WorldWideScience

Sample records for underwater acoustic systems

  1. A Dual Communication and Imaging Underwater Acoustic System

    Science.gov (United States)

    Fu, Tricia C.

    A dual communication and imaging underwater acoustic system is proposed and developed throughout this dissertation. Due to the wide variation in underwater channel characteristics, the research here focuses more on robustness to multipath in the shallow underwater acoustic environment, rather than high bit-rate applications and signaling schemes. Lower bit-rate (in the hundreds of bits per second (bps) to low kbps), applications such as the transfer of ecological telemetry data, e.g. conductivity or temperature data, are the primary focus of this dissertation. The parallels between direct sequence spread spectrum in digital communication and pulse-echo with pulse compression in imaging, and channel estimation in communication and range profile estimation in imaging are drawn, leading to a unified communications and imaging platform. A digital communication algorithm for channel order and channel coefficient estimation and symbol demodulation using Matching Pursuit (MP) with Generalized Multiple Hypothesis Testing (GMHT) is implemented in programmable DSP in real time with field experiment results in varying underwater environments for the single receiver (Rx), single transmitter (Tx) case. The custom and off-the-shelf hardware used in the single receiver, single transmitter set of experiments are detailed as well. This work is then extended to the single-input multiple-output (SIMO) case, and then to the full multiple-input multiple-output (MIMO) case. The results of channel estimation are used for simple range profile imaging reconstructions. Successful simulated and experimental results for both transducer array configurations are presented and analyzed. Non-real-time symbol demodulation and channel estimation is performed using experimental data from a scaled testing environment. New hardware based on cost-effective fish-finder transducers for a 6 Rx--1 Tx and 6 Rx--4 Tx transducer array is detailed. Lastly, in an application that is neither communication nor

  2. OFDM for underwater acoustic communications

    CERN Document Server

    Zhou, Shengli

    2014-01-01

    A blend of introductory material and advanced signal processing and communication techniques, of critical importance to underwater system and network development This book, which is the first to describe the processing techniques central to underwater OFDM, is arranged into four distinct sections: First, it describes the characteristics of underwater acoustic channels, and stresses the difference from wireless radio channels. Then it goes over the basics of OFDM and channel coding. The second part starts with an overview of the OFDM receiver, and develops various modules for the receiver des

  3. Design and Experimental Validation of a USBL Underwater Acoustic Positioning System

    OpenAIRE

    Reis, Joel; Morgado, Marco; Batista, Pedro; Oliveira, Paulo; Silvestre, Carlos

    2016-01-01

    This paper presents the steps for developing a low-cost POrtableNavigation Tool for Underwater Scenarios (PONTUS) to be used as a localization device for subsea targets. PONTUS consists of an integrated ultra-short baseline acoustic positioning system aided by an inertial navigation system. Built on a practical design, it can be mounted on an underwater robotic vehicle or be operated by a scuba diver. It also features a graphical user interface that provides information on the tracking of the...

  4. Carbon Nanotube Underwater Acoustic Thermophone

    Science.gov (United States)

    2016-09-23

    Attorney Docket No. 300009 1 of 8 A CARBON NANOTUBE UNDERWATER ACOUSTIC THERMOPHONE STATEMENT OF GOVERNMENT INTEREST [0001] The...the Invention [0003] The present invention is an acoustically transparent carbon nanotube thermophone. (2) Description of the Prior Art [0004...amplitude of the resulting sound waves. [0006] Recently, there has been development of underwater acoustic carbon nanotube (CNT) yarn sheets capable

  5. Optimization of computation efficiency in underwater acoustic navigation system.

    Science.gov (United States)

    Lee, Hua

    2016-04-01

    This paper presents a technique for the estimation of the relative bearing angle between the unmanned underwater vehicle (UUV) and the base station for the homing and docking operations. The key requirement of this project includes computation efficiency and estimation accuracy for direct implementation onto the UUV electronic hardware, subject to the extreme constraints of physical limitation of the hardware due to the size and dimension of the UUV housing, electric power consumption for the requirement of UUV survey duration and range coverage, and heat dissipation of the hardware. Subsequent to the design and development of the algorithm, two phases of experiments were conducted to illustrate the feasibility and capability of this technique. The presentation of this paper includes system modeling, mathematical analysis, and results from laboratory experiments and full-scale sea tests.

  6. Passive aquatic listener (PAL): An adoptive underwater acoustic recording system for the marine environment

    International Nuclear Information System (INIS)

    Anagnostou, Marios N.; Nystuen, Jeffrey A.; Anagnostou, Emmanouil N.; Papadopoulos, Anastasios; Lykousis, Vassilios

    2011-01-01

    The ambient sound field in the ocean is a combination of natural and manmade sounds. Consequently, the interpretation of the ambient sound field can be used to quantify these processes. In the frequency range from 1 to 50 kHz, the general character of ocean ambient sound is a slowly changing background that is closely associated with local wind speed, interspersed with shorter time scale events such as rain storms, ships and animal calls. At lower frequencies the underwater ambient sound budget includes geologically generated sound activities including underwater volcanic eruptions, seismic and seepage faults that generate bubbles, etc. that can also potentially be classified and quantified. Acoustic data are collected on hydrophones. Hydrophones are simple, robust sensors that can be deployed on most ocean instrumentation systems including surface or sub-surface moorings, bottom mounted systems, drifters, ARGO floats or autonomous underwater platforms. A dedicated oceanic underwater recorder called a passive acoustic listener (PAL) has been developed. A principal issue is to accurately distinguish different sound sources so that they can be quantified as part of a sound budget, and then quantified if appropriate. Based on ongoing data collected from the Poseidon II network the retrieval potential of multi-parameters from underwater sound, including meteorological (i.e., precipitation and winds) and in general geophysical, anthropogenetic (i.e., ships, submarines, etc.) and biological (whales, etc.) sources is presented.

  7. Cooperative OFDM underwater acoustic communications

    CERN Document Server

    Cheng, Xilin; Cheng, Xiang

    2016-01-01

    Following underwater acoustic channel modeling, this book investigates the relationship between coherence time and transmission distances. It considers the power allocation issues of two typical transmission scenarios, namely short-range transmission and medium-long range transmission. For the former scenario, an adaptive system is developed based on instantaneous channel state information. The primary focus is on cooperative dual-hop orthogonal frequency division multiplexing (OFDM). This book includes the decomposed fountain codes designed to enable reliable communications with higher energy efficiency. It covers the Doppler Effect, which improves packet transmission reliability for effective low-complexity mirror-mapping-based intercarrier interference cancellation schemes capable of suppressing the intercarrier interference power level. Designed for professionals and researchers in the field of underwater acoustic communications, this book is also suitable for advanced-level students in electrical enginee...

  8. A Novel Fractional Fourier Transform-Based ASK-OFDM System for Underwater Acoustic Communications

    Directory of Open Access Journals (Sweden)

    Rami Ashri

    2017-12-01

    Full Text Available A key research area in wireless transmission is underwater communications. It has a vital role in applications such as underwater sensor networks (UWSNs and disaster detection. The underwater channel is very unique as compared to other alternatives of transmission channels. It is characterized by path loss, multipath fading, Doppler spread and ambient noise. Thus, the bit error rate (BER is increased to a large extent when compared to its counterpart of cellular communications. Acoustic signals are the current best solution for underwater communications. The use of electromagnetic or optical waves obviously entails a much higher data rate. However, they suffer from high attenuation, absorption or scattering. This paper proposes a novel fractional fast Fourier transform (FrFT—orthogonal frequency division multiplexing (FrFT-OFDM system for underwater acoustic (UWA communication—which employs the amplitude shift keying (ASK modulation technique (FrFT-ASK-OFDM. Specifically, ASK achieves a better bandwidth efficiency as compared to other commonly used modulation techniques, such as quadrature amplitude modulation (QAM and phase shift keying (PSK. In particular, the system proposed in this article can achieve a very promising BER performance, and can reach higher data rates when compared to other systems proposed in the literature. The BER performance of the proposed system is evaluated numerically, and is compared to the corresponding M-ary QAM system in the UWA channel for the same channel conditions. Moreover, the performance of the proposed system is compared to the conventional fast Fourier transform (FFT-OFDM (FFT-OFDM system in the absence and presence of the effect of carrier frequency offset (CFO. Numerical results show that the proposed system outperforms the conventional FFT-based systems for UWA channels, even in channels dominated by CFO. Moreover, the spectral efficiency and data rate of the proposed system are approximately double

  9. The Research on Improved Companding Transformation for Reducing PAPR in Underwater Acoustic OFDM Communication System

    Directory of Open Access Journals (Sweden)

    Jinqiu Wu

    2016-01-01

    Full Text Available To solve the problem of the high peak-to-average power ratio (PAPR in Orthogonal Frequency Division Multiplexing (OFDM for the underwater acoustic communication system, the paper offers a method of reducing PAPR which combines the amplitude limiting and the improved nonlinear transformation. Traditional amplitude limiting technique can reduce PAPR in OFDM system effectively, at the cost of reducing the bit error rate (BER. However the companding transformation has far less computation complexity than SLM or PTS technologies and can improve the BER performance compared to the amplitude limiting technique simultaneously. The paper combines these two kinds of techniques, takes full use of advantages of the two method, and puts forward a low-complexity scheme choosing parameters that are more appropriate to the underwater acoustic field, with the result of improved BER performance even in lower SNR. Both simulation and experiment results show that the new method which combines clipping and companding transformation can effectively reduce the PAPR in the underwater acoustic OFDM communication system and improve the BER performance simultaneously.

  10. Design and Experimental Validation of a USBL Underwater Acoustic Positioning System

    Science.gov (United States)

    Reis, Joel; Morgado, Marco; Batista, Pedro; Oliveira, Paulo; Silvestre, Carlos

    2016-01-01

    This paper presents the steps for developing a low-cost POrtableNavigation Tool for Underwater Scenarios (PONTUS) to be used as a localization device for subsea targets. PONTUS consists of an integrated ultra-short baseline acoustic positioning system aided by an inertial navigation system. Built on a practical design, it can be mounted on an underwater robotic vehicle or be operated by a scuba diver. It also features a graphical user interface that provides information on the tracking of the designated target, in addition to some details on the physical properties inside PONTUS. A full disclosure of the architecture of the tool is first presented, followed by thorough technical descriptions of the hardware components ensemble and the software development process. A series of experiments was carried out to validate the developed prototype, and the results are presented herein, which allow assessing its overall performance. PMID:27649181

  11. Design and Experimental Validation of a USBL Underwater Acoustic Positioning System

    Directory of Open Access Journals (Sweden)

    Joel Reis

    2016-09-01

    Full Text Available This paper presents the steps for developing a low-cost POrtableNavigation Tool for Underwater Scenarios (PONTUS to be used as a localization device for subsea targets. PONTUS consists of an integrated ultra-short baseline acoustic positioning system aided by an inertial navigation system. Built on a practical design, it can be mounted on an underwater robotic vehicle or be operated by a scuba diver. It also features a graphical user interface that provides information on the tracking of the designated target, in addition to some details on the physical properties inside PONTUS. A full disclosure of the architecture of the tool is first presented, followed by thorough technical descriptions of the hardware components ensemble and the software development process. A series of experiments was carried out to validate the developed prototype, and the results are presented herein, which allow assessing its overall performance.

  12. Award 1 Title: Acoustic Communications 2011 Experiment: Deployment Support and Post Experiment Data Handling and Analysis. Award 2 Title: Exploiting Structured Dependencies in the Design of Adaptive Algorithms for Underwater Communication Award. 3 Title: Coupled Research in Ocean Acoustics and Signal Processing for the Next Generation of Underwater Acoustic Communication Systems

    Science.gov (United States)

    2015-09-30

    Exploiting Structured Dependencies in the Design of Adaptive Algorithms for Underwater Communication Award #3 Title Coupled Research in Ocean Acoustics ...and Signal Processing for theNext Generation of Underwater Acoustic Communication Systems James Preisig Woods Hole Oceanographic Institution...Dept. of Applied Ocean Physics and Engineering Ocean Acoustics and Signals Laboratory Woods Hole, MA 02540 AND JPAnalytics LLC 638 Brick Kiln

  13. An Alignment Method for the Integration of Underwater 3D Data Captured by a Stereovision System and an Acoustic Camera

    OpenAIRE

    Lagudi, Antonio; Bianco, Gianfranco; Muzzupappa, Maurizio; Bruno, Fabio

    2016-01-01

    The integration of underwater 3D data captured by acoustic and optical systems is a promising technique in various applications such as mapping or vehicle navigation. It allows for compensating the drawbacks of the low resolution of acoustic sensors and the limitations of optical sensors in bad visibility conditions. Aligning these data is a challenging problem, as it is hard to make a point-to-point correspondence. This paper presents a multi-sensor registration for the automatic integration...

  14. An Acoustic OFDM System with Symbol-by-Symbol Doppler Compensation for Underwater Communication

    Science.gov (United States)

    MinhHai, Tran; Rie, Saotome; Suzuki, Taisaku; Wada, Tomohisa

    2016-01-01

    We propose an acoustic OFDM system for underwater communication, specifically for vertical link communications such as between a robot in the sea bottom and a mother ship in the surface. The main contributions are (1) estimation of time varying Doppler shift using continual pilots in conjunction with monitoring the drift of Power Delay Profile and (2) symbol-by-symbol Doppler compensation in frequency domain by an ICI matrix representing nonuniform Doppler. In addition, we compare our proposal against a resampling method. Simulation and experimental results confirm that our system outperforms the resampling method when the velocity changes roughly over OFDM symbols. Overall, experimental results taken in Shizuoka, Japan, show our system using 16QAM, and 64QAM achieved a data throughput of 7.5 Kbit/sec with a transmitter moving at maximum 2 m/s, in a complicated trajectory, over 30 m vertically. PMID:27057558

  15. An Acoustic OFDM System with Symbol-by-Symbol Doppler Compensation for Underwater Communication

    Directory of Open Access Journals (Sweden)

    Tran MinhHai

    2016-01-01

    Full Text Available We propose an acoustic OFDM system for underwater communication, specifically for vertical link communications such as between a robot in the sea bottom and a mother ship in the surface. The main contributions are (1 estimation of time varying Doppler shift using continual pilots in conjunction with monitoring the drift of Power Delay Profile and (2 symbol-by-symbol Doppler compensation in frequency domain by an ICI matrix representing nonuniform Doppler. In addition, we compare our proposal against a resampling method. Simulation and experimental results confirm that our system outperforms the resampling method when the velocity changes roughly over OFDM symbols. Overall, experimental results taken in Shizuoka, Japan, show our system using 16QAM, and 64QAM achieved a data throughput of 7.5 Kbit/sec with a transmitter moving at maximum 2 m/s, in a complicated trajectory, over 30 m vertically.

  16. An Acoustic OFDM System with Symbol-by-Symbol Doppler Compensation for Underwater Communication.

    Science.gov (United States)

    MinhHai, Tran; Rie, Saotome; Suzuki, Taisaku; Wada, Tomohisa

    2016-01-01

    We propose an acoustic OFDM system for underwater communication, specifically for vertical link communications such as between a robot in the sea bottom and a mother ship in the surface. The main contributions are (1) estimation of time varying Doppler shift using continual pilots in conjunction with monitoring the drift of Power Delay Profile and (2) symbol-by-symbol Doppler compensation in frequency domain by an ICI matrix representing nonuniform Doppler. In addition, we compare our proposal against a resampling method. Simulation and experimental results confirm that our system outperforms the resampling method when the velocity changes roughly over OFDM symbols. Overall, experimental results taken in Shizuoka, Japan, show our system using 16QAM, and 64QAM achieved a data throughput of 7.5 Kbit/sec with a transmitter moving at maximum 2 m/s, in a complicated trajectory, over 30 m vertically.

  17. Snapping shrimp noise mitigation based on statistical detection in underwater acoustic orthogonal frequency division multiplexing systems

    Science.gov (United States)

    Kim, Hyeonsu; Seo, Jongpil; Ahn, Jongmin; Chung, Jaehak

    2017-07-01

    We propose a mitigation scheme for snapping shrimp noise when it corrupts an orthogonal frequency division multiplexing (OFDM) signal in underwater acoustic communication systems. The OFDM signal distorted by the snapping shrimp noise is filtered by a band-stop filter. The snapping shrimp noises in the filtered signal are detected by a detector with a constant false alarm rate whose threshold is derived theoretically from the statistics of the background noise. The detected signals are reconstructed by a simple reconstruction method. The proposed scheme has a higher detection capability and a lower mean square error of the channel estimation for simulated data and a lower bit error rate for practical ocean OFDM data collected in northern East China Sea than the conventional noise-mitigating methods.

  18. 4th Pacific Rim Underwater Acoustics Conference

    CERN Document Server

    Xu, Wen; Cheng, Qianliu; Zhao, Hangfang

    2016-01-01

    These proceedings are a collection of 16 selected scientific papers and reviews by distinguished international experts that were presented at the 4th Pacific Rim Underwater Acoustics Conference (PRUAC), held in Hangzhou, China in October 2013. The topics discussed at the conference include internal wave observation and prediction; environmental uncertainty and coupling to sound propagation; environmental noise and ocean dynamics; dynamic modeling in acoustic fields; acoustic tomography and ocean parameter estimation; time reversal and matched field processing; underwater acoustic localization and communication as well as measurement instrumentations and platforms. These proceedings provide insights into the latest developments in underwater acoustics, promoting the exchange of ideas for the benefit of future research.

  19. Network Computing for Distributed Underwater Acoustic Sensors

    Science.gov (United States)

    2014-03-31

    Physical layer in UASNs Our main investigations are about underwater communications using acoustic waves. Elec- tromagnetic and optical waves do not...Shengli, Z., and Jun-Hong, C. (2008), Prospects and problems of wireless communication for underwater sensor networks, Wirel. Commun . Mob. Comput., 8(8... Wireless Communications , 9(9), 2934–2944. [21] Pompili, D. and Akyildiz, I. (2010), A multimedia cross-layer protocol for underwater acoustic sensor networks

  20. Digital sonar design in underwater acoustics principles and applications

    CERN Document Server

    Li, Qihu

    2012-01-01

    "Digital Sonar Design in Underwater Acoustics Principles and Applications" provides comprehensive and up-to-date coverage of research on sonar design, including the basic theory and techniques of digital signal processing, basic concept of information theory, ocean acoustics, underwater acoustic signal propagation theory, and underwater signal processing theory. This book discusses the general design procedure and approaches to implementation, the design method, system simulation theory and techniques, sonar tests in the laboratory, lake and sea, and practical validation criteria and methods for digital sonar design. It is intended for researchers in the fields of underwater signal processing and sonar design, and also for navy officers and ocean explorers. Qihu Li is a professor at the Institute of Acoustics, Chinese Academy of Sciences, and an academician of the Chinese Academy of Sciences.

  1. Underwater laser detection system

    Science.gov (United States)

    Gomaa, Walid; El-Sherif, Ashraf F.; El-Sharkawy, Yasser H.

    2015-02-01

    The conventional method used to detect an underwater target is by sending and receiving some form of acoustic energy. But the acoustic systems have limitations in the range resolution and accuracy; while, the potential benefits of a laserbased underwater target detection include high directionality, high response, and high range accuracy. Lasers operating in the blue-green region of the light spectrum(420 : 570nm)have a several applications in the area of detection and ranging of submersible targets due to minimum attenuation through water ( less than 0.1 m-1) and maximum laser reflection from estimated target (like mines or submarines) to provide a long range of detection. In this paper laser attenuation in water was measured experimentally by new simple method by using high resolution spectrometer. The laser echoes from different targets (metal, plastic, wood, and rubber) were detected using high resolution CCD camera; the position of detection camera was optimized to provide a high reflection laser from target and low backscattering noise from the water medium, digital image processing techniques were applied to detect and discriminate the echoes from the metal target and subtract the echoes from other objects. Extraction the image of target from the scattering noise is done by background subtraction and edge detection techniques. As a conclusion, we present a high response laser imaging system to detect and discriminate small size, like-mine underwater targets.

  2. Performance Evaluation of Hybrid Acoustic-Optical Underwater Swarm Networks

    Directory of Open Access Journals (Sweden)

    Samuela PERSIA

    2016-04-01

    Full Text Available The Underwater Swarm is a particular Underwater Network configuration characterized by nodes very close one to each other, with mobility capability. The structure of the network is that of a distributed network, in which the nodes, through the exchange of control information, will take decisions in collaborative manner. This type of network raises challenges for its effective design and development, for which the only use of acoustic communication as traditionally suggested in underwater communication could be not enough. A new emerging solution could be a hybrid solution that combines the use of acoustic and optical channel in order to overcome the acoustic channel limitations in underwater environment. In this work, we want to investigate how the acoustic and optical communications influence the Underwater Swarm performance by considering the Low Layers Protocols (Physical Layer, Data Link Layer and Network Layer effects over the two different propagation technologies. Performance simulations have been carried out to suggest how the new hybrid system could be designed. This study will permit to provide useful analysis for the real implementation of an Underwater Swarm based on hybrid communication technology.

  3. An Alignment Method for the Integration of Underwater 3D Data Captured by a Stereovision System and an Acoustic Camera.

    Science.gov (United States)

    Lagudi, Antonio; Bianco, Gianfranco; Muzzupappa, Maurizio; Bruno, Fabio

    2016-04-14

    The integration of underwater 3D data captured by acoustic and optical systems is a promising technique in various applications such as mapping or vehicle navigation. It allows for compensating the drawbacks of the low resolution of acoustic sensors and the limitations of optical sensors in bad visibility conditions. Aligning these data is a challenging problem, as it is hard to make a point-to-point correspondence. This paper presents a multi-sensor registration for the automatic integration of 3D data acquired from a stereovision system and a 3D acoustic camera in close-range acquisition. An appropriate rig has been used in the laboratory tests to determine the relative position between the two sensor frames. The experimental results show that our alignment approach, based on the acquisition of a rig in several poses, can be adopted to estimate the rigid transformation between the two heterogeneous sensors. A first estimation of the unknown geometric transformation is obtained by a registration of the two 3D point clouds, but it ends up to be strongly affected by noise and data dispersion. A robust and optimal estimation is obtained by a statistical processing of the transformations computed for each pose. The effectiveness of the method has been demonstrated in this first experimentation of the proposed 3D opto-acoustic camera.

  4. An Alignment Method for the Integration of Underwater 3D Data Captured by a Stereovision System and an Acoustic Camera

    Directory of Open Access Journals (Sweden)

    Antonio Lagudi

    2016-04-01

    Full Text Available The integration of underwater 3D data captured by acoustic and optical systems is a promising technique in various applications such as mapping or vehicle navigation. It allows for compensating the drawbacks of the low resolution of acoustic sensors and the limitations of optical sensors in bad visibility conditions. Aligning these data is a challenging problem, as it is hard to make a point-to-point correspondence. This paper presents a multi-sensor registration for the automatic integration of 3D data acquired from a stereovision system and a 3D acoustic camera in close-range acquisition. An appropriate rig has been used in the laboratory tests to determine the relative position between the two sensor frames. The experimental results show that our alignment approach, based on the acquisition of a rig in several poses, can be adopted to estimate the rigid transformation between the two heterogeneous sensors. A first estimation of the unknown geometric transformation is obtained by a registration of the two 3D point clouds, but it ends up to be strongly affected by noise and data dispersion. A robust and optimal estimation is obtained by a statistical processing of the transformations computed for each pose. The effectiveness of the method has been demonstrated in this first experimentation of the proposed 3D opto-acoustic camera.

  5. Evaluation of an Efficient Approach for Target Tracking from Acoustic Imagery for the Perception System of an Autonomous Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Sebastián A. Villar

    2014-02-01

    Full Text Available This article describes the core algorithms of the perception system to be included within an autonomous underwater vehicle (AUV. This perception system is based on the acoustic data acquired from side scan sonar (SSS. These data should be processed in an efficient time, so that the perception system is able to detect and recognize a predefined target. This detection and recognition outcome is therefore an important piece of knowledge for the AUVs dynamic mission planner (DMP. Effectively, the DMP should propose different trajectories, navigation depths and other parameters that will change the robot's behaviour according to the perception system output. Hence, the time in which to make a decision is critical in order to assure safe robot operation and to acquire good quality data; consequently, the efficiency of the on-line image processing from acoustic data is a key issue. Current techniques for acoustic data processing are time and computationally intensive. Hence, it was decided to process data coming from a SSS using a technique that is used for radars, due to its efficiency and its amenability to on-line processing. The engineering problem to solve in this case was underwater pipeline tracking for routine inspections in the off-shore industry. Then, an automatic oil pipeline detection system was developed borrowing techniques from the processing of radar measurements. The radar technique is known as Cell Average – Constant False Alarm Rate (CA – CFAR. With a slight variation of the algorithms underlying this radar technique, which consisted of the previous accumulation of partial sums, a great improvement in computing time and effort was achieved. Finally, a comparison with previous approaches over images acquired with a SSS from a vessel in the Salvador de Bahia bay in Brazil showed the feasibility of using this on-board technique for AUV perception.

  6. Underwater Acoustic Communication Quality Evaluation Model Based on USV

    Directory of Open Access Journals (Sweden)

    Zhichao Lv

    2018-01-01

    Full Text Available The unmanned surface vehicle (USV integrated with acoustic modems has some advantages such as easy integration, rapid placement, and low cost, which becomes a kind of selective novel node in the underwater acoustic (UWA communication network and a kind of underwater or overwater communication relay as well. However, it is difficult to ensure the communication quality among the nodes on the network due to the random underwater acoustic channel, the severe marine environment, and the complex mobile node system. Aiming to model the communication characteristics of the USV, the multipath effect and Doppler effect are main concerns for the UWA communication in this paper, so that the ray beam method is utilized, the channel transmission function and the channel gain are obtained, and the mobile communication quality evaluation model is built. The simulation and lake experiments verify that the built mobile UWA communication quality evaluation model on USV can provide preference and technique support for USV applications.

  7. Underwater Acoustic Target Tracking: A Review.

    Science.gov (United States)

    Luo, Junhai; Han, Ying; Fan, Liying

    2018-01-02

    Advances in acoustic technology and instrumentation now make it possible to explore marine resources. As a significant component of ocean exploration, underwater acoustic target tracking has aroused wide attention both in military and civil fields. Due to the complexity of the marine environment, numerous techniques have been proposed to obtain better tracking performance. In this paper, we survey over 100 papers ranging from innovative papers to the state-of-the-art in this field to present underwater tracking technologies. Not only the related knowledge of acoustic tracking instrument and tracking progress is clarified in detail, but also a novel taxonomy method is proposed. In this paper, algorithms for underwater acoustic target tracking are classified based on the methods used as: (1) instrument-assisted methods; (2) mode-based methods; (3) tracking optimization methods. These algorithms are compared and analyzed in the aspect of dimensions, numbers, and maneuvering of the tracking target, which is different from other survey papers. Meanwhile, challenges, countermeasures, and lessons learned are illustrated in this paper.

  8. Passive Mode Carbon Nanotube Underwater Acoustic Transducer

    Science.gov (United States)

    2016-09-20

    irreversible Joule heat) by an electric light bulb . The reciprocal (or reverse) of this process by supplying heat and shining light to the same electric bulb ...limit the invention to the precise form disclosed; and obviously many modifications and variations are possible in light of the above teaching...300151 1 of 14 PASSIVE MODE CARBON NANOTUBE UNDERWATER ACOUSTIC TRANSDUCER STATEMENT OF GOVERNMENT INTEREST [0001] The invention described

  9. Underwater Glider System Study

    OpenAIRE

    Jenkins, Scott A; Humphreys, Douglas E; Sherman, Jeff; Osse, Jim; Jones, Clayton; Leonard, Naomi; Graver, Joshua; Bachmayer, Ralf; Clem, Ted; Carroll, Paul; Davis, Philip; Berry, Jon; Worley, Paul; Wasyl, Joseph

    2003-01-01

    The goals of this study are to determine how to advance from present capabilities of underwater glider (and hybrid motorglider) technology to what could be possible within the next few years; and to identify critical research issues that must be resolved to make such advancements possible. These goals were pursued by merging archival flight data with numerical model results and system spreadsheet analysis to extrapolate from the present state-of-the–art in underwater (UW) gliders to potential...

  10. Multiuser chirp modulation for underwater acoustic channel based on VTRM

    Directory of Open Access Journals (Sweden)

    Fei Yuan

    2017-05-01

    Full Text Available In this paper, an ascheme is proposed for multiuser underwater acoustic communication by using the multi-chirp rate signals. It differs from the well known TDMA (Time Division Multiple Access, FDMA (Frequency Division Multiple Access or CDMA (Code Division Multiple Access, by assigning each users with different chirp-rate carriers instead of the time, frequency or PN code. Multi-chirp rate signals can be separated from each other by FrFT (Fractional Fourier Transform, which can be regarded as the chirp-based decomposing, and superior to the match filter in the underwater acoustic channel. VTRM (Virtual Time Reverse Mirror is applied into the system to alleviate the ISI caused by the multipatch and make the equalization more simple. Results of computer simulations and pool experiments prove that the proposed multiuser underwater acoustic communication based on the multi-chirp rate exhibit well performance. Outfield experments carrie out in Xiamen Port show that using about 10 kHz bandwidth, four users could communicate at the same time with 425 bps with low BER and can match the UAC application.

  11. Estimation of underwater acoustic fields at high frequencies

    OpenAIRE

    Temsamani, A.B.; Vandenplas, S.; Van Biesen, L.

    2001-01-01

    In this work a parametric modeling of the underwater acoustic field is investigated in a laboratory scale at high frequencies (150-850 kHz). The aim is to develop experimentally verifiable theoretical models to investigate the acoustic field propagation in elastic and viscoelastic or porous media. To achieve this goal, the efforts have been directed to three integral parts pertaining to the development of the methods. The first part deals with the modeling of the underwater acoustic field fol...

  12. On the Performance of the Underwater Acoustic Sensor Networks

    Science.gov (United States)

    2015-05-01

    waves for Underwater Wireless Communication (UWC); radio waves, optical waves, and acoustic waves are few to name. Radio waves are good for extra low...2211 underwater communication , wireless sensors, mutual information REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR...Cotae, “On the Performance of the Underwater Wireless Communication Sensor Networks: Work in Progress” ASEE Mid-Atlantic Fall 2014 Conference

  13. MEMS-based Optic Fiber Fabry-Perot Sensor for Underwater Acoustic Measurement with A Wavelength-switched System

    Science.gov (United States)

    Xia, J.; Y Wang, F.; Luo, H.; Hu, Y. M.; Xiong, S. D.

    2017-12-01

    In this paper, a MEMS-based extrinsic Farby-Perot Interferometric (EFPI) acoustic pressure acoustic sensor is presented. The diaphragm structure is used as the second reflected surface, and the sensitive surface to acoustic pressure. A wavelength-switched phase demodulation system for EFPI sensors is used for acoustic signal recovery. The modified phase demodulation system has been demonstrated to recover the signal to a stable intensity fluctuation level of ±0.5 dB at the test frequency of 2000 Hz. In the test depth of 50cm, the sensor has a resonant frequency of 3.7 kHz, a flat frequency range of 10-800Hz, and a corresponding acoustic pressure sensitivity of -159 dB re. 1/μPa.

  14. A Secure Communication Suite for Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Angelica Lo Duca

    2012-11-01

    Full Text Available In this paper we describe a security suite for Underwater Acoustic Sensor Networks comprising both fixed and mobile nodes. The security suite is composed of a secure routing protocol and a set of cryptographic primitives aimed at protecting the confidentiality and the integrity of underwater communication while taking into account the unique characteristics and constraints of the acoustic channel. By means of experiments and simulations based on real data, we show that the suite is suitable for an underwater networking environment as it introduces limited, and sometimes negligible, communication and power consumption overhead.

  15. An Energy Harvesting Underwater Acoustic Transmitter for Aquatic Animals

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huidong; Tian, Chuan; Lu, Jun; Myjak, Mitchell J.; Martinez, Jayson J.; Brown, Richard S.; Deng, Zhiqun

    2016-09-20

    This paper presents a self-powered underwater acoustic transmitter using a piezoelectric beam to harvest the mechanical energy from fish swimming. This transmitter does not require a battery and is demonstrated in live fish. It transmits an acoustic waveform as the implanted fish swims. It enables long-term monitoring of aquatic animals.

  16. Trade-off Analysis of Underwater Acoustic Sensor Networks

    Science.gov (United States)

    Tuna, G.; Das, R.

    2017-09-01

    In the last couple of decades, Underwater Acoustic Sensor Networks (UASNs) were started to be used for various commercial and non-commercial purposes. However, in underwater environments, there are some specific inherent constraints, such as high bit error rate, variable and large propagation delay, limited bandwidth capacity, and short-range communications, which severely degrade the performance of UASNs and limit the lifetime of underwater sensor nodes as well. Therefore, proving reliability of UASN applications poses a challenge. In this study, we try to balance energy consumption of underwater acoustic sensor networks and minimize end-to-end delay using an efficient node placement strategy. Our simulation results reveal that if the number of hops is reduced, energy consumption can be reduced. However, this increases end-to-end delay. Hence, application-specific requirements must be taken into consideration when determining a strategy for node deployment.

  17. Underwater acoustic communications. From point-to-point to networks

    OpenAIRE

    Jesus, S. M.

    2013-01-01

    This is a review presentation that addresses recent developments in underwater acoustic telemetry as a tool for ocean observation, monitoring and protection. Distributed sensing is a paradigm with important reflections in oceanic technology where bottom installed structures can not always be connected to a central hub through cabled networks. Moreover, recent developments in ocean robotics lead to the off-the-shelf availability of autonomous underwater vehicles that rely on wireless communica...

  18. Improving Passive Time Reversal Underwater Acoustic Communications Using Subarray Processing

    Directory of Open Access Journals (Sweden)

    Chengbing He

    2017-04-01

    Full Text Available Multichannel receivers are usually employed in high-rate underwater acoustic communication to achieve spatial diversity. In the context of multichannel underwater acoustic communications, passive time reversal (TR combined with a single-channel adaptive decision feedback equalizer (TR-DFE is a low-complexity solution to achieve both spatial and temporal focusing. In this paper, we present a novel receiver structure to combine passive time reversal with a low-order multichannel adaptive decision feedback equalizer (TR-MC-DFE to improve the performance of the conventional TR-DFE. First, the proposed method divides the whole received array into several subarrays. Second, we conduct passive time reversal processing in each subarray. Third, the multiple subarray outputs are equalized with a low-order multichannel DFE. We also investigated different channel estimation methods, including least squares (LS, orthogonal matching pursuit (OMP, and improved proportionate normalized least mean squares (IPNLMS. The bit error rate (BER and output signal-to-noise ratio (SNR performances of the receiver algorithms are evaluated using simulation and real data collected in a lake experiment. The source-receiver range is 7.4 km, and the data rate with quadrature phase shift keying (QPSK signal is 8 kbits/s. The uncoded BER of the single input multiple output (SIMO systems varies between 1 × 10 − 1 and 2 × 10 − 2 for the conventional TR-DFE, and between 1 × 10 − 2 and 1 × 10 − 3 for the proposed TR-MC-DFE when eight hydrophones are utilized. Compared to conventional TR-DFE, the average output SNR of the experimental data is enhanced by 3 dB.

  19. Optimal Sensor placement for acoustic range-based underwater robotic positioning

    Digital Repository Service at National Institute of Oceanography (India)

    Glotzbach, T.; Moreno-Salinas, D.; Aranda, J.; Pascoal, A.M.

    of transponders. In what follow, we give a very brief overview of range-based positioning systems. To estimate the position of an underwater agent by means of acoustic range measurements, one needs several objects (reference objects or ROs henceforward... between target position and optimal acoustic sensor positions. For real sea operations, where the accuracy of range measuring devices is plagued by intermittent failures, outliers, and multipath propagation effects, it is important to have...

  20. Interpreting underwater acoustic images of the upper ocean boundary layer

    International Nuclear Information System (INIS)

    Ulloa, Marco J

    2007-01-01

    A challenging task in physical studies of the upper ocean using underwater sound is the interpretation of high-resolution acoustic images. This paper covers a number of basic concepts necessary for undergraduate and postgraduate students to identify the most distinctive features of the images, providing a link with the acoustic signatures of physical processes occurring simultaneously beneath the surface of the sea. Sonars are so sensitive that they detected a new acoustic signature at the breaking of surface gravity waves in deep water, which resembles oblique motion-like vortices

  1. Adaptive turbo equalization for underwater acoustic communication

    NARCIS (Netherlands)

    Cannelli, L; Leus, G.; Dol, H.S.; Walree, P.A. van

    2013-01-01

    In this paper a multiband transceiver designed for underwater channels is presented. Multi-branch filtering at the receiver is used to leverage the diversity offered by a multi-scale multi-lag scenario. The multi-branch bank of filters is constructed by estimating scale and delay coefficients

  2. Wireless Underwater Monitoring Systems Based on Energy Harvestings

    Directory of Open Access Journals (Sweden)

    Sea-Hee HWANGBO

    2013-01-01

    Full Text Available One of the important research fields for aquatic exploitation and conservation is underwater wireless sensor network. Since limited energy source for underwater nodes and devices is a main open problem, in this paper, we propose wireless underwater monitoring systems powered by energy harvester which resolves the energy constraint. The target system generates renewable energy from energy harvester and shares the energy with underwater sensor nodes. For the realization of the system, key components to be investigated are discriminated as follows: acoustic modem, actuator, smart battery charge controller, energy harvester and wireless power transfer module. By developing acoustic modem, actuator and smart battery charge controller and utilizing off-the-shelf energy harvester and wireless power transfer module, we design and implement a prototype of the system. Also, we verify the feasibility of concept of target system by conducting indoor and outdoor experiments.

  3. Optimal Node Placement in Underwater Acoustic Sensor Network

    KAUST Repository

    Felemban, Muhamad

    2011-10-01

    Almost 70% of planet Earth is covered by water. A large percentage of underwater environment is unexplored. In the past two decades, there has been an increase in the interest of exploring and monitoring underwater life among scientists and in industry. Underwater operations are extremely difficult due to the lack of cheap and efficient means. Recently, Wireless Sensor Networks have been introduced in underwater environment applications. However, underwater communication via acoustic waves is subject to several performance limitations, which makes the relevant research issues very different from those on land. In this thesis, we investigate node placement for building an initial Underwater Wireless Sensor Network infrastructure. Firstly, we formulated the problem into a nonlinear mathematic program with objectives of minimizing the total transmission loss under a given number of sensor nodes and targeted volume. We conducted experiments to verify the proposed formulation, which is solved using Matlab optimization tool. We represented each node with a truncated octahedron to fill out the 3D space. The truncated octahedrons are tiled in the 3D space with each node in the center where locations of the nodes are given using 3D coordinates. Results are supported using ns-3 simulator. Results from simulation are consistent with the obtained results from mathematical model with less than 10% error.

  4. Task Allocation and Path Planning for Collaborative Autonomous Underwater Vehicles Operating through an Underwater Acoustic Network

    Directory of Open Access Journals (Sweden)

    Yueyue Deng

    2013-01-01

    Full Text Available Dynamic and unstructured multiple cooperative autonomous underwater vehicle (AUV missions are highly complex operations, and task allocation and path planning are made significantly more challenging under realistic underwater acoustic communication constraints. This paper presents a solution for the task allocation and path planning for multiple AUVs under marginal acoustic communication conditions: a location-aided task allocation framework (LAAF algorithm for multitarget task assignment and the grid-based multiobjective optimal programming (GMOOP mathematical model for finding an optimal vehicle command decision given a set of objectives and constraints. Both the LAAF and GMOOP algorithms are well suited in poor acoustic network condition and dynamic environment. Our research is based on an existing mobile ad hoc network underwater acoustic simulator and blind flooding routing protocol. Simulation results demonstrate that the location-aided auction strategy performs significantly better than the well-accepted auction algorithm developed by Bertsekas in terms of task-allocation time and network bandwidth consumption. We also demonstrate that the GMOOP path-planning technique provides an efficient method for executing multiobjective tasks by cooperative agents with limited communication capabilities. This is in contrast to existing multiobjective action selection methods that are limited to networks where constant, reliable communication is assumed to be available.

  5. Laboratory investigation of a passive acoustic method for measurement of underwater gas seep ebullition.

    Science.gov (United States)

    Greene, Chad A; Wilson, Preston S

    2012-01-01

    Passive acoustic techniques are of interest as a low-power means of quantifying underwater point-source gas ebullition. Toward the development of systems for logging natural seep activity, laboratory experiments were performed that exploited the bubble's Minnaert natural frequency for the measurement of gas flow from a model seep. Results show agreement among acoustic, optical, and gas trap ebullition measurements over the range of emission rates from 0 to 10 bubbles per second. A mathematical model is proposed to account for the real gas behavior of bubbles which cannot be approximated as ideal, such as methane at marine depths exceeding 30 m. © 2012 Acoustical Society of America.

  6. Autonomous Acoustic Receiver System

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Collects underwater acoustic data and oceanographic data. Data are recorded onboard an ocean buoy and can be telemetered to a remote ship or shore station...

  7. An efficient method to measure reliability of underwater acoustic communication links

    Directory of Open Access Journals (Sweden)

    Roee Diamant

    2016-04-01

    Full Text Available We consider the problem of evaluating the reliability of underwater acoustic communication (UWAC systems. Reliability is a requirement for any communication system and is often defined as the probability to achieve a target bit error rate. Evaluation of system reliability is often performed empirically by conducting a large number of measurements. However, for UWAC, where experiments are expensive and time-consuming, not much data is available to perform such a reliability check. Based on the assumption that the long delay spread is the dominant characteristic of the underwater acoustic channel and for a given channel model, we offer a relaxed practical approach to evaluate the reliability of an UWAC system. As a test case, we show reliability results for the multiple input multiple output (MIMO code division multiple access (CDMA communication system.

  8. Underwater laser imaging system (UWLIS)

    Energy Technology Data Exchange (ETDEWEB)

    DeLong, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Practical limitations with underwater imaging systems area reached when the noise in the back scattered radiation generated in the water between the imaging system and the target obscures the spatial contrast and resolution necessary for target discovery and identification. The advent of high power lasers operating in the blue-green portion of the visible spectrum (oceanic transmission window) has led to improved experimental illumination systems for underwater imaging. Range-gated and synchronously scanned devices take advantage of the unique temporal and spatial coherence properties of laser radiation, respectively, to overcome the deleterious effects of common volume back scatter.

  9. Signal Processing of Underwater Acoustic Waves

    Science.gov (United States)

    1969-11-01

    goes through a surface dipole distribution.. Show that when the work is expressed as a Stieltjes integral, this difficulty is avoided. 4.6 A stochastic...and Sons, Inc., New York, 1953 Duflos, J.: Etude des Effects de 1’Echantillonnage en Detection des Signaux Foibles, l’Onde Electrique , Paris, No. 443...M., and R. J. Thompson-’ Directivity Study of the Noise Field in the Ocean, Employing a Correlative Dipole , J. Acoust. Soc. Am. 36, pp. 1788-1794

  10. Elliptical acoustic particle motion in underwater waveguides.

    Science.gov (United States)

    Dall'Osto, David R; Dahl, Peter H

    2013-07-01

    Elliptical particle motion, often encountered in acoustic fields containing interference between a source signal and its reflections, can be quantified by the degree of circularity, a vector quantity formulated from acoustic particle velocity, or vector intensity measurements. Acoustic analysis based on the degree of circularity is expected to find application in ocean waveguides as its spatial dependence relates to the acquisition geometry, water column sound speed, surface conditions, and bottom properties. Vector sensor measurements from a laboratory experiment are presented to demonstrate the depth dependence of both the degree of circularity and an approximate formulation based on vertical intensity measurements. The approximation is applied to vertical intensity field measurements made in a 2006 experiment off the New Jersey coast (in waters 80 m deep) to demonstrate the effect of sediment structure on the range dependence of the degree of circularity. The mathematical formulation presented here establishes the framework to readily compute the degree of circularity from experimental measurements; the experimental examples are provided as evidence of the spatial and frequency dependence of this fundamental vector property.

  11. A Survey on Underwater Acoustic Sensor Network Routing Protocols

    Directory of Open Access Journals (Sweden)

    Ning Li

    2016-03-01

    Full Text Available Underwater acoustic sensor networks (UASNs have become more and more important in ocean exploration applications, such as ocean monitoring, pollution detection, ocean resource management, underwater device maintenance, etc. In underwater acoustic sensor networks, since the routing protocol guarantees reliable and effective data transmission from the source node to the destination node, routing protocol design is an attractive topic for researchers. There are many routing algorithms have been proposed in recent years. To present the current state of development of UASN routing protocols, we review herein the UASN routing protocol designs reported in recent years. In this paper, all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layer design routing protocol, and the intelligent algorithm based routing protocol. This is also the first paper that introduces intelligent algorithm-based UASN routing protocols. In addition, in this paper, we investigate the development trends of UASN routing protocols, which can provide researchers with clear and direct insights for further research.

  12. A Survey on Underwater Acoustic Sensor Network Routing Protocols.

    Science.gov (United States)

    Li, Ning; Martínez, José-Fernán; Meneses Chaus, Juan Manuel; Eckert, Martina

    2016-03-22

    Underwater acoustic sensor networks (UASNs) have become more and more important in ocean exploration applications, such as ocean monitoring, pollution detection, ocean resource management, underwater device maintenance, etc. In underwater acoustic sensor networks, since the routing protocol guarantees reliable and effective data transmission from the source node to the destination node, routing protocol design is an attractive topic for researchers. There are many routing algorithms have been proposed in recent years. To present the current state of development of UASN routing protocols, we review herein the UASN routing protocol designs reported in recent years. In this paper, all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layer design routing protocol, and the intelligent algorithm based routing protocol. This is also the first paper that introduces intelligent algorithm-based UASN routing protocols. In addition, in this paper, we investigate the development trends of UASN routing protocols, which can provide researchers with clear and direct insights for further research.

  13. Target Localization in Underwater Acoustic Sensor Networks Using RSS Measurements

    Directory of Open Access Journals (Sweden)

    Shengming Chang

    2018-02-01

    Full Text Available This paper addresses the target localization problems based on received signal strength (RSS measurements in underwater acoustic wireless sensor network (UWSN. Firstly, the problems based on the maximum likelihood (ML criterion for estimating target localization in cases of both known and unknown transmit power are respectively derived, and fast implementation algorithms are proposed by transforming the non-convex problems into a generalized trust region subproblem (GTRS frameworks. A three-step procedure is also provided to enhance the estimation accuracy in the unknown target transmit power case. Furthermore, the Cramer–Rao lower bounds (CRLBs in both cases are derived. Computer simulation results show the superior performance of the proposed methods in the underwater environment.

  14. High-rate wireless data communications: An underwater acoustic communications framework at the physical layer

    Directory of Open Access Journals (Sweden)

    Bessios Anthony G.

    1996-01-01

    Full Text Available A variety of signal processing functions are performed by Underwater Acoustic Systems. These include: 1 detection to determine presence or absence of information signals in the presence of noise, or an attempt to describe which of a predetermined finite set of possible messages { m i , i , ... , M } the signal represents; 2 estimation of some parameter θ ˆ associated with the received signal (i.e. range, depth, bearing angle, etc.; 3 classification and source identification; 4 dynamics tracking; 5 navigation (collision avoidance and terminal guidance; 6 countermeasures; and 7 communications. The focus of this paper is acoustic communications. There is a global current need to develop reliable wireless digital communications for the underwater environment, with sufficient performance and efficiency to substitute for costly wired systems. One possible goal is a wireless system implementation that insures underwater terminal mobility. There is also a vital need to improve the performance of the existing systems in terms of data-rate, noise immunity, operational range, and power consumption, since, in practice, portable high-speed, long range, compact, low-power systems are desired. We concede the difficulties associated with acoustic systems and concentrate on the development of robust data transmission methods anticipating the eventual need for real time or near real time video transmission. An overview of the various detection techniques and the general statistical digital communication problem is given based on a statistical decision theory framework. The theoretical formulation of the underwater acoustic data communications problem includes modeling of the stochastic channel to incorporate a variety of impairments and environmental uncertainties, and proposal of new compensation strategies for an efficient and robust receiver design.

  15. Design and Analysis of Underwater Acoustic Networks with Reflected Links

    Science.gov (United States)

    Emokpae, Lloyd

    Underwater acoustic networks (UWANs) have applications in environmental state monitoring, oceanic profile measurements, leak detection in oil fields, distributed surveillance, and navigation. For these applications, sets of nodes are employed to collaboratively monitor an area of interest and track certain events or phenomena. In addition, it is common to find autonomous underwater vehicles (AUVs) acting as mobile sensor nodes that perform search-and-rescue missions, reconnaissance in combat zones, and coastal patrol. These AUVs are to work cooperatively to achieve a desired goal and thus need to be able to, in an ad-hoc manner, establish and sustain communication links in order to ensure some desired level of quality of service. Therefore, each node is required to adapt to environmental changes and be able to overcome broken communication links caused by external noise affecting the communication channel due to node mobility. In addition, since radio waves are quickly absorbed in the water medium, it is common for most underwater applications to rely on acoustic (or sound) rather than radio channels for mid-to-long range communications. However, acoustic channels pose multiple challenging issues, most notably the high transmission delay due to slow signal propagation and the limited channel bandwidth due to high frequency attenuation. Moreover, the inhomogeneous property of the water medium affects the sound speed profile while the signal surface and bottom reflections leads to multipath effects. In this dissertation, we address these networking challenges by developing protocols that take into consideration the underwater physical layer dynamics. We begin by introducing a novel surface-based reflection scheme (SBR), which takes advantage of the multipath effects of the acoustic channel. SBR works by using reflections from the water surface, and bottom, to establish non-line-of-sight (NLOS) communication links. SBR makes it possible to incorporate both line

  16. Acoustically sticky topographic metasurfaces for underwater sound absorption.

    Science.gov (United States)

    Lee, Hunki; Jung, Myungki; Kim, Minsoo; Shin, Ryung; Kang, Shinill; Ohm, Won-Suk; Kim, Yong Tae

    2018-03-01

    A class of metasurfaces for underwater sound absorption, based on a design principle that maximizes thermoviscous loss, is presented. When a sound meets a solid surface, it leaves a footprint in the form of thermoviscous boundary layers in which energy loss takes place. Considered to be a nuisance, this acoustic to vorticity/entropy mode conversion and the subsequent loss are often ignored in the existing designs of acoustic metamaterials and metasurfaces. The metasurface created is made of a series of topographic meta-atoms, i.e., intaglios and reliefs engraved directly on the solid object to be concealed. The metasurface is acoustically sticky in that it rather facilitates the conversion of the incident sound to vorticity and entropy modes, hence the thermoviscous loss, leading to the desired anechoic property. A prototype metasurface machined on a brass object is tested for its anechoicity, and shows a multitude of absorption peaks as large as unity in the 2-5 MHz range. Computations also indicate that a topographic metasurface is robust to hydrostatic pressure variation, a quality much sought-after in underwater applications.

  17. Dolphin Sounds-Inspired Covert Underwater Acoustic Communication and Micro-Modem

    OpenAIRE

    Gang Qiao; Yunjiang Zhao; Songzuo Liu; Muhammad Bilal

    2017-01-01

    A novel portable underwater acoustic modem is proposed in this paper for covert communication between divers or underwater unmanned vehicles (UUVs) and divers at a short distance. For the first time, real dolphin calls are used in the modem to realize biologically inspired Covert Underwater Acoustic Communication (CUAC). A variety of dolphin whistles and clicks stored in an SD card inside the modem helps to realize different biomimetic CUAC algorithms based on the specified covert scenario. I...

  18. Acoustic Communications Measurement Systems (ACOMMS)

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Design and develop adaptive signal processing techniques to improve underwater acoustic communications and networking. Phase coherent and incoherent signal...

  19. Aquatic Acoustic Metrics Interface Utility for Underwater Sound Monitoring and Analysis

    Science.gov (United States)

    Ren, Huiying; Halvorsen, Michele B.; Deng, Zhiqun Daniel; Carlson, Thomas J.

    2012-01-01

    Fishes and marine mammals may suffer a range of potential effects from exposure to intense underwater sound generated by anthropogenic activities such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording (USR) devices have been built to acquire samples of the underwater sound generated by anthropogenic activities. Software becomes indispensable for processing and analyzing the audio files recorded by these USRs. In this paper, we provide a detailed description of a new software package, the Aquatic Acoustic Metrics Interface (AAMI), specifically designed for analysis of underwater sound recordings to provide data in metrics that facilitate evaluation of the potential impacts of the sound on aquatic animals. In addition to the basic functions, such as loading and editing audio files recorded by USRs and batch processing of sound files, the software utilizes recording system calibration data to compute important parameters in physical units. The software also facilitates comparison of the noise sound sample metrics with biological measures such as audiograms of the sensitivity of aquatic animals to the sound, integrating various components into a single analytical frame. The features of the AAMI software are discussed, and several case studies are presented to illustrate its functionality. PMID:22969353

  20. Aquatic Acoustic Metrics Interface Utility for Underwater Sound Monitoring and Analysis

    Directory of Open Access Journals (Sweden)

    Thomas J. Carlson

    2012-05-01

    Full Text Available Fishes and marine mammals may suffer a range of potential effects from exposure to intense underwater sound generated by anthropogenic activities such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording (USR devices have been built to acquire samples of the underwater sound generated by anthropogenic activities. Software becomes indispensable for processing and analyzing the audio files recorded by these USRs. In this paper, we provide a detailed description of a new software package, the Aquatic Acoustic Metrics Interface (AAMI, specifically designed for analysis of underwater sound recordings to provide data in metrics that facilitate evaluation of the potential impacts of the sound on aquatic animals. In addition to the basic functions, such as loading and editing audio files recorded by USRs and batch processing of sound files, the software utilizes recording system calibration data to compute important parameters in physical units. The software also facilitates comparison of the noise sound sample metrics with biological measures such as audiograms of the sensitivity of aquatic animals to the sound, integrating various components into a single analytical frame. The features of the AAMI software are discussed, and several case studies are presented to illustrate its functionality.

  1. Underwater Acoustic Beacon Location System

    Science.gov (United States)

    2016-12-23

    distance is the predicted detection range R based on consideration of Equations (1) and (2) together with the parameters for SL, NL, DI, DT and alpha ...R nvnv nvnv ia               cossin0 sincos0 0012 (12) [0091] Finally, the positions on the seafloor 500 in the array...numerical values of the beam pattern projected onto the seafloor are divided by the sum of all of the (non- zero ) numerical values projected onto the

  2. AUV Positioning Method Based on Tightly Coupled SINS/LBL for Underwater Acoustic Multipath Propagation

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2016-03-01

    Full Text Available This paper researches an AUV (Autonomous Underwater Vehicle positioning method based on SINS (Strapdown Inertial Navigation System/LBL (Long Base Line tightly coupled algorithm. This algorithm mainly includes SINS-assisted searching method of optimum slant-range of underwater acoustic propagation multipath, SINS/LBL tightly coupled model and multi-sensor information fusion algorithm. Fuzzy correlation peak problem of underwater LBL acoustic propagation multipath could be solved based on SINS positional information, thus improving LBL positional accuracy. Moreover, introduction of SINS-centered LBL locating information could compensate accumulative AUV position error effectively and regularly. Compared to loosely coupled algorithm, this tightly coupled algorithm can still provide accurate location information when there are fewer than four available hydrophones (or within the signal receiving range. Therefore, effective positional calibration area of tightly coupled system based on LBL array is wider and has higher reliability and fault tolerance than loosely coupled. It is more applicable to AUV positioning based on SINS/LBL.

  3. Classification of underwater targets from autonomous underwater vehicle sampled bistatic acoustic scattered fields.

    Science.gov (United States)

    Fischell, Erin M; Schmidt, Henrik

    2015-12-01

    One of the long term goals of autonomous underwater vehicle (AUV) minehunting is to have multiple inexpensive AUVs in a harbor autonomously classify hazards. Existing acoustic methods for target classification using AUV-based sensing, such as sidescan and synthetic aperture sonar, require an expensive payload on each outfitted vehicle and post-processing and/or image interpretation. A vehicle payload and machine learning classification methodology using bistatic angle dependence of target scattering amplitudes between a fixed acoustic source and target has been developed for onboard, fully autonomous classification with lower cost-per-vehicle. To achieve the high-quality, densely sampled three-dimensional (3D) bistatic scattering data required by this research, vehicle sampling behaviors and an acoustic payload for precision timed data acquisition with a 16 element nose array were demonstrated. 3D bistatic scattered field data were collected by an AUV around spherical and cylindrical targets insonified by a 7-9 kHz fixed source. The collected data were compared to simulated scattering models. Classification and confidence estimation were shown for the sphere versus cylinder case on the resulting real and simulated bistatic amplitude data. The final models were used for classification of simulated targets in real time in the LAMSS MOOS-IvP simulation package [M. Benjamin, H. Schmidt, P. Newman, and J. Leonard, J. Field Rob. 27, 834-875 (2010)].

  4. Energy-Efficient Channel Coding Strategy for Underwater Acoustic Networks

    Directory of Open Access Journals (Sweden)

    Grasielli Barreto

    2017-03-01

    Full Text Available Underwater acoustic networks (UAN allow for efficiently exploiting and monitoring the sub-aquatic environment. These networks are characterized by long propagation delays, error-prone channels and half-duplex communication. In this paper, we address the problem of energy-efficient communication through the use of optimized channel coding parameters. We consider a two-layer encoding scheme employing forward error correction (FEC codes and fountain codes (FC for UAN scenarios without feedback channels. We model and evaluate the energy consumption of different channel coding schemes for a K-distributed multipath channel. The parameters of the FEC encoding layer are optimized by selecting the optimal error correction capability and the code block size. The results show the best parameter choice as a function of the link distance and received signal-to-noise ratio.

