WorldWideScience

Sample records for understanding vascular endothelium

  1. Injuries to the vascular endothelium: vascular wall and endothelial dysfunction.

    Science.gov (United States)

    Fisher, Mark

    2008-01-01

    Vascular endothelial injury has multiple elements, and this article focuses on ischemia-related processes that have particular relevance to ischemic stroke. Distinctions between necrotic and apoptotic cell death provide a basic science context in which to better understand the significance of classical core and penumbra concepts of acute stroke, with apoptotic processes particularly prominent in the penumbra. The mitochondria are understood to serve as a reservoir of proteins that mediate apoptosis. Oxidative stress pathways generating reactive oxygen species (ROS) are prominent in endothelial injury, both ischemic and nonischemic, with prominent roles of enzyme- and nonenzymemediated pathways; mitochondria once again have a critical role, particularly in the nonenzymatic pathways generating ROS. Inflammation also contributes to vascular endothelial injury, and endothelial cells have the capacity to rapidly increase expression of inflammatory mediators following ischemic challenge; this leads to enhanced leukocyte-endothelial interactions mediated by selectins and adhesion molecules. Preconditioning consists of a minor version of an injurious event, which in turn may protect vascular endothelium from injury following a more substantial event. Presence of the blood-brain barrier creates unique responses to endothelial injury, with permeability changes due to impairment of endothelial-matrix interactions compounding altered vasomotor tone and tissue perfusion mediated by nitric oxide. Pharmacological protection against vascular endothelial injury can be provided by several of the phosphodiesterases (cilostazol and dipyridamole), along with statins. Optimal clinical responses for protection of brain vascular endothelium may use preconditioning as a model, and will likely require combined protection against apoptosis, ROS, and inflammation.

  2. Vascular endothelium receptors and transduction mechanisms

    CERN Document Server

    Gillis, C; Ryan, Una; Proceedings of the Advanced Studies Institute on "Vascular Endothelium: Receptors and Transduction Mechanisms"

    1989-01-01

    Beyond their obvious role of a barrier between blood and tissue, vascular endothelial cells are now firmly established as active and essential participants in a host of crucial physiological and pathophysiological functions. Probably the two most important factors responsible for promoting the current knowledge of endothelial functions are 1) observations in the late sixties-early seventies that many non-ventilatory properties of the lung could be attributed to the pulmonary endothelium and 2) the establishment, in the early and mid-seventies of procedures for routine culture of vascular endothelial cells. Many of these endothelial functions require the presence of receptors on the surface of the plasma membrane. There is now evidence for the existence among others of muscarinic, a-and /3-adrenergic, purine, insulin, histamine, bradykinin, lipoprotein, thrombin, paf, fibronectin, vitronectin, interleukin and albumin receptors. For some of these ligands, there is evidence only for the existence of endothelial ...

  3. Targeted modulation of reactive oxygen species in the vascular endothelium

    OpenAIRE

    Shuvaev, Vladimir V.; Muzykantov, Vladimir R.

    2011-01-01

    Endothelial cells lining vascular luminal surface represent an important site of signaling and injurious effects of reactive oxygen species (ROS) produced by other cells and endothelium itself in ischemia, inflammation and other pathological conditions. Targeted delivery of ROS modulating enzymes conjugated with antibodies to endothelial surface molecules (vascular immunotargeting) provides site-specific interventions in the endothelial ROS, unattainable by other formulations including PEG-mo...

  4. Dynamic, nondestructive imaging of a bioengineered vascular graft endothelium.

    Directory of Open Access Journals (Sweden)

    Bryce M Whited

    Full Text Available Bioengineering of vascular grafts holds great potential to address the shortcomings associated with autologous and conventional synthetic vascular grafts used for small diameter grafting procedures. Lumen endothelialization of bioengineered vascular grafts is essential to provide an antithrombogenic graft surface to ensure long-term patency after implantation. Conventional methods used to assess endothelialization in vitro typically involve periodic harvesting of the graft for histological sectioning and staining of the lumen. Endpoint testing methods such as these are effective but do not provide real-time information of endothelial cells in their intact microenvironment, rather only a single time point measurement of endothelium development. Therefore, nondestructive methods are needed to provide dynamic information of graft endothelialization and endothelium maturation in vitro. To address this need, we have developed a nondestructive fiber optic based (FOB imaging method that is capable of dynamic assessment of graft endothelialization without disturbing the graft housed in a bioreactor. In this study we demonstrate the capability of the FOB imaging method to quantify electrospun vascular graft endothelialization, EC detachment, and apoptosis in a nondestructive manner. The electrospun scaffold fiber diameter of the graft lumen was systematically varied and the FOB imaging system was used to noninvasively quantify the affect of topography on graft endothelialization over a 7-day period. Additionally, results demonstrated that the FOB imaging method had a greater imaging penetration depth than that of two-photon microscopy. This imaging method is a powerful tool to optimize vascular grafts and bioreactor conditions in vitro, and can be further adapted to monitor endothelium maturation and response to fluid flow bioreactor preconditioning.

  5. Targeted modulation of reactive oxygen species in the vascular endothelium.

    Science.gov (United States)

    Shuvaev, Vladimir V; Muzykantov, Vladimir R

    2011-07-15

    'Endothelial cells lining vascular luminal surface represent an important site of signaling and injurious effects of reactive oxygen species (ROS) produced by other cells and endothelium itself in ischemia, inflammation and other pathological conditions. Targeted delivery of ROS modulating enzymes conjugated with antibodies to endothelial surface molecules (vascular immunotargeting) provides site-specific interventions in the endothelial ROS, unattainable by other formulations including PEG-modified enzymes. Targeting of ROS generating enzymes (e.g., glucose oxidase) provides ROS- and site-specific models of endothelial oxidative stress, whereas targeting of antioxidant enzymes SOD and catalase offers site-specific quenching of superoxide anion and H(2)O(2). These targeted antioxidant interventions help to clarify specific role of endothelial ROS in vascular and pulmonary pathologies and provide basis for design of targeted therapeutics for treatment of these pathologies. In particular, antibody/catalase conjugates alleviate acute lung ischemia/reperfusion injury, whereas antibody/SOD conjugates inhibit ROS-mediated vasoconstriction and inflammatory endothelial signaling. Encapsulation in protease-resistant, ROS-permeable carriers targeted to endothelium prolongs protective effects of antioxidant enzymes, further diversifying the means for targeted modulation of endothelial ROS. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Stress susceptibility as a determinant of endothelium-dependent vascular reactivity in rat mesenteric arteries.

    NARCIS (Netherlands)

    Riksen, N.P.; Ellenbroek, B.A.; Cools, A.R.; Siero, H.L.M.; Rongen, G.A.P.J.M.; Smits, B.W.; Russel, F.G.M.; Smits, P.

    2003-01-01

    In order to investigate the consequences of stress susceptibility on vascular function, the authors assessed the respective contributions of nitric oxide (NO), prostanoids, and endothelium-derived hyperpolarizing factor to the vascular tone in rats with a constitutionally determined high and low

  7. Junctional transfer in cultured vascular endothelium: II. Dye and nucleotide transfer

    International Nuclear Information System (INIS)

    Larson, D.M.; Sheridan, J.D.

    1985-01-01

    Vascular endothelial cultures, derived from large vessels, retain many of the characteristics of their in vivo counterparts. However, the observed reduction in size and complexity of intercellular gap and tight junctions in these cultured cells suggests that important functions, thought to be mediated by these structures, may be altered in vitro. In continuing studies on intercellular communication in vessel wall cells, the authors have quantitated the extent of junctional transfer of small molecular tracers (the fluorescent dye Lucifer Yellow CH and tritiated uridine nucleotides) in confluent cultures of calf aortic (BAEC) and umbilical vein (BVEC) endothelium. Both BAEC and BVEC show extensive (and quantitatively equivalent) dye and nucleotide transfer. As an analogue of intimal endothelium, the authors have also tested dye transfer in freshly isolated sheets of endothelium. Transfer in BAEC and BVEC sheets was more rapid, extensive and homogeneous than in the cultured cells, implying a reduction in molecular coupling as endothelium adapts to culture conditions. In addition, they have documented heterocellular nucleotide transfer between cultured endothelium and vascular smooth muscle cells, of particular interest considering the prevalence of ''myo-endothelial'' junctions in vivo. These data yield further information on junctional transfer in cultured vascular endothelium and have broad implications for the functional integration of the vessel wall in the physiology and pathophysiology of the vasculature

  8. The relationship of vascular endothelial marker and endothelium-dependent vasodilatation in patients with essential hypertension

    International Nuclear Information System (INIS)

    Chen Yongjian; Zhou Yonglie; Hu Qingfeng; Qiu Liannv

    2009-01-01

    Objective: To explore the relationship of vascular endothelial marker and endothelium-dependent vasodilatation in patients with essential hypertension (EH). Methods: Plasma endothlium (ET-1) (with RIA) and von Willber factor (vWF)(with ELISA) levels were measured both before and after 12 wks' treatment in 56 patients with essential hypertension and 32 controls. The brachial artery endothelium-dependent vasodilatation function was examined with high resolving color doppler ultra-sonography. The 56 patients with EH were of two groups A. high and very high risk, n=26 B. low and moderate risk, n=30. Results: Plasma levels of ET-1, vWF in patients with EH as a whole were significantly higher than those in controls group [(53.3±16.2)pg/ml vs(42.5±8.5)pg/ml, (158.2±28.6)% vs(130.6±35.2)%], endothelium-dependent vasodilatation function wasmuch reduced in patients with EH(7.5±4.2)% vs controls(12.3±4.3)%. Among the patients, values in Group A were significantly different from those in Group B. After treatment for 12 weeks, plasma ET-1 and vWF and endothelium-dependent vasodilatation function were significantly improved. There was negative correlation between vascular endothelial marker levels and endothelium-dependent vasodilatation function. Conclusion: The endothelium-dependent vasodilatation function was impaired and plasma ET-1 and vWF levels were increased in patients with EH, the endothelial dysfunction was closely associated with the risk level of EH. Vascular endothelial markers were useful indicators for evaluation of the endothelium-dependent vasodilatation function. (authors)

  9. Relationship between vascular endothelium and periodontal disease in atherosclerotic lesions: Review article

    Science.gov (United States)

    Saffi, Marco Aurélio Lumertz; Furtado, Mariana Vargas; Polanczyk, Carisi Anne; Montenegro, Márlon Munhoz; Ribeiro, Ingrid Webb Josephson; Kampits, Cassio; Haas, Alex Nogueira; Rösing, Cassiano Kuchenbecker; Rabelo-Silva, Eneida Rejane

    2015-01-01

    Inflammation and endothelial dysfunction are linked to the pathogenesis of atherosclerotic disease. Recent studies suggest that periodontal infection and the ensuing increase in the levels of inflammatory markers may be associated with myocardial infarction, peripheral vascular disease and cerebrovascular disease. The present article aimed at reviewing contemporary data on the pathophysiology of vascular endothelium and its association with periodontitis in the scenario of cardiovascular disease. PMID:25632316

  10. Gastrin-releasing peptide induces monocyte adhesion to vascular endothelium by upregulating endothelial adhesion molecules

    International Nuclear Information System (INIS)

    Kim, Mi-Kyoung; Park, Hyun-Joo; Kim, Yeon; Kim, Hyung Joon; Bae, Soo-Kyung; Bae, Moon-Kyoung

    2017-01-01

    Gastrin-releasing peptide (GRP) is a neuropeptide that plays roles in various pathophysiological conditions including inflammatory diseases in peripheral tissues; however, little is known about whether GRP can directly regulate endothelial inflammatory processes. In this study, we showed that GRP promotes the adhesion of leukocytes to human umbilical vein endothelial cells (HUVECs) and the aortic endothelium. GRP increased the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) by activating nuclear factor-κB (NF-κB) in endothelial cells. In addition, GRP activated extracellular signal-regulated kinase 1/2 (ERK1/2), p38MAPK, and AKT, and the inhibition of these signaling pathways significantly reduced GRP-induced monocyte adhesion to the endothelium. Overall, our results suggested that GRP may cause endothelial dysfunction, which could be of particular relevance in the development of vascular inflammatory disorders. - Highlights: • GRP induces adhesion of monocytes to vascular endothelium. • GRP increases the expression of endothelial adhesion molecules through the activation of NF-κB. • ERK1/2, p38MAPK, and Akt pathways are involved in the GRP-induced leukocyte adhesiveness to endothelium.

  11. Obesity and risk of vascular disease: importance of endothelium-dependent vasoconstriction.

    Science.gov (United States)

    Barton, Matthias; Baretella, Oliver; Meyer, Matthias R

    2012-02-01

    Obesity has become a serious global health issue affecting both adults and children. Recent devolopments in world demographics and declining health status of the world's population indicate that the prevalence of obesity will continue to increase in the next decades. As a disease, obesity has deleterious effects on metabolic homeostasis, and affects numerous organ systems including heart, kidney and the vascular system. Thus, obesity is now regarded as an independent risk factor for atherosclerosis-related diseases such as coronary artery disease, myocardial infarction and stroke. In the arterial system, endothelial cells are both the source and target of factors contributing to atherosclerosis. Endothelial vasoactive factors regulate vascular homeostasis under physiological conditions and maintain basal vascular tone. Obesity results in an imbalance between endothelium-derived vasoactive factors favouring vasoconstriction, cell growth and inflammatory activation. Abnormal regulation of these factors due to endothelial cell dysfunction is both a consequence and a cause of vascular disease processes. Finally, because of the similarities of the vascular pathomechanisms activated, obesity can be considered to cause accelerated, 'premature' vascular aging. Here, we will review some of the pathomechanisms involved in obesity-related activation of endothelium-dependent vasoconstriction, the clinical relevance of obesity-associated vascular risk, and therapeutic interventions using 'endothelial therapy' aiming at maintaining or restoring vascular endothelial health. This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  12. A key role for the endothelium in NOD1 mediated vascular inflammation: comparison to TLR4 responses.

    Directory of Open Access Journals (Sweden)

    Timothy Gatheral

    Full Text Available Understanding the mechanisms by which pathogens induce vascular inflammation and dysfunction may reveal novel therapeutic targets in sepsis and related conditions. The intracellular receptor NOD1 recognises peptidoglycan which features in the cell wall of gram negative and some gram positive bacteria. NOD1 engagement generates an inflammatory response via activation of NFκB and MAPK pathways. We have previously shown that stimulation of NOD1 directly activates blood vessels and causes experimental shock in vivo. In this study we have used an ex vivo vessel-organ culture model to characterise the relative contribution of the endothelium in the response of blood vessels to NOD1 agonists. In addition we present the novel finding that NOD1 directly activates human blood vessels. Using human cultured cells we confirm that endothelial cells respond more avidly to NOD1 agonists than vascular smooth muscle cells. Accordingly we have sought to pharmacologically differentiate NOD1 and TLR4 mediated signalling pathways in human endothelial cells, focussing on TAK1, NFκB and p38 MAPK. In addition we profile novel inhibitors of RIP2 and NOD1 itself, which specifically inhibit NOD1 ligand induced inflammatory signalling in the vasculature. This paper is the first to demonstrate activation of whole human artery by NOD1 stimulation and the relative importance of the endothelium in the sensing of NOD1 ligands by vessels. This data supports the potential utility of NOD1 and RIP2 as therapeutic targets in human disease where vascular inflammation is a clinical feature, such as in sepsis and septic shock.

  13. Endothelium-derived fibronectin regulates neonatal vascular morphogenesis in an autocrine fashion.

    Science.gov (United States)

    Turner, Christopher J; Badu-Nkansah, Kwabena; Hynes, Richard O

    2017-11-01

    Fibronectin containing alternatively spliced EIIIA and EIIIB domains is largely absent from mature quiescent vessels in adults, but is highly expressed around blood vessels during developmental and pathological angiogenesis. The precise functions of fibronectin and its splice variants during developmental angiogenesis however remain unclear due to the presence of cardiac, somitic, mesodermal and neural defects in existing global fibronectin KO mouse models. Using a rare family of surviving EIIIA EIIIB double KO mice, as well as inducible endothelial-specific fibronectin-deficient mutant mice, we show that vascular development in the neonatal retina is regulated in an autocrine manner by endothelium-derived fibronectin, and requires both EIIIA and EIIIB domains and the RGD-binding α5 and αv integrins for its function. Exogenous sources of fibronectin do not fully substitute for the autocrine function of endothelial fibronectin, demonstrating that fibronectins from different sources contribute differentially to specific aspects of angiogenesis.

  14. Hypotensive effect and endothelium-dependent vascular action of leaves of Alpinia purpurata (Vieill K. Schum

    Directory of Open Access Journals (Sweden)

    Alessandra Tesch da Silva

    2014-04-01

    Full Text Available The aims of this study were to evaluate the chemical profile, vascular reactivity, and acute hypotensive effect (AHE of the ethanolic extract of leaves of Alpinia purpurata (Vieill K. Schum (EEAP. Its chemical profile was evaluated using HPLC-UV, ICP-OES, and colorimetric quantification of total flavonoids and polyphenols. The vascular reactivity of the extract was determined using the mesenteric bed isolated from WKY. AHE dose-response curves were obtained for both EEAP and inorganic material isolated from AP (IAP in WKY and SHR animals. Cytotoxic and mutagenic safety levels were determined by the micronucleus test. Rutin-like flavonoids were quantified in the EEAP (1.8 ± 0.03%, and the total flavonoid and polyphenol ratios were 4.1 ± 1.8% and 5.1 ± 0.3%, respectively. We observed that the vasodilation action of EEAP was partially mediated by nitric oxide (·NO. The IAP showed the presence of calcium (137.76 ± 4.08 μg mg-1. The EEAP and IAP showed an AHE in WKY and SHR animals. EEAP did not have cytotoxic effects or cause chromosomic alterations. The AHE shown by EEAP could result from its endothelium-dependent vascular action. Rutin-like flavonoids, among other polyphenols, could contribute to these biological activities, and the calcium present in EEAP could act in a synergistic way.

  15. [Binding studies with Ulex europaeus agglutinin I (UEA-I) of the vascular endothelium of the synovial membrane].

    Science.gov (United States)

    Zschäbitz, A; Stofft, E

    1988-01-01

    The lectin binding sites of the synovium of patients with rheumatoid arthritis and osteoarthritis were investigated. It was shown that Ulex europaeus agglutinin is a constant marker of the vascular endothelium and is not induced during the course of inflammatory process in rheumatoid arthritis.

  16. The original Pathologische Anatomie Leiden-Endothelium monoclonal antibody recognizes a vascular endothelial growth factor binding site within neuropilin-1

    NARCIS (Netherlands)

    Jaalouk, Diana E.; Ozawa, Nfichael G.; Sun, Jessica; Lahdenranta, Johanna; Schlingemann, Reinier O.; Pasqualini, Renata; Arap, Wadih

    2007-01-01

    For two decades, the antigen recognized by the Pathologische Anatomie Leiden-Endothelium (PAL-E) monoclonal antibody, a standard vascular endothelial cell marker, has remained elusive. Here, we used a combinatorial phage display-based approach ("epitope mapping") to select peptides binding to the

  17. Vascular Cognitive Impairment Linked to Brain Endothelium Inflammation in Early Stages of Heart Failure in Mice.

    Science.gov (United States)

    Adamski, Mateusz G; Sternak, Magdalena; Mohaissen, Tasnim; Kaczor, Dawid; Wierońska, Joanna M; Malinowska, Monika; Czaban, Iwona; Byk, Katarzyna; Lyngsø, Kristina S; Przyborowski, Kamil; Hansen, Pernille B L; Wilczyński, Grzegorz; Chlopicki, Stefan

    2018-03-26

    Although advanced heart failure (HF) is a clinically documented risk factor for vascular cognitive impairment, the occurrence and pathomechanisms of vascular cognitive impairment in early stages of HF are equivocal. Here, we characterize vascular cognitive impairment in the early stages of HF development and assess whether cerebral hypoperfusion or prothrombotic conditions are involved. Tgαq*44 mice with slowly developing isolated HF triggered by cardiomyocyte-specific overexpression of G-αq*44 protein were studied before the end-stage HF, at the ages of 3, 6, and 10 months: before left ventricle dysfunction; at the stage of early left ventricle diastolic dysfunction (with preserved ejection fraction); and left ventricle diastolic/systolic dysfunction, respectively. In 6- to 10-month-old but not in 3-month-old Tgαq*44 mice, behavioral and cognitive impairment was identified with compromised blood-brain barrier permeability, most significantly in brain cortex, that was associated with myelin sheet loss and changes in astrocytes and microglia. Brain endothelial cells displayed increased E-selectin immunoreactivity, which was accompanied by increased amyloid-β 1-42 accumulation in piriform cortex and increased cortical oxidative stress (8-OHdG immunoreactivity). Resting cerebral blood flow measured by magnetic resonance imaging in vivo was preserved, but ex vivo NO-dependent cortical arteriole flow regulation was impaired. Platelet hyperreactivity was present in 3- to 10-month-old Tgαq*44 mice, but it was not associated with increased platelet-dependent thrombogenicity. We report for the first time that vascular cognitive impairment is already present in the early stage of HF development, even before left ventricle systolic dysfunction. The underlying pathomechanism, independent of brain hypoperfusion, involves preceding platelet hyperreactivity and brain endothelium inflammatory activation. © 2018 The Authors. Published on behalf of the American Heart

  18. Breast cancer drugs dampen vascular functions by interfering with nitric oxide signaling in endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Gajalakshmi, Palanivel; Priya, Mani Krishna; Pradeep, Thangaraj; Behera, Jyotirmaya; Muthumani, Kandasamy; Madhuwanti, Srinivasan; Saran, Uttara; Chatterjee, Suvro, E-mail: soovro@yahoo.ca

    2013-06-01

    Widely used chemotherapeutic breast cancer drugs such as Tamoxifen citrate (TC), Capecitabine (CP) and Epirubicin (EP) are known to cause various cardiovascular side-effects among long term cancer survivors. Vascular modulation warrants nitric oxide (NO) signal transduction, which targets the vascular endothelium. We hypothesize that TC, CP and EP interference with the nitric oxide downstream signaling specifically, could lead to cardiovascular dysfunctions. The results demonstrate that while all three drugs attenuate NO and cyclic guanosine mono-phosphate (cGMP) production in endothelial cells, they caused elevated levels of NO in the plasma and RBC. However, PBMC and platelets did not show any significant changes under treatment. This implies that the drug effects are specific to the endothelium. Altered eNOS and phosphorylated eNOS (Ser-1177) localization patterns in endothelial cells were observed following drug treatments. Similarly, the expression of phosphorylated eNOS (Ser-1177) protein was decreased under the treatment of drugs. Altered actin polymerization was also observed following drug treatment, while addition of SpNO and 8Br-cGMP reversed this effect. Incubation with the drugs decreased endothelial cell migration whereas addition of YC-1, SC and 8Br-cGMP recovered the effect. Additionally molecular docking studies showed that all three drugs exhibited a strong binding affinity with the catalytic domain of human sGC. In conclusion, results indicate that TC, CP and EP cause endothelial dysfunctions via the NO–sGC–cGMP pathway and these effects could be recovered using pharmaceutical agonists of NO signaling pathway. Further, the study proposes a combination therapy of chemotherapeutic drugs and cGMP analogs, which would confer protection against chemotherapy mediated vascular dysfunctions in cancer patients. - Highlights: • NO production is reduced in endothelial cells under breast cancer drug treatment. • Cellular cGMP level is decreased under

  19. Breast cancer drugs dampen vascular functions by interfering with nitric oxide signaling in endothelium

    International Nuclear Information System (INIS)

    Gajalakshmi, Palanivel; Priya, Mani Krishna; Pradeep, Thangaraj; Behera, Jyotirmaya; Muthumani, Kandasamy; Madhuwanti, Srinivasan; Saran, Uttara; Chatterjee, Suvro

    2013-01-01

    Widely used chemotherapeutic breast cancer drugs such as Tamoxifen citrate (TC), Capecitabine (CP) and Epirubicin (EP) are known to cause various cardiovascular side-effects among long term cancer survivors. Vascular modulation warrants nitric oxide (NO) signal transduction, which targets the vascular endothelium. We hypothesize that TC, CP and EP interference with the nitric oxide downstream signaling specifically, could lead to cardiovascular dysfunctions. The results demonstrate that while all three drugs attenuate NO and cyclic guanosine mono-phosphate (cGMP) production in endothelial cells, they caused elevated levels of NO in the plasma and RBC. However, PBMC and platelets did not show any significant changes under treatment. This implies that the drug effects are specific to the endothelium. Altered eNOS and phosphorylated eNOS (Ser-1177) localization patterns in endothelial cells were observed following drug treatments. Similarly, the expression of phosphorylated eNOS (Ser-1177) protein was decreased under the treatment of drugs. Altered actin polymerization was also observed following drug treatment, while addition of SpNO and 8Br-cGMP reversed this effect. Incubation with the drugs decreased endothelial cell migration whereas addition of YC-1, SC and 8Br-cGMP recovered the effect. Additionally molecular docking studies showed that all three drugs exhibited a strong binding affinity with the catalytic domain of human sGC. In conclusion, results indicate that TC, CP and EP cause endothelial dysfunctions via the NO–sGC–cGMP pathway and these effects could be recovered using pharmaceutical agonists of NO signaling pathway. Further, the study proposes a combination therapy of chemotherapeutic drugs and cGMP analogs, which would confer protection against chemotherapy mediated vascular dysfunctions in cancer patients. - Highlights: • NO production is reduced in endothelial cells under breast cancer drug treatment. • Cellular cGMP level is decreased under

  20. Expression of follicle-stimulating hormone receptor by the vascular endothelium in tumor metastases

    International Nuclear Information System (INIS)

    Siraj, Ahsan; Gonin, Julie; Radu, Aurelian; Ghinea, Nicolae; Desestret, Virginie; Antoine, Martine; Fromont, Gaëlle; Huerre, Michel; Sanson, Marc; Camparo, Philippe; Pichon, Christophe; Planeix, François

    2013-01-01

    The Follicle Stimulating Hormone receptor (FSHR) is expressed by the vascular endothelium in a wide range of human tumors. It was not determined however if FSHR is present in metastases which are responsible for the terminal illness. We used immunohistochemistry based on a highly FSHR-specific monoclonal antibody to detect FSHR in cancer metastases from 6 major tumor types (lung, breast, prostate, colon, kidney, and leiomyosarcoma) to 6 frequent locations (bone, liver, lymph node, brain, lung, and pleura) of 209 patients. In 166 patients examined (79%), FSHR was expressed by blood vessels associated with metastatic tissue. FSHR-positive vessels were present in the interior of the tumors and some few millimeters outside, in the normally appearing tissue. In the interior of the metastases, the density of the FSHR-positive vessels was constant up to 7 mm, the maximum depth available in the analyzed sections. No significant differences were noticed between the density of FSHR-positive vessels inside vs. outside tumors for metastases from lung, breast, colon, and kidney cancers. In contrast, for prostate cancer metastases, the density of FSHR-positive vessels was about 3-fold higher at the exterior of the tumor compared to the interior. Among brain metastases, the density of FSHR-positive vessels was highest in lung and kidney cancer, and lowest in prostate and colon cancer. In metastases of breast cancer to the lung pleura, the percentage of blood vessels expressing FSHR was positively correlated with the progesterone receptor level, but not with either HER-2 or estrogen receptors. In normal tissues corresponding to the host organs for the analyzed metastases, obtained from patients not known to have cancer, FSHR staining was absent, with the exception of approx. 1% of the vessels in non tumoral temporal lobe epilepsy samples. FSHR is expressed by the endothelium of blood vessels in the majority of metastatic tumors

  1. Exercise-mediated wall shear stress increases mitochondrial biogenesis in vascular endothelium.

    Directory of Open Access Journals (Sweden)

    Boa Kim

    Full Text Available Enhancing structural and functional integrity of mitochondria is an emerging therapeutic option against endothelial dysfunction. In this study, we sought to investigate the effect of fluid shear stress on mitochondrial biogenesis and mitochondrial respiratory function in endothelial cells (ECs using in vitro and in vivo complementary studies.Human aortic- or umbilical vein-derived ECs were exposed to laminar shear stress (20 dyne/cm2 for various durations using a cone-and-plate shear apparatus. We observed significant increases in the expression of key genes related to mitochondrial biogenesis and mitochondrial quality control as well as mtDNA content and mitochondrial mass under the shear stress conditions. Mitochondrial respiratory function was enhanced when cells were intermittently exposed to laminar shear stress for 72 hrs. Also, shear-exposed cells showed diminished glycolysis and decreased mitochondrial membrane potential (ΔΨm. Likewise, in in vivo experiments, mice that were subjected to a voluntary wheel running exercise for 5 weeks showed significantly higher mitochondrial content determined by en face staining in the conduit (greater and lesser curvature of the aortic arch and thoracic aorta and muscle feed (femoral artery arteries compared to the sedentary control mice. Interestingly, however, the mitochondrial biogenesis was not observed in the mesenteric artery. This region-specific adaptation is likely due to the differential blood flow redistribution during exercise in the different vessel beds.Taken together, our findings suggest that exercise enhances mitochondrial biogenesis in vascular endothelium through a shear stress-dependent mechanism. Our findings may suggest a novel mitochondrial pathway by which a chronic exercise may be beneficial for vascular function.

  2. Unique cell type-specific junctional complexes in vascular endothelium of human and rat liver sinusoids.

    Directory of Open Access Journals (Sweden)

    Cyrill Géraud

    Full Text Available Liver sinusoidal endothelium is strategically positioned to control access of fluids, macromolecules and cells to the liver parenchyma and to serve clearance functions upstream of the hepatocytes. While clearance of macromolecular debris from the peripheral blood is performed by liver sinusoidal endothelial cells (LSECs using a delicate endocytic receptor system featuring stabilin-1 and -2, the mannose receptor and CD32b, vascular permeability and cell trafficking are controlled by transcellular pores, i.e. the fenestrae, and by intercellular junctional complexes. In contrast to blood vascular and lymphatic endothelial cells in other organs, the junctional complexes of LSECs have not yet been consistently characterized in molecular terms. In a comprehensive analysis, we here show that LSECs express the typical proteins found in endothelial adherens junctions (AJ, i.e. VE-cadherin as well as α-, β-, p120-catenin and plakoglobin. Tight junction (TJ transmembrane proteins typical of endothelial cells, i.e. claudin-5 and occludin, were not expressed by rat LSECs while heterogenous immunreactivity for claudin-5 was detected in human LSECs. In contrast, junctional molecules preferentially associating with TJ such as JAM-A, B and C and zonula occludens proteins ZO-1 and ZO-2 were readily detected in LSECs. Remarkably, among the JAMs JAM-C was considerably over-expressed in LSECs as compared to lung microvascular endothelial cells. In conclusion, we show here that LSECs form a special kind of mixed-type intercellular junctions characterized by co-occurrence of endothelial AJ proteins, and of ZO-1 and -2, and JAMs. The distinct molecular architecture of the intercellular junctional complexes of LSECs corroborates previous ultrastructural findings and provides the molecular basis for further analyses of the endothelial barrier function of liver sinusoids under pathologic conditions ranging from hepatic inflammation to formation of liver metastasis.

  3. Serum galectin-2, -4, and -8 are greatly increased in colon and breast cancer patients and promote cancer cell adhesion to blood vascular endothelium

    DEFF Research Database (Denmark)

    Barrow, Hannah; Guo, Xiuli; Wandall, Hans H

    2011-01-01

    Adhesion of disseminating tumor cells to the blood vascular endothelium is a pivotal step in metastasis. Previous investigations have shown that galectin-3 concentrations are increased in the bloodstream of patients with cancer and that galectin-3 promotes adhesion of disseminating tumor cells...... to vascular endothelium in vitro and experimental metastasis in vivo. This study determined the levels of galectin-1, -2, -3, -4, -8, and -9 in the sera of healthy people and patients with colon and breast cancer and assessed the influence of these galectins on cancer-endothelium adhesion....

  4. [Effects of sodium ethamsylate on anticoagulant and anti-aggregation activity of vascular endothelium in hemorrhagic fever patients with renal syndrome].

    Science.gov (United States)

    Davidovich, I M; Sirotin, B Z; Parshina, T A

    1999-01-01

    To elucidate effects of sodium ethamsylate (SE) on anticoagulant and antiaggregation activity of vascular endothelium in patients suffering from hemorrhagic fever with renal syndrome (HFRS). A trial of SE enrolled 70 HFRS patients (58 males, 12 females aged under 30 years) compatible by the disease severity. They were divided into two groups. 42 patients of the control group received standard therapy, 28 patients of the study group received adjuvant 12% solution of SE in daily dose 1500-2000 mg in the course of HFRS oliguria period. Hemostatic parameters were measured before and after the cuff test to investigate the condition of vascular wall with calculation of the athrombogenicity index (the ratio of the relevant indices before and after the cuff test). SE effects on vascular endothelium was assessed by a blind method. In oliguria, both groups had baseline antiaggregation indices significantly higher than in the control. After the cuff test, control patients' indices tended to an increase while in the study group there was a marked decrease. The trend in anticoagulant activity of microvascular endothelium did not differ much with the groups. This picture persisted also in polyuria. In convalescence hemostasis was similar in both groups. SE enhances antiaggregant activity of vascular endothelium in oliguria period of HFRS without affecting its anticoagulant properties. This is explained by a direct effect of SE on vascular endothelium.

  5. Ulex europaeus I lectin as a marker for vascular endothelium in human tissues.

    Science.gov (United States)

    Holthöfer, H; Virtanen, I; Kariniemi, A L; Hormia, M; Linder, E; Miettinen, A

    1982-07-01

    Ulex europaeus I agglutinin, a lectin specific for some alpha-L-fucose-containing glycocompounds, was used in fluorescence microscopy to stain cryostat sections of human tissues. The endothelium of vessels of all sizes was stained ubiquitously in all tissues studied as judged by double staining with a known endothelial marker, antibodies against human clotting factor VIII. Cultured human umbilical vein endothelial cells, but not fibroblasts, also bound Ulex lectin. The staining was not affected by the blood group type of the tissue donor. In some tissues Ulex lectin presented additional binding to epithelial structures. Also, this was independent on the blood group or the ability of the tissue donor to secrete soluble blood group substances. Lotus tetragonolobus agglutinin, another lectin specific for some alpha-L-fucose-containing moieties failed to react with endothelial cells. Our results suggest that Ulex europaeus I agglutinin is a good histologic marker for endothelium in human tissues.

  6. Interaction in endothelium of non-muscular myosin light-chain kinase and the NF-κB pathway is critical to lipopolysaccharide-induced vascular hyporeactivity.

    Science.gov (United States)

    Recoquillon, Sylvain; Carusio, Nunzia; Lagrue-Lakhal, Anne-Hélène; Tual-Chalot, Simon; Filippelli, Amelia; Andriantsitohaina, Ramaroson; Martinez, M Carmen

    2015-10-01

    During sepsis, endothelial barrier dysfunction contributes to cardiovascular failure, mainly through the release of oxidative metabolites by penetrant leukocytes. We reported the non-muscular isoform of myosin light chain kinase (nmMLCK) playing a pivotal role in endotoxin shock injury associated with oxidative and nitrative stresses, and vascular hyporeactivity. The present study was aimed at understanding the molecular mechanism of lipopolysaccharide (LPS)-induced vascular alterations as well as studying a probable functional association of nmMLCK with nuclear factor κ-light-chain enhancer of activated B cells (NF-κB). Aortic rings from mice were exposed in vitro to LPS and, then, vascular reactivity was measured. Human aortic endothelial cells (HAoECs) were incubated with LPS, and interaction of nmMLCK with NF-κB was analysed. We provide evidence that nmMLCK deletion prevents vascular hyporeactivity induced by in vitro LPS treatment but not endothelial dysfunction in the aorta. Deletion of nmMLCK inhibits LPS-induced NF-κB activation and increases nitric oxide (NO) release via induction of inducible NO synthase (iNOS) within the vascular wall. Also, removal of endothelium prevented both NF-κB and iNOS expression in aortic rings. Among the proinflammatory factors released by LPS-treated endothelial cells, interleukin-6 accounts for the induction of iNOS on smooth muscle cells in response to LPS. Of particular interest is the demonstration that, in HAoECs, LPS-induced NF-κB activation occurs via increased MLCK activity sensitive to the MLCK inhibitor, ML-7, and physical interactions between nmMLCK and NF-κB. We report for the first time on NF-κB as a novel partner of nmMLCK within endothelial cells. The present study demonstrates a pivotal role of nmMLCK in vascular inflammatory pathologies. © 2015 Authors; published by Portland Press Limited.

  7. Progranulin protects vascular endothelium against atherosclerotic inflammatory reaction via Akt/eNOS and nuclear factor-κB pathways.

    Science.gov (United States)

    Hwang, Hwan-Jin; Jung, Tae Woo; Hong, Ho Cheol; Choi, Hae Yoon; Seo, Ji-A; Kim, Sin Gon; Kim, Nan Hee; Choi, Kyung Mook; Choi, Dong Seop; Baik, Sei Hyun; Yoo, Hye Jin

    2013-01-01

    Atherosclerosis is considered a chronic inflammatory disease, initiated by activation and dysfunction of the endothelium. Recently, progranulin has been regarded as an important modulator of inflammatory processes; however, the role for prgranulin in regulating inflammation in vascular endothelial cells has not been described. Signaling pathways mediated by progranulin were analyzed in human umbilical vein endothelial cells (HUVECs) treated with progranulin. Progranulin significantly induced Akt and endothelial nitric oxide synthase (eNOS) phosphorylation in HUVECs, an effect that was blocked with Akt inhibitor. Furthermore, nitric oxide (NO) level, the end product of Akt/eNOS pathway, was significantly upregulated after progranulin treatment. Next, we showed that progranulin efficiently inhibited lipopolysaccharide (LPS)-mediated pro-inflammatory signaling. LPS-induced phosphorylation of IκB and nuclear factor-κB (NF-κB) levels decreased after progranulin treatment. Also, progranulin blocked translocation of NF-κB from the cytosol to the nucleus. In addition, progranulin significantly reduced the expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) by inhibiting binding of NF- κB to their promoter regions and blocked attachment of monocytes to HUVECs. Progranulin also significantly reduced the expression of tumor necrosis factor receptor-α (TNF-α) and monocyte chemo-attractant protein-1 (MCP-1), the crucial inflammatory molecules known to aggravate atherosclerosis. Progranulin efficiently inhibited LPS-mediated pro-inflammatory signaling in endothelial cells through activation of the Akt/eNOS pathway and attenuation of the NF-κB pathway, suggesting its protective roles in vascular endothelium against inflammatory reaction underlying atherosclerosis.

  8. Progranulin protects vascular endothelium against atherosclerotic inflammatory reaction via Akt/eNOS and nuclear factor-κB pathways.

    Directory of Open Access Journals (Sweden)

    Hwan-Jin Hwang

    Full Text Available OBJECTIVE: Atherosclerosis is considered a chronic inflammatory disease, initiated by activation and dysfunction of the endothelium. Recently, progranulin has been regarded as an important modulator of inflammatory processes; however, the role for prgranulin in regulating inflammation in vascular endothelial cells has not been described. METHOD AND RESULTS: Signaling pathways mediated by progranulin were analyzed in human umbilical vein endothelial cells (HUVECs treated with progranulin. Progranulin significantly induced Akt and endothelial nitric oxide synthase (eNOS phosphorylation in HUVECs, an effect that was blocked with Akt inhibitor. Furthermore, nitric oxide (NO level, the end product of Akt/eNOS pathway, was significantly upregulated after progranulin treatment. Next, we showed that progranulin efficiently inhibited lipopolysaccharide (LPS-mediated pro-inflammatory signaling. LPS-induced phosphorylation of IκB and nuclear factor-κB (NF-κB levels decreased after progranulin treatment. Also, progranulin blocked translocation of NF-κB from the cytosol to the nucleus. In addition, progranulin significantly reduced the expression of vascular cell adhesion molecule-1 (VCAM-1 and intercellular adhesion molecule-1 (ICAM-1 by inhibiting binding of NF- κB to their promoter regions and blocked attachment of monocytes to HUVECs. Progranulin also significantly reduced the expression of tumor necrosis factor receptor-α (TNF-α and monocyte chemo-attractant protein-1 (MCP-1, the crucial inflammatory molecules known to aggravate atherosclerosis. CONCLUSION: Progranulin efficiently inhibited LPS-mediated pro-inflammatory signaling in endothelial cells through activation of the Akt/eNOS pathway and attenuation of the NF-κB pathway, suggesting its protective roles in vascular endothelium against inflammatory reaction underlying atherosclerosis.

  9. Vascular endothelium as a target of immune response in renal transplant rejection

    Directory of Open Access Journals (Sweden)

    Giovanni ePiotti

    2014-10-01

    Full Text Available This review of clinical and experimental studies aims at analysing the interplay between graft endothelium and host immune system in renal transplantation, and how it affects the survival of the graft. Graft endothelium is indeed the first barrier between self and non-self that is encountered by host lymphocytes upon reperfusion of vascularised solid transplants. Endothelial cells express all the major sets of antigens that elicit host immune response, and therefore represent a preferential target in organ rejection.Some of the antigens expressed by endothelial cells are target of the antibody-mediated response, such as the AB0 blood group system, the HLA and MICA systems, and the endothelial cell-restricted antigens; for each of these systems, the mechanisms of interaction and damage of both preformed and de novo donor-specific antibodies are reviewed along with their impact on renal graft survival. Moreover the rejection process can force injured endothelial cells to expose cryptic self-antigens, toward which an auto-immune response mounts, overlapping to the allo-immune response in the damaging of the graft. Not only are endothelial cells a passive target of the host immune response, but also an active player in lymphocyte activation; therefore their interaction with allogenic T-cells is analysed on the basis of experimental in vitro and in vivo studies, according to the patterns of expression of the HLA class I and II and the co-stimulatory molecules specific for cytotoxic and helper T-cells.Finally, as the response that follows transplantation has proven to be not necessarily destructive, the factors that foster graft endothelium functioning in spite of rejection, and how they could be therapeutically harnessed to promote long-term graft acceptance, are described: accommodation that is resistance of endothelial cells to donor-specific antibodies, and endothelial cell ability to induce Foxp3+ Regulatory T-cells, that are crucial mediators of

  10. Hypoxia and hydrogen sulfide differentially affect normal and tumor-derived vascular endothelium

    Directory of Open Access Journals (Sweden)

    Serena Bianco

    2017-08-01

    Full Text Available Background: endothelial cells play a key role in vessels formation both under physiological and pathological conditions. Their behavior is influenced by blood components including gasotransmitters (H2S, NO and CO. Tumor cells are subjected to a cyclic shift between pro-oxidative and hypoxic state and, in this scenario, H2S can be both cytoprotective and detrimental depending on its concentration. H2S effects on tumors onset and development is scarcely studied, particularly concerning tumor angiogenesis. We previously demonstrated that H2S is proangiogenic for tumoral but not for normal endothelium and this may represent a target for antiangiogenic therapeutical strategies. Methods: in this work, we investigate cell viability, migration and tubulogenesis on human EC derived from two different tumors, breast and renal carcinoma (BTEC and RTEC, compared to normal microvascular endothelium (HMEC under oxidative stress, hypoxia and treatment with exogenous H2S. Results: all EC types are similarly sensitive to oxidative stress induced by hydrogen peroxide; chemical hypoxia differentially affects endothelial viability, that results unaltered by real hypoxia. H2S neither affects cell viability nor prevents hypoxia and H2O2-induced damage. Endothelial migration is enhanced by hypoxia, while tubulogenesis is inhibited for all EC types. H2S acts differentially on EC migration and tubulogenesis. Conclusions: these data provide evidence for a great variability of normal and altered endothelium in response to the environmental conditions. Keywords: Hydrogen sulfide, Human microvascular endothelial cells, Human breast carcinoma-derived EC, Human renal carcinoma-derived EC, Tumor angiogenesis

  11. TLR4-mediated expression of Mac-1 in monocytes plays a pivotal role in monocyte adhesion to vascular endothelium.

    Directory of Open Access Journals (Sweden)

    Seung Jin Lee

    Full Text Available Toll-like receptor 4 (TLR4 is known to mediate monocyte adhesion to endothelial cells, however, its role on the expression of monocyte adhesion molecules is unclear. In the present study, we investigated the role of TLR4 on the expression of monocyte adhesion molecules, and determined the functional role of TLR4-induced adhesion molecules on monocyte adhesion to endothelial cells. When THP-1 monocytes were stimulated with Kdo2-Lipid A (KLA, a specific TLR4 agonist, Mac-1 expression was markedly increased in association with an increased adhesion of monocytes to endothelial cells. These were attenuated by anti-Mac-1 antibody, suggesting a functional role of TLR4-induced Mac-1 on monocyte adhesion to endothelial cells. In monocytes treated with MK886, a 5-lipoxygenase (LO inhibitor, both Mac-1 expression and monocyte adhesion to endothelial cells induced by KLA were markedly attenuated. Moreover, KLA increased the expression of mRNA and protein of 5-LO, suggesting a pivotal role of 5-LO on these processes. In in vivo studies, KLA increased monocyte adhesion to aortic endothelium of wild-type (WT mice, which was attenuated in WT mice treated with anti-Mac-1 antibody as well as in TLR4-deficient mice. Taken together, TLR4-mediated expression of Mac-1 in monocytes plays a pivotal role on monocyte adhesion to vascular endothelium, leading to increased foam cell formation in the development of atherosclerosis.

  12. Molecular imaging of the human pulmonary vascular endothelium in pulmonary hypertension: a phase II safety and proof of principle trial

    Energy Technology Data Exchange (ETDEWEB)

    Harel, Francois [Montreal Heart Institute, Research Center, Montreal, QC (Canada); Universite de Montreal, Department of Nuclear Medicine, Montreal, Quebec (Canada); Langleben, David; Abikhzer, Gad [McGill University, Lady Davis Institute and Jewish General Hospital, Montreal, Quebec (Canada); Provencher, Steve; Guimond, Jean [Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Quebec (Canada); Fournier, Alain; Letourneau, Myriam [INRS-Institut Armand-Frappier, Laval, Quebec (Canada); Finnerty, Vincent; Nguyen, Quang T.; Levac, Xavier [Montreal Heart Institute, Research Center, Montreal, QC (Canada); Mansour, Asmaa; Guertin, Marie-Claude [Montreal Health Innovation Coordination Center, Montreal, QC (Canada); Dupuis, Jocelyn [Montreal Heart Institute, Research Center, Montreal, QC (Canada); Universite de Montreal, Department of Medicine, Montreal, Quebec (Canada)

    2017-07-15

    The adrenomedullin receptor is densely expressed in the pulmonary vascular endothelium. PulmoBind, an adrenomedullin receptor ligand, was developed for molecular diagnosis of pulmonary vascular disease. We evaluated the safety of PulmoBind SPECT imaging and its capacity to detect pulmonary vascular disease associated with pulmonary hypertension (PH) in a human phase II study. Thirty patients with pulmonary arterial hypertension (PAH, n = 23) or chronic thromboembolic PH (CTEPH, n = 7) in WHO functional class II (n = 26) or III (n = 4) were compared to 15 healthy controls. Lung SPECT was performed after injection of 15 mCi {sup 99m}Tc-PulmoBind in supine position. Qualitative and semi-quantitative analyses of lung uptake were performed. Reproducibility of repeated testing was evaluated in controls after 1 month. PulmoBind injection was well tolerated without any serious adverse event. Imaging was markedly abnormal in PH with ∝50% of subjects showing moderate to severe heterogeneity of moderate to severe extent. The abnormalities were unevenly distributed between the right and left lungs as well as within each lung. Segmental defects compatible with pulmonary embolism were present in 7/7 subjects with CTEPH and in 2/23 subjects with PAH. There were no segmental defects in controls. The PulmoBind activity distribution index, a parameter indicative of heterogeneity, was elevated in PH (65% ± 28%) vs. controls (41% ± 13%, p = 0.0003). In the only subject with vasodilator-responsive idiopathic PAH, PulmoBind lung SPECT was completely normal. Repeated testing 1 month later in healthy controls was well tolerated and showed no significant variability of PulmoBind distribution. In this phase II study, molecular SPECT imaging of the pulmonary vascular endothelium using {sup 99m}Tc-PulmoBind was safe. PulmoBind showed potential to detect both pulmonary embolism and abnormalities indicative of pulmonary vascular disease in PAH. Phase III studies with this novel tracer and

  13. Platelet Endothelial Cell Adhesion Molecule-1, a Putative Receptor for the Adhesion of Streptococcus pneumoniae to the Vascular Endothelium of the Blood-Brain Barrier

    NARCIS (Netherlands)

    Iovino, Federico; Molema, Grietje; Bijlsma, Jetta J. E.

