zonation relative. This is ..... tional Conference on Imaging Systems and Techniques,.

  18. The Effect of Landslide on Gas Pipeline

    Directory of Open Access Journals (Sweden)

    Valkovič Vojtech

    2016-11-01

    Full Text Available The present paper deals with the calculation of stresses on the pipeline system embedded on a flexible substrate which is burdened by a landslide. As well as taking into account the probability of the influences acting on the pipe as wall thickness, and others.

  19. Quick clay and landslides of clayey soils

    NARCIS (Netherlands)

    Khaldoun, A.; Moller, P.; Fall, A.; Wegdam, G.; de Leeuw, B.; Méheust, Y.; Fossum, J.O.; Bonn, D.

    2009-01-01

    We study the rheology of quick clay, an unstable soil responsible for many landslides. We show that above a critical stress the material starts flowing abruptly with a very large viscosity decrease caused by the flow. This leads to avalanche behavior that accounts for the instability of quick clay

  20. Landslide Caused Damages in a Gallery

    Science.gov (United States)

    Poisel, R.; Mair am Tinkhof, K.; Preh, A.

    2016-06-01

    On October 5th, 2010, cracks were found in a gallery 1.8 m high and 1.4 m wide. The gallery is 100 years old, runs parallel to a valley flank and was excavated in a tectonically strongly stressed, weathered and slightly dipping sandwich of clayey shales, sandstones and marls. The cracks in the roof as well as in the invert ran parallel to the axis of the gallery. Monitoring showed that crack widths were increasing 1.5 mm per year, sidewall distances were increasing 3.5 mm per year, whereas the height of the gallery was decreasing 2.5 mm per year. After eliminating several possible causes of cracking, a landslide producing the damages had to be taken into consideration. Monitoring of the valley flank surface as well as inclinometer readings revealed that a landslide was occurring, loading the gallery lining. Most probably the landslide had been reactivated by excessive rainfall in 2009 as well as by works for the renewal of a weir in the valley bottom. As stabilization of the slope was not an option for several reasons, it was decided to replace the gallery by a new one deeper inside the slope, which will be ready for operation in 2017. Thus the old gallery has to be kept in operation till then and it was decided to reinforce the old gallery by a heavily reinforced shotcrete lining 10 cm thick. As slope displacements went on, cracks in the shotcrete lining developed with a completely different pattern: in the section where the gallery lies completely in the landslide shear zone no cracks formed until now due to heavy reinforcement, whereas in the transition sections stable ground-landslide and landslide-stable ground diagonal tension cracks in the roof due to shear by the landslide developed. Numerical models showed that cracking and spalling of the shotcrete lining would occur only after some centimetres of additional displacements of the slope, which hopefully will not occur before 2017.

  1. A Critical Review of Landslide Failure Mechanisms

    Science.gov (United States)

    Stead, D.; Wolter, A.; Clague, J. J.

    2011-12-01

    During the last ten years several comprehensive geotechnical studies have been completed on major historic landslides including Randa in Switzerland, Frank in Canada, Aknes in Norway, La Clapiere in France and Vaiont in Italy. In addition, numerous researchers have documented deep-seated gravitational deformations and a wide variety of large prehistoric rock slope failures. The information provided by these studies is evidence of the significant advances made in our ability to map, monitor and model landslides. Over the same period, the mining industry has developed large open pits with slope heights exceeding 1000 m that provide important analogues to high mountain slopes. In this paper we analyse data from the literature to illustrate the importance of brittle fracture, 3D controls, anisotropy, overburden stress, geomorphic processes, groundwater and temperature in major landslides and provide some indicators as to the research required to further understand the complexity of rock slope failure mechanisms. The nature of the landslide failure surface has received inadequate attention in the past, with failure surfaces typically considered in 2D and simulated as discrete, smooth and often planar features. Current work shows that failure surfaces are inherently three-dimensional and have much structural variability across the area of the landslide scarp, reflecting complex structural histories. Such anisotropy and variations may result in multiple events or distinct blocks that move at different rates. Just as most failure surfaces vary spatially, they may also change with depth and thus should more realistically be considered failure zones rather than discrete surfaces. The increasing recognition of the importance of step-path failures, internal dilation and brittle fracture are indicative of the complexity in slope failure surfaces. Related to the variation in failure surface characteristics is the importance of 3D rotational displacements and both the

  2. Guidance Index for Shallow Landslide Hazard Analysis

    Directory of Open Access Journals (Sweden)

    Cheila Avalon Cullen

    2016-10-01

    Full Text Available Rainfall-induced shallow landslides are one of the most frequent hazards on slanted terrains. Intense storms with high-intensity and long-duration rainfall have high potential to trigger rapidly moving soil masses due to changes in pore water pressure and seepage forces. Nevertheless, regardless of the intensity and/or duration of the rainfall, shallow landslides are influenced by antecedent soil moisture conditions. As of this day, no system exists that dynamically interrelates these two factors on large scales. This work introduces a Shallow Landslide Index (SLI as the first implementation of antecedent soil moisture conditions for the hazard analysis of shallow rainfall-induced landslides. The proposed mathematical algorithm is built using a logistic regression method that systematically learns from a comprehensive landslide inventory. Initially, root-soil moisture and rainfall measurements modeled from AMSR-E and TRMM respectively, are used as proxies to develop the index. The input dataset is randomly divided into training and verification sets using the Hold-Out method. Validation results indicate that the best-fit model predicts the highest number of cases correctly at 93.2% accuracy. Consecutively, as AMSR-E and TRMM stopped working in October 2011 and April 2015 respectively, root-soil moisture and rainfall measurements modeled by SMAP and GPM are used to develop models that calculate the SLI for 10, 7, and 3 days. The resulting models indicate a strong relationship (78.7%, 79.6%, and 76.8% respectively between the predictors and the predicted value. The results also highlight important remaining challenges such as adequate information for algorithm functionality and satellite based data reliability. Nevertheless, the experimental system can potentially be used as a dynamic indicator of the total amount of antecedent moisture and rainfall (for a given duration of time needed to trigger a shallow landslide in a susceptible area. It is

  3. Hydrodynamic Coefficients Identification and Experimental Investigation for an Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Shaorong XIE

    2014-02-01

    Full Text Available Hydrodynamic coefficients are the foundation of unmanned underwater vehicles modeling and controller design. In order to reduce identification complexity and acquire necessary hydrodynamic coefficients for controllers design, the motion of the unmanned underwater vehicle was separated into vertical motion and horizontal motion models. Hydrodynamic coefficients were regarded as mapping parameters from input forces and moments to output velocities and acceleration of the unmanned underwater vehicle. The motion models of the unmanned underwater vehicle were nonlinear and Genetic Algorithm was adopted to identify those hydrodynamic coefficients. To verify the identification quality, velocities and acceleration of the unmanned underwater vehicle was measured using inertial sensor under the same conditions as Genetic Algorithm identification. Curves similarity between measured velocities and acceleration and those identified by Genetic Algorithm were used as optimizing standard. It is found that the curves similarity were high and identified hydrodynamic coefficients of the unmanned underwater vehicle satisfied the measured motion states well.

  4. Delay Tolerance in Underwater Wireless Communications: A Routing Perspective

    Directory of Open Access Journals (Sweden)

    Safdar Hussain Bouk

    2016-01-01

    Full Text Available Similar to terrestrial networks, underwater wireless networks (UWNs also aid several critical tasks including coastal surveillance, underwater pollution detection, and other maritime applications. Currently, once underwater sensor nodes are deployed at different levels of the sea, it is nearly impossible or very expensive to reconfigure the hardware, for example, battery. Taking this issue into account, considerable amount of research has been carried out to ensure minimum energy costs and reliable communication between underwater nodes and base stations. As a result, several different network protocols were proposed for UWN, including MAC, PHY, transport, and routing. Recently, a new paradigm was introduced claiming that the intermittent nature of acoustic channel and signal resulted in designing delay tolerant routing schemes for the UWN, known as an underwater delay tolerant network. In this paper, we provide a comprehensive survey of underwater routing protocols with emphasis on the limitations, challenges, and future open issues in the context of delay tolerant network routing.

  5. Variable-Weighted Linear Combination Model for Landslide Susceptibility Mapping: Case Study in the Shennongjia Forestry District, China

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2017-11-01

    Full Text Available A landslide susceptibility map plays an essential role in urban and rural planning. The main purpose of this study is to establish a variable-weighted linear combination model (VWLC and assess its potential for landslide susceptibility mapping. Firstly, different objective methods are employed for data processing rather than the frequently-used subjective judgments: K-means clustering is used for classification; binarization is introduced to determine buffer length thresholds for locational elements (road, river, and fault; landslide area density is adopted as the contribution index; and a correlation analysis is conducted for suitable factor selection. Secondly, considering the dimension changes of the preference matrix varying with the different locations of the mapping cells, the variable weights of each optimal factor are determined based on the improved analytic hierarchy process (AHP. On this basis, the VWLC model is established and applied to regional landslide susceptibility mapping for the Shennongjia Forestry District, China, where shallow landslides frequently occur. The obtained map is then compared with a map using the traditional WLC, and the results of the comparison show that VWLC is more reasonable, with a higher accuracy, and can be used anywhere that has the same or similar geological and topographical conditions.

  6. Efficient Weibull channel model for salinity induced turbulent underwater wireless optical communications

    KAUST Repository

    Oubei, Hassan M.; Zedini, Emna; Elafandy, Rami T.; Kammoun, Abla; Ng, Tien Khee; Alouini, Mohamed-Slim; Ooi, Boon S.

    2017-01-01

    Recent advances in underwater wireless optical communications necessitate a better understanding of the underwater channel. We propose the Weibull model to characterize the fading of salinity induced turbulent underwater wireless optical channels

  7. Underwater videography and photography in Gulf of Kachchh. Sponsored by Gujarat Ecological Society, Vadodara, Gujarat

    Digital Repository Service at National Institute of Oceanography (India)

    Marine Archaeology Centre (MAC) has been carrying out underwater explorations and excavations of ancient ports and sunken shipwrecks to preserve underwater cultural heritage. MAC has the infrastructure facility to carry out underwater investigations...

  8. A proposed cell model for multiple-occurrence regional landslide events: Implications for landslide susceptibility mapping

    Science.gov (United States)

    Crozier, M. J.

    2017-10-01

    Multiple-occurrence regional landslide events (MORLEs) consist of hundreds to thousands of shallow landslides occurring more or less simultaneously within defined areas, ranging from tens to thousands of square kilometres. While MORLEs can be triggered by rainstorms and earthquakes, this paper is confined to those landslide events triggered by rainstorms. Globally, MORLEs occur in a range of geological settings in areas of moderate to steep slopes subject to intense rainstorms. Individual landslides in rainstorm-triggered events are dominantly small, shallow debris and earth flows, and debris and earth slides involving regolith or weathered bedrock. The model used to characterise these events assumes that energy distribution within the event area is represented on the land surface by a cell structure; with maximum energy expenditure within an identifiable core and rapid dissipation concentrically away from the centre. The version of the model presented here has been developed for rainfall-triggered landslide events. It proposes that rainfall intensity can be used to determine different critical landslide response zones within the cell (referred to as core, middle, and periphery zones). These zones are most readily distinguished by two conditions: the proportion of the slope that fails and the particular type of the slope stability factor that assumes dominance in determining specific sites of landslide occurrence. The latter condition means that the power of any slope stability factor to distinguish between stable and unstable sites varies throughout the affected area in accordance with the landslide response zones within the cell; certain factors critical for determining the location of landslide sites in one part of the event area have little influence in other parts of the event area. The implication is that landslide susceptibility maps (and subsequently derived mitigation measures) based on conventional slope stability factors may have only limited validity

  9. Landslides in Flanders (Belgium): Where science meets public policy

    Science.gov (United States)

    van den Eeckhaut, M.; Poesen, J.; Vandekerckhove, L.

    2009-04-01

    Although scientific research on landslides in the Flemish Ardennes (710 km²; Belgium), has been conducted over the last decades, the Flemish Government only took account of slope failure as a soil degradation process after the occurrence of several damaging landslides in the beginning of the 21st century. Here we aim to present the successful collaboration between the Physical and Regional Geography Research Group (FRG; Dept. Earth and Environmental Sciences K.U.Leuven) and the Environment, Nature and Energy Department (LNE; Flemish Government) in landslide management. We will demonstrate how geomorphologists produced practical tools for landslide management which can be directly applied by LNE as well as other local and regional authorities and planners. Since 2004 three projects on landslide inventory mapping and susceptibility assessment in the Flemish Ardennes have been funded by LNE, and a fourth one on landslide susceptibility assessment in remaining hilly regions in Flanders west of Brussels recently started. Together with a steering committee composed of stakeholders, persons from LNE supervise the research carried out by geomorphologists experienced in landslide studies. For the establishment of the landslide inventory map of the Flemish Ardennes we combined the analysis of LIDAR-derived hillshade and contour line maps with detailed field controls. Additional information was collected through interviews with local authorities and inhabitants and from analysis of newspaper articles and technical reports. Then, a statistical model, logistic regression, was applied to produce a high quality classified landslide susceptibility map. The unique part of this collaboration is that all end products are online available at user-friendly websites designed by LNE. The scientific report containing (1) general information on landslides, (2) a description of the study area, (3) an explanation of the materials and methods used, (4) a presentation of the resulting

  10. INTERACTION OF SOIL-CEMENT PILE SUPPORTING STRUCTURES WITH THE BODY OF A LANDSLIDE

    Directory of Open Access Journals (Sweden)

    D. Y. Ihnatenko

    2017-10-01

    Full Text Available Purpose. Analysis and comparison of the landslide slope finite element model calculation results of the appliance of soil-cement piles, depending on the variation of the retaining structure rigidity, makes it possible to evaluate the effectiveness of their application and the cooperative work of piles with the displacement body. It also makes it possible to make a conclusion about the advantages of using this anti-landslide protection method of the slope. Methodology. Analysis of geomorphological data obtained from the results of laboratory studies of soils on the slope section is considered. Creation of a three-dimensional finite-element slope model according to the constructed sections and depths of the soil layers. Calculation of the nonlinear problem of finite element modeling of the slope with applying of soil-cement piles of various rigidity. Findings. The obtained results of calculating the finite element model of the landslide slope, and the analysis of the stress-strain state of the construction with soil-cement piles has been carried out. Originality. Despite the widespread of using soil-cement piles as enclosing structures for the construction of foundation pits and reinforcement of foundations of emergency structures, special attention should be paid to the study of the expediency of using soil-cement retaining pile structures on landslide areas. Practical value. It is known that soil-cement retaining piles are expediently in use as a protective element, which interacts quite well with the ground environment due to its structure of the initial material. Using of modern computer programs of finite element modeling makes it possible to calculate the efficiency of the use of soil-cement piles and to determine the parameters of the necessary retaining structure according to the given geological structure of the slope, and also, depending on its shape and the physical characteristics of the soils, to compare the performance of different

  11. Underwater laser beam welding of Alloy 690

    International Nuclear Information System (INIS)

    Hino, Takehisa; Tamura, Masataka; Kono, Wataru; Kawano, Shohei; Yoda, Masaki

    2009-01-01

    Stress Corrosion Clacking (SCC) has been reported at Alloy 600 welds between nozzles and safe-end in Pressurized Water Reactor (PWR) plant. Alloy 690, which has higher chromium content than Alloy 600, has been applied for cladding on Alloy 600 welds for repairing damaged SCC area. Toshiba has developed Underwater Laser Beam Welding technique. This method can be conducted without draining, so that the repairing period and the radiation exposure during the repair can be dramatically decreased. In some old PWRs, high-sulfur stainless steel is used as the materials for this section. It has a high susceptibility of weld cracks. Therefore, the optimum welding condition of Alloy 690 on the high-sulfur stainless steel was investigated with our Underwater Laser Beam Welding unit. Good cladding layer, without any crack, porosity or lack of fusion, could be obtained. (author)

  12. Cymbal and BB underwater transducers and arrays

    Energy Technology Data Exchange (ETDEWEB)

    Newnham, R.E.; Zhang, J.; Alkoy, S.; Meyer, R.; Hughes, W.J.; Hladky-Hennion, A.C.; Cochran, J.; Markley, D. [Materials Research Laboratory, Penn State University, University Park, PA 16802 (United States)

    2002-09-01

    The cymbal is a miniaturized class V flextensional transducer that was developed for use as a shallow water sound projector and receiver. Single elements are characterized by high Q, low efficiency, and medium power output capability. Its low cost and thin profile allow the transducer to be assembled into large flexible arrays. Efforts were made to model both single elements and arrays using the ATILA code and the integral equation formulation (EQI).Millimeter size microprobe hydrophones (BBs) have been designed and fabricated from miniature piezoelectric hollow ceramic spheres for underwater applications such as mapping acoustic fields of projectors, and flow noise sensors for complex underwater structures. Green spheres are prepared from soft lead zirconate titanate powders using a coaxial nozzle slurry process. A compact hydrophone with a radially-poled sphere is investigated using inside and outside electrodes. Characterization of these hydrophones is done through measurement of hydrostatic piezoelectric charge coefficients, free field voltage sensitivities and directivity beam patterns. (orig.)

  13. Underwater noise modelling for environmental impact assessment

    Energy Technology Data Exchange (ETDEWEB)

    Farcas, Adrian [Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, NR33 0HT (United Kingdom); Thompson, Paul M. [Lighthouse Field Station, Institute of Biological and Environmental Sciences, University of Aberdeen, Cromarty IV11 8YL (United Kingdom); Merchant, Nathan D., E-mail: nathan.merchant@cefas.co.uk [Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, NR33 0HT (United Kingdom)

    2016-02-15

    Assessment of underwater noise is increasingly required by regulators of development projects in marine and freshwater habitats, and noise pollution can be a constraining factor in the consenting process. Noise levels arising from the proposed activity are modelled and the potential impact on species of interest within the affected area is then evaluated. Although there is considerable uncertainty in the relationship between noise levels and impacts on aquatic species, the science underlying noise modelling is well understood. Nevertheless, many environmental impact assessments (EIAs) do not reflect best practice, and stakeholders and decision makers in the EIA process are often unfamiliar with the concepts and terminology that are integral to interpreting noise exposure predictions. In this paper, we review the process of underwater noise modelling and explore the factors affecting predictions of noise exposure. Finally, we illustrate the consequences of errors and uncertainties in noise modelling, and discuss future research needs to reduce uncertainty in noise assessments.

  14. Underwater noise modelling for environmental impact assessment

    International Nuclear Information System (INIS)

    Farcas, Adrian; Thompson, Paul M.; Merchant, Nathan D.

    2016-01-01

    Assessment of underwater noise is increasingly required by regulators of development projects in marine and freshwater habitats, and noise pollution can be a constraining factor in the consenting process. Noise levels arising from the proposed activity are modelled and the potential impact on species of interest within the affected area is then evaluated. Although there is considerable uncertainty in the relationship between noise levels and impacts on aquatic species, the science underlying noise modelling is well understood. Nevertheless, many environmental impact assessments (EIAs) do not reflect best practice, and stakeholders and decision makers in the EIA process are often unfamiliar with the concepts and terminology that are integral to interpreting noise exposure predictions. In this paper, we review the process of underwater noise modelling and explore the factors affecting predictions of noise exposure. Finally, we illustrate the consequences of errors and uncertainties in noise modelling, and discuss future research needs to reduce uncertainty in noise assessments.

  15. Ocean Research Enabled by Underwater Gliders.

    Science.gov (United States)

    Rudnick, Daniel L

    2016-01-01

    Underwater gliders are autonomous underwater vehicles that profile vertically by changing their buoyancy and use wings to move horizontally. Gliders are useful for sustained observation at relatively fine horizontal scales, especially to connect the coastal and open ocean. In this review, research topics are grouped by time and length scales. Large-scale topics addressed include the eastern and western boundary currents and the regional effects of climate variability. The accessibility of horizontal length scales of order 1 km allows investigation of mesoscale and submesoscale features such as fronts and eddies. Because the submesoscales dominate vertical fluxes in the ocean, gliders have found application in studies of biogeochemical processes. At the finest scales, gliders have been used to measure internal waves and turbulent dissipation. The review summarizes gliders' achievements to date and assesses their future in ocean observation.

  16. Equipment and appliances for underwater operations. Pt. 2

    International Nuclear Information System (INIS)

    Krueger, P.

    1976-01-01

    The 6/75 edition of 'mt' reported on the 'ARGE underwater appliances' and the study on 'design development of appliances and equipment for underwater use' in a brief summary. One of these designs, the 'unmanned DSWS underwater appliance' was described in detail. The present article describes three further design developments mentioned in the above study and which are based on unmanned appliances connected to the mother-ship. These designs were developed by Preussag-Meerestechnik. (orig.) [de

  17. Prediction of Rainfall-Induced Landslides in Tegucigalpa, Honduras, Using a Hydro-Geotechnical Model

    Science.gov (United States)

    Garcia Urquia, Elias; Axelsson, K.

    2010-05-01

    Central America is constantly being affected by natural hazards. Among these events are hurricanes and earthquakes, capable of triggering landslides that can alter the natural landscape, destroy infrastructure and cause the death of people in the most important settlements of the region. Hurricane Mitch in October of 1998 was of particular interest for the region, since it provoked hundreds of rainfall-induced landslides, mainly in 4 different countries. Studies carried out after Hurricane Mitch have allowed researchers to identify the factors that contribute to slope instability in many vulnerable areas. As Tegucigalpa, Honduras was partially destroyed due to the various landslide and flooding events triggered by this devastating hurricane, various research teams have deepened in their investigations and have proposed measures to mitigate the effects of similar future incidents. A model coupling an infinite-slope analysis and a simple groundwater flow approach can serve as a basis to predict the occurrence of landslides in Tegucigalpa, Honduras as a function of topographic, hydrological and soil variables. A safety map showing the rainfall-triggered landslide risk zones for Tegucigalpa, Honduras is to be created. As opposed to previous safety maps in which only steady-state conditions are studied, this analysis is extended and different steady-state and quasi-dynamic scenarios are considered for comparison. For the purpose of the latter settings, a hydrological analysis that determines the rainfall extreme values and their return periods in Tegucigalpa will account for the influence of rainfall on the groundwater flow and strength of soils. It is known that the spatial distribution of various factors that contribute to the risk of landslides (i.e. soil thickness, conductivity and strength properties; rainfall intensity and duration; root strength; subsurface flow orientation) is hard to determine. However, an effort is done to derive correlations for these

  18. Ground-based multi-view photogrammetry for the monitoring of landslide deformation and erosion

    Science.gov (United States)

    Stumpf, André; Malet, Jean-Philippe; Allemand, Pascal; Pierrot-Deseilligny, Marc; Skupinski, Grzegorz; Delacourt, Christophe

    2015-04-01

    Recent advances in multi-view photogrammetry have resulted in a new class of algorithms and software tools for more automated surface reconstruction. These new techniques have a great potential to provide topographic information for geoscience applications at significantly lower costs than classical topographic and laser scanning surveys. Based on several open-source libraries for multi-view stereo-photogrammetry and Structure-from-Motion, we investigate the accuracy that can be obtained from different processing pipelines for the 3D surface reconstruc- tion of landslides and the detection of changes over time. Two different algorithms for point-cloud comparison are tested and the accuracy of the resulting models is assessed against terrestrial and airborne LiDAR point clouds. Change detection over a period of more than two years allows a detailed assessment of the seasonal dynamics of the landslide; the possibility to estimate sediment volumes, as well as the quantification of the 3D displacement at most active parts of the landslide. Compared to LiDAR point clouds, the root-mean squared error of the photogrammetric point clouds did generally not exceed 0.2 m for the reconstruction of the entire landslide and 0.06 m for the reconstruction of the main scarp. We show that at the slope scale terrestrial multi-view photogrammetry is sufficiently accurate to detect surface changes in the range of decimeters. Thus, the technique currently remains less precise than terrestrial laser scanning or differential satellite positioning systems but provides spatially distributed information at significant lower costs and is, therefore, valuable for many practical landslide investigations. Algorithm parameters and the image acquisition protocols are found to have important impacts on the quality of the results and are discussed in detail. Our findings suggest that a relative precision of 1:500 and better is possible. The results of the change detection show a strong seasonality

  19. MEDITERRANEAN: Underwater neutrinos get off the ground

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Now funded is the initial stage of NESTOR, an imaginative new programme for a dedicated underwater neutrino astroparticle physics laboratory. Located in the international waters off the southernmost corner of continental Europe near the town of Pylos in S.W. Greece, NESTOR (NEutrinos from Supernovae and TeV sources Ocean Range) recalls the wise king of Pylos who counselled the Greeks during the Trojan war, an excellent tradition for new scientific goals of detecting neutrinos

  20. Inspecting the inside of underwater hull

    Science.gov (United States)

    Valkovic, Vladivoj; Sudac, Davorin

    2009-05-01

    In order to demonstrate the possibility of identifying the material within ship's underwater hull, sunken ships and other objects on the sea floor tests with the 14 MeV sealed tube neutron generator incorporated inside a small submarine submerged in the test basin filled with sea water have been performed. Results obtained for inspection of diesel fuel and explosive presence behind single and double hull constructions are presented.

  1. Underwater bipedal locomotion by octopuses in disguise.

    Science.gov (United States)

    Huffard, Christine L; Boneka, Farnis; Full, Robert J

    2005-03-25

    Here we report bipedal movement with a hydrostatic skeleton. Two species of octopus walk on two alternating arms using a rolling gait and appear to use the remaining six arms for camouflage. Octopus marginatus resembles a coconut, and Octopus (Abdopus) aculeatus, a clump of floating algae. Using underwater video, we analyzed the kinematics of their strides. Each arm was on the sand for more than half of the stride, qualifying this behavior as a form of walking.

  2. Role of Confined Water in Underwater Adhesion

    Science.gov (United States)

    Dhinojwala, Ali

    Surface bound water is a strong deterrent for forming strong bonds between two surfaces underwater and expelling that bound water is important for strong adhesion. I will discuss examples of different strategies used by geckos, spiders, and mussels to handle this last layer of bound water. Recent results using infrared-visible sum frequency generation spectroscopy to probe the structure of this bound water will be discussed. National Science Foundation.

  3. Landslide mobility and hazards: implications of the 2014 Oso disaster

    Science.gov (United States)

    Iverson, R. M.; George, D. L.; Allstadt, K.; Reid, M. E.; Collins, B. D.; Vallance, J. W.; Schilling, S. P.; Godt, J. W.; Cannon, C. M.; Magirl, C. S.; Baum, R. L.; Coe, J. A.; Schulz, W. H.; Bower, J. B.

    2015-02-01

    Landslides reflect landscape instability that evolves over meteorological and geological timescales, and they also pose threats to people, property, and the environment. The severity of these threats depends largely on landslide speed and travel distance, which are collectively described as landslide "mobility". To investigate causes and effects of mobility, we focus on a disastrous landslide that occurred on 22 March 2014 near Oso, Washington, USA, following a long period of abnormally wet weather. The landslide's impacts were severe because its mobility exceeded that of prior historical landslides at the site, and also exceeded that of comparable landslides elsewhere. The ∼ 8 ×106 m3 landslide originated on a gently sloping (<20°) riverside bluff only 180 m high, yet it traveled across the entire ∼1 km breadth of the adjacent floodplain and spread laterally a similar distance. Seismological evidence indicates that high-speed, flowing motion of the landslide began after about 50 s of preliminary slope movement, and observational evidence supports the hypothesis that the high mobility of the landslide resulted from liquefaction of water-saturated sediment at its base. Numerical simulation of the event using a newly developed model indicates that liquefaction and high mobility can be attributed to compression- and/or shear-induced sediment contraction that was strongly dependent on initial conditions. An alternative numerical simulation indicates that the landslide would have been far less mobile if its initial porosity and water content had been only slightly lower. Sensitive dependence of landslide mobility on initial conditions has broad implications for assessment of landslide hazards.

  4. Study on underwater plasma arc cutting technology

    International Nuclear Information System (INIS)

    Yada, Toshio; Nakamura, Uhachiro; Tomidokoro, Sakae; Fukuzawa, Mitsuo

    1980-01-01

    The zirconium alloy tube of the impile creep test facility had been subjected to inner pressure in the Japan Material Testing Reactor (JMTR) environment. In the near future, it will be necessary to dismantle the facility and to take out the tube for such examinations as irradiation effects on material properties. In order to establish the dismantling technology for the radioactive facility, a study on underwater plasma arc cutting has been carried out since 1977. Primarily, optimum underwater cutting sequence and conditions were studied in details for developing the remote control handling and the cutting system. Further, the amounts of particles suspended in water as well as those contained in bubbled gas were quantitatively analyzed for developing a safe removal system for contaminants which were produced by cutting the radioactive material. As a result of this study, it has been concluded that the underwater plasma arc cutting method is generally suitable and effective for dismantling such radioactive material as the impile creep test facility of the JMTR. (author)

  5. Underwater Acoustic Target Tracking: A Review

    Science.gov (United States)

    Han, Ying; Fan, Liying

    2018-01-01

    Advances in acoustic technology and instrumentation now make it possible to explore marine resources. As a significant component of ocean exploration, underwater acoustic target tracking has aroused wide attention both in military and civil fields. Due to the complexity of the marine environment, numerous techniques have been proposed to obtain better tracking performance. In this paper, we survey over 100 papers ranging from innovative papers to the state-of-the-art in this field to present underwater tracking technologies. Not only the related knowledge of acoustic tracking instrument and tracking progress is clarified in detail, but also a novel taxonomy method is proposed. In this paper, algorithms for underwater acoustic target tracking are classified based on the methods used as: (1) instrument-assisted methods; (2) mode-based methods; (3) tracking optimization methods. These algorithms are compared and analyzed in the aspect of dimensions, numbers, and maneuvering of the tracking target, which is different from other survey papers. Meanwhile, challenges, countermeasures, and lessons learned are illustrated in this paper. PMID:29301318

  6. Underwater detection by using ultrasonic sensor

    Science.gov (United States)

    Bakar, S. A. A.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.

    2017-09-01

    This paper described the low cost implementation of hardware and software in developing the system of ultrasonic which can visualize the feedback of sound in the form of measured distance through mobile phone and monitoring the frequency of detection by using real time graph of Java application. A single waterproof transducer of JSN-SR04T had been used to determine the distance of an object based on operation of the classic pulse echo detection method underwater. In this experiment, the system was tested by placing the housing which consisted of Arduino UNO, Bluetooth module of HC-06, ultrasonic sensor and LEDs at the top of the box and the transducer was immersed in the water. The system which had been tested for detection in vertical form was found to be capable of reporting through the use of colored LEDs as indicator to the relative proximity of object distance underwater form the sensor. As a conclusion, the system can detect the presence of an object underwater within the range of ultrasonic sensor and display the measured distance onto the mobile phone and the real time graph had been successfully generated.

  7. Afocal viewport optics for underwater imaging

    Science.gov (United States)

    Slater, Dan

    2014-09-01

    A conventional camera can be adapted for underwater use by enclosing it in a sealed waterproof pressure housing with a viewport. The viewport, as an optical interface between water and air needs to consider both the camera and water optical characteristics while also providing a high pressure water seal. Limited hydrospace visibility drives a need for wide angle viewports. Practical optical interfaces between seawater and air vary from simple flat plate windows to complex water contact lenses. This paper first provides a brief overview of the physical and optical properties of the ocean environment along with suitable optical materials. This is followed by a discussion of the characteristics of various afocal underwater viewport types including flat windows, domes and the Ivanoff corrector lens, a derivative of a Galilean wide angle camera adapter. Several new and interesting optical designs derived from the Ivanoff corrector lens are presented including a pair of very compact afocal viewport lenses that are compatible with both in water and in air environments and an afocal underwater hyper-hemispherical fisheye lens.

  8. Modeling and Control of Underwater Robotic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Schjoelberg, I:

    1996-12-31

    This doctoral thesis describes modeling and control of underwater vehicle-manipulator systems. The thesis also presents a model and a control scheme for a system consisting of a surface vessel connected to an underwater robotic system by means of a slender marine structure. The equations of motion of the underwater vehicle and manipulator are described and the system kinematics and properties presented. Feedback linearization technique is applied to the system and evaluated through a simulation study. Passivity-based controllers for vehicle and manipulator control are presented. Stability of the closed loop system is proved and simulation results are given. The equation of motion for lateral motion of a cable/riser system connected to a surface vessel at the top end and to a thruster at the bottom end is described and stability analysis and simulations are presented. The equations of motion in 3 degrees of freedom of the cable/riser, surface vessel and robotic system are given. Stability analysis of the total system with PD-controllers is presented. 47 refs., 32 figs., 7 tabs.