  5. An Ultra-Lightweight Encryption Scheme in Underwater Acoustic Networks

    Directory of Open Access Journals (Sweden)

    Chunyan Peng

    2016-01-01

    Full Text Available We tackle a fundamental security problem in underwater acoustic networks (UANs. The S-box in the existing block encryption algorithm is more energy consuming and unsuitable for resources-constrained UANs. In this paper, instead of S-box, we present a lightweight, 8-round iteration block cipher algorithm for UANs communication based on chaotic theory and increase the key space by changing the number of iteration round. We further propose secure network architecture of UANs. By analysis, our algorithm can resist brute-force searches and adversarial attacks. Simulation results show that, compared with traditional AES-128 and PRESENT algorithms, our cryptographic algorithm can make a good trade-off between security and overhead, has better energy efficiency, and applies to UANs.

  6. Secure Cooperation of Autonomous Mobile Sensors Using an Underwater Acoustic Network

    Directory of Open Access Journals (Sweden)

    Gianluca Dini

    2012-02-01

    Full Text Available Methodologies and algorithms are presented for the secure cooperation of a team of autonomous mobile underwater sensors, connected through an acoustic communication network, within surveillance and patrolling applications. In particular, the work proposes a cooperative algorithm in which the mobile underwater sensors (installed on Autonomous Underwater Vehicles—AUVs respond to simple local rules based on the available information to perform the mission and maintain the communication link with the network (behavioral approach. The algorithm is intrinsically robust: with loss of communication among the vehicles the coverage performance (i.e., the mission goal is degraded but not lost. The ensuing form of graceful degradation provides also a reactive measure against Denial of Service. The cooperative algorithm relies on the fact that the available information from the other sensors, though not necessarily complete, is trustworthy. To ensure trustworthiness, a security suite has been designed, specifically oriented to the underwater scenario, and in particular with the goal of reducing the communication overhead introduced by security in terms of number and size of messages. The paper gives implementation details on the integration between the security suite and the cooperative algorithm and provides statistics on the performance of the system as collected during the UAN project sea trial held in Trondheim, Norway, in May 2011.

  7. Acoustic and Vibration Control for an Underwater Structure under Mechanical Excitation

    Directory of Open Access Journals (Sweden)

    Shi-Jian Zhu

    2014-01-01

    Full Text Available Acoustic and vibration control for an underwater structure under mechanical excitation has been investigated by using negative feedback control algorithm. The underwater structure is modeled with cylindrical shells, conical shells, and circular bulkheads, of which the motion equations are built with the variational approach, respectively. Acoustic property is analyzed by the Helmholtz integration formulation with boundary element method. Based on negative feedback control algorithm, a control loop with a coupling use of piezoelectric sensor and actuator is built, and accordingly some numerical examples are carried out on active control of structural vibration and acoustic response. Effects of geometrical and material parameters on acoustic and vibration properties are investigated and discussed.

  8. Game Theory-Based Cooperation for Underwater Acoustic Sensor Networks: Taxonomy, Review, Research Challenges and Directions

    Directory of Open Access Journals (Sweden)

    Dalhatu Muhammed

    2018-02-01

    Full Text Available Exploring and monitoring the underwater world using underwater sensors is drawing a lot of attention these days. In this field cooperation between acoustic sensor nodes has been a critical problem due to the challenging features such as acoustic channel failure (sound signal, long propagation delay of acoustic signal, limited bandwidth and loss of connectivity. There are several proposed methods to improve cooperation between the nodes by incorporating information/game theory in the node’s cooperation. However, there is a need to classify the existing works and demonstrate their performance in addressing the cooperation issue. In this paper, we have conducted a review to investigate various factors affecting cooperation in underwater acoustic sensor networks. We study various cooperation techniques used for underwater acoustic sensor networks from different perspectives, with a concentration on communication reliability, energy consumption, and security and present a taxonomy for underwater cooperation. Moreover, we further review how the game theory can be applied to make the nodes cooperate with each other. We further analyze different cooperative game methods, where their performance on different metrics is compared. Finally, open issues and future research direction in underwater acoustic sensor networks are highlighted.

  9. Game Theory-Based Cooperation for Underwater Acoustic Sensor Networks: Taxonomy, Review, Research Challenges and Directions.

    Science.gov (United States)

    Muhammed, Dalhatu; Anisi, Mohammad Hossein; Zareei, Mahdi; Vargas-Rosales, Cesar; Khan, Anwar

    2018-02-01

    Exploring and monitoring the underwater world using underwater sensors is drawing a lot of attention these days. In this field cooperation between acoustic sensor nodes has been a critical problem due to the challenging features such as acoustic channel failure (sound signal), long propagation delay of acoustic signal, limited bandwidth and loss of connectivity. There are several proposed methods to improve cooperation between the nodes by incorporating information/game theory in the node's cooperation. However, there is a need to classify the existing works and demonstrate their performance in addressing the cooperation issue. In this paper, we have conducted a review to investigate various factors affecting cooperation in underwater acoustic sensor networks. We study various cooperation techniques used for underwater acoustic sensor networks from different perspectives, with a concentration on communication reliability, energy consumption, and security and present a taxonomy for underwater cooperation. Moreover, we further review how the game theory can be applied to make the nodes cooperate with each other. We further analyze different cooperative game methods, where their performance on different metrics is compared. Finally, open issues and future research direction in underwater acoustic sensor networks are highlighted.

  10. A numerical method for the calculation of dynamic response and acoustic radiation from an underwater structure

    Science.gov (United States)

    Zhou, Q.; Joseph, P. F.

    2005-05-01

    An approach combining finite element with boundary element methods is proposed to calculate the elastic vibration and acoustic field radiated from an underwater structure. The FEM software NASTRAN is employed for computation of the structural vibration. An uncoupled boundary element method, based on the potential decomposition technique, is described to determine the acoustic added mass and damping coefficients that result due to fluid loading effects. The acoustic matrices of added mass and damping coefficients are then added to the structural mass and damping matrices, respectively, by the DMAP modules of NASTRAN. Numerical results are shown to be in good agreement with experimental data. The complex eigenvalue analyses of underwater structure are obtained by NASTRAN solution sequence SOL107. Results obtained from this study suggest that the natural frequencies of underwater structures are only weakly dependent on the acoustic frequency if the acoustic wavelength is roughly twice as large as the maximum structural dimension.

  11. An acoustically controlled tetherless underwater vehicle for installation and maintenance of neutrino detectors in the deep ocean

    CERN Document Server

    Ballou, P J

    1997-01-01

    The task of installing and servicing high energy neutrino detectors in the deep ocean from a surface support vessel is problematic using conventional tethered systems. An array of multiple detector strings rising 500 m from the ocean floor, and forming a grid with 50 m spacing between the strings, presents a substantial entanglement hazard for equipment cables deployed from the surface. Such tasks may be accomplished with fewer risks using a tetherless underwater remotely operated vehicle that has a local acoustic telemetry link to send control commands and sensor data between the vehicle and a stationary hydrophone suspended above or just outside the perimeter of the work site. The Phase I effort involves the development of an underwater acoustic telemetry link for vehicle control and sensor feedback, the evaluation of video compression methods for real-time acoustic transmission of video through the water, and the defining of local control routines on board the vehicle to allow it to perform certain basic m...

  12. Swarm Underwater Acoustic 3D Localization: Kalman vs Monte Carlo

    Directory of Open Access Journals (Sweden)

    Sergio Taraglio

    2015-07-01

    Full Text Available Two three-dimensional localization algorithms for a swarm of underwater vehicles are presented. The first is grounded on an extended Kalman filter (EKF scheme used to fuse some proprioceptive data such as the vessel's speed and some exteroceptive measurements such as the time of flight (TOF sonar distance of the companion vessels. The second is a Monte Carlo particle filter localization processing the same sensory data suite. The results of several simulations using the two approaches are presented, with comparison. The case of a supporting surface vessel is also considered. An analysis of the robustness of the two approaches against some system parameters is given.

  13. Novel underwater soundscape: acoustic repertoire of plainfin midshipman fish.

    Science.gov (United States)

    McIver, Eileen L; Marchaterre, Margaret A; Rice, Aaron N; Bass, Andrew H

    2014-07-01

    Toadfishes are among the best-known groups of sound-producing (vocal) fishes and include species commonly known as toadfish and midshipman. Although midshipman have been the subject of extensive investigation of the neural mechanisms of vocalization, this is the first comprehensive, quantitative analysis of the spectro-temporal characters of their acoustic signals and one of the few for fishes in general. Field recordings of territorial, nest-guarding male midshipman during the breeding season identified a diverse vocal repertoire composed of three basic sound types that varied widely in duration, harmonic structure and degree of amplitude modulation (AM): 'hum', 'grunt' and 'growl'. Hum duration varied nearly 1000-fold, lasting for minutes at a time, with stable harmonic stacks and little envelope modulation throughout the sound. By contrast, grunts were brief, ~30-140 ms, broadband signals produced both in isolation and repetitively as a train of up to 200 at intervals of ~0.5-1.0 s. Growls were also produced alone or repetitively, but at variable intervals of the order of seconds with durations between those of grunts and hums, ranging 60-fold from ~200 ms to 12 s. Growls exhibited prominent harmonics with sudden shifts in pulse repetition rate and highly variable AM patterns, unlike the nearly constant AM of grunt trains and flat envelope of hums. Behavioral and neurophysiological studies support the hypothesis that each sound type's unique acoustic signature contributes to signal recognition mechanisms. Nocturnal production of these sounds against a background chorus dominated constantly for hours by a single sound type, the multi-harmonic hum, reveals a novel underwater soundscape for fish. © 2014. Published by The Company of Biologists Ltd.

  14. Underwater Acoustic Transponders Tracking While Mapping With A Multibeam Echo-Sounder

    Science.gov (United States)

    de Moustier, C. P.; Franzheim, A.; Testa, W.; Burns, J. M.; Foy, R.

    2010-12-01

    A 160 kHz multibeam echo-sounder was used to interrogate and receive the replies from custom-built miniature underwater acoustic transponders attached to the carapace of king crabs in Womens Bay, Alaska. This new application of multibeam echo-sounders combines acoustic tracking and mapping, thus providing environmental context to the tracking information. Each transponder replies with its own coded sequence that stands out from other echoes received by the sonar. Range and bearing of the replies from multiple transponders can be obtained in a single sonar ping. The king crab experiment was done in 25-35 m of water depth, and the system was successfully tested without animals at 190 m depth. Work supported by NOAA's Undersea Research Program Grant G4768, with field work support from NOAA-NMFS/AFSC/RACE and Electronic Navigation Ltd.

  15. Low complexity adaptive equalizers for underwater acoustic communications

    Science.gov (United States)

    Soflaei, Masoumeh; Azmi, Paeiz

    2014-08-01

    Interference signals due to scattering from surface and reflecting from bottom is one of the most important problems of reliable communications in shallow water channels. To solve this problem, one of the best suggested ways is to use adaptive equalizers. Convergence rate and misadjustment error in adaptive algorithms play important roles in adaptive equalizer performance. In this paper, affine projection algorithm (APA), selective regressor APA(SR-APA), family of selective partial update (SPU) algorithms, family of set-membership (SM) algorithms and selective partial update selective regressor APA (SPU-SR-APA) are compared with conventional algorithms such as the least mean square (LMS) in underwater acoustic communications. We apply experimental data from the Strait of Hormuz for demonstrating the efficiency of the proposed methods over shallow water channel. We observe that the values of the steady-state mean square error (MSE) of SR-APA, SPU-APA, SPU-normalized least mean square (SPU-NLMS), SPU-SR-APA, SM-APA and SM-NLMS algorithms decrease in comparison with the LMS algorithm. Also these algorithms have better convergence rates than LMS type algorithm.

  16. Model-based processing for underwater acoustic arrays

    CERN Document Server

    Sullivan, Edmund J

    2015-01-01

    This monograph presents a unified approach to model-based processing for underwater acoustic arrays. The use of physical models in passive array processing is not a new idea, but it has been used on a case-by-case basis, and as such, lacks any unifying structure. This work views all such processing methods as estimation procedures, which then can be unified by treating them all as a form of joint estimation based on a Kalman-type recursive processor, which can be recursive either in space or time, depending on the application. This is done for three reasons. First, the Kalman filter provides a natural framework for the inclusion of physical models in a processing scheme. Second, it allows poorly known model parameters to be jointly estimated along with the quantities of interest. This is important, since in certain areas of array processing already in use, such as those based on matched-field processing, the so-called mismatch problem either degrades performance or, indeed, prevents any solution at all. Third...

  17. Magnetohydrodynamic underwater vehicular propulsion systems

    International Nuclear Information System (INIS)

    Swallom, D.W.; Sadovnik, I.; Gibbs, J.S.; Gurol, H.; Nguyen, L.

    1990-01-01

    The development of magnetohydrodynamic propulsion systems for underwater vehicles is discussed. According to the authors, it is a high risk endeavor that offers the possibility of a number of significant advantages over conventional propeller propulsion systems. These advantages may include the potential for greater stealth characteristics, increased maneuverability, enhanced survivability, elimination of cavitation limits, and addition of a significant emergency propulsion system. The possibility of increased stealth is by far the most important advantage. A conceptual design study has been completed with numerical results that shows that these advantages may be obtained with a magnetohydrodynamic propulsion system in an annular configuration externally surrounding a generic study submarine that is neutrally buoyant and can operate with the existing submarine propulsion system power plant. The classical submarine mission requirements make the use of these characteristics of the magnetohydrodynamic propulsion system particularly appropriate for submarine missions. The magnetohydrodynamic annular propulsion system for a generic attack class submarine has been designed to take advantage of the magnetohydrodynamic thruster characteristics

  18. A GPS-free passive acoustic localization scheme for underwater wireless sensor networks

    KAUST Repository

    Mirza, Mohammed

    2011-10-01

    Seaweb is an acoustic communication technology that enables communication between sensor nodes. Seaweb interconnects the underwater nodes through digital signal processing (DSP)-based modem by using acoustic links between the neighbouring sensors. In this paper, we design and investigate a global positioning system (GPS)-free passive localization protocol using seaweb technology. This protocol uses the range data and planar trigonometry to estimate the positions of the discovered nodes. We take into consideration the small displacement of sensor nodes due to watch circles and placement of sensor nodes on non-uniform underwater surface, for precise localization. Once the nodes are localized, we divide the whole network .eld into circular levels that minimizes the traf.c complexity and thereby increases the lifetime of the sensor network .eld. We then form the mesh network inside each of the circular levels that increases the reliability. The algorithm is designed in such a way that it overcomes the ambiguous nodes errata and re.ected paths and makes the algorithm more robust. The synthetic network geometries are so designed which can evaluate the algorithm in the presence of perfect or imperfect ranges or in case of incomplete data. A comparative study is made with the existing algorithms which proves our newly proposed algorithm to be more effective. © 2011 IEEE.

  19. Investigation on the Effect of Underwater Acoustic Pressure on the Fundamental Mode of Hollow-Core Photonic Bandgap Fibers

    Directory of Open Access Journals (Sweden)

    Adel Abdallah

    2015-01-01

    Full Text Available Recently, microstructured optical fibers have become the subject of extensive research as they can be employed in many civilian and military applications. One of the recent areas of research is to enhance the normalized responsivity (NR to acoustic pressure of the optical fiber hydrophones by replacing the conventional single mode fibers (SMFs with hollow-core photonic bandgap fibers (HC-PBFs. However, this needs further investigation. In order to fully understand the feasibility of using HC-PBFs as acoustic pressure sensors and in underwater communication systems, it is important to study their modal properties in this environment. In this paper, the finite element solver (FES COMSOL Multiphysics is used to study the effect of underwater acoustic pressure on the effective refractive index neff of the fundamental mode and discuss its contribution to NR. Besides, we investigate, for the first time to our knowledge, the effect of underwater acoustic pressure on the effective area Aeff and the numerical aperture (NA of the HC-PBF.

  20. Feature Extraction of Underwater Target Signal Using Mel Frequency Cepstrum Coefficients Based on Acoustic Vector Sensor

    Directory of Open Access Journals (Sweden)

    Lanyue Zhang

    2016-01-01

    Full Text Available Feature extraction method using Mel frequency cepstrum coefficients (MFCC based on acoustic vector sensor is researched in the paper. Signals of pressure are simulated as well as particle velocity of underwater target, and the features of underwater target using MFCC are extracted to verify the feasibility of the method. The experiment of feature extraction of two kinds of underwater targets is carried out, and these underwater targets are classified and recognized by Backpropagation (BP neural network using fusion of multi-information. Results of the research show that MFCC, first-order differential MFCC, and second-order differential MFCC features could be used as effective features to recognize those underwater targets and the recognition rate, which using the particle velocity signal is higher than that using the pressure signal, could be improved by using fusion features.

  1. Wide-band underwater acoustic absorption based on locally resonant unit and interpenetrating network structure

    International Nuclear Information System (INIS)

    Heng, Jiang; Mi-Lin, Zhang; Yu-Ren, Wang; Yan-Ping, Hu; Ding, Lan; Qun-Li, Wu; Huan-Tong, Lu

    2010-01-01

    The interpenetrating network structure provides an interesting avenue to novel materials. Locally resonant phononic crystal (LRPC) exhibits excellent sound attenuation performance based on the periodical arrangement of sound wave scatters. Combining the LRPC concept and interpenetrating network glassy structure, this paper has developed a new material which can achieve a wide band underwater strong acoustic absorption. Underwater absorption coefficients of different samples were measured by the pulse tube. Measurement results show that the new material possesses excellent underwater acoustic effects in a wide frequency range. Moreover, in order to investigate impacts of locally resonant units, some defects are introduced into the sample. The experimental result and the theoretical calculation both show that locally resonant units being connected to a network structure play an important role in achieving a wide band strong acoustic absorption. (condensed matter: structure, thermal and mechanical properties)

  2. Autonomous Underwater Vehicle Magnetic Mapping System

    Science.gov (United States)

    Steigerwalt, R.; Johnson, R. M.; Trembanis, A. C.; Schmidt, V. E.; Tait, G.

    2012-12-01

    An Autonomous Underwater Vehicle (AUV) Magnetic Mapping (MM) System has been developed and tested for military munitions detection as well as pipeline locating, wreck searches, and geologic surveys in underwater environments. The system is comprised of a high sensitivity Geometrics G-880AUV cesium vapor magnetometer integrated with a Teledyne-Gavia AUV and associated Doppler enabled inertial navigation further utilizing traditional acoustic bathymetric and side scan imaging. All onboard sensors and associated electronics are managed through customized crew members to autonomously operate through the vehicles primary control module. Total field magnetic measurements are recorded with asynchronous time-stamped data logs which include position, altitude, heading, pitch, roll, and electrical current usage. Pre-planned mission information can be uploaded to the system operators to define data collection metrics including speed, height above seafloor, and lane or transect spacing specifically designed to meet data quality objectives for the survey. As a result of the AUVs modular design, autonomous navigation and rapid deployment capabilities, the AUV MM System provides cost savings over current surface vessel surveys by reducing the mobilization/demobilization effort, thus requiring less manpower for operation and reducing or eliminating the need for a surface support vessel altogether. When the system completes its mission, data can be remotely downloaded via W-LAN and exported for use in advanced signal processing platforms. Magnetic compensation software has been concurrently developed to accept electrical current measurements directly from the AUV to address distortions from permanent and induced magnetization effects on the magnetometer. Maneuver and electrical current compensation terms can be extracted from the magnetic survey missions to perform automated post-process corrections. Considerable suppression of system noise has been observed over traditional

  3. Energy Harvesting Hybrid Acoustic-Optical Underwater Wireless Sensor Networks Localization

    KAUST Repository

    Saeed, Nasir

    2017-12-26

    Underwater wireless technologies demand to transmit at higher data rate for ocean exploration. Currently, large coverage is achieved by acoustic sensor networks with low data rate, high cost, high latency, high power consumption, and negative impact on marine mammals. Meanwhile, optical communication for underwater networks has the advantage of the higher data rate albeit for limited communication distances. Moreover, energy consumption is another major problem for underwater sensor networks, due to limited battery power and difficulty in replacing or recharging the battery of a sensor node. The ultimate solution to this problem is to add energy harvesting capability to the acoustic-optical sensor nodes. Localization of underwater sensor networks is of utmost importance because the data collected from underwater sensor nodes is useful only if the location of the nodes is known. Therefore, a novel localization technique for energy harvesting hybrid acoustic-optical underwater wireless sensor networks (AO-UWSNs) is proposed. AO-UWSN employs optical communication for higher data rate at a short transmission distance and employs acoustic communication for low data rate and long transmission distance. A hybrid received signal strength (RSS) based localization technique is proposed to localize the nodes in AO-UWSNs. The proposed technique combines the noisy RSS based measurements from acoustic communication and optical communication and estimates the final locations of acoustic-optical sensor nodes. A weighted multiple observations paradigm is proposed for hybrid estimated distances to suppress the noisy observations and give more importance to the accurate observations. Furthermore, the closed form solution for Cramer-Rao lower bound (CRLB) is derived for localization accuracy of the proposed technique.

  4. Energy Harvesting Hybrid Acoustic-Optical Underwater Wireless Sensor Networks Localization

    Directory of Open Access Journals (Sweden)

    Nasir Saeed

    2017-12-01

    Full Text Available Underwater wireless technologies demand to transmit at higher data rate for ocean exploration. Currently, large coverage is achieved by acoustic sensor networks with low data rate, high cost, high latency, high power consumption, and negative impact on marine mammals. Meanwhile, optical communication for underwater networks has the advantage of the higher data rate albeit for limited communication distances. Moreover, energy consumption is another major problem for underwater sensor networks, due to limited battery power and difficulty in replacing or recharging the battery of a sensor node. The ultimate solution to this problem is to add energy harvesting capability to the acoustic-optical sensor nodes. Localization of underwater sensor networks is of utmost importance because the data collected from underwater sensor nodes is useful only if the location of the nodes is known. Therefore, a novel localization technique for energy harvesting hybrid acoustic-optical underwater wireless sensor networks (AO-UWSNs is proposed. AO-UWSN employs optical communication for higher data rate at a short transmission distance and employs acoustic communication for low data rate and long transmission distance. A hybrid received signal strength (RSS based localization technique is proposed to localize the nodes in AO-UWSNs. The proposed technique combines the noisy RSS based measurements from acoustic communication and optical communication and estimates the final locations of acoustic-optical sensor nodes. A weighted multiple observations paradigm is proposed for hybrid estimated distances to suppress the noisy observations and give more importance to the accurate observations. Furthermore, the closed form solution for Cramer-Rao lower bound (CRLB is derived for localization accuracy of the proposed technique.

  5. Energy Harvesting Hybrid Acoustic-Optical Underwater Wireless Sensor Networks Localization.

    Science.gov (United States)

    Saeed, Nasir; Celik, Abdulkadir; Al-Naffouri, Tareq Y; Alouini, Mohamed-Slim

    2017-12-26

    Underwater wireless technologies demand to transmit at higher data rate for ocean exploration. Currently, large coverage is achieved by acoustic sensor networks with low data rate, high cost, high latency, high power consumption, and negative impact on marine mammals. Meanwhile, optical communication for underwater networks has the advantage of the higher data rate albeit for limited communication distances. Moreover, energy consumption is another major problem for underwater sensor networks, due to limited battery power and difficulty in replacing or recharging the battery of a sensor node. The ultimate solution to this problem is to add energy harvesting capability to the acoustic-optical sensor nodes. Localization of underwater sensor networks is of utmost importance because the data collected from underwater sensor nodes is useful only if the location of the nodes is known. Therefore, a novel localization technique for energy harvesting hybrid acoustic-optical underwater wireless sensor networks (AO-UWSNs) is proposed. AO-UWSN employs optical communication for higher data rate at a short transmission distance and employs acoustic communication for low data rate and long transmission distance. A hybrid received signal strength (RSS) based localization technique is proposed to localize the nodes in AO-UWSNs. The proposed technique combines the noisy RSS based measurements from acoustic communication and optical communication and estimates the final locations of acoustic-optical sensor nodes. A weighted multiple observations paradigm is proposed for hybrid estimated distances to suppress the noisy observations and give more importance to the accurate observations. Furthermore, the closed form solution for Cramer-Rao lower bound (CRLB) is derived for localization accuracy of the proposed technique.

  6. Adaptive Equalizer Based on Second-Order Cone Programming in Underwater Acoustic Communication

    Directory of Open Access Journals (Sweden)

    Yang CHEN

    2014-01-01

    Full Text Available An improved adaptive equalizer based on the principle of minimum mean square error (MMSE is proposed. This optimization problem which is shown to be convex, is transformed to second-order cone (SOC and solved using the interior point method instead of conventional iterative methods such as least mean squares (LMS or recursive least squares (RLS. To validate its performance a single-carrier system for underwater acoustic communication with digital phase-locked loop and the adaptive fractional spaced equalizers was designed and a lake trial was carried out. According to the results, comparing with traditional equalizers based on LMS and RLS algorithms, the equalizer proposed needs no iterative process and gets rid of the contradiction between convergent rate and precision. Therefore it overcomes the difficulty of parameters setting. Furthermore, the algorithm needs much less training codes to achieve the same equalization performance and improves the communication efficiency.

  7. Energy balanced strategies for maximizing the lifetime of sparsely deployed underwater acoustic sensor networks.

    Science.gov (United States)

    Luo, Hanjiang; Guo, Zhongwen; Wu, Kaishun; Hong, Feng; Feng, Yuan

    2009-01-01

    Underwater acoustic sensor networks (UWA-SNs) are envisioned to perform monitoring tasks over the large portion of the world covered by oceans. Due to economics and the large area of the ocean, UWA-SNs are mainly sparsely deployed networks nowadays. The limited battery resources is a big challenge for the deployment of such long-term sensor networks. Unbalanced battery energy consumption will lead to early energy depletion of nodes, which partitions the whole networks and impairs the integrity of the monitoring datasets or even results in the collapse of the entire networks. On the contrary, balanced energy dissipation of nodes can prolong the lifetime of such networks. In this paper, we focus on the energy balance dissipation problem of two types of sparsely deployed UWA-SNs: underwater moored monitoring systems and sparsely deployed two-dimensional UWA-SNs. We first analyze the reasons of unbalanced energy consumption in such networks, then we propose two energy balanced strategies to maximize the lifetime of networks both in shallow and deep water. Finally, we evaluate our methods by simulations and the results show that the two strategies can achieve balanced energy consumption per node while at the same time prolong the networks lifetime.

  8. A fast and accurate decoder for underwater acoustic telemetry.

    Science.gov (United States)

    Ingraham, J M; Deng, Z D; Li, X; Fu, T; McMichael, G A; Trumbo, B A

    2014-07-01

    The Juvenile Salmon Acoustic Telemetry System, developed by the U.S. Army Corps of Engineers, Portland District, has been used to monitor the survival of juvenile salmonids passing through hydroelectric facilities in the Federal Columbia River Power System. Cabled hydrophone arrays deployed at dams receive coded transmissions sent from acoustic transmitters implanted in fish. The signals' time of arrival on different hydrophones is used to track fish in 3D. In this article, a new algorithm that decodes the received transmissions is described and the results are compared to results for the previous decoding algorithm. In a laboratory environment, the new decoder was able to decode signals with lower signal strength than the previous decoder, effectively increasing decoding efficiency and range. In field testing, the new algorithm decoded significantly more signals than the previous decoder and three-dimensional tracking experiments showed that the new decoder's time-of-arrival estimates were accurate. At multiple distances from hydrophones, the new algorithm tracked more points more accurately than the previous decoder. The new algorithm was also more than 10 times faster, which is critical for real-time applications on an embedded system.

  9. An acoustically controlled tetherless underwater vehicle for installation and maintenance of neutrino detectors in the deep ocean

    International Nuclear Information System (INIS)

    Ballou, Philip J.

    1997-01-01

    The task of installing and servicing high energy neutrino detectors in the deep ocean from a surface support vessel is problematic using conventional tethered systems. An array of multiple detector strings rising 500 m from the ocean floor, and forming a grid with 50 m spacing between the strings, presents a substantial entanglement hazard for equipment cables deployed from the surface. Such tasks may be accomplished with fewer risks using a tetherless underwater remotely operated vehicle that has a local acoustic telemetry link to send control commands and sensor data between the vehicle and a stationary hydrophone suspended above or just outside the perimeter of the work site. The Phase I effort involves the development of an underwater acoustic telemetry link for vehicle control and sensor feedback, the evaluation of video compression methods for real-time acoustic transmission of video through the water, and the defining of local control routines on board the vehicle to allow it to perform certain basic maneuvering tasks autonomously, or to initiate a self-rescue if the acoustic control link should be lost. In Phase II, a prototype tetherless vehicle system will be designed and constructed to demonstrate the ability to install cable interconnections within a detector array at 4 km depth. The same control technology could be used with a larger more powerful vehicle to maneuver the detector strings into desired positions as they are being lowered to the ocean floor

  10. An acoustically controlled tetherless underwater vehicle for installation and maintenance of neutrino detectors in the deep ocean

    Energy Technology Data Exchange (ETDEWEB)

    Ballou, Philip J.

    1997-02-01

    The task of installing and servicing high energy neutrino detectors in the deep ocean from a surface support vessel is problematic using conventional tethered systems. An array of multiple detector strings rising 500 m from the ocean floor, and forming a grid with 50 m spacing between the strings, presents a substantial entanglement hazard for equipment cables deployed from the surface. Such tasks may be accomplished with fewer risks using a tetherless underwater remotely operated vehicle that has a local acoustic telemetry link to send control commands and sensor data between the vehicle and a stationary hydrophone suspended above or just outside the perimeter of the work site. The Phase I effort involves the development of an underwater acoustic telemetry link for vehicle control and sensor feedback, the evaluation of video compression methods for real-time acoustic transmission of video through the water, and the defining of local control routines on board the vehicle to allow it to perform certain basic maneuvering tasks autonomously, or to initiate a self-rescue if the acoustic control link should be lost. In Phase II, a prototype tetherless vehicle system will be designed and constructed to demonstrate the ability to install cable interconnections within a detector array at 4 km depth. The same control technology could be used with a larger more powerful vehicle to maneuver the detector strings into desired positions as they are being lowered to the ocean floor.

  11. Statistical Modeling of Large-Scale Signal Path Loss in Underwater Acoustic Networks

    Directory of Open Access Journals (Sweden)

    Manuel Perez Malumbres

    2013-02-01

    Full Text Available In an underwater acoustic channel, the propagation conditions are known to vary in time, causing the deviation of the received signal strength from the nominal value predicted by a deterministic propagation model. To facilitate a large-scale system design in such conditions (e.g., power allocation, we have developed a statistical propagation model in which the transmission loss is treated as a random variable. By applying repetitive computation to the acoustic field, using ray tracing for a set of varying environmental conditions (surface height, wave activity, small node displacements around nominal locations, etc., an ensemble of transmission losses is compiled and later used to infer the statistical model parameters. A reasonable agreement is found with log-normal distribution, whose mean obeys a log-distance increases, and whose variance appears to be constant for a certain range of inter-node distances in a given deployment location. The statistical model is deemed useful for higher-level system planning, where simulation is needed to assess the performance of candidate network protocols under various resource allocation policies, i.e., to determine the transmit power and bandwidth allocation necessary to achieve a desired level of performance (connectivity, throughput, reliability, etc..

  12. The influence of environmental parameters on the optimal frequency in a shallow underwater acoustic channel

    Science.gov (United States)

    Zarnescu, George

    2015-02-01

    In a shallow underwater acoustic channel the delayed replicas of a transmitted signal are mainly due to the interactions with the sea surface and the bottom layer. If a specific underwater region on the globe is considered, for which the sedimentary layer structure is constant across the transmission distance, then the variability of the amplitude-delay profile is determined by daily and seasonal changes of the sound speed profile (SSP) and by weather changes, such as variations of the wind speed. Such a parameter will influence the attenuation at the surface, the noise level and the profile of the sea surface. The temporal variation of the impulse response in a shallow underwater acoustic channel determines the variability of the optimal transmission frequency. If the ways in which the optimal frequency changes can be predicted, then an adaptive analog transceiver can be easily designed for an underwater acoustic modem or it can be found when a communication link has high throughput. In this article it will be highlighted the way in which the amplitude-delay profile is affected by the sound speed profile, wind speed and channel depth and also will be emphasized the changes of the optimal transmission frequency in a configuration, where the transmitter and receiver are placed on the seafloor and the bathymetry profile will be considered flat, having a given composition.

  13. Underwater Advanced Time-Domain Electromagnetic System

    Science.gov (United States)

    2017-03-03

    sufficiently waterproofed ...................................................................... 20 Objective: Calibration method can be used both topside... additional background variability is observed at early times, as illustrated in Figure 15. The layout of this figure is the same as Figure 14. Now the...are discussed in the following sections and summarized in Table 5. Objective: System is sufficiently waterproofed The array remained underwater up to

  14. Underwater Multi-Vehicle Trajectory Alignment and Mapping Using Acoustic and Optical Constraints.

    Science.gov (United States)

    Campos, Ricard; Gracias, Nuno; Ridao, Pere

    2016-03-17

    Multi-robot formations are an important advance in recent robotic developments, as they allow a group of robots to merge their capacities and perform surveys in a more convenient way. With the aim of keeping the costs and acoustic communications to a minimum, cooperative navigation of multiple underwater vehicles is usually performed at the control level. In order to maintain the desired formation, individual robots just react to simple control directives extracted from range measurements or ultra-short baseline (USBL) systems. Thus, the robots are unaware of their global positioning, which presents a problem for the further processing of the collected data. The aim of this paper is two-fold. First, we present a global alignment method to correct the dead reckoning trajectories of multiple vehicles to resemble the paths followed during the mission using the acoustic messages passed between vehicles. Second, we focus on the optical mapping application of these types of formations and extend the optimization framework to allow for multi-vehicle geo-referenced optical 3D mapping using monocular cameras. The inclusion of optical constraints is not performed using the common bundle adjustment techniques, but in a form improving the computational efficiency of the resulting optimization problem and presenting a generic process to fuse optical reconstructions with navigation data. We show the performance of the proposed method on real datasets collected within the Morph EU-FP7 project.

  15. Underwater Multi-Vehicle Trajectory Alignment and Mapping Using Acoustic and Optical Constraints

    Directory of Open Access Journals (Sweden)

    Ricard Campos

    2016-03-01

    Full Text Available Multi-robot formations are an important advance in recent robotic developments, as they allow a group of robots to merge their capacities and perform surveys in a more convenient way. With the aim of keeping the costs and acoustic communications to a minimum, cooperative navigation of multiple underwater vehicles is usually performed at the control level. In order to maintain the desired formation, individual robots just react to simple control directives extracted from range measurements or ultra-short baseline (USBL systems. Thus, the robots are unaware of their global positioning, which presents a problem for the further processing of the collected data. The aim of this paper is two-fold. First, we present a global alignment method to correct the dead reckoning trajectories of multiple vehicles to resemble the paths followed during the mission using the acoustic messages passed between vehicles. Second, we focus on the optical mapping application of these types of formations and extend the optimization framework to allow for multi-vehicle geo-referenced optical 3D mapping using monocular cameras. The inclusion of optical constraints is not performed using the common bundle adjustment techniques, but in a form improving the computational efficiency of the resulting optimization problem and presenting a generic process to fuse optical reconstructions with navigation data. We show the performance of the proposed method on real datasets collected within the Morph EU-FP7 project.

  16. The influence of acoustic emissions for underwater data transmission on the behaviour of harbour porpoises (Phocoena phocoena) in a floating pen

    NARCIS (Netherlands)

    Kastelein, R.A.; Verboom, W.C.; Muijsers, M.; Jennings, N.V.; Heul, S. van der

    2005-01-01

    To prevent grounding of ships and collisions between ships in shallow coastal waters, an underwater data collection and communication network is currently under development: Acoustic Communication network for Monitoring of underwater Environment in coastal areas (ACME). Marine mammals might be

  17. A Recovery System for Unmanned Underwater Vehicles

    Science.gov (United States)

    2017-09-28

    300170 1 of 10 A RECOVERY SYSTEM FOR UNMANNED UNDERWATER VEHICLES STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may...6 of 10 forces cannot be easily predicted and can be strong enough to require a significantly larger handling system and significantly more...the sea state, the ship handling system , the capture mechanism and the design of the capture mechanism 400. [0024] The water jets 100 will increase

  18. Ocean Acoustic Propagation and Coherence Studies

    Science.gov (United States)

    2015-09-30

    Propagation variability is an inescapable complicating factor for both active and passive sonar systems, and for underwater acoustic communications...framework, to be exploited in the use of underwater sound in shallow water. Our knowledge of acoustic field patterns in shallow water, building block...Ocean Acoustics and Signals Laboratory . Five acoustic studies are planned: 1. Canyon and slope acoustics : Identify purely geometrically controlled

  19. Modeling and Control of Underwater Robotic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Schjoelberg, I:

    1996-12-31

    This doctoral thesis describes modeling and control of underwater vehicle-manipulator systems. The thesis also presents a model and a control scheme for a system consisting of a surface vessel connected to an underwater robotic system by means of a slender marine structure. The equations of motion of the underwater vehicle and manipulator are described and the system kinematics and properties presented. Feedback linearization technique is applied to the system and evaluated through a simulation study. Passivity-based controllers for vehicle and manipulator control are presented. Stability of the closed loop system is proved and simulation results are given. The equation of motion for lateral motion of a cable/riser system connected to a surface vessel at the top end and to a thruster at the bottom end is described and stability analysis and simulations are presented. The equations of motion in 3 degrees of freedom of the cable/riser, surface vessel and robotic system are given. Stability analysis of the total system with PD-controllers is presented. 47 refs., 32 figs., 7 tabs.

  20. Underwater Inspection of Navigation Structures with an Acoustic Camera

    Science.gov (United States)

    2013-08-01

    38  Figure 4-11. Masonry wall comparison of visible image and acoustical image, downtown landing, Mississippi River, Vicksburg...early automated mosaic software efforts. ERDC/ITL TR-13-3 39 Figure 4-11. Masonry wall comparison of visible image and acoustical image...areas not accessible by conventional side- scan or multi-beam deployments. Figure 4-19 shows a profile and surface view of various sheet pilings

  1. A Double Rate Localization Algorithm with One Anchor for Multi-Hop Underwater Acoustic Networks

    Science.gov (United States)

    Gao, Jingjie; Shen, Xiaohong; Zhao, Ruiqin; Mei, Haodi; Wang, Haiyan

    2017-01-01

    Localization is a basic issue for underwater acoustic networks (UANs). Currently, most localization algorithms only perform well in one-hop networks or need more anchors which are not suitable for the underwater environment. In this paper, we proposed a double rate localization algorithm with one anchor for multi-hop underwater acoustic networks (DRL). The algorithm firstly presents a double rate scheme which separates the localization procedure into two modes to increase the ranging accuracy in multi-hop UANs while maintaining the transmission rate. Then an optimal selection scheme of reference nodes was proposed to reduce the influence of references’ topology on localization performance. The proposed DRL algorithm can be used in the multi-hop UANs to increase the localization accuracy and reduce the usage of anchor nodes. The simulation and experimental results demonstrated that the proposed DRL algorithm has a better localization performance than the previous algorithms in many aspects such as accuracy and communication cost, and is more suitable to the underwater environment. PMID:28452942

  2. Dolphin Sounds-Inspired Covert Underwater Acoustic Communication and Micro-Modem

    Science.gov (United States)

    Qiao, Gang; Liu, Songzuo; Bilal, Muhammad

    2017-01-01

    A novel portable underwater acoustic modem is proposed in this paper for covert communication between divers or underwater unmanned vehicles (UUVs) and divers at a short distance. For the first time, real dolphin calls are used in the modem to realize biologically inspired Covert Underwater Acoustic Communication (CUAC). A variety of dolphin whistles and clicks stored in an SD card inside the modem helps to realize different biomimetic CUAC algorithms based on the specified covert scenario. In this paper, the information is conveyed during the time interval between dolphin clicks. TMS320C6748 and TLV320AIC3106 are the core processors used in our unique modem for fast digital processing and interconnection with other terminals or sensors. Simulation results show that the bit error rate (BER) of the CUAC algorithm is less than 10−5 when the signal to noise ratio is over ‒5 dB. The modem was tested in an underwater pool, and a data rate of 27.1 bits per second at a distance of 10 m was achieved. PMID:29068363

  3. Dolphin Sounds-Inspired Covert Underwater Acoustic Communication and Micro-Modem

    Directory of Open Access Journals (Sweden)

    Gang Qiao

    2017-10-01

    Full Text Available A novel portable underwater acoustic modem is proposed in this paper for covert communication between divers or underwater unmanned vehicles (UUVs and divers at a short distance. For the first time, real dolphin calls are used in the modem to realize biologically inspired Covert Underwater Acoustic Communication (CUAC. A variety of dolphin whistles and clicks stored in an SD card inside the modem helps to realize different biomimetic CUAC algorithms based on the specified covert scenario. In this paper, the information is conveyed during the time interval between dolphin clicks. TMS320C6748 and TLV320AIC3106 are the core processors used in our unique modem for fast digital processing and interconnection with other terminals or sensors. Simulation results show that the bit error rate (BER of the CUAC algorithm is less than 10 − 5 when the signal to noise ratio is over ‒5 dB. The modem was tested in an underwater pool, and a data rate of 27.1 bits per second at a distance of 10 m was achieved.

  4. Dolphin Sounds-Inspired Covert Underwater Acoustic Communication and Micro-Modem.

    Science.gov (United States)

    Qiao, Gang; Zhao, Yunjiang; Liu, Songzuo; Bilal, Muhammad

    2017-10-25

    A novel portable underwater acoustic modem is proposed in this paper for covert communication between divers or underwater unmanned vehicles (UUVs) and divers at a short distance. For the first time, real dolphin calls are used in the modem to realize biologically inspired Covert Underwater Acoustic Communication (CUAC). A variety of dolphin whistles and clicks stored in an SD card inside the modem helps to realize different biomimetic CUAC algorithms based on the specified covert scenario. In this paper, the information is conveyed during the time interval between dolphin clicks. TMS320C6748 and TLV320AIC3106 are the core processors used in our unique modem for fast digital processing and interconnection with other terminals or sensors. Simulation results show that the bit error rate (BER) of the CUAC algorithm is less than 10 - 5 when the signal to noise ratio is over ‒5 dB. The modem was tested in an underwater pool, and a data rate of 27.1 bits per second at a distance of 10 m was achieved.

  5. Cascading Multi-Hop Reservation and Transmission in Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jae-Won Lee

    2014-10-01

    Full Text Available The long propagation delay in an underwater acoustic channel makes designing an underwater media access control (MAC protocol more challenging. In particular, handshaking-based MAC protocols widely used in terrestrial radio channels have been known to be inappropriate in underwater acoustic channels, because of the inordinately large latency involved in exchanging control packets. Furthermore, in the case of multi-hop relaying in a hop-by-hop handshaking manner, the end-to-end delay significantly increases. In this paper, we propose a new MAC protocol named cascading multi-hop reservation and transmission (CMRT. In CMRT, intermediate nodes between a source and a destination may start handshaking in advance for the next-hop relaying before handshaking for the previous node is completed. By this concurrent relaying, control packet exchange and data delivery cascade down to the destination. In addition, to improve channel utilization, CMRT adopts a packet-train method where multiple data packets are sent together by handshaking once. Thus, CMRT reduces the time taken for control packet exchange and accordingly increases the throughput. The performance of CMRT is evaluated and compared with that of two conventional MAC protocols (multiple-access collision avoidance for underwater (MACA-U and MACA-U with packet trains (MACA-UPT. The results show that CMRT outperforms other MAC protocols in terms of both throughput and end-to-end delay.

  6. Underwater target positioning with a single acoustic sensor

    Digital Repository Service at National Institute of Oceanography (India)

    David, M-S; Pascoal, A.M.; Joaquin, A.

    the efficacy of the algorithms with real vehicles at sea. ACKNOWLEDGEMENTS The authors thank the Ministerio de Ciencia e Innovacion for its support under project DPI2009-14552-C02-02. The work of the second author was partially supported by the EU FP7 Project...), 1461, 2010. D.B. Jourdan and N. Roy. Optimal Sensor Placement for Agent Localization. ACM Transactions on Sensor Networks (TOSN), Volume 4,Article No. 13, 2008. M.B. Larsen. Autonomous Navigation of Underwater Ve- hicles. PhD thesis, Department...

  7. Improving the Navys Passive Underwater Acoustic Monitoring of Marine Mammal Populations

    Science.gov (United States)

    2015-09-30

    degrees in marine biology and physics, with minors in math and ocean sciences. In addition, a senior undergraduate student from the UCSD department of...Group. These data have been combined with those from HARP sites in the Santa Barbara Channel and at Hoke Seamount (discussed in Helble et al., 2013a...DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited. Improving the Navy’s Passive Underwater Acoustic

  8. A Framework for Multiple Object Tracking in Underwater Acoustic MIMO Communication Channels

    Directory of Open Access Journals (Sweden)

    Domingo Rodriguez

    2017-02-01

    Full Text Available This work presents a computational framework for the analysis and design of large-scale algorithms utilized in the estimation of acoustic, doubly-dispersive, randomly time-variant, underwater communication channels. Channel estimation results are used, in turn, in the proposed framework for the development of efficient high performance algorithms, based on fast Fourier transformations, for the search, detection, estimation and tracking (SDET of underwater moving objects through acoustic wavefront signal analysis techniques associated with real-time electronic surveillance and acoustic monitoring (eSAM operations. Particular importance is given in this work to the estimation of the range and speed of deep underwater moving objects modeled as point targets. The work demonstrates how to use Kronecker products signal algebra (KSA, a branch of finite-dimensional tensor signal algebra, as a mathematical language for the formulation of novel variants of parallel orthogonal matching pursuit (POMP algorithms, as well as a programming aid for mapping these algorithms to large-scale computational structures, using a modified Kuck’s paradigm for parallel computation.

  9. Combined Hybrid DFE and CCK Remodulator for Medium-Range Single-Carrier Underwater Acoustic Communications

    Directory of Open Access Journals (Sweden)

    Xialin Jiang

    2017-01-01

    Full Text Available Advanced modulation and channel equalization techniques are essential for improving the performance of medium-range single-carrier underwater acoustic communications. In this paper, an enhanced detection scheme, hybrid time-frequency domain decision feedback equalizer (DFE combined with complementary code keying (CCK remodulator, is presented. CCK modulation technique provides strong tolerance to intersymbol interference caused by multipath propagation in underwater acoustic channels. The conventional hybrid DFE, using a frequency domain feedforward filter and a time domain feedback filter, provides good performance along with low computational complexity. The error propagation in the feedback filter, caused by feedbacking wrong decisions prior to CCK demodulation, may lead to great performance degradation. In our proposed scheme, with the help of CCK coding gain, more accurate remodulated CCK chips can be used as feedback. The proposed detection scheme is tested by the practical ocean experiments. The experimental results show that the proposed detection scheme ensures robust communications over 10-kilometre underwater acoustic channels with the data rate at 5 Kbits/s in 3 kHz of channel bandwidth.

  10. Underwater Acoustic Matched Field Imaging Based on Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Huichen Yan

    2015-10-01

    Full Text Available Matched field processing (MFP is an effective method for underwater target imaging and localizing, but its performance is not guaranteed due to the nonuniqueness and instability problems caused by the underdetermined essence of MFP. By exploiting the sparsity of the targets in an imaging area, this paper proposes a compressive sensing MFP (CS-MFP model from wave propagation theory by using randomly deployed sensors. In addition, the model’s recovery performance is investigated by exploring the lower bounds of the coherence parameter of the CS dictionary. Furthermore, this paper analyzes the robustness of CS-MFP with respect to the displacement of the sensors. Subsequently, a coherence-excluding coherence optimized orthogonal matching pursuit (CCOOMP algorithm is proposed to overcome the high coherent dictionary problem in special cases. Finally, some numerical experiments are provided to demonstrate the effectiveness of the proposed CS-MFP method.

  11. HULU SUNGAI PERAK BED SEDIMENT MAPPING USING UNDERWATER ACOUSTIC SONAR

    Directory of Open Access Journals (Sweden)

    N. Arriafdi

    2016-09-01

    Full Text Available Development in acoustic survey techniques in particular side scan sonar have revolutionized the way we are able to image, map and understand the riverbed environment. It is now cost effective to image large areas of the riverbed using these techniques and the backscatter image created from surveys provides base line data from which thematic maps of the riverbed environment including maps of morphological geology, can be derived when interpreted in conjunction with in situ sampling data. This article focuses on investigation characteristics of sediments and correlation of side scan backscatter image with signal strength. The interpretation of acoustic backscatter rely on experienced interpretation by eye of grey scale images produced from the data. A 990F Starfish Side Scan Sonar was used to collect and develop a series of sonar images along 6 km of Hulu Sungai Perak. Background sediments could be delineated accurately and the image textures could be linked to the actual river floor appearance through grab sampling. A major difference was found in the acoustic returns from the two research area studies: the upstream area shows much rougher textures. This is due to an actual differences in riverbed roughness, caused by a difference in bottom currents and sediment dynamics in the two areas. The highest backscatter correlates with coarsest and roughness sediment. Result suggest that image based backscatter classification shows considerable promise for interpretation of side scan sonar data for the production of geological maps.

  12. Calibration Techniques for Accurate Measurements by Underwater Camera Systems.

    Science.gov (United States)

    Shortis, Mark

    2015-12-07

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems.

  13. Calibration Techniques for Accurate Measurements by Underwater Camera Systems

    Directory of Open Access Journals (Sweden)

    Mark Shortis

    2015-12-01

    Full Text Available Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems.

  14. Underwater Acoustic Propagation in the Philippine Sea: Intensity Fluctuations

    Science.gov (United States)

    White, Andrew W.

    In the spring of 2009, broadband transmissions from a ship-suspended source with a 284 Hz center frequency were received on a moored and navigated vertical array of hydrophones over a range of 107 km in the Philippine Sea. During a 60-hour period over 19 000 transmissions were carried out. The observed wavefront arrival structure reveals four distinct purely refracted acoustic paths: one with a single upper turning point near 80 m depth, two with a pair of upper turning points at a depth of roughly 300 m, and one with three upper turning points at 420 m. Individual path intensity, defined as the absolute square of the center frequency Fourier component for that arrival, was estimated over the 60-hour duration and used to compute scintillation index and log-intensity variance. Monte Carlo parabolic equation simulations using internal-wave induced sound speed perturbations obeying the Garrett-Munk internal-wave en- ergy spectrum were in agreement with measured data for the three deeper-turning paths but differed by as much as a factor of four for the near surface-interacting path. Estimates of the power spectral density and temporal autocorrelation function of intensity were attempted, but were complicated by gaps in the measured time-series. Deep fades in intensity were observed in the near surface-interacting path. Hypothesized causes for the deep fades were examined through further acoustic propagation modeling and analysis of various available oceanographic measurements.

  15. Acoustic communication for Maya Autonomous Underwater Vehicle - performance evaluation of acoustic modem

    Digital Repository Service at National Institute of Oceanography (India)

    Afzulpurkar, S.; Maurya, P.; Navelkar, G.S.; Desa, E.S.; Mascarenhas, A.A.M.Q.; Dabholkar, N.A.; Madhan, R.; Prabhudesai, S.P.

    traffic. This necessitates monitoring the AUV status and data quality through an acoustic link which needs to perform reliably under such conditions, at long range. To address these situations partially, acoustic communication capability is planned...

  16. Acoustic imaging system

    Science.gov (United States)

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  17. Multiuser sonar watermarking and detection in an underwater acoustic channel

    Science.gov (United States)

    Mobasseri, Bijan G.; Lynch, Robert S.; Andiario, David

    2013-06-01

    Sonar watermarking is the practice of embedding low-power, secure digital signatures in the time frequency space of a waveform. The algorithm is designed for a single source/receiver configuration. However, in a multiuser environment, multiple sources broadcast sonar waveforms that overlap in both time and frequency. The receiver can be configured as a filter bank where each bank is dedicated to detecting a specific watermark. However, a filter bank is prone to mutual interference as multiple sonar waveforms are simultaneously present at the detector input. To mitigate mutual interference, a multiuser watermark detector is formulated as a decorrelating detector that decouples detection amongst the watermark signatures. The acoustic channel is simulated in software and modeled by an FIR filter. This model is used to compensate for the degradation of spreading sequences used for watermark embedding. The test statistic generated at the output of the decorrelating detector is used in a joint maximum likelihood ratio detector to establish the presence or absence of the watermark in each sonar waveform. ROC curves are produced for multiple sources positioned at varying ranges subject to ambient ocean noise controlled by varying sea states.

  18. Use of acoustic systems for underwater archaeology

    Digital Repository Service at National Institute of Oceanography (India)

    Vora, K.H.

    stream_size 2 stream_content_type text/plain stream_name J_Mar_Archaeol_2_71.pdf.txt stream_source_info J_Mar_Archaeol_2_71.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  19. Acoustic building infiltration measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Muehleisen, Ralph T.; Raman, Ganesh

    2018-04-10

    Systems and methods of detecting and identifying a leak from a container or building. Acoustic pressure and velocity are measured. Acoustic properties are acquired from the measured values. The acoustic properties are converted to infiltration/leakage information. Nearfield Acoustic Holography (NAH) may be one method to detect the leakages from a container by locating the noise sources.

  20. Underwater acoustic sensor networks: Medium access control, routing and reliable transfer

    Science.gov (United States)

    Xie, Peng

    Recently there have been growing interests in monitoring aquatic environments for scientific exploration, commercial exploitation and coastline protection. The ideal vehicle for this type of extensive monitoring is a mobile underwater sensor network (M-UWSN), consisting of a large number of low cost underwater sensors that can move with water currents and dispersion. M-UWSNs are significantly different from terrestrial sensor networks: (1) Radio channels do not work well under water. They must be replaced by acoustic channels, which feature long propagation delays, low communication bandwidth and high channel error rates; (2) While most ground sensors are static, underwater sensor nodes may move with water currents (and other underwater activities), as introduces passive sensor mobility. Due to the very different environment properties and the unique characteristics of acoustic channels, the protocols developed for terrestrial sensor networks are not applicable to M-UWSNs, and new research at every level of the protocol suite is demanded. In this dissertation work, we investigate three fundamental networking problems in M-UWSN design: medium access control, multi-hop routing and reliable data transfer. (1) Medium access control (MAC): the long propagation delays and narrow communication bandwidth of acoustic channels pose the major challenges to the energy-efficient MAC design in M-UWSNs. For the first time, we formally investigate the random access and RTS/CTS techniques in networks with long propagation delays and low communication bandwidth (as in M-UWSNs). Based on this study, we propose a novel reservation-based MAC approach, called R-MAC, for dense underwater sensor networks with unevenly distributed (spatially and temporally) traffic. Simulation results show that R-MAC is not only energy efficient but also supports fairness. (2) Multi-hop routing: In M-UWSNs, energy efficiency and mobility handling are the two major concerns for multi-hop routing, which have

  1. Frequency division multiplexing in wireless underwater acoustic LANs

    Science.gov (United States)

    Bessios, Anthony G.; Caimi, Frank M.

    1995-09-01

    On overview of optical technologies, active and passive components, and systems that are deemed suitable for wireless communications is presented in this paper. Specifically addressed is the use of onboard photonics in advanced spacecraft, satellite, etc. for applications in wireless communications. To assess its viability in potential commercial applications, the state-of-the-art of phonics technology and future prospects for economical large capacity multi-channel services is briefly reviewed.

  2. Collision Detection for Underwater ROV Manipulator Systems.

    Science.gov (United States)

    Sivčev, Satja; Rossi, Matija; Coleman, Joseph; Omerdić, Edin; Dooly, Gerard; Toal, Daniel

    2018-04-06

    Work-class ROVs equipped with robotic manipulators are extensively used for subsea intervention operations. Manipulators are teleoperated by human pilots relying on visual feedback from the worksite. Operating in a remote environment, with limited pilot perception and poor visibility, manipulator collisions which may cause significant damage are likely to happen. This paper presents a real-time collision detection algorithm for marine robotic manipulation. The proposed collision detection mechanism is developed, integrated into a commercial ROV manipulator control system, and successfully evaluated in simulations and experimental setup using a real industry standard underwater manipulator. The presented collision sensing solution has a potential to be a useful pilot assisting tool that can reduce the task load, operational time, and costs of subsea inspection, repair, and maintenance operations.

  3. The Modular Optical Underwater Survey System

    Directory of Open Access Journals (Sweden)

    Ruhul Amin

    2017-10-01

    Full Text Available The Pacific Islands Fisheries Science Center deploys the Modular Optical Underwater Survey System (MOUSS to estimate the species-specific, size-structured abundance of commercially-important fish species in Hawaii and the Pacific Islands. The MOUSS is an autonomous stereo-video camera system designed for the in situ visual sampling of fish assemblages. This system is rated to 500 m and its low-light, stereo-video cameras enable identification, counting, and sizing of individuals at a range of 0.5–10 m. The modular nature of MOUSS allows for the efficient and cost-effective use of various imaging sensors, power systems, and deployment platforms. The MOUSS is in use for surveys in Hawaii, the Gulf of Mexico, and Southern California. In Hawaiian waters, the system can effectively identify individuals to a depth of 250 m using only ambient light. In this paper, we describe the MOUSS’s application in fisheries research, including the design, calibration, analysis techniques, and deployment mechanism.