    The Gram-positive bacterium Streptococcus pneumoniae is the main causative agent of bacterial meningitis. S. pneumoniae is thought to invade the central nervous system via the bloodstream by crossing the vascular endothelium of the blood-brain barrier. The exact mechanism by which pneumococci cross

  14. Factor VIII-associated antigen in human lymphatic endothelium.

    Science.gov (United States)

    Nagle, R B; Witte, M H; Martinez, A P; Witte, C L; Hendrix, M J; Way, D; Reed, K

    1987-03-01

    Lymphatic vascular endothelium both on tissue section and in culture exhibits positivity for Factor VIII-associated antigen although staining is generally less intense and more spotty than in comparable blood vascular endothelium. Lymphatic endothelium also exhibits Weibel-Palade bodies. Neither marker, therefore, reliably distinguishes blood vascular endothelium from lymphatic endothelium.

  15. Study of the therapeutic benefit of cationic copolymer administration to vascular endothelium under mechanical stress

    Science.gov (United States)

    Giantsos-Adams, Kristina; Lopez-Quintero, Veronica; Kopeckova, Pavla; Kopecek, Jindrich; Tarbell, John M.; Dull, Randal

    2015-01-01

    Pulmonary edema and the associated increases in vascular permeability continue to represent a significant clinical problem in the intensive care setting, with no current treatment modality other than supportive care and mechanical ventilation. Therapeutic compound(s) capable of attenuating changes in vascular barrier function would represent a significant advance in critical care medicine. We have previously reported the development of HPMA-based copolymers, targeted to endothelial glycocalyx that are able to enhance barrier function. In this work, we report the refinement of copolymer design and extend our physiological studies todemonstrate that the polymers: 1) reduce both shear stress and pressure-mediated increase in hydraulic conductivity, 2) reduce nitric oxide production in response to elevated hydrostatic pressure and, 3) reduce the capillary filtration coefficient (Kfc) in an isolated perfused mouse lung model. These copolymers represent an important tool for use in mechanotransduction research and a novel strategy for developing clinically useful copolymers for the treatment of vascular permeability. PMID:20932573

  16. Sox17 drives functional engraftment of endothelium converted from non-vascular cells.

    Science.gov (United States)

    Schachterle, William; Badwe, Chaitanya R; Palikuqi, Brisa; Kunar, Balvir; Ginsberg, Michael; Lis, Raphael; Yokoyama, Masataka; Elemento, Olivier; Scandura, Joseph M; Rafii, Shahin

    2017-01-16

    Transplanting vascular endothelial cells (ECs) to support metabolism and express regenerative paracrine factors is a strategy to treat vasculopathies and to promote tissue regeneration. However, transplantation strategies have been challenging to develop, because ECs are difficult to culture and little is known about how to direct them to stably integrate into vasculature. Here we show that only amniotic cells could convert to cells that maintain EC gene expression. Even so, these converted cells perform sub-optimally in transplantation studies. Constitutive Akt signalling increases expression of EC morphogenesis genes, including Sox17, shifts the genomic targeting of Fli1 to favour nearby Sox consensus sites and enhances the vascular function of converted cells. Enforced expression of Sox17 increases expression of morphogenesis genes and promotes integration of transplanted converted cells into injured vessels. Thus, Ets transcription factors specify non-vascular, amniotic cells to EC-like cells, whereas Sox17 expression is required to confer EC function.

  17. Epigenetics in the Vascular Endothelium: Looking From a Different Perspective in the Epigenomics Era.

    Science.gov (United States)

    Yan, Matthew S; Marsden, Philip A

    2015-11-01

    Cardiovascular diseases are commonly thought to be complex, non-Mendelian diseases that are influenced by genetic and environmental factors. A growing body of evidence suggests that epigenetic pathways play a key role in vascular biology and might be involved in defining and transducing cardiovascular disease inheritability. In this review, we argue the importance of epigenetics in vascular biology, especially from the perspective of endothelial cell phenotype. We highlight and discuss the role of epigenetic modifications across the transcriptional unit of protein-coding genes, especially the role of intragenic chromatin modifications, which are underappreciated and not well characterized in the current era of genome-wide studies. Importantly, we describe the practical application of epigenetics in cardiovascular disease therapeutics. © 2015 American Heart Association, Inc.

  18. Human endothelium on vascular prostheses modified by extracellular matrix proteins in a flow experiment

    Czech Academy of Sciences Publication Activity Database

    Chlupáč, Jaroslav; Filová, Elena; Riedel, Tomáš; Brynda, Eduard; Remy-Zolghadri, M.; Bareille, R.; Fernandez, P.; Daculsi, R.; Bordenave, L.; Bačáková, Lucie

    2006-01-01

    Roč. 9, č. 58-60 (2006), s. 10-13 ISSN 1429-7248 R&D Projects: GA AV ČR(CZ) IAA5011301; GA AV ČR(CZ) IAA4050202; GA AV ČR(CZ) IAA400500507; GA AV ČR(CZ) 1QS500110564 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z40500505 Keywords : bioartificial vascular prostheses * laminin * fibrin Subject RIV: EI - Biotechnology ; Bionics

  19. Proteomic identification of dysferlin-interacting protein complexes in human vascular endothelium

    International Nuclear Information System (INIS)

    Leung, Cleo; Utokaparch, Soraya; Sharma, Arpeeta; Yu, Carol; Abraham, Thomas; Borchers, Christoph; Bernatchez, Pascal

    2011-01-01

    Highlights: ► Bi-directional (inward and outward) movement of GFP-dysferlin in COS-7 cells. ► Dysferlin interacts with key signaling proteins for transcytosis in EC. ► Dysferlin mediates trafficking of vesicles carrying protein cargos in EC. -- Abstract: Dysferlin is a membrane-anchored protein known to facilitate membrane repair in skeletal muscles following mechanical injury. Mutations of dysferlin gene impair sarcolemma integrity, a hallmark of certain forms of muscular dystrophy in patients. Dysferlin contains seven calcium-dependent C2 binding domains, which are required to promote fusion of intracellular membrane vesicles. Emerging evidence reveal the unexpected expression of dysferlin in non-muscle, non-mechanically active tissues, such as endothelial cells, which cast doubts over the belief that ferlin proteins act exclusively as membrane repair proteins. We and others have shown that deficient trafficking of membrane bound proteins in dysferlin-deficient cells, suggesting that dysferlin might mediate trafficking of client proteins. Herein, we describe the intracellular trafficking and movement of GFP-dysferlin positive vesicles in unfixed reconstituted cells using live microscopy. By performing GST pull-down assays followed by mass spectrometry, we identified dysferlin binding protein complexes in human vascular endothelial cells. Together, our data further support the claims that dysferlin not only mediates membrane repair but also trafficking of client proteins, ultimately, help bridging dysferlinopathies to aberrant membrane signaling.

  20. Proteomic identification of dysferlin-interacting protein complexes in human vascular endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Cleo; Utokaparch, Soraya; Sharma, Arpeeta; Yu, Carol; Abraham, Thomas; Borchers, Christoph [UBC James Hogg Research Centre, Institute for Heart and Lung Health, Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia (Canada); University of Victoria - Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia (Canada); Bernatchez, Pascal, E-mail: pbernatc@mail.ubc.ca [UBC James Hogg Research Centre, Institute for Heart and Lung Health, Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia (Canada); University of Victoria - Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia (Canada)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Bi-directional (inward and outward) movement of GFP-dysferlin in COS-7 cells. Black-Right-Pointing-Pointer Dysferlin interacts with key signaling proteins for transcytosis in EC. Black-Right-Pointing-Pointer Dysferlin mediates trafficking of vesicles carrying protein cargos in EC. -- Abstract: Dysferlin is a membrane-anchored protein known to facilitate membrane repair in skeletal muscles following mechanical injury. Mutations of dysferlin gene impair sarcolemma integrity, a hallmark of certain forms of muscular dystrophy in patients. Dysferlin contains seven calcium-dependent C2 binding domains, which are required to promote fusion of intracellular membrane vesicles. Emerging evidence reveal the unexpected expression of dysferlin in non-muscle, non-mechanically active tissues, such as endothelial cells, which cast doubts over the belief that ferlin proteins act exclusively as membrane repair proteins. We and others have shown that deficient trafficking of membrane bound proteins in dysferlin-deficient cells, suggesting that dysferlin might mediate trafficking of client proteins. Herein, we describe the intracellular trafficking and movement of GFP-dysferlin positive vesicles in unfixed reconstituted cells using live microscopy. By performing GST pull-down assays followed by mass spectrometry, we identified dysferlin binding protein complexes in human vascular endothelial cells. Together, our data further support the claims that dysferlin not only mediates membrane repair but also trafficking of client proteins, ultimately, help bridging dysferlinopathies to aberrant membrane signaling.

  1. Microparticle-Induced Activation of the Vascular Endothelium Requires Caveolin-1/Caveolae.

    Directory of Open Access Journals (Sweden)

    Allison M Andrews

    Full Text Available Microparticles (MPs are small membrane fragments shed from normal as well as activated, apoptotic or injured cells. Emerging evidence implicates MPs as a causal and/or contributing factor in altering normal vascular cell phenotype through initiation of proinflammatory signal transduction events and paracrine delivery of proteins, mRNA and miRNA. However, little is known regarding the mechanism by which MPs influence these events. Caveolae are important membrane microdomains that function as centers of signal transduction and endocytosis. Here, we tested the concept that the MP-induced pro-inflammatory phenotype shift in endothelial cells (ECs depends on caveolae. Consistent with previous reports, MP challenge activated ECs as evidenced by upregulation of intracellular adhesion molecule-1 (ICAM-1 expression. ICAM-1 upregulation was mediated by activation of NF-κB, Poly [ADP-ribose] polymerase 1 (PARP-1 and the epidermal growth factor receptor (EGFR. This response was absent in ECs lacking caveolin-1/caveolae. To test whether caveolae-mediated endocytosis, a dynamin-2 dependent process, is a feature of the proinflammatory response, EC's were pretreated with the dynamin-2 inhibitor dynasore. Similar to observations in cells lacking caveolin-1, inhibition of endocytosis significantly attenuated MPs effects including, EGFR phosphorylation, activation of NF-κB and upregulation of ICAM-1 expression. Thus, our results indicate that caveolae play a role in mediating the pro-inflammatory signaling pathways which lead to EC activation in response to MPs.

  2. Malaria and Vascular Endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Alencar, Aristóteles Comte Filho de, E-mail: aristoteles.caf@gmail.com [Universidade Federal do Amazonas, Manaus, AM (Brazil); Lacerda, Marcus Vinícius Guimarães de [Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM (Brazil); Okoshi, Katashi; Okoshi, Marina Politi [Faculdade de Medicina de Botucatu (Unesp), Botucatu, SP (Brazil)

    2014-08-15

    Involvement of the cardiovascular system in patients with infectious and parasitic diseases can result from both intrinsic mechanisms of the disease and drug intervention. Malaria is an example, considering that the endothelial injury by Plasmodium-infected erythrocytes can cause circulatory disorders. This is a literature review aimed at discussing the relationship between malaria and endothelial impairment, especially its effects on the cardiovascular system. We discuss the implications of endothelial aggression and the interdisciplinarity that should guide the malaria patient care, whose acute infection can contribute to precipitate or aggravate a preexisting heart disease.

  3. Malaria and Vascular Endothelium

    International Nuclear Information System (INIS)

    Alencar, Aristóteles Comte Filho de; Lacerda, Marcus Vinícius Guimarães de; Okoshi, Katashi; Okoshi, Marina Politi

    2014-01-01

    Involvement of the cardiovascular system in patients with infectious and parasitic diseases can result from both intrinsic mechanisms of the disease and drug intervention. Malaria is an example, considering that the endothelial injury by Plasmodium-infected erythrocytes can cause circulatory disorders. This is a literature review aimed at discussing the relationship between malaria and endothelial impairment, especially its effects on the cardiovascular system. We discuss the implications of endothelial aggression and the interdisciplinarity that should guide the malaria patient care, whose acute infection can contribute to precipitate or aggravate a preexisting heart disease

  4. High-Throughput Screening of Vascular Endothelium-Destructive or Protective Microenvironments: Cooperative Actions of Extracellular Matrix Composition, Stiffness, and Structure.

    Science.gov (United States)

    Ding, Yonghui; Floren, Michael; Tan, Wei

    2017-06-01

    Pathological modification of the subendothelial extracellular matrix (ECM) has closely been associated with endothelial activation and subsequent cardiovascular disease progression. To understand regulatory mechanisms of these matrix modifications, the majority of previous efforts have focused on the modulation of either chemical composition or matrix stiffness on 2D smooth surfaces without simultaneously probing their cooperative effects on endothelium function on in vivo like 3D fibrous matrices. To this end, a high-throughput, combinatorial microarray platform on 2D and 3D hydrogel settings to resemble the compositions, stiffness, and structure of healthy and diseased subendothelial ECM has been established, and further their respective and combined effects on endothelial attachment, proliferation, inflammation, and junctional integrity have been investigated. For the first time, the results demonstrate that 3D fibrous structure resembling native ECM is a critical endothelium-protective microenvironmental factor by maintaining the stable, quiescent endothelium with strong resistance to proinflammatory stimuli. It is also revealed that matrix stiffening, in concert with chemical compositions resembling diseased ECM, particularly collagen III, could aggravate activation of nuclear factor kappa B, disruption of endothelium integrity, and susceptibility to proinflammatory stimuli. This study elucidates cooperative effects of various microenvironmental factors on endothelial activation and sheds light on new in vitro model for cardiovascular diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Human umbilical cord mesenchymal stromal cells suppress MHC class II expression on rat vascular endothelium and prolong survival time of cardiac allograft

    Science.gov (United States)

    Qiu, Ying; Yun, Mark M; Han, Xia; Zhao, Ruidong; Zhou, Erxia; Yun, Sheng

    2014-01-01

    Background: Human umbilical cord mesenchymal stromal cells (UC-MSCs) have low immunogenicity and immune regulation. To investigate immunomodulatory effects of human UC-MSCs on MHC class II expression and allograft, we transplanted heart of transgenic rats with MHC class II expression on vascular endothelium. Methods: UC-MSCs were obtained from human umbilical cords and confirmed with flow cytometry analysis. Transgenic rat line was established using the construct of human MHC class II transactivator gene (CIITA) under mouse ICAM-2 promoter control. The induced MHC class II expression on transgenic rat vascular endothelial cells (VECs) was assessed with immunohistological staining. And the survival time of cardiac allograft was compared between the recipients with and without UC-MSC transfusion. Results: Flow cytometry confirmed that the human UC-MSCs were positive for CD29, CD44, CD73, CD90, CD105, CD271, and negative for CD34 and HLA-DR. Repeated infusion of human UC-MSCs reduced MHC class II expression on vascular endothelia of transplanted hearts, and increased survival time of allograft. The UC-MSCs increased regulatory cytokines IL10, transforming growth factor (TGF)-β1 and suppressed proinflammatory cytokines IL2 and IFN-γ in vivo. The UC-MSC culture supernatant had similar effects on cytokine expression, and decreased lymphocyte proliferation in vitro. Conclusions: Repeated transfusion of the human UC-MSCs reduced MHC class II expression on vascular endothelia and prolonged the survival time of rat cardiac allograft. PMID:25126177

  6. Soluble adenylyl cyclase in vascular endothelium: gene expression control of epithelial sodium channel-α, Na+/K+-ATPase-α/β, and mineralocorticoid receptor.

    Science.gov (United States)

    Schmitz, Boris; Nedele, Johanna; Guske, Katrin; Maase, Martina; Lenders, Malte; Schelleckes, Michael; Kusche-Vihrog, Kristina; Brand, Stefan-Martin; Brand, Eva

    2014-04-01

    The Ca(2+)- and bicarbonate-activated soluble adenylyl cyclase (sAC) has been identified recently as an important mediator of aldosterone signaling in the kidney. Nuclear sAC has been reported to stimulate cAMP response element-binding protein 1 phosphorylation via protein kinase A, suggesting an alternative cAMP pathway in the nucleus. In this study, we analyzed the sAC as a potential modulator of endothelial stiffness in the vascular endothelium. We determined the contribution of sAC to cAMP response element-mediated transcriptional activation in vascular endothelial cells and kidney collecting duct cells. Inhibition of sAC by the specific inhibitor KH7 significantly reduced cAMP response element-mediated promoter activity and affected cAMP response element-binding protein 1 phosphorylation. Furthermore, KH7 and anti-sAC small interfering RNA significantly decreased mRNA and protein levels of epithelial sodium channel-α and Na(+)/K(+)-ATPase-α. Using atomic force microscopy, a nano-technique that measures stiffness and deformability of living cells, we detected significant endothelial cell softening after sAC inhibition. Our results suggest that the sAC is a regulator of gene expression involved in aldosterone signaling and an important regulator of endothelial stiffness. Additional studies are warranted to investigate the protective action of sAC inhibitors in humans for potential clinical use.

  7. Endothelium derived nitric oxide synthase negatively regulates the PDGF-survivin pathway during flow-dependent vascular remodeling.

    Directory of Open Access Journals (Sweden)

    Jun Yu

    Full Text Available Chronic alterations in blood flow initiate structural changes in vessel lumen caliber to normalize shear stress. The loss of endothelial derived nitric oxide synthase (eNOS in mice promotes abnormal flow dependent vascular remodeling, thus uncoupling mechanotransduction from adaptive vascular remodeling. However, the mechanisms of how the loss of eNOS promotes abnormal remodeling are not known. Here we show that abnormal flow-dependent remodeling in eNOS knockout mice (eNOS (-/- is associated with activation of the platelet derived growth factor (PDGF signaling pathway leading to the induction of the inhibitor of apoptosis, survivin. Interfering with PDGF signaling or survivin function corrects the abnormal remodeling seen in eNOS (-/- mice. Moreover, nitric oxide (NO negatively regulates PDGF driven survivin expression and cellular proliferation in cultured vascular smooth muscle cells. Collectively, our data suggests that eNOS negatively regulates the PDGF-survivin axis to maintain proportional flow-dependent luminal remodeling and vascular quiescence.

  8. Cytomegalovirus Infection Leads to Development of High Frequencies of Cytotoxic Virus-Specific CD4+ T Cells Targeted to Vascular Endothelium

    Science.gov (United States)

    Begum, Jusnara; Lal, Neeraj; Zuo, Jianmin; Beggs, Andrew; Moss, Paul

    2016-01-01

    Cytomegalovirus (CMV) infection elicits a very strong and sustained intravascular T cell immune response which may contribute towards development of accelerated immune senescence and vascular disease in older people. Virus-specific CD8+ T cell responses have been investigated extensively through the use of HLA-peptide tetramers but much less is known regarding CMV-specific CD4+ T cells. We used a range of HLA class II-peptide tetramers to investigate the phenotypic and transcriptional profile of CMV-specific CD4+ T cells within healthy donors. We show that such cells comprise an average of 0.45% of the CD4+ T cell pool and can reach up to 24% in some individuals (range 0.01–24%). CMV-specific CD4+ T cells display a highly differentiated effector memory phenotype and express a range of cytokines, dominated by dual TNF-α and IFN-γ expression, although substantial populations which express IL-4 were seen in some donors. Microarray analysis and phenotypic expression revealed a profile of unique features. These include the expression of CX3CR1, which would direct cells towards fractalkine on activated endothelium, and the β2-adrenergic receptor, which could permit rapid response to stress. CMV-specific CD4+ T cells display an intense cytotoxic profile with high level expression of granzyme B and perforin, a pattern which increases further during aging. In addition CMV-specific CD4+ T cells demonstrate strong cytotoxic activity against antigen-loaded target cells when isolated directly ex vivo. PD-1 expression is present on 47% of cells but both the intensity and distribution of the inhibitory receptor is reduced in older people. These findings reveal the marked accumulation and unique phenotype of CMV-specific CD4+ T cells and indicate how such T cells may contribute to the vascular complications associated with CMV in older people. PMID:27606804

  9. Beneficial effects of calcitriol on hypertension, glucose intolerance, impairment of endothelium-dependent vascular relaxation, and visceral adiposity in fructose-fed hypertensive rats.

    Science.gov (United States)

    Chou, Chu-Lin; Pang, Cheng-Yoong; Lee, Tony J F; Fang, Te-Chao

    2015-01-01

    Besides regulating calcium homeostasis, the effects of vitamin D on vascular tone and metabolic disturbances remain scarce in the literature despite an increase intake with high-fructose corn syrup worldwide. We investigated the effects of calcitriol, an active form of vitamin D, on vascular relaxation, glucose tolerance, and visceral fat pads in fructose-fed rats. Male Wistar-Kyoto rats were divided into 4 groups (n = 6 per group). Group Con: standard chow diet for 8 weeks; Group Fru: high-fructose diet (60% fructose) for 8 weeks; Group Fru-HVD: high-fructose diet as Group Fru, high-dose calcitriol treatment (20 ng / 100 g body weight per day) 4 weeks after the beginning of fructose feeding; and Group Fru-LVD: high-fructose diet as Group Fru, low-dose calcitriol treatment (10 ng / 100 g body weight per day) 4 weeks after the beginning of fructose feeding. Systolic blood pressure was measured twice a week by the tail-cuff method. Blood was examined for serum ionized calcium, phosphate, creatinine, glucose, triglycerides, and total cholesterol. Intra-peritoneal glucose intolerance test, aortic vascular reactivity, the weight of visceral fat pads, adipose size, and adipose angiotensin II levels were analyzed at the end of the study. The results showed that the fructose-fed rats significantly developed hypertension, impaired glucose tolerance, heavier weight and larger adipose size of visceral fat pads, and raised adipose angiotensin II expressions compared with the control rats. High- and low-dose calcitriol reduced modestly systolic blood pressure, increased endothelium-dependent aortic relaxation, ameliorated glucose intolerance, reduced the weight and adipose size of visceral fat pads, and lowered adipose angiotensin II expressions in the fructose-fed rats. However, high-dose calcitriol treatment mildly increased serum ionized calcium levels (1.44 ± 0.05 mmol/L). These results suggest a protective role of calcitriol treatment on endothelial function, glucose

  10. Beneficial effects of calcitriol on hypertension, glucose intolerance, impairment of endothelium-dependent vascular relaxation, and visceral adiposity in fructose-fed hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Chu-Lin Chou

    Full Text Available Besides regulating calcium homeostasis, the effects of vitamin D on vascular tone and metabolic disturbances remain scarce in the literature despite an increase intake with high-fructose corn syrup worldwide. We investigated the effects of calcitriol, an active form of vitamin D, on vascular relaxation, glucose tolerance, and visceral fat pads in fructose-fed rats. Male Wistar-Kyoto rats were divided into 4 groups (n = 6 per group. Group Con: standard chow diet for 8 weeks; Group Fru: high-fructose diet (60% fructose for 8 weeks; Group Fru-HVD: high-fructose diet as Group Fru, high-dose calcitriol treatment (20 ng / 100 g body weight per day 4 weeks after the beginning of fructose feeding; and Group Fru-LVD: high-fructose diet as Group Fru, low-dose calcitriol treatment (10 ng / 100 g body weight per day 4 weeks after the beginning of fructose feeding. Systolic blood pressure was measured twice a week by the tail-cuff method. Blood was examined for serum ionized calcium, phosphate, creatinine, glucose, triglycerides, and total cholesterol. Intra-peritoneal glucose intolerance test, aortic vascular reactivity, the weight of visceral fat pads, adipose size, and adipose angiotensin II levels were analyzed at the end of the study. The results showed that the fructose-fed rats significantly developed hypertension, impaired glucose tolerance, heavier weight and larger adipose size of visceral fat pads, and raised adipose angiotensin II expressions compared with the control rats. High- and low-dose calcitriol reduced modestly systolic blood pressure, increased endothelium-dependent aortic relaxation, ameliorated glucose intolerance, reduced the weight and adipose size of visceral fat pads, and lowered adipose angiotensin II expressions in the fructose-fed rats. However, high-dose calcitriol treatment mildly increased serum ionized calcium levels (1.44 ± 0.05 mmol/L. These results suggest a protective role of calcitriol treatment on endothelial

  11. Correlation of hypoxia inducible factor-1α and vascular endothelium growth factor in rat myocardium during aerobic and anaerobic exercise

    Directory of Open Access Journals (Sweden)

    Rostika Flora

    2012-08-01

    Full Text Available Background: Exercise increases the need for oxygen to generate ATP through oxidative phosphorylation. If the high energy demand during exercise is not balanced by sufficient oxygen supply, hypoxia occurs in skeletal muscle tissue leading to upregulation of hypoxia inducible factor-1α (HIF-1α. The activity of HIF-1α increases the expression of various genes in order to reduce the metabolic dependence on oxygen and to increase oxygen supply to the tissue, e.g., VEGF which plays a role in angiogenesis. In myocardium, it is unclear whether exercise leads to hypoxia and whether HIF-1α and VEGF play a role in the mechanism of hypoxic adaptation. This study aimed to investigate the correlation of HIF-1α and VEGF in heart muscle tissue of rats during aerobic and anaerobic exercise.Methods: A rat treadmill was used with a specific exercise program for 1, 3, 7 and 10 days. The concentrations of HIF-1α and VEGF were measured the myocardium.Results: Both, HIF-1α protein and VEGF were increased (p < 0.05 in the groups with aerobic and anaerobic exercise. Concentrations of HIF-1α were highest on the first day of activity, being higher in the anaerobic than in the aerobic group (156.8 ± 33.1 vs. 116.03 ± 5.66. Likewise, the highest concentration of VEGF in the group with anaerobic exercise occurred on the first day (36.37 ± 2:35, while in the aerobic group, VEGF concentration was highest on day 3 (40.66 ± 1.73. The correlation between the myocardial tissue consentrations of HIF-1α and VEGF is moderate (r = 0.59 in the aerobic group and strong in the anaerobic group (r = 0.69.Conclusion: Aerobic and anaerobic exercise increase HIF-1α and VEGF concentrations in rat myocardium in specific patterns. The anaerobic condition triggers vascularization stronger and obviously earlier than aerobic exercise. (Med J Indones. 2012;21:133-40Keywords: Exercise, HIF-1α, myocardium, VEGF

  12. Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule Are Induced by Ionizing Radiation on Lymphatic Endothelium

    International Nuclear Information System (INIS)

    Rodriguez-Ruiz, María E.; Garasa, Saray; Rodriguez, Inmaculada; Solorzano, Jose Luis; Barbes, Benigno; Yanguas, Alba; Teijeira, Alvaro; Etxeberria, Iñaki; Aristu, José Javier; Halin, Cornelia; Melero, Ignacio; Rouzaut, Ana

    2017-01-01

    Purpose/Objectives: The goal of this study was to assess the effects of ionizing radiation on the expression of the integrin ligands ICAM-1 and VCAM that control leucocyte transit by lymphatic endothelial cells. Materials/Methods: Confluent monolayers of primary human lymphatic endothelial cells (LEC) were irradiated with single dose of 2, 5, 10 or 20 Gy, with 6 MeV-x-rays using a Linear-Accelerator. ICAM-1 and VCAM expression was determined by flow cytometry. Human tissue specimens received a single dose of 20 Gy with 15 MeV-x-rays. MC38, B16-OVA or B16-VEGF-C tumors grown in C57BL/6 mice were irradiated with single dose of 20Gy using a Linear-Accelerator fitted with a 10mm Radiosurgery collimator. Clinical samples were obtained from patients previous and 4 weeks after complete standard radiotherapy. ICAM-1 and VCAM expression was detected in all tissue specimens by confocal microscopy. To understand the role of TGFβ in this process anti-TGFβ blocking mAb were injected i.p. 30min before radiotherapy. Cell adhesion to irradiated LEC was analyzed in adhesion experiments performed in the presence or in the absence of anti- TGFβ and /or anti-ICAM1 blocking mAb. Results: We demonstrate that lymphatic endothelial cells in tumor samples experience induction of surface ICAM-1 and VCAM when exposed to ionizing radiation in a dose- and time-dependent manner. These effects can be recapitulated in cultured LEC, and are in part mediated by TGFβ. These data are consistent with increases in ICAM-1 and VCAM expression on LYVE-1+ endothelial cells in freshly explanted human tumor tissue and in mouse transplanted tumors after radiotherapy. Finally, ICAM-1 and VCAM expression accounts for enhanced adherence of human T lymphocytes to irradiated LEC. Conclusion: Our results show induction of ICAM-1 and VCAM on LVs in irradiated lesions and offer a starting point for elucidating the biological and therapeutic implications of targeting leukocyte traffic in combination to

  13. Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule Are Induced by Ionizing Radiation on Lymphatic Endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Ruiz, María E., E-mail: mrruiz@unav.es [Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona (Spain); Radiation Oncology, University Clinic, University of Navarra, Pamplona (Spain); Garasa, Saray; Rodriguez, Inmaculada [Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona (Spain); Solorzano, Jose Luis; Barbes, Benigno [Radiation Oncology, University Clinic, University of Navarra, Pamplona (Spain); Yanguas, Alba [Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona (Spain); Department of Biochemistry and Genetics, University of Navarra, Pamplona (Spain); Teijeira, Alvaro; Etxeberria, Iñaki [Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona (Spain); Aristu, José Javier [Radiation Oncology, University Clinic, University of Navarra, Pamplona (Spain); Halin, Cornelia [Pharmaceutical Immunology, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich (Switzerland); Melero, Ignacio [Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona (Spain); Radiation Oncology, University Clinic, University of Navarra, Pamplona (Spain); Rouzaut, Ana [Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona (Spain); Department of Biochemistry and Genetics, University of Navarra, Pamplona (Spain)

    2017-02-01

    Purpose/Objectives: The goal of this study was to assess the effects of ionizing radiation on the expression of the integrin ligands ICAM-1 and VCAM that control leucocyte transit by lymphatic endothelial cells. Materials/Methods: Confluent monolayers of primary human lymphatic endothelial cells (LEC) were irradiated with single dose of 2, 5, 10 or 20 Gy, with 6 MeV-x-rays using a Linear-Accelerator. ICAM-1 and VCAM expression was determined by flow cytometry. Human tissue specimens received a single dose of 20 Gy with 15 MeV-x-rays. MC38, B16-OVA or B16-VEGF-C tumors grown in C57BL/6 mice were irradiated with single dose of 20Gy using a Linear-Accelerator fitted with a 10mm Radiosurgery collimator. Clinical samples were obtained from patients previous and 4 weeks after complete standard radiotherapy. ICAM-1 and VCAM expression was detected in all tissue specimens by confocal microscopy. To understand the role of TGFβ in this process anti-TGFβ blocking mAb were injected i.p. 30min before radiotherapy. Cell adhesion to irradiated LEC was analyzed in adhesion experiments performed in the presence or in the absence of anti- TGFβ and /or anti-ICAM1 blocking mAb. Results: We demonstrate that lymphatic endothelial cells in tumor samples experience induction of surface ICAM-1 and VCAM when exposed to ionizing radiation in a dose- and time-dependent manner. These effects can be recapitulated in cultured LEC, and are in part mediated by TGFβ. These data are consistent with increases in ICAM-1 and VCAM expression on LYVE-1+ endothelial cells in freshly explanted human tumor tissue and in mouse transplanted tumors after radiotherapy. Finally, ICAM-1 and VCAM expression accounts for enhanced adherence of human T lymphocytes to irradiated LEC. Conclusion: Our results show induction of ICAM-1 and VCAM on LVs in irradiated lesions and offer a starting point for elucidating the biological and therapeutic implications of targeting leukocyte traffic in combination to

  14. How does spa treatment affect cardiovascular function and vascular endothelium in patients with generalized osteoarthritis? A pilot study through plasma asymmetric di-methyl arginine (ADMA) and L-arginine/ADMA ratio

    Science.gov (United States)

    Karaarslan, Fatih; Ozkuk, Kagan; Seringec Karabulut, Serap; Bekpinar, Seldag; Karagulle, Mufit Zeki; Erdogan, Nergis

    2018-05-01

    The study aims to investigate the effect of spa treatment on vascular endothelium and clinical symptoms of generalized osteoarthritis. Forty generalized osteoarthritis (GOA) patients referred to a government spa hospital, and 40 GOA patients followed on university hospital locomotor system disease ambulatory clinics were included as study and control groups, respectively. Study group received spa treatment including thermal water baths, physical therapy modalities, and exercises. Control group was followed with home exercises for 15 days. Plasma ADMA, L-arginine, L-arginine/ADMA ratio, routine blood analyses, 6-min walking test, including fingertip O2 saturation, systolic/diastolic blood pressure, and pulse rate, were measured at the beginning and at the end of treatment. Groups were evaluated with VAS pain, patient, and physician global assessment; HAQ; and WOMAC at the beginning, at the end, and after 1 month of treatment. In study group, L-arginine and L-arginine/ADMA ratio showed statistically significant increase after treatment. Plasma ADMA levels did not change. There is no significant difference in intergroup comparison. Study group displayed statistically significant improvements in all clinical parameters. The study showed that spa treatment does not cause any harm to the vascular endothelium through ADMA. Significant increase in plasma L-arginine and L-arginine/ADMA ratio suggests that balneotherapy may play a preventive role on cardiovascular diseases. Balneotherapy provides meaningful improvements on clinical parameters of GOA.

  15. How does spa treatment affect cardiovascular function and vascular endothelium in patients with generalized osteoarthritis? A pilot study through plasma asymmetric di-methyl arginine (ADMA) and L-arginine/ADMA ratio

    Science.gov (United States)

    Karaarslan, Fatih; Ozkuk, Kagan; Seringec Karabulut, Serap; Bekpinar, Seldag; Karagulle, Mufit Zeki; Erdogan, Nergis

    2017-12-01

    The study aims to investigate the effect of spa treatment on vascular endothelium and clinical symptoms of generalized osteoarthritis. Forty generalized osteoarthritis (GOA) patients referred to a government spa hospital, and 40 GOA patients followed on university hospital locomotor system disease ambulatory clinics were included as study and control groups, respectively. Study group received spa treatment including thermal water baths, physical therapy modalities, and exercises. Control group was followed with home exercises for 15 days. Plasma ADMA, L-arginine, L-arginine/ADMA ratio, routine blood analyses, 6-min walking test, including fingertip O2 saturation, systolic/diastolic blood pressure, and pulse rate, were measured at the beginning and at the end of treatment. Groups were evaluated with VAS pain, patient, and physician global assessment; HAQ; and WOMAC at the beginning, at the end, and after 1 month of treatment. In study group, L-arginine and L-arginine/ADMA ratio showed statistically significant increase after treatment. Plasma ADMA levels did not change. There is no significant difference in intergroup comparison. Study group displayed statistically significant improvements in all clinical parameters. The study showed that spa treatment does not cause any harm to the vascular endothelium through ADMA. Significant increase in plasma L-arginine and L-arginine/ADMA ratio suggests that balneotherapy may play a preventive role on cardiovascular diseases. Balneotherapy provides meaningful improvements on clinical parameters of GOA.

  16. Role of endothelium-derived hyperpolarization in the vasodilatation of rat intrarenal arteries

    DEFF Research Database (Denmark)

    Pinilla, Estéfano; Sánchez-Pina, Ana; Muñoz Picos, Mercedes

    2016-01-01

    Background and purpose: Endothelium-dependent vasodilation plays an important role in the regulation of vascular tone in different vascular beds. Besides the release of prostacyclin (PGI2) and nitric oxide (NO), the endothelium mediates vasodilation through endothelium-derived hyperpolarization (...

  17. Análise do efeito imediato do jato de CO2 sobre o endotélio vascular de caprinos Analyses of the immediate effect of CO2 flow on vascular endothelium in goats

    Directory of Open Access Journals (Sweden)

    Eucário Leite Monteiro Alves

    2006-09-01

    : Thirty-six male goats were submitted to a surgical procedure. Histological analysis was carried out using the immunoperoxidase reaction to mark the endothelium through the detection of VIII Coagulation Factor. Measurement was made by Quantimet following the Ip scale for vascular injury. RESULTS: Within control groups, with and without humidification, both for AIVA and LITA, there was no endothelial injury. The flow rate of 5 L/min provoked moderately significant endothelial injury of the AIVA without humidification, whereas with humidification the endothelial injury was seen but without statistical significance. The flow rate of 5 L/min, with or without humidification, provoked insignificant endothelial injury at LITA. With a flow rate of 10 L/min, there was highly significant endothelial injury, both for the LITA and AIVA and whether humidified or not. CONCLUSION: In conclusion endothelial injury is flow-dependent with greater injury when using CO2 at a flow rate of 10 L/min and less at 5 L/min. The arteries involved in anastomosis (LITA and AIVA are both affected, but there is a greater effect on the AIVA.

  18. Soluble interleukin 6 receptor (sIL-6R) mediates colonic tumor cell adherence to the vascular endothelium: a mechanism for metastatic initiation?

    LENUS (Irish Health Repository)

    Dowdall, J F

    2012-02-03

    The mechanisms by which surgery increases metastatic proliferation remain poorly characterized, although endotoxin and immunocytes play a role. Recent evidence suggests that endothelial adherence of tumor cells may be important in the formation of metastases. Soluble receptors of interleukin-6 (sIL-6R) shed by activated neutrophils exert IL-6 effects on endothelial cells, which are unresponsive under normal circumstances. This study examined the hypothesis that sIL-6R released by surgical stress increases tumor cell adherence to the endothelium. Neutrophils (PMN) were stimulated with lipopolysaccharide, C-reactive protein (CRP), and tumor necrosis factor-alpha. Soluble IL-6R release was measured by enzyme-linked immunosorbent assay. Colonic tumor cells transfected with green fluorescent protein and endothelial cells were exposed to sIL-6R, and tumor cell adherence and transmigration were measured by fluorescence microscopy. Basal release of sIL-6R from PMN was 44.7 +\\/- 8.2 pg\\/ml at 60 min. This was significantly increased by endotoxin and CRP (131 +\\/- 16.8 and 84.1 +\\/- 5.3, respectively; both P < 0.05). However, tumor necrosis factor-alpha did not significantly alter sIL-6R release. Endothelial and tumor cell exposure to sIL-6R increased tumor cell adherence by 71.3% within 2 h but did not significantly increase transmigration, even at 6 h. Mediators of surgical stress induce neutrophil release of a soluble receptor for IL-6 that enhances colon cancer cell endothelial adherence. Since adherence to the endothelium is now considered to be a key event in metastatic genesis, these findings have important implications for colon cancer treatment strategies.

  19. Bone morphogenetic protein 9 (BMP9) and BMP10 enhance tumor necrosis factor-α-induced monocyte recruitment to the vascular endothelium mainly via activin receptor-like kinase 2.

    Science.gov (United States)

    Mitrofan, Claudia-Gabriela; Appleby, Sarah L; Nash, Gerard B; Mallat, Ziad; Chilvers, Edwin R; Upton, Paul D; Morrell, Nicholas W

    2017-08-18

    Bone morphogenetic proteins 9 and 10 (BMP9/BMP10) are circulating cytokines with important roles in endothelial homeostasis. The aim of this study was to investigate the roles of BMP9 and BMP10 in mediating monocyte-endothelial interactions using an in vitro flow adhesion assay. Herein, we report that whereas BMP9/BMP10 alone had no effect on monocyte recruitment, at higher concentrations both cytokines synergized with tumor necrosis factor-α (TNFα) to increase recruitment to the vascular endothelium. The BMP9/BMP10-mediated increase in monocyte recruitment in the presence of TNFα was associated with up-regulated expression levels of E-selectin, vascular cell adhesion molecule (VCAM-1), and intercellular adhesion molecule 1 (ICAM-1) on endothelial cells. Using siRNAs to type I and II BMP receptors and the signaling intermediaries (Smads), we demonstrated a key role for ALK2 in the BMP9/BMP10-induced surface expression of E-selectin, and both ALK1 and ALK2 in the up-regulation of VCAM-1 and ICAM-1. The type II receptors, BMPR-II and ACTR-IIA were both required for this response, as was Smad1/5. The up-regulation of cell surface adhesion molecules by BMP9/10 in the presence of TNFα was inhibited by LDN193189, which inhibits ALK2 but not ALK1. Furthermore, LDN193189 inhibited monocyte recruitment induced by TNFα and BMP9/10. BMP9/10 increased basal IκBα protein expression, but did not alter p65/RelA levels. Our findings suggest that higher concentrations of BMP9/BMP10 synergize with TNFα to induce the up-regulation of endothelial selectins and adhesion molecules, ultimately resulting in increased monocyte recruitment to the vascular endothelium. This process is mediated mainly via the ALK2 type I receptor, BMPR-II/ACTR-IIA type II receptors, and downstream Smad1/5 signaling. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Endothelium-independent and endothelium-dependent ...

    African Journals Online (AJOL)

    This endothelium-independent relaxant effect was also sensitive to combination of 1H-[1,2,4]-oxadiazole-[4,3-á]-quinoxalin- 1-one (ODQ, 10 ìM, soluble guanylyl cyclase inhibitor) and N-[2-(p-Bromocinnamylamino)ethyl]-5-isoquinoline sulfonamide dihydrochloride (H89, 100 nM, Protein Kinase A inhibitor). Taken together ...

  1. Ca²⁺-dependent nitric oxide release in the injured endothelium of excised rat aorta: a promising mechanism applying in vascular prosthetic devices in aging patients.

    Science.gov (United States)

    Berra-Romani, Roberto; Avelino-Cruz, José Everardo; Raqeeb, Abdul; Della Corte, Alessandro; Cinelli, Mariapia; Montagnani, Stefania; Guerra, Germano; Moccia, Francesco; Tanzi, Franco

    2013-01-01

    Nitric oxide is key to endothelial regeneration, but it is still unknown whether endothelial cell (EC) loss results in an increase in NO levels at the wound edge. We have already shown that endothelial damage induces a long-lasting Ca²⁺ entry into surviving cells though connexin hemichannels (CxHcs) uncoupled from their counterparts on ruptured cells. The physiological outcome of injury-induced Ca²⁺ inflow is, however, unknown. In this study, we sought to determine whether and how endothelial scraping induces NO production (NOP) in the endothelium of excised rat aorta by exploiting the NO-sensitive fluorochrome, DAF-FM diacetate and the Ca²⁺-sensitive fluorescent dye, Fura-2/AM. We demonstrated that injury-induced NOP at the lesion site is prevented in presence of the endothelial NO synthase inhibitor, L-NAME, and in absence of extracellular Ca²⁺. Unlike ATP-dependent NO liberation, the NO response to injury is insensitive to BTP-2, which selectively blocks store-operated Ca²⁺ inflow. However, injury-induced NOP is significantly reduced by classic gap junction blockers, and by connexin mimetic peptides specifically targeting Cx37Hcs, Cx40HCs, and Cx43Hcs. Moreover, disruption of caveolar integrity prevents injury-elicited NO signaling, but not the accompanying Ca²⁺ response. The data presented provide the first evidence that endothelial scraping stimulates NO synthesis at the wound edge, which might both exert an immediate anti-thrombotic and anti-inflammatory action and promote the subsequent re-endothelialization.

  2. The vascular phenotype in pseudoxanthoma elasticum and related disorders: Contribution of a genetic disease to the understanding of vascular calcification.

    Directory of Open Access Journals (Sweden)

    Georges eLeftheriotis

    2013-02-01

    Full Text Available Vascular calcification is a complex and dynamic process occurring in various physiological conditions such as aging and exercise or in acquired metabolic disorders like diabetes or chronic renal insufficiency. Arterial calcifications are also observed in several genetic diseases revealing the important role of unbalanced or defective anti- or pro-calcifying factors. Pseudoxanthoma elasticum (PXE is an inherited disease (OMIM 264800 characterized by elastic fiber fragmentation and calcification in various soft conjunctive tissues including the skin, eyes and arterial media. The PXE disease results from mutations in the ABCC6 gene, encoding an ATP-binding cassette transporter primarily expressed in the liver, kidneys suggesting that it is a prototypic metabolic soft-tissue calcifying disease of genetic origin. The clinical expression of the PXE arterial disease is characterized by an increased risk for coronary (myocardial infarction, cerebral (aneurysm and stroke and lower limb peripheral artery disease. However, the structural and functional changes in the arterial wall induced by PXE are still unexplained. The use of a recombinant mouse model inactivated for the Abcc6 gene is an important tool for the understanding of the PXE pathophysiology although the vascular impact in this model remains limited to date. Overlapping of the PXE phenotype with other inherited calcifying diseases could bring important informations to our comprehension of the PXE disease.

  3. Relative permeability of the endothelium and epithelium of rabbit lungs

    International Nuclear Information System (INIS)

    Effros, R.M.; Mason, G.R.; Silverman, P.; Hukkanen, J.

    1986-01-01

    Electron micrographic studies of lungs suggest that the epithelial cells are more tightly joined than the underlying endothelium, and macromolecules penetrate the endothelium more readily than the epithelium. Comparisons of epithelial and endothelial permeability to small molecules have been based upon the relative rates at which solutes traverse the alveolar-capillary barrier in fluid filled lungs and those at which they equilibrate across the capillaries in air-filled lungs. Because the former process is much slower than the latter, it has been concluded that the epithelium is less permeable to small solutes than the endothelium. However this difference may be related to inadequate access of solutes to airway surfaces. In this study, solute losses from the vascular space were compared to those from the airspace in perfused, fluid-filled rabbit lungs. 36 Cl - and 125 I - were lost from air-spaces almost twice as rapidly as 22 Na + . In contrast, the endothelium is equally permeable to 22 Na + and these anions. Loss of 3 H-mannitol from the perfusate resembled that of 22 Na + for about 30 minutes, after which diffusion of 3 H-mannitol into the tissue nearly ceased. These observations suggest that the epithelium is more permselective than the endothelium. By resisting solute and water transport, the epithelium tends to prevent alveolar flooding and confines edema to the interstitium, where it is less likely to interfere with gas exchange

  4. Hypertrophy of cultured bovine aortic endothelium following irradiation

    International Nuclear Information System (INIS)

    Rosen, E.M.; Vinter, D.W.; Goldberg, I.D.

    1989-01-01

    The vascular endothelium is a vital multifunctional tissue which covers the entire luminal surface of the circulatory system. Loss of continuity of the endothelial lining normally results in cell migration and proliferation to make up for cell loss and to ensure that exposure of the thrombogenic subendothelium to platelets and clotting factors is minimized. We showed that ionizing radiation (400-3000 cGy) causes dose-dependent cell loss from confluent monolayer cultures of bovine aortic endothelium, which cannot immediately be compensated by cell proliferation. Within 24 h, the remaining attached cells undergo substantial somatic hypertrophy (evidenced by increased protein content, cell volume, and attachment area) but remain diploid. If cell loss is not excessive, monolayer continuity is restored within several days. Although reduced protein degradation may contribute, most of the protein accumulation is due to synthesis of new protein. Unlike endothelium, irradiation of smooth muscle cultures causes neither cell loss nor increased protein synthesis. Hypertrophy of irradiated endothelial cells appears to be a consequence of a proliferative stimulus (cell loss) in a population of cells which is unable to divide. It can be modulated by replating irradiated cells at different densities. We suggest that endothelial hypertrophy is an early vascular homeostatic response before clonal proliferation of surviving cells or repopulation by cells from outside of the irradiated field can compensate for cell loss

  5. The Role of the Endothelium in HPS Pathogenesis and Potential Therapeutic Approaches

    Directory of Open Access Journals (Sweden)

    Irina Gavrilovskaya

    2012-01-01

    Full Text Available American hantaviruses cause a highly lethal acute pulmonary edema termed hantavirus pulmonary syndrome (HPS. Hantaviruses nonlytically infect endothelial cells and cause dramatic changes in barrier functions of the endothelium without disrupting the endothelium. Instead hantaviruses cause changes in the function of infected endothelial cells that normally regulate fluid barrier functions of capillaries. The endothelium of arteries, veins, and lymphatic vessels is unique and central to the function of vast pulmonary capillary beds, which regulate pulmonary fluid accumulation. The endothelium maintains vascular barrier functions through a complex series of redundant receptors and signaling pathways that serve to both permit fluid and immune cell efflux into tissues and restrict tissue edema. Infection of the endothelium provides several mechanisms for hantaviruses to alter capillary permeability but also defines potential therapeutic targets for regulating acute pulmonary edema and HPS disease. Here we discuss interactions of HPS causing hantaviruses with the endothelium, potential endothelial cell-directed permeability mechanisms, and therapeutic targeting of the endothelium as a means of reducing the severity of HPS disease.

  6. Using a multimedia presentation to improve patient understanding and satisfaction with informed consent for minimally invasive vascular procedures.

    Science.gov (United States)

    Bowers, N; Eisenberg, E; Montbriand, J; Jaskolka, J; Roche-Nagle, G

    2017-02-01

    As vascular procedures become more complex, patient understanding of their treatment(s) can become more difficult. We wished to evaluate the utility of multimedia presentations (MPs) to improve patient understanding of their vascular interventions. Patients undergoing endovascular aneurysm repair (EVAR), peripheral angioplasty, Hickman catheter and peripherally inserted central catheter (PICC) insertion were randomized into a control group receiving traditional verbal consent, and a MP group that were shown a two minute simplified video of their procedure on an iPad™ computer in addition to the traditional verbal consent. After obtaining consent, all patients completed a questionnaire assessing their comprehension of the procedure, and satisfaction with the consent process. Satisfaction was rated on a 5 point Likert scale with 5 being 'very helpful' in understanding the procedure. Ninety-three patients were recruited for this study, 62% of which were male. The intervention significantly increased total comprehension in all procedure types controlling for procedure type (multimedia vs. control; F = 9.14, P = .003). A second ANOVA showed there was a significant main effect by intervention (F = 44.06, p consent process to be helpful in patient understanding and that there is improved satisfaction. Given the rapid rate of innovation in vascular interventions, increased regular use of MPs to help patients understand their procedures would be beneficial in the care of patients undergoing vascular interventions. Copyright © 2015 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.