  9. Environmental effects on underwater optical transmission

    Science.gov (United States)

    Chu, Peter C.; Breshears, Brian F.; Cullen, Alexander J.; Hammerer, Ross F.; Martinez, Ramon P.; Phung, Thai Q.; Margolina, Tetyana; Fan, Chenwu

    2017-05-01

    Optical communication/detection systems have potential to get around some limitations of current acoustic communications and detection systems especially increased fleet and port security in noisy littoral waters. Identification of environmental effects on underwater optical transmission is the key to the success of using optics for underwater communication and detection. This paper is to answer the question "What are the transfer and correlation functions that relate measurements of hydrographic to optical parameters?" Hydrographic and optical data have been collected from the Naval Oceanographic Office survey ships with the High Intake Defined Excitation (HIDEX) photometer and sea gliders with optical back scattering sensor in various Navy interested areas such as the Arabian Gulf, Gulf of Oman, east Asian marginal seas, and Adriatic Sea. The data include temperature, salinity, bioluminescence, chlorophyll-a fluorescence, transmissivity at two different wavelengths (TRed at 670 nm, TBlue at 490 nm), and back scattering coefficient (bRed at 700 nm, bBlue at 470 nm). Transfer and correlation functions between the hydrographic and optical parameters are obtained. Bioluminescence and fluorescence maxima, transmissivity minimum with their corresponding depths, red and blue laser beam peak attenuation coefficients are identified from the optical profiles. Evident correlations are found between the ocean mixed layer depth and the blue and red laser beam peak attenuation coefficients, bioluminescence and fluorescence maxima in the Adriatic Sea, Arabian Gulf, Gulf of Oman, and Philippine Sea. Based on the observational data, an effective algorithm is recommended for solving the radiative transfer equation (RTE) for predicting underwater laser radiance.

  10. Automatic stabilization of underwater robots in the time manipulation operations

    International Nuclear Information System (INIS)

    Filaretov, V.F.; Koval, E.V.

    1994-01-01

    When carrying out underwater technical works by means of an underwater vehicles having a manipulator it is desirable to perform manipulation operations in the regime of the underwater vehicle hovering above the object without durable and complicated operations up its rigid fixation. Underwater vehicle stabilization is achieved by compensation all the effects on the vehicle caused by the operating manipulator in water medium. This automatic stabilization is formed due to input of the required control signals into corresponding vehicle propellers proportional to calculated components of the generalized forces and moments. The propellers should form stops reacting against effects

  11. Underwater hearing in the great cormorant (Phalacrocorax carbo sinensis)

    DEFF Research Database (Denmark)

    Hansen, Kirstin Anderson; Larsen, Ole Næsbye; Wahlberg, Magnus

    2016-01-01

    The underwater hearing threshold of a great cormorant (Phalacrocroax carbo sinensis) was measured at 2 kHz using psychophysical methods. Previous in-air and underwater testing suggests that cormorants have rather poor in-air hearing compared to other birds of similar size (Johansen, 2016). Prelim......The underwater hearing threshold of a great cormorant (Phalacrocroax carbo sinensis) was measured at 2 kHz using psychophysical methods. Previous in-air and underwater testing suggests that cormorants have rather poor in-air hearing compared to other birds of similar size (Johansen, 2016...

  12. Contour Tracking Control for the REMUS Autonomous Underwater Vehicle

    National Research Council Canada - National Science Library

    Van Reet, Alan R

    2005-01-01

    In the interest of enhancing the capabilities of autonomous underwater vehicles used in US Naval Operations, controlling vehicle position to follow depth contours presents exciting potential for navigation...

  13. Autopilot Using Differential Thrust for ARIES Autonomous Underwater Vehicle

    National Research Council Canada - National Science Library

    Sarton, Christopher

    2003-01-01

    .... Unfortunately, communication antennas must point to specific satellites in this system and thus underwater vehicles must steer a specific course on the surface during the communication process...

  14. Research on Operational Aspects of Large Autonomous Underwater Glider Fleets

    National Research Council Canada - National Science Library

    Fratantoni, David M

    2007-01-01

    This program supported research on the operational and management issues stemming from application of large fleets of autonomous underwater gliders to oceanographic research and rapid environmental...

  15. Relationships between inherent optical properties in the Baltic Sea for application to the underwater imaging problem

    Directory of Open Access Journals (Sweden)

    Sławomir Sagan

    2013-02-01

    Full Text Available Statistical relationships between coefficients of light attenuation, scattering and backscattering at wavelength 550 nm derived from series of optical measurements performed in Baltic Sea waters are presented. The relationships were derived primarily to support data analysis from underwater imaging systems. Comparison of these relations with analogous empirical data from the Atlantic and Pacific Oceans shows that the two sets of relationships are similar, despite the different water types and the various experimental procedures and instrumentation applied. The apparently universal character of the relationships enables an approximate calculation of other optical properties and subsequently of the contrast, signal/noise ratio, visibility range and spatial resolution of underwater imaging systems based on attenuation coefficients at wavelength 550 nm only.

  16. UWSim, an underwater robotic simulator on the cloud as educational tool

    Directory of Open Access Journals (Sweden)

    Javier Pérez

    2017-12-01

    Full Text Available Due to the introduction of robotic applications in the modern society, such as service robots or self-driving cars, it is possible to use this trend as motivating factor in the learning process of robotics. Several possibilities about how to use this motivation to increase learning rate are analysed, focusing on underwater robotic simulators. Moreover, a cloud learning environment able to evaluate the students with a robotic simulator is proposed as key element of the system. These kinds of tools can be used with just an Internet-capable system through a web browser, reaching a virtually unlimited amount of resources. The implemented features are used in a underwater pipe following application, creating a comparison environment on the cloud that immerse students in a competition to reach the best possible result. Finally, a first experience in a real educational environment using the proposed tool is detailed, demonstrating the viability and suitability of the proposed tool.

  17. Precursory Seismicity Associated With Landslides, Including the 2017 Tsunamigenic Landslide in the Karrat Fjord, Greenland

    Science.gov (United States)

    Caplan-Auerbach, J.

    2017-12-01

    On the evening of June 17 2017, a massive landslide fell from the wall of the Karrat Fjord, Greenland, generating a tsunami that caused the deaths of four residents in the nearby village of Nuugaatsiaq. The slide took place at a bluff 30 km from the village, where a broadband seismometer (DK.NUUG) is permanently deployed. The landslide generated a seismic signal initially interpreted as a magnitude 4.1 earthquake, as well as a tsunami that initially reached heights exceeding 100 m. Prior to the large seismic signal, however, station NUUG detected a series of several dozen small pulses, most of which were highly similar in time series. The pulses occur more frequently with time, until they effectively merge with the seismic signal of the landslide. The pulses were not detected on any other seismic stations, so their source locations cannot be calculated, but particle motions suggest that they were coming from an azimuth of 30o, consistent with the location of the landslide relative to Nuugaatsiaq. This particular sequence, in which small, repeating earthquakes occur with increasing frequency prior to a landslide, has been observed in at least four other locations: (1) on Mt. Baker (Washington) during an ice avalanche in 1976 (Weaver and Malone, 1979), (2) repeatedly on Iliamna volcano (Alaska) in association with glacial avalanches (Caplan-Auerbach and Huggel, 2007), (3) on Mt. Stellar (Alaska) prior to a 2006 rockfall (Huggel et al., 2010), and (4) as part of the Kausu landslide (Japan), in 2015 (Yamada et al., 2016). In all cases the precursory events exhibited waveform similarity, indicative of a repeating point of failure. These events represent stick-slip behavior at the landslide base. The precursory sequences last several hours, suggesting that detection of these events could provide a means of warning prior to failure. This may be useful in areas where instabilities or incipient failures are evident.

  18. Prediction of Rainfall-Induced Landslides

    Science.gov (United States)

    Nadim, F.; Sandersen, F.

    2009-12-01

    Rainfall-induced landslides can be triggered by two main mechanisms: shear failure due to build-up of pore water pressure and erosion by surface water runoff when flow velocity exceeds a critical value. Field measurements indicate that, in the initial phase, the slip surface of a landslide often occurs along the top of a relatively impermeable layer located at some depth within the soil profile, e.g. at the contact with a shallow underlying bedrock or parent rock. The shear strength along this surface and hence the stability of the slope is governed by the pore water pressure. The pore pressure is in turn controlled by water seepage through the slope, either from infiltrated rain, or from groundwater that follows bedrock joints and soil layers with high permeability. When the infiltration rate of the underlying layer is too low for further downward penetration of water or when a wetting front is produced, pore water pressure builds up, reducing the soil shear strength. During high intensity rainfall, surface water runoff will exert shear stresses on the bed material. De-pending on the grain size distribution and specific gravity of the material, erosion might occur when the flow velocity exceeds a critical value. As erosion progresses and sediment concentration increases, the flow regime may become unstable with heavy erosion at high flow velocity locations triggering a debris flow. In many cases, previous landslides along steep gully walls have fed an abundance of loose soil material into the gullies. Landslides along gully walls that obstruct the water transport may also trigger debris flows when the landslide-dam collapses, creating a surge downstream. Both the long-duration (1 or more days) and short-duration precipitation (of the order of 1 hour) are significant in the triggering of shallow landslides, since the critical short-duration rainfall intensity reduces as the antecedent accumulated rainfall increases. Experiences in Norway indicate that the maxi

  19. Global Scale Analysis of Martian Landslide Mobility and Paleoenvironmental Clues

    Science.gov (United States)

    Crosta, Giovanni Battista; De Blasio, Fabio Vittorio; Frattini, Paolo

    2018-04-01

    The mobility of landslides on Mars is studied based on a database of 3,118 events. To establish the volume of the landslides for the whole data set based on the deposit area, a new volume-area relationship based on a representative data set of 222 landslides is used. By plotting the H/L ratio between fall height H and runout L versus volume, the landslide mobility is analyzed and compared with existing empirical relationships for Martian and terrestrial landslides. By analyzing the mobility in terms of normalized residuals, that is, the relative deviation of the H/L ratio from the data set best-fit line, mobility is found to depend on both the landslide location on Mars and the landslide typology. This allows us to identify four different types of high-mobility (hypermobile) landslides. Three classes of high-mobility landslides are associated respectively to meteoroid impact, the Olympus Mons aureoles, and landslides with Toreva-block failure style, and their mobility can be explained by the peculiar flow mechanics. The fourth class includes landslides associated with isolated craters, those in the regions wetted by the putative Oceanus Borealis, and the ones at high latitudes. We suggest that the common factor behind all the hypermobile landslides of this fourth kind is the presence of ice. This is confirmed by our data showing that landslides increase in mobility with latitude. The latitudinal trend mirrors the distribution of ice as detected by radar, neutron probes, and the presence of glacial and layered ejecta morphologies. Because the overall landslide distribution supports the presence of ice-lubricated conditions, two ice lubrication models are presented showing how ice melting within or underneath the landslides could enhance mobility. By proper analysis in terms of apparent friction residuals, we find that the mobility of landslides in Valles Marineris with the largest landslide concentration is lower than average. We explain this circumstance partly

  20. Challenges for landslide hazard and risk management in ‘low-risk’ regions, Czech Republic—landslide occurrences and related costs (IPL project no. 197)

    Czech Academy of Sciences Publication Activity Database

    Klimeš, Jan; Stemberk, Jakub; Blahůt, Jan; Krejčí, V.; Krejčí, O.; Hartvich, Filip; Kycl, P.

    2017-01-01

    Roč. 14, č. 2 (2017), s. 771-780 ISSN 1612-510X R&D Projects: GA MŠk(CZ) LG15007 Institutional support: RVO:67985891 Keywords : landslide inventory * ICL/IPL activities * landslide cost * landslide risk * fatal landslides * public awareness Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography Impact factor: 3.657, year: 2016

  1. Submarine Landslides: What we Know and Where we are Going!

    Science.gov (United States)

    Moscardelli, L. G.; Mountjoy, J. J.; Micallef, A.; Strasser, M.; Vanneste, M.; Chaytor, J. D.; Mosher, D.; Krastel, S.; Lo Iacono, C.; Yamada, Y.

    2015-12-01

    Submarine landslides and other gravity-induced movements can disrupt very large areas of continental margins resulting in long-term seafloor morphologic change and multi-scale mass transport deposits (MTDs). Potential consequences of submarine landslides include damage to seabed infrastructure, offshore facilities, as well as generation or enhancement of tsunamis. MTDs are common on the modern seafloor and within the stratigraphic record. Slides, slumps and debris flows can be constituents of MTDs and can co-occur in the same event or depositional unit. Recent research indicates that relationships exist between MTD geological setting, causal mechanisms, and geometries. Quantitative data analysis suggests that MTD morphometric parameters can be used to link these three parameters. Despite many advances in this field, it still remains unclear how to definitively identify pre-conditioning factors and triggers of submarine landslides in modern slopes, and how submarine landslides evolve after initiation. In addition, new questions regarding the interaction between submarine landslides and active marine processes, such as bottom currents and fluid flow, have emerged.One of the mandates of the S4SLIDE (IGCP-640) project, a joint endeavor of UNESCO and IGCP that represents the broad field of submarine landslide research, is to facilitate interactions at an international level among scientists, industry and government representatives to advance our knowledge on a number of outstanding science questions: (i) What is the nature of the interaction between current-controlled sedimentation and submarine landslides? (ii) What role do transient turbulent-laminar flows play in the formation of submarine landslides? (iii) Do climatic variations control the occurrence of submarine landslides? (iv) What is the economic significance of submarine landslides? (v) Do we understand the hazards that submarine landslides pose to the environment and to humans? This presentation will cover

  2. Investigating landslides caused by earthquakes - A historical review

    Science.gov (United States)

    Keefer, D.K.

    2002-01-01

    Post-earthquake field investigations of landslide occurrence have provided a basis for understanding, evaluating, and mapping the hazard and risk associated with earthquake-induced landslides. This paper traces the historical development of knowledge derived from these investigations. Before 1783, historical accounts of the occurrence of landslides in earthquake are typically so incomplete and vague that conclusions based on these accounts are of limited usefulness. For example, the number of landslides triggered by a given event is almost always greatly underestimated. The first formal, scientific post-earthquake investigation that included systematic documentation of the landslides was undertaken in the Calabria region of Italy after the 1783 earthquake swarm. From then until the mid-twentieth century, the best information on earthquake-induced landslides came from a succession of post-earthquake investigations largely carried out by formal commissions that undertook extensive ground-based field studies. Beginning in the mid-twentieth century, when the use of aerial photography became widespread, comprehensive inventories of landslide occurrence have been made for several earthquakes in the United States, Peru, Guatemala, Italy, El Salvador, Japan, and Taiwan. Techniques have also been developed for performing "retrospective" analyses years or decades after an earthquake that attempt to reconstruct the distribution of landslides triggered by the event. The additional use of Geographic Information System (GIS) processing and digital mapping since about 1989 has greatly facilitated the level of analysis that can applied to mapped distributions of landslides. Beginning in 1984, synthesis of worldwide and national data on earthquake-induced landslides have defined their general characteristics and relations between their occurrence and various geologic and seismic parameters. However, the number of comprehensive post-earthquake studies of landslides is still

  3. Investigation of relationship between sediment yield and landslide in Iran

    Directory of Open Access Journals (Sweden)

    Samad Shadfar

    2012-07-01

    Full Text Available Landslides have been made irreversible damage to urban areas and economic in Iran. In this research, at first, for Investigation of relationship between landslide and sediment yield was recognized some of effective factors on Landslide. These Factors were processed with use of ILWIS and Arc GIS software’s. Landslide hazard zonation was done using Density Area and Index Overlay methods in GIS and evaluated them using Quality Sum index. In after phase, were determined sediment yield in each of them. Finally, occurrence rate landslide investigated in sediment yield zones. The results indicated that, slope, lithology and distance from the hydrographic network have the greatest impact on landslides. Most of the landslides have occurred in the 15-40% slope class, units of conglomerate and marl, and within one km of drainage network. On the other hand, the relationship between landslide frequency and distance of the fault was not a linear relationship and Almost 60 %of landslides have occurred distance of one km of the faults. Evaluation using Quality Sum index showed that the density Area has a more logical answer and as Appropriate method will be introduced in the basin. Investigation of deposition potential in sub-basins showed that Javaherdeh sub basin with 92.74 deposition potential is the first priority. Nedasht and latmohalleh sub basins, each with a deposition potential of 20.08 are the next priorities. Relationship between landslide area and deposition potential were identified as 8/91% of the landslides in the area of low And about 79 percent of landslides are located in high and very high deposition potentials.

  4. Investigating Landslides Caused by Earthquakes A Historical Review

    Science.gov (United States)

    Keefer, David K.

    Post-earthquake field investigations of landslide occurrence have provided a basis for understanding, evaluating, and mapping the hazard and risk associated withearthquake-induced landslides. This paper traces thehistorical development of knowledge derived from these investigations. Before 1783, historical accounts of the occurrence of landslides in earthquakes are typically so incomplete and vague that conclusions based on these accounts are of limited usefulness. For example, the number of landslides triggered by a given event is almost always greatly underestimated. The first formal, scientific post-earthquake investigation that included systematic documentation of the landslides was undertaken in the Calabria region of Italy after the 1783 earthquake swarm. From then until the mid-twentieth century, the best information on earthquake-induced landslides came from a succession ofpost-earthquake investigations largely carried out by formal commissions that undertook extensive ground-based field studies. Beginning in the mid-twentieth century, when the use of aerial photography became widespread, comprehensive inventories of landslide occurrence have been made for several earthquakes in the United States, Peru, Guatemala, Italy, El Salvador, Japan, and Taiwan. Techniques have also been developed for performing ``retrospective'' analyses years or decades after an earthquake that attempt to reconstruct the distribution of landslides triggered by the event. The additional use of Geographic Information System (GIS) processing and digital mapping since about 1989 has greatly facilitated the level of analysis that can applied to mapped distributions of landslides. Beginning in 1984, syntheses of worldwide and national data on earthquake-induced landslides have defined their general characteristics and relations between their occurrence and various geologic and seismic parameters. However, the number of comprehensive post-earthquake studies of landslides is still

  5. Enriching Great Britain's National Landslide Database by searching newspaper archives

    Science.gov (United States)

    Taylor, Faith E.; Malamud, Bruce D.; Freeborough, Katy; Demeritt, David

    2015-11-01

    Our understanding of where landslide hazard and impact will be greatest is largely based on our knowledge of past events. Here, we present a method to supplement existing records of landslides in Great Britain by searching an electronic archive of regional newspapers. In Great Britain, the British Geological Survey (BGS) is responsible for updating and maintaining records of landslide events and their impacts in the National Landslide Database (NLD). The NLD contains records of more than 16,500 landslide events in Great Britain. Data sources for the NLD include field surveys, academic articles, grey literature, news, public reports and, since 2012, social media. We aim to supplement the richness of the NLD by (i) identifying additional landslide events, (ii) acting as an additional source of confirmation of events existing in the NLD and (iii) adding more detail to existing database entries. This is done by systematically searching the Nexis UK digital archive of 568 regional newspapers published in the UK. In this paper, we construct a robust Boolean search criterion by experimenting with landslide terminology for four training periods. We then apply this search to all articles published in 2006 and 2012. This resulted in the addition of 111 records of landslide events to the NLD over the 2 years investigated (2006 and 2012). We also find that we were able to obtain information about landslide impact for 60-90% of landslide events identified from newspaper articles. Spatial and temporal patterns of additional landslides identified from newspaper articles are broadly in line with those existing in the NLD, confirming that the NLD is a representative sample of landsliding in Great Britain. This method could now be applied to more time periods and/or other hazards to add richness to databases and thus improve our ability to forecast future events based on records of past events.

  6. DEFORESTATION AND LANDSLIDES IN YUNNAN, CHINA.

    Science.gov (United States)

    Wieczorek, Gerald F.; Wu, Jishan; Li, Tianchi

    1987-01-01

    Landslides historically have caused severe erosion problems in the Xiao River drainage region of northeastern Yunnan Province, China, that hence resulted in serious economic and social consequences. Owing to monsoonal storms of high rainfall intensity, the erosion potential is high in this mountainous, seismically active region. Landslides transported large quantities of materials into the ravines. During intense storms, high runoff from the deforested areas has mobilized this material into debris flows. Where these flows emerged onto flatter slopes in the lower parts of the watersheds, the channels were too small to hold them, so farmland and villages were inundated. Debris flows in this region during June-August 1985 killed 12 people, damaged roads and the main rail line to Kunming, the capital of Yunnan Province, inundated farmland, and overflowed debris-retention structures. To mitigate these severe erosion problems, several different methods have been used.

  7. Landslide Susceptibility Mapping Using GIS-based Vector Grid File (VGF Validating with InSAR Techniques: Three Gorges, Yangtze River (China

    Directory of Open Access Journals (Sweden)

    Cem Kıncal

    2017-04-01

    Full Text Available A landslide susceptibility assessment for the Three Gorges (TG region (China was performed in a Geographical Information System (GIS environment and Persistent Scatterer (PS InSAR derived displacements were used for validation purposes. Badong County of TG was chosen as case study field. Landslide parameters were derived from two datasets. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER Global Digital Elevation Map (GDEM was used to calculate slope geometry parameters (slope, aspect, drainage, and lineament, while geology and vegetation cover were obtained from Landsat and ASTER data. The majority of historical landslides occurred in the sandstone-shale-claystone intercalations. It appears that slope gradients are more critical than other parameters such as aspect and drainage. The susceptibility assessment was based on a summation of assigned susceptibility scores (points for each 30×30 m unit in a database of a Vector Grid File (VGF composed of ‘vector pixels’. A landslide susceptibility map (LSM was generated using VGF and classified with low, moderate and high landslide susceptibility zones. The comparison between the LSM and PS InSAR derived displacements suggests that landslides only account for parts of the observed surface movements.

  8. Landslide monitoring in the Atlantic Highlands area, New Jersey

    Science.gov (United States)

    Reilly, Pamela A.; Ashland, Francis X.; Fiore, Alex R.

    2017-08-25

    Shallow and deep-seated landslides have occurred episodically on the steep coastal bluffs of the Atlantic Highlands area (Boroughs of Atlantic Highlands and Highlands) in New Jersey. The oldest documented deep-seated landslide occurred in April 1782 and significantly changed the morphology of the bluff. However, recent landslides have been mostly shallow in nature and have occurred during large storms with exceptionally heavy rainfall. These shallow landslides have resulted in considerable damage to residential property and local infrastructure and threatened human safety.The recent shallow landslides in the area (locations modified from New Jersey Department of Environmental Protection) consist primarily of slumps and flows of earth and debris within areas of historical landslides or on slopes modified by human activities. Such landslides are typically triggered by increases in shallow soil moisture and pore-water pressure caused by sustained and intense rainfall associated with spring nor’easters and late summer–fall tropical cyclones. However, the critical relation between rainfall, soil-moisture conditions, and landslide movement has not been fully defined. The U.S. Geological Survey is currently monitoring hillslopes within the Atlantic Highlands area to better understand the hydrologic and meteorological conditions associated with shallow landslide initiation.

  9. Distributed modelling of shallow landslides triggered by intense rainfall

    Directory of Open Access Journals (Sweden)

    G. B. Crosta

    2003-01-01

    Full Text Available Hazard assessment of shallow landslides represents an important aspect of land management in mountainous areas. Among all the methods proposed in the literature, physically based methods are the only ones that explicitly includes the dynamic factors that control landslide triggering (rainfall pattern, land-use. For this reason, they allow forecasting both the temporal and the spatial distribution of shallow landslides. Physically based methods for shallow landslides are based on the coupling of the infinite slope stability analysis with hydrological models. Three different grid-based distributed hydrological models are presented in this paper: a steady state model, a transient "piston-flow" wetting front model, and a transient diffusive model. A comparative test of these models was performed to simulate landslide occurred during a rainfall event (27–28 June 1997 that triggered hundreds of shallow landslides within Lecco province (central Southern Alps, Italy. In order to test the potential for a completely distributed model for rainfall-triggered landslides, radar detected rainfall intensity has been used. A new procedure for quantitative evaluation of distributed model performance is presented and used in this paper. The diffusive model results in the best model for the simulation of shallow landslide triggering after a rainfall event like the one that we have analysed. Finally, radar data available for the June 1997 event permitted greatly improving the simulation. In particular, radar data allowed to explain the non-uniform distribution of landslides within the study area.

  10. Landslide tsunami hazard in the Indonesian Sunda Arc

    Directory of Open Access Journals (Sweden)

    S. Brune

    2010-03-01

    Full Text Available The Indonesian archipelago is known for the occurrence of catastrophic earthquake-generated tsunamis along the Sunda Arc. The tsunami hazard associated with submarine landslides however has not been fully addressed. In this paper, we compile the known tsunamigenic events where landslide involvement is certain and summarize the properties of published landslides that were identified with geophysical methods. We depict novel mass movements, found in newly available bathymetry, and determine their key parameters. Using numerical modeling, we compute possible tsunami scenarios. Furthermore, we propose a way of identifying landslide tsunamis using an array of few buoys with bottom pressure units.

  11. Case Histories of Landslide Impact: A Database-driven Approach

    Science.gov (United States)

    Klose, Martin; Damm, Bodo

    2015-04-01

    Fundamental understanding of landslide risk requires in-depth knowledge of how landslides have impacted society in the past (e.g., Corominas et al., 2014). A key to obtain insights into the evolution of landslide risk at single facilities of critical infrastructures are case histories of landslide impact. The purpose of such historical analyses is to inform about the site-specific interactions between landslides and land-use activity. Case histories support correlating landslide events and associated damages with multiple control variables of landslide risk, including (i) previous construction works, (ii) hazard awareness, (iii) the type of structure or its material properties, and (iv) measures of post-disaster mitigation. It is a key advantage of case histories to provide an overview of the changes in the exposure and vulnerability of infrastructures over time. Their application helps to learn more about changing patterns in risk culture and the effectiveness of repair or prevention measures (e.g., Klose et al., 2014). Case histories of landslide impact are developed on the basis of information extracted from landslide databases. The use of path diagrams and illustrated flowcharts as data modeling techniques is aimed at structuring, condensing, and visualizing complex historical data sets on landslide activity and land-use. Much of the scientific potential of case histories simply depends on the quality of available database information. Landslide databases relying on a bottom-up approach characterized by targeted local data specification are optimally suited for historical impact analyses. Combined with systematic retrieval, extraction, and integration of data from multiple sources, landslide databases constitute a valuable tool for developing case histories that enable to open a whole new window on the study of landslide impacts (e.g., Damm and Klose, 2014). The present contribution introduces such a case history for a well-known landslide site at a heavily

  12. Geomechanical modeling of the Steinernase landslide (Switzerland)

    OpenAIRE

    Laloui, Lyesse; Ferrari, Alessio; Bonnard, Christophe

    2009-01-01

    A geomechanical model was developed to analyse the behaviour of a natural slope located on the bank of the Rhine River between the towns of Stein and Mumpf in Switzerland. The slope is affected by a landslide and three strategic infrastructure assets are located at its toe. An intense monitoring campaign made it possible to identify pore water pressure evolution as the main cause for movement accelerations and to detect the presence of a multiple slip surface system. Advanced coupled finite e...

  13. Multi Temporal Interferometry as Tool for Urban Landslide Hazard Assessment

    Science.gov (United States)

    Vicari, A.; Colangelo, G.; Famiglietti, N.; Cecere, G.; Stramondo, S.; Viggiano, D.

    2017-12-01

    Advanced Synthetic Aperture Radar Differential Interferometry (A-DInSAR) are Multi Temporal Interferometry(MTI) techniques suitable for the monitoring of deformation phenomena in slow kinematics. A-DInSAR methodologies include both Coherence-based type, as well as Small Baseline Subset (SBAS) (Berardino et al., 2002, Lanari et al., 2004) and Persistent/Permanent Scatterers (PS), (Ferretti et al., 2001). Such techniques are capable to provide wide-area coverage (thousands of km2) and precise (mm-cm resolution), spatially dense information (from hundreds to thousands of measurementpoints/km2) on groundsurfacedeformations. SBAS and PShavebeenapplied to the town of Stigliano (MT) in Basilicata Region (Southern Italy), where the social center has been destroyed after the reactivation of a known landslide. The comparison of results has shown that these techniques are equivalent in terms of obtained coherent areas and displacement patterns, although lightly different velocity values for individual points (-5/-25 mm/y for PS vs. -5/-15 mm/y for SBAS) have been pointed out. Differences are probably due to scattering properties of the ground surface (e.g. Lauknes et al., 2010). Furthermore, on the crown of the landslide body, a Robotics Explorer Total Monitoring Station (Leica Nova TM50) that measures distance values with 0.6 mm of resolution has been installed. In particular, 20 different points corresponding to that identified through satellite techniques have been chosen, and a sampling time of 15 minutes has been fixed. The displacement values obtained are in agreement with the results of the MTI analysis, showing as these techniques could be a useful tool in the case of early - warning situations.

  14. Is air pollution causing landslides in China?

    Science.gov (United States)

    Zhang, Ming; McSaveney, Mauri J.

    2018-01-01

    Air pollution in China often exceeds "unhealthy" levels, but Chinese air is not only a threat from being breathed: the pollutants may also be causing fatal landslides. Very acid rain from severe air pollution falls widely in southwest China, where coal is a major energy source. We discuss where acid rain may provide an unsuspected link between mining and the fatal 2009 Jiweishan landslide in southwest China; it may have reduced the strength of a thin, calcareous, black sapropelic shale in Jiweishan Mountain by removing cementing carbonate minerals and sapropel matrix. Mining beneath the potential slide mass may not have directly triggered the landslide, but collapse of abandoned adits drained a perched aquifer above a regional black-shale aquiclude. Inflow of acid, oxygenated water and nutrients into the aquiclude may have accelerated the reduction of strength of the weakest rocks and consequently led to rapid sliding of a large rock mass on a layer of weathered shale left composed largely of soft, and slippery talc.

  15. Seismology of the Oso-Steelhead landslide

    Science.gov (United States)

    Hibert, C.; Stark, C. P.; Ekström, G.

    2014-12-01

    We carry out a combined analysis of the short- and long-period seismic signals generated by the devastating Oso-Steelhead landslide that occurred on 22 March 2014. The seismic records show that the Oso-Steelhead landslide was not a single slope failure, but a succession of multiple failures distinguished by two major collapses that occurred approximately three minutes apart. The first generated long-period surface waves that were recorded at several proximal stations. We invert these long-period signals for the forces acting at the source, and obtain estimates of the first failure runout and kinematics, as well as its mass after calibration against the mass-center displacement estimated from remote-sensing imagery. Short-period analysis of both events suggests that the source dynamics of the second are more complex than the first. No distinct long-period surface waves were recorded for the second failure, which prevents inversion for its source parameters. However, by comparing the seismic energy of the short-period waves generated by both events we are able to estimate the volume of the second. Our analysis suggests that the volume of the second failure is about 15-30% of the total landslide volume, which is in agreement with ground observations.

  16. A computationally fast, reduced model for simulating landslide dynamics and tsunamis generated by landslides in natural terrains

    Science.gov (United States)

    Mohammed, F.

    2016-12-01

    Landslide hazards such as fast-moving debris flows, slow-moving landslides, and other mass flows cause numerous fatalities, injuries, and damage. Landslide occurrences in fjords, bays, and lakes can additionally generate tsunamis with locally extremely high wave heights and runups. Two-dimensional depth-averaged models can successfully simulate the entire lifecycle of the three-dimensional landslide dynamics and tsunami propagation efficiently and accurately with the appropriate assumptions. Landslide rheology is defined using viscous fluids, visco-plastic fluids, and granular material to account for the possible landslide source materials. Saturated and unsaturated rheologies are further included to simulate debris flow, debris avalanches, mudflows, and rockslides respectively. The models are obtained by reducing the fully three-dimensional Navier-Stokes equations with the internal rheological definition of the landslide material, the water body, and appropriate scaling assumptions to obtain the depth-averaged two-dimensional models. The landslide and tsunami models are coupled to include the interaction between the landslide and the water body for tsunami generation. The reduced models are solved numerically with a fast semi-implicit finite-volume, shock-capturing based algorithm. The well-balanced, positivity preserving algorithm accurately accounts for wet-dry interface transition for the landslide runout, landslide-water body interface, and the tsunami wave flooding on land. The models are implemented as a General-Purpose computing on Graphics Processing Unit-based (GPGPU) suite of models, either coupled or run independently within the suite. The GPGPU implementation provides up to 1000 times speedup over a CPU-based serial computation. This enables simulations of multiple scenarios of hazard realizations that provides a basis for a probabilistic hazard assessment. The models have been successfully validated against experiments, past studies, and field data

  17. WODA technical guidance on underwater sound from dredging

    NARCIS (Netherlands)

    Thomsen, F.; Borsani, F.; Clarke, D.; Jong, C. de; Wit, P. de; Goethals, F.; Holtkamp, M.; Martin, E.S.; Spadaro, P.; Raalte, G. van; Victor, G.Y.V.; Jensen, A.

    2016-01-01

    The World Organization of Dredging Associations (WODA) has identified underwater sound as an environmental issue that needs further consideration. A WODA Expert Group on Underwater Sound (WEGUS) prepared a guidance paper in 2013 on dredging sound, including a summary of potential impacts on aquatic

  18. Evaluating the SCC resistance of underwater welds in sodium tetrathionate

    International Nuclear Information System (INIS)

    White, R.A.; Angeliu, T.M.