  4. Underwater Animal Monitoring Magnetic Sensor System

    KAUST Repository

    Kaidarova, Altynay

    2017-10-01

    Obtaining new insights into the behavior of free-living marine organisms is fundamental for conservation efforts and anticipating the impact of climate change on marine ecosystems. Despite the recent advances in biotelemetry, collecting physiological and behavioral parameters of underwater free-living animals remains technically challenging. In this thesis, we develop the first magnetic underwater animal monitoring system that utilizes Tunnel magnetoresistance (TMR) sensors, the most sensitive solid-state sensors today, coupled with flexible magnetic composites. The TMR sensors are composed of CoFeB free layers and MgO tunnel barriers, patterned using standard optical lithography and ion milling procedures. The short and long-term stability of the TMR sensors has been studied using statistical and Allan deviation analysis. Instrumentation noise has been reduced using optimized electrical interconnection schemes. We also develop flexible NdFeB-PDMS composite magnets optimized for applications in corrosive marine environments, and which can be attached to marine animals. The magnetic and mechanical properties are studied for different NdFeB powder concentrations and the performance of the magnetic composites for different exposure times to sea water is systematically investigated. Without protective layer, the composite magnets loose more than 50% of their magnetization after 51 days in seawater. The durability of the composite magnets can be considerably improved by using polymer coatings which are protecting the composite magnet, whereby Parylene C is found to be the most effective solution, providing simultaneously corrosion resistance, flexibility, and enhanced biocompatibility. A Parylene C film of 2μm thickness provides the sufficient protection of the magnetic composite in corrosive aqueous environments for more than 70 days. For the high level performance of the system, the theoretically optimal position of the composite magnets with respect to the sensing

  5. Computer simulations enhance experimental demonstrations in the underwater acoustics and sonar course

    Science.gov (United States)

    Korman, Murray S.

    2002-11-01

    Underwater acoustics and sonar (SP411) is a 3 hour course that is offered to midshipmen in their senior year. Typically, general science and oceanography majors, totaling 110 students/yr, enroll. Since this course is offered without a lab, the ''in class'' experience has been enhanced with the development (over many years) of our demo carts and computer workstations which surround the classroom. In a studio classroom atmosphere, students perform a variety of experiments in small groups. How can scientific visualizations best develop learning of complex interactions? Two examples are presented. PC-IMAT (personal curriculum interactive multisensor analysis training) simulations of multielement array steering support the theory and enhance the experiments that are performed in class such as the two-element array. Mathematica simulations involving the programming and animation of a point source in a rigid-rigid infinite parallel wave guide are used to stress the method of images, superposition, group and phase velocity and far-field modal pattern that is observed as a function of depth and source frequency. Later, students have fun using a ripple tank with an eye dropper to generate a point source between two adjustable parallel boundaries, and their understanding of ''underwater sound'' is greatly enhanced.

  6. Diagonal rejection-based minimum variance distortionless response for fiber underwater acoustic array

    Science.gov (United States)

    Chen, Yang; Zou, Ling; Zhou, Bin

    2017-07-01

    The high mounting precision of the fiber underwater acoustic array leads to an array manifold without perturbation. Besides, the targets are either static or slowly moving in azimuth in underwater acoustic array signal processing. Therefore, the covariance matrix can be estimated accurately by prolonging the observation time. However, this processing is limited to poor bearing resolution due to small aperture, low SNR and strong interferences. In this paper, diagonal rejection (DR) technology for Minimum Variance Distortionless Response (MVDR) was developed to enhance the resolution performance. The core idea of DR is rejecting the main diagonal elements of the covariance matrix to improve the output signal to interference and noise ratio (SINR). The definition of SINR here implicitly assumes independence between the spatial filter and the received observations at which the SINR is measured. The power of noise converges on the diagonal line in the covariance matrix and then it is integrated into the output beams. With the diagonal noise rejected by a factor smaller than 1, the array weights of MVDR will concentrate on interference suppression, leading to a better resolution capability. The algorithm was theoretically proved with optimal rejecting coefficient derived under both infinite and finite snapshots scenarios. Numerical simulations were conducted with an example of a linear array with eight elements half-wavelength spaced. Both resolution and Direction-of-Arrival (DOA) performances of MVDR and DR-based MVDR (DR-MVDR) were compared under different SNR and snapshot numbers. A conclusion can be drawn that with the covariance matrix accurately estimated, DR-MVDR can provide a lower sidelobe output level and a better bearing resolution capacity than MVDR without harming the DOA performance.

  7. Data extraction system for underwater particle holography

    Science.gov (United States)

    Nebrensky, J. J.; Craig, Gary; Hobson, Peter R.; Lampitt, R. S.; Nareid, Helge; Pescetto, A.; Trucco, Andrea; Watson, John

    2000-08-01

    Pulsed laser holography in an extremely powerful technique for the study of particle fields as it allows instantaneous, non-invasive high- resolution recording of substantial volumes. By relaying the real image one can obtain the size, shape, position and - if multiple exposures are made - velocity of every object in the recorded field. Manual analysis of large volumes containing thousands of particles is, however, an enormous and time-consuming task, with operator fatigue an unpredictable source of errors. Clearly the value of holographic measurements also depends crucially on the quality of the reconstructed image: not only will poor resolution degrade the size and shape measurements, but aberrations such as coma and astigmatism can change the perceived centroid of a particle, affecting position and velocity measurements. For large-scale applications of particle field holography, specifically the in situ recording of marine plankton with Holocam, we have developed an automated data extraction system that can be readily switched between the in-line and off-axis geometries and provides optimised reconstruction from holograms recorded underwater. As a videocamera is automatically stepped through the 200 by 200 by 1000mm sample volume, image processing and object tracking routines locate and extract particle images for further classification by a separate software module.

  8. Underwater Wireless Sensor Networks: how do acoustic propagation models impact the performance of higher-level protocols?

    Science.gov (United States)

    Llor, Jesús; Malumbres, Manuel P

    2012-01-01

    Several Medium Access Control (MAC) and routing protocols have been developed in the last years for Underwater Wireless Sensor Networks (UWSNs). One of the main difficulties to compare and validate the performance of different proposals is the lack of a common standard to model the acoustic propagation in the underwater environment. In this paper we analyze the evolution of underwater acoustic prediction models from a simple approach to more detailed and accurate models. Then, different high layer network protocols are tested with different acoustic propagation models in order to determine the influence of environmental parameters on the obtained results. After several experiments, we can conclude that higher-level protocols are sensitive to both: (a) physical layer parameters related to the network scenario and (b) the acoustic propagation model. Conditions like ocean surface activity, scenario location, bathymetry or floor sediment composition, may change the signal propagation behavior. So, when designing network architectures for UWSNs, the role of the physical layer should be seriously taken into account in order to assert that the obtained simulation results will be close to the ones obtained in real network scenarios.

  9. EDOVE: Energy and Depth Variance-Based Opportunistic Void Avoidance Scheme for Underwater Acoustic Sensor Networks.

    Science.gov (United States)

    Bouk, Safdar Hussain; Ahmed, Syed Hassan; Park, Kyung-Joon; Eun, Yongsoon

    2017-09-26

    Underwater Acoustic Sensor Network (UASN) comes with intrinsic constraints because it is deployed in the aquatic environment and uses the acoustic signals to communicate. The examples of those constraints are long propagation delay, very limited bandwidth, high energy cost for transmission, very high signal attenuation, costly deployment and battery replacement, and so forth. Therefore, the routing schemes for UASN must take into account those characteristics to achieve energy fairness, avoid energy holes, and improve the network lifetime. The depth based forwarding schemes in literature use node's depth information to forward data towards the sink. They minimize the data packet duplication by employing the holding time strategy. However, to avoid void holes in the network, they use two hop node proximity information. In this paper, we propose the Energy and Depth variance-based Opportunistic Void avoidance (EDOVE) scheme to gain energy balancing and void avoidance in the network. EDOVE considers not only the depth parameter, but also the normalized residual energy of the one-hop nodes and the normalized depth variance of the second hop neighbors. Hence, it avoids the void regions as well as balances the network energy and increases the network lifetime. The simulation results show that the EDOVE gains more than 15 % packet delivery ratio, propagates 50 % less copies of data packet, consumes less energy, and has more lifetime than the state of the art forwarding schemes.

  10. A Glider-Assisted Link Disruption Restoration Mechanism in Underwater Acoustic Sensor Networks.

    Science.gov (United States)

    Jin, Zhigang; Wang, Ning; Su, Yishan; Yang, Qiuling

    2018-02-07

    Underwater acoustic sensor networks (UASNs) have become a hot research topic. In UASNs, nodes can be affected by ocean currents and external forces, which could result in sudden link disruption. Therefore, designing a flexible and efficient link disruption restoration mechanism to ensure the network connectivity is a challenge. In the paper, we propose a glider-assisted restoration mechanism which includes link disruption recognition and related link restoring mechanism. In the link disruption recognition mechanism, the cluster heads collect the link disruption information and then schedule gliders acting as relay nodes to restore the disrupted link. Considering the glider's sawtooth motion, we design a relay location optimization algorithm with a consideration of both the glider's trajectory and acoustic channel attenuation model. The utility function is established by minimizing the channel attenuation and the optimal location of glider is solved by a multiplier method. The glider-assisted restoration mechanism can greatly improve the packet delivery rate and reduce the communication energy consumption and it is more general for the restoration of different link disruption scenarios. The simulation results show that glider-assisted restoration mechanism can improve the delivery rate of data packets by 15-33% compared with cooperative opportunistic routing (OVAR), the hop-by-hop vector-based forwarding (HH-VBF) and the vector based forward (VBF) methods, and reduce communication energy consumption by 20-58% for a typical network's setting.

  11. A Glider-Assisted Link Disruption Restoration Mechanism in Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zhigang Jin

    2018-02-01

    Full Text Available Underwater acoustic sensor networks (UASNs have become a hot research topic. In UASNs, nodes can be affected by ocean currents and external forces, which could result in sudden link disruption. Therefore, designing a flexible and efficient link disruption restoration mechanism to ensure the network connectivity is a challenge. In the paper, we propose a glider-assisted restoration mechanism which includes link disruption recognition and related link restoring mechanism. In the link disruption recognition mechanism, the cluster heads collect the link disruption information and then schedule gliders acting as relay nodes to restore the disrupted link. Considering the glider’s sawtooth motion, we design a relay location optimization algorithm with a consideration of both the glider’s trajectory and acoustic channel attenuation model. The utility function is established by minimizing the channel attenuation and the optimal location of glider is solved by a multiplier method. The glider-assisted restoration mechanism can greatly improve the packet delivery rate and reduce the communication energy consumption and it is more general for the restoration of different link disruption scenarios. The simulation results show that glider-assisted restoration mechanism can improve the delivery rate of data packets by 15–33% compared with cooperative opportunistic routing (OVAR, the hop-by-hop vector-based forwarding (HH-VBF and the vector based forward (VBF methods, and reduce communication energy consumption by 20–58% for a typical network’s setting.

  12. Design and Evaluation Methods for Underwater Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Lin

    1996-12-31

    This thesis on underwater control systems is written with the designer in mind, assuming that the reader has some knowledge of control theory. It can be used as a text for undergraduate students and engineers. To help readers better understand the system they will be working with, the thesis is organised in a stepwise way. The reader will gain basic knowledge about underwater operations, equipment and control systems. Then the reader will be able to follow the steps to develop a required control system for an underwater equipment by first understanding the characteristics of the design problem, customer requirement, functional requirement, and possible solution, and then to present a mathematical model of the control problem. Having developed the concept, the thesis guides the reader to develop evaluation criteria and different ways to make the decision. The thesis gives an overview of how to achieve a successful design rather than giving the techniques for detailed control system design. Chapter 1 describes underwater operations and systems. Chapter 2 discusses issues of underwater control systems and control methods. Chapter 3 deals with design method and control systems theory, focusing on human-centered control. Chapter 4 discusses methods used to evaluate and rank products, and chapter 5 applies the methods to an example. 113 refs., 115 figs., 80 tabs.

  13. Remote Underwater Characterization System - Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    Willis, Walter David

    1999-01-01

    Characterization and inspection of water-cooled and moderated nuclear reactors and fuel storage pools requires equipment capable of operating underwater. Similarly, the deactivation and decommissioning of older nuclear facilities often requires the facility owner to accurately characterize underwater structures and equipment which may have been sitting idle for years. The underwater characterization equipment is often required to operate at depths exceeding 20 ft (6.1 m) and in relatively confined or congested spaces. The typical baseline approach has been the use of radiation detectors and underwater cameras mounted on long poles, or stationary cameras with pan and tilt features mounted on the sides of the underwater facility. There is a perceived need for an inexpensive, more mobile method of performing close-up inspection and radiation measurements in confined spaces underwater. The Remote Underwater Characterization System (RUCS) is a small, remotely operated submersible vehicle intended to serve multiple purposes in underwater nuclear operations. It is based on the commercially-available ''Scallop'' vehicle, but has been modified by Department of Energy's Robotics Technology Development Program to add auto-depth control, and vehicle orientation and depth monitoring at the operator control panel. The RUCS is designed to provide visual and gamma radiation characterization, even in confined or limited access areas. It was demonstrated in August 1998 at Idaho National Engineering and environmental Laboratory (INEEL) as part of the INEEL Large Scale Demonstration and Deployment Project. During the demonstration it was compared in a ''head-to-head'' fashion with the baseline characterization technology. This paper summarizes the results of the demonstration and lessons learned; comparing and contrasting both technologies in the areas of cost, visual characterization, radiological characterization, and overall operations

  14. PASSIVE ACOUSTIC MONITORING OF ODONTOCETES IN THE VICINITY OF PUULOA UNDERWATER DETONATION TRAINING RANGE, HAWAII RANGE COMPLEX, OAHU

    Science.gov (United States)

    2016-09-25

    team University of Hawai’i at Manoa undergraduates was trained by graduate student researchers in MMRP experienced with acoustic data analysis. A... Behavioural effects of exposure to underwater explosions in humpback whales (Megaptera novaeangliae). Canadian Journal of Zoology, 74(9), 1661-1672...However, most of the samples recording the presence of more distant humpback whales are like this, the low frequencies travelling longer distances

  15. A bio-inspired electrocommunication system for small underwater robots.

    Science.gov (United States)

    Wang, Wei; Liu, Jindong; Xie, Guangming; Wen, Li; Zhang, Jianwei

    2017-03-29

    Weakly electric fishes (Gymnotid and Mormyrid) use an electric field to communicate efficiently (termed electrocommunication) in the turbid waters of confined spaces where other communication modalities fail. Inspired by this biological phenomenon, we design an artificial electrocommunication system for small underwater robots and explore the capabilities of such an underwater robotic communication system. An analytical model for electrocommunication is derived to predict the effect of the key parameters such as electrode distance and emitter current of the system on the communication performance. According to this model, a low-dissipation, and small-sized electrocommunication system is proposed and integrated into a small robotic fish. We characterize the communication performance of the robot in still water, flowing water, water with obstacles and natural water conditions. The results show that underwater robots are able to communicate electrically at a speed of around 1 k baud within about 3 m with a low power consumption (less than 1 W). In addition, we demonstrate that two leader-follower robots successfully achieve motion synchronization through electrocommunication in the three-dimensional underwater space, indicating that this bio-inspired electrocommunication system is a promising setup for the interaction of small underwater robots.

  16. Acoustic Signals and Systems

    DEFF Research Database (Denmark)

    2008-01-01

    The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook...... will present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...

  17. An acoustic system for autonomous navigation and tracking of marine fauna

    KAUST Repository

    De la Torre, Pedro

    2014-08-01

    A marine acoustic system for underwater target tracking is described. This system is part of the Integrated Satellite and Acoustic Telemetry (iSAT) project to study marine fauna. It is a microcontroller-based underwater projector and receiver. A narrow-band, passive sonar detection architecture is described from signal generation, through transduction, reception, signal processing and up to tone extraction. Its circuit and operation principles are described. Finally, a comparison between the current energy detection method versus an alternative matched filter approach is included.

  18. Underwater Sound Reference Division

    Data.gov (United States)

    Federal Laboratory Consortium — The Underwater Sound Reference Division (USRD) serves as the U.S. standardizing activity in the area of underwater acoustic measurements, as the National Institute...

  19. Experimental Demonstration of Long-Range Underwater Acoustic Communication Using a Vertical Sensor Array

    Science.gov (United States)

    Zhao, Anbang; Zeng, Caigao; Hui, Juan; Ma, Lin; Bi, Xuejie

    2017-01-01

    This paper proposes a composite channel virtual time reversal mirror (CCVTRM) for vertical sensor array (VSA) processing and applies it to long-range underwater acoustic (UWA) communication in shallow water. Because of weak signal-to-noise ratio (SNR), it is unable to accurately estimate the channel impulse response of each sensor of the VSA, thus the traditional passive time reversal mirror (PTRM) cannot perform well in long-range UWA communication in shallow water. However, CCVTRM only needs to estimate the composite channel of the VSA to accomplish time reversal mirror (TRM), which can effectively mitigate the inter-symbol interference (ISI) and reduce the bit error rate (BER). In addition, the calculation of CCVTRM is simpler than traditional PTRM. An UWA communication experiment using a VSA of 12 sensors was conducted in the South China Sea. The experiment achieves a very low BER communication at communication rate of 66.7 bit/s over an 80 km range. The results of the sea trial demonstrate that CCVTRM is feasible and can be applied to long-range UWA communication in shallow water. PMID:28653976

  20. A Compressive Multi-Frequency Linear Sampling Method for Underwater Acoustic Imaging.

    Science.gov (United States)

    Alqadah, Hatim F

    2016-06-01

    This paper investigates the use of a qualitative inverse scattering method known as the linear sampling method (LSM) for imaging underwater scenes using limited aperture receiver configurations. The LSM is based on solving a set of unstable integral equations known as the far-field equations and whose stability breaks down even further for under-sampled observation aperture data. Based on the results of a recent study concerning multi-frequency LSM imaging, we propose an iterative inversion method that is founded upon a compressive sensing framework. In particular, we leverage multi-frequency diversity in the data by imposing a partial frequency variation prior on the solution which we show is justified when the frequency bandwidth is sampled finely enough. We formulate an alternating direction method of multiplier approach to minimize the proposed cost function. Proof of concept is established through numerically generated data as well as experimental acoustic measurements taken in a shallow pool facility at the U.S Naval Research Laboratory.

  1. Directionality and maneuvering effects on a surface ship underwater acoustic signature.

    Science.gov (United States)

    Trevorrow, Mark V; Vasiliev, Boris; Vagle, Svein

    2008-08-01

    This work examines underwater source spectra of a small (560 tons, 40 m length), single-screw oceanographic vessel, focusing on directionality and effects of maneuvers. The measurements utilized a set of four, self-contained buoys with GPS positioning, each recording two calibrated hydrophones with effective acoustic bandwidth from 150 Hz to 5 kHz. In straight, constant-speed runs at speeds up to 6.2 m s(-1), the ship source spectra showed spectral levels in reasonable agreement with reference spectra. The broadband source level was observed to increase as approximately speed to the fourth power over the range of 2.6-6.1 m s(-1), partially biased at low speeds by nonpropulsion machinery signals. Source directionality patterns were extracted from variations in source spectra while the ship transited past the buoy field. The observed spectral source levels exhibited a broadside maximum, with bow and stern aspect reduced by approximately 12-9 dB, respectively, independent of frequency. An empirical model is proposed assuming that spectral source levels exhibit simultaneous variations in aspect angle, speed, and turn rate. After correction for source directionality and speed during turning maneuvers, an excess of up to 18 dB in one-third octave source levels was observed.

  2. Compression of a Deep Competitive Network Based on Mutual Information for Underwater Acoustic Targets Recognition

    Directory of Open Access Journals (Sweden)

    Sheng Shen

    2018-04-01

    Full Text Available The accuracy of underwater acoustic targets recognition via limited ship radiated noise can be improved by a deep neural network trained with a large number of unlabeled samples. However, redundant features learned by deep neural network have negative effects on recognition accuracy and efficiency. A compressed deep competitive network is proposed to learn and extract features from ship radiated noise. The core idea of the algorithm includes: (1 Competitive learning: By integrating competitive learning into the restricted Boltzmann machine learning algorithm, the hidden units could share the weights in each predefined group; (2 Network pruning: The pruning based on mutual information is deployed to remove the redundant parameters and further compress the network. Experiments based on real ship radiated noise show that the network can increase recognition accuracy with fewer informative features. The compressed deep competitive network can achieve a classification accuracy of 89.1 % , which is 5.3 % higher than deep competitive network and 13.1 % higher than the state-of-the-art signal processing feature extraction methods.

  3. The Research of Optical Turbulence Model in Underwater Imaging System

    Directory of Open Access Journals (Sweden)

    Liying Sun

    2014-01-01

    Full Text Available In order to research the effect of turbulence on underwater imaging system and image restoration, the underwater turbulence model is simulated by computer fluid dynamics. This model is obtained in different underwater turbulence intensity, which contains the pressure data that influences refractive index distribution. When the pressure value is conversed to refractive index, the refractive index distribution can be received with the refraction formula. In the condition of same turbulent intensity, the distribution of refractive index presents gradient in the whole region, with disorder and mutations in the local region. With the turbulence intensity increase, the holistic variation of the refractive index in the image is larger, and the refractive index change more tempestuously in the local region. All the above are illustrated by the simulation results with he ray tracing method and turbulent refractive index model. According to different turbulence intensity analysis, it is proved that turbulence causes image distortion and increases noise.

  4. Navigation System Fault Diagnosis for Underwater Vehicle

    DEFF Research Database (Denmark)

    Falkenberg, Thomas; Gregersen, Rene Tavs; Blanke, Mogens

    2014-01-01

    This paper demonstrates fault diagnosis on unmanned underwater vehicles (UUV) based on analysis of structure of the nonlinear dynamics. Residuals are generated using dierent approaches in structural analysis followed by statistical change detection. Hypothesis testing thresholds are made signal...... based to cope with non-ideal properties seen in real data. Detection of both sensor and thruster failures are demonstrated. Isolation is performed using the residual signature of detected faults and the change detection algorithm is used to assess severity of faults by estimating their magnitude...

  5. A Support Vector Learning-Based Particle Filter Scheme for Target Localization in Communication-Constrained Underwater Acoustic Sensor Networks.

    Science.gov (United States)

    Li, Xinbin; Zhang, Chenglin; Yan, Lei; Han, Song; Guan, Xinping

    2017-12-21

    Target localization, which aims to estimate the location of an unknown target, is one of the key issues in applications of underwater acoustic sensor networks (UASNs). However, the constrained property of an underwater environment, such as restricted communication capacity of sensor nodes and sensing noises, makes target localization a challenging problem. This paper relies on fractional sensor nodes to formulate a support vector learning-based particle filter algorithm for the localization problem in communication-constrained underwater acoustic sensor networks. A node-selection strategy is exploited to pick fractional sensor nodes with short-distance pattern to participate in the sensing process at each time frame. Subsequently, we propose a least-square support vector regression (LSSVR)-based observation function, through which an iterative regression strategy is used to deal with the distorted data caused by sensing noises, to improve the observation accuracy. At the same time, we integrate the observation to formulate the likelihood function, which effectively update the weights of particles. Thus, the particle effectiveness is enhanced to avoid "particle degeneracy" problem and improve localization accuracy. In order to validate the performance of the proposed localization algorithm, two different noise scenarios are investigated. The simulation results show that the proposed localization algorithm can efficiently improve the localization accuracy. In addition, the node-selection strategy can effectively select the subset of sensor nodes to improve the communication efficiency of the sensor network.

  6. Underwater Wireless Optical Communication System Using Blue LEDs

    Science.gov (United States)

    Lin, Aobo; Tong, Zheng; Song, Yuhang; Kong, Meiwei; Xu, Jing

    2016-02-01

    We demonstrate a self-designed underwater wireless optical communication system using blue LEDs. The performance of the transmitter and receiver was experimentally investigated. Four different square wave signals (10 KHz, 100 KHz, 500 KHz and 1 MHz) were successfully transmitted via a short water channel at the first phase.

  7. Baited remote underwater video system (BRUVs) survey of ...

    African Journals Online (AJOL)

    This is the first baited remote underwater video system (BRUVs) survey of the relative abundance, diversity and seasonal distribution of chondrichthyans in False Bay. Nineteen species from 11 families were recorded across 185 sites at between 4 and 49 m depth. Diversity was greatest in summer, on reefs and in shallow ...

  8. Warfare Ecology on an Underwater Demolition Range: Acoustic Observations of Marine Life and Shallow Water Detonations in Hawai`i

    Science.gov (United States)

    Shannon, Lee H.

    Most studies investigating the effects of military-associated anthropogenic noise concentrate on deep sea or open ocean propagation of sonar and its effect on marine mammals. In littoral waters, U.S. military special operations units regularly conduct shallow water explosives training, yet relatively little attention has been given to the potential impact on nearshore marine ecosystems from these underwater detonations. This dissertation research focused on the Pu'uloa Underwater Detonation Range off the coast of O`ahu, and examined multiple aspects of the surrounding marine ecosystem and the effects of detonations using acoustic monitoring techniques. The soundscape of a nearshore reef ecosystem adjacent to the UNDET range was characterized through analysis of passive acoustic recordings collected over the span of 6 years. Snapping shrimp were the predominant source of noise, and a diel pattern was present, with increased sound energy during the night hours. Results revealed a difference of up to 7dB between two Ecological Acoustic Recorder locations 2.5km apart along the 60ft isobath. Passive acoustic recording files were searched visually and aurally for odontocete whistles. Whistles were detected in only 0.6% of files analyzed, indicating this area is not frequently transited by coastal odontocete emitting social sounds. The study also opportunistically captured a humpback whale singing during a detonation event, during which the animal showed no obvious alteration of its singing behavior. Four separate underwater detonation events were recorded using a surface deployed F-42C transducer, and the resulting analysis showed no measurable drop in the biologically produced acoustic energy in reaction to the explosive events. Coral reef fishes were recorded visually and acoustically during detonation events at a known distance and bearing from a known explosive sound source. Individual fish behavioral responses to the explosion varied, and a sharp uptick in fish

  9. Autonomous docking control of visual-servo type underwater vehicle system aiming at underwater automatic charging

    International Nuclear Information System (INIS)

    Yanou, Akira; Ohnishi, Shota; Ishiyama, Shintaro; Minami, Mamoru

    2015-01-01

    A visual-servo type remotely operated vehicle (ROV) system with binocular wide-angle lens was developed to survey submarine resources, decontaminate radiation from mud in dam lake and so on. This paper explores the experiments on regulator performance and underwater docking of the robot system utilizing Genetic Algorithm (GA) for real-time recognition of the robot's relative position and posture through 3D marker. The visual servoing performances have been verified as follows; (1) The stability performances of the proposed regulator system have been evaluated by exerting abrupt distrubane force while the ROV is controlled by visual servoing. (2) The proposed system can track time-variant desired target position in x-axis (front-back direction of the robot). (3) The underwater docking can be completed by switching visual servoing and docking modes based on the error threshold, and by giving time-varying desired target position and orientation to the controller as a desired pose. (author)

  10. Adaptive control of nonlinear underwater robotic systems

    Directory of Open Access Journals (Sweden)

    Thor I. Fossen

    1991-04-01

    Full Text Available The problem of controlling underwater mobile robots in 6 degrees of freedom (DOF is addressed. Uncertainties in the input matrix due to partly known nonlinear thruster characteristics are modeled as multiplicative input uncertainty. This paper proposes two methods to compensate for the model uncertainties: (1 an adaptive passivity-based control scheme and (2 deriving a hybrid (adaptive and sliding controller. The hybrid controller consists of a switching term which compensates for uncertainties in the input matrix and an on-line parameter estimation algorithm. Global stability is ensured by applying Barbalat's Lyapunovlike lemma. The hybrid controller is simulated for the horizontal motion of the Norwegian Experimental Remotely Operated Vehicle (NEROV.

  11. Analysis of underwater decoupling properties of a locally resonant acoustic metamaterial coating

    International Nuclear Information System (INIS)

    Huang Ling-Zhi; Xiao Yong; Wen Ji-Hong; Yang Hai-Bin; Wen Xi-Sen

    2016-01-01

    This paper presents a semi-analytical solution for the vibration and sound radiation of a semi-infinite plate covered by a decoupling layer consisting of locally resonant acoustic metamaterial. Formulations are derived based on a combination use of effective medium theory and the theory of elasticity for the decoupling material. Theoretical results show good agreements between the method developed in this paper and the conventional finite element method (FEM), but the method of this paper is more efficient than FEM. Numerical results also show that system with acoustic metamaterial decoupling layer exhibits significant noise reduction performance at the local resonance frequency of the acoustic metamaterial, and such performance can be ascribed to the vibration suppression of the base plate. It is demonstrated that the effective density of acoustic metamaterial decoupling layer has a great influence on the mechanical impedance of the system. Furthermore, the resonance frequency of locally resonant structure can be effectively predicted by a simple model, and it can be significantly affected by the material properties of the locally resonant structure. (paper)

  12. Remote Underwater Characterization System - Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    Willis, W.D.

    1999-01-01

    Characterization and inspection of water-cooled and moderated nuclear reactors and fuel storage pools requires equipment capable of operating underwater. Similarly, the deactivation and decommissioning of older nuclear facilities often requires the facility owner to accurately characterize underwater structures and equipment which may have been sitting idle for years. The Remote Underwater Characterization System (RUCS) is a small, remotely operated submersible vehicle intended to serve multiple purposes in underwater nuclear operations. It is based on the commercially-available Scallop vehicle 1 , but has been modified by the Department of Energys Robotics Technology Development Program to add auto-depth control, and vehicle orientation and depth monitoring at the operator control panel. The RUCS is designed to provide visual and gamma radiation characterization, even in confined or limited access areas. It was demonstrated in August 1998 at the Idaho National Engineering and Environmental Laboratory (INEEL) as part of the INEEL Large Scale Demonstration and Deployment Project. During the demonstration it was compared in a ''head-to-head fashion with the baseline characterization technology. This paper summarizes the results of the demonstration and lessons learned; comparing and contrasting both technologies in the areas of cost, visual characterization, radiological characterization, and overall operations

  13. A scalable global positioning system-free localization scheme for underwater wireless sensor networks

    KAUST Repository

    Mohammed, A.M.

    2013-05-07

    Seaweb is an acoustic communication technology that enables communication between sensor nodes. Seaweb technology utilizes the commercially available telesonar modems that has developed link and network layer firmware to provide a robust undersea communication capability. Seaweb interconnects the underwater nodes through digital signal processing-based modem by using acoustic links between the neighboring sensors. In this paper, we design and investigate a global positioning system-free passive localization protocol by integrating the innovations of levelling and localization with the Seaweb technology. This protocol uses the range data and planar trigonometry principles to estimate the positions of the underwater sensor nodes. Moreover, for precise localization, we consider more realistic conditions namely, (a) small displacement of sensor nodes due to watch circles and (b) deployment of sensor nodes over non-uniform water surface. Once the nodes are localized, we divide the whole network field into circular levels and sectors to minimize the traffic complexity and thereby increases the lifetime of the sensor nodes in the network field. We then form the mesh network inside each of the sectors that increases the reliability. The algorithm is designed in such a way that it overcomes the ambiguous nodes errata and reflected paths and therefore makes the algorithm more robust. The synthetic network geometries are so designed which can evaluate the algorithm in the presence of perfect or imperfect ranges or in case of incomplete data. A comparative study is made with the existing algorithms which proves the efficiency of our newly proposed algorithm. 2013 Mohammed et al.

  14. Research on the Combination of Underwater Acoustic Countermeasure Equipments Against Torpedo

    Directory of Open Access Journals (Sweden)

    Meng Jie

    2016-01-01

    Full Text Available Today the use of acoustic countermeasure equipment has become the main means in submarine defense torpedo operation. Combination of acoustic countermeasure equipments are used during the operation so that we can amplify the countermeasure effect. Based on the subject of the acoustic countermeasure equipments’ combined use, this paper analyses the interference between these soft kill countermeasure equipments including gas curtain, acoustic decoy and acoustic interferometer, summarizes the advantages and disadvantages of the different combined use of acoustic countermeasure equipments.

  15. Model based image restoration for underwater images

    Science.gov (United States)

    Stephan, Thomas; Frühberger, Peter; Werling, Stefan; Heizmann, Michael

    2013-04-01

    The inspection of offshore parks, dam walls and other infrastructure under water is expensive and time consuming, because such constructions must be inspected manually by divers. Underwater buildings have to be examined visually to find small cracks, spallings or other deficiencies. Automation of underwater inspection depends on established water-proved imaging systems. Most underwater imaging systems are based on acoustic sensors (sonar). The disadvantage of such an acoustic system is the loss of the complete visual impression. All information embedded in texture and surface reflectance gets lost. Therefore acoustic sensors are mostly insufficient for these kind of visual inspection tasks. Imaging systems based on optical sensors feature an enormous potential for underwater applications. The bandwidth from visual imaging systems reach from inspection of underwater buildings via marine biological applications through to exploration of the seafloor. The reason for the lack of established optical systems for underwater inspection tasks lies in technical difficulties of underwater image acquisition and processing. Lightening, highly degraded images make a computational postprocessing absolutely essential.

  16. The control system of an autonomous underwater vehicle

    Directory of Open Access Journals (Sweden)

    Bjørn Jalving

    1995-04-01

    Full Text Available This paper presents the flight control system of an Autonomous Underwater Vehicle (AUV developed at the Norwegian Defence Research Establishment. A mathematical model of the vehicle is derived and discussed. The system is separated into lightly interacting subsystems and three autopilots are designed for steering, diving and speed control. The design of the separate controllers is based on PID techniques. Results from sea trials show robust performance and stability for the autopilot.

  17. Detection and localisation of very high energy particles in underwater acoustic; Detection et localisation de particules de tres hautes energies en acoustique sous-marine

    Energy Technology Data Exchange (ETDEWEB)

    Juennard, N

    2007-12-15

    The theme of this thesis is included in the Antares international project whose object is to build a neutrino telescope located in a deep water environment in the Mediterranean sea. In deep water sea, a neutrino can interact with a water molecule. The collision generates a luminous flash and an acoustic wave. The goal of this work is to study this acoustic sound wave and develop a system able to detect the corresponding wave front and to estimate the initial direction of the particle. We first focus on the acoustic sound wave. Two different models are studied, and works made recently have led to a mathematical expression of both signal and wave front. Then, several detection methods are studied, from the most classical to the more recent ones. The experimental comparison in semi-real situation leads to the choice of a detection method: the Extended stochastic matched filter. Position and direction of the neutrino are now estimated with a Gauss-Newton inspired algorithm. This estimator is based on a wave front propagation model and on the time detection information given by the telescope hydro-phones. Performances of the system are then estimated. An antenna structure is then proposed and a global simulation finalizes this thesis. In this simulation, detection and estimation are based on the results found in the previous sections. Underwater sea noise is real and the results of the simulation valid our works. (author)

  18. AFSC/ABL: Autonomous underwater vehicle for tracking acoustically-tagged fish 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Autonomous underwater vehicles (AUVs) are increasingly being used to collect physical, chemical, and biological information in the marine environment. Recent efforts...

  19. GSR-TDMA: A Geometric Spatial Reuse-Time Division Multiple Access MAC Protocol for Multihop Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Changho Yun

    2016-01-01

    Full Text Available The nonnegligible propagation delay of acoustic signals causes spatiotemporal uncertainty that occasionally enables simultaneous, collision-free packet transmission among underwater nodes (UNs. These transmissions can be handled by efficiently managing the channel access of the UNs in the data-link layer. To this end, Geometric Spatial Reuse-TDMA (GSR-TDMA, a new TDMA-based MAC protocol, is designed for use in centralized, multihop underwater acoustic sensor networks (UASNs, and in this case all UNs are periodically scheduled after determining a geometric map according to the information on their location. The scheduling strategy increases the number of UNs that send packets coincidentally via two subscheduling configurations (i.e., interhop and intrahop scheduling. Extensive simulations are used to investigate the reception success rate (RSR and the multihop delay (MHD of GSR-TDMA, and the results are compared to those of previous approaches, including C-MAC and HSR-TDMA. GSR-TDMA outperforms C-MAC; the RSR of GSR-TDMA is 15% higher than that of C-MAC, and the MHD of GSR-TDMA is 30% lower than that of C-MAC at the most. In addition, GSR-TDMA provides even better performance improvements over HSR-TDMA; the RSR of GSR-TDMA is 50% higher than that of HSR-TDMA, and the MHD of GSR-TDMA is an order of 102 lower than that of HSR-TDMA at the most.

  20. Application of acoustic, magnetic and electromagnetic systems in marine archaeology

    Digital Repository Service at National Institute of Oceanography (India)

    SubbaRaju, L.V.

    The importance of integrated geoscientific studies is reiterated for underwater archaeological exploration. Geophysical systems applied for the detection of artefacts, ancient places and underwater sites/objects are explained and detailed...

  1. The system of underwater CCTV inspection for reactor internal components

    International Nuclear Information System (INIS)

    Zhu Rong

    1997-12-01

    During the operation of nuclear power plant, the reactor internal components are greatly scoured and vibrated by flowing water. So the structural integrity and surface sludge for reactor internal components are needed to be inspected during refuelling. Thus an inspection system is developed, in which the camera inspects underwater at different height and different direction by mechanical elevator and the image of closed-circuit television (CCTV) is mixed with digital coordinate of the camera position for re-inspection. It is the first system for inspection of reactor internal components in China. This system has been used 4 times in the inspection of Daya Bay Nuclear Power Plant successfully

  2. Underwater robot system for reactor vessel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Soo; Kim, Tae Won; Lee, Sung Uk; Jeong, Kyung Min [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    It is dangerous to work inside reactor vessel because of high radioactivity. So robot system is necessary to work inside reactor vessel instead of workers. And robot also has advantage of mobility over conventional equipment which has limitation of the range of accessibility. In this paper, we describe design consideration and criteria of robot system for reactor vessel, and component of developed system. Reliability, usability and convenience of robot system were considered to design and fabrication.

  3. Underwater robot system for reactor vessel

    International Nuclear Information System (INIS)

    Choi, Young Soo; Kim, Tae Won; Lee, Sung Uk; Jeong, Kyung Min

    2012-01-01

    It is dangerous to work inside reactor vessel because of high radioactivity. So robot system is necessary to work inside reactor vessel instead of workers. And robot also has advantage of mobility over conventional equipment which has limitation of the range of accessibility. In this paper, we describe design consideration and criteria of robot system for reactor vessel, and component of developed system. Reliability, usability and convenience of robot system were considered to design and fabrication

  4. Calibration system of underwater robot sensor based on CID algorithm

    Science.gov (United States)

    Wang, Xiaolong; Wang, Sen; Gao, Lifu; Wu, Shan; Wei, Shuheng

    2017-06-01

    In the calibration of static characteristic of the sensor, the original measured data are usually a nonlinear distribution. Based on this situation, underwater robot sensor static calibration system is designed. The system consists of four parts: a sensor, I-V conversion with amplifying circuit, microcontroller STM32F107 and a PC. The lower computer and the upper computer communicate by USB. A kind of adaptive cyclic iterative denoising (CID) algorithm is presented for data processing. Finally the curve will be fitted with compensation processing.

  5. Underwater Acoustic Wireless Sensor Networks: Advances and Future Trends in Physical, MAC and Routing Layers

    NARCIS (Netherlands)

    Climent, S.; Sanchez, A.; Capella, J.V.; Meratnia, Nirvana; Serrano, J.J.

    2014-01-01

    This survey aims to provide a comprehensive overview of the current research on underwater wireless sensor networks, focusing on the lower layers of the communication stack, and envisions future trends and challenges. It analyzes the current state-of-the-art on the physical, medium access control

  6. Underwater robots

    CERN Document Server

    Antonelli, Gianluca

    2014-01-01

    This book, now at the third edition, addresses the main control aspects in underwater manipulation tasks. The mathematical model with significant impact on the control strategy is discussed. The problem of controlling a 6-degrees-of-freedoms autonomous underwater vehicle is deeply investigated and a survey of fault detection/tolerant strategies for unmanned underwater vehicles is provided. Inverse kinematics, dynamic and interaction control for underwater vehicle-manipulator systems are then discussed. The code used to generate most of the numerical simulations is made available and briefly discussed.       

  7. System and method for underwater radiography

    Science.gov (United States)

    Hunter, James; Keck, Danny Lee; Sims, Jr., James Rae; Watson, Scott Avery

    2015-01-20

    A system for subsea imaging comprises a first plate having an inner surface, an outer surface, and a cavity formed in the inner surface. In addition, the system comprises a phosphor imaging plate disposed in the cavity. Further, the system comprises a second plate having an inner surface facing the inner surface of the first plate and an outer surface facing away from the outer surface of the first plate. Still further, the system comprises a seal member disposed between the inner surface of the first plate and the inner surface of the second plate. The seal member extends around the perimeter of the cavity and is configured to seal the phosphor imaging plate and the cavity from intrusion water.

  8. Optical Communication System for an Underwater Wireless Sensor Network

    Science.gov (United States)

    Gabriel, C.; Khalighi, A.; Bourennane, S.; Léon, P.; Rigaud, V.

    2012-04-01

    Seventy percent of the Earth is covered with water. Yet, we know so little about what lies below the sea surface. One new emerging technology that can help in oceans exploration is underwater wireless sensor network (UWSN). In such a network, a number of sensors are connected to a set of nodes that collect the data from them. Then, each node communicate its retrieved data to the other parts of the network through wireless links. So, an important step in the implementation of an UWSN is the design of an adequate transmitter/receiver system that is reliable, easy to implement, energy efficient and adapted to the underwater environment. Thanks to its cost-effectiveness and low-energy consumption property, optical underwater communication turns to be the most adequate solution for medium range node connections in an UWSN. To evaluate the optical underwater channel, we have studied its impulse response using a Monte Carlo simulator that takes into consideration all the transmitter, receiver and medium characteristics. We have demonstrated through these simulations that the channel delay dispersion is negligible in most practical cases. Therefore, we do not need to perform computationally complex signal processing such as channel equalization at the receiver. After studying the channel characteristics, we have turned our attention onto the transmitter/receiver system design. For this, we have simulated a system composed by a high-power monochromatic 532 nm LED transmitter and a Silicon PIN photodiode receiver with a collimating lens for capturing the scattered light. After photo-detection, the photo-current is converted to a voltage and low-pass filtered to limit the thermal noise variance which is the dominant noise in the receiver. Note that, in our case, background noise can be neglected because we are working in deep waters were the sunlight cannot penetrate. Then, using on-off-keying (OOK) modulation, we have proceeded to signal detection based on optimum

  9. Underwater-manipulation system for measuring- and cutting tasks in dismantling decommissioned nuclear facilities. Final report

    International Nuclear Information System (INIS)

    Stegemann, D.; Reimche, W.; Hansch, M.; Spitzer, M.

    1995-01-01

    Not only manipulators are necessary for dismantling and inspection of structure parts in decomissioned nuclear facilities, but flexible underwater-vehicles. Free-diving underwater-vehicles for inspection and dismantling tasks are still not developed and tested. Aim of the project is the development of sensors and devices for the position determination and the depth regulation. For inspection tasks an ultrasonic measurement and dosimeter device shall be built up. A measurement device has been developed which evaluates the ultrasonic time of flight from a transmitter at the vehicle to several receivers, installed in the reactor pressure vessel. The depth regulation is based on a pressure sensor and the direct control of the thrusters. The ultrasonic measurements are realized by an adapted ultrasonic card, the γ-dosimetry with an ionization chamber and a pA-amplifier. An acoustic orientation system was built up, which measures very accurately with one transmitter mounted on the vehicle and four receivers. Problem occur by reflection from the walls of the basin. The depth regulation is working faultless. The ultrasonic device is preferably used for distance measurement. The radiation measurement device was tested and mounted in the vehicle. (orig./HP) [de

  10. Simulation of an Underwater Acoustic Communication Channel Characterized by Wind-Generated Surface Waves and Bubbles

    NARCIS (Netherlands)

    Dol, H.S.; Colin, M.E.G.D.; Ainslie, M.A.; Walree, P.A. van; Janmaat, J.

    2013-01-01

    Abstract—Sea-surface scattering by wind-generated waves and bubbles is regarded to be the main nonplatform related cause of the time variability of shallow acoustic communication channels. Simulations for predicting the quality of acoustic communication links in such channels thus require adequate

  11. Simulation of an Underwater Acoustic Communication Channel Characterized by Wind-Generated Surface Waves and Bubbles

    NARCIS (Netherlands)

    Dol, H.S.; Ainslie, M.A.; Colin, M.E.G.D.; Janmaat, J.

    2012-01-01

    Sea surface scattering by wind-generated waves and bubbles is regarded to be the main nonplatform-related cause of the time variability of shallow acoustic communication channels. Simulations for predicting the quality of acoustic communication links in such channels thus require adequate modelling

  12. Application of an Underwater Robot in Reactor Coolant System

    International Nuclear Information System (INIS)

    Choi, Young-Soo; Jeong, Kyung-Min; Lee, Sung-Uk; Cho, Jai-Wan

    2006-01-01

    Nuclear energy is a major source of electric energy consumed in Korea. It has the advantage of other energy sources, nuclear energy is cost effective and little pollution. But the fearfulness of an accident and/or failure has scared us the utilization of nuclear energy extensively. So, the safety and reliability of nuclear power plants become more important. Inspection and maintenance of component should be achieved continuously. The RCS(reactor coolant system) of PWR(pressurized water reactor) has a role to cool down the reactor's temperature. Cooling water is injected through the SI(safety injection) nozzle into the cold leg of the primary loop. Thermal sleeves are attached inside the cylindrical SI nozzle to reduce the thermal shock of the cooling water to the weld zone of the safety injection nozzle. The human workers are susceptible to radiation exposure and manual handling machine is hard to access because of the complexity of the path. So, we developed and applied free running, tele-operated underwater vehicle to inspect SI nozzle close to the place. Tele-operated robot is useful to inspect and maintain the component of nuclear power plants to reduce the radiation exposure of human operators and improve the reliability of the operation in nuclear power plants. Underwater robot is comprised of two parts; one is robot vehicle and the other is remote control module. Underwater robot vehicle has 4 DOF(degree of freedom) of mobility and 1 DOF of camera observation. The task to inspect the internal of RCS in nuclear power plant is achieved successfully. And the reliability for the maintenance is increased by the aid of tele-operated robot

  13. Application of an Underwater Robot in Reactor Coolant System

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young-Soo; Jeong, Kyung-Min; Lee, Sung-Uk; Cho, Jai-Wan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    Nuclear energy is a major source of electric energy consumed in Korea. It has the advantage of other energy sources, nuclear energy is cost effective and little pollution. But the fearfulness of an accident and/or failure has scared us the utilization of nuclear energy extensively. So, the safety and reliability of nuclear power plants become more important. Inspection and maintenance of component should be achieved continuously. The RCS(reactor coolant system) of PWR(pressurized water reactor) has a role to cool down the reactor's temperature. Cooling water is injected through the SI(safety injection) nozzle into the cold leg of the primary loop. Thermal sleeves are attached inside the cylindrical SI nozzle to reduce the thermal shock of the cooling water to the weld zone of the safety injection nozzle. The human workers are susceptible to radiation exposure and manual handling machine is hard to access because of the complexity of the path. So, we developed and applied free running, tele-operated underwater vehicle to inspect SI nozzle close to the place. Tele-operated robot is useful to inspect and maintain the component of nuclear power plants to reduce the radiation exposure of human operators and improve the reliability of the operation in nuclear power plants. Underwater robot is comprised of two parts; one is robot vehicle and the other is remote control module. Underwater robot vehicle has 4 DOF(degree of freedom) of mobility and 1 DOF of camera observation. The task to inspect the internal of RCS in nuclear power plant is achieved successfully. And the reliability for the maintenance is increased by the aid of tele-operated robot.

  14. Controlling Underwater Robots with Electronic Nervous Systems

    Directory of Open Access Journals (Sweden)

    Joseph Ayers

    2010-01-01

    Full Text Available We are developing robot controllers based on biomimetic design principles. The goal is to realise the adaptive capabilities of the animal models in natural environments. We report feasibility studies of a hybrid architecture that instantiates a command and coordinating level with computed discrete-time map-based (DTM neuronal networks and the central pattern generators with analogue VLSI (Very Large Scale Integration electronic neuron (aVLSI networks. DTM networks are realised using neurons based on a 1-D or 2-D Map with two additional parameters that define silent, spiking and bursting regimes. Electronic neurons (ENs based on Hindmarsh–Rose (HR dynamics can be instantiated in analogue VLSI and exhibit similar behaviour to those based on discrete components. We have constructed locomotor central pattern generators (CPGs with aVLSI networks that can be modulated to select different behaviours on the basis of selective command input. The two technologies can be fused by interfacing the signals from the DTM circuits directly to the aVLSI CPGs. Using DTMs, we have been able to simulate complex sensory fusion for rheotaxic behaviour based on both hydrodynamic and optical flow senses. We will illustrate aspects of controllers for ambulatory biomimetic robots. These studies indicate that it is feasible to fabricate an electronic nervous system controller integrating both aVLSI CPGs and layered DTM exteroceptive reflexes.

  15. LOW COST EMBEDDED STEREO SYSTEM FOR UNDERWATER SURVEYS

    Directory of Open Access Journals (Sweden)

    M. M. Nawaf

    2017-11-01

    Full Text Available This paper provides details of both hardware and software conception and realization of a hand-held stereo embedded system for underwater imaging. The designed system can run most image processing techniques smoothly in real-time. The developed functions provide direct visual feedback on the quality of the taken images which helps taking appropriate actions accordingly in terms of movement speed and lighting conditions. The proposed functionalities can be easily customized or upgraded whereas new functions can be easily added thanks to the available supported libraries. Furthermore, by connecting the designed system to a more powerful computer, a real-time visual odometry can run on the captured images to have live navigation and site coverage map. We use a visual odometry method adapted to low computational resources systems and long autonomy. The system is tested in a real context and showed its robustness and promising further perspectives.

  16. Low Cost Embedded Stereo System for Underwater Surveys

    Science.gov (United States)

    Nawaf, M. M.; Boï, J.-M.; Merad, D.; Royer, J.-P.; Drap, P.

    2017-11-01

    This paper provides details of both hardware and software conception and realization of a hand-held stereo embedded system for underwater imaging. The designed system can run most image processing techniques smoothly in real-time. The developed functions provide direct visual feedback on the quality of the taken images which helps taking appropriate actions accordingly in terms of movement speed and lighting conditions. The proposed functionalities can be easily customized or upgraded whereas new functions can be easily added thanks to the available supported libraries. Furthermore, by connecting the designed system to a more powerful computer, a real-time visual odometry can run on the captured images to have live navigation and site coverage map. We use a visual odometry method adapted to low computational resources systems and long autonomy. The system is tested in a real context and showed its robustness and promising further perspectives.

  17. The deep sea Acoustic Detection system AMADEUS

    International Nuclear Information System (INIS)

    Naumann, Christopher Lindsay

    2008-01-01

    As a part of the ANTARES neutrino telescope, the AMADEUS (ANTARES Modules for Acoustic Detection Under the Sea) system is an array of acoustical sensors designed to investigate the possibilities of acoustic detection of ultra-high energy neutrinos in the deep sea. The complete system will comprise a total of 36 acoustic sensors in six clusters on two of the ANTARES detector lines. With an inter-sensor spacing of about one metre inside the clusters and between 15 and 340 metres between the different clusters, it will cover a wide range of distances as will as provide a considerable lever arm for point source triangulation. Three of these clusters have already been deployed in 2007 and have been in operation since, currently yielding around 2GB of acoustic data per day. The remaining three clusters are scheduled to be deployed in May 2008 together with the final ANTARES detector line. Apart from proving the feasibility of operating an acoustic detection system in the deep sea, the main aim of this project is an in-depth survey of both the acoustic properties of the sea water and the acoustic background present at the detector site. It will also serve as a platform for the development and refinement of triggering, filtering and reconstruction algorithms for acoustic particle detection. In this presentation, a description of the acoustic sensor and read-out system is given, together with examples for the reconstruction and evaluation of the acoustic data.

  18. A Combined Radio and Underwater Wireless Optical Communication System based on Buoys

    Science.gov (United States)

    Song, Yuhang; Tong, Zheng; Cong, Bo; Yu, Xiangyu; Kong, Meiwei; Lin, Aobo

    2016-02-01

    We propose a system of combining radio and underwater wireless optical communication based on buoys for real-time image and video transmission between underwater vehicles and the base station on the shore. We analysis how the BER performance is affected by the link distance and the deflection angle of the light source using Monte Carlo simulation.

  19. An Evaluation of Potential Operating Systems for Autonomous Underwater Vehicles

    Science.gov (United States)

    2013-02-01

    remote control of such vehicles requires the use of a tether , limiting the vehicle’s range; however operating underwater vehicles autonomously requires...URBI Universal Robot Body Interface UUV Unmanned Underwater Vehicle UNCLASSIFIED xi DSTO–TN–1194 UNCLASSIFIED THIS PAGE IS INTENTIONALLY BLANK xii... underwater environment, where many platforms are still reliant upon an umbilical tether for power and high bandwidth communications. This tether

  20. Thruster Modelling for Underwater Vehicle Using System Identification Method

    Directory of Open Access Journals (Sweden)

    Mohd Shahrieel Mohd Aras

    2013-05-01

    Full Text Available Abstract This paper describes a study of thruster modelling for a remotely operated underwater vehicle (ROV by system identification using Microbox 2000/2000C. Microbox 2000/2000C is an XPC target machine device to interface between an ROV thruster with the MATLAB 2009 software. In this project, a model of the thruster will be developed first so that the system identification toolbox in MATLAB can be used. This project also presents a comparison of mathematical and empirical modelling. The experiments were carried out by using a mini compressor as a dummy depth pressure applied to a pressure sensor. The thruster model will thrust and submerge until it reaches a set point and maintain the set point depth. The depth was based on pressure sensor measurement. A conventional proportional controller was used in this project and the results gathered justified its selection.

  1. Underwater optical wireless communication network

    Science.gov (United States)

    Arnon, Shlomi

    2010-01-01

    The growing need for underwater observation and subsea monitoring systems has stimulated considerable interest in advancing the enabling technologies of underwater wireless communication and underwater sensor networks. This communication technology is expected to play an important role in investigating climate change, in monitoring biological, biogeochemical, evolutionary, and ecological changes in the sea, ocean, and lake environments, and in helping to control and maintain oil production facilities and harbors using unmanned underwater vehicles (UUVs), submarines, ships, buoys, and divers. However, the present technology of underwater acoustic communication cannot provide the high data rate required to investigate and monitor these environments and facilities. Optical wireless communication has been proposed as the best alternative to meet this challenge. Models are presented for three kinds of optical wireless communication links: (a) a line-of-sight link, (b) a modulating retroreflector link, and (c) a reflective link, all of which can provide the required data rate. We analyze the link performance based on these models. From the analysis, it is clear that as the water absorption increases, the communication performance decreases dramatically for the three link types. However, by using the scattered light it was possible to mitigate this decrease in some cases. It is concluded from the analysis that a high-data-rate underwater optical wireless network is a feasible solution for emerging applications such as UUV-to-UUV links and networks of sensors, and extended ranges in these applications could be achieved by applying a multi-hop concept.

  2. Self-localization for underwater inspection robot in reactor systems

    International Nuclear Information System (INIS)

    Kobayashi, Futoshi; Kojima, Fumio

    2007-01-01

    An underwater inspection robot has been needed for preventive maintenance in a nuclear power plant. This paper deals with a self-localization method for the underwater inspection robot. In this method, the position and the orientation of the robot are estimated by using the particle filter. For showing the effectiveness of the proposed method, an experiment with real robot is demonstrated. (author)

  3. Underwater milling machine system for core barrel repair

    International Nuclear Information System (INIS)

    Kramer, A.W.; Smith, E.H.

    1991-01-01

    This paper discusses an underwater machining system for the repair and maintenance of nuclear vessels. It comprises a platform with means for supporting the platform in a substantially horizontal plane; a machining device detachably connectable to the platform comprising a milling or boring machine and a spacial positioning means for locating the milling or boring machines in a precise working position. The spacial positioning means including adjustment means for movement of the milling or boring machine along its X Y and Z axes; a guide means for automatically aligning the machining device on the platform, so that when the detachable machining device is lowered from a detached position above the platform. The guide means automatically aligns the machining device to the platform; and a remote control means for operating the spacial positioning means and the milling or boring machine

  4. Acoustic Observatory Provides Real-Time Underwater Sounds from the Antarctic Ocean

    OpenAIRE

    Boebel, Olaf; Kindermann, Lars; Klinck, Holger; Bornemann, Horst; Plötz, Joachim; Steinhage, Daniel; Riedel, Sven; Burkhardt, Elke

    2006-01-01

    To obtain real-time, year-round acoustic data from the coastal Antarctic Ocean, an autonomous listening station, PALAOA (PerenniAL Acoustic Observatory in the Antarctic Ocean, or Hawaiian whale), was constructed in austral summer 2005/06, 15 km North of the German Neumayer Base. PALAOAs design was guided by demanding prerequisites: perennial, 365/24, autonomous operation, real-time data access, and full frequency and dynamic coverage. The station is located at 70°31S 8°13W, on the Ekström ice...