  7. Vildagliptin Improves Endothelium-Dependent Vasodilatation in Type 2 Diabetes

    Science.gov (United States)

    van Poppel, Pleun C.M.; Netea, Mihai G.; Smits, Paul; Tack, Cees J.

    2011-01-01

    OBJECTIVE To investigate whether the dipeptidyl peptidase-4 inhibitor vildagliptin improves endothelium-dependent vasodilatation in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS Sixteen subjects with type 2 diabetes (age 59.8 ± 6.8 years, BMI 29.1 ± 4.8 kg/m2, HbA1c 6.97 ± 0.61) on oral blood glucose–lowering treatment were included. Participants received vildagliptin 50 mg b.i.d. or acarbose 100 mg t.i.d. for four consecutive weeks in a randomized, double-blind, cross-over design. At the end of each treatment period, we measured forearm vasodilator responses to intra-arterially administered acetylcholine (endothelium-dependent vasodilator) and sodium nitroprusside (endothelium-independent vasodilator). RESULTS Infusion of acetylcholine induced a dose-dependent increase in forearm blood flow in the experimental arm, which was higher during vildagliptin (3.1 ± 0.7, 7.9 ± 1.1, and 12.6 ± 1.4 mL ⋅ dL−1 ⋅ min−1 in response to three increasing dosages of acetylcholine) than during acarbose (2.0 ± 0.7, 5.0 ± 1.2, and 11.7 ± 1.6 mL ⋅ dL−1 ⋅ min−1, respectively; P = 0.01 by two-way ANOVA). Treatment with vildagliptin did not significantly change the vascular responses to sodium nitroprusside. CONCLUSIONS Four weeks’ treatment with vildagliptin improves endothelium-dependent vasodilatation in subjects with type 2 diabetes. This observation might have favorable cardiovascular implications. PMID:21788633

  8. PP064. Total vascular resistances in early pregnancy: A key to understand abnormal cardiovascular adaptation associated with spontaneous abortion.

    Science.gov (United States)

    Lo Presti, Damiano; Scala, Roberta Licia; Tiralongo, Grazia Maria; Pisani, Ilaria; Gagliardi, Giulia; Novelli, Gian Paolo; Vasapollo, Barbara; Valensise, Herbert

    2013-04-01

    From early pregnancy, maternal hemodynamic profile begins to change. The absence of these changes leads to increased risk of complication during the gestation. Aim of this study is to understand in early pregnancy the behaviour of total vascular resistances (TVR) as a sign of maternal cardiovascular adaptation to pregnancy. A cross section study was conducted. We followed 160 healthy women with singleton pregnancy during the first trimester of gestation. We evaluated cardiac output (CO) and TVR at 7, 9 and 11 weeks of gestation. We obtained the following haemodynamic measurements with the USCOM system, a non invasive method: heart rate (HR), systolic and diastolic blood pressure (SBP, DBP), CO and TVR. 160 healthy pregnant women were selected, 8 patients, were excluded for a bad signal. Absolute values of the haemodynamic measures are shown in Fig. 1. 41 patients underwent spontaneous embryonic demise. This last group of patients showed in 54% (group A) TVR values within the normal limits (TVR1200) and CO values below the normal adaptation to pregnancy. Table 1 shows hemodynamic measures for the group A and group B; we found differences in term of CO, TVR and PAS between the two groups. Elevated TVR might indicate an abnormal vascular adaptation already in first weeks of pregnancy. Moreover, in women who undergo to abortion, elevated TVR could be use to distinguish genetic or environmental causes of miscarriage. Copyright © 2013. Published by Elsevier B.V.

  9. Vascular Response of Ruthenium Tetraamines in Aortic Ring from Normotensive Rats

    Directory of Open Access Journals (Sweden)

    Ana Gabriela Conceição-Vertamatti

    2015-03-01

    Full Text Available Background: Ruthenium (Ru tetraamines are being increasingly used as nitric oxide (NO carriers. In this context, pharmacological studies have become highly relevant to better understand the mechanism of action involved. Objective: To evaluate the vascular response of the tetraamines trans-[RuII(NH34(Py(NO]3+, trans-[RuII(Cl(NO (cyclan](PF62, and trans-[RuII(NH34(4-acPy(NO]3+. Methods: Aortic rings were contracted with noradrenaline (10−6 M. After voltage stabilization, a single concentration (10−6 M of the compounds was added to the assay medium. The responses were recorded during 120 min. Vascular integrity was assessed functionally using acetylcholine at 10−6 M and sodium nitroprusside at 10−6 M as well as by histological examination. Results: Histological analysis confirmed the presence or absence of endothelial cells in those tissues. All tetraamine complexes altered the contractile response induced by norepinephrine, resulting in increased tone followed by relaxation. In rings with endothelium, the inhibition of endothelial NO caused a reduction of the contractile effect caused by pyridine NO. No significant responses were observed in rings with endothelium after treatment with cyclan NO. In contrast, in rings without endothelium, the inhibition of guanylate cyclase significantly reduced the contractile response caused by the pyridine NO and cyclan NO complexes, and both complexes caused a relaxing effect. Conclusion: The results indicate that the vascular effect of the evaluated complexes involved a decrease in the vascular tone induced by norepinephrine (10−6 M at the end of the incubation period in aortic rings with and without endothelium, indicating the slow release of NO from these complexes and suggesting that the ligands promoted chemical stability to the molecule. Moreover, we demonstrated that the association of Ru with NO is more stable when the ligands pyridine and cyclan are used in the formulation of the compound.

  10. Human urotensin-II is an endothelium-dependent vasodilator in rat small arteries

    Science.gov (United States)

    Bottrill, Fiona E; Douglas, Stephen A; Hiley, C Robin; White, Richard

    2000-01-01

    The possible role of the endothelium in modulating responses to human urotensin-II (U-II) was investigated using isolated segments of rat thoracic aorta, small mesenteric artery, left anterior descending coronary artery and basilar artery.Human U-II was a potent vasoconstrictor of endothelium-intact isolated rat thoracic aorta (EC50=3.5±1.1 nM, Rmax=103±10% of control contraction induced by 60 mM KCl and 1 μM noradrenaline). However the contractile response was not significantly altered by removal of the endothelium or inhibition of nitric oxide synthesis with L-NAME (100 μM). Human U-II did not cause relaxation of noradrenaline-precontracted, endothelium-intact rat aortae.Human U-II contracted endothelium-intact rat isolated left anterior descending coronary arteries (EC50=1.3±0.8 nM, Rmax=20.1±4.9% of control contraction induced by 10 μM 5-HT). The contractile response was significantly enhanced by removal of the endothelium (Rmax=55.4±16.1%). Moreover, human U-II caused concentration-dependent relaxation of 5-HT-precontracted arteries, which was abolished by L-NAME or removal of the endothelium.No contractile effects of human U-II were found in rat small mesenteric arteries. However the peptide caused potent, concentration- and endothelium-dependent relaxations of methoxamine-precontracted vessels. The relaxant responses were potentiated by L-NAME (300 μM) but abolished in the additional presence of 25 mM KCl (which inhibits the actions of endothelium-derived hyperpolarizing factor).The present study is the first to show that human U-II is a potent endothelium-dependent vasodilator in some rat resistance vessels, and acts through release of EDHF as well as nitric oxide. Our findings have also highlighted clear anatomical differences in the responses of different vascular beds to human U-II which are likely to be important in determining the overall cardiovascular activity of this peptide. PMID:10952676

  11. Simulated hypogravity impairs the angiogenic response of endothelium by up-regulating apoptotic signals

    International Nuclear Information System (INIS)

    Morbidelli, Lucia; Monici, Monica; Marziliano, Nicola; Cogoli, Augusto; Fusi, Franco; Waltenberger, Johannes; Ziche, Marina

    2005-01-01

    Health hazards in astronauts are represented by cardiovascular problems and impaired bone healing. These disturbances are characterized by a common event, the loss of function by vascular endothelium, leading to impaired angiogenesis. We investigated whether the exposure of cultured endothelial cells to hypogravity condition could affect their behaviour in terms of functional activity, biochemical responses, morphology, and gene expression. Simulated hypogravity conditions for 72 h produced a reduction of cell number. Genomic analysis of endothelial cells exposed to hypogravity revealed that proapoptotic signals increased, while antiapoptotic and proliferation/survival genes were down-regulated by modelled low gravity. Activation of apoptosis was accompanied by morphological changes with mitochondrial disassembly and organelles/cytoplasmic NAD(P)H redistribution, as evidenced by autofluorescence analysis. In this condition cells were not able to respond to angiogenic stimuli in terms of migration and proliferation. Our study documents functional, morphological, and transcription alterations in vascular endothelium exposed to simulated low gravity conditions, thus providing insights on the occurrence of vascular tissue dysregulation in crewmen during prolonged space flights. Moreover, the alteration of vascular endothelium can intervene as a concause in other systemic effects, like bone remodelling, observed in weightlessness

  12. Recent Developments in Understanding Brain Aging: Implications for Alzheimer's Disease and Vascular Cognitive Impairment.

    Science.gov (United States)

    Deak, Ferenc; Freeman, Willard M; Ungvari, Zoltan; Csiszar, Anna; Sonntag, William E

    2016-01-01

    As the population of the Western world is aging, there is increasing awareness of age-related impairments in cognitive function and a rising interest in finding novel approaches to preserve cerebral health. A special collection of articles in The Journals of Gerontology: Biological Sciences and Medical Sciences brings together information of different aspects of brain aging, from latest developments in the field of neurodegenerative disorders to cerebral microvascular mechanisms of cognitive decline. It is emphasized that although the cellular changes that occur within aging neurons have been widely studied, more research is required as new signaling pathways are discovered that can potentially protect cells. New avenues for research targeting cellular senescence, epigenetics, and endocrine mechanisms of brain aging are also discussed. Based on the current literature it is clear that understanding brain aging and reducing risk for neurological disease with age requires searching for mechanisms and treatment options beyond the age-related changes in neuronal function. Thus, comprehensive approaches need to be developed that address the multiple, interrelated mechanisms of brain aging. Attention is brought to the importance of maintenance of cerebromicrovascular health, restoring neuroendocrine balance, and the pressing need for funding more innovative research into the interactions of neuronal, neuroendocrine, inflammatory and microvascular mechanisms of cognitive impairment, and Alzheimer's disease. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Recent Developments in Understanding Brain Aging: Implications for Alzheimer’s Disease and Vascular Cognitive Impairment

    Science.gov (United States)

    Deak, Ferenc; Freeman, Willard M.; Ungvari, Zoltan; Csiszar, Anna

    2016-01-01

    As the population of the Western world is aging, there is increasing awareness of age-related impairments in cognitive function and a rising interest in finding novel approaches to preserve cerebral health. A special collection of articles in The Journals of Gerontology: Biological Sciences and Medical Sciences brings together information of different aspects of brain aging, from latest developments in the field of neurodegenerative disorders to cerebral microvascular mechanisms of cognitive decline. It is emphasized that although the cellular changes that occur within aging neurons have been widely studied, more research is required as new signaling pathways are discovered that can potentially protect cells. New avenues for research targeting cellular senescence, epigenetics, and endocrine mechanisms of brain aging are also discussed. Based on the current literature it is clear that understanding brain aging and reducing risk for neurological disease with age requires searching for mechanisms and treatment options beyond the age-related changes in neuronal function. Thus, comprehensive approaches need to be developed that address the multiple, interrelated mechanisms of brain aging. Attention is brought to the importance of maintenance of cerebromicrovascular health, restoring neuroendocrine balance, and the pressing need for funding more innovative research into the interactions of neuronal, neuroendocrine, inflammatory and microvascular mechanisms of cognitive impairment, and Alzheimer’s disease. PMID:26590911

  14. Vascular and renal function in experimental thyroid disorders.

    Science.gov (United States)

    Vargas, Félix; Moreno, Juan Manuel; Rodríguez-Gómez, Isabel; Wangensteen, Rosemary; Osuna, Antonio; Alvarez-Guerra, Miriam; García-Estañ, Joaquín

    2006-02-01

    This review focuses on the effects of thyroid hormones in vascular and renal systems. Special emphasis is given to the mechanisms by which thyroid hormones affect the regulation of body fluids, vascular resistance and, ultimately, blood pressure. Vascular function is markedly affected by thyroid hormones that produce changes in vascular reactivity and endothelial function in hyper- and hypothyroidism. The hypothyroid state is accompanied by a marked decrease in sensitivity to vasoconstrictors, especially to sympathetic agonists, alteration that may play a role in the reduced blood pressure of hypothyroid rats, as well as in the preventive effects of hypothyroidism on experimental hypertension. Moreover, in hypothyroid rats, the endothelium-dependent and nitric oxide donors vasodilation is reduced. Conversely, the vessels from hyperthyroid rats showed an increased endothelium-dependent responsiveness that may be secondary to the shear-stress induced by the hyperdynamic circulation, and that may contribute to the reduced vascular resistance characteristic of this disease. Thyroid hormones also have important effects in the kidney, affecting renal growth, renal haemodynamics, and salt and water metabolism. In hyperthyroidism, there is a resetting of the pressure-natriuresis relationship related to hyperactivity of the renin-angiotensin system, which contributes to the arterial hypertension associated with this endocrine disease. Moreover, thyroid hormones affect the development and/or maintenance of various forms of arterial hypertension. This review also describes recent advances in our understanding of thyroid hormone action on nitric oxide and oxidative stress in the regulation of cardiovascular and renal function and in the long-term control of blood pressure.

  15. Identification of a potent endothelium-derived angiogenic factor.

    Directory of Open Access Journals (Sweden)

    Vera Jankowski

    Full Text Available The secretion of angiogenic factors by vascular endothelial cells is one of the key mechanisms of angiogenesis. Here we report on the isolation of a new potent angiogenic factor, diuridine tetraphosphate (Up4U from the secretome of human endothelial cells. The angiogenic effect of the endothelial secretome was partially reduced after incubation with alkaline phosphatase and abolished in the presence of suramin. In one fraction, purified to homogeneity by reversed phase and affinity chromatography, Up4U was identified by MALDI-LIFT-fragment-mass-spectrometry, enzymatic cleavage analysis and retention-time comparison. Beside a strong angiogenic effect on the yolk sac membrane and the developing rat embryo itself, Up4U increased the proliferation rate of endothelial cells and, in the presence of PDGF, of vascular smooth muscle cells. Up4U stimulated the migration rate of endothelial cells via P2Y2-receptors, increased the ability of endothelial cells to form capillary-like tubes and acts as a potent inducer of sprouting angiogenesis originating from gel-embedded EC spheroids. Endothelial cells released Up4U after stimulation with shear stress. Mean total plasma Up4U concentrations of healthy subjects (N=6 were sufficient to induce angiogenic and proliferative effects (1.34 ± 0.26 nmol L(-1. In conclusion, Up4U is a novel strong human endothelium-derived angiogenic factor.

  16. Endothelium-dependent relaxation induced by cathepsin G in porcine pulmonary arteries

    Science.gov (United States)

    Glusa, Erika; Adam, Christine

    2001-01-01

    Serine proteinases elicit profound cellular effects in various tissues mediated by activation of proteinase-activated receptors (PAR). In the present study, we investigated the vascular effects of cathepsin G, a serine proteinase that is present in the azurophil granules of leukocytes and is known to activate several cells that express PARs. In prostaglandin F2α (3 μM)-precontracted rings from porcine pulmonary arteries with intact endothelium, cathepsin G caused concentration-dependent relaxant responses (pEC50=9.64±0.12). The endothelium-dependent relaxant effect of cathepsin G could also be demonstrated in porcine coronary arteries (pEC50=9.23±0.07). In pulmonary arteries the cathepsin G-induced relaxation was inhibited after blockade of nitric oxide synthesis by L-NAME (200 μM) and was absent in endothelium-denuded vessels. Bradykinin- and cathepsin G-induced relaxant effects were associated with a 5.7 fold and 2.4 fold increase in the concentration of cyclic GMP, respectively. Compared with thrombin and trypsin, which also produced an endothelium-dependent relaxation in pulmonary arteries, cathepsin G was 2.5 and four times more potent, respectively. Cathepsin G caused only small homologous desensitization. In cathepsin G-challenged vessels, thrombin was still able to elicit a relaxant effect. The effects of cathepsin G were blocked by soybean trypsin inhibitor (IC50=0.043 μg ml−1), suggesting that proteolytic activity is essential for induction of relaxation. Recombinant acetyl-eglin C proved to be a potent inhibitor (IC50=0.14 μg ml−1) of the cathepsin G effect, whereas neither indomethacin (3 μM) nor the thrombin inhibitor hirudin (5 ATU ml−1) elicited any inhibitory activity. Due to their polyanionic structure defibrotide (IC50=0.11 μg ml−1), heparin (IC50=0.48 μg ml−1) and suramin (IC50=1.85 μg ml−1) diminished significantly the relaxation in response to the basic protein cathepsin G. In conclusion, like

  17. Cigarette smoke extract increases albumin flux across pulmonary endothelium in vitro

    International Nuclear Information System (INIS)

    Holden, W.E.; Maier, J.M.; Malinow, M.R.

    1989-01-01

    Cigarette smoking causes lung inflammation, and a characteristic of inflammation is an increase in vascular permeability. To determine if cigarette smoke could alter endothelial permeability, we studied flux of radiolabeled albumin across monolayers of porcine pulmonary artery endothelium grown in culture on microporous membranes. Extracts (in either dimethylsulfoxide or phosphate-buffered saline) of cigarette smoke in a range estimate of concentrations simulating cigarette smoke exposure to the lungs in vivo caused a dose-dependent increase in albumin flux that was dependent on extracellular divalent cations and associated with polymerization of cellular actin. The effect was reversible, independent of the surface of endothelial cells exposed (either luminal or abluminal), and due primarily to components of the vapor phase of smoke. The effects occurred without evidence of cell damage, but subtle morphological changes were produced by exposure to the smoke extracts. These findings suggest that cigarette smoke can alter permeability of the lung endothelium through effects on cytoskeletal elements

  18. Permeability of the arterial endothelium of spontaneously hypertensive rats to plasma macromolecules

    International Nuclear Information System (INIS)

    Yurukova, Z.B.; Georgiev, P.G.

    1979-01-01

    By means of vascular labelling technique at cellular level, the permeability of the arterial endothelium of spontaneously hypertensive rats has been studied. For this purpose colloidal carbon and plasma lipoproteins were introduced into the jugular vein of the animals. Material for light- and electron-microscopic and radioautographic examinations was taken from the thoracic and abdominal parts of the aorta. The results show that in long-term hypertension substances from plasma enter the aortic wall in increased amounts through two main pathways. First, through the selective physiological pathways of transendothelial transport (through cell junctions and vesicular transport) and secondly, through discontinuities of the endothelial lining (separation of the intercellular junctions, areas of loss of one to several endothelial cells). The alteration of the arterial endothelium barrier function in chronic hypertension seems to be an important mechanism for the progression of hypertensive arterial lesions. (A.B.)

  19. Visualization of three pathways for macromolecule transport across cultured endothelium and their modification by flow.

    Science.gov (United States)

    Ghim, Mean; Alpresa, Paola; Yang, Sung-Wook; Braakman, Sietse T; Gray, Stephen G; Sherwin, Spencer J; van Reeuwijk, Maarten; Weinberg, Peter D

    2017-11-01

    Transport of macromolecules across vascular endothelium and its modification by fluid mechanical forces are important for normal tissue function and in the development of atherosclerosis. However, the routes by which macromolecules cross endothelium, the hemodynamic stresses that maintain endothelial physiology or trigger disease, and the dependence of transendothelial transport on hemodynamic stresses are controversial. We visualized pathways for macromolecule transport and determined the effect on these pathways of different types of flow. Endothelial monolayers were cultured under static conditions or on an orbital shaker producing different flow profiles in different parts of the wells. Fluorescent tracers that bound to the substrate after crossing the endothelium were used to identify transport pathways. Maps of tracer distribution were compared with numerical simulations of flow to determine effects of different shear stress metrics on permeability. Albumin-sized tracers dominantly crossed the cultured endothelium via junctions between neighboring cells, high-density lipoprotein-sized tracers crossed at tricellular junctions, and low-density lipoprotein-sized tracers crossed through cells. Cells aligned close to the angle that minimized shear stresses across their long axis. The rate of paracellular transport under flow correlated with the magnitude of these minimized transverse stresses, whereas transport across cells was uniformly reduced by all types of flow. These results contradict the long-standing two-pore theory of solute transport across microvessel walls and the consensus view that endothelial cells align with the mean shear vector. They suggest that endothelial cells minimize transverse shear, supporting its postulated proatherogenic role. Preliminary data show that similar tracer techniques are practicable in vivo. NEW & NOTEWORTHY Solutes of increasing size crossed cultured endothelium through intercellular junctions, through tricellular

  20. Pravastatin and endothelium dependent vasomotion after coronary angioplasty: the PREFACE trial.

    Science.gov (United States)

    Mulder, H J; Schalij, M J; Kauer, B; Visser, R F; van Dijkman, P R; Jukema, J W; Zwinderman, A H; Bruschke, A V

    2001-11-01

    To test the hypothesis that the 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitor pravastatin ameliorates endothelium mediated responses of dilated coronary segments: the PREFACE (pravastatin related effects following angioplasty on coronary endothelium) trial. A double blind, randomised, placebo controlled, multicentre study. Four hospitals in the Netherlands. 63 non-smoking, non-hypercholesterolaemic patients scheduled for elective balloon angioplasty (pravastatin 34, placebo 29). The effects of three months of pravastatin treatment (40 mg daily) on endothelium dependent vasomotor function were studied. Balloon angioplasty was undertaken one month after randomisation, and coronary vasomotor function tests using acetylcholine were performed two months after balloon angioplasty. The angiograms were analysed quantitatively. The efficacy measure was the acetylcholine induced change in mean arterial diameter, determined in the dilated segment and in an angiographically normal segment of an adjacent non-manipulated coronary artery. Increasing acetylcholine doses produced vasoconstriction in the dilated segments (p = 0.004) but not in the normal segments. Pravastatin did not affect the vascular response to acetylcholine in either the dilated segments (p = 0.09) or the non-dilated sites. Endothelium dependent vasomotion in normal segments was correlated with that in dilated segments (r = 0.47, p < 0.001). There were fewer procedure related events in the pravastatin group than in the placebo group (p < 0.05). Endothelium dependent vasomotion in normal segments is correlated with that in dilated segments. A significant beneficial effect of pravastatin on endothelial function could not be shown, but in the dilated segments there was a trend towards a beneficial treatment effect in the pravastatin group.

  1. Endothelial Mechanotransduction, Redox Signaling and the Regulation of Vascular Inflammatory Pathways

    Directory of Open Access Journals (Sweden)

    Shampa Chatterjee

    2018-06-01

    Full Text Available The endothelium that lines the interior of blood vessels is directly exposed to blood flow. The shear stress arising from blood flow is “sensed” by the endothelium and is “transduced” into biochemical signals that eventually control vascular tone and homeostasis. Sensing and transduction of physical forces occur via signaling processes whereby the forces associated with blood flow are “sensed” by a mechanotransduction machinery comprising of several endothelial cell elements. Endothelial “sensing” involves converting the physical cues into cellular signaling events such as altered membrane potential and activation of kinases, which are “transmission” signals that cause oxidant production. Oxidants produced are the “transducers” of the mechanical signals? What is the function of these oxidants/redox signals? Extensive data from various studies indicate that redox signals initiate inflammation signaling pathways which in turn can compromise vascular health. Thus, inflammation, a major response to infection or endotoxins, can also be initiated by the endothelium in response to various flow patterns ranging from aberrant flow to alteration of flow such as cessation or sudden increase in blood flow. Indeed, our work has shown that endothelial mechanotransduction signaling pathways participate in generation of redox signals that affect the oxidant and inflammation status of cells. Our goal in this review article is to summarize the endothelial mechanotransduction pathways that are activated with stop of blood flow and with aberrant flow patterns; in doing so we focus on the complex link between mechanical forces and inflammation on the endothelium. Since this “inflammation susceptible” phenotype is emerging as a trigger for pathologies ranging from atherosclerosis to rejection post-organ transplant, an understanding of the endothelial machinery that triggers these processes is very crucial and timely.

  2. SH2 domain-containing protein tyrosine phosphatase 2 and focal adhesion kinase protein interactions regulate pulmonary endothelium barrier function.

    Science.gov (United States)

    Chichger, Havovi; Braza, Julie; Duong, Huetran; Harrington, Elizabeth O

    2015-06-01

    Enhanced protein tyrosine phosphorylation is associated with changes in vascular permeability through formation and dissolution of adherens junctions and regulation of stress fiber formation. Inhibition of the protein tyrosine phosphorylase SH2 domain-containing protein tyrosine phosphatase 2 (SHP2) increases tyrosine phosphorylation of vascular endothelial cadherin and β-catenin, resulting in disruption of the endothelial monolayer and edema formation in the pulmonary endothelium. Vascular permeability is a hallmark of acute lung injury (ALI); thus, enhanced SHP2 activity offers potential therapeutic value for the pulmonary vasculature in diseases such as ALI, but this has not been characterized. To assess whether SHP2 activity mediates protection against edema in the endothelium, we assessed the effect of molecular activation of SHP2 on lung endothelial barrier function in response to the edemagenic agents LPS and thrombin. Both LPS and thrombin reduced SHP2 activity, correlated with decreased focal adhesion kinase (FAK) phosphorylation (Y(397) and Y(925)) and diminished SHP2 protein-protein associations with FAK. Overexpression of constitutively active SHP2 (SHP2(D61A)) enhanced baseline endothelial monolayer resistance and completely blocked LPS- and thrombin-induced permeability in vitro and significantly blunted pulmonary edema formation induced by either endotoxin (LPS) or Pseudomonas aeruginosa exposure in vivo. Chemical inhibition of FAK decreased SHP2 protein-protein interactions with FAK concomitant with increased permeability; however, overexpression of SHP2(D61A) rescued the endothelium and maintained FAK activity and FAK-SHP2 protein interactions. Our data suggest that SHP2 activation offers the pulmonary endothelium protection against barrier permeability mediators downstream of the FAK signaling pathway. We postulate that further studies into the promotion of SHP2 activation in the pulmonary endothelium may offer a therapeutic approach for patients

  3. Vascular effects of ultrafine particles in persons with type 2 diabetes

    Science.gov (United States)

    BACKGROUND: Diabetes confers an increased risk for cardiovascular effects of airborne particles. OBJECTIVE: We hypothesized that inhalation of elemental carbon ultrafine particles (UFP) would activate blood platelets and vascular endothelium in people with type 2 diabetes. ...

  4. Encapsulated Bacillus anthracis interacts closely with liver endothelium.

    Science.gov (United States)

    Piris-Gimenez, Alejandro; Corre, Jean-Philippe; Jouvion, Gregory; Candela, Thomas; Khun, Huot; Goossens, Pierre L

    2009-11-01

    The Bacillus anthracis poly-gamma-D-glutamate capsule is essential for virulence. It impedes phagocytosis and protects bacilli from the immune system, thus promoting systemic dissemination. To further define the virulence mechanisms brought into play by the capsule, we characterized the interactions between encapsulated nontoxinogenic B. anthracis and its host in vivo through histological analysis, perfusion, and competition experiments with purified capsule. Clearance of encapsulated bacilli from the blood was rapid (>90% clearance within 5 min), with 75% of the bacteria being trapped in the liver. Competition experiments with purified capsule polyglutamate inhibited this interaction. At the septicemic phase of cutaneous infection with spores, the encapsulated bacilli were trapped in the vascular spaces of the liver and interacted closely with the liver endothelium in the sinusoids and terminal and portal veins. They often grow as microcolonies containing capsular material shed by the bacteria. We show that, in addition to its inhibitory effect on the interaction with the immune system, the capsule surrounding B. anthracis plays an active role in mediating the trapping of the bacteria within the liver and may thus contribute to anthrax pathogenesis. Because other microorganisms produce polyglutamate, it may also represent a general mechanism of virulence or in vivo survival.

  5. Role of endothelium in radiation-induced normal tissue damages

    International Nuclear Information System (INIS)

    Milliat, F.

    2007-05-01

    More than half of cancers are treated with radiation therapy alone or in combination with surgery and/or chemotherapy. The goal of radiation therapy is to deliver enough ionising radiation to destroy cancer cells without exceeding the level that the surrounding healthy cells can tolerate. Unfortunately, radiation-induced normal tissue injury is still a dose limiting factor in the treatment of cancer with radiotherapy. The knowledge of normal tissue radiobiology is needed to determine molecular mechanisms involved in normal tissue pathogenic pathways in order to identify therapeutic targets and develop strategies to prevent and /or reduce side effects of radiation therapy. The endothelium is known to play a critical role in radiation-induced injury. Our work shows that endothelial cells promote vascular smooth muscle cell proliferation, migration and fibro-genic phenotype after irradiation. Moreover, we demonstrate for the first time the importance of PAI-1 in radiation-induced normal tissue damage suggesting that PAI-1 may represent a molecular target to limit injury following radiotherapy. We describe a new role for the TGF-b/Smad pathway in the pathogenesis of radiation-induced damages. TGF-b/Smad pathway is involved in the fibro-genic phenotype of VSMC induced by irradiated EC as well as in the radiation-induced PAI-1 expression in endothelial cells. (author)

  6. Metabolic syndrome enhances endoplasmic reticulum, oxidative stress and leukocyte-endothelium interactions in PCOS.

    Science.gov (United States)

    Bañuls, Celia; Rovira-Llopis, Susana; Martinez de Marañon, Aranzazu; Veses, Silvia; Jover, Ana; Gomez, Marcelino; Rocha, Milagros; Hernandez-Mijares, Antonio; Victor, Victor M

    2017-06-01

    Polycystic ovary syndrome (PCOS) is associated with insulin resistance, which can lead to metabolic syndrome (MetS). Oxidative stress and leukocyte-endothelium interactions are related to PCOS. Our aim was to evaluate whether the presence of MetS in PCOS patients can influence endoplasmic reticulum (ER) and oxidative stress and leukocyte-endothelium interactions. This was a prospective controlled study conducted in an academic medical center. The study population consisted of 148 PCOS women (116 without/32 with MetS) and 112 control subjects (87 without / 25 with MetS). Metabolic parameters, reactive oxygen species (ROS) production, ER stress markers (GRP78, sXBP1, ATF6), leukocyte-endothelium interactions, adhesion molecules (VCAM-1, ICAM-1, E-Selectin), TNF-α and IL-6 were determined. Total ROS, inflammatory parameters and adhesion molecules were enhanced in the presence of MetS (pPCOS+MetS group showed higher levels of IL-6 and ICAM-1 than controls (pPCOS and PCOS+MetS groups vs their respective controls (pPCOS groups (pPCOS+MetS patients exhibited higher GRP78 and ATF6 levels than controls and PCOS patients without MetS (pPCOS women, HOMA-IR was positively correlated with ICAM-1 (r=0.501; pPCOS, all of which are related to vascular complications. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Effects of PPARγ ligands on vascular tone.

    Science.gov (United States)

    Salomone, Salvatore; Drago, Filippo

    2012-06-01

    Peroxisome Proliferator-Activated Receptor γ (PPARγ), originally described as a transcription factor for genes of carbohydrate and lipid metabolism, has been more recently studied in the context of cardiovascular pathophysiology. Here, we review the available data on PPARγ ligands as modulator of vascular tone. PPARγ ligands include: thiazolidinediones (used in the treatment of type 2 diabetes mellitus), glitazars (bind and activate both PPARγ and PPARα), and other experimental drugs (still in development) that exploit the chemistry of thiazolidinediones as a scaffold for PPARγ-independent pharmacological properties. In this review, we examine both short (mostly from in vitro data)- and long (mostly from in vivo data)-term effects of PPARγ ligands that extend from PPARγ-independent vascular effects to PPARγ-dependent gene expression. Because endothelium is a master regulator of vascular tone, we have attempted to differentiate between endothelium-dependent and endothelium-independent effects of PPARγ ligands. Based on available data, we conclude that PPARγ ligands appear to influence vascular tone in different experimental paradigms, most often in terms of vasodilatation (potentially increasing blood flow to some tissues). These effects on vascular tone, although potentially beneficial, must be weighed against specific cardiovascular warnings that may apply to some drugs, such as rosiglitazone.

  8. Microcirculatory disorders in scleroderma systematica: an association with vascular wall stiffness

    Directory of Open Access Journals (Sweden)

    Ulyana Yuryevna Ruzhentsova

    2013-01-01

    Full Text Available Objective: to study the specific features of regulation of peripheral vascular tone and their association with the endothelial structure and function of large vessels in patients with scleroderma systematica (SDS. Subjects and methods. The investigation enrolled 25 patients with SDS (mean age, 47±2.6 years; mean disease duration, 8.3+1.7 years and 15 apparently healthy individuals matched for age and gender. Comprehensive examination involved laboratory and instrumental studies, laser Doppler study to evaluate endothelium-dependent and endothelium-independent vasodilation, as well as applanation tonometry calculating the pulse wave velocity and augmentation index. Results. All the patients were found to have impaired peripheral vascular responsiveness as compared to the controls. The examination established a relationship between the magnitude of endothelium-dependent vasodilation and the stiffness index of large vessels. There was no association between endothelium-independent vasodilation and vascular elasticity parameters.

  9. Accumulation of the Vitamin D Precursor Cholecalciferol Antagonizes Hedgehog Signaling to Impair Hemogenic Endothelium Formation

    Directory of Open Access Journals (Sweden)

    Mauricio Cortes

    2015-10-01

    Full Text Available Hematopoietic stem and progenitor cells (HSPCs are born from hemogenic endothelium in the dorsal aorta. Specification of this hematopoietic niche is regulated by a signaling axis using Hedgehog (Hh and Notch, which culminates in expression of Runx1 in the ventral wall of the artery. Here, we demonstrate that the vitamin D precursor cholecalciferol (D3 modulates HSPC production by impairing hemogenic vascular niche formation. Accumulation of D3 through exogenous treatment or inhibition of Cyp2r1, the enzyme required for D3 25-hydroxylation, results in Hh pathway antagonism marked by loss of Gli-reporter activation, defects in vascular niche identity, and reduced HSPCs. Mechanistic studies indicated the effect was specific to D3, and not active 1,25-dihydroxy vitamin D3, acting on the extracellular sterol-binding domain of Smoothened. These findings highlight a direct impact of inefficient vitamin D synthesis on cell fate commitment and maturation in Hh-regulated tissues, which may have implications beyond hemogenic endothelium specification.

  10. Arbuscular mycorrhizal fungi associations of vascular plants confined to river valleys: towards understanding the river corridor plant distribution.

    Science.gov (United States)

    Nobis, Agnieszka; Błaszkowski, Janusz; Zubek, Szymon

    2015-01-01

    The group of river corridor plants (RCP) includes vascular plant species which grow mainly or exclusively in the valleys of large rivers. Despite the long recognized fact that some plant species display a corridor-like distribution pattern in Central Europe, there is still no exhaustive explanation of the mechanisms generating this peculiar distribution. The main goal of this study was therefore to investigate whether arbuscular mycorrhizal fungi (AMF) and fungal root endophytes influence the RCP distribution. Arbuscular mycorrhizae (AM) were observed in 19 out of 33 studied RCP. Dark septate endophytes (DSE) and Olpidium spp. were recorded with low abundance in 15 and 10 plant species, respectively. The spores of AMF were found only in 32% of trap cultures established from the soils collected in the river corridor habitats. In total, six widespread AMF species were identified. Because the percentage of non-mycorrhizal species in the group of RCP is significant and the sites in river corridors are characterized by low AMF species diversity, RCP can be outcompeted outside river valleys by the widespread species that are able to benefit from AM associations in more stable plant-AMF communities in non-river habitats.

  11. Adiponectin improves coronary no-reflow injury by protecting the endothelium in rats with type 2 diabetes mellitus.

    Science.gov (United States)

    Han, Xue; Wu, Ye; Liu, Xin; Ma, Lu; Lv, Tingting; Sun, Qi; Xu, Wenli; Zhang, Suli; Wang, Ke; Wang, Wen; Ma, Xinliang; Liu, Huirong

    2017-08-31

    To determine the effect of adiponectin (APN) on the coronary no-reflow (NR) injury in rats with Type 2 diabetes mellitus (T2DM), 80 male Sprague-Dawley rats were fed with a high-sugar-high-fat diet to build a T2DM model. Rats received vehicle or APN in the last week and then were subjected to myocardial ischemia reperfusion (MI/R) injury. Endothelium-dependent vasorelaxation of the thoracic aorta was significantly decreased and serum levels of endothelin-1 (ET-1), intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were noticably increased in T2DM rats compared with rats without T2DM. Serum APN was positively correlated with the endothelium-dependent vasorelaxation, but negatively correlated with the serum level of ET-1. Treatment with APN improved T2DM-induced endothelium-dependent vasorelaxation, recovered cardiac function, and decreased both NR size and the levels of ET-1, ICAM-1 and VCAM-1. Hypoadiponectinemia was associated with the aggravation of coronary NR in T2DM rats. APN could alleviate coronary NR injury in T2DM rats by protecting the endothelium and improving microcirculation. © 2017 The Author(s).

  12. Preservation of endothelium-dependent relaxation in atherosclerotic mice with endothelium-restricted endothelin-1 overexpression.

    Science.gov (United States)

    Mian, Muhammad Oneeb Rehman; Idris-Khodja, Noureddine; Li, Melissa W; Leibowitz, Avshalom; Paradis, Pierre; Rautureau, Yohann; Schiffrin, Ernesto L

    2013-10-01

    In human atherosclerosis, which is associated with elevated plasma and coronary endothelin (ET)-1 levels, ETA receptor antagonists improve coronary endothelial function. Mice overexpressing ET-1 specifically in the endothelium (eET-1) crossed with atherosclerosis-prone apolipoprotein E knockout mice (Apoe(-/-)) exhibit exaggerated high-fat diet (HFD)-induced atherosclerosis. Since endothelial dysfunction often precedes atherosclerosis development, we hypothesized that mice overexpressing endothelial ET-1 on a genetic background deficient in apolipoprotein E (eET-1/Apoe(-/-)) would have severe endothelial dysfunction. To test this hypothesis, we investigated endothelium-dependent relaxation (EDR) to acetylcholine in eET-1/Apoe(-/-) mice. EDR in mesenteric resistance arteries from 8- and 16-week-old mice fed a normal diet or HFD was improved in eET-1/Apoe(-/-) compared with Apoe(-/-) mice. Nitric oxide synthase (NOS) inhibition abolished EDR in Apoe(-/-). EDR in eET-1/Apoe(-/-) mice was resistant to NOS inhibition irrespective of age or diet. Inhibition of cyclooxygenase, the cytochrome P450 pathway, and endothelium-dependent hyperpolarization (EDH) resulted in little or no inhibition of EDR in eET-1/Apoe(-/-) compared with wild-type (WT) mice. In eET-1/Apoe(-/-) mice, blocking of EDH or soluble guanylate cyclase (sGC), in addition to NOS inhibition, decreased EDR by 36 and 30%, respectively. The activation of 4-aminopyridine-sensitive voltage-dependent potassium channels (Kv) during EDR was increased in eET-1/Apoe(-/-) compared with WT mice. We conclude that increasing eET-1 in mice that develop atherosclerosis results in decreased mutual dependence of endothelial signaling pathways responsible for EDR, and that NOS-independent activation of sGC and increased activation of Kv are responsible for enhanced EDR in this model of atherosclerosis associated with elevated endothelial and circulating ET-1.

  13. Toxicity of methods of implant material sterilization on corneal endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Singh, G.; Boehnke, Mv.; von Domarus, D.; Draeger, J.

    1985-11-01

    The toxicity of different procedures utilized for the sterilization of intraocular implant material was assessed on the endothelium of organ-cultured porcine corneas. Polymethylmethacrylate lenses sterilized by treatment with sodium hydroxide (NaOH), ethylene oxide, formaldehyde, and gamma radiation were added to a culture medium containing normal porcine corneas. Considering the viability of endothelial cells, appearance of intracellular degenerative vacuoles, and denudation of corneal Descemet's membrane as criterion for the evaluation of toxicity of different methods of sterilization, the NaOH-treated lenses were found to be the least toxic to porcine corneal endothelium. Phase-contrast microscopy and vital staining of the endothelium permitted direct viewing of the endothelium aiding in the assessment of toxicity.

  14. NF1 Signal Transduction and Vascular Dysfunction

    Science.gov (United States)

    2015-05-01

    microenvironment that promotes much of the pathology associated with the disease . Moreover we hypothesize that a mechanistic consequence of the loss...obliteration of the normal red pulp architecture. In addition, we found significant peri-aveolar and peri-vascular inflammatory infiltrates in the lung...the mouse model of NF1 disease in the endothelium we proposed and have done experiments investigating the loss of endothelial NF1 in the adult

  15. Acute effects of gamma irradiation on vascular arterial tone

    International Nuclear Information System (INIS)

    Bourlier, V.; Diserbo, M.; Multon, E.; Verdetti, J.; Fatome, M.

    1995-01-01

    In rat aortic rings, we showed an increase in arterial tone during irradiation. This effect is acute reversible. This effect is only observed on pre-contracted rings and needs the integrity of vascular endothelium. The molecular mechanism of this effect is discussed. (author)

  16. Magnetic resonance vascular imaging

    International Nuclear Information System (INIS)

    Axel, L

    1989-01-01

    The basis principles of MRI are reviewed in order to understand how blood flow effects arise in conventional imaging. Then some of the ways these effects have ben used in MRI techniques specifically designed for vascular imaging, are considered. (author)

  17. Activation of the Arterial Program Drives Development of Definitive Hemogenic Endothelium with Lymphoid Potential

    Directory of Open Access Journals (Sweden)

    Mi Ae Park

    2018-05-01

    Full Text Available Summary: Understanding the pathways guiding the development of definitive hematopoiesis with lymphoid potential is essential for advancing human pluripotent stem cell (hPSC technologies for the treatment of blood diseases and immunotherapies. In the embryo, lymphoid progenitors and hematopoietic stem cells (HSCs arise from hemogenic endothelium (HE lining arteries but not veins. Here, we show that activation of the arterial program through ETS1 overexpression or by modulating MAPK/ERK signaling pathways at the mesodermal stage of development dramatically enhanced the formation of arterial-type HE expressing DLL4 and CXCR4. Blood cells generated from arterial HE were more than 100-fold enriched in T cell precursor frequency and possessed the capacity to produce B lymphocytes and red blood cells expressing high levels of BCL11a and β-globin. Together, these findings provide an innovative strategy to aid in the generation of definitive lymphomyeloid progenitors and lymphoid cells from hPSCs for immunotherapy through enhancing arterial programming of HE. : Park et al. find that activation of the arterial program through ETS1 overexpression or by modulating MAPK/ERK signaling pathways at the mesodermal stage of development dramatically enhances formation of arterial-type hemogenic endothelium (HE from hPSCs. Blood cells generated from arterial HE are highly enriched in definitive lymphomyeloid progenitors. Keywords: human pluripotent stem cells, hemogenic endothelium, T cells, hematopoietic stem cells, hematopoiesis, ETS1, MAPK/ERK signaling

  18. Jabuticaba-Induced Endothelium-Independent Vasodilating Effect on Isolated Arteries

    Directory of Open Access Journals (Sweden)

    Daniela Medeiros Lobo de Andrade

    2016-01-01

    Full Text Available Abstract Background: Despite the important biological effects of jabuticaba, its actions on the cardiovascular system have not been clarified. Objectives: To determine the effects of jabuticaba hydroalcoholic extract (JHE on vascular smooth muscle (VSM of isolated arteries. Methods: Endothelium-denuded aortic rings of rats were mounted in isolated organ bath to record isometric tension. The relaxant effect of JHE and the influence of K+ channels and Ca2+ intra- and extracellular sources on JHE-stimulated response were assessed. Results: Arteries pre-contracted with phenylephrine showed concentration-dependent relaxation (0.380 to 1.92 mg/mL. Treatment with K+ channel blockers (tetraethyl-ammonium, glibenclamide, 4-aminopyridine hindered relaxation due to JHE. In addition, phenylephrine-stimulated contraction was hindered by previous treatment with JHE. Inhibition of sarcoplasmic reticulum Ca2+ ATPase did not change relaxation due to JHE. In addition, JHE inhibited the contraction caused by Ca2+ influx stimulated by phenylephrine and KCl (75 mM. Conclusion: JHE induces endothelium-independent vasodilation. Activation of K+ channels and inhibition of Ca2+ influx through the membrane are involved in the JHE relaxant effect.

  19. Endothelium-Independent Vasorelaxant Effect of Ligusticum jeholense Root and Rhizoma on Rat Thoracic Aorta

    Directory of Open Access Journals (Sweden)

    Bumjung Kim

    2015-06-01

    Full Text Available Ligusticum jeholense has been used as the traditional medicine ‘Go-Bon’ (Chinese name, Gao-ben in China and Korea. Considering the increased use of medicinal herbs to treat hypertension, in this study, we aimed to investigate the mechanisms of the vasorelaxation effect caused by L. jeholense. We tested the methanol (MeOH extract of L. jeholense root and rhizoma for vasorelaxant effects; while using an isolated organ-chamber technique, L. jeholense extract (LJE induced relaxation in the rat aortic rings by stimulating vascular endothelial and smooth muscle cells. LJE showed concentration-dependent relaxant effects on endothelium-intact and endothelium-denuded aortic rings pre-contracted with both phenylephrine (PE and potassium chloride (KCl in Krebs-Henseleit (KH buffer. The vasorelaxant effect of LJE was partly attenuated by pre-treatment with glibenclamide or 4-aminopyridine (4-AP as K+ channel blockers. Moreover, LJE showed concentration-dependent inhibition of vasoconstriction by Ca2+ supplementation in the aortic rings that were pre-contracted with PE or KCl in Ca2+-free KH buffer. In addition, a combination of LJE and nifedipine, pre-incubated further, decreased PE-induced contractions. The results suggested that LJE-induced vasorelaxation were related to blocking K+ channels and inhibiting entry of extracellular Ca2+ via receptor-operative Ca2+ channels (ROCCs or voltage-dependent Ca2+ channels (VDCCs.

  20. Role of coronary endothelium in cyclic AMP formation by the heart

    International Nuclear Information System (INIS)

    Kroll, K.; Schrader, J.

    1986-01-01

    In order to quantify the activation of adenylate cyclase of the coronary endothelium in vivo, endothelial adenine nucleotides of isolated guinea pig hearts were selectively pre-labeled by intracoronary infusion of tritiated (H3)-adenosine, and the coronary efflux of H3-cAMP was measured. The adenosine receptor agonist, NECA (12 μM), increased total cAMP release 4 fold, and raised H3-cAMP release 22 fold. Several classes of coronary vasodilators (adenosine, L-PIA, D-PIA, the beta 2-adrenergic agonist procaterol, and PGE1) caused dose-dependent increases in endothelial-derived H3-cAMP release. These increases were accompanied by decreases in vascular resistance, at agonist doses without positive intropic effects. Hypoxic perfusion also raised H3-cAMP release, and this was antagonized by theophylline. It is concluded: (1) cyclic AMP formation by coronary endothelium can dominate total cAMP production by the heart; (2) coronary endothelial adenylate cyclase-coupled receptors for adenosine (A2), catecholamines (beta2) and prostaglandins are activated in parallel with coronary vasodilation; (3) endothelial adenylate cyclase can be activated by endogenous adenosine

  1. Vitamin D and the endothelium: basic, translational and clinical research updates

    Directory of Open Access Journals (Sweden)

    Rinkoo Dalan

    2014-09-01

    Results and conclusion: Vitamin D deficiency is associated with endothelial dysfunction and cardiovascular diseases. Vitamin D stabilizes the quiescent endothelium, modulates certain stages of endothelial activation, and is involved in the repair of the damaged endothelium in vitro and in vivo. Twelve recent cross sectional studies, including 2086 subjects of varying ethnic groups, show an association between endothelial dysfunction and vitamin D deficiency. Yet 10 recent RCTs of vitamin D supplementation involving 824 subjects have failed to show significant improvements in endothelial function in the short term. So far, RCTs have not been able to confirm or refute the benefit of vitamin D supplementation on vascular mortality. Longer term randomized controlled trials using doses of vitamin D to optimize serum 25(OHD concentrations to 20.0–40.0 ng/mL (50.0–100.0 nmol/L or using vitamin D analogues with no calciotropic effects are needed to assess endothelial function and cardiovascular outcomes.