    1997-01-01

    The susceptibility of welds to stress corrosion cracking (SCC) is enhanced by the surface residual tensile stresses generated by the typical welding process. However, underwater plasma transferred arc (PTA) welding has been shown to produce compressive surface residual stresses, an encouraging result if repairs of cracked boiling water reactor (BWR) components are to be made without further endangering them to SCC. This program was designed to verify that underwater PTA welds are resistant to SCC and to determine if underwater PTA welding could mitigate SCC in potentially susceptible welds. This was achieved by exposing various welds on solution annealed (SA) and SA + thermally sensitized 304 stainless steel at 25 C in a solution of 1.5 gm/liter of sodium sulfide added to 0.05M sodium tetrathionate, titrated to a pH of 1.25 with H 2 SO 4 . The autogeneous welds were produced using gas tungsten arc (GTA) and plasma transferred arc (PTA) welding under atmospheric conditions, and PTA welding underwater. After 1 hour of sodium tetrathionate exposure, GTA and air PTA welds exhibited SCC while the underwater PTA weld heat affected zones were more resistant. Underwater PTA welds bisecting a GTA weld eliminated the cracking in the GTA weld heat affected zone under certain conditions. The lack of IG cracking in the region influenced by the underwater PTA weld is consistent with the measurement of compressive surface residual stresses inherent to the underwater welding process

  19. Remarks on the observability of single beacon underwater navigation

    DEFF Research Database (Denmark)

    Jouffroy, Jerome; Ross, Andrew

    This paper contributes a simple and intuitive result in the analysis of underwater navigation using a single ranging beacon. This analysis should help with the design of small and lightweight underwater vehicles by reducing the amount of instrumentation required for accurate navigation. The concept...

  20. Underwater laser cladding and seal welding for INCONEL 52

    International Nuclear Information System (INIS)

    Tamura, Masataka; Kouno, Wataru; Makino, Yoshinobu; Kawano, Shohei; Yoda, Masaki

    2007-01-01

    Recently, stress corrosion cracking (SCC) has been observed at aged components of nuclear power plants under water environment and high exposure of radiation. Toshiba has been developing both an underwater laser welding directly onto surface of the aged components as maintenance and repair techniques. This paper reports underwater laser cladding and seal welding for INCONEL 52. (author)

  1. Underwater methods for study of salmonids in the Intermountain West

    Science.gov (United States)

    Russell F. Thurow

    1994-01-01

    This guide describes underwater methods using snorkeling gear to study fish populations in flowing waters of the Intermountain West. It outlines procedures for estimating salmonid abundance and habitat use and provides criteria for identifying and estimating the size of fish underwater.

  2. The WODA guidance paper on underwater sound from dredging (abstract)

    NARCIS (Netherlands)

    Thomsen, F.; Borsani, F.; Clarke, D.; Jong, C.A.F. de; Witt, P. de; Holtkamp, M.; Goethals, F.; San Martin, E.; Spadaro, P.; Raalte, G. van; Jensen, A.

    2013-01-01

    The World Organisation of Dredging Associations (WODA) has identified underwater sound as an environmental issue that needs further consideration. A WODA Expert Group on Underwater Sound (WEGUS) was established to provide a guidance paper on dredging sound, impact on aquatic biota and advice on

  3. A man-made object detection for underwater TV

    Science.gov (United States)

    Cheng, Binbin; Wang, Wenwu; Chen, Yao

    2018-03-01

    It is a great challenging task to complete an automatic search of objects underwater. Usually the forward looking sonar is used to find the target, and then the initial identification of the target is completed by the side-scan sonar, and finally the confirmation of the target is accomplished by underwater TV. This paper presents an efficient method for automatic extraction of man-made sensitive targets in underwater TV. Firstly, the image of underwater TV is simplified with taking full advantage of the prior knowledge of the target and the background; then template matching technology is used for target detection; finally the target is confirmed by extracting parallel lines on the target contour. The algorithm is formulated for real-time execution on limited-memory commercial-of-the-shelf platforms and is capable of detection objects in underwater TV.

  4. Stepwise mitigation of the Macesnik landslide, N Slovenia

    Directory of Open Access Journals (Sweden)

    M. Mikoš

    2005-01-01

    Full Text Available The paper gives an overview of the history of evolution and mitigation of the Macesnik landslide in N Slovenia. It was triggered in 1989 above the Solčava village, but it enlarged with time. In 2005, the landslide has been threatening a few residential and farm houses, as well as the panoramic road, and it is only 1000 m away from the Savinja River and the village of Solčava. It is 2500 m long and up to more than 100 m wide with an estimated volume in excess of 2 million m3. Its depth is not constant: on average it is 10 to 15 m deep, but in the area of the toe, which is retained by a rock outcrop, it reaches the depth of 30 m. The unstable mass consists of water-saturated highly-weathered carboniferous formations. The presently active landslide lies within the fossil landslide which is up to 350 m wide and 50 m deep with the total volume estimated at 8 to 10 million m3. Since 2000, the landslide has been investigated by 36 boreholes, and 28 of them were equipped with inclinometer casings, which also serve as piezometers. Surface movements have been monitored geodetically in 20 cross sections. This helped to understand the causes and mechanics of the landslide. Therefore, landslide mitigation works were planned rather to reduce the landslide movement so that the resulting damages could be minimized. The construction of mitigation works was made difficult in the 1990s due to intensive landslide movements that could reach up to 50 cm/day with an average of 25 cm/day. Since 2001, surface drainage works in the form of open surface drains have mainly been completed around the circumference of the landslide as the first phase of the mitigation works and they are regularly maintained. As a final mitigation solution, plans have been made to build a combination of subsurface drainage works in the form of deep drains with retaining works in the form of concrete vertical shafts functioning as deep water wells to drain the landslide, and as dowels to stop

  5. Acquisition and tracking for underwater optical communications

    Science.gov (United States)

    Williams, Andrew J.; Laycock, Leslie L.; Griffith, Michael S.; McCarthy, Andrew G.; Rowe, Duncan P.

    2017-10-01

    There is a growing requirement to transfer large volumes of data between underwater platforms. As seawater is transmissive in the visible band, underwater optical communications is an active area of interest since it offers the potential for power efficient, covert and high bandwidth datalinks at short to medium ranges. Short range systems have been successfully demonstrated using sources with low directionality. To realise higher data rates and/or longer ranges, the use of more efficient directional beams is required; by necessity, these must be sufficiently aligned to achieve the required link margin. For mobile platforms, the acquisition and tracking of each node is therefore critical in order to establish and maintain an optical datalink. This paper describes work undertaken to demonstrate acquisition and tracking in a 3D underwater environment. A range of optical sources, beam steering technologies, and tracking sensors have been assessed for suitability. A novel scanning strategy exploiting variable beam divergence was developed to provide robust acquisition whilst minimising acquisition time. A prototype system was assembled and demonstrated in a large water tank. This utilised custom quadrant detectors based on Silicon PhotoMultiplier (SiPM) arrays for fine tracking, and a Wide Field of View (WFoV) sCMOS camera for link acquisition. Fluidic lenses provided dynamic control of beam divergence, and AC modulation/filtering enabled background rejection. The system successfully demonstrated robust optical acquisition and tracking between two nodes with only nanowatt received optical powers. The acquisition time was shown to be dependent on the initial conditions and the transmitted optical power.

  6. Development of measuring and control systems for underwater cutting of radioactive components

    International Nuclear Information System (INIS)

    Drews, P.; Fuchs, K.

    1990-01-01

    The underwater dismantling of nuclear power plants has to be remotely controlled with simultaneous optical control by underwater cameras. It is this optical control in particular that leads to problems as, for example, abrasive wheel cutting is subjected to a wide range of interferences so that a minimum of contrast and blurred contours of camera images must be accounted for. This paper describes a new image processing system that has been developed in addition to the use of a modified underwater TV camera for optical cutting process control (plasma and abrasive wheel cutting). Workpiece recognition is performed through the comparison of actually measured objects with pre-trained reference patterns allowing the determination of object location and orientation, the data of which are then supplied to the handling controller. A completely satisfactory prototype system has been built, which is capable of performing image analysis (workpiece recognition, workpiece position, etc.) as well as the control of a handling system with an inductive sensor (distance detection, edge recognition and distance control). With an additional camera the operator has the means of visual process observation. The overall functioning of the system has been tested and demonstrated with a four-axes handling system. (author)

  7. An Efficient Data-Gathering Routing Protocol for Underwater Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Nadeem Javaid

    2015-11-01

    Full Text Available Most applications of underwater wireless sensor networks (UWSNs demand reliable data delivery over a longer period in an efficient and timely manner. However, the harsh and unpredictable underwater environment makes routing more challenging as compared to terrestrial WSNs. Most of the existing schemes deploy mobile sensors or a mobile sink (MS to maximize data gathering. However, the relatively high deployment cost prevents their usage in most applications. Thus, this paper presents an autonomous underwater vehicle (AUV-aided efficient data-gathering (AEDG routing protocol for reliable data delivery in UWSNs. To prolong the network lifetime, AEDG employs an AUV for data collection from gateways and uses a shortest path tree (SPT algorithm while associating sensor nodes with the gateways. The AEDG protocol also limits the number of associated nodes with the gateway nodes to minimize the network energy consumption and to prevent the gateways from overloading. Moreover, gateways are rotated with the passage of time to balance the energy consumption of the network. To prevent data loss, AEDG allows dynamic data collection at the AUV depending on the limited number of member nodes that are associated with each gateway. We also develop a sub-optimal elliptical trajectory of AUV by using a connected dominating set (CDS to further facilitate network throughput maximization. The performance of the AEDG is validated via simulations, which demonstrate the effectiveness of AEDG in comparison to two existing UWSN routing protocols in terms of the selected performance metrics.

  8. An Efficient Data-Gathering Routing Protocol for Underwater Wireless Sensor Networks.

    Science.gov (United States)

    Javaid, Nadeem; Ilyas, Naveed; Ahmad, Ashfaq; Alrajeh, Nabil; Qasim, Umar; Khan, Zahoor Ali; Liaqat, Tayyaba; Khan, Majid Iqbal

    2015-11-17

    Most applications of underwater wireless sensor networks (UWSNs) demand reliable data delivery over a longer period in an efficient and timely manner. However, the harsh and unpredictable underwater environment makes routing more challenging as compared to terrestrial WSNs. Most of the existing schemes deploy mobile sensors or a mobile sink (MS) to maximize data gathering. However, the relatively high deployment cost prevents their usage in most applications. Thus, this paper presents an autonomous underwater vehicle (AUV)-aided efficient data-gathering (AEDG) routing protocol for reliable data delivery in UWSNs. To prolong the network lifetime, AEDG employs an AUV for data collection from gateways and uses a shortest path tree (SPT) algorithm while associating sensor nodes with the gateways. The AEDG protocol also limits the number of associated nodes with the gateway nodes to minimize the network energy consumption and to prevent the gateways from overloading. Moreover, gateways are rotated with the passage of time to balance the energy consumption of the network. To prevent data loss, AEDG allows dynamic data collection at the AUV depending on the limited number of member nodes that are associated with each gateway. We also develop a sub-optimal elliptical trajectory of AUV by using a connected dominating set (CDS) to further facilitate network throughput maximization. The performance of the AEDG is validated via simulations, which demonstrate the effectiveness of AEDG in comparison to two existing UWSN routing protocols in terms of the selected performance metrics.

  9. Underwater sound transmission through arrays of disk cavities in a soft elastic medium.

    Science.gov (United States)

    Calvo, David C; Thangawng, Abel L; Layman, Christopher N; Casalini, Riccardo; Othman, Shadi F

    2015-10-01

    Scattering from a cavity in a soft elastic medium, such as silicone rubber, resembles scattering from an underwater bubble in that low-frequency monopole resonance is obtainable in both cases. Arrays of cavities can therefore be used to reduce underwater sound transmission using thin layers and low void fractions. This article examines the role of cavity shape by microfabricating arrays of disk-shaped air cavities into single and multiple layers of polydimethylsiloxane. Comparison is made with the case of equivalent volume cylinders which approximate spheres. Measurements of ultrasonic underwater sound transmission are compared with finite element modeling predictions. The disks provide a deeper transmission minimum at a lower frequency owing to the drum-type breathing resonance. The resonance of a single disk cavity in an unbounded medium is also calculated and compared with a derived estimate of the natural frequency of the drum mode. Variation of transmission is determined as a function of disk tilt angle, lattice constant, and layer thickness. A modeled transmission loss of 18 dB can be obtained at a wavelength about 20 times the three-layer thickness, and thinner results (wavelength/thickness ∼ 240) are possible for the same loss with a single layer depending on allowable hydrostatic pressure.

  10. Leakage warning system for flexible underwater pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, E; Bernstein, L

    1985-08-01

    Underwater pipelines for unloading oil tankers, e.g. in 30 km distance from the harbour site, are required to be flexible and require supervision. This is done by implementation of oil sensitive sensors between the inner rubber tube and the following impregnated textile layer. The generated sensor signals, influenced by leak oil, have to be wireless transmitted from 150 meters under water to the supervisory station at the coast. Sensor configurations are described, to derive the point of the leakage from the topologized warning signals.

  11. Underwater Sound Propagation from Marine Pile Driving.

    Science.gov (United States)

    Reyff, James A

    2016-01-01

    Pile driving occurs in a variety of nearshore environments that typically have very shallow-water depths. The propagation of pile-driving sound in water is complex, where sound is directly radiated from the pile as well as through the ground substrate. Piles driven in the ground near water bodies can produce considerable underwater sound energy. This paper presents examples of sound propagation through shallow-water environments. Some of these examples illustrate the substantial variation in sound amplitude over time that can be critical to understand when computing an acoustic-based safety zone for aquatic species.

  12. Underwater photography - A visual survey method

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.

    Content-Type text/plain; charset=UTF-8 173 Underwater photography - A visual survey method Rahul Sharma National Institute of Oceanography, Dona Paula, Goa-403004 rsharma@nio.org Introduction “Photography as a means of observing...-sea photographs were those made by Maurice Ewing and his co-workers during cruises on Atlantis in 1940-48. Their subject was the seafloor and their method of clicking was to trigger the camera mechanically when its mounting struck bottom. This is the only...

  13. Water waves generated by underwater explosion

    CERN Document Server

    Mehaute, Bernard Le

    1996-01-01

    This is the first book on explosion-generated water waves. It presents the theoretical foundations and experimental results of the generation and propagation of impulsively generated waves resulting from underwater explosions. Many of the theories and concepts presented herein are applicable to other types of water waves, in particular, tsunamis and waves generated by the fall of a meteorite. Linear and nonlinear theories, as well as experimental calibrations, are presented for cases of deep and shallow water explosions. Propagation of transient waves on dissipative, nonuniform bathymetries to

  14. Radon dynamics in underwater thermal radon therapy

    International Nuclear Information System (INIS)

    Lettner, H.; Hofmann, W.; Winkler, R.; Rolle, R.; Foisner, W.

    1998-01-01

    At a facility for underwater thermal radon therapy in Bad Hofgastein, experiments were carried out with the aim of establishing radon in the air exhaled by the treated patients and of radon decay products on the skin of the patients. The time course of radon concentration in the exhaled air shows a maximum a few minutes after entering the bath, then the Rn concentration remains constant over the remaining time spent in the bath. Taking into account several simplifying assumptions, the average dose to the epidermis from radon daughters is about 50 μGy. (A.K.)

  15. Underwater Activities in the Soviet Union

    Science.gov (United States)

    1975-03-01

    morska , no. 12, 1967, 558-559. Eighty hours under the ice. Poseidon, no. 10 (70), 1967, inside front cover, 433-438, and 465. Fisera, M. A tent, a...Schiffbautechnik, no. 10, 1968. 568-574. 222. Kullnski, J. Meduza-2 underwater base for divers. Technika i gospodarka morska , no. 1, 1969, 44-46. 223...Technika i gospodarka morska , no. 4, 1973, 225-226. Baras, J., S. A. Guljar, and J. N. Kiklewitsch. The Ikhtiandr experiments. Poseidon, no. 4(136

  16. Hydraulic lifter for an underwater drilling rig

    Energy Technology Data Exchange (ETDEWEB)

    Garan' ko, Yu L

    1981-01-15

    A hydraulic lifter is suggested for an underwater drilling rig. It includes a base, hydraulic cylinders for lifting the drilling pipes connected to the clamp holder and hydraulic distributor. In order to simplify the design of the device, the base is made with a hollow chamber connected to the rod cavities and through the hydraulic distributor to the cavities of the hydraulic cylinders for lifting the drilling pipes. The hydraulic distributor is connected to the hydrosphere through the supply valve with control in time or by remote control. The base is equipped with reverse valves whose outlets are on the support surface of the base.

  17. Forecast of Remote Underwater Sensing Technology.

    Science.gov (United States)

    1980-07-01

    Ndgrt o oth NIA ye ’ Suite 709NrtFaothMAO5i Arligton VA 2202Attn: Dave Ho0soci, Chief Enginee~r Attn : Jay W. -arford, Manlager, (617) 563-59)17 (703...0,1305 Attn: Dr. A. Zielinski , Asst. Professor Attn: C. R. B. Lister Faculty of Engineering and (20t) 325-5497 Applied Science (709) 753-1200 Lockheed...157. Zielinski , A.; Barbour, L.; "Swept Carrier Acoustic Underwater Communica- tions," IEEE/MTS Oceans 󈨒, Washington, DC, Sept. 6-8, 1978. 158

  18. Navigation System Fault Diagnosis for Underwater Vehicle

    DEFF Research Database (Denmark)

    Falkenberg, Thomas; Gregersen, Rene Tavs; Blanke, Mogens

    2014-01-01

    This paper demonstrates fault diagnosis on unmanned underwater vehicles (UUV) based on analysis of structure of the nonlinear dynamics. Residuals are generated using dierent approaches in structural analysis followed by statistical change detection. Hypothesis testing thresholds are made signal...... based to cope with non-ideal properties seen in real data. Detection of both sensor and thruster failures are demonstrated. Isolation is performed using the residual signature of detected faults and the change detection algorithm is used to assess severity of faults by estimating their magnitude...

  19. Working underwater: deepwater drilling support by ROV

    Energy Technology Data Exchange (ETDEWEB)

    1958-01-01

    Experience with the drill ships Discoverer Seven Seas and Penrod 78 explains some of the problems associated with the use of remotely operated vehicles (ROVs) for underwater operations. Support services are a bigger problem than depth. The author describes developments, such as the new guidewire methods, side launch A-frame davit, and top hat stabilizing frame. All parts of the ROV system must be of heavy duty design, and operative skill is of paramount importance. The major requirements for deep water ROVs are reliability, fail-safe redundancy, cage deployment, compact size, adequate power, and capacity for heavy intervention work. 8 figures.

  20. Determining spherical lens correction for astronaut training underwater.

    Science.gov (United States)

    Porter, Jason; Gibson, C Robert; Strauss, Samuel

    2011-09-01

    To develop a model that will accurately predict the distance spherical lens correction needed to be worn by National Aeronautics and Space Administration astronauts while training underwater. The replica space suit's helmet contains curved visors that induce refractive power when submersed in water. Anterior surface powers and thicknesses were measured for the helmet's protective and inside visors. The impact of each visor on the helmet's refractive power in water was analyzed using thick lens calculations and Zemax optical design software. Using geometrical optics approximations, a model was developed to determine the optimal distance spherical power needed to be worn underwater based on the helmet's total induced spherical power underwater and the astronaut's manifest spectacle plane correction in air. The validity of the model was tested using data from both eyes of 10 astronauts who trained underwater. The helmet's visors induced a total power of -2.737 D when placed underwater. The required underwater spherical correction (FW) was linearly related to the spectacle plane spherical correction in air (FAir): FW = FAir + 2.356 D. The mean magnitude of the difference between the actual correction worn underwater and the calculated underwater correction was 0.20 ± 0.11 D. The actual and calculated values were highly correlated (r = 0.971) with 70% of eyes having a difference in magnitude of astronauts. The model accurately predicts the actual values worn underwater and can be applied (more generally) to determine a suitable spectacle lens correction to be worn behind other types of masks when submerged underwater.

  1. Monitoring landslide dynamics using timeseries of UAV imagery

    Science.gov (United States)

    de Jong, S. M.; Van Beek, L. P.

    2017-12-01

    Landslides are worldwide occurring processes that can have large economic impact and sometimes result in fatalities. Multiple factors are important in landslide processes and can make an area prone to landslide activity. Human factors like drainage and removal of vegetation or land clearing are examples of factors that may cause a landslide. Other environmental factors such as topography and the shear strength of the slope material are more difficult to control. Triggering factors for landslides are typically heavy rainfall events or sometimes by earthquakes or under cutting processes by a river. The collection of data about existing landslides in a given area is important for predicting future landslides in that region. We have setup a monitoring program for landslide using cameras aboard Unmanned Airborne Vehicles. UAV with cameras are able to collect ultra-high resolution images and UAVs can be operated in a very flexible way, they just fit in the back of a car. Here, in this study we used Unmanned Aerial Vehicles to collect a time series of high-resolution images over landslides in France and Australia. The algorithm used to process the UAV images into OrthoMosaics and OrthoDEMs is Structure from Motion (SfM). The process generally results in centimeter precision in the horizontal and vertical direction. Such multi-temporal datasets enable the detection of landslide area, the leading edge slope, temporal patterns and volumetric changes of particular areas of the landslide. We measured and computed surface movement of the landslide using the COSI-Corr image correlation algorithm with ground validation. Our study shows the possibilities of generating accurate Digital Surface Models (DSMs) of landslides using images collected with an Unmanned Aerial Vehicle (UAV). The technique is robust and repeatable such that a substantial time series of datasets can be routinely collected. It is shown that a time-series of UAV images can be used to map landslide movements with

  2. Hydrologic Controls on Shallow Landslide Location, Size, and Shape

    Science.gov (United States)

    Bellugi, D.; Milledge, D.; Perron, T.; McKean, J. A.; Dietrich, W.; Rulli, M.

    2012-12-01

    Shallow landslides, typically involving just the soil mantle, are principally controlled by topography, soil and root strengths, and soil thickness, and are typically triggered by storm-induced increases in pore water pressure. The response of a landscape to landslide-triggering storms will thus depend on factors such as rainfall totals, storm intensity and duration, and antecedent moisture conditions. The two dominant mechanisms that generate high pore water pressures at a point are topographically-steered lateral subsurface flow (over timescales of days to weeks), and rapid vertical infiltration (over timescales of minutes to hours). We aim to understand the impact of different storm characteristics and hydrologic regimes on shallow landslide location, size, and shape. We have developed a regional-scale model, which applies a low-parameter grid-based multi-dimensional slope stability model within a novel search algorithm, to generate discrete landslide predictions. This model shows that the spatial organization of parameters such as root strength and pore water pressure has a strong control on shallow landslide location, size, and shape. We apply this model to a field site near Coos Bay, OR, where a ten-year landslide inventory has been mapped onto high-resolution topographic data. Our model predicts landslide size generally increases with increasing rainfall intensity, except when root strength is extremely high and pore pressures are topographically steered. The distribution of topographic index values (the ratios of contributing area to slope) of predicted landslides is a clear signature of the pore water pressure generation mechanism: as laterally dominated flow increases, landslides develop in locations with lower slopes and higher contributing areas; in contrast, in the case of vertically-dominated pore pressure rise, landslides are consistently found in locations with higher slopes and lower contributing areas. While in both cases landslides are found in

  3. Object-based Landslide Mapping: Examples, Challenges and Opportunities

    Science.gov (United States)

    Hölbling, Daniel; Eisank, Clemens; Friedl, Barbara; Chang, Kang-Tsung; Tsai, Tsai-Tsung; Birkefeldt Møller Pedersen, Gro; Betts, Harley; Cigna, Francesca; Chiang, Shou-Hao; Aubrey Robson, Benjamin; Bianchini, Silvia; Füreder, Petra; Albrecht, Florian; Spiekermann, Raphael; Weinke, Elisabeth; Blaschke, Thomas; Phillips, Chris

    2016-04-01

    Over the last decade, object-based image analysis (OBIA) has been increasingly used for mapping landslides that occur after triggering events such as heavy rainfall. The increasing availability and quality of Earth Observation (EO) data in terms of temporal, spatial and spectral resolution allows for comprehensive mapping of landslides at multiple scales. Most often very high resolution (VHR) or high resolution (HR) optical satellite images are used in combination with a digital elevation model (DEM) and its products such as slope and curvature. Semi-automated object-based mapping makes use of various characteristics of image objects that are derived through segmentation. OBIA enables numerous spectral, spatial, contextual and textural image object properties to be applied during an analysis. This is especially useful when mapping complex natural features such as landslides and constitutes an advantage over pixel-based image analysis. However, several drawbacks in the process of object-based landslide mapping have not been overcome yet. The developed classification routines are often rather complex and limited regarding their transferability across areas and sensors. There is still more research needed to further improve present approaches and to fully exploit the capabilities of OBIA for landslide mapping. In this study several examples of object-based landslide mapping from various geographical regions with different characteristics are presented. Examples from the Austrian and Italian Alps are shown, whereby one challenge lies in the detection of small-scale landslides on steep slopes while preventing the classification of false positives with similar spectral properties (construction areas, utilized land, etc.). Further examples feature landslides mapped in Iceland, where the differentiation of landslides from other landscape-altering processes in a highly dynamic volcanic landscape poses a very distinct challenge, and in Norway, which is exposed to multiple

  4. Underwater welding using remote controlled robots. Development of remote underwater welding technology with a high power YAG laser

    International Nuclear Information System (INIS)

    Miwa, Yasuhiro; Sato, Syuuichi; Kojima, Toshio; Owaki, Katsura; Hirose, Naoya

    2002-01-01

    As components in nuclear power plant have been periodically carried out their inspection and repair to keep their integrity, on radioactive liquid wastes storage facility, because of difficulty on their inspection by human beings, some are remained without inspection, and even when capable of inspection, conversion from human works to remote operations is desired from a viewpoint of their operation efficiency upgrading. For response to these needs, some developments on a technology capable of carrying out inspection of their inside at underwater environment and repairing welding with YAG laser by means of remote operation, have been performed. Remote underwater inspection and repair technology is a combination technology of already applied underwater mobile technique (underwater inspection robot) with underwater YAG laser welding technique which is recently at actual using level. Therefore, this technology is composed of an inspection robot and a repair welding robot. And, testing results using the underwater inspection robot and welding test results using the underwater repair welding robot, were enough preferable to obtain forecasting applicable to actual apparatuses. This technology is especially effective for inspection and repair of inside of nuclear fuel cycle apparatuses and relatively high dose apparatuses, and can be thought to be applicable also to large capacity tanks, tanks dealing with harmful matters, underwater structures, and so on, in general industries. (G.K.)

  5. What rainfall events trigger landslides on the West Coast US?

    Science.gov (United States)

    Biasutti, Michela; Seager, Richard; Kirschbaum, Dalia

    2016-04-01

    A dataset of landslide occurrences compiled by collating google news reports covers 9 full years of data. We show that, while this compilation cannot provide consistent and widespread monitoring everywhere, it is adequate to capture the distribution of events in the major urban areas of the West Coast US and it can be used to provide a quantitative relationship between landslides and rainfall events. The case of the Seattle metropolitan area is presented as an example. The landslide dataset shows a clear seasonality in landslide occurrence, corresponding to the seasonality of rainfall, modified by the accumulation of soil moisture as winter progresses. Interannual variability of landslide occurrences is also linked to interannual variability of monthly rainfall. In most instances, landslides are clustered on consecutive days or at least within the same pentad and correspond to days of large rainfall accumulation at the regional scale. A joint analysis of the landslide data and of the high-resolution PRISM daily rainfall accumulation shows that on days when landslides occurred, the distribution of rainfall was shifted, with rainfall accumulation higher than 10mm/day being more common. Accumulations above 50mm/day much increase the probability of landslides, including the possibility of a major landslide event (one with multiple landslides in a day). The synoptic meteorological conditions associated with these major events show a mid-tropospheric ridge to the south of the target area steering a surface low and bringing enhanced precipitable water towards the Pacific North West. The interaction of the low-level flow with the local orography results in instances of a strong Puget Sound Convergence Zone, with widespread rainfall accumulation above 30mm/day and localized maxima as high as 100mm/day or more.

  6. Landslide Activity Maps Generation by Means of Persistent Scatterer Interferometry

    Directory of Open Access Journals (Sweden)

    Silvia Bianchini

    2013-11-01

    Full Text Available In this paper a methodology is proposed to elaborate landslide activity maps through the use of PS (Persistent Scatterer data. This is illustrated through the case study of Tramuntana Range in the island of Majorca (Spain, where ALOS (Advanced Land Observing Satellite images have been processed through a Persistent Scatterer Interferometry (PSI technique during the period of 2007–2010. The landslide activity map provides, for every monitored landslide, an assessment of the PS visibility according to the relief, land use, and satellite acquisition parameters. Landslide displacement measurements are projected along the steepest slope, in order to compare landslide velocities with different slope orientations. Additionally, a ground motion activity map is also generated, based on active PS clusters not included within any known landslide phenomenon, but even moving, potentially referred to unmapped landslides or triggered by other kinds of geomorphological processes. In the Tramuntana range, 42 landslides were identified as active, four as being potential to produce moderate damage, intersecting the road Ma-10, which represents the most important road of the island and, thus, the main element at risk. In order to attest the reliability of measured displacements to represent landslide dynamics, a confidence degree evaluation is proposed. In this test site, seven landslides exhibit a high confidence degree, medium for 93 of them, and low for 51. A low confidence degree was also attributed to 615 detected active clusters with a potential to cause moderate damage, as their mechanism of the triggering cause is unknown. From this total amount, 18 of them intersect the Ma-10, representing further potentially hazardous areas. The outcomes of this work reveal the usefulness of landslide activity maps for environmental planning activities, being exportable to other radar data and different geomorphological settings.

  7. Comparing factors of vulnerability and resilience of mountain communities affected by landslides in Eastern Nepal

    Science.gov (United States)

    Sudmeier-Rieux, Karen; Dubois, Jerome; Jaboyedoff, Michel

    2010-05-01

    and coping strategies. Stone quarrying and road construction, offering economic opportunities, are aggravating landslide problems. The villages are faced with a delicate balance between economic development and physical risk in this fragile terrain. Based on our comparison, we discern which factors contribute to vulnerability and resilience, while drawing conclusions about the limitations of these concepts for developing risk management strategies. Our goal is to keep this method relatively simple, low cost and useful to decision-makers and communities for managing and designing integrated development and risk management approaches under changing climate conditions.

  8. Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area

    Science.gov (United States)

    Oh, Hyun-Joo; Pradhan, Biswajeet

    2011-09-01

    This paper presents landslide-susceptibility mapping using an adaptive neuro-fuzzy inference system (ANFIS) using a geographic information system (GIS) environment. In the first stage, landslide locations from the study area were identified by interpreting aerial photographs and supported by an extensive field survey. In the second stage, landslide-related conditioning factors such as altitude, slope angle, plan curvature, distance to drainage, distance to road, soil texture and stream power index (SPI) were extracted from the topographic and soil maps. Then, landslide-susceptible areas were analyzed by the ANFIS approach and mapped using landslide-conditioning factors. In particular, various membership functions (MFs) were applied for the landslide-susceptibility mapping and their results were compared with the field-verified landslide locations. Additionally, the receiver operating characteristics (ROC) curve for all landslide susceptibility maps were drawn and the areas under curve values were calculated. The ROC curve technique is based on the plotting of model sensitivity — true positive fraction values calculated for different threshold values, versus model specificity — true negative fraction values, on a graph. Landslide test locations that were not used during the ANFIS modeling purpose were used to validate the landslide susceptibility maps. The validation results revealed that the susceptibility maps constructed by the ANFIS predictive models using triangular, trapezoidal, generalized bell and polynomial MFs produced reasonable results (84.39%), which can be used for preliminary land-use planning. Finally, the authors concluded that ANFIS is a very useful and an effective tool in regional landslide susceptibility assessment.

  9. Landslide hazard zonation around Gilgel Gibe-II Hydroelectric ...

    African Journals Online (AJOL)

    The present study was carried out along the newly constructed road from Fofa town to Gilgel Gibe-II powerhouse in South western Ethiopia. In this study, an attempt has been made to provide information on the landslide hazard zones present along the new road. In order to delineate the hazardous zones the landslide ...

  10. Bird Perches Increase Forest Seeds on Puerto Rican Landslides.

    Science.gov (United States)

    Aaron B. Shiels; Lawrence R. Walker

    2003-01-01

    Landslides result in the loss of vertical vegetative structure, soil nutrients, and the soil seed bank. These losses impede timely recovery of tropical forest communities. In this study we added bird perches to six Puerto Rican landslides with three types of surfaces (bare, climbing fern, grass) in an effort to facilitate inputs of forest seeds through bird dispersal...

  11. Application of Video Recognition Technology in Landslide Monitoring System

    Directory of Open Access Journals (Sweden)

    Qingjia Meng

    2018-01-01

    Full Text Available The video recognition technology is applied to the landslide emergency remote monitoring system. The trajectories of the landslide are identified by this system in this paper. The system of geological disaster monitoring is applied synthetically to realize the analysis of landslide monitoring data and the combination of video recognition technology. Landslide video monitoring system will video image information, time point, network signal strength, power supply through the 4G network transmission to the server. The data is comprehensively analysed though the remote man-machine interface to conduct to achieve the threshold or manual control to determine the front-end video surveillance system. The system is used to identify the target landslide video for intelligent identification. The algorithm is embedded in the intelligent analysis module, and the video frame is identified, detected, analysed, filtered, and morphological treatment. The algorithm based on artificial intelligence and pattern recognition is used to mark the target landslide in the video screen and confirm whether the landslide is normal. The landslide video monitoring system realizes the remote monitoring and control of the mobile side, and provides a quick and easy monitoring technology.

