WorldWideScience

Sample records for understanding water cycle

  1. Scientific Models Help Students Understand the Water Cycle

    Science.gov (United States)

    Forbes, Cory; Vo, Tina; Zangori, Laura; Schwarz, Christina

    2015-01-01

    The water cycle is a large, complex system that encompasses ideas across the K-12 science curriculum. By the time students leave fifth grade, they should understand "that a system is a group of related parts that make up a whole and can carry out functions its individual parts cannot" and be able to describe both components and processes…

  2. Root for rain : Towards understanding land-use change impacts on the water cycle

    NARCIS (Netherlands)

    Wang-Erlandsson, L.

    2017-01-01

    We live today on a human-dominated planet under unprecedented pressure on both land and water. The water cycle is intrinsically linked to vegetation and land use, and anticipating the consequences of simultaneous changes in land and water systems requires a thorough understanding of their

  3. Advances in Understanding Global Water Cycle with Advent of Global Precipitation Measurement (GPM) Mission

    Science.gov (United States)

    Smith, Eric A.; Starr, David (Technical Monitor)

    2002-01-01

    Within this decade the internationally organized Global Precipitation Measurement (GPM) Mission will take an important step in creating a global precipitation observing system from space. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams beginning with very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and then on to blends of the former datastreams with additional lower-caliber PMW-based and IR-based rain retrievals. Within the context of the now emerging global water & energy cycle (GWEC) programs of a number of research agencies throughout the world, GPM serves as a centerpiece space mission for improving our understanding of the global water cycle from a global measurement perspective. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in climate, e.g., climate warming. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination. This paper presents an overview of the GPM Mission and how its observations can be used within the framework of the oceanic and continental water budget equations to determine whether a given perturbation in precipitation is indicative of an actual rate change in the global water cycle, consistent with required responses in water storage and/or water flux transport processes, or whether it is the natural variability of a fixed rate cycle.

  4. Advances In Understanding Global Water Cycle With Advent of GPM Mission

    Science.gov (United States)

    Smith, Eric A.

    2002-01-01

    During the coming decade, the internationally organized Global Precipitation Measurement (GPM) Mission will take an important step in creating a global precipitation observing system from space based on an international fleet of satellites operated as a constellation. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams beginning with very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and then on to blends of the former datastreams with additional lower-caliber PMW-based and IR-based rain retrievals. Within the context of the now emerging global water & energy cycle (GWEC) programs of a number of research agencies throughout the world, GPM serves as a centerpiece space mission for improving our understanding of the Earth's water cycle from a global measurement perspective and on down to regional scales and below. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in climate, e.g., climate warming. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination. This paper first presents an overview of the GPM Mission and how its overriding scientific objectives for climate, weather, and hydrology flow from the anticipated improvements that are being planned for the constellation-based measuring system. Next, the paper shows how the GPM observations can be used within the framework of the oceanic and continental water budget equations to determine whether a given perturbation in precipitation is indicative of an actual rate change in the water cycle, consistent with required responses in water storage and/or water flux transport processes, or whether it is simply part of the natural

  5. NASA Contributions to Improve Understanding of Extreme Events in the Global Energy and Water Cycle

    Science.gov (United States)

    Lapenta, William M.

    2008-01-01

    The U.S. Climate Change Science Program (CCSP) has established the water cycle goals of the Nation's climate change program. Accomplishing these goals will require, in part, an accurate accounting of the key reservoirs and fluxes associated with the global water and energy cycle, including their spatial and temporal variability. through integration of all necessary observations and research tools, To this end, in conjunction with NASA's Earth science research strategy, the overarching long-term NASA Energy and Water Cycle Study (NEWS) grand challenge can he summarized as documenting and enabling improved, observationally based, predictions of water and energy cycle consequences of Earth system variability and change. This challenge requires documenting and predicting trends in the rate of the Earth's water and energy cycling that corresponds to climate change and changes in the frequency and intensity of naturally occurring related meteorological and hydrologic events, which may vary as climate may vary in the future. The cycling of water and energy has obvious and significant implications for the health and prosperity of our society. The importance of documenting and predicting water and energy cycle variations and extremes is necessary to accomplish this benefit to society.

  6. Advances in understanding phosphorus cycling in inland waters - Their significance for South African limnology

    CSIR Research Space (South Africa)

    Twinch, AJ

    1980-02-01

    Full Text Available The definitions of the different phosphorus compound fractions present in inland waters are reviewed and the limitations of the definitions discussed. The development of models of phosphorus cycling is summarized. Attempts to establish...

  7. Examining Language To Capture Scientific Understandings: The Case of the Water Cycle.

    Science.gov (United States)

    Varelas, Maria; Pappas, Christine; Barry, Anne; O'Neill, Amy

    2001-01-01

    Presents units that address states of matter and changes of states of matter linked with the water cycle and integrates literacy and science. Discusses the language in science books. Lists characteristics of good science inquiry units. (Contains 11 references.) (ASK)

  8. Enhancing our Understanding of the Arctic Atmospheric Hydrological Cycle using Observations from an International Arctic Water Vapor Isotope Network

    Science.gov (United States)

    Masson-Delmotte, V.; Steen-Larsen, H. C.; Werner, M.

    2014-12-01

    Due to the role of water vapor and clouds in positive feedback mechanisms, water vapor is a key player in the future of Arctic climate. Ecosystems and human societies are vulnerable to climate change through even minor changes in precipitation patterns, including the occurrence of extreme events. It is therefore essential to monitor, understand and model correctly the mechanisms of transport of moisture, at the regional scale. Water isotopes - the relative abundance of heavy and light water in the atmosphere - hold the key to understanding the physical processes influencing future Arctic climate. Water isotope observations in the atmosphere are a modern analog to the Rosetta Stone for understanding the processes involved in evaporation, moisture transport, cloud formation and to track moisture origin. Indeed, technological progress now allows continuous, in situ or remote sensing monitoring of water isotopic composition. In parallel, a growing number of atmospheric circulation models are equipped with the explicit modeling of water stable isotopes, allowing evaluation at the process scale. We present here data obtained through national or bi-national initiatives from stations onboard an icebreaker and land based stations in Greenland, Iceland, Svalbard, and Siberia - together forming an emerging international Arctic water vapor isotope network. Using water tagging and back trajectories we show water vapor of Arctic origin to have a high d-excess fingerprint. This show the potential of using water vapor isotopes as tracer for changes in the Arctic hydrological cycle. Using the network of monitoring stations we quantify using the isotopes advection of air masses and the key processes affecting the water vapor en-route between stations. We have successfully used the obtained atmospheric water vapor isotope observations to benchmark isotope-enabled general circulation models. This comparison allows us to address key processes of the atmospheric hydrological cycle for

  9. Global water cycle

    Science.gov (United States)

    Robertson, Franklin; Goodman, Steven J.; Christy, John R.; Fitzjarrald, Daniel E.; Chou, Shi-Hung; Crosson, William; Wang, Shouping; Ramirez, Jorge

    1993-01-01

    This research is the MSFC component of a joint MSFC/Pennsylvania State University Eos Interdisciplinary Investigation on the global water cycle extension across the earth sciences. The primary long-term objective of this investigation is to determine the scope and interactions of the global water cycle with all components of the Earth system and to understand how it stimulates and regulates change on both global and regional scales. Significant accomplishments in the past year are presented and include the following: (1) water vapor variability; (2) multi-phase water analysis; (3) global modeling; and (4) optimal precipitation and stream flow analysis and hydrologic processes.

  10. Anticipated Improvements in Precipitation Physics and Understanding of Water Cycle from GPM Mission

    Science.gov (United States)

    Smith, Eric A.

    2003-01-01

    The GPM mission is currently planned for start in the late-2007 to early-2008 time frame. Its main scientific goal is to help answer pressing scientific problems arising within the context of global and regional water cycles. These problems cut across a hierarchy of scales and include climate-water cycle interactions, techniques for improving weather and climate predictions, and better methods for combining observed precipitation with hydrometeorological prediction models for applications to hazardous flood-producing storms, seasonal flood/draught conditions, and fresh water resource assessments. The GPM mission will expand the scope of precipitation measurement through the use of a constellation of some 9 satellites, one of which will be an advanced TRMM-like core satellite carrying a dual-frequency Ku-Ka band precipitation radar and an advanced, multifrequency passive microwave radiometer with vertical-horizontal polarization discrimination. The other constellation members will include new dedicated satellites and co-existing operational/research satellites carrying similar (but not identical) passive microwave radiometers. The goal of the constellation is to achieve approximately 3-hour sampling at any spot on the globe -- continuously. The constellation s orbit architecture will consist of a mix of sun-synchronous and non-sun-synchronous satellites with the core satellite providing measurements of cloud-precipitation microphysical processes plus calibration-quality rainrate retrievals to be used with the other retrieval information to ensure bias-free constellation coverage. GPM is organized internationally, involving existing, pending, projected, and under-study partnerships which will link NASA and NOAA in the US, NASDA in Japan, ESA in Europe, ISRO in India, CNES in France, and possibly AS1 in Italy, KARI in South Korea, CSA in Canada, and AEB in Brazil. Additionally, the program is actively pursuing agreements with other international collaborators and

  11. Carbon-water Cycling in the Critical Zone: Understanding Ecosystem Process Variability Across Complex Terrain

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, Holly [Univ. of Colorado, Boulder, CO (United States); Brooks, Paul [Univ. of Utah, Salt Lake City, UT (United States); Univ. of Arizona, Tucson, AZ (United States)

    2016-06-16

    One of the largest knowledge gaps in environmental science is the ability to understand and predict how ecosystems will respond to future climate variability. The links between vegetation, hydrology, and climate that control carbon sequestration in plant biomass and soils remain poorly understood. Soil respiration is the second largest carbon flux of terrestrial ecosystems, yet there is no consensus on how respiration will change as water availability and temperature co-vary. To address this knowledge gap, we use the variation in soil development and topography across an elevation and climate gradient on the Front Range of Colorado to conduct a natural experiment that enables us to examine the co-evolution of soil carbon, vegetation, hydrology, and climate in an accessible field laboratory. The goal of this project is to further our ability to combine plant water availability, carbon flux and storage, and topographically driven hydrometrics into a watershed scale predictive model of carbon balance. We hypothesize: (i) landscape structure and hydrology are important controls on soil respiration as a result of spatial variability in both physical and biological drivers: (ii) variation in rates of soil respiration during the growing season is due to corresponding shifts in belowground carbon inputs from vegetation; and (iii) aboveground carbon storage (biomass) and species composition are directly correlated with soil moisture and therefore, can be directly related to subsurface drainage patterns.

  12. The Coupled Mars Dust and Water Cycles: Understanding How Clouds Affect the Vertical Distribution and Meridional Transport of Dust and Water.

    Science.gov (United States)

    Kahre, M. A.

    2015-01-01

    The dust and water cycles are crucial to the current Martian climate, and they are coupled through cloud formation. Dust strongly impacts the thermal structure of the atmosphere and thus greatly affects atmospheric circulation, while clouds provide radiative forcing and control the hemispheric exchange of water through the modification of the vertical distributions of water and dust. Recent improvements in the quality and sophistication of both observations and climate models allow for a more comprehensive understanding of how the interaction between the dust and water cycles (through cloud formation) affects the dust and water cycles individually. We focus here on the effects of clouds on the vertical distribution of dust and water, and how those vertical distributions control the net meridional transport of water. For this study, we utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) combined with the NASA ARC Mars Global Climate Model (MGCM). We demonstrate that the magnitude and nature of the net meridional transport of water between the northern and southern hemispheres during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. We further examine how clouds influence the atmospheric thermal structure and thus the vertical structure of the cloud belt. Our goal is to identify and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  13. GEOSS Water Cycle Integrator

    Science.gov (United States)

    Koike, Toshio; Lawford, Richard; Cripe, Douglas

    2013-04-01

    It is critically important to recognize and co-manage the fundamental linkages across the water-dependent domains; land use, including deforestation; ecosystem services; and food-, energy- and health-securities. Sharing coordinated, comprehensive and sustained observations and information for sound decision-making is a first step; however, to take full advantage of these opportunities, we need to develop an effective collaboration mechanism for working together across different disciplines, sectors and agencies, and thereby gain a holistic view of the continuity between environmentally sustainable development, climate change adaptation and enhanced resilience. To promote effective multi-sectoral, interdisciplinary collaboration based on coordinated and integrated efforts, the intergovernmental Group on Earth Observations (GEO) is implementing the Global Earth Observation System of Systems (GEOSS). A component of GEOSS now under development is the "GEOSS Water Cycle Integrator (WCI)", which integrates Earth observations, modeling, data and information, management systems and education systems. GEOSS/WCI sets up "work benches" by which partners can share data, information and applications in an interoperable way, exchange knowledge and experiences, deepen mutual understanding and work together effectively to ultimately respond to issues of both mitigation and adaptation. (A work bench is a virtual geographical or phenomenological space where experts and managers collaborate to use information to address a problem within that space). GEOSS/WCI enhances the coordination of efforts to strengthen individual, institutional and infrastructure capacities, especially for effective interdisciplinary coordination and integration. GEO has established the GEOSS Asian Water Cycle Initiative (AWCI) and GEOSS African Water Cycle Coordination Initiative (AfWCCI). Through regional, inter-disciplinary, multi-sectoral integration and inter-agency coordination in Asia and Africa, GEOSS

  14. The global water cycle

    Science.gov (United States)

    Oki, Taikan; Entekhabi, Dara; Harrold, Timothy Ives

    The global water cycle consists of the oceans, water in the atmosphere, and water in the landscape. The cycle is closed by the fluxes between these reservoirs. Although the amounts of water in the atmosphere and river channels are relatively small, the fluxes are high, and this water plays a critical role in society, which is dependent on water as a renewable resource. On a global scale, the meridional component of river runoff is shown to be about 10% of the corresponding atmospheric and oceanic meridional fluxes. Artificial storages and water withdrawals for irrigation have significant impacts on river runoff and hence on the overall global water cycle. Fully coupled atmosphere-land-river-ocean models of the world's climate are essential to assess the future water resources and scarcities in relation to climate change. An assessment of future water scarcity suggests that water shortages will worsen, with a very significant increase in water stress in Africa. The impact of population growth on water stress is shown to be higher than that of climate change. The virtual water trade, which should be taken into account when discussing the global water cycle and water scarcity, is also considered. The movement of virtual water from North America, Oceania, and Europe to the Middle East, North West Africa, and East Asia represents significant global savings of water. The anticipated world water crisis widens the opportunities for the study of the global water cycle to contribute to the development of sustainability within society and to the solution of practical social problems.

  15. The Water Cycle Solutions Network

    Science.gov (United States)

    Houser, P.; Belvedere, D.; Imam, B.; Schiffer, R.; Schlosser, C.; Gupta, H.; Welty, C.; Vörösmarty, C.; Matthews, D.; Lawford, R.

    2006-12-01

    The goal of the Water cycle Solutions Network is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend research results to augment decision support tools and meet national needs. WaterNet will engage relevant NASA water cycle research resources and community-of-practice organizations, to develop what we term an "actionable database" that can be used to communicate and connect water cycle research results (WCRs) towards the improvement of water-related Decision Support Tools (DSTs). An actionable database includes enough sufficient knowledge about its nodes and their heritage so that connections between these nodes are identifiable and robust. Recognizing the many existing highly valuable water-related science and application networks, we will focus the balance of our efforts on enabling their interoperability in a solutions network context. We will initially focus on identification, collection, and analysis of the two end points, these being the WCRs and water related DSTs. We will then develop strategies to connect these two end points via innovative communication strategies, improved user access to NASA resources, improved water cycle research community appreciation for DST requirements, improved policymaker, management and stakeholder knowledge of NASA research and application products, and improved identification of pathways for progress. Finally, we will develop relevant benchmarking and metrics, to understand the network's characteristics, to optimize its performance, and to establish sustainability. The WaterNet will deliver numerous pre-evaluation reports that will identify the pathways for improving the collective ability of the water cycle community to routinely harness WCRs that address crosscutting water cycle challenges.

  16. New era of satellite chlorophyll fluorescence and soil moisture observations leads to advances in the predictive understanding of global terrestrial coupled carbon-water cycles

    Science.gov (United States)

    Qiu, B.; Xue, Y.; Fisher, J.; Guo, W.

    2017-12-01

    The terrestrial carbon cycle and water cycle are coupled through a multitude of connected processes among soil, roots, leaves, and the atmosphere. The strength and sensitivity of these couplings are not yet well known at the global scale, which contributes to uncertainty in predicting the terrestrial water and carbon budgets. For the first time, we now have synchronous, high fidelity, global-scale satellite observations of critical terrestrial carbon and water cycle components: sun-induced chlorophyll fluorescence (SIF) and soil moisture. We used these observations within the framework of a well-established global terrestrial biosphere model (Simplified Simple Biosphere Model version 2.0, SSiB2) to investigate carbon-water coupling processes. We updated SSiB2 to include a mechanistic representation of SIF and tested the sensitivity of model parameters to improve the simulation of both SIF and soil moisture with the ultimate objective of improving the first-order terrestrial carbon component, gross primary production (GPP). Although several vegetation parameters, such as leaf area index (LAI) and green leaf fraction, improved the simulated SIF, and several soil parameters, such as hydraulic conductivity, improved simulated soil moisture, their effects were mainly limited to their respective cycles. One parameter emerged as the key coupler between the carbon and water cycles: the wilting point. Updates to the wilting point significantly improved the simulations for both soil moisture and SIF, as well as GPP. This study demonstrates the value of synchronous global measurements of the terrestrial carbon and water cycles in improving the understanding of coupled carbon-water cycles.

  17. Leveraging this Golden Age of Remote Sensing and Modeling of Terrestrial Hydrology to Understand Water Cycling in the Water Availability Grand Challenge for North America

    Science.gov (United States)

    Painter, T. H.; Famiglietti, J. S.; Stephens, G. L.

    2016-12-01

    We live in a time of increasing strains on our global fresh water availability due to increasing population, warming climate, changes in precipitation, and extensive depletion of groundwater supplies. At the same time, we have seen enormous growth in capabilities to remotely sense the regional to global water cycle and model complex systems with physically based frameworks. The GEWEX Water Availability Grand Challenge for North America is poised to leverage this convergence of remote sensing and modeling capabilities to answer fundamental questions on the water cycle. In particular, we envision an experiment that targets the complex and resource-critical Western US from California to just into the Great Plains, constraining physically-based hydrologic modeling with the US and international remote sensing capabilities. In particular, the last decade has seen the implementation or soon-to-be launch of water cycle missions such as GRACE and GRACE-FO for groundwater, SMAP for soil moisture, GPM for precipitation, SWOT for terrestrial surface water, and the Airborne Snow Observatory for snowpack. With the advent of convection-resolving mesoscale climate and water cycle modeling (e.g. WRF, WRF-Hydro) and mesoscale models capable of quantitative assimilation of remotely sensed data (e.g. the JPL Western States Water Mission), we can now begin to test hypotheses on the nature and changes in the water cycle of the Western US from a physical standpoint. In turn, by fusing water cycle science, water management, and ecosystem management while addressing these hypotheses, this golden age of remote sensing and modeling can bring all fields into a markedly less uncertain state of present knowledge and decadal scale forecasts.

  18. Dissolved Silver in Marine Waters: Reviewing Three Decades of Advances in Analytical Techniques and Understanding its Biogeochemical Cycling

    Science.gov (United States)

    Ndungu, K.; Flegal, A. R., Jr.

    2015-12-01

    Although billions of dollars have been spent over the past half-century to reduce contamination of U.S. waters, quantifying parts-per-billion reductions in surface water concentration since has been relatively unsuccessful. The reasons for the failure in identifying the benefits of these remediative efforts include: (i) historic (pre-1980) problems in accurately sampling and analyzing trace element concentrations at parts-per-billion level, so that temporal reductions in trace metal contamination reflected improved sampling and analytical accuracy rather than real decreases in those concentrations; (ii) limited seasonal and long term research. Silver in its ionic form is more toxic to aquatic organisms than any other metal except Hg. Because Ag is not common naturally in the environment, its elevated presence in water, sediment or biological tissues is usually indicative of anthropogenic influences. However, there is very little published data on Ag levels in both water and sediment. The published studies include Ag levels in a few U.S. estuarine waters, including detailed and time series studies for the San Francisco Estuary system by the WIGS lab at UC Santa Cruz. In the open Ocean, Ag measurements are limited to a few studies in the North and South Pacific, The North and South Atlantic. However, as Gallon and Flegal recently noted, there is no available data on Ag concentrations from the Indian Ocean! Most of the dissolved Ag data from the Atlantic was made in WIGS lab at UC Santa Cruz Analytical determination of Ag in seawater has come a long way since Murozumi reported the first dissolved Ag measurements from the N. Pacific in 1981 using isotope dilution MS after solvent extraction. In this presentation I will review analytical developments for Ag determination in the last three decades. I will also highlight the missing data gaps and present new tentative data on dissolved Ag concentration and cycling in polar regions including the Antarctic (Amundsen Sea

  19. Forests and water cycle

    Directory of Open Access Journals (Sweden)

    Iovino F

    2009-06-01

    Full Text Available Based on a comprehensive literature analysis, a review on factors that control water cycle and water use in Mediterranean forest ecosystems is presented, including environmental variables and silvicultural treatments. This important issue is considered in the perspective of sustainable forest management of Mediterranean forests, with special regard to crucial environmental hazards such as forest fires and desertification risks related to climate change.

  20. Creative Writing and the Water Cycle.

    Science.gov (United States)

    Young, Rich; Virmani, Jyotika; Kusek, Kristen M.

    2001-01-01

    Uses the story "The Life of a Drop of Water" to initiate a creative writing activity and teach about the water cycle. Attempts to stimulate students' understanding of a scientific concept by using their imaginations. (YDS)

  1. Understanding the impacts of allocation approaches during process-based life cycle assessment of water treatment chemicals.

    Science.gov (United States)

    Alvarez-Gaitan, Juan P; Peters, Gregory M; Short, Michael D; Schulz, Matthias; Moore, Stephen

    2014-01-01

    Chemicals are an important component of advanced water treatment operations not only in terms of economics but also from an environmental standpoint. Tools such as life cycle assessment (LCA) are useful for estimating the environmental impacts of water treatment operations. At the same time, LCA analysts must manage several fundamental and as yet unresolved methodological challenges, one of which is the question of how best to "allocate" environmental burdens in multifunctional processes. Using water treatment chemicals as a case study example, this article aims to quantify the variability in greenhouse gas emissions estimates stemming from methodological choices made in respect of allocation during LCA. The chemicals investigated and reported here are those most important to coagulation and disinfection processes, and the outcomes are illustrated on the basis of treating 1000 ML of noncoagulated and nondisinfected water. Recent process and economic data for the production of these chemicals is used and methodological alternatives for solving the multifunctionality problem, including system expansion and mass, exergy, and economic allocation, are applied to data from chlor-alkali plants. In addition, Monte Carlo simulation is included to provide a comprehensive picture of the robustness of economic allocation results to changes in the market price of these industrial commodities. For disinfection, results demonstrate that chlorine gas has a lower global warming potential (GWP) than sodium hypochlorite regardless of the technique used to solve allocation issues. For coagulation, when mass or economic allocation is used to solve the multifunctionality problem in the chlor-alkali facility, ferric chloride was found to have a higher GWP than aluminum sulfate and a slightly lower burden where system expansion or exergy allocation are applied instead. Monte Carlo results demonstrate that when economic allocation is used, GWP results were relatively robust and resilient

  2. Understanding the petrochemical cycle: Part 1

    International Nuclear Information System (INIS)

    Sedriks, W.

    1994-01-01

    Fitness in the hydrocarbon processing industry (HPI) arena involves understanding and coping with business cycles: supply and demand. This becomes increasingly more important as the industry globalizes and matures. Competitive-edge thinking needs to look hard at the forces that influence business cycles. Recognition of potential pitfalls is very important when considering: future capacity expansion, mergers and acquisitions, market departure, plant closure, potential product substitution, etc. Understanding pricing mechanisms and the workings of hockey-stick profitability profiles help HPI operators endure cycle downturns and prepare plants to maximize profits for the next upswing. The paper discusses characteristic trends, cycles in the hydrocarbon processing industry, current conditions, and mitigating cycle effects

  3. The water cycle for kids

    Science.gov (United States)

    Neno, Stephanie; Morgan, Jim; Zonolli, Gabriele; Perlman, Howard; Gonthier, Gerard

    2013-01-01

    The U.S. Geological Survey (USGS) and the Food and Agriculture Organization of the United Nations (FAO) have created a water-cycle diagram for use in elementary and middle schools. The diagram is available in many languages. This diagram is part of the USGS's Water Science School, in which the water cycle is described in detail.

  4. Ammonia-water Rankine cycle

    International Nuclear Information System (INIS)

    Bo Hanliang; Ma Changwen; Wu Shaorong

    1997-01-01

    On characteristics of heating source and cooling source in nuclear heating reactor cooperation, the authors advance a new kind of power cycle in which a multicomponent mixture as the work fluid, ammonia-water Rankine cycle, describe its running principle, and compare it with steam Rankine cycle in the same situation. The result is that: the new kind of power cycle, ammonia-water Rankine cycle has higher electricity efficiency; it suits for the situation of heating source and cooling source which offered by nuclear heating reactor cooperation. For low temperature heating source, it maybe has a widely application

  5. Understanding the Global Water and Energy Cycle Through Assimilation of Precipitation-Related Observations: Lessons from TRMM and Prospects for GPM

    Science.gov (United States)

    Hou, Arthur; Zhang, Sara; daSilva, Arlindo; Li, Frank; Atlas, Robert (Technical Monitor)

    2002-01-01

    Understanding the Earth's climate and how it responds to climate perturbations relies on what we know about how atmospheric moisture, clouds, latent heating, and the large-scale circulation vary with changing climatic conditions. The physical process that links these key climate elements is precipitation. Improving the fidelity of precipitation-related fields in global analyses is essential for gaining a better understanding of the global water and energy cycle. In recent years, research and operational use of precipitation observations derived from microwave sensors such as the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager and Special Sensor Microwave/Imager (SSM/I) have shown the tremendous potential of using these data to improve global modeling, data assimilation, and numerical weather prediction. We will give an overview of the benefits of assimilating TRMM and SSM/I rain rates and discuss developmental strategies for using space-based rainfall and rainfall-related observations to improve forecast models and climate datasets in preparation for the proposed multi-national Global Precipitation Mission (GPM).

  6. The Mars water cycle

    Science.gov (United States)

    Davies, D. W.

    1981-01-01

    A model has been developed to test the hypothesis that the observed seasonal and latitudinal distribution of water on Mars is controlled by the sublimation and condensation of surface ice deposits in the Arctic and Antarctic, and the meridional transport of water vapor. Besides reproducing the observed water vapor distribution, the model correctly reproduces the presence of a large permanent ice cap in the Arctic and not in the Antarctic. No permanent ice reservoirs are predicted in the temperate or equatorial zones. Wintertime ice deposits in the Arctic are shown to be the source of the large water vapor abundances observed in the Arctic summertime, and the moderate water vapor abundances in the northern temperate region. Model calculations suggest that a year without dust storms results in very little change in the water vapor distribution. The current water distribution appears to be the equilibrium distribution for present atmospheric conditions.

  7. The NEWS Water Cycle Climatology

    Science.gov (United States)

    Rodell, Matthew; Beaudoing, Hiroko Kato; L'Ecuyer, Tristan; William, Olson

    2012-01-01

    NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the first phase of the NEWS Water and Energy Cycle Climatology project was to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project was a multi-institutional collaboration with more than 20 active contributors. This presentation will describe the results of the water cycle component of the first phase of the project, which include seasonal (monthly) climatologies of water fluxes over land, ocean, and atmosphere at continental and ocean basin scales. The requirement of closure of the water budget (i.e., mass conservation) at various scales was exploited to constrain the flux estimates via an optimization approach that will also be described. Further, error assessments were included with the input datasets, and we examine these in relation to inferred uncertainty in the optimized flux estimates in order to gauge our current ability to close the water budget within an expected uncertainty range.

  8. Mirador - Water and Energy Cycles

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth Science data access made simple. Through water and energy cycle research we can improve hurricane prediction, quantify tropical rainfall and eventually begin...

  9. The Development and Validation of a Three-Tier Diagnostic Test Measuring Pre-Service Elementary Education and Secondary Science Teachers' Understanding of the Water Cycle

    Science.gov (United States)

    Schaffer, Dannah Lynn

    2013-01-01

    The main goal of this research study was to develop and validate a three-tier diagnostic test to determine pre-service teachers' (PSTs) conceptual knowledge of the water cycle. For a three-tier diagnostic test, the first tier assesses content knowledge; in the second tier, a reason is selected for the content answer; and the third tier allows…

  10. Children's Views about the Water Cycle.

    Science.gov (United States)

    Bar, Varda

    1989-01-01

    Israeli children's (kindergarten to grade nine) explanations about the water cycle are described. Reports the children's views about the source of clouds and the mechanism of rainfall. It was concluded that understanding evaporation is a necessary condition for explaining a mechanism of rain containing the ideas of condensation and heaviness. (YP)

  11. Round and Round the Water Cycle

    Science.gov (United States)

    Bradley, Barbara A.

    2017-01-01

    Children enjoy water play, and kindergarten children can learn about the water cycle. Teachers are already introducing elements of the water cycle when discussing weather and bodies of water. The water cycle also can be a springboard for teaching children about plants and animals and the importance of water for sustaining life and shaping our…

  12. Evaluation method for regional water cycle health based on nature-society water cycle theory

    Science.gov (United States)

    Zhang, Shanghong; Fan, Weiwei; Yi, Yujun; Zhao, Yong; Liu, Jiahong

    2017-08-01

    Regional water cycles increasingly reflect the dual influences of natural and social processes, and are affected by global climate change and expanding human activities. Understanding how to maintain a healthy state of the water cycle has become an important proposition for sustainable development of human society. In this paper, natural-social attributes of the water cycle are synthesized and 19 evaluation indices are selected from four dimensions, i.e., water-based ecosystem integrity, water quality, water resource abundance and water resource use. A hierarchical water-cycle health evaluation system is established. An analytic hierarchy process is used to set the weight of the criteria layer and index layer, and the health threshold for each index is defined. Finally, a water-cycle health composite-index assessment model and fuzzy recognition model are constructed based on the comprehensive index method and fuzzy mathematics theory. The model is used to evaluate the state of health of the water cycle in Beijing during 2010-2014 and in the planning year (late 2014), considering the transfer of 1 billion m3 of water by the South-to-North Water Diversion Project (SNWDP). The results show health scores for Beijing of 2.87, 3.10, 3.38, 3.11 and 3.02 during 2010-2014. The results of fuzzy recognition show that the sub-healthy grade accounted for 54%, 49%, 61% and 49% of the total score, and all years had a sub-healthy state. Results of the criteria layer analysis show that water ecosystem function, water quality and water use were all at the sub-healthy level and that water abundance was at the lowest, or sick, level. With the water transfer from the SNWDP, the health score of the water cycle in Beijing reached 4.04. The healthy grade accounted for 60% of the total score, and the water cycle system was generally in a healthy state. Beijing's water cycle health level is expected to further improve with increasing water diversion from the SNWDP and industrial

  13. The Water to Water Cycles in Microalgae.

    Science.gov (United States)

    Curien, Gilles; Flori, Serena; Villanova, Valeria; Magneschi, Leonardo; Giustini, Cécile; Forti, Giorgio; Matringe, Michel; Petroutsos, Dimitris; Kuntz, Marcel; Finazzi, Giovanni

    2016-07-01

    In oxygenic photosynthesis, light produces ATP plus NADPH via linear electron transfer, i.e. the in-series activity of the two photosystems: PSI and PSII. This process, however, is thought not to be sufficient to provide enough ATP per NADPH for carbon assimilation in the Calvin-Benson-Bassham cycle. Thus, it is assumed that additional ATP can be generated by alternative electron pathways. These circuits produce an electrochemical proton gradient without NADPH synthesis, and, although they often represent a small proportion of the linear electron flow, they could have a huge importance in optimizing CO 2 assimilation. In Viridiplantae, there is a consensus that alternative electron flow comprises cyclic electron flow around PSI and the water to water cycles. The latter processes include photosynthetic O 2 reduction via the Mehler reaction at PSI, the plastoquinone terminal oxidase downstream of PSII, photorespiration (the oxygenase activity of Rubisco) and the export of reducing equivalents towards the mitochondrial oxidases, through the malate shuttle. In this review, we summarize current knowledge about the role of the water to water cycles in photosynthesis, with a special focus on their occurrence and physiological roles in microalgae. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Changing water cycle over Korea

    Science.gov (United States)

    Yoon, J.

    2017-12-01

    In 2015, Korea experienced relatively strong drought, and annual mean precipitation was the third lowest since observation started at 1969 causing adverse impact on the several sectors including farming industry. Most precipitation in Korea occurs during summer season. In case of 2015 Korean drought, summer rainfall was much below than normal. On the other hand, another severe drought occurred in 2017 spring, which was followed by a couple of heavy rainfall cases that caused human casualties and damage in various sectors. Here we want to analyze this fast shifting of water cycle over Korea with a focus on its causing mechanisms and large scale atmospheric circulation features.

  15. Nationally Appropriate Mitigation Action: Understanding NAMA Cycle

    DEFF Research Database (Denmark)

    Sharma, Sudhir; Desgain, Denis DR

    There is no internationally defined or agreed Nationally Appropriate Mitigation Action(NAMA) cycle, as was the case, for example, with the Clean Development Mechanisms (CDM) project cycle. However, there are some common steps that NAMA identification, formulation, and implementation will all go...

  16. Following the Water Cycle to Sustainability

    Science.gov (United States)

    Lutz, T. M.

    2012-12-01

    systems learning model based on feedback and limits to perception. I focus on a part of the course that builds on connections that start in the hydrosphere and that includes some basic experiential learning about the water cycle and students' reliance on it. We measure and visualize aspects of the water cycle in nearby areas of campus (designated as an outdoor classroom and demonstration garden). The evapotranspiration flow is used to introduce notions of what can happen when flows are not sensed (e.g., invisible to us). Students use an online water footprint calculator to discover how large their water reliance is, particularly through energy generation, food consumption and food waste; and how far their water reach extends (virtual water trade). They consider the ethical implications of their water use in a world in which it is becoming a more rare resource and in some cases a valued commodity. They learn about non-utilitarian values of water based on an activity on the values of nature. They look at local, community-based efforts to improve water quality and to re-localize water dependence. A reading from Aldo Leopold puts the water cycle in a historical and cultural perspective. The water cycle is strongly interwoven with natural and human energy systems, the climate system, the carbon cycle, nutrient cycles, the rock cycle, and serves as a starting point to reach many other topics.

  17. Increasing water cycle extremes in California and in relation to ENSO cycle under global warming

    OpenAIRE

    Yoon, Jin-Ho; Wang, S-Y Simon; Gillies, Robert R.; Kravitz, Ben; Hipps, Lawrence; Rasch, Philip J.

    2015-01-01

    Since the winter of 2013–2014, California has experienced its most severe drought in recorded history, causing statewide water stress, severe economic loss and an extraordinary increase in wildfires. Identifying the effects of global warming on regional water cycle extremes, such as the ongoing drought in California, remains a challenge. Here we analyse large-ensemble and multi-model simulations that project the future of water cycle extremes in California as well as to understand those assoc...

  18. Understanding the hydrologic control of N cycle: Effect of water filled pore space on heterotrophic nitrification, denitrification and dissimilatory nitrate reduction to ammonium mechanisms in unsaturated soils.

    Science.gov (United States)

    Mekala, C; Nambi, Indumathi M

    2017-07-01

    Irrigation practice will be effective if it supplies optimal water and nutrients to crops and act as a filter for contaminants leaching to ground water. There is always a scope for improving the fertilizer use efficiency and scheduling of wastewater irrigation if the fate and transport of nutrients particularly nitrogenous compounds in the soil are well understood. In the present study, nitrogen transport experiments for two different agricultural soils are performed under varying saturation 33, 57, 78% water filled pore space for sandy soil 1 and 52, 81 and 96% for loam soil 2. A HYDRUS 2D model with constructed wetland (CW2D) module could simulate aerobic nitrification and anoxic denitrification well for both soils and estimated the reaction kinetics. A hot spot of Dissimilatory Nitrate Reduction to Ammonium (DNRA) pathway has been observed at 81% moisture content for a loamy sand soil. The presence of high organic content and reductive soil environment (5.53 C/NO 3 - ratio; ORP=-125mV) results in ammonium accumulation of 16.85mg in the soil. The overall observation from this study is nitrification occurs in a wide range of saturations 33-78% with highest at 57% whereas denitrification is significant at higher water saturations 57-78% for sandy soil texture. For a loamy sand soil, denitrification is dominant at 96% saturation with least nitrification at all saturation studies. The greatest nitrogen losses (>90%) was observed for soil 2 while 30-70% for soil1. The slow dispersive subsurface transport with varying oxygen dynamics enhanced nitrogen losses from soil2 due to lesser soil permeability. This in turn, prevents NO 3 - leaching and groundwater contamination. This type of modeling study should be used before planning field experiments for designing optimal irrigation and fertigation schedules. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Understanding the hydrologic control of N cycle: Effect of water filled pore space on heterotrophic nitrification, denitrification and dissimilatory nitrate reduction to ammonium mechanisms in unsaturated soils

    Science.gov (United States)

    Mekala, C.; Nambi, Indumathi M.

    2017-07-01

    Irrigation practice will be effective if it supplies optimal water and nutrients to crops and act as a filter for contaminants leaching to ground water. There is always a scope for improving the fertilizer use efficiency and scheduling of wastewater irrigation if the fate and transport of nutrients particularly nitrogenous compounds in the soil are well understood. In the present study, nitrogen transport experiments for two different agricultural soils are performed under varying saturation 33, 57, 78% water filled pore space for sandy soil 1 and 52, 81 and 96% for loam soil 2. A HYDRUS 2D model with constructed wetland (CW2D) module could simulate aerobic nitrification and anoxic denitrification well for both soils and estimated the reaction kinetics. A hot spot of Dissimilatory Nitrate Reduction to Ammonium (DNRA) pathway has been observed at 81% moisture content for a loamy sand soil. The presence of high organic content and reductive soil environment (5.53 C/NO3- ratio; ORP = - 125 mV) results in ammonium accumulation of 16.85 mg in the soil. The overall observation from this study is nitrification occurs in a wide range of saturations 33-78% with highest at 57% whereas denitrification is significant at higher water saturations 57-78% for sandy soil texture. For a loamy sand soil, denitrification is dominant at 96% saturation with least nitrification at all saturation studies. The greatest nitrogen losses (> 90%) was observed for soil 2 while 30-70% for soil1. The slow dispersive subsurface transport with varying oxygen dynamics enhanced nitrogen losses from soil2 due to lesser soil permeability. This in turn, prevents NO3- leaching and groundwater contamination. This type of modeling study should be used before planning field experiments for designing optimal irrigation and fertigation schedules.

  20. Observing the Global Water Cycle from Space

    Science.gov (United States)

    Hildebrand, P. H.

    2004-01-01

    This paper presents an approach to measuring all major components of the water cycle from space. Key elements of the global water cycle are discussed in terms of the storage of water-in the ocean, air, cloud and precipitation, in soil, ground water, snow and ice, and in lakes and rivers, and in terms of the global fluxes of water between these reservoirs. Approaches to measuring or otherwise evaluating the global water cycle are presented, and the limitations on known accuracy for many components of the water cycle are discussed, as are the characteristic spatial and temporal scales of the different water cycle components. Using these observational requirements for a global water cycle observing system, an approach to measuring the global water cycle from space is developed. The capabilities of various active and passive microwave instruments are discussed, as is the potential of supporting measurements from other sources. Examples of space observational systems, including TRMM/GPM precipitation measurement, cloud radars, soil moisture, sea surface salinity, temperature and humidity profiling, other measurement approaches and assimilation of the microwave and other data into interpretative computer models are discussed to develop the observational possibilities. The selection of orbits is then addressed, for orbit selection and antenna size/beamwidth considerations determine the sampling characteristics for satellite measurement systems. These considerations dictate a particular set of measurement possibilities, which are then matched to the observational sampling requirements based on the science. The results define a network of satellite instrumentation systems, many in low Earth orbit, a few in geostationary orbit, and all tied together through a sampling network that feeds the observations into a data-assimilative computer model.

  1. Global Water Cycle Diagrams Minimize Human Influence and Over-represent Water Security

    Science.gov (United States)

    Abbott, B. W.; Bishop, K.; Zarnetske, J. P.; Minaudo, C.; Chapin, F. S., III; Plont, S.; Marçais, J.; Ellison, D.; Roy Chowdhury, S.; Kolbe, T.; Ursache, O.; Hampton, T. B.; GU, S.; Chapin, M.; Krause, S.; Henderson, K. D.; Hannah, D. M.; Pinay, G.

    2017-12-01

    The diagram of the global water cycle is the central icon of hydrology, and for many people, the point of entry to thinking about key scientific concepts such as conservation of mass, teleconnections, and human dependence on ecological systems. Because humans now dominate critical components of the hydrosphere, improving our understanding of the global water cycle has graduated from an academic exercise to an urgent priority. To assess how the water cycle is conceptualized by researchers and the general public, we analyzed 455 water cycle diagrams from textbooks, scientific articles, and online image searches performed in different languages. Only 15% of diagrams integrated human activity into the water cycle and 77% showed no sign of humans whatsoever, although representation of humans varied substantially by region (lowest in China, N. America, and Australia; highest in Western Europe). The abundance and accessibility of freshwater resources were overrepresented, with 98% of diagrams omitting water pollution and climate change, and over 90% of diagrams making no distinction for saline groundwater and lakes. Oceanic aspects of the water cycle (i.e. ocean size, circulation, and precipitation) and related teleconnections were nearly always underrepresented. These patterns held across disciplinary boundaries and through time. We explore the historical and contemporary reasons for some of these biases and present a revised version of the global water cycle based on research from natural and social sciences. We conclude that current depictions of the global water cycle convey a false sense of water security and that reintegrating humans into water cycle diagrams is an important first step towards understanding and sustaining the hydrosocial cycle.

  2. WaterNet: The NASA Water Cycle Solutions Network

    Science.gov (United States)

    Houser, P. R.; Belvedere, D. R.; Pozzi, W. H.; Imam, B.; Schiffer, R.; Lawford, R.; Schlosser, C. A.; Gupta, H.; Welty, C.; Vorosmarty, C.; Matthews, D.

    2007-12-01

    Water is essential to life and directly impacts and constrains society's welfare, progress, and sustainable growth, and is continuously being transformed by climate change, erosion, pollution, and engineering practices. The water cycle is a critical resource for industry, agriculture, natural ecosystems, fisheries, aquaculture, hydroelectric power, recreation, and water supply, and is central to drought, flood, transportation-aviation, and disease hazards. It is therefore a national priority to use advancements in scientific observations and knowledge to develop solutions to the water challenges faced by society. NASA's unique role is to use its view from space to improve water and energy cycle monitoring and prediction. NASA has collected substantial water cycle information and knowledge that must be transitioned to develop solutions for all twelve National Priority Application (NPA) areas. NASA cannot achieve this goal alone -it must establish collaborations and interoperability with existing networks and nodes of research organizations, operational agencies, science communities, and private industry. Therefore, WaterNet: The NASA Water Cycle Solutions Network goal is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment decision support tools and meet national needs. WaterNet is a catalyst for discovery and sharing of creative solutions to water problems. It serves as a creative, discovery process that is the entry-path for a research-to-solutions systems engineering NASA framework, with the end result to ultimately improve decision support.

  3. SMART MANAGEMENT OF THE WATER URBAN CYCLE

    OpenAIRE

    Sánchez Zaplana, Antonio

    2014-01-01

    Aguas Municipalizadas de Alicante, AMAEM, is the company in charge of managing the urban water cycle in Alicante and several neighbour towns: San Vicente, Sant Joan, Petrer, Monforte and El Campello. More specifically, AMAEM provides the water distribution service in all of them, and is responsible for the sewage service in Alicante, Sant Joan and Monforte. The population served amounts to 750,000 inhabitants, supplied by a 2,000 km water distribution network and 700 km of sewage drains. AMAE...

  4. Proton cycling, buffering, and reaction stoichiometry in natural waters

    NARCIS (Netherlands)

    Hofmann, A.F.; Middelburg, J.J.; Soetaert, K.; Wolf-Gladrow, D.A.; Meysman, F.J.R.

    2010-01-01

    Ongoing acidification of the global ocean necessitates a solid understanding of how biogeochemical processes are driving proton cycling and observed pH changes in natural waters. The standard way of calculating the pH evolution of an aquatic system is to specify first how biogeochemical processes

  5. Investigators share improved understanding of the North American carbon cycle

    Science.gov (United States)

    Richard A. Birdsey; Robert Cook; Scott Denning; Peter Griffith; Beverly Law; Jeffrey Masek; Anna Michalak; Stephen Ogle; Dennis Ojima; Yude Pan; Christopher Sabine; Edwin Sheffner; Eric Sundquist

    2007-01-01

    The U.S. North American Carbon Program (NACP) sponsored an "all-scientist" meeting to review progress in understanding the dynamics of the carbon cycle of North American and adjacent oceans, and to chart a course for improved integration across scientifi c disciplines, scales, and Earth system boundaries. The meeting participants also addressed the need for...

  6. Water cycle algorithm: A detailed standard code

    Science.gov (United States)

    Sadollah, Ali; Eskandar, Hadi; Lee, Ho Min; Yoo, Do Guen; Kim, Joong Hoon

    Inspired by the observation of the water cycle process and movements of rivers and streams toward the sea, a population-based metaheuristic algorithm, the water cycle algorithm (WCA) has recently been proposed. Lately, an increasing number of WCA applications have appeared and the WCA has been utilized in different optimization fields. This paper provides detailed open source code for the WCA, of which the performance and efficiency has been demonstrated for solving optimization problems. The WCA has an interesting and simple concept and this paper aims to use its source code to provide a step-by-step explanation of the process it follows.

  7. Water Cycle Extremes: from Observations to Decisions

    Science.gov (United States)

    Lawford, R. G.; Unninayar, S.; Berod, D.

    2015-12-01

    Extremes in the water cycle (droughts and floods) pose major challenges for water resource managers and emergency services. These challenges arise from observational and prediction systems, advisory services, impact reduction strategies, and cleanup and recovery operations. The Group on Earth Observations (GEO) through its Water Strategy ("GEOSS Water Strategy: from observations to decisions") is seeking to provide systems that will enable its members to more effectively meet their information needs prior to and during an extreme event. This presentation reviews the wide range of impacts that arise from extremes in the water cycle and the types of data and information needed to plan for and respond to these extreme events. It identifies the capabilities and limitations of current observational and analysis systems in defining the scale, timing, intensity and impacts of water cycle extremes and in directing society's response to them. This summary represents an early preliminary assessment of the global and regional information needs of water resource managers and begins to outline a strategy within GEO for using Earth Observations and ancillary information to address these needs.

  8. Global Changes of the Water Cycle Intensity

    Science.gov (United States)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Walker, Gregory K.

    2003-01-01

    In this study, we evaluate numerical simulations of the twentieth century climate, focusing on the changes in the intensity of the global water cycle. A new diagnostic of atmospheric water vapor cycling rate is developed and employed, that relies on constituent tracers predicted at the model time step. This diagnostic is compared to a simplified traditional calculation of cycling rate, based on monthly averages of precipitation and total water content. The mean sensitivity of both diagnostics to variations in climate forcing is comparable. However, the new diagnostic produces systematically larger values and more variability than the traditional average approach. Climate simulations were performed using SSTs of the early (1902-1921) and late (1979- 1998) twentieth century along with the appropriate C02 forcing. In general, the increase of global precipitation with the increases in SST that occurred between the early and late twentieth century is small. However, an increase of atmospheric temperature leads to a systematic increase in total precipitable water. As a result, the residence time of water in the atmosphere increased, indicating a reduction of the global cycling rate. This result was explored further using a number of 50-year climate simulations from different models forced with observed SST. The anomalies and trends in the cycling rate and hydrologic variables of different GCMs are remarkably similar. The global annual anomalies of precipitation show a significant upward trend related to the upward trend of surface temperature, during the latter half of the twentieth century. While this implies an increase in the hydrologic cycle intensity, a concomitant increase of total precipitable water again leads to a decrease in the calculated global cycling rate. An analysis of the land/sea differences shows that the simulated precipitation over land has a decreasing trend while the oceanic precipitation has an upward trend consistent with previous studies and the

  9. WaterNet: the NASA Water Cycle Solutions Network

    Directory of Open Access Journals (Sweden)

    P. Houser

    2007-12-01

    Full Text Available This paper provides an over view of a new international network of researchers, stakeholders, and end-users of remote sensing tools that will benefit the water resources management community. It discusses the concept of solutions networks focusing on the WaterNet and it invites EGU teams to join the in the initial stages of our WaterNet network. The NASA Water cycle Solutions Network's goal is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment decision support tools and meet national and international needs. This paper seeks to invite EU scientific teams and water resource management teams to join our WaterNet Solutions Network.

  10. Multi-cycle boiling water reactor fuel cycle optimization

    Energy Technology Data Exchange (ETDEWEB)

    Ottinger, K.; Maldonado, G.I. [University of Tennessee, 311 Pasqua Engineering Building, Knoxville, TN 37996-2300 (United States)

    2013-07-01

    In this work a new computer code, BWROPT (Boiling Water Reactor Optimization), is presented. BWROPT uses the Parallel Simulated Annealing (PSA) algorithm to solve the out-of-core optimization problem coupled with an in-core optimization that determines the optimum fuel loading pattern. However it uses a Haling power profile for the depletion instead of optimizing the operating strategy. The result of this optimization is the optimum new fuel inventory and the core loading pattern for the first cycle considered in the optimization. Several changes were made to the optimization algorithm with respect to other nuclear fuel cycle optimization codes that use PSA. Instead of using constant sampling probabilities for the solution perturbation types throughout the optimization as is usually done in PSA optimizations the sampling probabilities are varied to get a better solution and/or decrease runtime. The new fuel types available for use can be sorted into an array based on any number of parameters so that each parameter can be incremented or decremented, which allows for more precise fuel type selection compared to random sampling. Also, the results are sorted by the new fuel inventory of the first cycle for ease of comparing alternative solutions. (authors)

  11. Isotope Hydrology: Understanding and Managing Water Resources

    International Nuclear Information System (INIS)

    Madsen, Michael

    2013-01-01

    Development is intricately linked to water whether concerning issues of health, food and agriculture, sanitation, the environment, industry, or energy. The IAEA, through its Water Resources Programme provides its Member States with science-based information and technical skills to improve understanding and management of their water resources

  12. Towards a quantitative understanding of the late Neoproterozoic carbon cycle

    DEFF Research Database (Denmark)

    Bjerrum, Christian Jannik; Canfield, Donald Eugene

    2011-01-01

    The cycles of carbon and oxygen at the Earth surface are intimately linked, where the burial of organic carbon into sediments represents a source of oxygen to the surface environment. This coupling is typically quantified through the isotope records of organic and inorganic carbon. Yet, the late...... Neoproterozoic Eon, the time when animals first evolved, experienced wild isotope fluctuations which do not conform to our normal understanding of the carbon cycle and carbon-oxygen coupling. We interpret these fluctuations with a new carbon cycle model and demonstrate that all of the main features...... of the carbonate and organic carbon isotope record can be explained by the release of methane hydrates from an anoxic dissolved organic carbon-rich ocean into an atmosphere containing oxygen levels considerably less than today....

  13. Understanding the LCA and ISO water footprint: A response to ...

    Science.gov (United States)

    Water footprinting has emerged as an important approach to assess water use related effects from consumption of goods and services. Assessment methods are proposed by two different communities, the Water Footprint Network (WFN) and the Life Cycle Assessment (LCA) community. The proposed methods are broadly similar and encompass both the computation of water use and its impacts, but differ in communication of a water footprint result. In this paper, we explain the role and goal of LCA and ISO-compatible water footprinting and resolve the six issues raised by Hoekstra (2016) in “A critique on the water-scarcity weighted water footprint in LCA”. By clarifying the concerns, we identify both the overlapping goals in the WFN and LCA water footprint assessments and discrepancies between them. The main differing perspective between the WFN and LCA-based approach seems to relate to the fact that LCA aims to account for environmental impacts, while the WFN aims to account for water productivity of global fresh water as a limited resource. We conclude that there is potential to use synergies in research for the two approaches and highlight the need for proper declaration of the methods applied. This paper advances efforts to understand ways to accurately capture use of water in life cycle analysis in other contexts. As the paper indicates, there is a discussion about whether quantities of water should be weighted by some local stress factor. This paper attempts to brid

  14. The DOE Water Cycle Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Miller, N.L.; King, A.W.; Miller, M.A.; Springer, E.P.; Wesely, M.L.; Bashford, K.E.; Conrad, M.E.; Costigan, K.; Foster, P.N.; Gibbs, H.K.; Jin, J.; Klazura, J.; Lesht, B.M.; Machavaram, M.V.; Pan, F.; Song, J.; Troyan, D.; Washington-Allen, R.A.

    2003-09-20

    A Department of Energy (DOE) multi-laboratory Water Cycle Pilot Study (WCPS) investigated components of the local water budget at the Walnut River Watershed in Kansas to study the relative importance of various processes and to determine the feasibility of observational water budget closure. An extensive database of local meteorological time series and land surface characteristics was compiled. Numerical simulations of water budget components were generated and, to the extent possible, validated for three nested domains within the Southern Great Plains; the DOE Atmospheric Radiation Measurement/Cloud Atmospheric Radiation Testbed (ARM/CART), the Walnut River Watershed (WRW), and the Whitewater Watershed (WW), Kansas A 2-month Intensive Observation Period (IOP) was conducted to gather detailed observations relevant to specific details of the water budget, including fine-scale precipitation, streamflow, and soil moisture measurements not made routinely by other programs. Event and season al water isotope (delta 18O, delta D) sampling in rainwater, streams, soils, lakes, and wells provided a means of tracing sources and sinks within and external to the WW, WRW, and the ARM/CART domains. The WCPS measured changes in leaf area index for several vegetation types, deep groundwater variations at two wells, and meteorological variables at a number of sites in the WRW. Additional activities of the WCPS include code development toward a regional climate model with water isotope processes, soil moisture transect measurements, and water level measurements in ground water wells.

  15. Carbon footprint estimation of municipal water cycle

    Science.gov (United States)

    Bakhshi, Ali A.

    2009-11-01

    This research investigates the embodied energy associated with water use. A geographic information system (GIS) was tested using data from Loudoun County, Virginia. The objective of this study is to estimate the embodied energy and carbon emission levels associated with water service at a geographical location and to improve for sustainability planning. Factors that affect the carbon footprint were investigated and the use of a GIS based model as a sustainability planning framework was evaluated. The carbon footprint metric is a useful tool for prediction and measurement of a system's sustainable performance over its expected life cycle. Two metrics were calculated: tons of carbon dioxide per year to represent the contribution to global warming and watt-hrs per gallon to show the embodied energy associated with water consumption. The water delivery to the building, removal of wastewater from the building and associated treatment of water and wastewater create a sizable carbon footprint; often the energy attributed to this water service is the greatest end use of electrical energy. The embodied energy in water depends on topographical characteristics of the area's local water supply, the efficiency of the treatment systems, and the efficiency of the pumping stations. The questions answered by this research are: What is the impact of demand side sustainable water practices on the embodied energy as represented by a comprehensive carbon footprint? What are the major energy consuming elements attributed to the system? What is a viable and visually identifiable tool to estimate the carbon footprint attributed to those Greenhouse Gas (GHG) producing elements? What is the embodied energy and emission associated with water use delivered to a building? Benefits to be derived from a standardized GIS applied carbon footprint estimation approach include: (1) Improved environmental and economic information for the developers, water and wastewater processing and municipal

  16. INTRODUCTION: Anticipated changes in the global atmospheric water cycle

    Science.gov (United States)

    Allan, Richard P.; Liepert, Beate G.

    2010-06-01

    The atmospheric branch of the water cycle, although containing just a tiny fraction of the Earth's total water reserves, presents a crucial interface between the physical climate (such as large-scale rainfall patterns) and the ecosystems upon which human societies ultimately depend. Because of the central importance of water in the Earth system, the question of how the water cycle is changing, and how it may alter in future as a result of anthropogenic changes, present one of the greatest challenges of this century. The recent Intergovernmental Panel on Climate Change report on Climate Change and Water (Bates et al 2008) highlighted the increasingly strong evidence of change in the global water cycle and associated environmental consequences. It is of critical importance to climate prediction and adaptation strategies that key processes in the atmospheric water cycle are precisely understood and determined, from evaporation at the surface of the ocean, transport by the atmosphere, condensation as cloud and eventual precipitation, and run-off through rivers following interaction with the land surface, sub-surface, ice, snow and vegetation. The purpose of this special focus issue of Environmental Research Letters on anticipated changes in the global atmospheric water cycle is to consolidate the recent substantial advances in understanding past, present and future changes in the global water cycle through evidence built upon theoretical understanding, backed up by observations and borne out by climate model simulations. Thermodynamic rises in water vapour provide a central constraint, as discussed in a guest editorial by Bengtsson (2010). Theoretical implications of the Clausius-Clapeyron equation are presented by O'Gorman and Muller (2010) and with reference to a simple model (Sherwood 2010) while observed humidity changes confirm these anticipated responses at the land and ocean surface (Willett et al 2008). Rises in low-level moisture are thought to fuel an

  17. Teaching Systems Thinking in the Context of the Water Cycle

    Science.gov (United States)

    Lee, Tammy D.; Gail Jones, M.; Chesnutt, Katherine

    2017-06-01

    Complex systems affect every part of our lives from the ecosystems that we inhabit and share with other living organisms to the systems that supply our water (i.e., water cycle). Evaluating events, entities, problems, and systems from multiple perspectives is known as a systems thinking approach. New curriculum standards have made explicit the call for teaching with a systems thinking approach in our science classrooms. However, little is known about how elementary in-service or pre-service teachers understand complex systems especially in terms of systems thinking. This mixed methods study investigated 67 elementary in-service teachers' and 69 pre-service teachers' knowledge of a complex system (e.g., water cycle) and their knowledge of systems thinking. Semi-structured interviews were conducted with a sub-sample of participants. Quantitative and qualitative analyses of content assessment data and questionnaires were conducted. Results from this study showed elementary in-service and pre-service teachers applied different levels of systems thinking from novice to intermediate. Common barriers to complete systems thinking were identified with both in-service and pre-service teachers and included identifying components and processes, recognizing multiple interactions and relationships between subsystems and hidden dimensions, and difficulty understanding the human impact on the water cycle system.

  18. Life cycle management of service water systems

    International Nuclear Information System (INIS)

    Egan, Geoffrey R.; Besuner, Philip M.; Mahajan, Sat P.

    2004-01-01

    As nuclear plants age, more attention must focus on age and time dependent degradation mechanisms such as corrosion, erosion, fatigue, etc. These degradation mechanisms can best be managed by developing a life cycle management plan which integrates past historical data, current conditions and future performance needs. In this paper we present two examples of life cycle management. In the first example, the 20-year maintenance history of a sea water cooling system (cement-lined, cast iron) is reviewed to develop attributes like maintenance cost, spare part inventory, corrosion, and repair data. Based on this information, the future expected damage rate was forecast. The cost of managing the future damage was compared with the cost to replace (in kind and with upgraded materials. A decision optimization scheme was developed to choose the least cost option from: a) Run as-is and repair; b) replace in kind; or c) replace with upgraded material and better design. In the second example, life cycle management techniques were developed for a ceilcote lined steel pipe cooling water system. Screens (fixed and traveling), filters, pumps, motors, valves, and piping were evaluated. (author)

  19. The NASA Energy and Water Cycle Extreme (NEWSE) Integration Project

    Science.gov (United States)

    House, P. R.; Lapenta, W.; Schiffer, R.

    2008-01-01

    Skillful predictions of water and energy cycle extremes (flood and drought) are elusive. To better understand the mechanisms responsible for water and energy extremes, and to make decisive progress in predicting these extremes, the collaborative NASA Energy and Water cycle Extremes (NEWSE) Integration Project, is studying these extremes in the U.S. Southern Great Plains (SGP) during 2006-2007, including their relationships with continental and global scale processes, and assessment of their predictability on multiple space and time scales. It is our hypothesis that an integrative analysis of observed extremes which reflects the current understanding of the role of SST and soil moisture variability influences on atmospheric heating and forcing of planetary waves, incorporating recently available global and regional hydro- meteorological datasets (i.e., precipitation, water vapor, clouds, etc.) in conjunction with advances in data assimilation, can lead to new insights into the factors that lead to persistent drought and flooding. We will show initial results of this project, whose goals are to provide an improved definition, attribution and prediction on sub-seasonal to interannual time scales, improved understanding of the mechanisms of decadal drought and its predictability, including the impacts of SST variability and deep soil moisture variability, and improved monitoring/attributions, with transition to applications; a bridging of the gap between hydrological forecasts and stakeholders (utilization of probabilistic forecasts, education, forecast interpretation for different sectors, assessment of uncertainties for different sectors, etc.).

  20. Review of Understanding of Earth's Hydrological Cycle: Observations, Theory and Modelling

    Science.gov (United States)

    Rast, Michael; Johannessen, Johnny; Mauser, Wolfram

    2014-05-01

    Water is our most precious and arguably most undervalued natural resource. It is essential for life on our planet, for food production and economic development. Moreover, water plays a fundamental role in shaping weather and climate. However, with the growing global population, the planet's water resources are constantly under threat from overuse and pollution. In addition, the effects of a changing climate are thought to be leading to an increased frequency of extreme weather causing floods, landslides and drought. The need to understand and monitor our environment and its resources, including advancing our knowledge of the hydrological cycle, has never been more important and apparent. The best approach to do so on a global scale is from space. This paper provides an overview of the major components of the hydrological cycle, the status of their observations from space and related data products and models for hydrological variable retrievals. It also lists the current and planned satellite missions contributing to advancing our understanding of the hydrological cycle on a global scale. Further details of the hydrological cycle are substantiated in several of the other papers in this Special Issue.