  2. Decreased endothelium-dependent coronary vasomotion in healthy young smokers

    International Nuclear Information System (INIS)

    Iwado, Yasuyoshi; Yoshinaga, Keiichiro; Furuyama, Hideto; Tsukamoto, Eriko; Tamaki, Nagara; Ito, Yoshinori; Noriyasu, Kazuyuki; Katoh, Chietsugu; Kuge, Yuji

    2002-01-01

    Chronic cigarette smoking alters coronary vascular endothelial response. To determine whether altered response also occurs in young individuals without manifest coronary disease we quantified coronary blood flow at rest, following adenosine vasodilator stress and during the cold pressor test in healthy young smokers. Myocardial blood flow (MBF) was quantified by oxygen-15 labelled water positron emission tomography in 30 healthy men aged from 20 to 35 years (18 smokers and 12 non-smokers, aged 27.4±4.4 vs 26.3±3.3). The smokers had been smoking cigarettes for 9.4±4.9 pack-years. MBF was measured at rest, during intravenous adenosine triphosphate (ATP: 0.16 mg kg -1 min -1 ) infusion (hyperaemic response), and during cold pressor test (CPT) (endothelial vasodilator response). Rest MBF and hyperaemic MBF did not differ significantly between the smokers and the non-smokers (rest: 0.86±0.11 vs 0.92±0.14 and ATP: 3.20±1.12 vs 3.69±0.76 ml g -1 min -1 ; P=NS). Coronary flow reserve was similar between the two groups (smokers: 3.78±1.83; non-smokers: 4.03±0.68; P=NS). Although CPT induced a similar increase in rate-pressure product (RPP) in the smokers and the non-smokers (10,430±1,820 vs 9,236±1,356 beats min -1 mmHg -1 ), CPT MBF corrected by RPP was significantly decreased in the smokers (0.65±0.12 ml g -1 min -1 ) compared with the non-smokers (0.87±0.12 ml g -1 min -1 ) (P<0.05). In addition, the ratio of CPT MBF to resting MBF was inversely correlated with pack-years (r=-0.57, P=0.014). Endothelium-dependent coronary artery vasodilator function is impaired in apparently healthy young smokers. (orig.)

  3. Decreased endothelium-dependent coronary vasomotion in healthy young smokers

    Energy Technology Data Exchange (ETDEWEB)

    Iwado, Yasuyoshi; Yoshinaga, Keiichiro; Furuyama, Hideto; Tsukamoto, Eriko; Tamaki, Nagara [Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Kita-Ku, Kita 15 Nishi 7, Sapporo, 060-8638 (Japan); Ito, Yoshinori; Noriyasu, Kazuyuki [Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Katoh, Chietsugu; Kuge, Yuji [Department of Tracer Kinetics, Hokkaido University Graduate School of Medicine, Sapporo (Japan)

    2002-08-01

    Chronic cigarette smoking alters coronary vascular endothelial response. To determine whether altered response also occurs in young individuals without manifest coronary disease we quantified coronary blood flow at rest, following adenosine vasodilator stress and during the cold pressor test in healthy young smokers. Myocardial blood flow (MBF) was quantified by oxygen-15 labelled water positron emission tomography in 30 healthy men aged from 20 to 35 years (18 smokers and 12 non-smokers, aged 27.4{+-}4.4 vs 26.3{+-}3.3). The smokers had been smoking cigarettes for 9.4{+-}4.9 pack-years. MBF was measured at rest, during intravenous adenosine triphosphate (ATP: 0.16 mg kg{sup -1} min{sup -1}) infusion (hyperaemic response), and during cold pressor test (CPT) (endothelial vasodilator response). Rest MBF and hyperaemic MBF did not differ significantly between the smokers and the non-smokers (rest: 0.86{+-}0.11 vs 0.92{+-}0.14 and ATP: 3.20{+-}1.12 vs 3.69{+-}0.76 ml g{sup -1} min{sup -1}; P=NS). Coronary flow reserve was similar between the two groups (smokers: 3.78{+-}1.83; non-smokers: 4.03{+-}0.68; P=NS). Although CPT induced a similar increase in rate-pressure product (RPP) in the smokers and the non-smokers (10,430{+-}1,820 vs 9,236{+-}1,356 beats min{sup -1} mmHg{sup -1}), CPT MBF corrected by RPP was significantly decreased in the smokers (0.65{+-}0.12 ml g{sup -1} min{sup -1}) compared with the non-smokers (0.87{+-}0.12 ml g{sup -1} min{sup -1}) (P<0.05). In addition, the ratio of CPT MBF to resting MBF was inversely correlated with pack-years (r=-0.57, P=0.014). Endothelium-dependent coronary artery vasodilator function is impaired in apparently healthy young smokers. (orig.)

  4. Effects of a Single Bout of Resistance Exercise in Different Volumes on Endothelium Adaptations in Healthy Animals

    Directory of Open Access Journals (Sweden)

    Marcelo Mendonça Mota

    Full Text Available Abstract Background: Resistance exercise (RE has been recommended for patients with cardiovascular diseases. Recently, a few studies have demonstrated that the intensity of a single bout of RE has an effect on endothelial adaptations to exercise. However, there is no data about the effects of different volumes of RE on endothelium function. Objective: The aim of the study was to evaluate the effects of different volumes of RE in a single bout on endothelium-dependent vasodilatation and nitric oxide (NO synthesis in the mesenteric artery of healthy animals. Methods: Male Wistar rats were divided into three groups: Control (Ct; low-volume RE (LV, 5 sets x 10 repetitions and high-volume RE (HV, 15 sets x 10 repetitions. The established intensity was 70% of the maximal repetition test. After the exercise protocol, rings of mesenteric artery were used for assessment of vascular reactivity, and other mesenteric arteries were prepared for detection of measure NO production by DAF-FM fluorescence. Insulin responsiveness on NO synthesis was evaluated by stimulating the vascular rings with insulin (10 nM. Results: The maximal relaxation response to insulin increased in the HV group only as compared with the Ct group. Moreover, the inhibition of nitric oxide synthesis (L-NAME completely abolished the insulin-induced vasorelaxation in exercised rats. NO production showed a volume-dependent increase in the endothelial and smooth muscle layer. In endothelial layer, only Ct and LV groups showed a significant increase in NO synthesis when compared to their respective group under basal condition. On the other hand, in smooth muscle layer, NO fluorescence increased in all groups when compared to their respective group under basal condition. Conclusions: Our results suggest that a single bout of RE promotes vascular endothelium changes in a volume-dependent manner. The 15 sets x 10 repetitions exercise plan induced the greatest levels of NO synthesis.

  5. Vascular dysfunction in preeclampsia.

    Science.gov (United States)

    Brennan, Lesley J; Morton, Jude S; Davidge, Sandra T

    2014-01-01

    Preeclampsia is a complex disorder which affects an estimated 5% of all pregnancies worldwide. It is diagnosed by hypertension in the presence of proteinuria after the 20th week of pregnancy and is a prominent cause of maternal morbidity and mortality. As delivery is currently the only known treatment, preeclampsia is also a leading cause of preterm delivery. Preeclampsia is associated with maternal vascular dysfunction, leading to serious cardiovascular risk both during and following pregnancy. Endothelial dysfunction, resulting in increased peripheral resistance, is an integral part of the maternal syndrome. While the cause of preeclampsia remains unknown, placental ischemia resulting from aberrant placentation is a fundamental characteristic of the disorder. Poor placentation is believed to stimulate the release of a number of factors including pro- and antiangiogenic factors and inflammatory activators into the maternal systemic circulation. These factors are critical mediators of vascular function and impact the endothelium in distinctive ways, including enhanced endothelial oxidative stress. The mechanisms of action and the consequences on the maternal vasculature will be discussed in this review. © 2013 John Wiley & Sons Ltd.

  6. The partitioning of nanoparticles to endothelium or interstitium during ultrasound-microbubble-targeted delivery depends on peak-negative pressure

    International Nuclear Information System (INIS)

    Hsiang, Y.-H.; Song, J.; Price, R. J.

    2015-01-01

    Patients diagnosed with advanced peripheral arterial disease often face poor prognoses and have limited treatment options. For some patient populations, the therapeutic growth of collateral arteries (i.e. arteriogenesis) that bypass regions affected by vascular disease may become a viable treatment option. Our group and others are developing therapeutic approaches centered on the ability of ultrasound-activated microbubbles to permeabilize skeletal muscle capillaries and facilitate the targeted delivery of pro-arteriogenic growth factor-bearing nanoparticles. The development of such approaches would benefit significantly from a better understanding of how nanoparticle diameter and ultrasound peak-negative pressure affect both total nanoparticle delivery and the partitioning of nanoparticles to endothelial or interstitial compartments. Toward this goal, using Balb/C mice that had undergone unilateral femoral artery ligation, we intra-arterially co-injected nanoparticles (50 and 100 nm) with microbubbles, applied 1 MHz ultrasound to the gracilis adductor muscle at peak-negative pressures of 0.7, 0.55, 0.4, and 0.2 MPa, and analyzed nanoparticle delivery and distribution. As expected, total nanoparticle (50 and 100 nm) delivery increased with increasing peak-negative pressure, with 50 nm nanoparticles exhibiting greater tissue coverage than 100 nm nanoparticles. Of particular interest, increasing peak-negative pressure resulted in increased delivery to the interstitium for both nanoparticle sizes, but had little influence on nanoparticle delivery to the endothelium. Thus, we conclude that alterations to peak-negative pressure may be used to adjust the fraction of nanoparticles delivered to the interstitial compartment. This information will be useful when designing ultrasound protocols for delivering pro-arteriogenic nanoparticles to skeletal muscle

  7. The partitioning of nanoparticles to endothelium or interstitium during ultrasound-microbubble-targeted delivery depends on peak-negative pressure

    Energy Technology Data Exchange (ETDEWEB)

    Hsiang, Y.-H.; Song, J.; Price, R. J., E-mail: rprice@virginia.edu [University of Virginia, Department of Biomedical Engineering (United States)

    2015-08-15

    Patients diagnosed with advanced peripheral arterial disease often face poor prognoses and have limited treatment options. For some patient populations, the therapeutic growth of collateral arteries (i.e. arteriogenesis) that bypass regions affected by vascular disease may become a viable treatment option. Our group and others are developing therapeutic approaches centered on the ability of ultrasound-activated microbubbles to permeabilize skeletal muscle capillaries and facilitate the targeted delivery of pro-arteriogenic growth factor-bearing nanoparticles. The development of such approaches would benefit significantly from a better understanding of how nanoparticle diameter and ultrasound peak-negative pressure affect both total nanoparticle delivery and the partitioning of nanoparticles to endothelial or interstitial compartments. Toward this goal, using Balb/C mice that had undergone unilateral femoral artery ligation, we intra-arterially co-injected nanoparticles (50 and 100 nm) with microbubbles, applied 1 MHz ultrasound to the gracilis adductor muscle at peak-negative pressures of 0.7, 0.55, 0.4, and 0.2 MPa, and analyzed nanoparticle delivery and distribution. As expected, total nanoparticle (50 and 100 nm) delivery increased with increasing peak-negative pressure, with 50 nm nanoparticles exhibiting greater tissue coverage than 100 nm nanoparticles. Of particular interest, increasing peak-negative pressure resulted in increased delivery to the interstitium for both nanoparticle sizes, but had little influence on nanoparticle delivery to the endothelium. Thus, we conclude that alterations to peak-negative pressure may be used to adjust the fraction of nanoparticles delivered to the interstitial compartment. This information will be useful when designing ultrasound protocols for delivering pro-arteriogenic nanoparticles to skeletal muscle.

  8. Endothelium-Dependent Vasorelaxant Effect of Butanolic Fraction from Caryocar brasiliense Camb. Leaves in Rat Thoracic Aorta

    Directory of Open Access Journals (Sweden)

    Lais Moraes de Oliveira

    2012-01-01

    Full Text Available Caryocar brasiliense Camb. “pequi” is a native plant from the Cerrado region of Brazil that contains bioactive components reported to be antioxidant agents. Previous work has demonstrated that dietary supplementation with pequi decreased the arterial pressure of volunteer athletes. We found that the crude hydroalcoholic extract (CHE of C. brasiliense leaves relaxed, in a concentration-dependent manner, rat aortic rings precontracted with phenylephrine, and that the butanolic fraction (BF produced an effect similar to that of the CHE. Aortic relaxation induced by BF was abolished by endothelium removal, by incubation of the nitric oxide synthase inhibitor L-NAME, or the soluble guanylatecyclase inhibitor ODQ. However, incubation with atropine and pyrilamine had no effect on the BF-induced vasorelaxation. Moreover, this effect was not inhibited by indomethacin and tetraethylammonium. The concentration-response curve to calcium in denuded-endothelium rings was not modified after incubation with BF, and the vasorelaxation by BF in endothelium-intact rings precontracted with KCl was abolished after incubation with L-NAME. In addition, administration of BF in anesthetized rats resulted in a reversible hypotension. The results reveal that C. brasiliense possesses both in vivo and in vitro activities and that the vascular effect of BF involves stimulation of the nitric oxide/cyclic GMP pathway.

  9. The pleiotropic effects of simvastatin on retinal microvascular endothelium has important implications for ischaemic retinopathies.

    Directory of Open Access Journals (Sweden)

    Reinhold J Medina

    Full Text Available BACKGROUND: Current guidelines encourage the use of statins to reduce the risk of cardiovascular disease in diabetic patients; however the impact of these drugs on diabetic retinopathy is not well defined. Moreover, pleiotropic effects of statins on the highly specialised retinal microvascular endothelium remain largely unknown. The objective of this study was to investigate the effects of clinically relevant concentrations of simvastatin on retinal endothelium in vitro and in vivo. METHODS AND FINDINGS: Retinal microvascular endothelial cells (RMECs were treated with 0.01-10 microM simvastatin and a biphasic dose-related response was observed. Low concentrations enhanced microvascular repair with 0.1 microM simvastatin significantly increasing proliferation (p<0.05, and 0.01 microM simvastatin significantly promoting migration (p<0.05, sprouting (p<0.001, and tubulogenesis (p<0.001. High concentration of simvastatin (10 microM had the opposite effect, significantly inhibiting proliferation (p<0.01, migration (p<0.01, sprouting (p<0.001, and tubulogenesis (p<0.05. Furthermore, simvastatin concentrations higher than 1 microM induced cell death. The mouse model of oxygen-induced retinopathy was used to investigate the possible effects of simvastatin treatment on ischaemic retinopathy. Low dose simvastatin (0.2 mg/Kg promoted retinal microvascular repair in response to ischaemia by promoting intra-retinal re-vascularisation (p<0.01. By contrast, high dose simvastatin(20 mg/Kg significantly prevented re-vascularisation (p<0.01 and concomitantly increased pathological neovascularisation (p<0.01. We also demonstrated that the pro-vascular repair mechanism of simvastatin involves VEGF stimulation, Akt phosphorylation, and nitric oxide production; and the anti-vascular repair mechanism is driven by marked intracellular cholesterol depletion and related disorganisation of key intracellular structures. CONCLUSIONS: A beneficial effect of low

  10. Small GTP-Binding Protein Rac Is an Essential Mediator of Vascular Endothelial Growth Factor-Induced Endothelial Fenestrations and Vascular Permeability

    DEFF Research Database (Denmark)

    Eriksson, A.; Cao, R.; Tritsaris, K.

    2003-01-01

    fenestrated endothelium, a feature linked with increased vascular permeability. A cell-permeable Rac antagonist (TAT-RacN17) converted VEGF-induced, leaky vascular plexuses into well-defined vascular networks. In addition, this Rac mutant blocked formation of VEGF-induced endothelial fenestrations...... in mediation of VEGF-induced vascular permeability but less so in neovascularization. This may have conceptual implications for applying Rac antagonists in treatment and prevention of VEGF-induced vascular leakage and edema in connection with ischemic disorders....

  11. Plasma protein corona modulates the vascular wall interaction of drug carriers in a material and donor specific manner.

    Directory of Open Access Journals (Sweden)

    Daniel J Sobczynski

    Full Text Available The nanoscale plasma protein interaction with intravenously injected particulate carrier systems is known to modulate their organ distribution and clearance from the bloodstream. However, the role of this plasma protein interaction in prescribing the adhesion of carriers to the vascular wall remains relatively unknown. Here, we show that the adhesion of vascular-targeted poly(lactide-co-glycolic-acid (PLGA spheres to endothelial cells is significantly inhibited in human blood flow, with up to 90% reduction in adhesion observed relative to adhesion in simple buffer flow, depending on the particle size and the magnitude and pattern of blood flow. This reduced PLGA adhesion in blood flow is linked to the adsorption of certain high molecular weight plasma proteins on PLGA and is donor specific, where large reductions in particle adhesion in blood flow (>80% relative to buffer is seen with ∼60% of unique donor bloods while others exhibit moderate to no reductions. The depletion of high molecular weight immunoglobulins from plasma is shown to successfully restore PLGA vascular wall adhesion. The observed plasma protein effect on PLGA is likely due to material characteristics since the effect is not replicated with polystyrene or silica spheres. These particles effectively adhere to the endothelium at a higher level in blood over buffer flow. Overall, understanding how distinct plasma proteins modulate the vascular wall interaction of vascular-targeted carriers of different material characteristics would allow for the design of highly functional delivery vehicles for the treatment of many serious human diseases.

  12. The endothelial αENaC contributes to vascular endothelial function in vivo

    DEFF Research Database (Denmark)

    Tarjus, Antoine; Maase, Martina; Jeggle, Pia

    2017-01-01

    The Epithelial Sodium Channel (ENaC) is a key player in renal sodium homeostasis. The expression of α β γ ENaC subunits has also been described in the endothelium and vascular smooth muscle, suggesting a role in vascular function. We recently demonstrated that endothelial ENaC is involved in aldo......-mediated dilation. Our data suggest that endothelial αENaC contributes to vascular endothelial function in vivo....

  13. Arginase up-regulation and eNOS uncoupling contribute to impaired endothelium-dependent vasodilation in a rat model of intrauterine growth restriction.

    Science.gov (United States)

    Grandvuillemin, Isabelle; Buffat, Christophe; Boubred, Farid; Lamy, Edouard; Fromonot, Julien; Charpiot, Philippe; Simoncini, Stephanie; Sabatier, Florence; Dignat-George, Françoise; Peyter, Anne-Christine; Simeoni, Umberto; Yzydorczyk, Catherine

    2018-05-09

    Individuals born after intrauterine growth restriction (IUGR) are at increased risk of developing cardiovascular diseases in adulthood, notably hypertension (HTN). Alterations in the vascular system, particularly impaired endothelium-dependent vasodilation, may play an important role in long-term effects of IUGR. Whether such vascular dysfunction precedes HTN has not been fully established in individuals born after IUGR. Moreover, the intimate mechanisms of altered endothelium-dependent vasodilation remain incompletely elucidated. We therefore investigated, using a rat model of IUGR, whether impaired endothelium-dependent relaxation precedes the development of HTN and whether key components of the L-Arginine-nitric oxide (NO) pathway are involved in its pathogenesis. Pregnant rats were fed with a control (CTRL, 23% casein) or low-protein diet (LP, 9% casein) to induce IUGR. Systolic blood pressure (SBP) was measured by tail-cuff plethysmography in 5- and 8-week-old male offspring. Aortic rings were isolated to investigate relaxation to acetylcholine, NO production, eNOS protein content, arginase activity, and superoxide anion production. SBP was not different at 5 weeks, but significantly increased in 8-week-old LP vs. CRTL offspring. In 5-week-old LP vs. CRTL males, endothelium-dependent vasorelaxation was significantly impaired, but restored by pre-incubation with L-Arginine or the arginase inhibitor BEC; NO production was significantly reduced, but restored by L-Arginine pretreatment; total eNOS protein, dimer/monomer ratio, and arginase activity were significantly increased; superoxide anion production was significantly enhanced, but normalized by pretreatment with the NOS inhibitor L-NNA. In this model, IUGR leads to early-impaired endothelium-dependent vasorelaxation, resulting from arginase up-regulation and eNOS uncoupling, which precedes the development of HTN.

  14. Presence of plasma proteins facilitates the uptake of 125I-thrombin by the rabbit thoracic aorta endothelium in vitro

    International Nuclear Information System (INIS)

    Hatton, M.W.; Moar, S.L.

    1986-01-01

    Various purified proteins, protein derivatives and two polysaccharides were added individually to a physiological medium in order to effect uptake of 125 I-thrombin by the rabbit aorta endothelium. Over a wide range of concentration (0.004-40 mg/ml), the presence of either purified rabbit or bovine albumin during thrombin uptake encouraged an increase (70-110%) in 125 I-thrombin binding by the endothelium and subendothelium compared to uptake by aorta segments in the absence of added protein. Pretreatment of aorta segments with albumin before incubation with 125 I-thrombin in the absence of albumin did not encourage thrombin uptake to the same extent as having 125 I-thrombin and albumin together. Purified human transferrin, rabbit IgG, chicken ovalbumin or denatured bovine casein could replace albumin to produce a similar enhancement of thrombin uptake. Replacing active concentrations of albumin by either reduced-carboxymethylated albumin, defatted albumin, plasmin-treated or thermolysin-treated albumin also caused an increase (50-130%) in thrombin binding, whereas replacement by acid-hydrolysed albumin or with polyglutamic acid was either ineffective or even inhibitory. Lysine-modified or arginine-modified albumins caused a small enhancement (14-32%) and no enhancement of thrombin uptake, respectively. Dextran, at low concentration (0.04-0.4 mg/ml) did not influence thrombin uptake, and at higher concentration (4-40 mg/ml) caused a decrease in uptake by both the endothelium and subendothelial layers. Low concentration of dextran sulphate inhibited thrombin uptake to 20-30% of control values. These data express the importance of accompanying protein in the response of the vascular endothelium during binding of thrombin. The possibility that other protein-cell interactions may be similarly influenced by macromolecular solutes is also discussed

  15. Effect of subchronic exposure to mainstream cigarette smoke on endothelium-dependent vasodilation in rat arteries

    Directory of Open Access Journals (Sweden)

    Helena Lenasi

    2005-07-01

    Full Text Available Background: Cigarette smoking is reported to impair endothelium-dependent vasodilation. The aim of the present study was to assess the effect of 30-day exposure to mainstream cigarette smoke on vascular reactivity of rat abdominal aorta, carotid, renal and mesenteric artery. Separately, the NO-mediated and the EDHF-mediated, endothelium-dependent vascular relaxations were determined.Methods: Two groups of »Whistar Kyoto« rats were exposed to mainstream cigarette smoke (2 hours/day, 5 days/week for 30 days and to fresh conditioned air, respectively. Rats were sacrificed on the second day after the last exposition to cigarette smoke. Vascular reactivity studies were performed on isolated, endothelium-intact, phenylephrine-preconstricted rat artery rings. Cumulative concentration-relaxation curves to acetylcholine (ACh were obtained in the absence and presence of the endothelial NO synthase (eNOS inhibitor N ω nitro L-arginine (L-NA and the cyclo-oxygenase (COX inhibitor diclofenac, respectively. After washing period of 1 hour, vessels were exposed either to the intracellular superoxide scavenger tiron, to the cytochrome P450 (CYP inhibitor miconazole or the Na-K-ATPase inhibitor ouabain before being preconstricted with phenylephrine and determining the concentration-response curve to ACh.Results: ACh induced concentration-dependent relaxations. In none of the vessels investigated did we observe a significant difference in the relaxations obtained in arteries from control rats and rats exposed to cigarettee smoke. Although smoking is known to cause an increase in oxidative stress, treatment of the vessels with tiron did not affect the NOmediated relaxations. To evaluate the contribution of EDHF to endothelium-dependent vasodilation rings were preincubated with L-NA. The EDHF-mediated relaxations were significantly attenuated compared to the NO-mediated relaxations in renal and mesenteric artery and almost completely abolished in aorta and

  16. Mechanical injury induces brain endothelial-derived microvesicle release: Implications for cerebral vascular injury during traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Allison M. Andrews

    2016-02-01

    Full Text Available It is well established that the endothelium responds to mechanical forces induced by changes in shear stress and mechanotransduction. However, our understanding of vascular remodeling following traumatic brain injury (TBI remains incomplete. Recently published studies have revealed that lung and umbilical endothelial cells produce extracellular microvesicles (eMVs, such as microparticles, in response to changes in mechanical forces (blood flow and mechanical injury. Yet, to date, no studies have shown whether brain endothelial cells produce eMVs following TBI. The brain endothelium is highly specialized and forms the blood-brain barrier (BBB, which regulates diffusion and transport of solutes into the brain. This specialization is largely due to the presence of tight junction proteins (TJPs between neighboring endothelial cells. Following TBI, a breakdown in tight junction complexes at the BBB leads to increased permeability, which greatly contributes to the secondary phase of injury. We have therefore tested the hypothesis that brain endothelium responds to mechanical injury, by producing eMVs that contain brain endothelial proteins, specifically TJPs. In our study, primary human adult brain microvascular endothelial cells (BMVEC were subjected to rapid mechanical injury to simulate the abrupt endothelial disruption that can occur in the primary injury phase of TBI. eMVs were isolated from the media following injury at 2, 6, 24 and 48 hrs. Western blot analysis of eMVs demonstrated a time-dependent increase in TJP occludin, PECAM-1 and ICAM-1 following mechanical injury. In addition, activation of ARF6, a small GTPase linked to extracellular vesicle production, was increased after injury. To confirm these results in vivo, mice were subjected to sham surgery or TBI and blood plasma was collected 24 hrs post-injury. Isolation and analysis of eMVs from blood plasma using cryo-EM and flow cytometry revealed elevated levels of vesicles containing

  17. Mechanical Injury Induces Brain Endothelial-Derived Microvesicle Release: Implications for Cerebral Vascular Injury during Traumatic Brain Injury.

    Science.gov (United States)

    Andrews, Allison M; Lutton, Evan M; Merkel, Steven F; Razmpour, Roshanak; Ramirez, Servio H

    2016-01-01

    It is well established that the endothelium responds to mechanical forces induced by changes in shear stress and strain. However, our understanding of vascular remodeling following traumatic brain injury (TBI) remains incomplete. Recently published studies have revealed that lung and umbilical endothelial cells produce extracellular microvesicles (eMVs), such as microparticles, in response to changes in mechanical forces (blood flow and mechanical injury). Yet, to date, no studies have shown whether brain endothelial cells produce eMVs following TBI. The brain endothelium is highly specialized and forms the blood-brain barrier (BBB), which regulates diffusion and transport of solutes into the brain. This specialization is largely due to the presence of tight junction proteins (TJPs) between neighboring endothelial cells. Following TBI, a breakdown in tight junction complexes at the BBB leads to increased permeability, which greatly contributes to the secondary phase of injury. We have therefore tested the hypothesis that brain endothelium responds to mechanical injury, by producing eMVs that contain brain endothelial proteins, specifically TJPs. In our study, primary human adult brain microvascular endothelial cells (BMVEC) were subjected to rapid mechanical injury to simulate the abrupt endothelial disruption that can occur in the primary injury phase of TBI. eMVs were isolated from the media following injury at 2, 6, 24, and 48 h. Western blot analysis of eMVs demonstrated a time-dependent increase in TJP occludin, PECAM-1 and ICAM-1 following mechanical injury. In addition, activation of ARF6, a small GTPase linked to extracellular vesicle production, was increased after injury. To confirm these results in vivo, mice were subjected to sham surgery or TBI and blood plasma was collected 24 h post-injury. Isolation and analysis of eMVs from blood plasma using cryo-EM and flow cytometry revealed elevated levels of vesicles containing occludin following brain trauma

  18. Vildagliptin improves endothelium-dependent vasodilatation in type 2 diabetes

    NARCIS (Netherlands)

    van Poppel, P.C.; Netea, M.G.; Smits, P.; Tack, C.J.J.

    2011-01-01

    OBJECTIVE: To investigate whether the dipeptidyl peptidase-4 inhibitor vildagliptin improves endothelium-dependent vasodilatation in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS: Sixteen subjects with type 2 diabetes (age 59.8 +/- 6.8 years, BMI 29.1 +/- 4.8 kg/m(2), HbA(1c) 6.97 +/-

  19. Monoclonal antibody PAL-E specific for endothelium

    NARCIS (Netherlands)

    Schlingemann, R. O.; Dingjan, G. M.; Emeis, J. J.; Blok, J.; Warnaar, S. O.; Ruiter, D. J.

    1985-01-01

    A monoclonal antibody, PAL-E, is described that is specific for endothelial cells. The monoclonal antibody, an IgG2a, markedly stains endothelium of capillaries, medium-sized and small veins, and venules in frozen sections of human and some animal tissues tested. It reacts not at all or only weakly

  20. Helium induces preconditioning in human endothelium in vivo

    NARCIS (Netherlands)

    Smit, Kirsten F.; Oei, Gezina T. M. L.; Brevoord, Daniel; Stroes, Erik S.; Nieuwland, Rienk; Schlack, Wolfgang S.; Hollmann, Markus W.; Weber, Nina C.; Preckel, Benedikt

    2013-01-01

    Helium protects myocardium by inducing preconditioning in animals. We investigated whether human endothelium is preconditioned by helium inhalation in vivo. Forearm ischemia-reperfusion (I/R) in healthy volunteers (each group n = 10) was performed by inflating a blood pressure cuff for 20 min.

  1. Circulating microparticles from patients with valvular heart disease and cardiac surgery inhibit endothelium-dependent vasodilation.

    Science.gov (United States)

    Fu, Li; Hu, Xiao-Xia; Lin, Ze-Bang; Chang, Feng-Jun; Ou, Zhi-Jun; Wang, Zhi-Ping; Ou, Jing-Song

    2015-09-01

    Vascular function is very important for maintaining circulation after cardiac surgery. Circulating microparticles (MPs) generated in various diseases play important roles in causing inflammation, coagulation, and vascular injury. However, the impact of MPs generated from patients who have valvular heart disease (VHD), before and after cardiac surgery, on vascular function remains unknown. This study is designed to investigate the impact of such MPs on vasodilation. Microparticles were isolated from age-matched healthy subjects and patients who had VHD, before cardiac surgery, and at 12 hours and 72 hours afterward. The number of MPs was measured and compared. Effects evaluated were of the impact of MPs on: vasodilation of mice aorta; the phosphorylation and expression of Akt, endothelial nitric oxide synthase (eNOS), protein kinase C-βII (PKC-βII), and p70 ribosomal protein S6 kinase (p70S6K); expression of caveolin-1; the association of eNOS with heat shock protein 90 (HSP90); and generation of nitric oxide and superoxide anion of human umbilical vein endothelial cells. Compared with the healthy subjects, VHD patients had significantly higher levels of circulating MPs and those MPs before cardiac surgery can: impair endothelium-dependent vasodilation; inhibit phosphorylation of Akt and eNOS; increase activation of PKC-βII and p70S6K; enhance expression of caveolin-1; reduce the association of HSP90 with eNOS; decrease nitric oxide production, and increase superoxide anion generation. These deleterious effects were even stronger in postoperative MPs. Our data demonstrate that MPs generated from VHD patients before and after cardiac surgery contributed to endothelial dysfunction, by uncoupling and inhibiting eNOS. Circulating MPs are potential therapeutic targets for the maintenance of vascular function postoperatively. Copyright © 2015 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  2. Ethanol extract of seeds of Oenothera odorata induces vasorelaxation via endothelium-dependent NO-cGMP signaling through activation of Akt-eNOS-sGC pathway.

    Science.gov (United States)

    Kim, Hye Yoom; Oh, Hyuncheol; Li, Xiang; Cho, Kyung Woo; Kang, Dae Gill; Lee, Ho Sub

    2011-01-27

    The vasorelaxant effect of ethanol extract of seeds of Oenothera odorata (Onagraceae) (one species of evening primroses) (ESOO) and its mechanisms involved were defined. Changes in vascular tension, guanosine 3',5'-cyclic monophosphate (cGMP) levels, and Akt expression were measured in carotid arterial rings from rats. Seeds of Oenothera odorata were extracted with ethanol (94%) and the extract was filtered, concentrated and stored at -70°C. ESOO relaxed endothelium-intact, but not endothelium-denuded, carotid arterial rings in a concentration-dependent manner. Similarly, ESOO increased cGMP levels of the carotid arterial rings. Pretreatment of endothelium-intact arterial rings with L-NAME, an inhibitor of nitric oxide synthase (NOS), or ODQ, an inhibitor of soluble guanylyl cyclase (sGC), blocked the ESOO-induced vasorelaxation and increase in cGMP levels. Nominally Ca(2+)-free but not L-typed Ca(2+) channel inhibition attenuated the ESOO-induced vasorelaxation. Thapsigargin, Gd(3+), and 2-aminoethyl diphenylborinate, modulators of store-operated Ca(2+) entry (SOCE), significantly attenuated the ESOO-induced vasorelaxation and increase in cGMP levels. Further, wortmannin, an inhibitor of Akt, attenuated the ESOO-induced vasorelaxation and increases in cGMP levels and phosphorylated Akt2 expression. K(+) channel blockade with TEA, 4-aminopyridine, and glibenclamide attenuated the ESOO-induced vascular relaxation. Taken together, the present study demonstrates that ESOO relaxes vascular smooth muscle via endothelium-dependent NO-cGMP signaling through activation of the Akt-eNOS-sGC pathway. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Tocotrienol rich tocomin attenuates oxidative stress and improves endothelium-dependent relaxation in aortae from rats fed a high-fat western diet

    Directory of Open Access Journals (Sweden)

    Saher F Ali

    2016-10-01

    Full Text Available We have previously reported that tocomin, a mixture high in tocotrienol content and also containing tocopherol, acutely preserves endothelial function in the presence of oxidative stress. In this study we investigated whether tocomin treatment would preserve endothelial function in aortae isolated from rats fed a high fat diet known to cause oxidative stress. Wistar hooded rats were fed a western diet (WD, 21% fat or control rat chow (SD, 6% fat for 12 weeks. Tocomin (40 mg/kg/day sc or its vehicle (peanut oil was administered for the last 4 weeks of the feeding regime. Aortae from WD rats showed an impairment of endothelium-dependent relaxation that was associated with an increased expression of the NADPH oxidase Nox2 subunit and an increase in the vascular generation of superoxide measured using L-012 chemiluminescence. The increase in vascular oxidative stress was accompanied by a decrease in basal NO release and impairment of the contribution of NO to ACh-induced relaxation. The impaired relaxation is likely contributed to by a decreased expression of eNOS, calmodulin and phosphorylated Akt and an increase in caveolin-Tocotrienol rich tocomin, which prevented the diet-induced changes in vascular function, reduced vascular superoxide production and abolished the diet-induced changes in eNOS and other protein expression. Using selective inhibitors of nitric oxide synthase (NOS, soluble guanylate cyclase (sGC and calcium activated potassium (KCa channels we demonstrated that tocomin increased NO mediated relaxation, without affecting the contribution of endothelium-dependent hyperpolarization type relaxation to the endothelium-dependent relaxation. The beneficial actions of tocomin in this diet-induced model of obesity suggests that it may have potential to be used as a therapeutic agent to prevent vascular disease in obesity.

  4. Critical Endothelial Regulation by LRP5 during Retinal Vascular Development

    Science.gov (United States)

    Huang, Wei; Li, Qing; Amiry-Moghaddam, Mahmood; Hokama, Madoka; Sardi, Sylvia H.; Nagao, Masashi; Warman, Matthew L.; Olsen, Bjorn R.

    2016-01-01

    Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature. PMID:27031698

  5. Role of endothelium in radiation-induced normal tissue damages; Role de l'endothelium dans les dommages radio-induits aux tissus sains

    Energy Technology Data Exchange (ETDEWEB)

    Milliat, F

    2007-05-15

    More than half of cancers are treated with radiation therapy alone or in combination with surgery and/or chemotherapy. The goal of radiation therapy is to deliver enough ionising radiation to destroy cancer cells without exceeding the level that the surrounding healthy cells can tolerate. Unfortunately, radiation-induced normal tissue injury is still a dose limiting factor in the treatment of cancer with radiotherapy. The knowledge of normal tissue radiobiology is needed to determine molecular mechanisms involved in normal tissue pathogenic pathways in order to identify therapeutic targets and develop strategies to prevent and /or reduce side effects of radiation therapy. The endothelium is known to play a critical role in radiation-induced injury. Our work shows that endothelial cells promote vascular smooth muscle cell proliferation, migration and fibro-genic phenotype after irradiation. Moreover, we demonstrate for the first time the importance of PAI-1 in radiation-induced normal tissue damage suggesting that PAI-1 may represent a molecular target to limit injury following radiotherapy. We describe a new role for the TGF-b/Smad pathway in the pathogenesis of radiation-induced damages. TGF-b/Smad pathway is involved in the fibro-genic phenotype of VSMC induced by irradiated EC as well as in the radiation-induced PAI-1 expression in endothelial cells. (author)

  6. Role of endothelium in radiation-induced normal tissue damages; Role de l'endothelium dans les dommages radio-induits aux tissus sains

    Energy Technology Data Exchange (ETDEWEB)

    Milliat, F

    2007-05-15

    More than half of cancers are treated with radiation therapy alone or in combination with surgery and/or chemotherapy. The goal of radiation therapy is to deliver enough ionising radiation to destroy cancer cells without exceeding the level that the surrounding healthy cells can tolerate. Unfortunately, radiation-induced normal tissue injury is still a dose limiting factor in the treatment of cancer with radiotherapy. The knowledge of normal tissue radiobiology is needed to determine molecular mechanisms involved in normal tissue pathogenic pathways in order to identify therapeutic targets and develop strategies to prevent and /or reduce side effects of radiation therapy. The endothelium is known to play a critical role in radiation-induced injury. Our work shows that endothelial cells promote vascular smooth muscle cell proliferation, migration and fibro-genic phenotype after irradiation. Moreover, we demonstrate for the first time the importance of PAI-1 in radiation-induced normal tissue damage suggesting that PAI-1 may represent a molecular target to limit injury following radiotherapy. We describe a new role for the TGF-b/Smad pathway in the pathogenesis of radiation-induced damages. TGF-b/Smad pathway is involved in the fibro-genic phenotype of VSMC induced by irradiated EC as well as in the radiation-induced PAI-1 expression in endothelial cells. (author)

  7. Effects of sapropterin on endothelium-dependent vasodilation in patients with CADASIL: a randomized controlled trial.

    Science.gov (United States)

    De Maria, Renata; Campolo, Jonica; Frontali, Marina; Taroni, Franco; Federico, Antonio; Inzitari, Domenico; Tavani, Alessandra; Romano, Silvia; Puca, Emanuele; Orzi, Francesco; Francia, Ada; Mariotti, Caterina; Tomasello, Chiara; Dotti, Maria Teresa; Stromillo, Maria Laura; Pantoni, Leonardo; Pescini, Francesca; Valenti, Raffaella; Pelucchi, Claudio; Parolini, Marina; Parodi, Oberdan

    2014-10-01

    Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a rare autosomal dominant disorder caused by NOTCH3 mutations, is characterized by vascular smooth muscle and endothelial cells abnormalities, altered vasoreactivity, and recurrent lacunar infarcts. Vasomotor function may represent a key factor for disease progression. Tetrahydrobiopterin, essential cofactor for nitric oxide synthesis in endothelial cells, ameliorates endothelial function. We assessed whether supplementation with sapropterin, a synthetic tetrahydrobiopterin analog, improves endothelium-dependent vasodilation in CADASIL patients. In a 24-month, multicenter randomized, double-blind, placebo-controlled trial, CADASIL patients aged 30 to 65 years were randomly assigned to receive placebo or sapropterin 200 to 400 mg BID. The primary end point was change in the reactive hyperemia index by peripheral arterial tonometry at 24 months. We also assessed the safety and tolerability of sapropterin. Analysis was done by intention-to-treat. The intention-to-treat population included 61 patients. We found no significant difference between sapropterin (n=32) and placebo (n=29) in the primary end point (mean difference in reactive hyperemia index by peripheral arterial tonometry changes 0.19 [95% confidence interval, -0.18, 0.56]). Reactive hyperemia index by peripheral arterial tonometry increased after 24 months in 37% of patients on sapropterin and in 28% on placebo; however, after adjustment for age, sex, and clinical characteristics, improvement was not associated with treatment arm. The proportion of patients with adverse events was similar on sapropterin and on placebo (50% versus 48.3%); serious adverse events occurred in 6.3% versus 13.8%, respectively. Sapropterin was safe and well-tolerated at the average dose of 5 mg/kg/day, but did not affect endothelium-dependent vasodilation in CADASIL patients. https://www.clinicaltrialsregister.eu. Unique

  8. Characterization of VCAM-1-binding peptide-functionalized quantum dots for molecular imaging of inflamed endothelium.

    Directory of Open Access Journals (Sweden)

    Yun Chen

    Full Text Available Inflammation-induced activation of endothelium constitutes one of the earliest changes during atherogenesis. New imaging techniques that allow detecting activated endothelial cells can improve the identification of persons at high cardiovascular risk in early stages. Quantum dots (QDs have attractive optical properties such as bright fluorescence and high photostability, and have been increasingly studied and developed for bio-imaging and bio-targeting applications. We report here the development of vascular cell adhesion molecule-1 binding peptide (VCAM-1 binding peptide functionalized QDs (VQDs from amino QDs. It was found that the QD fluorescence signal in tumor necrosis factor [Formula: see text] (TNF-[Formula: see text] treated endothelial cells in vitro was significantly higher when these cells were labeled with VQDs than amino QDs. The VQD labeling of TNF-[Formula: see text]-treated endothelial cells was VCAM-1 specific since pre-incubation with recombinant VCAM-1 blocked cells' uptake of VQDs. Our ex vivo and in vivo experiments showed that in the inflamed endothelium, QD fluorescence signal from VQDs was also much stronger than that of amino QDs. Moreover, we observed that the QD fluorescence peak was significantly blue-shifted after VQDs interacted with aortic endothelial cells in vivo and in vitro. A similar blue-shift was observed after VQDs were incubated with recombinant VCAM-1 in tube. We anticipate that the specific interaction between VQDs and VCAM-1 and the blue-shift of the QD fluorescence peak can be very useful for VCAM-1 detection in vivo.

  9. Diet-induced obesity impairs endothelium-derived hyperpolarization via altered potassium channel signaling mechanisms.

    Directory of Open Access Journals (Sweden)

    Rebecca E Haddock

    Full Text Available BACKGROUND: The vascular endothelium plays a critical role in the control of blood flow. Altered endothelium-mediated vasodilator and vasoconstrictor mechanisms underlie key aspects of cardiovascular disease, including those in obesity. Whilst the mechanism of nitric oxide (NO-mediated vasodilation has been extensively studied in obesity, little is known about the impact of obesity on vasodilation to the endothelium-derived hyperpolarization (EDH mechanism; which predominates in smaller resistance vessels and is characterized in this study. METHODOLOGY/PRINCIPAL FINDINGS: Membrane potential, vessel diameter and luminal pressure were recorded in 4(th order mesenteric arteries with pressure-induced myogenic tone, in control and diet-induced obese rats. Obesity, reflecting that of human dietary etiology, was induced with a cafeteria-style diet (∼30 kJ, fat over 16-20 weeks. Age and sexed matched controls received standard chow (∼12 kJ, fat. Channel protein distribution, expression and vessel morphology were determined using immunohistochemistry, Western blotting and ultrastructural techniques. In control and obese rat vessels, acetylcholine-mediated EDH was abolished by small and intermediate conductance calcium-activated potassium channel (SK(Ca/IK(Ca inhibition; with such activity being impaired in obesity. SK(Ca-IK(Ca activation with cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl-6-methyl-pyrimidin-4-yl]-amine (CyPPA and 1-ethyl-2-benzimidazolinone (1-EBIO, respectively, hyperpolarized and relaxed vessels from control and obese rats. IK(Ca-mediated EDH contribution was increased in obesity, and associated with altered IK(Ca distribution and elevated expression. In contrast, the SK(Ca-dependent-EDH component was reduced in obesity. Inward-rectifying potassium channel (K(ir and Na(+/K(+-ATPase inhibition by barium/ouabain, respectively, attenuated and abolished EDH in arteries from control and obese rats, respectively; reflecting differential K

  10. Inward rectifier potassium (Kir2.1) channels as end-stage boosters of endothelium-dependent vasodilators.

    Science.gov (United States)

    Sonkusare, Swapnil K; Dalsgaard, Thomas; Bonev, Adrian D; Nelson, Mark T

    2016-06-15

    Increase in endothelial cell (EC) calcium activates calcium-sensitive intermediate and small conductance potassium (IK and SK) channels, thereby causing hyperpolarization and endothelium-dependent vasodilatation. Endothelial cells express inward rectifier potassium (Kir) channels, but their role in endothelium-dependent vasodilatation is not clear. In the mesenteric arteries, only ECs, but not smooth muscle cells, displayed Kir currents that were predominantly mediated by the Kir2.1 isoform. Endothelium-dependent vasodilatations in response to muscarinic receptor, TRPV4 (transient receptor potential vanilloid 4) channel and IK/SK channel agonists were highly attenuated by Kir channel inhibitors and by Kir2.1 channel knockdown. These results point to EC Kir channels as amplifiers of vasodilatation in response to increases in EC calcium and IK/SK channel activation and suggest that EC Kir channels could be targeted to treat endothelial dysfunction, which is a hallmark of vascular disorders. Endothelium-dependent vasodilators, such as acetylcholine, increase intracellular Ca(2+) through activation of transient receptor potential vanilloid 4 (TRPV4) channels in the plasma membrane and inositol trisphosphate receptors in the endoplasmic reticulum, leading to stimulation of Ca(2+) -sensitive intermediate and small conductance K(+) (IK and SK, respectively) channels. Although strong inward rectifier K(+) (Kir) channels have been reported in the native endothelial cells (ECs) their role in EC-dependent vasodilatation is not clear. Here, we test the idea that Kir channels boost the EC-dependent vasodilatation of resistance-sized arteries. We show that ECs, but not smooth muscle cells, of small mesenteric arteries have Kir currents, which are substantially reduced in EC-specific Kir2.1 knockdown (EC-Kir2.1(-/-) ) mice. Elevation of extracellular K(+) to 14 mm caused vasodilatation of pressurized arteries, which was prevented by endothelial denudation and Kir channel

  11. Benfotiamine attenuates nicotine and uric acid-induced vascular endothelial dysfunction in the rat.

    Science.gov (United States)

    Balakumar, Pitchai; Sharma, Ramica; Singh, Manjeet

    2008-01-01

    The study has been designed to investigate the effect of benfotiamine, a thiamine derivative, in nicotine and uric acid-induced vascular endothelial dysfunction (VED) in rats. Nicotine (2 mg kg(-1)day(-1), i.p., 4 weeks) and uric acid (150 mg kg(-1)day(-1), i.p., 3 weeks) were administered to produce VED in rats. The development of VED was assessed by employing isolated aortic ring preparation and estimating serum and aortic concentration of nitrite/nitrate. Further, the integrity of vascular endothelium was assessed using the scanning electron microscopy (SEM) of thoracic aorta. Moreover, the oxidative stress was assessed by estimating serum thiobarbituric acid reactive substances (TBARS) and aortic superoxide anion generation. The administration of nicotine and uric acid produced VED by impairing the integrity of vascular endothelium and subsequently decreasing serum and aortic concentration of nitrite/nitrate and attenuating acetylcholine-induced endothelium dependent relaxation. Further, nicotine and uric acid produced oxidative stress, which was assessed in terms of increase in serum TBARS and aortic superoxide generation. However, treatment with benfotiamine (70 mg kg(-1)day(-1), p.o.) or atorvastatin (30 mg kg(-1)day(-1) p.o., a standard agent) markedly prevented nicotine and uric acid-induced VED and oxidative stress by improving the integrity of vascular endothelium, increasing the concentration of serum and aortic nitrite/nitrate, enhancing the acetylcholine-induced endothelium dependent relaxation and decreasing serum TBARS and aortic superoxide anion generation. Thus, it may be concluded that benfotiamine reduces the oxidative stress and consequently improves the integrity of vascular endothelium and enhances the generation of nitric oxide to prevent nicotine and uric acid-induced experimental VED.

  12. Endothelium-Derived 5-Methoxytryptophan Protects Endothelial Barrier Function by Blocking p38 MAPK Activation.

    Directory of Open Access Journals (Sweden)

    Ling-Yun Chu

    Full Text Available The endothelial junction is tightly controlled to restrict the passage of blood cells and solutes. Disruption of endothelial barrier function by bacterial endotoxins, cytokines or growth factors results in inflammation and vascular damage leading to vascular diseases. We have identified 5-methoxytryptophan (5-MTP as an anti-inflammatory factor by metabolomic analysis of conditioned medium of human fibroblasts. Here we postulated that endothelial cells release 5-MTP to protect the barrier function. Conditioned medium of human umbilical vein endothelial cells (HUVECs prevented endothelial hyperpermeability and VE-cadherin downregulation induced by VEGF, LPS and cytokines. We analyzed the metabolomic profile of HUVEC conditioned medium and detected 5-MTP but not melatonin, serotonin or their catabolites, which was confirmed by enzyme-linked immunosorbent assay. Addition of synthetic pure 5-MTP preserved VE-cadherin and maintained barrier function despite challenge with pro-inflammatory mediators. Tryptophan hydroxylase-1, an enzyme required for 5-MTP biosynthesis, was downregulated in HUVECs by pro-inflammatory mediators and it was accompanied by reduction of 5-MTP. 5-MTP protected VE-cadherin and prevented endothelial hyperpermeability by blocking p38 MAPK activation. A chemical inhibitor of p38 MAPK, SB202190, exhibited a similar protective effect as 5-MTP. To determine whether 5-MTP prevents vascular hyperpermeability in vivo, we evaluated the effect of 5-MTP administration on LPS-induced murine microvascular permeability with Evans blue. 5-MTP significantly prevented Evans blue dye leakage. Our findings indicate that 5-MTP is a new class of endothelium-derived molecules which protects endothelial barrier function by blocking p38 MAPK.