  12. Probabilistic landslide hazards and risk mapping on Penang Island ...

    Indian Academy of Sciences (India)

    This paper deals with landslide hazards and risk analysis of Penang Island, Malaysia using Geo- .... require a priori knowledge of the main causes of landslides .... Soil. Rengam-bukit. 289450. 10.03. 96. 20.73. 2.07 temiang association. Selangor-kangkong. 34197. 1.18. 0. 0.00. 0.00 association. Local alluvium-. 373655.

  13. Characterization of groundwater dynamics in landslides in varved clays

    NARCIS (Netherlands)

    Van der Spek, J.E.; Bogaard, T.A.; Bakker, M.

    2013-01-01

    Groundwater dynamics may play a significant role in landslides. A detailed model is developed of the groundwater dynamics in landslides in varved clays in the Trièves area in the French Alps. The varved clays consist of a sequence of alternating silt and clay layers, covered by a colluvium layer and

  14. Characterization of groundwater dynamics in landslides in varved clays

    NARCIS (Netherlands)

    Van der Spek, J.E.; Bogaard, T.A.; Bakker, M.

    2013-01-01

    Groundwater dynamics may play a significant role in landslides. A detailed model is developed of the groundwater dynamics in landslides in varved clays in the Trieves area in the French Alps. The varved clays consist of a sequence of alternating silt and clay layers, covered by a colluvium layer and

  15. Seismically induced landslides: current research by the US Geological Survey.

    Science.gov (United States)

    Harp, E.L.; Wilson, R.C.; Keefer, D.K.; Wieczorek, G.F.

    1986-01-01

    We have produced a regional seismic slope-stability map and a probabilistic prediction of landslide distribution from a postulated earthquake. For liquefaction-induced landslides, in situ measurements of seismically induced pore-water pressures have been used to establish an elastic model of pore pressure generation. -from Authors

  16. Multi-scale landslide risk assessment in Cuba

    NARCIS (Netherlands)

    Castellanos Abella, E.A.

    2008-01-01

    Landslides cause a considerable amount of damage in the mountainous regions of Cuba, which cover about 25% of the territory. Until now, only a limited amount of research has been carried out in the field of landslide risk assessment in the country. This research presents a methodology and its

  17. Slope failures in surface mines, methods of studying landslides

    Energy Technology Data Exchange (ETDEWEB)

    Flisiak, J; Korman, S; Mazurek, J

    1977-01-01

    This paper presents a review of methods of measuring landslide fissures, displacement of ground surface points in the landslide area and of points inside the landslide. An analysis of the landslide process is given, stressing various stages and phases of a landslide. Studies carried out by the Institute of Mining Geomechanics of the Technical University of Mining and Metallurgy in Cracow are evaluated. The studies concentrated on the final state of slopes in brown coal surface mines after a landslide occurs. The necessity of developing an apparatus for continuous recording of displacements of points on a landslide surface is stressed. An apparatus developed by the Institute and used for continuous measuring and recording of displacements is described. The apparatus is used to measure displacements of points during the initial phase of a landslide and during the phase of the largest displacements. The principle of the system consists in locating a number of observation points on the ground and a slope. The points are connected among themselves by flexible connectors. The connectors are equipped with potentiometric transmitters which transform the relative displacements into electric pulses. These pulses are recorded by a conventional recording apparatus. (55 refs.) (In Polish)

  18. Clayey landslide initiation and acceleration strongly modulated by soil swelling

    Science.gov (United States)

    Schulz, William; Smith, Joel B.; Wang, Gonghui; Jiang, Yao; Roering, Joshua J.

    2018-01-01

    Largely unknown mechanisms restrain motion of clay-rich, slow-moving landslides that are widespread worldwide and rarely accelerate catastrophically. We studied a clayey, slow-moving landslide typical of thousands in northern California, USA, to decipher hydrologic-mechanical interactions that modulate landslide dynamics. Similar to some other studies, observed pore-water pressures correlated poorly with landslide reactivation and speed. In situ and laboratory measurements strongly suggested that variable pressure along the landslide's lateral shear boundaries resulting from seasonal soil expansion and contraction modulated its reactivation and speed. Slope-stability modeling suggested that the landslide's observed behavior could be predicted by including transient swell pressure as a resistance term, whereas modeling considering only transient hydrologic conditions predicted movement 5–6 months prior to when it was observed. All clayey soils swell to some degree; hence, our findings suggest that swell pressure likely modulates motion of many landslides and should be considered to improve forecasts of clayey landslide initiation and mobility.

  19. Landslide Hazard Mapping in Rwanda Using Logistic Regression

    Science.gov (United States)

    Piller, A.; Anderson, E.; Ballard, H.

    2015-12-01

    Landslides in the United States cause more than $1 billion in damages and 50 deaths per year (USGS 2014). Globally, figures are much more grave, yet monitoring, mapping and forecasting of these hazards are less than adequate. Seventy-five percent of the population of Rwanda earns a living from farming, mostly subsistence. Loss of farmland, housing, or life, to landslides is a very real hazard. Landslides in Rwanda have an impact at the economic, social, and environmental level. In a developing nation that faces challenges in tracking, cataloging, and predicting the numerous landslides that occur each year, satellite imagery and spatial analysis allow for remote study. We have focused on the development of a landslide inventory and a statistical methodology for assessing landslide hazards. Using logistic regression on approximately 30 test variables (i.e. slope, soil type, land cover, etc.) and a sample of over 200 landslides, we determine which variables are statistically most relevant to landslide occurrence in Rwanda. A preliminary predictive hazard map for Rwanda has been produced, using the variables selected from the logistic regression analysis.

  20. Underwater sediment-contact radiation survey method

    International Nuclear Information System (INIS)

    Lee, D.R.; St. Aubin, M.; Welch, S.J.

    1991-01-01

    The authors are striving to produce a practical system for mapping lateral distributions in gamma activity on submerged sediments. This is in response to the need for quality control and interpretation of data obtainable by sediment sampling and analyses near nuclear utilities. A prototype gamma probe has been constructed and tested. The prototype is essentially a background survey meter packaged in a 53-cm-long x 5.4-cm-diam waterproof vehicle. This usage-shaped vehicle is connected to a cable for towing in contact with bottom sediments of lakes, rivers, and coastal waters. This vehicle, or sediment probe as it is called, was initially developed for measuring sediment electrical conductances, a parameter that can be used to locate underwater areas of groundwater and contaminant upwelling. During towing, the probe does not roll or twist around its longitudinal axis by more than 10 deg, so that sensors, which have been fixed within the vehicle, can be oriented to look up, down, or sideways. In over 450 lin-km of underwater survey, only a single sediment probe has been irretrievably snagged on sunken rocks or other debris. Work in the Ottawa River near the Chalk River Laboratories has shown good agreement among point measurements of river sediment with continuous measurements using the moving probe

  1. Underwater inspection training in intense radiation field

    International Nuclear Information System (INIS)

    Taniguchi, Ryoichi

    2017-01-01

    Osaka Prefecture University has a large dose cobalt 60 gamma ray source of about 2 PBq, and is engaged in technological training and human resource development. It is assumed that the decommissioning underwater operation of Fukushima Daiichi Nuclear Power Station would be the focus. The university aims at acquisition of the basic of underwater inspection work under radiation environment that is useful for the above purpose, radiation measurement under water, basic training in image measurement, and aims as well to evaluate the damage of imaging equipment due to radiation, and master practical knowledge for the use of inspection equipment under a large dose. In particular, it is valuable to train in the observation of Cherenkov light emitted from a large dose cobalt radiation source in water using a high sensitivity camera. The measurement of radiation dose distribution in water had difficulty in remote measurement due to water shielding effect. Although it took much time before, the method using high sensitivity camera is easy to sequentially perform two-dimensional measurement, and its utility value is large. Its effect on the dose distribution measurement of irregularly shaped sources is great. The contents of training includes the following: radiation source imaging in water, use of a laser rangefinder in water, dose distribution measurement in water and Cherenkov light measurement, judgment of equipment damage due to irradiation, weak radiation measurement, and measurement and decontamination of surface contamination. (A.O.)

  2. Underwater noise from a wave energy converter

    DEFF Research Database (Denmark)

    Tougaard, Jakob

    A recent addition to the anthropogenic sources of underwater noise is offshore wave energy converters. Underwater noise was recorded from the Wavestar wave energy converter located at Hastholm, Denmark (57°7.73´N, 8°37.23´E). The Wavestar is a full-scale test and demonstration converter...... in full operation and start and stop of the converter. Median broad band (10 Hz – 20 kHz) sound pressure level (Leq) was 123 dB re. 1 Pa, irrespective of status of the wave energy converter (stopped, running or starting/stopping). The most pronounced peak in the third-octave spectrum was in the 160 Hz...... significant noise above ambient could be detected above the 250 Hz band. The absolute increase in noise above ambient was very small. L50 third-octave levels in the four bands with the converter running were thus only 1-2 dB above ambient L50 levels. The noise recorded 25 m from the wave energy converter...

  3. Hybrid Underwater Vehicle: ARV Design and Development

    Directory of Open Access Journals (Sweden)

    Zhigang DENG

    2014-02-01

    Full Text Available The development of SMU-I, a new autonomous & remotely-operated vehicle (ARV is described. Since it has both the characteristics of autonomous underwater vehicle (AUV and remote operated underwater vehicle (ROV, it is able to achieve precision fix station operation and manual timely intervention. In the paper the initial design of basic components, such as vehicle, propulsion, batteries etc. and the control design of motion are introduced and analyzed. ROV’s conventional cable is replaced by a fiber optic cable, which makes it available for high-bandwidth real-time video, data telemetry and high-quality teleoperation. Furthermore, with the aid of the manual real-time remote operation and ranging sonar, it also resolves the AUV’s conflicting issue, which can absolutely adapt the actual complex sea environment and satisfy the unknown mission need. The whole battery system is designed as two-battery banks, whose voltages and temperatures are monitored through CAN (controller area network bus to avoid battery fire and explosion. A fuzzy-PID controller is designed for its motion control, including depth control and direction control. The controller synthesizes the advantage of fuzzy control and PID control, utilizes the fuzzy rules to on-line tune the parameters of PID controller, and achieves a better control effect. Experiment results demonstrate to show the effectiveness of the test-bed.

  4. An explanatory model of underwater adaptation

    Directory of Open Access Journals (Sweden)

    Joaquín Colodro

    Full Text Available The underwater environment is an extreme environment that requires a process of human adaptation with specific psychophysiological demands to ensure survival and productive activity. From the standpoint of existing models of intelligence, personality and performance, in this explanatory study we have analyzed the contribution of individual differences in explaining the adaptation of military personnel in a stressful environment. Structural equation analysis was employed to verify a model representing the direct effects of psychological variables on individual adaptation to an adverse environment, and we have been able to confirm, during basic military diving courses, the structural relationships among these variables and their ability to predict a third of the variance of a criterion that has been studied very little to date. In this way, we have confirmed in a sample of professionals (N = 575 the direct relationship of emotional adjustment, conscientiousness and general mental ability with underwater adaptation, as well as the inverse relationship of emotional reactivity. These constructs are the psychological basis for working under water, contributing to an improved adaptation to this environment and promoting risk prevention and safety in diving activities.

  5. Modelling cavitating flow around underwater missiles

    Directory of Open Access Journals (Sweden)

    Fabien Petitpas

    2011-12-01

    Full Text Available The diffuse interface model of Saurel et al. (2008 is used for the computation of compressible cavitating flows around underwater missiles. Such systems use gas injection and natural cavitation to reduce drag effects. Consequently material interfaces appear separating liquid and gas. These interfaces may have a really complex dynamics such that only a few formulations are able to predict their evolution. Contrarily to front tracking or interface reconstruction method the interfaces are computed as diffused numerical zones, that are captured in a routinely manner, as is done usually with gas dynamics solvers for shocks and contact discontinuity. With the present approach, a single set of partial differential equations is solved everywhere, with a single numerical scheme. This leads to very efficient solvers. The algorithm derived in Saurel et al. (2009 is used to compute cavitation pockets around solid bodies. It is first validated against experiments done in cavitation tunnel at CNU. Then it is used to compute flows around high speed underwater systems (Shkval-like missile. Performance data are then computed showing method ability to predict forces acting on the system.

  6. Towards a real-time susceptibility assessment of rainfall-induced shallow landslides on a regional scale

    Directory of Open Access Journals (Sweden)

    L. Montrasio

    2011-07-01

    Full Text Available In the framework of landslide risk management, it appears relevant to assess, both in space and in time, the triggering of rainfall-induced shallow landslides, in order to prevent damages due to these kind of disasters. In this context, the use of real-time landslide early warning systems has been attracting more and more attention from the scientific community. This paper deals with the application, on a regional scale, of two physically-based stability models: SLIP (Shallow Landslides Instability Prediction and TRIGRS (Transient Rainfall Infiltration and Grid-based Regional Slope-stability analysis. A back analysis of some recent case-histories of soil slips which occurred in the territory of the central Emilian Apennine, Emilia Romagna Region (Northern Italy is carried out and the main results are shown. The study area is described from geological and climatic viewpoints. The acquisition of geospatial information regarding the topography, the soil properties and the local landslide inventory is also explained.

    The paper outlines the main features of the SLIP model and the basic assumptions of TRIGRS. Particular attention is devoted to the discussion of the input data, which have been stored and managed through a Geographic Information System (GIS platform. Results of the SLIP model on a regional scale, over a one year time interval, are finally presented. The results predicted by the SLIP model are analysed both in terms of safety factor (Fs maps, corresponding to particular rainfall events, and in terms of time-varying percentage of unstable areas over the considered time interval. The paper compares observed landslide localizations with those predicted by the SLIP model. A further quantitative comparison between SLIP and TRIGRS, both applied to the most important event occurred during the analysed period, is presented. The limits of the SLIP model, mainly due to some restrictions of simplifying the physically

  7. Landslides Zonation Hazard: relation between geological structures and landslides occurrence in hilly tropical regions of Brazil.

    Science.gov (United States)

    Cerri, Rodrigo I; Reis, Fábio A G V; Gramani, Marcelo F; Giordano, Lucilia C; Zaine, José Eduardo

    2017-01-01

    This paper presents a new approach of landslides zonation hazard studies, based on an integrated study of structural data along with geomorphological and external factors, in a hilly regions of Brazil, covered by a tropical humid rain-forest, called Serra do Mar. The Serra do Mar consists of a hilly region along the east coast of Brazil, with high slopes and many geological structures in a gneiss - migmatitic terrain. In contrast to traditional approaches, this method proposes that structural data (foliation, fractures and bedding planes) and its relation with the slope geometry, is important to be consider in the landslide zonation hazard, along with declivity, relative relief, soil and rock properties, land use and vegetation cover and hydrogeological and climate factors. Results show that slopes with high hazard have the same dip direction of geological structures. Landslide zonation hazard using structural data contributes to a better understanding of how these structures, preserved in tropical residual soils, influence on slope stability and generates landslides.

  8. Landslides Zonation Hazard: relation between geological structures and landslides occurrence in hilly tropical regions of Brazil

    Directory of Open Access Journals (Sweden)

    RODRIGO I. CERRI

    2017-08-01

    Full Text Available ABSTRACT This paper presents a new approach of landslides zonation hazard studies, based on an integrated study of structural data along with geomorphological and external factors, in a hilly regions of Brazil, covered by a tropical humid rain-forest, called Serra do Mar. The Serra do Mar consists of a hilly region along the east coast of Brazil, with high slopes and many geological structures in a gneiss - migmatitic terrain. In contrast to traditional approaches, this method proposes that structural data (foliation, fractures and bedding planes and its relation with the slope geometry, is important to be consider in the landslide zonation hazard, along with declivity, relative relief, soil and rock properties, land use and vegetation cover and hydrogeological and climate factors. Results show that slopes with high hazard have the same dip direction of geological structures. Landslide zonation hazard using structural data contributes to a better understanding of how these structures, preserved in tropical residual soils, influence on slope stability and generates landslides.

  9. A model of mudflow propagation downstream from the Grohovo landslide near the city of Rijeka (Croatia)

    Science.gov (United States)

    Žic, E.; Arbanas, Ž.; Bićanić, N.; Ožanić, N.

    2015-02-01

    Mudflows regularly generate significant human and property losses. Analyzing mudflows is important to assess the risks and to delimit vulnerable areas where mitigation measures are required. The smoothed-particle hydrodynamics (SPH) model adopted here considers, in two phases, a granular skeleton with voids filled with either water or mud. The SPH depth-integrated numerical model (Pastor et al., 2009a) used for the present simulations is a 2-D model capable of predicting the runout distance, flow velocity, deposition pattern and the final volume of mudflows. It is based on mathematical and rheological models. In this study, the main characteristics of mudflow processes that have emerged in the past (1908) in the area downstream of the Grohovo landslide are examined, and the more relevant parameters and attributes describing the mudflow are presented. Principal equations that form the basis of the SPH depth-integrated model are reviewed and applied to analyze the Grohovo landslide and the propagation of the mudflow wave downstream of the landslide. Based on the SPH method, the runout distance, quantities of the deposited materials and the velocity of mudflow progression which occurred in the past at the observed area are analyzed and qualitatively compared to the recorded consequences of the actual event. Within the SPH simulation, the Newtonian rheological model in the turbulent flow regime and the Bingham rheological model were adopted and a comparison was made of the application of the Egashira and Hungr erosion law.

  10. Analysis of building deformation in landslide area using multisensor PSInSAR™ technique.

    Science.gov (United States)

    Ciampalini, Andrea; Bardi, Federica; Bianchini, Silvia; Frodella, William; Del Ventisette, Chiara; Moretti, Sandro; Casagli, Nicola

    2014-12-01

    Buildings are sensitive to movements caused by ground deformation. The mapping both of spatial and temporal distribution, and of the degree of building damages represents a useful tool in order to understand the landslide evolution, magnitude and stress distribution. The high spatial resolution of space-borne SAR interferometry can be used to monitor displacements related to building deformations. In particular, PSInSAR technique is used to map and monitor ground deformation with millimeter accuracy. The usefulness of the above mentioned methods was evaluated in San Fratello municipality (Sicily, Italy), which was historically affected by landslides: the most recent one occurred on 14th February 2010. PSInSAR data collected by ERS 1/2, ENVISAT, RADARSAT-1 were used to study the building deformation velocities before the 2010 landslide. The X-band sensors COSMO-SkyMed and TerraSAR-X were used in order to monitor the building deformation after this event. During 2013, after accurate field inspection on buildings and structures, damage assessment map of San Fratello were created and then compared to the building deformation velocity maps. The most interesting results were obtained by the comparison between the building deformation velocity map obtained through COSMO-SkyMed and the damage assessment map. This approach can be profitably used by local and Civil Protection Authorities to manage the post-event phase and evaluate the residual risks.

  11. Object-based Classification for Detecting Landslides and Stochastic Procedure to landslide susceptibility maps - A Case at Baolai Village, SW Taiwan

    Science.gov (United States)

    Lin, Ying-Tong; Chang, Kuo-Chen; Yang, Ci-Jian

    2017-04-01

    As the result of global warming in the past decades, Taiwan has experienced more and more extreme typhoons with hazardous massive landslides. In this study, we use object-oriented analysis method to classify landslide area at Baolai village by using Formosat-2 satellite images. We used for multiresolution segmented to generate the blocks, and used hierarchical logic to classified 5 different kinds of features. After that, classification the landslide into different type of landslide. Beside, we use stochastic procedure to integrate landslide susceptibility maps. This study assumed that in the extreme event, 2009 Typhoon Morakot, which precipitation goes to 1991.5mm in 5 days, and the highest landslide susceptible area. The results show that study area's landslide area was greatly changes, most of landslide was erosion by gully and made dip slope slide, or erosion by the stream, especially at undercut bank. From the landslide susceptibility maps, we know that the old landslide area have high potential to occur landslides in the extreme event. This study demonstrates the changing of landslide area and the landslide susceptible area. Keywords: Formosat-2, object-oriented, segmentation, classification, landslide, Baolai Village, SW Taiwan, FS

  12. Citizen science, GIS, and the global hunt for landslides

    Science.gov (United States)

    Juang, C.; Stanley, T.; Kirschbaum, D.

    2017-12-01

    Landslides occur across the United States and around the world, causing much suffering and infrastructure damage. Many of these events have been recorded in the Global Landslide Catalog (GLC), a worldwide record of recently rainfall-triggered landslides. The extent and composition of this database has been affected by the limits of media search tools and available staffing. Citizen scientists could expand the effort exponentially, as well as diversify the knowledge base of the research team. In order to enable this collaboration the NASA Center for Climate Simulation has created a GIS portal for viewing, editing, and managing the GLC. The data is also exposed through a Rest API, for easy incorporation into geospatial websites by third parties. Future developments may include the ability to store polygons delineating large landslides, digitization from recent satellite imagery, and the establishment of a community for international landslide research that is open to both lay and academic users.

  13. Underwater cladding with laser beam and plasma arc welding

    International Nuclear Information System (INIS)

    White, R.A.; Fusaro, R.; Jones, M.G.; Solomon, H.D.; Milian-Rodriguez, R.R.

    1997-01-01

    Two welding processes, plasma arc (transferred arc) (PTA) and laser beam, were investigated to apply cladding to austenitic stainless steels and Inconel 600. These processes have long been used to apply cladding layers , but the novel feature being reported here is that these cladding layers were applied underwater, with a water pressure equivalent to 24 m (80 ft). Being able to apply the cladding underwater is very important for many applications, including the construction of off-shore oil platforms and the repair of nuclear reactors. In the latter case, being able to weld underwater eliminates the need for draining the reactor and removing the fuel. Welding underwater in reactors presents numerous challenges, but the ability to weld without having to drain the reactor and remove the fuel provides a huge cost savings. Welding underwater in reactors must be done remotely, but because of the radioactive corrosion products and neutron activation of the steels, remote welding would also be required even if the reactor is drained and the fuel removed. In fact, without the shielding of the water, the remote welding required if the reactor is drained might be even more difficult than that required with underwater welds. Furthermore, as shall be shown, the underwater welds that the authors have made were of high quality and exhibit compressive rather than tensile residual stresses

  14. Underwater fiber-wireless communication with a passive front end

    Science.gov (United States)

    Xu, Jing; Sun, Bin; Lyu, Weichao; Kong, Meiwei; Sarwar, Rohail; Han, Jun; Zhang, Wei; Deng, Ning

    2017-11-01

    We propose and experimentally demonstrate a novel concept on underwater fiber-wireless (Fi-Wi) communication system with a fully passive wireless front end. A low-cost step-index (SI) plastic optical fiber (POF) together with a passive collimating lens at the front end composes the underwater Fi-Wi architecture. We have achieved a 1.71-Gb/s transmission at a mean BER of 4.97 × 10-3 (1.30 × 10-3 when using power loading) over a 50-m SI-POF and 2-m underwater wireless channel using orthogonal frequency division multiplexing (OFDM). Although the wireless part is very short, it actually plays a crucial role in practical underwater implementation, especially in deep sea. Compared with the wired solution (e.g. using a 52-m POF cable without the UWOC part), the proposed underwater Fi-Wi scheme can save optical wet-mate connectors that are sophisticated, very expensive and difficult to install in deep ocean. By combining high-capacity robust POF with the mobility and ubiquity of underwater wireless optical communication (UWOC), the proposed underwater Fi-Wi technology will find wide application in ocean exploration.

  15. Intelligent Navigation for a Solar Powered Unmanned Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Francisco García-Córdova

    2013-04-01

    Full Text Available In this paper, an intelligent navigation system for an unmanned underwater vehicle powered by renewable energy and designed for shadow water inspection in missions of a long duration is proposed. The system is composed of an underwater vehicle, which tows a surface vehicle. The surface vehicle is a small boat with photovoltaic panels, a methanol fuel cell and communication equipment, which provides energy and communication to the underwater vehicle. The underwater vehicle has sensors to monitor the underwater environment such as sidescan sonar and a video camera in a flexible configuration and sensors to measure the physical and chemical parameters of water quality on predefined paths for long distances. The underwater vehicle implements a biologically inspired neural architecture for autonomous intelligent navigation. Navigation is carried out by integrating a kinematic adaptive neuro-controller for trajectory tracking and an obstacle avoidance adaptive neuro- controller. The autonomous underwater vehicle is capable of operating during long periods of observation and monitoring. This autonomous vehicle is a good tool for observing large areas of sea, since it operates for long periods of time due to the contribution of renewable energy. It correlates all sensor data for time and geodetic position. This vehicle has been used for monitoring the Mar Menor lagoon.

  16. The influence of underwater turbulence on optical phase measurements

    Science.gov (United States)

    Redding, Brandon; Davis, Allen; Kirkendall, Clay; Dandridge, Anthony

    2016-05-01

    Emerging underwater optical imaging and sensing applications rely on phase-sensitive detection to provide added functionality and improved sensitivity. However, underwater turbulence introduces spatio-temporal variations in the refractive index of water which can degrade the performance of these systems. Although the influence of turbulence on traditional, non-interferometric imaging has been investigated, its influence on the optical phase remains poorly understood. Nonetheless, a thorough understanding of the spatio-temporal dynamics of the optical phase of light passing through underwater turbulence are crucial to the design of phase-sensitive imaging and sensing systems. To address this concern, we combined underwater imaging with high speed holography to provide a calibrated characterization of the effects of turbulence on the optical phase. By measuring the modulation transfer function of an underwater imaging system, we were able to calibrate varying levels of optical turbulence intensity using the Simple Underwater Imaging Model (SUIM). We then used high speed holography to measure the temporal dynamics of the optical phase of light passing through varying levels of turbulence. Using this method, we measured the variance in the amplitude and phase of the beam, the temporal correlation of the optical phase, and recorded the turbulence induced phase noise as a function of frequency. By bench marking the effects of varying levels of turbulence on the optical phase, this work provides a basis to evaluate the real-world potential of emerging underwater interferometric sensing modalities.

  17. Underwater television camera for monitoring inner side of pressure vessel

    International Nuclear Information System (INIS)

    Takayama, Kazuhiko.

    1997-01-01

    An underwater television support device equipped with a rotatable and vertically movable underwater television camera and an underwater television camera controlling device for monitoring images of the inside of the reactor core photographed by the underwater television camera to control the position of the underwater television camera and the underwater light are disposed on an upper lattice plate of a reactor pressure vessel. Both of them are electrically connected with each other by way of a cable to rapidly observe the inside of the reactor core by the underwater television camera. The reproducibility is extremely satisfactory by efficiently concentrating the position of the camera and image information upon inspection and observation. As a result, the steps for periodical inspection can be reduced to shorten the days for the periodical inspection. Since there is no requirement to withdraw fuel assemblies over a wide reactor core region, and the device can be used with the fuel assemblies being left as they are in the reactor, it is suitable for inspection of detectors for nuclear instrumentation. (N.H.)

  18. The influence of preferential flow on pressure propagation and landslide triggering of the Rocca Pitigliana landslide

    Science.gov (United States)

    Shao, Wei; Bogaard, Thom; Bakker, Mark; Berti, Matteo

    2016-12-01

    The fast pore water pressure response to rain events is an important triggering factor for slope instability. The fast pressure response may be caused by preferential flow that bypasses the soil matrix. Currently, most of the hydro-mechanical models simulate pore water pressure using a single-permeability model, which cannot quantify the effects of preferential flow on pressure propagation and landslide triggering. Previous studies showed that a model based on the linear-diffusion equation can simulate the fast pressure propagation in near-saturated landslides such as the Rocca Pitigliana landslide. In such a model, the diffusion coefficient depends on the degree of saturation, which makes it difficult to use the model for predictions. In this study, the influence of preferential flow on pressure propagation and slope stability is investigated with a 1D dual-permeability model coupled with an infinite-slope stability approach. The dual-permeability model uses two modified Darcy-Richards equations to simultaneously simulate the matrix flow and preferential flow in hillslopes. The simulated pressure head is used in an infinite-slope stability analysis to identify the influence of preferential flow on the fast pressure response and landslide triggering. The dual-permeability model simulates the height and arrival of the pressure peak reasonably well. Performance of the dual-permeability model is as good as or better than the linear-diffusion model even though the dual-permeability model is calibrated for two single pulse rain events only, while the linear-diffusion model is calibrated for each rain event separately. In conclusion, the 1D dual-permeability model is a promising tool for landslides under similar conditions.

  19. Soil and biomass carbon re-accumulation after landslide disturbances

    Science.gov (United States)

    Schomakers, Jasmin; Jien, Shih-Hao; Lee, Tsung-Yu; Huang-Chuan, Jr.; Hseu, Zeng-Yei; Lin, Zan Liang; Lee, Li-Chin; Hein, Thomas; Mentler, Axel; Zehetner, Franz

    2017-07-01

    In high-standing islands of the Western Pacific, typhoon-triggered landslides occasionally strip parts of the landscape of its vegetative cover and soil layer and export large amounts of biomass and soil organic carbon (OC) from land to the ocean. After such disturbances, new vegetation colonizes the landslide scars and OC starts to re-accumulate. In the subtropical mountains of Taiwan and in other parts of the world, bamboo (Bambusoideae) species may invade at a certain point in the succession of recovering landslide scars. Bamboo has a high potential for carbon sequestration because of its fast growth and dense rooting system. However, it is still largely unknown how these properties translate into soil OC re-accumulation rates after landslide disturbance. In this study, a chronosequence was established on four former landslide scars in the Central Mountain Range of Taiwan, ranging in age from 6 to 41 years post disturbance as determined by landslide mapping from remote sensing. The younger landslide scars were colonized by Miscanthus floridulus, while after approx. 15 to 20 years of succession, bamboo species (Phyllostachys) were dominating. Biomass and soil OC stocks were measured on the recovering landslide scars and compared to an undisturbed Cryptomeria japonica forest stand in the area. After initially slow re-vegetation, biomass carbon accumulated in Miscanthus stands with mean annual accretion rates of 2 ± 0.5 Mg C ha- 1 yr- 1. Biomass carbon continued to increase after bamboo invasion and reached 40% of that in the reference forest site after 41 years of landslide recovery. Soil OC accumulation rates were 2.0 Mg C ha- 1 yr- 1, 6 to 41 years post disturbance reaching 64% of the level in the reference forest. Our results from this in-situ study suggest that recovering landslide scars are strong carbon sinks once an initial lag period of vegetation re-establishment is overcome.

  20. Microstructures in landslides in northwest China - Implications for creeping displacements?

    Science.gov (United States)

    Schäbitz, M.; Janssen, C.; Wenk, H.-R.; Wirth, R.; Schuck, B.; Wetzel, H.-U.; Meng, X.; Dresen, G.

    2018-01-01

    Microstructures, mineralogical composition and texture of selected landslide samples from three landslides in the southern part of the Gansu Province (China) were examined with optical microscopy, transmission electron microscopy (TEM), x-ray diffraction (XRD) and synchrotron x-ray diffraction measurements. Common sheet silicates are chlorite, illite, muscovite, kaolinite, pyrophyllite and dickite. Other minerals are quartz, calcite, dolomite and albite. In one sample, graphite and amorphous carbon were detected by TEM-EDX analyses and TEM high-angle annular dark-field images. The occurrence of graphite and pyrophyllite with very low friction coefficients in the gouge material of the Suoertou and Xieliupo landslides is particularly significant for reducing the frictional strength of the landslides. It is proposed that the landslides underwent comparable deformation processes as fault zones. The low friction coefficients provide strong evidence that slow-moving landsliding is controlled by the presence of weak minerals. In addition, TEM observations document that grain size reduction in clayey slip zone material was produced mainly by mechanical abrasion. For calcite and quartz, grain size reduction was attributed to both pressure solution and cataclasis. Therefore, besides landslide composition, the occurrence of ultrafine-grained slip zone material may also contribute to weakening processes of landslides. TEM images of slip-zone samples show both locally aligned clay particles, as well as kinked and folded sheet silicates, which are widely disseminated in the whole matrix. Small, newly formed clay particles have random orientations. Based on synchrotron x-ray diffraction measurements, the degree of preferred orientation of constituent sheet silicates in local shear zones of the Suoertou and Duang-He-Ba landslide is strong. This work is the first reported observation of well-oriented clay fabrics in landslides.

  1. Solid discharge and landslide activity at basin scale

    Science.gov (United States)

    Ardizzone, F.; Guzzetti, F.; Iadanza, C.; Rossi, M.; Spizzichino, D.; Trigila, A.

    2012-04-01

    This work presents a preliminary analysis aimed at understanding the relationship between landslide sediment supply and sediment yield at basin scale in central and southern Italy. A database of solid discharge measurements regarding 116 gauging stations, located along the Apennines chain in Italy, has been compiled by investigating the catalogues, named Annali Idrologici, published by Servizio Idrografico e Mareografico Italiano in the period from 1917 to 1997. The database records several information about the 116 gauging stations, and especially reports the sediment yield monthly measurements (103 ton) and the catchments area (km2). These data have been used to calculate the average solid yield and the normalized solid yield for each station in the observation period. The Italian Landslide Inventory (Progetto IFFI) has been used to obtained the size of the landslides, in order to estimate the landslide mobilization rates. The IFFI Project funded by the Italian Government is realized by ISPRA (Italian National Institute for Environmental Protection and Research - Geological Survey of Italy) in partnership with the 21 Regions and Self Governing Provinces. 21 of the 116 gauging stations and the related catchments have been selected on the basis of the length of the solid discharge observation period and excluding the catchments with dams located upstream the stations. The landslides inside the selected catchments have been extracted from the IFFI inventory, calculating the planimetric area of each landslide. Considering both the shallow and deep landslides, the landslide volume has been estimated using an empirical power law relation (landslide area vs. volume). The total landslide volume in the study areas and the average sediment yield measured at the gauging stations have been compared, analysing the behaviour of the basins which drainage towards the Tyrrhenian sea and the basins which drainage towards the Adriatic sea.