  5. High-rate wireless data communications: An underwater acoustic communications framework at the physical layer

    Directory of Open Access Journals (Sweden)

    Anthony G. Bessios

    1996-01-01

    the signal represents; 2 estimation of some parameter θˆ associated with the received signal (i.e. range, depth, bearing angle, etc.; 3 classification and source identification; 4 dynamics tracking; 5 navigation (collision avoidance and terminal guidance; 6 countermeasures; and 7 communications. The focus of this paper is acoustic communications.

  6. Underwater Acoustic Measurements to Estimate Wind and Rainfall in the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Sara Pensieri

    2015-01-01

    Full Text Available Oceanic ambient noise measurements can be analyzed to obtain qualitative and quantitative information about wind and rainfall phenomena over the ocean filling the existing gap of reliable meteorological observations at sea. The Ligurian Sea Acoustic Experiment was designed to collect long-term synergistic observations from a passive acoustic recorder and surface sensors (i.e., buoy mounted rain gauge and anemometer and weather radar to support error analysis of rainfall rate and wind speed quantification techniques developed in past studies. The study period included combination of high and low wind and rainfall episodes and two storm events that caused two floods in the vicinity of La Spezia and in the city of Genoa in 2011. The availability of high resolution in situ meteorological data allows improving data processing technique to detect and especially to provide effective estimates of wind and rainfall at sea. Results show a very good correspondence between estimates provided by passive acoustic recorder algorithm and in situ observations for both rainfall and wind phenomena and demonstrate the potential of using measurements provided by passive acoustic instruments in open sea for early warning of approaching coastal storms, which for the Mediterranean coastal areas constitutes one of the main causes of recurrent floods.

  7. Collective Modular Underwater Robotic System for Long-Term Autonomous Operation

    DEFF Research Database (Denmark)

    Christensen, David Johan; Andersen, Jens Christian; Blanke, Mogens

    This paper provides a brief overview of an underwater robotic system for autonomous inspection in confined offshore underwater structures. The system, which is currently in development, consist of heterogeneous modular robots able to physically dock and communicate with other robots, transport...... tools and robots, and recharge their batteries while underwater. These properties will provide the system, when fully developed, with unique capabilities such as ability to adapt robotic morphology and function to the current task and tolerate failures leading to long-term autonomous operations....

  8. Affordable underwater wireless optical communication using LEDs

    Science.gov (United States)

    Pilipenko, Vladimir; Arnon, Shlomi

    2013-09-01

    In recent years the need for high data rate underwater wireless communication (WC) has increased. Nowadays, the conventional technology for underwater communication is acoustic. However, the maximum data rate that acoustic technology can provide is a few kilobits per second. On the other hand, emerging applications such as underwater imaging, networks of sensors and swarms of underwater vehicles require much faster data rates. As a result, underwater optical WC, which can provide much higher data rates, has been proposed as an alternative means of communication. In addition to high data rates, affordable communication systems become an important feature in the development requirements. The outcome of these requirements is a new system design based on off-the-shelf components such as blue and green light emitting diodes (LEDs). This is due to the fact that LEDs offer solutions characterized by low cost, high efficiency, reliability and compactness. However, there are some challenges to be met when incorporating LEDs as part of the optical transmitter, such as low modulation rates and non linearity. In this paper, we review the main challenges facing the incorporation of LEDs as an integral part of underwater WC systems and propose some techniques to mitigate the LED limitations in order to achieve high data rate communication

  9. Comparison of PAM Systems for Acoustic Monitoring and Further Risk Mitigation Application.

    Science.gov (United States)

    Ludwig, Stefan; Kreimeyer, Roman; Knoll, Michaela

    2016-01-01

    We present results of the SIRENA 2011 research cruises conducted by the NATO Undersea Research Centre (NURC) and joined by the Research Department for Underwater Acoustics and Geophysics (FWG), Bundeswehr Technical Centre (WTD 71) and the Universities of Kiel and Pavia. The cruises were carried out in the Ligurian Sea. The main aim of the FWG was to test and evaluate the newly developed towed hydrophone array as a passive acoustic monitoring (PAM) tool for risk mitigation applications. The system was compared with the PAM equipment used by the other participating institutions. Recorded sounds were used to improve an automatic acoustic classifier for marine mammals, and validated acoustic detections by observers were compared with the results of the classifier.

  10. Underwater Acoustic Positioning Systems for MEC Detection and Reacquisition Operations

    Science.gov (United States)

    2016-01-22

    RFR attached to the far buoy. ........................................... 24 Figure 12: Tripod deployment...24 Figure 13: Attaching RFR antenna... RFR : Radio Frequency Radiation RTK: Real Time Kinematic TLT: Target Locating Transponder USACE: US Army Corps of Engineers UTM: Universal

  11. ROV-based Underwater Vision System for Intelligent Fish Ethology Research

    Directory of Open Access Journals (Sweden)

    Rui Nian

    2013-09-01

    Full Text Available Fish ethology is a prospective discipline for ocean surveys. In this paper, one ROV-based system is established to perform underwater visual tasks with customized optical sensors installed. One image quality enhancement method is first presented in the context of creating underwater imaging models combined with homomorphic filtering and wavelet decomposition. The underwater vision system can further detect and track swimming fish from the resulting images with the strategies developed using curve evolution and particular filtering, in order to obtain a deeper understanding of fish behaviours. The simulation results have shown the excellent performance of the developed scheme, in regard to both robustness and effectiveness.

  12. An Energy Scaled and Expanded Vector-Based Forwarding Scheme for Industrial Underwater Acoustic Sensor Networks with Sink Mobility.

    Science.gov (United States)

    Wadud, Zahid; Hussain, Sajjad; Javaid, Nadeem; Bouk, Safdar Hussain; Alrajeh, Nabil; Alabed, Mohamad Souheil; Guizani, Nadra

    2017-09-30

    Industrial Underwater Acoustic Sensor Networks (IUASNs) come with intrinsic challenges like long propagation delay, small bandwidth, large energy consumption, three-dimensional deployment, and high deployment and battery replacement cost. Any routing strategy proposed for IUASN must take into account these constraints. The vector based forwarding schemes in literature forward data packets to sink using holding time and location information of the sender, forwarder, and sink nodes. Holding time suppresses data broadcasts; however, it fails to keep energy and delay fairness in the network. To achieve this, we propose an Energy Scaled and Expanded Vector-Based Forwarding (ESEVBF) scheme. ESEVBF uses the residual energy of the node to scale and vector pipeline distance ratio to expand the holding time. Resulting scaled and expanded holding time of all forwarding nodes has a significant difference to avoid multiple forwarding, which reduces energy consumption and energy balancing in the network. If a node has a minimum holding time among its neighbors, it shrinks the holding time and quickly forwards the data packets upstream. The performance of ESEVBF is analyzed through in network scenario with and without node mobility to ensure its effectiveness. Simulation results show that ESEVBF has low energy consumption, reduces forwarded data copies, and less end-to-end delay.

  13. Improving the Navy’s Passive Underwater Acoustic Monitoring of Marine Mammal Populations

    Science.gov (United States)

    2014-09-30

    modeling effort. The C version of the Range-dependent Acoustic Model (“ CRAM ”), a parabolic equation-based numerical model developed by Richard...of humpback whale vocalizations originating in the shallow water reef areas just west of Kauai, Hawaii to the Pacific Missile Range Facility (PMRF...are poorly sorted compared to the well sorted, fine- grained quartz sediments of terrigenous origin often found in other shallow water environments

  14. Active Chemical Sampling System for Underwater Chemical Source Localization

    Directory of Open Access Journals (Sweden)

    Ryuichi Takemura

    2016-01-01

    Full Text Available This paper investigates the effect of active water sampling to enhance chemical reception for small underwater robots. The search for a chemical source in a stagnant water environment is not an easy task because the chemical solution released from the source stays in the close vicinity of the source. No signal is obtained even if a robot with chemical sensors is placed a few centimeters from the chemical source. In the system under study, four electrochemical sensors are aligned in front of a suction pipe that draws water samples from the surroundings. Owing to the smooth laminar flow converging to the suction port, the streak of the chemical solution drawn to the sensors is shaped into a thin filamentous form. To prevent the chemical solution from passing between the sensors without touching their surfaces, slits are placed in front of the sensors to guide the incoming chemical solution from different directions to the corresponding sensors. A chemical source can be located by moving the system in the direction of the sensor showing the largest response. It is also shown that the chemical reception at the sensors can be significantly enhanced when the system is wobbled to introduce disturbances.

  15. Acoustic analysis of a piping system

    International Nuclear Information System (INIS)

    Misra, A.S.; Vijay, D.K.

    1996-01-01

    Acoustic pulsations in the Darlington Nuclear Generating Station, a 881 MW CANDU, primary heat transport piping system caused fuel bundle failures under short term operations. The problem was successfully analyzed using the steady-state acoustic analysis capability of the ABAQUS program. This paper describes in general, modelling of low amplitude acoustic pulsations in a liquid filled piping system using ABAQUS. The paper gives techniques for estimating the acoustic medium properties--bulk modulus, fluid density and acoustic damping--and modelling fluid-structure interactions at orifices and elbows. The formulations and techniques developed are benchmarked against the experiments given in 3 cited references. The benchmark analysis shows that the ABAQUS results are in excellent agreement with the experiments

  16. Chaos-Based Underwater Communication With Arbitrary Transducers and Bandwidth

    Directory of Open Access Journals (Sweden)

    Chao Bai

    2018-01-01

    Full Text Available In this work, an enhanced differential chaos shift keying (DCSK, based on a first order hybrid chaotic system, is being proposed for a high reliability underwater acoustic communication system. It can be integrated into systems that use standard existing transducers. We show that a coherent operation between the received signal and the time reversal of the basis function in a first order hybrid chaotic system maximizes the signal to noise ratio at the receiver. Concurrently, DCSK configuration is used to resist the distortion caused by the complex underwater acoustic channel. Our simulation results show that the proposed method has lower bit error rate (BER. In addition, it shows higher communication reliability over underwater acoustic channel as compared to the conventional DCSK using logistic map and its variant forms such as Correlation Delay Shift Keying (CDSK, Phase-Separate DCSK (PS-DCSK, High Efficiency DCSK (HE-DCSK, and Reference Modulated DCSK (RM-DCSK.

  17. Acoustic inversion with self noise of an autonomous underwater vehicle to measure sound speed in marine sediments

    NARCIS (Netherlands)

    van Leijen, A.V.; Rothkranz, L.J.M.; Groen, F.C.A.

    2009-01-01

    This work reports on an experiment from the Maritime Rapid Environmental Assessment sea trials in 2007, where autonomous underwater vehicles were deployed for environmental assessment. Even though these underwater vehicles are very quiet platforms, this work investigates the potential of vehicle

  18. An underwater optical wireless communication system based on LED source

    Science.gov (United States)

    Rao, Jionghui; Wei, Wei; Wang, Feng; Zhang, Xiaohui

    2011-11-01

    Compared with other communication methods, optical wireless communication (OWC) holds the merits of higher transmitting rate and sufficient secrecy. So it is an efficacious communicating measure for data transmitting between underwater carriers. However, due to the water attenuation and the transmitter & the receiver (TX/RX) collimation, this application is restrained in underwater mobile carriers. A prototype for underwater OWC was developed, in which a high-powered green LED array was used as the light source which partly raveled the TX/RX collimation out. A small pumped-multiple-tube (PMT) was used as the detector to increase the communicating range, and FPGA chips were employed to code and decode the communicating data. The data rate of the prototype approached to 4 Mb/s at 8.4m and 1 Mb/s at 22m where voice and Morse communications were achieved in a scope of 30 degree TX/RX angle.

  19. Acoustic wave simulation using an overset grid for the global monitoring system

    Science.gov (United States)

    Kushida, N.; Le Bras, R.

    2017-12-01

    The International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) has been monitoring hydro-acoustic and infrasound waves over the globe. Because of the complex natures of the oceans and the atmosphere, computer simulation can play an important role in understanding the observed signals. In this regard, methods which depend on partial differential equations and require minimum modelling, are preferable. So far, to our best knowledge, acoustic wave propagation simulations based on partial differential equations on such a large scale have not been performed (pp 147 - 161 of ref [1], [2]). The main difficulties in building such simulation codes are: (1) considering the inhomogeneity of medium including background flows, (2) high aspect ratio of computational domain, (3) stability during long time integration. To overcome these difficulties, we employ a two-dimensional finite different (FDM) scheme on spherical coordinates with the Yin-Yang overset grid[3] solving the governing equation of acoustic waves introduces by Ostashev et. al.[4]. The comparison with real recording examples in hydro-acoustic will be presented at the conference. [1] Paul C. Etter: Underwater Acoustic Modeling and Simulation, Fourth Edition, CRC Press, 2013. [2] LIAN WANG et. al.: REVIEW OF UNDERWATER ACOUSTIC PROPAGATION MODELS, NPL Report AC 12, 2014. [3] A. Kageyama and T. Sato: "Yin-Yang grid": An overset grid in spherical geometry, Geochem. Geophys. Geosyst., 5, Q09005, 2004. [4] Vladimir E. Ostashev et. al: Equations for finite-difference, time-domain simulation of sound propagation in moving inhomogeneous media and numerical implementation, Acoustical Society of America. DOI: 10.1121/1.1841531, 2005.

  20. Acoustical Imaging

    CERN Document Server

    Akiyama, Iwaki

    2009-01-01

    The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...

  1. Optimal BRUVs (baited remote underwater video system) survey ...

    African Journals Online (AJOL)

    Marine protected areas (MPAs) play an important role in coastal conservation, but there is presently no uniformly applied methodology for monitoring the efficacy of coastal fish protection. Whereas underwater visual census and controlled angling surveys have been used, their skilled-labour requirements and environmental ...

  2. Depth Level Control System using Peripheral Interface Controller for Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Muhamad Fadli Ghani

    2013-01-01

    Full Text Available This research explained on a design and development of an Automatic Depth Control System for underwater vehicle. Definition of underwater vehicle is a robotic sub-sea that is a part of the emerging field of autonomous and unmanned vehicles. This project shows the implementation’s development of an Automatic Depth Control System on a test prototyping vehicle especially involved small-scale and low cost sub-sea robots. The Automatic Depth Control System assembled with mechanical system and module of electronic system for development of a controller.

  3. Analysis of and Techniques for Adaptive Equalization for Underwater Acoustic Communication

    Science.gov (United States)

    2011-09-01

    many of these ideas were born. Like a lost puppy , I wandered through many research homes at both MIT and WHOI. I am a better, more rounded researcher for...machine instead of a person more complex systems were needed. The development of these systems began in the analog domain, but quickly switched to the...performance. 47 ~I :::J- \\ ... ,.. .. -········· ------- \\ _______ ~ This behavior makes the LE algorithm less than ideal for frequency selective

  4. FINAL TECHNICAL REPORT: Underwater Active Acoustic Monitoring Network For Marine And Hydrokinetic Energy Projects

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Peter J. [Scientific Solutions, Inc, Nashua, NH (United States); Edson, Patrick L. [Scientific Solutions, Inc, Nashua, NH (United States)

    2013-12-20

    This project saw the completion of the design and development of a second generation, high frequency (90-120 kHz) Subsurface-Threat Detection Sonar Network (SDSN). The system was deployed, operated, and tested in Cobscook Bay, Maine near the site the Ocean Renewable Power Company TidGen™ power unit. This effort resulted in a very successful demonstration of the SDSN detection, tracking, localization, and classification capabilities in a high current, MHK environment as measured by results from the detection and tracking trials in Cobscook Bay. The new high frequency node, designed to operate outside the hearing range of a subset of marine mammals, was shown to detect and track objects of marine mammal-like target strength to ranges of approximately 500 meters. This performance range results in the SDSN system tracking objects for a significant duration - on the order of minutes - even in a tidal flow of 5-7 knots, potentially allowing time for MHK system or operator decision-making if marine mammals are present. Having demonstrated detection and tracking of synthetic targets with target strengths similar to some marine mammals, the primary hurdle to eventual automated monitoring is a dataset of actual marine mammal kinematic behavior and modifying the tracking algorithms and parameters which are currently tuned to human diver kinematics and classification.

  5. An underwater optical wireless communication network

    Science.gov (United States)

    Arnon, Shlomi

    2009-08-01

    The growing need for underwater observation and sub-sea monitoring systems has stimulated considerable interest in advancing the enabling technologies of underwater wireless communication and underwater sensor networks. This communication technology is expected to play an important role in investigating climate change, in monitoring biological, bio-geochemical, evolutionary and ecological changes in the sea, ocean and lake environments and in helping to control and maintain oil production facilities and harbors using unmanned underwater vehicles (UUVs), submarines, ships, buoys, and divers. However, the present technology of underwater acoustic communication cannot provide the high data rate required to investigate and monitor these environments and facilities. Optical wireless communication has been proposed as the best alternative to meet this challenge. We present models of three kinds of optical wireless communication links a) a line-of-sight link, b) a modulating retro-reflector link and c) a reflective link, all of which can provide the required data rate. We analyze the link performance based on these models. From the analysis, it is clear that as the water absorption increases, the communication performance decreases dramatically for the three link types. However, by using the scattered lighted it was possible to mitigate this decrease in some cases. We conclude from the analysis that a high data rate underwater optical wireless network is a feasible solution for emerging applications such as UUV to UUV links and networks of sensors, and extended ranges in these applications could be achieved by applying a multi-hop concept.

  6. Fabrication and Characterization of High-Sensitivity Underwater Acoustic Multimedia Communication Devices with Thick Composite PZT Films

    Directory of Open Access Journals (Sweden)

    Jeng-Cheng Liu

    2017-01-01

    Full Text Available This paper presents a high-sensitivity hydrophone fabricated with a Microelectromechanical Systems (MEMS process using epitaxial thin films grown on silicon wafers. The evaluated resonant frequency was calculated through finite-element analysis (FEA. The hydrophone was designed, fabricated, and characterized by different measurements performed in a water tank, by using a pulsed sound technique with a sensitivity of −190 dB ± 2 dB for frequencies in the range 50–500 Hz. These results indicate the high-performance miniaturized acoustic devices, which can impact a variety of technological applications.

  7. International Conference on Underwater Environment

    CERN Document Server

    Jaulin, Luc; Creuze, Vincent; Debese, Nathalie; Quidu, Isabelle; Clement, Benoît; Billon-Coat, Annick

    2016-01-01

    This volume constitutes the results of the International Conference on Underwater Environment, MOQESM’14, held at “Le Quartz” Conference Center in Brest, France, on October 14-15, 2014, within the framework of the 9th Sea Tech Week, International Marine Science and Technology Event. The objective of MOQESM'14 was to bring together researchers from both academia and industry, interested in marine robotics and hydrography with application to the coastal environment mapping and underwater infrastructures surveys. The common thread of the conference is the combination of technical control, perception, and localization, typically used in robotics, with the methods of mapping and bathymetry. The papers presented in this book focus on two main topics. Firstly, coastal and infrastructure mapping is addressed, focusing not only on hydrographic systems, but also on positioning systems, bathymetry, and remote sensing. The proposed methods rely on acoustic sensors such as side scan sonars, multibeam echo sounders, ...

  8. Assessing the Underwater Acoustics of the World's Largest Vibration Hammer (OCTA-KONG) and Its Potential Effects on the Indo-Pacific Humpbacked Dolphin (Sousa chinensis)

    Science.gov (United States)

    Wang, Zhitao; Wu, Yuping; Duan, Guoqin; Cao, Hanjiang; Liu, Jianchang; Wang, Kexiong; Wang, Ding

    2014-01-01

    Anthropogenic noise in aquatic environments is a worldwide concern due to its potential adverse effects on the environment and aquatic life. The Hongkong-Zhuhai-Macao Bridge is currently under construction in the Pearl River Estuary, a hot spot for the Indo-Pacific humpbacked dolphin (Sousa chinensis) in China. The OCTA-KONG, the world's largest vibration hammer, is being used during this construction project to drive or extract steel shell piles 22 m in diameter. This activity poses a substantial threat to marine mammals, and an environmental assessment is critically needed. The underwater acoustic properties of the OCTA-KONG were analyzed, and the potential impacts of the underwater acoustic energy on Sousa, including auditory masking and physiological impacts, were assessed. The fundamental frequency of the OCTA-KONG vibration ranged from 15 Hz to 16 Hz, and the noise increments were below 20 kHz, with a dominant frequency and energy below 10 kHz. The resulting sounds are most likely detectable by Sousa over distances of up to 3.5 km from the source. Although Sousa clicks do not appear to be adversely affected, Sousa whistles are susceptible to auditory masking, which may negatively impact this species' social life. Therefore, a safety zone with a radius of 500 m is proposed. Although the zero-to-peak source level (SL) of the OCTA-KONG was lower than the physiological damage level, the maximum root-mean-square SL exceeded the cetacean safety exposure level on several occasions. Moreover, the majority of the unweighted cumulative source sound exposure levels (SSELs) and the cetacean auditory weighted cumulative SSELs exceeded the acoustic threshold levels for the onset of temporary threshold shift, a type of potentially recoverable auditory damage resulting from prolonged sound exposure. These findings may aid in the identification and design of appropriate mitigation methods, such as the use of air bubble curtains, “soft start” and “power down

  9. Assessing the underwater acoustics of the world's largest vibration hammer (OCTA-KONG) and its potential effects on the Indo-Pacific humpbacked dolphin (Sousa chinensis).

    Science.gov (United States)

    Wang, Zhitao; Wu, Yuping; Duan, Guoqin; Cao, Hanjiang; Liu, Jianchang; Wang, Kexiong; Wang, Ding

    2014-01-01

    Anthropogenic noise in aquatic environments is a worldwide concern due to its potential adverse effects on the environment and aquatic life. The Hongkong-Zhuhai-Macao Bridge is currently under construction in the Pearl River Estuary, a hot spot for the Indo-Pacific humpbacked dolphin (Sousa chinensis) in China. The OCTA-KONG, the world's largest vibration hammer, is being used during this construction project to drive or extract steel shell piles 22 m in diameter. This activity poses a substantial threat to marine mammals, and an environmental assessment is critically needed. The underwater acoustic properties of the OCTA-KONG were analyzed, and the potential impacts of the underwater acoustic energy on Sousa, including auditory masking and physiological impacts, were assessed. The fundamental frequency of the OCTA-KONG vibration ranged from 15 Hz to 16 Hz, and the noise increments were below 20 kHz, with a dominant frequency and energy below 10 kHz. The resulting sounds are most likely detectable by Sousa over distances of up to 3.5 km from the source. Although Sousa clicks do not appear to be adversely affected, Sousa whistles are susceptible to auditory masking, which may negatively impact this species' social life. Therefore, a safety zone with a radius of 500 m is proposed. Although the zero-to-peak source level (SL) of the OCTA-KONG was lower than the physiological damage level, the maximum root-mean-square SL exceeded the cetacean safety exposure level on several occasions. Moreover, the majority of the unweighted cumulative source sound exposure levels (SSELs) and the cetacean auditory weighted cumulative SSELs exceeded the acoustic threshold levels for the onset of temporary threshold shift, a type of potentially recoverable auditory damage resulting from prolonged sound exposure. These findings may aid in the identification and design of appropriate mitigation methods, such as the use of air bubble curtains, "soft start" and "power down" techniques.

  10. Assessing the underwater acoustics of the world's largest vibration hammer (OCTA-KONG and its potential effects on the Indo-Pacific humpbacked dolphin (Sousa chinensis.

    Directory of Open Access Journals (Sweden)

    Zhitao Wang

    Full Text Available Anthropogenic noise in aquatic environments is a worldwide concern due to its potential adverse effects on the environment and aquatic life. The Hongkong-Zhuhai-Macao Bridge is currently under construction in the Pearl River Estuary, a hot spot for the Indo-Pacific humpbacked dolphin (Sousa chinensis in China. The OCTA-KONG, the world's largest vibration hammer, is being used during this construction project to drive or extract steel shell piles 22 m in diameter. This activity poses a substantial threat to marine mammals, and an environmental assessment is critically needed. The underwater acoustic properties of the OCTA-KONG were analyzed, and the potential impacts of the underwater acoustic energy on Sousa, including auditory masking and physiological impacts, were assessed. The fundamental frequency of the OCTA-KONG vibration ranged from 15 Hz to 16 Hz, and the noise increments were below 20 kHz, with a dominant frequency and energy below 10 kHz. The resulting sounds are most likely detectable by Sousa over distances of up to 3.5 km from the source. Although Sousa clicks do not appear to be adversely affected, Sousa whistles are susceptible to auditory masking, which may negatively impact this species' social life. Therefore, a safety zone with a radius of 500 m is proposed. Although the zero-to-peak source level (SL of the OCTA-KONG was lower than the physiological damage level, the maximum root-mean-square SL exceeded the cetacean safety exposure level on several occasions. Moreover, the majority of the unweighted cumulative source sound exposure levels (SSELs and the cetacean auditory weighted cumulative SSELs exceeded the acoustic threshold levels for the onset of temporary threshold shift, a type of potentially recoverable auditory damage resulting from prolonged sound exposure. These findings may aid in the identification and design of appropriate mitigation methods, such as the use of air bubble curtains, "soft start" and "power down

  11. Acoustic--nuclear permeability logging system

    International Nuclear Information System (INIS)

    Dowling, D.J.; Arnold, D.M.

    1978-01-01

    A down hole logging tool featuring a neutron generator, an acoustic disturbance generator, and a radiation detection system is described. An array of acoustic magnetostriction transducers is arranged about the target of a neutron accelerator. Two gamma ray sensors are separated from the accelerator target by shielding. According to the method of the invention, the underground fluid at the level of a formation is bombarded by neutrons which react with oxygen in the fluid to produce unstable nitrogen 16 particles according to the reaction 16 O(n,p) 16 N. Acoustic pulses are communicated to the fluid, and are incident on the boundary of the borehole at the formation. The resulting net flow of fluid across the boundary is determined from radiation detection measurements of the decaying 16 N particles in the fluid. A measure of the permeability of the formation is obtained from the determination of net fluid flow across the boundary

  12. SERDP/Office of Naval Research Workshop on Acoustic Detection and Classification of UXO in the Underwater Environment

    Science.gov (United States)

    2013-09-01

    attached to the item by divers. In other, more sensitive environments, intentional detonations would cause unacceptable harm to nearby flora and fauna and...Underwater Environment 32 Sept. 2013 generation of sidescan and multibeam sonars that operate at Mega -Hertz (MHz) frequencies to image small, proud UXO

  13. Design of an Autonomous Underwater Vehicle (AUV) Charging System for Underway, Underwater Recharging

    Science.gov (United States)

    2014-05-09

    method of power transfer. Induction is less common than conduction. Rather than transferring power directly through a physical electrical...interesting aspects of this particular system include the “ hockey puck” coupling design of the induction coils. Transmit and receive coils are inlayed...The switching frequency for any application cannot be increased to an arbitrarily high value. Several physically limitations exist preventing

  14. The Control Packet Collision Avoidance Algorithm for the Underwater Multichannel MAC Protocols via Time-Frequency Masking

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2016-01-01

    Full Text Available Establishing high-speed and reliable underwater acoustic networks among multiunmanned underwater vehicles (UUVs is basic to realize cooperative and intelligent control among different UUVs. Nevertheless, different from terrestrial network, the propagation speed of the underwater acoustic network is 1500 m/s, which makes the design of the underwater acoustic network MAC protocols a big challenge. In accordance with multichannel MAC protocols, data packets and control packets are transferred through different channels, which lowers the adverse effect of acoustic network and gradually becomes the popular issues of underwater acoustic networks MAC protocol research. In this paper, we proposed a control packet collision avoidance algorithm utilizing time-frequency masking to deal with the control packets collision in the control channel. This algorithm is based on the scarcity of the noncoherent underwater acoustic communication signals, which regards collision avoiding as separation of the mixtures of communication signals from different nodes. We first measure the W-Disjoint Orthogonality of the MFSK signals and the simulation result demonstrates that there exists time-frequency mask which can separate the source signals from the mixture of the communication signals. Then we present a pairwise hydrophones separation system based on deep networks and the location information of the nodes. Consequently, the time-frequency mask can be estimated.

  15. Fault Risk Assessment of Underwater Vehicle Steering System Based on Virtual Prototyping and Monte Carlo Simulation

    Directory of Open Access Journals (Sweden)

    He Deyu

    2016-09-01

    Full Text Available Assessing the risks of steering system faults in underwater vehicles is a human-machine-environment (HME systematic safety field that studies faults in the steering system itself, the driver’s human reliability (HR and various environmental conditions. This paper proposed a fault risk assessment method for an underwater vehicle steering system based on virtual prototyping and Monte Carlo simulation. A virtual steering system prototype was established and validated to rectify a lack of historic fault data. Fault injection and simulation were conducted to acquire fault simulation data. A Monte Carlo simulation was adopted that integrated randomness due to the human operator and environment. Randomness and uncertainty of the human, machine and environment were integrated in the method to obtain a probabilistic risk indicator. To verify the proposed method, a case of stuck rudder fault (SRF risk assessment was studied. This method may provide a novel solution for fault risk assessment of a vehicle or other general HME system.

  16. Influence of range-gated intensifiers on underwater imaging system SNR

    Science.gov (United States)

    Wang, Xia; Hu, Ling; Zhi, Qiang; Chen, Zhen-yue; Jin, Wei-qi

    2013-08-01

    Range-gated technology has been a hot research field in recent years due to its high effective back scattering eliminating. As a result, it can enhance the contrast between a target and its background and extent the working distance of the imaging system. The underwater imaging system is required to have the ability to image in low light level conditions, as well as the ability to eliminate the back scattering effect, which means that the receiver has to be high-speed external trigger function, high resolution, high sensitivity, low noise, higher gain dynamic range. When it comes to an intensifier, the noise characteristics directly restrict the observation effect and range of the imaging system. The background noise may decrease the image contrast and sharpness, even covering the signal making it impossible to recognize the target. So it is quite important to investigate the noise characteristics of intensifiers. SNR is an important parameter reflecting the noise features of a system. Through the use of underwater laser range-gated imaging prediction model, and according to the linear SNR system theory, the gated imaging noise performance of the present market adopted super second generation and generation Ⅲ intensifiers were theoretically analyzed. Based on the active laser underwater range-gated imaging model, the effect to the system by gated intensifiers and the relationship between the system SNR and MTF were studied. Through theoretical and simulation analysis to the image intensifier background noise and SNR, the different influence on system SNR by super second generation and generation Ⅲ ICCD was obtained. Range-gated system SNR formula was put forward, and compared the different effect influence on the system by using two kind of ICCDs was compared. According to the matlab simulation, a detailed analysis was carried out theoretically. All the work in this paper lays a theoretical foundation to further eliminating back scattering effect, improving

  17. Acoustics

    Science.gov (United States)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  18. iSAT: The Integrated Satellite and Acoustic Telemetry system for tracking marine megafauna

    KAUST Repository

    De La Torre, Pedro R.

    2014-05-01

    In this dissertation an innovative technology to study whale sharks, Rhincodon typus is presented. The Integrated Satellite and Acoustic Telemetry project (iSAT) combines underwater acoustic telemetry, autonomous navigation and radio frequency communications into a standalone system. The whale shark, a resident of the Saudi Arabian Red Sea, is the target of the study. The technology presented is designed to help close current gaps in the knowledge of whale shark biology; these are gaps that prohibit the design of optimal conservation strategies. Unfortunately, the various existing tracking technologies each have limitations and are unable to solve all the unanswered questions. Whale shark populations are increasingly threatened by anthropogenic activities such as targeted and indirect fishing pressure, creating an urgent need for better management practices. This dissertation addresses the current state-of-the-art of relevant technologies, including autonomous surface vehicles (ASVs), sensors for research in the ocean and remote monitoring of wild fauna (biotelemetry). iSAT contains components of all of these technologies, but the primary achievement of this dissertation is the development of iSAT’s Acoustic Tracking System (ATS). Underwater, the most efficient way of transmitting energy through long distances is sound. An electronic tag is attached to an animal and works as its acoustic identifier. iSAT’s hydrophone array detects the presence and direction of the acoustic signal generated by the tag. The expected performance, range, and capacity to tell the direction to the tag are explained and compared to the actual measured values. The first operational iSAT ATS is demonstrated. This work represents significant advancement towards a fully autonomous iSAT system. Developments on the power electronics, navigation, renewable energy harvesting, and other modules are included in this research. With the recent integration of digital acquisition systems, i

  19. Experimental findings on the underwater measurements uncertainty of speed of sound and the alignment system

    Science.gov (United States)

    Santos, T. Q.; Alvarenga, A. V.; Oliveira, D. P.; Mayworm, R. C.; Souza, R. M.; Costa-Félix, R. P. B.

    2016-07-01

    Speed of sound is an important quantity to characterize reference materials for ultrasonic applications, for instance. The alignment between the transducer and the test body is an key activity in order to perform reliable and consistent measurement. The aim of this work is to evaluate the influence of the alignment system to the expanded uncertainty of such measurement. A stainless steel cylinder was previously calibrated on an out of water system typically used for calibration of non-destructive blocks. Afterwards, the cylinder was calibrated underwater with two distinct alignment system: fixed and mobile. The values were statistically compared to the out-of-water measurement, considered the golden standard for such application. For both alignment systems, the normalized error was less than 0.8, leading to conclude that the both measurement system (under and out-of-water) do not diverge significantly. The gold standard uncertainty was 2.7 m-s-1, whilst the fixed underwater system resulted in 13 m-s-1, and the mobile alignment system achieved 6.6 m-s-1. After the validation of the underwater system for speed of sound measurement, it will be applied to certify Encapsulated Tissue Mimicking Material as a reference material for biotechnology application.

  20. Parvulescu Revisited: Small Tank Acoustics for Bioacousticians.

    Science.gov (United States)

    Rogers, Peter H; Hawkins, Anthony D; Popper, Arthur N; Fay, Richard R; Gray, Michael D

    2016-01-01

    Researchers often perform hearing studies on fish in small tanks. The acoustic field in such a tank is considerably different from the acoustic field that occurs in the animal's natural environment. The significance of these differences is magnified by the nature of the fish's auditory system where either acoustic pressure (a scalar), acoustic particle velocity (a vector), or both may serve as the stimulus. It is essential for the underwater acoustician to understand the acoustics of small tanks to be able to carry out valid auditory research in the laboratory and to properly compare and interpret the results of others.

  1. Underwater Communications for Video Surveillance Systems at 2.4 GHz

    Directory of Open Access Journals (Sweden)

    Sandra Sendra

    2016-10-01

    Full Text Available Video surveillance is needed to control many activities performed in underwater environments. The use of wired media can be a problem since the material specially designed for underwater environments is very expensive. In order to transmit the images and videos wirelessly under water, three main technologies can be used: acoustic waves, which do not provide high bandwidth, optical signals, although the effect of light dispersion in water severely penalizes the transmitted signals and therefore, despite offering high transfer rates, the maximum distance is very small, and electromagnetic (EM waves, which can provide enough bandwidth for video delivery. In the cases where the distance between transmitter and receiver is short, the use of EM waves would be an interesting option since they provide high enough data transfer rates to transmit videos with high resolution. This paper presents a practical study of the behavior of EM waves at 2.4 GHz in freshwater underwater environments. First, we discuss the minimum requirements of a network to allow video delivery. From these results, we measure the maximum distance between nodes and the round trip time (RTT value depending on several parameters such as data transfer rate, signal modulations, working frequency, and water temperature. The results are statistically analyzed to determine their relation. Finally, the EM waves’ behavior is modeled by a set of equations. The results show that there are some combinations of working frequency, modulation, transfer rate and temperature that offer better results than others. Our work shows that short communication distances with high data transfer rates is feasible.

  2. Underwater Communications for Video Surveillance Systems at 2.4 GHz.

    Science.gov (United States)

    Sendra, Sandra; Lloret, Jaime; Jimenez, Jose Miguel; Rodrigues, Joel J P C

    2016-10-23

    Video surveillance is needed to control many activities performed in underwater environments. The use of wired media can be a problem since the material specially designed for underwater environments is very expensive. In order to transmit the images and videos wirelessly under water, three main technologies can be used: acoustic waves, which do not provide high bandwidth, optical signals, although the effect of light dispersion in water severely penalizes the transmitted signals and therefore, despite offering high transfer rates, the maximum distance is very small, and electromagnetic (EM) waves, which can provide enough bandwidth for video delivery. In the cases where the distance between transmitter and receiver is short, the use of EM waves would be an interesting option since they provide high enough data transfer rates to transmit videos with high resolution. This paper presents a practical study of the behavior of EM waves at 2.4 GHz in freshwater underwater environments. First, we discuss the minimum requirements of a network to allow video delivery. From these results, we measure the maximum distance between nodes and the round trip time (RTT) value depending on several parameters such as data transfer rate, signal modulations, working frequency, and water temperature. The results are statistically analyzed to determine their relation. Finally, the EM waves' behavior is modeled by a set of equations. The results show that there are some combinations of working frequency, modulation, transfer rate and temperature that offer better results than others. Our work shows that short communication distances with high data transfer rates is feasible.

  3. Underwater Wireless Acousto-Optic Waveguide (UWAOW)

    Science.gov (United States)

    Giuliano, Giovanni; Kent, Lionel W. J.; Laycock, Leslie C.

    2017-10-01

    The present study originated in the lack of research into achieving underwater total internal reflection (TIR) via the acousto-optic effect. The uniqueness of this technique exists in the fact that it is based on a high sound pressure level which induces a localised change in refractive index of seawater sufficient to achieve total internal reflection within the communication channel. Different transducer systems for generating the pressure wave have been investigated and take the form of a wave which may be either a standing wave, or a novel beamforming technique. The former is based on an array of transducers and with an acoustic mirror at the receiver in order to establish the standing wave. The alternative approach relies on the high intrinsic directionality of a novel beamformer where an annular transducer array is examined as an acoustic source. In this paper, the main characteristics of the acoustic optic waveguide will be presented. This will include both sound and light propagation in the ocean, TIR, novel beam propagation, the refractive index of water as a function of the externally applied acoustic pressure, and the acoustic technology. The modelled results, the limitations imposed by the challenging medium, and the system requirements required to obtain an Underwater Wireless Acousto-Optic Waveguide (UWAOW) will be also addressed.

  4. An Underwater Target Detection System for Electro-Optical Imagery Data

    Science.gov (United States)

    2010-06-01

    The detection method involves identifying frames of interest (FOI) containing the potential targets. Once the FOI have been identified, regions of...complicated one. Previous work on EO data has been focused on Streak Tube Imaging Lidar ( STIL ) system [1]–[4], and laser line scan (LLS) [5]–[7...based systems. STIL sensor produces high- resolution 3-D images of underwater objects by scanning (line by line), on the target field [1]. The collected

  5. Apollo remote analysis system applied to surface and underwater in-situ elemental analysis

    International Nuclear Information System (INIS)

    Evans, L.G.; Bielefeld, M.J.; Eller, E.L.; Schmadebeck, R.L.; Trombka, J.I.; Mustafa, M.G.; Senftle, F.E.; Heath, R.L.; Stehling, K.; Vadus, J.

    1976-01-01

    The surveying of the elemental composition of bulk samples over extended areas in near real-time would be an invaluable tool for surface and underwater environmental analysis. However, few techniques provide such a capability. Based on the experience from the orbital gamma-ray spectrometer experiments on Apollo 15 and 16 in which elemental composition of large portions of the moon were determined, an analysis system has been developed for terrestrial applications, which can fulfill these requirements. A portable, compact pulsed neutron generator and NaI(Tl) detector system coupled to associated electronics under mini-computer control can provide the timing and spectral characteristics necessary to determine elemental composition for many applications. Field trials of the system for underwater elemental analysis are planned during the next year

  6. Development of measuring and control systems for underwater cutting of radioactive components

    International Nuclear Information System (INIS)

    Drews, P.; Fuchs, K.

    1990-01-01

    Shutdown and dismantling of nuclear power plants requires special techniques to decommission the radioactive components involved. For reasons of safety, decommissioning of components under water can be advantageous because of the radioactive shielding effect of water. In this project, research activities and developmental works focused on the realization of different sensor systems and their adaptation to cutting tasks. A new image-processing system has been developed in addition to the use of a modified underwater TV camera for optical cutting process control (plasma and abrasive wheel cutting). For control of process parameters, different inductive, ultrasonic and optical sensors have been modified and tested. The investigations performed are aimed at assuring high-quality underwater cutting with the help of sensor systems specially adapted to cutting tasks, with special signal procession and evaluation through microcomputer control. It is important that special attention be paid to the reduction of interferences in image pick-up and procession. The measuring system has been designed and realized according to the consideration of the demands for underwater cutting processes. The reliability of the system was tested in conjunction with a four-axes handling system

  7. Performance Analysis of Single Photon Avalanche Diode Underwater VLC System Using ARQ

    KAUST Repository

    Shafiqu, Taniya

    2017-08-24

    Single photon avalanche diode (SPAD) has recently been introduced as a powerful detector for long distance underwater visible light (UVLC) communication. In this paper, the performance of the SPAD detector in UVLC is analyzed considering the effect of the turbulence induced fading resulting from air bubbles in addition to the combined effect of attenuation and scattering. Automatic repeat request (ARQ) system is adopted to mitigate different underwater impairments and reduce the error probability at the receiver side. Approximate packet error rate (PER) expressions are derived using Laguerre Gauss polynomial for a finite number of transmission. Next, the average energy efficiency and throughput are analyzed to account for the increased energy consumption cost and the decreased effective transmission rate, which results from adopting the ARQ scheme. Finally, different numerical results are introduced to verify the derived PER expressions, demonstrate the ability of the proposed ARQ system in extending the transmission range, and show the trade-off between energy efficiency (EE) and throughput.

  8. Atlantic Herring Acoustic Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Advanced Sampling Technologies Research Group conducts annual fisheries acoustic surveys using state-of-the-art acoustic, midwater trawling, and underwater...

  9. Speaker verification system using acoustic data and non-acoustic data

    Science.gov (United States)

    Gable, Todd J [Walnut Creek, CA; Ng, Lawrence C [Danville, CA; Holzrichter, John F [Berkeley, CA; Burnett, Greg C [Livermore, CA

    2006-03-21

    A method and system for speech characterization. One embodiment includes a method for speaker verification which includes collecting data from a speaker, wherein the data comprises acoustic data and non-acoustic data. The data is used to generate a template that includes a first set of "template" parameters. The method further includes receiving a real-time identity claim from a claimant, and using acoustic data and non-acoustic data from the identity claim to generate a second set of parameters. The method further includes comparing the first set of parameters to the set of parameters to determine whether the claimant is the speaker. The first set of parameters and the second set of parameters include at least one purely non-acoustic parameter, including a non-acoustic glottal shape parameter derived from averaging multiple glottal cycle waveforms.

  10. Design and implementation of omni-directional light source and receiving system used in underwater wireless optical communication

    Science.gov (United States)

    Rao, Jionghui; Yao, Wenming; Chen, Nannan

    2013-08-01

    Underwater wireless optical communication is a communication mode which uses light as an information carrier and water as transmission medium. As a result of the inherent characteristics of the light waves, underwater wireless optical communication has the advantages of high transmission rate, good security, and strong anti-interference ability. It is suitable for high-speed, short-range communication between underwater mobile vehicles. Underwater optical wireless communication system designed in this paper is composed of the omni-directional communication light source and the receiving system. In the omni-directional communication light source, the laser beams with small divergence angle of 532nm wavelength produced by modulated laser are expanded through a combination refraction-reflection solid and then obtain more than 2π space divergence angle. The paper use TRACEPRO simulation tool to help design a combination solid composed of the lens, conical reflector and parabolic reflector, and test in the air and underwater, the result shows that the effect is fine. Unlike in the air, light attenuation is heavy in the water and a large range of variations in light intensity at different distances appear during underwater optical communication. In order to overcome this problem, the paper use a small photomultiplier as the detection device, design the receiving system using the automatic gain control technique. Underwater wireless optical communication system designed in this paper has the characteristics of small size, low power dissipation and the omni-directional communication function, it is suitable for application in the UUV, AUV, Swimmer Delivery Vehicle (SDV) and other underwater mobile platform, it realizes point-to-point communications and point-to-multipoint communications.

  11. ISAT: The mega-fauna acoustic tracking system

    KAUST Repository

    De la Torre, Pedro

    2013-06-01

    The acoustic tracking module of the Integrated Satellite and Acoustic Telemetry (iSAT) system is discussed in detail. iSAT is capable of detecting the relative direction of an acoustic source by measuring the order of arrival (OOA) of the acoustic signal to each hydrophone in a triangular array. The characteristics of the hydrophones, the projector, and the target acoustic signal used for iSAT are described. Initially it is designed to study the movements of whale sharks (Rhincodon typus), but it could potentially be used to describe high resolution movements of other marine species. © 2013 IEEE.

  12. Acoustic array systems theory, implementation, and application

    CERN Document Server

    Bai, Mingsian R; Benesty, Jacob

    2013-01-01

    Presents a unified framework of far-field and near-field array techniques for noise source identification and sound field visualization, from theory to application. Acoustic Array Systems: Theory, Implementation, and Application provides an overview of microphone array technology with applications in noise source identification and sound field visualization. In the comprehensive treatment of microphone arrays, the topics covered include an introduction to the theory, far-field and near-field array signal processing algorithms, practical implementations, and common applic

  13. Streaming and particle motion in acoustically-actuated leaky systems

    Science.gov (United States)

    Nama, Nitesh; Barnkob, Rune; Jun Huang, Tony; Kahler, Christian; Costanzo, Francesco

    2017-11-01

    The integration of acoustics with microfluidics has shown great promise for applications within biology, chemistry, and medicine. A commonly employed system to achieve this integration consists of a fluid-filled, polymer-walled microchannel that is acoustically actuated via standing surface acoustic waves. However, despite significant experimental advancements, the precise physical understanding of such systems remains a work in progress. In this work, we investigate the nature of acoustic fields that are setup inside the microchannel as well as the fundamental driving mechanism governing the fluid and particle motion in these systems. We provide an experimental benchmark using state-of-art 3D measurements of fluid and particle motion and present a Lagrangian velocity based temporal multiscale numerical framework to explain the experimental observations. Following verification and validation, we employ our numerical model to reveal the presence of a pseudo-standing acoustic wave that drives the acoustic streaming and particle motion in these systems.

  14. The underwater acoustic environment at SGaan Kinghlas-Bowie Seamount Marine Protected Area: Characterizing vessel traffic and associated noise using satellite AIS and acoustic datasets.

    Science.gov (United States)

    Allen, Ainsley S; Yurk, Harald; Vagle, Svein; Pilkington, James; Canessa, Rosaline

    2018-03-01

    Vessel traffic is one of the most wide-spread anthropogenic contributors to ocean noise worldwide and has the potential to alter ecosystems upon which cetaceans and other acoustically sensitive marine organisms rely. Canada's SGaan Kinghlas-Bowie Seamount Marine Protected Area (SK-B MPA) is one such area whose productive ecosystem could benefit from greater monitoring of human induced threats in order to inform management. Despite earning official designation as a Marine Protected Area under the Oceans Act in 2008, little remains known about vessel traffic in the region and the associated potential impacts on vulnerable marine species. Therefore, to increase our understanding of vessel traffic and accompanying noise at SK-B MPA, satellite AIS and acoustic data were investigated. The results of this study suggest that variations in ambient sound levels in the region are driven by near and distant shipping events, thus having implications for future management of the MPA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. A Survey of Routing Issues and Associated Protocols in Underwater Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Muhammad Khalid

    2017-01-01

    Full Text Available Underwater wireless sensor networks are a newly emerging wireless technology in which small size sensors with limited energy and limited memory and bandwidth are deployed in deep sea water and various monitoring operations like tactical surveillance, environmental monitoring, and data collection are performed through these tiny sensors. Underwater wireless sensor networks are used for the exploration of underwater resources, oceanographic data collection, flood or disaster prevention, tactical surveillance systems, and unmanned underwater vehicles. Sensor nodes consist of a small memory, a central processing unit, and an antenna. Underwater networks are much different from terrestrial sensor networks as radio waves cannot be used in underwater wireless sensor networks. Acoustic channels are used for communication in deep sea water. Acoustic signals have many limitations, such as limited bandwidth, higher end-to-end delay, network path loss, higher propagation delay, and dynamic topology. Usually, these limitations result in higher energy consumption with a smaller number of packets delivered. The main aim nowadays is to operate sensor nodes having a smaller battery for a longer time in the network. This survey has discussed the state-of-the-art localization based and localization-free routing protocols. Routing associated issues in the area of underwater wireless sensor networks have also been discussed.

  16. Autonomous underwater handling system for service, measurement and cutting tasks for the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Hahn, M.; Haferkamp, H.; Bach, W.; Rose, N.

    1992-01-01

    For about 10 years the Institute for Material Science at the Hanover University has worked on projects of underwater cutting and welding. Increasing tasks to be done in nuclear facilities led to the development of special handling systems to support and handle the cutting tools. Also sensors and computers for extensive and complex tasks were integrated. A small sized freediving handling system, equipped with 2 video cameras, ultrasonic and radiation sensors and a plasma cutting torch for inspection and decommissioning tasks in nuclear facilities is described in this paper. (Author)

  17. Acoustic leak detection in piping systems, 4

    International Nuclear Information System (INIS)

    Kitajima, Akira; Naohara, Nobuyuki; Aihara, Akihiko

    1983-01-01

    To monitor a high-pressure piping of nuclear power plants, a possibility of acoustic leak detection method has been experimentally studied in practical field tests and laboratory tests. Characteristics of background noise in field test and the results of experiment are summarized as follows: (1) The level of background noise in primary loop (PWR) was almost constant under actual plant operation. But it is possible that it rises at the condition of the pressure in primary loop. (2) Based on many experience of laboratory tests and practical field tests. The leak monitoring system for practical field was designed and developed. To improve the reliability, a judgment of leak on this system is used three factors of noise level, duration time of phenomena and frequency spectrum of noise signal emitted from the leak point. (author)

  18. Wearable Current-Based ECG Monitoring System with Non-Insulated Electrodes for Underwater Application

    Directory of Open Access Journals (Sweden)

    Stefan Gradl

    2017-12-01

    Full Text Available The second most common cause of diving fatalities is cardiovascular diseases. Monitoring the cardiovascular system in actual underwater conditions is necessary to gain insights into cardiac activity during immersion and to trigger preventive measures. We developed a wearable, current-based electrocardiogram (ECG device in the eco-system of the FitnessSHIRT platform. It can be used for normal/dry ECG measuring purposes but is specifically designed to allow underwater signal acquisition without having to use insulated electrodes. Our design is based on a transimpedance amplifier circuit including active current feedback. We integrated additional cascaded filter components to counter noise characteristics specific to the immersed condition of such a system. The results of the evaluation show that our design is able to deliver high-quality ECG signals underwater with no interferences or loss of signal quality. To further evaluate the applicability of the system, we performed an applied study with it using 12 healthy subjects to examine whether differences in the heart rate variability exist between sitting and supine positions of the human body immersed in water and outside of it. We saw significant differences, for example, in the RMSSD and SDSD between sitting outside the water (36 ms and sitting immersed in water (76 ms and the pNN50 outside the water (6.4% and immersed in water (18.2%. The power spectral density for the sitting positions in the TP and HF increased significantly during water immersion while the LF/HF decreased significantly. No significant changes were found for the supine position.

  19. Underwater wireless optical communications: From system-level demonstrations to channel modelling

    KAUST Repository

    Oubei, Hassan M.

    2018-01-09

    In this paper, we discuss about recent experimental advances in underwater wireless optical communications (UWOC) over various underwater channel water types using different modulation schemes as well as modelling and describing the statistical properties of turbulence-induced fading in underwater wireless optical channels using laser beam intensity fluctuations measurements.

  20. Current State of Technology of Fuel Cell Power Systems for Autonomous Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Alejandro Mendez

    2014-07-01

    Full Text Available Autonomous Underwater Vehicles (AUVs are vehicles that are primarily used to accomplish oceanographic research data collection and auxiliary offshore tasks. At the present time, they are usually powered by lithium-ion secondary batteries, which have insufficient specific energies. In order for this technology to achieve a mature state, increased endurance is required. Fuel cell power systems have been identified as an effective means to achieve this endurance but no implementation in a commercial device has yet been realized. This paper summarizes the current state of development of the technology in this field of research. First, the most adequate type of fuel cell for this application is discussed. The prototypes and design concepts of AUVs powered by fuel cells which have been developed in the last few years are described. Possible commercial and experimental fuel cell stack options are analyzed, examining solutions adopted in the analogous aerial vehicle applications, as well as the underwater ones, to see if integration in an AUV is feasible. Current solutions in oxygen and hydrogen storage systems are overviewed and energy density is objectively compared between battery power systems and fuel cell power systems for AUVs. A couple of system configuration solutions are described including the necessary lithium-ion battery hybrid system. Finally, some closing remarks on the future of this technology are given.

  1. Optimization of the Working Cycle for an Underwater Propulsion System Based on Aluminium-Water Combustion

    Science.gov (United States)

    Chen, Xianhe; Xia, Zhixun; Huang, Liya; Hu, Jianxin

    2017-05-01

    The working cycle of a novel underwater propulsion system based on aluminium combustion with water is researched in order to evaluate the best performance. The system exploits the exothermic reaction between aluminium and water which will produce high temperature, pressure steam and hydrogen mixture that can be used to drive turbine to generate power. Several new system configurations corresponding to different working cycles are investigated, and their performance parameters in terms of net power, energy density and global efficiency are discussed. The results of the system simulation show that using the recirculation steam rather than hydrogen as the carrier gas, the system net power, energy density and efficiency of the system are greatly increased compared, however the system performance is close either using adiabatic compression or isothermal compression. And if an evaporator component is added into system in order to take full use of the solid product heat, the system performance will be improved.

  2. The Analysis of Drive Systems in Unmanned Underwater Vehicles Towards Identifying the Method of Drive Transmission – Part 2

    Directory of Open Access Journals (Sweden)

    Jakus Bartłomiej

    2017-10-01

    Full Text Available This is the second part of material concerned with the analysis of drive systems in remotely controlled underwater vehicles. The first part involved the problem of classification of unmanned underwater vehicles, mainly remotely controlled, as well as the nomenclature used in relation to various components of the discussed drive systems and thrusters. The functionality of particular drive systems was discussed along with the advantages and disadvantages of the analysed design technologies. This material presents the method of conducting an analysis of drive systems, its methodology and results.

  3. A rail system for circular synthetic aperture sonar imaging and acoustic target strength measurements: design/operation/preliminary results.

    Science.gov (United States)

    Kennedy, J L; Marston, T M; Lee, K; Lopes, J L; Lim, R

    2014-01-01

    A 22 m diameter circular rail, outfitted with a mobile sonar tower trolley, was designed, fabricated, instrumented with underwater acoustic transducers, and assembled on a 1.5 m thick sand layer at the bottom of a large freshwater pool to carry out sonar design and target scattering response studies. The mobile sonar tower translates along the rail via a drive motor controlled by customized LabVIEW software. The rail system is modular and assembly consists of separately deploying eight circular arc sections, measuring a nominal center radius of 11 m and 8.64 m arc length each, and having divers connect them together in the underwater environment. The system enables full scale measurements on targets of interest with 0.1° angular resolution over a complete 360° aperture, without disrupting target setup, and affording a level of control over target environment conditions and noise sources unachievable in standard field measurements. In recent use, the mobile cart carrying an instrumented sonar tower was translated along the rail in 720 equal position increments and acoustic backscatter data were acquired at each position. In addition, this system can accommodate both broadband monostatic and bistatic scattering measurements on targets of interest, allowing capture of target signature phenomena under diverse configurations to address current scientific and technical issues encountered in mine countermeasure and unexploded ordnance applications. In the work discussed here, the circular rail apparatus is used for acoustic backscatter testing, but this system also has the capacity to facilitate the acquisition of magnetic and optical sensor data from targets of interest. A brief description of the system design and operation will be presented along with preliminary processed results for data acquired from acoustic measurements conducted at the Naval Surface Warfare Center, Panama City Division Test Pond Facility. [Work Supported by the U.S. Office of Naval Research and

  4. Reliability considerations of electronics components for the deep underwater muon and neutrino detection system

    International Nuclear Information System (INIS)

    Leskovar, B.

    1980-02-01

    The reliability of some electronics components for the Deep Underwater Muon and Neutrino Detection (DUMAND) System is discussed. An introductory overview of engineering concepts and technique for reliability assessment is given. Component reliability is discussed in the contest of major factors causing failures, particularly with respect to physical and chemical causes, process technology and testing, and screening procedures. Failure rates are presented for discrete devices and for integrated circuits as well as for basic electronics components. Furthermore, the military reliability specifications and standards for semiconductor devices are reviewed

  5. The 2014-2015 warming anomaly in the Southern California Current System observed by underwater gliders

    Science.gov (United States)

    Zaba, Katherine D.; Rudnick, Daniel L.

    2016-02-01

    Large-scale patterns of positive temperature anomalies persisted throughout the surface waters of the North Pacific Ocean during 2014-2015. In the Southern California Current System, measurements by our sustained network of underwater gliders reveal the coastal effects of the recent warming. Regional upper ocean temperature anomalies were greatest since the initiation of the glider network in 2006. Additional observed physical anomalies included a depressed thermocline, high stratification, and freshening; induced biological consequences included changes in the vertical distribution of chlorophyll fluorescence. Contemporaneous surface heat flux and wind strength perturbations suggest that local anomalous atmospheric forcing caused the unusual oceanic conditions.