  13. P2X1 receptors and the endothelium

    Directory of Open Access Journals (Sweden)

    LS Harrington

    2005-03-01

    Full Text Available Adenosine triphosphate (ATP is now established as a principle vaso-active mediator in the vasculature. Its actions on arteries are complex, and are mediated by the P2X and P2Y receptor families. It is generally accepted that ATP induces a bi-phasic response in arteries, inducing contraction via the P2X and P2Y receptors on the smooth muscle cells, and vasodilation via the actions of P2Y receptors located on the endothelium. However, a number of recent studies have placed P2X1 receptors on the endothelium of some arteries. The use of a specific P2X1 receptor ligand, a, b methylene ATP has demonstrated that P2X1 receptors also have a bi-functional role. The actions of ATP on P2X1 receptors is therefore dependant on its location, inducing contraction when located on the smooth muscle cells, and dilation when expressed on the endothelium, comparable to that of P2Y receptors.

  14. New aspects of vascular remodelling: the involvement of all vascular cell types.

    Science.gov (United States)

    McGrath, John C; Deighan, Clare; Briones, Ana M; Shafaroudi, Majid Malekzadeh; McBride, Melissa; Adler, Jeremy; Arribas, Silvia M; Vila, Elisabet; Daly, Craig J

    2005-07-01

    Conventionally, the architecture of arteries is based around the close-packed smooth muscle cells and extracellular matrix. However, the adventitia and endothelium are now viewed as key players in vascular growth and repair. A new dynamic picture has emerged of blood vessels in a constant state of self-maintenance. Recent work raises fundamental questions about the cellular heterogeneity of arteries and the time course and triggering of normal and pathological remodelling. A common denominator emerging in hypertensive remodelling is an early increase in adventitial cell density suggesting that adventitial cells drive remodelling and may initiate subsequent changes such as re-arrangement of smooth muscle cells and extracellular matrix. The organization of vascular smooth muscle cells follows regular arrangements that can be modelled mathematically. In hypertension, new patterns can be quantified in these terms and give insights to how structure affects function. As with smooth muscle, little is known about the organization of the vascular endothelium, or its role in vascular remodelling. Current observations suggest that there may be a close relationship between the helical organization of smooth muscle cells and the underlying pattern of endothelial cells. The function of myoendothelial connections is a topic of great current interest and may relate to the structure of the internal elastic lamina through which the connections must pass. In hypertensive remodelling this must present an organizational challenge. The objective of this paper is to show how the functions of blood vessels depend on their architecture and a continuous interaction of different cell types and extracellular proteins.

  15. Demonstration of vascular endothelium in thyroid carcinomas using Ulex europaeus I agglutinin.

    Science.gov (United States)

    González-Cámpora, R; Montero, C; Martin-Lacave, I; Galera, H

    1986-03-01

    The usefulness of using peroxidase-labelled Ulex europaeus agglutinin I for the staining of small vessels and capillaries in the capsule of thyroid tumours is demonstrated. With this procedure the scanning for small tumour deposits in those vessels and, consequently, the diagnosis of follicular carcinoma of the thyroid is facilitated.

  16. Extensive chimerism in liver transplants: vascular endothelium, bile duct epithelium, and hepatocytes.

    NARCIS (Netherlands)

    Hove, W.R.; Hoek, B. van; Bajema, I.M.; Ringers, J.; Krieken, J.H.J.M. van; Lagaaij, E.L.

    2003-01-01

    The transplanted liver has been shown to be particularly capable of inducing tolerance. An explanation may be the presence of chimerism. Cells of donor origin have been found in recipient tissues after transplantation of any solid organ. Evidence for the presence of cells of recipient origin within

  17. Tributyltin chloride disrupts aortic vascular reactivity and increases reactive oxygen species production in female rats.

    Science.gov (United States)

    Ximenes, Carolina Falcão; Rodrigues, Samya Mere Lima; Podratz, Priscila Lang; Merlo, Eduardo; de Araújo, Julia Fernandez Puñal; Rodrigues, Lívia Carla Melo; Coitinho, Juliana Barbosa; Vassallo, Dalton Valentim; Graceli, Jones Bernardes; Stefanon, Ivanita

    2017-11-01

    Organotin compounds, such as tributyltin (TBT), are environment contaminants that induce bioaccumulation and have potential toxic effects on marine species and mammals. TBT have been banned by the International Maritime Organization in 2003. However, the assessment of butyltin and metal contents in marine sediments has demonstrated high residual levels of TBT in some cases exceeding 7000 ng Sn g -1 . The acceptable daily intake (ADI) level for TBT established by the World Health Organization is 0.5 μg/kg bw/day is based on genotoxicity, reproduction, teratogenicity, immunotoxicity, and mainly neurotoxicity. However, their effect on the cardiovascular system is not well understood. In this study, female rats were exposed to 0.5 μg/kg/day of TBT for 15 days with the goal of understanding the effect of TBT on vascular function. Female Wistar rats were treated daily by gavage and divided into control (n = 10) and TBT (n = 10) groups. The aortic rings were incubated with phenylephrine in both the presence and absence of endothelium. The phenylephrine concentration-response curves were generated by exposing endothelium-intact samples to N G -nitro-L-arginine methyl ester (L-NAME), apocynin, superoxide dismutase (SOD), catalase, tiron, and allopurinol. Acetylcholine (ACh) and sodium nitroprusside (SNP) were used to evaluate the relaxation response. Exposure to TBT reduced serum 17β-estradiol E 2 levels and increased vascular reactivity. After incubation with L-NAME, the vascular reactivity to phenylephrine was significantly higher. Apocynin, SOD, catalase, and tiron decreased the vascular reactivity to phenylephrine to a significantly greater extent in TBT-treated rats than in the control rat. The relaxation induced by ACh and SNP was significantly reduced in TBT rats. Exposure to TBT induced aortic wall atrophy and increased superoxide anion production and collagen deposition. These results provide evidence that exposing rats to the current ADI for TBT (0.5

  18. Overview of vascular disease

    International Nuclear Information System (INIS)

    Bisset, G.S. III

    1998-01-01

    Vascular disease in the pediatric population is a poorly understood process which is often underestimated in its incidence. The common beginnings of such ubiquitous diseases as atherosclerosis manifest themselves at a cellular level shortly after birth. Other common systemic disorders, including congestive heart failure and sepsis, are also intricately associated with dysfunctional vasculature. Progress in the understanding of normal and pathophysiologic processes within the vascular system begins with the 'control center' - the endothelial cell. The purpose of this review is to consolidate a body of knowledge on the processes that occur at the cellular level within the blood vessel wall, and to simplify the understanding of how imbalances in these physiologic parameters result in vascular disease. (orig.)

  19. Protein Kinase C Inhibitors as Modulators of Vascular Function and Their Application in Vascular Disease

    Directory of Open Access Journals (Sweden)

    Raouf A. Khalil

    2013-03-01

    Full Text Available Blood pressure (BP is regulated by multiple neuronal, hormonal, renal and vascular control mechanisms. Changes in signaling mechanisms in the endothelium, vascular smooth muscle (VSM and extracellular matrix cause alterations in vascular tone and blood vessel remodeling and may lead to persistent increases in vascular resistance and hypertension (HTN. In VSM, activation of surface receptors by vasoconstrictor stimuli causes an increase in intracellular free Ca2+ concentration ([Ca2+]i, which forms a complex with calmodulin, activates myosin light chain (MLC kinase and leads to MLC phosphorylation, actin-myosin interaction and VSM contraction. Vasoconstrictor agonists could also increase the production of diacylglycerol which activates protein kinase C (PKC. PKC is a family of Ca2+-dependent and Ca2+-independent isozymes that have different distributions in various blood vessels, and undergo translocation from the cytosol to the plasma membrane, cytoskeleton or the nucleus during cell activation. In VSM, PKC translocation to the cell surface may trigger a cascade of biochemical events leading to activation of mitogen-activated protein kinase (MAPK and MAPK kinase (MEK, a pathway that ultimately increases the myofilament force sensitivity to [Ca2+]i, and enhances actin-myosin interaction and VSM contraction. PKC translocation to the nucleus may induce transactivation of various genes and promote VSM growth and proliferation. PKC could also affect endothelium-derived relaxing and contracting factors as well as matrix metalloproteinases (MMPs in the extracellular matrix further affecting vascular reactivity and remodeling. In addition to vasoactive factors, reactive oxygen species, inflammatory cytokines and other metabolic factors could affect PKC activity. Increased PKC expression and activity have been observed in vascular disease and in certain forms of experimental and human HTN. Targeting of vascular PKC using PKC inhibitors may function in

  20. Circulating microparticles in severe pulmonary arterial hypertension increase intercellular adhesion molecule-1 expression selectively in pulmonary artery endothelium

    Directory of Open Access Journals (Sweden)

    Leslie A. Blair

    2016-10-01

    Full Text Available Abstract Background Microparticles (MPs stimulate inflammatory adhesion molecule expression in systemic vascular diseases, however it is unknown whether circulating MPs stimulate localized ICAM-1 expression in the heterogeneically distinct pulmonary endothelium during pulmonary arterial hypertension (PAH. Pulmonary vascular lesions with infiltrating inflammatory cells in PAH form in the pulmonary arteries and arterioles, but not the microcirculation. Therefore, we sought to determine whether circulating MPs from PAH stimulate pulmonary artery endothelial cell-selective ICAM-1 expression. Results Pulmonary artery endothelial cells (PAECs were exposed to MPs isolated from the circulation of a rat model of severe PAH. During late-stage (8-weeks PAH, but not early-stage (3-weeks, an increase in ICAM-1 was observed. To determine whether PAH MP-induced ICAM-1 was selective for a specific segment of the pulmonary circulation, pulmonary microvascular endothelial cells (PMVECs were exposed to late-stage PAH MPs and no increase in ICAM-1 was detected. A select population of circulating MPs, the late-stage endoglin + MPs, were used to assess their ability to stimulate ICAM-1 and it was determined that the endoglin + MPs were sufficient to promote ICAM-1 increases in the whole cell, but not surface only expression. Conclusions Late-stage, but not early-stage, MPs in a model of severe PAH selectively induce ICAM-1 in pulmonary artery endothelium, but not pulmonary microcirculation. Further, the selected endoglin + PAH MPs, but not endoglin + MPs from control, are sufficient to promote whole cell ICAM-1 in PAECs. The implications of this work are that MPs in late-stage PAH are capable of inducing ICAM-1 expression selectively in the pulmonary artery. ICAM-1 likely plays a significant role in the observed inflammatory cell recruitment, specifically to vascular lesions in the pulmonary artery and not the pulmonary microcirculation.

  1. Analysis of biological characteristics of corneal endothelium in old patients with high myopia

    Directory of Open Access Journals (Sweden)

    Ya-Qiong Chen

    2014-11-01

    Full Text Available AIM: To analyze quantitatively the biological characteristics of corneal endothelium in old patients of high myopia with non-contact automatic corneal endothelial microscope.METHODS:A total of 189 old patients(197 eyeswere divided into the high myopia group and the normal control group according to refractive diopter, in which the former 98 cases(103 eyes, the latter 91 cases(94 eyes. The hexagonal cell(6A, the coefficient of variation(CV, the average cell area(AVE, the average cell density(CDand the central corneal thickness(CCTwere measured by non-contact automatic corneal endothelium. SPSS 14.0 software was used to analyze their percentage. Z-test was used to compare the mean and Chi-square test was used to compare the rate in between. RESULTS: The average cell density in high myopia patients decreased, but there were 14 eyes >3 000/mm2, 11 eyes 2 and 78 eyes in the 2 000~3 000/mm2, there were each 0 eye, 3 eyes and 91 eyes respectively in the normal control group. There was statistically significant difference between high myopia group and control(χ2=19.11, PPP>0.05. CONCLUSION: There will provide a reference valuable for clinical surgeon. Because according to the changes of parameters and morphology of the corneal endothelial cells, we can understand the repair ability, to predict the consequence of the treatment, in order to determine the design and the choice of a surgical.

  2. Vascular relaxation induced by C-type natriuretic peptide involves the ca2+/NO-synthase/NO pathway.

    Directory of Open Access Journals (Sweden)

    Fernanda A Andrade

    Full Text Available AIMS: C-type natriuretic peptide (CNP and nitric oxide (NO are endothelium-derived factors that play important roles in the regulation of vascular tone and arterial blood pressure. We hypothesized that NO produced by the endothelial NO-synthase (NOS-3 contributes to the relaxation induced by CNP in isolated rat aorta via activation of endothelial NPR-C receptor. Therefore, the aim of this study was to investigate the putative contribution of NO through NPR-C activation in the CNP induced relaxation in isolated conductance artery. MAIN METHODS: Concentration-effect curves for CNP were constructed in aortic rings isolated from rats. Confocal microscopy was used to analyze the cytosolic calcium mobilization induced by CNP. The phosphorylation of the residue Ser1177 of NOS was analyzed by Western blot and the expression and localization of NPR-C receptors was analyzed by immunohistochemistry. KEY FINDINGS: CNP was less potent in inducing relaxation in denuded endothelium aortic rings than in intact ones. L-NAME attenuated the potency of CNP and similar results were obtained in the presence of hydroxocobalamin, an intracellular NO0 scavenger. CNP did not change the phosphorylation of Ser1177, the activation site of NOS-3, when compared with control. The addition of CNP produced an increase in [Ca2+]c in endothelial cells and a decrease in [Ca2+]c in vascular smooth muscle cells. The NPR-C-receptors are expressed in endothelial and adventitial rat aortas. SIGNIFICANCE: These results suggest that CNP-induced relaxation in intact aorta isolated from rats involves NO production due to [Ca2+]c increase in endothelial cells possibly through NPR-C activation expressed in these cells. The present study provides a breakthrough in the understanding of the close relationship between the vascular actions of nitric oxide and CNP.

  3. Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils

    Science.gov (United States)

    Wang, Zhenjia; Li, Jing; Cho, Jaehyung; Malik, Asrar B.

    2014-03-01

    Inflammatory diseases such as acute lung injury and ischaemic tissue injury are caused by the adhesion of a type of white blood cell--polymorphonuclear neutrophils--to the lining of the circulatory system or vascular endothelium and unchecked neutrophil transmigration. Nanoparticle-mediated targeting of activated neutrophils on vascular endothelial cells at the site of injury may be a useful means of directly inactivating neutrophil transmigration and hence mitigating vascular inflammation. Here, we report a method employing drug-loaded albumin nanoparticles, which efficiently deliver drugs into neutrophils adherent to the surface of the inflamed endothelium. Using intravital microscopy of tumour necrosis factor-α-challenged mouse cremaster post-capillary venules, we demonstrate that fluorescently tagged albumin nanoparticles are largely internalized by neutrophils adherent to the activated endothelium via cell surface Fcɣ receptors. Administration of albumin nanoparticles loaded with the spleen tyrosine kinase inhibitor, piceatannol, which blocks `outside-in' β2 integrin signalling in leukocytes, detached the adherent neutrophils and elicited their release into the circulation. Thus, internalization of drug-loaded albumin nanoparticles into neutrophils inactivates the pro-inflammatory function of activated neutrophils, thereby offering a promising approach for treating inflammatory diseases resulting from inappropriate neutrophil sequestration and activation.

  4. Engineering the mechanical and biological properties of nanofibrous vascular grafts for in situ vascular tissue engineering.

    Science.gov (United States)

    Henry, Jeffrey J D; Yu, Jian; Wang, Aijun; Lee, Randall; Fang, Jun; Li, Song

    2017-08-17

    Synthetic small diameter vascular grafts have a high failure rate, and endothelialization is critical for preventing thrombosis and graft occlusion. A promising approach is in situ tissue engineering, whereby an acellular scaffold is implanted and provides stimulatory cues to guide the in situ remodeling into a functional blood vessel. An ideal scaffold should have sufficient binding sites for biomolecule immobilization and a mechanical property similar to native tissue. Here we developed a novel method to blend low molecular weight (LMW) elastic polymer during electrospinning process to increase conjugation sites and to improve the mechanical property of vascular grafts. LMW elastic polymer improved the elasticity of the scaffolds, and significantly increased the amount of heparin conjugated to the micro/nanofibrous scaffolds, which in turn increased the loading capacity of vascular endothelial growth factor (VEGF) and prolonged the release of VEGF. Vascular grafts were implanted into the carotid artery of rats to evaluate the in vivo performance. VEGF treatment significantly enhanced endothelium formation and the overall patency of vascular grafts. Heparin coating also increased cell infiltration into the electrospun grafts, thus increasing the production of collagen and elastin within the graft wall. This work demonstrates that LMW elastic polymer blending is an approach to engineer the mechanical and biological property of micro/nanofibrous vascular grafts for in situ vascular tissue engineering.

  5. Sex differences in vascular endothelial function and health in humans: impacts of exercise.

    NARCIS (Netherlands)

    Green, D.J.; Hopkins, N.D.; Jones, H.; Thijssen, D.H.J.; Eijsvogels, T.M.H.; Yeap, B.B.

    2016-01-01

    NEW FINDINGS: What is the topic of this review? This brief review discusses potential sex differences in arterial function across the age span, with special emphasis on the effects of oestrogen and testosterone on the vascular endothelium. What advances does it highlight? We discuss the relationship

  6. Vasorelaxation induced by common edible tropical plant extracts in isolated rat aorta and mesenteric vascular bed.

    Science.gov (United States)

    Runnie, I; Salleh, M N; Mohamed, S; Head, R J; Abeywardena, M Y

    2004-06-01

    In this study, the vasodilatory actions of nine edible tropical plant extracts were investigated. Ipomoea batatas (sweet potato leaf), Piper betle (betel leaf), Anacardium occidentale (cashew leaf), Gynandropsis gynandra (maman leaf), Carica papaya (papaya leaf), and Mentha arvensis (mint leaf) extracts exhibited more than 50% relaxing effect on aortic ring preparations, while Piper betle and Cymbopogon citratus (lemongrass stalk) showed comparable vasorelaxation on isolated perfused mesenteric artery preparation. The vascular effect on the aortic ring preparations were mainly endothelium-dependent, and mediated by nitric oxide (NO) as supported by the inhibition of action in the presence of N(omega)-nitro-L-arginine (NOLA), an nitric oxide synthase (NOS) inhibitor, or by the removal of endothelium. In contrast, vasodilatory actions in resistance vessels (perfused mesenteric vascular beds) appear to involve several biochemical mediators, including NO, prostanoids, and endothelium-dependent hyperpolarizing factors (EDHFs). Total phenolic contents and antioxidant capacities varied among different extracts and found to be independent of vascular relaxation effects. This study demonstrates that many edible plants common in Asian diets to possess potential health benefits, affording protection at the vascular endothelium level.

  7. Corneal endothelium in xeroderma pigmentosum: clinical specular microscopy study.

    Science.gov (United States)

    Mohamed, Ashik; Peguda, Rajini; Ramappa, Muralidhar; Ali, Mohammad Javed; Chaurasia, Sunita

    2016-06-01

    Xeroderma pigmentosum is a condition caused due to a defective DNA repair mechanism when exposed to ultraviolet radiation. Many of the patients with this disorder develop severely oedematous cornea with varying degrees of anterior corneal haze, which necessitates a full-thickness keratoplasty or selective endothelial keratoplasty. Presence of corneal oedema suggests that these patients have a dysfunctional endothelium. The purpose of this study is to evaluate the corneal endothelium in the patients with xeroderma pigmentosum when clinical specular microscopy was feasible. Thirteen patients with classic skin changes of xeroderma pigmentosum were included in the study conducted during January 2010-December 2012. An age-matched group of 13 volunteers were included as controls who were emmetropes without any history of ocular or systemic illness. Corneal endothelium was assessed using specular microscopy from the central clear area of cornea. The mean age of the patients with xeroderma pigmentosum was 16.6±7.2 years and that of the controls was 17.4±6.9 years (p=0.78). The number of analysed cells and endothelial cell density were significantly higher in controls (pxeroderma pigmentosum (p≤0.007). The specular microscopic findings in patients with xeroderma pigmentosum are suggestive of an accelerated endothelial cell loss. It is pertinent that the treating physicians must be involved in emphasising proper ocular protection from ultraviolet radiation to prevent avoidable blindness from xeroderma pigmentosum. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. Kaempferol enhances endothelium-dependent relaxation in the porcine coronary artery through activation of large-conductance a2+-activated K+ channels

    Science.gov (United States)

    Xu, Y C; Leung, S W S; Leung, G P H; Man, R Y K

    2015-01-01

    Background and Purpose Kaempferol, a plant flavonoid present in normal human diet, can modulate vasomotor tone. The present study aimed to elucidate the signalling pathway through which this flavonoid enhanced relaxation of vascular smooth muscle. Experimental Approach The effect of kaempferol on the relaxation of porcine coronary arteries to endothelium-dependent (bradykinin) and -independent (sodium nitroprusside) relaxing agents was studied in an in vitro organ chamber setup. The whole-cell patch-clamp technique was used to determine the effect of kaempferol on potassium channels in porcine coronary artery smooth muscle cells (PCASMCs). Key Results At a concentration without direct effect on vascular tone, kaempferol (3 × 10−6 M) enhanced relaxations produced by bradykinin and sodium nitroprusside. The potentiation by kaempferol of the bradykinin-induced relaxation was not affected by Nω-nitro-L-arginine methyl ester, an inhibitor of NO synthase (10−4 M) or TRAM-34 plus UCL 1684, inhibitors of intermediate- and small-conductance calcium-activated potassium channels, respectively (10−6 M each), but was abolished by tetraethylammonium chloride, a non-selective inhibitor of calcium-activated potassium channels (10−3 M), and iberiotoxin, a selective inhibitor of large-conductance calcium-activated potassium channel (KCa1.1; 10−7 M). Iberiotoxin also inhibited the potentiation by kaempferol of sodium nitroprusside-induced relaxations. Kaempferol stimulated an outward-rectifying current in PCASMCs, which was abolished by iberiotoxin. Conclusions and Implications The present results suggest that, in smooth muscle cells of the porcine coronary artery, kaempferol enhanced relaxations caused by endothelium-derived and exogenous NO as well as those due to endothelium-dependent hyperpolarization. This vascular effect of kaempferol involved the activation of KCa1.1 channels. PMID:25652142

  9. Kaempferol enhances endothelium-dependent relaxation in the porcine coronary artery through activation of large-conductance Ca(2+) -activated K(+) channels.

    Science.gov (United States)

    Xu, Y C; Leung, S W S; Leung, G P H; Man, R Y K

    2015-06-01

    Kaempferol, a plant flavonoid present in normal human diet, can modulate vasomotor tone. The present study aimed to elucidate the signalling pathway through which this flavonoid enhanced relaxation of vascular smooth muscle. The effect of kaempferol on the relaxation of porcine coronary arteries to endothelium-dependent (bradykinin) and -independent (sodium nitroprusside) relaxing agents was studied in an in vitro organ chamber setup. The whole-cell patch-clamp technique was used to determine the effect of kaempferol on potassium channels in porcine coronary artery smooth muscle cells (PCASMCs). At a concentration without direct effect on vascular tone, kaempferol (3 × 10(-6) M) enhanced relaxations produced by bradykinin and sodium nitroprusside. The potentiation by kaempferol of the bradykinin-induced relaxation was not affected by N(ω)-nitro-L-arginine methyl ester, an inhibitor of NO synthase (10(-4) M) or TRAM-34 plus UCL 1684, inhibitors of intermediate- and small-conductance calcium-activated potassium channels, respectively (10(-6) M each), but was abolished by tetraethylammonium chloride, a non-selective inhibitor of calcium-activated potassium channels (10(-3) M), and iberiotoxin, a selective inhibitor of large-conductance calcium-activated potassium channel (KCa 1.1; 10(-7) M). Iberiotoxin also inhibited the potentiation by kaempferol of sodium nitroprusside-induced relaxations. Kaempferol stimulated an outward-rectifying current in PCASMCs, which was abolished by iberiotoxin. The present results suggest that, in smooth muscle cells of the porcine coronary artery, kaempferol enhanced relaxations caused by endothelium-derived and exogenous NO as well as those due to endothelium-dependent hyperpolarization. This vascular effect of kaempferol involved the activation of KCa 1.1 channels. © 2015 The British Pharmacological Society.

  10. Potentiation of phorbol ester-induced coronary vasoconstriction in dogs following endothelium disruption

    International Nuclear Information System (INIS)

    Roberts, R.B.; Ku, D.D.

    1986-01-01

    In the present study, the effect of phorbol ester, 12-0-tetradecanoylphorbol 13-acetate (TPA), activation of protein kinase C on coronary vascular reactivity was studied in isolated dog coronary arteries. Addition of TPA (10-100 nM) produced a slow, time- and dose-dependent contraction reaching a maximum at approx 2-3 hrs and was essentially irreversible upon washing. Disruption of the endothelium(EC) greatly accelerated the development as well as increase the magnitude of TPA contraction (50-100%). Prior treatment of vessels with phentolamine (1μM), cyproheptadine (1μH) and ibuprofen (1μg/ml) did not alter the TPA contraction. Furthermore, in contrast to previously reported calcium-dependence of TPA contraction in other vessels, complete removal of extracellular calcium (Ca 0 ) or addition of 1μM nimodipine after TPA(30nM) resulted in only 32 +/- 4% and 25 +/- 3% reversal of TPA contraction, respectively. Addition of amiloride (10μM to 1mM), however, resulted in a dose-dependent reversal of TPA contraction. The results of the present study indicate that a similar activation of protein kinase C by TPA leads to potent coronary vasoconstriction, which is not completely dependent on Ca 0 . More importantly, these results further support their hypothesis that EC also functions as an inhibitory barrier to prevent circulating vasoconstrictors from exerting their deleterious constrictory effects

  11. Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M

    DEFF Research Database (Denmark)

    Christoffersen, Christina; Obinata, Hideru; Kumaraswamy, Sunil B

    2011-01-01

    Protection of the endothelium is provided by circulating sphingosine-1-phosphate (S1P), which maintains vascular integrity. We show that HDL-associated S1P is bound specifically to both human and murine apolipoprotein M (apoM). Thus, isolated human ApoM(+) HDL contained S1P, whereas ApoM(-) HDL did...... not. Moreover, HDL in Apom(-/-) mice contains no S1P, whereas HDL in transgenic mice overexpressing human apoM has an increased S1P content. The 1.7-Å structure of the S1P-human apoM complex reveals that S1P interacts specifically with an amphiphilic pocket in the lipocalin fold of apoM. Human ApoM......(+) HDL induced S1P(1) receptor internalization, downstream MAPK and Akt activation, endothelial cell migration, and formation of endothelial adherens junctions, whereas apoM(-) HDL did not. Importantly, lack of S1P in the HDL fraction of Apom(-/-) mice decreased basal endothelial barrier function in lung...

  12. VASCULAR SURGERY

    African Journals Online (AJOL)

    2016-06-02

    Jun 2, 2016 ... with the literature from South Africa over the last four decades, and reflects the high rate of interpersonal violence in the country.14,15 As expected, cervical ... via the intact circle of Willis in young patients is the most likely explanation for the lack of strokes. Five patients were referred to the Durban vascular ...

  13. Vascular Disorders

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Vascular Disorders Email to a friend * required fields ...

  14. Curcumin and folic acid abrogated methotrexate induced vascular endothelial dysfunction.

    Science.gov (United States)

    Sankrityayan, Himanshu; Majumdar, Anuradha S

    2016-01-01

    Methotrexate, an antifolate drug widely used in rheumatoid arthritis, psoriasis, and cancer, is known to cause vascular endothelial dysfunction by causing hyperhomocysteinemia, direct injury to endothelium or by increasing the oxidative stress (raising levels of 7,8-dihydrobiopterin). Curcumin is a naturally occurring polyphenol with strong antioxidant and anti-inflammatory action and therapeutic spectra similar to that of methotrexate. This study was performed to evaluate the effects of curcumin on methotrexate induced vascular endothelial dysfunction and also compare its effect with that produced by folic acid (0.072 μg·g(-1)·day(-1), p.o., 2 weeks) per se and in combination. Male Wistar rats were exposed to methotrexate (0.35 mg·kg(-1)·day(-1), i.p.) for 2 weeks to induce endothelial dysfunction. Methotrexate exposure led to shedding of endothelium, decreased vascular reactivity, increased oxidative stress, decreased serum nitrite levels, and increase in aortic collagen deposition. Curcumin (200 mg·kg(-1)·day(-1) and 400 mg·kg(-1)·day(-1), p.o.) for 4 weeks prevented the increase in oxidative stress, decrease in serum nitrite, aortic collagen deposition, and also vascular reactivity. The effects were comparable with those produced by folic acid therapy. The study shows that curcumin, when concomitantly administered with methotrexate, abrogated its vascular side effects by preventing an increase in oxidative stress and abating any reduction in physiological nitric oxide levels.

  15. Endothelial dysfunction in metabolic and vascular disorders.

    Science.gov (United States)

    Polovina, Marija M; Potpara, Tatjana S

    2014-03-01

    Vascular endothelium has important regulatory functions in the cardiovascular system and a pivotal role in the maintenance of vascular health and metabolic homeostasis. It has long been recognized that endothelial dysfunction participates in the pathogenesis of atherosclerosis from early, preclinical lesions to advanced, thrombotic complications. In addition, endothelial dysfunction has been recently implicated in the development of insulin resistance and type 2 diabetes mellitus (T2DM). Considering that states of insulin resistance (eg, metabolic syndrome, impaired fasting glucose, impaired glucose tolerance, and T2DM) represent the most prevalent metabolic disorders and risk factors for atherosclerosis, it is of considerable scientific and clinical interest that both metabolic and vascular disorders have endothelial dysfunction as a common background. Importantly, endothelial dysfunction has been associated with adverse outcomes in patients with established cardiovascular disease, and a growing body of evidence indicates that endothelial dysfunction also imparts adverse prognosis in states of insulin resistance. In this review, we discuss the association of insulin resistance and T2DM with endothelial dysfunction and vascular disease, with a focus on the underlying mechanisms and prognostic implications of the endothelial dysfunction in metabolic and vascular disorders. We also address current therapeutic strategies for the improvement of endothelial dysfunction.

  16. Vascular Remodeling in Experimental Hypertension

    Directory of Open Access Journals (Sweden)

    Norma R. Risler

    2005-01-01

    Full Text Available The basic hemodynamic abnormality in hypertension is an increased peripheral resistance that is due mainly to a decreased vascular lumen derived from structural changes in the small arteries wall, named (as a whole vascular remodeling. The vascular wall is an active, flexible, and integrated organ made up of cellular (endothelial cells, smooth muscle cells, adventitia cells, and fibroblasts and noncellular (extracellular matrix components, which in a dynamic way change shape or number, or reorganize in response to physiological and pathological stimuli, maintaining the integrity of the vessel wall in physiological conditions or participating in the vascular changes in cardiovascular diseases such as hypertension. Research focused on new signaling pathways and molecules that can participate in the mechanisms of vascular remodeling has provided evidence showing that vascular structure is not only affected by blood pressure, but also by mechanisms that are independent of the increased pressure. This review will provide an overview of the evidence, explaining some of the pathophysiologic mechanisms participating in the development of the vascular remodeling, in experimental models of hypertension, with special reference to the findings in spontaneously hypertensive rats as a model of essential hypertension, and in fructose-fed rats as a model of secondary hypertension, in the context of the metabolic syndrome. The understanding of the mechanisms producing the vascular alterations will allow the development of novel pharmacological tools for vascular protection in hypertensive disease.

  17. Angiotensin-(1-7) augments endothelium-dependent relaxations of porcine coronary arteries to bradykinin by inhibiting angiotensin-converting enzyme 1.

    Science.gov (United States)

    Raffai, Gábor; Khang, Gilson; Vanhoutte, Paul M

    2014-05-01

    Angiotensin-converting enzyme 2 (ACE2) converts angiotensin II to angiotensin-(1-7) that activates Mas receptors, inhibits ACE1, and modulates bradykinin receptor sensitivity. This in vitro study compared the direct and indirect effects of angiotensin-(1-7), the ACE1 inhibitor captopril, and diminazene aceturate (DIZE) an alleged ACE2 activator in rings of porcine coronary arteries, by measuring changes of isometric tension. Angiotensin-(1-7), captopril, and DIZE did not cause significant changes in tension before or after desensitization of bradykinin receptors in preparations contracted with U46619. Bradykinin caused concentration-dependent and endothelium-dependent relaxations that were not affected by DIZE but were potentiated to a similar extent by angiotensin-(1-7) and captopril, given alone or in combination. Bradykinin responses potentiated by angiotensin-(1-7) and captopril were not affected by the BK1 antagonist SSR240612 and remained augmented in the presence of either N-nitro-L-arginine methyl ester hydrochloride plus indomethacin or TRAM-34 plus UCL-1684. ACE2 was identified in the coronary endothelium by immunofluorescence, but its basal activity was not influenced by DIZE. These results suggest that in coronary arteries, angiotensin-(1-7) and captopril both improves NO bioavailability and enhances endothelium-dependent hyperpolarization to bradykinin solely by ACE1 inhibition. Endothelial ACE2 activity cannot be increased by DIZE to produce local adequate amounts of angiotensin-(1-7) to influence vascular tone.

  18. Molecular mechanisms of maternal vascular dysfunction in preeclampsia.

    Science.gov (United States)

    Goulopoulou, Styliani; Davidge, Sandra T

    2015-02-01

    In preeclampsia, as a heterogeneous syndrome, multiple pathways have been proposed for both the causal as well as the perpetuating factors leading to maternal vascular dysfunction. Postulated mechanisms include imbalance in the bioavailability and activity of endothelium-derived contracting and relaxing factors and oxidative stress. Studies have shown that placenta-derived factors [antiangiogenic factors, microparticles (MPs), cell-free nucleic acids] are released into the maternal circulation and act on the vascular wall to modify the secretory capacity of endothelial cells and alter the responsiveness of vascular smooth muscle cells to constricting and relaxing stimuli. These molecules signal their deleterious effects on the maternal vascular wall via pathways that provide the molecular basis for novel and effective therapeutic interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Deficiency of superoxide dismutase promotes cerebral vascular hypertrophy and vascular dysfunction in hyperhomocysteinemia.

    Directory of Open Access Journals (Sweden)

    Sanjana Dayal

    Full Text Available There is an emerging consensus that hyperhomocysteinemia is an independent risk factor for cerebral vascular disease and that homocysteine-lowering therapy protects from ischemic stroke. However, the mechanisms by which hyperhomocysteinemia produces abnormalities of cerebral vascular structure and function remain largely undefined. Our objective in this study was to define the mechanistic role of superoxide in hyperhomocysteinemia-induced cerebral vascular dysfunction and hypertrophy. Unlike previous studies, our experimental design included a genetic approach to alter superoxide levels by using superoxide dismutase 1 (SOD1-deficient mice fed a high methionine/low folate diet to produce hyperhomocysteinemia. In wild-type mice, the hyperhomocysteinemic diet caused elevated superoxide levels and impaired responses to endothelium-dependent vasodilators in cerebral arterioles, and SOD1 deficiency compounded the severity of these effects. The cross-sectional area of the pial arteriolar wall was markedly increased in mice with SOD1 deficiency, and the hyperhomocysteinemic diet sensitized SOD1-deficient mice to this hypertrophic effect. Analysis of individual components of the vascular wall demonstrated a significant increase in the content of smooth muscle and elastin. We conclude that superoxide is a key driver of both cerebral vascular hypertrophy and vasomotor dysfunction in this model of dietary hyperhomocysteinemia. These findings provide insight into the mechanisms by which hyperhomocysteinemia promotes cerebral vascular disease and ischemic stroke.

  20. Activation of the sweet taste receptor, T1R3, by the artificial sweetener sucralose regulates the pulmonary endothelium.

    Science.gov (United States)

    Harrington, Elizabeth O; Vang, Alexander; Braza, Julie; Shil, Aparna; Chichger, Havovi

    2018-01-01

    A hallmark of acute respiratory distress syndrome (ARDS) is pulmonary vascular permeability. In these settings, loss of barrier integrity is mediated by cell-contact disassembly and actin remodeling. Studies into molecular mechanisms responsible for improving microvascular barrier function are therefore vital in the development of therapeutic targets for reducing vascular permeability in ARDS. The sweet taste receptor T1R3 is a G protein-coupled receptor, activated following exposure to sweet molecules, to trigger a gustducin-dependent signal cascade. In recent years, extraoral locations for T1R3 have been identified; however, no studies have focused on T1R3 within the vasculature. We hypothesize that activation of T1R3, in the pulmonary vasculature, plays a role in regulating endothelial barrier function in settings of ARDS. Our study demonstrated expression of T1R3 within the pulmonary vasculature, with a drop in expression levels following exposure to barrier-disruptive agents. Exposure of lung microvascular endothelial cells to the intensely sweet molecule sucralose attenuated LPS- and thrombin-induced endothelial barrier dysfunction. Likewise, sucralose exposure attenuated bacteria-induced lung edema formation in vivo. Inhibition of sweet taste signaling, through zinc sulfate, T1R3, or G-protein siRNA, blunted the protective effects of sucralose on the endothelium. Sucralose significantly reduced LPS-induced increased expression or phosphorylation of the key signaling molecules Src, p21-activated kinase (PAK), myosin light chain-2 (MLC2), heat shock protein 27 (HSP27), and p110α phosphatidylinositol 3-kinase (p110αPI3K). Activation of T1R3 by sucralose protects the pulmonary endothelium from edemagenic agent-induced barrier disruption, potentially through abrogation of Src/PAK/p110αPI3K-mediated cell-contact disassembly and Src/MLC2/HSP27-mediated actin remodeling. Identification of sweet taste sensing in the pulmonary vasculature may represent a novel

  1. Binding of human endothelium to Ulex europaeus I-coated Dynabeads: application to the isolation of microvascular endothelium.

    Science.gov (United States)

    Jackson, C J; Garbett, P K; Nissen, B; Schrieber, L

    1990-06-01

    A major problem encountered when isolating human microvascular endothelium is the presence of contaminating cells such as fibroblasts that rapidly over-grow the endothelial cells. We describe here a simple, rapid technique for purifying endothelial cells derived from the microvasculature of neonatal foreskin and osteoarthritic and rheumatoid arthritic synovium. This technique is based on the selective binding of the lectin Ulex europaeus I (UEA I) to the endothelial cell surface via fucose residues. Initially UEA I was covalently bound to tosyl-activated super-paramagnetic polystyrene beads (Dynabeads) by incubation for 24 h at room temperature. Cells were isolated by extracting microvascular segments from enzyme-treated (trypsin and Pronase) cubes of tissue. The mixed population of cells obtained were purified by incubating them at 4 degrees C for 10 min with the UEA I-coated Dynabeads. Endothelium bound to the beads whilst contaminating cells were removed by five washes with HBSS using a magnetic particle concentrator. The endothelial cells thus obtained grew to confluence as a cobblestone-like monolayer and expressed von Willebrand factor antigen. The cells were released from the Dynabeads by the competitive binding of fucose (10 min at 4 degrees C). This new method is simple and reproducible and allows pure human microvascular endothelial cells to be cultured within 2 h of obtaining a specimen.

  2. Cytokine-free directed differentiation of human pluripotent stem cells efficiently produces hemogenic endothelium with lymphoid potential.

    Science.gov (United States)

    Galat, Yekaterina; Dambaeva, Svetlana; Elcheva, Irina; Khanolkar, Aaruni; Beaman, Kenneth; Iannaccone, Philip M; Galat, Vasiliy

    2017-03-17

    The robust generation of human hematopoietic progenitor cells from induced or embryonic pluripotent stem cells would be beneficial for multiple areas of research, including mechanistic studies of hematopoiesis, the development of cellular therapies for autoimmune diseases, induced transplant tolerance, anticancer immunotherapies, disease modeling, and drug/toxicity screening. Over the past years, significant progress has been made in identifying effective protocols for hematopoietic differentiation from pluripotent stem cells and understanding stages of mesodermal, endothelial, and hematopoietic specification. Thus, it has been shown that variations in cytokine and inhibitory molecule treatments in the first few days of hematopoietic differentiation define primitive versus definitive potential of produced hematopoietic progenitor cells. The majority of current feeder-free, defined systems for hematopoietic induction from pluripotent stem cells include prolonged incubations with various cytokines that make the differentiation process complex and time consuming. We established that the application of Wnt agonist CHIR99021 efficiently promotes differentiation of human pluripotent stem cells in the absence of any hematopoietic cytokines to the stage of hemogenic endothelium capable of definitive hematopoiesis. The hemogenic endothelium differentiation was accomplished in an adherent, serum-free culture system by applying CHIR99021. Hemogenic endothelium progenitor cells were isolated on day 5 of differentiation and evaluated for their endothelial, myeloid, and lymphoid potential. Monolayer induction based on GSK3 inhibition, described here, yielded a large number of CD31 + CD34 + hemogenic endothelium cells. When isolated and propagated in adherent conditions, these progenitors gave rise to mature endothelium. When further cocultured with OP9 mouse stromal cells, these progenitors gave rise to various cells of myeloid lineages as well as natural killer lymphoid, T

  3. Hyperglycemia and Diabetes Downregulate the Functional Expression of TRPV4 Channels in Retinal Microvascular Endothelium

    Science.gov (United States)

    Monaghan, Kevin; McNaughten, Jennifer; McGahon, Mary K.; Kelly, Catriona; Kyle, Daniel; Yong, Phaik Har

    2015-01-01

    Retinal endothelial cell dysfunction is believed to play a key role in the etiology and pathogenesis of diabetic retinopathy. Numerous studies have shown that TRPV4 channels are critically involved in maintaining normal endothelial cell function. In the current paper, we demonstrate that TRPV4 is functionally expressed in the endothelium of the retinal microcirculation and that both channel expression and activity is downregulated by hyperglycaemia. Quantitative PCR and immunostaining demonstrated molecular expression of TRPV4 in cultured bovine retinal microvascular endothelial cells (RMECs). Functional TRPV4 activity was assessed in cultured RMECs from endothelial Ca2+-responses recorded using fura-2 microfluorimetry and electrophysiological recordings of membrane currents. The TRPV4 agonist 4α-phorbol 12,13-didecanoate (4-αPDD) increased [Ca2+]i in RMECs and this response was largely abolished using siRNA targeted against TRPV4. These Ca2+-signals were completely inhibited by removal of extracellular Ca2+, confirming their dependence on influx of extracellular Ca2+. The 4-αPDD Ca2+-response recorded in the presence of cyclopiazonic acid (CPA), which depletes the intracellular stores preventing any signal amplification through store release, was used as a measure of Ca2+-influx across the cell membrane. This response was blocked by HC067047, a TRPV4 antagonist. Under voltage clamp conditions, the TRPV4 agonist GSK1016790A stimulated a membrane current, which was again inhibited by HC067047. Following incubation with 25mM D-glucose TRPV4 expression was reduced in comparison with RMECs cultured under control conditions, as were 4αPDD-induced Ca2+-responses in the presence of CPA and ion currents evoked by GSK1016790A. Molecular expression of TRPV4 in the retinal vascular endothelium of 3 months’ streptozotocin-induced diabetic rats was also reduced in comparison with that in age-matched controls. We conclude that hyperglycaemia and diabetes reduce the

  4. Effect of prolonged incubation with copper on endothelium-dependent relaxation in rat isolated aorta

    Science.gov (United States)

    Chiarugi, Alberto; Pitari, Giovanni Mario; Costa, Rosa; Ferrante, Margherita; Villari, Loredana; Amico-Roxas, Matilde; Godfraind, Théophile; Bianchi, Alfredo; Salomone, Salvatore

    2002-01-01

    We investigated the effects of prolonged exposure to copper (Cu2+) on vascular functioning of isolated rat aorta. Aortic rings were exposed to CuSO4 (3–24 h) in Dulbecco's modified Eagle medium with or without 10% foetal bovine serum (FBS) and then challenged with vasoconstrictors or vasodilators in the absence of Cu2+. Exposure to 2 μM Cu2+ in the absence of FBS did not modify the response to phenylephrine (PE) or acetylcholine (ACh) in aortic rings incubated for 24 h. Identical exposure in the presence of FBS increased the contractile response to 1 μM PE by 30% (P<0.05) and impaired the relaxant response to 3 μM ACh or 1 μM A23187 (ACh, from 65.7±7.1 to 6.2±1.1%, n=8; A23187, from 74.6±8.2 to 12.0±0.8%, n=6; P<0.01 for both). Cu2+ exposure did not affect the relaxant response to NO-donors. Impairment of vasorelaxation appeared 3 h after incubation with 2 μM Cu2+ and required 12 h to attain a steady state. Vasorelaxation to ACh was partially restored by 1 mM tiron (intracellular scavenger of superoxide ions; maximum relaxation 34.2±6.4%, n=10, P<0.01 vs Cu2+ alone), whereas catalase, superoxide dismutase or cycloheximide were ineffective. Twenty-four hour-exposure to 2 μM Cu2+ did not affect endothelium integrity or eNOS expression, and increased the Cu content in arterial rings from 6.8±1.1 to 18.9±2.9 ng mg−1 wet weight, n=8; P<0.01. Our results show that, in the presence of FBS, prolonged exposure to submicromolar concentrations of Cu2+ impaired endothelium-dependent vasorelaxation in aortic rings, probably through an intracellular generation of superoxide ions. PMID:12163352

  5. Evaluation of intracameral injection of ranibizumab and bevacizumab on the corneal endothelium by scanning electron microscopy.

    Science.gov (United States)

    Ari, Seyhmus; Nergiz, Yusuf; Aksit, Ihsan; Sahin, Alparslan; Cingu, Kursat; Caca, Ihsan

    2015-03-01

    To evaluate the effects of intracameral injection of ranibizumab and bevacizumab on the corneal endothelium by scanning electron microscopy (SEM). Twenty-eight female rabbits were randomly divided into four equal groups. Rabbits in groups 1 and 2 underwent intracameral injection of 1 mg/0.1 mL and 0.5 mg/0.05 mL ranibizumab, respectively; group 3 was injected with 1.25 mg/0.05 mL bevacizumab. All three groups were injected with a balanced salt solution (BSS) into the anterior chamber of the left (fellow) eye. None of the rabbits in group 4 underwent an injection. Corneal thickness and intraocular pressure were measured before the injections, on the first day, and in the first month after injection. The rabbits were sacrificed and corneal tissues were excised in the first month after injection. Specular microscopy was used for the corneal endothelial cell count. Endothelial cell density was assessed and comparisons drawn between the groups and the control. Micrographs were recorded for SEM examination. The structure of the corneal endothelial cells, the junctional area of the cell membrane, the distribution of microvillus, and the cell morphology of the eyes that underwent intracameral injection of vascular endothelial growth factor (VEGF), BSS, and the control group were compared. Corneal thickness and intraocular pressure were not significantly different between the groups that underwent anti-VEGF or BSS injection and the control group on the first day and in the first month of injection. The corneal endothelial cell count was significantly diminished in all three groups; predominantly in group 1 and 2 (P<0.05). The SEM examination revealed normal corneal endothelial histology in group 3 and the control group. Eyes in group 1 exhibited indistinctness of corneal endothelial cell borders, microvillus loss in the luminal surface, excessive blebbing, and disintegration of intercellular junctions. In group 2, the cell structure of the corneal endothelium

  6. An in vitro model of hemogenic endothelium commitment and hematopoietic production

    NARCIS (Netherlands)

    Yvernogeau, Laurent; Gautier, Rodolphe; Khoury, Hanane; Menegatti, Sara; Schmidt, Melanie; Gilles, Jean Francois; Jaffredo, Thierry

    2016-01-01

    Adult-type hematopoietic stem and progenitor cells are formed during ontogeny from a specialized subset of endothelium, termed the hemogenic endothelium, via an endothelial-to-hematopoietic transition (EHT) that occurs in the embryonic aorta and the associated arteries. Despite efforts to generate

  7. Influence of endothelium on the membrane-stabilizing effect of calcium

    African Journals Online (AJOL)

    Dr Olaleye

    increase in [Ca2+]o (low bicarbonate PSS) from 5.0 to 25.0mM in rings with intact endothelium resulted in relaxation responses. These relaxation responses were attenuated in endothelium- denuded rings as well as following exposure to methylene blue. Conclusion: The results show that relaxation responses induced by ...

  8. Understanding the direction of the relationship between white matter hyperintensities of vascular origin, sleep quality, and chronic kidney disease-Results from the Atahualpa Project.