  2. Investigation of landslide potential parameters on Zonguldak-Ereğli Highway and adverse effects of landslides in the region.

    Science.gov (United States)

    Can, Eray

    2014-04-01

    Landslides are natural phenomena in the same class of natural disasters as earthquakes, floods, hurricanes, erosion, and volcanic eruptions that adversely affect human lives and property. Owing to their widespread occurrence, landslides are easily visible and able to be partially understood by people witnessing them. Nevertheless, to comprehend the detail of their formation and determine their potential, it is necessary to undertake geodetic, geological, and geophysical measurements in regions prone to landslides. By analyzing these measurements, it is possible to better ascertain those regions predisposed to landslides and thus provide the means to prevent loss of life and property. The city of Zonguldak, situated in the Western Black Sea region of Turkey, has a high occurrence of landslides owing to its harsh topography with rugged and steep slopes and rainfall in almost every season. Furthermore, the diurnal temperature ranging up to 10 °C in all seasons, especially in winter, plays a crucial role in rock disintegration in this region. Other factors damage ground composition and trigger landslides, such as underground mining operations, road construction that collapses rocky hills using explosives, and excavation works in steep terrain for building construction. This study gives a detailed account of the causes and adverse effects of landslides and their parameters through examples of landslide occurrences in the region, together with the results and analyses of two periods of geodetic measurements conducted on the Zonguldak-Ereğli Highway in Ilıksu district.

  3. Technical Note: Assessing predictive capacity and conditional independence of landslide predisposing factors for shallow landslide susceptibility models

    Directory of Open Access Journals (Sweden)

    S. Pereira

    2012-04-01

    Full Text Available The aim of this study is to identify the landslide predisposing factors' combination using a bivariate statistical model that best predicts landslide susceptibility. The best model is one that has simultaneously good performance in terms of suitability and predictive power and has been developed using variables that are conditionally independent. The study area is the Santa Marta de Penaguião council (70 km2 located in the Northern Portugal.

    In order to identify the best combination of landslide predisposing factors, all possible combinations using up to seven predisposing factors were performed, which resulted in 120 predictions that were assessed with a landside inventory containing 767 shallow translational slides. The best landslide susceptibility model was selected according to the model degree of fitness and on the basis of a conditional independence criterion. The best model was developed with only three landslide predisposing factors (slope angle, inverse wetness index, and land use and was compared with a model developed using all seven landslide predisposing factors.

    Results showed that it is possible to produce a reliable landslide susceptibility model using fewer landslide predisposing factors, which contributes towards higher conditional independence.

  4. The preparation of landslide map by Landslide Numerical Risk Factor (LNRF model and Geographic Information System (GIS

    Directory of Open Access Journals (Sweden)

    Ali Mohammadi Torkashvand

    2014-12-01

    Full Text Available One of the risks to threaten mountainous areas is that hillslope instability caused damage to lands. One of the most dangerous instabilities is mass movement and much movement occurs due to slip. The aim of this study is zonation of landslide hazards in a basin of the Ardebil province, the eastern slopes of Sabalan, Iran. Geological and geomorphologic conditions, climate and type of land use have caused susceptibility of this watershed to landslides. Firstly, maps of the main factors affecting landslide occurrence including slope, distance from faults, lithology, elevation and precipitation were prepared and digitized. Then, by using interpretation of aerial photos and satellite images and field views, the ground truth map of landslides was prepared. Each basic layer (factor and landslide map were integrated to compute the numeric value of each factor with the help of a Landslide Numerical Risk Factor (LNRF model and landslide occurrence percent obtained in different units from each of the maps. Finally, with overlapping different data layers, a landslide hazard zonation map was prepared. Results showed that 67.85% of the basin has high instability, 7.76% moderate instability and 24.39% low instability.

  5. Presentation and Analysis of a Worldwide Database of Earthquake-Induced Landslide Inventories : Earthquake-Induced Landslide Inventories

    NARCIS (Netherlands)

    Tanyas, Hakan; Van Westen, Cees J.; Allstadt, Kate E.; Anna Nowicki Jessee, M.; Görüm, Tolga; Jibson, Randall W.; Godt, Jonathan W.; Sato, Hiroshi P.; Schmitt, Robert G.; Marc, Odin; Hovius, Niels

    2017-01-01

    Earthquake‐induced landslide (EQIL) inventories are essential tools to extend our knowledge of the relationship between earthquakes and the landslides they can trigger. Regrettably, such inventories are difficult to generate and therefore scarce, and the available ones differ in terms of their

  6. Global Landslides on Rapidly Spinning Spheroids

    Science.gov (United States)

    Scheeres, Daniel J.; Sanchez, P.

    2013-10-01

    The angle of repose and conditions for global landslides on the surfaces of small, rapidly spinning, spheroidal asteroids are studied. Applying techniques of soil mechanics, we develop a theory for, and examples of, how regolith will fail and flow in this microgravity environment. Our motivation is to develop an understanding of the "top-shaped" class of asteroids based on analytical soil mechanics. Our analysis transforms the entire asteroid surface into a local frame where we can model it as a conventional granular pile with a surface slope, acceleration and height variations as a function of the body's spin rate, shape and density. A general finding is that the lowest point on a rapidly spinning spheroid is at the equator with the effective height of surface material monotonically increasing towards the polar regions, where the height can be larger than the physical radius of the body. We study the failure conditions of both cohesionless and cohesive regolith, and develop specific predictions of the surface profile as a function of the regolith angle of friction and the maximum spin rate experienced by the body. The theory also provides simple guidelines on what the shape may look like, although we do not analyze gravitationally self-consistent evolution of the body shape. The theory is tested with soft-sphere discrete element method granular mechanics simulations to better understand the dynamical aspects of global asteroid landslides. We find significant differences between failure conditions for cohesive and cohesionless regolith. In the case of cohesive regolith, we show that extremely small values of strength (much less than that found in lunar regolith) can stabilize a surface even at very rapid spin rates. Cohesionless surfaces, as expected, fail whenever their surface slopes exceed the angle of friction. Based on our analysis we propose that global landslides and the flow of material towards the equator on spheroidal bodies are precipitated by exogenous

  7. The effect of terrain factors on landslide features along forest road ...

    African Journals Online (AJOL)

    Results indicate that the landslide area at a distance of 80 to 100 m from road edge was significantly more than that of other distances. The landslide dimensions increased with increasing slope angle. The mean of landslide area and mean of landslide volume on the Northwest aspect was significantly more than that on ...

  8. An integrated methodology to develop a standard for landslide early warning systems

    OpenAIRE

    Fathani, Teuku Faisal; Karnawati, Dwikorita; Wilopo, Wahyu

    2016-01-01

    Landslides are one of the most widespread and commonly occurring natural hazards. In regions of high vulnerability, these complex hazards can cause significant negative social and economic impacts. Considering the worldwide susceptibility to landslides, it is necessary to establish a standard for early warning systems specific to landslide disaster risk reduction. This standard would provide guidance in conducting landslide detection, prediction, interpretation, and response...

  9. Influence of Pulse Shaping Filters on PAPR Performance of Underwater 5G Communication System Technique: GFDM

    Directory of Open Access Journals (Sweden)

    Jinqiu Wu

    2017-01-01

    Full Text Available Generalized frequency division multiplexing (GFDM is a new candidate technique for the fifth generation (5G standard based on multibranch multicarrier filter bank. Unlike OFDM, it enables the frequency and time domain multiuser scheduling and can be implemented digitally. It is the generalization of traditional OFDM with several added advantages like the low PAPR (peak to average power ratio. In this paper, the influence of the pulse shaping filter on PAPR performance of the GFDM system is investigated and the comparison of PAPR in OFDM and GFDM is also demonstrated. The PAPR is restrained by selecting proper parameters and filters to make the underwater acoustic communication more efficient.

  10. Design of Simple Landslide Monitoring System

    Science.gov (United States)

    Meng, Qingjia; Cai, Lingling

    2018-01-01

    The simple landslide monitoring system is mainly designed for slope, collapse body and surface crack. In the harsh environment, the dynamic displacement data of the disaster body is transmitted to the terminal acquisition system in real time. The main body of the system adopt is PIC32MX795F512. This chip is to realize low power design, wakes the system up through the clock chip, and turns on the switching power supply at set time, which makes the wireless transmission module running during the interval to ensure the maximum battery consumption, so that the system can be stable long term work.

  11. Slopeland utilizable limitation classification using landslide inventory

    Science.gov (United States)

    Tsai, Shu Fen; Lin, Chao Yuan

    2016-04-01

    In 1976, "Slopeland Conservation and Utilization Act" was promulgated as well as the criteria for slopeland utilization limitation classification (SULC) i.e., average slope, effective soil depth, degree of soil erosion, and parent rock became standardized. Due to the development areas on slope land steadily increased and the extreme rainfall events occurred frequently, the areas affected by landslides also increased year by year. According to the act, the land which damaged by disaster must be categorized to the conservation land and required rehabilitation. Nevertheless, the large-scale disaster on slope land and the limitation of SWCB officers are the constraint of field investigation. Therefore, how to establish the ongoing inspective procedure of post-disaster SULC using remote sensing was essential. A-Li-Shan, Ai-Liao, and Tai-Ma-Li Watershed were selected to be case studies in this project. The spatial data from big data i.e., Digital Elevation Model (DEM), soil map, and satellite images integrated with Geographic Information Systems (GIS) were applied to post-disaster SULC. The collapse and deposition area which delineated by vegetation recovery rate was established landslide inventory of cadastral unit combined with watershed unit. The results were verified with field survey and the accuracy was 97%. The landslide inventory could be an effective reference for sediment disaster investigation and a practical evidence for judgement to expropriation. Finally, the results showed that the ongoing inspective procedure of post-disaster SULC was practicable. From the four criteria, the average slope was the major factor. It was found that the non-uniform slopes, especially derived from cadastral units, often produce significant slope difference and lead to errors of average slope evaluation. Therefore, the Grid-based DEM slope derivation has been recommended as the standard method to calculate the average slope. Others criteria were previously required to classify

  12. Autonomous docking control of visual-servo type underwater vehicle system aiming at underwater automatic charging

    International Nuclear Information System (INIS)

    Yanou, Akira; Ohnishi, Shota; Ishiyama, Shintaro; Minami, Mamoru

    2015-01-01

    A visual-servo type remotely operated vehicle (ROV) system with binocular wide-angle lens was developed to survey submarine resources, decontaminate radiation from mud in dam lake and so on. This paper explores the experiments on regulator performance and underwater docking of the robot system utilizing Genetic Algorithm (GA) for real-time recognition of the robot's relative position and posture through 3D marker. The visual servoing performances have been verified as follows; (1) The stability performances of the proposed regulator system have been evaluated by exerting abrupt distrubane force while the ROV is controlled by visual servoing. (2) The proposed system can track time-variant desired target position in x-axis (front-back direction of the robot). (3) The underwater docking can be completed by switching visual servoing and docking modes based on the error threshold, and by giving time-varying desired target position and orientation to the controller as a desired pose. (author)

  13. Summary of the guideline on underwater laser beam repair welding

    International Nuclear Information System (INIS)

    Ichikawa, Hiroya; Yoda, Masaki; Motora, Yuichi

    2013-01-01

    It is known that stress corrosion cracking (SCC) might occur at the weld of a reactor pressure vessel or core internals. Underwater laser beam clad welding for mitigation of SCC has been already established and the guideline 'Underwater laser beam clad welding' was published. Moreover, the guideline 'Seal welding' was also published as a repair method for SCC. In addition to these guidelines, the guideline 'Underwater laser beam repair welding' was newly published in November, 2012 for the repair welding after completely removing a SCC crack occurred in weld or base metal. This paper introduces the summary of this guideline. (author)

  14. A Secure Communication Suite for Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Angelica Lo Duca

    2012-11-01

    Full Text Available In this paper we describe a security suite for Underwater Acoustic Sensor Networks comprising both fixed and mobile nodes. The security suite is composed of a secure routing protocol and a set of cryptographic primitives aimed at protecting the confidentiality and the integrity of underwater communication while taking into account the unique characteristics and constraints of the acoustic channel. By means of experiments and simulations based on real data, we show that the suite is suitable for an underwater networking environment as it introduces limited, and sometimes negligible, communication and power consumption overhead.

  15. Application of YAG laser processing in underwater welding and cutting

    Energy Technology Data Exchange (ETDEWEB)

    Ohwaki, Katsura; Morita, Ichiro; Kojima, Toshio; Sato, Shuichi [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    2002-09-01

    The high-power YAG laser is a new fabrication tool. The laser torch is easy to combine with complex with complex mechanics because of beam delivery through optical fiber. A direct underwater laser welding technology has been developed and applied to the preservation, maintenance and removal of nuclear power plants. For subdividing or removing operations for retirement of plants, the laser cutting properties were confirmed to allow a maximum cutting thickness of 80 mm. For repairing inner surface of stainless steel tanks, an underwater laser welding system using a remote-controlled robot was developed and the high quality of underwater laser welding was confirmed. (author)

  16. WODA Technical Guidance on Underwater Sound from Dredging.

    Science.gov (United States)

    Thomsen, Frank; Borsani, Fabrizio; Clarke, Douglas; de Jong, Christ; de Wit, Pim; Goethals, Fredrik; Holtkamp, Martine; Martin, Elena San; Spadaro, Philip; van Raalte, Gerard; Victor, George Yesu Vedha; Jensen, Anders

    2016-01-01

    The World Organization of Dredging Associations (WODA) has identified underwater sound as an environmental issue that needs further consideration. A WODA Expert Group on Underwater Sound (WEGUS) prepared a guidance paper in 2013 on dredging sound, including a summary of potential impacts on aquatic biota and advice on underwater sound monitoring procedures. The paper follows a risk-based approach and provides guidance for standardization of acoustic terminology and methods for data collection and analysis. Furthermore, the literature on dredging-related sounds and the effects of dredging sounds on marine life is surveyed and guidance on the management of dredging-related sound risks is provided.

  17. Low complexity adaptive equalizers for underwater acoustic communications

    Science.gov (United States)

    Soflaei, Masoumeh; Azmi, Paeiz

    2014-08-01

    Interference signals due to scattering from surface and reflecting from bottom is one of the most important problems of reliable communications in shallow water channels. To solve this problem, one of the best suggested ways is to use adaptive equalizers. Convergence rate and misadjustment error in adaptive algorithms play important roles in adaptive equalizer performance. In this paper, affine projection algorithm (APA), selective regressor APA(SR-APA), family of selective partial update (SPU) algorithms, family of set-membership (SM) algorithms and selective partial update selective regressor APA (SPU-SR-APA) are compared with conventional algorithms such as the least mean square (LMS) in underwater acoustic communications. We apply experimental data from the Strait of Hormuz for demonstrating the efficiency of the proposed methods over shallow water channel. We observe that the values of the steady-state mean square error (MSE) of SR-APA, SPU-APA, SPU-normalized least mean square (SPU-NLMS), SPU-SR-APA, SM-APA and SM-NLMS algorithms decrease in comparison with the LMS algorithm. Also these algorithms have better convergence rates than LMS type algorithm.

  18. Ocean outfall plume characterization using an Autonomous Underwater Vehicle.

    Science.gov (United States)

    Rogowski, Peter; Terrill, Eric; Otero, Mark; Hazard, Lisa; Middleton, William

    2013-01-01

    A monitoring mission to map and characterize the Point Loma Ocean Outfall (PLOO) wastewater plume using an Autonomous Underwater Vehicle (AUV) was performed on 3 March 2011. The mobility of an AUV provides a significant advantage in surveying discharge plumes over traditional cast-based methods, and when combined with optical and oceanographic sensors, provides a capability for both detecting plumes and assessing their mixing in the near and far-fields. Unique to this study is the measurement of Colored Dissolved Organic Matter (CDOM) in the discharge plume and its application for quantitative estimates of the plume's dilution. AUV mission planning methodologies for discharge plume sampling, plume characterization using onboard optical sensors, and comparison of observational data to model results are presented. The results suggest that even under variable oceanic conditions, properly planned missions for AUVs equipped with an optical CDOM sensor in addition to traditional oceanographic sensors, can accurately characterize and track ocean outfall plumes at higher resolutions than cast-based techniques.

  19. Development of underwater laser cladding and underwater laser seal welding techniques for reactor components

    International Nuclear Information System (INIS)

    Hino, Takehisa; Tamura, Masataka; Tanaka, Yoshimi; Kouno, Wataru; Makino, Yoshinobu; Kawano, Shohei; Matsunaga, Keiji

    2009-01-01

    Stress corrosion cracking (SCC) has been reported at the aged components in many nuclear power plants. Toshiba has been developing the underwater laser welding. This welding technique can be conducted without draining the water in the reactor vessel. It is beneficial for workers not to exposure the radiation. The welding speed can be attaining twice as fast as that of Gas Tungsten Arc Welding (GTAW). The susceptibility of SCC can also be lower than the Alloy 600 base metal. (author)

  20. Landslide and flood hazard assessment in urban areas of Levoča region (Eastern Slovakia)

    Science.gov (United States)

    Magulova, Barbora; Caporali, Enrica; Bednarik, Martin

    2010-05-01

    The case study presents the use of statistical methods and analysis tools, for hazard assessment of "urbanization units", implemented in a Geographic Information Systems (GIS) environment. As a case study, the Levoča region (Slovakia) is selected. The region, with a total area of about 351 km2, is widely affected by landslides and floods. The problem, for small urbanization areas, is nowadays particularly significant from the socio-economic point of view. It is considered, presently, also an increasing problem, mainly because of climate change and more frequent extreme rainfall events. The geo-hazards are evaluated using a multivariate analysis. The landslide hazard assessment is based on the comparison and subsequent statistical elaboration of territorial dependence among different input factors influencing the instability of the slopes. Particularly, five factors influencing slope stability are evaluated, i.e. lithology, slope aspect, slope angle, hypsographic level and present land use. As a result a new landslide susceptibility map is compiled and different zones of stable, dormant and non-stable areas are defined. For flood hazard map a detailed digital elevation model is created. A compose index of flood hazard is derived from topography, land cover and pedology related data. To estimate flood discharge, time series of stream flow and precipitation measurements are used. The assessment results are prognostic maps of landslide hazard and flood hazard, which presents the optimal base for urbanization planning.

  1. Task Allocation and Path Planning for Collaborative Autonomous Underwater Vehicles Operating through an Underwater Acoustic Network

    Directory of Open Access Journals (Sweden)

    Yueyue Deng

    2013-01-01

    Full Text Available Dynamic and unstructured multiple cooperative autonomous underwater vehicle (AUV missions are highly complex operations, and task allocation and path planning are made significantly more challenging under realistic underwater acoustic communication constraints. This paper presents a solution for the task allocation and path planning for multiple AUVs under marginal acoustic communication conditions: a location-aided task allocation framework (LAAF algorithm for multitarget task assignment and the grid-based multiobjective optimal programming (GMOOP mathematical model for finding an optimal vehicle command decision given a set of objectives and constraints. Both the LAAF and GMOOP algorithms are well suited in poor acoustic network condition and dynamic environment. Our research is based on an existing mobile ad hoc network underwater acoustic simulator and blind flooding routing protocol. Simulation results demonstrate that the location-aided auction strategy performs significantly better than the well-accepted auction algorithm developed by Bertsekas in terms of task-allocation time and network bandwidth consumption. We also demonstrate that the GMOOP path-planning technique provides an efficient method for executing multiobjective tasks by cooperative agents with limited communication capabilities. This is in contrast to existing multiobjective action selection methods that are limited to networks where constant, reliable communication is assumed to be available.

  2. Landslides Mapped from LIDAR Imagery, Kitsap County, Washington

    Science.gov (United States)

    McKenna, Jonathan P.; Lidke, David J.; Coe, Jeffrey A.

    2008-01-01

    Landslides are a recurring problem on hillslopes throughout the Puget Lowland, Washington, but can be difficult to identify in the densely forested terrain. However, digital terrain models of the bare-earth surface derived from LIght Detection And Ranging (LIDAR) data express topographic details sufficiently well to identify landslides. Landslides and escarpments were mapped using LIDAR imagery and field checked (when permissible and accessible) throughout Kitsap County. We relied almost entirely on derivatives of LIDAR data for our mapping, including topographic-contour, slope, and hill-shaded relief maps. Each mapped landslide was assigned a level of 'high' or 'moderate' confidence based on the LIDAR characteristics and on field observations. A total of 231 landslides were identified representing 0.8 percent of the land area of Kitsap County. Shallow debris topples along the coastal bluffs and large (>10,000 m2) landslide complexes are the most common types of landslides. The smallest deposit mapped covers an area of 252 m2, while the largest covers 0.5 km2. Previous mapping efforts that relied solely on field and photogrammetric methods identified only 57 percent of the landslides mapped by LIDAR (61 percent high confidence and 39 percent moderate confidence), although nine landslides previously identified were not mapped during this study. The remaining 43 percent identified using LIDAR have 13 percent high confidence and 87 percent moderate confidence. Coastal areas are especially susceptible to landsliding; 67 percent of the landslide area that we mapped lies within 500 meters of the present coastline. The remaining 33 percent are located along drainages farther inland. The LIDAR data we used for mapping have some limitations including (1) rounding of the interface area between low slope surfaces and vertical faces (that is, along the edges of steep escarpments) which results in scarps being mapped too far headward (one or two meters), (2) incorrect laser

  3. On the occurrence of fatal landslides in 2008

    Science.gov (United States)

    Petley, D.

    2009-04-01

    This paper represents the latest in an annual review of fatal landslide events worldwide, based upon the Durham Fatal Landslide Database. Landslide events were inevitably dominated by the occurrence of the 12th May Wenchuan Earthquake in Sichuan Province of China, which triggered very extensive landsliding. Whilst it will be very difficult to estimate the true impact of this event in terms of landslides, the Chinese authorities estimate that about 29,000 people were killed by landslides, with several thousand more losing their lives whilst trapped in rubble due to the inability of rescuers to pass through landslide affected areas. Considerable work is needed to understand the reasons for the intensity of the landslide processes. Elsewhere the number of fatal landslides recorded totalled 405 worldwide. These caused 3526 fatalities, giving a total for the year of about 32,526 people. To put this into context, according to the CRED EM-DAT database the recorded number of fatalities from volcanic eruptions in the period 2000 to 2008 inclusive is 221! The distribution of fatal landslides followed the familiar patterns observed in previous years, with distinct clusters in Central China, along the southern edge of the Himalayas, in the Caribbean, in Central America, western S. America, along the western edge of the Philippine Sea plate and in Indonesia, plus a scattering elsewhere. The temporal distribution shows strong seasonality, with the peak occurring during the northern hemisphere summer. Unusually however, the peak month was September (usually it is in July), and there were large numbers of landslide events right through to November. The November landslide clusters occurred in SE. Asia and in Central / S. America, reflecting very heavy rains in these regions at that time. The reasons for this are not clear at present, although may be linked to weakening La Nina conditions that have prevailed through much of the year. An analysis is made of the relationship between

  4. Landslide susceptibility mapping using a neuro-fuzzy

    Science.gov (United States)

    Lee, S.; Choi, J.; Oh, H.

    2009-12-01

    This paper develops and applied an adaptive neuro-fuzzy inference system (ANFIS) based on a geographic information system (GIS) environment using landslide-related factors and location for landslide susceptibility mapping. A neuro-fuzzy system is based on a fuzzy system that is trained by a learning algorithm derived from the neural network theory. The learning procedure operates on local information, and causes only local modifications in the underlying fuzzy system. The study area, Boun, suffered much damage following heavy rain in 1998 and was selected as a suitable site for the evaluation of the frequency and distribution of landslides. Boun is located in the central part of Korea. Landslide-related factors such as slope, soil texture, wood type, lithology, and density of lineament were extracted from topographic, soil, forest, and lineament maps. Landslide locations were identified from interpretation of aerial photographs and field surveys. Landslide-susceptible areas were analyzed by the ANFIS method and mapped using occurrence factors. In particular, we applied various membership functions (MFs) and analysis results were verified using the landslide location data. The predictive maps using triangular, trapezoidal, and polynomial MFs were the best individual MFs for modeling landslide susceptibility maps (84.96% accuracy), proving that ANFIS could be very effective in modeling landslide susceptibility mapping. Various MFs were used in this study, and after verification, the difference in accuracy according to the MFs was small, between 84.81% and 84.96%. The difference was just 0.15% and therefore the choice of MFs was not important in the study. Also, compared with the likelihood ratio model, which showed 84.94%, the accuracy was similar. Thus, the ANFIS could be applied to other study areas with different data and other study methods such as cross-validation. The developed ANFIS learns the if-then rules between landslide-related factors and landslide

  5. The NESTOR underwater neutrino telescope project

    Energy Technology Data Exchange (ETDEWEB)

    Rapidis, Petros A. [Institute of Nuclear Physics, National Center for Scientific Research ' Demokritos' , Athens 15310 (Greece)], E-mail: rapidis@inp.demokritos.gr

    2009-04-11

    The NESTOR collaboration is continuing its efforts towards deploying an underwater neutrino telescope. Further site studies (e.g. water light transmission measurements, sedimentation rates, etc.) are being carried out within the context of characterizing a site that may host the proposed KM3NeT infrastructure. In addition, following the successful deployment of a single floor of a NESTOR tower in 2003, five floors are now in the final stages of preparation. The use of these five floors in a form of a truncated tower together with four autonomous strings to be located some 300 m away from the tower is being contemplated. This arrangement, named NuBE (for Neutrino Burst Experiment), that may allow the detection neutrinos in coincidence with Gamma Ray Bursts, will be described.

  6. Transducers and arrays for underwater sound

    CERN Document Server

    Butler, John L

    2016-01-01

    This improved and updated second edition covers the theory, development, and design of electro-acoustic transducers for underwater applications. This highly regarded text discusses the basics of piezoelectric and magnetostrictive transducers that are currently being used as well as promising new designs. It presents the basic acoustics as well as the specific acoustics data needed in transducer design and evaluation. A broad range of designs of projectors and hydrophones are described in detail along with methods of modeling, evaluation, and measurement. Analysis of projector and hydrophone transducer arrays, including the effects of mutual radiation impedance and numerical models for elements and arrays, are also covered. The book includes new advances in transducer design and transducer materials and has been completely reorganized to be suitable for use as a textbook, as well as a reference or handbook. The new edition contains updates to the first edition, end-of-chapter exercises, and solutions to select...

  7. Collision Detection for Underwater ROV Manipulator Systems

    Directory of Open Access Journals (Sweden)

    Satja Sivčev

    2018-04-01

    Full Text Available Work-class ROVs equipped with robotic manipulators are extensively used for subsea intervention operations. Manipulators are teleoperated by human pilots relying on visual feedback from the worksite. Operating in a remote environment, with limited pilot perception and poor visibility, manipulator collisions which may cause significant damage are likely to happen. This paper presents a real-time collision detection algorithm for marine robotic manipulation. The proposed collision detection mechanism is developed, integrated into a commercial ROV manipulator control system, and successfully evaluated in simulations and experimental setup using a real industry standard underwater manipulator. The presented collision sensing solution has a potential to be a useful pilot assisting tool that can reduce the task load, operational time, and costs of subsea inspection, repair, and maintenance operations.

  8. The NESTOR underwater neutrino telescope project

    International Nuclear Information System (INIS)

    Rapidis, Petros A.

    2009-01-01

    The NESTOR collaboration is continuing its efforts towards deploying an underwater neutrino telescope. Further site studies (e.g. water light transmission measurements, sedimentation rates, etc.) are being carried out within the context of characterizing a site that may host the proposed KM3NeT infrastructure. In addition, following the successful deployment of a single floor of a NESTOR tower in 2003, five floors are now in the final stages of preparation. The use of these five floors in a form of a truncated tower together with four autonomous strings to be located some 300 m away from the tower is being contemplated. This arrangement, named NuBE (for Neutrino Burst Experiment), that may allow the detection neutrinos in coincidence with Gamma Ray Bursts, will be described.

  9. Silent Localization of Underwater Sensors Using Magnetometers

    Directory of Open Access Journals (Sweden)

    Jonas Callmer

    2010-01-01

    Full Text Available Sensor localization is a central problem for sensor networks. If the sensor positions are uncertain, the target tracking ability of the sensor network is reduced. Sensor localization in underwater environments is traditionally addressed using acoustic range measurements involving known anchor or surface nodes. We explore the usage of triaxial magnetometers and a friendly vessel with known magnetic dipole to silently localize the sensors. The ferromagnetic field created by the dipole is measured by the magnetometers and is used to localize the sensors. The trajectory of the vessel and the sensor positions are estimated simultaneously using an Extended Kalman Filter (EKF. Simulations show that the sensors can be accurately positioned using magnetometers.

  10. Prediction of rainfall-induced shallow landslides at national scale in Italy

    Science.gov (United States)

    Montrasio, Lorella; Valentino, Roberto; Rossi, Lauro; Rudari, Roberto; Terrone, Andrea

    2013-04-01

    devoted to the discussion of the input data, which have been collected through a Geographic Information System (GIS) platform. Results of the slope-stability analysis on national scale, over a two year time interval (2011 - 2012), are finally presented. The results predicted by the SLIP model are analyzed in terms of safety factor (Fs) maps, corresponding to some particular rainfall events. The paper shows the comparison between observed landslide localizations and model predictions. Notwithstanding an improvement in terms of accuracy is needed, the application of the model on the study area guarantees a good agreement between the instability condition and the expected date and localization of the selected events. The obtained results suggest that the output of the SLIP model could be used to define different levels of "dynamic" susceptibility. If coupled with a model of forecast rainfall, SLIP could be the basis for the development of an early-warning alert system against the phenomena of interest, especially if adopted as a local scale tool, in the framework of an alert system at a wider scale.

  11. Evaluation of shallow landslide-triggering scenarios through a physically based approach: an example of application in the southern Messina area (northeastern Sicily, Italy)

    Science.gov (United States)

    Schilirò, L.; Esposito, C.; Scarascia Mugnozza, G.

    2015-09-01

    Rainfall-induced shallow landslides are a widespread phenomenon that frequently causes substantial damage to property, as well as numerous casualties. In recent~years a wide range of physically based models have been developed to analyze the triggering process of these events. Specifically, in this paper we propose an approach for the evaluation of different shallow landslide-triggering scenarios by means of the TRIGRS (transient rainfall infiltration and grid-based slope stability) numerical model. For the validation of the model, a back analysis of the landslide event that occurred in the study area (located SW of Messina, northeastern Sicily, Italy) on 1 October 2009 was performed, by using different methods and techniques for the definition of the input parameters. After evaluating the reliability of the model through comparison with the 2009 landslide inventory, different triggering scenarios were defined using rainfall values derived from the rainfall probability curves, reconstructed on the basis of daily and hourly historical rainfall data. The results emphasize how these phenomena are likely to occur in the area, given that even short-duration (1-3 h) rainfall events with a relatively low return period (e.g., 10-20~years) can trigger numerous slope failures. Furthermore, for the same rainfall amount, the daily simulations underestimate the instability conditions. The high susceptibility of this area to shallow landslides is testified by the high number of landslide/flood events that have occurred in the past and are summarized in this paper by means of archival research. Considering the main features of the proposed approach, the authors suggest that this methodology could be applied to different areas, even for the development of landslide early warning systems.

  12. The double landslide-induced tsunami

    Science.gov (United States)

    Tinti, S.; Armigliat, A.; Manucci, A.; Pagnoni, G.; Tonini, R.; Zaniboni, F.; Maramai, A.; Graziani, L.

    The 2002 crisis of Stromboli culminated on December 30 in a series of mass failures detached from the Sciara del Fuoco, with two main landslides, one submarine followed about 7 min later by a second subaerial. These landslides caused two distinct tsunamis that were seen by most people in the island as a unique event. The double tsunami was strongly damaging, destroying several houses in the waterfront at Ficogrande, Punta Lena, and Scari localities in the northeastern coast of Stromboli. The waves affected also Panarea and were observed in the northern Sicily coast and even in Campania, but with minor effects. There are no direct instrumental records of these tsunamis. What we know resides on (1) observations and quantification of the impact of the waves on the coast, collected in a number of postevent field surveys; (2) interviews of eyewitnesses and a collection of tsunami images (photos and videos) taken by observers; and (3) on results of numerical simulations. In this paper, we propose a critical reconstruction of the events where all the available pieces of information are recomposed to form a coherent and consistent mosaic.

  13. Modelling the Probability of Landslides Impacting Road Networks

    Science.gov (United States)

    Taylor, F. E.; Malamud, B. D.