  1. WaterNet: The NASA water cycle solutions network - Danubian regional applications

    Science.gov (United States)

    Matthews, Dave; Brilly, Mitja; Kobold, Mira; Zagar, Mark; Houser, Paul

    2008-11-01

    WaterNet is a new international network of researchers, stakeholders, and end-users of remote sensing tools that will benefit the water resources management community. This paper provides an overview and it discusses the concept of solutions networks focusing on the WaterNet. It invites Danubian research and applications teams to join our WaterNet network. The NASA Water cycle Solutions Network's goal is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment decision support tools and meet national needs. Our team will develop WaterNet by engaging relevant NASA water cycle research resources and community-of-practice organizations, to develop what we term an "actionable database" that can be used to communicate and connect NASA Water cycle research Results (NWRs) towards the improvement of water-related Decision Support Tools (DSTs). Recognizing that the European Commission and European Space Agency have also developed many related Water Research products (EWRs), we seek to learn about these and network with the EU teams to include their information in the WaterNet actionable data base and Community of Practice. WaterNet will then develop strategies to connect researchers and decision-makers via innovative communication strategies, improved user access to NASA and EU - Danubian resources, improved water cycle research community appreciation for user requirements, improved policymaker, management and stakeholder knowledge of research and application products, and improved identification of pathways for progress. Finally, WaterNet will develop relevant benchmarking and metrics, to understand the network's characteristics, to optimize its performance, and to establish sustainability. This paper provides examples of several NASA products based on remote sensing and land data assimilation systems that integrate remotely sensed and in

  2. WaterNet: The NASA water cycle solutions network - Danubian regional applications

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Dave [Hydromet DSS, LLC, Silverthorne, CO 80498-1848 (United States); Brilly, Mitja [FGG University of Ljubljana (Slovenia); Kobold, Mira; Zagar, Mark [Environmental Agency of the Republic of Slovenia, Ljubljana (Slovenia); Houser, Paul [Center for Research on Environment and Water and George Mason University, Calverton, MD 20705 (United States)], E-mail: hydrometdss@comcast.net

    2008-11-01

    WaterNet is a new international network of researchers, stakeholders, and end-users of remote sensing tools that will benefit the water resources management community. This paper provides an overview and it discusses the concept of solutions networks focusing on the WaterNet. It invites Danubian research and applications teams to join our WaterNet network. The NASA Water cycle Solutions Network's goal is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment decision support tools and meet national needs. Our team will develop WaterNet by engaging relevant NASA water cycle research resources and community-of-practice organizations, to develop what we term an 'actionable database' that can be used to communicate and connect NASA Water cycle research Results (NWRs) towards the improvement of water-related Decision Support Tools (DSTs). Recognizing that the European Commission and European Space Agency have also developed many related Water Research products (EWRs), we seek to learn about these and network with the EU teams to include their information in the WaterNet actionable data base and Community of Practice. WaterNet will then develop strategies to connect researchers and decision-makers via innovative communication strategies, improved user access to NASA and EU - Danubian resources, improved water cycle research community appreciation for user requirements, improved policymaker, management and stakeholder knowledge of research and application products, and improved identification of pathways for progress. Finally, WaterNet will develop relevant benchmarking and metrics, to understand the network's characteristics, to optimize its performance, and to establish sustainability. This paper provides examples of several NASA products based on remote sensing and land data assimilation systems that integrate

  3. WaterNet: The NASA water cycle solutions network - Danubian regional applications

    International Nuclear Information System (INIS)

    Matthews, Dave; Brilly, Mitja; Kobold, Mira; Zagar, Mark; Houser, Paul

    2008-01-01

    WaterNet is a new international network of researchers, stakeholders, and end-users of remote sensing tools that will benefit the water resources management community. This paper provides an overview and it discusses the concept of solutions networks focusing on the WaterNet. It invites Danubian research and applications teams to join our WaterNet network. The NASA Water cycle Solutions Network's goal is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment decision support tools and meet national needs. Our team will develop WaterNet by engaging relevant NASA water cycle research resources and community-of-practice organizations, to develop what we term an 'actionable database' that can be used to communicate and connect NASA Water cycle research Results (NWRs) towards the improvement of water-related Decision Support Tools (DSTs). Recognizing that the European Commission and European Space Agency have also developed many related Water Research products (EWRs), we seek to learn about these and network with the EU teams to include their information in the WaterNet actionable data base and Community of Practice. WaterNet will then develop strategies to connect researchers and decision-makers via innovative communication strategies, improved user access to NASA and EU - Danubian resources, improved water cycle research community appreciation for user requirements, improved policymaker, management and stakeholder knowledge of research and application products, and improved identification of pathways for progress. Finally, WaterNet will develop relevant benchmarking and metrics, to understand the network's characteristics, to optimize its performance, and to establish sustainability. This paper provides examples of several NASA products based on remote sensing and land data assimilation systems that integrate remotely sensed and in

  4. Increasing water cycle extremes in California and in relation to ENSO cycle under global warming.

    Science.gov (United States)

    Yoon, Jin-Ho; Wang, S-Y Simon; Gillies, Robert R; Kravitz, Ben; Hipps, Lawrence; Rasch, Philip J

    2015-10-21

    Since the winter of 2013-2014, California has experienced its most severe drought in recorded history, causing statewide water stress, severe economic loss and an extraordinary increase in wildfires. Identifying the effects of global warming on regional water cycle extremes, such as the ongoing drought in California, remains a challenge. Here we analyse large-ensemble and multi-model simulations that project the future of water cycle extremes in California as well as to understand those associations that pertain to changing climate oscillations under global warming. Both intense drought and excessive flooding are projected to increase by at least 50% towards the end of the twenty-first century; this projected increase in water cycle extremes is associated with a strengthened relation to El Niño and the Southern Oscillation (ENSO)--in particular, extreme El Niño and La Niña events that modulate California's climate not only through its warm and cold phases but also its precursor patterns.

  5. Increasing water cycle extremes in California and in relation to ENSO cycle under global warming

    Science.gov (United States)

    Yoon, Jin-Ho; Wang, S-Y Simon; Gillies, Robert R.; Kravitz, Ben; Hipps, Lawrence; Rasch, Philip J.

    2015-01-01

    Since the winter of 2013–2014, California has experienced its most severe drought in recorded history, causing statewide water stress, severe economic loss and an extraordinary increase in wildfires. Identifying the effects of global warming on regional water cycle extremes, such as the ongoing drought in California, remains a challenge. Here we analyse large-ensemble and multi-model simulations that project the future of water cycle extremes in California as well as to understand those associations that pertain to changing climate oscillations under global warming. Both intense drought and excessive flooding are projected to increase by at least 50% towards the end of the twenty-first century; this projected increase in water cycle extremes is associated with a strengthened relation to El Niño and the Southern Oscillation (ENSO)—in particular, extreme El Niño and La Niña events that modulate California's climate not only through its warm and cold phases but also its precursor patterns. PMID:26487088

  6. Highly efficient 6-stroke engine cycle with water injection

    Science.gov (United States)

    Szybist, James P; Conklin, James C

    2012-10-23

    A six-stroke engine cycle having improved efficiency. Heat is recovered from the engine combustion gases by using a 6-stroke engine cycle in which combustion gases are partially vented proximate the bottom-dead-center position of the fourth stroke cycle, and water is injected proximate the top-dead-center position of the fourth stroke cycle.

  7. Separating decadal global water cycle variability from sea level rise.

    Science.gov (United States)

    Hamlington, B D; Reager, J T; Lo, M-H; Karnauskas, K B; Leben, R R

    2017-04-20

    Under a warming climate, amplification of the water cycle and changes in precipitation patterns over land are expected to occur, subsequently impacting the terrestrial water balance. On global scales, such changes in terrestrial water storage (TWS) will be reflected in the water contained in the ocean and can manifest as global sea level variations. Naturally occurring climate-driven TWS variability can temporarily obscure the long-term trend in sea level rise, in addition to modulating the impacts of sea level rise through natural periodic undulation in regional and global sea level. The internal variability of the global water cycle, therefore, confounds both the detection and attribution of sea level rise. Here, we use a suite of observations to quantify and map the contribution of TWS variability to sea level variability on decadal timescales. In particular, we find that decadal sea level variability centered in the Pacific Ocean is closely tied to low frequency variability of TWS in key areas across the globe. The unambiguous identification and clean separation of this component of variability is the missing step in uncovering the anthropogenic trend in sea level and understanding the potential for low-frequency modulation of future TWS impacts including flooding and drought.

  8. Toward an Improved Understanding of the Global Fresh Water Budget

    Science.gov (United States)

    Hildebrand, Peter H.

    2005-01-01

    priorities for future improvements in global fresh water budget monitoring. The priorities are based on the potential of new approaches to provide improved measurement and modeling systems, and on the need to measure and understand the potential for a speed-up of the global water cycle under the effects of climate change.

  9. Earth's changing energy and water cycles

    Science.gov (United States)

    Trenberth, K. E.; Fasullo, J. T.

    2008-12-01

    A new assessment of the flows of energy through the climate system and its changes over time will be presented. It features an imbalance at the top-of-atmosphere owing to an enhanced greenhouse effect that produces global warming. Most of the surplus energy trapped at TOA increases ocean heat content. Large upward surface thermal radiation is offset by back radiation from greenhouse gases and clouds in the atmosphere. At the surface, the net losses of energy are greatest through evaporation, followed by net radiation, while sensible heat losses are much smaller. The budget highlights the vital role of the hydrological cycle and its response as a consequence of climate change. Nonetheless, net changes in total surface evaporation are fairly modest and a much larger percentage change occurs in the water-holding capacity as atmospheric temperatures increase (7 percent per C). Consequences include increased water vapor in the atmosphere, which projects nonlinearly onto convective instability, and the intensification of severe precipitation - changes that are now observable. Moreover the disparity between modestly enhanced evaporation and increases in the heaviest rains implies a decreased frequency of precipitation. Combined with elevated surface temperatures, drought probability is therefore enhanced.

  10. Coupling between the continental carbon and water cycles

    Science.gov (United States)

    Gentine, P.; Lemordant, L. A.; Green, J. K.

    2017-12-01

    The continental carbon adn water cycles are fundamentally coupled through leaf gas exchange at the stomata level. IN this presnetation we will emphasize the importance of this coupling for the future of the water cycle (runoff, evaporation, soil moisture) and in turn the implications for the carbon cycle and the capacity of continents to act as a carbon dioxyde sink in the future. Opprtunites from coupled carbon-water monitoring platforms will be then emphasized.

  11. PUNCS: Towards Predictive Understanding of Nitrogen Cycling in Soils

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, Frank E. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Microbiology. Dept. of Civil and Environmental Engineering. Center for Environmental Biotechnology; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division; Konstantinidis, Konstantinos T. [Georgia Inst. of Technology, Atlanta, GA (United States); Sanford, Robert A. [Univ. of Illinois, Urbana, IL (United States)

    2015-11-30

    nrfA and identified novel diagnostic features, allowing optimized primer design for nrfA monitoring. Further, a novel group of functional “atypical” nosZ genes was found indicating that a much broader diversity of genes and organisms contribute to consumption of N2O. The atypical nosZ genes are distributed in soil ecosystems and often outnumber their typical counterparts, emphasizing their potential role in N2O consumption in soils and possibly other environments. Kinetic studies revealed that organisms with atypical NosZ exhibit significantly higher affinity to N2O, indicating that the relative activity of bacteria with typical versus atypical NosZ control N2O emissions and determine a soil’s N2O sink capacity. Collectively, the discoveries made under the PUNCS project improve understanding of N- and associated C-cycling processes in soils, enable the design of enhanced monitoring tools, and allow a larger research community to generate comprehensive datasets required to generate Earth System Models with higher predictive power.

  12. Diurnal Temperature Cycles in Shallow Water Pools

    NARCIS (Netherlands)

    Jacobs, A.F.G.; Paaijmans, K.P.; Heusinkveld, B.G.

    2006-01-01

    Larvas of malaria mosquito species live close to the water surface in shallow waters, and are exposed to water temperatures which differ considerably from the air or bulk water temperature. The present research aims to obtain a sound physical insight into processes which determine the water

  13. Watch: Current knowledge of the terrestrial Global Water Cycle"

    NARCIS (Netherlands)

    Harding, R.; Best, M.; Hagemann, S.; Kabat, P.; Tallaksen, L.M.; Warnaars, T.; Wiberg, D.; Weedon, G.P.; Lanen, van H.A.J.; Ludwig, F.; Haddeland, I.

    2011-01-01

    Water-related impacts are among the most important consequences of increasing greenhouse gas concentrations. Changes in the global water cycle will also impact the carbon and nutrient cycles and vegetation patterns. There is already some evidence of increasing severity of floods and droughts and

  14. The Water Cycle from Space: Use of Satellite Data in Land Surface Hydrology and Water Resource Management

    Science.gov (United States)

    Laymon, Charles; Blankenship, Clay; Khan, Maudood; Limaye, Ashutosh; Hornbuckle, Brian; Rowlandson, Tracy

    2010-01-01

    This slide presentation reviews how our understanding of the water cycle is enhanced by our use of satellite data, and how this informs land surface hydrology and water resource management. It reviews how NASA's current and future satellite missions will provide Earth system data of unprecedented breadth, accuracy and utility for hydrologic analysis.

  15. Change in Water Cycle- Important Issue on Climate Earth System

    Science.gov (United States)

    Singh, Pratik

    Change in Water Cycle- Important Issue on Climate Earth System PRATIK KUMAR SINGH1 1BALDEVRAM MIRDHA INSTITUTE OF TECHNOLOGY,JAIPUR (RAJASTHAN) ,INDIA Water is everywhere on Earth and is the only known substance that can naturally exist as a gas, liquid, and solid within the relatively small range of air temperatures and pressures found at the Earth's surface.Changes in the hydrological cycle as a consequence of climate and land use drivers are expected to play a central role in governing a vast range of environmental impacts.Earth's climate will undergo changes in response to natural variability, including solar variability, and to increasing concentrations of green house gases and aerosols.Further more, agreement is widespread that these changes may profoundly affect atmospheric water vapor concentrations, clouds and precipitation patterns.As we know that ,a warmer climate, directly leading to increased evaporation, may well accelerate the hydrological cycle, resulting in an increase in the amount of moisture circulating through the atmosphere.The Changing Water Cycle programmer will develop an integrated, quantitative understanding of the changes taking place in the global water cycle, involving all components of the earth system, improving predictions for the next few decades of regional precipitation, evapotranspiration, soil moisture, hydrological storage and fluxes.The hydrological cycle involves evaporation, transpiration, condensation, precipitation, and runoff. NASA's Aqua satellite will monitor many aspects of the role of water in the Earth's systems, and will do so at spatial and temporal scales appropriate to foster a more detailed understanding of each of the processes that contribute to the hydrological cycle. These data and the analyses of them will nurture the development and refinement of hydrological process models and a corresponding improvement in regional and global climate models, with a direct anticipated benefit of more accurate weather and

  16. The Martian Water Cycle Based on 3-D Modeling

    Science.gov (United States)

    Houben, H.; Haberle, R. M.; Joshi, M. M.

    1999-01-01

    Understanding the distribution of Martian water is a major goal of the Mars Surveyor program. However, until the bulk of the data from the nominal missions of TES, PMIRR, GRS, MVACS, and the DS2 probes are available, we are bound to be in a state where much of our knowledge of the seasonal behavior of water is based on theoretical modeling. We therefore summarize the results of this modeling at the present time. The most complete calculations come from a somewhat simplified treatment of the Martian climate system which is capable of simulating many decades of weather. More elaborate meteorological models are now being applied to study of the problem. The results show a high degree of consistency with observations of aspects of the Martian water cycle made by Viking MAWD, a large number of ground-based measurements of atmospheric column water vapor, studies of Martian frosts, and the widespread occurrence of water ice clouds. Additional information is contained in the original extended abstract.

  17. Nitrogen cycling in corals: the key to understanding holobiont functioning?

    KAUST Repository

    Rädecker, Nils

    2015-04-01

    Corals are animals that form close mutualistic associations with endosymbiotic photosynthetic algae of the genus Symbiodinium. Together they provide the calcium carbonate framework of coral reef ecosystems. The importance of the microbiome (i.e., bacteria, archaea, fungi, and viruses) to holobiont functioning has only recently been recognized. Given that growth and density of Symbiodinium within the coral host is highly dependent on nitrogen availability, nitrogen-cycling microbes may be of fundamental importance to the stability of the coral–algae symbiosis and holobiont functioning, in particular under nutrient-enriched and -depleted scenarios. We summarize what is known about nitrogen cycling in corals and conclude that disturbance of microbial nitrogen cycling may be tightly linked to coral bleaching and disease.

  18. First results of the earth observation water cycle multi-mission observation strategy (WACMOS)

    NARCIS (Netherlands)

    Su, Zhongbo; Fernadez-Prieto, D.; Timmermans, J.; Chen, Xuelong; Hungershoefer, K.; Schröder, M.; Schulz, J.; Stammes, P.; Wang, Peng; Wolters, e.

    2014-01-01

    Observing and monitoring the different components of the global water cycle and their dynamics are essential steps to understand the climate of the Earth, forecast the weather, predict natural disasters like floods and droughts, and improve water resources management. Earth observation technology is

  19. Studying the Water Cycle in an Environmental Context: The "Blue Planet" Program.

    Science.gov (United States)

    Ben-zvi-assaraf, Orit; Orion, Nir

    The Blue Planet program aims to develop an understanding of and insight into the environment among students by introducing environmental problems such as pollution. This paper presents a study investigating junior high school students' previous knowledge and understanding of environmental issues and perceptions on the nature of the water cycle.…

  20. Urban Water Cycle Simulation/Management Models: A Review

    Directory of Open Access Journals (Sweden)

    Carlos Andrés Peña-Guzmán

    2017-04-01

    Full Text Available Urban water management is increasingly important given the need to maintain water resources that comply with global and local standards of quantity and quality. The effective management of water resources requires the optimization of financial resources without forsaking social requirements. A number of mathematical models have been developed for this task; such models account for all components of the Urban Water Cycle (UWC and their interactions. The wide range of models entails the need to understand their differences in an effort to identify their applicability, so academic, state, and private sectors can employ them for environmental, economic, and social ends. This article presents a description of the UWC and relevant components, a literature review of different models developed between 1990 and 2015, and an analysis of several case studies (applications. It was found that most applications are focused on new supply sources, mainly rainwater. In brief, this article provides an overview of each model’s use (primarily within academia and potential use as a decision-making tool.

  1. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle

    Science.gov (United States)

    Galewsky, Joseph; Steen-Larsen, Hans Christian; Field, Robert D.; Worden, John; Risi, Camille; Schneider, Matthias

    2016-12-01

    The measurement and simulation of water vapor isotopic composition has matured rapidly over the last decade, with long-term data sets and comprehensive modeling capabilities now available. Theories for water vapor isotopic composition have been developed by extending the theories that have been used for the isotopic composition of precipitation to include a more nuanced understanding of evaporation, large-scale mixing, deep convection, and kinetic fractionation. The technologies for in situ and remote sensing measurements of water vapor isotopic composition have developed especially rapidly over the last decade, with discrete water vapor sampling methods, based on mass spectroscopy, giving way to laser spectroscopic methods and satellite- and ground-based infrared absorption techniques. The simulation of water vapor isotopic composition has evolved from General Circulation Model (GCM) methods for simulating precipitation isotopic composition to sophisticated isotope-enabled microphysics schemes using higher-order moments for water and ice size distributions. The incorporation of isotopes into GCMs has enabled more detailed diagnostics of the water cycle and has led to improvements in its simulation. The combination of improved measurement and modeling of water vapor isotopic composition opens the door to new advances in our understanding of the atmospheric water cycle, in processes ranging from the marine boundary layer, through deep convection and tropospheric mixing, and into the water cycle of the stratosphere. Finally, studies of the processes governing modern water vapor isotopic composition provide an improved framework for the interpretation of paleoclimate proxy records of the hydrological cycle.

  2. Some aspects of understanding changes in the global carbon cycle

    Science.gov (United States)

    Emanuel, W. R.; Moore, B., III; Shugart, H. H.

    1984-01-01

    The collective character of carbon exchanges between the atmosphere and other pools is partially revealed by comparing the record of CO2 concentration beginning in 1958 with estimates of the releases from fossil fuels during this period. In analyzing the secular increase in CO2 concentration induced by fossil fuel use, the atmosphere is generally treated as a single well-mixed reservoir; however, to study finer structure in the CO2 records, the influence of atmospheric circulation must be more carefully considered. The rate of carbon uptake by the oceans, the primary sink for fossil fuel CO2, is assessed more reliably than influences on the atmosphere due to interactions with other pools. Models of the global carbon cycle are being substantially refined while data that reflect the response of the cycle to fossil fuel use and other perturbations are being extended.

  3. Towards an Integrated Global Water Cycle Observations (IGWCO) Strategy

    Science.gov (United States)

    Lawford, R. G.

    2004-12-01

    The Integrated Global Observing Strategy Partnership (IGOS-P), which consists of space agencies (represented by the Committee on Earth Observing Satellites) and international programs, adopted water as a priority in 2001. Subsequently, in November 2003, it adopted a Global Water Cycle Observations theme report and now is planning follow-on activities. The Integrated Global Water Cycle Observing (IGWCO) strategy provides an international framework for guiding decisions on priorities and strategies regarding water cycle observations for: a) monitoring climate variability and change; b) effective water management and sustainable development of the world's water resources; c) societal applications for resource development and environmental management; d) specification of initial conditions for weather and climate forecasts, and e) research directed at priority water cycle questions. It also promotes strategies that facilitate the processing, archiving and distribution of water cycle data and products. The IGWCO report contains a number of recommendations aimed at improving water cycle observations and products and supporting the further development of the theme. Since November 2003, a number of steps have been taken to develop a plan for implementing the theme. This implementation plan has identified activities and studies related to the Coordinated Enhanced Observing Period (CEOP), the Global Water System Project (GWSP), and the development of integrated precipitation and soil moisture products. Other activities under consideration involve building the capacity of developing countries to make measurements and analyze global water cycle variables thereby strengthening their ability to manage national water resources. The purpose of this presentation is to inform the scientific community of these activities and to solicit advice and assistance in the implementation of the strategy.

  4. Overview of light water reactor fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Leuze, R.E.

    1976-01-01

    A brief overview of the LWR fuel cycle is given, and the status of the LWR fuel cycle in the U.S. is briefly summarized. A broad base including a variety of industrial facilities is necessary to provide fuel for LWR's. However, capital investments for all the facilities combined are only about 15 percent of the capital needed for the reactors themselves. Capability for the front end of the fuel cycle, mining through fuel fabrication, is adequate for the present, but the expanded capacity will be required in 15 to 20 years, and this calls for immediate action because of long lead times. There are no operating facilities for the back-end of the fuel cycle, which includes spent fuel reprocessing, permanent waste storage, and mixed-oxide fuel fabrication. Decisions must be made concerning permanent waste storage concepts and regulations relating to the use and handling of plutonium before such facilities can be provided and put into operation. (LK)

  5. Drivers and Effects of Virtual Water Cycling

    Science.gov (United States)

    D'Odorico, P.

    2016-12-01

    The increasing global demand for farmland products by the growing and increasingly burgeoning human population is placing unprecedented pressure on the global agricultural system and its water resources. Many regions of the world that are not self-sufficient because of their chronic water scarcity or lack of suitable agricultural land strongly depend on the importation of agricultural commodities and associated embodied (or "virtual") water. International trade, however, may become unreliable when the supplies in the international food market are scarce. As a result, transboundary investments in agricultural land have become a priority for a number of governments and corporations that are trying to expand their agricultural production while securing good profits. This global "land rush" is often driven by the need for a secure access to water resources for agriculture. The globalization of water and land through trade and foreign land acquisitions is leading to a displacement of land use and a disconnection between human populations and the water resources they rely on. Despite the recognized importance of these phenomena in reshaping the patterns of water dependency through teleconnections between consumer behavior and production areas, their effect on global and regional food security, remains poorly quantified. New teleconnections are also emerging from the increasing water use for energy production. Competition in water use for food and energy security constitutes the core of an emerging debate that is generating new questions on the environmental, ethical, economic, and policy implications of human appropriation of water resources. This lecture will examine the ways societies virtually modify their access to water through trade and foreign land acquisitions to meet their growing food and energy needs.

  6. Heavy water reactors on the once-through uranium cycle

    International Nuclear Information System (INIS)

    1978-05-01

    This paper presents preliminary technical and economic data to INFCE on the once-through uranium fuel cycle for use in early comparisons of alternate nuclear systems. The denatured thorium fuel cycle is discussed in a companion paper. Information for this paper was developed under an ongoing program, and more complete reporting of the evaluation of the heavy water reactor and its fuel cycles is planned toward the end of the year

  7. GEWEX: The Global Energy and Water Cycle Experiment

    Science.gov (United States)

    Chahine, M.; Vane, D.

    1994-01-01

    GEWEX is one of the world's largest global change research programs. Its purpose is to observe and understand the hydrological cycle and energy fluxes in the atmosphere, at land surfaces and in the upper oceans.

  8. Water Cycling under Climate Change. Interactions between the water cycle, vegetation and a changing (sub)tropical climate

    NARCIS (Netherlands)

    de Boer, H.J.

    2012-01-01

    The water cycle is an essential component of the climate system because the physical properties of water in its liquid, solid and gaseous phases allow for the redistribution of energy in the oceans and atmosphere. At the scale of individual organisms, water and energy are also essential for the

  9. Understanding the dynamics of citrus water use

    CSIR Research Space (South Africa)

    Taylor

    2012-12-01

    Full Text Available The quantification of water use of citrus orchards is important in order to prevent stress developing in the orchard and to avoid wasting precious water resources. Measurement of citrus orchard water use is not possible under all environ...

  10. Assessing Water Risks in the Mining Industry using Life Cycle Assessment Based Approaches

    OpenAIRE

    STEPHEN ALAN NORTHEY

    2018-01-01

    Recent advances life cycle assessment methodology provide an opportunity to gain a more holistic understanding of how the mining industry interacts with water resources. A detailed review of assessment methodology and water management in the mining industry was undertaken to identify research needs. Global datasets of water use statistics for mining operations were also developed, and an exhaustive analysis of how global mineral resources and production are spatially distributed across local ...

  11. Nuclear Production of Hydrogen Using Thermochemical Water-Splitting Cycles

    International Nuclear Information System (INIS)

    Brown, L.C.; Besenbruch, G.E.; Schultz, K.R.; Marshall, A.C.; Showalter, S.K.; Pickard, P.S.; Funk, J.F.

    2002-01-01

    The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high-temperature heat from an advanced nuclear power station in a thermochemical water-splitting cycle. We carried out a detailed literature search to create a searchable database with 115 cycles and 822 references. We developed screening criteria to reduce the list to 25 cycles. We used detailed evaluation to select two cycles that appear most promising, the Adiabatic UT-3 cycle and the Sulfur-Iodine cycle. We have selected the Sulfur-Iodine thermochemical water-splitting cycle for further development. We then assessed the suitability of various nuclear reactor types to the production of hydrogen from water using the Sulfur-Iodine cycle. A basic requirement is to deliver heat to the process interface heat exchanger at temperatures up to 900 deg. C. We considered nine categories of reactors: pressurized water-cooled, boiling water-cooled, organic-cooled, alkali metal-cooled, heavy metal-cooled, gas-cooled, molten salt-cooled, liquid-core and gas-core reactors. We developed requirements and criteria to carry out the assessment, considering design, safety, operational, economic and development issues. This assessment process led to our choice of the helium gas-cooled reactor for coupling to the Sulfur-Iodine cycle. In continuing work, we are investigating the improvements that have been proposed to the Sulfur-Iodine cycle and will generate an integrated flowsheet describing a hydrogen production plant powered by a high-temperature helium gas-cooled nuclear reactor. This will allow us to size process equipment and calculate hydrogen production efficiency and capital cost, and to estimate the cost of the hydrogen produced as a function of nuclear reactor cost. (authors)

  12. Advances in Global Water Cycle Science Made Possible by Global Precipitation Mission (GPM)

    Science.gov (United States)

    Smith, Eric A.; Starr, David OC. (Technical Monitor)

    2001-01-01

    Within this decade the internationally sponsored Global Precipitation Mission (GPM) will take an important step in creating a global precipitation observing system from space. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams from very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and on to blends of the former datastreams with other less-high caliber PMW-based and IR-based rain retrievals. Within the context of NASA's role in global water cycle science and its own Global Water & Energy Cycle (GWEC) program, GPM is the centerpiece mission for improving our understanding of the global water cycle from a space-based measurement perspective. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in global temperature. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination, This paper presents an overview of the Global Precipitation Mission and how its datasets can be used in a set of quantitative tests within the framework of the oceanic and continental water budget equations to determine comprehensively whether substantive rate changes do accompany perturbations in global temperatures and how such rate changes manifest themselves in both water storage and water flux transport processes.

  13. Visualizing the Cardiac Cycle: A Useful Tool to Promote Student Understanding

    Directory of Open Access Journals (Sweden)

    Ivan Shun Ho

    2011-03-01

    Full Text Available The cardiac cycle is an important concept presented in human anatomy and physiology courses. At Kingsborough Community College, all Allied Health majors taking Anatomy & Physiology must understand the cardiac cycle to grasp more advanced concepts. Contemporary textbooks illustrate the cardiac cycle’s concurrent events via linear models with overlapping line segments as physiological readouts. This presentation is appropriate for reference but, in the interactive classroom the promotion of understanding through clear, concise visual cues is essential. Muzio and Pilchman created a diagram to summarize events of the cardiac cycle. After discussions with one of the authors, I modified the diagram to aid visualization of the cycle and emphasize it as a repetitive, continuous process. A flow diagram presenting the portions of the cycle individually and progressively was also constructed. Three labeled phases are made from the diagram, based on grouped events occurring at different points. The simple, compartmentalized, cyclical diagram presented here promotes understanding of the cardiac cycle visually.

  14. Evolution of Our Understanding of the Solar Dynamo During Solar Cycle 24

    Science.gov (United States)

    Munoz-Jaramillo, A.

    2017-12-01

    Solar cycle 24 has been an exciting cycle for our understanding of the solar dynamo: 1. It was the first cycle for which dynamo based predictions were ever used teaching us valuable lessons. 2. It has given us the opportunity to observe a deep minimum and a weak cycle with a high level of of observational detail . 3. It is full of breaktrhoughs in anelastic MHD dynamo simulations (regular cycles, buoyant flux-tubes, mounder-like events). 4. It has seen the creation of bridges between the kinematic flux-transport and anelastic MHD approaches. 5. It has ushered a new generation of realistic surface flux-transport simulations 6. We have achieved significant observational progress in our understanding of solar cycle propagation. The objective of this talk is to highlight some of the most important results, giving special emphasis on what they have taught us about solar cycle predictability.

  15. The thorium fuel cycle in water-moderated reactor systems

    International Nuclear Information System (INIS)

    Critoph, E.

    1977-05-01

    Thorium and uranium cycles are compared with regard to reactor characteristics and technology, fuel-cycle technology, economic parameters, fuel-cycle costs, and system characteristics. In heavy-water reactors (HWRs) thorium cycles having uranium requirements at equilibrium ranging from zero to a quarter of those for the natural-uranium once-through cycle appear feasible. An 'inventory' of uranium of between 1 and 2 Mg/MW(e) is required for the transition to equilibrium. The cycles with the lowest uranium requirements compete with the others only at high uranium prices. Using thorium in light-water reactors, uranium requirements can be reduced by a factor of between two and three from the once-through uranium cycle. The light-water breeder reactor, promising zero uranium requirements at equilibrium, is being developed. Larger uranium inventories are required than for the HWRs. The lead time, from a decision to use thorium to significant impact on uranium utilization (compared to uranium cycle, recycling plutonium) is some two decades

  16. Heavy water cycle in the CANDU reactor

    International Nuclear Information System (INIS)

    Nanis, R.

    2000-01-01

    Hydrogen atom has two isotopes: deuterium 1 H 2 and tritium 1 H 3 . The deuterium oxide D 2 O is called heavy water due to its density of 1105.2 Kg/m 3 . Another important physical property of the heavy water is the low neutron capture section, suitable to moderate the neutrons into natural uranium fission reactor as CANDU. Due to the fact that into this reactor the fuel is cooled into the pressure tubes surrounded by a moderator, the usage of D 2 O as primary heat transport (PHT) agent is mandatory. Therefore a large amount of heavy water (approx. 500 tons) is used in a CANDU reactor. Being a costly resource - it represents 20% of the initial plant capital cost, D 2 O management is required to preserve it. (author)

  17. Understanding water's anomalies with locally favored structures

    OpenAIRE

    Russo, John; Tanaka, Hajime

    2013-01-01

    Water is a complex structured liquid of hydrogen-bonded molecules that displays a surprising array of unusual properties, also known as water anomalies, the most famous being the density maximum at about $4^\\circ$C. The origin of these anomalies is still a matter of debate, and so far a quantitative description of water's phase behavior starting from the molecular arrangements is still missing. Here we provide a simple physical description from microscopic data obtained through computer simul...

  18. A comparative life cycle assessment of process water treatment ...

    African Journals Online (AJOL)

    Two different raw water desalination technologies, an existing ion exchange plant and a proposed reverse osmosis intervention, are compared by life cycle assessment for the production of 1 M. of boiler feed water, in the context of the Secunda industrial complex situated in Mpumalanga, South Africa. The proposed reverse ...

  19. Understanding water's anomalies with locally favoured structures.

    Science.gov (United States)

    Russo, John; Tanaka, Hajime

    2014-04-02

    Water is a complex liquid that displays a surprising array of unusual properties, the most famous being the density maximum at about 4 °C. The origin of these anomalies is still a matter of debate, and so far a quantitative description of water's phase behaviour starting from the molecular arrangements is still missing. Here we report a study of the microscopic structural features of water as obtained from computer simulations. We identify locally favoured structures having a high degree of translational order in the second shell, and a two-state model is used to describe the behaviour of liquid water over a wide region of the phase diagram. Furthermore, we show that locally favoured structures not only have translational order in the second shell but also contain five-membered rings of hydrogen-bonded molecules. This suggests their mixed character: the former helps crystallization, whereas the latter causes frustration against crystallization.

  20. Water Breaking: Understand This Sign of Labor

    Science.gov (United States)

    Healthy Lifestyle Labor and delivery, postpartum care Water breaking worries? Prepare yourself for childbirth by getting the facts about this important sign of labor. By Mayo Clinic Staff If you're ...

  1. Pressurized water reactor thorium fuel cycle studies

    International Nuclear Information System (INIS)

    Aktogu, Ali.

    1981-06-01

    The use of a thorium fuel cycle in a PWR is studied. The thorium has no fissile isotope and a fissile nuclide must be added to the thorium fuel. This nuclide can be uranium 235, plutonium 239 or uranium 233. In this work we have kept the fuel assembly geometry and the control rod system of an usual PWR. Cell calculations showed that the moderation ratio of an usual PWR can be used with uranium 235 and plutonium 239 fuels. But this moderation ratio must be decreased and accordingly the pumping power must be increased in the case of a uranium 233 fuel. The three fuels can be controlled with soluble boron. The power distribution inside an assembly agrees with the safety rules and the worth of the control rods is sufficient. To be interesting the thorium fuels must be recycled. Because the activity and the residual power are higher for a thorium fuel than for a uranium fuel the shielding of the shipping casks and storage pools must be increased. The Uranium 235-Thorium fuel is the best even if it needs expensive enrichment work. With this type of fuel more natural uranium is saved. The thorium fuel would become very interesting if we observe again in the future an increase of the uranium cost [fr

  2. Assessing Students' Disciplinary and Interdisciplinary Understanding of Global Carbon Cycling

    Science.gov (United States)

    You, Hye Sun; Marshall, Jill A.; Delgado, Cesar

    2018-01-01

    Global carbon cycling describes the movement of carbon through atmosphere, biosphere, geosphere, and hydrosphere; it lies at the heart of climate change and sustainability. To understand the global carbon cycle, students will require "interdisciplinary knowledge." While standards documents in science education have long promoted…

  3. Developing Students' Understanding of Industrially Relevant Economic and Life Cycle Assessments

    Science.gov (United States)

    Bode, Claudia J.; Chapman, Clint; Pennybaker, Atherly; Subramaniam, Bala

    2017-01-01

    Training future leaders to understand life cycle assessment data is critical for effective research, business, and sociopolitical decision-making. However, the technical nature of these life cycle reports often makes them challenging for students and other nonexperts to comprehend. Therefore, we outline here the key takeaways from recent economic…

  4. Development of a Life Cycle Inventory of Water Consumption Associated with the Production of Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lampert, David J. [Argonne National Lab. (ANL), Argonne, IL (United States); Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Zhichao [Argonne National Lab. (ANL), Argonne, IL (United States); Keisman, Jennifer [Argonne National Lab. (ANL), Argonne, IL (United States); Wu, May [Argonne National Lab. (ANL), Argonne, IL (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer [Argonne National Lab. (ANL), Argonne, IL (United States); Sullivan, John L. [Argonne National Lab. (ANL), Argonne, IL (United States); Elgowainy, Amgad [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Keisman, Jennifer [American Association for the Advancemetn of Science (AAAS), Washington, DC (United States)

    2015-10-01

    The production of all forms of energy consumes water. To meet increased energy demands, it is essential to quantify the amount of water consumed in the production of different forms of energy. By analyzing the water consumed in different technologies, it is possible to identify areas for improvement in water conservation and reduce water stress in energy-producing regions. The transportation sector is a major consumer of energy in the United States. Because of the relationships between water and energy, the sustainability of transportation is tied to management of water resources. Assessment of water consumption throughout the life cycle of a fuel is necessary to understand its water resource implications. To perform a comparative life cycle assessment of transportation fuels, it is necessary first to develop an inventory of the water consumed in each process in each production supply chain. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can used to estimate the full life-cycle environmental impacts of various transportation fuel pathways from wells to wheels. GREET is currently being expanded to include water consumption as a sustainability metric. The purpose of this report was to document data sources and methodologies to estimate water consumption factors (WCF) for the various transportation fuel pathways in GREET. WCFs reflect the quantity of freshwater directly consumed per unit production for various production processes in GREET. These factors do not include consumption of precipitation or low-quality water (e.g., seawater) and reflect only water that is consumed (i.e., not returned to the source from which it was withdrawn). The data in the report can be combined with GREET to compare the life cycle water consumption for different transportation fuels.

  5. QA practice for online analyzers in water steam cycles

    International Nuclear Information System (INIS)

    Staub, L.

    2010-01-01

    The liberalization of power markets throughout the world has resulted in more and more power stations being operated in cycling mode, with frequent load changes and multiple daily start-up and shut-down cycles. This more flexible operation also calls for better automation and poses new challenges to water chemistry in water steam cycles, to avoid subsequent damage to vital plant components such as turbines, boilers or condensers. But automation for the most important chemistry control tool, the sampling and online analyzer system, is only possible if chemists can rely on their online analysis equipment. Proof of plausibility as well as reliability and availability of online analysis results becomes a major focus. While SOP and standard QA procedures for laboratory equipment are well established and daily practice, such measures are widely neglected for online process analyzers. This paper is aiming to establish a roadmap for the implementation of SOP and QA/QC procedures for online instruments in water steam cycles, leading to reliable chemical information that is trustworthy for process automation and chemistry control in water steam cycles. (author)

  6. QA practice for online analyzers in water steam cycles

    International Nuclear Information System (INIS)

    Staub Lukas

    2009-01-01

    The liberalization of power markets throughout the world has resulted in more and more power stations being operated in cycling mode, with frequent load changes and multiple daily start-up and shut-down cycles. This more flexible operation also calls for better automation and poses new challenges to water chemistry in water steam cycles, to avoid subsequent damage to vital plant components such as turbines, boilers or condensers. But automation for the most important chemistry control tool, the sampling and online analyzer system, is only possible if chemists can rely on their online analysis equipment. Proof of plausibility as well as reliability and availability of online analysis results becomes a major focus. While SOP and standard QA procedures for laboratory equipment are well established and daily practice, such measures are widely neglected for online process analyzers. This paper is aiming to establish a roadmap for the implementation of SOP and QA/QC procedures for online instruments in water steam cycles, leading to reliable chemical information that is trustworthy for process automation and chemistry control in water steam cycles. (author)

  7. Life cycle assessment of drinking water: comparing conventional water treatment, reverse osmosis and mineral water in glass and plastic bottles

    OpenAIRE

    Garfi, Marianna; Cadena, Erasmo; Sanchez Ramos, David; Ferrer Martí, Ivet

    2016-01-01

    This study evaluated the environmental impacts caused by drinking water consumption in Barcelona (Spain) using the Life Cycle Assessment (LCA) methodology. Five different scenarios were compared: 1) tap water from conventional drinking water treatment; 2) tap water from conventional drinking water treatment with reverse osmosis at the water treatment plant; 3) tap water from conventional drinking water treatment with domestic reverse osmosis; 4) mineral water in plastic bottles, and 5) minera...

  8. Secondary cycle water chemistry for 500 MWe pressurised heavy water reactor (PHWR) plant: a case study

    International Nuclear Information System (INIS)

    Bhandakkar, A.; Subbarao, A.; Agarwal, N.K.

    1995-01-01

    In turbine and secondary cycle system of 500 MWe PHWR, chemistry of steam and water is controlled in secondary cycle for prevention of corrosion in steam generators (SGs), feedwater system and steam system, scale and deposit formation on heat transfer surfaces and carry-over of solids by steam and deposition on steam turbine blades. Water chemistry of secondary side of SGs and turbine cycle is discussed. (author). 8 refs., 2 tabs., 1 fig

  9. The fate of organics in the water-steam cycle

    International Nuclear Information System (INIS)

    Huebner, P.

    2006-01-01

    The behaviour of organic matter in power plants has been examined. The samples were taken from water treatment plants producing make-up water for boilers as well as from water-steam cycles and cooling cycles. The power plants examined were Czech power plants, both fossil and nuclear, and one Slovakian nuclear plant. The tests were performed by the liquid chromatography - organic carbon detection (LC-OCD) method at a subcontractor lab. This method enables distinguishing between different groups of organic matter and from experience the effectiveness of water treatment technologies and the possible influence on the water-steam cycle of the power plant can be estimated. It has been confirmed that by using appropriate flocculation the problems in water treatment plants diminish and the VGB limit for total organic carbon (TOC) concentration of 200 μg . L -1 in boiler feedwater may be reached. The lower limit following EPRI recommendations of 100 μg . L -1 is hardly achievable using existing water treatment technology. This provides an open field for reverse osmosis technology that is able to remove organics completely. (orig.)

  10. Recommendations for Cycle II of National Water-Quality Assessment (NAWQA) Program

    Science.gov (United States)

    ,; Mallard, Gail E.; Armbruster, Jeffrey T.; Broshears, Robert E.; Evenson, Eric J.; Luoma, Samuel N.; Phillips, Patrick J.; Prince, Keith R.

    1999-01-01

    The Planning Team for the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program defines a successful NAWQA Program as one that makes a balanced contribution to study-unit issues, national issues, and to the pursuit of scientific knowledge. Using this criterion, NAWQA has been a success. The program has provided important new knowledge and understanding of scientific processes, and insights into the occurrence and distribution of contaminants that have been key to local and national policy decisions. Most of the basic design characteristics of NAWQA's first decade (1991-2000), hereafter called cycle I) remain appropriate as the program enters its second decade (cycle II) in 2001. In cycle II, the program has the opportunity to build on its successful base and to evolve to take advantage of the knowledge generated in cycle I. In addition to this expected evolution, NAWQA must also make some changes to compensate for the fact that program funding has not kept pace with inflation. An important theme for the second cycle of NAWQA will be the integration of knowledge across scales and across disciplines. The question that drove the NAWQA design in the first cycle was "How is water quality related to land use?" Cycle II will build upon what was learned in cycle I and use land-use and water-quality gradients to identify and understand potential sources of various constituents and the processes affecting transport and fate of those constituents and their effects on receptors. The understanding we gain from applying this approach will be relevant to the interests of policymakers, regulatory agencies, and resource managers.

  11. Land surface water cycles observed with satellite sensors

    Science.gov (United States)

    Nghiem, Son V.; Njoku, E. G.; Brakenridge, G. R.; Kim, Y.

    2005-01-01

    Acceleration of the global water cycle may lead to increased global precipitation, faster evaporation and a consequent exacerbation of hydrologic extreme. In the U.S. national assessment of the potential consequences of climate variability and change, two GCMs (CGCM1 and HadCM2) show a large increase in precipitation in the future over the southwestern U.S. particularly during winter (Felzer and Heard, 1999). Increased precipitation potentially has important impacts on agricultural and water use in the southeast U.S. (Hatch et al., 1999) and in the central Great Plains (Nielsen, 1997). A hurricane model predicts a 40% precipitation increase for severe hurricanes affecting southeastern Florida, which provokes substantially greater flooding that could negate most of the benefits of present water-management practices in this basin (Gutowski et al., 1994). Thus, it is important to observe the hydroclimate on a continuous longterm basis to address the question of increased precipitation in the enhanced water cycle.

  12. [Nitrogen and water cycling of typical cropland in the North China Plain].

    Science.gov (United States)

    Pei, Hong-wei; Shen, Yan-jun; Liu, Chang-ming

    2015-01-01

    Intensive fertilization and irrigation associated increasing grain production has led to serious groundwater depletion and soil/water pollution in the North China Plain (NCP). Intensive agriculture changes the initial mass and energy balance, and also results in huge risks to the water/soil resources and food security regionally. Based on the research reports on the nitrogen cycle and water cycle in typical cropland (winter wheat and summer corn) in the NCP during the past 20 years, and the meteorological data, field experiments and surveys, we calculated the nitrogen cycle and water-cycle for this typical cropland. Annual total nitrogen input were 632 kg N . hm-2, including 523 kg N . hm-2 from commercial fertilizer, 74 kg N . hm-2 from manure, 23 kg N . hm-2 from atmosphere, and 12 kg N . hm-2 from irrigation. All of annual outputs summed to 532 kg N . hm-2 including 289 kg N . hm-2 for crop, 77 kg N . hm-2 staying in soil profile, leaching 104 kg N . hm-2, 52 kg N . hm-2 for ammonia volatilization, 10 kg N . hm-2 loss in nitrification and denitrification. Uncertainties of the individual cases and the summary process lead to the unbalance of nitrogen. For the dominant parts of the field water cycle, annual precipitation was 557 mm, irrigation was 340 mm, while 762 mm was for evapotranspiration and 135 mm was for deep percolation. Considering uncertainties in the nitrogen and water cycles, coupled experiments based on multi-disciplines would be useful for understanding mechanisms for nitrogen and water transfer processes in the soil-plant-atmosphere-continuum (SPAC) , and the interaction between nitrogen and water, as well as determining the critical threshold values for sustainability of soil and water resources in the NCP.

  13. Stochastic water demand modelling for a better understanding of hydraulics in water distribution networks

    NARCIS (Netherlands)

    Blokker, E.J.M.

    2010-01-01

    In the water distribution network water quality process take place influenced by de flow velocity and residence time of the water in the network. In order to understand how the water quality changes in the water distribution network, a good understanding of hydraulics is required. Specifically in

  14. Equilibration of the terrestrial water, nitrogen, and carbon cycles

    OpenAIRE

    Schimel, David S.; Braswell, B. H.; Parton, W. J.

    1997-01-01

    Recent advances in biologically based ecosystem models of the coupled terrestrial, hydrological, carbon, and nutrient cycles have provided new perspectives on the terrestrial biosphere’s behavior globally, over a range of time scales. We used the terrestrial ecosystem model Century to examine relationships between carbon, nitrogen, and water dynamics. The model, run to a quasi-steady-state, shows strong correlations between carbon, water, and nitrogen fluxes that l...

  15. Solar High Temperature Water-Splitting Cycle with Quantum Boost

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Robin [SAIC; Davenport, Roger [SAIC; Talbot, Jan [UCSD; Herz, Richard [UCSD; Genders, David [Electrosynthesis Co.; Symons, Peter [Electrosynthesis Co.; Brown, Lloyd [TChemE

    2014-04-25

    A sulfur family chemical cycle having ammonia as the working fluid and reagent was developed as a cost-effective and efficient hydrogen production technology based on a solar thermochemical water-splitting cycle. The sulfur ammonia (SA) cycle is a renewable and sustainable process that is unique in that it is an all-fluid cycle (i.e., with no solids handling). It uses a moderate temperature solar plant with the solar receiver operating at 800°C. All electricity needed is generated internally from recovered heat. The plant would operate continuously with low cost storage and it is a good potential solar thermochemical hydrogen production cycle for reaching the DOE cost goals. Two approaches were considered for the hydrogen production step of the SA cycle: (1) photocatalytic, and (2) electrolytic oxidation of ammonium sulfite to ammonium sulfate in aqueous solutions. Also, two sub-cycles were evaluated for the oxygen evolution side of the SA cycle: (1) zinc sulfate/zinc oxide, and (2) potassium sulfate/potassium pyrosulfate. The laboratory testing and optimization of all the process steps for each version of the SA cycle were proven in the laboratory or have been fully demonstrated by others, but further optimization is still possible and needed. The solar configuration evolved to a 50 MW(thermal) central receiver system with a North heliostat field, a cavity receiver, and NaCl molten salt storage to allow continuous operation. The H2A economic model was used to optimize and trade-off SA cycle configurations. Parametric studies of chemical plant performance have indicated process efficiencies of ~20%. Although the current process efficiency is technically acceptable, an increased efficiency is needed if the DOE cost targets are to be reached. There are two interrelated areas in which there is the potential for significant efficiency improvements: electrolysis cell voltage and excessive water vaporization. Methods to significantly reduce water evaporation are

  16. A Seamless Framework for Global Water Cycle Monitoring and Prediction

    Science.gov (United States)

    Sheffield, J.; Wood, E. F.; Chaney, N.; Fisher, C. K.; Caylor, K. K.

    2013-12-01

    The Global Earth Observation System of Systems (GEOSS) Water Strategy ('From Observations to Decisions') recognizes that 'water is essential for ensuring food and energy security, for facilitating poverty reduction and health security, and for the maintenance of ecosystems and biodiversity', and that water cycle data and observations are critical for improved water management and water security - especially in less developed regions. The GEOSS Water Strategy has articulated a number of goals for improved water management, including flood and drought preparedness, that include: (i) facilitating the use of Earth Observations for water cycle observations; (ii) facilitating the acquisition, processing, and distribution of data products needed for effective management; (iii) providing expertise, information systems, and datasets to the global, regional, and national water communities. There are several challenges that must be met to advance our capability to provide near real-time water cycle monitoring, early warning of hydrological hazards (floods and droughts) and risk assessment under climate change, regionally and globally. Current approaches to monitoring and predicting hydrological hazards are limited in many parts of the world, and especially in developing countries where national capacity is limited and monitoring networks are inadequate. This presentation describes the development of a seamless monitoring and prediction framework at all time scales that allows for consistent assessment of water variability from historic to current conditions, and from seasonal and decadal predictions to climate change projections. At the center of the framework is an experimental, global water cycle monitoring and seasonal forecast system that has evolved out of regional and continental systems for the US and Africa. The system is based on land surface hydrological modeling that is driven by satellite remote sensing precipitation to predict current hydrological conditions

  17. Master and novice secondary science teachers' understandings and use of the learning cycle

    Science.gov (United States)

    Reap, Melanie Ann

    2000-09-01

    The learning cycle paradigm had been used in science classrooms for nearly four decades. This investigation seeks to reveal how the 1earning cycle, as originally designed, is currently understood and implemented by teachers in authentic classroom settings. The specific purposes of this study were: (1) to describe teachers who use the learning cycle and compare their understandings and perceptions of the learning cycle procedure in instruction; (2) to elicit novice and master teacher perspectives on their instruction and determine their perception of the process by which learning cycles are implemented in the science classroom; (3) to describe the context of science instruction in the novice and master teacher's classroom to ascertain how the teacher facilitates implementation of the learning cycle paradigm in their authentic classroom setting. The study used a learning cycle survey, interviews and classroom observations using the Learning Cycle Teacher Behavior Instruments and the Verbal Interaction Category System to explore these features of learning cycle instruction. The learning cycle survey was administered to a sample of teachers who use the learning cycle, including master and novice learning cycle teachers. One master and one novice learning cycle teacher were selected from this sample for further study. Analysis of the surveys showed no significant differences in master and novice teacher understandings of the learning cycle as assessed by the instrument. However, interviews and observations of the selected master and novice learning cycle teachers showed several differences in how the paradigm is understood and implemented in the classroom. The master learning cycle teacher showed a more developed teaching philosophy and had more engaged, extensive interactions with students. The novice learning cycle teacher held a more naive teaching philosophy and had fewer, less developed interactions with students. The most significant difference was seen in the use

  18. Environmental life cycle assessments for water treatment processes ...

    African Journals Online (AJOL)

    The objective of this study was to generate information on the environmental profile of the life cycle of water, including treatment, distribution and collection and disposal (including recycling), in an urban context. As a case study the eThekwini Municipality (with its main city Durban) in South Africa was used. Another aim of ...

  19. Multimodal Science Teachers' Discourse in Modeling the Water Cycle

    Science.gov (United States)

    Marquez, Conxita; Izquierdo, Merce; Espinet, Mariona

    2006-01-01

    The paper presents an intensive study of a micro-event aiming at the characterization of teacher's discourse from a multimodal communication perspective in a secondary school science classroom dealing with the topic of "water cycle." The research addresses the following questions: (a) What communicative modes are used by the teacher?, (b) what…

  20. Modeling of the Global Water Cycle - Analytical Models

    Science.gov (United States)

    Yongqiang Liu; Roni Avissar

    2005-01-01

    Both numerical and analytical models of coupled atmosphere and its underlying ground components (land, ocean, ice) are useful tools for modeling the global and regional water cycle. Unlike complex three-dimensional climate models, which need very large computing resources and involve a large number of complicated interactions often difficult to interpret, analytical...

  1. [The presence of medications in the water cycle].

    Science.gov (United States)

    van der Hoek, Jan Peter; van Alphen, Jacques; Kaas, Reinoutje; van der Oost, Ron

    2013-01-01

    Medications and radiographic contrast dyes are sometimes detected in surface waters, ground water and drinking water; these have proven detrimental effects on organisms living in such waters The concentration of medications found in drinking water is at least a thousand times below their minimum therapeutic dosages. In humans, the long-term effects of daily exposure to low dosages of medications and 'mixture toxicity' is not known; based on the concentrations and substance toxicity, it is presumed that the risk is nil.. Physicians can play their part in controlling the problem of medications becoming part of the water cycle by taking this into account when prescribing medications. Users can make a difference by handling their medications with care and by returning all unused portions to the pharmacy. The pharmaceutical industry can also do its part by taking degradability, options for removal and the environmental effects of medications into account during their stages of development.

  2. Implications of Subduction Rehydration for Earth's Deep Water Cycle

    Science.gov (United States)

    Ruepke, L. H.; Phipps Morgan, J.; Dixon, J.

    2006-12-01

    The presence of liquid water is the principle difference between our Earth and other planets in the solar system. The global ocean is the obvious surface expression of this. The 'standard model' for the genesis of the oceans is that they are exhalations from Earth's deep interior continually rinsed through surface rocks by the global hydrologic cycle. The question of how much water resides within the Earth's deep interior remains unresolved and is a matter of vigorous ongoing scientific debate. We have addressed the question of water distribution between the exosphere and the mantle throughout Earth's history with simple mass balance considerations. In our model, water is outgassed from the mantle into the exosphere (atmosphere + continental crust) during pressure-release melting at mid-ocean ridges and hotspots. Plate subduction may transport water back from the surface into the deeper mantle thereby 'closing' the global geologic water cycle. In series of some 5000 model runs we have thoroughly explored the mutual effect of model parameters. All models correctly predict the formation of the present-day oceans but differ in their predicted sea-level changes through time and in the amount of water in the present-day mantle. To distinguish which model runs are the most realistic we use geochemical constraints and observed sealevel changes during the Phanerozoic. Recently Dixon et al. [2002] estimated water concentrations for some of the major mantle components and concluded that the most primitive (FOZO) are significantly wetter than the recycling associated EM or HIMU mantle components and the even drier depleted mantle source that melts to form MORB. Sealevel changes over hundreds of million of years are notoriously bad constrained. But a maximum drop in sealevel of 400-600m appears to be an upper bound. We find that only those model runs are consistent with these constraints in which deep water subduction is limited and in which the present-day mantle is

  3. IS BLOOD LACTATE REMOVAL DURING WATER IMMERSED CYCLING FASTER THAN DURING CYCLING ON LAND?

    Directory of Open Access Journals (Sweden)

    Fabrízio Di Masi

    2007-06-01

    Full Text Available The aim of the present study was to compare lactate removal during active recovery performed during cycling in water immersion (CW and during cycling on land (CL, after a similar exercise bout in male adults. Eleven healthy and physically active men, aged between 20 and 26 years old participated in the experiment. Before the experimental tests, the ventilatory threshold of the subjects was determined. Each subject completed the experimental tests twice, with one week separating the two periods of experiment. The subjects exercised on the treadmill during 6 min at a speed 10% above the speed corresponding to their ventilatory threshold. Subsequently, the subjects recovered from the exercise bout either on a stationary bike (CL or on a aquatic-specific bike (CW. On the subsequent week the subjects performed the same protocol but with a different recovery condition. Recovery condition assignment for the first test was counterbalanced (six subjects started with one condition and five with the other. Capillary blood samples were collected after each test and during the recovery period (at 3, 6, 9 and 15 minutes and blood lactate was measured. The blood lactate values during CW were lower than during CL and significant differences were observed at the 6th minute (p < 0.05 and at the 15th minute of recovery (p < 0.05. Therefore, we may conclude that active recovery using cycling in water immersion may be more efficient than cycling on land for blood lactate removal.

  4. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    International Nuclear Information System (INIS)

    Shropshire, D.E.

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program's understanding of the cost drivers that will determine nuclear power's cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-irradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  5. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  6. Multiyear Simulations of the Martian Water Cycle with the Ames General Circulation Model

    Science.gov (United States)

    Haberle, R. M.; Schaeffer, J. R.; Nelli, S. M.; Murphy, J. R.

    2003-01-01

    Mars atmosphere is carbon dioxide dominated with non-negligible amounts of water vapor and suspended dust particles. The atmospheric dust plays an important role in the heating and cooling of the planet through absorption and emission of radiation. Small dust particles can potentially be carried to great altitudes and affect the temperatures there. Water vapor condensing onto the dust grains can affect the radiative properties of both, as well as their vertical extent. The condensation of water onto a dust grain will change the grain s fall speed and diminish the possibility of dust obtaining high altitudes. In this capacity, water becomes a controlling agent with regard to the vertical distribution of dust. Similarly, the atmosphere s water vapor holding capacity is affected by the amount of dust in the atmosphere. Dust is an excellent green house catalyst; it raises the temperature of the atmosphere, and thus, its water vapor holding capacity. There is, therefore, a potentially significant interplay between the Martian dust and water cycles. Previous research done using global, 3-D computer modeling to better understand the Martian atmosphere treat the dust and the water cycles as two separate and independent processes. The existing Ames numerical model will be employed to simulate the relationship between the Martian dust and water cycles by actually coupling the two cycles. Water will condense onto the dust, allowing the particle's radiative characteristics, fall speeds, and as a result, their vertical distribution to change. Data obtained from the Viking, Mars Pathfinder, and especially the Mars Global Surveyor missions will be used to determine the accuracy of the model results.

  7. Light water breeder reactor using a uranium-plutonium cycle

    International Nuclear Information System (INIS)

    Radkowsky, A.; Chen, R.

    1990-01-01

    This patent describes a light water receptor (LWR) for breeding fissile material using a uranium-plutonium cycle. It comprises: a prebreeder section having plutonium fuel containing a Pu-241 component, the prebreeder section being operable to produce enriched plutonium having an increased Pu-241 component; and a breeder section for receiving the enriched plutonium from the prebreeder section, the breeder section being operable for breeding fissile material from the enriched plutonium fuel. This patent describes a method of operating a light water nuclear reactor (LWR) for breeding fissile material using a uranium-plutonium cycle. It comprises: operating the prebreeder to produce enriched plutonium fuel having an increased Pu-241 component; fueling a breeder section with the enriched plutonium fuel to breed the fissile material

  8. Life Cycle Assessment and Water Footprint of Hydrogen Production Methods: From Conventional to Emerging Technologies

    Directory of Open Access Journals (Sweden)

    Andi Mehmeti

    2018-02-01

    Full Text Available A common sustainability issue, arising in production systems, is the efficient use of resources for providing goods or services. With the increased interest in a hydrogen (H2 economy, the life-cycle environmental performance of H2 production has special significance for assisting in identifying opportunities to improve environmental performance and to guide challenging decisions and select between technology paths. Life cycle impact assessment methods are rapidly evolving to analyze multiple environmental impacts of the production of products or processes. This study marks the first step in developing process-based streamlined life cycle analysis (LCA of several H2 production pathways combining life cycle impacts at the midpoint (17 problem-oriented and endpoint (3 damage-oriented levels using the state-of-the-art impact assessment method ReCiPe 2016. Steam reforming of natural gas, coal gasification, water electrolysis via proton exchange membrane fuel cell (PEM, solid oxide electrolyzer cell (SOEC, biomass gasification and reforming, and dark fermentation of lignocellulosic biomass were analyzed. An innovative aspect is developed in this study is an analysis of water consumption associated with H2 production pathways by life-cycle stage to provide a better understanding of the life cycle water-related impacts on human health and natural environment. For water-related scope, Water scarcity footprint (WSF quantified using Available WAter REmaining (AWARE method was applied as a stand-alone indicator. The paper discusses the strengths and weaknesses of each production pathway, identify the drivers of environmental impact, quantify midpoint environmental impact and its influence on the endpoint environmental performance. The findings of this study could serve as a useful theoretical reference and practical basis to decision-makers of potential environmental impacts of H2 production systems.

  9. Water cycles in closed ecological systems: effects of atmospheric pressure

    Science.gov (United States)

    Rygalov, Vadim Y.; Fowler, Philip A.; Metz, Joannah M.; Wheeler, Raymond M.; Bucklin, Ray A.; Sager, J. C. (Principal Investigator)

    2002-01-01

    In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from 1 to 10 L m-2 d-1 (1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems.

  10. DIRECT-CYCLE, BOILING-WATER NUCLEAR REACTOR

    Science.gov (United States)

    Harrer, J.M.; Fromm, L.W. Jr.; Kolba, V.M.

    1962-08-14

    A direct-cycle boiling-water nuclear reactor is described that employs a closed vessel and a plurality of fuel assemblies, each comprising an outer tube closed at its lower end, an inner tube, fuel rods in the space between the tubes and within the inner tube. A body of water lying within the pressure vessel and outside the fuel assemblies is converted to saturated steam, which enters each fuel assembly at the top and is converted to superheated steam in the fuel assembly while it is passing therethrough first downward through the space between the inner and outer tubes of the fuel assembly and then upward through the inner tube. (AEC)

  11. Life cycle assessment of advanced waste water treatment

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hansen, Peter Augusto

    The EU FP6 NEPTUNE project is related to the EU Water Framework Directive and the main goal is to develop new and optimize existing waste water treatment technologies (WWTT) and sludge handling methods for municipal waste water. Besides nutrients, a special focus area is micropollutants (e...... of induced impacts as compared to avoided impacts is introduced in the life cycle impact assessment (LCIA) part. Furthermore, as novel approaches, potential ecotoxicity impact from a high number of micropollutants and the potential impact from pathogens (and whole effluent toxicity) are to be included....... In total more that 20 different waste water and sludge treatment technologies are to be assessed. This paper will present the preliminary LCA results from running the induced versus avoided impact approach (mainly based on existing LCIA methodology) on one of the advanced treatment technologies, i...

  12. Terrestrial Water Cycle and the Impact of Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Fulu Tao; Erda Lin [Chinese Academy of Agricultural Sciences, Beijing (China). Agrometeorology Inst.; Yokozawa, Masayuki; Hayashi, Yousay [National Inst. for Agro-Environmental Sciences, Tsukuba (Japan)

    2003-06-01

    The terrestrial water cycle and the impact of climate change are critical for agricultural and natural ecosystems. In this paper, we assess both by running a macro-scale water balance model under a baseline condition and 2 General Circulation Model (GCM)-based climate change scenarios. The results show that in 2021-2030, water demand will increase worldwide due to climate change. Water shortage is expected to worsen in western Asia, the Arabian Peninsula, northern and southern Africa, northeastern Australia, southwestern North America, and central South America. A significant increase in surface runoff is expected in southern Asia and a significant decrease is expected in northern South America. These changes will have implications for regional environment and socio-economics.

  13. Terrestrial water cycle and the impact of climate change.

    Science.gov (United States)

    Tao, Fulu; Yokozawa, Masayuki; Hayashi, Yousay; Lin, Erda

    2003-06-01

    The terrestrial water cycle and the impact of climate change are critical for agricultural and natural ecosystems. In this paper, we assess both by running a macro-scale water balance model under a baseline condition and 2 General Circulation Model (GCM)-based climate change scenarios. The results show that in 2021-2030, water demand will increase worldwide due to climate change. Water shortage is expected to worsen in western Asia, the Arabian Peninsula, northern and southern Africa, northeastern Australia, southwestern North America, and central South America. A significant increase in surface runoff is expected in southern Asia and a significant decrease is expected in northern South America. These changes will have implications for regional environment and socioeconomics.

  14. Climate change and the water cycle in newly irrigated areas.

    Science.gov (United States)

    Abrahão, Raphael; García-Garizábal, Iker; Merchán, Daniel; Causapé, Jesús

    2015-02-01

    Climate change is affecting agriculture doubly: evapotranspiration is increasing due to increments in temperature while the availability of water resources is decreasing. Furthermore, irrigated areas are expanding worldwide. In this study, the dynamics of climate change impacts on the water cycle of a newly irrigated watershed are studied through the calculation of soil water balances. The study area was a 752-ha watershed located on the left side of the Ebro river valley, in Northeast Spain. The soil water balance procedures were carried out throughout 1827 consecutive days (5 years) of hydrological and agronomical monitoring in the study area. Daily data from two agroclimatic stations were used as well. Evaluation of the impact of climate change on the water cycle considered the creation of two future climate scenarios for comparison: 2070 decade with climate change and 2070 decade without climate change. The main indicators studied were precipitation, irrigation, reference evapotranspiration, actual evapotranspiration, drainage from the watershed, and irrigation losses. The aridity index was also applied. The results represent a baseline scenario in which adaptation measures may be included and tested to reduce the impacts of climate change in the studied area and other similar areas.

  15. Comments on the water cycle of the atmosphere and its measurement

    International Nuclear Information System (INIS)

    Benton, G.S.

    1967-01-01

    There are two major water cycles of the atmosphere: the meridional cycle, which results in a latitudinal exchange of water, and the hydrological cycle, which carries water from the oceans over the continents. In the present paper a model is used for the estimation of atmospheric water balance from direct measurements of atmospheric vapour flux and limitation of this model are discussed

  16. The water cycle in a bottle: simulation of a hydrogeological basin

    Science.gov (United States)

    Nebot Castelló, M. R.; Leiva Hevia, S.