    Science.gov (United States)

    Del Brutto, Oscar H; Mera, Robertino M

    2018-02-01

    The burden of cerebral small vessel disease, sleep disorders, and chronic kidney disease is on the rise in remote rural settings. However, information on potential links between these conditions is limited. We aimed to assess the relationships between these conditions in community-dwelling older adults living in rural Ecuador. Atahualpa residents aged ≥60 years were offered a brain MRI. A venous blood sample was obtained for serum creatinine determination. Baseline interviews and procedures were directed to assess demographics, cardiovascular risk factors, and sleep quality. Using generalized structural equation modeling (GSEM), we assessed the associations between white matter hyperintensities (WMH) of vascular origin, sleep quality and kidney function, as well as the directions of the relationships between these variables. Of 423 candidates, 314 (74%) were enrolled. Moderate-to-severe WMH were noticed in 74 (24%) individuals, poor sleep quality in 101 (31%), and moderate-to-severe chronic kidney disease in 28 (9%). GSEM showed that the direction of the effect was from kidney function to WMH and from the latter to sleep quality. Of independent variables investigated, worse kidney function was associated with age, high glucose levels and male sex. WMH was associated with cholesterol blood levels, blood pressure, level of education and severe edentulism. Poor sleep quality was associated with poor physical activity. This population based study shows that chronic kidney disease is associated with increased severity of WMH, which, in turn, is associated with a poor sleep quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The role of the neuro-astro-vascular unit in the etiology of Ataxia Telangiectasia

    Directory of Open Access Journals (Sweden)

    Leenoy eMeshulam

    2012-09-01

    Full Text Available The growing recognition that brain pathologies do not affect neurons only but rather are, to a large extent, pathologies of glial cells as well as of the vasculature opens to new perspectives in our understanding of genetic disorders of the CNS. To validate the role of the neuron-glial-vascular unit in the etiology of genome instability disorders, we report about cell death and morphological aspects of neuro-glia networks and the associated vasculature in a mouse model of Ataxia Telangiectasia (A-T, a human genetic disorder that induces severe motor impairment. We found that AT-mutated protein deficiency was consistent with aberrant astrocytic morphology and alterations of the vasculature, often accompanied by reactive gliosis. Interestingly similar findings could also be reported in the case of other genetic disorders. These observations bolster the notion that astrocyte-specific pathologies, hampered vascularization and astrocyte-endothelium interactions in the CNS could play a crucial role in the etiology of genome instability brain disorders and could underlie neurodegeneration.

  10. Phototoxic effects of 8-methoxypsoralen on rabbit corneal endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Menon, I.A.; Basu, P.K.; Hasany, S.M.; Persad, S.D. (Univ. of Toronto, Ontario (Canada))

    1989-01-01

    The phototoxic effects of 8-methoxypsoralen (8-MOP) were investigated using the rabbit corneal endothelium in organ culture. The corneas were divided into four groups: (a) irradiated with a mercury vapor lamp (emitting UVA and visible radiation) in the presence of 8-MOP (experimental), (b) irradiated without 8-MOP (control A), (c) incubated with 8-MOP (control B) and (d) incubated without 8-MOP (control C). Specular and light microscopic examination showed that the experimental corneas had greater cellular damage compared to the control corneas. The effects of 8-MOP were restricted to certain localized areas of the cornea. However there was no significant difference in the amounts of 51Cr released from the labelled experimental and control corneas. These results show phototoxic damage of the corneal endothelial cells.

  11. Pediatric central nervous system vascular malformations

    International Nuclear Information System (INIS)

    Burch, Ezra A.; Orbach, Darren B.

    2015-01-01

    Pediatric central nervous system (CNS) vascular anomalies include lesions found only in the pediatric population and also the full gamut of vascular lesions found in adults. Pediatric-specific lesions discussed here include infantile hemangioma, vein of Galen malformation and dural sinus malformation. Some CNS vascular lesions that occur in adults, such as arteriovenous malformation, have somewhat distinct manifestations in children, and those are also discussed. Additionally, children with CNS vascular malformations often have associated broader vascular conditions, e.g., PHACES (posterior fossa anomalies, hemangioma, arterial anomalies, cardiac anomalies, eye anomalies and sternal anomalies), hereditary hemorrhagic telangiectasia, and capillary malformation-arteriovenous malformation syndrome (related to the RASA1 mutation). The treatment of pediatric CNS vascular malformations has greatly benefited from advances in endovascular therapy, including technical advances in adult interventional neuroradiology. Dramatic advances in therapy are expected to stem from increased understanding of the genetics and vascular biology that underlie pediatric CNS vascular malformations. (orig.)

  12. Pediatric central nervous system vascular malformations

    Energy Technology Data Exchange (ETDEWEB)

    Burch, Ezra A. [Brigham and Women' s Hospital, Department of Radiology, Boston, MA (United States); Orbach, Darren B. [Boston Children' s Hospital, Neurointerventional Radiology, Boston, MA (United States)

    2015-09-15

    Pediatric central nervous system (CNS) vascular anomalies include lesions found only in the pediatric population and also the full gamut of vascular lesions found in adults. Pediatric-specific lesions discussed here include infantile hemangioma, vein of Galen malformation and dural sinus malformation. Some CNS vascular lesions that occur in adults, such as arteriovenous malformation, have somewhat distinct manifestations in children, and those are also discussed. Additionally, children with CNS vascular malformations often have associated broader vascular conditions, e.g., PHACES (posterior fossa anomalies, hemangioma, arterial anomalies, cardiac anomalies, eye anomalies and sternal anomalies), hereditary hemorrhagic telangiectasia, and capillary malformation-arteriovenous malformation syndrome (related to the RASA1 mutation). The treatment of pediatric CNS vascular malformations has greatly benefited from advances in endovascular therapy, including technical advances in adult interventional neuroradiology. Dramatic advances in therapy are expected to stem from increased understanding of the genetics and vascular biology that underlie pediatric CNS vascular malformations. (orig.)

  13. Thrombin-induced increase in albumin permeability across the endothelium

    International Nuclear Information System (INIS)

    Garcia, J.G.; Siflinger-Birnboim, A.; Bizios, R.; Del Vecchio, P.J.; Fenton, J.W. II; Malik, A.B.

    1986-01-01

    We studied the effect of thrombin on albumin permeability across the endothelial monolayer in vitro. Bovine pulmonary artery endothelial cells were grown on micropore membranes. Morphologic analysis confirmed the presence of a confluent monolayer with interendothelial junctions. Albumin permeability was measured by the clearance of 125I-albumin across the endothelial monolayer. The control 125I-albumin clearance was 0.273 +/- 0.02 microliter/min. The native enzyme, alpha-thrombin (10(-6) to 10(-10) M), added to the luminal side of the endothelium produced concentration-dependent increases in albumin clearance (maximum clearance of 0.586 +/- 0.08 microliter/min at 10(-6) M). Gamma (gamma) thrombin (10(-6) M and 10(-8) M), which lacks the fibrinogen recognition site, also produced a concentration-dependent increase in albumin clearance similar to that observed with alpha-thrombin. Moreover, the two proteolytically inactive forms of the native enzyme, i-Pr2 P-alpha-thrombin and D-Phe-Pro-Arg-CH2-alpha-thrombin, increased the 125I-albumin clearance (0.610 +/- 0.09 microliter/min and 0.609 +/- 0.02 microliter/min for i-Pr2 P-alpha-thrombin and D-Phe-Pro-Arg-CH2-alpha-thrombin at 10(-6) M, respectively). Since the modified forms of thrombin lack the fibrinogen recognition and active serine protease sites, the results indicate that neither site is required for increased albumin permeability. The increase in albumin clearance with alpha-thrombin was not secondary to endothelial cell lysis because lactate dehydrogenase concentration in the medium following thrombin was not significantly different from baseline values. There was also no morphological evidence of cell lysis. Moreover, the increase in 125I-albumin clearance induced by alpha-thrombin was reversible by washing thrombin from the endothelium

  14. Endothelium-dependent vasodilatation, plasma markers of endothelial function, and adrenergic vasoconstrictor responses in type 1 diabetes under near-normoglycemic conditions

    NARCIS (Netherlands)

    Huvers, F C; De Leeuw, P W; Houben, A J; De Haan, C H; Hamulyak, K; Schouten, H; Wolffenbuttel, B H; Schaper, N C

    It is unknown whether and to what extent changes in various endothelial functions and adrenergic responsiveness are related to the development of microvascular complications in type 1 diabetes. Therefore, endothelium-dependent and endothelium-independent vasodilatation, endothelium-dependent

  15. Tofacitinib Ameliorates Murine Lupus and Its Associated Vascular Dysfunction.

    Science.gov (United States)

    Furumoto, Yasuko; Smith, Carolyne K; Blanco, Luz; Zhao, Wenpu; Brooks, Stephen R; Thacker, Seth G; Abdalrahman, Zarzour; Sciumè, Giuseppe; Tsai, Wanxia L; Trier, Anna M; Nunez, Leti; Mast, Laurel; Hoffmann, Victoria; Remaley, Alan T; O'Shea, John J; Kaplan, Mariana J; Gadina, Massimo

    2017-01-01

    Dysregulation of innate and adaptive immune responses contributes to the pathogenesis of systemic lupus erythematosus (SLE) and its associated premature vascular damage. No drug to date targets both systemic inflammatory disease and the cardiovascular complications of SLE. Tofacitinib is a JAK inhibitor that blocks signaling downstream of multiple cytokines implicated in lupus pathogenesis. While clinical trials have shown that tofacitinib exhibits significant clinical efficacy in various autoimmune diseases, its role in SLE and the associated vascular pathology remains to be characterized. MRL/lpr lupus-prone mice were administered tofacitinib or vehicle by gavage for 6 weeks (therapeutic arm) or 8 weeks (preventive arm). Nephritis, skin inflammation, serum levels of autoantibodies and cytokines, mononuclear cell phenotype and gene expression, neutrophil extracellular traps (NETs) release, endothelium-dependent vasorelaxation, and endothelial differentiation were compared in treated and untreated mice. Treatment with tofacitinib led to significant improvement in measures of disease activity, including nephritis, skin inflammation, and autoantibody production. In addition, tofacitinib treatment reduced serum levels of proinflammatory cytokines and interferon responses in splenocytes and kidney tissue. Tofacitinib also modulated the formation of NETs and significantly increased endothelium-dependent vasorelaxation and endothelial differentiation. The drug was effective in both preventive and therapeutic strategies. Tofacitinib modulates the innate and adaptive immune responses, ameliorates murine lupus, and improves vascular function. These results indicate that JAK inhibitors have the potential to be beneficial in SLE and its associated vascular damage. © 2016, American College of Rheumatology.

  16. CYP epoxygenase-derived H2O2 is involved in the endothelium-derived hyperpolarization (EDH) and relaxation of intrarenal arteries.

    Science.gov (United States)

    Muñoz, Mercedes; López-Oliva, Maria Elvira; Pinilla, Estéfano; Martínez, María Pilar; Sánchez, Ana; Rodríguez, Claudia; García-Sacristán, Albino; Hernández, Medardo; Rivera, Luis; Prieto, Dolores

    2017-05-01

    Reactive oxygen species (ROS) like hydrogen peroxide (H 2 O 2 ) are involved in the in endothelium-derived hyperpolarization (EDH)-type relaxant responses of coronary and mesenteric arterioles. The role of ROS in kidney vascular function has mainly been investigated in the context of harmful ROS generation associated to kidney disease. The present study was sought to investigate whether H 2 O 2 is involved in the endothelium-dependent relaxations of intrarenal arteries as well the possible endothelial sources of ROS generation involved in these responses. Under conditions of cyclooxygenase (COX) and nitric oxide (NO) synthase inhibition, acetylcholine (ACh) induced relaxations and stimulated H 2 O 2 release that were reduced by catalase and by the glutathione peroxidase (GPx) mimetic ebselen in rat renal interlobar arteries, suggesting the involvement of H 2 O 2 in the endothelium-dependent responses. ACh relaxations were also blunted by the CYP2C inhibitor sulfaphenazole and by the NADPH oxidase inhibitor apocynin. Acetylcholine stimulated both superoxide (O 2 •- ) and H 2 O 2 production that were reduced by sulfaphenazole and apocynin. Expression of the antioxidant enzyme CuZnSOD and of the H 2 O 2 reducing enzymes catalase and GPx-1 was found in both intrarenal arteries and renal cortex. On the other hand, exogenous H 2 O 2 relaxed renal arteries by decreasing vascular smooth muscle (VSM) intracellular calcium concentration [Ca 2+ ] i and markedly enhanced endothelial K Ca currents in freshly isolated renal endothelial cells. CYP2C11 and CYP2C23 epoxygenases were highly expressed in interlobar renal arteries and renal cortex, respectively, and were co-localized with eNOS in renal endothelial cells. These results demonstrate that H 2 O 2 is involved in the EDH-type relaxant responses of renal arteries and that CYP 2C epoxygenases are physiologically relevant endothelial sources of vasodilator H 2 O 2 in the kidney. Copyright © 2017 Elsevier Inc. All rights

  17. Vascular ultrasound.

    Science.gov (United States)

    Pilcher, D B; Ricci, M A

    1998-04-01

    Surgeon-interpreted diagnostic ultrasound has become the preferred screening test and often the definitive test for the diagnosis of arterial stenosis, aneurysm, and venous thrombosis. As a modality for surveillance, its noninvasive quality makes it particularly appealing as the test of choice to screen patients for abdominal aortic aneurysms or to perform follow-up examinations on those patients with a carotid endartectomy or in situ bypass grafts. The increasing reliance on intraoperative duplex imaging of vascular procedures demands that the surgeon learn the skills to perform the studies without a technologist or radiologist to interpret the examination.

  18. Polydatin Restores Endothelium-Dependent Relaxation in Rat Aorta Rings Impaired by High Glucose: A Novel Insight into the PPARβ-NO Signaling Pathway.

    Directory of Open Access Journals (Sweden)

    Yang Wu

    Full Text Available Polydatin, a natural component from Polygonum Cuspidatum, has important therapeutic effects on metabolic syndrome. A novel therapeutic strategy using polydatin to improve vascular function has recently been proposed to treat diabetes-related cardiovascular complications. However, the biological role and molecular basis of polydatin's action on vascular endothelial cells (VECs-mediated vasodilatation under diabetes-related hyperglycemia condition remain elusive. The present study aimed to assess the contribution of polydatin in restoring endothelium-dependent relaxation and to determine the details of its underlying mechanism. By measuring endothelium-dependent relaxation, we found that acetylcholine-induced vasodilation was impaired by elevated glucose (55 mmol/L; however, polydatin (1, 3, 10 μmol/L could restore the relaxation in a dose-dependent manner. Polydatin could also improve the histological damage to endothelial cells in the thoracic aorta. Polydatin's effects were mediated via promoting the expression of endothelial NO synthase (eNOS, enhancing eNOS activity and decreasing the inducible NOS (iNOS level, finally resulting in a beneficial increase in NO release, which probably, at least in part, through activation of the PPARβ signaling pathway. The results provided a novel insight into polydatin action, via PPARβ-NO signaling pathways, in restoring endothelial function in high glucose conditions. The results also indicated the potential utility of polydatin to treat diabetes related cardiovascular diseases.

  19. In Vivo Imaging Reveals Significant Tumor Vascular Dysfunction and Increased Tumor Hypoxia-Inducible Factor-1α Expression Induced by High Single-Dose Irradiation in a Pancreatic Tumor Model

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Azusa [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Chen, Yonghong; Bu, Jiachuan; Mujcic, Hilda [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Wouters, Bradly G. [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); DaCosta, Ralph S., E-mail: rdacosta@uhnres.utoronto.ca [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Techna Institute, University Health Network, Toronto, Ontario (Canada)

    2017-01-01

    Purpose: To investigate the effect of high-dose irradiation on pancreatic tumor vasculature and microenvironment using in vivo imaging techniques. Methods and Materials: A BxPC3 pancreatic tumor xenograft was established in a dorsal skinfold window chamber model and a subcutaneous hind leg model. Tumors were irradiated with a single dose of 4, 12, or 24 Gy. The dorsal skinfold window chamber model was used to assess tumor response, vascular function and permeability, platelet and leukocyte adhesion to the vascular endothelium, and tumor hypoxia for up to 14 days after 24-Gy irradiation. The hind leg model was used to monitor tumor size, hypoxia, and vascularity for up to 65 days after 24-Gy irradiation. Tumors were assessed histologically to validate in vivo observations. Results: In vivo fluorescence imaging revealed temporary vascular dysfunction in tumors irradiated with a single dose of 4 to 24 Gy, but most significantly with a single dose of 24 Gy. Vascular functional recovery was observed by 14 days after irradiation in a dose-dependent manner. Furthermore, irradiation with 24 Gy caused platelet and leukocyte adhesion to the vascular endothelium within hours to days after irradiation. Vascular permeability was significantly higher in irradiated tumors compared with nonirradiated controls 14 days after irradiation. This observation corresponded with increased expression of hypoxia-inducible factor-1α in irradiated tumors. In the hind leg model, irradiation with a single dose of 24 Gy led to tumor growth delay, followed by tumor regrowth. Conclusions: Irradiation of the BxPC3 tumors with a single dose of 24 Gy caused transient vascular dysfunction and increased expression of hypoxia-inducible factor-1α. Such biological changes may impact tumor response to high single-dose and hypofractionated irradiation, and further investigations are needed to better understand the clinical outcomes of stereotactic body radiation therapy.

  20. Vascular expression of endothelial antigen PAL-E indicates absence of blood-ocular barriers in the normal eye

    NARCIS (Netherlands)

    Schlingemann, R. O.; Hofman, P.; Anderson, L.; Troost, D.; van der Gaag, R.

    1997-01-01

    The endothelium-specific antigen PAL-E is expressed in capillaries and veins throughout the body with the exception of the brain, where the antigen is absent from anatomical sites with a patent blood-brain barrier. In this study we determined vascular endothelial staining for PAL-E in the normal eye

  1. Obesity, inflammation, and exercise training: relative contribution of iNOS and eNOS in the modulation of vascular function in the mouse aorta

    Directory of Open Access Journals (Sweden)

    Josiane Fernandes da Silva

    2016-09-01

    Full Text Available Background - The understanding of obsesity-related vascular dysfunction remains controversial mainly because of the diseases associated with vascular injury. Exercise training is known to prevent vascular dysfunction. Using an obesity model without comorbidities, we aimed at investigating the underlying mechanism of vascular dysfunction and how exercise interferes with this process.Methods - High-sugar diet was used to induce obesity in mice. Exercise training was performed 5 days/week. Body weight, energy intake, and adipose tissues were assessed; blood metabolic and hormonal parameters were determined; and serum TNFα was measured. Blood pressure and heart rate were assessed by plethysmography. Changes in aortic isometric tension were recorded on myograph. Western blot was used to analyze protein expression. Nitric oxide (NO was evaluated using fluorescence microscopy. Antisense oligodeoxynucleotides were used for inducible nitric oxide synthase isoform (iNOS knockdown.Results - Body weight, fat mass, total cholesterol, low-density lipoprotein cholesterol fraction, insulin, and leptin were higher in the sedentary obese group (SD than in the sedentary control animals (SS. Exercise training prevented these changes. No difference in glucose tolerance, insulin sensitivity, blood pressure, and heart rate was found. Decreased vascular relaxation and reduced endothelial nitric oxide synthase (eNOS functioning in the SD group were prevented by exercise. Contractile response to phenylephrine was decreased in the aortas of the wild SD mice, compared with that of the SS group; however, no alteration was noted in the SD iNOS-/- animals. The decreased contractility was endothelium-dependent, and was reverted by iNOS inhibition or iNOS silencing. The aortas from the SD group showed increased basal NO production, serum TNFα, TNF receptor-1, and phospho-IκB. Exercise training attenuated iNOS-dependent reduction in contractile response in high-sugar diet

  2. Estrogen, vascular estrogen receptor and hormone therapy in postmenopausal vascular disease.

    Science.gov (United States)

    Khalil, Raouf A

    2013-12-15

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women's Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject's age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Vascular lumen formation.

    Science.gov (United States)

    Lammert, Eckhard; Axnick, Jennifer

    2012-04-01

    The vascular system developed early in evolution. It is required in large multicellular organisms for the transport of nutrients, oxygen, and waste products to and from tissues. The vascular system is composed of hollow tubes, which have a high level of complexity in vertebrates. Vasculogenesis describes the de novo formation of blood vessels, e.g., aorta formation in vertebrate embryogenesis. In contrast, angiogenesis is the formation of blood vessels from preexisting ones, e.g., sprouting of intersomitic blood vessels from the aorta. Importantly, the lumen of all blood vessels in vertebrates is lined and formed by endothelial cells. In both vasculogenesis and angiogenesis, lumen formation takes place in a cord of endothelial cells. It involves a complex molecular mechanism composed of endothelial cell repulsion at the cell-cell contacts within the endothelial cell cords, junctional rearrangement, and endothelial cell shape change. As the vascular system also participates in the course of many diseases, such as cancer, stroke, and myocardial infarction, it is important to understand and make use of the molecular mechanisms of blood vessel formation to better understand and manipulate the pathomechanisms involved.

  4. Jabuticaba-Induced Endothelium-Independent Vasodilating Effect on Isolated Arteries.

    Science.gov (United States)

    Andrade, Daniela Medeiros Lobo de; Borges, Leonardo Luis; Torres, Ieda Maria Sapateiro; Conceição, Edemilson Cardoso da; Rocha, Matheus Lavorenti

    2016-09-01

    Despite the important biological effects of jabuticaba, its actions on the cardiovascular system have not been clarified. To determine the effects of jabuticaba hydroalcoholic extract (JHE) on vascular smooth muscle (VSM) of isolated arteries. Endothelium-denuded aortic rings of rats were mounted in isolated organ bath to record isometric tension. The relaxant effect of JHE and the influence of K+ channels and Ca2+ intra- and extracellular sources on JHE-stimulated response were assessed. Arteries pre-contracted with phenylephrine showed concentration-dependent relaxation (0.380 to 1.92 mg/mL). Treatment with K+ channel blockers (tetraethyl-ammonium, glibenclamide, 4-aminopyridine) hindered relaxation due to JHE. In addition, phenylephrine-stimulated contraction was hindered by previous treatment with JHE. Inhibition of sarcoplasmic reticulum Ca2+ ATPase did not change relaxation due to JHE. In addition, JHE inhibited the contraction caused by Ca2+ influx stimulated by phenylephrine and KCl (75 mM). JHE induces endothelium-independent vasodilation. Activation of K+ channels and inhibition of Ca2+ influx through the membrane are involved in the JHE relaxant effect. Embora a jabuticaba apresente importantes efeitos biológicos, suas ações sobre o sistema cardiovascular ainda não foram esclarecidas. Determinar os efeitos do extrato de jabuticaba (EHJ) sobre o músculo liso vascular (MLV) em artérias isoladas. Aortas (sem endotélio) de ratos foram montadas em banho de órgãos isolados para registro de tensão isométrica. Foram verificados o efeito relaxante, a influência dos canais de K+ e das fontes de Ca2+ intra- e extracelular sob a resposta estimulada pelo EHJ. Artérias pré-contraídas com fenilefrina apresentaram relaxamento concentração-dependente (0,380 a 1,92 mg/mL). O tratamento com bloqueadores de canais de K+ (tetraetilamônio, glibenclamida, 4-aminopiridina) prejudicaram o relaxamento pelo EHJ. A contração estimulada com fenilefrina tamb

  5. Effects of Buddhism walking meditation on depression, functional fitness, and endothelium-dependent vasodilation in depressed elderly.

    Science.gov (United States)

    Prakhinkit, Susaree; Suppapitiporn, Siriluck; Tanaka, Hirofumi; Suksom, Daroonwan

    2014-05-01

    The objectives of this study were to determine the effects of the novel Buddhism-based walking meditation (BWM) and the traditional walking exercise (TWE) on depression, functional fitness, and vascular reactivity. This was a randomized exercise intervention study. The study was conducted in a university hospital setting. Forty-five elderly participants aged 60-90 years with mild-to-moderate depressive symptoms were randomly allocated to the sedentary control, TWE, and BWM groups. The BWM program was based on aerobic walking exercise incorporating the Buddhist meditations performed 3 times/week for 12 weeks. Depression score, functional fitness, and endothelium-dependent vasodilation as measured by the flow-mediated dilation (FMD) were the outcome measures used. Muscle strength, flexibility, agility, dynamic balance, and cardiorespiratory endurance increased in both exercise groups (p<0.05). Depression score decreased (p<0.05) only in the BWM group. FMD improved (p<0.05) in both exercise groups. Significant reduction in plasma cholesterol, triglyceride, high-density lipoprotein cholesterol, and C-reactive protein were found in both exercise groups, whereas low-density lipoprotein cholesterol, cortisol, and interleukin-6 concentrations decreased only in the BWM group. Buddhist walking meditation was effective in reducing depression, improving functional fitness and vascular reactivity, and appears to confer greater overall improvements than the traditional walking program.

  6. Phenotypic heterogeneity in the endothelium of the human vortex vein system.

    Science.gov (United States)

    Yu, Paula K; Tan, Priscilla E Z; Cringle, Stephen J; McAllister, Ian L; Yu, Dao-Yi

    2013-10-01

    The vortex vein system is the drainage pathway for the choroidal circulation and serves an important function in the effective drainage of the exceptionally high blood flow from the choroidal circulation. As there are only 4-6 vortex veins, a large volume of blood must be drained from many choroidal veins into each individual vortex vein. The vortex vein system must also cope with passing through tissues of different rigidity and significant pressure gradient as it transverses from the intrao-cular to the extra-ocular compartments. However, little is known about how the vortex vein system works under such complex situations in both physiological and pathological condition. Endothelial cells play a vital role in other vascular systems, but they have not been studied in detail in the vortex vein system. The purpose of this study is to characterise the intracellular structures and morphology in both the intra-and extra-ocular regions of the human vortex vein system. We hypothesise the presence of endothelial phenotypic heterogeneity through the vortex vein system. The inferior temporal vortex vein system from human donor eyes were obtained and studied histologically using confocal microscopy. The f-actin cytoskeleton and nuclei were labelled using Alexa Fluor conjugated Phalloidin and YO-PRO-1. Eight regions of the vortex vein system were examined with the venous endothelium studied in detail with quantitative data obtained for endothelial cell and nuclei size and shape. Significant endothelial phenotypic heterogeneity was found throughout the vortex vein system with the most obvious differences observed between the ampulla and its downstream regions. Variation in the distribution pattern of smooth muscle cells, in particular the absence of smooth muscle cells around the ampulla, was noted. Our results suggest the presence of significantly different haemodynamic forces in different regions of the vortex vein system and indicate that the vortex vein system may play

  7. Endothelium-dependent vasorelaxant effect of procyanidin B2 on human internal mammary artery.

    Science.gov (United States)

    Novakovic, Aleksandra; Marinko, Marija; Jankovic, Goran; Stojanovic, Ivan; Milojevic, Predrag; Nenezic, Dragoslav; Kanjuh, Vladimir; Yang, Qin; He, Guo-Wei

    2017-07-15

    The aim of the present study was to investigate and characterize vasorelaxant effect of procyanidin B2 on human internal mammary artery (HIMA) as one of the mechanisms of its protective effect against vascular risk. Procyanidin B2 induced strong concentration-dependent relaxation of HIMA rings pre-contracted by phenylephrine. Pretreatment with L-NAME, a NO synthase inhibitor, hydroxocobalamin, a NO scavenger, and ODQ, an inhibitor of soluble guanylate cyclase, significantly inhibited procyanidin B2-induced relaxation of HIMA, while indomethacin, a cyclooxygenase inhibitor, considerably reduced effects of low concentrations. Among K + channel blockers, iberiotoxin, a selective blocker of large conductance Ca 2+ -activated K + channels (BK Ca ), abolished procyanidin B2-induced relaxation, glibenclamide, a selective ATP-sensitive K + (K ATP ) channels blocker, induced partial inhibition, while 4-aminopyridine, a blocker of voltage-gated K + (K V ) channels, and TRAM-34, an inhibitor of intermediate-conductance Ca 2+ -activated K + (IK Ca ) channels, slightly reduced maximal relaxation of HIMA. Further, procyanidin B2 relaxed contraction induced by phenylephrine in Ca 2+ -free Krebs solution, but had no effect on contraction induced by caffeine. Finally, thapsigargin, a sarcoplasmic reticulum Ca 2+ -ATPase inhibitor, significantly reduced relaxation of HIMA produced by procyanidin B2. These results demonstrate that procyanidin B2 produces endothelium-dependent relaxation of HIMA pre-contracted by phenylephrine. This effect is primarily the result of an increased NO synthesis and secretion by endothelial cells and partially of prostacyclin, although it involves activation of BK Ca and K ATP , as well as K V and IK Ca channels in high concentrations of procyanidin B2. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. CHRONIC OBSTRUCTIVE PULMONARY DISEASE AND ARTERIAL HYPERTENSION: VASCULAR WALL AS THE TARGET ORGAN IN COMORBID PATIENTS

    Directory of Open Access Journals (Sweden)

    N. A. Karoli

    2017-01-01

    Full Text Available Studies of endothelial dysfunction in patients with respiratory diseases have become relevant in recent years. Perhaps endothelial dysfunction and high arterial stiffness bind bronchopulmonary and cardiovascular diseases.Aim. To reveal features of disturbances of arterial wall vasoregulatory function in patients with chronic obstructive pulmonary disease (COPD in the presence and absence of arterial hypertension (HT.Material and methods. The study included 50 patients with COPD with normal blood pressure (BP and 85 patients with COPD and HT. Control group was presented by 20 practically healthy men comparable in age with COPD patients. Tests with reactive hyperemia (endothelium-dependent dilation and nitroglycerin (endothelium-independent dilation were performed in order to evaluate endothelium function. The number of desquamated endotheliocytes in the blood was determined.Results. In patients with COPD and HT in comparison with COPD patients without HT and healthy individuals more pronounced damages of the vascular wall, endothelium vasoregulatory function disturbances and a tendency to the reduction in endothelium-dependent vasodilation were determined both during COPD exacerbation and remission. These differences were most pronounced during the COPD exacerbation. In patients with COPD and HT in comparison with COPD patients without HT the damage of the vascular wall was more pronounced during the remission and endothelium-dependent dilatation disorder – during the exacerbation. The revealed disorders in patients with COPD and HT were associated with smoking status (r=0.61, p<0.01, severity of bronchial obstruction (r=-0.49, p<0.05, and hypoxemia (r=-0.76, p<0.01. We noted relationships between the parameters of 24-hour BP monitoring and remodeling of the brachial artery (r=0.34, p<0.05, endothelium lesion (r=0.25, p<0.05, and impairment of its vasoregulating function (r=-0.58, p<0.05. At that, the following parameters were important: the

  9. Renal posttransplant's vascular complications

    Directory of Open Access Journals (Sweden)

    Bašić Dragoslav

    2003-01-01

    present study demonstrate that the rate of this complication in LD group was low, only 0.3%, but significantly higher in CD group - 11.8%. Many factors should be considered in order to understand for such significant difference among these groups. First of all, cadaveric transplant activity in our country is very low. In our series, median waiting period for renal transplantation was 2.8 years in LD group vs. 4.8 years in CD group (p<0.01. Also, vascular damages because of long term hemodialysis are contributing factors. Mean age of CD recipients was 7.4 years bigger vs. LD recipients. Primary cadaveric graft damage by accident and further manipulations during cadaveric donor nephrectomy, preservation and per-fusion are additional factors compromising the quality of cadaveric renal transplant outcome. Also, preoperative evaluation of cadaveric grafts is not as exact as in cases of LD grafts (excretory urography arteriography, etc. In the available transplant literature it is almost impossible to find data about vascular complications by different donor types. Mostly, authors offer experiences related to all transplants and most of them agree that in the present time better results are obtained using living donors [17].

  10. Activation of eNOS by D-pinitol Induces an Endothelium-Dependent Vasodilatation in Mouse Mesenteric Artery

    Directory of Open Access Journals (Sweden)

    Luciana N. Moreira

    2018-05-01

    Full Text Available D-pinitol is a cyclitol present in several edible plant species and extensively investigated for the treatment of metabolic diseases in humans, as food supplement, and demonstrated protective effects in the cardiovascular system. For these reasons, the present work aimed at investigating the mechanisms involved in the vascular effects of D-pinitol in mouse mesenteric artery. Mesenteric arteries from male C57BL/6 mice were mounted in a wire myograph. Nitrite was measured by the 2,3-diaminonaphthalene (DAN method. Protein expression and phosphorylation were measured by Western blot. The systolic blood pressure (SBP was measured by tail-cuff plethysmography. D-pinitol induced a concentration-dependent vasodilatation in endothelium-intact, but not in endothelium-denuded arteries. Nω-Nitro-L-arginine methyl ester (300 μM abolished the effect of D-pinitol, while 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 μM shifted the concentration-response curve to the right. KN-93 (1 μM blunted the vasodilator effect of D-pinitol, but H-89 (0.1 μM did not change it. 1-[2-(Trifluoromethyl phenyl]imidazole (300 μM, indomethacin (10 μM, celecoxib (5 μM, wortmannin (1 μM, ruthenium red (10 μM, tiron (10 μM, MnTMPyP (30 μM, MPP (0.1 μM, PHTPP (0.1 μM, and atropine (1 μM did not change the effect of D-pinitol. D-pinitol increased the concentration of nitrite, which was inhibited by L-NAME and calmidazolium (10 μM. D-pinitol increased the phosphorylation level of eNOS activation site at Ser1177 and reduced the phosphorylation level of its inactivation site at Thr495. In normotensive mice, the intraperitoneal administration of D-pinitol (10 mg/kg induced a significant reduction of the SBP after 30 min. The present results led us to conclude that D-pinitol has an endothelium- and NO-dependent vasodilator effect in mouse mesenteric artery through a mechanism dependent on the activation of eNOS by the calcium-calmodulin complex, which can explain its

  11. Defibrotide modulates prostaglandin production in the rat mesenteric vascular bed.

    Science.gov (United States)

    Peredo, H A

    2002-10-01

    Defibrotide 1 microM, a polydeoxyribonucleotide extracted from mammalian organs, reduced the contractile responses to noradrenaline (NA) in the rat isolated and perfused mesenteric vascular bed, in intact as well as in de-endothelialized preparations. Defibrotide was without effect on the acetylcholine-induced relaxations of U-46619-precontracted mesenteric vascular beds. Moreover, defibrotide increased 6-keto prostaglandin (PG) F(2alpha) (stable metabolite of prostacyclin) release sixfold in the presence, but not in the absence of the endothelium, with no modification on the release of other prostanoids. Defibrotide also inhibited the NA-induced increase in PGF(2alpha) release, in both intact and de-endothelialized mesenteric vascular beds. In conclusion, the present results show that defibrotide modulates PG production in the mesenteric bed and that the observed inhibition of the contractile responses should be due to the impairment of the NA-induced increase in PGF(2alpha) release.

  12. Identification of a potent endothelium-derived angiogenic factor

    DEFF Research Database (Denmark)

    Jankowski, Vera; Tölle, Markus; Tran, Thi Nguyet Anh

    2013-01-01

    The secretion of angiogenic factors by vascular endothelial cells is one of the key mechanisms of angiogenesis. Here we report on the isolation of a new potent angiogenic factor, diuridine tetraphosphate (Up4U) from the secretome of human endothelial cells. The angiogenic effect of the endothelia...

  13. Critical role of sphingosine-1-phosphate receptor 2 (S1PR2) in acute vascular inflammation.

    Science.gov (United States)

    Zhang, Guoqi; Yang, Li; Kim, Gab Seok; Ryan, Kieran; Lu, Shulin; O'Donnell, Rebekah K; Spokes, Katherine; Shapiro, Nathan; Aird, William C; Kluk, Michael J; Yano, Kiichiro; Sanchez, Teresa

    2013-07-18

    The endothelium, as the interface between blood and all tissues, plays a critical role in inflammation. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid, highly abundant in plasma, that potently regulates endothelial responses through interaction with its receptors (S1PRs). Here, we studied the role of S1PR2 in the regulation of the proadhesion and proinflammatory phenotype of the endothelium. By using genetic approaches and a S1PR2-specific antagonist (JTE013), we found that S1PR2 plays a key role in the permeability and inflammatory responses of the vascular endothelium during endotoxemia. Experiments with bone marrow chimeras (S1pr2(+/+) → S1pr2(+/+), S1pr2(+/+) → S1pr2(-/-), and S1pr2(-/-) → S1pr2(+/+)) indicate the critical role of S1PR2 in the stromal compartment, in the regulation of vascular permeability and vascular inflammation. In vitro, JTE013 potently inhibited tumor necrosis factor α-induced endothelial inflammation. Finally, we provide detailed mechanisms on the downstream signaling of S1PR2 in vascular inflammation that include the activation of the stress-activated protein kinase pathway that, together with the Rho-kinase nuclear factor kappa B pathway (NF-kB), are required for S1PR2-mediated endothelial inflammatory responses. Taken together, our data indicate that S1PR2 is a key regulator of the proinflammatory phenotype of the endothelium and identify S1PR2 as a novel therapeutic target for vascular disorders.

  14. Effects of iodinated contrast media on blood and endothelium

    International Nuclear Information System (INIS)

    Aspelin, Peter; Stacul, Fulvio; Thomsen, Henrik S.; Morcos, Sameh K.; Molen, Aart J. van der

    2006-01-01

    The aim of the study was to assess the effects of iodinated contrast media on blood components and endothelium based on experimental and clinical studies and to produce clinically relevant guidelines for reducing thrombotic and hematologic complications following the intravascular use of contrast media. A report was drafted after review of the literature and discussions among the members of the Contrast Media Safety Committee of the European Society of Urogenital Radiology. The final report was produced following discussion at the 12th European Symposium on Urogenital Radiology in Ljubljana, Slovenia (2005). Experimental data indicate that all iodinated contrast media produce an anticoagulant effect and that this effect is greater with ionic contrast media. Several of the in vitro and experimental in vivo studies on haematological effects of contrast media have not been confirmed by clinical studies. Low- or iso-osmolar contrast media should be used for diagnostic and interventional angiographic procedures, including phlebography. Meticulous angiographic technique is the most important factor for reducing the thrombotic complications associated with angiographic procedures. Drugs and interventional devices that decrease the risk of thromboembolic complications during interventional procedures minimize the importance of the effects of contrast media. (orig.)

  15. Effects of iodinated contrast media on blood and endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Aspelin, Peter [Karolinska Institute/Huddinge University Hospital, Division of Radiology, Centre for Surgical Sciences, Stockholm (Sweden); Stacul, Fulvio [Institute of Radiology, Trieste (Italy); Thomsen, Henrik S. [Copenhagen University Hospital at Herlev, Department of Diagnostic Radiology 54E2, Herlev (Denmark); Morcos, Sameh K. [Sheffield Teaching Hospitals NHS Trust, Department of Diagnostic Imaging, Northern General Hospital, Sheffield (United Kingdom); Molen, Aart J. van der [Leiden University Medical Centre, Department of Radiology, Leiden (Netherlands)

    2006-05-15

    The aim of the study was to assess the effects of iodinated contrast media on blood components and endothelium based on experimental and clinical studies and to produce clinically relevant guidelines for reducing thrombotic and hematologic complications following the intravascular use of contrast media. A report was drafted after review of the literature and discussions among the members of the Contrast Media Safety Committee of the European Society of Urogenital Radiology. The final report was produced following discussion at the 12th European Symposium on Urogenital Radiology in Ljubljana, Slovenia (2005). Experimental data indicate that all iodinated contrast media produce an anticoagulant effect and that this effect is greater with ionic contrast media. Several of the in vitro and experimental in vivo studies on haematological effects of contrast media have not been confirmed by clinical studies. Low- or iso-osmolar contrast media should be used for diagnostic and interventional angiographic procedures, including phlebography. Meticulous angiographic technique is the most important factor for reducing the thrombotic complications associated with angiographic procedures. Drugs and interventional devices that decrease the risk of thromboembolic complications during interventional procedures minimize the importance of the effects of contrast media. (orig.)

  16. Involvement of inducible nitric oxide synthase in radiation-induced vascular endothelial damage

    International Nuclear Information System (INIS)

    Hong, Chang-Won; Lee, Joon-Ho; Kim, Suwan; Noh, Jae Myoung; Kim, Young-Mee; Pyo, Hongryull; Lee, Sunyoung

    2013-01-01

    The use of radiation therapy has been linked to an increased risk of cardiovascular disease. To understand the mechanisms underlying radiation-induced vascular dysfunction, we employed two models. First, we examined the effect of X-ray irradiation on vasodilation in rabbit carotid arteries. Carotid arterial rings were irradiated with 8 or 16 Gy using in vivo and ex vivo methods. We measured the effect of acetylcholine-induced relaxation after phenylephrine-induced contraction on the rings. In irradiated carotid arteries, vasodilation was significantly attenuated by both irradiation methods. The relaxation response was completely blocked by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a potent inhibitor of soluble guanylate cyclase. Residual relaxation persisted after treatment with L-N ω -nitroarginine (L-NA), a non-specific inhibitor of nitric oxide synthase (NOS), but disappeared following the addition of aminoguanidine (AG), a selective inhibitor of inducible NOS (iNOS). The relaxation response was also affected by tetraethylammonium, an inhibitor of endothelium-derived hyperpolarizing factor activity. In the second model, we investigated the biochemical events of nitrosative stress in human umbilical-vein endothelial cells (HUVECs). We measured iNOS and nitrotyrosine expression in HUVECs exposed to a dose of 4 Gy. The expression of iNOS and nitrotyrosine was greater in irradiated HUVECs than in untreated controls. Pretreatment with AG, L-N 6 -(1-iminoethyl) lysine hydrochloride (a selective inhibitor of iNOS), and L-NA attenuated nitrosative stress. While a selective target of radiation-induced vascular endothelial damage was not definitely determined, these results suggest that NO generated from iNOS could contribute to vasorelaxation. These studies highlight a potential role of iNOS inhibitors in ameliorating radiation-induced vascular endothelial damage. (author)

  17. Effect of the Menstrual Cycle on Maximum Oxygen Consumption and Endothelium-Dependent Vasodilation

    National Research Council Canada - National Science Library

    Andrews, Thomas

    1997-01-01

    .... We studied endothelium-dependent vasodilation of the brachial artery during three phases of the menstrual cycle in 20 eumenorrheic subjects to determine the effect of endogenous estradiol and progesterone...

  18. Pulmonary vascular imaging

    International Nuclear Information System (INIS)

    Fedullo, P.F.; Shure, D.

    1987-01-01

    A wide range of pulmonary vascular imaging techniques are available for the diagnostic evaluation of patients with suspected pulmonary vascular disease. The characteristics of any ideal technique would include high sensitivity and specificity, safety, simplicity, and sequential applicability. To date, no single technique meets these ideal characteristics. Conventional pulmonary angiography remains the gold standard for the diagnosis of acute thromboembolic disease despite the introduction of newer techniques such as digital subtraction angiography and magnetic resonance imaging. Improved noninvasive lower extremity venous testing methods, particularly impedance plethysmography, and ventilation-perfusion scanning can play significant roles in the noninvasive diagnosis of acute pulmonary emboli when properly applied. Ventilation-perfusion scanning may also be useful as a screening test to differentiate possible primary pulmonary hypertension from chronic thromboembolic pulmonary hypertension. And, finally, angioscopy may be a useful adjunctive technique to detect chronic thromboembolic disease and determine operability. Optimal clinical decision-making, however, will continue to require the proper interpretation of adjunctive information obtained from the less-invasive techniques, applied with an understanding of the natural history of the various forms of pulmonary vascular disease and with a knowledge of the capabilities and shortcomings of the individual techniques

  19. Semi-quantitative assessments of dextran toxicity on corneal endothelium: conceptual design of a predictive algorithm.

    Science.gov (United States)

    Filev, Filip; Oezcan, Ceprail; Feuerstacke, Jana; Linke, Stephan J; Wulff, Birgit; Hellwinkel, Olaf J C

    2017-03-01

    Dextran is added to corneal culture medium for at least 8 h prior to transplantation to ensure that the cornea is osmotically dehydrated. It is presumed that dextran has a certain toxic effect on corneal endothelium but the degree and the kinetics of this effect have not been quantified so far. We consider that such data regarding the toxicity of dextran on the corneal endothelium could have an impact on scheduling and logistics of corneal preparation in eye banking. In retrospective statistic analyses, we compared the progress of corneal endothelium (endothelium cell loss per day) of 1334 organ-cultured corneal explants in media with and without dextran. Also, the influence of donor-age, sex and cause of death on the observed dextran-mediated effect on endothelial cell counts was studied. Corneas cultured in dextran-free medium showed a mean endothelium cell count decrease of 0.7% per day. Dextran supplementation led to a mean endothelium cell loss of 2.01% per day; this reflects an increase by the factor of 2.9. The toxic impact of dextran was found to be time dependent; while the prevailing part of the effect was observed within the first 24 h after dextran-addition. Donor age, sex and cause of death did not seem to have an influence on the dextran-mediated toxicity. Based on these findings, we could design an algorithm which approximately describes the kinetics of dextran-toxicity. We reproduced the previously reported toxic effect of dextran on the corneal endothelium in vitro. Additionally, this is the first work that provides an algorithmic instrument for the semi-quantitative calculation of the putative endothelium cell count decrease in dextran containing medium for a given incubation time and could thus influence the time management and planning of corneal transplantations.

  20. Vascular Ageing and Exercise: Focus on Cellular Reparative Processes

    Directory of Open Access Journals (Sweden)

    Mark D. Ross

    2016-01-01

    Full Text Available Ageing is associated with an increased risk of developing noncommunicable diseases (NCDs, such as diabetes and cardiovascular disease (CVD. The increased risk can be attributable to increased prolonged exposure to oxidative stress. Often, CVD is preceded by endothelial dysfunction, which carries with it a proatherothrombotic phenotype. Endothelial senescence and reduced production and release of nitric oxide (NO are associated with “vascular ageing” and are often accompanied by a reduced ability for the body to repair vascular damage, termed “reendothelialization.” Exercise has been repeatedly shown to confer protection against CVD and diabetes risk and incidence. Regular exercise promotes endothelial function and can prevent endothelial senescence, often through a reduction in oxidative stress. Recently, endothelial precursors, endothelial progenitor cells (EPC, have been shown to repair damaged endothelium, and reduced circulating number and/or function of these cells is associated with ageing. Exercise can modulate both number and function of these cells to promote endothelial homeostasis. In this review we look at the effects of advancing age on the endothelium and these endothelial precursors and how exercise appears to offset this “vascular ageing” process.

  1. Vascular Ageing and Exercise: Focus on Cellular Reparative Processes.

    Science.gov (United States)

    Ross, Mark D; Malone, Eva; Florida-James, Geraint

    2016-01-01

    Ageing is associated with an increased risk of developing noncommunicable diseases (NCDs), such as diabetes and cardiovascular disease (CVD). The increased risk can be attributable to increased prolonged exposure to oxidative stress. Often, CVD is preceded by endothelial dysfunction, which carries with it a proatherothrombotic phenotype. Endothelial senescence and reduced production and release of nitric oxide (NO) are associated with "vascular ageing" and are often accompanied by a reduced ability for the body to repair vascular damage, termed "reendothelialization." Exercise has been repeatedly shown to confer protection against CVD and diabetes risk and incidence. Regular exercise promotes endothelial function and can prevent endothelial senescence, often through a reduction in oxidative stress. Recently, endothelial precursors, endothelial progenitor cells (EPC), have been shown to repair damaged endothelium, and reduced circulating number and/or function of these cells is associated with ageing. Exercise can modulate both number and function of these cells to promote endothelial homeostasis. In this review we look at the effects of advancing age on the endothelium and these endothelial precursors and how exercise appears to offset this "vascular ageing" process.

  2. Leptin-induced endothelium-dependent vasorelaxation of peripheral arteries in lean and obese rats: role of nitric oxide and hydrogen sulfide.

    Directory of Open Access Journals (Sweden)

    Anna Jamroz-Wiśniewska

    Full Text Available Adipose tissue hormone leptin induces endothelium-dependent vasorelaxation mediated by nitric oxide (NO and endothelium-derived hyperpolarizing factors (EDHF. Previously it has been demonstrated that in short-term obesity the NO-dependent and the EDHF-dependent components of vascular effect of leptin are impaired and up-regulated, respectively. Herein we examined the mechanism of the EDHF-dependent vasodilatory effect of leptin and tested the hypothesis that alterations of acute vascular effects of leptin in obesity are accounted for by chronic hyperleptinemia. The study was performed in 5 groups of rats: (1 control, (2 treated with exogenous leptin for 1 week to induce hyperleptinemia, (3 obese, fed highly-palatable diet for 4 weeks, (4 obese treated with pegylated superactive rat leptin receptor antagonist (PEG-SRLA for 1 week, (5 fed standard chow and treated with PEG-SRLA. Acute effect of leptin on isometric tension of mesenteric artery segments was measured ex vivo. Leptin relaxed phenylephrine-preconstricted vascular segments in NO- and EDHF-dependent manner. The NO-dependent component was impaired and the EDHF-dependent component was increased in the leptin-treated and obese groups and in the latter group both these effects were abolished by PEG-SRLA. The EDHF-dependent vasodilatory effect of leptin was blocked by either the inhibitor of cystathionine γ-lyase, propargylglycine, or a hydrogen sulfide (H2S scavenger, bismuth (III subsalicylate. The results indicate that NO deficiency is compensated by the up-regulation of EDHF in obese rats and both effects are accounted for by chronic hyperleptinemia. The EDHF-dependent component of leptin-induced vasorelaxation is mediated, at least partially, by H2S.