    2012-04-01

    During a landslide triggering event, the threat of landslides blocking roads poses a risk to logistics, rescue efforts and communities dependant on those road networks. Here we present preliminary results of a stochastic model we have developed to evaluate the probability of landslides intersecting a simple road network during a landslide triggering event and apply simple network indices to measure the state of the road network in the affected region. A 4000 x 4000 cell array with a 5 m x 5 m resolution was used, with a pre-defined simple road network laid onto it, and landslides 'randomly' dropped onto it. Landslide areas (AL) were randomly selected from a three-parameter inverse gamma probability density function, consisting of a power-law decay of about -2.4 for medium and large values of AL and an exponential rollover for small values of AL; the rollover (maximum probability) occurs at about AL = 400 m2 This statistical distribution was chosen based on three substantially complete triggered landslide inventories recorded in existing literature. The number of landslide areas (NL) selected for each triggered event iteration was chosen to have an average density of 1 landslide km-2, i.e. NL = 400 landslide areas chosen randomly for each iteration, and was based on several existing triggered landslide event inventories. A simple road network was chosen, in a 'T' shape configuration, with one road 1 x 4000 cells (5 m x 20 km) in a 'T' formation with another road 1 x 2000 cells (5 m x 10 km). The landslide areas were then randomly 'dropped' over the road array and indices such as the location, size (ABL) and number of road blockages (NBL) recorded. This process was performed 500 times (iterations) in a Monte-Carlo type simulation. Initial results show that for a landslide triggering event with 400 landslides over a 400 km2 region, the number of road blocks per iteration, NBL,ranges from 0 to 7. The average blockage area for the 500 iterations (A¯ BL) is about 3000 m

  14. Underwater colorectal EMR: remodeling endoscopic mucosal resection.

    Science.gov (United States)

    Curcio, Gabriele; Granata, Antonino; Ligresti, Dario; Tarantino, Ilaria; Barresi, Luca; Liotta, Rosa; Traina, Mario

    2015-05-01

    Underwater EMR (UEMR) has been reported as a new technique for the removal of large sessile colorectal polyps without need for submucosal injection. To evaluate (1) outcomes of UEMR, (2) whether UEMR can be easily performed by an endoscopist skilled in traditional EMR without specific dedicated training in UEMR, and (3) whether EUS is required before UEMR. Prospective, observational study. Single, tertiary-care referral center. Underwater EMR. Complete resection and adverse events. A total of 72 consecutive patients underwent UEMR of 81 sessile colorectal polyps. EUS was performed before UEMR in 9 cases (11.1%) with a suspicious mucosal/vascular pattern. The mean polyp size was 18.7 mm (range 10-50 mm); the mean UEMR time was 11.8 minutes. Fifty-five polyps (68%) were removed en bloc, and 26 (32%) were removed with a piecemeal technique. Histopathology consisted of tubular adenomas (25.9%), tubulovillous adenomas (5%), adenomas with high-grade dysplasia (42%), serrated polyps (4.9%), carcinoma in situ (13.6%), and hyperplastic polyps (8.6%). Surveillance colonoscopy was scheduled at 3 months. Complete resection was successful in all patients. No adverse events or recurrence was recorded in any of the patients. Limited follow-up; single-center, uncontrolled study. Interventional endoscopists skilled in conventional EMR performed UEMR without specific dedicated training. EUS may not be required for lesions with no invasive features on high-definition narrow-band imaging. UEMR appears to be an effective and safe alternative to traditional EMR and could eventually improve the way in which we can effectively and safely treat colorectal lesions. Copyright © 2015 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  15. Morphing hull implementation for unmanned underwater vehicles

    Science.gov (United States)

    Miller, Timothy F.; Gandhi, Farhan; Rufino, Russell J.

    2013-11-01

    There has been much interest and work in the area of morphing aircraft since the 1980s. Morphing could also potentially benefit unmanned underwater vehicles (UUVs). The current paper envisions a UUV with an interior pressure hull and a variable diameter outer flexible hull with fuel stored in the annulus between, and presents a mechanism to realize diameter change of the outer hull. The outer hull diameter of UUVs designed for very long endurance/range could be progressively reduced as fuel was consumed, thereby reducing drag and further increasing endurance and range capability. Diameter morphing could also be advantageous for compact storage of UUVs. A prototype is fabricated to represent an axial section of such a morphing diameter UUV. Diameter change is achieved using eight morphing trusses arranged equidistant around the circumference of the representative interior rigid hull. Each morphing truss has a lower rail (attached to the rigid hull) and an upper rail with V-linkages between, at either ends of the rail. Horizontal motion of the feet of the V-linkages (sliding in the lower rail) results in vertical motion of the upper rail which in turn produces diameter change of the outer hull. For the prototype built and tested, a 63% increase in outer diameter from 12.75″ to 20.75″ was achieved. The introduction of a stretched latex representative flexible skin around the outer rails increased actuation force requirement and led to a propensity for the wheel-in-track sliders in the morphing truss to bind. It is anticipated that this could be overcome with higher precision manufacturing. In addition to symmetric actuation of the morphing trusses resulting in diameter change, the paper also shows that with asymmetric actuation the hull cross-section shape can be changed (for example, from a circular section for underwater operation to a V-section for surface operations).

  16. Morphing hull implementation for unmanned underwater vehicles

    International Nuclear Information System (INIS)

    Miller, Timothy F; Gandhi, Farhan; Rufino, Russell J

    2013-01-01

    There has been much interest and work in the area of morphing aircraft since the 1980s. Morphing could also potentially benefit unmanned underwater vehicles (UUVs). The current paper envisions a UUV with an interior pressure hull and a variable diameter outer flexible hull with fuel stored in the annulus between, and presents a mechanism to realize diameter change of the outer hull. The outer hull diameter of UUVs designed for very long endurance/range could be progressively reduced as fuel was consumed, thereby reducing drag and further increasing endurance and range capability. Diameter morphing could also be advantageous for compact storage of UUVs. A prototype is fabricated to represent an axial section of such a morphing diameter UUV. Diameter change is achieved using eight morphing trusses arranged equidistant around the circumference of the representative interior rigid hull. Each morphing truss has a lower rail (attached to the rigid hull) and an upper rail with V-linkages between, at either ends of the rail. Horizontal motion of the feet of the V-linkages (sliding in the lower rail) results in vertical motion of the upper rail which in turn produces diameter change of the outer hull. For the prototype built and tested, a 63% increase in outer diameter from 12.75″ to 20.75″ was achieved. The introduction of a stretched latex representative flexible skin around the outer rails increased actuation force requirement and led to a propensity for the wheel-in-track sliders in the morphing truss to bind. It is anticipated that this could be overcome with higher precision manufacturing. In addition to symmetric actuation of the morphing trusses resulting in diameter change, the paper also shows that with asymmetric actuation the hull cross-section shape can be changed (for example, from a circular section for underwater operation to a V-section for surface operations). (paper)

  17. Producing landslide susceptibility maps by utilizing machine learning methods. The case of Finikas catchment basin, North Peloponnese, Greece.

    Science.gov (United States)

    Tsangaratos, Paraskevas; Ilia, Ioanna; Loupasakis, Constantinos; Papadakis, Michalis; Karimalis, Antonios

    2017-04-01

    The main objective of the present study was to apply two machine learning methods for the production of a landslide susceptibility map in the Finikas catchment basin, located in North Peloponnese, Greece and to compare their results. Specifically, Logistic Regression and Random Forest were utilized, based on a database of 40 sites classified into two categories, non-landslide and landslide areas that were separated into a training dataset (70% of the total data) and a validation dataset (remaining 30%). The identification of the areas was established by analyzing airborne imagery, extensive field investigation and the examination of previous research studies. Six landslide related variables were analyzed, namely: lithology, elevation, slope, aspect, distance to rivers and distance to faults. Within the Finikas catchment basin most of the reported landslides were located along the road network and within the residential complexes, classified as rotational and translational slides, and rockfalls, mainly caused due to the physical conditions and the general geotechnical behavior of the geological formation that cover the area. Each landslide susceptibility map was reclassified by applying the Geometric Interval classification technique into five classes, namely: very low susceptibility, low susceptibility, moderate susceptibility, high susceptibility, and very high susceptibility. The comparison and validation of the outcomes of each model were achieved using statistical evaluation measures, the receiving operating characteristic and the area under the success and predictive rate curves. The computation process was carried out using RStudio an integrated development environment for R language and ArcGIS 10.1 for compiling the data and producing the landslide susceptibility maps. From the outcomes of the Logistic Regression analysis it was induced that the highest b coefficient is allocated to lithology and slope, which was 2.8423 and 1.5841, respectively. From the

  18. Data management with a landslide inventory of the Franconian Alb (Germany) using a spatial database and GIS tools

    Science.gov (United States)

    Bemm, Stefan; Sandmeier, Christine; Wilde, Martina; Jaeger, Daniel; Schwindt, Daniel; Terhorst, Birgit

    2014-05-01

    ), informations on location, landslide types and causes, geomorphological positions, geometries, hazards and damages, as well as assessments related to the activity of landslides. Furthermore, there are stored spatial objects, which represent the components of a landslide, in particular the scarps and the accumulation areas. Besides, waterways, map sheets, contour lines, detailed infrastructure data, digital elevation models, aspect and slope data are included. Examples of spatial queries to the database are intersections of raster and vector data for calculating values for slope gradients or aspects of landslide areas and for creating multiple, overlaying sections for the comparison of slopes, as well as distances to the infrastructure or to the next receiving drainage. Furthermore, getting informations on landslide magnitudes, distribution and clustering, as well as potential correlations concerning geomorphological or geological conditions. The data management concept in this study can be implemented for any academic, public or private use, because it is independent from any obligatory licenses. The created spatial database offers a platform for interdisciplinary research and socio-economic questions, as well as for landslide susceptibility and hazard indication mapping. Obe, R.O., Hsu, L.S. 2011. PostGIS in action. - pp 492, Manning Publications, Stamford

  19. Hydroclimatic conditions preceding the March 2014 Oso landslide

    Science.gov (United States)

    Henn, Brian; Cao, Qian; Lettenmaier, Dennis P.; Magirl, Christopher S.; Mass, Clifford; Bower, J. Brent; St. Laurent, Michael; Mao, Yixin; Perica, Sanja

    2015-01-01

    The 22 March 2014 Oso landslide was one of the deadliest in U.S. history, resulting in 43 fatalities and the destruction of more than 40 structures. We examine synoptic conditions, precipitation records and soil moisture reconstructions in the days, months, and years preceding the landslide. Atmospheric reanalysis shows a period of enhanced moisture transport to the Pacific Northwest beginning on 11 February 2014. The 21- to 42-day periods prior to the landslide had anomalously high precipitation; we estimate that 300-400 mm of precipitation fell at Oso in the 21 days prior to the landslide. Relative only to historical periods ending on 22 March, the return periods of these precipitation accumulations are large (25-88 years). However, relative to the largest accumulations from any time of the year (annual maxima), return periods are more modest (2-6 years). In addition to the 21-42 days prior to the landslide, there is a secondary maximum in the precipitation return periods for the 4 years preceding the landslide. Reconstructed soil moisture was anomalously high prior to the landslide, with a return period that exceeded 40 years about a week before the event.

  20. Landslide Hazard-Prevention in Balakot Region, Pakistan

    International Nuclear Information System (INIS)

    Soomro, A.S.

    2011-01-01

    The earthquake triggered enormous landslides on October 8, 2005 in the various areas of Pakistan especially in Balakot Region. This research paper fulfilled the urge to develop alternative landslide planning based on the consideration of landslide preventing measures using GIS (Geographical Information Systems) techniques. This specific type of land use planning differs from traditional type of land use planning due to consideration of the probable hazard of landslide disaster by applying zonation methodology for finding the appropriate suitable areas for various development purposes. The various parameters e.g. elevation, slope angle, forest/ vegetations, faults, landslide zones, and rainfall were utilized as GIS data themes in the vector format. The different GIS techniques were used: (i) Clipping the data layers; (II) Spatial analysis by converting the vector layers into raster format; (III) Classification of data themes into certain classes; (IV) Overlaying the data themes and (v) Map calculation techniques through GIS standard software. This applied research has found that various different regions such as high suitable, moderate suitable, low suitable and unsuitable may be considered as preventive measures from the probable hazard of the landslide disaster in future for rehabilitation and redevelopment purpose which can save human lives, residential and commercial infrastructure in future. It is believed that the various predicted regions for preventing landslide hazards can be very beneficial to the decision makers for the redevelopment of the region in future. (author)

  1. Toward a comprehensive areal model of earthquake-induced landslides

    Science.gov (United States)

    Miles, S.B.; Keefer, D.K.

    2009-01-01

    This paper provides a review of regional-scale modeling of earthquake-induced landslide hazard with respect to the needs for disaster risk reduction and sustainable development. Based on this review, it sets out important research themes and suggests computing with words (CW), a methodology that includes fuzzy logic systems, as a fruitful modeling methodology for addressing many of these research themes. A range of research, reviewed here, has been conducted applying CW to various aspects of earthquake-induced landslide hazard zonation, but none facilitate comprehensive modeling of all types of earthquake-induced landslides. A new comprehensive areal model of earthquake-induced landslides (CAMEL) is introduced here that was developed using fuzzy logic systems. CAMEL provides an integrated framework for modeling all types of earthquake-induced landslides using geographic information systems. CAMEL is designed to facilitate quantitative and qualitative representation of terrain conditions and knowledge about these conditions on the likely areal concentration of each landslide type. CAMEL is highly modifiable and adaptable; new knowledge can be easily added, while existing knowledge can be changed to better match local knowledge and conditions. As such, CAMEL should not be viewed as a complete alternative to other earthquake-induced landslide models. CAMEL provides an open framework for incorporating other models, such as Newmark's displacement method, together with previously incompatible empirical and local knowledge. ?? 2009 ASCE.

  2. Landslide Hazard-Prevention in Balakot Region, Pakistan

    Directory of Open Access Journals (Sweden)

    Abdul Salam Soomro

    2012-04-01

    Full Text Available The earthquake triggered enormous landslides on 8th October 2005 in the various areas of Pakistan especially in Balakot Region. This research paper fulfilled the urge to develop alternative landslide planning based on the consideration of landslide preventing measures using GIS (Geographical Informaton Systems techniques. This specific type of land use planning differs from traditional type of land use planning due to consideration of the probable hazard of landslide disaster by applying zonation methodology for finding the appropriate suitable areas for various development purposes. The various parameters e.g. elevation, slope angle, forest/ vegetations, faults, landslide zones, and rainfall were utilized as GIS data themes in the vector format. The different GIS techniques were used: (i Clipping the data layers; (ii Spatial analysis by converting the vector layers into raster format; (iii Classification of data themes into certain classes; (iv Overlaying the data themes and (v Map calculation techniques through GIS standard software. This applied research has found that various different regions such as high suitable, moderate suitable, low suitable and unsuitable may be considered as preventive measures from the probable hazard of the landslide disaster in future for rehabilitation and redevelopment purpose which can save human lives, residential and commercial infrastructure in future. It is believed that the various predicted regions for preventing landslide hazards can be very beneficial to the decision makers for the redevelopment of the region in future.

  3. Regional rainfall thresholds for landslide occurrence using a centenary database

    Science.gov (United States)

    Vaz, Teresa; Luís Zêzere, José; Pereira, Susana; Cruz Oliveira, Sérgio; Garcia, Ricardo A. C.; Quaresma, Ivânia

    2018-04-01

    This work proposes a comprehensive method to assess rainfall thresholds for landslide initiation using a centenary landslide database associated with a single centenary daily rainfall data set. The method is applied to the Lisbon region and includes the rainfall return period analysis that was used to identify the critical rainfall combination (cumulated rainfall duration) related to each landslide event. The spatial representativeness of the reference rain gauge is evaluated and the rainfall thresholds are assessed and calibrated using the receiver operating characteristic (ROC) metrics. Results show that landslide events located up to 10 km from the rain gauge can be used to calculate the rainfall thresholds in the study area; however, these thresholds may be used with acceptable confidence up to 50 km from the rain gauge. The rainfall thresholds obtained using linear and potential regression perform well in ROC metrics. However, the intermediate thresholds based on the probability of landslide events established in the zone between the lower-limit threshold and the upper-limit threshold are much more informative as they indicate the probability of landslide event occurrence given rainfall exceeding the threshold. This information can be easily included in landslide early warning systems, especially when combined with the probability of rainfall above each threshold.

  4. Studying Landslide Displacements in Megamendung (Indonesia Using GPS Survey Method

    Directory of Open Access Journals (Sweden)

    Hasanuddin Z. Abidin

    2004-11-01

    Full Text Available Landslide is one of prominent geohazards that frequently affects Indonesia, especially in the rainy season. It destroys not only environment and property, but usually also causes deaths. Landslide monitoring is therefore very crucial and should be continuously done. One of the methods that can have a contribution in studying landslide phenomena is repeated GPS survey method. This paper presents and discusses the operational performances, constraints and results of GPS surveys conducted in a well known landslide prone area in West Java (Indonesia, namely Megamendung, the hilly region close to Bogor. Three GPS surveys involving 8 GPS points have been conducted, namely on April 2002, May 2003 and May 2004, respectively. The estimated landslide displacements in the area are relatively quite large in the level of a few dm to a few m. Displacements up to about 2-3 m were detected in the April 2002 to May 2003 period, and up to about 3-4 dm in the May 2003 to May 2004 period. In both periods, landslides in general show the northwest direction of displacements. Displacements vary both spatially and temporally. This study also suggested that in order to conclude the existence of real and significant displacements of GPS points, the GPS estimated displacements should be subjected to three types of testing namely: the congruency test on spatial displacements, testing on the agreement between the horizontal distance changes with the predicted direction of landslide displacement, and testing on the consistency of displacement directions on two consecutive periods.

  5. Development research of expert system for diagnosis of landslide

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Toru; Soeda, Yoshio; Nakamura, Hirohisa [Kansai Electric Power Co. Inc., Osaka (Japan)

    1989-03-25

    Measures against landslides are based upon a judgment to be made by combined application of professional knowledge of the scientific fields such as topography and geology, etc. and Kansai Electric Power Co. tried to construct a technical support system for preliminary diagnosis of landslide with which field engineers can easily utilize expert knowledge and to which artificial intelligence (AI) is applied. This system is to diagnose preliminarily the existence of such a landslide-prone area which is likely to hamper the project concerned at its early stage and after examination, those considered to be appropriate for the purpose were selected from among the artificial intelligence tools already developed. And as the knowledge base, knowledge was arranged in order with regard to the common features of landslide-prone areas, classification of landslide spots, landslide-prone topography and confusing topography, and procedures as well as remarks to be taken in reading the landslide topography, and was transformed as rule in order to input as the knowledge base into a computer. The system used the aerial photography interpretation theory as the base for its expert knowledge base and the materials necessary therefore were confined to easily obtainable aerial photographs and topographical maps. The system was prepared with a general purpose personal computer. 4 figs., 1 tab.

  6. Cold-water coral banks and submarine landslides: a review

    Science.gov (United States)

    de Mol, Ben; Huvenne, Veerle; Canals, Miquel

    2009-06-01

    This paper aims to review the relation between cold-water coral bank development and submarine landslides. Both are common features on continental margins, but so far it has not been reviewed which effect—if at all—they may have upon each other. Indirect and direct relations between coral banks and landslides are evaluated here, based on four case studies: the Magellan Mound Province in the Porcupine Seabight, where fossil coral banks appear partly on top of a buried slide deposit; the Sula Ridge Reef Complex and the Storegga landslide both off mid-Norway; and the Mauritania coral bank province, associated with the Mauritanian Slide Complex. For each of these locations, positive and negative relationships between both features are discussed, based on available datasets. Locally submarine landslides might directly favour coral bank development by creating substratum where corals can settle on, enhancing turbulence due to abrupt seabed morphological variations and, in some cases, causing fluid seepage. In turn, some of these processes may contribute to increased food availability and lower sedimentation rates. Landslides can also affect coral bank development by direct erosion of the coral banks, and by the instantaneous increase of turbidity, which may smother the corals. On the other hand, coral banks might have a stabilising function and delay or stop the headwall retrogradation of submarine landslides. Although local relationships can be deduced from these case studies, no general and direct relationship exists between submarine landslides and cold-water coral banks.

  7. State of the art of national landslide databases in Europe and their potential for assessing landslide susceptibility, hazard and risk

    Science.gov (United States)

    Van Den Eeckhaut, Miet; Hervás, Javier

    2012-02-01

    A landslide inventory is the most important information source for quantitative zoning of landslide susceptibility, hazard and risk. It should give insight into the location, date, type, size, activity and causal factors of landslides as well as resultant damage. In Europe, many countries have created or are creating national and/or regional landslide databases (LDBs). Yet little is known on their contents, completeness, format, structure, language use and accessibility, and hence on their ability to perform national or transnational landslide zoning. Therefore, this study presents a detailed analysis of existing national LDBs in the EU member states, EU official candidate and potential candidate countries, and EFTA countries, and their possible use for landslide zoning. These national LDBs were compared with a subset of 22 regional databases. Twenty-two out of 37 contacted European countries currently have national LDBs, and six other countries have only regional LDBs. In total, the national LDBs contain 633,696 landslides, of which 485,004 are located in Italy, while Austria, the Czech Republic, France, Norway, Poland, Slovakia, and the UK also have > 10,000 landslides in their LDBs. National LDBs are generally created in the official language of each country and 58% of them contain other natural hazards (e.g. floods and sinkholes). About 68% of the LDBs contain less than 50% of all landslides in each country, but a positive observation is that 60% of the LDBs are updated at least once a year or after a major event. Most landslide locations are collected with traditional methods such as field surveys, aerial photo interpretation and analysis of historical records. Currently, integration of landslide information from different national LDBs is hampered because of differences in language and classification systems for landslide type and activity. Other problems are that currently only half of the national LDBs have a direct link between spatial and alphanumeric

  8. Tree-root control of shallow landslides

    Science.gov (United States)

    Cohen, Denis; Schwarz, Massimiliano

    2017-08-01

    Tree roots have long been recognized to increase slope stability by reinforcing the strength of soils. Slope stability models usually include the effects of roots by adding an apparent cohesion to the soil to simulate root strength. No model includes the combined effects of root distribution heterogeneity, stress-strain behavior of root reinforcement, or root strength in compression. Recent field observations, however, indicate that shallow landslide triggering mechanisms are characterized by differential deformation that indicates localized activation of zones in tension, compression, and shear in the soil. Here we describe a new model for slope stability that specifically considers these effects. The model is a strain-step discrete element model that reproduces the self-organized redistribution of forces on a slope during rainfall-triggered shallow landslides. We use a conceptual sigmoidal-shaped hillslope with a clearing in its center to explore the effects of tree size, spacing, weak zones, maximum root-size diameter, and different root strength configurations. Simulation results indicate that tree roots can stabilize slopes that would otherwise fail without them and, in general, higher root density with higher root reinforcement results in a more stable slope. The variation in root stiffness with diameter can, in some cases, invert this relationship. Root tension provides more resistance to failure than root compression but roots with both tension and compression offer the best resistance to failure. Lateral (slope-parallel) tension can be important in cases when the magnitude of this force is comparable to the slope-perpendicular tensile force. In this case, lateral forces can bring to failure tree-covered areas with high root reinforcement. Slope failure occurs when downslope soil compression reaches the soil maximum strength. When this occurs depends on the amount of root tension upslope in both the slope-perpendicular and slope-parallel directions. Roots

  9. Tree-root control of shallow landslides

    Directory of Open Access Journals (Sweden)

    D. Cohen

    2017-08-01

    Full Text Available Tree roots have long been recognized to increase slope stability by reinforcing the strength of soils. Slope stability models usually include the effects of roots by adding an apparent cohesion to the soil to simulate root strength. No model includes the combined effects of root distribution heterogeneity, stress-strain behavior of root reinforcement, or root strength in compression. Recent field observations, however, indicate that shallow landslide triggering mechanisms are characterized by differential deformation that indicates localized activation of zones in tension, compression, and shear in the soil. Here we describe a new model for slope stability that specifically considers these effects. The model is a strain-step discrete element model that reproduces the self-organized redistribution of forces on a slope during rainfall-triggered shallow landslides. We use a conceptual sigmoidal-shaped hillslope with a clearing in its center to explore the effects of tree size, spacing, weak zones, maximum root-size diameter, and different root strength configurations. Simulation results indicate that tree roots can stabilize slopes that would otherwise fail without them and, in general, higher root density with higher root reinforcement results in a more stable slope. The variation in root stiffness with diameter can, in some cases, invert this relationship. Root tension provides more resistance to failure than root compression but roots with both tension and compression offer the best resistance to failure. Lateral (slope-parallel tension can be important in cases when the magnitude of this force is comparable to the slope-perpendicular tensile force. In this case, lateral forces can bring to failure tree-covered areas with high root reinforcement. Slope failure occurs when downslope soil compression reaches the soil maximum strength. When this occurs depends on the amount of root tension upslope in both the slope-perpendicular and slope

  10. Event localization in underwater wireless sensor networks using Monitoring Courses

    KAUST Repository

    Debont, Matthew John Robert; Jamshaid, Kamran; Shihada, Basem; Ho, Pin-Han

    2012-01-01

    We propose m-courses (Monitoring Courses), a novel solution to localize events in an underwater wireless sensor network. These networks consists of surface gateways and relay nodes. GPS can localize the position of surface gateways which can

  11. UTOFIA: an underwater time-of-flight image acquisition system

    Science.gov (United States)

    Driewer, Adrian; Abrosimov, Igor; Alexander, Jonathan; Benger, Marc; O'Farrell, Marion; Haugholt, Karl Henrik; Softley, Chris; Thielemann, Jens T.; Thorstensen, Jostein; Yates, Chris

    2017-10-01

    In this article the development of a newly designed Time-of-Flight (ToF) image sensor for underwater applications is described. The sensor is developed as part of the project UTOFIA (underwater time-of-flight image acquisition) funded by the EU within the Horizon 2020 framework. This project aims to develop a camera based on range gating that extends the visible range compared to conventional cameras by a factor of 2 to 3 and delivers real-time range information by means of a 3D video stream. The principle of underwater range gating as well as the concept of the image sensor are presented. Based on measurements on a test image sensor a pixel structure that suits best to the requirements has been selected. Within an extensive characterization underwater the capability of distance measurements in turbid environments is demonstrated.

  12. Digital sonar design in underwater acoustics principles and applications

    CERN Document Server

    Li, Qihu

    2012-01-01

    "Digital Sonar Design in Underwater Acoustics Principles and Applications" provides comprehensive and up-to-date coverage of research on sonar design, including the basic theory and techniques of digital signal processing, basic concept of information theory, ocean acoustics, underwater acoustic signal propagation theory, and underwater signal processing theory. This book discusses the general design procedure and approaches to implementation, the design method, system simulation theory and techniques, sonar tests in the laboratory, lake and sea, and practical validation criteria and methods for digital sonar design. It is intended for researchers in the fields of underwater signal processing and sonar design, and also for navy officers and ocean explorers. Qihu Li is a professor at the Institute of Acoustics, Chinese Academy of Sciences, and an academician of the Chinese Academy of Sciences.

  13. Trade-off Analysis of Underwater Acoustic Sensor Networks

    Science.gov (United States)

    Tuna, G.; Das, R.

    2017-09-01

    In the last couple of decades, Underwater Acoustic Sensor Networks (UASNs) were started to be used for various commercial and non-commercial purposes. However, in underwater environments, there are some specific inherent constraints, such as high bit error rate, variable and large propagation delay, limited bandwidth capacity, and short-range communications, which severely degrade the performance of UASNs and limit the lifetime of underwater sensor nodes as well. Therefore, proving reliability of UASN applications poses a challenge. In this study, we try to balance energy consumption of underwater acoustic sensor networks and minimize end-to-end delay using an efficient node placement strategy. Our simulation results reveal that if the number of hops is reduced, energy consumption can be reduced. However, this increases end-to-end delay. Hence, application-specific requirements must be taken into consideration when determining a strategy for node deployment.

  14. Localization of Energy Harvesting Empowered Underwater Optical Wireless Sensor Networks

    KAUST Repository

    Saeed, Nasir; Celik, Abdulkadir; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2017-01-01

    with insufficient battery, harvest the energy and starts communicating once it has sufficient energy storage. Network localization is carried out by measuring the RSSs of active nodes, which are modeled based on the underwater optical communication channel

  15. Study of archaeological underwater finds: deterioration and conservation

    Science.gov (United States)

    Crisci, G. M.; La Russa, M. F.; Macchione, M.; Malagodi, M.; Palermo, A. M.; Ruffolo, S. A.

    2010-09-01

    This study is aimed at an assessment of the methodologies, instruments and new applications for underwater archaeology. Research focused on study of the various kinds of degradation affecting underwater finds and stone materials aged in underwater environment, efficiency evaluation of various surface cleaning methods and study and mixing of protective products with consolidating resins and antimicrobial biocides to be applied to restored underwater finds. Transmitted light optical microscopy and scanning electron microscopy (SEM) were used to study surface biofilms and the interactions with samples of different stone materials such as brick, marble and granite immersed in the submarine archaeological area of Crotone (South of Italy). Surface cleaning tests were performed with application of ion exchange resins, EDTA, hydrogen peroxide and ultrasound techniques. Capillary water absorption, simulated solar ageing and colourimetric measurements were carried out to evaluate hydrophobic and consolidant properties; to assess biocidal efficacy, heterotrophic micro-organisms ( Aspergillus niger) were inoculated on agar plates and growth inhibition was measured.

  16. Wireless Underwater Monitoring Systems Based on Energy Harvestings

    Directory of Open Access Journals (Sweden)

    Sea-Hee HWANGBO

    2013-01-01

    Full Text Available One of the important research fields for aquatic exploitation and conservation is underwater wireless sensor network. Since limited energy source for underwater nodes and devices is a main open problem, in this paper, we propose wireless underwater monitoring systems powered by energy harvester which resolves the energy constraint. The target system generates renewable energy from energy harvester and shares the energy with underwater sensor nodes. For the realization of the system, key components to be investigated are discriminated as follows: acoustic modem, actuator, smart battery charge controller, energy harvester and wireless power transfer module. By developing acoustic modem, actuator and smart battery charge controller and utilizing off-the-shelf energy harvester and wireless power transfer module, we design and implement a prototype of the system. Also, we verify the feasibility of concept of target system by conducting indoor and outdoor experiments.

  17. Underwater target positioning with a single acoustic sensor

    Digital Repository Service at National Institute of Oceanography (India)

    David, M-S; Pascoal, A.M.; Joaquin, A.

    The availability of reliable underwater positioning systems to localize one or more vehicles simultaneously based on information received on-board a support ship or an autonomous surface vessel is key to the operation of some classes of AUVs...

  18. Filming Underwater in 3d Respecting Stereographic Rules

    Science.gov (United States)

    Rinaldi, R.; Hordosch, H.

    2015-04-01

    After an experimental phase of many years, 3D filming is now effective and successful. Improvements are still possible, but the film industry achieved memorable success on 3D movie's box offices due to the overall quality of its products. Special environments such as space ("Gravity") and the underwater realm look perfect to be reproduced in 3D. "Filming in space" was possible in "Gravity" using special effects and computer graphic. The underwater realm is still difficult to be handled. Underwater filming in 3D was not that easy and effective as filming in 2D, since not long ago. After almost 3 years of research, a French, Austrian and Italian team realized a perfect tool to film underwater, in 3D, without any constrains. This allows filmmakers to bring the audience deep inside an environment where they most probably will never have the chance to be.

  19. FILMING UNDERWATER IN 3D RESPECTING STEREOGRAPHIC RULES

    Directory of Open Access Journals (Sweden)

    R. Rinaldi

    2015-04-01

    Full Text Available After an experimental phase of many years, 3D filming is now effective and successful. Improvements are still possible, but the film industry achieved memorable success on 3D movie’s box offices due to the overall quality of its products. Special environments such as space ("Gravity" and the underwater realm look perfect to be reproduced in 3D. "Filming in space" was possible in "Gravity" using special effects and computer graphic. The underwater realm is still difficult to be handled. Underwater filming in 3D was not that easy and effective as filming in 2D, since not long ago. After almost 3 years of research, a French, Austrian and Italian team realized a perfect tool to film underwater, in 3D, without any constrains. This allows filmmakers to bring the audience deep inside an environment where they most probably will never have the chance to be.

  20. Multi-layer protective armour for underwater shock wave mitigation

    Directory of Open Access Journals (Sweden)

    Ahmed Hawass

    2015-12-01

    The strain gauge data and displacement sensors results showed that the multi-layer plates have higher level of underwater shock wave mitigation than the triple aluminum plates with strain and deflection of nearly 50%.

  1. Low-contrast underwater living fish recognition using PCANet

    Science.gov (United States)

    Sun, Xin; Yang, Jianping; Wang, Changgang; Dong, Junyu; Wang, Xinhua

    2018-04-01

    Quantitative and statistical analysis of ocean creatures is critical to ecological and environmental studies. And living fish recognition is one of the most essential requirements for fishery industry. However, light attenuation and scattering phenomenon are present in the underwater environment, which makes underwater images low-contrast and blurry. This paper tries to design a robust framework for accurate fish recognition. The framework introduces a two stage PCA Network to extract abstract features from fish images. On a real-world fish recognition dataset, we use a linear SVM classifier and set penalty coefficients to conquer data unbalanced issue. Feature visualization results show that our method can avoid the feature distortion in boundary regions of underwater image. Experiments results show that the PCA Network can extract discriminate features and achieve promising recognition accuracy. The framework improves the recognition accuracy of underwater living fishes and can be easily applied to marine fishery industry.