    2012-04-01

    stem, with the soil exposed to air, leaving some of them in the shade and some in the sun. The origin of condensation is thoroughly discussed so that the students understand that evapotranspiration comes from the addition of transpiration (plants) to evaporation. The students also add colouring to simulate contamination and salt to simulate marine intrusion. These activities, together with the overexploitation, help to understand how humans affect nature and how the effects are not the same in different parts of the world. To finish, there are different exercises to review, summarize and complement all that has been learnt through the lesson. To acknowledge the fact that many times underground water is forgotten, as homework they have to surf the net to see the many water cycle drawings and animations that don't show the water in the aquifers, and sometimes when the water is seen, the rocks that contain it are not depicted. They are also encouraged to realize that in water cycle representations, it never rains over the sea and that to adjust to what really happens and that there should also be rain over the oceans and seas. To finish, the idea that within the water cycle model there are many interrelated processes is discussed

  17. The governance of major innovation in the water cycle : Examining three prominent technologies

    NARCIS (Netherlands)

    Lulofs, Kris R.D.; Bressers, Hans

    The growing absolute and relative water scarcity requires drastic change in the water cycle in order to target an efficient and robust water supply. The water cycle consists of the production of water, water use, collection of wastewater and its treatment. This article addresses whether the market

  18. Advanced steam cycles for light water reactors. Final report

    International Nuclear Information System (INIS)

    Mitchell, R.C.

    1975-07-01

    An appraisal of the potential of adding superheat to improve the overall LWR plant cycle performance is presented. The study assesses the economic and technical problems associated with the addition of approximately 500 0 F of superheat to raise the steam temperature to 1000 0 F. The practicality of adding either nuclear or fossil superheat to LWR's is reviewed. The General Electric Company Boiling Water Reactor (BWR) model 238-732 (BWR/6) is chosen as the LWR starting point for this evaluation. The steam conditions of BWR/6 are representative of LWR's. The results of the fossil superheat portion of the evaluation are considered directly applicable to all LWR's. In spite of the potential of a nuclear superheater to provide a substantial boost to the LWR cycle efficiency, nuclear superheat offers little promise of development at this time. There are difficult technical problems to resolve in the areas of superheat fuel design and emergency core cooling. The absence of a developed high integrity, high temperature fuel for operation in the steam/water environment is fundamental to this conclusion. Fossil superheat offers the potential opportunity to utilize fossil fuel supplies more efficiently than in any other mode of central station power generation presently available. Fossil superheat topping cycles evaluated included atmospheric fluidized beds (AFB), pressurized fluidized beds, pressurized furnaces, conventional furnaces, and combined gas/steam turbine cycles. The use of an AFB is proposed as the preferred superheat furnace. Fossil superheat provides a cycle efficiency improvement for the LWR of two percentage points, reduces heat rejection by 15 percent per kWe generated, increases plant electrical output by 54 percent, and burns coal with an incremental net efficiency of approximately 40 percent. This compares with a net efficiency of 36--37 percent which might be achieved with an all-fluidized bed fossil superheat plant design

  19. Life cycle-based water assessment of a hand dishwashing product: opportunities and limitations.

    Science.gov (United States)

    Van Hoof, Gert; Buyle, Bea; Kounina, Anna; Humbert, Sebastien

    2013-10-01

    It is only recently that life cycle-based indicators have been used to evaluate products from a water use impact perspective. The applicability of some of these methods has been primarily demonstrated on agricultural materials or products, because irrigation requirements in food production can be water-intensive. In view of an increasing interest on life cycle-based water indicators from different products, we ran a study on a hand dishwashing product. A number of water assessment methods were applied with the purpose of identifying both product improvement opportunities, as well as understanding the potential for underlying database and methodological improvements. The study covered the entire life cycle of the product and focused on environmental issues related to water use, looking in-depth at inventory, midpoint, and endpoint methods. "Traditional" water emission driven methods, such as freshwater eutrophication, were excluded from the analysis. The use of a single formula with the same global supply chain, manufactured in 1 location was evaluated in 2 countries with different water scarcity conditions. The study shows differences ranging up to 4 orders in magnitude for indicators with similar units associated with different water use types (inventory methods) and different cause-effect chain models (midpoint and endpoint impact categories). No uncertainty information was available on the impact assessment methods, whereas uncertainty from stochastic variability was not available at the time of study. For the majority of the indicators studied, the contribution from the consumer use stage is the most important (>90%), driven by both direct water use (dishwashing process) as well as indirect water use (electricity generation to heat the water). Creating consumer awareness on how the product is used, particularly in water-scarce areas, is the largest improvement opportunity for a hand dishwashing product. However, spatial differentiation in the inventory and

  20. Forest tree pollen dispersal via the water cycle.

    Science.gov (United States)

    Williams, Claire G

    2013-06-01

    Pine pollen (Pinus spp.), along with other atmospheric particles, is dispersed by the water cycle, but this mode of dispersal requires cloud-pollen interactions that depend on taxon-specific biological properties. In the simplest form of this dispersal, pine pollen ascends vertically to altitudes of 2 to 6 km, where a fraction is captured by mixed-phase cloud formation. Captured pollen accretes into frozen droplets, which ultimately descend as rain, snow, or hail. Whether Pinus pollen can still germinate after its exposure to high-altitude freezing is pertinent to (1) how forests adapt to climate change and (2) potential gene flow between genetically modified plantation species and their conspecific relatives. • To address this question, pollen from four Old World and two New World Pinus species were subjected to immersion freezing, a common cloud formation mode, under laboratory conditions. • Some pollen grains immersed at -20°C for 15, 60, or 120 min in either a dehydrated or a water-saturated state were still capable of germination. After exposure, dehydrated pine pollen had higher germination (43.3%) than water-saturated pollen (7.6%). • Pine pollen exposed to freezing during cloud formation can still germinate, raising the question of whether rain-delivered live pollen might be linked to rain-facilitated pollination. Dispersal of live pine pollen via cloud formation and the water cycle itself deserves closer study.

  1. eWaterCycle: A global operational hydrological forecasting model

    Science.gov (United States)

    van de Giesen, Nick; Bierkens, Marc; Donchyts, Gennadii; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2015-04-01

    Development of an operational hyper-resolution hydrological global model is a central goal of the eWaterCycle project (www.ewatercycle.org). This operational model includes ensemble forecasts (14 days) to predict water related stress around the globe. Assimilation of near-real time satellite data is part of the intended product that will be launched at EGU 2015. The challenges come from several directions. First, there are challenges that are mainly computer science oriented but have direct practical hydrological implications. For example, we aim to make use as much as possible of existing standards and open-source software. For example, different parts of our system are coupled through the Basic Model Interface (BMI) developed in the framework of the Community Surface Dynamics Modeling System (CSDMS). The PCR-GLOBWB model, built by Utrecht University, is the basic hydrological model that is the engine of the eWaterCycle project. Re-engineering of parts of the software was needed for it to run efficiently in a High Performance Computing (HPC) environment, and to be able to interface using BMI, and run on multiple compute nodes in parallel. The final aim is to have a spatial resolution of 1km x 1km, which is currently 10 x 10km. This high resolution is computationally not too demanding but very memory intensive. The memory bottleneck becomes especially apparent for data assimilation, for which we use OpenDA. OpenDa allows for different data assimilation techniques without the need to build these from scratch. We have developed a BMI adaptor for OpenDA, allowing OpenDA to use any BMI compatible model. To circumvent memory shortages which would result from standard applications of the Ensemble Kalman Filter, we have developed a variant that does not need to keep all ensemble members in working memory. At EGU, we will present this variant and how it fits well in HPC environments. An important step in the eWaterCycle project was the coupling between the hydrological and

  2. IAEA specialists' meeting on power ramping and cycling behaviour of water reactor fuel. Summary report

    International Nuclear Information System (INIS)

    1983-06-01

    At its fourth Annual Meeting, the IAEA International Working Group on Water Reactor Fuel Performance and Technology (IWGFPT) recommended that the Agency should hold a second Specialists' Meeting on 'Power Ramping and Cycling Behaviour of Water Reactor Fuel'. As research activities related to power ramping and cycling of water reactor fuel have been pursued vigorously, it was the objective of this meeting to review and discuss today's State of the Art and current understanding of water reactor fuel behaviour related to this these. Emphasis should be on practical experience and experimental investigations. The meeting was organised in five sessions: Power ramping and power cycling programs in power and and research reactors; Experimental methods; Power ramping and cycling results; Investigations and results of separate effects, especially related to PCI, defect mechanism, mechanical response, fuel design, and specially related to fission gas release; Operational strategies, recommendations and economic implications. The session chairmen, together with the speakers, prepared and presented reports with summary, conclusions and recommendations of the individual sessions. These reports are added to this summary report

  3. Using NASA Products of the Water Cycle for Improved Water Resources Management

    Science.gov (United States)

    Toll, D. L.; Doorn, B.; Engman, E. T.; Lawford, R. G.

    2010-12-01

    NASA Water Resources works within the Earth sciences and GEO community to leverage investments of space-based observation and modeling results including components of the hydrologic cycle into water resources management decision support tools for the goal towards the sustainable use of water. These Earth science hydrologic related observations and modeling products provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years. Observations of this type enable assessment of numerous water resources management issues including water scarcity, extreme events of drought and floods, and water quality. Examples of water cycle estimates make towards the contributions to the water management community include snow cover and snowpack, soil moisture, evapotranspiration, precipitation, streamflow and ground water. The availability of water is also contingent on the quality of water and hence water quality is an important part of NASA Water Resources. Water quality activities include both nonpoint source (agriculture land use, ecosystem disturbances, impervious surfaces, etc.) and direct remote sensing ( i.e., turbidity, algae, aquatic vegetation, temperature, etc.). . The NASA Water Resources Program organizes its projects under five functional themes: 1) stream-flow and flood forecasting; 2) water consumptive use and irrigation (includes evapotranspiration); 3) drought; 4) water quality; and 5) climate impacts on water resources. Currently NASA Water Resources is supporting 21 funded projects with 11 additional projects being concluded. To maximize the use of NASA water cycle measurements end to projects are supported with strong links with decision support systems. The NASA Water Resources Program works closely with other government agencies NOAA, USDA-FAS, USGS, AFWA, USAID, universities, and non-profit, international, and private sector organizations. International water cycle applications include: 1) Famine Early Warning System Network

  4. Numerical study of optimal equilibrium cycles for pressurized water reactors

    International Nuclear Information System (INIS)

    Mahlers, Y.P.

    2003-01-01

    An algorithm based on simulated annealing and successive linear programming is applied to solve equilibrium cycle optimization problems for pressurized water reactors. In these problems, the core reload scheme is represented by discrete variables, while the cycle length as well as uranium enrichment and loading of burnable poison in each feed fuel assembly are treated as continuous variables. The enrichments are considered to be distinct in all feed fuel assemblies. The number of batches and their sizes are not fixed and also determined by the algorithm. An important feature of the algorithm is that all the parameters are determined by the solution of one optimization problem including both discrete and continuous variables. To search for the best reload scheme, simulated annealing is used. The optimum cycle length as well as uranium enrichment and loading of burnable poison in each feed fuel assembly are determined for each reload pattern examined using successive linear programming. Numerical results of equilibrium cycle optimization for various values of the effective price of electricity and fuel reprocessing cost are studied

  5. Ocean water cycle: its recent amplification and impact on ocean circulation

    Science.gov (United States)

    Vinogradova, Nadya

    2016-04-01

    Oceans are the largest reservoir of the world's water supply, accounting for 97% of the Earth's water and supplying more than 75% of the evaporated and precipitated water in the global water cycle. Therefore, in order to predict the future of the global hydrological cycle, it is essential to understand the changes in its largest component, which is the flux of freshwater over the oceans. Here we examine the change in the ocean water cycle and the ocean's response to such changes that were happening during the last two decades. The analysis is based on a data-constrained ocean state estimate that synthesizes all of the information available in the surface fluxes, winds, observations of sea level, temperature, salinity, geoid, etc., as well as in the physical constraints, dynamics, and conservation statements that are embedded in the equations of the MIT general circulation model. Closeness to observations and dynamical consistency of the solution ensures a physically realistic correspondence between the atmospheric forcing and oceanic fluxes, including the ocean's response to freshwater input. The results show a robust pattern of change in the ocean water cycle in the last twenty years. The pattern of changes indicates a general tendency of drying of the subtropics, and wetting in the tropics and mid-to-high latitudes, following the "rich get richer and the poor get poorer" paradigm in many ocean regions. Using a closed property budget analysis, we then investigate the changes in the oceanic state (salinity, temperature, sea level) during the same twenty-year period. The results are discussed in terms of the origin of surface signatures, and differentiated between those that are attributed to short-term natural variability and those that result from an intensified hydrological cycle due to warming climate.

  6. Water stable isotopes: application to the water cycle and climate variations study

    International Nuclear Information System (INIS)

    Risi, C.

    2009-12-01

    The stable isotopic composition of water (H 2 16 , HDO, H 2 18 , H 2 17 ) is a promising tracer of the present day water cycle and past climates. While the isotopic composition recorded in polar ice core have long been used to reconstruct past temperatures, however, what controls the isotopic composition of the tropical precipitation is more complex. The goal of this thesis is thus to better understand the processes that affect the isotopic composition of tropical precipitation and atmospheric water, more particularly in the tropics. Since most of the tropical precipitation arises from atmospheric convection, and most isotopic archives are on land, we focus more particularly on the impact of convective and land surface processes. In turn, what can be learned about convection and land surface processes using isotopic measurements? Can they help constrain their representation in models? At the inter-annual to climate change scale, what information about the tropical climate variability is recorded in isotopic signals observed in archives? First, we investigate the influence of convection on water stable isotopes. We use both (1) numerical modeling, with a hierarchy of models (single column model, two-dimensional model of squall lines, general circulation model) and (2) data analysis, using isotopic data from rain collected in the Sahel during the African Monsoon Multidisciplinary Analysis campaign, at the event and intra-event scales. These studies highlight the strong impact of convection on the precipitation composition, and stress the importance of rain evaporation and convective or meso-scale subsidence in controlling the rain isotopic composition. Convection also plays an important role on isotopic profiles in the upper troposphere-lower stratosphere. Second, we study what information about climatic variability is recorded by water stable isotopes in precipitation. We analyze simulations of present day and past climates with LMDZ, and evaluate to what extent

  7. Water Vapor Tracers as Diagnostics of the Regional Hydrologic Cycle

    Science.gov (United States)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Numerous studies suggest that local feedback of surface evaporation on precipitation, or recycling, is a significant source of water for precipitation. Quantitative results on the exact amount of recycling have been difficult to obtain in view of the inherent limitations of diagnostic recycling calculations. The current study describes a calculation of the amount of local and remote geographic sources of surface evaporation for precipitation, based on the implementation of three-dimensional constituent tracers of regional water vapor sources (termed water vapor tracers, WVT) in a general circulation model. The major limitation on the accuracy of the recycling estimates is the veracity of the numerically simulated hydrological cycle, though we note that this approach can also be implemented within the context of a data assimilation system. In the WVT approach, each tracer is associated with an evaporative source region for a prognostic three-dimensional variable that represents a partial amount of the total atmospheric water vapor. The physical processes that act on a WVT are determined in proportion to those that act on the model's prognostic water vapor. In this way, the local and remote sources of water for precipitation can be predicted within the model simulation, and can be validated against the model's prognostic water vapor. As a demonstration of the method, the regional hydrologic cycles for North America and India are evaluated for six summers (June, July and August) of model simulation. More than 50% of the precipitation in the Midwestern United States came from continental regional sources, and the local source was the largest of the regional tracers (14%). The Gulf of Mexico and Atlantic regions contributed 18% of the water for Midwestern precipitation, but further analysis suggests that the greater region of the Tropical Atlantic Ocean may also contribute significantly. In most North American continental regions, the local source of precipitation is

  8. Water Footprint Assessment in Waste Water Treatment Plant: Indicator of the sustainability of urban water cycle.

    Science.gov (United States)

    Gómez Llanos, Eva; Durán Barroso, Pablo; Matías Sánchez, Agustín; Fernández Rodríguez, Santiago; Guzmán Caballero, Raúl

    2017-04-01

    The seventeen Sustainable Development Goals (SDG) represent a challenge for citizens and countries around the world by working together to reduce social inequality, to fight poverty and climate change. The Goal six water and sanitation aims for ensuring, among others, the protection and restoration of water-related ecosystem (target 6.6) and encouraging the water use efficiency (target 6.3). The commitment to this goal is not only the development of sanitation infrastructure, but also incorporates the necessity of a sustainable and efficient management from ecological and economic perspectives. Following this approach, we propose a framework for assessing the waste water treatment plant (WWTP) management based on the Water Footprint (WF) principles. The WF as indicator is able to highlight the beneficial role of WWTPs within the environment and provide a complementary information to evaluate the impact of a WWTP regarding to the use of freshwater and energy. Therefore, the footprint family provides an opportunity to relate the reduction of pollutant load in a WWTP and the associated consumptions in terms of electricity and chemical products. As a consequence, the new methodology allows a better understanding of the interactions among water and energy resources, economic requirements and environmental risks. Because of this, the current technologies can be improved and innovative solutions for monitoring and management of urban water use can be integrated. The WF was calculated in four different WWTP located in the North East of Extremadura (SW Spain) which have activated sludge process as secondary treatment. This zone is characterized by low population density but an incipient tourism development. The WF estimation and its relationship with the electricity consumption examines the efficiency of each WWTP and identifies the weak points in the management in terms of the sustainability. Consequently, the WF establishes a benchmark for multidisciplinary decision

  9. Analysis of alternative light water reactor (LWR) fuel cycles

    International Nuclear Information System (INIS)

    Heeb, C.M.; Aaberg, R.L.; Boegel, A.J.; Jenquin, U.P.; Kottwitz, D.A.; Lewallen, M.A.; Merrill, E.T.; Nolan, A.M.

    1979-12-01

    Nine alternative LWR fuel cycles are analyzed in terms of the isotopic content of the fuel material, the relative amounts of primary and recycled material, the uranium and thorium requirements, the fuel cycle costs and the fraction of energy which must be generated at secured sites. The fuel materials include low-enriched uranium (LEU), plutonium-uranium (MOX), highly-enriched uranium-thorium (HEU-Th), denatured uranium-thorium (DU-Th) and plutonium-thorium (Pu-Th). The analysis is based on tracing the material requirements of a generic pressurized water reactor (PWR) for a 30-year period at constant annual energy output. During this time period all the created fissile material is recycled unless its reactivity worth is less than 0.2% uranium enrichment plant tails

  10. Supercritical Water Reactor Cycle for Medium Power Applications

    International Nuclear Information System (INIS)

    BD Middleton; J Buongiorno

    2007-01-01

    Scoping studies for a power conversion system based on a direct-cycle supercritical water reactor have been conducted. The electric power range of interest is 5-30 MWe with a design point of 20 MWe. The overall design objective is to develop a system that has minimized physical size and performs satisfactorily over a broad range of operating conditions. The design constraints are as follows: Net cycle thermal efficiency (ge)20%; Steam turbine outlet quality (ge)90%; and Pumping power (le)2500 kW (at nominal conditions). Three basic cycle configurations were analyzed. Listed in order of increased plant complexity, they are: (1) Simple supercritical Rankine cycle; (2) All-supercritical Brayton cycle; and (3) Supercritical Rankine cycle with feedwater preheating. The sensitivity of these three configurations to various parameters, such as reactor exit temperature, reactor pressure, condenser pressure, etc., was assessed. The Thermoflex software package was used for this task. The results are as follows: (a) The simple supercritical Rankine cycle offers the greatest hardware simplification, but its high reactor temperature rise and reactor outlet temperature may pose serious problems from the viewpoint of thermal stresses, stability and materials in the core. (b) The all-supercritical Brayton cycle is not a contender, due to its poor thermal efficiency. (c) The supercritical Rankine cycle with feedwater preheating affords acceptable thermal efficiency with lower reactor temperature rise and outlet temperature. (d) The use of a moisture separator improves the performance of the supercritical Rankine cycle with feedwater preheating and allows for a further reduction of the reactor outlet temperature, thus it was selected for the next step. Preliminary engineering design of the supercritical Rankine cycle with feedwater preheating and moisture separation was performed. All major components including the turbine, feedwater heater, feedwater pump, condenser, condenser pump

  11. Diurnal cycles in water quality across the periodic table

    Science.gov (United States)

    Kirchner, James

    2014-05-01

    Diurnal cycles in water quality can provide important clues to the processes that regulate aquatic chemistry, but they often are masked by longer-term, larger-amplitude variability, making their detection and quantification difficult. Here I outline methods that can detect diurnal cycles even when they are massively obscured by statistically ill-behaved noise. I demonstrate these methods using high-frequency water quality data from the Plylimon catchment in mid-Wales (Neal et al., 2013; Kirchner and Neal, 2013). Several aspects combine to make the Plynlimon data set unique worldwide. Collected at 7-hour intervals, the Plynlimon data set is much more densely sampled than typical long-term weekly or monthly water quality data. This 7-hour sampling was also continued for two years, much longer than typical intensive sampling campaigns, and the resulting time series encompass a wide range of climatic and hydrological conditions. Furthermore, each sample was analyzed for a wide range of solutes with diverse sources in the natural environment. However, the 7-hour sampling frequency is both coarse and irregular in comparison to diurnal cycles, making their detection and quantification difficult. Nonetheless, the methods outlined here enable detection of statistically significant diurnal cycles in over 30 solutes at Plynlimon, including alkali metals (Li, Na, K, Rb, and Cs), alkaline earths (Be, Mg, Ca, Sr, and Ba), transition metals (Al, Ti, Mn, Fe, Co, Ni, Zn, Mo, Cd, and Pb), nonmetals (B, NO3, Si, As, and Se), lanthanides and actinides (La, Ce, Pr, and U), as well as total dissolved nitrogen (TDN), dissolved organic carbon (DOC), Gran alkalinity, pH, and electrical conductivity. These solutes span every row of the periodic table, and more than six orders of magnitude in concentration. Many of these diurnal cycles are subtle, representing only a few percent, at most, of the total variance in the concentration time series. Nonetheless they are diagnostically useful

  12. Development of the living thing transportation systems worksheet on learning cycle model to increase student understanding

    Science.gov (United States)

    Rachmawati, E.; Nurohman, S.; Widowati, A.

    2018-01-01

    This study aims to know: 1) the feasibility LKPD review of aspects of the didactic requirements, construction requirements, technical requirements and compliance with the Learning Cycle. 2) Increase understanding of learners with Learning Model Learning Cycle in SMP N 1 Wates in the form LKPD. 3) The response of learners and educators SMP N 1 Wates to quality LKPD Transportation Systems Beings. This study is an R & D with the 4D model (Define, Design, Develop and Disseminate). Data were analyzed using qualitative analysis and quantitative analysis. Qualitative analysis in the form of advice description and assessment scores from all validates that was converted to a scale of 4. While the analysis of quantitative data by calculating the percentage of materializing learning and achievement using the standard gain an increased understanding and calculation of the KKM completeness evaluation value as an indicator of the achievement of students understanding. the results of this study yield LKPD IPA model learning Cycle theme Transportation Systems Beings obtain 108.5 total scores of a maximum score of 128 including the excellent category (A). LKPD IPA developed able to demonstrate an improved understanding of learners and the response of learners was very good to this quality LKPD IPA.

  13. Water challenges of the future; how scientific understanding can help

    Science.gov (United States)

    Young, G.

    2012-04-01

    Demands for water resources are diverse and are increasing as human populations grow and become more concentrated in urban areas and as economies develop. Water is essential for many uses including the basic human needs of food and the maintenance of good health, for many industries and the creation of electrical energy and as vital for the sustenance of the natural ecosystems on which all life is dependent. At the same time threats from water - floods, droughts - are increasing with these extreme events becoming more common and more intense in many regions of the world and as more people locate in flood- and drought-prone regions. In general, the challenges for water managers are thus becoming greater; managers not only are having to make increasingly difficult decisions regarding allocation of water resources between competing uses as demand outstrips supply, but they also have to take measures to protect societies from the ravages of extreme events. The intensity of the challenges facing water managers is not uniform throughout the world - many nations in the less developed world experiencing far greater problems than most highly developed nations - but the trend towards greater challenges is clear. Decision-makers, whether at the international, national, provincial or local level benefit from reliable information on water resources. They need information on the availability in quantity and quality of water from a variety of sources - surface waters, aquifers or from artificial sources such as re-cycling of wastewater and desalination techniques. Managers also need reliable predictions on water availability for the various uses to which water is put - such predictions are needed on time scales from weeks to decades to inform decision-making. Predictions are also needed on the probabilities of occurrence of extreme events. Thus hydrological scientists developing predictive models and working within a fast-changing world have much to contribute to the needs of

  14. Constraining land carbon cycle process understanding with observations of atmospheric CO2 variability

    Science.gov (United States)

    Collatz, G. J.; Kawa, S. R.; Liu, Y.; Zeng, F.; Ivanoff, A.

    2013-12-01

    We evaluate our understanding of the land biospheric carbon cycle by benchmarking a model and its variants to atmospheric CO2 observations and to an atmospheric CO2 inversion. Though the seasonal cycle in CO2 observations is well simulated by the model (RMSE/standard deviation of observations 40N though fluxes match poorly at regional to continental scales. Regional and global fire emissions are strongly correlated with variability observed at northern flask sample sites and in the global atmospheric CO2 growth rate though in the latter case fire emissions anomalies are not large enough to account fully for the observed variability. We discuss remaining unexplained variability in CO2 observations in terms of the representation of fluxes by the model. This work also demonstrates the limitations of the current network of CO2 observations and the potential of new denser surface measurements and space based column measurements for constraining carbon cycle processes in models.

  15. p53 as Batman: using a movie plot to understand control of the cell cycle.

    Science.gov (United States)

    Gadi, Nikhita; Foley, Sage E; Nowey, Mark; Plopper, George E

    2013-04-16

    This Teaching Resource provides and describes a two-part classroom exercise to help students understand control of the cell cycle, with a focus on the transcription factor p53, the E3 ubiquitin ligase Mdm2, the Mdm2 inhibitor ARF, the kinases ATM and ATR, the kinase Chk2, and the cell cycle inhibitor p21(Cip1). Students use characters and scenes from the movie The Dark Knight to represent elements of the cell cycle control machinery, then they apply these characters and scenes to translate a primary research article on p53 function into a new movie scene in the "Batman universe." This exercise is appropriate for college-level courses in cell biology and cancer biology and requires students to have a background in introductory cell biology. Explicit learning outcomes and associated assessment methods are provided, as well as slides, student assignments, the primary research article, and an instructor's guide for the exercise.

  16. Understanding catchment dynamics through a Space-Society-Water trialectic

    Science.gov (United States)

    Sutherland, Catherine; Jewitt, Graham; Risko, Susan; Hay, Ducan; Stuart-Hill, Sabine; Browne, Michelle

    2017-04-01

    Can healthy catchments be utilized to secure water for the benefit of society? This is a complex question as it requires an understanding of the connections and relations between biophysical, social, political, economic and governance dimensions over space and time in the catchment and must interrogate whether there is 'value' in investing in the catchment natural or ecological infrastructure (EI), how this should be done, where the most valuable EI is located, and whether an investment in EI will generate co-benefits socially, environmentally and economically. Here, we adopt a social ecological relations rather than systems approach to explore these interactions through development of a space-society-water trialectic. Trialectic thinking is challenging as it requires new epistemologies and it challenges conventional modes of thought. It is not ordered or fixed, but rather is constantly evolving, revealing the dynamic relations between the elements under exploration. The construction of knowledge, through detailed scientific research and social learning, which contributes to the understanding and achievement of sustainable water supply, water related resilient economic growth, greater social equity and justice in relation to water and the reduction of environmental risk is illustrated through research in the uMngeni Catchment, South Africa. Using four case studies as a basis, we construct the catchment level society-water-space trialectic as a way of connecting, assembling and comparing the understanding and knowledge that has been produced. The relations in the three elements of the trialectic are constructed through identifying, understanding and analysing the actors, discourses, knowledge, biophysical materialities, issues and spatial connections in the case studies. Together these relations, or multiple trajectories, are assembled to form the society-water-space trialectic, which illuminates the dominant relations in the catchment and hence reveal the leverage

  17. GEWEX - The Global Energy and Water Cycle Experiment

    Science.gov (United States)

    Chahine, Moustafa T.

    1992-01-01

    GEWEX, which is part of the World Climate Research Program, has as its goal an order-of-magnitude improvement in the ability to model global precipitation and evaporation and furnish an accurate assessment of the sensitivity of atmospheric radiation and clouds. Attention will also be given to the response of the hydrological cycle and water resources to climate change. GEWEX employs a single program to coordinate all aspects of climatology from model development to the deployment and operation of observational systems. GEWEX will operate over the next two decades.

  18. A Time Series Analysis of Global Soil Moisture Data Products for Water Cycle Studies

    Science.gov (United States)

    Zhan, X.; Yin, J.; Liu, J.; Fang, L.; Hain, C.; Ferraro, R. R.; Weng, F.

    2017-12-01

    Water is essential for sustaining life on our planet Earth and water cycle is one of the most important processes of out weather and climate system. As one of the major components of the water cycle, soil moisture impacts significantly the other water cycle components (e.g. evapotranspiration, runoff, etc) and the carbon cycle (e.g. plant/crop photosynthesis and respiration). Understanding of soil moisture status and dynamics is crucial for monitoring and predicting the weather, climate, hydrology and ecological processes. Satellite remote sensing has been used for soil moisture observation since the launch of the Scanning Multi-channel Microwave Radiometer (SMMR) on NASA's Nimbus-7 satellite in 1978. Many satellite soil moisture data products have been made available to the science communities and general public. The soil moisture operational product system (SMOPS) of NOAA NESDIS has been operationally providing global soil moisture data products from each of the currently available microwave satellite sensors and their blends. This presentation will provide an update of SMOPS products. The time series of each of these soil moisture data products are analyzed against other data products, such as precipitation and evapotranspiration from other independent data sources such as the North America Land Data Assimilation System (NLDAS). Temporal characteristics of these water cycle components are explored against some historical events, such as the 2010 Russian, 2010 China and 2012 United States droughts, 2015 South Carolina floods, etc. Finally whether a merged global soil moisture data product can be used as a climate data record is evaluated based on the above analyses.

  19. Understanding the dynamics of water availability and use in China

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R.P.; Conrad, S.H.; Jeppesen, D.M.; Engi, E.

    1997-07-01

    This report presents the preliminary results of an analysis of China`s water resources, part of an effort undertaken by the National Intelligence Council Medea scientists to improve the understanding of future food production and consumption in the People`s Republic of China. A dynamic water model was developed to simulate the hydrological budgetary processes in five river drainage basins located in northeastern, central, and southern China: the Chang Jiang (Yangtse River), Huanghe (Yellow River), Haihe, Huaihe, and Liaohe. The model was designed to assess the effects of changes in urban, industrial, and agricultural water use requirements on the availability of water in each basin and to develop estimates of the water surpluses and/or deficits in China through the year 2025. The model imposes a sustainable yield constraint, that is, groundwater extraction is not allowed to exceed the sustainable yield; if the available water does not meet the total water use requirements, a deficit results. An agronomic model was also developed to generate projections of the water required to service China`s agricultural sector and compare China`s projected grain production with projected grain consumption requirements to estimate any grain surplus and/or deficit. In future refinements, the agronomic model will interface directly with the water model to provide for the exchange of information on projected water use requirements and available water. The preliminary results indicate that the Chang Jiang basin will have a substantial surplus of water through 2025 and that the Haihe basin is in an ongoing situation. The agricultural water use requirements based on grain production indicate that an agricultural water deficit in the Haihe basin begins before the onset of the modeling period (1980) and steadily worsens through 2025. This assumption is confirmed by reports that groundwater mining is already under way in the most intensely cultivated and populated areas of northern China.

  20. Emergy evaluation of water utilization benefits in water-ecological-economic system based on water cycle process

    Science.gov (United States)

    Guo, X.; Wu, Z.; Lv, C.

    2017-12-01

    The water utilization benefits are formed by the material flow, energy flow, information flow and value stream in the whole water cycle process, and reflected along with the material circulation of inner system. But most of traditional water utilization benefits evaluation are based on the macro level, only consider the whole material input and output and energy conversion relation, and lack the characterization of water utilization benefits accompanying with water cycle process from the formation mechanism. In addition, most studies are from the perspective of economics, only pay attention to the whole economic output and sewage treatment economic investment, but neglect the ecological function benefits of water cycle, Therefore, from the perspective of internal material circulation in the whole system, taking water cycle process as the process of material circulation and energy flow, the circulation and flow process of water and other ecological environment, social economic elements were described, and the composition of water utilization positive and negative benefits in water-ecological-economic system was explored, and the performance of each benefit was analyzed. On this basis, the emergy calculation method of each benefit was proposed by emergy quantitative analysis technique, which can realize the unified measurement and evaluation of water utilization benefits in water-ecological-economic system. Then, taking Zhengzhou city as an example, the corresponding benefits of different water cycle links were calculated quantitatively by emergy method, and the results showed that the emergy evaluation method of water utilization benefits can unify the ecosystem and the economic system, achieve uniform quantitative analysis, and measure the true value of natural resources and human economic activities comprehensively.

  1. Water footprint of European cars: potential impacts of water consumption along automobile life cycles.

    Science.gov (United States)

    Berger, Markus; Warsen, Jens; Krinke, Stephan; Bach, Vanessa; Finkbeiner, Matthias

    2012-04-03

    Due to global increase of freshwater scarcity, knowledge about water consumption in product life cycles is important. This study analyzes water consumption and the resulting impacts of Volkswagen's car models Polo, Golf, and Passat and represents the first application of impact-oriented water footprint methods on complex industrial products. Freshwater consumption throughout the cars' life cycles is allocated to material groups and assigned to countries according to import mix shares or location of production sites. Based on these regionalized water inventories, consequences for human health, ecosystems, and resources are determined by using recently developed impact assessment methods. Water consumption along the life cycles of the three cars ranges from 52 to 83 m(3)/car, of which more than 95% is consumed in the production phase, mainly resulting from producing iron, steel, precious metals, and polymers. Results show that water consumption takes place in 43 countries worldwide and that only 10% is consumed directly at Volkswagen's production sites. Although impacts on health tend to be dominated by water consumption in South Africa and Mozambique, resulting from the production of precious metals and aluminum, consequences for ecosystems and resources are mainly caused by water consumption of material production in Europe.

  2. Community of Practice Applications from WaterNet: The NASA Water Cycle Solutions Network

    Science.gov (United States)

    Matthews, D.; Brilly, M.; Gregoric, G.; Polajnar, J.; Houser, P.; Rodell, M.; Lehning, M.

    2009-04-01

    WaterNet is a new international network of researchers, stakeholders, and end-users of remote sensing tools that will benefit the water resources management community. It addresses a means for enhancing the social and economic developments of nations by increased use of practical research products from the terrestrial water cycle for making informed decisions. This paper provides a summary of the Water Cycle Community of Practice (CoP) plans and examples of Land Surface Model (LSM) applications for extreme events - floods, droughts, and heavy snowstorms in Europe. It discusses the concept of NASA's solutions networks focusing on the WaterNet. It invites EGU teams to join our WaterNet network. The NASA Water cycle Solutions Network's goal is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment decision support tools and meet national needs. Our team is developing WaterNet by engaging relevant NASA water cycle research and community-of-practice organizations, to develop what we term an "actionable database" that can be used to communicate and connect NASA Water cycle research Results (NWRs) towards the improvement of water-related Decision Support Tools (DSTs). Recognizing that the European Commission and European Space Agency have also developed many related research products (EWRs), we seek to learn about these and network with the EU teams to include their information in the WaterNet actionable data base. Recognizing the many existing highly valuable water-related science and application networks in the US and EU, we focus the balance of our efforts on enabling their interoperability - facilitating access and communications among decision-makers and scientists. We present results of our initial focus on identification, collection, and analysis of the two end points, these being the NWRs and EWRs and water related DSTs. We

  3. Soil Salinity Controls on Water and Carbon Cycling by Sunflower Plants

    Science.gov (United States)

    Runkle, B.; Liang, X.; Dracup, J.; Hao, F.; Zeng, A.; Zhang, J.; He, B.; Oki, T.

    2007-12-01

    Agricultural effects on water cycling are of great importance for regional water resources management. These effects vary based on local soil and climate conditions, and are particularly modulated by high soil salinity levels, which stress plant growth and change their water use efficiency. Increasing salinization is predicted under hotter, drier conditions resulting from global climate change and from increased societal pressure on agricultural lands. This increased ionic presence creates a higher soil osmotic pressure that increases the resistance to water flow through the plant. This change also impacts the assimilation of carbon dioxide through the stomatal opening, and so affects rates of both photosynthesis and transpiration. Current agricultural and land-surface models that account for salinity do so in an overly empirical manner that cannot account for changes at different time scales in meteorological conditions. They tend to be ill equipped to examine how changing carbon dioxide levels may modify a plant's response to soil salinity. As a result, we present a new model of soil-vegetation- atmosphere water transfer that explicitly incorporates the role of soil salinity in changing this system's behavior. This model will allow for much greater flexibility in examining how vegetation may change the local water cycle under the joint impacts of both salinity and climate change. This model is supported by field research on the effects of salinity on sunflower plants in a large irrigation district in Inner Mongolia, China. Results presented include the role of salinity in changing stomatal regulation of water use efficiency, sub-canopy changes in leaf pressure, and changes in root activity. Modeling at sub-hourly time scales allows for a more precise understanding of how soil salinity changes the diurnal cycle of plant water use.

  4. Science to support the understanding of Ohio's water resources

    Science.gov (United States)

    Shaffer, Kimberly; Kula, Stephanie; Bambach, Phil; Runkle, Donna

    2012-01-01

    Ohio’s water resources support a complex web of human activities and nature—clean and abundant water is needed for drinking, recreation, farming, and industry, as well as for fish and wildlife needs. The distribution of rainfall can cause floods and droughts, which affects streamflow, groundwater, water availability, water quality, recreation, and aquatic habitats. Ohio is bordered by the Ohio River and Lake Erie and has over 44,000 miles of streams and more than 60,000 lakes and ponds (State of Ohio, 1994). Nearly all the rural population obtain drinking water from groundwater sources. The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as universities, to furnish decisionmakers, policymakers, USGS scientists, and the general public with reliable scientific information and tools to assist them in management, stewardship, and use of Ohio’s natural resources. The diversity of scientific expertise among USGS personnel enables them to carry out large- and small-scale multidisciplinary studies. The USGS is unique among government organizations because it has neither regulatory nor developmental authority—its sole product is reliable, impartial, credible, relevant, and timely scientific information, equally accessible and available to everyone. The USGS Ohio Water Science Center provides reliable hydrologic and water-related ecological information to aid in the understanding of use and management of the Nation’s water resources, in general, and Ohio’s water resources, in particular. This fact sheet provides an overview of current (2012) or recently completed USGS studies and data activities pertaining to water resources in Ohio. More information regarding projects of the USGS Ohio Water Science Center is available at http://oh.water.usgs.gov/.

  5. Anticipated SWOT Observations of Human Impacts on the Water Cycle

    Science.gov (United States)

    Clark, E.; Andreadis, K.; Moller, D.; Lettenmaier, D. P.

    2012-12-01

    The impoundment of water behind dams alters the timing and magnitude of the discharge of rivers to the ocean, and hence sea level, as well as evaporation from the global land areas, and, through irrigation, the storage of water on land in the soil column. The impact of these effects on the global hydrologic cycle globally is difficult to estimate given currently available (and shared) observations of temporally varying reservoir storage. The upcoming joint U.S.-France Surface Water and Ocean Topography (SWOT) mission* will measure terrestrial surface water storage dynamics with unprecedented global coverage for managed reservoirs, as well as natural lakes and rivers. Previous studies have investigated SWOT's potential ability to measure storage change for some lakes; however, because reservoirs are typically located in flooded river valleys, they tend to be more elongate than the high latitude lakes that have been studied, and have more complex shorelines (and hence a longer land-water boundary). Furthermore, for reservoirs in mountainous regions, SWOT observations will be prone to topographic layover effects. Finally, the temporal variability of water levels in reservoirs is determined by management goals (i.e., hydropower, flood control, irrigation, supply, recreation), rather than climate, as in the case of natural lakes. We report an investigation of the potential accuracy of SWOT observations of storage change over selected managed reservoirs in the United States. First, we developed a time series of water height maps over each reservoir by combining available bathymetry data with observations of reservoir storage. We then simulated realistic SWOT observations of water level over these water bodies, given the planned SWOT orbital parameters, anticipated noise, and topographic layover errors. We also simulated a realistic tropospheric delay, modeled from daily MERRA reanalysis data. From these synthetic observations, we estimate the number of overpasses needed

  6. Numerical simulation of two consecutive nasal respiratory cycles: toward a better understanding of nasal physiology.

    Science.gov (United States)

    de Gabory, Ludovic; Reville, Nicolas; Baux, Yannick; Boisson, Nicolas; Bordenave, Laurence

    2018-01-16

    Computational fluid dynamic (CFD) simulations have greatly improved the understanding of nasal physiology. We postulate that simulating the entire and repeated respiratory nasal cycles, within the whole sinonasal cavities, is mandatory to gather more accurate observations and better understand airflow patterns. A 3-dimensional (3D) sinonasal model was constructed from a healthy adult computed tomography (CT) scan which discretized in 6.6 million cells (mean volume, 0.008 mm 3 ). CFD simulations were performed with ANSYS©FluentTMv16.0.0 software with transient and turbulent airflow (k-ω model). Two respiratory cycles (8 seconds) were simulated to assess pressure, velocity, wall shear stress, and particle residence time. The pressure gradients within the sinus cavities varied according to their place of connection to the main passage. Alternations in pressure gradients induced a slight pumping phenomenon close to the ostia but no movement of air was observed within the sinus cavities. Strong movements were observed within the inferior meatus during expiration contrary to the inspiration, as in the olfactory cleft at the same time. Particle residence time was longer during expiration than inspiration due to nasal valve resistance, as if the expiratory phase was preparing the next inspiratory phase. Throughout expiration, some particles remained in contact with the lower turbinates. The posterior part of the olfactory cleft was gradually filled with particles that did not leave the nose at the next respiratory cycle. This pattern increased as the respiratory cycle was repeated. CFD is more efficient and reliable when the entire respiratory cycle is simulated and repeated to avoid losing information. © 2018 ARS-AAOA, LLC.

  7. Linking water and carbon cycles through salinity observed from space

    Science.gov (United States)

    Xie, X.; Liu, W. T.

    2017-12-01

    The association of ocean surface salinity in global hydrological cycle and climate change has been traditionally studied through the examination of its tendency and advection as manifestation of ocean's heat and water fluxes with the atmosphere. The variability of surface heat and water fluxes are linked to top of atmosphere radiation, whose imbalance is the main cause of global warming. Besides the link of salinity to greenhouse warming through water balance, this study will focus on the effect of changing salinity on carbon dioxide flux between the ocean and the atmosphere. We have built statistical models to estimate the partial pressure of carbon dioxide (pCO2) and ocean acidification (in terms of total alkalinity and pH) using spacebased data. PCO2 is a critical parameter governing ocean as source and sink of the accumulated greenhouse gas in the atmosphere. The exchange also causes ocean acidification, which is detrimental to marine lives and ecology. Before we had sufficient spacebased salinity measurements coincident with in situ pCO2 measurement, we trained our statistical models to use satellite sea surface temperature and chlorophyll, with one model using salinity climatology and the other without. We found significant differences between the two models in regions of strong water input through river discharge and surface water flux. The pCO2 output follows the seasonal salinity advection of the Amazon outflow. The seasonal salinity advection between Bay of Bengal and Arabian Sea are followed by change of pCO2 and total alkalinity. At shorter time scales, the signatures of rain associated with intraseasonal organized convection of summer monsoon can be detected. We have observed distribution agreement of among pCO2, surface salinity, and surface water flux for variation from a few days to a few years under the Pacific ITCZ; the agreement varies slightly with season and longitudes and the reason is under study.

  8. Combined use of stable isotopes and hydrologic modeling to better understand nutrient sources and cycling in highly altered systems (Invited)

    Science.gov (United States)

    Young, M. B.; Kendall, C.; Guerin, M.; Stringfellow, W. T.; Silva, S. R.; Harter, T.; Parker, A.

    2013-12-01

    The Sacramento and San Joaquin Rivers provide the majority of freshwater for the San Francisco Bay Delta. Both rivers are important sources of drinking and irrigation water for California, and play critical roles in the health of California fisheries. Understanding the factors controlling water quality and primary productivity in these rivers and the Delta is essential for making sound economic and environmental water management decisions. However, these highly altered surface water systems present many challenges for water quality monitoring studies due to factors such as multiple potential nutrient and contaminant inputs, dynamic source water inputs, and changing flow regimes controlled by both natural and engineered conditions. The watersheds for both rivers contain areas of intensive agriculture along with many other land uses, and the Sacramento River receives significant amounts of treated wastewater from the large population around the City of Sacramento. We have used a multi-isotope approach combined with mass balance and hydrodynamic modeling in order to better understand the dominant nutrient sources for each of these rivers, and to track nutrient sources and cycling within the complex Delta region around the confluence of the rivers. High nitrate concentrations within the San Joaquin River fuel summer algal blooms, contributing to low dissolved oxygen conditions. High δ15N-NO3 values combined with the high nitrate concentrations suggest that animal manure is a significant source of nitrate to the San Joaquin River. In contrast, the Sacramento River has lower nitrate concentrations but elevated ammonium concentrations from wastewater discharge. Downstream nitrification of the ammonium can be clearly traced using δ15N-NH4. Flow conditions for these rivers and the Delta have strong seasonal and inter-annual variations, resulting in significant changes in nutrient delivery and cycling. Isotopic measurements and estimates of source water contributions

  9. Life-cycle assessments in the South African water sector: A review ...

    African Journals Online (AJOL)

    Therefore, in South Africa it is important to promote the use of LCAs for the water sector in order to improve efficiency of processes and systems, but also to promote life-cycle based water footprinting and to include differentiated water consumption data into life-cycle inventories to make more efficient use of water as a ...

  10. Understanding the dust cycle at high latitudes: integrating models and observations

    Science.gov (United States)

    Albani, S.; Mahowald, N. M.; Maggi, V.; Delmonte, B.; Winckler, G.; Potenza, M. A. C.; Baccolo, G.; Balkanski, Y.

    2017-12-01

    Changing climate conditions affect dust emissions and the global dust cycle, which in turn affects climate and biogeochemistry. Paleodust archives from land, ocean, and ice sheets preserve the history of dust deposition for a range of spatial scales from close to the major hemispheric sources to remote sinks such as the polar ice sheets. In each hemisphere common features on the glacial-interglacial time scale mark the baseline evolution of the dust cycle, and inspired the hypothesis that increased dust deposition to ocean stimulated the glacial biological pump contributing to the reduction of atmospheric carbon dioxide levels. On the other hand finer geographical and temporal scales features are superposed to these glacial-interglacial trends, providing the chance of a more sophisticated understanding of the dust cycle, for instance allowing distinctions in terms of source availability or transport patterns as recorded by different records. As such paleodust archives can prove invaluable sources of information, especially when characterized by a quantitative estimation of the mass accumulation rates, and interpreted in connection with climate models. We review our past work and present ongoing research showing how climate models can help in the interpretation of paleodust records, as well as the potential of the same observations for constraining the representation of the global dust cycle embedded in Earth System Models, both in terms of magnitude and physical parameters related to particle sizes and optical properties. Finally we show the impacts on climate, based on this kind of observationally constrained model simulations.

  11. Coverage-dependent amplifiers of vegetation change on global water cycle dynamics

    Science.gov (United States)

    Feng, Huihui; Zou, Bin; Luo, Juhua

    2017-07-01

    The terrestrial water cycle describes the circulation of water worldwide from one store to another via repeated evapotranspiration (E) from land and precipitation (P) back to the surface. The cycle presents significant spatial variability, which is strongly affected by natural climate and anthropogenic influences. As one of the major anthropogenic influences, vegetation change unavoidably alters surface property and subsequent the terrestrial water cycle, while its contribution is yet difficult to isolate from the mixed influences. Here, we use satellite and in-situ datasets to identify the terrestrial water cycle dynamics in spatial detail and to evaluate the impact of vegetation change. Methodologically, the water cycle is identified by the indicator of difference between evapotranspiration and precipitation (E-P). Then the scalar form of the indicator's trend (ΔE + ΔP) is used for evaluating the dynamics of water cycle, with the positive value means acceleration and negative means deceleration. Then, the contributions of climate and vegetation change are isolated by the trajectory-based method. Our results indicate that 4 accelerating and 4 decelerating water cycles can be identified, affecting 42.11% of global land. The major water cycle type is characterized by non-changing precipitation and increasing evapotranspiration (PNO-EIN), which covers 20.88% of globally land. Vegetation change amplifies both accelerating and decelerating water cycles. It tends to intensify the trend of the decelerating water cycles, while climate change weakens the trend. In the accelerating water cycles, both vegetation and climate change present positive effect to intensify the trend. The effect of plant cover change varies with the coverage. In particular, vegetation change intensifies the water cycle in moderately vegetated regions (0.1 0.85), the water cycle is accelerated because of the significant increase of precipitation. We conclude that vegetation change acts as an

  12. Conceptual model for simulating the water cycle of the Copenhagen area, Denmark

    DEFF Research Database (Denmark)

    Jeppesen, Jan; Christensen, Steen; Ladekarl, Ulla Lyngs

    2008-01-01

    A complete water cycle model has been constructed for the Copenhagen area (966 km2) in order to study the development of the water cycle during the period 1850-2003. The urban water cycle is quantified in terms of root zone water balance, water supply, waste water, storm water, groundwater flow......, and the interactions between these systems. The water cycle is simulated by combining a root-zone model, a grid distribution tool, and a modified Modflow-2000 model using existing flow packages and a new sewer package that simulates the interactions between ground water and sewers (or rain drains). Long time series...... cycle. It is also the hope that the model will provide a better and more complete overview of the consequences of different water management scenarios. The model concept and selected simulation results is presented....

  13. Adsorption characteristics of water vapor on ferroaluminophosphate for desalination cycle

    KAUST Repository

    Kim, Youngdeuk

    2014-07-01

    The adsorption characteristics of microporous ferroaluminophosphate adsorbent (FAM-Z01, Mitsubishi Plastics) are evaluated for possible application in adsorption desalination and cooling (AD) cycles. A particular interest is its water vapor uptake behavior at assorted adsorption temperatures and pressures whilst comparing them to the commercial silica gels of AD plants. The surface characteristics are first carried out using N2 gas adsorption followed by the water vapor uptake analysis for temperature ranging from 20°C to 80°C. We propose a hybrid isotherm model, composing of the Henry and the Sips isotherms, which can be integrated to satisfactorily fit the experimental data of water adsorption on the FAM-Z01. The hybrid model is selected to fit the unusual isotherm shapes, that is, a low adsorption in the initial section and followed by a rapid vapor uptake leading to a likely micropore volume filling by hydrogen bonding and cooperative interaction in micropores. It is shown that the equilibrium adsorption capacity of FAM-Z01 can be up to 5 folds higher than that of conventional silica gels. Owing to the quantum increase in the adsorbate uptake, the FAM-Z01 has the potential to significantly reduce the footprint of an existing AD plant for the same output capacity. © 2014 Elsevier B.V.

  14. Life Cycle Assessment and Cost Analysis of Water and ...

    Science.gov (United States)

    changes in drinking and wastewater infrastructure need to incorporate a holistic view of the water service sustainability tradeoffs and potential benefits when considering shifts towards new treatment technology, decentralized systems, energy recovery and reuse of treated wastewater. The main goal of this study is to determine the influence of scale on the energy and cost performance of different transitional membrane bioreactors (MBR) in decentralized wastewater treatment (WWT) systems by performing a life cycle assessment (LCA) and cost analysis. LCA is a tool used to quantify sustainability-related metrics from a systems perspective. The study calculates the environmental and cost profiles of both aerobic MBRs (AeMBR) and anaerobic MBRs (AnMBR), which not only recover energy from waste, but also produce recycled water that can displace potable water for uses such as irrigation and toilet flushing. MBRs represent an intriguing technology to provide decentralized WWT services while maximizing resource recovery. A number of scenarios for these WWT technologies are investigated for different scale systems serving various population density and land area combinations to explore the ideal application potentials. MBR systems are examined from 0.05 million gallons per day (MGD) to 10 MGD and serve land use types from high density urban (100,000 people per square mile) to semi-rural single family (2,000 people per square mile). The LCA and cost model was built with ex

  15. Impacts of urbanisation on urban-rural water cycle: a China case study

    Science.gov (United States)

    Wang, Mingna; Singh, Shailesh Kumar; Zhang, Jun-e.; Khu, Soon Thiam

    2016-04-01

    Urbanization, which essentially create more impervious surface, is an inevitable part of modern societal development throughout the world. It produces several changes in the natural hydrological cycle by adding several processes. A better understanding of the impacts of urbanization, will allow policy makers to balance development and environment sustainability needs. It also helps underdeveloped countries make strategic decisions in their development process. The objective of this study is to understand and quantify the sensitivity of the urban-rural water cycle to urbanisation. A coupled hydrological model, MODCYCLE, was set up to simulate the effect of changes in landuse on daily streamflow and groundwater and applied to the Tianjin municipality, a rapidly urbanising mega-city on the east coast of China. The model uses landuse, land cover, soil, meteorological and climatic data to represent important parameters in the catchment. The fraction of impervious surface was used as a surrogate to quantify the degree of landuse change. In this work, we analysed the water cycle process under current urbanization situation in Tianjin. A number of different future development scenarios on based on increasing urbanisation intensity is explored. The results show that the expansion of urban areas had a great influence on generation of flow process and on ET, and the surface runoff was most sensitive to urbanisation. The results of these scenarios-based study about future urbanisation on hydrological system will help planners and managers in taking proper decisions regarding sustainable development.

  16. Design of water rod cores of a direct cycle supercritical-pressure light water reactor

    International Nuclear Information System (INIS)

    Okano, Yasushi; Koshizuka, Sei-Ichi; Oka, Yoshiaki

    1994-01-01

    A conceptual design of a direct-cycle supercritical-pressure light water reactor with water rods is presented. Three types of water rods are analyzed: single, semi-double and full-double tubes. A water rod replaces seven fuel rods in a triangular lattice. The coolant density change in the water rods and the fuel channel is calculated using a code developed in the present study. The full double tube is most superior in terms of the distribution of the moderator. The number of fuel rods to water rods is 198:19, which makes optimum moderation. The average enrichment becomes 4.13%. The axial power flattening is finally achieved by partial length fuel rods and enrichment split of 0.25%. The discharge burnup is 45 GWd/t. (author)

  17. The Sustainability Cycle and Loop: models for a more unified understanding of sustainability.

    Science.gov (United States)

    Hay, Laura; Duffy, Alex; Whitfield, R I

    2014-01-15

    In spite of the considerable research on sustainability, reports suggest that we are barely any closer to a more sustainable society. As such, there is an urgent need to improve the effectiveness of human efforts towards sustainability. A clearer and more unified understanding of sustainability among different people and sectors could help to facilitate this. This paper presents the results of an inductive literature investigation, aiming to develop models to explain the nature of sustainability in the Earth system, and how humans can effectively strive for it. The major contributions are two general and complementary models, that may be applied in any context to provide a common basis for understanding sustainability: the Sustainability Cycle (S-Cycle), and the Sustainability Loop (S-Loop). Literature spanning multiple sectors is examined from the perspective of three concepts, emerging as significant in relation to our aim. Systems are shown to provide the context for human action towards sustainability, and the nature of the Earth system and its sub-systems is explored. Activities are outlined as a fundamental target that humans need to sustain, since they produce the entities both needed and desired by society. The basic behaviour of activities operating in the Earth system is outlined. Finally, knowledge is positioned as the driver of human action towards sustainability, and the key components of knowledge involved are examined. The S-Cycle and S-Loop models are developed via a process of induction from the reviewed literature. The S-Cycle describes the operation of activities in a system from the perspective of sustainability. The sustainability of activities in a system depends upon the availability of resources, and the availability of resources depends upon the rate that activities consume and produce them. Humans may intervene in these dynamics via an iterative process of interpretation and action, described in the S-Loop model. The models are briefly

  18. Evaluating the hydrological consistency of satellite based water cycle components

    KAUST Repository

    Lopez Valencia, Oliver Miguel

    2016-06-15

    Advances in multi-satellite based observations of the earth system have provided the capacity to retrieve information across a wide-range of land surface hydrological components and provided an opportunity to characterize terrestrial processes from a completely new perspective. Given the spatial advantage that space-based observations offer, several regional-to-global scale products have been developed, offering insights into the multi-scale behaviour and variability of hydrological states and fluxes. However, one of the key challenges in the use of satellite-based products is characterizing the degree to which they provide realistic and representative estimates of the underlying retrieval: that is, how accurate are the hydrological components derived from satellite observations? The challenge is intrinsically linked to issues of scale, since the availability of high-quality in-situ data is limited, and even where it does exist, is generally not commensurate to the resolution of the satellite observation. Basin-scale studies have shown considerable variability in achieving water budget closure with any degree of accuracy using satellite estimates of the water cycle. In order to assess the suitability of this type of approach for evaluating hydrological observations, it makes sense to first test it over environments with restricted hydrological inputs, before applying it to more hydrological complex basins. Here we explore the concept of hydrological consistency, i.e. the physical considerations that the water budget impose on the hydrologic fluxes and states to be temporally and spatially linked, to evaluate the reproduction of a set of large-scale evaporation (E) products by using a combination of satellite rainfall (P) and Gravity Recovery and Climate Experiment (GRACE) observations of storage change, focusing on arid and semi-arid environments, where the hydrological flows can be more realistically described. Our results indicate no persistent hydrological

  19. Water cycle observations in forest watersheds of Cambodia

    Science.gov (United States)

    Shimizu, A.; Tamai, K.; Kabeya, N.; Shimizu, T.; Iida, S. I.

    2015-12-01

    The Lower Mekong River flows through Cambodia, where forests cover ~60% of the country and are believed to have a marked effect on the water cycle. These tropical seasonal forests in the Cambodian flat lands are very precious in the Indochinese Peninsula as few forests of this type remain. However, few hydrological observations have been conducted in these areas. In Cambodia, deciduous and evergreen forests make up 42% and 33% of the total forest area, respectively. We established experimental watersheds both in deciduous and evergreen forests containing meteorological observation towers in Cambodia and collected various observational data since 2003 (O'Krieng, deciduous forest watershed including a 30-m-high observation tower, 2,245 km2; Stung Chinit, evergreen forest watershed including a 60-m-high observation tower, 3,700 km2 including three small watersheds). The basic data from these sites included various kinds of information related to the composition of vegetation, soil characteristics, etc. Hydrologic data was collected and linked to the above data; the main hydrologic research results follow. The water budget for each watershed was determined using an observational rainfall and runoff dataset. The evapotranspiration rate in an evergreen forest was obtained using various observational methods including the Bowen energy-balance ratio and the bandpass eddy covariance method. The annual evapotranspiration of evergreen forests, estimated using the Bowen energy-balance ratio method and water balance, was about 1100-1200 mm, corresponding to 70-80% of annual rainfall. While considering the importance of the presence of evergreen forest, we conducted sap flow measurements to analyze the transpiration process that maintains water uptake through root systems that reach to depths exceeding 8 m. Characteristics of the evaporation from the forest floor that form an important element of the evaporation system were estimated in both evergreen and deciduous forests.

  20. Understanding uncertainty propagation in life cycle assessments of waste management systems

    DEFF Research Database (Denmark)

    Bisinella, Valentina; Conradsen, Knut; Christensen, Thomas Højlund

    2015-01-01

    Uncertainty analysis in Life Cycle Assessments (LCAs) of waste management systems often results obscure and complex, with key parameters rarely determined on a case-by-case basis. The paper shows an application of a simplified approach to uncertainty coupled with a Global Sensitivity Analysis (GSA......) perspective on three alternative waste management systems for Danish single-family household waste. The approach provides a fast and systematic method to select the most important parameters in the LCAs, understand their propagation and contribution to uncertainty....

  1. Life Cycle Energy Analysis of Reclaimed Water Reuse Projects in Beijing.

    Science.gov (United States)

    Fan, Yupeng; Guo, Erhui; Zhai, Yuanzheng; Chang, Andrew C; Qiao, Qi; Kang, Peng

    2018-01-01

      To illustrate the benefits of water reuse project, the process-based life cycle analysis (LCA) could be combined with input-output LCA to evaluate the water reuse project. Energy is the only evaluation parameter used in this study. Life cycle assessment of all energy inputs (LCEA) is completed mainly by the life cycle inventory (LCI), taking into account the full life cycle including the construction, the operation, and the demolition phase of the project. Assessment of benefit from water reuse during the life cycle should focus on wastewater discharge reduction and water-saving benefits. The results of LCEA of Beijing water reuse project built in 2014 in a comprehensive way shows that the benefits obtained from the reclaimed water reuse far exceed the life cycle energy consumption. In this paper, the authors apply the LCEA model to estimate the benefits of reclaimed water reuse projects quantitatively.

  2. NEWS Climatology Project: The State of the Water Cycle at Continental to Global Scales

    Science.gov (United States)

    Rodell, Matthew; LEcuyer, Tristan; Beaudoing, Hiroko Kato; Olson, Bill

    2011-01-01

    NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the NEWS Water and Energy Cycle Climatology project is to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project is a multiinstitutional collaboration with more than 20 active contributors. This presentation will describe results of the first stage of the water budget analysis, whose goal was to characterize the current state of the water cycle on mean monthly, continental scales. We examine our success in closing the water budget within the expected uncertainty range and the effects of forcing budget closure as a method for refining individual flux estimates.

  3. The Mars Dust and Water Cycles: Investigating the Influence of Clouds on the Vertical Distribution and Meridional Transport of Dust and Water.

    Science.gov (United States)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Brecht, A. S.; Urata, R.

    2015-01-01

    The dust and water cycles are critical to the current Martian climate, and they interact with each other through cloud formation. Dust modulates the thermal structure of the atmosphere and thus greatly influences atmospheric circulation. Clouds provide radiative forcing and control the net hemispheric transport of water through the alteration of the vertical distributions of water and dust. Recent advancements in the quality and sophistication of both climate models and observations enable an increased understanding of how the coupling between the dust and water cycles (through cloud formation) impacts the dust and water cycles. We focus here on the effects of clouds on the vertical distributions of dust and water and how those vertical distributions control the net meridional transport of water. We utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) and the NASA ARC Mars Global Climate Model (MGCM) to show that the magnitude and nature of the hemispheric exchange of water during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. Further, we investigate how clouds influence atmospheric temperatures and thus the vertical structure of the cloud belt. Our goal is to isolate and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  4. Critical Knowledge Gaps in Our Understanding of Environmental Cycling and Transmission of Leptospira spp.

    Science.gov (United States)

    Barragan, Veronica; Olivas, Sonora; Keim, Paul; Pearson, Talima

    2017-10-01

    Exposure to soil or water contaminated with the urine of Leptospira -infected animals is the most common way in which humans contract leptospirosis. Entire populations can be at high risk of leptospirosis while working in inundated fields, when engaging in aquatic sports, or after periods of heavy rainfall. The risk of infection after contact with these environmental sources depends on the ability of Leptospira bacteria to survive, persist, and infect new hosts. Multiple variables such as soil and water pH, temperature, and even environmental microbial communities are likely to shape the environmental conditions needed by the pathogen to persist. Here we review what is known about the environmental phase of the infectious Leptospira transmission cycle and identify knowledge gaps that will serve as a guide for future research. Copyright © 2017 Barragan et al.

  5. Ice haze, snow, and the Mars water cycle

    Science.gov (United States)

    Kahn, Ralph

    1990-01-01

    Light curves and extinction profiles derived from Martian limb observations are used to constrain the atmospheric temperature structure in regions of the atmosphere with thin haze and to analyze the haze particle properties and atmospheric eddy mixing. Temperature between 170 and 190 K are obtained for three cases at levels in the atmosphere ranging from 20 to 50 km. Eddy diffusion coefficients around 100,000 sq cm/s, typical of a nonconvecting atmosphere, are derived in the haze regions at times when the atmosphere is relatively clear of dust. This parameter apparently changes by more than three orders of magnitude with season and local conditions. The derived particle size parameter varies systematically by more than an order of magnitude with condensation level, in such a way that the characteristic fall time is always about one Martian day. Ice hazes provide a mechanism for scavenging water vapor in the thin Mars atmosphere and may play a key role in the seasonal cycle of water on Mars.

  6. Cycle length restitution in sinoatrial node cells: a theory for understanding spontaneous action potential dynamics.

    Directory of Open Access Journals (Sweden)

    Patric Glynn

    Full Text Available Normal heart rhythm (sinus rhythm is governed by the sinoatrial node, a specialized and highly heterogeneous collection of spontaneously active myocytes in the right atrium. Sinoatrial node dysfunction, characterized by slow and/or asynchronous pacemaker activity and even failure, is associated with cardiovascular disease (e.g. heart failure, atrial fibrillation. While tremendous progress has been made in understanding the molecular and ionic basis of automaticity in sinoatrial node cells, the dynamics governing sinoatrial nodel cell synchrony and overall pacemaker function remain unclear. Here, a well-validated computational model of the mouse sinoatrial node cell is used to test the hypothesis that sinoatrial node cell dynamics reflect an inherent restitution property (cycle length restitution that may give rise to a wide range of behavior from regular periodicity to highly complex, irregular activation. Computer simulations are performed to determine the cycle length restitution curve in the computational model using a newly defined voltage pulse protocol. The ability of the restitution curve to predict sinoatrial node cell dynamics (e.g., the emergence of irregular spontaneous activity and susceptibility to termination is evaluated. Finally, ionic and tissue level factors (e.g. ion channel conductances, ion concentrations, cell-to-cell coupling that influence restitution and sinoatrial node cell dynamics are explored. Together, these findings suggest that cycle length restitution may be a useful tool for analyzing cell dynamics and dysfunction in the sinoatrial node.