  6. Study on Acoustic Catheter of Boiler Tube Leakage Monitoring Systems

    Science.gov (United States)

    Lv, Yongxing; Feng, Qiang

    Boiler tube leakage is the major reason of affecting the safe operation of the unit now, there are 3 methods of the "four tube" leakage detection: Traditional method, filtering method and acoustic spectrum analysis, acoustic spectrum analysis is the common method, but this method have low sensitivity and the sensor damage easily. Therewith, designed the special acoustic catheter with acoustic resonance cavity type, proved by experiments, the acoustic catheter with acoustic resonance cavity type can enhance leakage sound, can accurately extract leakage signals, has high sensitivity, and can avoid the effect of sensor by fire and hot-gas when the furnace is in positive pressure situation, reduce the installation and maintenance costs of the boiler tube leakage monitor system.

  7. KeproVt : underwater robotic system for visual inspection of nuclear reactor internals

    International Nuclear Information System (INIS)

    Cho, Byung-Hak; Byun, Seung-Hyun; Shin, Chang-Hoon; Yang, Jang-Bum; Song, Sung-Il; Oh, Jung-Mook

    2004-01-01

    An underwater robotic system for visual inspection of reactor vessel internals has been developed. The Korea Electric Power Robot for Visual Test (KeproVt) consists of an underwater robot, a vision processor based measuring unit, a master control station and a servo control station. The vision processor based measuring unit employs a first-of-a-kind engineering technology in nuclear robotics. The vision processor makes use of a camera located at the top of the water level referenced to the reactor center line to get an image of the robot, and computes the location and orientation of the robot. The robot guided by the control station with the measuring unit can be controlled to have any motion at any position in the reactor vessel with ±1 cm positioning and ±2 deg. heading accuracies with enough precision to inspect reactor internals. A simple and fast installation process is emphasized in the developed system. The installation process consists of hooking a vision camera on the guide rail of the refueling machine and putting a small robot (14.5 kg in weight) in the reactor cavity pool. The easy installation and automatic operation meet the demand of shortening the reactor outage and reducing the number of inspection personnel. The developed robotic system was successfully deployed at the Yonggwang Nuclear Unit 1 for the visual inspection of reactor internals

  8. Deep Water Ocean Acoustics

    Science.gov (United States)

    2016-12-22

    analysis was conducted on the North Pacific Acoustics Laboratory Philippine Sea tests 2009 and 2010, both of which Dr. Heaney participated as a co-chief...obtained from the ambient noise field. In underwater acoustics , this travel time strongly depends on the depth and temperature and to a lesser extent...et al. 2012) and underwater volcanoes (Green at al. 2013). Guided wave propagation contributes to the limited acoustical attenuation by the SOFAR

  9. A climatology of the California Current System from a network of underwater gliders

    Science.gov (United States)

    Rudnick, Daniel L.; Zaba, Katherine D.; Todd, Robert E.; Davis, Russ E.

    2017-05-01

    Autonomous underwater gliders offer the possibility of sustained observation of the coastal ocean. Since 2006 Spray underwater gliders in the California Underwater Glider Network (CUGN) have surveyed along California Cooperative Oceanic Fisheries Investigations (CalCOFI) lines 66.7, 80.0, and 90.0, constituting the world's longest sustained glider network, to our knowledge. In this network, gliders dive between the surface and 500 m, completing a cycle in 3 h and covering 3 km in that time. Sections extend 350-500 km offshore and take 2-3 weeks to occupy. Measured variables include pressure, temperature, salinity, and depth-average velocity. The CUGN has amassed over 10,000 glider-days, covering over 210,000 km with over 95,000 dives. These data are used to produce a climatology whose products are for each variable a mean field, an annual cycle, and the anomaly from the annual cycle. The analysis includes a weighted least-squares fit to derive the mean and annual cycle, and an objective map to produce the anomaly. The final results are variables on rectangular grids in depth, distance offshore, and time. The mean fields are finely resolved sections across the main flows in the California Current System, including the poleward California Undercurrent and the equatorward California Current. The annual cycle shows a phase change from the surface to the thermocline, reflecting the effects of air/sea fluxes at the surface and upwelling in the thermocline. The interannual anomalies are examined with an emphasis on climate events of the last ten years including the 2009-2010 El Niño, the 2010-2011 La Niña, the warm anomaly of 2014-2015, and the 2015-2016 El Niño.

  10. Acoustic model optimisation for a call routing system

    CSIR Research Space (South Africa)

    Kleynhans, N

    2012-11-01

    Full Text Available The paper presents work aimed at optimising acoustic models for the AutoSecretary call routing system. To develop the optimised acoustic models: (1) an appropriate phone set was selected and used to create a pronunciation dictionary, (2) various...

  11. Evaluation of Underwater Adhesives and Friction Coatings for In Situ Attachment of Fiber Optic Sensor System for Subsea Applications

    Science.gov (United States)

    Tang, Henry H.; Le, Suy Q.; Orndoff, Evelyne S.; Smith, Frederick D.; Tapia, Alma S.; Brower, David V.

    2012-01-01

    Integrity and performance monitoring of subsea pipelines and structures provides critical information for managing offshore oil and gas production operation and preventing environmentally damaging and costly catastrophic failure. Currently pipeline monitoring devices require ground assembly and installation prior to the underwater deployment of the pipeline. A monitoring device that could be installed in situ on the operating underwater structures could enhance the productivity and improve the safety of current offshore operation. Through a Space Act Agreement (SAA) between the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) and Astro Technology, Inc. (ATI), JSC provides technical expertise and testing facilities to support the development of fiber optic sensor technologies by ATI. This paper details the first collaboration effort between NASA JSC and ATI in evaluating underwater applicable adhesives and friction coatings for attaching fiber optic sensor system to subsea pipeline. A market survey was conducted to examine different commercial ]off ]the ]shelf (COTS) underwater adhesive systems and to select adhesive candidates for testing and evaluation. Four COTS epoxy based underwater adhesives were selected and evaluated. The adhesives were applied and cured in simulated seawater conditions and then evaluated for application characteristics and adhesive strength. The adhesive that demonstrated the best underwater application characteristics and highest adhesive strength were identified for further evaluation in developing an attachment system that could be deployed in the harsh subsea environment. Various friction coatings were also tested in this study to measure their shear strengths for a mechanical clamping design concept for attaching fiber optic sensor system. A COTS carbide alloy coating was found to increase the shear strength of metal to metal clamping interface by up to 46 percent. This study provides valuable data for

  12. Design and implementation of an underwater sound recording device.

    Science.gov (United States)

    Martinez, Jayson J; Myers, Josh R; Carlson, Thomas J; Deng, Z Daniel; Rohrer, John S; Caviggia, Kurt A; Woodley, Christa M; Weiland, Mark A

    2011-01-01

    To monitor the underwater sound and pressure waves generated by anthropogenic activities such as underwater blasting and pile driving, an autonomous system was designed to record underwater acoustic signals. The underwater sound recording device (USR) allows for connections of two hydrophones or other dynamic pressure sensors, filters high frequency noise out of the collected signals, has a gain that can be independently set for each sensor, and allows for 2 h of data collection. Two versions of the USR were created: a submersible model deployable to a maximum depth of 300 m, and a watertight but not fully submersible model. Tests were performed on the USR in the laboratory using a data acquisition system to send single-frequency sinusoidal voltages directly to each component. These tests verified that the device operates as designed and performs as well as larger commercially available data acquisition systems, which are not suited for field use. On average, the designed gain values differed from the actual measured gain values by about 0.35 dB. A prototype of the device was used in a case study to measure blast pressures while investigating the effect of underwater rock blasting on juvenile Chinook salmon and rainbow trout. In the case study, maximum positive pressure from the blast was found to be significantly correlated with frequency of injury for individual fish. The case study also demonstrated that the device withstood operation in harsh environments, making it a valuable tool for collecting field measurements.

  13. Design and Implementation of an Underwater Sound Recording Device

    Directory of Open Access Journals (Sweden)

    Christa M. Woodley

    2011-09-01

    Full Text Available To monitor the underwater sound and pressure waves generated by anthropogenic activities such as underwater blasting and pile driving, an autonomous system was designed to record underwater acoustic signals. The underwater sound recording device (USR allows for connections of two hydrophones or other dynamic pressure sensors, filters high frequency noise out of the collected signals, has a gain that can be independently set for each sensor, and allows for 2 h of data collection. Two versions of the USR were created: a submersible model deployable to a maximum depth of 300 m, and a watertight but not fully submersible model. Tests were performed on the USR in the laboratory using a data acquisition system to send single-frequency sinusoidal voltages directly to each component. These tests verified that the device operates as designed and performs as well as larger commercially available data acquisition systems, which are not suited for field use. On average, the designed gain values differed from the actual measured gain values by about 0.35 dB. A prototype of the device was used in a case study to measure blast pressures while investigating the effect of underwater rock blasting on juvenile Chinook salmon and rainbow trout. In the case study, maximum positive pressure from the blast was found to be significantly correlated with frequency of injury for individual fish. The case study also demonstrated that the device withstood operation in harsh environments, making it a valuable tool for collecting field measurements.

  14. Optimization of a Biometric System Based on Acoustic Images

    Directory of Open Access Journals (Sweden)

    Alberto Izquierdo Fuente

    2014-01-01

    Full Text Available On the basis of an acoustic biometric system that captures 16 acoustic images of a person for 4 frequencies and 4 positions, a study was carried out to improve the performance of the system. On a first stage, an analysis to determine which images provide more information to the system was carried out showing that a set of 12 images allows the system to obtain results that are equivalent to using all of the 16 images. Finally, optimization techniques were used to obtain the set of weights associated with each acoustic image that maximizes the performance of the biometric system. These results improve significantly the performance of the preliminary system, while reducing the time of acquisition and computational burden, since the number of acoustic images was reduced.

  15. OFDM-based broadband underwater wireless optical communication system using a compact blue LED

    Science.gov (United States)

    Xu, Jing; Kong, Meiwei; Lin, Aobo; Song, Yuhang; Yu, Xiangyu; Qu, Fengzhong; Han, Jun; Deng, Ning

    2016-06-01

    We propose and experimentally demonstrate an IM/DD-OFDM-based underwater wireless optical communication system. We investigate the dependence of its BER performance on the training symbol number as well as LED's bias voltage and driving voltage. With single compact blue LED and a low-cost PIN photodiode, we achieve net bit rates of 225.90 Mb/s at a BER of 1.54×10-3 using 16-QAM and 231.95 Mb/s at a BER of 3.28×10-3 using 32-QAM, respectively, over a 2-m air channel. Over a 2-m underwater channel, we achieve net bit rates of 161.36 Mb/s using 16-QAM, 156.31 Mb/s using 32-QAM, and 127.07 Mb/s using 64-QAM, respectively. The corresponding BERs are 2.5×10-3, 7.42×10-4, and 3.17×10-3, respectively, which are all below the FEC threshold.

  16. Nonlinear multiple-input-multiple-output adaptive backstepping control of underwater glider systems

    Directory of Open Access Journals (Sweden)

    Junjun Cao

    2016-12-01

    Full Text Available In this article, an adaptive backstepping control is proposed for multi-input and multi-output nonlinear underwater glider systems. The developed method is established on the basis of the state-space equations, which are simplified from the full glider dynamics through reasonable assumptions. The roll angle, pitch angle, and velocity of the vehicle are considered as control objects, a Lyapunov function consisting of the tracking error of the state vectors is established. According to Lyapunov stability theory, the adaptive control laws are derived to ensure the tracking errors asymptotically converge to zero. The proposed nonlinear MIMO adaptive backstepping control (ABC scheme is tested to control an underwater glider in saw-tooth motion, spiral motion, and multimode motion. The linear quadratic regular (LQR control scheme is described and evaluated with the ABC for the motion control problems. The results demonstrate that both control strategies provide similar levels of robustness while using the proposed ABC scheme leads to the more smooth control efforts with less oscillatory behavior.

  17. Advanced Active Acoustics Lab (AAAL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Active Acoustics Lab (AAAL) is a state-of-the-art Undersea Warfare (USW) acoustic data analysis facility capable of both active and passive underwater...

  18. Multi-LED parallel transmission for long distance underwater VLC system with one SPAD receiver

    Science.gov (United States)

    Wang, Chao; Yu, Hong-Yi; Zhu, Yi-Jun; Wang, Tao; Ji, Ya-Wei

    2018-03-01

    In this paper, a multiple light emitting diode (LED) chips parallel transmission (Multi-LED-PT) scheme for underwater visible light communication system with one photon-counting single photon avalanche diode (SPAD) receiver is proposed. As the lamp always consists of multi-LED chips, the data rate could be improved when we drive these multi-LED chips parallel by using the interleaver-division-multiplexing technique. For each chip, the on-off-keying modulation is used to reduce the influence of clipping. Then a serial successive interference cancellation detection algorithm based on ideal Poisson photon-counting channel by the SPAD is proposed. Finally, compared to the SPAD-based direct current-biased optical orthogonal frequency division multiplexing system, the proposed Multi-LED-PT system could improve the error-rate performance and anti-nonlinearity performance significantly under the effects of absorption, scattering and weak turbulence-induced channel fading together.

  19. Underwater wireless optical MIMO system with spatial modulation and adaptive power allocation

    Science.gov (United States)

    Huang, Aiping; Tao, Linwei; Niu, Yilong

    2018-04-01

    In this paper, we investigate the performance of underwater wireless optical multiple-input multiple-output communication system combining spatial modulation (SM-UOMIMO) with flag dual amplitude pulse position modulation (FDAPPM). Channel impulse response for coastal and harbor ocean water links are obtained by Monte Carlo (MC) simulation. Moreover, we obtain the closed-form and upper bound average bit error rate (BER) expressions for receiver diversity including optical combining, equal gain combining and selected combining. And a novel adaptive power allocation algorithm (PAA) is proposed to minimize the average BER of SM-UOMIMO system. Our numeric results indicate an excellent match between the analytical results and numerical simulations, which confirms the accuracy of our derived expressions. Furthermore, the results show that adaptive PAA outperforms conventional fixed factor PAA and equal PAA obviously. Multiple-input single-output system with adaptive PAA obtains even better BER performance than MIMO one, at the same time reducing receiver complexity effectively.

  20. Google™ underwater

    Science.gov (United States)

    Showstack, Randy

    2012-10-01

    The first underwater panoramic images were added to Google Maps™, the company announced on 25 September. This first “underwater Street View collection,” launched in partnership with the Caitlin Seaview Survey, provides people with the opportunity to “become the next virtual Jacques Cousteau.” For more information, see: maps.google.com/ocean.

  1. High–Level Control System for Biomimetic Autonomous Under-water Vehicle

    Directory of Open Access Journals (Sweden)

    Praczyk Tomasz

    2017-01-01

    Full Text Available Usually, a rough software architecture designed for a robot can be can be shortly presented in the form of layers. The lowest layer is responsible for direct control of the hardware, i.e. engines, energy system, sensors, navigation devices, etc. A next layer is a low–level control which knows how to use the hardware in order to achieve a desired state of the robot, e.g. to stay on a desired course. And the last layer, the layer which is the nearest to the human–operator, is a high–level control which decides how to use the low–level control and sometimes also individual pieces of the hardware to achieve predefined objectives. The paper describes architecture, tasks and operation of the high–level control system (HLCS designed for Biomimetic Autonomous Underwater Vehicle (BAUV.

  2. AUV Underwater Positioning Algorithm Based on Interactive Assistance of SINS and LBL

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2015-12-01

    Full Text Available This paper studies an underwater positioning algorithm based on the interactive assistance of a strapdown inertial navigation system (SINS and LBL, and this algorithm mainly includes an optimal correlation algorithm with aided tracking of an SINS/Doppler velocity log (DVL/magnetic compass pilot (MCP, a three-dimensional TDOA positioning algorithm of Taylor series expansion and a multi-sensor information fusion algorithm. The final simulation results show that compared to traditional underwater positioning algorithms, this scheme can not only directly correct accumulative errors caused by a dead reckoning algorithm, but also solves the problem of ambiguous correlation peaks caused by multipath transmission of underwater acoustic signals. The proposed method can calibrate the accumulative error of the AUV position more directly and effectively, which prolongs the underwater operating duration of the AUV.

  3. AUV Underwater Positioning Algorithm Based on Interactive Assistance of SINS and LBL

    Science.gov (United States)

    Zhang, Tao; Chen, Liping; Li, Yao

    2015-01-01

    This paper studies an underwater positioning algorithm based on the interactive assistance of a strapdown inertial navigation system (SINS) and LBL, and this algorithm mainly includes an optimal correlation algorithm with aided tracking of an SINS/Doppler velocity log (DVL)/magnetic compass pilot (MCP), a three-dimensional TDOA positioning algorithm of Taylor series expansion and a multi-sensor information fusion algorithm. The final simulation results show that compared to traditional underwater positioning algorithms, this scheme can not only directly correct accumulative errors caused by a dead reckoning algorithm, but also solves the problem of ambiguous correlation peaks caused by multipath transmission of underwater acoustic signals. The proposed method can calibrate the accumulative error of the AUV position more directly and effectively, which prolongs the underwater operating duration of the AUV. PMID:26729120

  4. AUV Underwater Positioning Algorithm Based on Interactive Assistance of SINS and LBL.

    Science.gov (United States)

    Zhang, Tao; Chen, Liping; Li, Yao

    2015-12-30

    This paper studies an underwater positioning algorithm based on the interactive assistance of a strapdown inertial navigation system (SINS) and LBL, and this algorithm mainly includes an optimal correlation algorithm with aided tracking of an SINS/Doppler velocity log (DVL)/magnetic compass pilot (MCP), a three-dimensional TDOA positioning algorithm of Taylor series expansion and a multi-sensor information fusion algorithm. The final simulation results show that compared to traditional underwater positioning algorithms, this scheme can not only directly correct accumulative errors caused by a dead reckoning algorithm, but also solves the problem of ambiguous correlation peaks caused by multipath transmission of underwater acoustic signals. The proposed method can calibrate the accumulative error of the AUV position more directly and effectively, which prolongs the underwater operating duration of the AUV.

  5. Calibration of Underwater Sound Transducers

    OpenAIRE

    H.R.S. Sastry

    1983-01-01

    The techniques of calibration of underwater sound transducers for farfield, near-field and closed environment conditions are reviewed in this paper .The design of acoustic calibration tank is mentioned. The facilities available at Naval Physical & Oceanographic Laboratory, Cochin for calibration of transducers are also listed.

  6. Data Telemetry and Acquisition System for Acoustic Signal Processing Investigations.

    Science.gov (United States)

    1996-02-20

    exercises in the summer of 1994, and demonstrated its ability to provide real-time collection of acoustic data over 32 channels, to perform onsite data... corrupted by having a support ship in the area of testing. Therefore, the challenge was to develop an acoustic data collection system that allowed full... exercise . The solution proposed by NRL was to develop a system that incorporated on-site signal processing and storage along with a satellite data

  7. Performance Evaluation of a Novel Propulsion System for the Spherical Underwater Robot (SURIII

    Directory of Open Access Journals (Sweden)

    Shuoxin Gu

    2017-11-01

    Full Text Available This paper considers a novel propulsion system for the third-generation Spherical Underwater Robot (SURIII, the improved propulsion system is designed and analyzed to verify its increased stability compared to the second-generation Spherical Underwater Robot (SURII. With the new propulsion system, the robot is not only symmetric on the X axis but also on the Y axis, which increases the flexibility of its movement. The new arrangement also reduces the space constraints of servomotors and vectored water-jet thrusters. This paper also aims to the hydrodynamic characteristic of the whole robot. According to the different situations of the surge and heave motion, two kinds of methods are used to calculate the drag coefficient for the SURIII. For surge motion, the drag coefficient can be determined by the Reynolds number. For heave motion, considering about the influences of edges and gaps of the SURIII, the drag coefficient needs to be calculated by the dynamic equation. In addition, the Computational Fluid Dynamics (CFD simulation is carried out to estimate some parameters which cannot be measured. The pressure contours, velocity vectors and velocity streamlines for different motions are extracted from the post-processor in the CFD simulation. The drag coefficients of surge and heave motion are both calculated by the simulation results and compared with the chosen one by Reynolds number. Finally, an experiment is also conducted for measure the propulsive force of the multi-vectored water-jet thrusters by using a 6-DoF load cell. The experimental results demonstrate the propulsive force is better than a previous version. Thus, the propulsive performance is better than before.

  8. Acoustic experience alters the aged auditory system.

    Science.gov (United States)

    Turner, Jeremy G; Parrish, Jennifer L; Zuiderveld, Loren; Darr, Stacy; Hughes, Larry F; Caspary, Donald M; Idrezbegovic, Esma; Canlon, Barbara

    2013-01-01

    Presbyacusis, one of the most common ailments of the elderly, is often treated with hearing aids, which serve to reintroduce some or all of those sounds lost to peripheral hearing loss. However, little is known about the underlying changes to the ear and brain as a result of such experience with sound late in life. The present study attempts to model this process by rearing aged CBA mice in an augmented acoustic environment (AAE). Aged (22-23 months) male (n = 12) and female (n = 9) CBA/CaJ mice were reared in either 6 weeks of low-level (70 dB SPL) broadband noise stimulation (AAE) or normal vivarium conditions. Changes as a function of the treatment were measured for behavior, auditory brainstem response thresholds, hair cell cochleograms, and gamma aminobutyric acid neurochemistry in the key central auditory structures of the inferior colliculus and primary auditory cortex. The AAE-exposed group was associated with sex-specific changes in cochlear pathology, auditory brainstem response thresholds, and gamma aminobutyric acid neurochemistry. Males exhibited significantly better thresholds and reduced hair cell loss (relative to controls) whereas females exhibited the opposite effect. AAE was associated with increased glutamic acid decarboxylase (GAD67) levels in the inferior colliculus of both male and female mice. However, in primary auditory cortex AAE exposure was associated with increased GAD67 labeling in females and decreased GAD67 in males. These findings suggest that exposing aged mice to a low-level AAE alters both peripheral and central properties of the auditory system and these changes partially interact with sex or the degree of hearing loss before AAE. Although direct application of these findings to hearing aid use or auditory training in aged humans would be premature, the results do begin to provide direct evidence for the underlying changes that might be occurring as a result of hearing aid use late in life. These results suggest the aged brain

  9. Adaptive identification of acoustic multichannel systems using sparse representations

    CERN Document Server

    Helwani, Karim

    2014-01-01

    This book treats the topic of extending the adaptive filtering theory in the context of massive multichannel systems by taking into account a priori knowledge of the underlying system or signal. The starting point is exploiting the sparseness in acoustic multichannel system in order to solve the non-uniqueness problem with an efficient algorithm for adaptive filtering that does not require any modification of the loudspeaker signals.The book discusses in detail the?derivation of general sparse representations of acoustic MIMO systems?in signal or system dependent transform domains.?Efficient a

  10. Underwater Vehicle

    National Research Council Canada - National Science Library

    Dick, James L

    2007-01-01

    There is thus provided an underwater vehicle having facility for maneuvering alongside a retrieving vehicle, as by manipulation of bow and stern planes, for engaging a hull surface of the retrieving...

  11. Calibration and Characterization of Autonomous Recorders Used in the Measurement of Underwater Noise.

    Science.gov (United States)

    Hayman, Gary; Robinson, Stephen; Lepper, Paul

    2016-01-01

    The use of autonomous recorders is motivated by the need to monitor underwater noise, such as in response to the requirements of the European Union Marine Strategy Framework Directive. The performance of these systems is a crucial factor governing the quality of the measured data, providing traceability for future underwater noise-monitoring programs aimed at the protection of the marine environment from anthropogenic noise. In this paper, a discussion is presented of measurement methodologies for the key acoustic performance characteristics of the recorders, including self-noise, dynamic range, and the absolute sensitivity as a function of frequency of the hydrophone and recorder system.

  12. Acoustical Imaging

    CERN Document Server

    Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging

    2012-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

  13. Fusing Multiscale Charts into 3D ENC Systems Based on Underwater Topography and Remote Sensing Image

    Directory of Open Access Journals (Sweden)

    Tao Liu

    2015-01-01

    Full Text Available The purpose of this study is to propose an approach to fuse multiscale charts into three-dimensional (3D electronic navigational chart (ENC systems based on underwater topography and remote sensing image. This is the first time that the fusion of multiscale standard ENCs in the 3D ENC system has been studied. First, a view-dependent visualization technology is presented for the determination of the display condition of a chart. Second, a map sheet processing method is described for dealing with the map sheet splice problem. A process order called “3D order” is designed to adapt to the characteristics of the chart. A map sheet clipping process is described to deal with the overlap between the adjacent map sheets. And our strategy for map sheet splice is proposed. Third, the rendering method for ENC objects in the 3D ENC system is introduced. Fourth, our picking-up method for ENC objects is proposed. Finally, we implement the above methods in our system: automotive intelligent chart (AIC 3D electronic chart display and information systems (ECDIS. And our method can handle the fusion problem well.

  14. An explosive acoustic telemetry system for seabed penetrators

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, G.C.; Hickerson, J.

    1988-04-01

    This report discusses the design and past applications of an explosive acoustic telemetry system (EATS) for gathering and transmitting data from seabed penetrators. The system was first fielded in 1982 and has since been used to measure penetrator performance on three other occasions. Descriptions are given of the mechanical hardware, system electronics, and software.

  15. Estimating the neutrally buoyant energy density of a Rankine-cycle/fuel-cell underwater propulsion system

    Science.gov (United States)

    Waters, Daniel F.; Cadou, Christopher P.

    2014-02-01

    A unique requirement of underwater vehicles' power/energy systems is that they remain neutrally buoyant over the course of a mission. Previous work published in the Journal of Power Sources reported gross as opposed to neutrally-buoyant energy densities of an integrated solid oxide fuel cell/Rankine-cycle based power system based on the exothermic reaction of aluminum with seawater. This paper corrects this shortcoming by presenting a model for estimating system mass and using it to update the key findings of the original paper in the context of the neutral buoyancy requirement. It also presents an expanded sensitivity analysis to illustrate the influence of various design and modeling assumptions. While energy density is very sensitive to turbine efficiency (sensitivity coefficient in excess of 0.60), it is relatively insensitive to all other major design parameters (sensitivity coefficients < 0.15) like compressor efficiency, inlet water temperature, scaling methodology, etc. The neutral buoyancy requirement introduces a significant (∼15%) energy density penalty but overall the system still appears to offer factors of five to eight improvements in energy density (i.e., vehicle range/endurance) over present battery-based technologies.

  16. Underwater Acoustic Carbon Nanotube Thermophone

    Science.gov (United States)

    2016-09-23

    electrically connected to the transducer cable. A silicon sealant material is used to for attachment points on the thermophone. BRIEF DESCRIPTION OF...300 degrees Celsius) rated silicon sealant material 62 is used to for attachment points on the thermophone 10. [0030] Advantages and features of...of a cable is soldered to the carbon nanotube material chip at electrodes of the material chip. A high temperature rated silicon sealant is used for attachment points on the thermophone.

  17. Simulating an underwater vehicle self-correcting guidance system with Simulink

    Science.gov (United States)

    Fan, Hui; Zhang, Yu-Wen; Li, Wen-Zhe

    2008-09-01

    Underwater vehicles have already adopted self-correcting directional guidance algorithms based on multi-beam self-guidance systems, not waiting for research to determine the most effective algorithms. The main challenges facing research on these guidance systems have been effective modeling of the guidance algorithm and a means to analyze the simulation results. A simulation structure based on Simulink that dealt with both issues was proposed. Initially, a mathematical model of relative motion between the vehicle and the target was developed, which was then encapsulated as a subsystem. Next, steps for constructing a model of the self-correcting guidance algorithm based on the Stateflow module were examined in detail. Finally, a 3-D model of the vehicle and target was created in VRML, and by processing mathematical results, the model was shown moving in a visual environment. This process gives more intuitive results for analyzing the simulation. The results showed that the simulation structure performs well. The simulation program heavily used modularization and encapsulation, so has broad applicability to simulations of other dynamic systems.

  18. Outage analysis of relay-assisted underwater wireless optical communication systems

    Science.gov (United States)

    Tabeshnezhad, Azadeh; Pourmina, Mohammad Ali

    2017-12-01

    In this paper, we theoretically evaluate the outage probabilities of underwater wireless optical communication (UWOC) systems. Our derivations are general as the channel model under consideration takes into account all of the channel degrading effects, namely absorption, scattering, and turbulence-induced fading. We numerically show that the UWOC systems, due to the severe channel impairments, cannot typically support longer link ranges than 100 m. Therefore, in this paper, in order to increase the transmission reliability and hence extend the viable communication range of UWOC systems, we apply decode-and-forward (DF) relay-assisted communications either in the form of multi-hop transmission, where multiple intermediate relays are serially employed between the source and destination, or parallel relaying in which multiple DF relays are distributed among the source-to-destination path to cooperate in the end-to-end transmission. Our numerical results reveal that multi-hop transmission, owing to the distance-dependency of all of the channel degrading effects, can tremendously improve the end-to-end outage probability and increase the accessible link ranges to hundreds of meter. For example, a dual-hop transmission in a 45 m coastal water link can provide up to 41 dB performance improvement at the outage probability of 10-9.

  19. Development and assessment of two decontamination processes: closed electropolishing system for decontamination of underwater surfaces -vibratory decontamination with abrasives

    International Nuclear Information System (INIS)

    Benavides, E.; Fajardo, M.

    1992-01-01

    Two decontamination processes have been developed to decontaminate the stainless steel components of nuclear power plants. The first process uses an underwater closed electropolishing system for the decontamination of large stainless steel surfaces in flooded systems without loss of electrolyte. Large underwater contaminated areas can be treated with an electropolishing head covering an area of 2 m 2 in one step. The decontamination factors achieved with this technique range between 100 and 1000. The second process consists in the decontamination of nuclear components using vibratory equipment with self-cleaning abrasives generating a minimum quantity of waste. This technique may reach contamination factors similar to those obtained with other abrasive methods (brush abrasion, abrasive blasting, etc...). The obtained decontamination factors range between 5 and 50. Only a small quantity of waste is generated, which is treated and reduced in volume by filtration and evaporation

  20. Underwater noise in an impacted environment can affect Guiana dolphin communication.

    Science.gov (United States)

    Bittencourt, Lis; Lima, Isabela M S; Andrade, Luciana G; Carvalho, Rafael R; Bisi, Tatiana L; Lailson-Brito, José; Azevedo, Alexandre F

    2017-01-30

    This study focused on whistles produced by Guiana dolphin under different noise conditions in Guanabara Bay, southeastern Brazil. Recording sessions were performed with a fully calibrated recording system. Whistles and underwater noise levels registered during two behavioral states were compared separately between two areas. Noise levels differed between the two areas across all frequencies. Whistle duration differed between areas and was negatively correlated with noise levels. Whistling rate was positively correlated with noise levels, showing that whistling rate was higher in noisier conditions. Results demonstrated that underwater noise influenced Guiana dolphin acoustic behavior. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Infrastructure for thulium-170 isotope power systems for autonomous underwater vehicle fleets

    International Nuclear Information System (INIS)

    Walter, C.E.

    1991-07-01

    The radioisotope thulium-170 is a safe and environmentally benign heat source for providing the high endurance and energy densities needed by advanced power systems for autonomous underwater vehicles (AUV). Thulium Isotope Power (TIP) systems have an endurance of ∼3000 h, and gravimetric and volumetric energy densities of 3 x 10 4 Wh/kg and 3 x 10 8 Wh/m 3 , respectively. These energy densities are more than 200 times higher than those currently provided by Ag-Zn battery technology. In order to capitalize on these performance levels with about one hundred AUVs in continuous use, it will be necessary to establish an infrastructure for isotope production and heat-source refurbishment. The infrastructure cost is not trivial, and studies are needed to determine its optimum configuration. The major component of the projected infrastructure is the nuclear reactor used to produce Tm- 170 by neutron absorption in Tm-169. The reactor design should ideally be optimized for TM-170 production. Using the byproduct ''waste'' heat beneficially would help defray the cost of isotope production. However, generating electric power with the reactor would compromise both the cost of electricity and the isotope production capacity. A coastal location for the reactor would be most convenient from end-use considerations, and the ''waste'' heat could be used to desalinate seawater in water-thirsty states. 13 refs., 6 figs., 2 tabs

  2. The underwater installation of a drained geomembrane system on Lost Creek Dam

    International Nuclear Information System (INIS)

    Onken, S.; Harlan, R.C.; Wilkes, J.; Vaschetti, G.

    1998-01-01

    Lost Creek Dam was constructed in California around 1923. It is a 122 foot high concrete arch dam with a crest elevation of 3,287 feet and a crest length of 490 feet. Over the years, the dam and the condition of the concrete face have deteriorated. The concrete is porous and seeps water along the entire downstream face. In winter, the seeping water freezes, penetrates the concrete and causes expansion and spalling of the concrete surface. In some places, the concrete has very low strength to a depth of a foot or more, rendering the dam only marginally safe. Seven mitigative measures were identified as possible solutions to the problem. It was determined that the seepage of the water through the concrete dam could be stopped with the installation of a geomembrane to the upstream face. This paper describes the unique underwater installation of a drained geomembrane system on the concrete face of the dam. This was the first ever installation of a drained geomembrane system on an entire dam using divers. Monitoring will determine the success of the project, and whether the seepage of the water through the porous concrete had been reduced sufficiently to stop the deterioration of the concrete on the downstream face. 2 refs., 12 figs

  3. Sensor network architectures for monitoring underwater pipelines.

    Science.gov (United States)

    Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren

    2011-01-01

    This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (radio frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring.

  4. Performance Evaluation of a Biometric System Based on Acoustic Images

    Directory of Open Access Journals (Sweden)

    Juan J. Villacorta

    2011-10-01

    Full Text Available An acoustic electronic scanning array for acquiring images from a person using a biometric application is developed. Based on pulse-echo techniques, multifrequency acoustic images are obtained for a set of positions of a person (front, front with arms outstretched, back and side. Two Uniform Linear Arrays (ULA with 15 l/2-equispaced sensors have been employed, using different spatial apertures in order to reduce sidelobe levels. Working frequencies have been designed on the basis of the main lobe width, the grating lobe levels and the frequency responses of people and sensors. For a case-study with 10 people, the acoustic profiles, formed by all images acquired, are evaluated and compared in a mean square error sense. Finally, system performance, using False Match Rate (FMR/False Non-Match Rate (FNMR parameters and the Receiver Operating Characteristic (ROC curve, is evaluated. On the basis of the obtained results, this system could be used for biometric applications.

  5. Underwater radiated noise from modern commercial ships.

    Science.gov (United States)

    McKenna, Megan F; Ross, Donald; Wiggins, Sean M; Hildebrand, John A

    2012-01-01

    Underwater radiated noise measurements for seven types of modern commercial ships during normal operating conditions are presented. Calibrated acoustic data (autonomous seafloor-mounted acoustic recorder were combined with ship passage information from the Automatic Identification System. This approach allowed for detailed measurements (i.e., source level, sound exposure level, and transmission range) on ships of opportunity. A key result was different acoustic levels and spectral shapes observed from different ship-types. A 54 kGT container ship had the highest broadband source level at 188 dB re 1 μPa@1m; a 26 kGT chemical tanker had the lowest at 177 dB re 1 μPa@1m. Bulk carriers had higher source levels near 100 Hz, while container ship and tanker noise was predominantly below 40 Hz. Simple models to predict source levels of modern merchant ships as a group from particular ship characteristics (e.g., length, gross tonnage, and speed) were not possible given individual ship-type differences. Furthermore, ship noise was observed to radiate asymmetrically. Stern aspect noise levels are 5 to 10 dB higher than bow aspect noise levels. Collectively, these results emphasize the importance of including modern ship-types in quantifying shipping noise for predictive models of global, regional, and local marine environments. © 2012 Acoustical Society of America.

  6. Underwater noise levels in UK waters

    OpenAIRE

    Merchant, Nathan D.; Brookes, Kate L.; Faulkner, Rebecca C.; Bicknell, Anthony W. J.; Godley, Brendan J.; Witt, Matthew J.

    2016-01-01

    Underwater noise from human activities appears to be rising, with ramifications for acoustically sensitive marine organisms and the functioning of marine ecosystems. Policymakers are beginning to address the risk of ecological impact, but are constrained by a lack of data on current and historic noise levels. Here, we present the first nationally coordinated effort to quantify underwater noise levels, in support of UK policy objectives under the EU Marine Strategy Framework Directive (MSFD). ...

  7. A Connection Model between the Positioning Mechanism and Ultrasonic Measurement System via a Web Browser to Assess Acoustic Target Strength

    Science.gov (United States)

    Ishii, Ken; Imaizumi, Tomohito; Abe, Koki; Takao, Yoshimi; Tamura, Shuko

    This paper details a network-controlled measurement system for use in fisheries engineering. The target strength (TS) of fish is important in order to convert acoustic integration values obtained during acoustic surveys into estimates of fish abundance. The target strength pattern is measured with the combination of the rotation system for the aspect of the sample and the echo data acquisition system using the underwater supersonic wave. The user interface of the network architecture is designed for collaborative use with researchers in other organizations. The flexible network architecture is based on the web direct-access model for the rotation mechanism. The user interface is available for monitoring and controlling via a web browser that is installed in any terminal PC (personal computer). Previously the combination of two applications was performed not by a web browser but by the exclusive interface program. So a connection model is proposed between two applications by indirect communication via the DCOM (Distributed Component Object Model) server and added in the web direct-access model. A prompt report system in the TS measurement system and a positioning and measurement system using an electric flatcar via a web browser are developed. By a secure network architecture, DCOM communications via both Intranet and LAN are successfully certificated.

  8. Underwater inspection and maintenance programs within nuclear and non-nuclear related operating systems

    International Nuclear Information System (INIS)

    Vallance, C.; Goulet, B.; Black, S.

    2008-01-01

    The increasing age of the nuclear and non-nuclear power generating facilities requires extended inspection, repair and maintenance (IRM) activities to prolong the operation of these facilities past their original design life. Commercial divers are often utilized to perform critical work at nuclear power plants, fuel reprocessing plants, waste storage facilities, and research institutions. These various tasks include inspection, welding, mechanical modifications and repairs, coating applications, and work associated with plant decommissioning. Programs may take place in areas such as the reactor vessel, equipment pool, spent fuel pool, and suppression chamber using manned intervention and remotely operated vehicles. Some of these tasks can also be conducted using remotely operated vehicles (ROV's). Although specialist robots are not uncommon to the nuclear industry, the use of free-swimming vehicle's and remote systems for the inspection of underwater assets has increased due to improvements of the supporting technologies and information requirements needed to extend the life of these facilities. This paper will provide an overview of the procedures and equipment necessary to perform unique work tasks using manned and unmanned techniques. (author)

  9. System and method for sonic wave measurements using an acoustic beam source

    Science.gov (United States)

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2015-08-11

    A method and system for investigating structure near a borehole are described herein. The method includes generating an acoustic beam by an acoustic source; directing at one or more azimuthal angles the acoustic beam towards a selected location in a vicinity of a borehole; receiving at one or more receivers an acoustic signal, the acoustic signal originating from a reflection or a refraction of the acoustic wave by a material at the selected location; and analyzing the received acoustic signal to characterize features of the material around the borehole.

  10. Underwater iceberg geometry

    National Research Council Canada - National Science Library

    Buckley, T. J

    1985-01-01

    ... basis for estimation iceberg draft. Factors affecting performance of an acoustic iceberg mapping system including frequency versus range and resolution, angle of incidence and beam bendering are investigated...

  11. The industrial research project: “Blu-Archeosys – Innovative Technologies and Advanced Systems as Support in Underwater Archaeology”

    Directory of Open Access Journals (Sweden)

    Salvatore Lorusso

    2003-02-01

    Full Text Available The reasons of the research about new technologies as support in naval and underwater archaeology or, more generally, in waters archaeology are various and described in this work, where the characteristics of the research project “BLU-ARCHEOSYS – Innovative Technologies and Advanced SYStems as Support in Underwater ARCHaeology” are illustrated. This industrial research project faces problems regarding innovative technologies and instruments in waters archaeology and it comprehends synergic steps and joined works among skilled professionals that have the competences to interpret qualitative and/or quantitative data within an artistic – historical and technical – historical study, also with the involvement of various public and private institutions. The BLUARCHEOSYS project has, in fact, the objective to create technologies that have a reply in underwater archaeology and contemporaneously in other sectors. In particular, starting from the methodological way that spans from the discovery in underwater or subaerial environment to the collocation of the objects in museums, the intent is to support the different methodological stages with specific tools and innovative technologies. The education project, presented to the Ministry with the research one, is articulated in the different branches of artistic-historical character, of the management, normative and operative character, and of the technical-diagnostic-material-preservative character. The professionals will have not only theoretical knowledge about standard and consolidated technologies, but they will be also experts about methodologies, in particular the diagnostic ones, that put in field the innovative tools evaluated in the project, with consequent competitive advantage in the working field, more and more demanding specific sector competences.

  12. Coupled Research in Ocean Acoustics and Signal Processing for the Next Generation of Underwater Acoustic Communication Systems

    Science.gov (United States)

    2016-08-05

    work comprised the final portion of the thesis research of MIT/WHOI Joint Program student, Atulya Yellepeddi and was motivated by the desire to exploit...achieve the specified improvements. Atulya successfully defended and submitted his PhD thesis in June. This work falls under Research Task 3 from...Section 2.2 of the Technical Approach and Justification . The second area of work is that of characterizing the performance of adaptive equalizers in order

  13. Towards a passive acoustic underwater system for protecting harbours against intruders

    NARCIS (Netherlands)

    Fillinger, L.; Theije, P.A.M. de; Zampolli, M.; Sutin, A.; Salloum, H.; Sedunov, N.; Sedunov, A.

    2010-01-01

    The international rules for the protection of harbors against threats and intruders typically apply to threats emanating from the land side. Protection against actions and threats from the water side is much less regulated, apart from some individual cases. Potential threats from the water side may

  14. Information-Theoretic Analysis of Underwater Acoustic OFDM Systems in Highly Dispersive Channels

    Directory of Open Access Journals (Sweden)

    Francois-Xavier Socheleau

    2012-01-01

    established by the ISI/ICI and are based on lower bounds on mutual information that assume independent and identically distributed input data symbols. In agreement with recent statistical analyses of experimental shallow-water data, the channel is modeled as a multivariate Rician fading process with a slowly time-varying mean and with potentially correlated scatterers, which is more general than the common wide-sense stationary uncorrelated scattering model. Numerical assessments on real UA channels with spread factors around 10−1 show that reliable OFDM transmissions at 2 to 4 bits/sec/Hz are achievable provided an average signal-to-noise ratio of 15 to 20 dB.

  15. Development of acoustic leak detection system in PNC

    International Nuclear Information System (INIS)

    Tanabe, H.; Kuroha, M.

    1990-01-01

    The development of an acoustic leak detector is under way at PNC as a detection system that has potential of quick response and high reliability for larger steam generators of future LMFBR plants. The studies have two aspects, i.e., an acoustic wave analysis in various sodium-water reactions and a background noise (BGN) analysis in a sodium-heated 50MWt steam generator (50MWGS). In the former analysis, wave profiles of the sodium-water reaction sound were analyzed and compared with those of inert gas injection sound. The comparison revealed that there were no wave profiles specific to a sodium-water reaction sound. The latter clarified that major acoustic sources in the steam generator were sodium flow and steam generation/flow and that the water leak rate at which a noise level was comparable with that of the background noise was about 0.5 g/sec. in the evaporator of 50MWSG. The estimation of acceleration levels of BGN and leak sounds in other plants reveals that an intermediate leak is detectable in the Monju evaporator with a present acoustic detection system. (author). 2 refs, 9 figs

  16. Limiting Performance Analysis of Underwater Shock Isolation of a System with Biodynamic Response Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Z. Zong

    2000-01-01

    Full Text Available Biodynamic response of shipboard crew to underwater shock is of a major concern to navies. An underwater shock can produce very high accelerations, resulting in severe human injuries aboard a battleship. Protection of human bodies from underwater shock is implemented by installing onboard isolators. In this paper, the optimal underwater shock isolation to protect human bodies is studied. A simple shock-structure-isolator-human interaction model is first constructed. The model incorporates the effect of fluid-structure interaction, biodynamic response of human body, isolator influence. Based on this model, the optimum shock isolation is then formulated. The performance index and restriction are defined. Thirdly, GA (genetic algorithm is employed to solve the formulated optimization problem. GA is a powerful evolutionary optimization scheme suitable for large-scale and multi-variable optimization problems that are otherwise hard to be solved by conventional methods. A brief introduction to GA is given in the paper. Finally, the method is applied to an example problem and the limiting performance characteristic is obtained.

  17. Underwater Noise Modelling of Wave Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Future large-scale implementation of wave energy converts (WECs) will introduce an anthropogenic activity in the ocean which may contribute to underwater noise. The Ocean houses several marine species with acoustic sensibility; consequently the potential impact of the underwater noise needs to be addressed. At present, there are no acoustic impact studies based on acquired data. The WEAM project (Wave Energy Acoustic Monitoring) aims at developing an underwater noise monitoring plan for WECs. The development of an acoustic monitoring plan must consider the sound propagation in the ocean, identify noise sources, understand the operational characteristics and select adequate instrumentation. Any monitoring strategy must involve in-situ measurements. However, the vast distances which sound travels within the ocean, can make in-situ measurements covering the entire area of interest, impracticable. This difficulty can be partially overcome through acoustic numerical modelling. This paper presents a synthetic study, on the application of acoustic forward modelling and the evaluation of the impact of noise produced by wave energy devices on marine mammals using criteria based on audiograms of dolphins, or other species. The idea is to illustrate the application of that methodology, and to show to what extent it allows for estimating distances of impacts due to acoustic noise.

  18. Acoustic monitoring systems tests at Indian Point Unit 1. Final report

    International Nuclear Information System (INIS)

    Smith, J.R.; Rao, G.V.; Craig, J.

    1979-12-01

    This report describes the results of a program to test acoustic monitoring systems on Indian Point Unit No. 1 under actual plant operating conditions, less the reactor core. The two types of systems evaluated were the monitoring of acoustic emissions generated by growing flaws and the monitoring of acoustic signals from leaks

  19. Evanescent Acoustic Wave Scattering by Targets and Diffraction by Ripples Graduate Traineeship Award in Ocean Acoustics

    National Research Council Canada - National Science Library

    Osterhoudt, Curtis F; Marston, Philip L

    2007-01-01

    .... The purpose of his research was to improve the understanding of the way that acoustic evanescent waves interact with targets buried in sediments in situations encountered in underwater acoustics...

  20. A theoretical study on the impact of particle scattering on the channel characteristics of underwater optical communication system

    Science.gov (United States)

    Sahu, Sanjay Kumar; Shanmugam, Palanisamy

    2018-02-01

    Scattering by water molecules and particulate matters determines the path and distance of photon propagation in underwater medium. Consequently, photon angle of scattering (given by scattering phase function) requires to be considered in addition to the extinction coefficient of the aquatic medium governed by the absorption and scattering coefficients in channel characterization for an underwater wireless optical communication (UWOC) system. This study focuses on analyzing the received signal power and impulse response of UWOC channel based on Monte-Carlo simulations for different water types, link distances, link geometries and transceiver parameters. A newly developed scattering phase function (referred to as SS phase function), which represents the real water types more accurately like the Petzold phase function, is considered for quantification of the channel characteristics along with the effects of absorption and scattering coefficients. A comparison between the results simulated using various phase function models and the experimental measurements of Petzold revealed that the SS phase function model predicts values closely matching with the actual values of the Petzold's phase function, which further establishes the importance of using a correct scattering phase function model while estimating the channel capacity of UWOC system in terms of the received power and channel impulse response. Results further demonstrate a great advantage of considering the nonzero probability of receiving scattered photons in estimating channel capacity rather than considering the reception of only ballistic photons as in Beer's Law, which severely underestimates the received power and affects the range of communication especially in the scattering water column. The received power computed based on the Monte-Carlo method by considering the receiver aperture sizes and field of views in different water types are further analyzed and discussed. These results are essential for

  1. Acoustic system for communication in pipelines

    Science.gov (United States)

    Martin, II, Louis Peter; Cooper, John F [Oakland, CA

    2008-09-09

    A system for communication in a pipe, or pipeline, or network of pipes containing a fluid. The system includes an encoding and transmitting sub-system connected to the pipe, or pipeline, or network of pipes that transmits a signal in the frequency range of 3-100 kHz into the pipe, or pipeline, or network of pipes containing a fluid, and a receiver and processor sub-system connected to the pipe, or pipeline, or network of pipes containing a fluid that receives said signal and uses said signal for a desired application.

  2. A System for Acoustic Field Measurement Employing Cartesian Robot

    Directory of Open Access Journals (Sweden)

    Szczodrak Maciej

    2016-09-01

    Full Text Available A system setup for measurements of acoustic field, together with the results of 3D visualisations of acoustic energy flow are presented in the paper. Spatial sampling of the field is performed by a Cartesian robot. Automatization of the measurement process is achieved with the use of a specialized control system. The method is based on measuring the sound pressure (scalar and particle velocity(vector quantities. The aim of the system is to collect data with a high precision and repeatability. The system is employed for measurements of acoustic energy flow in the proximity of an artificial head in an anechoic chamber. In the measurement setup an algorithm for generation of the probe movement path is included. The algorithm finds the optimum path of the robot movement, taking into account a given 3D object shape present in the measurement space. The results are presented for two cases, first without any obstacle and the other - with an artificial head in the sound field.

  3. EM-Based High Speed Wireless Sensor Networks for Underwater Surveillance and Target Tracking

    Directory of Open Access Journals (Sweden)

    Kumudu Munasinghe

    2017-01-01

    Full Text Available Underwater Wireless Sensor Networks (UWSNs are considered as tangible, low cost solution for underwater surveillance and exploration. Existing acoustic wave-based UWSN systems fail to meet the growing demand for fast data rates required in military operations, oil/gas exploration, and oceanographic data collection. Electromagnetic (EM wave-based communication systems, on the other hand, have great potential for providing high speed data rates in such scenarios. This paper will (1 discuss the challenges faced in the utilization of EM waves for the design of tactical underwater surveillance systems and (2 evaluate several EM wave-based three-dimensional (3D UWSN architectures differing in topologies and/or operation principles on the performance of localization and target tracking. To the best of our knowledge, this is the first of its kind in the field of underwater communications where underwater surveillance techniques for EM wave-based high speed UWSNs have been investigated. Thus, this will be a major step towards achieving future high speed UWSNs.

  4. Real-time system for studies of the effects of acoustic feedback on animal vocalizations.

    Directory of Open Access Journals (Sweden)

    Mike eSkocik

    2013-01-01

    Full Text Available Studies of behavioral and neural responses to distorted auditory feedback can help shed light on the neural mechanisms of animal vocalizations. We describe an apparatus for generating real-time acoustic feedback. The system can very rapidly detect acoustic features in a song and output acoustic signals if the detected features match the desired acoustic template. The system uses spectrogram-based detection of acoustic elements. It is low-cost and can be programmed for a variety of behavioral experiments requiring acoustic feedback or neural stimulation. We use the system to study the effects of acoustic feedback on birds' vocalizations and demonstrate that such an acoustic feedback can cause both immediate and long-term changes to birds’ songs.

  5. The development of a under-water robot system for inspection of the contaminated inner wall of nuclear research reactor

    International Nuclear Information System (INIS)

    Kim, Kyung Hoon; Kim, Byung Man; Cho, Hyung Suk; Park, Ki Yong; Park, Young Soo; Yoon, Ji Sup; Lee, Byung Jik

    1997-01-01

    In this paper, an under-water robot system is developed in order to inspect the radiation level and decontaminate the contaminated inner wall of nuclear research reactor, TRIGA MARK III. This system is composed of the mobile robot which navigates autonomously under the water and the ground control unit which monitors and commands the motion of mobile robot. The mobile robot can move on the wall surface with five thruster systems and is composed of three parts, i.e., mechanical, control, and sensory parts. The five thruster system is configured such as one main thruster, two wall adhesion thruster, and two turning/buoyancy compensation thruster. The control part has 4 CPU boards and each board is configured such that one is in charge of supervisory control mode which controls the position of mobile robot and communicates with the ground control unit and the other board is designed to have motor control mode which drives two motors simultaneously. In secondary part, the laser scanner and fluorescent reflectors and the incilinometer are designed. The laser scanner with fluorescent reflectors provides the current position of the mobile robot on the wall surface and by incilinometer, the moving direction can be obtained. This paper describes the design and configuration procedures of under-water robot in detail and presents the experimental results for characteristic test of the thruster system. 11 refs., 4 tabs., 7 figs

  6. Early forest fire detection using radio-acoustic sounding system.

    Science.gov (United States)

    Sahin, Yasar Guneri; Ince, Turker

    2009-01-01

    Automated early fire detection systems have recently received a significant amount of attention due to their importance in protecting the global environment. Some emergent technologies such as ground-based, satellite-based remote sensing and distributed sensor networks systems have been used to detect forest fires in the early stages. In this study, a radio-acoustic sounding system with fine space and time resolution capabilities for continuous monitoring and early detection of forest fires is proposed. Simulations show that remote thermal mapping of a particular forest region by the proposed system could be a potential solution to the problem of early detection of forest fires.

  7. Acoustic Self-Calibrating System for Indoor Smart Phone Tracking

    Directory of Open Access Journals (Sweden)

    Alexander Ens

    2015-01-01

    Full Text Available This paper presents an acoustic indoor localization system for commercial smart phones that emit high pitched acoustic signals beyond the audible range. The acoustic signals with an identifier code modulated on the signal are detected by self-built receivers which are placed at the ceiling or on walls in a room. The receivers are connected in a Wi-Fi network, such that they synchronize their clocks and exchange the time differences of arrival (TDoA of the received chirps. The location of the smart phone is calculated by TDoA multilateration. The precise time measuring of sound enables high precision localization in indoor areas. Our approach enables applications that require high accuracy, such as finding products in a supermarket or guiding blind people through complicated buildings. We have evaluated our system in real-world experiments using different algorithms for calibration-free localization and different types of sound signals. The adaptive GOGO-CFAR threshold enables a detection of 48% of the chirp pulses even at a distance of 30 m. In addition, we have compared the trajectory of a pedestrian carrying a smart phone to reference positions of an optic system. Consequently, the localization error is observed to be less than 30 cm.

  8. Detection of Visual Events in Underwater Video Using a Neuromorphic Saliency-based Attention System

    Science.gov (United States)

    Edgington, D. R.; Walther, D.; Cline, D. E.; Sherlock, R.; Salamy, K. A.; Wilson, A.; Koch, C.

    2003-12-01

    The Monterey Bay Aquarium Research Institute (MBARI) uses high-resolution video equipment on remotely operated vehicles (ROV) to obtain quantitative data on the distribution and abundance of oceanic animals. High-quality video data supplants the traditional approach of assessing the kinds and numbers of animals in the oceanic water column through towing collection nets behind ships. Tow nets are limited in spatial resolution, and often destroy abundant gelatinous animals resulting in species undersampling. Video camera-based quantitative video transects (QVT) are taken through the ocean midwater, from 50m to 4000m, and provide high-resolution data at the scale of the individual animals and their natural aggregation patterns. However, the current manual method of analyzing QVT video by trained scientists is labor intensive and poses a serious limitation to the amount of information that can be analyzed from ROV dives. Presented here is an automated system for detecting marine animals (events) visible in the videos. Automated detection is difficult due to the low contrast of many translucent animals and due to debris ("marine snow") cluttering the scene. Video frames are processed with an artificial intelligence attention selection algorithm that has proven a robust means of target detection in a variety of natural terrestrial scenes. The candidate locations identified by the attention selection module are tracked across video frames using linear Kalman filters. Typically, the occurrence of visible animals in the video footage is sparse in space and time. A notion of "boring" video frames is developed by detecting whether or not there is an interesting candidate object for an animal present in a particular sequence of underwater video -- video frames that do not contain any "interesting" events. If objects can be tracked successfully over several frames, they are stored as potentially "interesting" events. Based on low-level properties, interesting events are

  9. Hemispherical optical dome for underwater communication

    Science.gov (United States)

    Shiri, Ron S.; Lunde, Emily L.; Coronado, Patrick L.; Quijada, Manuel A.