  2. Euclidean reconstruction of natural underwater scenes using optic imagery sequence

    Science.gov (United States)

    Hu, Han

    The development of maritime applications require monitoring, studying and preserving of detailed and close observation on the underwater seafloor and objects. Stereo vision offers advanced technologies to build 3D models from 2D still overlapping optic images in a relatively inexpensive way. However, while image stereo matching is a necessary step in 3D reconstruction procedure, even the most robust dense matching techniques are not guaranteed to work for underwater images due to the challenging aquatic environment. In this thesis, in addition to a detailed introduction and research on the key components of building 3D models from optic images, a robust modified quasi-dense matching algorithm based on correspondence propagation and adaptive least square matching for underwater images is proposed and applied to some typical underwater image datasets. The experiments demonstrate the robustness and good performance of the proposed matching approach.

  3. Object detection from images obtained through underwater turbulence medium

    Science.gov (United States)

    Furhad, Md. Hasan; Tahtali, Murat; Lambert, Andrew

    2017-09-01

    Imaging through underwater experiences severe distortions due to random fluctuations of temperature and salinity in water, which produces underwater turbulence through diffraction limited blur. Lights reflecting from objects perturb and attenuate contrast, making the recognition of objects of interest difficult. Thus, the information available for detecting underwater objects of interest becomes a challenging task as they have inherent confusion among the background, foreground and other image properties. In this paper, a saliency-based approach is proposed to detect the objects acquired through an underwater turbulent medium. This approach has drawn attention among a wide range of computer vision applications, such as image retrieval, artificial intelligence, neuro-imaging and object detection. The image is first processed through a deblurring filter. Next, a saliency technique is used on the image for object detection. In this step, a saliency map that highlights the target regions is generated and then a graph-based model is proposed to extract these target regions for object detection.

  4. Network lifetime-aware data collection in Underwater Sensor ...

    Indian Academy of Sciences (India)

    Jalaja Janardanan Kartha

    2017-09-07

    Sep 7, 2017 ... existing models to assess their effectiveness and to investigate the trade-offs. Results show ... coverage drops below a predefined threshold and (vi) connectivity is .... Cost Clustering Protocol (MCCP), Distributed Underwater.

  5. Landslides Induced by 2015 Gorkha Earthquake and Their Continuous Evolution Post 2015 and 2016-Monsoon

    Science.gov (United States)

    Spear, B.; Haritashya, U. K.; Kargel, J. S.

    2017-12-01

    Gorkha Nepal has been a hot bed of landslide activity since the 7.8 magnitude earthquake that occurred on April 25th 2015. Even though previous studies have mapped and analyzed the landslides that were directly related to the earthquake, this research maps and analyzes the landslides that occurred during monsoon or after monsoon season in 2015 and 2016. Specifically, our objectives included monitoring post-earthquake landslide evolution and reactivation. We also observed landslides which occurred in the steep side slopes of various small rivers and threatened to block the flow of river. Consequently, we used Landsat, Sentinel, ASTER and images available at Google Earth Engine to locate, map, and analyze these landslides. Our preliminary result indicates 5,270 landslides, however 957 of these landslides occurred significantly after the earthquake. Of the 957 landslides, 508 of them occurred during the monsoon season of 2015 and 48 in the 2016 monsoon season. As well as locating and mapping these landslides, we were able to identify that there were 22 landslides blocking rivers and 24 were reactivated. Our result and landslide density maps clearly identifies zones that are prone to landslides. For example, the steepest areas, such as the Helambu or Langtang region, have a very high concentration of landslides since the earthquake. Furthermore, landslides with the largest area were often nearby each other in very steep regions. This research can be used to determine which areas in the Gorkha Nepal region are safe to use and which areas are high risk.

  6. Coulomb Mechanics And Landscape Geometry Explain Landslide Size Distribution

    Science.gov (United States)

    Jeandet, L.; Steer, P.; Lague, D.; Davy, P.

    2017-12-01

    It is generally observed that the dimensions of large bedrock landslides follow power-law scaling relationships. In particular, the non-cumulative frequency distribution (PDF) of bedrock landslide area is well characterized by a negative power-law above a critical size, with an exponent 2.4. However, the respective role of bedrock mechanical properties, landscape shape and triggering mechanisms on the scaling properties of landslide dimensions are still poorly understood. Yet, unravelling the factors that control this distribution is required to better estimate the total volume of landslides triggered by large earthquakes or storms. To tackle this issue, we develop a simple probabilistic 1D approach to compute the PDF of rupture depths in a given landscape. The model is applied to randomly sampled points along hillslopes of studied digital elevation models. At each point location, the model determines the range of depth and angle leading to unstable rupture planes, by applying a simple Mohr-Coulomb rupture criterion only to the rupture planes that intersect downhill surface topography. This model therefore accounts for both rock mechanical properties, friction and cohesion, and landscape shape. We show that this model leads to realistic landslide depth distribution, with a power-law arising when the number of samples is high enough. The modeled PDF of landslide size obtained for several landscapes match the ones from earthquakes-driven landslides catalogues for the same landscape. In turn, this allows us to invert landslide effective mechanical parameters, friction and cohesion, associated to those specific events, including Chi-Chi, Wenchuan, Niigata and Gorkha earthquakes. The cohesion and friction ranges (25-35 degrees and 5-20 kPa) are in good agreement with previously inverted values. Our results demonstrate that reduced complexity mechanics is efficient to model the distribution of unstable depths, and show the role of landscape variability in landslide size

  7. Monitoring and Warning of Landslides Based On Rainfall

    Science.gov (United States)

    Yudhbir, Y.

    Management issues of landslide hazards assume much greater significance in poorest segments of society living in landslide risk prone hilly areas in developing countries. Analysis of the temporal recurrence of landslides shows that disastrous events occur with a frequency higher than the social and economic capacity of these societies to recover from previous events. In the context of landslide hazard management in In- dian Himalayan states this problem assumes much greater significance. Majority of the population lives on hill slopes which experience repeated landsliding activity es- pecially during the summer monsoon rains. Considering the high cost of structural control measures and the lack of necessary spatial database in respect of Quaternary geology, detailed topography and geohydrology etc., there is an acute need to develop a monitoring and warning system which is economical, easy to operate and does not require high technological inputs. Since most of the landslides in these areas are triggered by high incidence of rain, it appears attractive to explore development of a monitoring and warning network based on critical rainfall intensity thresholds. Such an option for management of landslide hazards would also provide useful meteorological data required for assessment of wa- ter resources, soil loss due to erosion, agricultural practices and flood incidence. In this paper, available approaches to the prediction and warning of landslide based on rainfall data will be critically reviewed. Various criteria recommended in litera- ture for threshold rainfall values in rain induced ground movements/failures would be compared and these relationships will be contrasted with the limited data available for the Indian Himalayan landslides. A plan for a network of automatic rain gauges and a suitable warning system will be discussed.

  8. Implications of climate change on landslide hazard in Central Italy.

    Science.gov (United States)

    Alvioli, Massimiliano; Melillo, Massimo; Guzzetti, Fausto; Rossi, Mauro; Palazzi, Elisa; von Hardenberg, Jost; Brunetti, Maria Teresa; Peruccacci, Silvia

    2018-07-15

    The relation between climate change and its potential effects on the stability of slopes remains an open issue. For rainfall induced landslides, the point consists in determining the effects of the projected changes in the duration and amounts of rainfall that can initiate slope failures. We investigated the relationship between fine-scale climate projections obtained by downscaling and the expected modifications in landslide occurrence in Central Italy. We used rainfall measurements taken by 56 rain gauges in the 9-year period 2003-2011, and the RainFARM technique to generate downscaled synthetic rainfall fields from regional climate model projections for the 14-year calibration period 2002-2015, and for the 40-year projection period 2010-2049. Using a specific algorithm, we extracted a number of rainfall events, i.e. rainfall periods separated by dry periods of no or negligible amount of rain, from the measured and the synthetic rainfall series. Then, we used the selected rainfall events to forcethe Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Model TRIGRS v. 2.1. We analyzed the results in terms of variations (or lack of variations) in the rainfall thresholds for the possible initiation of landslides, in the probability distribution of landslide size (area), and in landslide hazard. Results showed that the downscaled rainfall fields obtained by RainFARM can be used to single out rainfall events, and to force the slope stability model. Results further showed that while the rainfall thresholds for landslide occurrence are expected to change in future scenarios, the probability distribution of landslide areas are not. We infer that landslide hazard in the study area is expected to change in response to the projected variations in the rainfall conditions. We expect our results to contribute to regional investigations of the expected impact of projected climate variations on slope stability conditions and on landslide hazards. Copyright

  9. Susceptibility analysis of landslide in Chittagong City Corporation Area, Bangladesh

    Directory of Open Access Journals (Sweden)

    Sourav Das

    2015-06-01

    Full Text Available In Chittagong city, landslide phenomena is the most burning issue which causes great problems to the life and properties and it is increasing day by day and becoming one of the main problems of city life. On 11 June 2007, a massive landslide happened in Chittagong City Corporation (CCC area, a large number of foothill settlements and slums were demolished; more than 90 people died and huge resource destruction took place. It is therefore essential to analyze the landslide susceptibility for CCC area to prepare mitigation strategies as well as assessing the impacts of climate change. To assess community susceptibility of landslide hazard, a landslide susceptibility index map has been prepared using analytical hierarchy process (AHP model based on geographic information system (GIS and remote sensing (RS and its susceptibility is analyzed through community vulnerability assessment tool (CVAT. The major findings of the research are 27% of total CCC area which is susceptible to landslide hazard and whereas 6.5 sq.km areas are found very highly susceptible. The landslide susceptible areas of CCC have also been analyzed in respect of physical, social, economic, environmental and critical facilities and it is found that the overall CCC area is highly susceptible to landslide hazard. So the findings of the research can be utilized to prioritize risk mitigation investments, measures to strengthen the emergency preparedness and response mechanisms for reducing the losses and damages due to future landslide events. DOI: http://dx.doi.org/10.3126/ije.v4i2.12635 International Journal of Environment Vol.4(2 2015: 157-181

  10. Methods of Measuring and Mapping of Landslide Areas

    Science.gov (United States)

    Skrzypczak, Izabela; Kokoszka, Wanda; Kogut, Janusz; Oleniacz, Grzegorz

    2017-12-01

    The problem of attracting new investment areas and the inability of current zoning areas, allows us to understand why it is impossible to completely rule out building on landslide areas. Therefore, it becomes important issue of monitoring areas at risk of landslides. Only through appropriate monitoring and proper development of measurements resulting as maps of areas at risk of landslides enables us to estimate the risk and the relevant economic calculation for the realization of the anticipated investment in such areas. The results of monitoring of the surface and in-depth of the landslides are supplemented with constant observation of precipitation. The previous analyses and monitoring of landslides show that some of them are continuously active. GPS measurements, especially with laser scanning provide a unique activity data acquired on the surface of each individual landslide. The development of high resolution numerical models of terrain and the creation of differential models based on subsequent measurements, informs us about the size of deformation, both in units of distance (displacements) and volume. The compatibility of the data with information from in-depth monitoring allows the generation of a very reliable in-depth model of landslide, and as a result proper calculation of the volume of colluvium. Programs presented in the article are a very effective tool to generate in-depth model of landslide. In Poland, the steps taken under the SOPO project i.e. the monitoring and description of landslides are absolutely necessary for social and economic reasons and they may have a significant impact on the economy and finances of individual municipalities and also a whole country economy.

  11. FILMING UNDERWATER IN 3D RESPECTING STEREOGRAPHIC RULES

    OpenAIRE

    R. Rinaldi; H. Hordosch

    2015-01-01

    After an experimental phase of many years, 3D filming is now effective and successful. Improvements are still possible, but the film industry achieved memorable success on 3D movie’s box offices due to the overall quality of its products. Special environments such as space ("Gravity") and the underwater realm look perfect to be reproduced in 3D. "Filming in space" was possible in "Gravity" using special effects and computer graphic. The underwater realm is still difficult to be handled. Under...

  12. Remote Underwater Characterization System - Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    Willis, Walter David

    1999-01-01

    Characterization and inspection of water-cooled and moderated nuclear reactors and fuel storage pools requires equipment capable of operating underwater. Similarly, the deactivation and decommissioning of older nuclear facilities often requires the facility owner to accurately characterize underwater structures and equipment which may have been sitting idle for years. The underwater characterization equipment is often required to operate at depths exceeding 20 ft (6.1 m) and in relatively confined or congested spaces. The typical baseline approach has been the use of radiation detectors and underwater cameras mounted on long poles, or stationary cameras with pan and tilt features mounted on the sides of the underwater facility. There is a perceived need for an inexpensive, more mobile method of performing close-up inspection and radiation measurements in confined spaces underwater. The Remote Underwater Characterization System (RUCS) is a small, remotely operated submersible vehicle intended to serve multiple purposes in underwater nuclear operations. It is based on the commercially-available ''Scallop'' vehicle, but has been modified by Department of Energy's Robotics Technology Development Program to add auto-depth control, and vehicle orientation and depth monitoring at the operator control panel. The RUCS is designed to provide visual and gamma radiation characterization, even in confined or limited access areas. It was demonstrated in August 1998 at Idaho National Engineering and environmental Laboratory (INEEL) as part of the INEEL Large Scale Demonstration and Deployment Project. During the demonstration it was compared in a ''head-to-head'' fashion with the baseline characterization technology. This paper summarizes the results of the demonstration and lessons learned; comparing and contrasting both technologies in the areas of cost, visual characterization, radiological characterization, and overall operations

  13. Strong tracking adaptive Kalman filters for underwater vehicle dead reckoning

    Institute of Scientific and Technical Information of China (English)

    XIAO Kun; FANG Shao-ji; PANG Yong-jie

    2007-01-01

    To improve underwater vehicle dead reckoning, a developed strong tracking adaptive kalman filter is proposed. The filter is improved with an additional adaptive factor and an estimator of measurement noise covariance. Since the magnitude of fading factor is changed adaptively, the tracking ability of the filter is still enhanced in low velocity condition of underwater vehicles. The results of simulation tests prove the presented filter effective.

  14. On the Performance of the Underwater Acoustic Sensor Networks

    Science.gov (United States)

    2015-05-01

    performance of UWSN. 5.1 Hardware and Software Details 5.1.1 Equipment Our experimental model consisted of an indoor swimming pool , two pairs...UWSN has many constraints mainly due to limited capacity, propagation loss, as well as power limitation since in underwater environment solar energy ...since in underwater environment solar energy cannot be used to recharge batteries. In our approach, we estimate the number of operating receivers

  15. The Theseus Autonomous Underwater Vehicle: A Canadian Success Story

    Science.gov (United States)

    1997-04-01

    P502414.PDF [Page: 1 of 9] P502414.PDF [Page: 2 of 9] P502414.PDF [Page: 3 of 9] The Theseus Autonomous Underwater Vehicle A Canadian Success Story...autonomous underwater vehicle, named Theseus , for laying optical fiber cables in ice- covered waters. In trials and missions conducted in 1996, this...stations. An acoustic telemetry system enables communication with Theseus from surface stations, and an optical telemetry system is used for system

  16. Monterey Bay ambient noise profiles using underwater gliders

    OpenAIRE

    Chandrayadula, Tarun K.; Miller, Chris W.; Joseph, John

    2013-01-01

    The article of record as published may be found at http://dx.doi.org/10.1121/1.4799131 In 2012, during two separate week-long deployments, underwater gliders outfitted with external hydrophones profiled the upper 100-200 m of the Monterey Bay. The environment contained various noises made by marine mammals, ships, winds, and earthquakes. Unlike hydrophone receivers moored to a fixed location, moving gliders measure noise variability across a wide terrain. However, underwater mobile s...

  17. Probabilistic clustering of rainfall condition for landslide triggering

    Science.gov (United States)

    Rossi, Mauro; Luciani, Silvia; Cesare Mondini, Alessandro; Kirschbaum, Dalia; Valigi, Daniela; Guzzetti, Fausto

    2013-04-01

    Landslides are widespread natural and man made phenomena. They are triggered by earthquakes, rapid snow melting, human activities, but mostly by typhoons and intense or prolonged rainfall precipitations. In Italy mostly they are triggered by intense precipitation. The prediction of landslide triggered by rainfall precipitations over large areas is commonly based on the exploitation of empirical models. Empirical landslide rainfall thresholds are used to identify rainfall conditions for the possible landslide initiation. It's common practice to define rainfall thresholds by assuming a power law lower boundary in the rainfall intensity-duration or cumulative rainfall-duration space above which landslide can occur. The boundary is defined considering rainfall conditions associated to landslide phenomena using heuristic approaches, and doesn't consider rainfall events not causing landslides. Here we present a new fully automatic method to identify the probability of landslide occurrence associated to rainfall conditions characterized by measures of intensity or cumulative rainfall and rainfall duration. The method splits the rainfall events of the past in two groups: a group of events causing landslides and its complementary, then estimate their probabilistic distributions. Next, the probabilistic membership of the new event to one of the two clusters is estimated. The method doesn't assume a priori any threshold model, but simple exploits the real empirical distribution of rainfall events. The approach was applied in the Umbria region, Central Italy, where a catalogue of landslide timing, were obtained through the search of chronicles, blogs and other source of information in the period 2002-2012. The approach was tested using rain gauge measures and satellite rainfall estimates (NASA TRMM-v6), allowing in both cases the identification of the rainfall condition triggering landslides in the region. Compared to the other existing threshold definition methods, the prosed

  18. Supporting response with science: the Oso, Washington, landslide

    Science.gov (United States)

    Godt, J.

    2014-12-01

    On 22 March 2014 a large, rapidly moving landslide impacted the community of Steelhead Haven, near Oso, Washington, killing 43 people. The slide displaced about 8 million m3 of sand and silt from a 200-m high glacial terrace destroying 40 homes and burying more than 1.0 km of State Route 530. The landslide temporarily dammed the North Fork of the Stillaguamish River flooding an area of about 1.4 km2. The unusually long travel distance, in excess of 700 m from the base of the slope, and apparent speed of the slide led to the great loss of life and destruction. Landslide science was critical in supporting the response to the disaster. Landslide monitoring, process understanding, pre- and post-event high-resolution digital topography, and numerical simulations were used to advise search operations. Recognizing that buildings and their contents were swept tens to hundreds of meters from their original locations, maps of deposit thickness, and estimates of landslide trajectories were used to develop safer and more efficient search strategies. Teams of county, state, and federal scientists, engineers, and specialists were formed to assess the stability of the landslide dam and to monitor stream flow and the level of the lake impounded by the slide, and to assess the geomorphic response of the river to the landslide for gauging future effects on flood hazards and aquatic ecosystems. Another scientific team assessed the threat of additional landslide activity to search operations. This team's activities included establishing a communications protocol among landslide watch officers and search operations, deploying instrument platforms developed for use on volcanoes (Spiders) to remotely detect ground movement by means of GPS technology and to detect vibrations indicative of landslide movement using seismometers. The team was responsible for monitoring and integrating data from the Spiders and other instruments and making determinations with regards to the potential for

  19. Landslides susceptibility mapping at Gunung Ciremai National Park

    Science.gov (United States)

    Faizin; Nur, Bambang Azis

    2018-02-01

    In addition to agriculture, tourism became one of primary economic income for communities around Mount Ciremai, West, Java. Unfortunately, the landscape of West Java has many potential causes to disasters, mainly landslides. Mapping of disaster susceptibility area is needed as a consideration of tourism planning. The study was conducted in Gunung Ciremai National Park, West Java. This paper propose a methodology to map landslides susceptibilities based on spatial data. Using Geographic Information System tools, several environmental parameters such as slope, land use, elevation, and lithology are scored to build a landslide susceptibility map. Then, susceptibility map is overlaid with Utilization Zone.

  20. Deep Learning Methods for Underwater Target Feature Extraction and Recognition

    Directory of Open Access Journals (Sweden)

    Gang Hu

    2018-01-01

    Full Text Available The classification and recognition technology of underwater acoustic signal were always an important research content in the field of underwater acoustic signal processing. Currently, wavelet transform, Hilbert-Huang transform, and Mel frequency cepstral coefficients are used as a method of underwater acoustic signal feature extraction. In this paper, a method for feature extraction and identification of underwater noise data based on CNN and ELM is proposed. An automatic feature extraction method of underwater acoustic signals is proposed using depth convolution network. An underwater target recognition classifier is based on extreme learning machine. Although convolution neural networks can execute both feature extraction and classification, their function mainly relies on a full connection layer, which is trained by gradient descent-based; the generalization ability is limited and suboptimal, so an extreme learning machine (ELM was used in classification stage. Firstly, CNN learns deep and robust features, followed by the removing of the fully connected layers. Then ELM fed with the CNN features is used as the classifier to conduct an excellent classification. Experiments on the actual data set of civil ships obtained 93.04% recognition rate; compared to the traditional Mel frequency cepstral coefficients and Hilbert-Huang feature, recognition rate greatly improved.

  1. Optimal Node Placement in Underwater Acoustic Sensor Network

    KAUST Repository

    Felemban, Muhamad

    2011-10-01

    Almost 70% of planet Earth is covered by water. A large percentage of underwater environment is unexplored. In the past two decades, there has been an increase in the interest of exploring and monitoring underwater life among scientists and in industry. Underwater operations are extremely difficult due to the lack of cheap and efficient means. Recently, Wireless Sensor Networks have been introduced in underwater environment applications. However, underwater communication via acoustic waves is subject to several performance limitations, which makes the relevant research issues very different from those on land. In this thesis, we investigate node placement for building an initial Underwater Wireless Sensor Network infrastructure. Firstly, we formulated the problem into a nonlinear mathematic program with objectives of minimizing the total transmission loss under a given number of sensor nodes and targeted volume. We conducted experiments to verify the proposed formulation, which is solved using Matlab optimization tool. We represented each node with a truncated octahedron to fill out the 3D space. The truncated octahedrons are tiled in the 3D space with each node in the center where locations of the nodes are given using 3D coordinates. Results are supported using ns-3 simulator. Results from simulation are consistent with the obtained results from mathematical model with less than 10% error.

  2. Cardiovascular response during submaximal underwater treadmill exercise in stroke patients.

    Science.gov (United States)

    Yoo, Jeehyun; Lim, Kil-Byung; Lee, Hong-Jae; Kwon, Yong-Geol

    2014-10-01

    To evaluate the cardiovascular response during head-out water immersion, underwater treadmill gait, and land treadmill gait in stroke patients. Ten stroke patients were recruited for underwater and land treadmill gait sessions. Each session was 40 minutes long; 5 minutes for standing rest on land, 5 minutes for standing rest in water or on treadmill, 20 minutes for treadmill walking in water or on land, 5 minutes for standing rest in water or on treadmill, and 5 minutes for standing rest on land. Blood pressure (BP) and heart rate (HR) were measured during each session. In order to estimate the cardiovascular workload and myocardial oxygen demand, the rate pressure product (RPP) value was calculated by multiplying systolic BP (SBP) by HR. SBP, DBP, mean BP (mBP), and RPP decreased significantly after water immersion, but HR was unchanged. During underwater and land treadmill gait, SBP, mBP, DBP, RPP, and HR increased. However, the mean maximum increases in BP, HR and RPP of underwater treadmill walking were significantly lower than that of land treadmill walking. Stroke patients showed different cardiovascular responses during water immersion and underwater gait as opposed to standing and treadmill-walking on land. Water immersion and aquatic treadmill gait may reduce the workload of the cardiovascular system. This study suggested that underwater treadmill may be a safe and useful option for cardiovascular fitness and early ambulation in stroke rehabilitation.

  3. Multi-method characterization of a landslide in Champagne vineyards: the case study of the Jacotines landslide (Marne, France)

    Science.gov (United States)

    Nicolas, Bollot; Guillaume, Pierre; Gilles, Grandjean

    2014-05-01

    Key words : landslide, Champagne vineyards , geomorphology, geophysical data, superficial structure The Champagne region is strongly impacted by landslides. Usually inactive, these landslides suffer from partial reactivations leading to important damages, especially when they occur in the vineyards. In the Marne valley, and particularly in the center of Champagne vineyards area (Reuil), the Jacotines site is representative of such landslides since it presents typical surface characteristics widely observed in the region. However, its size, and especially its internal structure, can't be deduced from the surface analysis only. The aim of this work is to combine surface patterns analysis, geophysical data and borehole data to produce an interpretative model of the landslide. Preliminary geomorphological cartography was used for determining the influence of the landslide. From this information, geophysical investigations were carried out to image the internal structure of the landslide. Geophysical data fusion (combination of seismic and geoelectrical tomograms) was used to estimate the mechanical behavior and the fissuring pattern of the slope. Three transverse and longitudinal tomograms were used to define an heterogeneous area between 20 and 50 meters depth and a weathered zone from 0 to 10-20 meters depth. A 60 meters depth borehole on the main transverse tomogram found the shear plane and clarified the structure of the heterogeneous area as well as the uppermost weathered layer composed by debris flows resulting from partial reactivations processes.

  4. A Combination of Geographically Weighted Regression, Particle Swarm Optimization and Support Vector Machine for Landslide Susceptibility Mapping: A Case Study at Wanzhou in the Three Gorges Area, China

    Directory of Open Access Journals (Sweden)

    Xianyu Yu

    2016-05-01

    Full Text Available In this study, a novel coupling model for landslide susceptibility mapping is presented. In practice, environmental factors may have different impacts at a local scale in study areas. To provide better predictions, a geographically weighted regression (GWR technique is firstly used in our method to segment study areas into a series of prediction regions with appropriate sizes. Meanwhile, a support vector machine (SVM classifier is exploited in each prediction region for landslide susceptibility mapping. To further improve the prediction performance, the particle swarm optimization (PSO algorithm is used in the prediction regions to obtain optimal parameters for the SVM classifier. To evaluate the prediction performance of our model, several SVM-based prediction models are utilized for comparison on a study area of the Wanzhou district in the Three Gorges Reservoir. Experimental results, based on three objective quantitative measures and visual qualitative evaluation, indicate that our model can achieve better prediction accuracies and is more effective for landslide susceptibility mapping. For instance, our model can achieve an overall prediction accuracy of 91.10%, which is 7.8%–19.1% higher than the traditional SVM-based models. In addition, the obtained landslide susceptibility map by our model can demonstrate an intensive correlation between the classified very high-susceptibility zone and the previously investigated landslides.

  5. A Combination of Geographically Weighted Regression, Particle Swarm Optimization and Support Vector Machine for Landslide Susceptibility Mapping: A Case Study at Wanzhou in the Three Gorges Area, China.

    Science.gov (United States)

    Yu, Xianyu; Wang, Yi; Niu, Ruiqing; Hu, Youjian

    2016-05-11

    In this study, a novel coupling model for landslide susceptibility mapping is presented. In practice, environmental factors may have different impacts at a local scale in study areas. To provide better predictions, a geographically weighted regression (GWR) technique is firstly used in our method to segment study areas into a series of prediction regions with appropriate sizes. Meanwhile, a support vector machine (SVM) classifier is exploited in each prediction region for landslide susceptibility mapping. To further improve the prediction performance, the particle swarm optimization (PSO) algorithm is used in the prediction regions to obtain optimal parameters for the SVM classifier. To evaluate the prediction performance of our model, several SVM-based prediction models are utilized for comparison on a study area of the Wanzhou district in the Three Gorges Reservoir. Experimental results, based on three objective quantitative measures and visual qualitative evaluation, indicate that our model can achieve better prediction accuracies and is more effective for landslide susceptibility mapping. For instance, our model can achieve an overall prediction accuracy of 91.10%, which is 7.8%-19.1% higher than the traditional SVM-based models. In addition, the obtained landslide susceptibility map by our model can demonstrate an intensive correlation between the classified very high-susceptibility zone and the previously investigated landslides.

  6. Analysis of elevation changes detected from multi-temporal LiDAR surveys in forested landslide terrain in western Oregon

    Science.gov (United States)

    Burns, W.J.; Coe, J.A.; Kaya, B.S.; Ma, Liwang

    2010-01-01

    We examined elevation changes detected from two successive sets of Light Detection and Ranging (LiDAR) data in the northern Coast Range of Oregon. The first set of LiDAR data was acquired during leafon conditions and the second set during leaf-off conditions. We were able to successfully identify and map active landslides using a differential digital elevation model (DEM) created from the two LiDAR data sets, but this required the use of thresholds (0.50 and 0.75 m) to remove noise from the differential elevation data, visual pattern recognition of landslideinduced elevation changes, and supplemental QuickBird satellite imagery. After mapping, we field-verified 88 percent of the landslides that we had mapped with high confidence, but we could not detect active landslides with elevation changes of less than 0.50 m. Volumetric calculations showed that a total of about 18,100 m3 of material was missing from landslide areas, probably as a result of systematic negative elevation errors in the differential DEM and as a result of removal of material by erosion and transport. We also examined the accuracies of 285 leaf-off LiDAR elevations at four landslide sites using Global Positioning System and total station surveys. A comparison of LiDAR and survey data indicated an overall root mean square error of 0.50 m, a maximum error of 2.21 m, and a systematic error of 0.09 m. LiDAR ground-point densities were lowest in areas with young conifer forests and deciduous vegetation, which resulted in extensive interpolations of elevations in the leaf-on, bare-earth DEM. For optimal use of multi-temporal LiDAR data in forested areas, we recommend that all data sets be flown during leaf-off seasons.

  7. SafeLand guidelines for landslide monitoring and early warning systems in Europe - Design and required technology

    Science.gov (United States)

    Bazin, S.

    2012-04-01

    Landslide monitoring means the comparison of landslide characteristics like areal extent, speed of movement, surface topography and soil humidity from different periods in order to assess landslide activity. An ultimate "universal" methodology for this purpose does not exist; every technology has its own advantages and disadvantages. End-users should carefully consider each one to select the methodologies that represent the best compromise between pros and cons, and are best suited for their needs. Besides monitoring technology, there are many factors governing the choice of an Early Warning System (EWS). A people-centred EWS necessarily comprises five key elements: (1) knowledge of the risks; (2) identification, monitoring, analysis and forecasting of the hazards; (3) operational centre; (4) communication or dissemination of alerts and warnings; and (5) local capabilities to respond to the warnings received. The expression "end-to-end warning system" is also used to emphasize that EWSs need to span all steps from hazard detection through to community response. The aim of the present work is to provide guidelines for establishing the different components for landslide EWSs. One of the main deliverables of the EC-FP7 SafeLand project addresses the technical and practical issues related to monitoring and early warning for landslides, and identifies the best technologies available in the context of both hazard assessment and design of EWSs. This deliverable targets the end-users and aims to facilitate the decision process by providing guidelines. For the purpose of sharing the globally accumulated expertise, a screening study was done on 14 EWSs from 8 different countries. On these bases, the report presents a synoptic view of existing monitoring methodologies and early-warning strategies and their applicability for different landslide types, scales and risk management steps. Several comprehensive checklists and toolboxes are also included to support informed

  8. Geotechical Investigation of Landslides in Gurpinar Region

    Science.gov (United States)

    Karabulut, S.; Imre, N.; Dalgic, S.; Ozcep, F.

    2012-04-01

    Gürpinar in Beylikdüzü district in Istanbul, Rapid and uncontrolled construction have been exposed due to the current visual. Although to the previous zoning plan to covered a large part of the study area was recommended to use as green space, today's regulations have begun to define these areas as the areas mostly precautionary. With the development of engineering technology and knowledge, these areas were allowed to open of new structures to take necessary precautions. With increase in the effective construction in these regions, the existing slopes has led to start due to imbalance of mass movements. By using topographic map (1 / 5000 scale) and satellite images were examined in the region, the boundaries of existing landslides have been identified within the scope of this study. These areas are Çukurlar, Pınarkent, Pekmez and Onbeşevler. In addition to geophysical studies previously performed in the region; Seismic Reflection, Surface Wave Analysis (Active and Passive Source) and ground penetrating radar measurements were done. The geometry of surface planes and its depth, sand-gravel lenses, border of saturated clay units and the dynamic elastic parameters have been determined by using geophysical studies. The target depth of each method related to the properties of used sources or antenna and features of equipment. In Onbeşevler selected as pilot regions for georadar measurements, different water saturation at different depths s have been identified by using information taken from a depth of 30 meters. As a result of the geophysical studies, each in a landslide area, many slip plane have been identified and are given in sections. Geological cross-sections created for the workspace by using the drilling data and the pits belong to private companies and government agencies in the region. Inside the border of each landslides, the slope stability analysis done by using geological cross-sections and its physical parameters. Slope stability analysis made by

  9. Rainfall-triggered landslides, anthropogenic hazards, and mitigation strategies

    Directory of Open Access Journals (Sweden)

    M. C. Larsen

    2008-01-01

    Full Text Available Rainfall-triggered landslides are part of a natural process of hillslope erosion that can result in catastrophic loss of life and extensive property damage in mountainous, densely populated areas. As global population expansion on or near steep hillslopes continues, the human and economic costs associated with landslides will increase. Landslide hazard mitigation strategies generally involve hazard assessment mapping, warning systems, control structures, and regional landslide planning and policy development. To be sustainable, hazard mitigation requires that management of natural resources is closely connected to local economic and social interests. A successful strategy is dependent on a combination of multi-disciplinary scientific and engineering approaches, and the political will to take action at the local community to national scale.