  7. Global operational hydrological forecasts through eWaterCycle

    Science.gov (United States)

    van de Giesen, Nick; Bierkens, Marc; Donchyts, Gennadii; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2015-04-01

    Central goal of the eWaterCycle project (www.ewatercycle.org) is the development of an operational hyper-resolution hydrological global model. This model is able to produce 14 day ensemble forecasts based on a hydrological model and operational weather data (presently NOAA's Global Ensemble Forecast System). Special attention is paid to prediction of situations in which water related issues are relevant, such as floods, droughts, navigation, hydropower generation, and irrigation stress. Near-real time satellite data will be assimilated in the hydrological simulations, which is a feature that will be presented for the first time at EGU 2015. First, we address challenges that are mainly computer science oriented but have direct practical hydrological implications. An important feature in this is the use of existing standards and open-source software to the maximum extent possible. For example, we use the Community Surface Dynamics Modeling System (CSDMS) approach to coupling models (Basic Model Interface (BMI)). The hydrological model underlying the project is PCR-GLOBWB, built by Utrecht University. This is the motor behind the predictions and state estimations. Parts of PCR-GLOBWB have been re-engineered to facilitate running it in a High Performance Computing (HPC) environment, run parallel on multiple nodes, as well as to use BMI. Hydrological models are not very CPU intensive compared to, say, atmospheric models. They are, however, memory hungry due to the localized processes and associated effective parameters. To accommodate this memory need, especially in an ensemble setting, a variation on the traditional Ensemble Kalman Filter was developed that needs much less on-chip memory. Due to the operational nature, the coupling of the hydrological model with hydraulic models is very important. The idea is not to run detailed hydraulic routing schemes over the complete globe but to have on-demand simulation prepared off-line with respect to topography and

  8. Water cycle at Gale crater through MSL/REMS observations

    Science.gov (United States)

    Harri, Ari-Matti; Genzer, Maria; Kemppinen, Osku; Gomez-Elvira, Javier; Savijärvi, Hannu; McConnochie, Tim; De la Torre, Manuel; Haberle, Robert; Polkko, Jouni; Paton, Mark; Richardson, Mark I.; Newman, Claire E.; Siili, Tero; Makinen, Terhi

    2016-10-01

    The Mars Science laboratory (MSL) has been successfully operating at the Gale crater since early August 2012 and has provided a wealth of extremely valuable data. That includes atmospheric observations by the REMS instrument performing atmospheric pressure, temperature of the air, ground temperature, wind speed and direction, relative humidity (REMS-H), and UV measurements.The REMS-H relative humidity device is based on polymeric capacitive humidity sensors developed by Vaisala Inc. and it makes use of three (3) humidity sensor heads. The humidity device is mounted on the REMS boom providing ventilation with the ambient atmosphere through a filter protecting the device from airborne dust.The REMS-H humidity instrument has created an unprecedented data record of more than two full Martian. REMS-H measured the relative humidity and temperature at 1.6 m height for a period of 5 minutes every hour as part of the MSL/REMS instrument package. We focus on describing the annual in situ water cycle with the new REMS-H instrument calibration for the period of two Martian years. The results will be constrained through comparison with independent indirect observations and through modeling efforts.We inferred the hourly atmospheric VMR from the REMS-H observations and compared these VMR measurements with predictions of VMR from our 1D column Martian atmospheric model and regolith to investigate the local water cycle, exchange processes and the local climate in Gale Crater. The strong diurnal variation suggests there are surface-atmosphere exchange processes at Gale Crater during all seasons, which depletes moisture to the ground in the evening and nighttime and release the moisture back to the atmosphere during the daytime. On the other hand, these processes do not result in significant water deposition on the ground, because frost has not been detected in Gale Crater by any of the MSL observations. Hence, our modelling results presumably indicate that adsorption processes take

  9. Water Footprinting: How to Address Water Use in Life Cycle Assessment?

    Directory of Open Access Journals (Sweden)

    Markus Berger

    2010-04-01

    Full Text Available As freshwater is a vital yet often scarce resource, the life cycle assessment community has put great efforts in method development to properly address water use. The International Organization for Standardization has recently even launched a project aiming at creating an international standard for ‘water footprinting’. This paper provides an overview of a broad range of methods developed to enable accounting and impact assessment of water use. The critical review revealed that methodological scopes differ regarding types of water use accounted for, inclusion of local water scarcity, as well as differentiation between watercourses and quality aspects. As the application of the most advanced methods requires high resolution inventory data, the trade-off between ‘precision’ and ‘applicability’ needs to be addressed in future studies and in the new international standard.

  10. Development of a Water Based, Critical Flow, Non-Vapor Compression cooling Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hosni, Mohammad H.

    2014-03-30

    Expansion of a high-pressure liquid refrigerant through the use of a thermostatic expansion valve or other device is commonplace in vapor-compression cycles to regulate the quality and flow rate of the refrigerant entering the evaporator. In vapor-compression systems, as the condensed refrigerant undergoes this expansion, its pressure and temperature drop, and part of the liquid evaporates. We (researchers at Kansas State University) are developing a cooling cycle that instead pumps a high-pressure refrigerant through a supersonic converging-diverging nozzle. As the liquid refrigerant passes through the nozzle, its velocity reaches supersonic (or critical-flow) conditions, substantially decreasing the refrigerant’s pressure. This sharp pressure change vaporizes some of the refrigerant and absorbs heat from the surrounding conditions during this phase change. Due to the design of the nozzle, a shockwave trips the supersonic two-phase refrigerant back to the starting conditions, condensing the remaining vapor. The critical-flow refrigeration cycle would provide space cooling, similar to a chiller, by running a secondary fluid such as water or glycol over one or more nozzles. Rather than utilizing a compressor to raise the pressure of the refrigerant, as in a vapor-cycle system, the critical-flow cycle utilizes a high-pressure pump to drive refrigerant liquid through the cooling cycle. Additionally, the design of the nozzle can be tailored for a given refrigerant, such that environmentally benign substances can act as the working fluid. This refrigeration cycle is still in early-stage development with prototype development several years away. The complex multi-phase flow at supersonic conditions presents numerous challenges to fully understanding and modeling the cycle. With the support of DOE and venture-capital investors, initial research was conducted at PAX Streamline, and later, at Caitin. We (researchers at Kansas State University) have continued development

  11. Integrating the social sciences to understand human-water dynamics

    Science.gov (United States)

    Carr, G.; Kuil, L., Jr.

    2017-12-01

    Many interesting and exciting socio-hydrological models have been developed in recent years. Such models often aim to capture the dynamic interplay between people and water for a variety of hydrological settings. As such, peoples' behaviours and decisions are brought into the models as drivers of and/or respondents to the hydrological system. To develop and run such models over a sufficiently long time duration to observe how the water-human system evolves the human component is often simplified according to one or two key behaviours, characteristics or decisions (e.g. a decision to move away from a drought or flood area; a decision to pump groundwater, or a decision to plant a less water demanding crop). To simplify the social component, socio-hydrological modellers often pull knowledge and understanding from existing social science theories. This requires them to negotiate complex territory, where social theories may be underdeveloped, contested, dynamically evolving, or case specific and difficult to generalise or upscale. A key question is therefore, how can this process be supported so that the resulting socio-hydrological models adequately describe the system and lead to meaningful understanding of how and why it behaves as it does? Collaborative interdisciplinary research teams that bring together social and natural scientists are likely to be critical. Joint development of the model framework requires specific attention to clarification to expose all underlying assumptions, constructive discussion and negotiation to reach agreement on the modelled system and its boundaries. Mutual benefits to social scientists can be highlighted, i.e. socio-hydrological work can provide insights for further exploring and testing social theories. Collaborative work will also help ensure underlying social theory is made explicit, and may identify ways to include and compare multiple theories. As socio-hydrology progresses towards supporting policy development, approaches that

  12. Enhancing Understanding of the Visual Cycle by Applying CRISPR/Cas9 Gene Editing in Zebrafish

    Directory of Open Access Journals (Sweden)

    Rebecca Ward

    2018-04-01

    Full Text Available During the vertebrate visual cycle, all-trans-retinal is exported from photoreceptors to the adjacent RPE or Müller glia wherein 11-cis-retinal is regenerated. The 11-cis chromophore is returned to photoreceptors, forming light-sensitive visual pigments with opsin GPCRs. Dysfunction of this process perturbs phototransduction because functional visual pigment cannot be generated. Mutations in visual cycle genes can result in monogenic inherited forms of blindness. Though key enzymatic processes are well characterized, questions remain as to the physiological role of visual cycle proteins in different retinal cell types, functional domains of these proteins in retinoid biochemistry and in vivo pathogenesis of disease mutations. Significant progress is needed to develop effective and accessible treatments for inherited blindness arising from mutations in visual cycle genes. Here, we review opportunities to apply gene editing technology to two crucial visual cycle components, RPE65 and CRALBP. Expressed exclusively in the human RPE, RPE65 enzymatically converts retinyl esters into 11-cis retinal. CRALBP is an 11-cis-retinal binding protein expressed in human RPE and Muller glia. Loss-of-function mutations in either protein results in autosomal recessive forms of blindness. Modeling these human conditions using RPE65 or CRALBP murine knockout models have enhanced our understanding of their biochemical function, associated disease pathogenesis and development of therapeutics. However, rod-dominated murine retinae provide a challenge to assess cone function. The cone-rich zebrafish model is amenable to cost-effective maintenance of a variety of strains. Interestingly, gene duplication in zebrafish resulted in three Rpe65 and two Cralbp isoforms with differential temporal and spatial expression patterns. Functional investigations of zebrafish Rpe65 and Cralbp were restricted to gene knockdown with morpholino oligonucleotides. However, transient

  13. Urban Estuarine Beaches and Urban Water Cycle Seepage: The Influence of Temporal Scales

    Directory of Open Access Journals (Sweden)

    Sérgia Costa-Dias

    2018-02-01

    Full Text Available Temperate estuarine beaches are an asset to coastal cities. Being located within the transition zone where the river meets the sea can provide several environmental benefits such as warm water temperature during the summer, flat waters, protection from coastal upwelling-induced morning fog, as well as additional recreational and cultural values. In this study we address a major question—can the urban water cycle impair the water quality dynamics during a bathing season in a temperate Atlantic estuary (Douro, Northwest Portugal? Water quality was assessed according to the EU legal criteria at different time scales. No daily, weekly, or monthly patterns for microbiological descriptors were found, which rather followed the hourly tidal dynamics. Quality decreased during high tide, affecting potentially 800+ beach-users during mid-summer weekends (4 m2 per person. Low water quality was transported upstream from highly populated urban areas. Therefore, the understanding of the dynamics of estuarine systems is essential to adapt the standard official approach, and the obtained results can be used to draw policy recommendations to improve the sampling strategy, aiming for more accurate assessment of the water quality to reduce the risk hazard of estuarine beaches.

  14. TRMM and Its Connection to the Global Water Cycle

    Science.gov (United States)

    Kummerow, Christian; Hong, Ye

    1999-01-01

    The importance of quantitative knowledge of tropical rainfall, its associated latent heating and variability is summarized in the context of the global hydrologic cycle. Much of the tropics is covered by oceans. What land exists, is covered largely by rainforests that are only thinly populated. The only way to adequately measure the global tropical rainfall for climate and general circulation models is from space. The TRMM orbit is inclined 35' leading to good sampling in the tropics and a rapid precession to study the diurnal cycle of precipitation. The precipitation instrument complement consists of the first rain radar to be flown in space (PR), a multi-channel passive microwave sensor (TMI) and a five-channel VIS/IR (VIRS) sensor. The precipitation radar operates at a frequency of 13.6 GHz. The swath width is 220 km, with a horizontal resolution of 4 km and the vertical resolution of 250 in. The minimum detectable signal from the precipitation radar has been measured at 17 dBZ. The TMI instrument is designed similar to the SSM/I with two important changes. The 22.235 GHz water vapor absorption channel of the SSM/I was moved to 21.3 GHz in order to avoid saturation in the tropics and 10.7 GHz V&H polarized channels were added to expand the dynamic range of rainfall estimates. The resolution of the TMI varies from 4.6 km at 85 GHz to 36 km at 10.7 GHz. The visible and infrared sensor (VIRS) measures radiation at 0.63, 1.6, 3.75, 10.8 and 12.0 microns. The spatial resolution of all five VIRS channels is 2 km at nadir. In addition to the three primary rainfall instruments, TRMM will also carry a Lightning Imaging Sensor (LIS) and a Clouds and the Earth's Radiant Energy System (CERES) instrument.

  15. The effects of Fire Disturbance on Soil Water Cycling of a Southeast Amazonian Forest

    Science.gov (United States)

    Santos, C.; Coe, M. T.; Trumbore, S.; Lefebvre, P.; Silverio, D. V.; Macedo, M.; Brando, P. M.

    2014-12-01

    Fire disturbances can reduce the capacity of tropical forests to cycle water from the soil to the atmosphere, but our understanding of this process remains poor. To address this gap, we studied the effects of fire-related changes in vegetation structure and dynamics on soil water cycling of a transitional forest located between Amazônia and Cerrado, Mato Grosso, Brazil. In particular, we measured monthly soil moisture (from 1 to 9 m depth) using seven soil water pits that were distributed across three 50-ha plots: a plot that represented an unburned control; a plot that was burned in 2004, 2007 and 2010; and, a plot that was burned annually from 2004 to 2010, with exception of 2008. Measurements of soil moisture began after the experimental fires of 2010 (in mid September) and continued until December 2013. We hypothesized that soil moisture would be higher in the burned plots than in the control due to fire-induced reductions in evapotranspiration. Our preliminary results provide only partial support for this hypothesis. We observed a high variability in soil moisture between treatments, among months, and across years. For example, the unburned control tended to hold more soil water throughout the soil profile in wet-season months. However, soil moisture tended to be higher in the experimentally burned plots during the driest months of the year (August and September), but this pattern was no consistant across drought and non-drought years. These results show that fires exert complex influences on the soil water cycling of this transitional forest, perhaps even promoting increased evapotranspiration in the burned plots due to reduced competition among trees for resources.

  16. Groundwater flow cycling between a submarine spring and an inland fresh water spring.

    Science.gov (United States)

    Davis, J Hal; Verdi, Richard

    2014-01-01

    Spring Creek Springs and Wakulla Springs are large first magnitude springs that derive water from the Upper Floridan Aquifer. The submarine Spring Creek Springs are located in a marine estuary and Wakulla Springs are located 18 km inland. Wakulla Springs has had a consistent increase in flow from the 1930s to the present. This increase is probably due to the rising sea level, which puts additional pressure head on the submarine Spring Creek Springs, reducing its fresh water flow and increasing flows in Wakulla Springs. To improve understanding of the complex relations between these springs, flow and salinity data were collected from June 25, 2007 to June 30, 2010. The flow in Spring Creek Springs was most sensitive to rainfall and salt water intrusion, and the flow in Wakulla Springs was most sensitive to rainfall and the flow in Spring Creek Springs. Flows from the springs were found to be connected, and composed of three repeating phases in a karst spring flow cycle: Phase 1 occurred during low rainfall periods and was characterized by salt water backflow into the Spring Creek Springs caves. The higher density salt water blocked fresh water flow and resulted in a higher equivalent fresh water head in Spring Creek Springs than in Wakulla Springs. The blocked fresh water was diverted to Wakulla Springs, approximately doubling its flow. Phase 2 occurred when heavy rainfall resulted in temporarily high creek flows to nearby sinkholes that purged the salt water from the Spring Creek Springs caves. Phase 3 occurred after streams returned to base flow. The Spring Creek Springs caves retained a lower equivalent fresh water head than Wakulla Springs, causing them to flow large amounts of fresh water while Wakulla Springs flow was reduced by about half. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  17. Insights on the energy-water nexus through modeling of the integrated water cycle

    Science.gov (United States)

    Leung, L. R.; Li, H. Y.; Zhang, X.; Wan, W.; Voisin, N.; Leng, G.

    2016-12-01

    For sustainable energy planning, understanding the impacts of climate change, land use change, and water management is essential as they all exert notable controls on streamflow and stream temperature that influence energy production. An integrated water model representing river processes, irrigation water use and water management has been developed and coupled to a land surface model to investigate the energy-water nexus. Simulations driven by two climate change projections with the RCP 4.5 and RCP 8.5 emissions scenarios, with and without water management, are analyzed to evaluate the individual and combined effects of climate change and water management on streamflow and stream temperature. The simulations revealed important impacts of climate change and water management on both floods and droughts. The simulations also revealed the dynamics of competition between changes in water demand and water availability in the climate mitigation (RCP 4.5) and business as usual (RCP 8.5) scenarios that influence streamflow and stream temperature, with important consequences to energy production. The integrated water model is being implemented to the Accelerated Climate Modeling for Energy (ACME) to enable investigation of the energy-water nexus in the fully coupled Earth system.

  18. Modelling the impact of Water Sensitive Urban Design technologies on the urban water cycle

    DEFF Research Database (Denmark)

    Locatelli, Luca

    Alternative stormwater management approaches for urban developments, also called Water Sensitive Urban Design (WSUD), are increasingly being adopted with the aims of providing flood control, flow management, water quality improvements and opportunities to harvest stormwater for non-potable uses. ...... runoff and the models presented in this thesis can help by simulating their hydrological impact. Careful engineering design is required to ensure that optimal results are achieved and to avoid unexpected outcomes such as increased groundwater flooding.......Alternative stormwater management approaches for urban developments, also called Water Sensitive Urban Design (WSUD), are increasingly being adopted with the aims of providing flood control, flow management, water quality improvements and opportunities to harvest stormwater for non-potable uses....... WSUD structures (WSUDs) are typically small, decentralized systems for managing stormwater runoff near the source. These systems interact with the urban hydrological cycle, modifying the evapotranspiration, runoff and groundwater recharge fluxes. It is challenging to quantify these hydrological changes...

  19. What water isotopes tell us about water cycle responses to climate change

    Science.gov (United States)

    Raudzens Bailey, A.; Singh, H. A.; Nusbaumer, J. M.; Dee, S.; Blossey, P. N.; Posmentier, E. S.

    2017-12-01

    The water cycle is expected to respond strongly to rising global temperatures. Models predict regional imbalances in evaporation and precipitation will intensify, resulting in a slowing of the large-scale circulation. This slowing will extend the moisture length scale by increasing the amount of time water resides in the atmosphere. However, verifying these changes observationally is challenging. Isotope ratios in water vapor and precipitation represent an integrated record of moisture's journey from evaporative source to precipitation sink. Consequently, they provide a unique opportunity to identify changes in moisture length scale associated with shifts in regional hydrologic balance. Leveraging satellite retrievals, box models, climate simulations, and in situ data, this presentation demonstrates how water isotope ratios can be used to estimate water cycle changes over the historical period and into the future. These changes are closely linked to variations in the divergence of atmospheric moisture fluxes, which result from variations in specific humidity, wind direction, and wind speed. This presentation highlights the extent to which isotopic measurements allow us to track changes in the dynamic, or wind-driven, component of moisture transport and to investigate whether remote moisture contributions are becoming increasingly important in augmenting local precipitation.

  20. Multiple Observation Types Jointly Constrain Terrestrial Carbon and Water Cycles

    Science.gov (United States)

    Raupach, M. R.; Haverd, V.; Briggs, P. R.; Canadell, J.; Davis, S. J.; Isaac, P. R.; Law, R.; Meyer, M.; Peters, G. P.; Pickett Heaps, C.; Roxburgh, S. H.; Sherman, B.; van Gorsel, E.; Viscarra Rossel, R.; Wang, Z.

    2012-12-01

    Information about the carbon cycle potentially constrains the water cycle, and vice versa. This paper explores the utility of multiple observation sets to constrain carbon and water fluxes and stores in a land surface model, and a resulting determination of the Australian terrestrial carbon budget. Observations include streamflow from 416 gauged catchments, measurements of evapotranspiration (ET) and net ecosystem production (NEP) from 12 eddy-flux sites, litterfall data, and data on carbon pools. The model is a version of CABLE (the Community Atmosphere-Biosphere-Land Exchange model), coupled with CASAcnp (a biogeochemical model) and SLI (Soil-Litter-Iso, a soil hydrology model including liquid and vapour water fluxes and the effects of litter). By projecting observation-prediction residuals onto model uncertainty, we find that eddy flux measurements provide a significantly tighter constraint on Australian continental net primary production (NPP) than the other data types. However, simultaneous constraint by multiple data types is important for mitigating bias from any single type. Results emerging from the multiply-constrained model are as follows (with all values applying over 1990-2011 and all ranges denoting ±1 standard error): (1) on the Australian continent, a predominantly semi-arid region, over half (0.64±0.05) of the water loss through ET occurs through soil evaporation and bypasses plants entirely; (2) mean Australian NPP is 2200±400 TgC/y, making the NPP/precipitation ratio about the same for Australia as the global land average; (3) annually cyclic ("grassy") vegetation and persistent ("woody") vegetation respectively account for 0.56±0.14 and 0.43±0.14 of NPP across Australia; (4) the average interannual variability of Australia's NEP (±180 TgC/y) is larger than Australia's total anthropogenic greenhouse gas emissions in 2011 (149 TgCeq/y), and is dominated by variability in desert and savannah regions. The mean carbon budget over 1990

  1. Heavy water reactors on the denatured thorium cycles

    International Nuclear Information System (INIS)

    1978-05-01

    This paper presents preliminary technical and economic data to INFCE on the denatured U-233/Thorium fuel cycle for use in early comparisons of alternate nuclear systems. The once-through uranium fuel cycle is discussed in a companion paper. In presenting this preliminary information at this time, it is recognized that there are several other denatured thorium fuel cycles of potential interest, such as the U-235/thorium cycle which could be implemented at an earlier date. Information on these alternate cycles is currently being developed, and will be provided to INFCE when available

  2. Measuring and understanding soil water repellency through novel interdisciplinary approaches

    Science.gov (United States)

    Balshaw, Helen; Douglas, Peter; Doerr, Stefan; Davies, Matthew

    2017-04-01

    Food security and production is one of the key global issues faced by society. It has become evermore essential to work the land efficiently, through better soil management and agronomy whilst protecting the environment from air and water pollution. The failure of soil to absorb water - soil water repellency - can lead to major environmental problems such as increased overland flow and soil erosion, poor uptake of agricultural chemicals and increased risk of groundwater pollution due to the rapid transfer of contaminants and nutrient leaching through uneven wetting and preferential flow pathways. Understanding the causes of soil hydrophobicity is essential for the development of effective methods for its amelioration, supporting environmental stability and food security. Organic compounds deposited on soil mineral or aggregate surfaces have long been recognised as a major factor in causing soil water repellency. It is widely accepted that the main groups of compounds responsible are long-chain acids, alkanes and other organic compounds with hydrophobic properties. However, when reapplied to sands and soils, the degree of water repellency induced by these compounds and mixtures varied widely with compound type, amount and mixture, in a seemingly unpredictable way. Our research to date involves two new approaches for studying soil wetting. 1) We challenge the theoretical basis of current ideas on the measured water/soil contact angle measurements. Much past and current discussion involves Wenzel and Cassie-Baxter models to explain anomalously high contact angles for organics on soils, however here we propose that these anomalously high measured contact angles are a consequence of the measurement of a water drop on an irregular non-planar surface rather than the thermodynamic factors of the Cassie-Baxter and Wenzel models. In our analysis we have successfully used a much simpler geometric approach for non-flat surfaces such as soil. 2) Fluorescent and phosphorescent

  3. A new indicator framework for quantifying the intensity of the terrestrial water cycle

    Science.gov (United States)

    Huntington, Thomas G.; Weiskel, Peter K.; Wolock, David M.; McCabe, Gregory J.

    2018-04-01

    A quantitative framework for characterizing the intensity of the water cycle over land is presented, and illustrated using a spatially distributed water-balance model of the conterminous United States (CONUS). We approach water cycle intensity (WCI) from a landscape perspective; WCI is defined as the sum of precipitation (P) and actual evapotranspiration (AET) over a spatially explicit landscape unit of interest, averaged over a specified time period (step) of interest. The time step may be of any length for which data or simulation results are available (e.g., sub-daily to multi-decadal). We define the storage-adjusted runoff (Q‧) as the sum of actual runoff (Q) and the rate of change in soil moisture storage (ΔS/Δt, positive or negative) during the time step of interest. The Q‧ indicator is demonstrated to be mathematically complementary to WCI, in a manner that allows graphical interpretation of their relationship. For the purposes of this study, the indicators were demonstrated using long-term, spatially distributed model simulations with an annual time step. WCI was found to increase over most of the CONUS between the 1945 to 1974 and 1985 to 2014 periods, driven primarily by increases in P. In portions of the western and southeastern CONUS, Q‧ decreased because of decreases in Q and soil moisture storage. Analysis of WCI and Q‧ at temporal scales ranging from sub-daily to multi-decadal could improve understanding of the wide spectrum of hydrologic responses that have been attributed to water cycle intensification, as well as trends in those responses.

  4. Wally's quest to understand the ocean's CaCO3 cycle.

    Science.gov (United States)

    Broecker, W S

    2009-01-01

    Aspects of the production and dissolution of CaCO3 hard parts dominate the literature regarding contemporary marine chemistry and paleoceanography. During my long career I have contributed more than 200 papers related to this subject. In this prefatory article in the first volume of the Annual Review of Marine Science, I recount what I consider to be the highlights of my attempts to understand the cycle of CaCO3 in today's ocean and in oceans of the past. These studies began in the Bahamas in the early 1960s and then quickly graduated to the world ocean. Although much of my research has involved stable and radioisotopes contained in shells and coral directed toward reconstruction of the late Quaternary operation of the earth system, in this review I concentrate on carbonate chemistry and, in particular, the compensation in the deep sea for the overproduction of CaCO3 by marine organisms.

  5. A synthesis of research needs for improving the understanding of atmospheric mercury cycling

    Directory of Open Access Journals (Sweden)

    L. Zhang

    2017-07-01

    Full Text Available This synthesis identifies future research needs in atmospheric mercury science, based on a series of review papers, as well as recent developments in field data collection, modeling analysis, and emission assessments of speciated atmospheric mercury. Research activities are proposed that focus on areas that we consider important. These include refinement of mercury emission estimations, quantification of dry deposition and air–surface exchange, improvement of the treatment of chemical mechanisms in chemical transport models, increase in the accuracy of oxidized mercury measurements, better interpretation of atmospheric mercury chemistry data, and harmonization of network operation. Knowledge gained in these research areas will significantly improve our understanding of atmospheric cycling from local to global scales.

  6. SHORTER MENSTRUAL CYCLES ASSOCIATED WITH CHLORINATION BY-PRODUCTS IN DRINKING WATER

    Science.gov (United States)

    Shorter Menstrual Cycles Associated with Chlorination by-Products in Drinking Water. Gayle Windham, Kirsten Waller, Meredith Anderson, Laura Fenster, Pauline Mendola, Shanna Swan. California Department of Health Services.In previous studies of tap water consumption we...

  7. Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle.

    Science.gov (United States)

    Pal, Amrita; He, Yiliang; Jekel, Martin; Reinhard, Martin; Gin, Karina Yew-Hoong

    2014-10-01

    The contamination of the urban water cycle (UWC) with a wide array of emerging organic compounds (EOCs) increases with urbanization and population density. To produce drinking water from the UWC requires close examination of their sources, occurrence, pathways, and health effects and the efficacy of wastewater treatment and natural attenuation processes that may occur in surface water bodies and groundwater. This paper researches in details the structure of the UWC and investigates the routes by which the water cycle is increasingly contaminated with compounds generated from various anthropogenic activities. Along with a thorough survey of chemicals representing compound classes such as hormones, antibiotics, surfactants, endocrine disruptors, human and veterinary pharmaceuticals, X-ray contrast media, pesticides and metabolites, disinfection-by-products, algal toxins and taste-and-odor compounds, this paper provides a comprehensive and holistic review of the occurrence, fate, transport and potential health impact of the emerging organic contaminants of the UWC. This study also illustrates the widespread distribution of the emerging organic contaminants in the different aortas of the ecosystem and focuses on future research needs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. The Use of Water Vapor as a Refrigerant: Impact of Cycle Modifications on Commercial Viability

    Energy Technology Data Exchange (ETDEWEB)

    Brandon F. Lachner, Jr.; Gregory F. Nellis; Douglas T. Reindl

    2004-08-30

    This project investigated the economic viability of using water as the refrigerant in a 1000-ton chiller application. The most attractive water cycle configuration was found to be a flash-intercooled, two-stage cycle using centrifugal compressors and direct contact heat exchangers. Component level models were developed that could be used to predict the size and performance of the compressors and heat exchangers in this cycle as well as in a baseline, R-134a refrigeration cycle consistent with chillers in use today. A survey of several chiller manufacturers provided information that was used to validate and refine these component models. The component models were integrated into cycle models that were subsequently used to investigate the life-cycle costs of both an R-134a and water refrigeration cycle. It was found that the first cost associated with the water as a refrigerant cycle greatly exceeded the savings in operating costs associated with its somewhat higher COP. Therefore, the water refrigeration cycle is not an economically attractive option to today's R-134a refrigeration system. There are a number of other issues, most notably the requirements associated with purging non-condensable gases that accumulate in a direct contact heat exchanger, which will further reduce the economic viability of the water cycle.

  9. Water Resources System Archetypes: Towards a Holistic Understanding of Persistent Water Resources Problems

    Science.gov (United States)

    Mirchi, A.; Watkins, D. W.; Madani, K.

    2011-12-01

    Water resources modeling, a well-established tool in water resources planning and management practice, facilitates understanding of the physical and socio-economic processes impacting the wellbeing of humans and ecosystems. While watershed models continue to become more holistic, there is a need for appropriate frameworks and tools for integrated conceptualization of problems to provide reliable qualitative and quantitative bases for policy selection. In recent decades, water resources professionals have become increasingly cognizant of important feedback relationships within water resources systems. We contend that a systems thinking paradigm is required to facilitate characterization of the closed-loop nature of these feedbacks. Furthermore, a close look at different water resources issues reveals that, while many water resources problems are essentially very similar in nature, they continuously appear in different geographical locations. In the systems thinking literature, a number of generic system structures known as system archetypes have been identified to describe common patterns of problematic behavior within systems. In this research, we identify some main system archetypes governing water resources systems, demonstrating their benefits for holistic understanding of various classes of persistent water resources problems. Using the eutrophication problem of Lake Allegan, Michigan, as a case study, we illustrate how the diagnostic tools of system dynamics modeling can facilitate identification of problematic feedbacks within water resources systems and provide insights for sustainable development.

  10. Power generation and heating performances of integrated system of ammonia–water Kalina–Rankine cycle

    International Nuclear Information System (INIS)

    Zhang, Zhi; Guo, Zhanwei; Chen, Yaping; Wu, Jiafeng; Hua, Junye

    2015-01-01

    Highlights: • Integrated system of ammonia–water Kalina–Rankine cycle (AWKRC) is investigated. • Ammonia–water Rankine cycle is operated for cogenerating room heating-water in winter. • Kalina cycle with higher efficiency is operated for power generation in other seasons. • Power recovery efficiency accounts thermal efficiency and waste heat absorbing ratio. • Heating water with 70 °C and capacity of 55% total reclaimed heat load is cogenerated. - Abstract: An integrated system of ammonia–water Kalina–Rankine cycle (AWKRC) for power generation and heating is introduced. The Kalina cycle has large temperature difference during evaporation and small one during condensation therefore with high thermal efficiency for power generation, while the ammonia–water Rankine cycle has large temperature difference during condensation as well as evaporation, thus it can be adopted to generate heating-water as a by-product in winter. The integrated system is based on the Kalina cycle and converted to the Rankine cycle with a set of valves. The performances of the AWKRC system in different seasons with corresponding cycle loops were studied and analyzed. When the temperatures of waste heat and cooling water are 300 °C and 25 °C respectively, the thermal efficiency and power recovery efficiency of Kalina cycle are 20.9% and 17.4% respectively in the non-heating seasons, while these efficiencies of the ammonia–water Rankine cycle are 17.1% and 13.1% respectively with additional 55.3% heating recovery ratio or with comprehensive efficiency 23.7% higher than that of the Kalina cycle in heating season

  11. Carbon and water cycling in flooded and rainfed rice (Oryza Sativa) ecosystem: Disentangling agronomical and ecological aspects of water use efficiency

    Science.gov (United States)

    Nay-Htoon, Bhone; Xue, Wei; Dubbert, Maren; Lindner, Steve; Cuntz, Matthias; Ko, Jonghan; Tenhunen, John; Werner, Christiane

    2015-04-01

    Agricultural crops play an important role in the global carbon and water cycling process and there is intense research to understand and predict carbon and water fluxes, productivity and water use of cultivated crops under climate change. Mechanistic understanding of the trade of between ecosystem water use efficiency and agronomic water use efficiency to maintain higher crop yield and productive water loss is necessary for the ecosystem sustainability. . We compared water and carbon fluxes of paddy and rainfed rice by canopy scale gas exchange measurements, crop growth, and daily evapotranspiration, transpiration and carbon flux modeling. According to our findings, evaporation contributed strongly (maximum 100% to minimum 45%) to paddy rice evapotranspiration while transpiration of rainfed is almost 50 % of daily evapotranspiration. Water use efficiency (WUE) was higher in rainfed rice both from an agronomic (WUEagro, i.e. grain yield per evapotranspiration) and ecosystem (WUEeco, i.e. gross primary production per evapotranspiration) perspective. However, rainfed rice showed also high ecosystem respiration losses and a slightly lower crop yield, demonstrating that higher WUE in rainfed rice comes at the expense of higher respiration losses of assimilated carbon and lower plant production, compared to paddy rice. Our results highlighted the need to partition water and carbon fluxes to improve our mechanistic understanding of water use efficiency and environmental impact of different agricultural practices. Keywords: Rainfed rice, Paddy rice, water use efficiency, Transpiration/Evapotranspiration, ecosystem WUE, agronomic WUE, Evapotranspiration

  12. Use of a dynamic simulation model to understand nitrogen cycling in the middle Rio Grande, NM.

    Energy Technology Data Exchange (ETDEWEB)

    Meixner, Tom (University of Arizona, Tucson, AZ); Tidwell, Vincent Carroll; Oelsner, Gretchen (University of Arizona, Tucson, AZ); Brooks, Paul (University of Arizona, Tucson, AZ); Roach, Jesse D.

    2008-08-01

    Water quality often limits the potential uses of scarce water resources in semiarid and arid regions. To best manage water quality one must understand the sources and sinks of both solutes and water to the river system. Nutrient concentration patterns can identify source and sink locations, but cannot always determine biotic processes that affect nutrient concentrations. Modeling tools can provide insight into these large-scale processes. To address questions about large-scale nitrogen removal in the Middle Rio Grande, NM, we created a system dynamics nitrate model using an existing integrated surface water--groundwater model of the region to evaluate our conceptual models of uptake and denitrification as potential nitrate removal mechanisms. We modeled denitrification in groundwater as a first-order process dependent only on concentration and used a 5% denitrification rate. Uptake was assumed to be proportional to transpiration and was modeled as a percentage of the evapotranspiration calculated within the model multiplied by the nitrate concentration in the water being transpired. We modeled riparian uptake as 90% and agricultural uptake as 50% of the respective evapotranspiration rates. Using these removal rates, our model results suggest that riparian uptake, agricultural uptake and denitrification in groundwater are all needed to produce the observed nitrate concentrations in the groundwater, conveyance channels, and river as well as the seasonal concentration patterns. The model results indicate that a total of 497 metric tons of nitrate-N are removed from the Middle Rio Grande annually. Where river nitrate concentrations are low and there are no large nitrate sources, nitrate behaves nearly conservatively and riparian and agricultural uptake are the most important removal mechanisms. Downstream of a large wastewater nitrate source, denitrification and agricultural uptake were responsible for approximately 90% of the nitrogen removal.

  13. Water Diplomacy: A Synthesis of Water Information and Understanding to Create Actionable Knowledge

    Science.gov (United States)

    Gao, Y.; Islam, S.

    2010-12-01

    Water issues are complex because they cross multiple boundaries and involve various stakeholders with competing needs. The origin of many water issues is a dynamic consequence of competition and feedback among variables in the natural, societal and political domains. When viewed as a limited resource, water lends itself to destructive conflicts over its division; knowledge of water, however, can transform a finite water quantity into a flexible resource. To generate such a transformative knowledge base for water, we need a framework to synthesize explicit (scientific information) and tacit (contextual understanding) water knowledge. Such a framework must build on scientific objectivity and be cognizant of contextual differences inherent to water issues. An example of such an approach is qualitative reasoning (QR) that was developed by the artificial intelligence community to provide non-numerical descriptions of systems and their qualitative and quantitative behavior while preserving important behavioral properties and qualitative distinctions. Using the Apalachicola-Chattahoochee-Flint River Basin (ACF Basin) as an example we will illustrate the use of QR to model and analyze water conflicts in the context of a coupled Natural and Societal Domain (NSD) framework. Two QR models related to the ACF water dispute will be compared and contrasted. Our results suggest that QR models within a NSD framework can provide ways to resolve complex water problems through negotiated solutions.

  14. Do Estimates of Water Productivity Enhance Understanding of Farm-Level Water Management?

    Directory of Open Access Journals (Sweden)

    Dennis Wichelns

    2014-03-01

    Full Text Available Estimates of water productivity are appearing with increasing frequency in the literature pertaining to agronomy, water management, and water policy. Some authors report such estimates as one of the outcome variables of experiment station studies, while others calculate water productivities when comparing regional crop production information. Many authors suggest or imply that higher values of water productivity are needed to ensure that future food production goals are achieved. Yet maximizing water productivity might not be consistent with farm-level goals or with societal objectives regarding water allocation and management. Farmers in both rainfed and irrigated settings must address a complex set of issues pertaining to risk, uncertainty, prices, and opportunity costs, when selecting activities and determining optimal strategies. It is not clear that farmers in either setting will or should choose to maximize water productivity. Upon examining water productivity, both conceptually and empirically, using published versions of crop production functions, I conclude that estimates of water productivity contain too little information to enhance understanding of farm-level water management.

  15. North American water availability under stress and duress: building understanding from simulations, observations and data products

    Science.gov (United States)

    Maxwell, R. M.; Condon, L. E.; Atchley, A. L.; Hector, B.

    2017-12-01

    Quantifying the available freshwater for human use and ecological function depends on fluxes and stores that are hard to observe. Evapotranspiration (ET) is the largest terrestrial flux of water behind precipitation but is observed with low spatial density. Likewise, groundwater is the largest freshwater store, yet is equally uncertain. The ability to upscale observations of these variables is an additional complication; point measurements are made at scales orders of magnitude smaller than remote sensing data products. Integrated hydrologic models that simulate continental extents at fine spatial resolution are now becoming an additional tool to constrain fluxes and address interconnections. For example, recent work has shown connections between water table depth and transpiration partitioning, and demonstrated the ability to reconcile point observations and large-scale inferences. Here we explore the dynamics of large hydrologic systems experiencing change and stress across continental North America using integrated model simulations, observations and data products. Simulations of aquifer depletion due to pervasive groundwater pumping diagnose both stream depletion and changes in ET. Simulations of systematic increases in temperature are used to understand the relationship between snowpack dynamics, surface and groundwater flow, ET and a changing climate. Remotely sensed products including the GRACE estimates of total storage change are downscaled using model simulations to better understand human impacts to the hydrologic cycle. These example applications motivate a path forward to better use simulations to understand water availability.

  16. Perceptions of the Water Cycle among Primary School Children in Botswana.

    Science.gov (United States)

    Taiwo, A. A.; Motswiri, M. J.; Masene, R.

    1999-01-01

    Describes qualitative and quantitative methods used to elucidate the nature of the perception of the water cycle held by Botswana primary-grade pupils in three different geographic areas. Concludes that the students' perception of the water cycle was positively influenced by schooling but negatively impacted upon, to some extent, by the untutored…

  17. Understanding the behavior of floodplains as human-water systems

    Science.gov (United States)

    Di Baldassarre, G.; Brandimarte, L.

    2012-12-01

    Floodplains are among the most valuable ecosystems for supporting biodiversity and providing services to the environment. Moreover, they are home of approximately one-sixth of the world population as they offer favorable conditions for economic development. As a result, flood disasters currently affect more than 100 million people a year. Sadly, flood losses and fatalities are expected to increase further in many countries because of population growth as well as changes in land use and climate. Given the relevance of floodplain systems, a number of social scientists have examined how the frequency and severity of flooding often determine whether human development in floodplains is desirable or not. Meanwhile, many earth scientists have investigated the impact of human activities (e.g. land-use changes, urbanization, river training) on the frequency and magnitude of floods. In fact, as human activities change the frequency of flooding, the frequency of flooding affects human developments in floodplain areas. Yet, these dynamic interactions between floods and societies and the associated feedback mechanisms remain largely unexplored and poorly understood. As a result, we typically consider humans as external forcing (or boundary condition) without representing the feedback loops and our prediction of future trajectories are therefore extremely limited. This presentation shows a first attempt to understand the behavior of floodplains as coupled human-water systems. In particular, we analyzed a number of long time series of hydrological and population data in the Po River Basin (Italy) to explore the feedback mechanisms, reciprocal effects, surprises, and threshold mechanisms, taking place in floodplain systems. The outcomes of the study enable a better understanding of how the occurrences of floods shape human developments while, at the same time, human activities shape the magnitude and frequency of floods. The presentation also discusses the opportunities offered by

  18. The Mars water cycle at other epochs: History of the polar caps and layered terrain

    Science.gov (United States)

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1992-01-01

    The atmospheric water cycle at the present epoch involves summertime sublimation of water from the north polar cap, transport of water through the atmosphere, and condensation on one or both winter CO2 caps. Exchange with the regolith is important seasonally, but the water content of the atmosphere appears to be controlled by the polar caps. The net annual transport through the atmosphere, integrated over long timescales, must be the driving force behind the long-term evolution of the polar caps; clearly, this feeds back into the evolution of the layered terrain. We have investigated the behavior of the seasonal water cycle and the net integrated behavior at the pole for the last 10 exp 7 years. Our model of the water cycle includes the solar input, CO2 condensation and sublimation, and summertime water sublimation through the seasonal cycles, and incorporates the long-term variations in the orbital elements describing the Martian orbit.

  19. The Baltic Sea Experiment (BALTEX): A European contribution to the investigation of the energy and water cycle over a large drainage basin

    DEFF Research Database (Denmark)

    Raschke, E.; Meywerk, J.; Warrach, K.

    2001-01-01

    The Baltic Sea Experiment (BALTEX) is one of the five continental-scale experiments of the Global Energy and Water Cycle Experiment (GEWEX). More than 50 research groups from 14 European countries are participating in this project to measure and model the energy and water cycle over the large...... drainage basin of the Baltic Sea in northern Europe. BALTEX aims to provide a better understanding of the processes of the climate system and to improve and to validate the water cycle in regional numerical models for weather forecasting and climate studies. A major effort is undertaken to couple...

  20. Patterns, structures and regulations of domestic water cycle systems in China

    Science.gov (United States)

    Chu, Junying; Wang, Hao; Wang, Jianhua; Qin, Dayong

    2010-05-01

    Domestic water cycle systems serving as one critical component of artificial water cycle at the catchment's scale, is so closely related to public healthy, human rights and social-economic development, and has gained the highest priority in strategic water resource and municipal infrastructure planning. In this paper, three basic patterns of domestic water cycle systems are identified and analyzed, including rural domestic water system (i.e. primary level), urban domestic water system (i.e. intermediate level) and metropolitan domestic water system (i.e. senior level), with different "abstract-transport-consume-discharge" mechanisms and micro-components of water consumption (such as drinking, cooking, toilet flushing, showering or cleaning). The rural domestic water system is general simple with three basic "abstract-consume-discharge" mechanisms and micro-components of basic water consumption such as drinking, cooking, washing and sanitation. The urban domestic water system has relative complex mechanisms of "abstract-supply-consume-treatment-discharge" and more micro-components of water consumption such as bath, dishwashing or car washing. The metropolitan domestic water system (i.e. senior level) has the most complex mechanisms by considering internal water reuse, external wastewater reclamation, and nutrient recycling processes. The detailed structures for different water cycle pattern are presented from the aspects of water quantity, wastewater quality and nutrients flow. With the speed up of urbanization and development of social-economy in China, those three basic patterns are interacting, transforming and upgrading. According to the past experiences and current situations, urban domestic water system (i.e. intermediate level) is the dominant pattern based on indicator of system number or system scale. The metropolitan domestic water system (i.e. senior level) is the idealized model for the future development and management. Current domestic water system

  1. Establishment and analysis of High-Resolution Assimilation Dataset of water-energy cycle over China

    Science.gov (United States)

    Wen, Xiaohang; Liao, Xiaohan; Dong, Wenjie; Yuan, Wenping

    2015-04-01

    For better prediction and understanding of water-energy exchange process and land-atmospheric interaction, the in-situ observed meteorological data which were acquired from China Meteorological Administration (CMA) were assimilated in the Weather Research and Forecasting (WRF) model and the monthly Green Vegetation Coverage (GVF) data, which was calculated by the Normalized Difference Vegetation Index (NDVI) of Earth Observing System Moderate-Resolution Imaging Spectroradiometer (EOS-MODIS), Digital Elevation Model (DEM) data of the Shuttle Radar Topography Mission (SRTM) system were also integrated in the WRF model over China. Further, the High-Resolution Assimilation Dataset of water-energy cycle over China (HRADC) was produced by WRF model. This dataset include 25 km horizontal resolution near surface meteorological data such as air temperature, humidity, ground temperature, and pressure at 19 levels, soil temperature and soil moisture at 4 levels, green vegetation coverage, latent heat flux, sensible heat flux, and ground heat flux for 3 hours. In this study, we 1) briefly introduce the cycling 3D-Var assimilation method; 2) Compare results of meteorological elements such as 2 m temperature, precipitation and ground temperature generated by the HRADC with the gridded observation data from CMA, and Global Land Data Assimilation System (GLDAS) output data from National Aeronautics and Space Administration (NASA). It is found that the results of 2 m temperature were improved compared with the control simulation and has effectively reproduced the observed patterns, and the simulated results of ground temperature, 0-10 cm soil temperature and specific humidity were as much closer to GLDAS outputs. Root mean square errors are reduced in assimilation run than control run, and the assimilation run of ground temperature, 0-10 cm soil temperature, radiation and surface fluxes were agreed well with the GLDAS outputs over China. The HRADC could be used in further research

  2. Assessment of the menstrual cycle upon total hemoglobin, water concentration, and oxygen saturation in the female breast

    Science.gov (United States)

    Jiang, Shudong; Pogue, Brian W.; Srinivasan, Subhadra; Soho, Sandra; Poplack, Steven P.; Tosteson, Tor D.; Paulsen, Keith D.

    2003-07-01

    Near-infrared imaging can be used in humans to characterize changes in breast tumor tissue by imaging total hemoglobin and water concentrations as well as oxygen saturation. In order to improve our understanding of these changes, we need to carefully quantify the range of variation possible in normal tissues for these parameters. In this study, the effect of the subject"s menstrual cycle was examined by imaging their breast at the follicular (7-14 days of the cycle) and secretory phases (21-28 days of the cycle), using our NIR tomographic system. In this system, a three layer patient interface is used to measure 3 planes along the breast from chest wall towards the nipple at 1cm increments. Seven volunteers in their 40s were observed for 2 menstrual cycles and all of these volunteers recently had normal mammograms (ACR 1) with heterogeneously dense breast composition. The results show that average total hemoglobin in the breast increased in many subjects between 0 to 15% from the follicular phase to secretory phase. Oxygen saturation and water concentration changes between these 2 parts of the cycle were between -6.5% to 12% for saturation and between -33% to 28% for water concentration. While the data averaged between subjects showed no significant change existed between phases, it was clear that individual subjects did exhibit changes in composition which were consistent from cycle to cycle. Understanding what leads to this heterogeneity between subjects will be an important factor in utilizing these measurements in clinical practice.

  3. Connecting Satellite Observations with Water Cycle Variables Through Land Data Assimilation: Examples Using the NASA GEOS-5 LDAS

    Science.gov (United States)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Forman, Barton A.; Draper, Clara S.; Liu, Qing

    2013-01-01

    A land data assimilation system (LDAS) can merge satellite observations (or retrievals) of land surface hydrological conditions, including soil moisture, snow, and terrestrial water storage (TWS), into a numerical model of land surface processes. In theory, the output from such a system is superior to estimates based on the observations or the model alone, thereby enhancing our ability to understand, monitor, and predict key elements of the terrestrial water cycle. In practice, however, satellite observations do not correspond directly to the water cycle variables of interest. The present paper addresses various aspects of this seeming mismatch using examples drawn from recent research with the ensemble-based NASA GEOS-5 LDAS. These aspects include (1) the assimilation of coarse-scale observations into higher-resolution land surface models, (2) the partitioning of satellite observations (such as TWS retrievals) into their constituent water cycle components, (3) the forward modeling of microwave brightness temperatures over land for radiance-based soil moisture and snow assimilation, and (4) the selection of the most relevant types of observations for the analysis of a specific water cycle variable that is not observed (such as root zone soil moisture). The solution to these challenges involves the careful construction of an observation operator that maps from the land surface model variables of interest to the space of the assimilated observations.

  4. Environmental life cycle assessment of water supply in South Africa ...

    African Journals Online (AJOL)

    , which is increasingly used for decision-support in the South African manufacturing industry, e.g. for cleaner production purposes. The life cycle impact assessment (LCIA) phase of LCAs evaluates the potential environmental impact profiles of ...

  5. Investigations of the Hydrologic Cycle in the Arctic Climate System Using Water Isotopes

    Science.gov (United States)

    Kopec, Ben Gordon

    Warming has caused widespread changes to the Arctic hydrologic cycle, indicated by sea ice reductions, the Greenland Ice Sheet (GIS) mass loss, and permafrost degradation. Understanding Arctic hydrologic processes is essential for quantifying hydrological responses to climate change. A valuable tool to study these responses is the hydrogen and oxygen isotope ratios of water. Studies presented here aim to both innovatively apply water isotopes with existing understanding, and gain new knowledge in isotope systematics. I present several studies here. First, I show that Arctic precipitation increases with enhanced evaporation due to sea ice reduction; each 100,000 km2 loss in sea ice area increases the fraction of Arctic sourced moisture in total precipitation by 11 to 18%. Second, I argue that vapor sublimated from the GIS significantly contributes to summer precipitation at Summit, Greenland. This conclusion is first supported by isotopic variations in the daily precipitation collected at Summit for three years, and then further verified by 30 annual isotopic cycles in a shallow ice core. The result is not only important for quantifying the current ice sheet mass balance, but also for inferences of paleoclimate from ice cores. Third, I demonstrate that local scale atmospheric circulation in the glacier-free strip of West Greenland is dominated by convergence of dry glacial air masses from the east and moist marine air masses from the west. The dynamics of this convergence are affected by both regional radiation balance differences and broader circulation patterns such as the North Atlantic Oscillation. Humidity variations associated with these air masses control local precipitation and lake evaporation. Finally, along the east-west moisture gradient in West Greenland, lake evaporation also exhibits systematic changes in rate and isotopic enrichment, a result that is important for lake sediment core research. I have made advances in understanding water isotope

  6. eWaterCycle: A high resolution global hydrological model

    Science.gov (United States)

    van de Giesen, Nick; Bierkens, Marc; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2014-05-01

    In 2013, the eWaterCycle project was started, which has the ambitious goal to run a high resolution global hydrological model. Starting point was the PCR-GLOBWB built by Utrecht University. The software behind this model will partially be re-engineered in order to enable to run it in a High Performance Computing (HPC) environment. The aim is to have a spatial resolution of 1km x 1km. The idea is also to run the model in real-time and forecasting mode, using data assimilation. An on-demand hydraulic model will be available for detailed flow and flood forecasting in support of navigation and disaster management. The project faces a set of scientific challenges. First, to enable the model to run in a HPC environment, model runs were analyzed to examine on which parts of the program most CPU time was spent. These parts were re-coded in Open MPI to allow for parallel processing. Different parallelization strategies are thinkable. In our case, it was decided to use watershed logic as a first step to distribute the analysis. There is rather limited recent experience with HPC in hydrology and there is much to be learned and adjusted, both on the hydrological modeling side and the computer science side. For example, an interesting early observation was that hydrological models are, due to their localized parameterization, much more memory intensive than models of sister-disciplines such as meteorology and oceanography. Because it would be deadly to have to swap information between CPU and hard drive, memory management becomes crucial. A standard Ensemble Kalman Filter (enKF) would, for example, have excessive memory demands. To circumvent these problems, an alternative to the enKF was developed that produces equivalent results. This presentation shows the most recent results from the model, including a 5km x 5km simulation and a proof of concept for the new data assimilation approach. Finally, some early ideas about financial sustainability of an operational global

  7. Contribution of Heavy Water Board in nuclear fuel cycle technologies. Contributed Paper IT-03

    International Nuclear Information System (INIS)

    Mohanty, P.R.

    2014-01-01

    The three stage Indian nuclear power programme envisages use of closed nuclear fuel cycle and thorium utilization as its mainstay for long term energy security on sustainable basis. India is committed to realize this objective through the development and deployment of frontier technologies pertaining to all aspects of a closed nuclear fuel cycle. Comprehensive indigenous capabilities have been developed in all aspects of nuclear power and associated fuel cycles. Heavy Water Board (HWB), with its abiding objective of fulfilling demand of heavy water for India's flourishing nuclear power program, is one of the frontrunner in Nuclear Fuel Cycle Technology. HWB is now engaged in wide spectrum of activities in various facets of fuel cycle covering all the three stages of Indian Nuclear Power Programme. HWB is contributing to Nuclear Fuel Cycle through large scale production and sustained supply of key input materials including heavy water, solvents for nuclear hydrometallurgy, 10 B enriched boron etc

  8. Effects of repetitive droughts on carbon, nutrient and water cycles of heathland ecosystem

    Science.gov (United States)

    Rineau, Francois; Beenaerts, Natalie; Nijs, Ivan; De Boeck, Hans; Vangronsveld, Jaco

    2017-04-01

    A large body of research is now focusing on the understanding of mechanisms regulating ecosystem functioning, predictions on their activity in the long-term, and the management practices to keep them running. For this purpose, Hasselt University decided to invest in the construction of a high technological research infrastructure: the "Ecotron Hasselt University", where twelve large ecosystem replicates can be continuously monitored and controlled. The ecotrons will be fed with real-time climatic data from a nearby ICOS tower located on top of a heathland landscape. The research performed there will focus on understanding the response of heathland ecosystem services (ES) to yearly repeated droughts of different intensities. We aim to perform as well an economical valuation of these ES. From a biological point of view, we will measure soil processes that drive the three most valuable ES: water, C and nutrient cycles, and especially how soil organisms affect them, through which mechanisms and at different drought intensities. Species interactions and their influence on C sequestration and organic matter degradation will be also incorporated into a state-of-the art soil C cycling model.

  9. A Precipitation Climatology using Satellite Remote Sensing and Water Cycle Constraints

    Science.gov (United States)

    Hilburn, K.; Wentz, F.

    2009-04-01

    Passive microwave satellite data records have finally reached critical lengths that provide unparalleled climate monitoring capability. In particular, if we are to monitor and understand regional climate changes, the use of satellite data are necessary for much of the planet where in situ observations are infrequent or absent. Using passive microwave data we provide a precipitation climatology and integrate our activities with the NASA Precipitation Measurement Mission (PMM) and the NASA Energy and Water Cycle Study (NEWS). We obtain geophysical retrievals over the ocean using our Unified Microwave Ocean Retrieval Algorithm (UMORA), which simultaneously retrieves sea surface temperature, surface wind speed, columnar water vapor, columnar cloud liquid water, and surface rain rate from a variety of passive microwave radiometers including SSMI (F08, F10, F11, F13, F14, F15), SSMIS (F16, F17), TMI on TRMM, AMSR (Aqua and Midori-II), and WindSat. In addition to the retrieval algorithm, the other critical component to obtaining a quality precipitation climatology is an accurate radiometer intercalibration at the brightness temperature level. We have spent a great deal of effort intercalibrating the SSM/I series of radiometers. In the most recent version, the SSM/I have been intercalibrated to a precision of 0.1 K and the other sensors have been adjusted to match the SSM/I time series. We are using passive microwave observations to make climatologies of areal precipitation over ocean basins. Our results indicate surprisingly consistent evaporation ratios (ratio of evaporation to precipitation) over large ocean basins. The ratios are around 1.2, meaning that over sufficiently large areas of ocean, evaporation is about 20% larger than precipitation - with the excess finding its way onto land via atmospheric rivers. These results are very different than previous satellite-based estimates, which show great variability from basin to basin. Our results may be due to a number of

  10. Understanding and managing the food-energy-water nexus - opportunities for water resources research

    Science.gov (United States)

    Cai, Ximing; Wallington, Kevin; Shafiee-Jood, Majid; Marston, Landon

    2018-01-01

    Studies on the food, energy, and water (FEW) nexus lay a shared foundation for researchers, policy makers, practitioners, and stakeholders to understand and manage linked production, utilization, and security of FEW systems. The FEW nexus paradigm provides the water community specific channels to move forward in interdisciplinary research where integrated water resources management (IWRM) has fallen short. Here, we help water researchers identify, articulate, utilize, and extend our disciplinary strengths within the broader FEW communities, while informing scientists in the food and energy domains about our unique skillset. This paper explores the relevance of existing and ongoing scholarship within the water community, as well as current research needs, for understanding FEW processes and systems and implementing FEW solutions through innovations in technologies, infrastructures, and policies. Following the historical efforts in IWRM, hydrologists, water resources engineers, economists, and policy analysts are provided opportunities for interdisciplinary studies among themselves and in collaboration with energy and food communities, united by a common path to achieve sustainability development goals.

  11. Continental Scale research of the coupled carbon and water cycles in Australia

    Science.gov (United States)

    Cleugh, Helen; van Gorsel, Eva; Held, Alex; Huete, Alfredo; Karan, Mirko; Liddell, Michael; Phinn, Stuart; Prentice, Colin

    2013-04-01

    It is essential to understand the drivers and processes that regulate uptake and release of carbon and water by the terrestrial biosphere to quantify the sink and source strengths under current climatic conditions. In addition, understanding the consequences of a changing climate on the capacity of the biosphere to sequester carbon by using a certain amount of water and the impacts of disturbances on resilience and thresholds of the terrestrial biosphere is critical. Recently there has been increasing general interest in how human activities may be affecting Australia's natural carbon cycles. Quantification of carbon and water exchanges requires process understanding over long temporal and large spatial scales, but at fine levels of detail. This requires integration of long term, high frequency observations, models and information from process studies and can only be achieved through research infrastructure that can provide easy access to meta-data and data that have been collected in a systematic and standardized way. The Australian Terrestrial Ecosystem Research Network (TERN) provides such nationally networked infrastructure, along with multi-disciplinary capabilities and end-user-focused products to deliver better ways of measuring and estimating Australia's current and future environmental carbon stocks and flows. Multiple Facilities in TERN are studying carbon and water dynamics across a range of distance and time scales. OzFlux, the Australasian arm of the global initiative Fluxnet, is the most obvious deployment of field hardware in TERN with close to 30 flux towers and their associated micrometeorological instrumentation in place around the country, from Central Australia to the Alps, covering ecosystems ranging from rainforest to alpine grasslands to mulga. Intensive monitoring is carried out at the 10 TERN Supersites which carry a suite of environmental instrumentation and perform standardised vegetation, faunal, soil and water monitoring.TERN Aus

  12. A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast.

    Science.gov (United States)

    Canfield, Don E; Stewart, Frank J; Thamdrup, Bo; De Brabandere, Loreto; Dalsgaard, Tage; Delong, Edward F; Revsbech, Niels Peter; Ulloa, Osvaldo

    2010-12-03

    Nitrogen cycling is normally thought to dominate the biogeochemistry and microbial ecology of oxygen-minimum zones in marine environments. Through a combination of molecular techniques and process rate measurements, we showed that both sulfate reduction and sulfide oxidation contribute to energy flux and elemental cycling in oxygen-free waters off the coast of northern Chile. These processes may have been overlooked because in nature, the sulfide produced by sulfate reduction immediately oxidizes back to sulfate. This cryptic sulfur cycle is linked to anammox and other nitrogen cycling processes, suggesting that it may influence biogeochemical cycling in the global ocean.

  13. Light water reactors with a denatured thorium fuel cycle

    International Nuclear Information System (INIS)

    1978-05-01

    Discussed in this paper is the performance of denatured thorium fuel cycles in PWR plants of conventional design, such as those currently in operation or under construction. Although some improvement in U 3 O 8 utilization is anticipated in PWRs optimized explicitly for the denatured thorium fuel cycle, this paper is limited to a discussion of the performance of denatured thorium fuels in conventional PWRs and consequently the data presented is representative of the use of thorium fuel in existing PWRs or those presently under construction. In subsequent sections of this paper, the design of the PWR, its performance on the denatured thorium fuel cycle, safety, accident and environmental considerations, and technological status and R and D requirements are discussed

  14. Wastes from the light water reactor fuel cycle

    International Nuclear Information System (INIS)

    Steindler, M.J.; Trevorrow, L.E.

    1976-01-01

    The LWR fuel cycle is represented, in the minimum detail necessary to indicate the origin of the wastes, as a system of operations that is typical of those proposed for various commercial fuel cycle ventures. The primary wastes (before any treatment) are described in terms of form, volume, radioactivity, chemical composition, weight, and combustibility (in anticipation of volume reduction treatments). Properties of the wastes expected from the operation of reactors, fuel reprocessing plants, and mixed oxide fuel fabrication plants are expressed in terms of their amounts per unit of nuclear energy produced

  15. Climate Change and Expected Impacts on the Global Water Cycle

    Science.gov (United States)

    Rind, David; Hansen, James E. (Technical Monitor)

    2002-01-01

    How the elements of the global hydrologic cycle may respond to climate change is reviewed, first from a discussion of the physical sensitivity of these elements to changes in temperature, and then from a comparison of observations of hydrologic changes over the past 100 million years. Observations of current changes in the hydrologic cycle are then compared with projected future changes given the prospect of global warming. It is shown that some of the projections come close to matching the estimated hydrologic changes that occurred long ago when the earth was very warm.

  16. Understanding residential water-use behaviour in urban South Africa

    CSIR Research Space (South Africa)

    Jacobs-Mata, Inga M

    2018-01-01

    Full Text Available South Africa’s water supply is under great pressure as demand continues to rise. Demand mitigation strategies implemented by the Department of Water and Sanitation (DWS), water boards and local authorities, and a few water awareness initiatives...

  17. Understanding and encouraging cycle commuting in workplace setting: a psychological perspective

    OpenAIRE

    Van Bekkum, Jennifer Elizabeth

    2011-01-01

    This thesis considers the roles that social cognitions play in cycle commuting behaviour. Currently in the field of active travel there is a strong drive towards ecological theories, which often focus on the wider environmental factors that influence cycling. However, research into utilitarian cycling and related physical activities suggests that psychological factors also have an important role to play. In light of the current political climate within the UK and the numerous b...

  18. Life-cycle energy impacts for adapting an urban water supply system to droughts.

    Science.gov (United States)

    Lam, Ka Leung; Stokes-Draut, Jennifer R; Horvath, Arpad; Lane, Joe L; Kenway, Steven J; Lant, Paul A

    2017-12-15

    In recent years, cities in some water stressed regions have explored alternative water sources such as seawater desalination and potable water recycling in spite of concerns over increasing energy consumption. In this study, we evaluate the current and future life-cycle energy impacts of four alternative water supply strategies introduced during a decade-long drought in South East Queensland (SEQ), Australia. These strategies were: seawater desalination, indirect potable water recycling, network integration, and rainwater tanks. Our work highlights the energy burden of alternative water supply strategies which added approximately 24% life-cycle energy use to the existing supply system (with surface water sources) in SEQ even for a current post-drought low utilisation status. Over half of this additional life-cycle energy use was from the centralised alternative supply strategies. Rainwater tanks contributed an estimated 3% to regional water supply, but added over 10% life-cycle energy use to the existing system. In the future scenario analysis, we compare the life-cycle energy use between "Normal", "Dry", "High water demand" and "Design capacity" scenarios. In the "Normal" scenario, a long-term low utilisation of the desalination system and the water recycling system has greatly reduced the energy burden of these centralised strategies to only 13%. In contrast, higher utilisation in the unlikely "Dry" and "Design capacity" scenarios add 86% and 140% to life-cycle energy use of the existing system respectively. In the "High water demand" scenario, a 20% increase in per capita water use over 20 years "consumes" more energy than is used by the four alternative strategies in the "Normal" scenario. This research provides insight for developing more realistic long-term scenarios to evaluate and compare life-cycle energy impacts of drought-adaptation infrastructure and regional decentralised water sources. Scenario building for life-cycle assessments of water supply

  19. Deep water convection and biogeochemical cycling of carbon in the Northern North Atlantic

    International Nuclear Information System (INIS)

    Buch, E.; Gissel Nielsen, T.; Lundsgaard, C.; Bendtsen, J.