    2017-08-01

    For many years, acoustic systems have been used as the primary method for underwater communication; however, the data transfer rate of such systems is low because sound propagates slowly through water. A higher throughput can be achieved using visible light to transmit data underwater. The first issue with this approach is that there is generally a large loss of the light signal due to scattering and absorption in water, even though there is an optimal wavelength for transmission in the blue or green wavelengths of the visible spectrum. The second issue is that a simple communication system, consisting only of a highly directional source/transmitter and small optical detector/receiver, has a very narrow field of view. The goal of this project is to improve an optical, underwater communication system by increasing the effective field of view of the receiving optics. To this end, we make two changes to the simple system: (1) An optical dome was added near the receiver. An array of lenses is placed radially on the surface of the dome, reminiscent of the compound eye of an insect. The lenses make the source and detector planes conjugate, and each lens adds a new region of the source plane to the instrument's total field of view. (2) The receiver was expanded to include multiple photodiodes. With these two changes, the receiver has much more tolerance to misalignments (in position and angle) of the transmitter. Two versions of the optical dome (with 6" and 8" diameters) were designed using PTC's Creo CAD software and modeled using Synopsys' CODE V optical design software. A series of these transparent hemispherical domes, with both design diameters, were manufactured using a 5-axis mill. The prototype was then retrofitted with lenses and compared with the computer-generated model to demonstrate the effectiveness of this solution. This work shows that the dome design improves the optical field of view of the underwater communication system considerably. Furthermore, with

  10. AMADEUS-The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope

    NARCIS (Netherlands)

    Aguilar, J.A.; Al Samarai, I.; Albert, A.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Jesus, A.C.A.; Astraatmadja, T.; Aubert, J.J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bou-Cabo, M.; Bouwhuis, M.C.; Brown, A.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carloganu, C.; Carminati, G.; Carr, J.; Cassano, B.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Ceres, A.; Charvis, P.; Chiarusi, T.; Sen, N.C.; Circella, M.; Coniglione, R.; Costantini, H.; Cottini, N.; Coyle, P.; Curtil, C.; De Bonis, G.; Decowski, M.P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J.P.; Escoffier, S.; Fehr, F.; Fiorello, C.; Flaminio, V.; Fritsch, U.; Fuda, J.L.; Gay, P.; Giacomelli, G.; Gomez-Gonzalez, J.P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Heijboer, A.J.; Heine, E.; Hello, Y.; Hernandez-Rey, J.J.; Herold, B.; Hossl, J.; De Jong, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Katz, U.; Keller, P.; Kooijman, P.; Kopper, C.; Kouchneri, A.; Kretschmer, W.; Lahmann, R.; Lamare, P.; Lambard, G.; Larosa, G.; Laschinsky, H.; Le Provost, H.; Lefevre, D.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J.A.; Mazure, A.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Neff, M.; Ostasch, R.; Palioselitis, D.; Pavalas, G.E.; Payre, P.; Petrovic, J.; Picot-Clemente, N.; Picq, C.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Radu, A.; Reed, C.; Riccobene, G.; Richardt, C.; Rujoiu, M.; Ruppi, M.; Russo, G.V.; Salesa, F.; Sapienza, P.; Schock, F.; Schuller, J.P.; Shanidze, R.; Simeone, F.; Spurio, M.; Steijger, J.J.M.; Stolarczyk, T.; Taiuti, M.; Tamburini, C.; Tasca, L.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J.D.; Zuniga, J.

    2011-01-01

    The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic

  11. Miniature acoustic wave lysis system and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Branch, Darren W.; Vreeland, Erika Cooley; Smith, Gennifer Tanabe

    2016-12-06

    The present invention relates to an acoustic lysis system including a disposable cartridge that can be reversibly coupled to a platform having a small, high-frequency piezoelectric transducer array. In particular, the system releases viable DNA, RNA, and proteins from human or bacterial cells, without chemicals or additional processing, to enable high-speed sample preparation for clinical point-of-care medical diagnostics and use with nano/microfluidic cartridges. Also described herein are methods of making and using the system of the invention.

  12. Detection of Underwater UXOs in Mud

    Science.gov (United States)

    2013-04-01

    2nd International Conference on Underwater Acoustic Measurements, Crete, Greece, 2007. 16 [10] P.T. Gough and D.W. Hawkins “Imaging algorithms...course. Runs 275 and 325 folla.v the same trad < and run 322 foUows a track on the opposite side of the swath. The LF SAS image of run 325 is shown

  13. Impacts of underwater noise on marine vertebrates

    NARCIS (Netherlands)

    Liebschner, Alexander; Seibel, Henrike; Teilmann, Jonas; Wittekind, Dietrich; Parmentier, Eric; Dähne, Michael; Dietz, Rune; Driver, Jörg; Elk, van Cornelis; Everaarts, Eligius; Findeisen, Henning; Kristensen, Jacob; Lehnert, Kristina; Lucke, Klaus; Merck, Thomas; Müller, Sabine; Pawliczka, Iwona; Ronnenberg, Katrin; Rosenberger, Tanja; Ruser, Andreas; Tougaard, Jakob; Schuster, Max; Sundermeyer, Janne; Sveegaard, Signe; Siebert, Ursula

    2016-01-01

    The project conducts application-oriented research on impacts of underwater noise on marine vertebrates in the North and Baltic Seas. In distinct subprojects, the hearing sensitivity of harbor porpoises and gray seals as well as the acoustic tolerance limit of harbor porpoises to impulsive noise

  14. H2-O2 fuel cell and advanced battery power systems for autonomous underwater vehicles: performance envelope comparisons

    International Nuclear Information System (INIS)

    Schubak, G.E.; Scott, D.S.

    1993-01-01

    Autonomous underwater vehicles have traditionally been powered by low energy density lead-acid batteries. Recently, advanced battery technologies and H 2 -O 2 fuel cells have become available, offering significant improvements in performance. This paper compares the solid polymer fuel cell to the lithium-thionyl chloride primary battery, sodium-sulfur battery, and lead acid battery for a variety of missions. The power system performance is simulated using computer modelling techniques. Performance envelopes are constructed, indicating domains of preference for competing power system technologies. For most mission scenarios, the solid polymer fuel cell using liquid reactant storage is the preferred system. Nevertheless, the advanced battery systems are competitive with the fuel cell systems using gaseous hydrogen storage, and they illustrate preferred performance for missions requiring high power density. 11 figs., 4 tabs., 15 refs

  15. Polar Cooperative Navigation Algorithm for Multi-Unmanned Underwater Vehicles Considering Communication Delays

    Directory of Open Access Journals (Sweden)

    Zheping Yan

    2018-03-01

    Full Text Available To solve the navigation accuracy problems of multi-Unmanned Underwater Vehicles (multi-UUVs in the polar region, a polar cooperative navigation algorithm for multi-UUVs considering communication delays is proposed in this paper. UUVs are important pieces of equipment in ocean engineering for marine development. For UUVs to complete missions, precise navigation is necessary. It is difficult for UUVs to establish true headings because of the rapid convergence of Earth meridians and the severe polar environment. Based on the polar grid navigation algorithm, UUV navigation in the polar region can be accomplished with the Strapdown Inertial Navigation System (SINS in the grid frame. To save costs, a leader-follower type of system is introduced in this paper. The leader UUV helps the follower UUVs to achieve high navigation accuracy. Follower UUVs correct their own states based on the information sent by the leader UUV and the relative position measured by ultra-short baseline (USBL acoustic positioning. The underwater acoustic communication delay is quantized by the model. In this paper, considering underwater acoustic communication delay, the conventional adaptive Kalman filter (AKF is modified to adapt to polar cooperative navigation. The results demonstrate that the polar cooperative navigation algorithm for multi-UUVs that considers communication delays can effectively navigate the sailing of multi-UUVs in the polar region.

  16. Polar Cooperative Navigation Algorithm for Multi-Unmanned Underwater Vehicles Considering Communication Delays.

    Science.gov (United States)

    Yan, Zheping; Wang, Lu; Wang, Tongda; Yang, Zewen; Chen, Tao; Xu, Jian

    2018-03-30

    To solve the navigation accuracy problems of multi-Unmanned Underwater Vehicles (multi-UUVs) in the polar region, a polar cooperative navigation algorithm for multi-UUVs considering communication delays is proposed in this paper. UUVs are important pieces of equipment in ocean engineering for marine development. For UUVs to complete missions, precise navigation is necessary. It is difficult for UUVs to establish true headings because of the rapid convergence of Earth meridians and the severe polar environment. Based on the polar grid navigation algorithm, UUV navigation in the polar region can be accomplished with the Strapdown Inertial Navigation System (SINS) in the grid frame. To save costs, a leader-follower type of system is introduced in this paper. The leader UUV helps the follower UUVs to achieve high navigation accuracy. Follower UUVs correct their own states based on the information sent by the leader UUV and the relative position measured by ultra-short baseline (USBL) acoustic positioning. The underwater acoustic communication delay is quantized by the model. In this paper, considering underwater acoustic communication delay, the conventional adaptive Kalman filter (AKF) is modified to adapt to polar cooperative navigation. The results demonstrate that the polar cooperative navigation algorithm for multi-UUVs that considers communication delays can effectively navigate the sailing of multi-UUVs in the polar region.

  17. Distributed Underwater Sensing: A Paradigm Change for the Future

    Science.gov (United States)

    Yang, T. C.

    Distributed netted underwater sensors (DNUS) present a paradigm change that has generated high interest all over the world. It utilizes many small spatially distributed, inexpensive sensors, and a certain number of mobile nodes, such as autonomous underwater vehicles (AUVs), forming a wireless acoustic network to relate data and provide real time monitoring of the ocean. Distributed underwater sensors can be used for oceanographic data collection, pollution monitoring, offshore exploration, disaster prevention, assisted navigation and tactical surveillance applications over wide areas. These functions were traditionally accomplished by a cabled system, such as an array of sensors deployed from a platform, or a large number of sensors moored on the ocean bottom, connected by a cable. The cabled systems are not only expensive but often require heavy ocean engineering (e.g., equipment to deploy heavy armored cables). In the future, as fabrication technology advances making low cost sensors a reality, DNUS is expected to be affordable and will become the undersea "OceanNet" for the marine industry like the current "internet" on land. This paper gives a layman view of the system concept, the state of the art, and future challenges. One of challenges, of particular interest to this conference, is to develop technologies for miniature-size sensors that are energy efficient, allowing long time deployment in the ocean.

  18. Testing of an acoustic smolt deflection system, Blantyre hydroelectric power scheme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The aim of this study was to test the effectiveness of an underwater acoustic barrier as a means of preventing the entry of salmon (Salmo salar) and sea trout (Salmo trutta) smolts and other fish into the water intake of a hydro-electric power (HEP) station. A secondary objective was to measure the injury rate of fish passed through the turbine, so that the risk to any fish that penetrated the acoustic barrier could also be determined. The test site, which was a 575kW Kaplan plant located at Blantyre on the R. Clyde, Lanarkshire, was selected as being representative of run-of-river sites currently being developed under the Government`s NFFO (Non-Fossil Fuel Obligation) and SRO (Scottish Renewables Order) schemes. A further objective was to disseminate information arising from the project to the scientific and HEP community. (author)

  19. A Survey on Underwater Wireless Sensor Networks: Progresses, Applications, and Challenges

    Directory of Open Access Journals (Sweden)

    Premalatha J.

    2016-01-01

    Full Text Available The endangered underwater species always drew the attention of the scientific society since their disappearance would cause irreplaceable loss. Asia is home to some of the most diverse habitats in the earth, but it is estimated that more than one in four species are endangered. In Underwater, a lot of factors are putting marine life under immense pressure. Extreme population pressure is leading to pollution, over-fishing and the devastation of crucial habitats. Consequently, the numbers of almost all fish are declining and many are already endangered. To help these species to survive, their habitat should be strictly protected. This can be achieved by strictly monitoring them. During this course, several parameters, constraints about the species and its environments are focused. Now, advances in sensor technology facilitate the monitoring of species and their habitat with less expenditure. Indeed, the increasing sophistication of underwater wireless sensors offers chances that enable new challenges in a lot of areas, like surveillance one. This paper endorses the use of sensors for monitoring underwater species endangered in their habitat. This paper further examines the key approaches and challenges in the design and implementation of underwater wireless sensor networks. We summarize major applications and the main phenomena related to acoustic propagation, and discuss how they affect the design and operation of communication systems and networking protocols at various layers.

  20. Delay Tolerance in Underwater Wireless Communications: A Routing Perspective

    Directory of Open Access Journals (Sweden)

    Safdar Hussain Bouk

    2016-01-01

    Full Text Available Similar to terrestrial networks, underwater wireless networks (UWNs also aid several critical tasks including coastal surveillance, underwater pollution detection, and other maritime applications. Currently, once underwater sensor nodes are deployed at different levels of the sea, it is nearly impossible or very expensive to reconfigure the hardware, for example, battery. Taking this issue into account, considerable amount of research has been carried out to ensure minimum energy costs and reliable communication between underwater nodes and base stations. As a result, several different network protocols were proposed for UWN, including MAC, PHY, transport, and routing. Recently, a new paradigm was introduced claiming that the intermittent nature of acoustic channel and signal resulted in designing delay tolerant routing schemes for the UWN, known as an underwater delay tolerant network. In this paper, we provide a comprehensive survey of underwater routing protocols with emphasis on the limitations, challenges, and future open issues in the context of delay tolerant network routing.

  1. Simple statistical channel model for weak temperature-induced turbulence in underwater wireless optical communication systems

    KAUST Repository

    Oubei, Hassan M.

    2017-06-16

    In this Letter, we use laser beam intensity fluctuation measurements to model and describe the statistical properties of weak temperature-induced turbulence in underwater wireless optical communication (UWOC) channels. UWOC channels with temperature gradients are modeled by the generalized gamma distribution (GGD) with an excellent goodness of fit to the measured data under all channel conditions. Meanwhile, thermally uniform channels are perfectly described by the simple gamma distribution which is a special case of GGD. To the best of our knowledge, this is the first model that comprehensively describes both thermally uniform and gradient-based UWOC channels.

  2. System And Method For Characterizing Voiced Excitations Of Speech And Acoustic Signals, Removing Acoustic Noise From Speech, And Synthesizi

    Science.gov (United States)

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-04-25

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  3. Evanescent wave coupling in a geophysical system: Airborne acoustic signals from the Mw 8.1 Macquarie Ridge earthquake

    International Nuclear Information System (INIS)

    Evers, L.G.; Smets, P.S.M.; Brown, D.; Heaney, K.D.; Assink, J.D.; Snellen, M.

    2014-01-01

    Atmospheric low-frequency sound, i.e., infra-sound, from underwater events has not been considered thus far, due to the high impedance contrast of the water-air interface making it almost fully reflective. Here we report for the first time on atmospheric infra-sound from a large underwater earthquake (Mw 8.1) near the Macquarie Ridge, which was recorded at 1325 km from the epicenter. Seismic waves coupled to hydro acoustic waves at the ocean floor, after which the energy entered the Sound Fixing and Ranging channel and was detected on a hydro-phone array. The energy was diffracted by a sea-mount and an oceanic ridge, which acted as a secondary source, into the water column followed by coupling into the atmosphere. The latter results from evanescent wave coupling and the attendant anomalous transparency of the sea surface for very low frequency acoustic waves. (authors)

  4. Underwater manipulator

    Science.gov (United States)

    Schrum, P.B.; Cohen, G.H.

    1993-04-20

    Self-contained, waterproof, water-submersible, remote-controlled apparatus is described for manipulating a device, such as an ultrasonic transducer for measuring crack propagation on an underwater specimen undergoing shock testing. The subject manipulator includes metal bellows for transmittal of angular motions without the use of rotating shaft seals or O-rings. Inside the manipulator, a first stepper motor controls angular movement. In the preferred embodiment, the bellows permit the first stepper motor to move an ultrasonic transducer [plus minus]45 degrees in a first plane and a second bellows permit a second stepper motor to move the transducer [plus minus]10 degrees in a second plane orthogonal to the first. In addition, an XY motor-driven table provides XY motion.

  5. Underwater manipulator

    International Nuclear Information System (INIS)

    Schrum, P.B.; Cohen, G.H.

    1993-01-01

    Self-contained, waterproof, water-submersible, remote-controlled apparatus is described for manipulating a device, such as an ultrasonic transducer for measuring crack propagation on an underwater specimen undergoing shock testing. The subject manipulator includes metal bellows for transmittal of angular motions without the use of rotating shaft seals or O-rings. Inside the manipulator, a first stepper motor controls angular movement. In the preferred embodiment, the bellows permit the first stepper motor to move an ultrasonic transducer ±45 degrees in a first plane and a second bellows permit a second stepper motor to move the transducer ±10 degrees in a second plane orthogonal to the first. In addition, an XY motor-driven table provides XY motion

  6. Development of Handheld Haptics Device for Driving System of Unmanned Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Shazali Syed Mohamad

    2018-01-01

    Full Text Available This paper presents a research aimed at illustrating hydrodynamic force impact on the orientation of a Remotely Operated Underwater Vehicle (ROV operating underwater by providing kinaesthetic haptic feedback to its handheld steering device. To get more understanding on how this aim can be achieved, a literature review had been done on the haptic feedback which are available to ROV pilots and how it could be delivered through a handheld device. While some achievement were made in providing different cues to pilots on drag force and its influence on its speed, non-have been made to offer insight on how it had affected ROVs orientation through haptic feedback. This study found that currently available handheld haptic device, while successfully delivering tactile feedback, are not capable of providing kinaesthetic feedback at par with the grounded haptic device. To address this, a series of thrusters has been introduced as a new actuation technique in providing kinaesthetic feedback on a handheld device in all three axes. This would allow total illustration of ROV orientation through haptic feedback. This paper has summarized and discussed our findings in our literature review, followed by some details of the proposed method.

  7. Photo acoustic imaging: technology, systems and market trends

    Science.gov (United States)

    Faucheux, Marc; d'Humières, Benoît; Cochard, Jacques

    2017-03-01

    Although the Photo Acoustic effect was observed by Graham Bell in 1880, the first applications (gas analysis) occurred in 1970's using the required energetic light pulses from lasers. During mid 1990's medical imaging research begun to use Photo Acoustic effect and in vivo images were obtained in mid-2000. Since 2009, the number of patent related to Photo Acoustic Imaging (PAI) has dramatically increased. PAI machines for pre-clinical and small animal imaging have been being used in a routine way for several years. Based on its very interesting features (non-ionizing radiation, noninvasive, high depth resolution ratio, scalability, moderate price) and because it is able to deliver not only anatomical, but functional and molecular information, PAI is a very promising clinical imaging modality. It penetrates deeper into tissue than OCT (Optical Coherence Tomography) and provides a higher resolution than ultrasounds. The PAI is one of the most growing imaging modality and some innovative clinical systems are planned to be on market in 2017. Our study analyzes the different approaches such as photoacoustic computed tomography, 3D photoacoustic microscopy, multispectral photoacoustic tomography and endoscopy with the recent and tremendous technological progress over the past decade: advances in image reconstruction algorithms, laser technology, ultrasound detectors and miniaturization. We analyze which medical domains and applications are the most concerned and explain what should be the forthcoming medical system in the near future. We segment the market in four parts: Components and R&D, pre-clinical, analytics, clinical. We analyzed what should be, quantitatively and qualitatively, the PAI medical markets in each segment and its main trends. We point out the market accessibility (patents, regulations, clinical evaluations, clinical acceptance, funding). In conclusion, we explain the main market drivers and challenges to overcome and give a road map for medical

  8. Acoustic dispersion in a two-dimensional dipole system

    International Nuclear Information System (INIS)

    Golden, Kenneth I.; Kalman, Gabor J.; Donko, Zoltan; Hartmann, Peter

    2008-01-01

    We calculate the full density response function and from it the long-wavelength acoustic dispersion for a two-dimensional system of strongly coupled point dipoles interacting through a 1/r 3 potential at arbitrary degeneracy. Such a system has no random-phase-approximation (RPA) limit and the calculation has to include correlations from the outset. We follow the quasilocalized charge (QLC) approach, accompanied by molecular-dynamics (MD) simulations. Similarly to what has been recently reported for the closely spaced classical electron-hole bilayer [G. J. Kalman et al., Phys. Rev. Lett. 98, 236801 (2007)] and in marked contrast to the RPA, we report a long-wavelength acoustic phase velocity that is wholly maintained by particle correlations and varies linearly with the dipole moment p. The oscillation frequency, calculated both in an extended QLC approximation and in the Singwi-Tosi-Land-Sjolander approximation [Phys. Rev. 176, 589 (1968)], is invariant in form over the entire classical to quantum domains all the way down to zero temperature. Based on our classical MD-generated pair distribution function data and on ground-state energy data generated by recent quantum Monte Carlo simulations on a bosonic dipole system [G. E. Astrakharchik et al., Phys. Rev. Lett. 98, 060405 (2007)], there is a good agreement between the QLC approximation kinetic sound speeds and the standard thermodynamic sound speeds in both the classical and quantum domains

  9. [Pärtel Lippus. The acoustic features and perception of the Estonian quantity system] / Stefan Werner

    Index Scriptorium Estoniae

    Werner, Stefan

    2012-01-01

    Arvustus: Pärtel Lippus. The acoustic features and perception of the Estonian quantity system. Tartu : Tartu University Press, 2011. (Dissertationes philologiae estonicae Universitatis Tartuensis ; 29)

  10. Array Receivers and Sound Sources for Three Dimensional Shallow Water Acoustic Field Experiments

    Science.gov (United States)

    2016-12-06

    great success. Our acoustics research groups, the Ocean Acoustics and Signals Laboratory and the Acoustic Communications Group, in the Applied Ocean...field efforts in shallow-water acoustics and underwater acoustic communications. We have plans to upgrade our existing hydrophone arrays and sound...Hydrophone Receiver Unit) arrays. The immedate objective was to improve our fieldwork capibility and to enhance the quality of our underwater acoustic

  11. Simulation and Characteristics Analysis on Vibration and Sound Radiation Response for a Small Underwater Robot

    Directory of Open Access Journals (Sweden)

    Zhou Zhi

    2016-01-01

    Full Text Available An underwater robot is one of the important ocean equipment, and especially its stealth performance has influenced on the vitality in naval warfare. Structure radiation noise as the main source of underwater robot noise, so analysis on vibration and noise radiation is a topic of great concern. The way is used widely that based on fluid-solid coupling modal analysis combined with simulation on vibration and noise-radiation response in order to evaluate stealth performance of underwater structure. In the paper, firstly via finite element method and boundary element method, the modal frequencies and vibration modes of small underwater robot are calculated. Then the surface vibration displacements of underwater robot and the sound pressures of acoustic field under different frequency horizontal exciting force are obtained and analyzed. Lastly, through the analysis of the structural vibration and acoustic performance, the control strategies for structure bending vibration, acoustic radiation and structural acoustic design are proposed.

  12. Underwater Electromagnetic Sensor Networks—Part I: Link Characterization †

    Science.gov (United States)

    Quintana-Díaz, Gara; Mena-Rodríguez, Pablo; Pérez-Álvarez, Iván; Jiménez, Eugenio; Dorta-Naranjo, Blas-Pablo; Zazo, Santiago; Pérez, Marina; Quevedo, Eduardo; Cardona, Laura; Hernández, J. Joaquín

    2017-01-01

    Underwater Wireless Sensor Networks (UWSNs) using electromagnetic (EM) technology in marine shallow waters are examined, not just for environmental monitoring but for further interesting applications. Particularly, the use of EM waves is reconsidered in shallow waters due to the benefits offered in this context, where acoustic and optical technologies have serious disadvantages. Sea water scenario is a harsh environment for radiocommunications, and there is no standard model for the underwater EM channel. The high conductivity of sea water, the effect of seabed and the surface make the behaviour of the channel hard to predict. This justifies the need of link characterization as the first step to approach the development of EM underwater sensor networks. To obtain a reliable link model, measurements and simulations are required. The measuring setup for this purpose is explained and described, as well as the procedures used. Several antennas have been designed and tested in low frequency bands. Agreement between attenuation measurements and simulations at different distances was analysed and made possible the validation of simulation setups and the design of different communications layers of the system. This leads to the second step of this work, where data and routing protocols for the sensor network are examined. PMID:28106843

  13. Event localization in underwater wireless sensor networks using Monitoring Courses

    KAUST Repository

    Debont, Matthew John Robert

    2012-08-01

    We propose m-courses (Monitoring Courses), a novel solution to localize events in an underwater wireless sensor network. These networks consists of surface gateways and relay nodes. GPS can localize the position of surface gateways which can then distribute their locations through the network using acoustic modems. Relay nodes are deployed to remain static, but these untethered nodes may drift due to water currents, resulting in disruption of communication links. We develop a novel underwater alarm system using a cyclic graph model. In the event of link failure, a series of alarm packets are broadcast in the network. These alarms are then captured by the underwater m-courses, which can also be used to assure network connectivity and identify node failures. M-courses also allow the network to localize events and identify network issues locally before forwarding results upwards to a Surface Gateway node. This reduces communication overhead and allows for efficient management of nodes in a mobile network. Our results show that m-course routing reduces the number of sends required to report an event to a Surface Gateway by up to 80% when compared to a naïve routing implementation.

  14. Underwater Electromagnetic Sensor Networks—Part I: Link Characterization

    Directory of Open Access Journals (Sweden)

    Gara Quintana-Díaz

    2017-01-01

    Full Text Available Underwater Wireless Sensor Networks (UWSNs using electromagnetic (EM technology in marine shallow waters are examined, not just for environmental monitoring but for further interesting applications. Particularly, the use of EM waves is reconsidered in shallow waters due to the benefits offered in this context, where acoustic and optical technologies have serious disadvantages. Sea water scenario is a harsh environment for radiocommunications, and there is no standard model for the underwater EM channel. The high conductivity of sea water, the effect of seabed and the surface make the behaviour of the channel hard to predict. This justifies the need of link characterization as the first step to approach the development of EM underwater sensor networks. To obtain a reliable link model, measurements and simulations are required. The measuring setup for this purpose is explained and described, as well as the procedures used. Several antennas have been designed and tested in low frequency bands. Agreement between attenuation measurements and simulations at different distances was analysed and made possible the validation of simulation setups and the design of different communications layers of the system. This leads to the second step of this work, where data and routing protocols for the sensor network are examined.

  15. On the influence of drag effect on acoustic modes in two-condensate relativistic superfluid systems

    International Nuclear Information System (INIS)

    Vil'chinskij, S.I.

    1999-01-01

    Equations of velocities of acoustic excitations in a relativistic two-condensate superfluid system are derived with due account of reciprocal drag of superfluid motion (drag effect). The influence of the drag effect on acoustic modes in the system is considered. It is shown that the effect does not influence the nature of acoustic excitation oscillations but produces changes in the velocities of the second, third and fourth sounds

  16. Deep Learning Methods for Underwater Target Feature Extraction and Recognition

    Directory of Open Access Journals (Sweden)

    Gang Hu

    2018-01-01

    Full Text Available The classification and recognition technology of underwater acoustic signal were always an important research content in the field of underwater acoustic signal processing. Currently, wavelet transform, Hilbert-Huang transform, and Mel frequency cepstral coefficients are used as a method of underwater acoustic signal feature extraction. In this paper, a method for feature extraction and identification of underwater noise data based on CNN and ELM is proposed. An automatic feature extraction method of underwater acoustic signals is proposed using depth convolution network. An underwater target recognition classifier is based on extreme learning machine. Although convolution neural networks can execute both feature extraction and classification, their function mainly relies on a full connection layer, which is trained by gradient descent-based; the generalization ability is limited and suboptimal, so an extreme learning machine (ELM was used in classification stage. Firstly, CNN learns deep and robust features, followed by the removing of the fully connected layers. Then ELM fed with the CNN features is used as the classifier to conduct an excellent classification. Experiments on the actual data set of civil ships obtained 93.04% recognition rate; compared to the traditional Mel frequency cepstral coefficients and Hilbert-Huang feature, recognition rate greatly improved.

  17. Analysis of recordings from underwater controlled sources in the Pacific Ocean received by the International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO)

    Science.gov (United States)

    Yamada, Tomoaki; Zampolli, Mario; Haralabus, Georgios; Heaney, Kevin; Prior, Mark; Isse, Takeshi

    2016-04-01

    Controlled impulsive scientific underwater sound sources in the Northwestern Pacific were observed at two IMS hydroacoustic stations in the Pacific Ocean. Although these experiments were conducted with the aim of studying the physical properties of the plate boundaries inside the Earth, they are also suitable for the investigation of long range underwater acoustic detections. In spite of the fact that the energy of these controlled impulsive scientific sources is significantly smaller than that of nuclear explosions, the signals were obtained by IMS hydrophone stations thousands of kilometres away and also by distant ocean bottom instruments operated by various Institutes, such as the Earthquake Research Institute, University of Tokyo. These experiments provide calibrated (yield, time, location) long-range acoustic transmissions, which enable one to examine the physics of long-range acoustic propagation and to verify the capabilities of the CTBTO IMS network to detect even small explosions.The two IMS stations used are H03 (Juan Fernandez Island, Chile) off the coast of Chile in the Southeastern Pacific and H11 (Wake Island, USA) in the Western Pacific. Both stations consist of two triplets of hydrophones in the SOFAR channel, which monitor the oceans for signs of nuclear explosions. H03 detected low-yield explosions above flat terrain at distances of 15,000 km across the Pacific as well as explosions above the landward slope off the coast of Japan at distances above 16,000 km across the Pacific. These records showed that source signatures, such as short duration and bubble pulses, were preserved over the long propagation distances. It was found that the observed maximum amplitudes from each source exhibit order of magnitude variations even when the yield and detonation depth are the same. The experimental data and transmission loss simulations suggest that bathymetric features around the sources and between the sources and the receivers are the main causes for

  18. Design And Simulation Of An Acoustic Echo Cancellation System For Hand-Free Telecommunication

    Directory of Open Access Journals (Sweden)

    Ein Gyin Pwint

    2015-06-01

    Full Text Available Abstract Acoustic echo cancellation is a common occurrence in todays telecommunication systems. The signal interference caused by acoustic echo is distracting to users and causes a reduction in the quality of the communication. This paper is implementing the overall system of acoustic echo cancellation system using LMS and NLMS algorithms for adaptive filter normalized cross correlation NCC algorithm double talk detector. The result of echo return loss enhancement ERLE and mean squared error MSE which show that how much the amount of echo signal cancelled and the amount of residual error signal for cancelling acoustic echo cancellation on a PC with the help of the MATLAB software.

  19. Forward to Creation of System of Underwater Monitoring of Marine Mammals (SUMMM) in the Eastern Arctic

    National Research Council Canada - National Science Library

    Baronkin, Vladimir

    1995-01-01

    ... (Acoustic Thermometry of Ocean Climate) project in the Eastern Arctic. A primary objective of the investigation at given preliminary stage had been development of general principles of the SUMMM construction. It should be noted that the SUMMM creation is complicated scientific and engineering problem though.

  20. Underwater noise from offshore oil production vessels.

    Science.gov (United States)

    Erbe, Christine; McCauley, Robert; McPherson, Craig; Gavrilov, Alexander

    2013-06-01

    Underwater acoustic recordings of six Floating Production Storage and Offloading (FPSO) vessels moored off Western Australia are presented. Monopole source spectra were computed for use in environmental impact assessments of underwater noise. Given that operations on the FPSOs varied over the period of recording, and were sometimes unknown, the authors present a statistical approach to noise level estimation. No significant or consistent aspect dependence was found for the six FPSOs. Noise levels did not scale with FPSO size or power. The 5th, 50th (median), and 95th percentile source levels (broadband, 20 to 2500 Hz) were 188, 181, and 173 dB re 1 μPa @ 1 m, respectively.

  1. Sunlight Intensity Based Global Positioning System for Near-Surface Underwater Sensors

    Directory of Open Access Journals (Sweden)

    Borja Fernández

    2012-02-01

    Full Text Available Water monitoring is important in domains including documenting climate change, weather prediction and fishing. This paper presents a simple and energy efficient localization strategy for near surface buoy based sensors. Sensors can be dropped randomly in the ocean and thus self-calibrate in terms of geographic location such that geo-tagged observations of water quality can be made without the need for costly and energy consuming GPS-hardware. The strategy is based on nodes with an accurate clock and light sensors that can regularly sample the level of light intensity. The measurements are fitted into a celestial model of the earth motion around the sun. By identifying the trajectory of the sun across the skies one can accurately determine sunrise and sunset times, and thus extract the longitude and latitude of the sensor. Unlike previous localization techniques for underwater sensors, the current approach does not rely on stationary or mobile reference points.

  2. Sunlight intensity based global positioning system for near-surface underwater sensors.

    Science.gov (United States)

    Gómez, Javier V; Sandnes, Frode E; Fernández, Borja

    2012-01-01

    Water monitoring is important in domains including documenting climate change, weather prediction and fishing. This paper presents a simple and energy efficient localization strategy for near surface buoy based sensors. Sensors can be dropped randomly in the ocean and thus self-calibrate in terms of geographic location such that geo-tagged observations of water quality can be made without the need for costly and energy consuming GPS-hardware. The strategy is based on nodes with an accurate clock and light sensors that can regularly sample the level of light intensity. The measurements are fitted into a celestial model of the earth motion around the sun. By identifying the trajectory of the sun across the skies one can accurately determine sunrise and sunset times, and thus extract the longitude and latitude of the sensor. Unlike previous localization techniques for underwater sensors, the current approach does not rely on stationary or mobile reference points.

  3. Vibro-acoustic modeling and analysis of a coupled acoustic system comprising a partially opened cavity coupled with a flexible plate

    Science.gov (United States)

    Shi, Shuangxia; Su, Zhu; Jin, Guoyong; Liu, Zhigang

    2018-01-01

    This paper is concerned with the modeling and solution method of a three-dimensional (3D) coupled acoustic system comprising a partially opened cavity coupled with a flexible plate and an exterior field of semi-infinite size, which is ubiquitously encountered in architectural acoustics and is a reasonable representation of many engineering occasions. A general solution method is presented to predict the dynamic behaviors of the three-dimensional (3D) acoustic coupled system, in which the displacement of the plate and the sound pressure in the cavity are respectively constructed in the form of the two-dimensional and three-dimensional modified Fourier series with several auxiliary functions introduced to ensure the uniform convergence of the solution over the entire solution domain. The effect of the opening is taken into account via the work done by the sound pressure acting at the coupling aperture that is contributed from the vibration of particles on the acoustic coupling interface and on the structural-acoustic coupling interface. Both the acoustic coupling between finite cavity and exterior field and the structural-acoustic coupling between flexible plate and interior acoustic field are considered in the vibro-acoustic modeling of the three-dimensional acoustic coupled acoustic system. The dynamic responses of the coupled structural-acoustic system are obtained using the Rayleigh-Ritz procedure based on the energy expressions for the coupled system. The accuracy and effectiveness of the proposed method are validated through numerical examples and comparison with results obtained by the boundary element analysis. Furthermore, the influence of the opening and the cavity volume on the acoustic behaviors of opened cavity system is studied.

  4. A Speed Control Method for Underwater Vehicle under Hydraulic Flexible Traction

    OpenAIRE

    Zhao, Yin; Xia, Ying-kai; Chen, Ying; Xu, Guo-Hua

    2015-01-01

    Underwater vehicle speed control methodology method is the focus of research in this study. Driven by a hydraulic flexible traction system, the underwater vehicle advances steadily on underwater guide rails, simulating an underwater environment for the carried device. Considering the influence of steel rope viscoelasticity and the control system traction structure feature, a mathematical model of the underwater vehicle driven by hydraulic flexible traction system is established. A speed contr...

  5. An OFDM Receiver with Frequency Domain Diversity Combined Impulsive Noise Canceller for Underwater Network.

    Science.gov (United States)

    Saotome, Rie; Hai, Tran Minh; Matsuda, Yasuto; Suzuki, Taisaku; Wada, Tomohisa

    2015-01-01

    In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV (remotely operated vehicles), AUV (autonomous underwater vehicle), divers, and ships, ultrasonic underwater communication systems are used. However, if the communication system is applied to rich living creature marine environment such as shallow sea, it suffers from generated Impulsive Noise so-called Shrimp Noise, which is randomly generated in time domain and seriously degrades communication performance in underwater acoustic network. With the purpose of supporting high performance underwater communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency Domain Diversity Combined Impulsive Noise Canceller. The OFDM receiver utilizes 20-28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3) and 93.750 Hz (MODE2) OFDM modulations. In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20-30%.

  6. An OFDM Receiver with Frequency Domain Diversity Combined Impulsive Noise Canceller for Underwater Network

    Directory of Open Access Journals (Sweden)

    Rie Saotome

    2015-01-01

    Full Text Available In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV (remotely operated vehicles, AUV (autonomous underwater vehicle, divers, and ships, ultrasonic underwater communication systems are used. However, if the communication system is applied to rich living creature marine environment such as shallow sea, it suffers from generated Impulsive Noise so-called Shrimp Noise, which is randomly generated in time domain and seriously degrades communication performance in underwater acoustic network. With the purpose of supporting high performance underwater communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency Domain Diversity Combined Impulsive Noise Canceller. The OFDM receiver utilizes 20–28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3 and 93.750 Hz (MODE2 OFDM modulations. In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20–30%.

  7. Acoustic Emissions (AE) Electrical Systems' Health Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Acoustic Emissions (AE) are associated with physical events, such as thermal activity, dielectric breakdown, discharge inception, as well as crack nucleation and...

  8. Cardiorespiratory system monitoring using a developed acoustic sensor.

    Science.gov (United States)

    Abbasi-Kesbi, Reza; Valipour, Atefeh; Imani, Khadije

    2018-02-01

    This Letter proposes a wireless acoustic sensor for monitoring heartbeat and respiration rate based on phonocardiogram (PCG). The developed sensor comprises a processor, a transceiver which operates at industrial, scientific and medical band and the frequency of 2.54 GHz as well as two capacitor microphones which one for recording the heartbeat and another one for respiration rate. To evaluate the precision of the presented sensor in estimating heartbeat and respiration rate, the sensor is tested on the different volunteers and the obtained results are compared with a gold standard as a reference. The results reveal that root-mean-square error are determined sensor estimate sounds of [Formula: see text] to [Formula: see text] obtained PCG signal with sensitivity and specificity 98.1% and 98.3% in turn that make 3% improvement than previous works. The results prove that the sensor can be appropriate candidate for recognising abnormal condition in the cardiorespiratory system.

  9. Design of Autonomous Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Tadahiro Hyakudome

    2011-03-01

    Full Text Available There are concerns about the impact that global warming will have on our environment, and which will inevitably result in expanding deserts and rising water levels. While a lot of underwater vehicles are utilized, AUVs (Autonomous Underwater Vehicle were considered and chosen, as the most suitable tool for conduction survey concerning these global environmental problems. AUVs can comprehensive survey because the vehicle does not have to be connected to the support vessel by tether cable. When such underwater vehicles are made, it is necessary to consider about the following things. 1 Seawater and Water Pressure Environment, 2 Sink, 3 There are no Gas or Battery Charge Stations, 4 Global Positioning System cannot use, 5 Radio waves cannot use. In the paper, outline of above and how deal about it are explained.

  10. High-Frequency Seafloor Acoustics

    CERN Document Server

    Jackson, Darrell R

    2007-01-01

    High-Frequency Seafloor Acoustics is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. This exciting new title provides ready access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics. The physical characteristics of the seafloor affecting acoustic propagation and scattering are covered, including physical and geoacoustic properties and surface roughness. Current theories for acoustic propagation in sediments are presented along with corresponding models for reflection, scattering, and seafloor penetration. The main text is backed up by an extensive bibliography and technical appendices.

  11. Ecient Parameter Estimation and Control Based on a Modified LOS Guidance System of an Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Elías Revestido Herrero

    2017-12-01

    Full Text Available In this work, a methodology is proposed for the improvement of the parameter estimation effciency of a non-linear manoeuvring model of a torpedo shaped unmanned underwater vehicle. For this purpose, data from different tests, were carried out with the aforementioned vehicle at the facilities of the Canal de Experiencias Hidrodinámicas del Pardo, Madrid. In the proposed methodology, the following aspects are taken into account in order to improve the parameter estimation effciency: selection of the sampling period, smoothing of the data acquired in the tests considering a compromise between variance and bias of the smoothing filter to be applied, analysis of the classical linear regression model proposed in each trial, from the statistical point of view for the estimation of the parameters. Improvements in effciency are verified by graphical and statistical methods. In addition, a modification of the conventional LOS method is proposed which provides satisfactory results in the presence of ocean currents by performing a simple procedure.

  12. Development of an acoustic steam generator leak detection system using delay-and-sum beamformer

    International Nuclear Information System (INIS)

    Chikazawa, Yoshitaka

    2009-01-01

    A new acoustic steam generator leak detection system using delay-and-sum beamformer is proposed. The major advantage of the delay-and-sum beamformer is it could provide information of acoustic source direction. An acoustic source of a sodium-water reaction is supposed to be localized while the background noise of the steam generator operation is uniformly distributed in the steam generator tube region. Therefore the delay-and-sum beamformer could distinguish the acoustic source of the sodium-water reaction from steam generator background noise. In this paper, results from numerical analyses are provided to show fundamental feasibility of the new method. (author)

  13. Space Launch System Scale Model Acoustic Test Ignition Overpressure Testing

    Science.gov (United States)

    Nance, Donald; Liever, Peter; Nielsen, Tanner

    2015-01-01

    The overpressure phenomenon is a transient fluid dynamic event occurring during rocket propulsion system ignition. This phenomenon results from fluid compression of the accelerating plume gas, subsequent rarefaction, and subsequent propagation from the exhaust trench and duct holes. The high-amplitude unsteady fluid-dynamic perturbations can adversely affect the vehicle and surrounding structure. Commonly known as ignition overpressure (IOP), this is an important design-to environment for the Space Launch System (SLS) that NASA is currently developing. Subscale testing is useful in validating and verifying the IOP environment. This was one of the objectives of the Scale Model Acoustic Test, conducted at Marshall Space Flight Center. The test data quantifies the effectiveness of the SLS IOP suppression system and improves the analytical models used to predict the SLS IOP environments. The reduction and analysis of the data gathered during the SMAT IOP test series requires identification and characterization of multiple dynamic events and scaling of the event waveforms to provide the most accurate comparisons to determine the effectiveness of the IOP suppression systems. The identification and characterization of the overpressure events, the waveform scaling, the computation of the IOP suppression system knockdown factors, and preliminary comparisons to the analytical models are discussed.

  14. Diversity of acoustic tracheal system and its role for directional hearing in crickets

    Science.gov (United States)

    2013-01-01

    Background Sound localization in small insects can be a challenging task due to physical constraints in deriving sufficiently large interaural intensity differences (IIDs) between both ears. In crickets, sound source localization is achieved by a complex type of pressure difference receiver consisting of four potential sound inputs. Sound acts on the external side of two tympana but additionally reaches the internal tympanal surface via two external sound entrances. Conduction of internal sound is realized by the anatomical arrangement of connecting trachea. A key structure is a trachea coupling both ears which is characterized by an enlarged part in its midline (i.e., the acoustic vesicle) accompanied with a thin membrane (septum). This facilitates directional sensitivity despite an unfavorable relationship between wavelength of sound and body size. Here we studied the morphological differences of the acoustic tracheal system in 40 cricket species (Gryllidae, Mogoplistidae) and species of outgroup taxa (Gryllotalpidae, Rhaphidophoridae, Gryllacrididae) of the suborder Ensifera comprising hearing and non hearing species. Results We found a surprisingly high variation of acoustic tracheal systems and almost all investigated species using intraspecific acoustic communication were characterized by an acoustic vesicle associated with a medial septum. The relative size of the acoustic vesicle - a structure most crucial for deriving high IIDs - implies an important role for sound localization. Most remarkable in this respect was the size difference of the acoustic vesicle between species; those with a more unfavorable ratio of body size to sound wavelength tend to exhibit a larger acoustic vesicle. On the other hand, secondary loss of acoustic signaling was nearly exclusively associated with the absence of both acoustic vesicle and septum. Conclusion The high diversity of acoustic tracheal morphology observed between species might reflect different steps in the evolution

  15. Acoustic and Thermal Testing of an Integrated Multilayer Insulation and Broad Area Cooling Shield System

    Science.gov (United States)

    Wood, Jessica J.; Foster, Lee W.

    2013-01-01

    A Multilayer Insulation (MLI) and Broad Area Cooling (BAC) shield thermal control system shows promise for long-duration storage of cryogenic propellant. The NASA Cryogenic Propellant Storage and Transfer (CPST) project is investigating the thermal and structural performance of this tank-applied integrated system. The MLI/BAC Shield Acoustic and Thermal Test was performed to evaluate the MLI/BAC shield's structural performance by subjecting it to worst-case launch acoustic loads. Identical thermal tests using Liquid Nitrogen (LN2) were performed before and after the acoustic test. The data from these tests was compared to determine if any degradation occurred in the thermal performance of the system as a result of exposure to the acoustic loads. The thermal test series consisted of two primary components: a passive boil-off test to evaluate the MLI performance and an active cooling test to evaluate the integrated MLI/BAC shield system with chilled vapor circulating through the BAC shield tubes. The acoustic test used loads closely matching the worst-case envelope of all launch vehicles currently under consideration for CPST. Acoustic test results yielded reasonable responses for the given load. The thermal test matrix was completed prior to the acoustic test and successfully repeated after the acoustic test. Data was compared and yielded near identical results, indicating that the MLI/BAC shield configuration tested in this series is an option for structurally implementing this thermal control system concept.

  16. Reliable underwater dipole source characterization in 3D space by an optimally designed artificial lateral line system.

    Science.gov (United States)

    Ahrari, Ali; Lei, Hong; Sharif, Montassar Aidi; Deb, Kalyanmoy; Tan, Xiaobo

    2017-04-19

    Inspired by the lateral line of aquatic vertebrates, an artificial lateral line (ALL) system can localize and track an underwater moving object by analyzing the ambient flow caused by its motion. There are several studies on object detection, localization and tracking by ALL systems, but only a few have investigated the optimal design of the ALL system, the one that on average provides the highest characterization accuracy. Design optimization is particularly important because the uncertainties in the employed flow model and in sensor measurements deteriorate the reliability of sensing. This study investigates the optimal design of the ALL system in three-dimensional (3D) space for dipole source characterization. It highlights some challenges specific to the 3D setting and demonstrates the shortcomings of the designs in which all sensors and their sensing directions are in the same plane. As an alternative, it proposes two design concepts, called 'Offset Strategy' and 'Angle Strategy' to overcome these shortcomings. It investigates potentials of having a swarm of cooperative ALLs as well. It performs design optimization in the presence of sensor and model uncertainties and analyzes the trade-off between the number of sensors and characterization accuracy. The obtained solutions are analyzed to reveal their strategies in solving the problem efficiently. The dependency of the optimized solutions on the uncertainties is also demonstrated.

  17. LARA: Expert system for acoustic localization of robot in a LMFBR

    International Nuclear Information System (INIS)

    Lhuillier, C.; Malvache, P.

    1986-12-01

    The expert system LARA (Acoustic Localization of Autonomic Robot) has been developed to show the interest of introducing artificial intelligency for fine automatic positioning of refuelling machine in a LMFBR reactor. LARA which is equipped with an acoustic detector gives rapidly a good positioning on the fuel [fr

  18. Systems and methods for biometric identification using the acoustic properties of the ear canal

    Science.gov (United States)

    Bouchard, Ann Marie; Osbourn, Gordon Cecil

    1998-01-01

    The present invention teaches systems and methods for verifying or recognizing a person's identity based on measurements of the acoustic response of the individual's ear canal. The system comprises an acoustic emission device, which emits an acoustic source signal s(t), designated by a computer, into the ear canal of an individual, and an acoustic response detection device, which detects the acoustic response signal f(t). A computer digitizes the response (detected) signal f(t) and stores the data. Computer-implemented algorithms analyze the response signal f(t) to produce ear-canal feature data. The ear-canal feature data obtained during enrollment is stored on the computer, or some other recording medium, to compare the enrollment data with ear-canal feature data produced in a subsequent access attempt, to determine if the individual has previously been enrolled. The system can also be adapted for remote access applications.

  19. Systems and methods for biometric identification using the acoustic properties of the ear canal

    International Nuclear Information System (INIS)

    Bouchard, A.M.; Osbourn, G.C.

    1998-01-01

    The present invention teaches systems and methods for verifying or recognizing a person's identity based on measurements of the acoustic response of the individual's ear canal. The system comprises an acoustic emission device, which emits an acoustic source signal s(t), designated by a computer, into the ear canal of an individual, and an acoustic response detection device, which detects the acoustic response signal f(t). A computer digitizes the response (detected) signal f(t) and stores the data. Computer-implemented algorithms analyze the response signal f(t) to produce ear-canal feature data. The ear-canal feature data obtained during enrollment is stored on the computer, or some other recording medium, to compare the enrollment data with ear-canal feature data produced in a subsequent access attempt, to determine if the individual has previously been enrolled. The system can also be adapted for remote access applications. 5 figs

  20. The Impact of Very High Frequency Surface Reverberation on Coherent Acoustic Propagation and Modeling

    Science.gov (United States)

    2015-09-30

    on Coherent Acoustic Propagation and Modeling Grant B. Deane Marine Physical Laboratory , Scripps Institution of Oceanography UCSD La Jolla, CA...long-term science objective is to develop a physical model of high-frequency scattering of underwater acoustic signals from the sea surface under a... acoustic communications problem. The scattering of sound from the sea surface is important for the operation of underwater sonar and underwater

  1. Structural Dynamics of a Pulsed-Jet Propulsion System for Underwater Soft Robots

    Directory of Open Access Journals (Sweden)

    Federico Renda

    2015-06-01

    Full Text Available This paper entails the study of the pulsed-jet propulsion inspired by cephalopods in the frame of underwater bioinspired robotics. This propulsion routine involves a sequence of consecutive cycles of inflation and collapse of an elastic bladder, which, in the robotics artefact developed by the authors, is enabled by a cable-driven actuation of a deformable shell composed of rubber-like materials. In the present work an all-comprehensive formulation is derived by resorting to a coupled approach that comprises of a model of the structural dynamics of the cephalopod-like elastic bladder and a model of the pulsed-jet thrust production. The bladder, or mantle, is modelled by means of geometrically exact, axisymmetric, nonlinear shell theory, which yields an accurate estimation of the forces involved in driving the deformation of the structure in water. By coupling these results with those from a standard thrust model, the behaviour of the vehicle propelling itself in water is derived. The constitutive laws of the shell are also exploited as control laws with the scope of replicating the muscle activation routine observed in cephalopods. The model is employed to test various shapes, material properties and actuation routines of the mantle. The results are compared in terms of speed performance in order to identify suitable design guidelines. Altogether, the model is tested in more than 50 configurations, eventually providing useful insight for the development of more advanced vehicles and bringing evidence of its reliability in studying the dynamics of both man-made cephalopod-inspired robots and live specimens.

  2. Attenuation of low-frequency underwater sound using an array of air-filled balloons and comparison to effective medium theory.

    Science.gov (United States)

    Lee, Kevin M; Wilson, Preston S; Wochner, Mark S

    2017-12-01

    The ultimate goal of this work is to accurately predict the attenuation through a collection of large (on the order of 10-cm-radius) tethered encapsulated bubbles used in underwater noise abatement systems. Measurements of underwater sound attenuation were performed during a set of lake experiments, where a low-frequency compact electromechanical sound source was surrounded by different arrays of encapsulated bubbles with various individual bubbles sizes and void fractions. The measurements were compared with an existing predictive model [Church, J. Acoust. Soc. Am. 97, 1510-1521 (1995)] of the dispersion relation for linear propagation in liquid containing encapsulated bubbles. Although the model was originally intended to describe ultrasound contrast agents, it is evaluated here for large bubbles, and hence low frequencies, as a design tool for future underwater noise abatement systems, and there is good quantitative agreement between the observations and the model.

  3. Select Internet Resources on Acoustics

    Directory of Open Access Journals (Sweden)

    Angela R. Davis

    2016-12-01

    Full Text Available Merriam-Webster (2016 defines acoustics as, “a science that deals with the production, control, transmission, reception, and effects of sounds.” According to Rossing (2014, the study of acoustics began in ancient Greece with Pythagoras’ study of vibrating strings on musical instruments. Since those early beginnings, famous scientists including Rayleigh, Alexander Graham Bell, and Thomas Edison, have helped expand the field of acoustics to include architectural, physical, engineering, structural, underwater, physiological and psychological, musical acoustics, and speech. Acoustics is a highly interdisciplinary field and researchers may need resources from physics, medicine, and engineering to understand all aspects of their research.

  4. The integrated satellite-acoustic telemetry (iSAT) system for tracking marine megafauna

    KAUST Repository

    De la Torre, Pedro

    2012-10-06

    This document describes the integrated satellite-acoustic telemetry (iSAT) system: an autonomous modular system for tracking the movements of large pelagic fish using acoustic telemetry and satellite communications. The sensor platform is described along with the propulsion and navigation systems. An application for tracking the whale shark (Rhincodon typus) in the Red Sea is included along with a discussion of the technical difficulties that such a system faces.

  5. Close-Range Tracking of Underwater Vehicles Using Light Beacons

    Science.gov (United States)

    Bosch, Josep; Gracias, Nuno; Ridao, Pere; Istenič, Klemen; Ribas, David

    2016-01-01

    This paper presents a new tracking system for autonomous underwater vehicles (AUVs) navigating in a close formation, based on computer vision and the use of active light markers. While acoustic localization can be very effective from medium to long distances, it is not so advantageous in short distances when the safety of the vehicles requires higher accuracy and update rates. The proposed system allows the estimation of the pose of a target vehicle at short ranges, with high accuracy and execution speed. To extend the field of view, an omnidirectional camera is used. This camera provides a full coverage of the lower hemisphere and enables the concurrent tracking of multiple vehicles in different positions. The system was evaluated in real sea conditions by tracking vehicles in mapping missions, where it demonstrated robust operation during extended periods of time. PMID:27023547

  6. Acoustic system for pipe rupture monitoring and leak detection

    International Nuclear Information System (INIS)

    Herzog, W.; Jonas, H.

    1982-06-01

    As a safety aspect pipe rupture and leakage effects are of particular interest in nuclear power plants where severe consequences for the reactor may result. Counter measures against postulated pipe breaks and leakages in nuclear power plants are necessary whenever the main safety goals: safe shut-down, safe afterheat removal and retention of radioactivity, are endangered. The requirements to be met by a leak detection system depend on the time available for counter actions. If this time is short so that automatic actions are necessary the German safety criteria for nuclear power plants (Criterion 6.1) require two physically diverse signals to be monitored. One fairly obvious possibility of leak detection is to monitor process parameters (pressure, flow). As a diverse signal physical parameters outside the process may be employed: pressure transients temperature, humidity are principally suitable. In practical application, however, it is difficult to predict these parameters by way of calculation in order to establish the required set-point of the monitoring system. Experimental determination is possible only in special cases. A study of several ways of diverse leak detection methods leads to the very promising acoustic method. We investigated experimentally the feasibility of monitoring the sound created by a leakage. Air borne sound as well as body borne sound was analyzed

  7. Design and Performance Evaluation of Underwater Data Dissemination Strategies using Interference Avoidance and Network Coding

    DEFF Research Database (Denmark)

    Palacios, Raul; Heide, Janus; Fitzek, Frank

    2012-01-01

    The long propagation delays of the underwater acoustic channel make traditional Medium Access schemes impractical and inefficient under water. This paper introduces and studies Interference Avoidance and Network Coding for Medium Access protocol design aiming to cope with the underwater channel c...

  8. A Data Link Layer in Support of Swarming of Autonomous Underwater Vehicles

    Science.gov (United States)

    Jabba Molinares, Daladier

    2009-01-01

    Communication underwater is challenging because of the inherent characteristics of the media. First, common radio frequency (RF) signals utilized in wireless communications cannot be used under water. RF signals are attenuated in such as way that RF communication underwater is restricted to very few meters. As a result, acoustic-based…

  9. Acoustic Resonance Spectroscopy (ARS) Munition Classification System enhancements. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vela, O.A.; Huggard, J.C.

    1997-09-18

    Acoustic Resonance Spectroscopy (ARS) is a non-destructive evaluation technology developed at the Los Alamos National Laboratory (LANL). This technology has resulted in three generations of instrumentation, funded by the Defense Special Weapons Agency (DSWA), specifically designed for field identification of chemical weapon (CW) munitions. Each generation of ARS instrumentation was developed with a specific user in mind. The ARS1OO was built for use by the U.N. Inspection Teams going into Iraq immediately after the Persian Gulf War. The ARS200 was built for use in the US-Russia Bilateral Chemical Weapons Treaty (the primary users for this system are the US Onsite Inspection Agency (OSIA) and their Russian counterparts). The ARS300 was built with the requirements of the Organization for the Prohibition of Chemical Weapons (OPCW) in mind. Each successive system is an improved version of the previous system based on learning the weaknesses of each and, coincidentally, on the fact that more time was available to do a requirements analysis and the necessary engineering development. The ARS300 is at a level of development that warrants transferring the technology to a commercial vendor. Since LANL will supply the computer software to the selected vendor, it is possible for LANL to continue to improve the decision algorithms, add features where necessary, and adjust the user interface before the final transfer occurs. This paper describes the current system, ARS system enhancements, and software enhancements. Appendices contain the Operations Manual (software Version 3.01), and two earlier reports on enhancements.

  10. Acoustic Emission Based Surveillance System for Prediction of Stress Fractures

    National Research Council Canada - National Science Library

    Akkus, Ozan

    2004-01-01

    ... in damage activity a priori to fracture. The hypothesis of our study is that the onset of stress fractures can be predicted by monitoring the evolution of microdamage activity using acoustic emissions...

  11. Acoustic Emission Based Surveillance System for Prediction of Stress Fractures

    National Research Council Canada - National Science Library

    Akkus, Ozan; Wasserman, Nicholas

    2005-01-01

    ... in damage activity a priori to fracture. The hypothesis of our study is that the onset of stress fractures can be predicted by monitoring the evolution of microdamage activity using acoustic emissions...