  3. The Deletion of Endothelial Sodium Channel α (αENaC Impairs Endothelium-Dependent Vasodilation and Endothelial Barrier Integrity in Endotoxemia in Vivo

    Directory of Open Access Journals (Sweden)

    Magdalena Sternak

    2018-04-01

    Full Text Available The role of epithelial sodium channel (ENaC activity in the regulation of endothelial function is not clear. Here, we analyze the role of ENaC in the regulation of endothelium-dependent vasodilation and endothelial permeability in vivo in mice with conditional αENaC subunit gene inactivation in the endothelium (endo-αENaCKO mice using unique MRI-based analysis of acetylcholine-, flow-mediated dilation and vascular permeability. Mice were challenged or not with lipopolysaccharide (LPS, from Salmonella typhosa, 10 mg/kg, i.p.. In addition, changes in vascular permeability in ex vivo organs were analyzed by Evans Blue assay, while changes in vascular permeability in perfused mesenteric artery were determined by a FITC-dextran-based assay. In basal conditions, Ach-induced response was completely lost, flow-induced vasodilation was inhibited approximately by half but endothelial permeability was not changed in endo-αENaCKO vs. control mice. In LPS-treated mice, both Ach- and flow-induced vasodilation was more severely impaired in endo-αENaCKO vs. control mice. There was also a dramatic increase in permeability in lungs, brain and isolated vessels as evidenced by in vivo and ex vivo analysis in endotoxemic endo-αENaCKO vs. control mice. The impaired endothelial function in endotoxemia in endo-αENaCKO was associated with a decrease of lectin and CD31 endothelial staining in the lung as compared with control mice. In conclusion, the activity of endothelial ENaC in vivo contributes to endothelial-dependent vasodilation in the physiological conditions and the preservation of endothelial barrier integrity in endotoxemia.

  4. Advanced Maternal Age Worsens Postpartum Vascular Function

    Directory of Open Access Journals (Sweden)

    Jude S. Morton

    2017-06-01

    Full Text Available The age at which women experience their first pregnancy has increased throughout the decades. Pregnancy has an important influence on maternal short- and long-term cardiovascular outcomes. Pregnancy at an advanced maternal age increases maternal risk of gestational diabetes, preeclampsia, placenta previa and caesarian delivery; complications which predict worsened cardiovascular health in later years. Aging also independently increases the risk of cardiovascular disease; therefore, combined risk in women of advanced maternal age may lead to detrimental cardiovascular outcomes later in life. We hypothesized that pregnancy at an advanced maternal age would lead to postpartum vascular dysfunction. We used a reproductively aged rat model to investigate vascular function in never pregnant (virgin, previously pregnant (postpartum and previously mated but never delivered (nulliparous rats at approximately 13.5 months of age (3 months postpartum or equivalent. Nulliparous rats, in which pregnancy was spontaneously lost, demonstrated significantly reduced aortic relaxation responses (methylcholine [MCh] Emax: 54.2 ± 12.6% vs. virgin and postpartum rats (MCh Emax: 84.8 ± 3.5% and 84.7 ± 3.2% respectively; suggesting pregnancy loss causes a worsened vascular pathology. Oxidized LDL reduced relaxation to MCh in aorta from virgin and postpartum, but not nulliparous rats, with an increased contribution of the LOX-1 receptor in the postpartum group. Further, in mesenteric arteries from postpartum rats, endothelium-derived hyperpolarization (EDH-mediated vasodilation was reduced and a constrictive prostaglandin effect was apparent. In conclusion, aged postpartum rats exhibited vascular dysfunction, while rats which had pregnancy loss demonstrated a distinct vascular pathology. These data demonstrate mechanisms which may lead to worsened outcomes at an advanced maternal age; including early pregnancy loss and later life cardiovascular dysfunction.

  5. Oxidative stress upregulates the NMDA receptor on cerebrovascular endothelium.

    Science.gov (United States)

    Betzen, Christian; White, Robin; Zehendner, Christoph M; Pietrowski, Eweline; Bender, Bianca; Luhmann, Heiko J; Kuhlmann, Christoph R W

    2009-10-15

    N-methyl-d-aspartate receptor (NMDA-R)-mediated oxidative stress has been implicated in blood-brain barrier (BBB) disruption in a variety of neuropathological diseases. Although some interactions between both phenomena have been elucidated, possible influences of reactive oxygen species (ROS) on the NMDA-R itself have so far been neglected. The objective of this study was to examine how the cerebroendothelial NMDA-R is affected by exposure to oxidative stress and to assess possible influences on BBB integrity. RT-PCR confirmed several NMDA-R subunits (NR1, NR2B-D) expressed in the bEnd3 cell line (murine cerebrovascular endothelial cells). NR1 protein expression after exposure to ROS was observed via in-cell Western. The functionality of the expressed NMDA-R was determined by measuring DiBAC fluorescence in ROS-preexposed cells upon stimulation with the specific agonist NMDA. Finally, the effects on barrier integrity were evaluated using the ECIS system to detect changes in monolayer impedance upon NMDA-R stimulation after exposure to ROS. The expression of NR1 significantly (p<0.001) increased 72 h after 30 min exposure to superoxide (+33.8+/-7.5%), peroxynitrite (+84.9+/-10.7%), or hydrogen peroxide (+92.8+/-7.6%), resulting in increased cellular response to NMDA-R stimulation and diminished monolayer impedance. We conclude that oxidative stress upregulates NMDA-R on cerebrovascular endothelium and thus heightens susceptibility to glutamate-induced BBB disruption.

  6. Traction force dynamics predict gap formation in activated endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Valent, Erik T.; Nieuw Amerongen, Geerten P. van; Hinsbergh, Victor W.M. van; Hordijk, Peter L., E-mail: p.hordijk@vumc.nl

    2016-09-10

    In many pathological conditions the endothelium becomes activated and dysfunctional, resulting in hyperpermeability and plasma leakage. No specific therapies are available yet to control endothelial barrier function, which is regulated by inter-endothelial junctions and the generation of acto-myosin-based contractile forces in the context of cell-cell and cell-matrix interactions. However, the spatiotemporal distribution and stimulus-induced reorganization of these integral forces remain largely unknown. Traction force microscopy of human endothelial monolayers was used to visualize contractile forces in resting cells and during thrombin-induced hyperpermeability. Simultaneously, information about endothelial monolayer integrity, adherens junctions and cytoskeletal proteins (F-actin) were captured. This revealed a heterogeneous distribution of traction forces, with nuclear areas showing lower and cell-cell junctions higher traction forces than the whole-monolayer average. Moreover, junctional forces were asymmetrically distributed among neighboring cells. Force vector orientation analysis showed a good correlation with the alignment of F-actin and revealed contractile forces in newly formed filopodia and lamellipodia-like protrusions within the monolayer. Finally, unstable areas, showing high force fluctuations within the monolayer were prone to form inter-endothelial gaps upon stimulation with thrombin. To conclude, contractile traction forces are heterogeneously distributed within endothelial monolayers and force instability, rather than force magnitude, predicts the stimulus-induced formation of intercellular gaps. - Highlights: • Endothelial monolayers exert dynamic- and heterogeneous traction forces. • High traction forces correlate with junctional areas and the F-actin cytoskeleton. • Newly formed inter-endothelial gaps are characterized by opposing traction forces. • Force stability is a key feature controlling endothelial permeability.

  7. Traction force dynamics predict gap formation in activated endothelium

    International Nuclear Information System (INIS)

    Valent, Erik T.; Nieuw Amerongen, Geerten P. van; Hinsbergh, Victor W.M. van; Hordijk, Peter L.

    2016-01-01

    In many pathological conditions the endothelium becomes activated and dysfunctional, resulting in hyperpermeability and plasma leakage. No specific therapies are available yet to control endothelial barrier function, which is regulated by inter-endothelial junctions and the generation of acto-myosin-based contractile forces in the context of cell-cell and cell-matrix interactions. However, the spatiotemporal distribution and stimulus-induced reorganization of these integral forces remain largely unknown. Traction force microscopy of human endothelial monolayers was used to visualize contractile forces in resting cells and during thrombin-induced hyperpermeability. Simultaneously, information about endothelial monolayer integrity, adherens junctions and cytoskeletal proteins (F-actin) were captured. This revealed a heterogeneous distribution of traction forces, with nuclear areas showing lower and cell-cell junctions higher traction forces than the whole-monolayer average. Moreover, junctional forces were asymmetrically distributed among neighboring cells. Force vector orientation analysis showed a good correlation with the alignment of F-actin and revealed contractile forces in newly formed filopodia and lamellipodia-like protrusions within the monolayer. Finally, unstable areas, showing high force fluctuations within the monolayer were prone to form inter-endothelial gaps upon stimulation with thrombin. To conclude, contractile traction forces are heterogeneously distributed within endothelial monolayers and force instability, rather than force magnitude, predicts the stimulus-induced formation of intercellular gaps. - Highlights: • Endothelial monolayers exert dynamic- and heterogeneous traction forces. • High traction forces correlate with junctional areas and the F-actin cytoskeleton. • Newly formed inter-endothelial gaps are characterized by opposing traction forces. • Force stability is a key feature controlling endothelial permeability.

  8. Angiogenesis, Cancer, and Vascular Aging

    Directory of Open Access Journals (Sweden)

    Junji Moriya

    2017-10-01

    Full Text Available Several lines of evidence have revealed that the angiogenic response to ischemic injury declines with age, which might account for the increased morbidity and mortality of cardiovascular disease (CVD among the elderly. While impairment of angiogenesis with aging leads to delayed wound healing or exacerbation of atherosclerotic ischemic diseases, it also inhibits the progression of cancer. Age-related changes of angiogenesis have been considered to at least partly result from vascular aging or endothelial cell senescence. There is considerable evidence supporting the hypothesis that vascular cell senescence contributes to the pathogenesis of age-related CVD, suggesting that vascular aging could be an important therapeutic target. Since therapeutic angiogenesis is now regarded as a promising concept for patients with ischemic CVD, it has become even more important to understand the detailed molecular mechanisms underlying impairment of angiogenesis in older patients. To improve the usefulness of therapeutic angiogenesis, approaches are needed that can compensate for impaired angiogenic capacity in the elderly while not promoting the development or progression of malignancy. In this review, we briefly outline the mechanisms of angiogenesis and vascular aging, followed by a description of how vascular aging leads to impairment of angiogenesis. We also examine potential therapeutic approaches that could enhance angiogenesis and/or vascular function in the elderly, as well as discussing the possibility of anti-senescence therapy or reversal of endothelial cell senescence.

  9. Vascular endothelial dysfunction in β-thalassemia occurs despite increased eNOS expression and preserved vascular smooth muscle cell reactivity to NO.

    Directory of Open Access Journals (Sweden)

    Ekatherina Stoyanova

    Full Text Available The hereditary β-thalassemia major condition requires regular lifelong blood transfusions. Transfusion-related iron overloading has been associated with the onset of cardiovascular complications, including cardiac dysfunction and vascular anomalies. By using an untransfused murine model of β-thalassemia major, we tested the hypothesis that vascular endothelial dysfunction, alterations of arterial structure and of its mechanical properties would occur despite the absence of treatments.Vascular function and structure were evaluated ex vivo. Compared to the controls, endothelium-dependent vasodilation with acetylcholine was blunted in mesenteric resistance arteries of β-thalassemic mice while the endothelium-independent vasodilator (sodium nitroprusside produced comparable vessel dilation, indicating endothelial cell impairment with preserved smooth muscle cell reactivity to nitric oxide (NO. While these findings suggest a decrease in NO bioavailability, Western blotting showed heightened expression of aortic endothelial NO synthase (eNOS in β-thalassemia. Vascular remodeling of the common carotid arteries revealed increased medial elastin content. Under isobaric conditions, the carotid arteries of β-thalassemic mice exhibited decreased wall stress and softening due to structural changes of the vessel wall.A complex vasculopathy was identified in untransfused β-thalassemic mice characterized by altered carotid artery structure and endothelial dysfunction of resistance arterioles, likely attributable to reduced NO bioavailability despite enhanced vascular eNOS expression.

  10. The defensive effect of benfotiamine in sodium arsenite-induced experimental vascular endothelial dysfunction.

    Science.gov (United States)

    Verma, Sanjali; Reddy, Krishna; Balakumar, Pitchai

    2010-10-01

    The present study has been designed to investigate the effect of benfotiamine, a thiamine derivative, in sodium arsenite-induced vascular endothelial dysfunction (VED) in rats. Sodium arsenite (1.5 mg(-1) kg(-1) day(-1) i.p., 2 weeks) was administered in rats to produce VED. The development of VED was assessed by employing isolated aortic ring preparation and estimating the serum and aortic concentrations of nitrite/nitrate. Further, the integrity of vascular endothelium in thoracic aorta was assessed by scanning electron microscopy. Moreover, the oxidative stress was assessed by estimating serum thiobarbituric acid reactive substances (TBARS) and aortic superoxide anion generation. The administration of sodium arsenite markedly produced VED by attenuating acetylcholine-induced endothelium-dependent relaxation, decreasing serum and aortic concentrations of nitrite/nitrate, and impairing the integrity of vascular endothelium. Further, sodium arsenite produced oxidative stress by increasing serum TBARS and aortic superoxide generation. The treatment with benfotiamine (25, 50, and 100 mg(-1) kg(-1) day(-1) p.o.) or atorvastatin (30 mg(-1) kg(-1) day(-1) p.o., a standard agent) prevented sodium arsenite-induced VED and oxidative stress. However, the beneficial effects of benfotiamine in preventing the sodium arsenite-induced VED were attenuated by co-administration with N-omega-nitro-L: -arginine methyl ester (L: -NAME) (25 mg(-1) kg(-1) day(-1), i.p.), an inhibitor of NOS. Thus, it may be concluded that benfotiamine reduces oxidative stress and activates endothelial nitric oxide synthase to enhance the generation and bioavailability of NO and subsequently improves the integrity of vascular endothelium to prevent sodium arsenite-induced experimental VED.

  11. Effects of a Single Bout of Resistance Exercise in Different Volumes on Endothelium Adaptations in Healthy Animals.

    Science.gov (United States)

    Mota, Marcelo Mendonça; Silva, Tharciano Luiz Teixeira Braga da; Macedo, Fabricio Nunes; Mesquita, Thássio Ricardo Ribeiro; Quintans, Lucindo José; Santana-Filho, Valter Joviniano de; Lauton-Santos, Sandra; Santos, Márcio Roberto Viana

    2017-05-01

    Resistance exercise (RE) has been recommended for patients with cardiovascular diseases. Recently, a few studies have demonstrated that the intensity of a single bout of RE has an effect on endothelial adaptations to exercise. However, there is no data about the effects of different volumes of RE on endothelium function. The aim of the study was to evaluate the effects of different volumes of RE in a single bout on endothelium-dependent vasodilatation and nitric oxide (NO) synthesis in the mesenteric artery of healthy animals. Male Wistar rats were divided into three groups: Control (Ct); low-volume RE (LV, 5 sets x 10 repetitions) and high-volume RE (HV, 15 sets x 10 repetitions). The established intensity was 70% of the maximal repetition test. After the exercise protocol, rings of mesenteric artery were used for assessment of vascular reactivity, and other mesenteric arteries were prepared for detection of measure NO production by DAF-FM fluorescence. Insulin responsiveness on NO synthesis was evaluated by stimulating the vascular rings with insulin (10 nM). The maximal relaxation response to insulin increased in the HV group only as compared with the Ct group. Moreover, the inhibition of nitric oxide synthesis (L-NAME) completely abolished the insulin-induced vasorelaxation in exercised rats. NO production showed a volume-dependent increase in the endothelial and smooth muscle layer. In endothelial layer, only Ct and LV groups showed a significant increase in NO synthesis when compared to their respective group under basal condition. On the other hand, in smooth muscle layer, NO fluorescence increased in all groups when compared to their respective group under basal condition. Our results suggest that a single bout of RE promotes vascular endothelium changes in a volume-dependent manner. The 15 sets x 10 repetitions exercise plan induced the greatest levels of NO synthesis. O exercício resistido (ER) tem sido recomendado para pacientes com doen

  12. Intramuscular vascular malformations of an extremity: findings on MR imaging and pathologic correlation

    International Nuclear Information System (INIS)

    Kim, E.Y.; Ahn, J.M.; Yoon, H.K.; Do, Y.S.; Kim, S.H.; Choo, S.W.; Choo, I.W.; Suh, Y.L.; Kim, S.M.; Kang, H.S.

    1999-01-01

    Objective. To analyze the findings of intramuscular vascular malformations of an extremity on MR imaging and to correlate these findings with histopathologic examination.Design and patients. The findings on MR imaging and the medical records of 14 patients with an intramuscular vascular malformation of the extremity were retrospectively studied. All patients underwent surgical excision. Diagnoses were based on the results of pathologic examination. Findings on MR imaging were noted and correlated with the histopathologic findings.Results. Intramuscular vascular malformations of an extremity showed multi-septate, honeycomb, or mixed appearance on MR imaging. Multi-septate areas correlated with dilated and communicating vascular spaces with flattened endothelium. Honeycomb areas corresponded to vascular spaces with inconspicuous small lumina and thickened vascular walls. Areas of increased signal intensity on T2-weighted images were found in all intramuscular vascular malformations. Infiltrative margins were more commonly seen in intramuscular lymphaticovenous malformations. Adherence to neurovascular structures and orientation of the lesion along the long axis of the affected muscle were more commonly seen in intramuscular venous malformations.Conclusions. Intramuscular vascular malformations showed either a multi-septate, honeycomb, or mixed appearance, reflecting the size of the vascular spaces and the thickness of the smooth muscles of the vessel walls. Prediction of the subtype of an intramuscular vascular malformation of an extremity on MR imaging seems to be difficult, although there are associated findings that may be helpful in the differential diagnosis of each subtype. (orig.)

  13. Conversion of adult endothelium to immunocompetent haematopoietic stem cells.

    Science.gov (United States)

    Lis, Raphael; Karrasch, Charles C; Poulos, Michael G; Kunar, Balvir; Redmond, David; Duran, Jose G Barcia; Badwe, Chaitanya R; Schachterle, William; Ginsberg, Michael; Xiang, Jenny; Tabrizi, Arash Rafii; Shido, Koji; Rosenwaks, Zev; Elemento, Olivier; Speck, Nancy A; Butler, Jason M; Scandura, Joseph M; Rafii, Shahin

    2017-05-25

    Developmental pathways that orchestrate the fleeting transition of endothelial cells into haematopoietic stem cells remain undefined. Here we demonstrate a tractable approach for fully reprogramming adult mouse endothelial cells to haematopoietic stem cells (rEC-HSCs) through transient expression of the transcription-factor-encoding genes Fosb, Gfi1, Runx1, and Spi1 (collectively denoted hereafter as FGRS) and vascular-niche-derived angiocrine factors. The induction phase (days 0-8) of conversion is initiated by expression of FGRS in mature endothelial cells, which results in endogenous Runx1 expression. During the specification phase (days 8-20), RUNX1 + FGRS-transduced endothelial cells commit to a haematopoietic fate, yielding rEC-HSCs that no longer require FGRS expression. The vascular niche drives a robust self-renewal and expansion phase of rEC-HSCs (days 20-28). rEC-HSCs have a transcriptome and long-term self-renewal capacity similar to those of adult haematopoietic stem cells, and can be used for clonal engraftment and serial primary and secondary multi-lineage reconstitution, including antigen-dependent adaptive immune function. Inhibition of TGFβ and CXCR7 or activation of BMP and CXCR4 signalling enhanced generation of rEC-HSCs. Pluripotency-independent conversion of endothelial cells into autologous authentic engraftable haematopoietic stem cells could aid treatment of haematological disorders.

  14. Endothelial ATP-binding cassette G1 in mouse endothelium protects against hemodynamic-induced atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Shanshan [Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070 (China); Department of Pediatrics, Baodi District People’s Hospital of Tianjin City, Tianjin, 301800 (China); Wang, Jiaxing [Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191 (China); Zhang, Xu; Shi, Ying; Li, Bochuan; Bao, Qiankun [Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070 (China); Pang, Wei [Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191 (China); Ai, Ding [Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070 (China); Zhu, Yi [Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070 (China); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191 (China); He, Jinlong, E-mail: hejinlong@tmu.edu.cn [Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070 (China)

    2016-08-19

    Activated vascular endothelium inflammation under persistent hyperlipidemia is the initial step of atherogenesis. ATP-binding cassette G1 (ABCG1) is a crucial factor maintaining sterol and lipid homeostasis by transporting cholesterol efflux to high-density lipoprotein. In this study, we investigated the protective effects of ABCG1 in endothelial inflammation activation during early-stage atherogenesis in mice and the underlying mechanisms. Endothelial cell (EC)-specific ABCG1 transgenic (EC-ABCG1-Tg) mice were generated and cross-bred with low-density lipoprotein receptor–deficient (Ldlr{sup −/−}) mice. After a 4-week Western-type diet, the mice were sacrificed for assessing atherosclerosis. Human umbilical vein ECs were treated with different flows, and ABCG1 was adenovirally overexpressed to investigate the mechanism in vitro. Compared with Ldlr{sup −/−} mouse aortas, EC-ABCG1-Tg/Ldlr{sup −/−} aortas showed decreased early-stage lesions. Furthermore, the lesion area in the EC-ABCG1-Tg/Ldlr{sup −/−} mouse aortic arch but not thoracic aorta was significantly reduced, which suggests a protective role of ABCG1 under atheroprone flow. In vitro, overexpression of ABCG1 attenuated EC activation caused by oscillatory shear stress. Overexpression of ABCG1 blunted cholesterol-activated ECs in vitro. In exploring the mechanisms of ABCG1 attenuating endothelial inflammation, we found that ABCG1 inhibited oscillatory flow-activated nuclear factor kappa B and NLRP3 inflammasome in ECs. ABCG1 may play a protective role in early-stage atherosclerosis by reducing endothelial activation induced by oscillatory shear stress via suppressing the inflammatory response. - Highlights: • EC-ABCG1-Tg mice in a Ldlr{sup −/−} background showed decreased atherosclerosis. • Overexpression of ABCG1 in ECs decreased OSS-induced EC activation. • NLRP3 and NF-κB might be an underlying mechanism of ABCG1 protective role.

  15. Bioprinting for vascular and vascularized tissue biofabrication.

    Science.gov (United States)

    Datta, Pallab; Ayan, Bugra; Ozbolat, Ibrahim T

    2017-03-15

    Bioprinting is a promising technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision. Bioprinting enables the deposition of various biologics including growth factors, cells, genes, neo-tissues and extra-cellular matrix-like hydrogels. Benefits of bioprinting have started to make a mark in the fields of tissue engineering, regenerative medicine and pharmaceutics. Specifically, in the field of tissue engineering, the creation of vascularized tissue constructs has remained a principal challenge till date. However, given the myriad advantages over other biofabrication methods, it becomes organic to expect that bioprinting can provide a viable solution for the vascularization problem, and facilitate the clinical translation of tissue engineered constructs. This article provides a comprehensive account of bioprinting of vascular and vascularized tissue constructs. The review is structured as introducing the scope of bioprinting in tissue engineering applications, key vascular anatomical features and then a thorough coverage of 3D bioprinting using extrusion-, droplet- and laser-based bioprinting for fabrication of vascular tissue constructs. The review then provides the reader with the use of bioprinting for obtaining thick vascularized tissues using sacrificial bioink materials. Current challenges are discussed, a comparative evaluation of different bioprinting modalities is presented and future prospects are provided to the reader. Biofabrication of living tissues and organs at the clinically-relevant volumes vitally depends on the integration of vascular network. Despite the great progress in traditional biofabrication approaches, building perfusable hierarchical vascular network is a major challenge. Bioprinting is an emerging technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision

  16. Disturbed flow mediated modulation of shear forces on endothelial plane: A proposed model for studying endothelium around atherosclerotic plaques

    Science.gov (United States)

    Balaguru, Uma Maheswari; Sundaresan, Lakshmikirupa; Manivannan, Jeganathan; Majunathan, Reji; Mani, Krishnapriya; Swaminathan, Akila; Venkatesan, Saravanakumar; Kasiviswanathan, Dharanibalan; Chatterjee, Suvro

    2016-06-01

    Disturbed fluid flow or modulated shear stress is associated with vascular conditions such as atherosclerosis, thrombosis, and aneurysm. In vitro simulation of the fluid flow around the plaque micro-environment remains a challenging approach. Currently available models have limitations such as complications in protocols, high cost, incompetence of co-culture and not being suitable for massive expression studies. Hence, the present study aimed to develop a simple, versatile model based on Computational Fluid Dynamics (CFD) simulation. Current observations of CFD have shown the regions of modulated shear stress by the disturbed fluid flow. To execute and validate the model in real sense, cell morphology, cytoskeletal arrangement, cell death, reactive oxygen species (ROS) profile, nitric oxide production and disturbed flow markers under the above condition were assessed. Endothelium at disturbed flow region which had been exposed to low shear stress and swirling flow pattern showed morphological and expression similarities with the pathological disturbed flow environment reported previously. Altogether, the proposed model can serve as a platform to simulate the real time micro-environment of disturbed flow associated with eccentric plaque shapes and the possibilities of studying its downstream events.

  17. In vivo evidence for an endothelium-dependent mechanism in radiation-induced normal tissue injury

    Science.gov (United States)

    Rannou, Emilie; François, Agnès; Toullec, Aurore; Guipaud, Olivier; Buard, Valérie; Tarlet, Georges; Mintet, Elodie; Jaillet, Cyprien; Iruela-Arispe, Maria Luisa; Benderitter, Marc; Sabourin, Jean-Christophe; Milliat, Fabien

    2015-01-01

    The pathophysiological mechanism involved in side effects of radiation therapy, and especially the role of the endothelium remains unclear. Previous results showed that plasminogen activator inhibitor-type 1 (PAI-1) contributes to radiation-induced intestinal injury and suggested that this role could be driven by an endothelium-dependent mechanism. We investigated whether endothelial-specific PAI-1 deletion could affect radiation-induced intestinal injury. We created a mouse model with a specific deletion of PAI-1 in the endothelium (PAI-1KOendo) by a Cre-LoxP system. In a model of radiation enteropathy, survival and intestinal radiation injury were followed as well as intestinal gene transcriptional profile and inflammatory cells intestinal infiltration. Irradiated PAI-1KOendo mice exhibited increased survival, reduced acute enteritis severity and attenuated late fibrosis compared with irradiated PAI-1flx/flx mice. Double E-cadherin/TUNEL labeling confirmed a reduced epithelial cell apoptosis in irradiated PAI-1KOendo. High-throughput gene expression combined with bioinformatic analyses revealed a putative involvement of macrophages. We observed a decrease in CD68+cells in irradiated intestinal tissues from PAI-1KOendo mice as well as modifications associated with M1/M2 polarization. This work shows that PAI-1 plays a role in radiation-induced intestinal injury by an endothelium-dependent mechanism and demonstrates in vivo that the endothelium is directly involved in the progression of radiation-induced enteritis. PMID:26510580

  18. Vascular Dysfunction in Horses with Endocrinopathic Laminitis.

    Directory of Open Access Journals (Sweden)

    Ruth A Morgan

    Full Text Available Endocrinopathic laminitis (EL is a vascular condition of the equine hoof resulting in severe lameness with both welfare and economic implications. EL occurs in association with equine metabolic syndrome and equine Cushing's disease. Vascular dysfunction, most commonly due to endothelial dysfunction, is associated with cardiovascular risk in people with metabolic syndrome and Cushing's syndrome. We tested the hypothesis that horses with EL have vascular, specifically endothelial, dysfunction. Healthy horses (n = 6 and horses with EL (n = 6 destined for euthanasia were recruited. We studied vessels from the hooves (laminar artery, laminar vein and the facial skin (facial skin arteries by small vessel wire myography. The response to vasoconstrictors phenylephrine (10-9-10-5M and 5-hydroxytryptamine (5HT; 10-9-10-5M and the vasodilator acetylcholine (10-9-10-5M was determined. In comparison with healthy controls, acetylcholine-induced relaxation was dramatically reduced in all intact vessels from horses with EL (% relaxation of healthy laminar arteries 323.5 ± 94.1% v EL 90.8 ± 4.4%, P = 0.01, laminar veins 129.4 ± 14.8% v EL 71.2 ± 4.1%, P = 0.005 and facial skin arteries 182.0 ± 40.7% v EL 91.4 ± 4.5%, P = 0.01. In addition, contractile responses to phenylephrine and 5HT were increased in intact laminar veins from horses with EL compared with healthy horses; these differences were endothelium-independent. Sensitivity to phenylephrine was reduced in intact laminar arteries (P = 0.006 and veins (P = 0.009 from horses with EL. Horses with EL exhibit significant vascular dysfunction in laminar vessels and in facial skin arteries. The systemic nature of the abnormalities suggest this dysfunction is associated with the underlying endocrinopathy and not local changes to the hoof.

  19. Kidney transplantation improves arterial function measured by pulse wave analysis and endothelium-independent dilatation in uraemic patients despite deterioration of glucose metabolism

    DEFF Research Database (Denmark)

    Hornum, Mads; Clausen, Peter; Idorn, Thomas

    2011-01-01

    for kidney transplantation (uraemic control group, age 47 ± 11 years). Arterial function was estimated by the pulse wave velocity (PWV) of the carotid-femoral pulse wave, aortic augmentation index (AIX), flow-mediated (FMD) and nitroglycerin-induced vasodilatation (NID) of the brachial artery performed......BACKGROUND: The aim of this study is to investigate the effect of kidney transplantation on arterial function in relation to changes in glucose metabolism. METHODS: Included were 40 kidney recipients (Tx group, age 38 ± 13 years) and 40 patients without known diabetes remaining on the waiting list...... before transplantation and after 12 months. PWV recorded sequentially at the carotid and femoral artery is an estimate of arterial stiffness; AIX is an integrated index of vascular and ventricular function. FMD and NID are the dilatory capacities of the brachial artery after increased flow (endothelium...

  20. Interventional vascular radiology

    International Nuclear Information System (INIS)

    Yune, H.Y.

    1984-01-01

    The papers published during this past year in the area of interventional vascular radiology presented some useful modifications and further experiences both in the area of thromboembolic therapy and in dilation and thrombolysis, but no new techniques. As an introductory subject, an excellent monograph reviewing the current spectrum of pharmacoangiography was presented in Radiographics. Although the presented material is primarily in diagnostic application of various pharmacologic agents used today to facilitate demonstration of certain diagnostic criteria of various disease processes, both vasodilatory and vasoconstrictive reaction to these agents are widely used in various therapeutic vascular procedures. This monograph should be reviewed by every angiographer whether or not he or she performs interventional procedures, and it would be very convenient to have this table available in the angiography suite. In a related subject, Bookstein and co-workers have written an excellent review concerning pharmacologic manipulations of various blood coagulative parameters during angiography. Understanding the proper method of manipulation of the bloodclotting factors during angiography, and especially during interventional angiography, is extremely important. Particularly, the method of manipulating the coagulation with the use of heparin and protamine and modification of the platelet activity by using aspirin and dipyridamole are succinctly reviewed. The systemic and selective thrombolytic activities of streptokianse are also discussed

  1. Novel approaches to improving endothelium-dependent nitric oxide-mediated vasodilatation

    DEFF Research Database (Denmark)

    Simonsen, Ulf; Rodriguez-Rodriguez, Rosalia; Dalsgaard, Thomas

    2009-01-01

    Endothelial dysfunction, which is defined by decreased endothelium-dependent vasodilatation, is associated with an increased number of cardiovascular events. Nitric oxide (NO) bioavailability is reduced by altered endothelial signal transduction or increased formation of radical oxygen species...... reacting with NO. Endothelial dysfunction is therapeutically reversible and physical exercise, calcium channel blockers, angiotensin converting enzyme inhibitors, and angiotensin receptor antagonists improve flow-evoked endothelium-dependent vasodilation in patients with hypertension and diabetes. We have...... the endothelial signal transduction pathways involved in vasorelaxation and NO release induced by an olive oil component, oleanolic acid, and (3) investigated the role of calcium-activated K channels in the release of NO induced by receptor activation. Tempol increases endothelium-dependent vasodilatation...

  2. Arbutus unedo induces endothelium-dependent relaxation of the isolated rat aorta.

    Science.gov (United States)

    Ziyyat, Abderrahim; Mekhfi, Hassane; Bnouham, Mohamed; Tahri, Abdelhafid; Legssyer, Abdelkhaleq; Hoerter, Jacqueline; Fischmeister, Rodolphe

    2002-09-01

    Arbutus unedo L. (Ericaceae) is used in oriental Morocco to treat arterial hypertension. We studied its vasodilator effect and mechanisms of action in vitro. The root aqueous extract of Arbutus (0.25 mg/mL) produced a relaxation of noradrenaline-precontracted ring preparations of rat aorta with intact endothelium. Relaxation by Arbutus did not occur in specimens without endothelium and was inhibited by pretreatment with 100 microM N(G)-methyl-L-arginine (L-NMA), 10 microM methylene blue or 50 microM 1H-[1,2,4] oxadiazolo [4,3-a] quinoxaline-1-one (ODQ) but not by 10 microM atropine. These results suggest that Arbutus produces an endothelium-dependent relaxation of the isolated rat aorta which may be mediated mainly by a stimulation of the endothelial nitric oxide synthase by mechanisms other than activation of muscarinic receptors. Copyright 2002 John Wiley & Sons, Ltd.

  3. Ultrastructure of endothelium in ovules of Penstemon gentianoides Poir. (Scrophulariaceae) at mature embryo sac phase.

    Science.gov (United States)

    Dane, Feruzan; Olgun, Göksel; Ekici, Nuran

    2007-06-01

    In this study ultrastructural differences between endothelial cells of different location in Penstemon gentianoides have been examined with electron microscope at mature embryo sac phase. Embryo sac is of the Polygonum type and surrounded by endothelium except the micropylar region. The cuticle is located primarily around the chalazal three-fourths of the embryo sac. Endothelium cells around the chalaza and toward the micropylar region are rich in cytoplasmic organelles. The cytoplasm of endothelial cells near the central cell has large vacuoles and few organelles. There are also plasmodesmas on the anticlinal walls of endothelial cells. The endothelium and the micropylar integumentary cells play a role in transport of metabolites into the embryo sac.

  4. ROBO4-Mediated Vascular Integrity Regulates the Directionality of Hematopoietic Stem Cell Trafficking

    Directory of Open Access Journals (Sweden)

    Stephanie Smith-Berdan

    2015-02-01

    Full Text Available Despite the use of hematopoietic stem cells (HSCs in clinical therapy for over half a century, the mechanisms that regulate HSC trafficking, engraftment, and life-long persistence after transplantation are unclear. Here, we show that the vascular endothelium regulates HSC trafficking into and out of bone marrow (BM niches. Surprisingly, we found that instead of acting as barriers to cellular entry, vascular endothelial cells, via the guidance molecule ROBO4, actively promote HSC translocation across vessel walls into the BM space. In contrast, we found that the vasculature inhibits the reverse process, as induced vascular permeability led to a rapid increase in HSCs in the blood stream. Thus, the vascular endothelium reinforces HSC localization to BM niches both by promoting HSC extravasation from blood-to-BM and by forming vascular barriers that prevent BM-to-blood escape. Our results uncouple the mechanisms that regulate the directionality of HSC trafficking and show that the vasculature can be targeted to improve hematopoietic transplantation therapies.

  5. Electron histochemical and autoradiographic studies of vascular smooth muscle cell

    International Nuclear Information System (INIS)

    Kameyama, Kohji; Aida, Takeo; Asano, Goro

    1982-01-01

    The authors have studied the vascular smooth muscle cell in the aorta and the arteries of brain, heart in autopsied cases, cholesterol fed rabbits and canine through electron histochemical and autoradiographic methods, using 3 H-proline and 3 H-thymidine. The vascular changes are variable presumably due to the functional and morphological difference of vessels. Aging, pathological condition and physiological requirement induce the disturbances of vascular functions as contractility. According to various pathological conditions, the smooth muscle cell altered their shape, surface properties and arrangement of subcellular organelles including changes in number. The morphological features of arteries during aging is characterized by the thickening of endothelium and media. Decreasing cellularity and increasing collagen contents in media. The autoradiographic and histochemical observations using periodic acid methenamine silver (PAM) and ruthenium red stains demonstrated that the smooth muscle cell is a connective tissue synthetic cell. The PAM impregnation have proved that the small bundle of microfilaments become associated with small conglomerate of collagen and elastic fibers. Cytochemical examination will provide sufficient evidence to establish the contribution of subcellular structure. The acid phosphatase play an important role in vascular disease and they are directly involved in cellular lipid metabolism in cholesterol fed animals, and the activity of Na-K ATPase on the plasma membrane may contribute to the regulation of vascular blood flow and vasospasms. Direct injury and subsequent abnormal contraction of smooth muscle cell may initiate increased permeability of plasma protein and lipid in the media layer and eventually may developed and enhance arteriosclerosis. (author)

  6. Benfotiamine counteracts smoking-induced vascular dysfunction in healthy smokers.

    Science.gov (United States)

    Stirban, Alin; Nandrean, Simona; Kirana, Stanley; Götting, Christian; Veresiu, Ioan Andrei; Tschoepe, Diethelm

    2012-01-01

    Background. Smoking induces endothelial dysfunction (ED) mainly by exacerbating oxidative stress (OS) and inflammation. Benfotiamine, a thiamine prodrug with high bioavailability, prevents nicotine-induced vascular dysfunction in rats. It remained unknown whether this effect also occurs in humans. Methods. Therefore, 20 healthy volunteers (mean age: 38 years) were investigated twice, 7-10 days apart in a randomized, cross-over, and investigator-blinded design. Vascular function was assessed by flow-mediated vasodilatation (FMD) of the brachial artery and by measurements of the soluble vascular cell adhesion molecule (sVCAM)-1. Investigations were performed after an overnight fast as well as 20 minutes after one cigarette smoking. On another day, the same procedure was applied following a 3-day oral therapy with benfotiamine (1050 mg/day). Ten patients were randomized to start with smoking alone, and ten started with benfotiamine. Results. Results are expressed as (mean ± SEM). Smoking acutely induced a decrease in FMD by 50% ((∗∗)P benfotiamine treatment to 25%(∗§) ((∗)P benfotiamine. The endothelium-independent vasodilatation remained unaltered between days. Conclusion. In healthy volunteers, smoking blunts vascular function mirrored by a decrease in FMD and an increase in sVCAM-1. Short-term treatment with benfotiamine significantly reduces these effects, showing protective vascular properties.

  7. Design of biomimetic vascular grafts with magnetic endothelial patterning.

    Science.gov (United States)

    Fayol, Delphine; Le Visage, Catherine; Ino, Julia; Gazeau, Florence; Letourneur, Didier; Wilhelm, Claire

    2013-01-01

    The development of small diameter vascular grafts with a controlled pluricellular organization is still needed for effective vascular tissue engineering. Here, we describe a technological approach combining a tubular scaffold and magnetically labeled cells to create a pluricellular and organized vascular graft, the endothelialization of which could be monitored by MRI prior to transplantation. A novel type of scaffold was developed with a tubular geometry and a porous bulk structure enabling the seeding of cells in the scaffold pores. A homogeneous distribution of human mesenchymal stem cells in the macroporous structure was obtained by seeding the freeze-dried scaffold with the cell suspension. The efficient covering of the luminal surface of the tube was then made possible thanks to the implementation of a magnetic-based patterning technique. Human endothelial cells or endothelial progenitors were magnetically labeled with iron oxide nanoparticles and successfully attracted to the 2-mm lumen where they attached and formed a continuous endothelium. The combination of imaging modalities [fluorescence imaging, histology, and 3D magnetic resonance imaging (MRI)] evidenced the integrity of the vascular construct. In particular, the observation of different cell organizations in a vascular scaffold within the range of resolution of single cells by 4.7 T MRI is reported.

  8. [Vascular Calcification - Pathological Mechanism and Clinical Application - . Role of vascular smooth muscle cells in vascular calcification].

    Science.gov (United States)

    Kurabayashi, Masahiko

    2015-05-01

    Vascular calcification is commonly seen with aging, chronic kidney disese (CKD), diabetes, and atherosclerosis, and is closely associated with cardiovascular morbidity and mortality. Vascular calcification has long been regarded as the final stage of degeneration and necrosis of arterial wall and a passive, unregulated process. However, it is now known to be an active and tightly regulated process involved with phenotypic transition of vascular smooth muscle cells (VSMC) that resembles bone mineralization. Briefly, calcium deposits of atherosclerotic plaque consist of hydroxyapatite and may appear identical to fully formed lamellar bone. By using a genetic fate mapping strategy, VSMC of the vascular media give rise to the majority of the osteochondrogenic precursor- and chondrocyte-like cells observed in the calcified arterial media of MGP (- / -) mice. Osteogenic differentiation of VSMC is characterized by the expression of bone-related molecules including bone morphogenetic protein (BMP) -2, Msx2 and osteopontin, which are produced by osteoblasts and chondrocytes. Our recent findings are that (i) Runx2 and Notch1 induce osteogenic differentiation, and (ii) advanced glycation end-product (AGE) /receptor for AGE (RAGE) and palmitic acid promote osteogenic differentiation of VSMC. To understand of the molecular mechanisms of vascular calcification is now under intensive research area.

  9. Enhanced Protective Effect of the Combination of Uncaria and Semen Raphani on Vascular Endothelium in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Yun-lun Li

    2015-01-01

    Full Text Available Endothelial dysfunction and low-grade inflammation are closely associated with hypertension and other cardiovascular diseases. The combination of Uncaria (U and Semen Raphani (R is common in traditional Chinese medicine for the treatment of hypertension and heart diseases. We aimed to investigate the therapeutic effect of the combination of Uncaria and Semen Raphani on spontaneously hypertensive rats (SHRs, and valsartan was used as a positive control. In the present study, all extracts decreased systolic pressure, diastolic pressure, and mean arterial pressure. U alone showed antihypertensive efficacy and effectively decreased CECs count, while R alone showed efficacy in relieving inflammatory level. The combination of U and R showed enhanced effectiveness at lowering activated CECs and improving endothelial integrity of thoracic aorta and mesenteric artery and normalized the level of plasma biomarkers of endothelial damage. The combination of U and R decreased the mRNA level of VCAM-1, Sel-L, TFPI, and Sel-P, while it elevated mRNA expression of FGF-1 and THBD of the thoracic aorta, which may be, at least in part, involved in the mechanism of protective effect on hypertensive endothelial injury.

  10. Nifedipine-sensitive vascular reactivity of femoral arteries in WKY: the effect of pertussis toxin pretreatment and endothelium removal

    Czech Academy of Sciences Publication Activity Database

    Líšková, Silvia; Kuneš, Jaroslav; Zicha, Josef

    2007-01-01

    Roč. 56, č. 5 (2007), s. 663-666 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) 1M0510 Institutional research plan: CEZ:AV0Z50110509 Keywords : pertussis toxin * NE-induced contraction * Ca2+ influx Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.505, year: 2007

  11. Maternal smoking and impaired endothelium-dependent nitric oxide-mediated relaxation of uterine small arteries in vitro

    DEFF Research Database (Denmark)

    Andersen, Malene R; Uldbjerg, Niels; Stender, Steen

    2011-01-01

    This study aimed to investigate the endothelium-dependent relaxation of uterine small arteries from pregnant nonsmokers, smokers, and ex-smokers who stopped smoking early in pregnancy.......This study aimed to investigate the endothelium-dependent relaxation of uterine small arteries from pregnant nonsmokers, smokers, and ex-smokers who stopped smoking early in pregnancy....

  12. [The endothelium injuries caused by homocysteine and treatmental effects of Tongxinluo powder].

    Science.gov (United States)

    Liang, Jun-Qing; Wu, Yi-Ling; Xu, Hai-Bo; Zhao, Shao-Hua; Jia, Zhen-Hua; Zhang, Qiu-Yan; Wei, Cong; Dong, Xiao-Wei

    2008-02-01

    To observe the effect of homocysteine (HCY) on the function of endothelium cell, and to discuss the possible mechanisms that Tongxinluo super powder affected. Healthy male Wistar rats were divided into randomly the control group, the model group, the Tongxinluo group. The effect of Ach on isolated rat thoracic aorta in vitro was examined, the microcirculation was observed by microcirculation meter, the activity of SOD and GSH-PX and content of NO, MDA, ET, Ang II, TXA2, PGI2 was detected. Compared with control group, the effect of Ach on isolated rat thoracic aorta in vitro weakened markablely (P homocystein might cause the contracted and dilated function decreased, it might get involved in endothelium disfunction as a result of the massive free radicals production and diastolic-contract factors balance disorder induced by high homocystein. (2) Tongxinluo powder could improve the function of endothelium-dependment dilation induced by high homocystein, that associated with inhibitting the excessive production of free radicals, and improved function of endothelium.

  13. Glucose-coated gold nanoparticles transfer across human brain endothelium and enter astrocytes in vitro.

    Directory of Open Access Journals (Sweden)

    Radka Gromnicova

    Full Text Available The blood-brain barrier prevents the entry of many therapeutic agents into the brain. Various nanocarriers have been developed to help agents to cross this barrier, but they all have limitations, with regard to tissue-selectivity and their ability to cross the endothelium. This study investigated the potential for 4 nm coated gold nanoparticles to act as selective carriers across human brain endothelium and subsequently to enter astrocytes. The transfer rate of glucose-coated gold nanoparticles across primary human brain endothelium was at least three times faster than across non-brain endothelia. Movement of these nanoparticles occurred across the apical and basal plasma membranes via the cytosol with relatively little vesicular or paracellular migration; antibiotics that interfere with vesicular transport did not block migration. The transfer rate was also dependent on the surface coating of the nanoparticle and incubation temperature. Using a novel 3-dimensional co-culture system, which includes primary human astrocytes and a brain endothelial cell line hCMEC/D3, we demonstrated that the glucose-coated nanoparticles traverse the endothelium, move through the extracellular matrix and localize in astrocytes. The movement of the nanoparticles through the matrix was >10 µm/hour and they appeared in the nuclei of the astrocytes in considerable numbers. These nanoparticles have the correct properties for efficient and selective carriers of therapeutic agents across the blood-brain barrier.

  14. THE ROLE OF ENDOTHELIUM FUNCTIONAL STATUS IN PULMONARY HYPERTENSION DEVELOPMENT AMONG CHILDREN

    Directory of Open Access Journals (Sweden)

    S.N. Ivanov

    2008-01-01

    Full Text Available The background paper approaches the problems of functional status of endothelium, significance of vasоactive substances as markers of endothelial dysfunction and reason of its development, role of endothelial dysfunction in the pathogenesis of primary and secondary pulmonary hypertension.Key words: pulmonary hypertension, endothelial dysfunction, vasoactive substances.

  15. Cultivation of Human Microvascular Endothelial Cells on Topographical Substrates to Mimic the Human Corneal Endothelium

    Directory of Open Access Journals (Sweden)

    Jie Shi Chua

    2013-03-01

    Full Text Available Human corneal endothelial cells have a limited ability to replicate in vivo and in vitro. Allograft transplantation becomes necessary when an accident or trauma results in excessive cell loss. The reconstruction of the cornea endothelium using autologous cell sources is a promising alternative option for therapeutic or in vitro drug testing applications. The native corneal endothelium rests on the Descemet’s membrane, which has nanotopographies of fibers and pores. The use of synthetic topographies mimics the native environment, and it is hypothesized that this can direct the behavior and growth of human microvascular endothelial cells (HMVECs to resemble the corneal endothelium. In this study, HMVECs are cultivated on substrates with micron and nano-scaled pillar and well topographies. Closely packed HMVEC monolayers with polygonal cells and well-developed tight junctions were formed on the topographical substrates. Sodium/potassium (Na+/K+ adenine triphosphatase (ATPase expression was enhanced on the microwells substrate, which also promotes microvilli formation, while more hexagonal-like cells are found on the micropillars samples. The data obtained suggests that the use of optimized surface patterning, in particular, the microtopographies, can induce HMVECs to adopt a more corneal endothelium-like morphology with similar barrier and pump functions. The mechanism involved in cell contact guidance by the specific topographical features will be of interest for future studies.

  16. Function of endothelium at adolescents with constitutional exogenous obesity before and after rehabilitation

    OpenAIRE

    Miroshnichenko, O.

    2011-01-01

    Function of endothelium at 43 adolescents with constitutional exogenous obesity before rehabilitation and at 33 healthy adolescents has been studied. Disorder of endothelial function has been established in 32 (74.4%) adolescents with constitutional exogenous obesity and in 7 (21.2%) healthy adolescents. We showed the efficiency of the rehabilitation program on restoration of endothelial function at adolescents with constitutional exogenous obesity.