    2001-01-01

    In 1998, the Danish Research Council launched the Global Change project 'Biochemical cycling of carbon and ocean circulation in the Northern North Atlantic'. The overall aim of the project was to describe the effect of high latitude carbon dynamics on the global ocean-atmosphere carbon system, in general, and on the atmospheric pCO 2 in particular. At present, knowledge concerning the seasonal differences in turnover rates of organic material in polar and sub-polar regions is limited. Thus, in order to achieve the aim of the project, it was necessary to obtain biological and chemical rate measurements for production and mineralization of dissolved and particulate organic material at high latitudes and relate these to ocean dynamics at different times of the year. This was investigated in the project by performing three cruises to the Greenland Sea area at different times of the year. The purpose of the present chapter is to give a review of: 1) The physical environment of the Northern North Atlantic (ocean circulation, deep convection, North Atlantic Oscillation) and its variability including the recent trends of importance to climate change. 2) The chemical and biological processes of importance to carbon cycle and the importance of the carbon cycle to our understanding of climate variability. Additionally preliminary results from the Danish global change investigation in the Greenland Sea will be presented. With regard to circulation it is concluded that the deep water in the Greenland Sea continues to warm up, indicating that the deep water formation in this area is reduced. The biological investigations are providing a highly needed basic knowledge of the structure and function of the pelagic food web as well as of the microbial food web of the intermediate and deep water. These studies form a basis for assessing the productivity, export mechanisms, mineralization rates and mineralization depth-scales in these areas. Especially the questions about the

  20. Water quality assessment of solar-assisted adsorption desalination cycle

    KAUST Repository

    Kim, Youngdeuk

    2014-07-01

    This study focuses on the water quality assessment (feed, product and brine) of the pilot adsorption desalination (AD) plant. Seawater from the Red Sea is used as feed to the AD plant. Water quality tests are evaluated by complying the Environmental Protection Agency (EPA) standards with major primary and secondary inorganic drinking water pollutants and other commonly tested water quality parameters. Chemical testing of desalinated water at the post desalination stage confirms the high quality of produced fresh water. Test results have shown that the adsorption desalination process is very effective in eliminating all forms of salts, as evidenced by the significant reduction of the TDS levels from approximately 40,000. ppm in feed seawater to less than 10. ppm. Test results exhibit extremely low levels of parameters which are generally abundant in feed seawater. The compositions of seawater and process related parameters such as chloride, sodium, bromide, sulfate, calcium, magnesium, and silicate in desalinated water exhibit values of less than 0.1. ppm. Reported conductivity measurements of desalinated water are comparable to distilled water conductivity levels and ranged between 2 and 6. μS/cm while TOC and TIC levels are also extremely low and its value is less than 0.5. ppm. © 2014 Elsevier B.V.

  1. Estimate for interstage water injection in air compressor incorporated into gas-turbine cycles and combined power plants cycles

    Science.gov (United States)

    Kler, A. M.; Zakharov, Yu. B.; Potanina, Yu. M.

    2017-05-01

    The objects of study are the gas turbine (GT) plant and combined cycle power plant (CCPP) with opportunity for injection between the stages of air compressor. The objective of this paper is technical and economy optimization calculations for these classes of plants with water interstage injection. The integrated development environment "System of machine building program" was a tool for creating the mathematic models for these classes of power plants. Optimization calculations with the criterion of minimum for specific capital investment as a function of the unit efficiency have been carried out. For a gas-turbine plant, the economic gain from water injection exists for entire range of power efficiency. For the combined cycle plant, the economic benefit was observed only for a certain range of plant's power efficiency.

  2. The Global Enery and Water Cycle Experiment Science Strategy

    Science.gov (United States)

    Chahine, M. T.

    1997-01-01

    The distribution of water in the atmosphere and at the surface of the Earth is the most influential factor regulating our environment, not only because water is essential for life but also because through phase transitions it is the main energy source that control clouds and radiation and drives the global circulation of the atmosphere.

  3. Improvement of chemical control in the water-steam cycle of thermal power plants

    International Nuclear Information System (INIS)

    Rajakovic-Ognjanovic, Vladana N.; Zivojinovic, Dragana Z.; Grgur, Branimir N.; Rajakovic, Ljubinka V.

    2011-01-01

    A more effective chemical control in the water-steam cycle (WSC) of thermal power plants (TPP) is proposed in this paper. Minimization of corrosion effects by the production of ultra pure water and its strict control is the basis of all the investigated processes. The research involved the analysis of water samples in the WSC through key water quality parameters and by the most convenient analytical tools. The necessity for the stricter chemical control is demonstrated through a concrete example of the TPP Nikola Tesla, Serbia. After a thorough analysis of the chemical control system of the WSC, diagnostic and control parameters were chosen for continuous systematic measurements. Sodium and chloride ions were recognized as the ions which indicate the corrosion potential of the water and give insight into the proper production and maintenance of water within the WSC. Chemical transformations of crucial corrosion elements, iron and silica, were considered and related to their quantitative values. - Research highlights: → The more effective chemical control in the water-steam cycle of thermal power plant Nikola Tesla, Serbia. → In chemical control the diagnostic and control parameters were optimized and introduced for the systematic measurements in the water-steam cycle. → Sodium and chloride ions were recognized as ions which indicate corrosion potential of water and give insight to proper function of production and maintenance of water within water-team cycle. → Chemical transformations of crucial corrosion elements, iron and silica are considered and related with their quantitative values.

  4. How More Data About Direct and Virtual Water Use Could Help People Understand Their Water Footprints and Save More Water

    Science.gov (United States)

    Madel, R.; Olson-Sawyer, K.; Hanlon, P.; Rabin, K.

    2017-12-01

    their water use behaviors rather than a true calculation of how much water they use in a day. More data about water use (especially for food and agriculture since this is overwhelmingly the biggest use) at a consumer scale in the US would be advantageous to create more accurate estimates of personal water use and help people understand how to most effectively conserve water.

  5. Life cycle assessment of a commercial rainwater harvesting system compared with a municipal water supply system

    Science.gov (United States)

    Building upon previously published life cycle assessment (LCA) methodologies, we conducted an LCA of a commercial rainwater harvesting (RWH) system and compared it to a municipal water supply (MWS) system adapted to Washington, D.C. Eleven life cycle impact assessment (LCIA) indi...

  6. Improvement of Taihu water quality by the technology of immobilized nitrogen cycle bacteria

    International Nuclear Information System (INIS)

    Li Zhengkui; Zhang Weidong; Zhu Jiating; Pu Peimin; Hu Weipin; Hu Chunhua; Chen Baojun; Li Bo; Cheng Xiaoying; Zhang Shengzhao; Fan Yunqi

    2002-01-01

    Experimental studies were carried out on the purification of eutrophic Taihu Lake water by dynamic experiment using immobilized nitrogen cycle bacteria (INCB). The results showed that the eutrophic water of Taihu Lake can be purified effectively as it passes through the experimental reactor into which some immobilized nitrogen cycle bacteria were put. The removal efficiencies for Total N (TN), NH 4 + -N with immobilized nitrogen cycle bacteria were 72.4% and 85.6%, respectively. It was found that the immobilized nitrogen cycle bacteria also have purificatory effect on eutrophic water of Taihu Lake at winter temperature (7 degree C), and that the removal efficiencies for Total N (TN), NH 4 + -N were 55.6%, and 58.9%, respectively. The removal efficiencies for TN and NH 4 + -N depend on the time the water stays in the experimental reactor

  7. Cycle water chemistry based on film forming amines at power plants: evaluation of technical guidance documents

    Science.gov (United States)

    Dyachenko, F. V.; Petrova, T. I.

    2017-11-01

    Efficiency and reliability of the equipment in fossil power plants as well as in combined cycle power plants depend on the corrosion processes and deposit formation in steam/water circuit. In order to decrease these processes different water chemistries are used. Today the great attention is being attracted to the application of film forming amines and film forming amine products. The International Association for the Properties of Water and Steam (IAPWS) consolidated the information from all over the World, and based on the research studies and operating experience of researchers and engineers from 21 countries, developed and authorized the Technical Guidance Document: “Application of Film Forming Amines in Fossil, Combined Cycle, and Biomass Power Plants” in 2016. This article describe Russian and International technical guidance documents for the cycle water chemistries based on film forming amines at fossil and combined cycle power plants.

  8. Understanding peri-urban water management in India | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    14 juil. 2014 ... Access to water is a major concern in India, where rapid urbanization and the unpredictable effects of a changing climate are aggravating water tensions. In the southern city of Bangalore, one of India's largest urban areas, older water supply reservoirs are almost dry while artificial lakes within the city are ...

  9. Grounding Water: Building Conceptual Understanding through Multimodal Assessment

    Science.gov (United States)

    Schwartz, Kerry L.; Thomas-Hilburn, Holly; Haverland, Arin

    2011-01-01

    The world's population is growing by about 80 million people a year, implying an estimated increased freshwater demand of about 64 billion cubic meters annually (World Water Assessment Programme, 2009, Water in a Changing World: United Nations World Water Development Report 3, Chap. 1, p. 3-21). Groundwater depletion, which reduces the amount of…

  10. Understanding peri-urban water management in India | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2014-07-14

    Jul 14, 2014 ... Access to water is a major concern in India, where rapid urbanization and the unpredictable effects of a changing climate are aggravating water tensions. In the southern city of Bangalore, one of India's largest urban areas, older water supply reservoirs are almost dry while artificial lakes within the city are ...

  11. Scotland's Water Map: Understanding water sector links to support decision making for the Hydro Nation Agenda

    Science.gov (United States)

    Falconer, Ruth E.; Gilmour, Daniel; Duffy, Alison; Isaacs, John; Stojanovic, Vladeta; O'Keeffe, Juliette; Blackwood, David

    2015-04-01

    The value of Scotland's water and sewerage market is projected to grow to £1.24bn by 2016/17. Developing future opportunities must take place alongside maintaining current service provision; however the demand on water and waste water services is constantly evolving. An integrated approach to water management requires an understanding of complex interactions that exist between key actors in the sector to allow water management strategies to exploit inter-sectorial links. Successful integrated analysis of the water sector in Scotland will support management activities key to responding to the Hydro Nation themes of 1) Governance and international development 2) Environmental protection 3) Economic opportunities 4) Research development. In order to deliver on these objectives an approach is required to capture and communicate the scope and scale of the water sector and its interconnectedness. The methodology required to determine scope, scale and interconnectedness of water sector involved the identification and application of an appropriate range of techniques from the Information and Knowledge Management disciplines combined with the Information Visualisation field. Scope and scale of the water sector was identified by a desk based study and this data was visualized using a geographic map. Sector interconnectedness was determined by interviewing key actors. The interviews identified the stakeholders associated with information flows, and the purpose of the information transfer through Reporting/Managing (R/M), Influence and Information sharing (I) or Control (C) activities. Primary information flows were also scored with respect to importance against the 4 key Hydro Nation agenda themes. Many organisations were identified who interact within Scotland's water sector including the Scottish Government and Ministers, the Regulators (WICS, DWQR, SEPA), Scottish Water (core and non-core functions), plus many other stakeholders ranging from research institutions to

  12. Energy and exergy analysis of integrated system of ammonia–water Kalina–Rankine cycle

    International Nuclear Information System (INIS)

    Chen, Yaping; Guo, Zhanwei; Wu, Jiafeng; Zhang, Zhi; Hua, Junye

    2015-01-01

    The integrated system of AWKRC (ammonia–water Kalina–Rankine cycle) is a novel cycle operated on KC (Kalina cycle) for power generation in non-heating seasons and on AWRC (ammonia–water Rankine cycle) for cogeneration of power and heating water in winter. The influences of inlet temperatures of both heat resource and cooling water on system efficiencies were analyzed based on the first law and the second law of thermodynamics. The calculation is based on following conditions that the heat resource temperature keeps 300 °C, the cooling water temperature for the KC or AWRC is respectively 25 °C or 15 °C; and the temperatures of heating water and backwater are respectively 90 °C and 40 °C. The results show that the evaluation indexes of the power recovery efficiency and the exergy efficiency of KC were respectively 18.2% and 41.9%, while the composite power recovery efficiency and the composite exergy efficiency of AWRC are respectively 21.1% and 43.0% accounting both power and equivalent power of cogenerated heating capacity, including 54.5% heating recovery ratio or 12.4% heating water exergy efficiency. The inventory flow diagrams of both energy and exergy gains and losses of the components operating on KC or AWRC are also demonstrated. - Highlights: • An integrated system of AWKRC (ammonia–water Kalina–Rankine cycle) is investigated. • NH 3 –H 2 O Rankine cycle is operated for cogenerating power and heating-water in winter. • Heating water with 90 °C and capacity of 54% total reclaimed heat load is cogenerated. • Kalina cycle is operated for power generation in other seasons with high efficiency. • Energy and exergy analysis draw similar results in optimizing the system parameters.

  13. Facilitating Conceptual Change in Understanding State of Matter and Solubility Concepts by Using 5E Learning Cycle Model

    Science.gov (United States)

    Ceylan, Eren; Geban, Omer

    2009-01-01

    The main purpose of the study was to compare the effectiveness of 5E learning cycle model based instruction and traditionally designed chemistry instruction on 10th grade students' understanding of state of matter and solubility concepts. In this study, 119 tenth grade students from chemistry courses instructed by same teacher from an Anatolian…

  14. The Effect of Recycling Education on High School Students' Conceptual Understanding about Ecology: A Study on Matter Cycle

    Science.gov (United States)

    Ugulu, Ilker; Yorek, Nurettin; Baslar, Suleyman

    2015-01-01

    The objective of this study is to analyze and determine whether a developed recycling education program would lead to a positive change in the conceptual understanding of ecological concepts associated with matter cycles by high school students. The research was conducted on 68 high school 10th grade students (47 female and 21 male students). The…

  15. Life cycle assessment of three water systems in Copenhagen - A management tool of the future

    DEFF Research Database (Denmark)

    Godskesen, Berit; Zambrano, K.C.; Trautner, A.

    2010-01-01

    Environmental life-cycle assessment (LCA) was applied to evaluate three different water systems of the water sector in Copenhagen, Denmark, including technologies within water supply, facilities recycling water and treatment of sewer overflow. In these three water systems LCA was used to evaluate...... the environmental impacts of each of the processes involved. The overall conclusion was that LCA is suitable as a decision support tool in the water sector as it provides a holistic evaluation platform of the considered alternatives categorized in environmental impact categories. The use of LCA in the water sector...

  16. Life cycle assessment of three water systems in Copenhagen-a management tool of the future

    DEFF Research Database (Denmark)

    Godskesen, Berit; Zambrano, K C; Trautner, A.

    2011-01-01

    Environmental life-cycle assessment (LCA) was applied to evaluate three different water systems of the water sector in Copenhagen, Denmark, including technologies within water supply, facilities recycling water and treatment of sewer overflow. In these three water systems LCA was used to evaluate...... the environmental impacts of each of the processes involved. The overall conclusion was that LCA is suitable as a decision support tool in the water sector as it provides a holistic evaluation platform of the considered alternatives categorised in environmental impact categories. The use of LCA in the water sector...

  17. Life cycle water use for electricity generation: a review and harmonization of literature estimates

    International Nuclear Information System (INIS)

    Meldrum, J; Nettles-Anderson, S; Heath, G; Macknick, J

    2013-01-01

    This article provides consolidated estimates of water withdrawal and water consumption for the full life cycle of selected electricity generating technologies, which includes component manufacturing, fuel acquisition, processing, and transport, and power plant operation and decommissioning. Estimates were gathered through a broad search of publicly available sources, screened for quality and relevance, and harmonized for methodological differences. Published estimates vary substantially, due in part to differences in production pathways, in defined boundaries, and in performance parameters. Despite limitations to available data, we find that: water used for cooling of thermoelectric power plants dominates the life cycle water use in most cases; the coal, natural gas, and nuclear fuel cycles require substantial water per megawatt-hour in most cases; and, a substantial proportion of life cycle water use per megawatt-hour is required for the manufacturing and construction of concentrating solar, geothermal, photovoltaic, and wind power facilities. On the basis of the best available evidence for the evaluated technologies, total life cycle water use appears lowest for electricity generated by photovoltaics and wind, and highest for thermoelectric generation technologies. This report provides the foundation for conducting water use impact assessments of the power sector while also identifying gaps in data that could guide future research. (letter)

  18. Modeling the historical water cycle of the Copenhagen Area 1850-2003

    DEFF Research Database (Denmark)

    Jeppesen, Jan; Christensen, Steen; Ladekarl, Ulla Lyngs

    2011-01-01

    The paper describes a set of modelling utilities (a root-zone model, a grid-distribution tool, and a modified Modflow-2000 model) that can be used to simulate the water cycle of a city in terms of root-zone water balance, water supply, wastewater, storm runoff, groundwater flow, streamflow......, and the interactions between these subsystems. The utilities are used to simulate the water cycle in the Copenhagen area (976 km2) during the period 1850–2003. Long-term time series of hydraulic head, streamflow, and inflow to sewage works have been used to manually calibrate the model parameters. We used a step...

  19. Advances in understanding of soil biogeochemical cycles: the mechanism of HS entry into the root interior

    Science.gov (United States)

    Aleksandrova, Olga

    2017-04-01

    Humic substances represent the major reservoir of carbon (C) in ecosystems, and their turnover is crucial for understanding the global C cycle. As shown by some investigators [1-2], the phenomenon of the uptake of the whole humic particles by plant roots is a significant step of biogeochemical cycle of carbon in soils. The mechanism of HS entry the root interior remained unknown for a long time. However recently, the last one was discovered [3]. An advanced model [3] includes two hypotheses. These hypotheses are as follows: (1) each nano-size particle possesses a quantum image that can be revealed as a packet of electromagnetic waves; (2) the interaction of nano-size particle with the membrane (plasma membrane) of living cells, on which it is adsorbed, occurs via the development of the Rayleigh-Taylor (RT) instability on the membrane surface. An advanced model allows us to look insight some into some phenomena that were observed by experiments but remained not understood [2]. The authors [2] applied tritium autoradiography to wheat seedlings cultivated with tritium-labeled HS to consider the uptake of humic particles by plant roots. They found a significant increase in the content of some polar (monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyl diacylglycerol (SQDG) and phosphatidylcholine (PC)) and neutral (free fatty acids, FFA) lipids which were detected in the wheat seedlings treated with humic particles. Authors [2] pointed that lipids MGDG, DGDG, SQDG are crucial for functional and structural integrity of the photosystem complex. Therefore, a stimulating action of adsorbed humic particles evoked phenomena like photosynthesis in root cells that can be interpreted using an advanced model: humic particles being nano-size particles become adsorbed on the plant roots in soils, and influence their micro environment, where they are located, with the specific electromagnetic exposure. Another finding of authors consisted in the

  20. Synthesis and Review: African Environmental Processes and Water-Cycle Dynamics

    Science.gov (United States)

    Ichoku, Charles; Adegoke, Jimmy

    2016-01-01

    Africa's vast landmass harbors a variety of physical processes that affect the environment and the water cycle. This focus issue on the "African Environmental Processes and Water-Cycle Dynamics" contains eight articles that address these phenomena from different but complementary perspectives. Fires used for agricultural and related purposes play a major role in land-cover change, surface albedo modifications, and smoke emission; all of which affect the environment and the water cycle in different ways. However, emissions of aerosols and trace gases are not restricted to fires, but also emanate from other natural and human activities. The African water cycle undergoes significant perturbations that are attributable to several factors, including the aforesaid environmental processes. These changes in the water cycle have produced severe drought and flooding events in recent decades that affect societal wellbeing across sub-Saharan Africa. The combined effects of the environmental processes and water-cycle dynamics affect and are affected by climate variability and can be propagated beyond the continent. Future studies should utilize the wealth of observations and modeling tools that are constantly improving to clearly elucidate the interrelationships between all of these phenomena for the benefit of society.

  1. Measurements and modeling of CO2 concentration and isotopes to improve process-level understanding of Arctic and boreal carbon cycling. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Keeling, Ralph F. [Univ. of California, San Diego, CA (United States). Scripps Inst. of Oceanography

    2017-09-29

    The major goal of this project was to improve understanding of processes that control the exchanges of CO2 between the atmosphere and the land biosphere on decadal and longer time scales. The approach involves measuring the changes in atmospheric CO2 concentration and the isotopes of CO2 (13C/12C and 18O/16O) at background stations and uses these and other datasets to challenge and improve numerical models of the earth system. The project particularly emphasized the use of these data to improve understanding of changes occurring in boreal and arctic ecosystems over the past 50 years and to seek from these data improved understanding of large-scale processes impacting carbon cycling, such as the responses to warming, CO2 fertilization, and disturbance. The project also led to advances in the understanding of changes in water-use efficiency of land ecosystems globally based on trends in 13C/12C. The core element of this project was providing partial support for continuing measurements of CO2 concentrations and isotopes from the Scripps CO2 program, initiated by C. D. Keeling in the 1960s. The measurements included analysis of flasks collected at an array of ten stations distributed from the Arctic to the Antarctic. The project also supported modeling studies and interpretive work to help understand the origins of the large ~50% increase in the amplitude of the atmospheric CO2 cycle detected at high northern latitudes between 1960 and present and to understand the long-term trend in carbon 13C/12C of CO2. The seasonal cycle work was advanced through collaborations with colleagues at MPI Jena and Imperial College

  2. Interactions and Feedbacks Between Biomass Burning and Water Cycle Dynamics Across the Northern Sub-Saharan African Region

    Science.gov (United States)

    Ichoku, Charles

    2012-01-01

    The northern sub-Saharan African (NSSA) region, bounded on the north and south by the Sahara and the Equator, respectively, and stretching from the West to the East African coastlines, has one of the highest biomass-burning rates per unit land area among all regions of the world. Because of the high concentration and frequency of fires in this region, with the associated abundance of heat release and gaseous and particulate smoke emissions, biomass-burning activity is believed to be one of the drivers of the regional carbon and energy cycles, with serious implications for the water cycle. A new interdisciplinary research effort sponsored by NASA is presently being focused on the NSSA region, to better understand the possible connection between the intense biomass burning observed from satellite year after year across the region and the rapid depletion of the regional water resources, as exemplified by the dramatic drying of Lake Chad. A combination of remote sensing and modeling approaches is being utilized in investigating multiple regional surface, atmospheric, and water-cycle processes, and inferring possible links between them. In this presentation, we will discuss preliminary results as well as the path toward improved understanding of the interrelationships and feedbacks between the biomass burning and the environmental change dynamics in the NSSA region.

  3. Atmospheric Water-Cycle Regimes and Cloud Regimes

    Science.gov (United States)

    Wong, S.; Fetzer, E. J.; L'Ecuyer, T. S.

    2013-12-01

    The relationship between the atmospheric water vapor budget and cloud properties is investigated by collocated reanalysis fields from Modern Era Retrospective-analysis for Research and Applications (MERRA) and the observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument. Intensities of surface water exchange (precipitation minus evaporation) are analyzed in the space of 'dynamical regimes', which are defined by combination of large-scale water vapor advection and convergence calculated from the MERRA. The atmospheric water vapor sinks associated with mid-latitude storm systems and precipitation in the west coast of United States are mainly driven by the large-scale dynamical advection, while those associated with tropical deep convection and summertime monsoons are mainly driven by water vapor convergence. Subtropical subsidence area over the eastern ocean basins is dominated by strong water vapor divergence. These dynamical regimes are then connected to the collocated MODIS cloud top pressure and cloud optical thickness. Probability density distributions of these MODIS cloud properties associated with each dynamical regime will be presented.

  4. Hydrogen/deuterium substitution methods: understanding water structure in solution

    International Nuclear Information System (INIS)

    Soper, A.K.

    1993-01-01

    The hydrogen/deuterium substitution method has been used for different applications, such as the short range order between water molecules in a number of different environments (aqueous solutions of organic molecules), or to study the partial structure factors of water at high pressure and temperature. The absolute accuracy that can be obtained remains uncertain, but important qualitative information can be obtained on the local organization of water in aqueous solution. Some recent results with pure water, methanol and dimethyl sulphoxide (DMSO) solutions are presented. It is shown that the short range water structure is not greatly affected by most solutes except at high concentrations and when the solute species has its own distinctive interaction with water (such as a dissolved small ion). 3 figs., 14 refs

  5. Technology of the light water reactor fuel cycle

    International Nuclear Information System (INIS)

    Wymer, R.G.

    1979-01-01

    This essay presents elements of the processes used in the fuel cycle steps and gives an indication of the types of equipment used. The amounts of radioactivity released in normal operation of the processes are indicated and related to radiation doses. Types and costs of equipment or processes required to lower these radioactivity releases are in some cases suggested. Mining and milling, conversion of uranium concentrate to UF 6 , uranium isotope separation, LWR fuel fabrication, fuel reprocessing, transportation, and waste management are covered in this essay. 40 figures, 34 tables

  6. Technology of the light water reactor fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Wymer, R. G.

    1979-01-01

    This essay presents elements of the processes used in the fuel cycle steps and gives an indication of the types of equipment used. The amounts of radioactivity released in normal operation of the processes are indicated and related to radiation doses. Types and costs of equipment or processes required to lower these radioactivity releases are in some cases suggested. Mining and milling, conversion of uranium concentrate to UF/sub 6/, uranium isotope separation, LWR fuel fabrication, fuel reprocessing, transportation, and waste management are covered in this essay. 40 figures, 34 tables. (DLC)

  7. RESEARCH REPORT: Eliciting students' understandings of chemical reactions using two forms of essay questions during a learning cycle

    Science.gov (United States)

    Cavallo, Ann M. L.

    2003-05-01

    We examined ninth-grade students' explanations of chemical reactions using two forms of an open-ended essay question during a learning cycle. One form provided students with key terms to be used as 'anchors' upon which to base their essay, whereas the second form did not. The essays were administered at three points: pre-learning cycle, post-concept application, and after additional concept application activities. Students' explanations were qualitatively examined and grouped according to common patterns representing their understandings or misunderstandings. Findings indicated that more misunderstandings were elicited by the use of key terms as compared to the non-use of key terms in the pre-test. Misunderstandings in the key term essay responses generally involved the misuse of these terms and their association with the concept. Findings also indicated significant positive shifts in students' understanding over the learning cycle. No perceptible increase in understanding occurred after additional application activities. Differences in gender were observed, with females showing equal or greater understanding compared to males, contradicting reports that males typically outperform females in the physical sciences and supporting the need to reconstruct assessment techniques to better reveal the conceptual understandings of all students.

  8. Global Energy and Water Cycle Experiment (GEWEX) and the Continental-scale International Project (GCIP)

    Science.gov (United States)

    Vane, Deborah

    1993-01-01

    A discussion of the objectives of the Global Energy and Water Cycle Experiment (GEWEX) and the Continental-scale International Project (GCIP) is presented in vugraph form. The objectives of GEWEX are as follows: determine the hydrological cycle by global measurements; model the global hydrological cycle; improve observations and data assimilation; and predict response to environmental change. The objectives of GCIP are as follows: determine the time/space variability of the hydrological cycle over a continental-scale region; develop macro-scale hydrologic models that are coupled to atmospheric models; develop information retrieval schemes; and support regional climate change impact assessment.

  9. The Impact of Different Instructional Strategies on Students' Understanding about the Cell Cycle in a General Education Biology Course

    Science.gov (United States)

    Krishnamurthy, Sanjana

    This study investigated the impact of different instructional strategies on students' understanding about the cell cycle in a general education biology course. Although several studies have documented gains in students' cell cycle understanding after instruction, these studies generally use only one instructional method, often without a comparison group. The goal of this study was to learn more about students' misconceptions about the cell cycle and how those ideas change after three different evidence-based learning experiences in undergraduate general education. Undergraduate students in six laboratory sections (n = 24; N = 144) in a large public institution in the western United States were surveyed pre- and post-instruction using a 14-item valid and reliable survey of cell cycle knowledge. Cronbach's alpha for the standard scoring convention was 0.264 and for the alternate scoring convention was 0.360, documenting serious problems with inconsistent validity and reliability of the survey. Operating as though the findings are at least a proxy for actual cell cycle knowledge, score comparisons by groups of interest were explored, including pre- and post-instruction differences among demographic groups of interest and three instructional settings: a bead modeling activity, a role-playing game, and 5E instructional strategy. No significant differences were found across groups of interest or by strategy, but some significant item-level differences were found. Implications and discussion of these shifts is noted in lieu of the literature.

  10. Development of life cycle water-demand coefficients for coal-based power generation technologies

    International Nuclear Information System (INIS)

    Ali, Babkir; Kumar, Amit

    2015-01-01

    Highlights: • We develop water consumption and withdrawals coefficients for coal power generation. • We develop life cycle water footprints for 36 coal-based electricity generation pathways. • Different coal power generation technologies were assessed. • Sensitivity analysis of plant performance and coal transportation on water demand. - Abstract: This paper aims to develop benchmark coefficients for water consumption and water withdrawals over the full life cycle of coal-based power generation. This study considered not only all of the unit operations involved in the full electricity generation life cycle but also compared different coal-based power generating technologies. Overall this study develops the life cycle water footprint for 36 different coal-based electricity generation pathways. Power generation pathways involving new technologies of integrated gasification combined cycle (IGCC) or ultra supercritical technology with coal transportation by conventional means and using dry cooling systems have the least complete life cycle water-demand coefficients of about 1 L/kW h. Sensitivity analysis is conducted to study the impact of power plant performance and coal transportation on the water demand coefficients. The consumption coefficient over life cycle of ultra supercritical or IGCC power plants are 0.12 L/kW h higher when conventional transportation of coal is replaced by coal-log pipeline. Similarly, if the conventional transportation of coal is replaced by its transportation in the form of a slurry through a pipeline, the consumption coefficient of a subcritical power plant increases by 0.52 L/kW h

  11. DESIGN OF HYBRID POWER GENERATION CYCLES EMPLOYING AMMONIA-WATER-CARBON DIOXIDE MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Ashish Gupta

    2002-06-01

    A power cycle generates electricity from the heat of combustion of fossil fuels. Its efficiency is governed by the cycle configuration, the operating parameters, and the working fluid. Typical. designs use pure water as the fluid. in the last two decades, hybrid cycles based on ammonia-water, and carbon-dioxide mixtures as the working fluid have been proposed. These cycles may improve the power generation efficiency of Rankine cycles by 15%. Improved efficiency is important for two reasons: it lowers the cost of electricity being produced, and by reducing the consumption of fossil fuels per unit power, it reduces the generation of environmental pollutants. The goal of this project is to develop a computational optimization-based method for the design and analysis of hybrid bottoming power cycles to minimize the usage of fossil fuels. The development of this methodology has been achieved by formulating this task as that of selecting the least cost power cycle design from all possible configurations. They employ a detailed thermodynamic property prediction package they have developed under a DOE-FETC grant to model working fluid mixtures. Preliminary results from this work suggest that a pure NH{sub 3} cycle outperforms steam or the expensive Kalina cycle.

  12. The GLOBE Carbon Cycle Project: Using a systems approach to understand carbon and the Earth's climate system

    Science.gov (United States)

    Silverberg, S. K.; Ollinger, S. V.; Martin, M. E.; Gengarelly, L. M.; Schloss, A. L.; Bourgeault, J. L.; Randolph, G.; Albrechtova, J.

    2009-12-01

    National Science Content Standards identify systems as an important unifying concept across the K-12 curriculum. While this standard exists, there is a recognized gap in the ability of students to use a systems thinking approach in their learning. In a similar vein, both popular media as well as some educational curricula move quickly through climate topics to carbon footprint analyses without ever addressing the nature of carbon or the carbon cycle. If students do not gain a concrete understanding of carbon’s role in climate and energy they will not be able to successfully tackle global problems and develop innovative solutions. By participating in the GLOBE Carbon Cycle project, students learn to use a systems thinking approach, while at the same time, gaining a foundation in the carbon cycle and it's relation to climate and energy. Here we present the GLOBE Carbon Cycle project and materials, which incorporate a diverse set of activities geared toward upper middle and high school students with a variety of learning styles. A global carbon cycle adventure story and game let students see the carbon cycle as a complete system, while introducing them to systems thinking concepts including reservoirs, fluxes and equilibrium. Classroom photosynthesis experiments and field measurements of schoolyard vegetation brings the global view to the local level. And the use of computer models at varying levels of complexity (effects on photosynthesis, biomass and carbon storage in global biomes, global carbon cycle) not only reinforces systems concepts and carbon content, but also introduces students to an important scientific tool necessary for understanding climate change.

  13. Growth scenarios with thorium fuel cycles in pressurised heavy water reactors

    International Nuclear Information System (INIS)

    Balakrishnan, M.R.

    1991-01-01

    Since India has generous deposits of thorium, the availability of thorium will not be a limiting factor in any growth scenario. It is fairly well accepted that the best system for utilisation of thorium is the heavy water reactor. The growth scenarios possible using thorium in HWRs are considered. The base has been taken as 50,000 tons of natural uranium and practically unlimited thorium. The reference reactor has been assumed to be the PHWR, and all other growth scenarios are compared with the growth scenario provided by the once-through natural cycle in the PHWR. Two reactor types have been considered: the heavy water moderated, heavy water cooled, pressure tube reactor, known as the PHWR; and the heavy water moderated and cooled pressure vessel kind, similar to the ATUCHA reactor in Argentina. For each reactor, a number of different fuel cycles have been studied. All these cycles have been based on thorium. These are: the self-sustaining equilibrium thorium cycle (SSET); the high conversion ratio high burnup cycle; and the once through thorium cycle (OTT). The cycle have been initiated in two ways: one is by starting the cycle with natural uranium, reprocessing the spent fuel to obtain plutonium, and use that plutonium to initiate the thorium cycle; the other is to enrich the uranium to about 2-3% U-235 (the so-called Low Enriched Uranium or LEU), and use the LEU to initiate the thorium cycle. Both cases have been studied, and growth scenarios have been projected for every one of the possible combinations. (author). 1 tab

  14. The changing Arctic carbon cycle: using the past to understand terrestrial-aquatic linkages

    Science.gov (United States)

    Anderson, N. J.; van Hardenbroek, M.; Jones, V.; McGowan, S.; Langdon, P. G.; Whiteford, E.; Turner, S.; Edwards, M. E.

    2016-12-01

    Predicted shifts in terrestrial vegetation cover associated with Arctic warming are altering the delivery and processing of carbon to aquatic ecosystems. This process could determine whether lakes are net carbon sources or sinks and, because lake density is high in many Arctic areas, may alter regional carbon budgets. Lake sediment records integrate information from within the lake and its catchment and can be used quantify past vegetation shifts associated with known climatic episodes of warmer (Holocene Thermal Maximum) and cooler (Neoglacial) conditions. We analysed sediment cores located in different Arctic vegetation biomes (tundra, shrub, forested) in Greenland, Norway and Alaska and used biochemical (algal pigments, stable isotopes) remains to evaluate whether past vegetation shifts were associated with changes in ecosystem carbon processing and biodiversity. When lake catchments were sparsely vegetated and soil vegetation was limited ultra-violet radiation (UVR) screening pigments indicate clear lake waters, scarce dissolved organic carbon/ matter (DOC/M). Moderate vegetation development (birch scrub in Norway; herb tundra in Greenland) appears to enhance delivery of DOM to lakes, and to stimulate algal production which is apparently linked to heterotrophic carbon processing pathways (e.g. algal mixotrophy, nutrient release via the microbial loop). Mature forest cover (in Alaska and Norway) supressed lake autotrophic production, most likely because coloured DOM delivered from catchment vegetation limited light availability. During wetter periods when mires developed lake carbon processing also changed, indicating that hydrological delivery of terrestrial DOM is also important. Therefore, future changes in Arctic vegetation and precipitation patterns are highly likely to alter the way that arctic ecosystems process carbon. Our approach provides an understanding of how ecosystem diversity and carbon processing respond to past climate change and the difficulty

  15. Low impact urban design by closing the urban water cycle

    NARCIS (Netherlands)

    Agudelo Vera, C.M.; Mels, A.R.; Keesman, K.J.; Rijnaarts, H.H.M.

    2011-01-01

    Abstract Current fast urbanization and increasing quality of life result in increments on resources’ demand. Increasing resources demand implies as well increments on waste production. However, limited availability of resources such us: oil, fresh water, phosphorus, metals (Boyle et al., 2010,

  16. Closing the water and nutrient cycles in soilless cultivation systems

    NARCIS (Netherlands)

    Beerling, E.A.M.; Blok, C.; Maas, van der A.A.; Os, van E.A.

    2014-01-01

    Soilless cultivation systems are common in Dutch greenhouse horticulture, i.e., less than 20% of the greenhouse area is still soil grown. For long, it was assumed that in these so-called closed systems the emission of nutrients and plant protection products (PPPs) was close to zero. However, Water

  17. A comparative life cycle assessment of process water treatment ...

    African Journals Online (AJOL)

    2011-07-29

    Jul 29, 2011 ... salts burden (mine water is desalinated at the power station), it was found that the reverse osmosis intervention would incur a lower salts footprint than the ... tional unit was defined as the production of 1 Mℓ of BFW from low-salinity surface raw .... Hard coal burned in power plant. 344. 639. Quicklime. 51.

  18. Hydrological cycle and water use efficiency of veld in different ...

    African Journals Online (AJOL)

    Hydraulic non-floating lysimeters were used to determine the evapotranspiration (Et) and water use efficiency (W.U.E.) of veld in different successional stages for the period September 1978 to June 1979. In addition runoff of the various successional stages was recorded on runoff plots.Averages of 1,018 litres, 1,258 litres ...

  19. Extended fuel cycle operation for pressurized water reactor plants

    International Nuclear Information System (INIS)

    Silvestri, G.J. Jr.

    1978-01-01

    A nuclear steam turbine power plant system having an arrangement therein for extended fuel cycle operation is described. The power plant includes a turbine connected at its inlet to a source of motive fluid having a predetermined pressure associated therewith. The turbine has also connected thereto an extraction conduit which extracts steam from a predetermined location therein for use in an associated apparatus. A bypass conduit is provided between a point upstream of the inlet and the extraction conduit. A flow control device is provided within the bypass conduit and opens when the pressure of the motive steam supply drops beneath the predetermined pressure as a result of reactivity loss within the nuclear reactor. Opening of the bypass conduit provides flow to the associated apparatus and at the same time provides an increased flow orifice to maintain fluid flow rate at a predetermined level

  20. Evaluation of the Analysis Influence on Transport in Reanalysis Regional Water Cycles

    Science.gov (United States)

    Bosilovich, M. G.; Chen, J.; Robertson, F. R.

    2011-01-01

    Regional water cycles of reanalyses do not follow theoretical assumptions applicable to pure simulated budgets. The data analysis changes the wind, temperature and moisture, perturbing the theoretical balance. Of course, the analysis is correcting the model forecast error, so that the state fields should be more aligned with observations. Recently, it has been reported that the moisture convergence over continental regions, even those with significant quantities of radiosonde profiles present, can produce long term values not consistent with theoretical bounds. Specifically, long averages over continents produce some regions of moisture divergence. This implies that the observational analysis leads to a source of water in the region. One such region is the Unite States Great Plains, which many radiosonde and lidar wind observations are assimilated. We will utilize a new ancillary data set from the MERRA reanalysis called the Gridded Innovations and Observations (GIO) which provides the assimilated observations on MERRA's native grid allowing more thorough consideration of their impact on regional and global climatology. Included with the GIO data are the observation minus forecast (OmF) and observation minus analysis (OmA). Using OmF and OmA, we can identify the bias of the analysis against each observing system and gain a better understanding of the observations that are controlling the regional analysis. In this study we will focus on the wind and moisture assimilation.

  1. Representation of deforestation impacts on climate, water, and nutrient cycles in the ACME earth system model

    Science.gov (United States)

    Cai, X.; Riley, W. J.; Zhu, Q.

    2017-12-01

    Deforestation causes a series of changes to the climate, water, and nutrient cycles. Employing a state-of-the-art earth system model—ACME (Accelerated Climate Modeling for Energy), we comprehensively investigate the impacts of deforestation on these processes. We first assess the performance of the ACME Land Model (ALM) in simulating runoff, evapotranspiration, albedo, and plant productivity at 42 FLUXNET sites. The single column mode of ACME is then used to examine climate effects (temperature cooling/warming) and responses of runoff, evapotranspiration, and nutrient fluxes to deforestation. This approach separates local effects of deforestation from global circulation effects. To better understand the deforestation effects in a global context, we use the coupled (atmosphere, land, and slab ocean) mode of ACME to demonstrate the impacts of deforestation on global climate, water, and nutrient fluxes. Preliminary results showed that the land component of ACME has advantages in simulating these processes and that local deforestation has potentially large impacts on runoff and atmospheric processes.

  2. HyMeX, a 10-year multidisciplinary program on the Mediterranean water cycle

    NARCIS (Netherlands)

    Drobinski, P.; Ducrocq, V.P.; Alpert, P.; Anagnostou, A.; Béranger, K.; Borga, M.; Braud, I.; Chanzy, A.; Davolio, S.; Delrieu, G.; Estournel, C.; Filali Boubrahmi, N.; Uijlenhoet, R.; Font, J.; Grubisic, V.; Gualdi, S.; Homar, V.; Ivancan-Picek, B.; Kottmeier, C.; Kotroni, V.; Lagouvardos, K.; Lionello, P.; Llasat, M.C.; Ludwig, W.; Lutoff, C.; Mariotti, A.; Richard, E.; Romero, R.; Rotunno, R.; Roussot, O.; Ruin, I.; Somot, S.; Taupier-Letage, L.; Tintore, J.; Wernli, H.

    2014-01-01

    The Mediterranean countries are experiencing important challenges related to the water cycle, including water shortages and floods, extreme winds, and ice/snow storms, that impact critically the socioeconomic vitality in the area (causing damage to property, threatening lives, affecting the energy

  3. Development of a common priority list of pharmaceuticals relevant for the water cycle

    NARCIS (Netherlands)

    de Voogt, P.; Janex-Habibi, M.-L.; Sacher, F.; Puijker, L.; Mons, M.

    2009-01-01

    Pharmaceutically active compounds (PhACs), including prescription drugs, over-the-counter medications, drugs used in hospitals and veterinary drugs, have been found throughout the water cycle. A desk study was initiated by the Global Water Research Coalition to consolidate a uniform selection of

  4. Specific safety aspects of the water-steam cycle important to nuclear power plant project

    International Nuclear Information System (INIS)

    Lobo, C.G.

    1986-01-01

    The water-steam cycle in a nuclear power plant is similar to that used in conventional power plants. Some systems and components are required for the safe nuclear power plant operation and therefore are designed according to the safety criteria, rules and regulations applied in nuclear installations. The aim of this report is to present the safety characteristics of the water-steam cycle of a nuclear power plant with pressurized water reactor, as applied for the design of the nuclear power plants Angra 2 and Angra 3. (Author) [pt

  5. Low impact urban design by closing the urban water cycle

    OpenAIRE

    Agudelo Vera, C.M.; Mels, A.R.; Keesman, K.J.; Rijnaarts, H.H.M.

    2011-01-01

    Abstract Current fast urbanization and increasing quality of life result in increments on resources’ demand. Increasing resources demand implies as well increments on waste production. However, limited availability of resources such us: oil, fresh water, phosphorus, metals (Boyle et al., 2010, Gordon et al., 2006; Rockström et al., 2009) and limited earth’s productive and carrying capacity (Rees, 1999) are potential restrictions to urban growth and urban sustainability. These pressures, howev...

  6. Sustainable urban water management: understanding and fostering champions of change.

    Science.gov (United States)

    Taylor, A C

    2009-01-01

    This paper highlights and discusses ten characteristic attributes of emergent leaders (also known as 'champions') who worked as influential change agents within publicly managed, Australian water agencies to encourage more sustainable forms of urban water management. These attributes relate to: the 'openness to experience' personality characteristic; career mobility and work history demographics; personal and position power; strategic social networks; the culture of their organisations; and five distinguishing leadership behaviours (e.g. persisting under adversity). Guided by the findings of an international literature review, the author conducted a multiple case study involving six water agencies. This research identified attributes of these leaders that were typically strong and/or distinguishing compared to relevant control groups, as well as influential contextual factors. While it is widely acknowledged that these leaders play a critical role in the delivery of sustainable urban water management, there has been a paucity of context-sensitive research involving them. The research project highlighted in this paper is a response to this situation and has led to the development of a suite of 39 practical, evidence-based strategies to build leadership capacity throughout water agencies. Such capacity is one of the elements needed to drive the transition to more 'water sensitive cities'.

  7. Updates on Modeling the Water Cycle with the NASA Ames Mars Global Climate Model

    Science.gov (United States)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Montmessin, F.; Brecht, A. S.; Urata, R.; Klassen, D. R.; Wolff, M. J.

    2017-01-01

    Global Circulation Models (GCMs) have made steady progress in simulating the current Mars water cycle. It is now widely recognized that clouds are a critical component that can significantly affect the nature of the simulated water cycle. Two processes in particular are key to implementing clouds in a GCM: the microphysical processes of formation and dissipation, and their radiative effects on heating/ cooling rates. Together, these processes alter the thermal structure, change the dynamics, and regulate inter-hemispheric transport. We have made considerable progress representing these processes in the NASA Ames GCM, particularly in the presence of radiatively active water ice clouds. We present the current state of our group's water cycle modeling efforts, show results from selected simulations, highlight some of the issues, and discuss avenues for further investigation.­

  8. Life cycle assessments of urban water systems: a comparative analysis of selected peer-reviewed literature.

    Science.gov (United States)

    Loubet, Philippe; Roux, Philippe; Loiseau, Eleonore; Bellon-Maurel, Veronique

    2014-12-15

    Water is a growing concern in cities, and its sustainable management is very complex. Life cycle assessment (LCA) has been increasingly used to assess the environmental impacts of water technologies during the last 20 years. This review aims at compiling all LCA papers related to water technologies, out of which 18 LCA studies deals with whole urban water systems (UWS). A focus is carried out on these 18 case studies which are analyzed according to criteria derived from the four phases of LCA international standards. The results show that whereas the case studies share a common goal, i.e., providing quantitative information to policy makers on the environmental impacts of urban water systems and their forecasting scenarios, they are based on different scopes, resulting in the selection of different functional units and system boundaries. A quantitative comparison of life cycle inventory and life cycle impact assessment data is provided, and the results are discussed. It shows the superiority of information offered by multi-criteria approaches for decision making compared to that derived from mono-criterion. From this review, recommendations on the way to conduct the environmental assessment of urban water systems are given, e.g., the need to provide consistent mass balances in terms of emissions and water flows. Remaining challenges for urban water system LCAs are identified, such as a better consideration of water users and resources and the inclusion of recent LCA developments (territorial approaches and water-related impacts). Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Solar Hydrogen Production via a Samarium Oxide-Based Thermochemical Water Splitting Cycle

    Directory of Open Access Journals (Sweden)

    Rahul Bhosale

    2016-04-01

    Full Text Available The computational thermodynamic analysis of a samarium oxide-based two-step solar thermochemical water splitting cycle is reported. The analysis is performed using HSC chemistry software and databases. The first (solar-based step drives the thermal reduction of Sm2O3 into Sm and O2. The second (non-solar step corresponds to the production of H2 via a water splitting reaction and the oxidation of Sm to Sm2O3. The equilibrium thermodynamic compositions related to the thermal reduction and water splitting steps are determined. The effect of oxygen partial pressure in the inert flushing gas on the thermal reduction temperature (TH is examined. An analysis based on the second law of thermodynamics is performed to determine the cycle efficiency (ηcycle and solar-to-fuel energy conversion efficiency (ηsolar−to−fuel attainable with and without heat recuperation. The results indicate that ηcycle and ηsolar−to−fuel both increase with decreasing TH, due to the reduction in oxygen partial pressure in the inert flushing gas. Furthermore, the recuperation of heat for the operation of the cycle significantly improves the solar reactor efficiency. For instance, in the case where TH = 2280 K, ηcycle = 24.4% and ηsolar−to−fuel = 29.5% (without heat recuperation, while ηcycle = 31.3% and ηsolar−to−fuel = 37.8% (with 40% heat recuperation.

  10. Vegetation physiology controls continental water cycle responses to climate change

    Science.gov (United States)

    Lemordant, L. A.; Swann, A. L. S.; Cook, B.; Scheff, J.; Gentine, P.

    2017-12-01

    Abstract per se:Predicting how climate change will affect the hydrologic cycle is of utmost importance for ecological systems and for human life and activities. A typical perspective is that global warming will cause an intensification of the mean state, the so-called "dry gets drier, wet gets wetter" paradigm. While this result is robust over the oceans, recent works suggest it may be less appropriate for terrestrial regions. Using Earth System Models (ESMs) with decoupled surface (vegetation physiology, PHYS) and atmospheric (radiative, ATMO) CO2 responses, we show that the CO2 physiological response dominates the change in the continental hydrologic cycle compared to radiative and precipitation changes due to increased atmospheric CO2, counter to previous assumptions. Using multiple linear regression analysis, we estimate the individual contribution of each of the three main drivers, precipitation, radiation and physiological CO2 forcing (see attached figure). Our analysis reveals that physiological effects dominate changes for 3 key indicators of dryness and/or vegetation stress (namely LAI, P-ET and EF) over the largest fraction of the globe, except for soil moisture which exhibits a more complex response. This highlights the key role of vegetation in controlling future terrestrial hydrologic response.Legend of the Figure attached:Decomposition along the three main drivers of LAI (a), P-ET (b), EF (c) in the control run. Green quantifies the effect of the vegetation physiology based on the run PHYS; red and blue quantify the contribution of, respectively, net radiation and precipitation, based on multiple linear regression in ATMO. Pie charts show for each variable the fraction (labelled in %) of land under the main influence (more than 50% of the changes is attributed to this driver) of one the three main drivers (green for grid points dominated by vegetation physiology, red for grid points dominated by net radiation, and blue for grid points dominated by the

  11. The Family Life Cycle and Critical Transitions: Utilizing Cinematherapy to Facilitate Understanding and Increase Communication

    Science.gov (United States)

    Ballard, Mary B.

    2012-01-01

    Transitioning successfully from one stage of development to the next in the family life cycle requires the accomplishment of certain developmental tasks. Couples and families who fail to accomplish these tasks often become "stuck" and unable to move forward. This impasse frequently leads to heightened stress reactions and crippled channels of…

  12. Science Learning Cycle Method to Enhance the Conceptual Understanding and the Learning Independence on Physics Learning

    Science.gov (United States)

    Sulisworo, Dwi; Sutadi, Novitasari

    2017-01-01

    There have been many studies related to the implementation of cooperative learning. However, there are still many problems in school related to the learning outcomes on science lesson, especially in physics. The aim of this study is to observe the application of science learning cycle (SLC) model on improving scientific literacy for secondary…

  13. Performance of ammonia–water based cycles for power generation from low enthalpy heat sources

    International Nuclear Information System (INIS)

    Mergner, Hanna; Weimer, Thomas

    2015-01-01

    Cost efficient power generation from low temperature heat sources requires an optimal usage of the available heat. In addition to the ORC (Organic Rankine Cycles), cycles with ammonia and water as working fluid show promising results regarding efficiency. Due to their non-isothermal phase change, mixtures can adapt well to a liquid heat source temperature profile and reduce the exergetic losses. In this analysis thermodynamic calculations on the layouts of two existing ammonia–water cycles are compared: a geothermal power plant based on a Siemens’ patent and a modified lab plant based on a patent invented by Kalina (KCS-34). The difference between the two cycles is the position of the internal heat recovery. Cycle simulations were carried out at defined boundary conditions in order to identify optimal operation parameters. For the selected heat source of 393.15 K (hot water) the ammonia mass fraction between 80% and 90% results in the best performance in both configurations. In general, the layout of Siemens achieves a slightly better efficiency compared to the KCS-34. Compared to an ORC using R245fa as working fluid, the exergetic efficiency can be increased by the ammonia/water based cycles by approximately 25%. - Highlights: • Two NH 3 /H 2 O based cycles based on existing plants are analyzed and compared. • A simple KCS-34 focuses on a high enthalpy difference at the turbine. • The Kalina cycle of a Siemens patent KC SG1 runs on a high vapor mass flow. • The layout of the KC SG1 shows slightly better results compared to the KCS-34. • NH 3 /H 2 O cycles show an efficiency increase compared to a regular ORC with R245fa

  14. Life cycle water use of energy production and its environmental impacts in China.

    Science.gov (United States)

    Zhang, Chao; Anadon, Laura Diaz

    2013-12-17

    The energy sector is a major user of fresh water resources in China. We investigate the life cycle water withdrawals, consumptive water use, and wastewater discharge of China's energy sectors and their water-consumption-related environmental impacts, using a mixed-unit multiregional input-output (MRIO) model and life cycle impact assessment method (LCIA) based on the Eco-indicator 99 framework. Energy production is responsible for 61.4 billion m(3) water withdrawals, 10.8 billion m(3) water consumption, and 5.0 billion m(3) wastewater discharges in China, which are equivalent to 12.3%, 4.1% and 8.3% of the national totals, respectively. The most important feature of the energy-water nexus in China is the significantly uneven spatial distribution of consumptive water use and its corresponding environmental impacts caused by the geological discrepancy among fossil fuel resources, fresh water resources, and energy demand. More than half of energy-related water withdrawals occur in the east and south coastal regions. However, the arid north and northwest regions have much larger water consumption than the water abundant south region, and bear almost all environmental damages caused by consumptive water use.

  15. All heavy metals closed-cycle analysis on water-cooled reactors of uranium and thorium fuel cycle systems

    International Nuclear Information System (INIS)

    Permana, Sidik; Sekimoto, Hiroshi; Waris, Abdul; Takaki, Naoyuki

    2009-01-01

    Uranium and Thorium fuels as the basis fuel of nuclear energy utilization has been used for several reactor types which produce trans-uranium or trans-thorium as 'by product' nuclear reaction with higher mass number and the remaining uranium and thorium fuels. The utilization of recycled spent fuel as world wide concerns are spent fuel of uranium and plutonium and in some cases using recycled minor actinide (MA). Those fuel schemes are used for improving an optimum nuclear fuel utilization as well to reduce the radioactive waste from spent fuels. A closed-cycle analysis of all heavy metals on water-cooled cases for both uranium and thorium fuel cycles has been investigated to evaluate the criticality condition, breeding performances, uranium or thorium utilization capability and void reactivity condition. Water-cooled reactor is used for the basic design study including light water and heavy water-cooled as an established technology as well as commercialized nuclear technologies. A developed coupling code of equilibrium fuel cycle burnup code and cell calculation of SRAC code are used for optimization analysis with JENDL 3.3 as nuclear data library. An equilibrium burnup calculation is adopted for estimating an equilibrium state condition of nuclide composition and cell calculation is performed for calculating microscopic neutron cross-sections and fluxes in relation to the effect of different fuel compositions, different fuel pin types and moderation ratios. The sensitivity analysis such as criticality, breeding performance, and void reactivity are strongly depends on moderation ratio and each fuel case has its trend as a function of moderation ratio. Heavy water coolant shows better breeding performance compared with light water coolant, however, it obtains less negative or more positive void reactivity. Equilibrium nuclide compositions are also evaluated to show the production of main nuclides and also to analyze the isotopic composition pattern especially

  16. Nitrogen cycling in the suboxic waters of the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Devol, A.H.; Naqvi, S.W.A.; Codispoti, L.A

    the development of suboxic conditions [la]. The proximity of the shallower N20 maxjmum to the sea surface sustains high concentrations (in excess of the saturation values) in surface waters as mentioned earlier. The energy needed for the entrainment of N20....C. Nitrous oxide emissions from the Arabian Sea: A synthesis. Atmos Chem Phys 2001; 1:61-71. Barber R.T.. Marra J., Bidigare R.R., Codispoti L.A., I-lalpern D., Johnson 2.. Latasa M., Goericke R. and Smith S.L. Primary productivity and its regulation...

  17. Understanding water: Molecular dynamics simulations of solubilized and crystallized myoglobin

    International Nuclear Information System (INIS)

    Wei Gu; Garcia, A.E.; Schoenborn, B.P.

    1994-01-01

    Molecular dynamics simulations were performed on CO myoglobin to evaluate the stability of the bound water molecules as determined in a neutron diffraction analysis. The myoglobin structure derived from the neutron analysis provided the starting coordinate set used in the simulations. The simulations show that only a few water molecules are tightly bound to protein atoms, while most solvent molecules are labile, breaking and reforming hydrogen bonds. Comparison between myoglobin in solution and in a single crystal highlighted some of the packing effects on the solvent structure and shows that water solvent plays an indispensable role in protein dynamics and structural stability. The described observations explain some of the differences in the experimental results of protein hydration as observed in NMR, neutron and X-ray diffraction studies

  18. Water pollution

    OpenAIRE

    Institute, Marine

    2013-01-01

    Students will learn about what causes water pollution and how to be environmentally aware. *Note: Students should understand the concept of the water cycle before moving onto water pollution (see Lesson Plan “Oceans all Around Us”).

  19. Seasonal Sea Level Cycle Change: Understanding the Possible Climate Feedbacks Over the Gulf of Mexico and the Gulf Stream Region

    Science.gov (United States)

    Ricko, M.; Ray, R. D.; Beckley, B. D.

    2016-12-01

    Recent change in the seasonal sea level cycle has been observed in satellite radar altimetry record, especially over regions such as the Gulf of Mexico and the Gulf Stream region. Gridded satellite data is in a good agreement with ground tide gauge data that also confirm increased annual amplitude of sea level during most recent years. Data analysis is based on a set of tide gauges, satellite measurements and models. A consistent positive trend in the seasonal sea level cycle during recent years over different regions has been well confirmed (e.g., Wahl et al. 2014, Etcheverry et al. 2015). Over a longer timescale, historical tide gauge data give a neutral or slightly positive trend in the seasonal cycle of sea level along the coast of the Gulf of Mexico. This observed signal of increased seasonal sea level cycle in tide gauges over the coastal areas is extended with satellite observations to open ocean regions. It is most evident during last several years (2007-2015) over most of the Gulf of Mexico, especially over north-eastern and central parts of the Gulf of Mexico, and over the Gulf Stream region, showing mean annual amplitude larger than 15 cm. One part of this increase appears to be due to change in mean sea level pressure. However, main causes of seasonal sea level cycle change on interannual to climate scale have not yet been understood. To determine possible climate feedbacks responsible for observed change in the seasonal sea level cycle, its relationship with parameters such as sea surface temperature, wind curl, circulation, mesoscale eddies, etc., is investigated. Model-based results (e.g., NASA's GMAO model) give similar trend and feedbacks, but with a consistent bias and underestimation of annual amplitude increase. Understanding climate mechanisms responsible for observed seasonal sea level cycle change would offer better prediction of sea level variability on interannual to interdecadal time scales.

  20. Prediction/discussion-based learning cycle versus conceptual change text: comparative effects on students' understanding of genetics

    Science.gov (United States)

    khawaldeh, Salem A. Al

    2013-07-01

    Background and purpose: The purpose of this study was to investigate the comparative effects of a prediction/discussion-based learning cycle (HPD-LC), conceptual change text (CCT) and traditional instruction on 10th grade students' understanding of genetics concepts. Sample: Participants were 112 10th basic grade male students in three classes of the same school located in an urban area. The three classes taught by the same biology teacher were randomly assigned as a prediction/discussion-based learning cycle class (n = 39), conceptual change text class (n = 37) and traditional class (n = 36). Design and method: A quasi-experimental research design of pre-test-post-test non-equivalent control group was adopted. Participants completed the Genetics Concept Test as pre-test-post-test, to examine the effects of instructional strategies on their genetics understanding. Pre-test scores and Test of Logical Thinking scores were used as covariates. Results: The analysis of covariance showed a statistically significant difference between the experimental and control groups in the favor of experimental groups after treatment. However, no statistically significant difference between the experimental groups (HPD-LC versus CCT instruction) was found. Conclusions: Overall, the findings of this study support the use of the prediction/discussion-based learning cycle and conceptual change text in both research and teaching. The findings may be useful for improving classroom practices in teaching science concepts and for the development of suitable materials promoting students' understanding of science.

  1. Beneficial effect of added water on sodium metal cycling in super concentrated ionic liquid sodium electrolytes

    Science.gov (United States)

    Basile, Andrew; Ferdousi, Shammi A.; Makhlooghiazad, Faezeh; Yunis, Ruhamah; Hilder, Matthias; Forsyth, Maria; Howlett, Patrick C.

    2018-03-01

    The plating and stripping performance of sodium metal in an ionic liquid electrolyte is improved when including water as an additive. Herein we report for the first time the trend of improved cycling behavior of Na0/+ in N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide with 500 ppm H2O. The addition of water to this ionic liquid electrolyte promotes the breakdown of the [FSI]- anion towards beneficial SEI formation. The benefits during plating and stripping of sodium is observed as lower total polarization during symmetrical cell cycling and decreased electrode/electrolyte interface impedance. Sodium metal surfaces after cycling with 500 ppm H2O are shown to be smooth in morphology in comparison to lower additive concentrations. The outcome of adventitious moisture benefiting Na0/+ cycling in an ionic liquid, contrary to conventional electrolytes, allows flexibility in ionic liquid electrolyte design to the benefit of battery manufacturers.

  2. Human influence on the global mercury cycle: understanding the past and projecting the future

    Directory of Open Access Journals (Sweden)

    Amos H. M.

    2013-04-01

    Full Text Available Humans have been releasing mercury (Hg to the environment since antiquity. Due to the toxicity of Hg, the extent of anthropogenic enrichment is a global health concern. Here we use a global biogeochemical box model to quantify anthropogenic enrichment, investigate the timescales required to remove anthropogenic Hg from actively cycling reservoirs, and explore future anthropogenic emission scenarios and their impact on Hg accumulation. By considering the full history of anthropogenic emissions, we find that the global ocean has been substantially enriched by human activity, with implications for exposures of marine fish. Model simulations show anthropogenic Hg entering surface reservoirs is removed on the order of years. Future emission scenarios that achieve substantial reductions in global anthropogenic Hg emissions have the dual benefit of decreasing atmospheric deposition and decreasing the pool of legacy Hg actively cycling in terrestrial and oceanic ecosystems.

  3. Rethinking historical and cultural source of spontaneous mental models of water cycle: in the perspective of South Korea

    Science.gov (United States)

    Nam, Younkyeong

    2012-06-01

    This review explores Ben-Zvi Assaraf, Eshach, Orion, and Alamour's paper titled "Cultural Differences and Students' Spontaneous Models of the Water Cycle: A Case Study of Jewish and Bedouin Children in Israel" by examining how the authors use the concept of spontaneous mental models to explain cultural knowledge source of Bedouin children's mental model of water compared to Jewish children's mental model of water in nature. My response to Ben-Zvi Assaraf et al.'s work expands upon their explanations of the Bedouin children's cultural knowledge source. Bedouin children's mental model is based on their culture, religion, place of living and everyday life practices related to water. I suggest a different knowledge source for spontaneous mental model of water in nature based on unique history and traditions of South Korea where people think of water in nature in different ways. This forum also addresses how western science dominates South Korean science curriculum and ways of assessing students' conceptual understanding of scientific concepts. Additionally I argue that western science curriculum models could diminish Korean students' understanding of natural world which are based on Korean cultural ways of thinking about the natural world. Finally, I also suggest two different ways of considering this unique knowledge source for a more culturally relevant teaching Earth system education.

  4. Relevance of hydro-climatic change projection and monitoring for assessment of water cycle changes in the Arctic.

    Science.gov (United States)

    Bring, Arvid; Destouni, Georgia

    2011-06-01

    Rapid changes to the Arctic hydrological cycle challenge both our process understanding and our ability to find appropriate adaptation strategies. We have investigated the relevance and accuracy development of climate change projections for assessment of water cycle changes in major Arctic drainage basins. Results show relatively good agreement of climate model projections with observed temperature changes, but high model inaccuracy relative to available observation data for precipitation changes. Direct observations further show systematically larger (smaller) runoff than precipitation increases (decreases). This result is partly attributable to uncertainties and systematic bias in precipitation observations, but still indicates that some of the observed increase in Arctic river runoff is due to water storage changes, for example melting permafrost and/or groundwater storage changes, within the drainage basins. Such causes of runoff change affect sea level, in addition to ocean salinity, and inland water resources, ecosystems, and infrastructure. Process-based hydrological modeling and observations, which can resolve changes in evapotranspiration, and groundwater and permafrost storage at and below river basin scales, are needed in order to accurately interpret and translate climate-driven precipitation changes to changes in freshwater cycling and runoff. In contrast to this need, our results show that the density of Arctic runoff monitoring has become increasingly biased and less relevant by decreasing most and being lowest in river basins with the largest expected climatic changes.