  12. Acoustic Echo Cancellation Postfilter Design Issues For Speech Recognition System

    OpenAIRE

    Shrawankar, Urmila; Thakare, V M

    2013-01-01

    In this paper a generalized postfilter algorithm design issues are presented. This postfilter is used to jointly suppress late reverberation, residual echo, and background noise. When residual echo and noise are suppressed, the best result obtains by suppressing both interferences together after the Acoustic echo cancellation (AEC). The main advantage of this approach is that the residual echo and noise suppression does not suffer from the existence of a strong acoustic echo component. Furthe...

  13. Underwater Hearing in Turtles.

    Science.gov (United States)

    Willis, Katie L

    2016-01-01

    The hearing of turtles is poorly understood compared with the other reptiles. Although the mechanism of transduction of sound into a neural signal via hair cells has been described in detail, the rest of the auditory system is largely a black box. What is known is that turtles have higher hearing thresholds than other reptiles, with best frequencies around 500 Hz. They also have lower underwater hearing thresholds than those in air, owing to resonance of the middle ear cavity. Further studies demonstrated that all families of turtles and tortoises share a common middle ear cavity morphology, with scaling best suited to underwater hearing. This supports an aquatic origin of the group. Because turtles hear best under water, it is important to examine their vulnerability to anthropogenic noise. However, the lack of basic data makes such experiments difficult because only a few species of turtles have published audiograms. There are also almost no behavioral data available (understandable due to training difficulties). Finally, few studies show what kinds of sounds are behaviorally relevant. One notable paper revealed that the Australian snake-necked turtle (Chelodina oblonga) has a vocal repertoire in air, at the interface, and under water. Findings like these suggest that there is more to the turtle aquatic auditory scene than previously thought.

  14. ION ACOUSTIC TURBULENCE, ANOMALOUS TRANSPORT, AND SYSTEM DYNAMICS IN HALL EFFECT THRUSTERS

    Science.gov (United States)

    2017-06-30

    NUMBER (Include area code) 30 June 2017 Briefing Charts 26 May 2017 - 30 June 2017 ION ACOUSTIC TURBULENCE, ANOMALOUS TRANSPORT , AND SYSTEM DYNAMICS...Robert Martin N/A ION ACOUSTIC TURBULENCE, ANOMALOUS TRANSPORT , AND SYSTEM DYNAMICS IN HALL EFFECT THRUSTERS Robert Martin1, Jonathan Tran2 1AIR FORCE...Approved for Public Release; Distribution is Unlimited. PA# 17394 1 / 13 OUTLINE 1 INTRODUCTION 2 TRANSPORT 3 DYNAMIC SYSTEM 4 SUMMARY AND CONCLUSION

  15. BisQue: cloud-based system for management, annotation, visualization, analysis and data mining of underwater and remote sensing imagery

    Science.gov (United States)

    Fedorov, D.; Miller, R. J.; Kvilekval, K. G.; Doheny, B.; Sampson, S.; Manjunath, B. S.

    2016-02-01

    Logistical and financial limitations of underwater operations are inherent in marine science, including biodiversity observation. Imagery is a promising way to address these challenges, but the diversity of organisms thwarts simple automated analysis. Recent developments in computer vision methods, such as convolutional neural networks (CNN), are promising for automated classification and detection tasks but are typically very computationally expensive and require extensive training on large datasets. Therefore, managing and connecting distributed computation, large storage and human annotations of diverse marine datasets is crucial for effective application of these methods. BisQue is a cloud-based system for management, annotation, visualization, analysis and data mining of underwater and remote sensing imagery and associated data. Designed to hide the complexity of distributed storage, large computational clusters, diversity of data formats and inhomogeneous computational environments behind a user friendly web-based interface, BisQue is built around an idea of flexible and hierarchical annotations defined by the user. Such textual and graphical annotations can describe captured attributes and the relationships between data elements. Annotations are powerful enough to describe cells in fluorescent 4D images, fish species in underwater videos and kelp beds in aerial imagery. Presently we are developing BisQue-based analysis modules for automated identification of benthic marine organisms. Recent experiments with drop-out and CNN based classification of several thousand annotated underwater images demonstrated an overall accuracy above 70% for the 15 best performing species and above 85% for the top 5 species. Based on these promising results, we have extended bisque with a CNN-based classification system allowing continuous training on user-provided data.

  16. Analysis, Design, and Evaluation of Acoustic Feedback Cancellation Systems for Hearing Aids

    DEFF Research Database (Denmark)

    Guo, Meng

    2013-01-01

    Acoustic feedback problems occur when the output loudspeaker signal of an audio system is partly returned to the input microphone via an acoustic coupling through the air. This problem often causes significant performance degradations in applications such as public address systems and hearing aids....... In the worst case, the audio system becomes unstable and howling occurs. In this work, first we analyze a general multiple microphone audio processing system, where a cancellation system using adaptive filters is used to cancel the effect of acoustic feedback. We introduce and derive an accurate approximation...... in acoustic feedback cancellation for hearing aids. It utilizes a probe noise signal which is generated with a specific characteristic so that it can facilitate an unbiased adaptive filter estimation with fast tracking of feedback path variations/changes despite its low signal level. We show in a hearing aid...

  17. Magneto-acoustic response of a 2D carrier system

    International Nuclear Information System (INIS)

    Kennedy, I.

    1999-07-01

    The use of surface acoustic waves (SAW) has proved valuable in the study of the integer and fractional quantum Hall effect (QHE), and has given strong evidence in support of the composite fermion theory at even denominator filling factors, ν. The attenuation and dispersion both show features at ν = 1/2 that can be attributed to an enhanced conductivity of composite fermions in zero effective magnetic field. We have made experiments using GaAs/A1GaAs heterojunctions with both two-dimensional electron (2DES) and hole (2DHS) systems. Measurements were made using SAW at frequencies up to 2GHz, magnetic fields up to 16T, and at temperatures down to 350mK. The samples were in the form of a Hall bar enabling a measure of the longitudinal and transverse resistivities from which the conductivity of the 2D layer was found. This enables a prediction of the SAW attenuation and dispersion due to extended states in the 2DCS as a function of magnetic field. Complimentary measurements have also been made of the acoustoelectric voltages generated by the action of the wave on mobile carriers within the 2DCS. These were made on Hall bar contacts using lock-in amplifiers in an 'open' configuration, giving a complete magneto-acoustic investigation of the 2DCS. An extra attenuation and dispersion was found at integral filling factors in both 2DES and 2DHS that cannot be accounted for on the basis of the quasi-DC model. These feature are attributed to the localised states within the 2DCS. The ratio of attenuation to dispersion by the localised states is given by the product of the frequency and wavevector of the SAW, and the relaxation time of the localised carrier states. We have found relaxation times of the order 10 -11 s. We have also confirmed that features at ν = 1/2 can be found in the attenuation and dispersion of SAW in a 2DES. Similar measurements in a 2DHS reveal features that are also attributable to an enhanced conductivity due to composite fermions. Acoustoelectric

  18. Juvenile Salmon Acoustic Telemetry System Transmitter Downsize Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Thomas J.; Myjak, Mitchell J.

    2010-04-30

    At the request of the U.S. Army Corps of Engineers, Portland District, researchers from Pacific Northwest National Laboratory investigated the use of an application-specific integrated circuit (ASIC) to reduce the weight and volume of Juvenile Salmon Acoustic Telemetry System (JSATS) transmitters while retaining current functionality. Review of the design of current JSATS transmitters identified components that could be replaced by an ASIC while retaining the function of the current transmitter and offering opportunities to extend function if desired. ASIC design alternatives were identified that could meet transmitter weight and volume targets of 200 mg and 100 mm3. If alternatives to the cylindrical batteries used in current JSATS transmitters can be identified, it could be possible to implant ASIC-based JSATS transmitters by injection rather than surgery. Using criteria for the size of fish suitable for surgical implantation of current JSATS transmitters, it was concluded that fish as small as 70 mm in length could be implanted with an ASIC-based transmitter, particularly if implantation by injection became feasible.

  19. Structural Acoustic UXO Detection and Identification in Marine Environments

    Science.gov (United States)

    2016-05-01

    high performance structural acoustic (SA) feature-based underwater sonar technology that can detect and localize buried (and proud) targets and...MR2103), we demonstrated the structural acoustic technology with an autonomous underwater vehicle (AUV) - based SA sonar successfully detecting UXO...We examined the acoustic color maps visually for the presence of a frequency/x position (aspect angle) feature that we had seen earlier in laboratory

  20. Event Localization in Underwater Wireless Sensor Networks using Monitoring Courses

    KAUST Repository

    Debont, Matthew

    2011-11-01

    In this thesis we consider different methods to localize events in a multi-hop wireless sensor network operating underwater using acoustic modems. The network consists of surface gateway nodes and relay nodes. Localization of surface gateways can be achieved through GPS, but we cannot rely on this technology for localizing underwater nodes. Surface Gateway nodes can distribute their locations through the network using the incoming signals by the acoustic modems from the relay nodes. Relay nodes are deployed to remain static but due to water currents, floating, and the untethered nature of the nodes, they often suffer from frequent drifting which can result in a deployed network suffering link failures. In this work, we developed a novel concept of an underwater alarming system, which adapts a cyclic graph model. In the event of link failure, a series of alarm packets are broadcasted in the network. These alarms are then captured through a novel concept of underwater Monitoring Courses (M-Courses), which can also be used to assure network connectivity and identify node faults. M-Courses also allow the network to localize events and identify network issues at a local level before forwarding any results upwards to a Surface Gateway nodes. This reduces the amount of communication overhead needed and allowing for distributed management of nodes in a network which may be constantly moving. We show that the proposed algorithms can reduce the number of send operations needed for an event to be localized in a network. We have found that M-Course routing reduces the number of sends required to report an event to a Surface Gateway by up to 80% in some cases when compared to a naive routing implementation. But this is achieved by increasing the time for an event to reach a Surface Gateway. These effects are both due to the buffering effect of M-Course routing, which allows us to efficiently deal with multiple events in an local area and we find that the performance of M

  1. Underwater Geotechnical Foundations

    National Research Council Canada - National Science Library

    Lee, Landris

    2001-01-01

    This report provides an overview and description of the design and construction of underwater geotechnical foundations and offers preliminary guidance based on past and current technology applications...

  2. Passive Wireless Multi-Sensor Temperature and Pressure Sensing System Using Acoustic Wave Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the continued development of passive, orthogonal frequency coded (OFC) surface acoustic wave (SAW) sensors and multi-sensor systems, an...

  3. PASSIVE WIRELESS MULTI-SENSOR TEMPERATURE AND PRESSURE SENSING SYSTEM USING ACOUSTIC WAVE DEVICES Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) sensors and multi-sensor systems for NASA application to remote wireless sensing of...

  4. PASSIVE WIRELESS MULTI-SENSOR TEMPERATURE AND PRESSURE SENSING SYSTEM USING ACOUSTIC WAVE DEVICES, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) sensors and multi-sensor systems for NASA application to remote wireless sensing of...

  5. High accuracy navigation information estimation for inertial system using the multi-model EKF fusing adams explicit formula applied to underwater gliders.

    Science.gov (United States)

    Huang, Haoqian; Chen, Xiyuan; Zhang, Bo; Wang, Jian

    2017-01-01

    The underwater navigation system, mainly consisting of MEMS inertial sensors, is a key technology for the wide application of underwater gliders and plays an important role in achieving high accuracy navigation and positioning for a long time of period. However, the navigation errors will accumulate over time because of the inherent errors of inertial sensors, especially for MEMS grade IMU (Inertial Measurement Unit) generally used in gliders. The dead reckoning module is added to compensate the errors. In the complicated underwater environment, the performance of MEMS sensors is degraded sharply and the errors will become much larger. It is difficult to establish the accurate and fixed error model for the inertial sensor. Therefore, it is very hard to improve the accuracy of navigation information calculated by sensors. In order to solve the problem mentioned, the more suitable filter which integrates the multi-model method with an EKF approach can be designed according to different error models to give the optimal estimation for the state. The key parameters of error models can be used to determine the corresponding filter. The Adams explicit formula which has an advantage of high precision prediction is simultaneously fused into the above filter to achieve the much more improvement in attitudes estimation accuracy. The proposed algorithm has been proved through theory analyses and has been tested by both vehicle experiments and lake trials. Results show that the proposed method has better accuracy and effectiveness in terms of attitudes estimation compared with other methods mentioned in the paper for inertial navigation applied to underwater gliders. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Autopilot Using Differential Thrust for ARIES Autonomous Underwater Vehicle

    National Research Council Canada - National Science Library

    Sarton, Christopher

    2003-01-01

    .... Unfortunately, communication antennas must point to specific satellites in this system and thus underwater vehicles must steer a specific course on the surface during the communication process...

  7. A design of the acoustic electric transduction system with piezoelectric ceramic

    Science.gov (United States)

    Ge, Qingyu

    2017-05-01

    Based on the theory of acoustic-electric transduction, a piezoelectric acoustic electric transduction system was designed, aiming at recycling the noise of turbine generator sets. The frequency response characteristic of the equivalent input impedance and output voltage. And the simulation was conducted with MATLAB. Then the conclusion was drawn that when the equivalent input impedance reached the minimum, the output voltage amplitude reached the maximum. The resonance frequency of Helmholtz resonator is the primary factor to the whole system.

  8. Time and timing in the acoustic recognition system of crickets

    Science.gov (United States)

    Hennig, R. Matthias; Heller, Klaus-Gerhard; Clemens, Jan

    2014-01-01

    The songs of many insects exhibit precise timing as the result of repetitive and stereotyped subunits on several time scales. As these signals encode the identity of a species, time and timing are important for the recognition system that analyzes these signals. Crickets are a prominent example as their songs are built from sound pulses that are broadcast in a long trill or as a chirped song. This pattern appears to be analyzed on two timescales, short and long. Recent evidence suggests that song recognition in crickets relies on two computations with respect to time; a short linear-nonlinear (LN) model that operates as a filter for pulse rate and a longer integration time window for monitoring song energy over time. Therefore, there is a twofold role for timing. A filter for pulse rate shows differentiating properties for which the specific timing of excitation and inhibition is important. For an integrator, however, the duration of the time window is more important than the precise timing of events. Here, we first review evidence for the role of LN-models and integration time windows for song recognition in crickets. We then parameterize the filter part by Gabor functions and explore the effects of duration, frequency, phase, and offset as these will correspond to differently timed patterns of excitation and inhibition. These filter properties were compared with known preference functions of crickets and katydids. In a comparative approach, the power for song discrimination by LN-models was tested with the songs of over 100 cricket species. It is demonstrated how the acoustic signals of crickets occupy a simple 2-dimensional space for song recognition that arises from timing, described by a Gabor function, and time, the integration window. Finally, we discuss the evolution of recognition systems in insects based on simple sensory computations. PMID:25161622

  9. Stability analysis of hybrid-driven underwater glider

    Science.gov (United States)

    Niu, Wen-dong; Wang, Shu-xin; Wang, Yan-hui; Song, Yang; Zhu, Ya-qiang

    2017-10-01

    Hybrid-driven underwater glider is a new type of unmanned underwater vehicle, which combines the advantages of autonomous underwater vehicles and traditional underwater gliders. The autonomous underwater vehicles have good maneuverability and can travel with a high speed, while the traditional underwater gliders are highlighted by low power consumption, long voyage, long endurance and good stealth characteristics. The hybrid-driven underwater gliders can realize variable motion profiles by their own buoyancy-driven and propeller propulsion systems. Stability of the mechanical system determines the performance of the system. In this paper, the Petrel-II hybrid-driven underwater glider developed by Tianjin University is selected as the research object and the stability of hybrid-driven underwater glider unitedly controlled by buoyancy and propeller has been targeted and evidenced. The dimensionless equations of the hybrid-driven underwater glider are obtained when the propeller is working. Then, the steady speed and steady glide path angle under steady-state motion have also been achieved. The steady-state operating conditions can be calculated when the hybrid-driven underwater glider reaches the desired steady-state motion. And the steadystate operating conditions are relatively conservative at the lower bound of the velocity range compared with the range of the velocity derived from the method of the composite Lyapunov function. By calculating the hydrodynamic coefficients of the Petrel-II hybrid-driven underwater glider, the simulation analysis has been conducted. In addition, the results of the field trials conducted in the South China Sea and the Danjiangkou Reservoir of China have been presented to illustrate the validity of the analysis and simulation, and to show the feasibility of the method of the composite Lyapunov function which verifies the stability of the Petrel-II hybrid-driven underwater glider.

  10. Diagnostic performance of an acoustic-based system for coronary artery disease risk stratification

    DEFF Research Database (Denmark)

    Winther, Simon; Nissen, Louise; Schmidt, Samuel Emil

    2017-01-01

    , patients were referred to invasive angiography and fractional flow reserve (FFR) assessment. Heart sound analysis was performed in all patients. A predefined acoustic CAD-score algorithm was evaluated; subsequently, we developed and validated an updated CAD-score algorithm that included both acoustic...... of CAD enables risk stratification superior to clinical risk scores. With a negative predictive value of 96%, this new acoustic rule-out system could potentially supplement clinical assessment to guide decisions on the need for further diagnostic investigation. TRIAL REGISTRATION NUMBER: Clinical...

  11. Performance Test for Developing the Acoustic Leak Detection System of the LMR Steam Generator

    International Nuclear Information System (INIS)

    Kim, Tae Joon; Jeong, Ji Young; Hur, Seop

    2005-01-01

    The successful detection of a water/steam into a sodium leak in the LMR SG (steam generator) at an early phase of a leak origin depends on the fast response and sensitivity of a leak detection system. It is considered, that the acoustic system is intended for a fast detecting of a water/steam into a sodium leak of an intermediate flow rate, 1 ∼ 10 g/s, during several seconds. This intention of an acoustic leak detection system is stipulated by a key impossibility of a fast detecting of an intermediate leak by the present nominal systems such as the hydrogen meter. Subject of this study is to introduce the detection performance of the acoustic leak detection system discriminated by a back-propagation neural network with a preprocessing of the FFT power spectrum analysis and the Octave band analysis, and to introduce the status of the development of the acoustic leak detection in KAERI. It was used with the acoustic signals from the injected Argon gas into water experiments in KAERI, the acoustic signals injected from the water into the sodium obtained in IPPE, and the background noise of the PFR superheater

  12. Development and demonstration of the safe dismantling of metal components from the decommissioning of nuclear facilities by means of underwater plasma arc cutting. Development of a measurement and control system for a underwater plasma arc cutting device for the safe dismantling of metallic components from the decommissioning of nuclear facility. Final report

    International Nuclear Information System (INIS)

    Haferkamp, H.; Bach, F.W.; Steiner, H.; Kah, S.

    1992-01-01

    For the decommissioning of nuclear installations, methods and tools for the dismantling of complicated metallic components with great material thickness are needed. The method of underwater plasma arc cutting offers the possibility for the dismantling of highly activated components because of the shielding effect of water. Up to now the tools for the underwater method are only available for simple contours. Target of the project was the development of a plasma arc cutting technique for the dismantling of complicated components and of a control and measurement system. (orig./DG) [de

  13. Underwater Scene Composition

    Science.gov (United States)

    Kim, Nanyoung

    2009-01-01

    In this article, the author describes an underwater scene composition for elementary-education majors. This project deals with watercolor with crayon or oil-pastel resist (medium); the beauty of nature represented by fish in the underwater scene (theme); texture and pattern (design elements); drawing simple forms (drawing skill); and composition…

  14. System and method for investigating sub-surface features of a rock formation using compressional acoustic sources

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre-Yves; Larmat, Carene S.

    2016-09-27

    A system and method for investigating rock formations outside a borehole are provided. The method includes generating a first compressional acoustic wave at a first frequency by a first acoustic source; and generating a second compressional acoustic wave at a second frequency by a second acoustic source. The first and the second acoustic sources are arranged within a localized area of the borehole. The first and the second acoustic waves intersect in an intersection volume outside the borehole. The method further includes receiving a third shear acoustic wave at a third frequency, the third shear acoustic wave returning to the borehole due to a non-linear mixing process in a non-linear mixing zone within the intersection volume at a receiver arranged in the borehole. The third frequency is equal to a difference between the first frequency and the second frequency.

  15. Acoustic valley edge states in a graphene-like resonator system

    Science.gov (United States)

    Yang, Yahui; Yang, Zhaoju; Zhang, Baile

    2018-03-01

    The concept of valley physics, as inspired by the recent development in valleytronic materials, has been extended to acoustic crystals for manipulation of air-borne sound. Many valleytronic materials follow the model of a gapped graphene. Yet the previously demonstrated valley acoustic crystal adopted a mirror-symmetry-breaking mechanism, lacking a direct counterpart in condensed matter systems. In this paper, we investigate a two-dimensional (2D) periodic acoustic resonator system with inversion symmetry breaking, as an analogue of a gapped graphene monolayer. It demonstrates the quantum valley Hall topological phase for sound waves. Similar to a gapped graphene, gapless topological valley edge states can be found at a zigzag domain wall separating different domains with opposite valley Chern numbers, while an armchair domain wall hosts no gapless edge states. Our study offers a route to simulate novel valley phenomena predicted in gapped graphene and other 2D materials with classical acoustic waves.

  16. Influence of viscoelastic property on laser-generated surface acoustic waves in coating-substrate systems

    International Nuclear Information System (INIS)

    Sun Hongxiang; Zhang Shuyi; Xu Baiqiang

    2011-01-01

    Taking account of the viscoelasticity of materials, the pulsed laser generation of surface acoustic waves in coating-substrate systems has been investigated quantitatively by using the finite element method. The displacement spectra of the surface acoustic waves have been calculated in frequency domain for different coating-substrate systems, in which the viscoelastic properties of the coatings and substrates are considered separately. Meanwhile, the temporal displacement waveforms have been obtained by applying inverse fast Fourier transforms. The numerical results of the normal surface displacements are presented for different configurations: a single plate, a slow coating on a fast substrate, and a fast coating on a slow substrate. The influences of the viscoelastic properties of the coating and the substrate on the attenuation of the surface acoustic waves have been studied. In addition, the influence of the coating thickness on the attenuation of the surface acoustic waves has been also investigated in detail.

  17. Design and Instrumentation of a Measurement and Calibration System for an Acoustic Telemetry System

    Directory of Open Access Journals (Sweden)

    Zhiqun Deng

    2010-03-01

    Full Text Available The Juvenile Salmon Acoustic Telemetry System (JSATS is an active sensing technology developed by the U.S. Army Corps of Engineers, Portland District, for detecting and tracking small fish. It is used primarily for evaluating behavior and survival of juvenile salmonids migrating through the Federal Columbia River Power System to the Pacific Ocean. It provides critical data for salmon protection and development of more “fish-friendly” hydroelectric facilities. The objective of this study was to design and build a Measurement and Calibration System (MCS for evaluating the JSATS components, because the JSATS requires comprehensive acceptance and performance testing in a controlled environment before it is deployed in the field. The MCS consists of a reference transducer, a water test tank lined with anechoic material, a motion control unit, a reference receiver, a signal conditioner and amplifier unit, a data acquisition board, MATLAB control and analysis interface, and a computer. The fully integrated MCS has been evaluated successfully at various simulated distances and using different encoded signals at frequencies within the bandwidth of the JSATS transmitter. The MCS provides accurate acoustic mapping capability in a controlled environment and automates the process that allows real-time measurements and evaluation of the piezoelectric transducers, sensors, or the acoustic fields. The MCS has been in use since 2009 for acceptance and performance testing of, and further improvements to, the JSATS.

  18. Underwater sympathetic detonation of pellet explosive

    Science.gov (United States)

    Kubota, Shiro; Saburi, Tei; Nagayama, Kunihito

    2017-06-01

    The underwater sympathetic detonation of pellet explosives was taken by high-speed photography. The diameter and the thickness of the pellet were 20 and 10 mm, respectively. The experimental system consists of the precise electric detonator, two grams of composition C4 booster and three pellets, and these were set in water tank. High-speed video camera, HPV-X made by Shimadzu was used with 10 Mfs. The underwater explosions of the precise electric detonator, the C4 booster and a pellet were also taken by high-speed photography to estimate the propagation processes of the underwater shock waves. Numerical simulation of the underwater sympathetic detonation of the pellet explosives was also carried out and compared with experiment.

  19. Thermal-Acoustic Fatigue of a Multilayer Thermal Protection System in Combined Extreme Environments

    Directory of Open Access Journals (Sweden)

    Liu Liu

    2014-06-01

    Full Text Available In order to ensure integrity of thermal protection system (TPS structure for hypersonic vehicles exposed to severe operating environments, a study is undertaken to investigate the response and thermal-acoustic fatigue damage of a representative multilayer TPS structure under combined thermal and acoustic loads. An unsteady-state flight of a hypersonic vehicle is composed of a series of steady-state snapshots, and for each snapshot an acoustic load is imposed to a static steady-state TPS structure. A multistep thermal-acoustic fatigue damage intensity analysis procedure is given and consists of a heat transfer analysis, a nonlinear thermoelastic analysis, and a random response analysis under a combined loading environment and the fatigue damage intensity has been evaluated with two fatigue analysis techniques. The effects of thermally induced deterministic stress and nondeterministic dynamic stress due to the acoustic loading have been considered in the damage intensity estimation with a maximum stress fatigue model. The results show that the given thermal-acoustic fatigue intensity estimation procedure is a viable approach for life prediction of TPS structures under a typical mission cycle with combined loadings characterized by largely different time-scales. A discussion of the effects of the thermal load, the acoustic load, and fatigue analysis methodology on the fatigue damage intensity has been provided.

  20. Design and calibration of an acoustic telemetry system subject to ...

    African Journals Online (AJOL)

    Field data indicated a significant decrease in signal detections due to signal collisions when more than eight transmitters were active simultaneously. It was demonstrated that the hexagonal configuration of VR2s is optimal during isothermal conditions but inadequate during stratified conditions when acoustic dead zones of ...

  1. Acoustic wave propagation in high-pressure system

    Czech Academy of Sciences Publication Activity Database

    Foldyna, Josef; Sitek, Libor; Habán, V.

    2006-01-01

    Roč. 44, - (2006), s. 1457-1460 ISSN 0041-624X R&D Projects: GA AV ČR 1QS300860501; GA ČR GA105/03/0183 Institutional research plan: CEZ:AV0Z30860518 Keywords : pressure pulsation * pulsating jet Subject RIV: BI - Acoustics Impact factor: 1.322, year: 2006

  2. Acoustic model optimisation for a call routing system

    CSIR Research Space (South Africa)

    Kleynhans, N

    2012-11-01

    Full Text Available 2004, pp. 93?96. [12] H. Kamper, F. J. M. Mukanya, and T. R. Niesler, ?Multi-accent acoustic modelling of South African English,? Speech Communication, vol. 54, pp. 801?813, Feb. 2012. [13] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, X...

  3. Broadband focusing of underwater sound using a transparent pentamode lens.

    Science.gov (United States)

    Su, Xiaoshi; Norris, Andrew N; Cushing, Colby W; Haberman, Michael R; Wilson, Preston S

    2017-06-01

    An inhomogeneous acoustic metamaterial lens based on spatial variation of refractive index for broadband focusing of underwater sound is reported. The index gradient follows a modified hyperbolic secant profile designed to reduce aberration and suppress side lobes. The gradient index (GRIN) lens is comprised of transversely isotropic hexagonal microstructures with tunable quasi-static bulk modulus and mass density. In addition, the unit cells are impedance-matched to water and have in-plane shear modulus negligible compared to the effective bulk modulus. The flat GRIN lens is fabricated by cutting hexagonal centimeter scale hollow microstructures in aluminum plates, which are then stacked and sealed from the exterior water. Broadband focusing effects are observed within the homogenization regime of the lattice in both finite element simulations and underwater measurements (20-40 kHz). This design approach has potential applications in medical ultrasound imaging and underwater acoustic communications.

  4. Laboratory Experimental System for Examination of Acoustic Emission Generated by Partial Discharges

    Directory of Open Access Journals (Sweden)

    I. M. Salom

    2013-11-01

    Full Text Available One of the major causes of transformer failures is dielectric breakdown. Partial discharges cause gradual insulation degradation thus partial discharge activity monitoring provides transformer state insight. This paper gives an overview of common methods for partial discharges detection and source location in transformers, with a special reference to the acoustic method as an noninvasive and interference resistant method suitable for application. For laboratory testing a laboratory experimental system for partial discharge diagnostics using acoustic emission measurement was developed.

  5. Transducers and arrays for underwater sound

    CERN Document Server

    Butler, John L

    2016-01-01

    This improved and updated second edition covers the theory, development, and design of electro-acoustic transducers for underwater applications. This highly regarded text discusses the basics of piezoelectric and magnetostrictive transducers that are currently being used as well as promising new designs. It presents the basic acoustics as well as the specific acoustics data needed in transducer design and evaluation. A broad range of designs of projectors and hydrophones are described in detail along with methods of modeling, evaluation, and measurement. Analysis of projector and hydrophone transducer arrays, including the effects of mutual radiation impedance and numerical models for elements and arrays, are also covered. The book includes new advances in transducer design and transducer materials and has been completely reorganized to be suitable for use as a textbook, as well as a reference or handbook. The new edition contains updates to the first edition, end-of-chapter exercises, and solutions to select...

  6. AMADEUS—The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope

    Science.gov (United States)

    Aguilar, J. A.; Al Samarai, I.; Albert, A.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bou-Cabo, M.; Bouwhuis, M. C.; Brown, A.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cassano, B.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Ceres, A.; Charvis, Ph.; Chiarusi, T.; Chon Sen, N.; Circella, M.; Coniglione, R.; Costantini, H.; Cottini, N.; Coyle, P.; Curtil, C.; de Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J.-P.; Escoffier, S.; Fehr, F.; Fiorello, C.; Flaminio, V.; Fritsch, U.; Fuda, J.-L.; Gay, P.; Giacomelli, G.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Heijboer, A. J.; Heine, E.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; de Jong, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Katz, U.; Keller, P.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Lahmann, R.; Lamare, P.; Lambard, G.; Larosa, G.; Laschinsky, H.; Le Provost, H.; Lefèvre, D.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Mazure, A.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Neff, M.; Ostasch, R.; Palioselitis, D.; Păvălaş, G. E.; Payre, P.; Petrovic, J.; Picot-Clemente, N.; Picq, C.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Radu, A.; Reed, C.; Riccobene, G.; Richardt, C.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schöck, F.; Schuller, J.-P.; Shanidze, R.; Simeone, F.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Tasca, L.; Toscano, S.; Vallage, B.; van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2011-01-01

    The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic sensors, installed at water depths between 2050 and 2300 m, employ piezo-electric elements for the broad-band recording of signals with frequencies ranging up to 125 kHz. The typical sensitivity of the sensors is around -145 dB re 1 V/μPa (including preamplifier). Completed in May 2008, AMADEUS consists of six “acoustic clusters”, each comprising six acoustic sensors that are arranged at distances of roughly 1 m from each other. Two vertical mechanical structures (so-called lines) of the ANTARES detector host three acoustic clusters each. Spacings between the clusters range from 14.5 to 340 m. Each cluster contains custom-designed electronics boards to amplify and digitise the acoustic signals from the sensors. An on-shore computer cluster is used to process and filter the data stream and store the selected events. The daily volume of recorded data is about 10 GB. The system is operating continuously and automatically, requiring only little human intervention. AMADEUS allows for extensive studies of both transient signals and ambient noise in the deep sea, as well as signal correlations on several length scales and localisation of acoustic point sources. Thus the system is excellently suited to assess the background conditions for the measurement of the bipolar pulses expected to originate from neutrino interactions.

  7. Passive Localization of Underwater Acoustic Beacons

    Science.gov (United States)

    1993-09-01

    maxtime) TickCounto; aborto ; FSRead(gASerRefln,&numCharln,&addressBuf); TalkSail(’O); iistart the PTR’s data collecticn DrawString(w\\p: H) I display a...34); aborto ; EventLoopO; II main execution loop RAMSDClose(sPortA); HI must close the RAM Drivers before shutdown 193 free(gw); //must release the...kNumExp+l),sizeof(double)); if(wtrue ==NULL) DrawString("\\pCan’t allocate memory for data collection!!! ); aborto ; Nvmeas = calloc(3L*(kStep~kNumExp+l

  8. Water experiment on phased array acoustic leak detection system for sodium-heated steam generator

    International Nuclear Information System (INIS)

    Chikazawa, Yoshitaka; Yoshiuji, Takahiro

    2015-01-01

    Highlights: • An acoustic leak detection system for sodium heated steam generator is proposed. • The new system can separate leak source from steam generator background noise. • Performance of the new system has been confirmed in water experiments. - Abstract: A phased array acoustic leak detection system for sodium heated steam generator has been proposed. The major advantage of the new system is it could provide information of acoustic source direction. An acoustic source of a sodium–water reaction is supposed to be localized while the background noise of the steam generator operation is uniformly distributed in the steam generator tube region. Therefore the new system could separate the target leak source from steam generator background noise. In the previous study, the methodology was proposed and basic performance was confirmed by numerical analysis. However, in the numerical analysis, acoustic transportation through the SG tube bundle was not modeled. In the present study, performance the proposed system has been confirmed in water experiments with mockup tube bundles

  9. Portable Multi Hydrophone Array for Field and Laboratory Measurements of Odontocete Acoustic Signals

    Science.gov (United States)

    2015-09-30

    sound recorded fits established models for underwater shockwave and acoustic propagation. RESULTS Animals are now fully trained for fixed...classification during passive acoustic monitoring. Additionally, this array can be used to measure anthropogenic sounds such as underwater ...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Portable Multi Hydrophone Array for Field and Laboratory

  10. Cymbal and BB underwater transducers and arrays

    Energy Technology Data Exchange (ETDEWEB)

    Newnham, R.E.; Zhang, J.; Alkoy, S.; Meyer, R.; Hughes, W.J.; Hladky-Hennion, A.C.; Cochran, J.; Markley, D. [Materials Research Laboratory, Penn State University, University Park, PA 16802 (United States)

    2002-09-01

    The cymbal is a miniaturized class V flextensional transducer that was developed for use as a shallow water sound projector and receiver. Single elements are characterized by high Q, low efficiency, and medium power output capability. Its low cost and thin profile allow the transducer to be assembled into large flexible arrays. Efforts were made to model both single elements and arrays using the ATILA code and the integral equation formulation (EQI).Millimeter size microprobe hydrophones (BBs) have been designed and fabricated from miniature piezoelectric hollow ceramic spheres for underwater applications such as mapping acoustic fields of projectors, and flow noise sensors for complex underwater structures. Green spheres are prepared from soft lead zirconate titanate powders using a coaxial nozzle slurry process. A compact hydrophone with a radially-poled sphere is investigated using inside and outside electrodes. Characterization of these hydrophones is done through measurement of hydrostatic piezoelectric charge coefficients, free field voltage sensitivities and directivity beam patterns. (orig.)

  11. Evaluation of State-of-the-Art Acoustic Feedback Cancellation Systems for Hearing Aids

    DEFF Research Database (Denmark)

    Guo, Meng; Jensen, Søren Holdt; Jensen, Jesper

    2013-01-01

    This research evaluates four state-of-the-art acoustic feedback cancellation systems in hearing aids in terms of the cancellation performance, sound quality degradation, and computational complexity. The authors compared a traditional full-band system to a system with a prediction error method...

  12. Development of an underwater shot peening system to prevent stress corrosion cracking of reactor internals

    International Nuclear Information System (INIS)

    Obata, M.; Kimura, M.; Shima, S.; Kanno, M.

    1998-01-01

    The water projection type shot peening system and remotely driven robots were developed to be operated under water, in order to apply shot peening to reactor internals (shroud) in boiling water reactors (BWRs). The effects of processing parameters on the residual stress depth profiles were examined to obtain the optimum processing conditions to suppress stress corrosion cracking (SCC). Creviced bent beam (CBB) type stress corrosion tests showed that the SCC resistance in Type 304 stainless steel was remarkable increased by the shot peening. It was ascertained by several fundamental experiments that the shot peening had no detrimental effects on the other material characteristics and had sufficient applicability to the practical shroud. The reliable processing system which the accelerated shots by the pressurized water could be supplied, completely sucked and repeatedly used in order to reduce radioactive waste was developed. Two types of remote handling robots were also developed to positioning to follow the complicated shape of the core shroud welds, and for processing efficiency by reducing radiation exposure , one for processing the inner surface of the cylindrical core shroud, and the other for processing the outer surface in the narrow annulus region. The system and robots were successfully applied to the core shrouds of Hamaoka Unit- 1 and Unit-2 of Chubu Electric Power Co., Ltd. (author)

  13. Underwater 3D filming

    Directory of Open Access Journals (Sweden)

    Roberto Rinaldi

    2014-12-01

    Full Text Available After an experimental phase of many years, 3D filming is now effective and successful. Improvements are still possible, but the film industry achieved memorable success on 3D movie’s box offices due to the overall quality of its products. Special environments such as space (“Gravity” and the underwater realm look perfect to be reproduced in 3D. “Filming in space” was possible in “Gravity” using special effects and computer graphic. The underwater realm is still difficult to be handled. Underwater filming in 3D was not that easy and effective as filming in 2D, since not long ago. After almost 3 years of research, a French, Austrian and Italian team realized a perfect tool to film underwater, in 3D, without any constrains. This allows filmmakers to bring the audience deep inside an environment where they most probably will never have the chance to be.

  14. Using side-scan sonar to characterize and map physical habitat and anthropogenic underwater features in the St. Louis River.

    Science.gov (United States)

    Characterizing underwater habitat and other features is difficult and costly, especially in the large St. Louis River Estuary. We are using side-scan sonar (SSS), first developed in the 1960s to remotely sense underwater habitat features from reflected acoustic signals (backscatt...

  15. Shallow-Water Mud Acoustics

    Science.gov (United States)

    2015-09-30

    Ballard, Tom Muir , David Knobles, Kevin Lee, and Preston Wilson), and Naval Underwater Warfare Center-PC & NP (Kerry Commander, Danny Lim, David Burnett...K. M. Lee, and T. G. Muir , “Laboratory P- and S-wave measurements of a reconstituted muddy sediment with comparison to card-house theory,” J. Acoust

  16. Statistical analysis of storm electrical discharges reconstituted from a lightning mapping system, a lightning location system, and an acoustic array

    Science.gov (United States)

    Gallin, Louis-Jonardan; Farges, Thomas; Marchiano, Régis; Coulouvrat, François; Defer, Eric; Rison, William; Schulz, Wolfgang; Nuret, Mathieu

    2016-04-01

    In the framework of the European Hydrological Cycle in the Mediterranean Experiment project, a field campaign devoted to the study of electrical activity during storms took place in the south of France in 2012. An acoustic station composed of four microphones and four microbarometers was deployed within the coverage of a Lightning Mapping Array network. On the 26 October 2012, a thunderstorm passed just over the acoustic station. Fifty-six natural thunder events, due to cloud-to-ground and intracloud flashes, were recorded. This paper studies the acoustic reconstruction, in the low frequency range from 1 to 40 Hz, of the recorded flashes and their comparison with detections from electromagnetic networks. Concurrent detections from the European Cooperation for Lightning Detection lightning location system were also used. Some case studies show clearly that acoustic signal from thunder comes from the return stroke but also from the horizontal discharges which occur inside the clouds. The huge amount of observation data leads to a statistical analysis of lightning discharges acoustically recorded. Especially, the distributions of altitudes of reconstructed acoustic detections are explored in detail. The impact of the distance to the source on these distributions is established. The capacity of the acoustic method to describe precisely the lower part of nearby cloud-to-ground discharges, where the Lightning Mapping Array network is not effective, is also highlighted.

  17. Design and implementation of a shielded underwater vector sensor for laboratory environments.

    Science.gov (United States)

    Barnard, Andrew R; Hambric, Stephen A

    2011-12-01

    Underwater acoustic vector sensors, for measuring acoustic intensity, are typically used in open water where electromagnetic interference (EMI) is generally not a contributor to overall background noise. However, vector sensors are also useful in a laboratory setting where EMI can be a limiting factor at low frequencies. An underwater vector sensor is designed and built with specific care for EMI immunity. The sensor, and associated signal processing, is shown to reduce background noise at EMI frequencies by 10-50 dB and 10-20 dB across the entire frequency bandwidth, as compared to an identical unshielded vector sensor. © 2011 Acoustical Society of America

  18. Perceptual and Acoustic Reliability Estimates for the Speech Disorders Classification System (SDCS)

    Science.gov (United States)

    Shriberg, Lawrence D.; Fourakis, Marios; Hall, Sheryl D.; Karlsson, Heather B.; Lohmeier, Heather L.; McSweeny, Jane L.; Potter, Nancy L.; Scheer-Cohen, Alison R.; Strand, Edythe A.; Tilkens, Christie M.; Wilson, David L.

    2010-01-01

    A companion paper describes three extensions to a classification system for paediatric speech sound disorders termed the Speech Disorders Classification System (SDCS). The SDCS uses perceptual and acoustic data reduction methods to obtain information on a speaker's speech, prosody, and voice. The present paper provides reliability estimates for…

  19. Characterization Test Report for the Mnemonics-UCS Wireless Surface Acoustic Wave Sensor System

    Science.gov (United States)

    Duncan, Joshua J.; Youngquist, Robert C.

    2013-01-01

    The scope of this testing includes the Surface Acoustic Wave Sensor System delivered to KSC: two interrogator (transceiver) systems, four temperature sensors, with wooden mounting blocks, two antennas, two power supplies, network cables, and analysis software. Also included are a number of additional temperature sensors and newly-developed hydrogen sensors

  20. Subband Affine Projection Algorithm for Acoustic Echo Cancellation System

    Directory of Open Access Journals (Sweden)

    Hyeon-Deok Bae

    2007-01-01

    Full Text Available We present a new subband affine projection (SAP algorithm for the adaptive acoustic echo cancellation with long echo path delay. Generally, the acoustic echo canceller suffers from the long echo path and large computational complexity. To solve this problem, the proposed algorithm combines merits of the affine projection (AP algorithm and the subband filtering. Convergence speed of the proposed algorithm is improved by the signal-decorrelating property of the orthogonal subband filtering and the weight updating with the prewhitened input signal of the AP algorithm. Moreover, in the proposed algorithms, as applying the polyphase decomposition, the noble identity, and the critical decimation to subband the adaptive filter, the sufficiently decomposed SAP updates the weights of adaptive subfilters without a matrix inversion. Therefore, computational complexity of the proposed method is considerably reduced. In the SAP, the derived weight updating formula for the subband adaptive filter has a simple form as ever compared with the normalized least-mean-square (NLMS algorithm. The efficiency of the proposed algorithm for the colored signal and speech signal was evaluated experimentally.

  1. Underwater Optical Wireless Channel Modeling Using Monte-Carlo Method

    Science.gov (United States)

    Saini, P. Sri; Prince, Shanthi

    2011-10-01

    At present, there is a lot of interest in the functioning of the marine environment. Unmanned or Autonomous Underwater Vehicles (UUVs or AUVs) are used in the exploration of the underwater resources, pollution monitoring, disaster prevention etc. Underwater, where radio waves do not propagate, acoustic communication is being used. But, underwater communication is moving towards Optical Communication which has higher bandwidth when compared to Acoustic Communication but has shorter range comparatively. Underwater Optical Wireless Communication (OWC) is mainly affected by the absorption and scattering of the optical signal. In coastal waters, both inherent and apparent optical properties (IOPs and AOPs) are influenced by a wide array of physical, biological and chemical processes leading to optical variability. The scattering effect has two effects: the attenuation of the signal and the Inter-Symbol Interference (ISI) of the signal. However, the Inter-Symbol Interference is ignored in the present paper. Therefore, in order to have an efficient underwater OWC link it is necessary to model the channel efficiently. In this paper, the underwater optical channel is modeled using Monte-Carlo method. The Monte Carlo approach provides the most general and most flexible technique for numerically solving the equations of Radiative transfer. The attenuation co-efficient of the light signal is studied as a function of the absorption (a) and scattering (b) coefficients. It has been observed that for pure sea water and for less chlorophyll conditions blue wavelength is less absorbed whereas for chlorophyll rich environment red wavelength signal is absorbed less comparative to blue and green wavelength.

  2. A method for Perceptual Assessment of Automotive Audio Systems and Cabin Acoustics

    DEFF Research Database (Denmark)

    Kaplanis, Neofytos; Bech, Søren; Sakari, Tervo

    2016-01-01

    This paper reports the design and implementation of a method to perceptually assess the acoustical prop- erties of a car cabin and the subsequent sound reproduction properties of automotive audio systems. Here, we combine Spatial Decomposition Method and Rapid Sensory Analysis techniques. The for......This paper reports the design and implementation of a method to perceptually assess the acoustical prop- erties of a car cabin and the subsequent sound reproduction properties of automotive audio systems. Here, we combine Spatial Decomposition Method and Rapid Sensory Analysis techniques...

  3. On Acoustic Feedback Cancellation Using Probe Noise in Multiple-Microphone and Single-Loudspeaker Systems

    DEFF Research Database (Denmark)

    Guo, Meng; Elmedyb, Thomas Bo; Jensen, Søren Holdt

    2012-01-01

    A probe noise signal can be used in an acoustic feedback cancellation system to prevent biased adaptive estimation of acoustic feedback paths. However, practical experiences and simulation results indicate that when-ever a low-level and inaudible probe noise signal is used, the convergence rate...... feedback cancellation is carried out using a probe noise signal. The derived results show how different system parameters and signal properties affect the cancellation performance, and the results explain theoretically the decreased convergence rate. Understanding this is important for making further...

  4. DUMAND-II (deep underwater muon and neutrino detector) progress report

    Science.gov (United States)

    Young, Kenneth K.

    1995-07-01

    The DUMAND II detector will search for astronomical sources of high energy neutrinos. Successful deployment of the basic infrastructure, including the shore cable, the underwater junction box, and an environmental module was accomplished in December, 1993. One optical module string was also deployed and operated, logging data for about 10 hours. The underwater cable was connected to the shore station where we were able to successfully exercise system controls and log further environmental data. After this time, water leaking into the electronics control module for the deployed string disabled the string electrical system. The acquired data are consistent with the expected rate of downgoing muons, and our ability to reconstruct muons was demonstrated. The measured acoustical backgrounds are consistent with expectation, which should allow acoustical detection of nearby PeV particle cascades. The disabled string has been recovered and is undergoing repairs ashore. We have identified the source of the water leak and implemented additional testing and QC procedures to ensure no repetition in our next deployment. We will be ready to deploy three strings and begin continuous data taking in late 1994 or early 1995.

  5. Topologically protected bound states in one-dimensional Floquet acoustic waveguide systems

    Science.gov (United States)

    Peng, Yu-Gui; Geng, Zhi-Guo; Zhu, Xue-Feng

    2018-03-01

    Topological manipulation of sound has recently been a hot spot in acoustics due to the fascinating property of defect immune transport. To the best of our knowledge, the studies on one-dimensional (1D) topological acoustic systems hitherto mainly focus on the case of the Su-Schrieffer-Heeger model. Here, we show that topologically protected bound states may also exist in 1D periodically modulated acoustic waveguide systems, viz., 1D Floquet topological insulators. The results show that tuning the coupling strength in a waveguide lattice could trigger topological phase transition, which gives rise to topologically protected interface states as we put together two waveguide lattices featured with different topological phases or winding numbers. However, for the combined lattice, input at the waveguides other than the interfacial ones will excite bulk states. We have further verified the robustness of interface bound states against the variation of coupling strengths between the two distinct waveguide lattices. This work extends the scope of topological acoustics and may promote potential applications for acoustic devices with topological functionalities.

  6. Underwater Sound Propagation from Marine Pile Driving.

    Science.gov (United States)

    Reyff, James A

    2016-01-01

    Pile driving occurs in a variety of nearshore environments that typically have very shallow-water depths. The propagation of pile-driving sound in water is complex, where sound is directly radiated from the pile as well as through the ground substrate. Piles driven in the ground near water bodies can produce considerable underwater sound energy. This paper presents examples of sound propagation through shallow-water environments. Some of these examples illustrate the substantial variation in sound amplitude over time that can be critical to understand when computing an acoustic-based safety zone for aquatic species.

  7. Characteristics of small boat acoustic signatures

    Science.gov (United States)

    Barlett, Martin L.; Wilson, Gary R.

    2002-11-01

    Small boats are often a dominant noise source in harbors, coastal regions, and lakes. However, detailed information about acoustic characteristics is not generally available. To remedy this deficiency, measurements of underwater acoustic signatures from various small boats have been conducted under controlled conditions. Boats used in the measurements were powered by a variety of gasoline and diesel motors in outboard, inboard-outboard, and inboard drive configurations. Measurements were made using a bottom mounted hydrophone in about 100 feet of water. In many instances, the boats were instrumented with a system that recorded the GPS position and engine RPM permitting accurate determinations of platform operating parameters. Measured small boat signatures contain both narrowband and broadband acoustic components. Narrowband components are generally associated with sources from the engine or drive. Narrowband levels in the observed spectra were found to exhibit significant variations and are believed to originate from fluctuations in the load on the engine and drive. Broadband energy was observed to be a dominant noise source at frequencies above several hundred Hertz and is a characteristic feature in all small boat signatures. Examples of small boat signatures will be presented and representative acoustic characteristics of this type of watercraft will be discussed.

  8. Efficient Modelling Methodology for Reconfigurable Underwater Robots

    DEFF Research Database (Denmark)

    Nielsen, Mikkel Cornelius; Blanke, Mogens; Schjølberg, Ingrid

    2016-01-01

    This paper considers the challenge of applying reconfigurable robots in an underwater environment. The main result presented is the development of a model for a system comprised of N, possibly heterogeneous, robots dynamically connected to each other and moving with 6 Degrees of Freedom (DOF......). This paper presents an application of the Udwadia-Kalaba Equation for modelling the Reconfigurable Underwater Robots. The constraints developed to enforce the rigid connection between robots in the system is derived through restrictions on relative distances and orientations. To avoid singularities...... in the orientation and, thereby, allow the robots to undertake any relative configuration the attitude is represented in Euler parameters....

  9. Synthetic-gauge-field-induced Dirac semimetal state in an acoustic resonator system

    Science.gov (United States)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Zhang, Baile

    2016-12-01

    Recently, a proposal of synthetic gauge field in reduced two-dimensional (2D) system from three-dimensional (3D) acoustic structure shows an analogue of the gapped Haldane model with fixed k z , and achieves the gapless Weyl semimetal phase in 3D momentum space. Here, extending this approach of synthetic gauge flux, we propose a reduced square lattice of acoustic resonators, which exhibits Dirac nodes with broken effective time-reversal symmetry. Protected by an additional hidden symmetry, these Dirac nodes with quantized values of topological charge are characterized by nonzero winding number and the finite structure exhibits flat edge modes that cannot be destroyed by perturbations.

  10. Use of perforated acoustic panels as supply air diffusers in diffuse ceiling ventilation systems

    DEFF Research Database (Denmark)

    Iqbal, Ahsan; Kazemi, Seyed Hossein; Ardkapan, Siamak Rahimi

    Ventilation is needed for diluting and removing the contaminants, odour and excess heat from the building interior. It is important that the inhabitants perceive the ventilated spaces as comfortable. Therefore, the supply air should reach all parts of the occupied zones. Troldtekt has been...... manufacturing perforated acoustic panels for the last 13 years. The panels can be used not only in applications related to acoustics but also as low pressure drop supply air diffusers, particularly in diffuse ceiling ventilation systems. The present study verifies on a theoretically level the performance...

  11. Survivability design for a hybrid underwater vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Biao; Wu, Chao; Li, Xiang; Zhao, Qingkai; Ge, Tong [State Key Lab of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-03-10

    A novel hybrid underwater robotic vehicle (HROV) capable of working to the full ocean depth has been developed. The battery powered vehicle operates in two modes: operate as an untethered autonomous vehicle in autonomous underwater vehicle (AUV) mode and operate under remote control connected to the surface vessel by a lightweight, fiber optic tether in remotely operated vehicle (ROV) mode. Considering the hazardous underwater environment at the limiting depth and the hybrid operating modes, survivability has been placed on an equal level with the other design attributes of the HROV since the beginning of the project. This paper reports the survivability design elements for the HROV including basic vehicle design of integrated navigation and integrated communication, emergency recovery strategy, distributed architecture, redundant bus, dual battery package, emergency jettison system and self-repairing control system.

  12. Survivability design for a hybrid underwater vehicle

    International Nuclear Information System (INIS)

    Wang, Biao; Wu, Chao; Li, Xiang; Zhao, Qingkai; Ge, Tong

    2015-01-01

    A novel hybrid underwater robotic vehicle (HROV) capable of working to the full ocean depth has been developed. The battery powered vehicle operates in two modes: operate as an untethered autonomous vehicle in autonomous underwater vehicle (AUV) mode and operate under remote control connected to the surface vessel by a lightweight, fiber optic tether in remotely operated vehicle (ROV) mode. Considering the hazardous underwater environment at the limiting depth and the hybrid operating modes, survivability has been placed on an equal level with the other design attributes of the HROV since the beginning of the project. This paper reports the survivability design elements for the HROV including basic vehicle design of integrated navigation and integrated communication, emergency recovery strategy, distributed architecture, redundant bus, dual battery package, emergency jettison system and self-repairing control system

  13. A Mobile Acoustic Subsurface Sensing (MASS System for Rapid Roadway Assessment

    Directory of Open Access Journals (Sweden)

    Ming L. Wang

    2013-05-01

    Full Text Available Surface waves are commonly used for vibration-based nondestructive testing for infrastructure. Spectral Analysis of Surface Waves (SASW has been used to detect subsurface properties for geologic inspections. Recently, efforts were made to scale down these subsurface detection approaches to see how they perform on small-scale structures such as concrete slabs and pavements. Additional efforts have been made to replace the traditional surface-mounted transducers with non-contact acoustic transducers. Though some success has been achieved, most of these new approaches are inefficient because they require point-to-point measurements or off-line signal analysis. This article introduces a Mobile Acoustic Subsurface Sensing system as MASS, which is an improved surface wave based implementation for measuring the subsurface profile of roadways. The compact MASS system is a 3-wheeled cart outfitted with an electromagnetic impact source, distance register, non-contact acoustic sensors and data acquisition/ processing equipment. The key advantage of the MASS system is the capability to collect measurements continuously at walking speed in an automatic way. The fast scan and real-time analysis advantages are based upon the non-contact acoustic sensing and fast air-coupled surface wave analysis program. This integration of hardware and software makes the MASS system an efficient mobile prototype for the field test.

  14. A Mobile Acoustic Subsurface Sensing (MASS) system for rapid roadway assessment.

    Science.gov (United States)

    Lu, Yifeng; Zhang, Yi; Cao, Yinghong; McDaniel, J Gregory; Wang, Ming L

    2013-05-08

    Surface waves are commonly used for vibration-based nondestructive testing for infrastructure. Spectral Analysis of Surface Waves (SASW) has been used to detect subsurface properties for geologic inspections. Recently, efforts were made to scale down these subsurface detection approaches to see how they perform on small-scale structures such as concrete slabs and pavements. Additional efforts have been made to replace the traditional surface-mounted transducers with non-contact acoustic transducers. Though some success has been achieved, most of these new approaches are inefficient because they require point-to-point measurements or off-line signal analysis. This article introduces a Mobile Acoustic Subsurface Sensing system as MASS, which is an improved surface wave based implementation for measuring the subsurface profile of roadways. The compact MASS system is a 3-wheeled cart outfitted with an electromagnetic impact source, distance register, non-contact acoustic sensors and data acquisition/ processing equipment. The key advantage of the MASS system is the capability to collect measurements continuously at walking speed in an automatic way. The fast scan and real-time analysis advantages are based upon the non-contact acoustic sensing and fast air-coupled surface wave analysis program. This integration of hardware and software makes the MASS system an efficient mobile prototype for the field test.

  15. "Boxnep" advanced modular underwater robot

    OpenAIRE

    Buluev, Ilia

    2016-01-01

    The article discusses the relevance of the underwater vehicles' ability to solve a wide range of problems. The idea put in the basis of this research is designing a modular underwater robot. It allows to mount various equipment and test it in underwater environment. The paper deals with the concept of the robot and its characteristics.

  16. Resources for Underwater Robotics Education

    Science.gov (United States)

    Wallace, Michael L.; Freitas, William M.

    2016-01-01

    4-H clubs can build and program underwater robots from raw materials. An annotated resource list for engaging youth in building underwater remotely operated vehicles (ROVs) is provided. This article is a companion piece to the Research in Brief article "Building Teen Futures with Underwater Robotics" in this issue of the "Journal of…

  17. Underwater Adhesives Retrofit Pipelines with Advanced Sensors

    Science.gov (United States)

    2015-01-01

    Houston-based Astro Technology Inc. used a partnership with Johnson Space Center to pioneer an advanced fiber-optic monitoring system for offshore oil pipelines. The company's underwater adhesives allow it to retrofit older deepwater systems in order to measure pressure, temperature, strain, and flow properties, giving energy companies crucial data in real time and significantly decreasing the risk of a catastrophe.

  18. The Development of Advanced Passive Acoustic Monitoring Systems Using microMARS Technology

    Science.gov (United States)

    2015-09-30

    Systems Using microMARS Technology Marco Flagg Desert Star Systems LLC 3261 Imjin Rd Marina, CA 93933 phone: (831) 384-8000 fax: (831) 384...limited time and cost framework, the project builds on existing commercial components manufactured by Desert Star Systems, implementing modifications...acoustic recorders on the market today are suitable for marine mammal detection and classification purposes only, but do not offer a localization capability

  19. A two-step iterative method for evolving nonlinear acoustic systems to a steady-state

    Science.gov (United States)

    Watson, Willie R.; Myers, Michael K.