  10. Landslide rehabilitation with geo synthetics in open coal mine Oslomej

    International Nuclear Information System (INIS)

    Dimitrievski, Ljupcho; Ilievska, Frosina; Ilievski, Darko

    2004-01-01

    In November 2002 stability is violated and landslides are registered in open coal mine Oslomej, Republic of Macedonia. Around the profile IV existing open irrigation channel was interrupted and landslide was extended to the regional way R421 Kicevo - Oslomej. The landslide was classified like big and dangerous, including danger for disruption of the regional road and pipeline Studencica - Oslomej for supplying of thermal power plant Oslomej with technical water. According to the proposed solution, main project design for landslide rehabilitation was prepared with using geo synthetics Stabilenka 200/45. In fill is local soil material which had been placed and compacted in layers, it had formed a composite construction. Stabilenka acts as a reinforcement due to its ability to absorb tensile forces. With the design solution two retaining walls of reinforced soil and complete drainage system of geo composite materials had been constructed This paper deals with details of the design and the construction. (Author)

  11. Recent advances in modeling landslides and debris flows

    CERN Document Server

    2015-01-01

    Landslides and debris flows belong to the most dangerous natural hazards in many parts of the world. Despite intensive research, these events continue to result in human suffering, property losses, and environmental degradation every year. Better understanding of the mechanisms and processes of landslides and debris flows will help make reliable predictions, develop mitigation strategies and reduce vulnerability of infrastructure. This book presents contributions to the workshop on Recent Developments in the Analysis, Monitoring and Forecast of Landslides and Debris Flow, in Vienna, Austria, September 9, 2013. The contributions cover a broad spectrum of topics from material behavior, physical modelling over numerical simulation to applications and case studies. The workshop is a joint event of three research projects funded by the European Commission within the 7th Framework Program: MUMOLADE (Multiscale modelling of landslides and debris flows, www.mumolade.com), REVENUES (Numerical Analysis of Slopes with V...

  12. GIS-based assessment of landslide susceptibility using certainty ...

    Indian Academy of Sciences (India)

    tion systems (GIS) using different models. Many of these ... as spatial multicriteria decision analysis (MCDA) approach ... 2013), support vec- ... Landslide susceptibility assessment using mathematical methods in GIS, Qianyang China 1401.

  13. application of geospatial tools for landslide hazard assessment

    African Journals Online (AJOL)

    immax

    datasets used in this study included digital elevation model, soils, precipitation ... was generated that showed risk levels of various areas in Uganda. .... There is acknowledged difficulty in quantifying the nature of hazards caused by a landslide.

  14. A comparative study on the landslide susceptibility mapping using ...

    Indian Academy of Sciences (India)

    from faults, lithology, normalized difference vegetation index (NDVI), sediment transport index (STI), stream power ... economic losses and creating high maintenance costs, are ..... evidence method to landslide susceptibility map- ping using ...

  15. Predictive susceptibility analysis of typhoon induced landslides in Central Taiwan

    Science.gov (United States)

    Shou, Keh-Jian; Lin, Zora

    2017-04-01

    Climate change caused by global warming affects Taiwan significantly for the past decade. The increasing frequency of extreme rainfall events, in which concentrated and intensive rainfalls generally cause geohazards including landslides and debris flows. The extraordinary, such as 2004 Mindulle and 2009 Morakot, hit Taiwan and induced serious flooding and landslides. This study employs rainfall frequency analysis together with the atmospheric general circulation model (AGCM) downscaling estimation to understand the temporal rainfall trends, distributions, and intensities in the adopted Wu River watershed in Central Taiwan. To assess the spatial hazard of the landslides, landslide susceptibility analysis was also applied. Different types of rainfall factors were tested in the susceptibility models for a better accuracy. In addition, the routes of typhoons were also considered in the predictive analysis. The results of predictive analysis can be applied for risk prevention and management in the study area.

  16. Review of the occurrences and influencing factors of landslides in ...

    African Journals Online (AJOL)

    Bheema

    environmental hazards in many of the hilly and mountainous terrains of both the developed ..... British Columbia, the Himalayan foothills, and Japan. .... For a successful landslide risk management program, there need to be policies, legislation.

  17. Landslide susceptibility zonation in part of Tehri reservoir region ...

    Indian Academy of Sciences (India)

    Validation of the model was performed by using cumulative ..... thrusts, folds and joints of varying shape and size ...... Lee S, Choi J and Min K 2002 Landslide susceptibility analy- ... cross-validation in three test areas using a frequency.

  18. Social Geology and Landslide Disaster Risk Reduction in Sri Lanka

    Directory of Open Access Journals (Sweden)

    Jayasingha P

    2017-03-01

    Full Text Available AbstractLandslide disaster risk reduction is presently a challenging task facing by Sri Lankangeologists. Increasing trend of population growth in Sri Lanka has adversely affected thestability of central highland due to various human activities. Among them establishment ofhuman settlements and change in land use pattern have become a serious issue in triggeringland instabilities in central highland of the country. National Building Research Oragnisationwhich is the main focal point in land slide disaster risk reduction in Sri Lanka has takenvaluable and timely needed actions including preparation of landslide hazard zonation maps,early warnings and mitigations. Though the landslide is a geological phenomenon, it is highlyinteracted with human societies. Hence managing the issues arising with the landslideoccurrence should be addressed with a sociological approach. This new approach is known asSocio Geological approach which is discussed here.Key words: Landslide, Geology, Socio Geology, Social Geologist

  19. A preliminary study of landslide gouge dating by TL technique

    Energy Technology Data Exchange (ETDEWEB)

    Fengju, Ji; Jianping, Li [Inst. of Geology, National Seismological Bereau, Beijing (China); Mingda, Liu [Inst. of Crustal Dynamics, SSB, Beijing (China)

    1993-04-01

    The key to date slipping of landslide by TL method is whether the temperature and pressure caused by slipping can lead the original TL to 'zero'for some minerals within the slipping band. For this purpose, the simulated experiments under different temperature-pressure were made and the TL annealing effect of landslide gouge was studied. The results show that the frictional heating caused during slipping is a main factor leading the mineral's TL to decrease on the slip plane and that increment of temperature is in close relation with strength of shear stress, thickness of landslide gouge and amount of displacement. As an example, the slipping age of a paleo-landslide at Huangtupo, Hubei Province, has been dated to be about 140 ka.

  20. Some rapid and long traveled landslides triggered by the May 12, 2008 Sichuan earthquake

    Science.gov (United States)

    Wang, G.; Kamai, T.; Chigira, M.; Wu, X. Y.; Zhang, D. X.

    2009-04-01

    On May 12, 2008, a 7.9M earthquake struck Sichuan province of China, causing a huge number of death and injuries, and great loss of properties, becoming the most damaging earthquake since the 1976 Tangshan earthquake, in China. The collapse of buildings during the earthquake is the main reason for the casualties. There are a huge number of landslides that had been triggered by this earthquake. Almost all the roads to the mountainous areas had been blocked and many dams were formed by the displaced landslide materials, resulting in great difficulties for the aftershock rescue activities. Also a big portion of the casualties was directly caused by the landslides. The authors had reconnaissance field trips of the landslides, and performed preliminary investigation on some of the catastrophic ones. In this report, four landslides, i.e., Xiejiadian landslide in Pengzhou city, Donghekou landslide and Magongxiang landslide in Qingchuan County, and Niujuangou landslide on the epicenter area of Yingxiu Town, are introduced. The characteristics of deposited landslide masses in Donghekou landslide were investigated by means of a multichannel surface wave technique. Two earthquake recorders were installed at the upper part and deposit area of Donghekou landslide. The seismic responses of different parts of the landslides were monitored, and recorded successfully during the aftershocks that occurred in Qingchuan County on July 24, 2008. Also the drained and undrained dynamic shear behaviors of samples from the landslide areas were examined. Some preliminary analyzing results will be presented in this report.

  1. Landslide inventory along a pipeline corridor in the Mackenzie Valley, Northwest Territories

    Energy Technology Data Exchange (ETDEWEB)

    Couture, R.; Riopel, S. [Natural Resources Canada, Ottawa, ON (Canada). Geological Survey of Canada

    2007-07-01

    The route for the proposed Mackenzie Valley gas pipeline in the Northwest Territories includes areas that are known for widespread landsliding. Natural Resources Canada initiated a landslide mapping project in an effort to develop a synthesis of the types, regional distribution, and controlling factors of landslides in the region. The study area is covered by unconsolidated sediments dominated by morainal, lacustrine, and alluvial deposits. Three types of permafrost were mapped, notably continuous, extensive discontinuous, and intermediate discontinuous. A preliminary inventory of 1,807 landslides and other natural terrain hazard features were identified by air photo interpretations. The landslide limits were digitized and catalogued in the Mackenzie Valley landslide spatial database. Several attributes were recorded for each landslide feature, including unique identifiers, landslide type, size, location, morphological parameters, and relative age. The landslide distribution was then characterized. The results indicate an average density of one landslide per 5 km{sup 2}. The dominant landslide types are retrogressive thaw flows and active layer detachments, followed by rock falls, debris flows, earth slides, surficial landslides, and retrogressive thaw slides. Nearly half of all landslides took place in morainal deposits, 19 per cent in lacustrine sediments, 14 per cent in bedrock, and 13 per cent in glaciofluvial sediments. According to tone, texture, and vegetation regrowth attributes, 39 per cent of the landslides were classified as being older than 50 years, 39 per cent were 10 to 50 years old and 22 per cent were less than 10 years old.

  2. Adjustment of the problems of landslide GIS data

    Science.gov (United States)

    Uchiyama, S.; Doshida, S.; Oyagi, N.; Shimizu, F.; Inokuchi, T.

    2012-12-01

    Information on the distribution of landslides is a basic type of data used by countries for disaster prevention. Since 1972, 1:50,000 landslide maps have been produced at the Japanese National Research Institute for Earth Science and Disaster Prevention. From October 2000, the institute has been producing landslide GIS data and transmitting these data over the web. The area that has been published so far covers over 80% of Japan. Presently, the number of diagrams printed are 980 (March 2012). In addition, 350,000 landslide GIS data graphs have been digitized with the same diagrams as a base. Twelve years have passed since this GIS data acquisition program was launched, and in that time, several problems have been identified. These problems are listed below. 1) Scarps do not become polygonized. 2) Landslides which extend over the boundaries of the printed graphs are divided into separate elements. 3) When the time taken to read and interpret the landslide data differs, the shape of the landslides can vary between diagrams. 4) There have been cases of inaccurate positions and shapes in landslide GIS data produced since 2005. 5) Obvious mistakes are present in the attribute data. The causes of such problems are as follows: 1) Lack of technical examination at the time of the start of the production of the landslide GIS data. 2) Limitations of the landslide GIS data editing systems which were developed separately. 3) Program bugs which occur during the conversion of information input to an individual editing system into general-purpose GIS data. 4) Problems which arise during the process of the production of landslide GIS data. This project at the National Research Institute for Earth Science and Disaster Prevention is planned to be completed in 2013. By the end of the project, we hope to present a catalogue of all identified problems and formulate a plan to resolve them, and pass them on to the next generation.; Problems: For the diagram, scarps are presented by

  3. Microseismic Events Detection on Xishancun Landslide, Sichuan Province, China

    Science.gov (United States)

    Sheng, M.; Chu, R.; Wei, Z.

    2016-12-01

    On landslide, the slope movement and the fracturing of the rock mass often lead to microearthquakes, which are recorded as weak signals on seismographs. The distribution characteristics of temporal and spatial regional unstability as well as the impact of external factors on the unstable regions can be understand and analyzed by monitoring those microseismic events. Microseismic method can provide some information inside the landslide, which can be used as supplementary of geodetic methods for monitoring the movement of landslide surface. Compared to drilling on landslide, microseismic method is more economical and safe. Xishancun Landslide is located about 60km northwest of Wenchuan earthquake centroid, it keep deforming after the earthquake, which greatly increases the probability of disasters. In the autumn of 2015, 30 seismometers were deployed on the landslide for 3 months with intervals of 200 500 meters. First, we used regional earthquakes for time correction of seismometers to eliminate the influence of inaccuracy GPS clocks and the subsurface structure of stations. Due to low velocity of the loose medium, the travel time difference of microseismic events on the landslide up to 5s. According to travel time and waveform characteristics, we found many microseismic events and converted them into envelopes as templates, then we used a sliding-window cross-correlation technique based on waveform envelope to detect the other microseismic events. Consequently, 100 microseismic events were detected with the waveforms recorded on all seismometers. Based on the location, we found most of them located on the front of the landslide while the others located on the back end. The bottom and top of the landslide accumulated considerable energy and deformed largely, radiated waves could be recorded by all stations. What's more, the bottom with more events seemed very active. In addition, there were many smaller events happened in middle part of the landslide where released

  4. Size distributions and failure initiation of submarine and subaerial landslides

    Science.gov (United States)

    ten Brink, Uri S.; Barkan, R.; Andrews, B.D.; Chaytor, J.D.

    2009-01-01

    Landslides are often viewed together with other natural hazards, such as earthquakes and fires, as phenomena whose size distribution obeys an inverse power law. Inverse power law distributions are the result of additive avalanche processes, in which the final size cannot be predicted at the onset of the disturbance. Volume and area distributions of submarine landslides along the U.S. Atlantic continental slope follow a lognormal distribution and not an inverse power law. Using Monte Carlo simulations, we generated area distributions of submarine landslides that show a characteristic size and with few smaller and larger areas, which can be described well by a lognormal distribution. To generate these distributions we assumed that the area of slope failure depends on earthquake magnitude, i.e., that failure occurs simultaneously over the area affected by horizontal ground shaking, and does not cascade from nucleating points. Furthermore, the downslope movement of displaced sediments does not entrain significant amounts of additional material. Our simulations fit well the area distribution of landslide sources along the Atlantic continental margin, if we assume that the slope has been subjected to earthquakes of magnitude ??? 6.3. Regions of submarine landslides, whose area distributions obey inverse power laws, may be controlled by different generation mechanisms, such as the gradual development of fractures in the headwalls of cliffs. The observation of a large number of small subaerial landslides being triggered by a single earthquake is also compatible with the hypothesis that failure occurs simultaneously in many locations within the area affected by ground shaking. Unlike submarine landslides, which are found on large uniformly-dipping slopes, a single large landslide scarp cannot form on land because of the heterogeneous morphology and short slope distances of tectonically-active subaerial regions. However, for a given earthquake magnitude, the total area

  5. Mapping Landslides Susceptibility in a Traditional Northern Nigerian City

    Science.gov (United States)

    Oluwafemi, Olawale A.; Yakubu, Tahir A.; Muhammad, Mahmud U.; Shitta, Nyofo; Akinwumiju, Akinola S.

    2018-05-01

    As a result of dearth of relevant information about Landslides Susceptibility in Nigeria, the monitoring and assessment appears intractable. Hence, the study developed a Remote Sensing approach to mapping landslides susceptibility, landuse and landcover analysis in Jos South LGA, Plateau State, Nigeria. Field Observation, SPOT 5 2009 and 2012, ASTER DEM 2009, Geological Map 2006, Topographical Map 1966 were used to map Landslide Susceptibility and Landuse /Lancover Analysis in the study area. Geospatial Analytical Operations employed using ArcGIS 10.3 and Erdas Imagine 2014 include Spatial Modeling, Vectorization, Pre-lineament Extraction, Image Processing among others. Result showed that 72.38 % of the study area is underlain by granitic rocks. The landuse/cover types delineated for the study area include floodplain (29.27 %), farmland (23.96 %), sparsely vegetated land (15.43 %), built up area (13.65 %), vegetated outcrop (8.48 %), light vegetation (5.37 %), thick vegetation (2.39 %), water body (0.58 %), plantation (0.50 %) and mining pond (0.37 %). Landslide Susceptibility Analysis also revealed that 87 % of the study area is relatively at low to very low risk of landslide event. While only 13 % of the study area is at high to very high risk of landslide event. The study revealed that the susceptibility of landslide event is very low in the study area. However, possible landslide event in the hot spots could be pronounced and could destabilize the natural and man-made environmental systems of the study area.

  6. Landslide: Systematic Dynamic Race Detection in Kernel Space

    Science.gov (United States)

    2012-05-01

    schedule_in_flight← true; CAUSE_TIMER_INTERRUPT(); end if end function Thread Scheduling Finally, the Landslide scheduler is responsible for managing ...child process vanish() simultaneously. • double_wait: Tests interactions of multiple waiters on a single child. • double_thread_fork: Tests for...conditions using Landslide. We describe them here. • Too many waiters allowed. Using the double_wait test case, Group 1 found a bug in which more threads

  7. Urban Landslides Induced by the 2004 Niigata-Chuetsu Earthquake

    Science.gov (United States)

    Kamai, T.; Trandafir, A. C.; Sidle, R. C.

    2005-05-01

    Landslides triggered by the Chuetsu earthquake occurred in artificial slopes of some new developments in suburban Nagaoka, the largest city in the affected area. The landslides occurred in hilly terrain of the eastern part of Nagaoka between the alluvial plain and Tertiary folded mountains of Yamakoshi. Although the extent of landslides in urban Nagaoka was small compared with landslides on natural slopes (especially near Yamakoshi), they represent an important case study for urban landslide disasters. Slope instabilities in urban residential areas were classified as: A) landslides in steep embankments; B) landslides in gently sloping artificial valley fills; C) re-activation of old landslides; and D) liquefaction in deep artificial valley fills. All these failures occurred in relatively uniform suburban landscapes, which were significantly modified from the original landforms. Recent destructive earthquakes in Japan caused similar types of slope failures in urban regions, suggesting that lessons from past earthquakes were not implemented. The greatest damage due to type-A failures occurred in the 25-yr old Takamachi residential area, where about 70 of 522 homes were judged to be uninhabitable. Before development, this area was an isolated hill (90 m elevation) with an adjacent terrace (60 m elevation) consisting of gravel, sand, and silt of the lower to middle Pleistocene deposits. Development earthworks removed the hill crest and created a wide plateau (70 m elevation); excavated soil was placed on the perimeter as an embankment. During the earthquake, the embankment slope collapsed, including retaining walls, perimeter road, and homes. The most serious damage occurred in five places around the margin of the plateau corresponding to shallow valley fills (5 to 8 m thick). Earthquake response analyses using an equivalent linear model indicated the amplification of seismic waves at the surface of embankment slopes, and the peak earthquake acceleration exceeded 1 G

  8. LANDSLIDE SUSCEPTIBILITY ASSESSMENT THROUGH FUZZY LOGIC INFERENCE SYSTEM (FLIS

    Directory of Open Access Journals (Sweden)

    T. Bibi

    2016-09-01

    Full Text Available Landslide is among one of the most important natural hazards that lead to modification of the environment. It is a regular feature of a rapidly growing district Mansehra, Pakistan. This caused extensive loss of life and property in the district located at the foothills of Himalaya. Keeping in view the situation it is concluded that besides structural approaches the non-structural approaches such as hazard and risk assessment maps are effective tools to reduce the intensity of damage. A landslide susceptibility map is base for engineering geologists and geomorphologists. However, it is not easy to produce a reliable susceptibility map due to complex nature of landslides. Since 1980s, several mathematical models have been developed to map landslide susceptibility and hazard. Among various models this paper is discussing the effectiveness of fuzzy logic approach for landslide susceptibility mapping in District Mansehra, Pakistan. The factor maps were modified as landslide susceptibility and fuzzy membership functions were assessed for each class. Likelihood ratios are obtained for each class of contributing factors by considering the expert opinion. The fuzzy operators are applied to generate landslide susceptibility maps. According to this map, 17% of the study area is classified as high susceptibility, 32% as moderate susceptibility, 51% as low susceptibility and areas. From the results it is found that the fuzzy model can integrate effectively with various spatial data for landslide hazard mapping, suggestions in this study are hope to be helpful to improve the applications including interpretation, and integration phases in order to obtain an accurate decision supporting layer.

  9. Relationship between gullying and landslides within the Barlad Plateau, Romania

    Science.gov (United States)

    Niacsu, Lilian; Ionita, Ion

    2016-04-01

    Located in the eastern Romania and extending on 8200 km2 the Barlad Plateau is considered the most typical subunit of the Moldavian Plateau. The sedimentary Miocene-Pliocene clay-sandy layers, inter-bedded with shallow sandstone and limestone are gently dipping toward S-SE as homoclinal structure. Land degradation through soil erosion, gullying and landslides represent the most important environmental threat in the region. By using both the classical research methods such as repeated field surveys and mapping, mathematical-statistical processing as well as the present-day methods based on the GIS software it was possible to precisely measure and evaluate the gully erosion rates and triggered landslides during the last two centuries, especially with a very high accuracy since 1960. Results have indicated that the landslide development is strongly controlled by gullying. Generally, by combining the areal growth of both gullying and new landslides within the selected study catchments, it is noticeable that 62 % of the total recent land degradation occurred during the last 55 years, with the remainder pre-1960. In addition, half of the gully areal growth occurred since 1961 but the new triggered landslides amount over three-quarters of the total area under landslides. This asymmetrical distribution reveals that usually a preparing time lag of tens of years is required for triggering landslides by gullying and this pattern depicts the common mechanism for landslide development. Acknowledgements: This work was partly supported by a grant from the Romanian National Authority for Scientific Research, CNDI-UEFISCDI, Project number PN-II-PT-PCCA-2011-3.2-0975.

  10. Rainfall-induced landslide susceptibility zonation of Puerto Rico

    Science.gov (United States)

    Chiara Lepore; Sameer A. Kamal; Peter Shanahan; Rafael L. Bras

    2011-01-01

    Landslides are a major geologic hazard with estimated tens of deaths and $1–2 billion in economic losses per year in the US alone. The island of Puerto Rico experiences one or two large events per year, often triggered in steeply sloped areas by prolonged and heavy rainfall. Identifying areas susceptible to landslides thus has great potential value for Puerto Rico and...

  11. Underwater Animal Monitoring Magnetic Sensor System

    KAUST Repository

    Kaidarova, Altynay

    2017-10-01

    Obtaining new insights into the behavior of free-living marine organisms is fundamental for conservation efforts and anticipating the impact of climate change on marine ecosystems. Despite the recent advances in biotelemetry, collecting physiological and behavioral parameters of underwater free-living animals remains technically challenging. In this thesis, we develop the first magnetic underwater animal monitoring system that utilizes Tunnel magnetoresistance (TMR) sensors, the most sensitive solid-state sensors today, coupled with flexible magnetic composites. The TMR sensors are composed of CoFeB free layers and MgO tunnel barriers, patterned using standard optical lithography and ion milling procedures. The short and long-term stability of the TMR sensors has been studied using statistical and Allan deviation analysis. Instrumentation noise has been reduced using optimized electrical interconnection schemes. We also develop flexible NdFeB-PDMS composite magnets optimized for applications in corrosive marine environments, and which can be attached to marine animals. The magnetic and mechanical properties are studied for different NdFeB powder concentrations and the performance of the magnetic composites for different exposure times to sea water is systematically investigated. Without protective layer, the composite magnets loose more than 50% of their magnetization after 51 days in seawater. The durability of the composite magnets can be considerably improved by using polymer coatings which are protecting the composite magnet, whereby Parylene C is found to be the most effective solution, providing simultaneously corrosion resistance, flexibility, and enhanced biocompatibility. A Parylene C film of 2μm thickness provides the sufficient protection of the magnetic composite in corrosive aqueous environments for more than 70 days. For the high level performance of the system, the theoretically optimal position of the composite magnets with respect to the sensing

  12. Landslide causes: Human impacts on a Himalayan landslide swarm Les impacts humains sur une séquence de glissements de terrain dans l’Himalaya

    Directory of Open Access Journals (Sweden)

    Martin Haigh

    2012-12-01

    Full Text Available Geographers are commonly called upon to diagnose the causes of natural disasters and provide guidance for policy makers. This case study concerns one of the landslide and flood disasters that afflicted the Himalaya in the later Monsoon of 2010, the Almora District (Uttarakhand, landslide swarm, which affected thousands of kilometres of roadway and caused damages >$ 125,000,000. Causes were sought on a 7.4km reach of roadway that had been part of a previous study. Individual landslides were surveyed along with a suite of potential environmental indicators. These results show that the numbers of landslides on the roadbed were not unusual, so research switched to exploring factors that may have enhanced their volumes. Local opinion considers that the major causes were human impacts, especially recent urban development, or geological weaknesses. However, results show that human impacts such as building construction, deforestation, and the collapse of agricultural terraces were associated with smaller landslides, while geological factors showed no significant correlations with landslide volume. Road engineering factors such as the location of another road upslope and the collapse of roadcut retaining wall also proved unimportant. However, the height of the roadcut, channel incision undermining the roadcut and, especially, the steepness of the hillside upslope proved significant. Despite the absence of any direct link between human activity and landslide volumes in Almora, a comparison of the 2010 results from this survey and that of another reach of hill road, which was also part of the 1985 survey, showed important differences in landslide numbers.In 1985, the Kilbury Road, which cuts through reserved forest, carried 153 landslides to the Almora Lower Mall’s 88. In 2010, there were only 9 landslides on the Kilbury Road but 108 on the suburban Almora Lower Mall. The conclusion is that human impacts in Almora have combined to prevent the landslides

  13. From Physical Process to Economic Cost - Integrated Approaches of Landslide Risk Assessment

    Science.gov (United States)

    Klose, M.; Damm, B.

    2014-12-01

    The nature of landslides is complex in many respects, with landslide hazard and impact being dependent on a variety of factors. This obviously requires an integrated assessment for fundamental understanding of landslide risk. Integrated risk assessment, according to the approach presented in this contribution, implies combining prediction of future landslide occurrence with analysis of landslide impact in the past. A critical step for assessing landslide risk in integrated perspective is to analyze what types of landslide damage affected people and property in which way and how people contributed and responded to these damage types. In integrated risk assessment, the focus is on systematic identification and monetization of landslide damage, and analytical tools that allow deriving economic costs from physical landslide processes are at the heart of this approach. The broad spectrum of landslide types and process mechanisms as well as nonlinearity between landslide magnitude, damage intensity, and direct costs are some main factors explaining recent challenges in risk assessment. The two prevailing approaches for assessing the impact of landslides in economic terms are cost survey (ex-post) and risk analysis (ex-ante). Both approaches are able to complement each other, but yet a combination of them has not been realized so far. It is common practice today to derive landslide risk without considering landslide process-based cause-effect relationships, since integrated concepts or new modeling tools expanding conventional methods are still widely missing. The approach introduced in this contribution is based on a systematic framework that combines cost survey and GIS-based tools for hazard or cost modeling with methods to assess interactions between land use practices and landslides in historical perspective. Fundamental understanding of landslide risk also requires knowledge about the economic and fiscal relevance of landslide losses, wherefore analysis of their

  14. The contribute of DInSAR techniques to landslide hazard evaluation in mountain and hilly regions: a case study from Agno Valley (North-Eastern Italian Alps)

    Science.gov (United States)

    De Agostini, A.; Floris, M.; Pasquali, P.; Barbieri, M.; Cantone, A.; Riccardi, P.; Stevan, G.; Genevois, R.

    2012-04-01

    results of susceptibility analysis are compared with the location of landslides occurred in the study area during the November 2010 rainfall event. In the second step, results of DInSAR analysis (displacement maps over the time) are added on the prediction analysis to build up a map containing both spatial and temporal information on landslides and, as in the previous case, the prediction is tested by using November 2010 instabilities dataset. Comparison of the two tests allows to evaluate the contribution of interferometric techniques. Finally, morphometric factors and interferometric RADAR data are combined to design a preliminary analysis scheme that provide information on possible use of DInSAR techniques in landslide hazard evaluation of a given area.

  15. Landslide Prediction Capability by Comparison of Frequency Ratio ...

    Indian Academy of Sciences (India)

    8

    3.2.2.1.4 Curvature: The surface curvature at a point is the curvature of a line formed .... (Pham et al, 2017) or by saturating the lower part of the material in a .... In order to fuzzy analysis, at first, the weights of frequency ratio was standardized.

  16. Regional Landslide Hazard Assessment Considering Potential Climate Change

    Science.gov (United States)

    Almeida, S.; Holcombe, E.; Pianosi, F.; Wagener, T.

    2016-12-01

    Landslides have many negative economic and societal impacts, including the potential for significant loss of life and damage to infrastructure. These risks are likely to be exacerbated in the future by a combination of climatic and socio-economic factors. Climate change, for example, is expected to increase the occurrence of rainfall-triggered landslides, because a warmer atmosphere tends to produce more high intensity rainfall events. Prediction of future changes in rainfall, however, is subject to high levels of uncertainty, making it challenging for decision-makers to identify the areas and populations that are most vulnerable to landslide hazards. In this study, we demonstrate how a physically-based model - the Combined Hydrology and Stability Model (CHASM) - can be used together with Global Sensitivity Analysis (GSA) to explore the underlying factors controlling the spatial distribution of landslide risks across a regional landscape, while also accounting for deep uncertainty around potential future rainfall triggers. We demonstrate how GSA can be used to analyse CHASM which in turn represents the spatial variability of hillslope characteristics in the study region, while accounting for other uncertainties. Results are presented in the form of landslide hazard maps, utilising high-resolution digital elevation datasets for a case study in St Lucia in the Caribbean. Our findings about spatial landslide hazard drivers have important implications for data collection approaches and for long-term decision-making about land management practices.

  17. Regional landslide hazard assessment in a deep uncertain future

    Science.gov (United States)

    Almeida, Susana; Holcombe, Liz; Pianosi, Francesca; Wagener, Thorsten

    2017-04-01

    Landslides have many negative economic and societal impacts, including the potential for significant loss of life and damage to infrastructure. These risks are likely to be exacerbated in the future by a combination of climatic and socio-economic factors. Climate change, for example, is expected to increase the occurrence of rainfall-triggered landslides, because a warmer atmosphere tends to produce more high intensity rainfall events. Prediction of future changes in rainfall, however, is subject to high levels of uncertainty, making it challenging for decision-makers to identify the areas and populations that are most vulnerable to landslide hazards. In this study, we demonstrate how a physically-based model - the Combined Hydrology and Stability Model (CHASM) - can be used together with Global Sensitivity Analysis (GSA) to explore the underlying factors controlling the spatial distribution of landslide risks across a regional landscape, while also accounting for deep uncertainty around future rainfall conditions. We demonstrate how GSA can used to analyse CHASM which in turn represents the spatial variability of hillslope characteristics in the study region, while accounting for other uncertainties. Results are presented in the form of landslide hazard maps, utilising high-resolution digital elevation datasets for a case study in St Lucia in the Caribbean. Our findings about spatial landslide hazard drivers have important implications for data collection approaches and for long-term decision-making about land management practices.

  18. MULTI-CRITERIA ANALYSIS APPLIED TO LANDSLIDE SUSCEPTIBILITY MAPPING

    Directory of Open Access Journals (Sweden)

    Mariana Madruga de Brito

    2017-10-01

    Full Text Available This paper presents the application of a multi-criteria analysis (MCA tool for landslide susceptibility assessment in Porto Alegre municipality, southern Brazil. A knowledge driven approach was used, aiming to ensure an optimal use of the available information. The landslide conditioning factors considered were slope, lithology, flow accumulation and distance from lineaments. Standardization of these factors was done through fuzzy membership functions, and evaluation of their relative importance for landslide predisposition was supported by the analytic hierarchy process (AHP, based on local expert knowledge. Finally, factors were integrated in a GIS environment using the weighted linear combination (WLC method. For validation, an inventory, including 107 landslide points recorded between 2007 and 2013 was used. Results indicated that 8.2% (39.40 km² of the study area are highly and very highly susceptible to landslides. An overall accuracy of 95% was found, with an area under the receiver operating characteristic (ROC curve of 0.960. Therefore, the resulting map can be regarded as useful for monitoring landslide-prone areas. Based on the findings, it is concluded that the proposed method is effective for susceptibility assessment since it yielded meaningful results and does not require extensive input data.

  19. Effects of Inventory Bias on Landslide Susceptibility Calculations

    Science.gov (United States)

    Stanley, T. A.; Kirschbaum, D. B.

    2017-01-01

    Many landslide inventories are known to be biased, especially inventories for large regions such as Oregon's SLIDO or NASA's Global Landslide Catalog. These biases must affect the results of empirically derived susceptibility models to some degree. We evaluated the strength of the susceptibility model distortion from postulated biases by truncating an unbiased inventory. We generated a synthetic inventory from an existing landslide susceptibility map of Oregon, then removed landslides from this inventory to simulate the effects of reporting biases likely to affect inventories in this region, namely population and infrastructure effects. Logistic regression models were fitted to the modified inventories. Then the process of biasing a susceptibility model was repeated with SLIDO data. We evaluated each susceptibility model with qualitative and quantitative methods. Results suggest that the effects of landslide inventory bias on empirical models should not be ignored, even if those models are, in some cases, useful. We suggest fitting models in well-documented areas and extrapolating across the study region as a possible approach to modeling landslide susceptibility with heavily biased inventories.

  20. InSAR deformation monitoring of high risk landslides

    Science.gov (United States)

    Singhroy, V.; Li, J.

    2013-05-01

    During the past year there were at least twenty five media reports of landslides and seismic activities some fatal, occurring in various areas in Canada. The