  5. Understanding the Foraging Ecology of Beaked and Short-Finned Pilot Whales in Hawaiian Waters

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Understanding the Foraging Ecology of Beaked and Short...critical in understanding the foraging behavior and life cycle of beaked whales. The movement patterns of any animals are strongly affected by the

  6. Wastes and waste management in the uranium fuel cycle for light water reactors

    International Nuclear Information System (INIS)

    Costello, J.M.

    1975-08-01

    The manufacturing processes in the uranium fuel cycle for light water reactors have been described with particular reference to the chemical and radiological wastes produced and the waste management procedures employed. The problems and possible solutions of ultimate disposal of high activity fission products and transuranium elements from reprocessing of irradiated fuel have been reviewed. Quantities of wastes arising in each stage of the fuel cycle have been summarised. Wastes arising from reactor operation have been described briefly. (author)

  7. Understanding the LCA and ISO water footprint: A response to Hoekstra (2016) “A critique on the water-scarcity weighted water footprint in LCA”

    Science.gov (United States)

    Water footprinting has emerged as an important approach to assess water use related effects from consumption of goods and services. Assessment methods are proposed by two different communities, the Water Footprint Network (WFN) and the Life Cycle Assessment (LCA) community. The p...

  8. Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system

    Science.gov (United States)

    Mehrpooya, Mehdi; Dehghani, Hossein; Ali Moosavian, S. M.

    2016-02-01

    A combined system containing solid oxide fuel cell-gas turbine power plant, Rankine steam cycle and ammonia-water absorption refrigeration system is introduced and analyzed. In this process, power, heat and cooling are produced. Energy and exergy analyses along with the economic factors are used to distinguish optimum operating point of the system. The developed electrochemical model of the fuel cell is validated with experimental results. Thermodynamic package and main parameters of the absorption refrigeration system are validated. The power output of the system is 500 kW. An optimization problem is defined in order to finding the optimal operating point. Decision variables are current density, temperature of the exhaust gases from the boiler, steam turbine pressure (high and medium), generator temperature and consumed cooling water. Results indicate that electrical efficiency of the combined system is 62.4% (LHV). Produced refrigeration (at -10 °C) and heat recovery are 101 kW and 22.1 kW respectively. Investment cost for the combined system (without absorption cycle) is about 2917 kW-1.

  9. Climate change mitigation by recovery of energy from the water cycle: a new challenge for water management.

    Science.gov (United States)

    van der Hoek, J P

    2012-01-01

    Waternet is responsible for drinking water treatment and distribution, wastewater collection and treatment, and surface water management and control (quality and quantity) in and around Amsterdam. Waternet has the ambition to operate climate neutral in 2020. To realise this ambition, measures are required to compensate for the emission of 53,000 ton CO(2)-eq/year. Energy recovery from the water cycle looks very promising. First, calculations reveal that energy recovery from the water cycle in and around Amsterdam may contribute to a total reduction in greenhouse gas emissions up to 148,000 ton CO(2)-eq/year. The challenge for the coming years is to choose combinations of all the possibilities to fulfil the energy demand as much as possible. Only then the use of fossil fuel can be minimized and inevitable greenhouse gas emissions can be compensated, supporting the target to operate climate neutral in 2020.

  10. Disturbances in closed water cycle papermaking; Vaehaevetisen paperinvalmistuksen haeirioetekijaet - MPKY 01

    Energy Technology Data Exchange (ETDEWEB)

    Nyblom, I.; Asikainen, J.; Salerma, M.; Schlupp, K. [Finnish Pulp and Paper Research Institute, Espoo (Finland)

    1998-12-31

    There are fears that reducing water consumption at paper mills will make the papermaking process more susceptible to disturbances. Substances accumulating in the circulating water will give rise to fouling and precipitates as well as flaws in the paper web. A wet end simulator, to be built at KCL (The Finnish Pulp and Paper Research Institute) this year, will be used to test water cycle closure equivalent to a specific water consumption of 3-4 m{sup 3}/t of pulp. The first part of the investigation will examine fouling and precipitate formation due to temperature and pH disturbances. In the second part, tests will be made on the use of on-line measuring instruments in contaminated water cycles. (orig.)

  11. Evolution of the global water cycle on Mars: The geological evidence

    Science.gov (United States)

    Baker, V. R.; Gulick, V. C.

    1993-01-01

    The geological evidence for active water cycling early in the history of Mars (Noachian geological system or heavy bombardment) consists almost exclusively of fluvial valley networks in the heavily cratered uplands of the planet. It is commonly assumed that these landforms required explanation by atmospheric processes operating above the freezing point of water and at high pressure to allow rainfall and liquid surface runoff. However, it has also been documented that nearly all valley networks probably formed by subsurface outflow and sapping erosion involving groundwater outflow prior to surface-water flow. The prolonged ground-water flow also requires extensive water cycling to maintain hydraulic gradients, but is this done via rainfall recharge, as in terrestrial environments?

  12. Investigation of boiling water reactor stability and limit-cycle amplitude

    International Nuclear Information System (INIS)

    Damiano, B.; March-Leuba, J.A.; Euler, J.A.

    1991-01-01

    Galerkin's method has been applied to a boiling water reactor (BWR) dynamics model consisting of the point kinetics equations, which describe the neutronics, and a feedback transfer function, which describes the thermal hydraulics. The result is a low-order approximate solution describing BWR behavior during small-amplitude limit-cycle oscillations. The approximate solution has been used to obtain a stability condition, show that the average reactor power must increase during limit-cycle oscillations, and qualitatively determine how changes in transfer function values affect the limit-cycle amplitude. 6 refs., 2 figs., 2 tabs

  13. Energy-analysis of the total nuclear energy cycle based on light water reactors

    International Nuclear Information System (INIS)

    Kistemaker, J.

    1975-01-01

    The energy economy of the total nuclear energy cycle is investigated. Attention is paid to the importance of fossil fuel saving by using nuclear energy. The energy analysis is based on the construction and operation of power plants with an electric output of 1000MWe. Light water moderated reactors with a 2.7 - 3.2% enriched uranium core are considered. Additionally, the whole fuel cycle including ore winning and refining, enrichment and fuel element manufacturing and reprocessing has been taken into account. Neither radioactive waste storage problems nor safety problems related to the nuclear energy cycle and safeguarding have been dealt with, as exhaustive treatments can be found elswhere

  14. A Multimedia Hydrological Fate Modeling Framework To Assess Water Consumption Impacts in Life Cycle Assessment.

    Science.gov (United States)

    Núñez, Montserrat; Rosenbaum, Ralph K; Karimpour, Shooka; Boulay, Anne-Marie; Lathuillière, Michael J; Margni, Manuele; Scherer, Laura; Verones, Francesca; Pfister, Stephan

    2018-03-30

    Many new methods have recently been developed to address environmental consequences of water consumption in life cycle assessment (LCA). However, such methods can only partially be compared and combined, because their modeling structure and metrics are inconsistent. Moreover, they focus on specific water sources (e.g., river) and miss description of transport flows between water compartments (e.g., from river to atmosphere via evaporation) and regions (e.g., atmospheric advection). Consequently, they provide a partial regard of the local and global hydrological cycle and derived impacts on the environment. This paper proposes consensus-based guidelines for a harmonized development of the next generation of water consumption LCA indicators, with a focus on consequences of water consumption on ecosystem quality. To include the consideration of the multimedia water fate between compartments of the water cycle, we provide spatial regionalization and temporal specification guidance. The principles and recommendations of the paper are applied to an illustrative case study. The guidelines set the basis of a more accurate, novel way of modeling water consumption impacts in LCA. The environmental relevance of this LCA impact category will improve, yet much research is needed to make the guidelines operational.

  15. The role of water ice clouds in the Martian hydrologic cycle

    Science.gov (United States)

    James, Philip B.

    1990-01-01

    A one-dimensional model for the seasonal cycle of water on Mars has been used to investigate the direction of the net annual transport of water on the planet and to study the possible role of water ice clouds, which are included as an independent phase in addition to ground ice and water vapor, in the cycle. The calculated seasonal and spatial patterns of occurrence of water ice clouds are qualitatively similar to the observed polar hoods, suggesting that these polar clouds are, in fact, an important component of water cycle. A residual dry ice in the south acts as a cold trap which, in the absence of sources other than the caps, will ultimately attract the water ice from the north cap; however, in the presence of a source of water in northern midlatitudes during spring, it is possible that the observed distribution of vapor and ice can be in a steady state even if a residual CO2 cap is a permanent feature of the system.

  16. Life cycle assessment of domestic heat pump hot water systems in Australia

    Directory of Open Access Journals (Sweden)

    Moore Andrew D.

    2017-01-01

    Full Text Available Water heating accounts for 23% of residential energy consumption in Australia, and, as over half is provided by electric water heaters, is a significant source of greenhouse gas emissions. Due to inclusion in rebate schemes heat pump water heating systems are becoming increasingly popular, but do they result in lower greenhouse gas emissions? This study follows on from a previous life cycle assessment study of domestic hot water systems to include heat pump systems. The streamlined life cycle assessment approach used focused on the use phase of the life cycle, which was found in the previous study to be where the majority of global warming potential (GWP impacts occurred. Data was collected from an Australian heat pump manufacturer and was modelled assuming installation within Australian climate zone 3 (AS/NZS 4234:2011. Several scenarios were investigated for the heat pumps including different sources of electricity (grid, photovoltaic solar modules, and batteries and the use of solar thermal panels. It was found that due to their higher efficiency heat pump hot water systems can result in significantly lower GWP than electric storage hot water systems. Further, solar thermal heat pump systems can have lower GWP than solar electric hot water systems that use conventional electric boosting. Additionally, the contributions of HFC refrigerants to GWP can be significant so the use of alternative refrigerants is recommended. Heat pumps combined with PV and battery technology can achieve the lowest GWP of all domestic hot water systems.

  17. Coupling Mars' Dust and Water Cycles: Effects on Dust Lifting Vigor, Spatial Extent and Seasonality

    Science.gov (United States)

    Kahre, M. A.; Hollingsworth, J. L.; Haberle, R. M.; Montmessin, F.

    2012-01-01

    The dust cycle is an important component of Mars' current climate system. Airborne dust affects the radiative balance of the atmosphere, thus greatly influencing the thermal and dynamical state of the atmosphere. Dust raising events on Mars occur at spatial scales ranging from meters to planet-wide. Although the occurrence and season of large regional and global dust storms are highly variable from one year to the next, there are many features of the dust cycle that occur year after year. Generally, a low-level dust haze is maintained during northern spring and summer, while elevated levels of atmospheric dust occur during northern autumn and winter. During years without global-scale dust storms, two peaks in total dust loading were observed by MGS/TES: one peak occurred before northern winter solstice at Ls 200-240, and one peak occurred after northern winter solstice at L(sub s) 305-340. These maxima in dust loading are thought to be associated with transient eddy activity in the northern hemisphere, which has been observed to maximize pre- and post-solstice. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading. Interactive dust cycle studies typically have not included the formation of water ice clouds or their radiative effects. Water ice clouds can influence the dust cycle by scavenging dust from atmosphere and by interacting with solar and infrared radiation

  18. Thermoeconomic analysis and optimization of an ammonia–water power/cooling cogeneration cycle

    International Nuclear Information System (INIS)

    Zare, V.; Mahmoudi, S.M.S.; Yari, M.; Amidpour, M.

    2012-01-01

    The performance of an ammonia–water power/cooling cogeneration cycle is investigated and optimized paying more attention on the economic point of view. Thermodynamic and thermoeconomic models are developed in order to investigate the thermodynamic performance of the cycle and assess the unit cost of products. A parametric study is carried out and the cycle performance is optimized based on the thermal and exergy efficiencies as well as the sum of the unit costs of the system products. The results show that the sum of the unit cost of the cycle products obtained through thermoeconomic optimization is less than by around 18.6% and 25.9% compared to the cases when the cycle is optimized from the viewpoints of first and second laws of thermodynamics, respectively. It is also concluded that for each increase of $3/ton in unit cost of the steam as the heat source, the unit cost of the output power and cooling is increased by around $7.6/GJ and $15–19/GJ, respectively. -- Highlights: ► The theory of exergetic cost is applied to the case of ammonia–water power/cooling cycle. ► The cycle is optimized from the viewpoints of thermodynamics and economics. ► The economic optimization leads to a considerable reduction in the system product costs.

  19. Understanding the liquid-liquid (water-hexane) interface

    Science.gov (United States)

    Murad, Sohail; Puri, Ishwar K.

    2017-10-01

    Nonequilibrium molecular dynamics simulations are employed to investigate the interfacial thermal resistance of nanoscale hexane-water interfaces subject to an applied heat flux. Our studies show that these liquid-liquid interfaces exhibit behavior significantly dissimilar to that of solid-liquid and solid-vapor interfaces. Notably, the thermal resistance of a hexane-water interface is contingent on the interfacial temperature gradient alone with negligible dependence on the mean interfacial temperature, while the solid-liquid dependent strongly on the interfacial temperature. Application of a heat flux also increases the interface thickness significantly as compared to an equilibrium isothermal interface. Since liquid-liquid interfaces have been proposed for diverse applications, e.g., sensors for wastewater treatment and for extraction of toxic ions from water, they can be designed to be wider by applying a heat flux. This may allow the interface to be used for other applications not possible currently because of the very limited thickness of the interface in isothermal systems.

  20. Fluxes of 13 selected pharmaceuticals in the water cycle of Stockholm, Sweden.

    Science.gov (United States)

    Wahlberg, C; Björlenius, B; Paxéus, N

    2011-01-01

    Mass flows of 13 pharmaceutical active ingredients (APIS) found in drinking water were studied in the water cycle of Stockholm. Data were collected by analyzing samples of surface water, raw water and drinking water as well as influents, effluents and sludges from waste water treatment plants (WWTPs) in Stockholm area. A mass balance was performed, based on sold amounts of pharmaceuticals and the measured concentrations in water and sludge. The selected APls were all present in WWTP effluents and the removal rates for many of them were poor. Mass balance calculations showed that the three studied WWTPs in Stockholm release considerable amounts of the selected APIs into the Baltic Sea while the portions ending up in WWTP sludge were significantly lower. The levels of APIs found in drinking water are low at present, but may increase in the future unless the releases from WWTPs in the catchment of Lake Mälären are mitigated.

  1. The Martian atmospheric water cycle as viewed from a terrestrial perspective

    Science.gov (United States)

    Zurek, Richard W.

    1988-01-01

    It is noted that the conditions of temperature and pressure that characterize the atmosphere of Mars are similar to those found in the Earth's stratosphere. Of particular significance is the fact that liquid water is unstable in both environments. Thus, it is expected that terrestrial studies of the dynamical behavior of stratospheric water should benefit the understanding of water transport on Mars as well.

  2. Menstrual cycle characteristics and reproductive hormone levels in women exposed to atrazine in drinking water.

    Science.gov (United States)

    Cragin, Lori A; Kesner, James S; Bachand, Annette M; Barr, Dana Boyd; Meadows, Juliana W; Krieg, Edward F; Reif, John S

    2011-11-01

    Atrazine is the most commonly used herbicide in the U.S. and a wide-spread groundwater contaminant. Epidemiologic and laboratory evidence exists that atrazine disrupts reproductive health and hormone secretion. We examined the relationship between exposure to atrazine in drinking water and menstrual cycle function including reproductive hormone levels. Women 18-40 years old residing in agricultural communities where atrazine is used extensively (Illinois) and sparingly (Vermont) answered a questionnaire (n=102), maintained menstrual cycle diaries (n=67), and provided daily urine samples for analyses of luteinizing hormone (LH), and estradiol and progesterone metabolites (n=35). Markers of exposures included state of residence, atrazine and chlorotriazine concentrations in tap water, municipal water and urine, and estimated dose from water consumption. Women who lived in Illinois were more likely to report menstrual cycle length irregularity (odds ratio (OR)=4.69; 95% confidence interval (CI): 1.58-13.95) and more than 6 weeks between periods (OR=6.16; 95% CI: 1.29-29.38) than those who lived in Vermont. Consumption of >2 cups of unfiltered Illinois water daily was associated with increased risk of irregular periods (OR=5.73; 95% CI: 1.58-20.77). Estimated "dose" of atrazine and chlorotriazine from tap water was inversely related to mean mid-luteal estradiol metabolite. Atrazine "dose" from municipal concentrations was directly related to follicular phase length and inversely related to mean mid-luteal progesterone metabolite levels. We present preliminary evidence that atrazine exposure, at levels below the US EPA MCL, is associated with increased menstrual cycle irregularity, longer follicular phases, and decreased levels of menstrual cycle endocrine biomarkers of infertile ovulatory cycles. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Life cycle water consumption and wastewater generation impacts of a Marcellus shale gas well.

    Science.gov (United States)

    Jiang, Mohan; Hendrickson, Chris T; VanBriesen, Jeanne M

    2014-01-01

    This study estimates the life cycle water consumption and wastewater generation impacts of a Marcellus shale gas well from its construction to end of life. Direct water consumption at the well site was assessed by analysis of data from approximately 500 individual well completion reports collected in 2010 by the Pennsylvania Department of Conservation and Natural Resources. Indirect water consumption for supply chain production at each life cycle stage of the well was estimated using the economic input-output life cycle assessment (EIO-LCA) method. Life cycle direct and indirect water quality pollution impacts were assessed and compared using the tool for the reduction and assessment of chemical and other environmental impacts (TRACI). Wastewater treatment cost was proposed as an additional indicator for water quality pollution impacts from shale gas well wastewater. Four water management scenarios for Marcellus shale well wastewater were assessed: current conditions in Pennsylvania; complete discharge; direct reuse and desalination; and complete desalination. The results show that under the current conditions, an average Marcellus shale gas well consumes 20,000 m(3) (with a range from 6700 to 33,000 m(3)) of freshwater per well over its life cycle excluding final gas utilization, with 65% direct water consumption at the well site and 35% indirect water consumption across the supply chain production. If all flowback and produced water is released into the environment without treatment, direct wastewater from a Marcellus shale gas well is estimated to have 300-3000 kg N-eq eutrophication potential, 900-23,000 kg 2,4D-eq freshwater ecotoxicity potential, 0-370 kg benzene-eq carcinogenic potential, and 2800-71,000 MT toluene-eq noncarcinogenic potential. The potential toxicity of the chemicals in the wastewater from the well site exceeds those associated with supply chain production, except for carcinogenic effects. If all the Marcellus shale well wastewater is

  4. Holistic Evaluation of Decentralized Water Reuse: Life Cycle Assessment and Cost Analysis of Membrane Bioreactor Systems in Water Reuse Implementation

    Science.gov (United States)

    Understand environmental and cost impacts of transitional decentralized MBR systems with sewer mining Assess aerobic MBRs (AeMBR) and anaerobic MBRs (AnMBR) Use LCA and life cycle cost (LCC) analysis to quantify impacts Investigate LCA and LCC performance of MBRs under various re...

  5. Geobiological Cycling of Gold: From Fundamental Process Understanding to Exploration Solutions

    Directory of Open Access Journals (Sweden)

    Frank Reith

    2013-11-01

    Full Text Available Microbial communities mediating gold cycling occur on gold grains from (sub-tropical, (semi-arid, temperate and subarctic environments. The majority of identified species comprising these biofilms are β-Proteobacteria. Some bacteria, e.g., Cupriavidus metallidurans, Delftia acidovorans and Salmonella typhimurium, have developed biochemical responses to deal with highly toxic gold complexes. These include gold specific sensing and efflux, co-utilization of resistance mechanisms for other metals, and excretion of gold-complex-reducing siderophores that ultimately catalyze the biomineralization of nano-particulate, spheroidal and/or bacteriomorphic gold. In turn, the toxicity of gold complexes fosters the development of specialized biofilms on gold grains, and hence the cycling of gold in surface environments. This was not reported on isoferroplatinum grains under most near-surface environments, due to the lower toxicity of mobile platinum complexes. The discovery of gold-specific microbial responses can now drive the development of geobiological exploration tools, e.g., gold bioindicators and biosensors. Bioindicators employ genetic markers from soils and groundwaters to provide information about gold mineralization processes, while biosensors will allow in-field analyses of gold concentrations in complex sampling media.

  6. Understanding the life cycle surface land requirements of natural gas-fired electricity

    Science.gov (United States)

    Jordaan, Sarah M.; Heath, Garvin A.; Macknick, Jordan; Bush, Brian W.; Mohammadi, Ehsan; Ben-Horin, Dan; Urrea, Victoria; Marceau, Danielle

    2017-10-01

    The surface land use of fossil fuel acquisition and utilization has not been well characterized, inhibiting consistent comparisons of different electricity generation technologies. Here we present a method for robust estimation of the life cycle land use of electricity generated from natural gas through a case study that includes inventories of infrastructure, satellite imagery and well-level production. Approximately 500 sites in the Barnett Shale of Texas were sampled across five life cycle stages (production, gathering, processing, transmission and power generation). Total land use (0.62 m2 MWh-1, 95% confidence intervals ±0.01 m2 MWh-1) was dominated by midstream infrastructure, particularly pipelines (74%). Our results were sensitive to power plant heat rate (85-190% of the base case), facility lifetime (89-169%), number of wells per site (16-100%), well lifetime (92-154%) and pipeline right of way (58-142%). When replicated for other gas-producing regions and different fuels, our approach offers a route to enable empirically grounded comparisons of the land footprint of energy choices.

  7. Life cycle water footprint of hydrogenation-derived renewable diesel production from lignocellulosic biomass.

    Science.gov (United States)

    Wong, Alain; Zhang, Hao; Kumar, Amit

    2016-10-01

    The conversion of lignocellulosic biomass to biofuel requires water. This study is focused on the production of hydrogenation-derived renewable diesel (HDRD) from lignocellulosic biomass. Although there has been considerable focus on the assessment of greenhouse gas (GHG) emissions, there is limited work on the assessment of the life cycle water footprint of HDRD production. This paper presents a life cycle water consumption study on lignocellulosic biomass to HDRD via pyrolysis and hydrothermal liquefaction (HTL) processes. The results of this study show that whole tree (i.e., tree chips) biomass has water requirements of 497.79 L/MJ HDRD and 376.16 L/MJ HDRD for production through fast pyrolysis and the HTL process, respectively. Forest residues (i.e., chips from branches and tops generated during logging operations) have water requirements of 338.58 L/MJ HDRD and 255.85 L/MJ HDRD for production through fast pyrolysis and the HTL process, respectively. Agricultural residues (i.e., straw from wheat, oats, and barley), which are more water efficient, have water requirements of 83.7 L/MJ HDRD and 59.1 L/MJ HDRD through fast pyrolysis and the HTL process, respectively. Differences in water use between feedstocks and conversion processes indicate that the choices of biomass feedstock and conversion pathway water efficiency are crucial factors affecting water use efficiency of HDRD production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Towards a climate-neutral water cycle; Op weg naar een klimaatneutrale waterketen

    Energy Technology Data Exchange (ETDEWEB)

    Frijns, J. [KWR Watercycle Research Institute, Nieuwegein (Netherlands); Mulder, M.; Roorda, J. [Grontmij, De Bilt (Netherlands)

    2008-07-01

    Insight is offered in the climate footprint of the domestic water cycle. Moreover options are provided with which the water sector can reduce its own negative impact on the climate. To realize this, the sectors drinking water, sewage and waste water can separately take a large number of (energy) measures [Dutch] Inzicht wordt gegeven in de klimaatvoetafdruk van de huishoudelijke waterketen. Tevens worden mogelijkheden aangedragen om als watersector de eigen negatieve impact op het klimaat te verkleinen. Daarvoor kunnen de sectoren drinkwater, riolering en afvalwater separaat een groot aantal (energie)maatregelen nemen.

  9. Water cycle and salinity dynamics in the mangrove forests of Europa and Juan de Nova Islands, southwest Indian Ocean.

    Science.gov (United States)

    Lambs, Luc; Mangion, Perrine; Mougin, Eric; Fromard, François

    2016-01-30

    The functioning of mangrove forests found on small coralline islands is characterized by limited freshwater inputs. Here, we present data on the water cycling of such systems located on Europa and Juan de Nova Islands, Mozambique Channel. In order to better understand the water cycle and mangrove growth conditions, we have analysed the hydrological and salinity dynamics of the systems by gauge pressure and isotopic tracing (δ18O and δ2H values). Both islands have important seawater intrusion as measured by the water level change and the high salinities in the karstic ponds. Europa Island displays higher salinity stress, with its inner lagoon, but presents a pluri-specific mangrove species formation ranging from shrub to forest stands. No freshwater signal could be detected around the mangrove trees. On Juan de Nova Island, the presence of sand and detrital sediment allows the storage of some amount of rainfall to form a brackish groundwater. The mangrove surface area is very limited with only small mono-specific stands being present in karstic depression. On the drier Europa Island, the salinity of all the water points is equal to or higher than that of the seawater, and on Juan de Nova the groundwater salinity is lower (5 to 20 PSU). This preliminary study shows that the karstic pothole mangroves exist due to the sea connection through the fractured coral and the high tidal dynamics.

  10. Water cycle dynamic increases resilience of vegetation under higher atmospheric carbon dioxide concentration

    Science.gov (United States)

    Lemordant, L. A.; Gentine, P.; Stéfanon, M.; Drobinski, P. J.; Fatichi, S.

    2015-12-01

    Plant stomata couple the energy, water and carbon cycles. Photosynthesis requires stomata to open to take up carbon dioxide. In the process water vapor is released as transpiration. As atmospheric CO2 concentration rises, for the same amount of CO2 uptake, less water vapor is transpired, translating into higher water use efficiency. Reduced water vapor losses will increase soil water storage if the leaf area coverage remains similar. This will in turn alter the surface energy partitioning: more heat will be dissipated as sensible heat flux, resulting in possibly higher surface temperatures. In contrast with this common hypothesis, our study shows that the water saved during the growing season by increased WUE can be mobilized by the vegetation and help reduce the maximum temperature of mid-latitude heat waves. The large scale meteorological conditions of 2003 are the basis of four regional model simulations coupling an atmospheric model to a surface model. We performed two simulations with respectively 2003 (CTL) and 2100 (FUT) atmospheric CO2 applied to both the atmospheric and surface models. A third (RAD) and a fourth (FER) simulations are run with 2100 CO2 concentration applied to respectively the atmospheric model only and the surface model only. RAD investigates the impact of the radiative forcing, and FER the response to vegetation CO2 fertilization. Our results show that the water saved through higher water use efficiency during the growing season enabled by higher atmospheric carbon dioxide concentrations helps the vegetation to cope during severe heat and dryness conditions in the summer of mid-latitude climate. These results demonstrate that consideration of the vegetation carbon cycle is essential to model the seasonal water cycle dynamic and land-atmosphere interactions, and enhance the accuracy of the model outputs especially for extreme events. They also have important implications for the future of agriculture, water resources management, ecosystems

  11. Monitoring water distribution systems: understanding and managing sensor networks

    Directory of Open Access Journals (Sweden)

    D. D. Ediriweera

    2010-09-01

    Full Text Available Sensor networks are currently being trialed by the water distribution industry for monitoring complex distribution infrastructure. The paper presents an investigation in to the architecture and performance of a sensor system deployed for monitoring such a distribution network. The study reveals lapses in systems design and management, resulting in a fifth of the data being either missing or erroneous. Findings identify the importance of undertaking in-depth consideration of all aspects of a large sensor system with access to either expertise on every detail, or to reference manuals capable of transferring the knowledge to non-specialists. First steps towards defining a set of such guidelines are presented here, with supporting evidence.

  12. Water Footprint and Life Cycle Assessment as approaches to assess potential impacts of products on water consumption: Key learning points from pilot studies on tea and margarine

    NARCIS (Netherlands)

    Jefferies, D.; Muñoz, I.; Hodges, J.; King, V.J.; Martinez-Aldaya, Maite; Ercin, Ertug; Milá i Canals, L.; Hoekstra, Arjen Ysbert

    2012-01-01

    Water accounting and environmental impact assessment across the product's life cycle is gaining prominence. This paper presents two case studies of applying the Life Cycle Assessment (LCA) and Water Footprint (WF) approaches to tea and margarine. The WF, excluding grey water, of a carton of 50 g tea

  13. Global Water Cycle Agreement in the Climate Models Assessed in the IPCC AR4

    Science.gov (United States)

    Waliser, D.; Seo, K. -W.; Schubert, S.; Njoku, E.

    2007-01-01

    This study examines the fidelity of the global water cycle in the climate model simulations assessed in the IPCC Fourth Assessment Report. The results demonstrate good model agreement in quantities that have had a robust global observational basis and that are physically unambiguous. The worst agreement occurs for quantities that have both poor observational constraints and whose model representations can be physically ambiguous. In addition, components involving water vapor (frozen water) typically exhibit the best (worst) agreement, and fluxes typically exhibit better agreement than reservoirs. These results are discussed in relation to the importance of obtaining accurate model representation of the water cycle and its role in climate change. Recommendations are also given for facilitating the needed model improvements.

  14. Quantifying differences in water and carbon cycling between paddy and rainfed rice (Oryza sativa L.) by flux partitioning.

    Science.gov (United States)

    Nay-Htoon, Bhone; Xue, Wei; Lindner, Steve; Cuntz, Matthias; Ko, Jonghan; Tenhunen, John; Werner, Christiane; Dubbert, Maren

    2018-01-01

    Agricultural crops play an important role in the global carbon and water cycle. Global climate change scenarios predict enhanced water scarcity and altered precipitation pattern in many parts of the world. Hence, a mechanistic understanding of water fluxes, productivity and water use efficiency of cultivated crops is of major importance, i.e. to adapt management practices. We compared water and carbon fluxes of paddy and rainfed rice by canopy scale gas exchange measurements, crop growth, daily evapotranspiration, transpiration and carbon flux modeling. Throughout a monsoon rice growing season, soil evaporation in paddy rice contributed strongly to evapotranspiration (96.6% to 43.3% from initial growth to fully developed canopy and amounted to 57.9% of total water losses over the growing seasons. Evaporation of rainfed rice was significantly lower (by 65% on average) particularly before canopy closure. Water use efficiency (WUE) was significantly higher in rainfed rice both from an agronomic (WUEagro, i.e. grain yield per evapotranspiration) and ecosystem (WUEeco, i.e. gross primary production per evapotranspiration) perspective. However, our results also show that higher WUE in rainfed rice comes at the expense of higher respiration losses compared to paddy rice (26% higher on average). Hence, suggestions on water management depend on the regional water availability (i.e. Mediterranean vs. Monsoon climate) and the balance between higher respiratory losses versus a potential reduction in CH4 and other greenhouse gas emissions. Our results suggest that a shift from rainfed/unsaturated soil to waterlogged paddy conditions after closure of the rice canopy might be a good compromise towards a sustainable use of water while preserving grain yield, particularly for water-limited production areas.

  15. Thermodynamic performance assessment of an ammonia-water Rankine cycle for power and heat production

    International Nuclear Information System (INIS)

    Wagar, W.R.; Zamfirescu, C.; Dincer, I.

    2010-01-01

    In this paper, an ammonia-water based Rankine cycle is thermodynamically analyzed for renewable-based power production, e.g. solar, geothermal, biomass, oceanic-thermal, and nuclear as well as industrial waste heat. Due to the nature of the ammonia-water mixture, changes in its concentration allow thermodynamic cycles to adapt to fluctuations in renewable energy sources, which is an important advantage with respect to other working fluids. The non-linearity of the working fluid's behaviour imposes that each cycle must be optimized based upon several parameters. A model has been developed to optimize the thermodynamic cycle for maximum power output and carry out a parametric study. The lowest temperature state of the system is fixed, and three other parameters are variables of study, namely, maximum system temperature, ammonia concentration and energy ratio, which is a newly introduced parameter. Energy ratio indicates the relative position of the expansion state and is defined in terms of enthalpies. The study is conducted over a concentration range of 0-0.5, the maximum temperature studied varies between 75 deg. C and 350 deg. C for extreme cases, and the energy ratio from saturated liquid to superheated vapour. As a result, the optimal expansion energy ratio is predicted. The cycle efficiencies are drastically affected by the concentrations and temperatures. Depending on the source temperature, the cycle energy efficiency varies between 5% and 35% representing up to 65% of the Carnot limit. The optimal energy ratio has been determined for several concentrations and reported graphically.

  16. A Global Rapid Integrated Monitoring System for Water Cycle and Water Resource Assessment (Global-RIMS)

    Science.gov (United States)

    Roads, John; Voeroesmarty, Charles

    2005-01-01

    The main focus of our work was to solidify underlying data sets, the data processing tools and the modeling environment needed to perform a series of long-term global and regional hydrological simulations leading eventually to routine hydrometeorological predictions. A water and energy budget synthesis was developed for the Mississippi River Basin (Roads et al. 2003), in order to understand better what kinds of errors exist in current hydrometeorological data sets. This study is now being extended globally with a larger number of observations and model based data sets under the new NASA NEWS program. A global comparison of a number of precipitation data sets was subsequently carried out (Fekete et al. 2004) in which it was further shown that reanalysis precipitation has substantial problems, which subsequently led us to the development of a precipitation assimilation effort (Nunes and Roads 2005). We believe that with current levels of model skill in predicting precipitation that precipitation assimilation is necessary to get the appropriate land surface forcing.

  17. Halogenated methanesulfonic acids: A new class of organic micropollutants in the water cycle.

    Science.gov (United States)

    Zahn, Daniel; Frömel, Tobias; Knepper, Thomas P

    2016-09-15

    Mobile and persistent organic micropollutants may impact raw and drinking waters and are thus of concern for human health. To identify such possible substances of concern nineteen water samples from five European countries (France, Switzerland, The Netherlands, Spain and Germany) and different compartments of the water cycle (urban effluent, surface water, ground water and drinking water) were enriched with mixed-mode solid phase extraction. Hydrophilic interaction liquid chromatography - high resolution mass spectrometry non-target screening of these samples led to the detection and structural elucidation of seven novel organic micropollutants. One structure could already be confirmed by a reference standard (trifluoromethanesulfonic acid) and six were tentatively identified based on experimental evidence (chloromethanesulfonic acid, dichloromethanesulfonic acid, trichloromethanesulfonic acid, bromomethanesulfonic acid, dibromomethanesulfonic acid and bromochloromethanesulfonic acid). Approximated concentrations for these substances show that trifluoromethanesulfonic acid, a chemical registered under the European Union regulation REACH with a production volume of more than 100 t/a, is able to spread along the water cycle and may be present in concentrations up to the μg/L range. Chlorinated and brominated methanesulfonic acids were predominantly detected together which indicates a common source and first experimental evidence points towards water disinfection as a potential origin. Halogenated methanesulfonic acids were detected in drinking waters and thus may be new substances of concern. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Projecting climate change impact on water-carbon cycling in the conterminous United States

    Science.gov (United States)

    Duan, K.; Sun, G.; Zhang, Y.; McNulty, S.

    2016-12-01

    The ongoing greenhouse gases (GHGs) emission and associated atmospheric processes have extensive impacts on regional climate and water-carbon cycling at broad scales. We projected potential climate change and its influences on ecohydrology using datasets derived from multiple global and regional climate models over the conterminous U.S. (CONUS). We find that future warming climate may alter the water partitioning pattern profoundly by enhancing evapotranspiration (ET) and depressing runoff. Overall, the role of rising temperature is likely to outweigh that of precipitation in controlling annual runoff in the later part of the 21st century, leading to an overall decrease of 8 30 mm yr-1 (3% 11%) in runoff. Due to the tight linkage between water and carbon cycles, such decrease in runoff and increase in ET may cause significant divergence in future ecosystem services of water supply and carbon sequestration. Our evaluation in the 170 National Forests and Grasslands across the CONUS suggests an average decrease by 18 31 mm yr-1 (4% 7%) in water yield and an increase by 76 229 g C m-2 yr-1 (8% 24%) in ecosystem productivity by 2100. Moreover, atmospheric aerosols may interact with GHGs and affect terrestrial hydrological cycle and ecosystem functions. We investigated the individual and combined impacts of climate change and air pollution on water-carbon cycling over the CONUS by connecting a regional climate model with sophisticated chemistry-aerosol modules and an ecohydrological model. The results indicate that regional air pollution may largely suppress water and carbon fluxes, and particularly aggravate regional climate change impacts on water shortage.

  19. A preliminary study of the tropical water cycle and its sensitivity to surface warming

    Science.gov (United States)

    Lau, K. M.; Sui, C. H.; Tao, W. K.

    1993-01-01

    The Goddard Cumulus Ensemble Model (GCEM) has been used to demonstrate that cumulus-scale dynamics and microphysics play a major role in determining the vertical distribution of water vapor and clouds in the tropical atmosphere. The GCEM is described and is the basic structure of cumulus convection. The long-term equilibrium response to tropical convection to surface warming is examined. A picture of the water cycle within tropical cumulus clusters is developed.

  20. Furthering the representation of causal chains between water and land use in Life Cycle Assessment

    OpenAIRE

    Moxnes, Martin Flaktveit

    2015-01-01

    In this thesis the causal chains between deforestation and increased flood impacts are assessed for expanding the life cycle impact assessment (LCIA) methodology. Until recently the impact categories water use and land use have been treated separately, even though they are closely interrelated in reality. Heuvelmans et al. (2005) established a framework for the causal chains between land use and the water balance, but the work stayed theoretical and operational characterization factors did no...

  1. The Impact of Urbanization on the Precipitation Component of the Water Cycle: A New Perspective

    Science.gov (United States)

    Shephard, J. Marshal

    2002-01-01

    It is estimated that by the year 2025, 60% of the world s population will live in cities (UNFP, 1999). As cities continue to grow, urban sprawl (e.g., the expansion of urban surfaces outward into rural surroundings) creates unique problems related to land use, transportation, agriculture, housing, pollution, and development. Urban expansion also has measurable impacts on environmental processes. Urban areas modify boundary layer processes through the creation of an urban heat island (UHI). The literature indicates that the signature of the urban heat island effect may be resolvable in rainfall patterns over and downwind of metropolitan areas. However, a recent U.S. Weather Research Program panel concluded that more observational and modeling research is needed in this area (Dabberdt et al. 2000). NASA and other agencies initiated programs such as the Atlanta Land-use Analysis: Temperature and Air Quality Project (ATLANTA) (Quattrochi et al. 1998) which aimed to identify and understand how urban heat islands impact the environment. However, a comprehensive assessment of the role of urban-induced rainfall in the global water and energy cycle (GWEC) and cycling of freshwater was not a primary focus of these efforts. NASA's Earth Science Enterprise (ESE) seeks to develop a scientific understanding of the Earth system and its response to natural or human-induced changes to enable improved prediction capability for climate, weather, and natural hazards (NASA, 2000). Within this mission, the ESE has three basic thrusts: science research to increase Earth system knowledge; an applications program to transfer science knowledge to practical use in society; and a technology program to enable new, better, and cheaper capabilities for observing the earth. Within this framework, a research program is underway to further address the co-relationship between land cover use and change (e.g. urban development) and its impact on key components of the GWEC (e.g., precipitation). This

  2. Understanding Organizational Commitment and Satisfaction of TACOM Life Cycle Management Command Acquisition, Technology, and Logistics Associates

    Science.gov (United States)

    2012-04-01

    collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 23 MAY 2013 2. REPORT TYPE Academic Thesis 3...they needed the following in their lives to continue being a self-actualized person (Boeree, 2006): Truth, rather than dishonesty UNDERSTANDING...Survey Academic Users Guide 2004. University of Western Ontario. Mowday, R. T., Porter, L. W., & Steers, R. M. (1981). Employee-Organization

  3. Understanding NOx SCR Mechanism and Activity on Cu/Chabazite Structures throughout the Catalyst Life Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Fabio; Delgass, Nick; Gounder, Rajmani; Schneider, William F.; Miller, Jeff; Yezerets, Aleksey; McEwen, Jean-Sabin; Peden, Charles HF; Howden, Ken

    2014-12-09

    Oxides of nitrogen (NOx) compounds contribute to acid rain and photochemical smog and have been linked to respiratory ailments. NOx emissions regulations continue to tighten, driving the need for high performance, robust control strategies. The goal of this project is to develop a deep, molecular level understanding of the function of Cu-SSZ-13 and Cu-SAPO-34 materials that catalyze the SCR of NOx with NH3.

  4. Once-through cycle, supercritical-pressure light water cooled reactor concept

    International Nuclear Information System (INIS)

    Oka, Y.; Koshizuka, S.

    2001-01-01

    Concept of once-through cycle, supercritical-pressure light water cooled reactors was developed. The research covered major aspects of conceptual design such as cores of thermal and fast reactors, plant system and heat balance, safety system and criteria, accident and transient analysis, LOCA, PSA, plant control and start-up. The advantages of the reactor lie in the compactness of the plant from high specific enthalpy of supercritical water, the simplicity of the once-through cycle and the experiences of major component technologies which are based on supercritical fossil-fired power plants and LWRs. The operating temperatures of the major components are within the experience in spite of high coolant outlet temperature. The once-through cycle is compatible with the tight fuel lattice fast reactor because of high head pumps and small coolant flow rate. (author)

  5. CHLORINATION BY-PRODUCTS IN DRINKING WATER AND MENSTRUAL CYCLE FUNCTION

    Science.gov (United States)

    Chlorination by-Products in Drinking Water and Menstrual Cycle FunctionGayle C. Windham1, Kirsten Waller2, Meredith Anderson2, Laura Fenster1, Pauline Mendola3, Shanna Swan41California Department of Health Services, Division of Environmental and Occupational Disea...

  6. Energy and water cycle over the Tibetan plateau : surface energy balance and turbulent heat fluxes

    NARCIS (Netherlands)

    Su, Zhongbo; Zhang, Ting; Ma, Yaoming; Jia, Li; Wen, Jun

    2006-01-01

    This contribution presents an overview and an outlook of studies on energy and water cycle over the Tibetan plateau with focuses on the estimation of energy balance terms and turbulent heat fluxes. On the basis of the surface energy balance calculations, we show that the phenomena of the energy

  7. Energy and water cycle over the Tibetan Plateau: surface energy balance and turbulent heat fluxes

    NARCIS (Netherlands)

    Su, Z.; Zhang, T.; Ma, Y.; Jia, L.; Wen, J.

    2006-01-01

    This contribution presents an overview and an outlook of studies on energy and water cycle over the Tibetan plateau with focuses on the estimation of energy balance terms and turbulent heat fluxes. On the basis of the surface energy balance calculations, we show that the phenomena of the energy

  8. Biogeochemical cycling of carbon, water, energy, trace gases and aerosols in Amazonia: the LBA EUSTACH experiments

    NARCIS (Netherlands)

    Andreae, M.O.; Artaxo, P.; Brandão, C.; Carswell, F.E.; Ciccioli, P.; Costa, da A.L.; Culf, A.D.; Esteves, J.L.; Gash, J.H.C.; Grace, J.; Kabat, P.; Lelieveld, J.; Malhi, Y.; Manzi, A.O.; Meixner, F.X.; Nobre, A.D.; Nobre, C.; Lourdes Ruivo, de M.; Silva-Dias, M.A.; Stefani, P.; Valentini, R.; Jouanne, von J.; Waterloo, M.J.

    2002-01-01

    The biogeochemical cycling of carbon, water, energy, aerosols, and trace gases in the Amazon Basin was investigated in the project European Studies on Trace Gases and Atmospheric Chemistry as a Contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA-EUSTACH). We present an

  9. Cultural politics and the hydrosocial cycle: Water, power and identity in the Andean highlands

    NARCIS (Netherlands)

    Boelens, R.A.

    2014-01-01

    This paper explores interactions among water, power and cultural politics in the Andes. It analyzes the hydrosocial cycle as the political–ecological production of a time- and place-specific socionature, enrolling and co-patterning the social, the natural and the supernatural to reflect dominant

  10. Teaching Kindergarten Students about the Water Cycle through Arts and Invention

    Science.gov (United States)

    Smith, Latisha L.; Samarakoon, Deepanee

    2016-01-01

    Research evidence for the benefits of arts integration is mounting. The purpose of this study was to determine if integration of the arts was an effective strategy for teaching the water cycle to kindergarten students. The study included lessons that supported both a science and an engineering standard of the Next Generation Science Standards and…

  11. The Development of Terrestrial Water Cycle Applications for SMAP Soil Moisture Data Products

    Science.gov (United States)

    Soil moisture storage sits at the locus of the terrestrial water cycle and governs the relative partitioning of precipitation into various land surface flux components. Consequently, improved observational constraint of soil moisture variations should improve our ability to globally monitor the te...

  12. Issues and Solutions for Bringing Heterogeneous Water Cycle Data Sets Together

    Science.gov (United States)

    Acker, James; Kempler, Steven; Teng, William; Belvedere, Deborah; Liu, Zhong; Leptoukh, Gregory

    2010-01-01

    The water cycle research community has generated many regional to global scale products using data from individual NASA missions or sensors (e.g., TRMM, AMSR-E); multiple ground- and space-based data sources (e.g., Global Precipitation Climatology Project [GPCP] products); and sophisticated data assimilation systems (e.g., Land Data Assimilation Systems [LDAS]). However, it is often difficult to access, explore, merge, analyze, and inter-compare these data in a coherent manner due to issues of data resolution, format, and structure. These difficulties were substantiated at the recent Collaborative Energy and Water Cycle Information Services (CEWIS) Workshop, where members of the NASA Energy and Water cycle Study (NEWS) community gave presentations, provided feedback, and developed scenarios which illustrated the difficulties and techniques for bringing together heterogeneous datasets. This presentation reports on the findings of the workshop, thus defining the problems and challenges of multi-dataset research. In addition, the CEWIS prototype shown at the workshop will be presented to illustrate new technologies that can mitigate data access roadblocks encountered in multi-dataset research, including: (1) Quick and easy search and access of selected NEWS data sets. (2) Multi-parameter data subsetting, manipulation, analysis, and display tools. (3) Access to input and derived water cycle data (data lineage). It is hoped that this presentation will encourage community discussion and feedback on heterogeneous data analysis scenarios, issues, and remedies.

  13. Life cycle assessment of water supply alternatives in water-receiving areas of the South-to-North Water Diversion Project in China.

    Science.gov (United States)

    Li, Yi; Xiong, Wei; Zhang, Wenlong; Wang, Chao; Wang, Peifang

    2016-02-01

    To alleviate the water shortage in northern China, the Chinese government launched the world's largest water diversion project, the South-to-North Water Diversion Project (SNWDP), which delivers water from water-sufficient southern China to water-deficient northern China. However, an up-to-date study has not been conducted to determine whether the project is a favorable option to augment the water supply from an environmental perspective. The life cycle assessment (LCA) methodology integrated with a freshwater withdrawal category (FWI) was adopted to compare water supply alternatives in the water-receiving areas of the SNWDP, i.e., water diversion, wastewater reclamation and seawater desalination. Beijing, Tianjin, Jinan and Qingdao were studied as representative cities because they are the primary water-receiving areas of the SNWDP. The results revealed that the operation phase played the dominant role in all but one of the life cycle impact categories considered and contributed to more than 70% of their scores. For Beijing and Tianjin, receiving water through the SNWDP is the most sustainable option to augment the water supply. The result can be drawn in all of the water-receiving areas of the middle route of the SNWDP. For Jinan and Qingdao, the most sustainable option is the wastewater reclamation system. The seawater desalination system obtains the highest score of the standard impact indicators in all of the study areas, whereas it is the most favorable water supply option when considering the freshwater withdrawal impact. Although the most sustainable water supply alternative was recommended through an LCA analysis, multi-water resources should be integrated into the region's water supply from the perspective of water sustainability. The results of this study provide a useful recommendation on the management of water resources for China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Reassessing the stable water isotope record in understanding past climate

    International Nuclear Information System (INIS)

    Noone, D.; Simmonds, I.

    1999-01-01

    Full text: The impact of atmospheric circulation on the stable water isotope record has been examined using an atmospheric general circulation model to reassess the validity of using isotopes to reconstruct Earth's climate history. Global temperature changes are classically estimated from the variations in (polar) isotopic values assuming a simple linear relationship. Such a relationship can be justified from first order theoretical considerations given that the isotopic fractionation at the deposition (ice core) site is temperature dependent. However, it is found that the history of a given air mass is more important that local processes because of the net effect of condensation events active along the transport pathway from the source region. Modulations in the hemispheric flow are seen to be crucial to Antarctic precipitation and the isotopic signal. Similarly, both transient and stationary disturbances influence the pathways of the air masses associated with Antarctic precipitation. During different climate regimes, such as that of the Last Glacial Maximum, the properties of these types of disturbances may not be assumed to be the same. As such, we may not assume that the condensation histories are the same as under different climate conditions. Therefore, the veracity of the linear climate reconstructions becomes questionable. Notwithstanding this result, the types of changes to the circulation regime that are expected generally correspond to changes in the global temperature. This fortunate result does not disallow the use of regressional reconstruction, however, the uncertainties associated with these circulation changes are of the same magnitude as the differences suggested by conventional linear regression in climate reconstruction. This indicates that interpretation of ice core data must be accompanied by detailed examination of the atmospheric processes and quantification of the impacts of their changes. Copyright (1999) Geological Society of Australia

  15. Evaluation of fuel fabrication and the back end of the fuel cycle for light-water- and heavy-water-cooled nuclear power reactors

    International Nuclear Information System (INIS)

    Carter, W.L.; Olsen, A.R.

    1979-06-01

    The classification of water-cooled nuclear reactors offers a number of fuel cycles that present inherently low risk of weapons proliferation while making power available to the international community. Eight fuel cycles in light water reactor (LWR), heavy water reactor (HWR), and the spectral shift controlled reactor (SSCR) systems have been proposed to promote these objectives in the International Fuel Cycle Evaluation (INFCE) program. Each was examined in an effort to provide technical and economic data to INFCE on fuel fabrication, refabrication, and reprocessing for an initial comparison of alternate cycles. The fuel cycles include three once-through cycles that require only fresh fuel fabrication, shipping, and spent fuel storage; four cycles that utilize denatured uranium--thorium and require all recycle operations; and one cycle that considers the LWR--HWR tandem operation requiring refabrication but no reprocessing

  16. Thermophysical properties of copper compounds in copper-chlorine thermochemical water splitting cycles

    International Nuclear Information System (INIS)

    Zamfirescu, C.; Dincer, I.; Naterer, G.F.

    2009-01-01

    This paper examines the relevant thermophysical properties of compounds of chlorine and copper that are found in thermochemical water splitting cycles. There are four variants of such Cu-Cl cycles that use heat and electricity to split the water molecule and produce H 2 and O 2 . Since the energy input is mainly in the form of thermal energy, the Cu-Cl water splitting cycle is much more efficient than water electrolysis, if the electricity generation efficiency for electrolysis is taken into account. A number of copper compounds (Cu 2 OCl 2 , CuO, CuCl 2 , CuCl) and other chemicals (Cu, HCl) are recycled within the plant, while the overall effect is splitting of the water molecule. The system includes a number of chemical reactors, heat exchangers, spray dryer and electrochemical cell. This paper identifies the available experimental data for properties of copper compounds relevant to the Cu-Cl cycle analysis and design. It also develops new regression formulas to correlate the properties, which include: specific heat, enthalpy, entropy, Gibbs free energy, density, formation enthalpy and free energy. No past literature data is available for the viscosity and thermal conductivity of molten CuCl, so estimates are provided. The properties are evaluated at 1 bar and a range of temperatures from ambient to 675-1000K, which are consistent with the operating conditions of the cycle. Updated calculations of chemical exergies are provided as follows: 21.08, 6.268, 82.474, and 75.0 kJ/mol for Cu 2 OCl 2 , CuO, CuCl 2 and CuCl, respectively. For molten CuCl, the estimated viscosity varies from 2.6 to 1.7mPa.s. (author)

  17. Wastes from selected activities in two light-water reactor fuel cycles

    International Nuclear Information System (INIS)

    Palmer, C.R.; Hill, O.F.

    1980-07-01

    This report presents projected volumes and radioactivities of wastes from the production of electrical energy using light-water reactors (LWR). The projections are based upon data developed for a recent environmental impact statement in which the transuranic wastes (i.e., those wastes containing certain long-lived alpha emitters at concentrations of at least 370 becquerels, or 10 nCi, per gram of waste) from fuel cycle activities were characterized. In addition, since the WG.7 assumed that all fuel cycle wastes except mill tailings are placed in a mined geologic repository, the nontransuranic wastes from several activities are included in the projections reported. The LWR fuel cycles considered are the LWR, once-through fuel cycle (Strategy 1), in which spent fuel is packaged in metal canisters and then isolated in geologic formations; and the LWR U/Pu recycle fuel cycle (Strategy 2), wherein spent fuel is reprocessed for recovery and recycle of uranium and plutonium in LWRs. The wastes projected for the two LWR fuel cycles are summarized. The reactor operations and decommissioning were found to dominate the rate of waste generation in each cycle. These activities account for at least 85% of the fuel cycle waste volume (not including head-end wastes) when normalized to per unit electrical energy generated. At 10 years out of reactor, however, spent fuel elements in Strategy 1 represent 98% of the fuel cycle activity but only 4% of the volume. Similarly, the packaged high-level waste, fuel hulls and hardware in Strategy 2 concentrate greater than 95% of the activity in 2% of the waste volume

  18. Importance of Rain Evaporation and Continental Convection in the Tropical Water Cycle

    Science.gov (United States)

    Worden, John; Noone, David; Bowman, Kevin; Beer, R.; Eldering, A.; Fisher, B.; Gunson, M.; Goldman, Aaron; Kulawik, S. S.; Lampel, Michael; hide

    2007-01-01

    Atmospheric moisture cycling is an important aspect of the Earth's climate system, yet the processes determining atmospheric humidity are poorly understood. For example, direct evaporation of rain contributes significantly to the heat and moisture budgets of clouds, but few observations of these processes are available. Similarly, the relative contributions to atmospheric moisture over land from local evaporation and humidity from oceanic sources are uncertain. Lighter isotopes of water vapour preferentially evaporate whereas heavier isotopes preferentially condense and the isotopic composition of ocean water is known. Here we use this information combined with global measurements of the isotopic composition of tropospheric water vapour from the Tropospheric Emission Spectrometer (TES) aboard the Aura spacecraft, to investigate aspects of the atmospheric hydrological cycle that are not well constrained by observations of precipitation or atmospheric vapour content. Our measurements of the isotopic composition of water vapour near tropical clouds suggest that rainfall evaporation contributes significantly to lower troposphere humidity, with typically 20% and up to 50% of rainfall evaporating near convective clouds. Over the tropical continents the isotopic signature of tropospheric water vapour differs significantly from that of precipitation, suggesting that convection of vapour from both oceanic sources and evapotranspiration are the dominant moisture sources. Our measurements allow an assessment of the intensity of the present hydrological cycle and will help identify any future changes as they occur.

  19. Numerical Simulation of the Water Cycle Change Over the 20th Century

    Science.gov (United States)

    Bosilovich, Michael G.; Schubert, Siegfried D.

    2003-01-01

    We have used numerical models to test the impact of the change in Sea Surface Temperatures (SSTs) and carbon dioxide (CO2) concentration on the global circulation, particularly focusing on the hydrologic cycle, namely the global cycling of water and continental recycling of water. We have run four numerical simulations using mean annual SST from the early part of the 20th century (1900-1920) and the later part (1980-2000). In addition, we vary the CO2 concentrations for these periods as well. The duration of the simulations is 15 years, and the spatial resolution is 2 degrees. We use passive tracers to study the geographical sources of water. Surface evaporation from predetermined continental and oceanic regions provides the source of water for each passive tracer. In this way, we compute the percent of precipitation of each region over the globe. This can also be used to estimate precipitation recycling. In addition, we are using the passive tracers to independently compute the global cycling of water (compared to the traditional, Q/P calculation).

  20. The Martian hydrologic cycle - Effects of CO2 mass flux on global water distribution

    Science.gov (United States)

    James, P. B.

    1985-01-01

    The Martian CO2 cycle, which includes the seasonal condensation and subsequent sublimation of up to 30 percent of the planet's atmosphere, produces meridional winds due to the consequent mass flux of CO2. These winds currently display strong seasonal and hemispheric asymmetries due to the large asymmetries in the distribution of insolation on Mars. It is proposed that asymmetric meridional advection of water vapor on the planet due to these CO2 condensation winds is capable of explaining the observed dessication of Mars' south polar region at the current time. A simple model for water vapor transport is used to verify this hypothesis and to speculate on the effects of changes in orbital parameters on the seasonal water cycle.

  1. Maintenance Cycle Extension in the IRIS Advanced Light Water Reactor Plant Design

    International Nuclear Information System (INIS)

    Galvin, Mark R.; Todreas, Neil E.; Conway, Larry E.

    2003-01-01

    New nuclear power generation in the United States will be realized only if the economic performance can be made competitive with other methods of electrical power generation. The economic performance of a nuclear power plant can be significantly improved by increasing the time spent on-line generating electricity relative to the time spent off-line conducting maintenance and refueling. Maintenance includes planned actions (surveillances) and unplanned actions (corrective maintenance) to respond to component degradation or failure. A methodology is described that can be used to resolve, in the design phase, maintenance-related operating cycle length barriers. A primary goal was to demonstrate the applicability and utility of the methodology in the context of the International Reactor, Innovative and Secure (IRIS) design. IRIS is an advanced light water nuclear power plant that is being designed to maximize this on-line generating time by increasing the operating cycle length. This is consequently a maintenance strategy paper using the IRIS plant as the example.Potential IRIS operating cycle length maintenance-related barriers, determined by modification of an earlier operating pressurized water reactor (PWR) plant cycle length analysis to account for differences between the design of IRIS and this operating PWR, are presented. The proposed methodology to resolve these maintenance-related barriers by the design process is described. The results of applying the methodology to two potential IRIS cycle length barriers, relief valve testing and emergency heat removal system testing, are presented

  2. The Seasonal Cycle of Water Vapour on Mars from Assimilation of Thermal Emission Spectrometer Data

    Science.gov (United States)

    Steele, Liam J.; Lewis, Stephen R.; Patel, Manish R.; Montmessin, Franck; Forget, Francois; Smith, Michael D.

    2014-01-01

    We present for the first time an assimilation of Thermal Emission Spectrometer (TES) water vapour column data into a Mars global climate model (MGCM). We discuss the seasonal cycle of water vapour, the processes responsible for the observed water vapour distribution, and the cross-hemispheric water transport. The assimilation scheme is shown to be robust in producing consistent reanalyses, and the global water vapour column error is reduced to around 2-4 pr micron depending on season. Wave activity is shown to play an important role in the water vapour distribution, with topographically steered flows around the Hellas and Argyre basins acting to increase transport in these regions in all seasons. At high northern latitudes, zonal wavenumber 1 and 2 stationary waves during northern summer are responsible for spreading the sublimed water vapour away from the pole. Transport by the zonal wavenumber 2 waves occurs primarily to the west of Tharsis and Arabia Terra and, combined with the effects of western boundary currents, this leads to peak water vapour column abundances here as observed by numerous spacecraft. A net transport of water to the northern hemisphere over the course of one Mars year is calculated, primarily because of the large northwards flux of water vapour which occurs during the local dust storm around L(sub S) = 240-260deg. Finally, outlying frost deposits that surround the north polar cap are shown to be important in creating the peak water vapour column abundances observed during northern summer.

  3. Mechanistic understanding of cellular level of water in plant-based food material

    Science.gov (United States)

    Khan, Md. Imran H.; Kumar, C.; Karim, M. A.

    2017-06-01

    Understanding of water distribution in plant-based food material is crucial for developing an accurate heat and mass transfer drying model. Generally, in plant-based food tissue, water is distributed in three different spaces namely, intercellular water, intracellular water, and cell wall water. For hygroscopic material, these three types of water transport should be considered for actual understanding of heat and mass transfer during drying. However, there is limited study dedicated to the investigation of the moisture distribution in a different cellular environment in the plant-based food material. Therefore, the aim of the present study was to investigate the proportion of intercellular water, intracellular water, and cell wall water inside the plant-based food material. During this study, experiments were performed for two different plant-based food tissues namely, eggplant and potato tissue using 1H-NMR-T2 relaxometry. Various types of water component were calculated by using multicomponent fits of the T2 relaxation curves. The experimental result showed that in potato tissue 80-82% water exist in intracellular space; 10-13% water in intercellular space and only 4-6% water exist in the cell wall space. In eggplant tissue, 90-93% water in intracellular space, 4-6% water exists in intercellular space and the remaining percentage of water is recognized as cell wall water. The investigated results quantify different types of water in plant-based food tissue. The highest proportion of water exists in intracellular spaces. Therefore, it is necessary to include different transport mechanism for intracellular, intercellular and cell wall water during modelling of heat and mass transfer during drying.

  4. A Study of the Abundance and 13C/12C Ratio of Atmospheric Carbon Dioxide to Advance the Scientific Understanding of Terrestrial Processes Regulating the Global Carbon Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Stephen C. Piper

    2005-10-15

    The primary goal of our research program, consistent with the goals of the U.S. Climate Change Science Program and funded by the terrestrial carbon processes (TCP) program of DOE, has been to improve understanding of changes in the distribution and cycling of carbon among the active land, ocean and atmosphere reservoirs, with particular emphasis on terrestrial ecosystems. Our approach is to systematically measure atmospheric CO2 to produce time series data essential to reveal temporal and spatial patterns. Additional measurements of the 13C/12C isotopic ratio of CO2 provide a basis for distinguishing organic and inorganic processes. To pursue the significance of these patterns further, our research also involved interpretations of the observations by models, measurements of inorganic carbon in sea water, and of CO2 in air near growing land plants.

  5. Effect of cold water immersion on repeat cycling performance and thermoregulation in the heat.

    Science.gov (United States)

    Vaile, Joanna; Halson, Shona; Gill, Nicholas; Dawson, Brian

    2008-03-01

    To assess the effect of cold water immersion and active recovery on thermoregulation and repeat cycling performance in the heat, ten well-trained male cyclists completed five trials, each separated by one week. Each trial consisted of a 30-min exercise task, one of five 15-min recoveries (intermittent cold water immersion in 10 degrees C, 15 degrees C and 20 degrees C water, continuous cold water immersion in 20 degrees C water or active recovery), followed by 40 min passive recovery, before repeating the 30-min exercise task. Recovery strategy effectiveness was assessed via changes in total work in the second exercise task compared with that in the first. Following active recovery, a mean 4.1% (s = 1.8) less total work (P = 0.00) was completed in the second than in the first exercise task. However, no significant differences in total work were observed between any of the cold water immersion protocols. Core and skin temperature, blood lactate concentration, heart rate, rating of thermal sensation, and rating of perceived exertion were recorded. During both exercise tasks there were no significant differences in blood lactate concentration between interventions; however, following active recovery blood lactate concentration was significantly lower (P immersion protocols. All cold water immersion protocols were effective in reducing thermal strain and were more effective in maintaining subsequent high-intensity cycling performance than active recovery.

  6. Understanding the Contribution of Mining and Transportation to the Total Life Cycle Impacts of Coal Exported from the United States

    Directory of Open Access Journals (Sweden)

    Michele Mutchek

    2016-07-01

    Full Text Available The construction of two marine bulk terminals in the Pacific Northwest region of the United States are currently under review and would open up additional thermal coal exports to Asia on the order of almost 100 million additional tonnes per year. The major exporters of coal to Asian markets include Indonesia and Australia. This life cycle analysis (LCA seeks to understand the role of transportation and mining in the cradle-to-busbar environmental impacts of coal exports from the Powder River Basin (PRB to Asian countries, when compared to the competitor countries. This LCA shows that: (1 the most significant greenhouse gas (GHG impacts in the cradle-to-busbar life cycle of coal for power generation come from the combustion of coal in a power plant, even when 90% carbon capture is applied; (2 for non-GHG air impacts, power plant combustion impacts are less dominant and variations in upstream impacts (mining and transportation are more important; and (3 when comparing impacts between countries, upstream impacts vary for both GHG and non-GHG results, but conclusions that rank countries cannot be made. Future research should include expansion to include non-air impacts, potential consequential effects of coal exports, and a better understanding around the characterization of non-GHG ocean transport impacts.

  7. Water cycle research associated with the CaPE hydrometeorology project (CHymP

    Science.gov (United States)

    Duchon, Claude E.