    1990-01-01

    A new approach for evolving two-dimensional nonlinear acoustic systems with flow to a steady state is presented. The approach is a two-step iterative method which is tested on a benchmark acoustic problem for which an exact analytical solution is available. Results are also calculated for a nonlinear acoustic problem for which an exact analytical solution is not known. Results indicate that the two-step method represents a powerful, efficient, and stable method for evolving two-dimensional acoustic systems to a steady state, and that the method is applicable to any number of spatial dimensions and to other hyperbolic systems. It is noted that for the benchmark problem only a single iteration on the method is required when the transient and steady-state field are of the same order of magnitude; however, four iterations are required when the steady-state field is several orders of magnitude smaller than the transient field. This method requires six iterations before achieving a steady state for the nonlinear test problem.

  20. Multi-domain boundary element method for axi-symmetric layered linear acoustic systems

    Science.gov (United States)

    Reiter, Paul; Ziegelwanger, Harald

    2017-12-01

    Homogeneous porous materials like rock wool or synthetic foam are the main tool for acoustic absorption. The conventional absorbing structure for sound-proofing consists of one or multiple absorbers placed in front of a rigid wall, with or without air-gaps in between. Various models exist to describe these so called multi-layered acoustic systems mathematically for incoming plane waves. However, there is no efficient method to calculate the sound field in a half space above a multi layered acoustic system for an incoming spherical wave. In this work, an axi-symmetric multi-domain boundary element method (BEM) for absorbing multi layered acoustic systems and incoming spherical waves is introduced. In the proposed BEM formulation, a complex wave number is used to model absorbing materials as a fluid and a coordinate transformation is introduced which simplifies singular integrals of the conventional BEM to non-singular radial and angular integrals. The radial and angular part are integrated analytically and numerically, respectively. The output of the method can be interpreted as a numerical half space Green's function for grounds consisting of layered materials.

  1. Forced synchronization and asynchronous quenching in a thermo-acoustic system

    Science.gov (United States)

    Mondal, Sirshendu; Pawar, Samadhan A.; Sujith, Raman

    2017-11-01

    Forced synchronization, which has been extensively studied in theory and experiments, occurs through two different mechanisms known as phase locking and asynchronous quenching. The latter indicates the suppression of oscillation amplitude. In most practical combustion systems such as gas turbine engines, the main concern is high amplitude pressure oscillations, known as thermo-acoustic instability. Thermo-acoustic instability is undesirable and needs to be suppressed because of its damaging consequences to an engine. In the present study, a systematic experimental investigation of forced synchronization is performed in a prototypical thermo-acoustic system, a Rijke tube, in its limit cycle operation. Further, we show a qualitatively similar behavior using a reduced order model. In the phase locking region, the simultaneous occurrence of synchronization and resonant amplification leads to high amplitude pressure oscillations. However, a reduction in the amplitude of natural oscillations by about 78% of the unforced amplitude is observed when the forcing frequency is far lower than the natural frequency. This shows the possibility of suppression of the oscillation amplitude through asynchronous quenching in thermo-acoustic systems.

  2. Coded acoustic wave sensors and system using time diversity

    Science.gov (United States)

    Solie, Leland P. (Inventor); Hines, Jacqueline H. (Inventor)

    2012-01-01

    An apparatus and method for distinguishing between sensors that are to be wirelessly detected is provided. An interrogator device uses different, distinct time delays in the sensing signals when interrogating the sensors. The sensors are provided with different distinct pedestal delays. Sensors that have the same pedestal delay as the delay selected by the interrogator are detected by the interrogator whereas other sensors with different pedestal delays are not sensed. Multiple sensors with a given pedestal delay are provided with different codes so as to be distinguished from one another by the interrogator. The interrogator uses a signal that is transmitted to the sensor and returned by the sensor for combination and integration with the reference signal that has been processed by a function. The sensor may be a surface acoustic wave device having a differential impulse response with a power spectral density consisting of lobes. The power spectral density of the differential response is used to determine the value of the sensed parameter or parameters.

  3. Precision Geo-Referenced Navigation for Deep-Diving Autonomous Underwater Gliders and Enabled Scientific Applications

    Science.gov (United States)

    Kinsey, J. C.; Jakuba, M.; Partan, J. W.; Webster, S.

    2016-02-01

    Recent and underway development efforts promise to deliver long endurance and deep-diving autonomous underwater gliders with the potential to persistently observe the deep (6000 m) ocean interior and sea floor over time scales of months to years. Both deep- and shallow-diving gliders navigate primarily by dead-reckoning between surfacing for GPS fixes, a paradigm that precludes their use in missions where science objectives call for precise navigation deep in the water column or near the deep sea floor. Coupled with an autonomous surface vessel, one-way travel time inverted ultra-short baseline positioning (OWTT-iUSBL) offers a compelling alternative to infrastructure-intensive external acoustic aiding. Such systems could provide navigation aiding to multiple underwater vehicles while providing autonomy and endurance for the system as a whole comparable to that of a solitary vehicle. While the concept of OWTT-iUSBL is not new, we argue that the maturity of acoustic modem technology combined with the emergence of very low-power precision timing and attitude sensors will make it possible to deploy OWTT-iUSBL systems on low-power underwater vehicles in the near term. Here, two recent supporting analyses are reviewed: (1) the achievable accuracy of OWTT-iUSBL navigation including single-fix error budgets for specific system configurations using representative commercially available components; and (2) the impact of a specific low-power configuration on the endurance of a deep-profiling autonomous underwater glider. Our analyses suggest that a practically realizable OWTT-iUSBL system could provide navigational accuracy 1-2 orders of magnitude superior to that presently achievable using periodic ascents to acquire global positioning system (GPS), and, for sufficiently deep deployments, actually yield more near-bottom data despite reducing overall vehicle endurance. Furthermore, we present some potential scientific applications that might benefit from these technologies

  4. Optimal Node Placement in Underwater Wireless Sensor Networks

    KAUST Repository

    Felamban, M.

    2013-03-25

    Wireless Sensor Networks (WSN) are expected to play a vital role in the exploration and monitoring of underwater areas which are not easily reachable by humans. However, underwater communication via acoustic waves is subject to several performance limitations that are very different from those used for terresstrial networks. In this paper, we investigate node placement for building an initial underwater WSN infrastructure. We formulate this problem as a nonlinear mathematical program with the objective of minimizing the total transmission loss under a given number of sensor nodes and targeted coverage volume. The obtained solution is the location of each node represented via a truncated octahedron to fill out the 3D space. Experiments are conducted to verify the proposed formulation, which is solved using Matlab optimization tool. Simulation is also conducted using an ns-3 simulator, and the simulation results are consistent with the obtained results from mathematical model with less than 10% error.

  5. Capacitive Micromachined Ultrasonic Transducers (CMUTs for Underwater Imaging Applications

    Directory of Open Access Journals (Sweden)

    Jinlong Song

    2015-09-01

    Full Text Available A capacitive micromachined ultrasonic transducer structure for use in underwater imaging is designed, fabricated and tested in this paper. In this structure, a silicon dioxide insulation layer is inserted between the top electrodes and the vibration membrane to prevent ohmic contact. The capacitance-voltage (C-V characteristic curve shows that the transducer offers suitable levels of hysteresis and repeatability performance. The −6 dB center frequency is 540 kHz and the transducer has a bandwidth of 840 kHz for a relative bandwidth of 155%. Underwater pressure of 143.43 Pa is achieved 1 m away from the capacitive micromachined ultrasonic transducer under 20  excitation. Two-dimensional underwater ultrasonic imaging, which is able to prove that a rectangular object is present underwater, is achieved. The results presented here indicate that our work will be highly beneficial for the establishment of an underwater ultrasonic imaging system.

  6. Design and implementation of an underwater sound recording device

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Jayson J.; Myers, Joshua R.; Carlson, Thomas J.; Deng, Zhiqun; Rohrer, John S.; Caviggia, Kurt A.

    2011-09-19

    The purpose of this study was to design and build two versions of an underwater sound recording device. The device designed is referred to as the Underwater Sound Recorder (USR), which can be connected to one or two hydrophones or other underwater sound sensors. The URS contains a 26 dB preamplifier and a user selectable gain that permits additional amplification of input to the system from 26 dB to 46 dB. Signals within the frequency range up to 15 kHz may be recorded using the USR. Examples of USR applications are monitoring underwater processes that have the potential to create large pressure waves that could potentially harm fish or other aquatic life, such as underwater explosions or pile driving. Additional applications are recording sound generated by vessels or the vocalizations of some marine mammals, such as the calls from many species of whales.

  7. Hydrogel microphones for stealthy underwater listening

    Science.gov (United States)

    Gao, Yang; Song, Jingfeng; Li, Shumin; Elowsky, Christian; Zhou, You; Ducharme, Stephen; Chen, Yong Mei; Zhou, Qin; Tan, Li

    2016-08-01

    Exploring the abundant resources in the ocean requires underwater acoustic detectors with a high-sensitivity reception of low-frequency sound from greater distances and zero reflections. Here we address both challenges by integrating an easily deformable network of metal nanoparticles in a hydrogel matrix for use as a cavity-free microphone. Since metal nanoparticles can be densely implanted as inclusions, and can even be arranged in coherent arrays, this microphone can detect static loads and air breezes from different angles, as well as underwater acoustic signals from 20 Hz to 3 kHz at amplitudes as low as 4 Pa. Unlike dielectric capacitors or cavity-based microphones that respond to stimuli by deforming the device in thickness directions, this hydrogel device responds with a transient modulation of electric double layers, resulting in an extraordinary sensitivity (217 nF kPa-1 or 24 μC N-1 at a bias of 1.0 V) without using any signal amplification tools.

  8. Underwater noise levels in UK waters.

    Science.gov (United States)

    Merchant, Nathan D; Brookes, Kate L; Faulkner, Rebecca C; Bicknell, Anthony W J; Godley, Brendan J; Witt, Matthew J

    2016-11-10

    Underwater noise from human activities appears to be rising, with ramifications for acoustically sensitive marine organisms and the functioning of marine ecosystems. Policymakers are beginning to address the risk of ecological impact, but are constrained by a lack of data on current and historic noise levels. Here, we present the first nationally coordinated effort to quantify underwater noise levels, in support of UK policy objectives under the EU Marine Strategy Framework Directive (MSFD). Field measurements were made during 2013-2014 at twelve sites around the UK. Median noise levels ranged from 81.5-95.5 dB re 1 μPa for one-third octave bands from 63-500 Hz. Noise exposure varied considerably, with little anthropogenic influence at the Celtic Sea site, to several North Sea sites with persistent vessel noise. Comparison of acoustic metrics found that the RMS level (conventionally used to represent the mean) was highly skewed by outliers, exceeding the 97 th percentile at some frequencies. We conclude that environmental indicators of anthropogenic noise should instead use percentiles, to ensure statistical robustness. Power analysis indicated that at least three decades of continuous monitoring would be required to detect trends of similar magnitude to historic rises in noise levels observed in the Northeast Pacific.

  9. Acoustic Doppler Current Profiler Data Processing System manual [ADCP

    Science.gov (United States)

    Cote, Jessica M.; Hotchkiss, Frances S.; Martini, Marinna A.; Denham, Charles R.; revisions by Ramsey, Andree L.; Ruane, Stephen

    2000-01-01

    This open-file report describes the data processing software currently in use by the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), to process time series of acoustic Doppler current data obtained by Teledyne RD Instruments Workhorse model ADCPs. The Sediment Transport Instrumentation Group (STG) at the WHCMSC has a long-standing commitment to providing scientists high quality oceanographic data published in a timely manner. To meet this commitment, STG has created this software to aid personnel in processing and reviewing data as well as evaluating hardware for signs of instrument malfunction. The output data format for the data is network Common Data Form (netCDF), which meets USGS publication standards. Typically, ADCP data are recorded in beam coordinates. This conforms to the USGS philosophy to post-process rather than internally process data. By preserving the original data quality indicators as well as the initial data set, data can be evaluated and reprocessed for different types of analyses. Beam coordinate data are desirable for internal and surface wave experiments, for example. All the code in this software package is intended to run using the MATLAB program available from The Mathworks, Inc. As such, it is platform independent and can be adapted by the USGS and others for specialized experiments with non-standard requirements. The software is continuously being updated and revised as improvements are required. The most recent revision may be downloaded from: http://woodshole.er.usgs.gov/operations/stg/Pubs/ADCPtools/adcp_index.htm The USGS makes this software available at the user?s discretion and responsibility.

  10. Underwater Optical Wireless Communications, Networking, and Localization: A Survey

    KAUST Repository

    Saeed, Nasir

    2018-02-28

    Underwater wireless communications can be carried out through acoustic, radio frequency (RF), and optical waves. Compared to its bandwidth limited acoustic and RF counterparts, underwater optical wireless communications (UOWCs) can support higher data rates at low latency levels. However, severe aquatic channel conditions (e.g., absorption, scattering, turbulence, etc.) pose great challenges for UOWCs and significantly reduce the attainable communication ranges, which necessitates efficient networking and localization solutions. Therefore, we provide a comprehensive survey on the challenges, advances, and prospects of underwater optical wireless networks (UOWNs) from a layer by layer perspective which includes: 1) Potential network architectures; 2) Physical layer issues including propagation characteristics, channel modeling, and modulation techniques 3) Data link layer problems covering link configurations, link budgets, performance metrics, and multiple access schemes; 4) Network layer topics containing relaying techniques and potential routing algorithms; 5) Transport layer subjects such as connectivity, reliability, flow and congestion control; 6) Application layer goals and state-of-the-art UOWN applications, and 7) Localization and its impacts on UOWN layers. Finally, we outline the open research challenges and point out the future directions for underwater optical wireless communications, networking, and localization research.

  11. Tracking Three-Dimensional Fish Behavior with a New Marine Acoustic Telemetry System

    Science.gov (United States)

    Brosnan, Ian G.; McGarry, Louise P.; Greene, Charles H.; Steig, Tracey W.; Johnston, Samuel V.; Ehrenberg, John E.

    2015-01-01

    The persistent monitoring capability provided by acoustic telemetry systems allows us to study behavior, movement, and resource selection of mobile marine animals. Current marine acoustic telemetry systems are challenged by localization errors and limits in the number of animals that can be tracked simultaneously. We designed a new system to provide detection ranges of up to 1 km, to reduce localization errors to less than 1 m, and to increase to 500 the number of unique tags simultaneously tracked. The design builds on HTIs experience of more than a decade developing acoustic telemetry systems for freshwater environments. A field trial of the prototype system was conducted at the University of Washingtons Friday Harbor Marine Laboratory (Friday Harbor, WA). Copper rockfish (Sebastes caurinus) were selected for field trials of this new system because their high site-fidelity and small home ranges provide ample opportunity to track individual fish behavior while testing our ability to characterize the movements of a species of interest to management authorities.

  12. Evolution: Fossil Ears and Underwater Sonar.

    Science.gov (United States)

    Lambert, Olivier

    2016-08-22

    A key innovation in the history of whales was the evolution of a sonar system together with high-frequency hearing. Fossils of an archaic toothed whale's inner ear bones provide clues for a stepwise emergence of underwater echolocation ability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Leak detection and localization system through acoustics; Sistema de deteccao e localizacao de vazamentos por acustica

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Julio [Aselco Automacao, Sao Paulo, SP (Brazil)

    2003-07-01

    Acoustic Leak Detection Systems (ALDS) are used on both liquid and gas pipelines as well as multi-phase flow pipelines to detect leaks quickly and provide a means of limiting product loss. The real-time acoustic signal is continuously compared against signature leak profiles for the particular operating and geometric conditions. These profiles were developed from a database established from over 20 years of experimental and field leak tests. This technique not only drastically reduces the false alarm rate, but also significantly improves the sensitivity and leak location accuracy. This system will also detect leaks with shut-in flow (zero flow rate in the pipeline). With the use of GPS (Global Positioning System) it not only improves leak location accuracy, but also allows for continuous leak detection during the loss of communications. (author)

  14. Research and Design on Trigger System Based on Acoustic Delay Correlation Filtering

    Directory of Open Access Journals (Sweden)

    Zhiyong Lei

    2014-01-01

    Full Text Available In the exterior trajectory test, there usually needs a muzzle or a gun muzzle trigger system to be used as start signal for other measuring device, the customary trigger systems include off- target, infrared and acoustic detection system. But inherent echo reflection of the acoustic detection system makes the original signal of sound trigger submerged in various echo interference for bursts and shooting in a closed room, so that it can’t produce accurate trigger. In order to solve this defect, this paper analyzed the mathematical model based on acoustic delay correlation filtering in detail, then put forward the constraint condition with minimum path for delay correlation filtering. In this constraint condition, delay correlation filtering can do de-noising operation accurately. In order to verify accuracy and actual performance of the model, a MEMS sound sensor was used to implement mathematical model onto project, experimental results show that this system can filter out the every path sound bounce echoes of muzzle shock wave signal and produce the desired trigger signal accurately.

  15. ECS: Efficient Communication Scheduling for Underwater Sensor Networks

    Directory of Open Access Journals (Sweden)

    Lu Hong

    2011-03-01

    Full Text Available TDMA protocols have attracted a lot of attention for underwater acoustic sensor networks (UWSNs, because of the unique characteristics of acoustic signal propagation such as great energy consumption in transmission, long propagation delay and long communication range. Previous TDMA protocols all allocated transmission time to nodes based on discrete time slots. This paper proposes an efficient continuous time scheduling TDMA protocol (ECS for UWSNs, including the continuous time based and sender oriented conflict analysis model, the transmission moment allocation algorithm and the distributed topology maintenance algorithm. Simulation results confirm that ECS improves network throughput by 20% on average, compared to existing MAC protocols.

  16. System and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources

    Energy Technology Data Exchange (ETDEWEB)

    Holzrichter, John F; Burnett, Greg C; Ng, Lawrence C

    2013-05-21

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  17. System and method for characterizing synthesizing and/or canceling out acoustic signals from inanimate sound sources

    Science.gov (United States)

    Holzrichter, John F.; Burnett, Greg C.; Ng, Lawrence C.

    2003-01-01

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  18. Diagnostic performance of an acoustic-based system for coronary artery disease risk stratification.

    Science.gov (United States)

    Winther, Simon; Nissen, Louise; Schmidt, Samuel Emil; Westra, Jelmer Sybren; Rasmussen, Laust Dupont; Knudsen, Lars Lyhne; Madsen, Lene Helleskov; Kirk Johansen, Jane; Larsen, Bjarke Skogstad; Struijk, Johannes Jan; Frost, Lars; Holm, Niels Ramsing; Christiansen, Evald Høj; Botker, Hans Erik; Bøttcher, Morten

    2017-11-09

    Diagnosing coronary artery disease (CAD) continues to require substantial healthcare resources. Acoustic analysis of transcutaneous heart sounds of cardiac movement and intracoronary turbulence due to obstructive coronary disease could potentially change this. The aim of this study was thus to test the diagnostic accuracy of a new portable acoustic device for detection of CAD. We included 1675 patients consecutively with low to intermediate likelihood of CAD who had been referred for cardiac CT angiography. If significant obstruction was suspected in any coronary segment, patients were referred to invasive angiography and fractional flow reserve (FFR) assessment. Heart sound analysis was performed in all patients. A predefined acoustic CAD-score algorithm was evaluated; subsequently, we developed and validated an updated CAD-score algorithm that included both acoustic features and clinical risk factors. Low risk is indicated by a CAD-score value ≤20. Haemodynamically significant CAD assessed from FFR was present in 145 (10.0%) patients. In the entire cohort, the predefined CAD-score had a sensitivity of 63% and a specificity of 44%. In total, 50% had an updated CAD-score value ≤20. At this cut-off, sensitivity was 81% (95% CI 73% to 87%), specificity 53% (95% CI 50% to 56%), positive predictive value 16% (95% CI 13% to 18%) and negative predictive value 96% (95% CI 95% to 98%) for diagnosing haemodynamically significant CAD. Sound-based detection of CAD enables risk stratification superior to clinical risk scores. With a negative predictive value of 96%, this new acoustic rule-out system could potentially supplement clinical assessment to guide decisions on the need for further diagnostic investigation. ClinicalTrials.gov identifier NCT02264717; Results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Electricity Generation Characteristics of Energy-Harvesting System with Piezoelectric Element Using Mechanical-Acoustic Coupling

    Directory of Open Access Journals (Sweden)

    Hirotarou Tsuchiya

    2016-01-01

    Full Text Available This paper describes the electricity generation characteristics of a new energy-harvesting system with piezoelectric elements. The proposed system is composed of a rigid cylinder and thin plates at both ends. The piezoelectric elements are installed at the centers of both plates, and one side of each plate is subjected to a harmonic point force. In this system, vibration energy is converted into electrical energy via electromechanical coupling between the plate vibration and piezoelectric effect. In addition, the plate vibration excited by the point force induces a self-sustained vibration at the other plate via mechanical-acoustic coupling between the plate vibrations and an internal sound field into the cylindrical enclosure. Therefore, the electricity generation characteristics should be considered as an electromechanical-acoustic coupling problem. The characteristics are estimated theoretically and experimentally from the electric power in the electricity generation, the mechanical power supplied to the plate, and the electricity generation efficiency that is derived from the ratio of both power. In particular, the electricity generation efficiency is one of the most appropriate factors to evaluate a performance of electricity generation systems. Thus, the effect of mechanical-acoustic coupling is principally evaluated by examining the electricity generation efficiency.

  20. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV systems.

    Directory of Open Access Journals (Sweden)

    Bing Feng Ng

    Full Text Available The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency.

  1. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV) systems.

    Science.gov (United States)

    Ng, Bing Feng; Xiong, Jin Wen; Wan, Man Pun

    2017-01-01

    The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV) systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency.

  2. On the Effects of Frequency Scaling Over Capacity Scaling in Underwater Networks—Part I

    DEFF Research Database (Denmark)

    Shin, Won-Yong; Roetter, Daniel Enrique Lucani; Médard, Muriel

    2013-01-01

    In this two-part paper, information-theoretic capacity scaling laws are analyzed in an underwater acoustic network with n regularly located nodes on a square, in which both bandwidth and received signal power can be limited significantly. Parts I and II deal with an extended network of unit node...... propagation speed of acoustic channel, and show that it is order-optimal for all operating regimes of extended networks. Finally, these scaling results are extended to the case of random node deployments providing fundamental limits to more complex scenarios of extended underwater networks....

  3. Acoustic absorption by two-level systems in a superconductors

    International Nuclear Information System (INIS)

    Morozov, A.I.; Sizov, A.S.

    1991-01-01

    Contribution to sound absorption and to its rate renormalization, attributed to two-level systems, forming as a result of hydrogen capture by heavy impurities, is found. At that it is supposed that two-level system relaxation rate is defined by single-phonon processes. For superconducting niobium phase estimation for frequency range, where the given supposition is valid, is obtained

  4. Opto-acoustic technique to evaluate adhesion strength of thin-film systems

    Directory of Open Access Journals (Sweden)

    S. Yoshida

    2012-06-01

    Full Text Available An opto-acoustic technique is proposed to evaluate the adhesion strength of thin film systems at the film-substrate interface. The thin-film system to be examined is configured as an end-mirror of a Michelson interferometer, and driven from the rear with an acoustic transducer at audible frequencies. The amplitude of the resultant oscillation of the film is quantified as the variation in the contrast of the interferometric fringe pattern observed with a digital camera at 30 frames/s. As a proof of concept, experiment has been conducted with the use of a pair of strongly and weakly adhered Au-coated Si-wafer specimens. The technique successfully differentiates the adhesion strength of the specimens.

  5. RF Path and Absorption Loss Estimation for Underwater Wireless Sensor Networks in Different Water Environments

    Directory of Open Access Journals (Sweden)

    Umair Mujtaba Qureshi

    2016-06-01

    Full Text Available Underwater Wireless Sensor Network (UWSN communication at high frequencies is extremely challenging. The intricacies presented by the underwater environment are far more compared to the terrestrial environment. The prime reason for such intricacies are the physical characteristics of the underwater environment that have a big impact on electromagnetic (EM signals. Acoustics signals are by far the most preferred choice for underwater wireless communication. Because high frequency signals have the luxury of large bandwidth (BW at shorter distances, high frequency EM signals cannot penetrate and propagate deep in underwater environments. The EM properties of water tend to resist their propagation and cause severe attenuation. Accordingly, there are two questions that need to be addressed for underwater environment, first what happens when high frequency EM signals operating at 2.4 GHz are used for communication, and second which factors affect the most to high frequency EM signals. To answer these questions, we present real-time experiments conducted at 2.4 GHz in terrestrial and underwater (fresh water environments. The obtained results helped in studying the physical characteristics (i.e., EM properties, propagation and absorption loss of underwater environments. It is observed that high frequency EM signals can propagate in fresh water at a shallow depth only and can be considered for a specific class of applications such as water sports. Furthermore, path loss, velocity of propagation, absorption loss and the rate of signal loss in different underwater environments are also calculated and presented in order to understand why EM signals cannot propagate in sea water and oceanic water environments. An optimal solk6ution for underwater communication in terms of coverage distance, bandwidth and nature of communication is presented, along with possible underwater applications of UWSNs at 2.4 GHz.

  6. Boundary-Transmission Problems for Acoustics in Mixed Media.

    Science.gov (United States)

    Khashanah, Khaldoun M.

    This thesis is a study of acoustic wave propagation in fluid, elastic and poro-elastic media in general and it is a study of underwater acoustics with an interacting seabed in specific. In the first chapter we transform the equations describing acoustic wave propagation in a fluid, elastic, and poro-elastic medium to implement the Thompson-Haskell technique in solving the boundary-transmission problem. The Hankel transform of the equations of elasticity and poro-elasticity is a generalization of the work of Ahluwalia and Keller in fluid acoustics. The fundamental properties of the Biot equations are investigated and new results are proved. These results are essential starting points for potential theory of poro -elasticity. The Biot operator is shown to be elliptic in the sense of Douglas and Nirenberg; moreover, we calculate the fundamental solution to the Biot equations of acoustics. In the last chapter, we investigate the problem using the method of singular perturbations to calculate an approximate Green's function for the combined ocean -seabed system.

  7. Study on Leak Detection of the Pipeline System by Acoustic Emission

    International Nuclear Information System (INIS)

    Yoon, D. J.; Kim, C. J.

    1987-01-01

    Leak detection testing for the pipeline system was performed by the acoustic emission method. It was found that the detected signal spectrum was influenced by the frequency response of sensors and pressure changes. AE parameters and frequency spectrum distributions were used to analyze the leak signals. The slope rise time of AE parameters were the important factors for distinguishing leak signals. The amplitude of leak signal was more affected by the changes of leak, rate and pressure than those of leak type

  8. Tissue-mimicking bladder wall phantoms for evaluating acoustic radiation force-optical coherence elastography systems.

    Science.gov (United States)

    Ejofodomi, O'tega A; Zderic, Vesna; Zara, Jason M

    2010-04-01

    Acoustic radiation force-optical coherence elastography (ARF-OCE) systems are novel imaging systems that have the potential to simultaneously quantify and characterize the optical and mechanical properties of in vivo tissues. This article presents the construction of bladder wall phantoms for use in ARF-OCE systems. Mechanical, acoustic, and optical properties are reported and compared to published values for the urinary bladder. The phantom consisted of 0.2000 +/- 0.0089 and 6.0000 +/- 0.2830 microm polystyrene microspheres (Polysciences Inc., Warrington, PA, Catalog Nos. 07304 and 07312), 7.5 +/- 1.5 microm copolymer microspheres composed of acrylonitrile and vinylidene chloride, (Expancel, Duluth, GA, Catalog No. 461 DU 20), and bovine serum albumin within a gelatin matrix. Young's modulus was measured by successive compression of the phantom and obtaining the slope of the resulting force-displacement data. Acoustic measurements were performed using the transmission method. The phantoms were submerged in a water bath and placed between transmitting and receiving 13 mm diameter unfocused transducers operating at a frequency of 3.5 MHz. A MATLAB algorithm to extract the optical scattering coefficient from optical coherence tomography (OCT) images of the phantom was used. The phantoms possess a Young's modulus of 17.12 +/- 2.72 kPa, a mass density of 1.05 +/- 0.02 g/cm3, an acoustic attenuation coefficient of 0.66 +/- 0.08 dB/cm/MHz, a speed of sound of 1591 +/- 8.76 m/s, and an optical scattering coefficient of 1.80 +/- 0.23 mm(-1). Ultrasound and OCT images of the bladder wall phantom are presented. A material that mimics the mechanical, optical, and acoustic properties of healthy bladder wall has been developed. This tissue-mimicking bladder wall phantom was developed as a control tool to investigate the feasibility of using ARF-OCE to detect the mechanical and optical changes that may be indicative of the onset or development of cancer in the urinary bladder

  9. Technology Advances Enabling a New Class of Hybrid Underwater Vehicles

    Science.gov (United States)

    Bowen, A.

    2016-02-01

    Both tethered (ROV) and untethered (AUV) systems have proven to be highly valuable tools for a range of application undersea. Certain enabling technologies coupled with recent advances in robotic systems make it possible to consider supplementing many of the functions performed by these platforms with appropriately designed semi-autonomous vehicles that may be less expensive operate than traditional deep-water ROVs. Such vehicles can be deployed from smaller ships and may lead to sea-floor resident systems able to perform a range of interventions under direct human control when required. These systems are effectively a hybrid cross between ROV and AUV vehicles and poised to enable an important new class of undersea vehicle. It is now possible to radically redefine the meaning of the words "tethered vehicle" to include virtual tethering via acoustic and optical means or through the use of small diameter re-useable tethers, providing not power but only high bandwidth communications. The recent developments at Woods Hole Oceanographic Institution (WHOI), paves the way for a derivative vehicle type able to perform a range of interventions in deep water. Such battery-powered, hybrid-tethered vehicles will be able to perform tasks that might otherwise require a conventional ROV. These functions will be possible from less complex ships because of a greatly reduced dependence on large, heavy tethers and associated vehicle handling equipment. In certain applications, such vehicles can be resident within subsea facilities, able to provide operators with near instant access when required. Several key emerging technologies and capabilities make such a vehicle possible. Advances in both acoustic and optical "wireless" underwater communications and mico-tethers as pioneered by the HROV Nereus offer the potential to transform ROV type operations and thus offer planners and designers an important new dimension to subsea robotic intervention

  10. High Performance Computing Assets for Ocean Acoustics Research

    Science.gov (United States)

    2016-11-18

    can be tested against theory, practicality of computational methods can be determined, and studies of underwater acoustics phenomena can be...Administrative Grants Officer Vbefense Techllical Information Office Naval Research Laboratory Grant and Contract Services (WHOI) AOPE Department Office...distribution is unlimited. ONR DURIP Grant Final Report High Performance Computing Assets for Ocean Acoustics Research Timothy F. Dud a Applied Ocean

  11. Application of YAG laser processing in underwater welding and cutting

    International Nuclear Information System (INIS)

    Ohwaki, Katsura; Morita, Ichiro; Kojima, Toshio; Sato, Shuichi

    2002-01-01

    The high-power YAG laser is a new fabrication tool. The laser torch is easy to combine with complex with complex mechanics because of beam delivery through optical fiber. A direct underwater laser welding technology has been developed and applied to the preservation, maintenance and removal of nuclear power plants. For subdividing or removing operations for retirement of plants, the laser cutting properties were confirmed to allow a maximum cutting thickness of 80 mm. For repairing inner surface of stainless steel tanks, an underwater laser welding system using a remote-controlled robot was developed and the high quality of underwater laser welding was confirmed. (author)

  12. Underwater fiber-wireless communication with a passive front end

    Science.gov (United States)

    Xu, Jing; Sun, Bin; Lyu, Weichao; Kong, Meiwei; Sarwar, Rohail; Han, Jun; Zhang, Wei; Deng, Ning

    2017-11-01

    We propose and experimentally demonstrate a novel concept on underwater fiber-wireless (Fi-Wi) communication system with a fully passive wireless front end. A low-cost step-index (SI) plastic optical fiber (POF) together with a passive collimating lens at the front end composes the underwater Fi-Wi architecture. We have achieved a 1.71-Gb/s transmission at a mean BER of 4.97 × 10-3 (1.30 × 10-3 when using power loading) over a 50-m SI-POF and 2-m underwater wireless channel using orthogonal frequency division multiplexing (OFDM). Although the wireless part is very short, it actually plays a crucial role in practical underwater implementation, especially in deep sea. Compared with the wired solution (e.g. using a 52-m POF cable without the UWOC part), the proposed underwater Fi-Wi scheme can save optical wet-mate connectors that are sophisticated, very expensive and difficult to install in deep ocean. By combining high-capacity robust POF with the mobility and ubiquity of underwater wireless optical communication (UWOC), the proposed underwater Fi-Wi technology will find wide application in ocean exploration.

  13. An Observability Metric for Underwater Vehicle Localization Using Range Measurements

    Directory of Open Access Journals (Sweden)

    Filippo Arrichiello

    2013-11-01

    Full Text Available The paper addresses observability issues related to the general problem of single and multiple Autonomous Underwater Vehicle (AUV localization using only range measurements. While an AUV is submerged, localization devices, such as Global Navigation Satellite Systems, are ineffective, due to the attenuation of electromagnetic waves. AUV localization based on dead reckoning techniques and the use of affordable motion sensor units is also not practical, due to divergence caused by sensor bias and drift. For these reasons, localization systems often build on trilateration algorithms that rely on the measurements of the ranges between an AUV and a set of fixed transponders using acoustic devices. Still, such solutions are often expensive, require cumbersome calibration procedures and only allow for AUV localization in an area that is defined by the geometrical arrangement of the transponders. A viable alternative for AUV localization that has recently come to the fore exploits the use of complementary information on the distance from the AUV to a single transponder, together with information provided by on-board resident motion sensors, such as, for example, depth, velocity and acceleration measurements. This concept can be extended to address the problem of relative localization between two AUVs equipped with acoustic sensors for inter-vehicle range measurements. Motivated by these developments, in this paper, we show that both the problems of absolute localization of a single vehicle and the relative localization of multiple vehicles can be treated using the same mathematical framework, and tailoring concepts of observability derived for nonlinear systems, we analyze how the performance in localization depends on the types of motion imparted to the AUVs. For this effect, we propose a well-defined observability metric and validate its usefulness, both in simulation and by carrying out experimental tests with a real marine vehicle during which the

  14. Assessment of the performance of a conceptual acoustic surveillance system for anomalous events in LMFBRs

    Energy Technology Data Exchange (ETDEWEB)

    Doolittle, R.D.; Carey, W.M.

    1977-01-01

    A method is developed for calculating the detectability of anomalous acoustic events. The example used is the sodium vapor bubble collapse in the subcooled regions of a Liquid Metal Fast Breeder Reactor (LMFBR). This method provides a range of estimates for detection and false alarm probabilities in acoustic surveillance systems for sodium boiling and voiding detection, as well as any other impulsive events such as loose-parts monitoring. The signal excess at the receiver array from an impulsive source is computed by an extension of methods introduced by W. Carey. Assuming an exponential pulse form for the signal (or its envelope) the equivalent source level is determined from the energy flux spectral density for inclusion in the sonar equation. The signal excess (SE) is then given by the source level (SL) minus the noise level (NL) minus the transmission loss (TL) minus the detection threshold (DT) plus the receiving array gain (AG).

  15. Acoustic leak-detection/location system with multichannel charge amplifier/line driver

    International Nuclear Information System (INIS)

    Gaubatz, D.C.; Greene, D.A.

    1980-04-01

    Testing on the MATOI test vessel was initiated using a multichannel Acoustic Leak Detection System (ALDS). The multichannel system incorporates several key elements of the reference ALDS: prototypic multichannel charge amplifiers; computer controlled multiplexer; computer controlled gain amplifiers; and alarm annunciation. ALDS now has prototypic analogue signal conditioning identical to that proposed for an LMFBR system. Beamforming and digital signal analysis hardware are simulated by a software program in the PDP 11 minicomputer. Comparative performance data are provided between the prototypic and earlier versions

  16. Underwater Gliders: A Review

    Directory of Open Access Journals (Sweden)

    Javaid Muhammad Yasar

    2014-07-01

    Full Text Available Underwater gliders are a type of underwater vehicle that transverse the oceans by shifting its buoyancy, during which its wings develop a component of the downward motion in the horizontal plane, thus producing a forward force. They are primarily used in oceanography sensing and data collection and play an important role in ocean research and development. Although there have been considerable developments in these gliders since the development of the first glider concept in 1989, to date, no review of these gliders have been done. This paper reviews existing underwater gliders, with emphasis on their respective working principles, range and payload capacity. All information on gliders available in the public domain or published in literature from the year 2000-2013 was reviewed. The majority of these gliders have an operational depth of 1000 m and a payload of less than 25 kg. The exception is a blend-body shape glider, which has a payload of approximately 800 kg and an operational depth around about 300 m. However, the commercialization of these gliders has been limited with only three know examples that have been successfully commercialized.

  17. Acoustic characteristics of the vowel systems of six regional varieties of American English

    Science.gov (United States)

    Clopper, Cynthia G.; Pisoni, David B.; de Jong, Kenneth

    2005-09-01

    Previous research by speech scientists on the acoustic characteristics of American English vowel systems has typically focused on a single regional variety, despite decades of sociolinguistic research demonstrating the extent of regional phonological variation in the United States. In the present study, acoustic measures of duration and first and second formant frequencies were obtained from five repetitions of 11 different vowels produced by 48 talkers representing both genders and six regional varieties of American English. Results revealed consistent variation due to region of origin, particularly with respect to the production of low vowels and high back vowels. The Northern talkers produced shifted low vowels consistent with the Northern Cities Chain Shift, the Southern talkers produced fronted back vowels consistent with the Southern Vowel Shift, and the New England, Midland, and Western talkers produced the low back vowel merger. These findings indicate that the vowel systems of American English are better characterized in terms of the region of origin of the talkers than in terms of a single set of idealized acoustic-phonetic baselines of ``General'' American English and provide benchmark data for six regional varieties.

  18. Detection of Volatile Organics Using a Surface Acoustic Wave Array System

    Energy Technology Data Exchange (ETDEWEB)

    ANDERSON, LAWRENCE F.; BARTHOLOMEW, JOHN W.; CERNOSEK, RICHARD W.; COLBURN, CHRISTOPHER W.; CROOKS, R.M.; MARTINEZ, R.F.; OSBOURN, GORDON C.; RICCO, A.J.; STATON, ALAN W.; YELTON, WILLIAM G.

    1999-10-14

    A chemical sensing system based on arrays of surface acoustic wave (SAW) delay lines has been developed for identification and quantification of volatile organic compounds (VOCs). The individual SAW chemical sensors consist of interdigital transducers patterned on the surface of an ST-cut quartz substrate to launch and detect the acoustic waves and a thin film coating in the SAW propagation path to perturb the acoustic wave velocity and attenuation during analyte sorption. A diverse set of material coatings gives the sensor arrays a degree of chemical sensitivity and selectivity. Materials examined for sensor application include the alkanethiol-based self-assembled monolayer, plasma-processed films, custom-synthesized conventional polymers, dendrimeric polymers, molecular recognition materials, electroplated metal thin films, and porous metal oxides. All of these materials target a specific chemical fi.mctionality and the enhancement of accessible film surface area. Since no one coating provides absolute analyte specificity, the array responses are further analyzed using a visual-empirical region-of-influence (VERI) pattern recognition algorithm. The chemical sensing system consists of a seven-element SAW array with accompanying drive and control electronics, sensor signal acquisition electronics, environmental vapor sampling hardware, and a notebook computer. Based on data gathered for individual sensor responses, greater than 93%-accurate identification can be achieved for any single analyte from a group of 17 VOCs and water.

  19. Long-range propagation effects observed during acoustic counter battery system tests

    Science.gov (United States)

    Velea, Doru; Cardinale, Michael; Torvik, Kevin; LaRow, Andy; Chang, Jay

    2006-05-01

    In March 2005, Planning Systems, Inc. (PSI), Advanced Acoustic Concepts (AAC) and the U.S. Army Research Development and Engineering Center (ARDEC) tested the PSI Acoustic Counter Battery System (ACBS) at the Yuma Proving Ground (YPG). ACBS was designed to acoustically detect and locate mortar fire, and to detect and locate heavy artillery fire out to ranges beyond 12 km. During analysis of the test data, we discovered that long-range sensors were receiving multiple pulses in doublets and triplets from a single shot. Additionally, we observed that the leading pulses were arriving earlier than anticipated by surface speed of sound calculations. The analysis team modeled the atmosphere recorded during the test and identified the possible causes of multiple arrivals by modeling the supersonic projectile trajectory and by using Green's Function Parabolic Equation numerical techniques to propagate recorded pulses from the source to receivers. The lessons learned will be applied to adjust the signal processing algorithms in the ACBS. This paper describes the test setup and reports the results of the analysis.

  20. Defense Science Board Task Force Report on Next-Generation Unmanned Undersea Systems

    Science.gov (United States)

    2016-10-01

    of Special Projects & Underwater Robotics, The Applied Research Laboratory -Penn State Other attendees: VADM Paul Sullivan (USN retired), Director ARL...systems, and the Advanced ProcessorBuild/ Acoustic Rapid Commercial-off-the-Shelf (COTS) Insertion (APB/ARCI) programs for sonarsignal processing. Each...Communications – The limited range and bandwidth of undersea acoustic links restrict thecommand and control, and manned and unmanned teaming options for

  1. Topological phononic states of underwater sound based on coupled ring resonators

    Energy Technology Data Exchange (ETDEWEB)

    He, Cheng; Li, Zheng; Ni, Xu; Sun, Xiao-Chen; Yu, Si-Yuan [National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093 (China); Lu, Ming-Hui, E-mail: luminghui@nju.edu.cn; Liu, Xiao-Ping; Chen, Yan-Feng [National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2016-01-18

    We report a design of topological phononic states for underwater sound using arrays of acoustic coupled ring resonators. In each individual ring resonator, two degenerate acoustic modes, corresponding to clockwise and counter-clockwise propagation, are treated as opposite pseudospins. The gapless edge states arise in the bandgap resulting in protected pseudospin-dependent sound transportation, which is a phononic analogue of the quantum spin Hall effect. We also investigate the robustness of the topological sound state, suggesting that the observed pseudospin-dependent sound transportation remains unless the introduced defects facilitate coupling between the clockwise and counter-clockwise modes (in other words, the original mode degeneracy is broken). The topological engineering of sound transportation will certainly promise unique design for next generation of acoustic devices in sound guiding and switching, especially for underwater acoustic devices.

  2. A Summary of NASA Research Exploring the Acoustics of Small Unmanned Aerial Systems

    Science.gov (United States)

    Zawodny, Nikolas S.; Christian, Andrew; Cabell, Randolph

    2018-01-01

    Proposed uses of small unmanned aerial systems (sUAS) have the potential to expose large portions of communities to a new noise source. In order to understand the potential noise impact of sUAS, NASA initiated acoustics research as one component of the 3-year DELIVER project, with the goal of documenting the feasibility of using existing aircraft design tools and methods on this class of vehicles. This paper summarizes the acoustics research conducted within the DELIVER project. The research described here represents an initial study, and subsequent research building on the findings of this work has been proposed for other NASA projects. The paper summarizes acoustics research in four areas: measurements of noise generated by flyovers of small unmanned aerial vehicles, measurements in controlled test facilities to understand the noise generated by components of these vehicles, computational predictions of component and full vehicle noise, and psychoacoustic tests including auralizations conducted to assess human annoyance to the noise generated by these vehicles.

  3. Acoustic monitoring method and system in laser-induced optical breakdown (LIOB)

    Science.gov (United States)

    O'Donnell, Matthew [Ann Arbor, MI; Ye, Jing Yong [Ann Arbor, MI; Norris, Theodore B [Dexter, MI; Baker, Jr., James R.; Balogh, Lajos P [Ann Arbor, MI; Milas, Susanne M [Ann Arbor, MI; Emelianov, Stanislav Y [Ann Arbor, MI; Hollman, Kyle W [Fenton, MI

    2008-05-06

    An acoustic monitoring method and system in laser-induced optical breakdown (LIOB) provides information which characterize material which is broken down, microbubbles in the material, and/or the microenvironment of the microbubbles. In one embodiment of the invention, femtosecond laser pulses are focused just inside the surface of a volume of aqueous solution which may include dendrimer nanocomposite (DNC) particles. A tightly focused, high frequency, single-element ultrasonic transducer is positioned such that its focus coincides axially and laterally with this laser focus. When optical breakdown occurs, a microbubble forms and a shock or pressure wave is emitted (i.e., acoustic emission). In addition to this acoustic signal, the microbubble may be actively probed with pulse-echo measurements from the same transducer. After the microbubble forms, received pulse-echo signals have an extra pulse, describing the microbubble location and providing a measure of axial microbubble size. Wavefield plots of successive recordings illustrate the generation, growth, and collapse of microbubbles due to optical breakdown. These same plots can also be used to quantify LIOB thresholds.

  4. Real-Time Dynamic Model Learning and Adaptation for Underwater Vehicles

    Science.gov (United States)

    2013-09-01

    propeller on the vLBV300 SV Starboard, vertical propeller on the vLBV300 THAUS Tethered Hovering-Class Autonomous Underwater System UUV Unmanned...inhabitance of man and machine—the aim is to fundamentally enable the transformative capability of robots as underwater co-workers. The RDAS finds...be commanded via a high- or low-level computer interface, resulting in a tethered , hovering-class autonomous underwater system (THAUS). As

  5. Acoustic Characteristics of Stridor in Multiple System Atrophy

    Science.gov (United States)

    Lee, Jee Young; Joo, Eun Yeon; Nam, Hyunwoo

    2016-01-01

    Nocturnal stridor is a breathing disorder prevalent in patients with multiple system atrophy (MSA). An improved understanding of this breathing disorder is essential since nocturnal stridor carries a poor prognosis (an increased risk of sudden death). In this study, we aimed to classify types of stridor by sound analysis and to reveal their clinical significance. Patients who met the criteria for probable MSA and had undergone polysomnography (PSG) were recruited. Patients were then assessed clinically with sleep questionnaires, including the Pittsburgh Sleep Quality Index, and the Hoehn and Yahr scale. Nocturnal stridor and snoring were analyzed with the Multi-Dimensional Voice Program. Nocturnal stridor was recorded in 22 patients and snoring in 18 patients using the PSG. Waveforms of stridors were classified into rhythmic or semirhythmic after analysis of the oscillogram. Formants and harmonics were observed in both types of stridor, but not in snoring. Of the 22 patients diagnosed with stridor during the present study, fifteen have subsequently died, with the time to death after the PSG study being 1.9 ± 1.4 years (range 0.8 to 5.0 years). The rhythmic waveform group presented higher scores on the Hoehn and Yahr scale and the survival outcome of this group was lower compared to the semirhythmic waveform group (p = 0.030, p = 0.014). In the Kaplan Meier’s survival curve, the outcome of patients with rhythmic waveform was significantly less favorable than the outcome of patients with semirhythmic waveform (log-rank test, p < 0.001). Stridor in MSA can be classified into rhythmic and semirhythmic types and the rhythmic component signifies a poorer outcome. PMID:27093692

  6. Acoustic Characteristics of Stridor in Multiple System Atrophy.

    Directory of Open Access Journals (Sweden)

    Dae Lim Koo

    Full Text Available Nocturnal stridor is a breathing disorder prevalent in patients with multiple system atrophy (MSA. An improved understanding of this breathing disorder is essential since nocturnal stridor carries a poor prognosis (an increased risk of sudden death. In this study, we aimed to classify types of stridor by sound analysis and to reveal their clinical significance. Patients who met the criteria for probable MSA and had undergone polysomnography (PSG were recruited. Patients were then assessed clinically with sleep questionnaires, including the Pittsburgh Sleep Quality Index, and the Hoehn and Yahr scale. Nocturnal stridor and snoring were analyzed with the Multi-Dimensional Voice Program. Nocturnal stridor was recorded in 22 patients and snoring in 18 patients using the PSG. Waveforms of stridors were classified into rhythmic or semirhythmic after analysis of the oscillogram. Formants and harmonics were observed in both types of stridor, but not in snoring. Of the 22 patients diagnosed with stridor during the present study, fifteen have subsequently died, with the time to death after the PSG study being 1.9 ± 1.4 years (range 0.8 to 5.0 years. The rhythmic waveform group presented higher scores on the Hoehn and Yahr scale and the survival outcome of this group was lower compared to the semirhythmic waveform group (p = 0.030, p = 0.014. In the Kaplan Meier's survival curve, the outcome of patients with rhythmic waveform was significantly less favorable than the outcome of patients with semirhythmic waveform (log-rank test, p < 0.001. Stridor in MSA can be classified into rhythmic and semirhythmic types and the rhythmic component signifies a poorer outcome.

  7. A smart pattern recognition system for the automatic identification of aerospace acoustic sources

    Science.gov (United States)

    Cabell, R. H.; Fuller, C. R.

    1989-01-01

    An intelligent air-noise recognition system is described that uses pattern recognition techniques to distinguish noise signatures of five different types of acoustic sources, including jet planes, propeller planes, a helicopter, train, and wind turbine. Information for classification is calculated using the power spectral density and autocorrelation taken from the output of a single microphone. Using this system, as many as 90 percent of test recordings were correctly identified, indicating that the linear discriminant functions developed can be used for aerospace source identification.

  8. Electron heating caused by the ion-acoustic decay instability in a finite-length system

    International Nuclear Information System (INIS)

    Rambo, P.W.; Woo, W.; DeGroot, J.S.; Mizuno, K.

    1984-01-01

    The ion-acoustic decay instability is investigated for a finite-length plasma with density somewhat below the cutoff density of the electromagnetic driver (napprox.0.7n/sub c/). For this regime, the heating in a very long system can overpopulate the electron tail and cause linear saturation of the low phase velocity electron plasma waves. For a short system, the instability is nonlinearly saturated at larger amplitude by ion trapping. Absorption can be significantly increased by the large-amplitude ion waves. These results compare favorably with microwave experiments

  9. Passive pavement-mounted acoustical linguistic drive alert system and method

    Science.gov (United States)

    Kisner, Roger A.; Anderson, Richard L.; Carnal, Charles L.; Hylton, James O.; Stevens, Samuel S.

    2001-01-01

    Systems and methods are described for passive pavement-mounted acoustical alert of the occupants of a vehicle. A method of notifying a vehicle occupant includes providing a driving medium upon which a vehicle is to be driven; and texturing a portion of the driving medium such that the textured portion interacts with the vehicle to produce audible signals, the textured portion pattern such that a linguistic message is encoded into the audible signals. The systems and methods provide advantages because information can be conveyed to the occupants of the vehicle based on the location of the vehicle relative to the textured surface.

  10. Acoustic Feedback and Echo Cancellation Strategies for Multiple-Microphone and Single-Loudspeaker Systems

    DEFF Research Database (Denmark)

    Guo, Meng; Elmedyb, Thomas Bo; Jensen, Søren Holdt

    2011-01-01

    Acoustic feedback/echo cancellation in a multiple-microphone and single-loudspeaker system is often carried out using a cancellation filter for each microphone channel, and the filters are adaptively estimated, independently of each other. In this work, we consider another strategy by estimating...... all the cancellation filters jointly and in this way exploit information from all microphone channels. We determine the statistical system behavior for the joint estimation strategy in terms of the convergence rate and steady-state behavior across time and frequency. We assess if an improved...

  11. Underwater striling engine design with modified one-dimensional model

    OpenAIRE

    Li, Daijin; Qin, Kan; Luo, Kai

    2015-01-01

    Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs) is discussed. And a one-dimensional mod...

  12. Analytical and Numerical Optimal Motion Planning for an Underwater Glider

    OpenAIRE

    Kraus, Robert J.

    2010-01-01

    The use of autonomous underwater vehicles (AUVs) for oceanic observation and research is becoming more common. Underwater gliders are a specific class of AUV that do not use conventional propulsion. Instead they change their buoyancy and center of mass location to control attitude and trajectory. The vehicles spend most of their time in long, steady glides, so even minor improvements in glide range can be magnified over multiple dives. This dissertation presents a rigid-body dynamic system...

  13. Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Huskey, A.

    2011-11-01

    This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

  14. Structural Dynamic Assessment of the GN2 Piping System for NASA's New and Powerful Reverberant Acoustic Test Facility

    Science.gov (United States)

    McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Hughes, WIlliam O.; Chang, Li, C.; Hozman, Aron D.; Henry, Michael W.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has led the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA from 2007-2011. SAIC-Benham has completed construction of a new reverberant acoustic test facility to support the future testing needs of NASA's space exploration program and commercial customers. The large Reverberant Acoustic Test Facility (RATF) is approximately 101,000 cu ft in volume and was designed to operate at a maximum empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. Initial checkout acoustic testing was performed on March 2011 by SAIC-Benham at test levels up to 161 dB OASPL. During testing, several branches of the gaseous nitrogen (GN2) piping system, which supply the fluid to the noise generating acoustic modulators, failed at their "t-junctions" connecting the 12 inch supply line to their respective 4 inch branch lines. The problem was initially detected when the oxygen sensors in the horn room indicated a lower than expected oxygen level from which was inferred GN2 leaks in the piping system. In subsequent follow up inspections, cracks were identified in the failed "t-junction" connections through non-destructive evaluation testing . Through structural dynamic modeling of the piping system, the root cause of the "t-junction" connection failures was determined. The structural dynamic assessment identified several possible corrective design improvements to the horn room piping system. The effectiveness of the chosen design repairs were subsequently evaluated in September 2011 during acoustic verification testing to 161 dB OASPL.

  15. Acoustic Performance of a Real-Time Three-Dimensional Sound-Reproduction System

    Science.gov (United States)

    Faller, Kenneth J., II; Rizzi, Stephen A.; Aumann, Aric R.

    2013-01-01

    The Exterior Effects Room (EER) is a 39-seat auditorium at the NASA Langley Research Center and was built to support psychoacoustic studies of aircraft community noise. The EER has a real-time simulation environment which includes a three-dimensional sound-reproduction system. This system requires real-time application of equalization filters to compensate for spectral coloration of the sound reproduction due to installation and room effects. This paper describes the efforts taken to develop the equalization filters for use in the real-time sound-reproduction system and the subsequent analysis of the system s acoustic performance. The acoustic performance of the compensated and uncompensated sound-reproduction system is assessed for its crossover performance, its performance under stationary and dynamic conditions, the maximum spatialized sound pressure level it can produce from a single virtual source, and for the spatial uniformity of a generated sound field. Additionally, application examples are given to illustrate the compensated sound-reproduction system performance using recorded aircraft flyovers

  16. Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields

    DEFF Research Database (Denmark)

    Karlsen, Jonas Tobias; Augustsson, Per; Bruus, Henrik

    2016-01-01

    We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends on gradients in the density and compressibility of the fluid. For microfluidic systems...

  17. Aspect-dependent radiated noise analysis of an underway autonomous underwater vehicle.

    Science.gov (United States)

    Gebbie, John; Siderius, Martin; Allen, John S

    2012-11-01

    This paper presents an analysis of the acoustic emissions emitted by an underway REMUS-100 autonomous underwater vehicle (AUV) that were obtained near Honolulu Harbor, HI using a fixed, bottom-mounted horizontal line array (HLA). Spectral analysis, beamforming, and cross-correlation facilitate identification of independent sources of noise originating from the AUV. Fusion of navigational records from the AUV with acoustic data from the HLA allows for an aspect-dependent presentation of calculated source levels of the strongest propulsion tone.

  18. Systems and methods for separating particles utilizing engineered acoustic contrast capture particles

    Energy Technology Data Exchange (ETDEWEB)

    Kaduchak, Gregory; Ward, Michael D.

    2018-03-06

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.

  19. Jellyfish inspired underwater unmanned vehicle

    Science.gov (United States)

    Villanueva, Alex; Bresser, Scott; Chung, Sanghun; Tadesse, Yonas; Priya, Shashank

    2009-03-01

    An unmanned underwater vehicle (UUV) was designed inspired by the form and functionality of a Jellyfish. These natural organisms were chosen as bio-inspiration for a multitude of reasons including: efficiency of locomotion, lack of natural predators, proper form and shape to incorporate payload, and varying range of sizes. The structure consists of a hub body surrounded by bell segments and microcontroller based drive system. The locomotion of UUV was achieved by shape memory alloy "Biometal Fiber" actuation which possesses large strain and blocking force with adequate response time. The main criterion in design of UUV was the use of low-profile shape memory alloy actuators which act as artificial muscles. In this manuscript, we discuss the design of two Jellyfish prototypes and present experimental results illustrating the performance and power consumption.

  20. Measurement of Underwater Operational Noise Emitted by Wave and Tidal Stream Energy Devices.

    Science.gov (United States)

    Lepper, Paul A; Robinson, Stephen P

    2016-01-01

    The increasing international growth in the development of marine and freshwater wave and tidal energy harvesting systems has been followed by a growing requirement to understand any associated underwater impact. Radiated noise generated during operation is dependent on the device's physical properties, the sound-propagation environment, and the device's operational state. Physical properties may include size, distribution in the water column, and mechanics/hydrodynamics. The sound-propagation environment may be influenced by water depth, bathymetry, sediment type, and water column acoustic properties, and operational state may be influenced by tidal cycle and wave height among others This paper discusses some of the challenges for measurement of noise characteristics from these devices as well as a case study of the measurement of radiated noise from a full-scale wave energy converter.