    1993-01-01

    One outgrowth of the Convection and Precipitation/Electrification (CaPE) experiment that took place in central Florida during July and August 1991 was the creation of the CaPE Hydrometeorology Project (CHymP). The principal goal of this project is to investigate the daily water cycle of the CaPE experimental area by analyzing the numerous land and atmosphere in situ and remotely sensed data sets that were generated during the 40-days of observations. The water cycle comprises the atmospheric branch. In turn, the atmospheric branch comprises precipitation leaving the base of the atmospheric volume under study, evaporation and transpiration entering the base, the net horizontal fluxes of water vapor and cloud water through the volume and the conversion of water vapor to cloud water and vice-versa. The sum of these components results in a time rate of change in the water and liquid water (or ice) content of the atmospheric volume. The components of the land branch are precipitation input to and evaporation and transpiration output from the surface, net horizontal fluxes of surface and subsurface water, the sum of which results in a time rate of change in surface and subsurface water mass. The objective of CHymP is to estimate these components in order to determine the daily water budget for a selected area within the CaPE domain. This work began in earnest in the summer of 1992 and continues. Even estimating all the budget components for one day is a complex and time consuming task. The discussions below provides a short summary of the rainfall quality assessment procedures followed by a plan for estimating the horizontal moisture flux.

  8. A study of implementing In-Cycle-Shuffle strategy to a decommissioning boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chung-Yuan, E-mail: tuckjason@iner.gov.tw; Tung, Wu-Hsiung; Yaur, Shyun-Jung

    2017-06-15

    Highlights: • A loading pattern strategy ICS (In-Cycle-Shuffle) was implemented to the last cycle of the boiling water reactor. • The best power sharing distribution and ICS timing was found. • A new parameter “Burnup sharing” is presented to evaluate ICS strategy. - Abstract: In this paper, a loading pattern strategy In-Cycle-Shuffle (ICS) is implemented to the last cycle of the boiling water reactor (BWR) before decommissioning to save the fuel cycle cost. This method needs a core shutdown during the operation of a cycle to change the loading pattern to gain more reactivity. The reactivity model is used to model the ICS strategy in order to find out the best ICS timing and the optimum power sharing distribution before ICS and after ICS. Several parameters of reactivity model are modified and the effect of burnable poison, gadolinium (Gd), is considered in this research. Three cases are presented and it is found that the best ICS timing is at about two-thirds of total cycle length no matter the poisoning effect of Gd is considered or not. According to the optimum power sharing distribution result, it is suggested to decrease the once burnt power and increase the thrice burnt fuel power as much as possible before ICS. After ICS, it is suggested to increase the positive reactivity fuel power and decrease the thrice burnt fuel power as much as possible. A new parameter “Burnup sharing” is presented to evaluate the special case whose EOC power weighting factor and the burnup accumulation factor in the reactivity model are quite different.

  9. The water cycle in the general circulation model of the martian atmosphere

    Science.gov (United States)

    Shaposhnikov, D. S.; Rodin, A. V.; Medvedev, A. S.

    2016-03-01

    Within the numerical general-circulation model of the Martian atmosphere MAOAM (Martian Atmosphere: Observation and Modeling), we have developed the water cycle block, which is an essential component of modern general circulation models of the Martian atmosphere. The MAOAM model has a spectral dynamic core and successfully predicts the temperature regime on Mars through the use of physical parameterizations typical of both terrestrial and Martian models. We have achieved stable computation for three Martian years, while maintaining a conservative advection scheme taking into account the water-ice phase transitions, water exchange between the atmosphere and surface, and corrections for the vertical velocities of ice particles due to sedimentation. The studies show a strong dependence of the amount of water that is actively involved in the water cycle on the initial data, model temperatures, and the mechanism of water exchange between the atmosphere and the surface. The general pattern and seasonal asymmetry of the water cycle depends on the size of ice particles, the albedo, and the thermal inertia of the planet's surface. One of the modeling tasks, which results from a comparison of the model data with those of the TES experiment on board Mars Global Surveyor, is the increase in the total mass of water vapor in the model in the aphelion season and decrease in the mass of water ice clouds at the poles. The surface evaporation scheme, which takes into account the turbulent rise of water vapor, on the one hand, leads to the most complete evaporation of ice from the surface in the summer season in the northern hemisphere and, on the other hand, supersaturates the atmosphere with ice due to the vigorous evaporation, which leads to worse consistency between the amount of the precipitated atmospheric ice and the experimental data. The full evaporation of ice from the surface increases the model sensitivity to the size of the polar cap; therefore, the increase in the

  10. Calculation of BWR [Boiling Water Reactor] limit cycle amplitude using Galerkin's method

    International Nuclear Information System (INIS)

    Damiano, B.; March-Leuba, J.; Euler, J.A.

    1990-01-01

    This paper describes the application of Galerkin's method to estimate the amplitude of boiling water reactor (BWR) limit cycle oscillations. It will be shown that Galerkin's method can be applied to a model of BWR dynamics consisting of the point kinetics equations and the LAPUR generated feedback transfer function to calculate the time history of small amplitude limit cycles. This allows results from the linear frequency domain code LAPUR to be used to calculate nonlinear time domain information. 2 refs., 2 figs., 1 tab

  11. Fuel cycle options for light water reactors and heavy water reactors. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1999-11-01

    In the second half of the 20th century nuclear power has evolved from the research and development environment to an industry that supplies 16% of the world's electricity. By the end of 1997, over 8500 reactor-years of operating experience had been accumulated. Global environmental change, and the continuing increase in global energy supply required to provide increasing populations with an improving standard of living, make the contribution from nuclear energy even more important for the next century. For nuclear power to achieve its full potential and make its needed contribution, it must be safe, economical, reliable and sustainable. All of these factors can be enhanced by judicious choice and development of advanced fuel cycle options. The Technical Committee Meeting (TCM) on Fuel Cycle Options for Light Water Reactors and Heavy Water Reactors was hosted by Atomic Energy of Canada Limited (AECL) on behalf of the Canadian Government and was jointly conducted within the frame of activities of the IAEA International Working Group on Advanced Technologies for Light Water Reactors (IWG-LWR) and the IAEA International Working Group on Advanced Technologies for Heavy Water Reactors (IWG-HWR). The TCM provided the opportunity to have in-depth discussions on important technical topics which were highlighted in the International Symposium on Nuclear Fuel Cycle and Reactor Strategies: Adjusting to New Realities, held in Vienna, 3-6 June 1997. The main results and conclusions of the TCM were presented as input for discussion at the first meeting of the IAEA newly formed International Working Group on Fuel Cycle Options

  12. Life-cycle and freshwater withdrawal impact assessment of water supply technologies

    DEFF Research Database (Denmark)

    Godskesen, Berit; Hauschild, Michael Zwicky; Rygaard, Martin

    2013-01-01

    Four alternative cases for water supply were environmentally evaluated and compared based on the standard environmental impact categories from the life-cycle assessment (LCA) methodology extended with a freshwater withdrawal category (FWI). The cases were designed for Copenhagen, a part of Denmark...... with high population density and relatively low available water resources. FWI was applied at local groundwater catchments based on data from the national implementation of the EU Water Framework Directive. The base case of the study was the current practice of groundwater abstraction from well fields...... situated near Copenhagen. The 4 cases studied were: Rain & stormwater harvesting from several blocks in the city; Today's groundwater abstraction with compensating actions applied in the affected freshwater environments to ensure sufficient water flow in water courses; Establishment of well fields further...

  13. Energy-Saving Optimization of Water Supply Pumping Station Life Cycle Based on BIM Technology

    Science.gov (United States)

    Qun, Miao; Wang, Jiayuan; Liu, Chao

    2017-12-01

    In the urban water supply system, pump station is the main unit of energy consumption. In the background of pushing forward the informatization in China, using BIM technology in design, construction and operations of water supply pumping station, can break through the limitations of the traditional model and effectively achieve the goal of energy conservation and emissions reduction. This work researches the way to solve energy-saving optimization problems in the process of whole life cycle of water supply pumping station based on BIM technology, and put forward the feasible strategies of BIM application in order to realize the healthy and sustainable development goals by establishing the BIM model of water supply pumping station of Qingdao Guzhenkou water supply project.

  14. Water insecurity in a syndemic context: Understanding the psycho-emotional stress of water insecurity in Lesotho, Africa.

    Science.gov (United States)

    Workman, Cassandra L; Ureksoy, Heather

    2017-04-01

    Syndemics occur when populations experience synergistic and multiplicative effects of co-occurring epidemics. Proponents of syndemic theory highlight the importance of understanding the social context in which diseases spread and cogently argue that there are biocultural effects of external stresses such as food insecurity and water insecurity. Thus, a holistic understanding of disease or social vulnerability must incorporate an examination of the emotional and social effects of these phenomena. This paper is a response to the call for a renewed focus on measuring the psycho-emotional and psychosocial effects of food insecurity and water insecurity. Using a mixed-method approach of qualitative interviews and quantitative assessment, including a household demographic, illness, and water insecurity scale, the Household Food Insecurity Access Scale, and the Hopkins Symptoms Checklist-25, this research explored the psycho-emotional effects of water insecurity, food insecurity, and household illness on women and men residing in three low-land districts in Lesotho (n = 75). Conducted between February and November of 2011, this exploratory study first examined the complicated interaction of water insecurity, food insecurity and illness to understand and quantify the relationship between these co-occurring stresses in the context of HIV/AIDS. Second, it sought to separate the role of water insecurity in predicting psycho-emotional stress from other factors, such as food insecurity and household illness. When asked directly about water, qualitative research revealed water availability, access, usage amount, and perceived water cleanliness as important dimensions of water insecurity, creating stress in respondents' daily lives. Qualitative and quantitative data show that water insecurity, food insecurity and changing household demographics, likely resulting from the HIV/AIDS epidemic, are all associated with increased anxiety and depression, and support the conclusion that

  15. Understanding the circulation of geothermal waters in the Tibetan Plateau using oxygen and hydrogen stable isotopes

    International Nuclear Information System (INIS)

    Tan, Hongbing; Zhang, Yanfei; Zhang, Wenjie; Kong, Na; Zhang, Qing; Huang, Jingzhong

    2014-01-01

    Highlights: • Unique geothermal resources in Tibetan Plateau were discussed. • Isotopes were used to trace circulation of geothermal water. • Magmatic water mixing dominates geothermal water evolution. - Abstract: With the uplift of the Tibetan Plateau, many of the world’s rarest and most unique geothermal fields have been developed. This study aims to systematically analyze the characteristics of the hydrogen and oxygen isotopic data of geothermal, river, and lake waters to understand the circulation of groundwater and to uncover the mechanism of geothermal formation in the Tibetan Plateau. Field observations and isotopic data show that geothermal water has higher temperatures and hydraulic pressures, as well as more depleted D and 18 O isotopic compositions than river and lake waters. Thus, neither lakes nor those larger river waters are the recharge source of geothermal water. Snow-melt water in high mountains can vertically infiltrate and deeply circulate along some stretching tensile active tectonic belts or sutures and recharge geothermal water. After deep circulation, cold surface water evolves into high-temperature thermal water and is then discharged as springs at the surface again in a low area, under high water-head difference and cold–hot water density difference. Therefore, the large-scale, high-temperature, high-hydraulic-pressure geothermal systems in the Tibetan Plateau are developed and maintained by rapid groundwater circulation and the heat source of upwelled residual magmatic water. Inevitably, the amount of geothermal water will increase if global warming accelerates the melting of glaciers in high mountains

  16. Organic Contaminants and Treatment Chemicals in Steam-Water Cycles : Thermal stability, decomposition products and flow-accelerated corrosion

    NARCIS (Netherlands)

    Moed, D.H.

    2015-01-01

    Boiler feedwater and steam have to be of high purity, because of the susceptibility of the steam-water cycle to corrosion. Organic contaminants break down in boilers by hydrothermolysis, leading to the formation of organic acid anions, which are suspected to cause corrosion of steam-water cycle

  17. Closed-cycle process of coke-cooling water in delayed coking unit

    International Nuclear Information System (INIS)

    Zhou, P.; Bai, Z.S.; Yang, Q.; Ma, J.; Wang, H.L.

    2008-01-01

    Synthesized processes are commonly used to treat coke-cooling wastewater. These include cold coke-cut water, diluting coke-cooling water, adding chemical deodorization into oily water, high-speed centrifugal separation, de-oiling and deodorization by coke adsorption, and open nature cooling. However, because of water and volatile evaporation loss, it is not suitable to process high-sulphur heavy oil using open treatments. This paper proposed a closed-cycling process in order to solve the wastewater treatment problem. The process is based on the characteristics of coke-cooling water, such as rapid parametric variation, oil-water-coke emulsification and steam-water mixing. The paper discussed the material characteristics and general idea of the study. The process of closed-cycle separation and utilization process of coke-cooling water was presented along with a process flow diagram. Several applications were presented, including a picture of hydrocyclones for pollution separation and a picture of equipments of pollution separation and components regeneration. The results showed good effect had been achieved since the coke-cooling water system was put into production in 2004. The recycling ratios for the components of the coke-cooling water were 100 per cent, and air quality in the operating area reached the requirements of the national operating site circumstance and the health standards. Calibration results of the demonstration unit were presented. It was concluded that since the devices went into operation, the function of production has been normal and stable. The operation was simple, flexible, adjustable and reliable, with significant economic efficiency and environmental benefits. 10 refs., 2 tabs., 3 figs

  18. Understanding urban water performance at the city-region scale using an urban water metabolism evaluation framework.

    Science.gov (United States)

    Renouf, Marguerite A; Kenway, Steven J; Lam, Ka Leung; Weber, Tony; Roux, Estelle; Serrao-Neumann, Silvia; Choy, Darryl Low; Morgan, Edward A

    2018-06-15

    Water sensitive interventions are being promoted to reduce the adverse impacts of urban development on natural water cycles. However it is currently difficult to know the best strategy for their implementation because current and desired urban water performance is not well quantified. This is particularly at the city-region scale, which is important for strategic urban planning. This work aimed to fill this gap by quantifying the water performance of urban systems within city-regions using 'urban water metabolism' evaluation, to inform decisions about water sensitive interventions. To do this we adapted an existing evaluation framework with new methods. In particular, we used land use data for defining system boundaries, and for estimating natural hydrological flows. The criteria for gauging the water performance were water efficiency (in terms of water extracted externally) and hydrological performance (how much natural hydrological flows have changed relative to a nominated pre-urbanised state). We compared these performance criteria for urban systems within three Australian city-regions (South East Queensland, Melbourne and Perth metropolitan areas), under current conditions, and after implementation of example water sensitive interventions (demand management, rainwater/stormwater harvesting, wastewater recycling and increasing perviousness). The respective water efficiencies were found to be 79, 90 and 133 kL/capita/yr. In relation to hydrological performance, stormwater runoff relative to pre-urbanised flows was of most note, estimated to be 2-, 6- and 3- fold, respectively. The estimated performance benefits from water sensitive interventions suggested different priorities for each region, and that combined implementation of a range of interventions may be necessary to make substantive gains in performance. We concluded that the framework is suited to initial screening of the type and scale of water sensitive interventions needed to achieve desired water

  19. Closing the water cycle - the key role of water and wastewater management in a circular economy

    Science.gov (United States)

    Uhlenbrook, Stefan; Connor, Rick; Koncagul, Engin; Ortigara, Angela

    2017-04-01

    Planetary water boundaries are exceeded locally and regionally as water demand and use are escalating and per capita water availability is decreasing. However, wastewater represents an alternative yet reliable source containing for instance, nutrients (for use as fertilizer) and metals that can be extracted, and can be a source of energy. These characteristics mean that water and wastewater are set to play a key role in the circular economy. Furthermore, wastewater use can generate business opportunities and enhance water, food and energy security, therefore helping to alleviate poverty. However, to increase the collection, treatment and use of wastewater, investments in infrastructure and appropriate (low cost) technologies are needed. Ensuring the development of human and institutional capacity is also essential for proper wastewater management. The UN World Water Assessment Programme (WWAP) produces together with several UN-Water Members and Partners the annual World Water Development Report (WWDR). Its 2017 edition "Wastewater: The Untapped Resource" focuses on the critical role of wastewater management for vibrant economies, resilient societies and the maintenance of a healthy environment. Wastewater issues play also a central role in the 2030 Agenda for Sustainable Development, most notably through Sustainable Development Goal (SDG) target 6.3 that aims to improve water quality by reducing the proportion of untreated wastewater released to the environment and increasing its recycling and safe reuse globally. This target is interlinked with several other targets of SDG 6 ('the water goal') as well as to several other SDGs that relate to, poverty reduction, health, energy and food security, among others. The main policy-relevant messages of the WWDR 2017 will be introduced and linked to socio-hydrological approaches. These messages are an important input to the implementation of the water research agenda of the Panta Rhei initiative of IAHS.

  20. Diurnal cycle of methane flux from a lake, with high emissions during nighttime caused by convection in the water

    Science.gov (United States)

    Podgrajsek, E.; Sahlee, E.; Rutgersson, A.

    2012-12-01

    Many studies have stressed the importance of lakes as major contributors of methane to the atmosphere (e.g. Bastviken et al 2011). However there is still a lack of continuous long time flux measurements over lakes as well as poor understanding of the magnitude of methane fluxes through ebullition and vegetation pathways. In this study the Eddy covariance method has been used for measuring methane fluxes from a lake in central Sweden. At several occasions during the long time measuring campaign (autumn 2010-autumn 2012), a diurnal cycle of methane, with high fluxes during night and low during day, has been captured. Some of the high flux events during nighttime were comparable in magnitude to what previously only been measured from vegetation regions in lakes at these latitudes (e.g. Kankaala et al 2004) and from tropical reservoirs (e.g. Bastviken 2009). During these occasions the difference between air and water temperature (ΔT=Ta-Tw) also displayed an diurnal cycle, with ΔT being positive during day and negative during night with the corresponding change in the sensible heat flux i.e. negative during daytime and positive during nighttime. The high nighttime methane fluxes could be explained with this difference in air and water temperature, which will cool the water surface during night, creating convective mixing in the lake, while during daytime the water will be stably stratified. Temperature measurements made at different vertical levels in the lake water confirm this water stratification. The nighttime convective mixing may act to disturb the bottom water, triggering methane ebullition events and bringing methane rich water up to the surface, which can be emitted to the atmosphere. With this study we want to emphasis the necessity of introducing also complex physical processes when estimating air-water exchange fluxes and also measure methane fluxes not only at few occasions during daytime but also during night and for longer measuring periods. References

  1. Biofouling on Coated Carbon Steel in Cooling Water Cycles Using Brackish Seawater

    Directory of Open Access Journals (Sweden)

    Pauliina Rajala

    2016-11-01

    Full Text Available Water cooling utilizing natural waters is typically used for cooling large industrial facilities such as power plants. The cooling water cycles are susceptible to biofouling and scaling, which may reduce heat transfer capacity and enhance corrosion. The performance of two fouling-release coatings combined with hypochlorite treatment were studied in a power plant utilizing brackish sea water from the Baltic Sea for cooling. The effect of hypochlorite as an antifouling biocide on material performance and species composition of microfouling formed on coated surfaces was studied during the summer and autumn. Microfouling on surfaces of the studied fouling-release coatings was intensive in the cooling water cycle during the warm summer months. As in most cases in a natural water environment the fouling consisted of both inorganic fouling and biofouling. Chlorination decreased the bacterial number on the surfaces by 10–1000 fold, but the efficacy depended on the coating. In addition to decreasing the bacterial number, the chlorination also changed the microbial species composition, forming the biofilm on the surfaces of two fouling-release coatings. TeknoTar coating was proven to be more efficient in combination with the hypochlorite treatment against microfouling under these experimental conditions.

  2. Dynamics of Proton Transfer to Internal Water during the Photosynthetic Oxygen-Evolving Cycle.

    Science.gov (United States)

    Brahmachari, Udita; Barry, Bridgette A

    2016-11-10

    In photosynthesis, the light-driven oxidation of water is a sustainable process, which converts solar to chemical energy and produces protons and oxygen. To enable biomimetic strategies, the mechanism of photosynthetic oxygen evolution must be elucidated. Here, we provide information concerning a critical step in the oxygen-evolving, or S-state, cycle. During this S 3 -to-S 0 transition, oxygen is produced, and substrate water binds to the manganese-calcium catalytic site. Our spectroscopic and H 2 18 O labeling experiments show that this S 3 -to-S 0 step is associated with the protonation of an internal water cluster in a hydrogen-bonding network, which contains calcium. When compared to the protonated water cluster, formed during a preceding step, the S 1 -to-S 2 transition, the S 3 -to-S 0 hydronium ion is likely to be coordinated by additional water molecules. This evidence shows that internal water and the hydrogen bonding network act as a transient proton acceptor at multiple points in the oxygen-evolving cycle.

  3. Where Carbon Goes When Water Flows: Carbon Cycling across the Aquatic Continuum

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Nicholas D.; Bianchi, Thomas S.; Medeiros, Patricia M.; Seidel, Michael; Richey, Jeffrey E.; Keil, Richard G.; Sawakuchi, Henrique O.

    2017-01-31

    The purpose of this review is to highlight progress in unraveling carbon cycling dynamics across the continuum of landscapes, inland waters, coastal oceans, and the atmosphere. Earth systems are intimately interconnected, yet most biogeochemical studies focus on specific components in isolation. The movement of water drives the carbon cycle, and, as such, inland waters provide a critical intersection between terrestrial and marine biospheres. Inland, estuarine, and coastal waters are well studied in regions near centers of human population in the Northern hemisphere. However, many of the world’s large river systems and their marine receiving waters remain poorly characterized, particularly in the tropics, which contribute to a disproportionately large fraction of the transformation of terrestrial organic matter to carbon dioxide, and the Arctic, where positive feedback mechanisms are likely to amplify global climate change. There are large gaps in current coverage of environmental observations along the aquatic continuum. For example, tidally-influenced reaches of major rivers and near-shore coastal regions around river plumes are often left out of carbon budgets due to a combination of methodological constraints and poor data coverage. We suggest that closing these gaps could potentially alter global estimates of CO2 outgassing from surface waters to the atmosphere by several-fold. Finally, in order to identify and constrain/embrace uncertainties in global carbon budget estimations it is important that we further adopt statistical and modeling approaches that have become well-established in the fields of oceanography and paleoclimatology, for example.

  4. A Comparative Cycle and Refrigerant Simulation Procedure Applied on Air-Water Heat Pumps

    DEFF Research Database (Denmark)

    Mader, Gunda; Palm, Björn; Elmegaard, Brian

    2012-01-01

    A vapor compression heat pump absorbs heat from the environment at a low temperature level and rejects heat at a high temperature level. The bigger the difference between the two temperature levels the more challenging is it to gain high energy efficiency with a basic cycle layout as found in most...... small capacity heat pump applications today. Many of the applicable refrigerants also reach their technical limits regarding low vapor pressure for very low source temperatures and high discharge temperatures for high sink temperatures. These issues are especially manifest for air-water heat pumps. Many...... alternative cycle setups and refrigerants are known to improve the energy efficiency of a vapor compression cycle and reduce discharge temperatures. However not all of them are feasible for small capacity heat pumps from a cost and complexity point of view. This paper presents a novel numerical approach...

  5. Environmental (Saprozoic Pathogens of Engineered Water Systems: Understanding Their Ecology for Risk Assessment and Management

    Directory of Open Access Journals (Sweden)

    Nicholas J. Ashbolt

    2015-06-01

    Full Text Available Major waterborne (enteric pathogens are relatively well understood and treatment controls are effective when well managed. However, water-based, saprozoic pathogens that grow within engineered water systems (primarily within biofilms/sediments cannot be controlled by water treatment alone prior to entry into water distribution and other engineered water systems. Growth within biofilms or as in the case of Legionella pneumophila, primarily within free-living protozoa feeding on biofilms, results from competitive advantage. Meaning, to understand how to manage water-based pathogen diseases (a sub-set of saprozoses we need to understand the microbial ecology of biofilms; with key factors including biofilm bacterial diversity that influence amoebae hosts and members antagonistic to water-based pathogens, along with impacts from biofilm substratum, water temperature, flow conditions and disinfectant residual—all control variables. Major saprozoic pathogens covering viruses, bacteria, fungi and free-living protozoa are listed, yet today most of the recognized health burden from drinking waters is driven by legionellae, non-tuberculous mycobacteria (NTM and, to a lesser extent, Pseudomonas aeruginosa. In developing best management practices for engineered water systems based on hazard analysis critical control point (HACCP or water safety plan (WSP approaches, multi-factor control strategies, based on quantitative microbial risk assessments need to be developed, to reduce disease from largely opportunistic, water-based pathogens.

  6. Interventions and Interactions: Understanding Coupled Human-Water Dynamics for Improved Water Resources Management in the Himalayas

    Science.gov (United States)

    Crootof, A.

    2017-12-01

    Understanding coupled human-water dynamics offers valuable insights to address fundamental water resources challenges posed by environmental change. With hydropower reshaping human-water interactions in mountain river basins, there is a need for a socio-hydrology framework—which examines two-way feedback loops between human and water systems—to more effectively manage water resources. This paper explores the cross-scalar interactions and feedback loops between human and water systems in river basins affected by run-of-the-river hydropower and highlights the utility of a socio-hydrology perspectives to enhance water management in the face of environmental change. In the Himalayas, the rapid expansion of run-of-the-river hydropower—which diverts streamflow for energy generation—is reconfiguring the availability, location, and timing of water resources. This technological intervention in the river basin not only alters hydrologic dyanmics but also shapes social outcomes. Using hydropower development in the highlands of Uttarakhand, India as a case study, I first illustrate how run-of-the-river projects transform human-water dynamics by reshaping the social and physical landscape of a river basin. Second, I emphasize how examining cross-scalar feedbacks among structural dynamics, social outcomes, and values and norms in this coupled human-water system can inform water management. Third, I present hydrological and social literature, raised separately, to indicate collaborative research needs and knowledge gaps for coupled human-water systems affected by run-of-the-river hydropower. The results underscore the need to understand coupled human-water dynamics to improve water resources management in the face of environmental change.

  7. Thermodynamic performance assessment of an ammonia-water Rankine cycle for power and heat production

    Energy Technology Data Exchange (ETDEWEB)

    Wagar, W.R.; Zamfirescu, C.; Dincer, I. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology 2000 Simcoe Street North, Oshawa, ON (Canada)

    2010-12-15

    In this paper, an ammonia-water based Rankine cycle is thermodynamically analyzed for renewable-based power production, e.g. solar, geothermal, biomass, oceanic-thermal, and nuclear as well as industrial waste heat. Due to the nature of the ammonia-water mixture, changes in its concentration allow thermodynamic cycles to adapt to fluctuations in renewable energy sources, which is an important advantage with respect to other working fluids. The non-linearity of the working fluid's behaviour imposes that each cycle must be optimized based upon several parameters. A model has been developed to optimize the thermodynamic cycle for maximum power output and carry out a parametric study. The lowest temperature state of the system is fixed, and three other parameters are variables of study, namely, maximum system temperature, ammonia concentration and energy ratio, which is a newly introduced parameter. Energy ratio indicates the relative position of the expansion state and is defined in terms of enthalpies. The study is conducted over a concentration range of 0-0.5, the maximum temperature studied varies between 75 C and 350 C for extreme cases, and the energy ratio from saturated liquid to superheated vapour. As a result, the optimal expansion energy ratio is predicted. The cycle efficiencies are drastically affected by the concentrations and temperatures. Depending on the source temperature, the cycle energy efficiency varies between 5% and 35% representing up to 65% of the Carnot limit. The optimal energy ratio has been determined for several concentrations and reported graphically. (author)

  8. Solar Metal Sulfate-Ammonia Based Thermochemical Water Splitting Cycle for Hydrogen Production

    Science.gov (United States)

    Huang, Cunping (Inventor); T-Raissi, Ali (Inventor); Muradov, Nazim (Inventor)

    2014-01-01

    Two classes of hybrid/thermochemical water splitting processes for the production of hydrogen and oxygen have been proposed based on (1) metal sulfate-ammonia cycles (2) metal pyrosulfate-ammonia cycles. Methods and systems for a metal sulfate MSO.sub.4--NH3 cycle for producing H2 and O2 from a closed system including feeding an aqueous (NH3)(4)SO3 solution into a photoctalytic reactor to oxidize the aqueous (NH3)(4)SO3 into aqueous (NH3)(2)SO4 and reduce water to hydrogen, mixing the resulting aqueous (NH3)(2)SO4 with metal oxide (e.g. ZnO) to form a slurry, heating the slurry of aqueous (NH4)(2)SO4 and ZnO(s) in the low temperature reactor to produce a gaseous mixture of NH3 and H2O and solid ZnSO4(s), heating solid ZnSO4 at a high temperature reactor to produce a gaseous mixture of SO2 and O2 and solid product ZnO, mixing the gaseous mixture of SO2 and O2 with an NH3 and H2O stream in an absorber to form aqueous (NH4)(2)SO3 solution and separate O2 for aqueous solution, recycling the resultant solution back to the photoreactor and sending ZnO to mix with aqueous (NH4)(2)SO4 solution to close the water splitting cycle wherein gaseous H2 and O2 are the only products output from the closed ZnSO4--NH3 cycle.

  9. Understanding the effectiveness of vegetated streamside management zones for protecting water quality (Chapter 5)

    Science.gov (United States)

    Philip Smethurst; Kevin Petrone; Daniel Neary

    2012-01-01

    We set out to improve understanding of the effectiveness of streamside management zones (SMZs) for protecting water quality in landscapes dominated by agriculture. We conducted a paired-catchment experiment that included water quality monitoring before and after the establishment of a forest plantation as an SMZ on cleared farmland that was used for extensive grazing....

  10. Dissolved organic nitrogen (DON) profile during backwashing cycle of drinking water biofiltration.

    Science.gov (United States)

    Liu, Bing; Gu, Li; Yu, Xin; Yu, Guozhong; Zhang, Huining; Xu, Jinli

    2012-01-01

    A comprehensive investigation was made in this study on the variation of dissolved organic nitrogen (DON) during a whole backwashing cycle of the biofiltration for drinking water treatment. In such a cycle, the normalized DON concentration (C(effluent)/C(influent)) was decreased from 0.98 to 0.90 in the first 1.5h, and then gradually increased to about 1.5 in the following 8h. Finally, it remained stable until the end of this 24-hour cycle. This clearly 3-stage profile of DON could be explained by three aspects as follows: (1) the impact of the backwashing on the biomass and the microbial activity; (2) the release of soluble microbial products (SMPs) during the biofiltration; (3) the competition between heterotrophic bacteria and nitrifying bacteria. All the facts supported that more DON was generated during later part of the backwashing cycle. The significance of the conclusion is that the shorter backwashing intervals between backwashing for the drinking water biofilter should further decrease the DON concentration in effluent of biofilter. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  11. Optimization of the Working Cycle for an Underwater Propulsion System Based on Aluminium-Water Combustion

    Science.gov (United States)

    Chen, Xianhe; Xia, Zhixun; Huang, Liya; Hu, Jianxin

    2017-05-01

    The working cycle of a novel underwater propulsion system based on aluminium combustion with water is researched in order to evaluate the best performance. The system exploits the exothermic reaction between aluminium and water which will produce high temperature, pressure steam and hydrogen mixture that can be used to drive turbine to generate power. Several new system configurations corresponding to different working cycles are investigated, and their performance parameters in terms of net power, energy density and global efficiency are discussed. The results of the system simulation show that using the recirculation steam rather than hydrogen as the carrier gas, the system net power, energy density and efficiency of the system are greatly increased compared, however the system performance is close either using adiabatic compression or isothermal compression. And if an evaporator component is added into system in order to take full use of the solid product heat, the system performance will be improved.

  12. Entropy Analysis of Solar Two-Step Thermochemical Cycles for Water and Carbon Dioxide Splitting

    Directory of Open Access Journals (Sweden)

    Matthias Lange

    2016-01-01

    Full Text Available The present study provides a thermodynamic analysis of solar thermochemical cycles for splitting of H2O or CO2. Such cycles, powered by concentrated solar energy, have the potential to produce fuels in a sustainable way. We extend a previous study on the thermodynamics of water splitting by also taking into account CO2 splitting and the influence of the solar absorption efficiency. Based on this purely thermodynamic approach, efficiency trends are discussed. The comprehensive and vivid representation in T-S diagrams provides researchers in this field with the required theoretical background to improve process development. Furthermore, results about the required entropy change in the used redox materials can be used as a guideline for material developers. The results show that CO2 splitting is advantageous at higher temperature levels, while water splitting is more feasible at lower temperature levels, as it benefits from a great entropy change during the splitting step.

  13. Identifying the impacts of land use on water and nutrient cycling in the South-West Mau, Kenya

    Science.gov (United States)

    Jacobs, Suzanne; Weeser, Björn; Breuer, Lutz; Butterbach-Bahl, Klaus; Rufino, Mariana

    2016-04-01

    The Mau Forest is the largest closed canopy forest system and indigenous montane forest in Kenya, covering approximately 400,000 ha. It is the source of twelve major rivers in the Rift Valley and Western Kenya and one of Kenya's five 'water towers' that provide around 10 million people with fresh water. Significant areas have been affected by deforestation and land use changes in the past decades, resulting in a loss of approx. 25% of the forest area. Recent changes in downstream water supply are discussed to be attributed to land use change, though compelling scientific evidence is still lacking. The study area is located in the South-West Mau as a part of the Sondu River basin that drains into Lake Victoria. This area has suffered a forest loss of 25% through conversion of natural forest to smallholder agriculture and tea/tree plantations. A nested catchment approach has been applied, whereby automatic measurement equipment for monitoring discharge, turbidity, nitrate, total and dissolved organic carbon, electrical conductivity and water temperature at a 10 minute interval has been set up at the outlets of three sub-catchments of 27 - 36 km² and the outlet of the 1023 km² major catchment. The dominant land use in the sub-catchments is either natural forest, tea/tree plantation or smallholder agriculture. The river data is complemented by six precipitation gauging stations and three climate stations, that all measure at the same interval. Installed during October 2014, the systems have collected high resolution data for one and a half year now. The high resolution dataset is being analysed for patterns in stream flow and water quality during dry and wet seasons as well as diurnal cycling of nitrate. The results of the different sub-catchments are compared to identify the role of land use in water and nutrient cycling. First results of the high temporal resolution data already indicate that the different types of land use affect the stream nitrate concentration

  14. Improving evaluation of climate change impacts on the water cycle by remote sensing ET-retrieval

    Directory of Open Access Journals (Sweden)

    S. G. García Galiano

    2015-05-01

    Full Text Available Population growth and intense consumptive water uses are generating pressures on water resources in the southeast of Spain. Improving the knowledge of the climate change impacts on water cycle processes at the basin scale is a step to building adaptive capacity. In this work, regional climate model (RCM ensembles are considered as an input to the hydrological model, for improving the reliability of hydroclimatic projections. To build the RCMs ensembles, the work focuses on probability density function (PDF-based evaluation of the ability of RCMs to simulate of rainfall and temperature at the basin scale. To improve the spatial calibration of the continuous hydrological model used, an algorithm for remote sensing actual evapotranspiration (AET retrieval was applied. From the results, a clear decrease in runoff is expected for 2050 in the headwater basin studied. The plausible future scenario of water shortage will produce negative impacts on the regional economy, where the main activity is irrigated agriculture.

  15. The Mars water cycle at other epochs - Recent history of the polar caps and layered terrain

    Science.gov (United States)

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1993-01-01

    A numerical model is presented of the integrated role of seasonal water cycle on the evolution of polar deposits on Mars over the last 10 million years. From the model, it is concluded that the only major difference between the polar caps which affects their long-term behavior is ultimately the difference in their elevations. Because of that difference, there is a preference for CO2 frost to stay longer on the northern polar cap. The average difference in sublimation at the caps results in a net south-to-north transport of water ice over long time scales. Superimposed on any long-term behavior is a transfer of water ice between the caps on the 10 exp 5 - 10 exp 6 yr time scales. The amount of water exchanged is small compared to the total ice content of the polar deposits.

  16. Sprint cycling performance is maintained with short-term contrast water immersion.

    Science.gov (United States)

    Crampton, David; Donne, Bernard; Egaña, Mikel; Egana, Mikel; Warmington, Stuart A

    2011-11-01

    Given the widespread use of water immersion during recovery from exercise, we aimed to investigate the effect of contrast water immersion on recovery of sprint cycling performance, HR and, blood lactate. Two groups completed high-intensity sprint exercise before and after a 30-min randomized recovery. The Wingate group (n = 8) performed 3 × 30-s Wingate tests (4-min rest periods). The repeated intermittent sprint group (n = 8) cycled for alternating 30-s periods at 40% of predetermined maximum power and 120% maximum power, until exhaustion. Both groups completed three trials using a different recovery treatment for each trial (balanced randomized application). Recovery treatments were passive rest, 1:1 contrast water immersion (2.5 min of cold (8°C) to 2.5 min of hot (40°C)), and 1:4 contrast water immersion (1 min of cold to 4 min of hot). Blood lactate and HR were recorded throughout, and peak power and total work for pre- and postrecovery Wingate performance and exercise time and total work for repeated sprinting were recorded. Recovery of Wingate peak power was 8% greater after 1:4 contrast water immersion than after passive rest, whereas both contrast water immersion ratios provided a greater recovery of exercise time (∼ 10%) and total work (∼ 14%) for repeated sprinting than for passive rest. Blood lactate was similar between trials. Compared with passive rest, HR initially declined more slowly during contrast water immersion but increased with each transition to a cold immersion phase. These data support contrast water immersion being effective in maintaining performance during a short-term recovery from sprint exercise. This effect needs further investigation but is likely explained by cardiovascular mechanisms, shown here by an elevation in HR upon each cold immersion.

  17. Applicability study of deuterium excess in bottled water life cycle analyses

    Directory of Open Access Journals (Sweden)

    Mihael Brenčič

    2014-12-01

    Full Text Available Paper explores the possible use of d‑excess in the investigation of bottled water. Based on the data set from Brencic and Vreca’s paper (2006. Identification of sources and production processes of bottled waters by stable hydrogen and oxygen isotope ratios, d‑excess values were statistically analysed and compared among different bottled water groups and different bottlers. The bottled water life cycle in relation to d‑excess values was also theoretically identified. Descriptive statistics and one-way ANOVA showed no significant differences among the groups. Differences were detected in the shape of empirical distributions. Groups of still and flavoured waters have similar shapes, but sparkling waters differed to the others. Two distinctive groups of bottlers could be discerned. The first group is represented by bottlers with a high range of d‑excess (from 7.7 ‰ to 18.6 ‰ with average of 12.0 ‰ exploring waters originating from the aquifers rich in highly mineralised groundwater and relatively high concentrations of CO2 gas. The second group is represented by bottlers using groundwater from relatively shallow aquifers. Their d‑excess values have characteristics similar to the local precipitation (from 7.8 ‰ to 14.3 ‰ with average of 10.3 ‰. More frequent sampling and better knowledge of production phases are needed to improve usage of isotope fingerprint for authentication of bottled waters.

  18. Water footprint and life cycle assessment of concrete roof tile and brick products at PT. XYZ

    Science.gov (United States)

    Octavia, Caesara; Laurence; Hartono, Natalia

    2017-12-01

    PT. XYZ is an Indonesian company engaged in manufacturing concrete roof tile and paving block. The company has not paid attention to the environmental and human health aspects of their production activity, where there is so much water used and discarded during the production process and no water treatment for the wastewater produced. Therefore this topic proposed in order to determine the resulting impacts from the production processes of concrete roof tile and brick at PT. XYZ on the environment and human health. The impact on the environment and human health were identified through water footprint assessment (WFA) and life cycle assessment (LCA). Through the WFA accounting, it is known that the amount of water needed to produce a concrete roof tile is 21.384 L which consists of 16.433 L blue water and 4.951 L grey water, whereas for a brick is 10.496 L which consists of 10.48 L blue water and 0.016 L grey water. With ReCiPe midpoint (H) method, it is known that the dominant impact categories generated in one batch production processes of concrete roof tile and brick are natural land transformation, marine eco-toxicity, freshwater eutrophication, and freshwater eco-toxicity, where those impact categories represent the average of 75.5% from overall impact category for concrete roof tile and brick products.

  19. A Science-Based Approach to Understanding Waste Form Durability in Open and Closed Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Peters, M.T.; Ewing, R.C.

    2007-01-01

    There are two compelling reasons for understanding source term and near-field processes in a radioactive waste geologic repository. First, almost all of the radioactivity is initially in the waste form, mainly in the spent nuclear fuel (SNF) or nuclear waste glass. Second, over long periods, after the engineered barriers are degraded, the waste form is a primary control on the release of radioactivity. Thus, it is essential to know the physical and chemical state of the waste form after hundreds of thousands of years. The United States Department of Energy's Yucca Mountain Repository Program has initiated a long-term program to develop a basic understanding of the fundamental mechanisms of radionuclide release and a quantification of the release as repository conditions evolve over time. Specifically, the research program addresses four critical areas: a) SNF dissolution mechanisms and rates; b) formation and properties of U 6+ - secondary phases; c) waste form-waste package interactions in the near-field; and d) integration of in-package chemical and physical processes. The ultimate goal is to integrate the scientific results into a larger scale model of source term and near-field processes. This integrated model will be used to provide a basis for understanding the behavior of the source term over long time periods (greater than 10 5 years). Such a fundamental and integrated experimental and modeling approach to source term processes can also be readily applied to development of advanced waste forms as part of a closed nuclear fuel cycle. Specifically, a fundamental understanding of candidate waste form materials stability in high temperature/high radiation environments and near-field geochemical/hydrologic processes could enable development of advanced waste forms 'tailored' to specific geologic settings. (authors)

  20. A Science-Based Approach to Understanding Waste Form Durability in Open and Closed Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    M.T. Peters; R.C. Ewing

    2006-01-01

    There are two compelling reasons for understanding source term and near-field processes in a radioactive waste geologic repository. First, almost all of the radioactivity is initially in the waste form, mainly in the spent nuclear fuel (SNF) or nuclear waste glass. Second, over long periods, after the engineered barriers are degraded, the waste form is a primary control on the release of radioactivity. Thus, it is essential to know the physical and chemical state of the waste form after hundreds of thousands of years. The United States Department of Energy's Yucca Mountain Repository Program has initiated a long-term program to develop a basic understanding of the fundamental mechanisms of radionuclide release and a quantification of the release as repository conditions evolve over time. Specifically, the research program addresses four critical areas: (a) SNF dissolution mechanisms and rates; (b) formation and properties of U 6+ -secondary phases; (c) waste form-waste package interactions in the near-field; and (d) integration of in-package chemical and physical processes. The ultimate goal is to integrate the scientific results into a larger scale model of source term and near-field processes. This integrated model will be used to provide a basis for understanding the behavior of the source term over long time periods (greater than 10 5 years). Such a fundamental and integrated experimental and modeling approach to source term processes can also be readily applied to development of advanced waste forms as part of a closed nuclear fuel cycle. Specifically, a fundamental understanding of candidate waste form materials stability in high temperature/high radiation environments and near-field geochemical/hydrologic processes could enable development of advanced waste forms ''tailored'' to specific geologic settings

  1. Wading through Perceptions: Understanding Human Perceptions of Water Quality in Coastal Waters

    Science.gov (United States)

    Water quality perceptions influence people’s preferences for visiting coastal areas and willingness to participate in activities on or near the water. They also influence people’s social values for a waterbody, sense of place, support for protection of a waterbody, an...

  2. Phenomenology of the behavior of nuclear fuels containing plutonium in the cycles of water reactors. Development of a model on the equivalence of Plutonium

    International Nuclear Information System (INIS)

    Azzoug, D.

    1990-05-01

    In the scope of fuel recycling, in nuclear reactors with water cooling systems, a model concerning the plutonium equivalence and adapted to the thermal spectra is proposed. The physical phenomena involving the plutonium isotopes are studied. A method based on the sensitivity analysis allows the understanding of the plutonium isotope behavior. An equivalence model of plutonium for thermal spectre is established. The validity of the model for different cycle lengths and supports is proved [fr

  3. Adsorption Characteristics of Water and Silica Gel System for Desalination Cycle

    KAUST Repository

    Cevallos, Oscar R.

    2012-07-01

    An adsorbent suitable for adsorption desalination cycles is essentially characterized by a hydrophilic and porous structure with high surface area where water molecules are adsorbed via hydrogen bonding mechanism. Silica gel type A++ possesses the highest surface area and exhibits the highest equilibrium uptake from all the silica gels available in the market, therefore being suitable for water desalination cycles; where adsorbent’s adsorption characteristics and water vapor uptake capacity are key parameters in the compactness of the system; translated as feasibility of water desalination through adsorption technologies. The adsorption characteristics of water vapor onto silica gel type A++ over a temperature range of 30 oC to 60 oC are investigated in this research. This is done using water vapor adsorption analyzer utilizing a constant volume and variable pressure method, namely the Hydrosorb-1000 instrument by Quantachrome. The experimental uptake data is studied using numerous isotherm models, i. e. the Langmuir, Tóth, generalized Dubinin-Astakhov (D-A), Dubinin-Astakhov based on pore size distribution (PSD) and Dubinin-Serpinski (D-Se) isotherm for the whole pressure range, and for a pressure range below 10 kPa, proper for desalination cycles; isotherms type V of the International Union of Pure and Applied Chemistry (IUPAC) classification were exhibited. It is observed that the D-A based on PSD and the D-Se isotherm models describe the best fitting of the experimental uptake data for desalination cycles within a regression error of 2% and 6% respectively. All isotherm models, except the D-A based on PSD, have failed to describe the obtained experimental uptake data; an empirical isotherm model is proposed by observing the behavior of Tóth and D-A isotherm models. The new empirical model describes the water adsorption onto silica gel type A++ within a regression error of 3%. This will aid to describe the advantages of silica gel type A++ for the design of

  4. Effects of Land Cover Changes to the Quantity of Water Supply and Hydrologic Cycle using Water Balance Models

    Directory of Open Access Journals (Sweden)

    Caja CC

    2018-01-01

    Full Text Available The hydrologic cycle is a recurring consequence of different forms of movement of water and changes of its physical state on a given area of the earth. The land cover of a certain area is a significant factor affecting the watershed hydrology. This also affects the quantity of water supply within the watershed. This study assessed the impacts of the changing land cover of the Ipo watershed, a part of the Angat-Ipo-La Mesa water system which is the main source of Metro Manila’s water supply. The environmental impacts were assessed using the interaction of vegetation cover changes and the output flow rates in Ipo watershed. Using hydrologic modelling system, the hydrological balance using rainfall, vegetation and terrain data of the watershed was simulated. Over the years, there has been a decreasing land cover within the watershed caused mostly by deforestation and other human activities. This significant change in the land cover resulted to extreme increase in water discharge at all streams and rivers in the watershed and the water balance of the area were affected as saturation and shape of the land terrain changes.

  5. Carbon cycle. Sunlight controls water column processing of carbon in arctic fresh waters.

    Science.gov (United States)

    Cory, Rose M; Ward, Collin P; Crump, Byron C; Kling, George W

    2014-08-22

    Carbon in thawing permafrost soils may have global impacts on climate change; however, the factors that control its processing and fate are poorly understood. The dominant fate of dissolved organic carbon (DOC) released from soils to inland waters is either complete oxidation to CO2 or partial oxidation and river export to oceans. Although both processes are most often attributed to bacterial respiration, we found that photochemical oxidation exceeds rates of respiration and accounts for 70 to 95% of total DOC processed in the water column of arctic lakes and rivers. At the basin scale, photochemical processing of DOC is about one-third of the total CO2 released from surface waters and is thus an important component of the arctic carbon budget. Copyright © 2014, American Association for the Advancement of Science.

  6. Aerosol-Water Cycle Interaction: A New Challenge in Monsoon Climate Research

    Science.gov (United States)

    Lau, William K. M.

    2006-01-01

    Long recognized as a major environmental hazard, aerosol is now known to have strong impacts on both regional and global climate. It has been estimated that aerosol may reduce by up to 10% of the seasonal mean solar radiation reaching the earth surface, producing a global cooling effect that opposes global warming (Climate Change 2001). This means that the potential perils that humans have committed to global warming may be far greater than what we can detect at the present. As a key component of the Earth climate system, the water cycle is profoundly affected by the presence of aerosols in the atmosphere. Through the so-called "direct effect", aerosol scatters and/or absorbs solar radiation, thus cooling the earth surface and changing the horizontal and vertical radiational heating contrast in the atmosphere. The heating contrast drives anomalous atmospheric circulation, resulting in changes in convection, clouds, and rainfall. Another way aerosol can affect the water cycle is through the so-called "indirect effects", whereby aerosol increases the number of cloud condensation nuclei, prolongs life time of clouds, and inhibits the growth of cloud drops to raindrops. This leads to more clouds, and increased reflection of solar radiation, and further cooling at the earth surface. In monsoon regions, the response of the water cycle to aerosol forcing is especially complex, not only because of presence of diverse mix of aerosol species with vastly different radiative properties, but also because the monsoon is strongly influenced by ocean and land surface processes, land use, land change, as well as regional and global greenhouse warming effects. Thus, sorting out the impacts of aerosol forcing, and interaction with the monsoon water cycle is a very challenging problem. In this talk, I will offer some insights into how aerosols may impact the Asian monsoon based on preliminary results from satellite observations and climate model experiments. Specifically, I will

  7. Understanding the wash cycle

    OpenAIRE

    Paul W. Bauer; Rhoda Ullmann

    2000-01-01

    Money laundering has gone on since the first crime was committed for profit, but it has been explicitly illegal only since 1986. Interest in this topic soars whenever a major “laundromat” is uncovered. This Economic Commentary describes the money laundering process, summarizes the evolving statutes, and describes the Federal Reserve’s role in assisting in their enforcement

  8. Hydrogen production by thermochemical cycles of water splitting coupled to a solar energy source

    International Nuclear Information System (INIS)

    Charvin, P.

    2007-11-01

    The aim of this work is to identify, to test and to estimate new thermochemical cycles able to efficiently produce hydrogen from concentrated solar energy. In fact, the aim is to propose a hydrogen production way presenting a global energetic yield similar to electrolysis, that is to say 20-25%, electrolysis being at the present time the most advanced current process for a clean hydrogen production from water. After a first chapter dealing with the past and present researches on thermochemical cycles, the first step of this study has consisted on a selection of a limited number of thermochemical cycles able to produce great quantities of hydrogen from concentrated solar energy. It has consisted in particular on a review of the thermochemical cycles present in literature, on a first selection from argued criteria, and on an exergetic and thermodynamic analysis of the retained cycles for a first estimation of their potential. The second step of this study deals with the experimental study of all the chemical reactions occurring in the retained cycles. Two different oxides cycles have been particularly chosen and the aims are to demonstrate the feasibility of the reactions, to identify the optimal experimental conditions, to estimate and optimize the kinetics and the chemical yields. The following part of this work deals with the design, the modeling and the test of a solar reactor. A CFD modeling of a high temperature reactor of cavity type allows to identify the main heat losses of the reactor and to optimize the geometry of the cavity. A dynamic modeling of the reactor gives data on its behaviour in transient regime and under a real solar flux. The results of the preliminary experimental results are presented. The last part of this study deals with a process analysis of the thermochemical cycles from the results of the experimental study (experimental conditions, yields...). The matter and energy balances are established in order to estimate the global energetic

  9. A role for subducted super-hydrated kaolinite in Earth's deep water cycle

    Science.gov (United States)

    Hwang, Huijeong; Seoung, Donghoon; Lee, Yongjae; Liu, Zhenxian; Liermann, Hanns-Peter; Cynn, Hyunchae; Vogt, Thomas; Kao, Chi-Chang; Mao, Ho-Kwang

    2017-12-01

    Water is the most abundant volatile component in the Earth. It continuously enters the mantle through subduction zones, where it reduces the melting temperature of rocks to generate magmas. The dehydration process in subduction zones, which determines whether water is released from the slab or transported into the deeper mantle, is an essential component of the deep water cycle. Here we use in situ and time-resolved high-pressure/high-temperature synchrotron X-ray diffraction and infrared spectra to characterize the structural and chemical changes of the clay mineral kaolinite. At conditions corresponding to a depth of about 75 km in a cold subducting slab (2.7 GPa and 200 °C), and in the presence of water, we observe the pressure-induced insertion of water into kaolinite. This super-hydrated phase has a unit cell volume that is about 31% larger, a density that is about 8.4% lower than the original kaolinite and, with 29 wt% H2O, the highest water content of any known aluminosilicate mineral in the Earth. As pressure and temperature approach 19 GPa and about 800 °C, we observe the sequential breakdown of super-hydrated kaolinite. The formation and subsequent breakdown of super-hydrated kaolinite in cold slabs subducted below 200 km leads to the release of water that may affect seismicity and help fuel arc volcanism at the surface.

  10. A role for subducted super-hydrated kaolinite in Earth’s deep water cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Huijeong; Seoung, Donghoon; Lee, Yongjae; Liu, Zhenxian; Liermann, Hanns-Peter; Cynn, Hyunchae; Vogt, Thomas; Kao, Chi-Chang; Mao, Ho-Kwang

    2017-11-20

    Water is the most abundant volatile component in the Earth. It continuously enters the mantle through subduction zones, where it reduces the melting temperature of rocks to generate magmas. The dehydration process in subduction zones, which determines whether water is released from the slab or transported into the deeper mantle, is an essential component of the deep water cycle. Here we use in situ and time-resolved high-pressure/high-temperature synchrotron X-ray diffraction and infrared spectra to characterize the structural and chemical changes of the clay mineral kaolinite. At conditions corresponding to a depth of about 75 km in a cold subducting slab (2.7 GPa and 200 °C), and in the presence of water, we observe the pressure-induced insertion of water into kaolinite. This super-hydrated phase has a unit cell volume that is about 31% larger, a density that is about 8.4% lower than the original kaolinite and, with 29 wt% H2O, the highest water content of any known aluminosilicate mineral in the Earth. As pressure and temperature approach 19 GPa and about 800 °C, we observe the sequential breakdown of super-hydrated kaolinite. The formation and subsequent breakdown of super-hydrated kaolinite in cold slabs subducted below 200 km leads to the release of water that may affect seismicity and help fuel arc volcanism at the surface.

  11. Coupling a groundwater model with a land surface model to improve water and energy cycle simulation

    Directory of Open Access Journals (Sweden)

    W. Tian

    2012-12-01

    Full Text Available Water and energy cycles interact, making these two processes closely related. Land surface models (LSMs can describe the water and energy cycles on the land surface, but their description of the subsurface water processes is oversimplified, and lateral groundwater flow is ignored. Groundwater models (GWMs describe the dynamic movement of the subsurface water well, but they cannot depict the physical mechanisms of the evapotranspiration (ET process in detail. In this study, a coupled model of groundwater flow with a simple biosphere (GWSiB is developed based on the full coupling of a typical land surface model (SiB2 and a 3-D variably saturated groundwater model (AquiferFlow. In this coupled model, the infiltration, ET and energy transfer are simulated by SiB2 using the soil moisture results from the groundwater flow model. The infiltration and ET results are applied iteratively to drive the groundwater flow model. After the coupled model is built, a sensitivity test is first performed, and the effect of the groundwater depth and the hydraulic conductivity parameters on the ET are analyzed. The coupled model is then validated using measurements from two stations located in shallow and deep groundwater depth zones. Finally, the coupled model is applied to data from the middle reach of the Heihe River basin in the northwest of China to test the regional simulation capabilities of the model.

  12. Analysis of drought characteristics for improved understanding of a water resource system

    Directory of Open Access Journals (Sweden)

    A. T. Lennard

    2014-09-01

    Full Text Available Droughts are a reoccurring feature of the UK climate; recent drought events (2004–2006 and 2010–2012 have highlighted the UK’s continued vulnerability to this hazard. There is a need for further understanding of extreme events, particularly from a water resource perspective. A number of drought indices are available, which can help to improve our understanding of drought characteristics such as frequency, severity and duration. However, at present little of this is applied to water resource management in the water supply sector. Improved understanding of drought characteristics using indices can inform water resource management plans and enhance future drought resilience. This study applies the standardised precipitation index (SPI to a series of rainfall records (1962–2012 across the water supply region of a single utility provider. Key droughts within this period are analysed to develop an understanding of the meteorological characteristics that lead to, exist during and terminate drought events. The results of this analysis highlight how drought severity and duration can vary across a small-scale water supply region, indicating that the spatial coherence of drought events cannot be assumed.

  13. Toxicity of drinking water disinfection byproducts: cell cycle alterations induced by the monohaloacetonitriles.

    Science.gov (United States)

    Komaki, Yukako; Mariñas, Benito J; Plewa, Michael J

    2014-10-07

    Haloacetonitriles (HANs) are a chemical class of drinking water disinfection byproducts (DBPs) that form from reactions between disinfectants and nitrogen-containing precursors, the latter more prevalent in water sources impacted by algae bloom and municipal wastewater effluent discharge. HANs, previously demonstrated to be genotoxic, were investigated for their effects on the mammalian cell cycle. Treating Chinese hamster ovary (CHO) cells with monoHANs followed by the release from the chemical treatment resulted in the accumulation of abnormally high DNA content in cells over time (hyperploid). The potency for the cell cycle alteration followed the order: iodoacetonitrile (IAN) > bromoacetonitrile (BAN) ≫ chloroacetonitrile (CAN). Exposure to 6 μM IAN, 12 μM BAN and 900 μM CAN after 26 h post-treatment incubation resulted in DNA repair; however, subsequent cell cycle alteration effects were observed. Cell proliferation of HAN-treated cells was suppressed for as long as 43 to 52 h. Enlarged cell size was observed after 52 h post-treatment incubation without the induction of cytotoxicity. The HAN-mediated cell cycle alteration was mitosis- and proliferation-dependent, which suggests that HAN treatment induced mitosis override, and that HAN-treated cells proceeded into S phase and directly into the next cell cycle. Cells with multiples genomes would result in aneuploidy (state of abnormal chromosome number and DNA content) at the next mitosis since extra centrosomes could compromise the assembly of bipolar spindles. There is accumulating evidence of a transient tetraploid state proceeding to aneuploidy in cancer progression. Biological self-defense systems to ensure genomic stability and to eliminate tetraploid cells exist in eukaryotic cells. A key tumor suppressor gene, p53, is oftentimes mutated in various types of human cancer. It is possible that HAN disruption of the normal cell cycle and the generation of aberrant cells with an abnormal number of

  14. Amount of water needed to save 1 m3 of water: life cycle assessment of a flow regulator

    Science.gov (United States)

    Berger, Markus; Söchtig, Michael; Weis, Christoph; Finkbeiner, Matthias

    2017-06-01

    Water saving devices in the sanitary equipment, such as flow regulators, are assumed to be environmentally advantageous even though their environmental benefit has never been compared to the environmental burden caused during their production und disposal. Therefore, a life cycle assessment according to ISO 14044 has been conducted to identify and quantify the environmental effects throughout the lifespan of a flow regulator. The analysis comprises the production of materials, manufacturing of components at suppliers, the assembly at NEOPERL®, all transports, savings of water and thermal energy during use as well as waste incineration including energy recovery in the end-of-life stage. Results show that the production of one flow regulator causes 0.12 MJ primary energy demand, a global warming potential of 5.9 g CO2-equivalent, and a water consumption of 30.3 ml. On the other hand, during a use of 10 years, it saves 19,231 MJ primary energy, 1223 kg CO2-equivalent, and avoids a water consumption of 790 l (166,200 l water use). Since local impacts of water consumption are more relevant than volumes, consequences of water consumption have been analyzed using recently developed impact assessment models. Accordingly, the production of a flow regulator causes 8.5 ml freshwater depletion, 1.4 × 10-13 disability adjusted life years, and 4.8 × 10-6 potentially disappeared fractions of species m2 a. Even though avoided environmental impacts resulting from water savings highly depend on the region where the flow regulator is used, the analysis has shown that environmental benefits are at least 15,000 times higher than impacts caused during the production.

  15. Every apple has a voice: using stable isotopes to teach about food sourcing and the water cycle

    Science.gov (United States)

    Oerter, Erik; Malone, Molly; Putman, Annie; Drits-Esser, Dina; Stark, Louisa; Bowen, Gabriel

    2017-07-01

    Agricultural crops such as fruits take up irrigation and meteoric water and incorporate it into their tissue (fruit water) during growth, and the geographic origin of a fruit may be traced by comparing the H and O stable isotope composition (δ2H and δ18O values) of fruit water to the global geospatial distribution of H and O stable isotopes in precipitation. This connection between common fruits and the global water cycle provides an access point to connect with a variety of demographic groups to educate about isotope hydrology and the water cycle. Within the context of a 1-day outreach activity designed for a wide spectrum of participants (high school students, undergraduate students, high school science teachers) we developed introductory lecture materials, in-class participatory demonstrations of fruit water isotopic measurement in real time, and a computer lab exercise to couple actual fruit water isotope data with open-source online geospatial analysis software. We assessed learning outcomes with pre- and post-tests tied to learning objectives, as well as participant feedback surveys. Results indicate that this outreach activity provided effective lessons on the basics of stable isotope hydrology and the water cycle. However, the computer lab exercise needs to be more specifically tailored to the abilities of each participant group. This pilot study provides a foundation for further development of outreach materials that can effectively engage a range of participant groups in learning about the water cycle and the ways in which humans modify the water cycle through agricultural activity.

  16. The Multi-Scale Response of Water Quality, Biodiversity and Carbon Sequestration to Coupled Macronutrient Cycling from Source to Sea: TURF2SURF

    Science.gov (United States)

    Wade, Andrew; Emmett, Bridget; Jago, Colin; Stutter, Marc; Biggs, Jeremy

    2016-04-01

    Turf2Surf is a large, multi-disciplinary project that aims to test the hypothesis that the spatial and temporal patterns of water quality, C sequestration and biodiversity are better explained through the large-scale coupling of C, N and P cycles than by single cycle, single system approaches. To achieve this, a catchment-scale study of the River Conwy (349 km2) in Wales is being done with emphasis on determining when, where and how coupled macronutrient (C, N, P) cycling occurs in the biogeochemical hot-spots of the soils, the riparian zone, instream and in the river-estuarine transition zone. A major integrated measurement programme is now largely complete. New data are being analysed to understand which soil properties have greatest influence on above and below-ground productivity including plant traits and how microbial processing is controlled by stoichiometry and nutrient priming. Within the stream network, new understanding is being produced on the in-river algal and whole ecosystem (metabolic) response to CNP additions and the factors affecting the fate and cycling of organic matter. In the estuary, initial results indicate a subsurface jet is causing stratification and a velocity anomaly has been observed. Both are important in terms of suspended matter transport and floc break-up. An integrated model is being built to describe the soil-atmosphere-vegetation processes which is linked, firstly, to flow and water quality models that describe the CNP flux transport and transformations from the headwaters to the estuary and, secondly, to biodiversity models. The purpose of the integrated model is to quantify how coupled CNP cycles may respond to environmental change and thereby affect C sequestration, water quality and biodiversity in the future. The team are now in the major phase of data synthesis and model development and are interested in linking with similar studies involving coupled CNP cycles across the atmospheric

  17. Disinfection byproduct formation during biofiltration cycle: Implications for drinking water production.

    Science.gov (United States)

    Delatolla, R; Séguin, C; Springthorpe, S; Gorman, E; Campbell, A; Douglas, I

    2015-10-01

    The goal of this study was to investigate the potential of biofiltration to reduce the formation potential of disinfection byproducts (DBPs). Particularly, the work investigates the effect of the duration of the filter cycle on the formation potential of total trihalomethanes (TTHM) and five species of haloacetic acids (HAA5), dissolved oxygen (DO), organic carbon, nitrogen and total phosphorous concentrations along with biofilm coverage of the filter media and biomass viability of the attached cells. The study was conducted on a full-scale biologically active filter, with anthracite and sand media, at the Britannia water treatment plant (WTP), located in Ottawa, Ontario, Canada. The formation potential of both TTHMs and HAA5s decreased due to biofiltration. However the lowest formation potentials for both groups of DBPs and or their precursors were observed immediately following a backwash event. Hence, the highest percent removal of DBPs was observed during the early stages of the biofiltration cycle, which suggests that a higher frequency of backwashing will reduce the formation of DBPs. Variable pressure scanning electron microscopy (VPSEM) analysis shows that biofilm coverage of anthracite and sand media increases as the filtration cycle progressed, while biomass viability analysis demonstrates that the percentage of cells attached to the anthracite and sand media also increases as the filtration cycle progresses. These results suggest that the development and growth of biofilm on the filters increases the DPB formation potential. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A Liquid Desiccant Cycle for Dehumidification and Fresh Water Supply in Controlled Environment Agriculture

    KAUST Repository

    Lefers, Ryan

    2017-12-01

    Controlled environment agriculture allows the production of fresh food indoors from global locations and contexts where it would not otherwise be possible. Growers in extreme climates and urban areas produce food locally indoors, saving thousands of food import miles and capitalizing upon the demand for fresh, tasty, and nutritious food. However, the growing of food, both indoors and outdoors, consumes huge quantities of water - as much as 70-80% of global fresh water supplies. The utilization of liquid desiccants in a closed indoor agriculture cycle provides the possibility of capturing plant-transpired water vapor. The regeneration/desalination of these liquid desiccants offers the potential to recover fresh water for irrigation and also to re-concentrate the desiccants for continued dehumidification. Through the utilization of solar thermal energy, the process can be completed with a very small to zero grid-energy footprint. The primary research in this dissertation focused on two areas: the dehumidification of indoor environments utilizing liquid desiccants inside membrane contactors and the regeneration of these desiccants using membrane distillation. Triple-bore PVDF hollow fiber membranes yielded dehumidification permeance rates around 0.25-0.31 g m-2 h-1 Pa-1 in lab-scale trials. A vacuum membrane distillation unit utilizing PVDF fibers yielded a flux of 2.8-7.0 kg m-2 hr-1. When the membrane contactor dehumidification system was applied in a bench scale controlled environment agriculture setup, the relative humidity levels responded dynamically to both plant transpiration and dehumidification rates, reaching dynamic equilibrium levels during day and night cycles. In addition, recovered fresh water from distillation was successfully applied for irrigation of crops and concentrated desiccants were successfully reused for dehumidification. If applied in practice, the liquid desiccant system for controlled environment agriculture offers the potential to reduce

  19. Thermal performance of a modified ammonia–water power cycle for reclaiming mid/low-grade waste heat

    International Nuclear Information System (INIS)

    Junye, Hua; Yaping, Chen; Jiafeng, Wu

    2014-01-01

    Highlights: • A modified Kalina cycle is proposed for power and heat cogeneration from mid/low-grade waste heat. • A water-cooling solution cooler is set for cogeneration of sanitary or heating hot water. • Work concentration is determined for suitable turbine inlet pressure and positive back pressure. • Basic concentration should match work concentration for higher efficiency. • Sanitary water with 50.7 °C and capacity of a quarter of total reclaimed heat load is cogenerated. - Abstract: A modified Kalina cycle was simulated, which is a triple-pressure ammonia–water power cycle adding a preheater and a water-cooling solution cooler to the original loop. The cycle acquires higher power recovery efficiency by realizing proper internal recuperation and suitable temperature-difference in phase change processes to match both heat source and cooling water. The influences of some key parameters on the thermodynamic performance of the cycle were discussed, including the work and basic concentrations of solution, circulation multiple and the turbine inlet temperature. It is shown that the basic concentration should match the work concentration for higher efficiency. Although higher work concentration could be slightly beneficial to cycle efficiency, the work concentration is mainly determined by considering the suitable turbine inlet/back pressure. Besides, this cycle can be used as a cogeneration system of power and sanitary or heating hot water. The calculation example presented finally with the turbine inlet parameters of 300 °C/6 MPa and the cycle lowest temperature of 30 °C shows that the power recovery efficiency reaches 15.87%, which is about 16.6% higher than that of the steam Rankine cycle. And it also provides 50.7 °C sanitary water with about a quarter of the total heating load reclaimed

  20. Understanding the addiction cycle: a complex biology with distinct contributions of genotype vs. sex at each stage.

    Science.gov (United States)

    Wilhelm, C J; Hashimoto, J G; Roberts, M L; Sonmez, M K; Wiren, K M

    2014-10-24

    Ethanol abuse can lead to addiction, brain damage and premature death. The cycle of alcohol addiction has been described as a composite consisting of three stages: intoxication, withdrawal and craving/abstinence. There is evidence for contributions of both genotype and sex to alcoholism, but an understanding of the biological underpinnings is limited. Utilizing both sexes of genetic animal models with highly divergent alcohol withdrawal severity, Withdrawal Seizure-Resistant (WSR) and Withdrawal Seizure-Prone (WSP) mice, the distinct contributions of genotype/phenotype and of sex during addiction stages on neuroadaptation were characterized. Transcriptional profiling was performed to identify expression changes as a consequence of chronic intoxication in the medial prefrontal cortex. Significant expression differences were identified on a single platform and tracked over a behaviorally relevant time course that covered each stage of alcohol addiction; i.e., after chronic intoxication, during peak withdrawal, and after a defined period of abstinence. Females were more sensitive to ethanol with higher fold expression differences. Bioinformatics showed a strong effect of sex on the data structure of expression profiles during chronic intoxication and at peak withdrawal irrespective of genetic background. However, during abstinence, differences were observed instead between the lines/phenotypes irrespective of sex. Confirmation of identified pathways showed distinct inflammatory signaling following intoxication at peak withdrawal, with a pro-inflammatory phenotype in females but overall suppression of immune signaling in males. Combined, these results suggest that each stage of the addiction cycle is influenced differentially by sex vs. genetic background and support the development of stage- and sex-specific therapies for alcohol withdrawal and the maintenance of sobriety. Published by Elsevier Ltd.

  1. Steam water cycle chemistry of liquid metal cooled innovative nuclear power reactors

    International Nuclear Information System (INIS)

    Yurmanov, Victor; Lemekhov, Vadim; Smykov, Vladimir

    2012-09-01

    selection of chemistry controls is vital for NPPs with liquid metal cooled reactors. This paper highlights principles and approaches to chemistry controls in steam/water cycles of future NPPs with innovative liquid metal cooled reactors. The recommendations on how to arrange chemistry controls in steam/water cycles of future NPPs with innovative liquid metal cooled reactors are based taking into account: - the experience with operation of fossil power industry; - secondary side water chemistry of lead-bismuth eutectics cooled nuclear reactors at submarines; - steam/water cycles of NPPs with sodium cooled fast breeders BN-350 and BN-600; - secondary water chemistry at conventional NPPs with WER, RBMK and some other reactors. (authors)

  2. The tropical water and energy cycles in a cumulus ensemble model. Part 1: Equilibrium climate

    Science.gov (United States)

    Sui, C. H.; Lau, K. M.; Tao, W. K.; Simpson, J.

    1994-01-01

    A cumulus ensemble model is used to study the tropical water and energy cycles and their role in the climate system. The model includes cloud dynamics, radiative processes, and microphysics that incorporate all important production and conversion processes among water vapor and five species of hydrometeors. Radiative transfer in clouds is parameterized based on cloud contents and size distributions of each bulk hydrometeor. Several model integrations have been carried out under a variety of imposed boundary and large-scale conditions. In Part 1 of this paper, the primary focus is on the water and heat budgets of the control experiment, which is designed to simulate the convective - radiative equilibrium response of the model to an imposed vertical velocity and a fixed sea surface temperature at 28 C. The simulated atmosphere is conditionally unstable below the freezing level and close to neutral above the freezing level. The equilibrium water budget shows that the total moisture source, M(sub s), which is contributed by surface evaporation (0.24 M(sub s)) and the large-scale advection (0.76 M(sub s)), all converts to mean surface precipitation bar-P(sub s). Most of M(sub s) is transported verticaly in convective regions where much of the condensate is generated and falls to surface (0.68 bar-P(sub s)). The remaining condensate detrains at a rate of 0.48 bar-P(sub s) and constitutes 65% of the source for stratiform clouds above the melting level. The upper-level stratiform cloud dissipates into clear environment at a rate of 0.14 bar-P(sub s), which is a significant moisture source comparable to the detrained water vapor (0.15 bar-P(sub s)) to the upper troposphere from convective clouds. In the lower troposphere, stratiform clouds evaporate at a rate of 0.41 bar-P(sub s), which is a more dominant moisture source than surface evaporation (0.22 bar-P(sub s)). The precipitation falling to the surface in the stratiform region is about 0.32 bar-P(sub s). The associated

  3. Fuel cycle flexibility in Advanced Heavy Water Reactor (AHWR) with the use of Th-LEU fuel

    International Nuclear Information System (INIS)

    Thakur, A.; Singh, B.; Pushpam, N.P.; Bharti, V.; Kannan, U.; Krishnani, P.D.; Sinha, R.K.

    2011-01-01

    The Advanced Heavy Water Reactor (AHWR) is being designed for large scale commercial utilization of thorium (Th) and integrated technological demonstration of the thorium cycle in India. The AHWR is a 920 MW(th), vertical pressure tube type cooled by boiling light water and moderated by heavy water. Heat removal through natural circulation and on-line fuelling are some of the salient features of AHWR design. The physics design of AHWR offers considerable flexibility to accommodate different kinds of fuel cycles. Our recent efforts have been directed towards a case study for the use of Th-LEU fuel cycle in a once-through mode. The discharged Uranium from Th-LEU cycle has proliferation resistant characteristics. This paper gives the initial core, fuel cycle characteristics and online refueling strategy of Th-LEU fuel in AHWR. (author)

  4. Research and development of an air-cycle heat-pump water heater. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, J.T.; Erickson, A.J.; Harvey, A.C.; Toscano, W.M.

    1979-10-01

    A prototype reverse Brayton air cycle heat pump water heater has been designed and built for residential applications. The system consists of a compressor/expander, an air-water heat exchanger, an electric motor, a water circulation pump, a thermostat, and fluid management controls. The prototype development program consisted of a market analysis, design study, and development testing. A potential residential market for the new high-efficiency water heater of approximately 480,000 units/y was identified. The retail and installation cost of this water heater is estimated to be between $500 and $600 which is approximately $300 more than a conventional electric water heater. The average payback per unit is less than 3-1/2 y and the average recurring energy cost savings after the payback period is approximately $105/y at the average seasonal coefficient of performance (COP) of 1.7. As part of the design effort, a thermodynamic parametric analysis was performed on the water heater system. It was determined that to obtain a coefficient of performance of 1.7, the isentropic efficiency of both the compressor and the expander must be at least 85%. The selected mechanical configuration is described. The water heater has a diameter of 25 in. and a height of 73 in. The results of the development testing of the prototype water heater system showed: the electrical motor maximum efficiency of 78%; the compressor isentropic efficiency is 95 to 119% and the volumetric efficiency is approximately 85%; the expander isentropic efficiency is approximately 58% and the volumetric efficiency is 92%; a significant heat transfer loss of approximately 16% occurred in the expander; and the prototype heat pump system COP is 1.26 which is less than the design goal of at least 1.7. Future development work is recommended.

  5. The Life Cycle CO2 (LCCO2 Evaluation of Retrofits for Water-Saving Fittings

    Directory of Open Access Journals (Sweden)

    Yasutoshi Shimizu

    2013-05-01

    Full Text Available As part of measures being taken against global warming, the reduction of CO2 emissions by retrofitting for water-saving fittings in homes is spreading throughout the world. However, although this retrofitting reduces the environmental impact at the use stage, it generates new impacts at the production and disposal stages. In addition, there has been little research that discusses the reduction in environmental impact obtained by retrofitting from the viewpoint of the overall life cycle of such fittings. In this paper, an evaluation of the environmental impact of retrofitting in terms of the entire life cycle was carried out for toilet bowls and showerheads. The findings show that even for a toilet bowl that generates a large environmental load at the production stage, there is no overall increase in the environmental impact by retrofitting for the average usable life of 20 years.

  6. Comparative of fuel cycle cost for light water nuclear power plants

    International Nuclear Information System (INIS)

    Kocic, A.; Dimitrijevic, Z.

    1978-01-01

    Starting from ost general fuel cycle scheme for light water reactors this article deals with conceptual differences of BWR, PWR and WWER as well as with the influence of certain phases of fuel cycle on economic parameters of an equivalent 1000 MWe reactor using a computer program CENA /1/ and typical parameters of each reactor type. An analysis of two particular power plants 628 MWe and 440 MWe WWER by means of the same program is given in the second part of this paper taking into account the differences of in-core fuel management. This second approach is especially interesting for the economy of the power plant itself in the period of planning. (author)

  7. Enhancing atmospheric mercury research in China to improve the current understanding of the global mercury cycle: the need for urgent and closely coordinated efforts.

    Science.gov (United States)

    Ci, Zhijia; Zhang, Xiaoshan; Wang, Zhangwei

    2012-06-05

    The current understanding of the global mercury (Hg) cycle remains uncertain because Hg behavior in the environment is very complicated. The special property of Hg causes the atmosphere to be the most important medium for worldwide dispersion and transformation. The source and fate of atmospheric Hg and its interaction with the surface environment are the essential topics in the global Hg cycle. Recent declining measurement trends of Hg in the atmosphere are in apparent conflict with the increasing trends in global anthropogenic Hg emissions. As the single largest country contributor of anthropogenic Hg emission, China's role in the global Hg cycle will become more and more important in the context of the decreasing man-made Hg emission from developed regions. However, much less Hg information in China is available. As a global pollutant which undergoes long-range transport and is persistence in the environment, increasing Hg knowledge in China could not only promote the Hg regulation in this country but also improve the understanding of the fundamental of the global Hg cycle and further push the abatement of this toxin on a global scale. Then the atmospheric Hg research in China may be a breakthrough for improving the current understanding of the global Hg cycle. However, due to the complex behavior of Hg in the atmosphere, a deeper understanding of the atmospheric Hg cycle in China needs greater cooperation across fields.

  8. Primary water chemistry optimization for extended fuel cycle operation. Results of the 'Duo experimentation' after three cycles

    International Nuclear Information System (INIS)

    Viricel, L.; Andrieu, C.; Segura, J.C.; Rocher, A.; Thomazet, J.; Clinard, M.H.; Dacquait, F.

    2002-01-01

    The primary coolant conditioning in French nuclear power plants is essentially based on the boron-lithium coordinated chemistry, with a target pH of 7.2 at 300 C and a maximum lithium concentration of 2.2 mg/kg. In 1996, EDF 1300 MWe units began operating 18-month fuel cycles, increasing boron concentrations at the beginning of the cycles. Since today the maximum lithium concentration in normal operation is 2.2 mg/kg, extended cycle operation results in a decrease in the pH at the beginning of the cycles, which may possibly lead to deposits in RCS, and particularly on the fuel cladding, and increased dose rates. It has to be noted that today, the fuel assemblies maximum burnup is set at 52 GWd/tU. One solution is to adjust the pH by increasing the lithium content at the beginning of the cycles, which is easy to implement and does not require any modification on the units. Hence, EDF is testing a ''modified'' chemistry regime in the > during 4 fuel cycles, with a maximum authorized lithium content of 3.5 mg/kg at the beginning of the cycles in the Cattenom 2 pilot unit. The Golfech 1 reference unit implements a standard boron-lithium coordination pH 300 7.2. The major goal of the experimentation is to assess the impact of elevated lithium concentrations at the beginning of the cycles on fuel cladding oxide behavior, mass transport and dose rates. This paper presents the results of the first three cycles of the Duo experimentation. (author)

  9. Narratives of marginalized cyclists : understanding obstacles to utilitarian cycling among women and minorities in Portland, OR : final report.

    Science.gov (United States)

    2017-05-01

    Research has demonstrated that everyday or utilitarian forms of cycling are most likely to generate positive : population-level health impacts (Garrard et al., 2012), yet significant deterrents to routine cycling remain, : particularly for women and ...

  10. THERMODYNAMIC ANALYSIS OF AMMONIA-WATER-CARBON DIOXIDE MIXTURES FOR DESIGNING NEW POWER GENERATION CYCLES

    Energy Technology Data Exchange (ETDEWEB)

    Ashish Gupta

    2003-01-15

    This project was undertaken with the goal of developing a computational package for the thermodynamic properties of ammonia-water-carbon dioxide mixtures at elevated temperature and pressure conditions. This objective was accomplished by modifying an existing set of empirical equations of state for ammonia-water mixtures. This involved using the Wagner equation of state for the gas phase properties of carbon dioxide. In the liquid phase, Pitzer's ionic model was used. The implementation of this approach in the form of a computation package that can be used for the optimization of power cycles required additional code development. In particular, this thermodynamic model consisted of a large set of non-linear equations. Consequently, in the interest of computational speed and robustness that is required when applied to optimization problems, analytic gradients were incorporated in the Newton solver routines. The equations were then implemented using a stream property predictor to make initial guesses of the composition, temperature, pressure, enthalpy, entropy, etc. near a known state. The predictor's validity is then tested upon the convergence of an iteration. It proved difficult to obtain experimental data from the literature that could be used to test the accuracy of the new thermodynamic property package, and this remains a critical need for future efforts in the area. It was possible, however, to assess the feasibility of using this complicated property prediction package for power cycle design and optimization. Such feasibility was first demonstrated by modification of our Kalina cycle optimization code to use the package with either a deterministic optimizer, MINOS, or a stochastic optimizer using differential evolution, a genetic-algorithm-based technique. Beyond this feasibility demonstration, a new approach to the design and optimization of power cycles was developed using a graph theoretic approach.

  11. Overview of radiotracer experiments for better understanding of wastewater and water treatment plants in Lima (Peru))

    International Nuclear Information System (INIS)

    Calvo, C.S.; Maghella, G.; Mamani, E.; Berne, P.; Brisset, P.; Leclerc, J.-P.

    2004-01-01

    The objectives of this paper are to present an overview of possible applications of the radiotracers for better understanding of water and waste water treatment plants. Numerous experiments have been carried out in different plants located in Lima. Four processes have been investigated: desanders, floculators, clarifiers and digesters. Depending on the studied process, the experimental results have been interpreted at different levels of complexity: from simple troubleshooting to the modelling of the flow behaviour inside the process. (author)

  12. Life Cycle Environmental Impacts of Disinfection Technologies Used in Small Drinking Water Systems.

    Science.gov (United States)

    Jones, Christopher H; Shilling, Elizabeth G; Linden, Karl G; Cook, Sherri M

    2018-03-06

    Small drinking water systems serve a fifth of the U.S. population and rely heavily on disinfection. While chlorine disinfection is common, there is interest in minimizing chemical addition, especially due to carcinogenic disinfection byproducts and chlorine-resistant pathogens, by using ultraviolet technologies; however, the relative, broader environmental impacts of these technologies are not well established, especially in the context of small (water systems. The objective of this study was to identify environmental trade-offs between chlorine and ultraviolet disinfection via comparative life cycle assessment. The functional unit was the production of 1 m 3 of drinking water to U.S. Treatment included cartridge filtration followed by either chlorine disinfection or ultraviolet disinfection with chlorine residual addition. Environmental performance was evaluated for various chlorine contact zone materials (plastic, concrete, steel), ultraviolet validation factors (1.2 to 4.4), and electricity sources (renewable; U.S. average, high, and low impact grids). Performance was also evaluated when filtration and chlorine residual were not required. From a life cycle assessment perspective, replacing chlorine with UV was preferred only in a limited number of cases (i.e., high pumping pressure but filtration is not required). In all others, chlorine was environmentally preferred, although some contact zone materials and energy sources had an impact on the comparison. Utilities can use these data to inform their disinfection technology selection and operation to minimize environmental and human health impacts.

  13. Overview of the effects of the coal fuel cycle on hydrology, water quality and use, and aquatic ecology

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, R.M.; Gough, S.B.; Moran, M.S.

    1980-05-01

    Literature is summarized for the effects of the coal fuel cycle (mining, mine-site processing, transportation, storage, onsite processing, combustion, and waste collection and disposal) on water resources. Aspects considered include surface- and ground-water hydrology, water quality and use, and aquatic ecology. Water use is discussed with regard to both availability and water quality constraints on use. Requirements of the recently enacted Surface Mining Control and Reclamation Act are introduced where appropriate. For the combustion step in the fuel cycle, only those effects which are specific to coal as a fuel are addressed. Effects not specific to coal use (such as thermal effects, impingement, and entrainment resulting from cooling water withdrawal and use) are not considered. Reference is made to more exhaustive studies of the topics reviewed. A summary of the major environmental effects of the coal fuel cycle is given below.

  14. Indirect water management through Life Cycle Assessment: Fostering sustainable production in developing countries

    Science.gov (United States)

    Pfister, S.; Bayer, P.; Koehler, A.; Hellweg, S.

    2009-04-01

    Life Cycle Assessment (LCA) represents a methodological framework for analyzing the total environmental impact of any product or service of our daily life. After tracking all associated emissions and the consumption of resources, this impact is expressed with respect to a few common impact categories. These are supposed to reflect major societal and environmental priorities. However, despite their central role in environmental processes, to date hydrological as well as hydrogeological aspects are only rarely considered in LCA. Compared with standard impact categories within LCA, water is special. In contrast to other abiotic resources such as crude oil, it can be replenished. Total freshwater resources are immense, but not evenly distributed and often scarce in regions of high demand. Consequently, threads to natural water bodies have immense spatial dependency. Setting up functional relationships in order to derive a generally valid and practicable evaluation is tedious due to the complex, insufficiently understood, and uncertain natural processes involved. LCA that includes the environmental effects of water consumption means global indirect water resource management. It supports goal-directed consumer behaviour that aims to reduce pressure on natural water systems. By developing a hydrologically-based assessment of potential impacts from human interaction with natural water bodies, "greener" products can be prioritised. More sustainable and environmentally friendly water management is the result. The proposed contribution presents an operational assessment method of global surface water consumption for impacts on human health and ecosystem quality within a LCA framework. A major focus is the issue of how such global assessment helps to quantify potential impacts from water-intensive production in developing countries, where the means for proper water management are often limited. We depict a compensation scheme for impacts related to water consumption that

  15. Understanding local water conflict and cooperation: The case of Namwala District, Zambia

    Science.gov (United States)

    Funder, Mikkel; Mweemba, Carol; Nyambe, Imasiku; van Koppen, Barbara; Ravnborg, Helle Munk

    Understanding the nature of water conflict and cooperation is a crucial element in water governance within Integrated Water Resources Management (IWRM). Much of the recent attention to the issue has however focused on transboundary aspects, while we know rather less about the nature and dynamics of local water conflict and cooperation. Drawing on the work of the collaborative Competing for Water Research Programme, this article presents selected findings from a quantitative and qualitative mapping and exploration of water conflict and cooperation events in Namwala District of Zambia. It is found that local water competition situations often involve both conflictive and cooperative events in a dynamic succession of each other, but also that the majority of events are conflictive, and that they primarily take place between different types of water uses, and less frequently among the same types of uses. There is a distinct tendency for both conflictive and cooperative events to originate in the dry season, and many events are associated with water infrastructure development, particularly boreholes. The study found that most conflictive and cooperative events took place within individual communities, and only to a lesser extent between two or more communities or between districts. While third parties are involved in some events, these are primarily local village institutions such as Headmen. The article concludes by discussing the implications of these findings for local water governance, including the need to ensure that the very localized nature of such conflict and cooperation events is taken into consideration in the institutional development of IWRM.

  16. Multiple observation types reduce uncertainty in Australia's terrestrial carbon and water cycles

    Directory of Open Access Journals (Sweden)

    V. Haverd

    2013-03-01

    Full Text Available Information about the carbon cycle potentially constrains the water cycle, and vice versa. This paper explores the utility of multiple observation sets to constrain a land surface model of Australian terrestrial carbon and water cycles, and the resulting mean carbon pools and fluxes, as well as their temporal and spatial variability. Observations include streamflow from 416 gauged catchments, measurements of evapotranspiration (ET and net ecosystem production (NEP from 12 eddy-flux sites, litterfall data, and data on carbon pools. By projecting residuals between observations and corresponding predictions onto uncertainty in model predictions at the continental scale, we find that eddy flux measurements provide a significantly tighter constraint on continental net primary production (NPP than the other data types. Nonetheless, simultaneous constraint by multiple data types is important for mitigating bias from any single type. Four significant results emerging from the multiply-constrained model are that, for the 1990–2011 period: (i on the Australian continent, a predominantly semi-arid region, over half the water loss through ET (0.64 ± 0.05 occurs through soil evaporation and bypasses plants entirely; (ii mean Australian NPP is quantified at 2.2 ± 0.4 (1σ Pg C yr−1; (iii annually cyclic ("grassy" vegetation and persistent ("woody" vegetation account for 0.67 ± 0.14 and 0.33 ± 0.14, respectively, of NPP across Australia; (iv the average interannual variability of Australia's NEP (±0.18 Pg C yr−1, 1σ is larger than Australia's total anthropogenic greenhouse gas emissions in 2011 (0.149 Pg C equivalent yr–1, and is dominated by variability in desert and savanna regions.

  17. Life cycle assessment of hydrogen and power production by supercritical water reforming of glycerol

    International Nuclear Information System (INIS)

    Galera, S.; Gutiérrez Ortiz, F.J.

    2015-01-01

    Highlights: • The environmental performance of the supercritical water reforming (SCWR) of glycerol was assessed. • Biogenic CO 2 emissions allowed quantifying a realistic GHG inventory of 3.8 kg CO 2 -eq/kg H 2 . • The environmental profile of SCWR process was compared to those of other technologies. • A good environmental performance of H 2 and power production by SCWR of glycerol was obtained. - Abstract: The environmental performance of hydrogen and electricity production by supercritical water reforming (SCWR) of glycerol was evaluated following a Life Cycle Assessment (LCA) approach. The heat-integrated process was designed to be energy self-sufficient. Mass and energy balances needed for the study were performed using Aspen Plus 8.4, and the environmental assessment was carried out through SimaPro 8.0. CML 2000 was selected as the life cycle impact assessment method, considering as impact categories the global warming, ozone layer depletion, abiotic depletion, photochemical oxidant formation, eutrophication, acidification, and cumulative energy demand. A distinction between biogenic and fossil CO 2 emissions was done to quantify a more realistic GHG inventory of 3.77 kg CO 2 -eq per kg H 2 produced. Additionally, the environmental profile of SCWR process was compared to other H 2 production technologies such as steam methane reforming, carbon gasification, water electrolysis and dark fermentation among others. This way, it is shown that SCWR of glycerol allows reducing greenhouse gas emissions and obtaining a favorable positive life cycle energy balance, achieving a good environmental performance of H 2 and power production by SCWR of glycerol

  18. Theoretical-empirical model of the steam-water cycle of the power unit

    Directory of Open Access Journals (Sweden)

    Grzegorz Szapajko

    2010-06-01

    Full Text Available The diagnostics of the energy conversion systems’ operation is realised as a result of collecting, processing, evaluatingand analysing the measurement signals. The result of the analysis is the determination of the process state. It requires a usageof the thermal processes models. Construction of the analytical model with the auxiliary empirical functions built-in brings satisfyingresults. The paper presents theoretical-empirical model of the steam-water cycle. Worked out mathematical simulation model containspartial models of the turbine, the regenerative heat exchangers and the condenser. Statistical verification of the model is presented.

  19. Conceptual model to assess water use associated with the life cycle of unconventional oil and gas development

    Science.gov (United States)

    Valder, Joshua F.; McShane, Ryan R.; Barnhart, Theodore B.; Sando, Roy; Carter, Janet M.; Lundgren, Robert F.

    2018-03-15

    As the demand for energy increases in the United States, so does the demand for water used to produce many forms of that energy. Technological advances, limited access to conventional oil and gas accumulations, and the rise of oil and gas prices resulted in increased development of unconventional oil and gas (UOG) accumulations. Unconventional oil and gas is developed using a method that combines directional drilling and hydraulic fracturing techniques, allowing for greater oil and gas production from previously unrecoverable reservoirs. Quantification of the water resources required for UOG development and production is difficult because of disparate data sources, variable reporting requirements across boundaries (local, State, and national), and incomplete or proprietary datasets.A topical study was started in 2015 under the U.S. Geological Survey’s Water Availability and Use Science Program, as part of the directive in the Secure Water Act for the U.S. Geological Survey to conduct a National Water Census, to better understand the relation between production of UOG resources for energy and the amount of water needed to produce and sustain this type of energy development in the United States. The Water Availability and Use Science Program goal for this topical study is to develop and apply a statistical model to better estimate the water use associated with UOG development, regardless of the location and target geologic formation. As a first step, a conceptual model has been developed to characterize the life cycle of water use in areas of UOG development.Categories of water use and the way water-use data are collected might change over time; therefore, a generic approach was used in developing the conceptual model to allow for greater flexibility in adapting to future changes or newly available data. UOG development can be summarized into four stages: predrilling construction, drilling, hydraulic fracturing, and ongoing production. The water used in UOG

  20. The Mars water cycle at other epochs: Recent history of the polar caps and layered terrain

    Science.gov (United States)

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1992-01-01

    The Martian polar caps and layered terrain presumably evolves by the deposition and removal of small amounts of water and dust each year, the current cap attributes therefore represent the incremental transport during a single year as integrated over long periods of time. The role was studied of condensation and sublimation of water ice in this process by examining the seasonal water cycle during the last 10(exp 7) yr. In the model, axial obliquity, eccentricity, and L sub s of perihelion vary according to dynamical models. At each epoch, the seasonal variations in temperature are calculated at the two poles, keeping track of the seasonal CO2 cap and the summertime sublimation of water vapor into the atmosphere; net exchange of water between the two caps is calculated based on the difference in the summertime sublimation between the two caps (or on the sublimation from one cap if the other is covered with CO2 frost all year). Results from the model can help to explain (1) the apparent inconsistency between the timescales inferred for layer formation and the much older crater retention age of the cap and (2) the difference in sizes of the two residual caps, with the south being smaller than the north.

  1. Experts’ understandings of drinking water risk management in a climate change scenario

    Directory of Open Access Journals (Sweden)

    Åsa Boholm

    2017-01-01

    Full Text Available The challenges for society presented by climate change are complex and demanding. This paper focuses on one particular resource of utmost necessity and vulnerability to climate change: namely, the provisioning of safe drinking water. From a critical perspective on the role of expertise in risk debates, this paper looks at how Swedish experts understand risk to drinking water in a climate change scenario and how they reason about challenges to risk management and adaptation strategies. The empirical material derives from ten in-depth semi-structured interviews with experts, employed both at government agencies and at universities, and with disciplinary backgrounds in a variety of fields (water engineering, planning, geology and environmental chemistry. The experts understand risk factors affecting both drinking water quality and availability as complex and systemically interrelated. A lack of political saliency of drinking water as a public service is identified as an obstacle to the development of robust adaptation strategies. Another area of concern relates to the geographical, organizational and institutional boundaries (regulatory, political and epistemological between the plethora of public actors with partly overlapping and sometimes unclear responsibilities for the provisioning of safe drinking water. The study concludes that climate change adaptation regarding drinking water provisioning will require a new integration of the knowledge of systemic risk relations, in combination with more efficient agency collaboration based on a clear demarcation of responsibility between actors.

  2. Hydrological Cycle in the Heihe River Basin and Its Implication for Water Resource Management in Endorheic Basins

    Science.gov (United States)

    Li, Xin; Cheng, Guodong; Ge, Yingchun; Li, Hongyi; Han, Feng; Hu, Xiaoli; Tian, Wei; Tian, Yong; Pan, Xiaoduo; Nian, Yanyun; Zhang, Yanlin; Ran, Youhua; Zheng, Yi; Gao, Bing; Yang, Dawen; Zheng, Chunmiao; Wang, Xusheng; Liu, Shaomin; Cai, Ximing

    2018-01-01

    Endorheic basins around the world are suffering from water and ecosystem crisis. To pursue sustainable development, quantifying the hydrological cycle is fundamentally important. However, knowledge gaps exist in how climate change and human activities influence the hydrological cycle in endorheic basins. We used an integrated ecohydrological model, in combination with systematic observations, to analyze the hydrological cycle in the Heihe River Basin, a typical endorheic basin in arid region of China. The water budget was closed for different landscapes, river channel sections, and irrigation districts of the basin from 2001 to 2012. The results showed that climate warming, which has led to greater precipitation, snowmelt, glacier melt, and runoff, is a favorable factor in alleviating water scarcity. Human activities, including ecological water diversion, cropland expansion, and groundwater overexploitation, have both positive and negative effects. The natural oasis ecosystem has been restored considerably, but the overuse of water in midstream and the use of environmental flow for agriculture in downstream have exacerbated the water stress, resulting in unfavorable changes in surface-ground water interactions and raising concerns regarding how to fairly allocate water resources. Our results suggest that the water resource management in the region should be adjusted to adapt to a changing hydrological cycle, cropland area must be reduced, and the abstraction of groundwater must be controlled. To foster long-term benefits, water conflicts should be handled from a broad socioeconomic perspective. The findings can provide useful information on endorheic basins to policy makers and stakeholders around the world.

  3. Contribution to Surface Water Contamination Understanding by Pesticides and Pharmaceuticals, at a Watershed Scale

    Directory of Open Access Journals (Sweden)

    Stéphanie Piel

    2012-12-01

    Full Text Available This study aims at understanding the presence of regulated and emerging micropollutants, particularly pesticides and pharmaceuticals, in surface water, regarding spatial and temporal influences at a watershed scale. The study of relations between micropollutants and other water quality and hydroclimatic parameters was carried out from a statistical analysis on historical and experimental data of different sampling sites from the main watershed of Brittany, western France. The outcomes point out the influence of urban and rural areas of the watershed as well as the impact of seasons on contamination variations. This work contributes to health risk assessment related to surface water contamination by micropollutants. This approach is particularly interesting in the case of agricultural watersheds such as the one studied, where more than 80% of surface water is used to produce drinking water.

  4. Air-Surface-Ground Water Cycling in an Agricultural Desert Valley of Southern Colorado

    Science.gov (United States)

    Lanzoni, M.

    2017-12-01

    In dryland areas around the world, vegetation plays an important role in stabilizing soil and encouraging recharge. In the Colorado high desert of the San Luis Valley, windstorms strip away topsoil and deposit dust on the surrounding mountain snowpack. Dust-on-snow lowers albedo and hastens melting, which in turn lowers infiltration and aquifer recharge. Since the 1990s, the San Luis Valley has experienced a sharp decline in aquifer levels due to over-development of its water resources. Where agricultural abstraction is significant, the unconfined aquifer has experienced a 9 m (30 ft) drop. Over the course of three years, this dryland hydrology study analyzed rain, snow, surface and ground water across a 20,000 km2 high desert area to establish a baseline of water inputs. δ18O and δ2H were analyzed to develop a LMWL specific to this region of the southern Rockies and isotopic differences were examined in relation to chemistry to understand environmental influences on meteoric waters. This work identifies a repeating pattern of acid rainfall with trace element contaminants, including actinides.To better understand how the area's dominant vegetation responds to a lowered water table, 76 stem water samples were collected from the facultative phreatophyte shrubs E. nauseosa and S. vermiculatus over the summer, fall, spring, and summer of 2015 and 2016 from study plots chosen for increasing depths to groundwater. This research shows distinct patterns of water capture strategy and seasonal shifts among the E. nauseosa and S. vermiculatus shrubs. These differences are most apparent where groundwater is most accessible. However, where the water table has dropped 6 m (20 feet) over the last decade, both E. nauseosa and S. vermiculatus survive only on near-surface snowmelt and rain.

  5. Accounting for multiple functions in environmental life cycle assessment of storm water management solutions

    DEFF Research Database (Denmark)

    Brudler, Sarah; Arnbjerg-Nielsen, Karsten; Rygaard, Martin

    ) systems, which can be quantified using Life Cycle Assessment (LCA). This study aims to define the multiple functions provided by a SWM system at sub-catchment scale, and to assess the environmental impacts arising from fulfilling these functions. The approach is tested using the Nørrebro catchment...... environments by adding green and blue elements, and they change the water balance compared to traditional, underground approaches. Additionally, different implementation and maintenance processes are required. All of these transformations affect the environmental impacts of urban storm water management (SWM...... in Copenhagen, Denmark, where extensive implementation of green infrastructure is planned to mitigate the adverse effects of climate change. This « green » scenario is compared to a traditional « grey » solution, utilizing pipes and basins. The environmental impacts, which are dominated by material production...

  6. Effects of ammonia concentration on the thermodynamic performances of ammonia–water based power cycles

    International Nuclear Information System (INIS)

    Kim, Kyoung Hoon; Han, Chul Ho; Kim, Kyoungjin

    2012-01-01

    The power generation systems using a binary working fluid such as ammonia–water mixture are proven to be the feasible method for utilizing a low-temperature waste heat source. In this work, ammonia–water based Rankine (AWR) regenerative Rankine (AWRR) power generation cycles are comparatively analyzed by investigating the effects of ammonia mass concentration in the working fluid on the thermodynamic performances of systems. Temperature distributions of fluid streams in the heat exchanging devices are closely examined at different levels of ammonia concentration and they might be the most important design consideration in optimizing the power systems using a binary working fluid. The analysis shows that the lower limit of workable ammonia concentration decreases with increasing turbine inlet pressure. Results also show that both the thermal and exergy efficiencies of AWRR system are generally better than those of AWR system, and can have peaks at the minimum allowable ammonia concentrations in the working range of system operation.

  7. Air Evaporation closed cycle water recovery technology - Advanced energy saving designs

    Science.gov (United States)

    Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert

    1986-01-01

    The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.

  8. A two-dimensional fuel loading optimization method for the pressurized water reactor burnup cycle

    International Nuclear Information System (INIS)

    Stillman, J.A.; Chao, Y.A.; Downar, T.J.

    1989-01-01

    A method was developed and reported earlier that determines the optimum fuel and power distributions for a pressurized water reactor (PWR) burnup cycle. The backward diffusion calculation and the corewise Green's function method were used for the core model, which provided analytic derivatives for solving the nonlinear optimization problem using successive linear programming methods. The solution algorithm consisted of a reverse depletion strategy that begins at the end of cycle and solves simultaneously for the optimal fuel and burnable absorber distributions while the core is depleted to the beginning of cycle. These distributions were constrained by a maximum fuel power peaking and by the fuel and burnable absorber depletion characteristics. Additionally, the problem was formulated to consider specific numbers of feed and discharge assemblies by including penalty terms in the objective function. The resulting optimal solutions were shown to minimize the required fissile fuel inventory and burnable absorber lading for several PWR examples. Previously reported solutions were not required to meet some specified fuel batch size; therefore, the optimal solutions did not represent practical PWR problems. The purpose of the work reported in this paper is to investigate the effect of imposing batch size constraints on the optimization problem. Specifically, results are presented here for the case of a core consisting of three equal-sized fuel batches in which an equilibrium condition is imposed on the batch average burnups

  9. Sustainable Application of a Novel Water Cycle Using Seawater for Toilet Flushing

    Directory of Open Access Journals (Sweden)

    Xiaoming Liu

    2016-12-01

    Full Text Available Global water security is a severe issue that threatens human health and well-being. Finding sustainable alternative water resources has become a matter of great urgency. For coastal urban areas, desalinated seawater could serve as a freshwater supply. However, since 20%–30% of the water supply is used for flushing waste from the city, seawater with simple treatment could also partly replace the use of freshwater. In this work, the freshwater saving potential and environmental impacts of the urban water system (water-wastewater closed loop adopting seawater desalination, seawater for toilet flushing (SWTF, or reclaimed water for toilet flushing (RWTF are compared with those of a conventional freshwater system, through a life-cycle assessment and sensitivity analysis. The potential applications of these processes are also assessed. The results support the environmental sustainability of the SWTF approach, but its potential application depends on the coastal distance and effective population density of a city. Developed coastal cities with an effective population density exceeding 3000 persons·km−2 and located less than 30 km from the seashore (for the main pipe supplying seawater to the city would benefit from applying SWTF, regardless of other impact parameters. By further applying the sulfate reduction, autotrophic denitrification, and nitrification integrated (SANI process for wastewater treatment, the maximum distance from the seashore can be extended to 60 km. Considering that most modern urbanized cities fulfill these criteria, the next generation of water supply systems could consist of a freshwater supply coupled with a seawater supply for sustainable urban development.

  10. Life cycle assessment of central softening of very hard drinking water.

    Science.gov (United States)

    Godskesen, B; Hauschild, M; Rygaard, M; Zambrano, K; Albrechtsen, H-J

    2012-08-30

    Many consumers prefer softened water due to convenience issues such as avoidance of removing limescale deposits from household appliances and surfaces, and to reduce consumption of cleaning agents and laundry detergents leading to lower household expenses. Even though central softening of drinking water entailed an increased use of energy, sand and chemicals at the waterworks, the distributed and softened drinking water supported a decrease in consumption of energy and chemical agents in the households along with a prolonged service life of household appliances which heat water. This study used Life Cycle Assessment (LCA) to quantify the environmental impacts of central softening of drinking water considering both the negative effects at the waterworks and the positive effects imposed by the changed water quality in the households. The LCA modeling considered central softening of drinking water from the initial hardness of the region of study (Copenhagen, Denmark) which is 362 mg/L as CaCO(3) to a final hardness as CaCO(3) of 254 (a softening depth of 108) mg/L or 145 (a softening depth of 217) mg/L. Our study showed that the consumer preference can be met together with reducing the impact on the environment and the resource consumption. Environmental impacts decreased by up to 3 mPET (milli Personal Equivalent Targeted) and the break-even point from where central softening becomes environmentally beneficial was reached at a softening depth of only 22 mg/L as CaCO(3). Both energy-related and chemically related environmental impacts were reduced as well as the consumption of resources. Based on scarcity criteria, nickel was identified as the most problematic non-renewable resource in the system, and savings of up to 8 mPR (milli Person Reserve) were found. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Stand-Alone Solar Organic Rankine Cycle Water Pumping System and Its Economic Viability in Nepal

    Directory of Open Access Journals (Sweden)

    Suresh Baral

    2015-12-01

    Full Text Available The current study presents the concept of a stand-alone solar organic Rankine cycle (ORC water pumping system for rural Nepalese areas. Experimental results for this technology are presented based on a prototype. The economic viability of the system was assessed based on solar radiation data of different Nepalese geographic locations. The mechanical power produced by the solar ORC is coupled with a water pumping system for various applications, such as drinking and irrigation. The thermal efficiency of the system was found to be 8% with an operating temperature of 120 °C. The hot water produced by the unit has a temperature of 40 °C. Economic assessment was done for 1-kW and 5-kW solar ORC water pumping systems. These systems use different types of solar collectors: a parabolic trough collector (PTC and an evacuated tube collector (ETC. The economic analysis showed that the costs of water are $2.47/m3 (highest and $1.86/m3 (lowest for the 1-kW system and a 150-m pumping head. In addition, the cost of water is reduced when the size of the system is increased and the pumping head is reduced. The minimum volumes of water pumped are 2190 m3 and 11,100 m3 yearly for 1 kW and 5 kW, respectively. The payback period is eight years with a profitability index of 1.6. The system is highly feasible and promising in the context of Nepal.

  12. Robot-Assisted Socio-Hydrologic and Water Quality Understanding in Data Sparse Regions

    Science.gov (United States)

    Peschel, J.; Young, S. N.

    2016-12-01

    This work presents a robot-assisted investigation in the data sparse Arkavathy region near Bangalore, India to understand socio-hydrologic and water quality impacts for agricultural water resources management. In the late 20th century, Arkavathy River flows began declining; consequently, a dependence on the Cauvery River has occurred. Understanding the unknown reasons for this shift is critical for managing local water quantity and quality, specifically for quantifying the socio-hydrologic effects of human intervention through the construction of tanks, or reservoirs that prevent continuous flows. Determining the potential volume of water, and its quality, capable of being stored in these tanks can aid decision-makers to better understand management aspects such as recharge, streamflow, and human health. A case study is presented where small unmanned aerial vehicles (UAVs) and unmanned surface vehicles (USVs) were demonstrated as low-cost and reliable, high-resolution methodologies for surface data gathering at three locations in the Arkavathy basin during a Summer 2015 field campaign. The most significant finding for this work is that a single farmer in the region could lose one out of every five years worth of annual income if viable surface waters are not available for use.

  13. Life cycle assessment of four potable water treatment plants in northeastern Colombia

    Directory of Open Access Journals (Sweden)

    Oscar Orlando Ortiz Rodriguez

    2016-04-01

    Full Text Available There is currently great concern about the processes that directly or indirectly contribute to the potential for global warming, such as stratospheric ozone depletion or acidification. In this context, and provided that treated water is a basic public utility in urban centers around the world as well as in some rural areas, its impact on the environment is of great interest. Therefore, this study applied the environmental methodology of Life Cycle Assessment (LCA to evaluate the environmental loads of four potable water treatment plants (PWTPs located in northeastern Colombia following the international guidelines delineated in ISO 14040. The different stages of the drinking water process were thoroughly assessed, from the catchment point through pumping to the distribution network. The functional unit was defined as 1 m3 of drinking water produced at the plant. The data were analyzed through the database Ecoinvent v.3.01, and modeled and processed in the software LCA-Data Manager. The results showed that in plants PLA-CA and PLA-PO, the flocculation process has the highest environmental load, which is mostly attributable to the coagulant agent, with a range between 47-73% of the total impact. In plants PLA-TON and PLA-BOS, electricity consumption was identified as the greatest impact source, with percentages ranging from 67 to 85%. Treatment processes and techniques, bioclimatic conditions and culturally driven consumption behavior varied from region to region. Furthermore, changes in treatment processes and techniques are likely to affect the environment during all stages of a plant’s operational cycle.

  14. Modelling the urban water cycle as an integrated part of the city: a review.

    Science.gov (United States)

    Urich, Christian; Rauch, Wolfgang

    2014-01-01

    In contrast to common perceptions, the urban water infrastructure system is a complex and dynamic system that is constantly evolving and adapting to changes in the urban environment, to sustain existing services and provide additional ones. Instead of simplifying urban water infrastructure to a static system that is decoupled from its urban context, new management strategies use the complexity of the system to their advantage by integrating centralised with decentralised solutions and explicitly embedding water systems into their urban form. However, to understand and test possible adaptation strategies, urban water modelling tools are required to support exploration of their effectiveness as the human-technology-environment system coevolves under different future scenarios. The urban water modelling community has taken first steps to developing these new modelling tools. This paper critically reviews the historical development of urban water modelling tools and provides a summary of the current state of integrated modelling approaches. It reflects on the challenges that arise through the current practice of coupling urban water management tools with urban development models and discusses a potential pathway towards a new generation of modelling tools.

  15. Replication of Annual Cycles in Mn in Hudson River Cores: Mn Peaks During High Water Flow

    Science.gov (United States)

    Abbott, D. H.; Hutson, D.; Marrero, A. M.; Block, K. A.; Chang, C.; Cai, Y.

    2017-12-01

    Using the results from an ITRAX, XRF scanner, we previously reported apparent annual cycles in Mn in a single, high sedimentation rate Hudson River core, LWB1-8, taken off Yonkers, NY (Carlson et al., 2016). We replicated these results in three more high sedimentation rate cores and found stratigraphic markers that verify our inferences about the annual nature of the Mn cycles. The three new cores are LWB4-5 taken off Peekskill, NY, and LWB3-44 and LWB3-25, both taken in Haverstraw Bay. The cores are from water depths of 7-9 meters and all have high magnetic susceptibilities (typically > 30 cgs units) in their upper 1 to 2 meters. The high susceptibilities are primarily produced by magnetite from modern industrial combustion. One core, LWB1-8, has reconnaissance Cs dates that verify the annual nature of the cycles. More Cs dates are expected before the meeting. We developed several new methods of verifying the annual nature of our layer counts. The first is looking at the grain size distribution and age of layers with unusually high Mn peaks. Peaks in Si, Ni and Ti and peaks in percentage of coarse material typically accompany the peaks in Mn. Some are visible as yellow sandy layers. The five highest peaks in Mn in LWB1-8 have layer counted ages that correspond (within 1 year in the top meter and within 2 years in the bottom meter) to 1996, 1948, 1913, 1857 and 1790. The latter three events are the three largest historical spring freshets on the Hudson. 1996 is a year of unusually high flow rate during the spring freshet. Based on our work and previous work on Mn cycling in rivers, we infer that the peaks in Mn are produced by extreme erosional events that erode sediment and release pore water Mn into the water column. The other methods of testing our chronology involve marine storms that increase Ca and Sr and a search for fragments of the Peekskill meteorite that fell in October 1992. More information on the latter will be available by the meeting.

  16. The role of copper and oxalate in the redox cycling of iron in atmospheric waters

    Science.gov (United States)

    Sedlak, David L.; Hoigné, Jürg

    During daytime, the redox cycling of dissolved iron compounds in atmospheric waters, and the related in-cloud transformations of photooxidants, are affected by reactions of Fe and Cu with hydroperoxy (HO 2) and superoxide (O 2-) radicals and the photoreduction of Fe(III)-oxalato complexes. We have investigated several of the important chemical reactions in this redox cycle, through laboratory simulation of the system, using γ-radiation to produce HO 2/O 2-. At concentrations comparable to those measured in atmospheric waters, the redox cycling of Fe was dramatically affected by the presence of oxalate and trace concentrations of Cu. At concentrations more than a hundred times lower than Fe, Cu consumed most of the HO 2/O 2-, and cycled between the Cu(II) and Cu(I) forms. Cu + reacted with FeOH 2+ to produce Fe(II) and Cu(II), with a second order rate constant of approximately 3 × 10 7 M -1s -1. The presence of oxalate resulted in the formation of Fe(III)-oxalato complexes that were essentially unreactive with HO 2/O 2-. Only at high oxalate concentrations was the Fe(II)C 2O 4 complex also formed, and it reacted relatively rapidly with hydrogen peroxide ( k = (3.1 ± 0.6) × 10 4 M -1s -1). Simulations incorporating measurements for other redox mechanisms, including oxidation by ozone, indicate that, during daytime, Fe should be found mostly in the ferrous oxidation state, and that reactions of FeOH 2+ with Cu(I) and HO 2/O 2-, and to a lesser degree, the photolysis of Fe(III)-oxalato complexes, are important mechanisms of Fe reduction in atmospheric waters. The catalytic effect of Cu(II)/Cu(I) and Fe(III)/Fe(II) should also significantly increase the sink function of the atmospheric liquid phase for HO 2 present in a cloud. A simple kinetic model for the reactions of Fe, Cu and HO 2/O 2-, accurately predicted the changes in Fe oxidation states that occurred when authentic fogwater samples were exposed to HO 2/O 2-.

  17. Science to support the understanding of Ohio's water resources, 2016-17

    Science.gov (United States)

    Shaffer, Kimberly; Kula, Stephanie P.; Shaffer, Kimberly; Kula, Stephanie P.

    2016-12-19

    Ohio’s water resources support a complex web of human activities and nature—clean and abundant water is needed for drinking, recreation, farming, and industry, as well as for fish and wildlife needs. Although rainfall in normal years can support these activities and needs, occasional floods and droughts can disrupt streamflow, groundwater, water availability, water quality, recreation, and aquatic habitats. Ohio is bordered by the Ohio River and Lake Erie; it has over 44,000 miles of streams and more than 60,000 lakes and ponds (State of Ohio, 1994). Nearly all of the rural population obtains drinking water from groundwater sources. The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as universities, to furnish decisionmakers, policy makers, USGS scientists, and the general public with reliable scientific information and tools to assist them in management, stewardship, and use of Ohio’s natural resources. The diversity of scientific expertise among USGS personnel enables them to carry out large- and small-scale multidisciplinary studies. The USGS is unique among government organizations because it has neither regulatory nor developmental authority—its sole product is impartial, credible, relevant, and timely scientific information, equally accessible and available to everyone. The USGS Ohio Water Science Center provides reliable hydrologic and water-related ecological information to aid in the understanding of the use and management of the Nation’s water resources, in general, and Ohio’s water resources, in particular. This fact sheet provides an overview of current (2016) or recently completed USGS studies and data activities pertaining to water resources in Ohio. More information regarding projects of the USGS Ohio Water Science Center is available at http://oh.water.usgs.gov/.

  18. Potential improvements in the once-through fuel cycle for light water reactors (PWR)

    International Nuclear Information System (INIS)

    1979-06-01

    The light water reactor (LWR) operating with low enriched uranium (LEU) constitutes a well established, mature system which has proved its potential for economic energy production in large-scale commercial operation. In the Federal Republic of Germany, approximately 7000 MWsub(e) of LWR capacity have been installed up to mid-1978 and further capacity is under construction or planned for the future. However, the concern over possible nuclear arms proliferation in a growing nuclear energy economy has fostered a reassessment of the plutonium recycle concept and a search for possible alternatives. Various scenarios have been suggested as alternatives to the uranium and plutonium recycle. One of them is to utilize only slightly-enriched uranium in a throwaway fuel cycle. Such a situation would justify or even necessitate considering deployment of alternate reactor concepts with substantially better fuel utilization in the long range, and improvements of resource utilization in the framework of current reactor technology to the maximum feasible extent in the short range. In this paper, a number of potential modifications to existing PWR fuel management and core design is examined which would possibly enhance uranium resource utilization somewhat without requiring major departures from existing LWR technologies. Possibilities identified include shorter cycle length, increased burnup of the discharged fuel, reinsertion of once burnt first core fuel assemblies, increasing the pellet diameter and greater lattice water-to-fuel volume ratio

  19. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget

    Science.gov (United States)

    Cole, J.J.; Prairie, Y.T.; Caraco, N.F.; McDowell, W.H.; Tranvik, L.J.; Striegl, Robert G.; Duarte, C.M.; Kortelainen, Pirkko; Downing, J.A.; Middelburg, J.J.; Melack, J.

    2007-01-01

    Because freshwater covers such a small fraction of the Earth's surface area, inland freshwater ecosystems (particularly lakes, rivers, and reservoirs) have rarely been considered as potentially important quantitative components of the carbon cycle at either global or regional scales. By taking published estimates of gas exchange, sediment accumulation, and carbon transport for a variety of aquatic systems, we have constructed a budget for the role of inland water ecosystems in the global carbon cycle. Our analysis conservatively estimates that inland waters annually receive, from a combination of background and anthropogenically altered sources, on the order of 1.9 Pg C y-1 from the terrestrial landscape, of which about 0.2 is buried in aquatic sediments, at least 0.8 (possibly much more) is returned to the atmosphere as gas exchange while the remaining 0.9 Pg y-1 is delivered to the oceans, roughly equally as inorganic and organic carbon. Thus, roughly twice as much C enters inland aquatic systems from land as is exported from land to the sea. Over prolonged time net carbon fluxes in aquatic systems tend to be greater per unit area than in much of the surrounding land. Although their area is small, these freshwater aquatic systems can affect regional C balances. Further, the inclusion of inland, freshwater ecosystems provides useful insight about the storage, oxidation and transport of terrestrial C, and may warrant a revision of how the modern net C sink on land is described. ?? 2007 Springer Science+Business Media, LLC.

  20. Ingestion of sodium plus water improves cardiovascular function and performance during dehydrating cycling in the heat.

    Science.gov (United States)

    Hamouti, N; Fernández-Elías, V E; Ortega, J F; Mora-Rodriguez, R

    2014-06-01

    We studied if salt and water ingestion alleviates the physiological strain caused by dehydrating exercise in the heat. Ten trained male cyclists (VO2max : 60 ± 7 mL/kg/min) completed three randomized trials in a hot-dry environment (33 °C, 30% rh, 2.5 m/s airflow). Ninety minutes before the exercise, participants ingested 10 mL of water/kg body mass either alone (CON trial) or with salt to result in concentrations of 82 or 164 mM Na(+) (ModNa(+) or HighNa(+) trial, respectively). Then, participants cycled at 63% of VO2 m ⁢ a x for 120 min immediately followed by a time-trial. After 120 min of exercise, the reduction in plasma volume was lessened with ModNa(+) and HighNa(+) trials (-11.9 ± 2.1 and -9.8 ± 4.2%) in comparison with CON (-16.4 ± 3.2%; P cycling performance. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Acceleration Harmonic Estimation in a Hydraulic Shaking Table Using Water Cycle Algorithm

    Directory of Open Access Journals (Sweden)

    Jianjun Yao

    2018-01-01

    Full Text Available Hydraulic shaking table is mainly used to stimulate the desired vibration environment and evaluate the shock resistance of structure. However, due to the inherent nonlinearities of the hydraulic shaking table, the acceleration response displays amplitude attenuation and phase delay for sinusoidal excitation signal. The distorted response degrades the control performance and even leads to an increase in system instability. In this paper, the water cycle algorithm (WCA, a recently developed metaheuristic method, is developed to estimate the harmonic information such as amplitude and phase. The basic idea of the proposed algorithm is inspired from nature and based on the observation of water cycle process and how rivers and streams flow to the sea in the nature world. The estimation process based on WCA is sequentially updating the weight vector of the signal. The amplitude and phase of fundamental as well as each harmonic can be achieved when the objective function is minimized. Simulation and experimental results demonstrate that the proposed harmonic estimation algorithm has good real-time performance, fast convergence, and excellent accuracy.

  2. Application of Data Cubes for Improving Detection of Water Cycle Extreme Events

    Science.gov (United States)

    Albayrak, Arif; Teng, William

    2015-01-01

    As part of an ongoing NASA-funded project to remove a longstanding barrier to accessing NASA data (i.e., accessing archived time-step array data as point-time series), for the hydrology and other point-time series-oriented communities, "data cubes" are created from which time series files (aka "data rods") are generated on-the-fly and made available as Web services from the Goddard Earth Sciences Data and Information Services Center (GES DISC). Data cubes are data as archived rearranged into spatio-temporal matrices, which allow for easy access to the data, both spatially and temporally. A data cube is a specific case of the general optimal strategy of reorganizing data to match the desired means of access. The gain from such reorganization is greater the larger the data set. As a use case of our project, we are leveraging existing software to explore the application of the data cubes concept to machine learning, for the purpose of detecting water cycle extreme events, a specific case of anomaly detection, requiring time series data. We investigate the use of support vector machines (SVM) for anomaly classification. We show an example of detection of water cycle extreme events, using data from the Tropical Rainfall Measuring Mission (TRMM).

  3. System Life Cycle Evaluation(SM) (SLiCE): harmonizing water treatment systems with implementers' needs.

    Science.gov (United States)

    Goodman, Joseph; Caravati, Kevin; Foote, Andrew; Nelson, Molly; Woods, Emily

    2013-06-01

    One of the methods proposed to improve access to clean drinking water is the mobile packaged water treatment system (MPWTS). The lack of published system performance comparisons combined with the diversity of technology available and intended operating conditions make it difficult for stakeholders to choose the system best suited for their application. MPWTS are often deployed in emergency situations, making selection of the appropriate system crucial to avoiding wasted resources and loss of life. Measurable critical-to-quality characteristics (CTQs) and a system selection tool for MPWTS were developed by utilizing relevant literature, including field studies, and implementing and comparing seven different MPWTS. The proposed System Life Cycle Evaluation (SLiCE) method uses these CTQs to evaluate the diversity in system performance and harmonize relevant performance with stakeholder preference via a selection tool. Agencies and field workers can use SLiCE results to inform and drive decision-making. The evaluation and selection tool also serves as a catalyst for communicating system performance, common design flaws, and stakeholder needs to system manufacturers. The SLiCE framework can be adopted into other emerging system technologies to communicate system performance over the life cycle of use.

  4. Noninvasive Determination of Anaerobic Threshold Based on the Heart Rate Deflection Point in Water Cycling.

    Science.gov (United States)

    Pinto, Stephanie S; Brasil, Roxana M; Alberton, Cristine L; Ferreira, Hector K; Bagatini, Natália C; Calatayud, Joaquin; Colado, Juan C

    2016-02-01

    This study compared heart rate (HR), oxygen uptake (VO2), percentage of maximal HR (%HRmax), percentage of maximal VO2, and cadence (Cad) related to the anaerobic threshold (AT) during a water cycling maximal test between heart rate deflection point (HRDP) and ventilatory (VT) methods. In addition, the correlations between both methods were assessed for all variables. The test was performed by 27 men in a cycle ergometer in an aquatic environment. The protocol started at a Cad of 100 b · min(-1) for 3 minutes with subsequent increments of 15 b · min(-1) every 2 minutes until exhaustion. A paired two-tailed Student's t-test was used to compare the variables between the HRDP and VT methods. The Pearson product-moment correlation test was used to correlate the same variables determined by the 2 methods. There was no difference in HR (166 ± 13 vs. 166 ± 13 b · min(-1)), VO2 (38.56 ± 6.26 vs. 39.18 ± 6.13 ml · kg(-1) · min(-1)), %HRmax (89.24 ± 3.84 vs. 89.52 ± 4.29%), VO2max (70.44 ± 7.99 vs. 71.64 ± 8.32%), and Cad (174 ± 14 b · min(-1) vs. 171 ± 8 b · min(-1)) related to AT between the HRDP and VT methods. Moreover, significant relationships were found between the methods to determine the AT for all variables analyzed (r = 0.57-0.97). The estimation of the HRDP may be a noninvasive and easy method to determine the AT, which could be used to adapt individualized training intensities to practitioners during water cycling classes.

  5. Understanding water uptake in bioaerosols using laboratory measurements, field tests, and modeling

    Science.gov (United States)

    Chaudhry, Zahra; Ratnesar-Shumate, Shanna A.; Buckley, Thomas J.; Kalter, Jeffrey M.; Gilberry, Jerome U.; Eshbaugh, Jonathan P.; Corson, Elizabeth C.; Santarpia, Joshua L.; Carter, Christopher C.

    2013-05-01

    Uptake of water by biological aerosols can impact their physical and chemical characteristics. The water content in a bioaerosol can affect the backscatter cross-section as measured by LIDAR systems. Better understanding of the water content in controlled-release clouds of bioaerosols can aid in the development of improved standoff detection systems. This study includes three methods to improve understanding of how bioaerosols take up water. The laboratory method measures hygroscopic growth of biological material after it is aerosolized and dried. Hygroscopicity curves are created as the humidity is increased in small increments to observe the deliquescence point, then the humidity is decreased to observe the efflorescence point. The field component of the study measures particle size distributions of biological material disseminated into a large humidified chamber. Measurements are made with a Twin-Aerodynamic Particle Sizer (APS, TSI, Inc), -Relative Humidity apparatus where two APS units measure the same aerosol cloud side-by-side. The first operated under dry conditions by sampling downstream of desiccant dryers, the second operated under ambient conditions. Relative humidity was measured within the sampling systems to determine the difference in the aerosol water content between the two sampling trains. The water content of the bioaerosols was calculated from the twin APS units following Khlystov et al. 2005 [1]. Biological material is measured dried and wet and compared to laboratory curves of the same material. Lastly, theoretical curves are constructed from literature values for components of the bioaerosol material.

  6. Energy-exergy analysis of compressor pressure ratio effects on thermodynamic performance of ammonia water combined cycle

    International Nuclear Information System (INIS)

    Mohtaram, Soheil; Chen, Wen; Zargar, T.; Lin, Ji

    2017-01-01

    Highlights: • Energy exergy analysis is conducted to find the effects of RP. • EES software is utilized to perform the detailed energy-exergy analyses. • Effects investigated through energy and exergy destruction, enthalpy, yields, etc. • Detailed results are reported showing the performance of gas and combined cycle. - Abstract: The purpose of this study is to investigate the effect of compressor pressure ratio (RP) on the thermodynamic performances of ammonia-water combined cycle through energy and exergy destruction, enthalpy temperature, yields, and flow velocity. The energy-exergy analysis is conducted on the ammonia water combined cycle and the Rankine cycle, respectively. Engineering Equation Solver (EES) software is utilized to perform the detailed analyses. Values and ratios regarding heat drop and exergy loss are presented in separate tables for different equipments. The results obtained by the energy-exergy analysis indicate that by increasing the pressure ratio compressor, exergy destruction of high-pressure compressors, intercooler, gas turbine and the special produced work of gas turbine cycle constantly increase and the exergy destruction of recuperator, in contrast, decreases continuously. In addition, the least amount of input fuel into the combined cycle is observed when the pressure ratio is no less than 7.5. Subsequently, the efficiency of the cycle in gas turbine and combined cycle is reduced because the fuel input into the combined cycle is increased.

  7. Flood analysis in mixed-urban areas reflecting interactions with the complete water cycle through coupled hydrologic-hydraulic modelling.

    Science.gov (United States)

    Sto Domingo, N D; Refsgaard, A; Mark, O; Paludan, B

    2010-01-01

    The potential devastating effects of urban flooding have given high importance to thorough understanding and management of water movement within catchments, and computer modelling tools have found widespread use for this purpose. The state-of-the-art in urban flood modelling is the use of a coupled 1D pipe and 2D overland flow model to simultaneously represent pipe and surface flows. This method has been found to be accurate for highly paved areas, but inappropriate when land hydrology is important. The objectives of this study are to introduce a new urban flood modelling procedure that is able to reflect system interactions with hydrology, verify that the new procedure operates well, and underline the importance of considering the complete water cycle in urban flood analysis. A physically-based and distributed hydrological model was linked to a drainage network model for urban flood analysis, and the essential components and concepts used were described in this study. The procedure was then applied to a catchment previously modelled with the traditional 1D-2D procedure to determine if the new method performs similarly well. Then, results from applying the new method in a mixed-urban area were analyzed to determine how important hydrologic contributions are to flooding in the area.

  8. Integration of absorption refrigeration systems into Rankine power cycles to reduce water consumption: A thermodynamic analysis

    International Nuclear Information System (INIS)

    Salgado, R.; Belmonte, J.F.; Almendros-Ibáñez, J.A.; Molina, A.E.

    2017-01-01

    A high percentage of the heat that is supplied to thermoelectric power plants is discarded to ambient and must be handled by an external cooling system. This cooling system typically consists of wet cooling towers because of the excellent thermo-physical properties of water. However, the amount of water consumed for power production has reached alarming levels in developed countries. Air-cooled heat exchangers (ACHXs) appear to be the most adequate technology to substitute for wet cooling towers, but the use of this technology has some limitations. The most important limitation is the higher condenser pressures in the cycle, which produce backpressures at the condensing turbine's exit, increases in heat rejection and losses in the net plant efficiency. This paper presents a concept for the use of ACHXs in the cooling systems of power plants using an absorption refrigeration system (ARS) as an intermediary. Heat from the steam condenser is handled by the evaporator of the ARS and “lifted” to a higher temperature level, where the ACHXs are fitted to work. The generator of the ARS is fed by the power plant itself, extractin