  17. Intracavitary ultrasound impairs left ventricular performance: presumed role of endocardial endothelium

    NARCIS (Netherlands)

    Gillebert, T. C.; de Hert, S. G.; Andries, L. J.; Jageneau, A. H.; Brutsaert, D. L.

    1992-01-01

    Irradiation of isolated cardiac muscle by high-power, high-frequency, continuous wave ultrasound selectively damages endocardial endothelium (EE). We evaluated this ultrasound effect in vivo on the performance of the intact ejecting canine left ventricle (LV). A cylindrical ultrasound probe (0.9

  18. Preserved endothelium-dependent vasodilation in coronary segments previously treated with balloon angioplasty and intracoronary irradiation

    NARCIS (Netherlands)

    M. Sabaté (Manel); A.J. Wardeh (Alexander); I.P. Kay (Ian Patrick); A. Cequier (Angel); J.M.R. Ligthart (Jürgen); J.A. Gómez-Hospital (Joan Antoni); S.G. Carlier (Stephan); V.L.M.A. Coen (Veronique); J.P. Marijnissen (Johannes); P.W.J.C. Serruys (Patrick); P.C. Levendag (Peter); W.J. van der Giessen (Wim)

    1999-01-01

    textabstractBACKGROUND: Abnormal endothelium-dependent coronary vasomotion has been reported after balloon angioplasty (BA), as well as after intracoronary radiation. However, the long-term effect on coronary vasomotion is not known. The aim of this study was to evaluate the

  19. Human haemato-endothelial precursors: cord blood CD34+ cells produce haemogenic endothelium.

    Directory of Open Access Journals (Sweden)

    Elvira Pelosi

    Full Text Available Embryologic and genetic evidence suggest a common origin of haematopoietic and endothelial lineages. In the murine embryo, recent studies indicate the presence of haemogenic endothelium and of a common haemato-endothelial precursor, the haemangioblast. Conversely, so far, little evidence supports the presence of haemogenic endothelium and haemangioblasts in later stages of development. Our studies indicate that human cord blood haematopoietic progenitors (CD34+45+144-, triggered by murine hepatocyte conditioned medium, differentiate into adherent proliferating endothelial precursors (CD144+CD105+CD146+CD31+CD45- capable of functioning as haemogenic endothelium. These cells, proven to give rise to functional vasculature in vivo, if further instructed by haematopoietic growth factors, first switch to transitional CD144+45+ cells and then to haematopoietic cells. These results highlight the plasticity of haemato-endhothelial precursors in human post-natal life. Furthermore, these studies may provide highly enriched populations of human post-fetal haemogenic endothelium, paving the way for innovative projects at a basic and possibly clinical level.

  20. Biomarkers of drug-induced vascular injury

    International Nuclear Information System (INIS)

    Brott, D.; Gould, S.; Jones, H.; Schofield, J.; Prior, H.; Valentin, J.P; Bjurstrom, S.; Kenne, K.; Schuppe-Koistinen, I.; Katein, A.; Foster-Brown, L.; Betton, G.; Richardson, R.; Evans, G.; Louden, C.

    2005-01-01

    In pre-clinical safety studies, drug-induced vascular injury is an issue of concern because there are no obvious diagnostic markers for pre-clinical or clinical monitoring and there is an intellectual gap in our understanding of the pathogenesis of this lesion. While vasodilatation and increased shear stress appear to play a role, the exact mechanism(s) of injury to the primary targets, smooth muscle and endothelial cells are unknown. However, evaluation of novel markers for potential clinical monitoring with a mechanistic underpinning would add value in risk assessment and management. This mini review focuses on the progress to identify diagnostic markers of drug-induced vascular injury. Von Willebrand factor (vWF), released upon perturbation of endothelial cells, is transiently increased in plasma prior to morphological evidence of damage in dogs or rats treated with vascular toxicants. Therefore, vWF might be a predictive biomarker of vascular injury. However, vWF is not an appropriate biomarker of lesion progression or severity since levels return to baseline values when there is morphological evidence of injury. A potential mechanistically linked biomarker of vascular injury is caveolin-1. Expression of this protein, localized primarily to smooth muscle and endothelial cells, decreases with the onset of vascular damage. Since vascular injury involves multiple mediators and cell types, evaluation of a panel rather than a single biomarker may be more useful in monitoring early and severe progressive vascular injury

  1. Vascular status in human primary and permanent teeth in health and disease.

    Science.gov (United States)

    Rodd, Helen D; Boissonade, Fiona M

    2005-04-01

    The present study sought to compare the vascular status of human primary teeth with that of human permanent teeth, and to determine whether caries or painful pulpitis was associated with changes in vascularity. Coronal pulps were removed from 62 primary and 62 permanent mandibular molars with a known pain history. Teeth were categorized as intact, moderately carious or grossly carious. Pulp sections were labelled with Ulex europaeus I lectin (UEIL), which is a marker of human vascular endothelium. Image analysis was then used to quantify the percentage area of UEIL-labelled tissue (vascularity) and the number of blood vessels present within three regions: the pulp horn, the subodontoblastic region, and the mid-coronal pulp. Only the mid-coronal region of the primary tooth pulp was found to be significantly more vascular than the corresponding area of the permanent tooth pulp. Both dentitions showed a significant increase in vascularity within the pulp horn region with caries progression, but this was not accompanied by an increase in vessel number. There was no correlation between vascularity and pain symptoms. These findings suggest that the primary tooth pulp is more vascular than its successor within the mid-coronal region. However, the functional and clinical significance of this finding remains speculative.

  2. Tributyltin contributes in reducing the vascular reactivity to phenylephrine in isolated aortic rings from female rats.

    Science.gov (United States)

    Rodrigues, Samya Mere L; Ximenes, Carolina F; de Batista, Priscila R; Simões, Fabiana V; Coser, Pedro Henrique P; Sena, Gabriela C; Podratz, Priscila L; de Souza, Leticia N G; Vassallo, Dalton V; Graceli, Jones B; Stefanon, Ivanita

    2014-03-21

    Organotin compounds such as tributyltin (TBT) are used as antifouling paints by shipping companies. TBT inhibits the aromatase responsible for the transformation of testosterone into estrogen. Our hypothesis is that TBT modulates the vascular reactivity of female rats. Female Wistar rats were treated daily (Control; CONT) or TBT (100 ng/kg) for 15 days. Rings from thoracic aortas were incubated with phenylephrine (PHE, 10(-10)-10(-4) M) in the presence and absence of endothelium, and in the presence of N(G)-Nitro-L-Arginine Methyl Ester (L-NAME), tetraethylammonium (TEA) and apocynin. TBT decreased plasma levels of estrogen and the vascular response to PHE. In the TBT group, the vascular reactivity was increased in the absence of endothelium, L-NAME and TEA. The decrease in PHE reactivity during incubation with apocynin was more evident in the TBT group. The sensitivity to acetylcholine (ACh) and sodium nitroprusside (SNP) was reduced in the TBT group. TBT increased collagen, reduced α1-smooth muscle actin. Female rats treated with TBT for 15 days showed morphology alteration of the aorta and decreased their vascular reactivity, probably due to mechanisms dependent on nitric oxide (NO) bioavailability, K(+) channels and an increase in oxidative stress. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Effects of exercise training on stress-induced vascular reactivity alterations: role of nitric oxide and prostanoids

    Directory of Open Access Journals (Sweden)

    Thiago Bruder-Nascimento

    2015-06-01

    Full Text Available Background: Physical exercise may modify biologic stress responses. Objective: To investigate the impact of exercise training on vascular alterations induced by acute stress, focusing on nitric oxide and cyclooxygenase pathways. Method: Wistar rats were separated into: sedentary, trained (60-min swimming, 5 days/week during 8 weeks, carrying a 5% body-weight load, stressed (2 h-immobilization, and trained/stressed. Response curves for noradrenaline, in the absence and presence of L-NAME or indomethacin, were obtained in intact and denuded aortas (n=7-10. Results: None of the procedures altered the denuded aorta reactivity. Intact aortas from stressed, trained, and trained/stressed rats showed similar reduction in noradrenaline maximal responses (sedentary 3.54±0.15, stressed 2.80±0.10*, trained 2.82±0.11*, trained/stressed 2.97± 0.21*, *P<0.05 relate to sedentary. Endothelium removal and L-NAME abolished this hyporeactivity in all experimental groups, except in trained/stressed rats that showed a partial aorta reactivity recovery in L-NAME presence (L-NAME: sedentary 5.23±0,26#, stressed 5.55±0.38#, trained 5.28±0.30#, trained/stressed 4.42±0.41, #P<0.05 related to trained/stressed. Indomethacin determined a decrease in sensitivity (EC50 in intact aortas of trained rats without abolishing the aortal hyporeactivity in trained, stressed, and trained/stressed rats. Conclusions: Exercise-induced vascular adaptive response involved an increase in endothelial vasodilator prostaglandins and nitric oxide. Stress-induced vascular adaptive response involved an increase in endothelial nitric oxide. Beside the involvement of the endothelial nitric oxide pathway, the vascular response of trained/stressed rats involved an additional mechanism yet to be elucidated. These findings advance on the understanding of the vascular processes after exercise and stress alone and in combination.

  4. Effects of acid-base imbalance on vascular reactivity

    Directory of Open Access Journals (Sweden)

    A.C. Celotto

    2008-06-01

    Full Text Available Acid-base homeostasis maintains systemic arterial pH within a narrow range. Whereas the normal range of pH for clinical laboratories is 7.35-7.45, in vivo pH is maintained within a much narrower range. In clinical and experimental settings, blood pH can vary in response to respiratory or renal impairment. This altered pH promotes changes in vascular smooth muscle tone with impact on circulation and blood pressure control. Changes in pH can be divided into those occurring in the extracellular space (pHo and those occurring within the intracellular space (pHi, although, extracellular and intracellular compartments influence each other. Consistent with the multiple events involved in the changes in tone produced by altered pHo, including type of vascular bed, several factors and mechanisms, in addition to hydrogen ion concentration, have been suggested to be involved. The scientific literature has many reports concerning acid-base balance and endothelium function, but these concepts are not clear about acid-base disorders and their relations with the three known mechanisms of endothelium-dependent vascular reactivity: nitric oxide (NO/cGMP-dependent, prostacyclin (PGI2/cAMP-dependent and hyperpolarization. During the last decades, many studies have been published and have given rise to confronting data on acid-base disorder and endothelial function. Therefore, the main proposal of this review is to provide a critical analysis of the state of art and incentivate researchers to develop more studies about these issues.

  5. Tocotrienol Rich Palm Oil Extract Is More Effective Than Pure Tocotrienols at Improving Endothelium-Dependent Relaxation in the Presence of Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Saher F. Ali

    2015-01-01

    Full Text Available Oxidative endothelial dysfunction is a critical initiator of vascular disease. Vitamin E is an effective antioxidant but attempts to use it to treat vascular disorders have been disappointing. This study investigated whether tocotrienols, the less abundant components of vitamin E compared to tocopherols, might be more effective at preserving endothelial function. Superoxide generated by hypoxanthine/xanthine oxidase or rat aorta was measured using lucigenin-enhanced chemiluminescence. The effect of α-tocopherol, α-, δ-, and γ-tocotrienols and a tocotrienol rich palm oil extract (tocomin on levels of superoxide was assessed. Endothelial function in rat aorta was assessed in the presence of the auto-oxidant pyrogallol. Whilst all of the compounds displayed antioxidant activity, the tocotrienols were more effective when superoxide was produced by hypoxanthine/xanthine oxidase whereas tocomin and α-tocopherol were more effective in the isolated aorta. Tocomin and α-tocopherol restored endothelial function in the presence of oxidant stress but α-, δ-, and γ-tocotrienols were ineffective. The protective effect of tocomin was replicated when the tocotrienols were present with, but not without, α-tocopherol. Tocotrienol rich tocomin is more effective than α-tocopherol at reducing oxidative stress and restoring endothelium-dependent relaxation in rat aortae and although α-, δ-, and γ-tocotrienols effectively scavenged superoxide, they did not improve endothelial function.

  6. Tocotrienol Rich Palm Oil Extract Is More Effective Than Pure Tocotrienols at Improving Endothelium-Dependent Relaxation in the Presence of Oxidative Stress

    Science.gov (United States)

    Ali, Saher F.; Woodman, Owen L.

    2015-01-01

    Oxidative endothelial dysfunction is a critical initiator of vascular disease. Vitamin E is an effective antioxidant but attempts to use it to treat vascular disorders have been disappointing. This study investigated whether tocotrienols, the less abundant components of vitamin E compared to tocopherols, might be more effective at preserving endothelial function. Superoxide generated by hypoxanthine/xanthine oxidase or rat aorta was measured using lucigenin-enhanced chemiluminescence. The effect of α-tocopherol, α-, δ-, and γ-tocotrienols and a tocotrienol rich palm oil extract (tocomin) on levels of superoxide was assessed. Endothelial function in rat aorta was assessed in the presence of the auto-oxidant pyrogallol. Whilst all of the compounds displayed antioxidant activity, the tocotrienols were more effective when superoxide was produced by hypoxanthine/xanthine oxidase whereas tocomin and α-tocopherol were more effective in the isolated aorta. Tocomin and α-tocopherol restored endothelial function in the presence of oxidant stress but α-, δ-, and γ-tocotrienols were ineffective. The protective effect of tocomin was replicated when the tocotrienols were present with, but not without, α-tocopherol. Tocotrienol rich tocomin is more effective than α-tocopherol at reducing oxidative stress and restoring endothelium-dependent relaxation in rat aortae and although α-, δ-, and γ-tocotrienols effectively scavenged superoxide, they did not improve endothelial function. PMID:26075031

  7. Ebselen does not improve oxidative stress and vascular function in patients with diabetes: a randomized, crossover trial.

    Science.gov (United States)

    Beckman, Joshua A; Goldfine, Allison B; Leopold, Jane A; Creager, Mark A

    2016-12-01

    Oxidative stress is a key driver of vascular dysfunction in diabetes mellitus. Ebselen is a glutathione peroxidase mimetic. A single-site, randomized, double-masked, placebo-controlled, crossover trial was carried out in 26 patients with type 1 or type 2 diabetes to evaluate effects of high-dose ebselen (150 mg po twice daily) administration on oxidative stress and endothelium-dependent vasodilation. Treatment periods were in random order of 4 wk duration, with a 4-wk washout between treatments. Measures of oxidative stress included nitrotyrosine, plasma 8-isoprostanes, and the ratio of reduced to oxidized glutathione. Vascular ultrasound of the brachial artery and plethysmographic measurement of blood flow were used to assess flow-mediated and methacholine-induced endothelium-dependent vasodilation of conduit and resistance vessels, respectively. Ebselen administration did not affect parameters of oxidative stress or conduit artery or forearm arteriolar vascular function compared with placebo treatment. There was no difference in outcome by diabetes type. Ebselen, at the dose and duration evaluated, does not improve the oxidative stress profile, nor does it affect endothelium-dependent vasodilation in patients with diabetes mellitus. Copyright © 2016 the American Physiological Society.

  8. Nanostructures to modulate vascular inflammation: Multifunctional nanoparticles for quantifiable siRNA delivery and molecular imaging

    Science.gov (United States)

    Kaneda, Megan Marie

    Early steps in the progression of inflammatory diseases such as atherosclerosis involve the recruitment of leukocytes to the vascular endothelium through the expression or up-regulation of adhesion molecules. These adhesion molecules are critical mediators of leukocyte attachment and subsequent extravasation through transendothelial migration. One of these adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1) is particularly attractive as a marker of early atherosclerotic activity due to its low expression level on normal endothelium and up-regulation prior to and during the development of early lesions. With this in mind, the purpose of this thesis was to develop nanostructures for the detection and down-regulation of adhesion molecules by the vascular endothelium. To detect early inflammation we designed a perfluorocarbon nanoparticle (PFC-NP) probe, which was used for in vivo targeting of VCAM-1. Nanoparticles were detected ex vivo by the magnetic resonance (MR) signature from the fluorine core of the particle. Nanoparticles accumulated in tissues characterized by early inflammatory processes. To down-regulate VCAM-1 expression by vascular endothelial cells, cationic PFC-NP were produced through the addition of the cationic lipid 1,2-Dioleoyl-3-Trimethylammonium-Propane. Cationic PFC-NP were able to deliver anti-VCAM-1 siRNA to endothelial cells through a non-standard lipid raft mediated endocytic pathway. VCAM-1 levels were significantly reduced in treated cells indicating that this delivery mechanism may be advantageous for delivery of cargo into the cytoplasm. Using the fluorine signature from the core of the cationic PFC-NP, we were able to quantify and localize this siRNA delivery agent both in vitro and in vivo. The ability to quantify the local concentrations of these particles could be of great benefit for estimating local drug concentrations and developing new pharmacokinetic and pharmacodynamic paradigms to describe this new class of

  9. Effects of different frequencies of transcutaneous electrical nerve stimulation on venous vascular reactivity

    International Nuclear Information System (INIS)

    Franco, O.S.; Paulitsch, F.S.; Pereira, A.P.C.; Teixeira, A.O.; Martins, C.N.; Silva, A.M.V.; Plentz, R.D.M.; Irigoyen, M.C.; Signori, L.U.

    2014-01-01

    Transcutaneous electrical nerve stimulation (TENS) is a type of therapy used primarily for analgesia, but also presents changes in the cardiovascular system responses; its effects are dependent upon application parameters. Alterations to the cardiovascular system suggest that TENS may modify venous vascular response. The objective of this study was to evaluate the effects of TENS at different frequencies (10 and 100 Hz) on venous vascular reactivity in healthy subjects. Twenty-nine healthy male volunteers were randomized into three groups: placebo (n=10), low-frequency TENS (10 Hz, n=9) and high-frequency TENS (100 Hz, n=10). TENS was applied for 30 min in the nervous plexus trajectory from the superior member (from cervical to dorsal region of the fist) at low (10 Hz/200 μs) and high frequency (100 Hz/200 μs) with its intensity adjusted below the motor threshold and intensified every 5 min, intending to avoid accommodation. Venous vascular reactivity in response to phenylephrine, acetylcholine (endothelium-dependent) and sodium nitroprusside (endothelium-independent) was assessed by the dorsal hand vein technique. The phenylephrine effective dose to achieve 70% vasoconstriction was reduced 53% (P<0.01) using low-frequency TENS (10 Hz), while in high-frequency stimulation (100 Hz), a 47% increased dose was needed (P<0.01). The endothelium-dependent (acetylcholine) and independent (sodium nitroprusside) responses were not modified by TENS, which modifies venous responsiveness, and increases the low-frequency sensitivity of α1-adrenergic receptors and shows high-frequency opposite effects. These changes represent an important vascular effect caused by TENS with implications for hemodynamics, inflammation and analgesia

  10. Effects of different frequencies of transcutaneous electrical nerve stimulation on venous vascular reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Franco, O.S.; Paulitsch, F.S.; Pereira, A.P.C.; Teixeira, A.O. [Universidade Federal do Rio Grande, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Rio Grande, RS, Brasil, Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS (Brazil); Martins, C.N. [Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Fisiologia Animal Comparada, Rio Grande, RS, Brasil, Programa de Pós-Graduação em Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS (Brazil); Silva, A.M.V. [Universidade Federal de Santa Maria, Departamento de Fisioterapia e Reabilitação, Santa Maria, RS, Brasil, Departamento de Fisioterapia e Reabilitação, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil); Plentz, R.D.M. [Universidade Federal de Ciências da Saúde de Porto Alegre, Programa de Pós-Graduação em Ciências da Reabilitação, Programa de Pós-Graduação em Ciências da Saúde, Porto Alegre, RS, Brasil, Programa de Pós-Graduação em Ciências da Saúde, Programa de Pós-Graduação em Ciências da Reabilitação, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Irigoyen, M.C. [Faculdade de Medicina, Universidade de São Paulo, Instituto do Coração, Unidade de Hipertensão, São Paulo, SP, Brasil, Unidade de Hipertensão, Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Signori, L.U. [Universidade Federal do Rio Grande, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Rio Grande, RS, Brasil, Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS (Brazil); Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Fisiologia Animal Comparada, Rio Grande, RS, Brasil, Programa de Pós-Graduação em Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS (Brazil); Universidade Federal de Santa Maria, Departamento de Fisioterapia e Reabilitação, Santa Maria, RS, Brasil, Departamento de Fisioterapia e Reabilitação, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil)

    2014-04-04

    Transcutaneous electrical nerve stimulation (TENS) is a type of therapy used primarily for analgesia, but also presents changes in the cardiovascular system responses; its effects are dependent upon application parameters. Alterations to the cardiovascular system suggest that TENS may modify venous vascular response. The objective of this study was to evaluate the effects of TENS at different frequencies (10 and 100 Hz) on venous vascular reactivity in healthy subjects. Twenty-nine healthy male volunteers were randomized into three groups: placebo (n=10), low-frequency TENS (10 Hz, n=9) and high-frequency TENS (100 Hz, n=10). TENS was applied for 30 min in the nervous plexus trajectory from the superior member (from cervical to dorsal region of the fist) at low (10 Hz/200 μs) and high frequency (100 Hz/200 μs) with its intensity adjusted below the motor threshold and intensified every 5 min, intending to avoid accommodation. Venous vascular reactivity in response to phenylephrine, acetylcholine (endothelium-dependent) and sodium nitroprusside (endothelium-independent) was assessed by the dorsal hand vein technique. The phenylephrine effective dose to achieve 70% vasoconstriction was reduced 53% (P<0.01) using low-frequency TENS (10 Hz), while in high-frequency stimulation (100 Hz), a 47% increased dose was needed (P<0.01). The endothelium-dependent (acetylcholine) and independent (sodium nitroprusside) responses were not modified by TENS, which modifies venous responsiveness, and increases the low-frequency sensitivity of α1-adrenergic receptors and shows high-frequency opposite effects. These changes represent an important vascular effect caused by TENS with implications for hemodynamics, inflammation and analgesia.

  11. Maternal nutrient restriction during pregnancy impairs an endothelium-derived hyperpolarizing factor-like pathway in sheep fetal coronary arteries.

    Science.gov (United States)

    Shukla, Praveen; Ghatta, Srinivas; Dubey, Nidhi; Lemley, Caleb O; Johnson, Mary Lynn; Modgil, Amit; Vonnahme, Kimberly; Caton, Joel S; Reynolds, Lawrence P; Sun, Chengwen; O'Rourke, Stephen T

    2014-07-15

    The mechanisms underlying developmental programming are poorly understood but may be associated with adaptations by the fetus in response to changes in the maternal environment during pregnancy. We hypothesized that maternal nutrient restriction during pregnancy alters vasodilator responses in fetal coronary arteries. Pregnant ewes were fed a control [100% U.S. National Research Council (NRC)] or nutrient-restricted (60% NRC) diet from days 50 to 130 of gestation (term = 145 days); fetal tissues were collected at day 130. In coronary arteries isolated from control fetal lambs, relaxation to bradykinin was unaffected by nitro-l-arginine (NLA). Iberiotoxin or contraction with KCl abolished the NLA-resistant response to bradykinin. In fetal coronary arteries from nutrient-restricted ewes, relaxation to bradykinin was fully suppressed by NLA. Large-conductance, calcium-activated potassium channel (BKCa) currents did not differ in coronary smooth muscle cells from control and nutrient-restricted animals. The BKCa openers, BMS 191011 and NS1619, and 14,15-epoxyeicosatrienoic acid [a putative endothelium-derived hyperpolarizing factor (EDHF)] each caused fetal coronary artery relaxation and BKCa current activation that was unaffected by maternal nutrient restriction. Expression of BKCa-channel subunits did not differ in fetal coronary arteries from control or undernourished ewes. The results indicate that maternal undernutrition during pregnancy results in loss of the EDHF-like pathway in fetal coronary arteries in response to bradykinin, an effect that cannot be explained by a decreased number or activity of BKCa channels or by decreased sensitivity to mediators that activate BKCa channels in vascular smooth muscle cells. Under these conditions, bradykinin-induced relaxation is completely dependent on nitric oxide, which may represent an adaptive response to compensate for the absence of the EDHF-like pathway. Copyright © 2014 the American Physiological Society.

  12. Defibrotide: an endothelium protecting and stabilizing drug, has an anti-angiogenic potential in vitro and in vivo.

    Science.gov (United States)

    Koehl, Gudrun E; Geissler, Edward K; Iacobelli, Massimo; Frei, Caroline; Burger, Verena; Haffner, Silvia; Holler, Ernst; Andreesen, Reinhard; Schlitt, Hans J; Eissner, Günther

    2007-05-01

    Defibrotide (DF) is a polydisperse mixture of 90% single-stranded oligonucleotides with anti-thrombotic and anti-apoptotic functions. DF is used in the treatment of endothelial complications in the course of allogeneic stem cell transplantation. Recent preclinical evidence suggests that DF might also have anti-neoplastic properties. In the present study we hypothesized that DF might inhibit tumors via an anti-angiogenic effect. The anti-angiogenic potential of DF was tested in vitro using human microvascular endothelial cells forming vessel structures across a layer of dermal fibroblasts. Our results show that pharmacologic DF concentrations (100 mug/ml) significantly reduced vessel formation in this assay. Similarly, DF blocked sprouting from cultured rat aortic rings. In vivo, angiogenesis in a human gastric tumor (TMK1) implanted in dorsal skin-fold chambers (in nude mice) was inhibited by i.v. application of 450 mg/kg DF. Notably, due to its short half-life, DF was most effective when given on a daily basis. Although the precise mechanism of DF remains to be elucidated, initial Western blots show that DF reduces phosphorylation-activation of p70S6 kinase, which is a key target in the PI3K/Akt/mTOR signaling pathway linked to endothelial cell and pericyte proliferation and activation. However, in vitro data suggest that DF acts independently of vascular endothelial growth factor. Taken together, our data suggest that while DF is known for its endothelium-protecting function in SCT, it also inhibits formation of new blood vessels, and thus should be considered for further testing as an adjuvant anti-cancer agent, either alone, or in combination with other drugs.

  13. [Menopause: Hypertension and vascular disease].

    Science.gov (United States)

    Zilberman, J M

    Hypertension is the main cardiovascular risk factor affecting 25% of women. Hormone changes and hypertension after menopause may lead to higher target organ damage and cardiovascular disease such as increased arterial stiffness, coronary diseases, chronic heart failure and stroke. The physiopathological mechanisms involved in the development of hypertension and cardiovascular diseases in menopausal women are controversial. There are pharmacokinetic and pharmacodynamic differences in both sexes, the women have more coughing when using the converting-enzyme inhibitors, more cramps when using thiazide diuretics and more oedema in the inferior limbs when using calcium antagonists. The aim of this review is to analyse possible physiopathological mechanisms involved in hypertension after menopause and to gain a better understanding of the biological effects mediated by vascular ageing in women when the level of oestrogen protective effect decreases over the vascular system. Copyright © 2017 SEH-LELHA. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Metabolic and vascular effects of tumor necrosis factor-alpha blockade with etanercept in obese patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Dominguez, Helena; Storgaard, Heidi; Rask-Madsen, Christian

    2005-01-01

    OBJECTIVE: The pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) impairs insulin action in insulin-sensitive tissues, such as fat, muscle and endothelium, and causes endothelial dysfunction. We hypothesized that TNF-alpha blockade with etanercept could reverse vascular and metabolic...... glucose uptake remained unchanged as well. Beta-cell function tended to improve. CONCLUSION: Although short-term etanercept treatment had a significant beneficial effect on systemic inflammatory markers, no improvement of vascular or metabolic insulin sensitivity was observed....

  15. Relaxin as a natural agent for vascular health

    Directory of Open Access Journals (Sweden)

    Daniele Bani

    2008-06-01

    Full Text Available Daniele BaniDepartment of Anatomy, Histology and Forensic Medicine, Sect. Histology, University of Florence, ItalyAbstract: Hypertension, atherothrombosis, myocardial infarction, stroke, peripheral vascular disease, and renal failure are the main manifestations of cardiovascular disease (CVD, the leading cause of death and disability in developed countries. Continuing insight into the pathophysiology of CVD can allow identification of effective therapeutic strategies to reduce the occurrence of death and/or severe disabilities. In this context, a healthy endothelium is deemed crucial to proper functioning and maintenance of anatomical integrity of the vascular system in many organs. Of note, epidemiologic studies indicate that the incidence of CVD in women is very low until menopause and increases sharply thereafter. The loss of protection against CVD in post-menopausal women has been chiefly attributed to ovarian steroid deficiency. However, besides steroids, the ovary also produces the peptide hormone relaxin (RLX, which provides potent vasoactive effects which render it the most likely candidate as the elusive physiological shield against CVD in fertile women. In particular, RLX has a specific relaxant effect on peripheral and coronary vasculature, exerted by the stimulation of endogenous nitric oxide (NO generation by cells of the vascular wall, and can induce angiogenesis. Moreover, RLX inhibits the activation of inflammatory leukocytes and platelets, which play a key role in CVD. Experimental studies performed in vascular and blood cell in vitro and in animal models of vascular dysfunction, as well as pioneer clinical observations, have provided evidence that RLX can prevent and/or improve CVD, thus offering background to clinical trials aimed at exploring the broad therapeutic potential of human recombinant RLX as a new cardiovascular drug.Keywords: relaxin, blood vessels, endothelial cells, vascular smooth muscle, nitric oxide

  16. Pomegranate Extract Enhances Endothelium-Dependent Coronary Relaxation in Isolated Perfused Hearts from Spontaneously Hypertensive Ovariectomized Rats

    Science.gov (United States)

    Delgado, Nathalie T. B.; Rouver, Wender do N.; Freitas-Lima, Leandro C.; de Paula, Tiago D.-C.; Duarte, Andressa; Silva, Josiane F.; Lemos, Virgínia S.; Santos, Alexandre M. C.; Mauad, Helder; Santos, Roger L.; Moysés, Margareth R.

    2017-01-01

    Decline in estrogen levels promotes endothelial dysfunction and, consequently, the most prevalent cardiovascular diseases in menopausal women. The use of natural therapies such as pomegranate can change these results. Pomegranate [Punica granatum L. (Punicaceae)] is widely used as a phytotherapeutic agent worldwide, including in Brazil. We hypothesized that treatment with pomegranate hydroalcoholic extract (PHE) would improve coronary vascular reactivity and cardiovascular parameters. At the beginning of treatment, spontaneously hypertensive female rats were divided into Sham and ovariectomized (OVX) groups, which received pomegranate extract (PHE) (250 mg/kg) or filtered water (V) for 30 days by gavage. Systolic blood pressure was measured by tail plethysmography. After euthanasia, the heart was removed and coronary vascular reactivity was assessed by Langendorff retrograde perfusion technique. A dose-response curve for bradykinin was performed, followed by L-NAME inhibition. The protein expression of p-eNOS Ser1177, p-eNOS Thr495, total eNOS, p-AKT Ser473, total AKT, SOD-2, and catalase was quantified by Western blotting. The detection of coronary superoxide was performed using the protocol of dihydroethidium (DHE) staining Plasma nitrite measurement was analyzed by Griess method. Systolic blood pressure increased in both Sham-V and OVX-V groups, whereas it was reduced after treatment in Sham-PHE and OVX-PHE groups. The baseline coronary perfusion pressure was reduced in the Sham-PHE group. The relaxation was significantly higher in the treated group, and L-NAME attenuated the relaxation in all groups. The treatment has not changed p-eNOS (Ser1177), total eNOS, p-AKT (Ser473) and total AKT in any groups. However, in Sham and OVX group the treatment reduced the p-eNOS (Thr495) and SOD-2. The ovariectomy promoted an increasing in the superoxide anion levels and the treatment was able to prevent this elevation and reducing oxidative stress. Moreover, the treatment

  17. The ent-15α-Acetoxykaur-16-en-19-oic Acid Relaxes Rat Artery Mesenteric Superior via Endothelium-Dependent and Endothelium-Independent Mechanisms

    Directory of Open Access Journals (Sweden)

    Êurica Adélia Nogueira Ribeiro

    2012-01-01

    Full Text Available The objective of the study was to investigate the mechanism of the relaxant activity of the ent-15α-acetoxykaur-16-en-19-oic acid (KA-acetoxy. In rat mesenteric artery rings, KA-acetoxy induced a concentration-dependent relaxation in vessels precontracted with phenylephrine. In the absence of endothelium, the vasorelaxation was significantly shifted to the right without reduction of the maximum effect. Endothelium-dependent relaxation was significantly attenuated by pretreatment with L-NAME, an inhibitor of the NO-synthase (NOS, indomethacin, an inhibitor of the cyclooxygenase, L-NAME + indomethacin, atropine, a nonselective antagonist of the muscarinic receptors, ODQ, selective inhibitor of the guanylyl cyclase enzyme, or hydroxocobalamin, a nitric oxide scavenger. The relaxation was completely reversed in the presence of L-NAME + 1 mM L-arginine or L-arginine, an NO precursor. Diterpene-induced relaxation was not affected by TEA, a nonselective inhibitor of K+ channels. The KA-acetoxy antagonized CaCl2-induced contractions in a concentration-dependent manner and also inhibited an 80 mM KCl-induced contraction. The KA-acetoxy did not interfere with Ca2+ release from intracellular stores. The vasorelaxant induced by KA-acetoxy seems to involve the inhibition of the Ca2+ influx and also, at least in part, by endothelial muscarinic receptors activation, NO and PGI2 release.

  18. Comparison and Supervised Learning of Segmentation Methods Dedicated to Specular Microscope Images of Corneal Endothelium

    Directory of Open Access Journals (Sweden)

    Yann Gavet

    2014-01-01

    Full Text Available The cornea is the front of the eye. Its inner cell layer, called the endothelium, is important because it is closely related to the light transparency of the cornea. An in vivo observation of this layer is performed by using specular microscopy to evaluate the health of the cells: a high spatial density will result in a good transparency. Thus, the main criterion required by ophthalmologists is the cell density of the cornea endothelium, mainly obtained by an image segmentation process. Different methods can perform the image segmentation of these cells, and the three most performing methods are studied here. The question for the ophthalmologists is how to choose the best algorithm and to obtain the best possible results with it. This paper presents a methodology to compare these algorithms together. Moreover, by the way of geometric dissimilarity criteria, the algorithms are tuned up, and the best parameter values are thus proposed to the expert ophthalmologists.

  19. Early dynamic fate changes in haemogenic endothelium characterized at the single-cell level

    Science.gov (United States)

    Swiers, Gemma; Baumann, Claudia; O'Rourke, John; Giannoulatou, Eleni; Taylor, Stephen; Joshi, Anagha; Moignard, Victoria; Pina, Cristina; Bee, Thomas; Kokkaliaris, Konstantinos D.; Yoshimoto, Momoko; Yoder, Mervin C.; Frampton, Jon; Schroeder, Timm; Enver, Tariq; Göttgens, Berthold; de Bruijn, Marella F. T. R.

    2013-12-01

    Haematopoietic stem cells (HSCs) are the founding cells of the adult haematopoietic system, born during ontogeny from a specialized subset of endothelium, the haemogenic endothelium (HE) via an endothelial-to-haematopoietic transition (EHT). Although recently imaged in real time, the underlying mechanism of EHT is still poorly understood. We have generated a Runx1 +23 enhancer-reporter transgenic mouse (23GFP) for the prospective isolation of HE throughout embryonic development. Here we perform functional analysis of over 1,800 and transcriptional analysis of 268 single 23GFP+ HE cells to explore the onset of EHT at the single-cell level. We show that initiation of the haematopoietic programme occurs in cells still embedded in the endothelial layer, and is accompanied by a previously unrecognized early loss of endothelial potential before HSCs emerge. Our data therefore provide important insights on the timeline of early haematopoietic commitment.

  20. Vascular endothelial growth factor in skeletal muscle following glycogen-depleting exercise in humans

    DEFF Research Database (Denmark)

    Jensen, Line; Gejl, Kasper Degn; Ørtenblad, Niels

    2015-01-01

    unclear. However, as VEGF is also considered very important for the regulation of vascular permeability, it is possible that metabolic stress may trigger muscle VEGF release. PURPOSE: To study the role of metabolic stress induced by glycogen-depleting exercise on muscle VEGF expression. METHODS: Fifteen......Vascular endothelial growth factor (VEGF) is traditionally considered important for skeletal muscle angiogenesis. VEGF is released from vascular endothelium as well as the muscle cells in response to exercise. The mechanism and the physiological role of VEGF secreted from the muscle cells remain...... levels by 24h irrespective of treatment. CONCLUSIONS: Muscle glycogen depletion induced by prolonged exercise leads to up-regulation as well as co-localization of HSP70 and VEGF primarily in type I fibers, thus suggesting that VEGF released from muscle is involved in the maintenance of muscle metabolic...

  1. 3',5'-cIMP as Potential Second Messenger in the Vascular Wall.

    Science.gov (United States)

    Leung, Susan W S; Gao, Yuansheng; Vanhoutte, Paul M

    2017-01-01

    Traditionally, only the 3',5'-cyclic monophosphates of adenosine and guanosine (produced by adenylyl cyclase and guanylyl cyclase, respectively) are regarded as true "second messengers" in the vascular wall, despite the presence of other cyclic nucleotides in different tissues. Among these noncanonical cyclic nucleotides, inosine 3',5'-cyclic monophosphate (cIMP) is synthesized by soluble guanylyl cyclase in porcine coronary arteries in response to hypoxia, when the enzyme is activated by endothelium-derived nitric oxide. Its production is associated with augmentation of vascular contraction mediated by stimulation of Rho kinase. Based on these findings, cIMP appears to meet most, if not all, of the criteria required for it to be accepted as a "second messenger," at least in the vascular wall.

  2. Vascular grading of angiogenesis

    DEFF Research Database (Denmark)

    Hansen, S; Grabau, D A; Sørensen, Flemming Brandt

    2000-01-01

    The study aimed to evaluate the prognostic value of angiogenesis by vascular grading of primary breast tumours, and to evaluate the prognostic impact of adding the vascular grade to the Nottingham Prognostic Index (NPI). The investigation included 836 patients. The median follow-up time was 11...... years and 4 months. The microvessels were immunohistochemically stained by antibodies against CD34. Angiogenesis was graded semiquantitatively by subjective scoring into three groups according to the expected number of microvessels in the most vascular tumour area. The vascular grading between observers...... for 24% of the patients, who had a shift in prognostic group, as compared to NPI, and implied a better prognostic dissemination. We concluded that the angiogenesis determined by vascular grading has independent prognostic value of clinical relevance for patients with breast cancer....

  3. Vascular grading of angiogenesis

    DEFF Research Database (Denmark)

    Hansen, S; Grabau, D A; Sørensen, Flemming Brandt

    2000-01-01

    The study aimed to evaluate the prognostic value of angiogenesis by vascular grading of primary breast tumours, and to evaluate the prognostic impact of adding the vascular grade to the Nottingham Prognostic Index (NPI). The investigation included 836 patients. The median follow-up time was 11...... years and 4 months. The microvessels were immunohistochemically stained by antibodies against CD34. Angiogenesis was graded semiquantitatively by subjective scoring into three groups according to the expected number of microvessels in the most vascular tumour area. The vascular grading between observers...... impact for 24% of the patients, who had a shift in prognostic group, as compared to NPI, and implied a better prognostic dissemination. We concluded that the angiogenesis determined by vascular grading has independent prognostic value of clinical relevance for patients with breast cancer....

  4. [The effects of intraocular irrigating solutions on the human corneal endothelium (author's transl)].

    Science.gov (United States)

    Weekers, J F; Dethinne, M

    1978-11-01

    Human corneas from enucleated eyes get thicker during perfusion with B.S.S. On the contrary, their thickness decreases when perfused with T.C. Earle solution. Addition of reduced glutathion and adenosine does not change the results obtained with T.C. Earle. Histological study of the endothelium after a 24 hours perfusion demonstrates a better conservation of the cells with T.C. Earle and T.C. Earle glutathion--adenosine than with B.S.S.

  5. Effect of diatrizoate (Angiografin) on the aortic endothelium in rats during the course of endotoxin shock

    Energy Technology Data Exchange (ETDEWEB)

    Gospos, C; Freudenberg, N; Hauenstein, K H; Kauffmann, G W; Koch, H K

    1982-08-01

    Investigations have been carried out on the endothelial changes produced by diatrizoate (Angiografin) during the course of endotoxin shock. A single injection was given directly into the aorta of 1 ml of the contrast medium, with an iodine content of 300 mg/ml. The increased proliferation of the aortic endothelium could be shown to be due to the endotoxin shock, but was not further increased by administration of the contrast medium.

  6. ENDOTHELIUM LESION MARKERS AND THROMBOCYTE AGGREGATION IN CHRONIC HEPATITIS AND HEPATIC CIRRHOSIS

    Directory of Open Access Journals (Sweden)

    A. P. Shchekotova

    2012-01-01

    Full Text Available Aim — to estimate endothelium lesion, quantity and thrombocyte aggregation function correlation in viral chronic hepatitis C (CHC and hepatic cirrhosis (HC.Materials and methods. 50 CHC patients and 28 HC patients were examined. Using IFA method the total nitric oxide, endothelin‑1, vasculoendothelial growth factor levels, Willebrand factor (vWF activity were investigated, blood plasma desquamated endotheliocyte (DEC number was calculated with Hladovec method, 1978, thrombocyte aggregation (TA with ADP, collagen, ristocetine was determined.Results. DEC and vWF demonstrated correlation in CHC (p = 0.014 and HC (p = 0.000004. In HC patients reliable correlation of all the investigated indices of endothelium lesion with the thrombocyte number and TA was detected, but in CHC patients no correlations were revealed. Thus, significant elevation of TA with ristocetine was noted only in CHC. Decrease in thrombocyte amount among CHC patients and,especially in HC, and heightened vWF activity could change true TA indices. The corrected TA, whose indices in hepatic diseases significantlyincreased, was calculated taking into account the correction factor vWF / thrombocytes that in CHC did not differ from that of healthy patients and in HC was essentially higher.Conclusion. Endothelium dysfunction markers in CH and HC demonstrate correlation with thrombocyte reduction and TA elevation. Determinationof corrected TA permits to reveal disturbances of thrombocyte hemostasis in the form of elevated aggregation in all CHC and HC patients.

  7. HOXB4 Promotes Hemogenic Endothelium Formation without Perturbing Endothelial Cell Development

    Directory of Open Access Journals (Sweden)

    Nadine Teichweyde

    2018-03-01

    Full Text Available Summary: Generation of hematopoietic stem cells (HSCs from pluripotent stem cells, in vitro, holds great promise for regenerative therapies. Primarily, this has been achieved in mouse cells by overexpression of the homeotic selector protein HOXB4. The exact cellular stage at which HOXB4 promotes hematopoietic development, in vitro, is not yet known. However, its identification is a prerequisite to unambiguously identify the molecular circuits controlling hematopoiesis, since the activity of HOX proteins is highly cell and context dependent. To identify that stage, we retrovirally expressed HOXB4 in differentiating mouse embryonic stem cells (ESCs. Through the use of Runx1(−/− ESCs containing a doxycycline-inducible Runx1 coding sequence, we uncovered that HOXB4 promoted the formation of hemogenic endothelium cells without altering endothelial cell development. Whole-transcriptome analysis revealed that its expression mediated the upregulation of transcription of core transcription factors necessary for hematopoiesis, culminating in the formation of blood progenitors upon initiation of Runx1 expression. : In this article, Klump and colleagues demonstrate that the human homeotic selector protein HOXB4 promotes ESC-derived hematopoiesis by inducing hemogenic endothelium formation, in vitro. It propels hematopoietic specification by upregulating the transcription of genes essential for hematopoietic development, such as those encoding members of the so-called heptad transcription factors. Keywords: HOXB4, hematopoietic stem cells, hemangioblast, hemogenic endothelium, hematopoietic specification, EHT, RUNX1, pluripotent stem cells

  8. Low-dose ultraviolet-B irradiation of donor corneal endothelium and graft survival

    International Nuclear Information System (INIS)

    Dana, M.R.; Olkowski, S.T.; Ahmadian, H.; Stark, W.J.; Young, E.M.

    1990-01-01

    Donor rabbit corneal endothelium was pretreated with different doses of ultraviolet (UV-B) irradiation (302 nm) before grafting to test whether allograft survival could be favorably affected in comparison with untreated corneas grafted into the same recipients. Endothelial rejection was observed in 19 of 32 (59%) eyes that received no treatment compared with five of 32 (16%) eyes that received UV-B (P less than 0.001), and increasing doses of UV-B were associated with lower rejection rates (P less than 0.05). Although exposure of donor endothelium significantly reduced endothelial rejection at all doses tested, it resulted in primary graft failure in a substantial proportion of corneas treated at high doses. Class II (Ia) antigen staining of corneal tissue was present in conjunction with clinical evidence of rejection, and the magnitude of staining correlated with the histologic extent of inflammation. Scanning electron microscopy revealed various endothelial cell surface irregularities and membrane defects in high-dose UV-treated corneas. Endothelial cell cultures exposed in vitro to UV-B light showed a dose-dependent loss in cell viability. These data suggest that UV-B pretreatment of donor corneal endothelium prolongs graft survival but that toxic side effects must be carefully controlled

  9. EFFECTS OF ENALAPRIL ON ENDOTHELIUM FUNCTION IN PATIENTS WITH ISCHEMIC HEART DISEASE

    Directory of Open Access Journals (Sweden)

    L. I. Katelnizkaya

    2006-01-01

    Full Text Available Aim. To study endothelium vasomotor function (EF in patients with ischemic heart disease (IHD and the influence of angiotensin converting enzyme inhibitor enalapril (Enam, Dr .Reddy’s, India on it. Material and methods. 87 patients were examined totally. 49 patients were suffering from IHD: 18 patients were younger than 60 years old and 31 patients were older . The combination of arterial hypertension (HT and IHD were registered in 38 patients: 18 patients were below and 20 patients were above 60 years old. All patients additionally to basic IHD therapy took enalapril in dose 2,5-30 mg/daily during 12 weeks. Before the beginning and in the end of treatment cuff test, test with nitroglycerine, bicycle exercise test and Holter monitoring were made, the thickness of intima-media complex of carotid artery and the level of endothelin-1 in blood plasma were defined. Results. EF disorders were shown in IHD, maximal disorders were determined in patients with combination of IHD and HT. EF disorders were also more expressive in patients of elder group. Enalapril restored of cuff tests results, nitroglycerine tests results, reduced a number of myocardial ischemia episodes and provided target blood pressure in 60, 5% patients with HT. Conclusion. Enalapril improves endothelium vasomotor function, endothelium reaction on nitroglycerine and clinical course of IHD and HT.

  10. Influence of Androgen Receptor in Vascular Cells on Reperfusion following Hindlimb Ischaemia.

    Directory of Open Access Journals (Sweden)

    Junxi Wu

    Full Text Available Studies in global androgen receptor knockout (G-ARKO and orchidectomised mice suggest that androgen accelerates reperfusion of the ischaemic hindlimb by stimulating angiogenesis. This investigation used novel, vascular cell-specific ARKO mice to address the hypothesis that the impaired hindlimb reperfusion in G-ARKO mice was due to loss of AR from cells in the vascular wall.Mice with selective deletion of AR (ARKO from vascular smooth muscle cells (SM-ARKO, endothelial cells (VE-ARKO, or both (SM/VE-ARKO were compared with wild type (WT controls. Hindlimb ischaemia was induced in these mice by ligation and removal of the femoral artery. Post-operative reperfusion was reduced in SM-ARKO and SM/VE-ARKO mice. Immunohistochemistry indicated that this was accompanied by a reduced density of smooth muscle actin-positive vessels but no change in the density of isolectin B4-positive vessels in the gastrocnemius muscle. Deletion of AR from the endothelium (VE-ARKO did not alter post-operative reperfusion or vessel density. In an ex vivo (aortic ring culture model of angiogenesis, AR was not detected in vascular outgrowths and angiogenesis was not altered by vascular ARKO or by exposure to dihydrotestosterone (DHT 10-10-10-7M; 6 days.These results suggest that loss of AR from vascular smooth muscle, but not from the endothelium, contributes to impaired reperfusion in the ischaemic hindlimb of G-ARKO. Impaired reperfusion was associated with reduced collateral formation rather than reduced angiogenesis.

  11. Vascular ossification – calcification in metabolic syndrome, type 2 diabetes mellitus, chronic kidney disease, and calciphylaxis – calcific uremic arteriolopathy: the emerging role of sodium thiosulfate

    Directory of Open Access Journals (Sweden)

    Sowers James R

    2005-03-01

    Full Text Available Abstract Background Vascular calcification is associated with metabolic syndrome, diabetes, hypertension, atherosclerosis, chronic kidney disease, and end stage renal disease. Each of the above contributes to an accelerated and premature demise primarily due to cardiovascular disease. The above conditions are associated with multiple metabolic toxicities resulting in an increase in reactive oxygen species to the arterial vessel wall, which results in a response to injury wound healing (remodeling. The endothelium seems to be at the very center of these disease processes, acting as the first line of defense against these multiple metabolic toxicities and the first to encounter their damaging effects to the arterial vessel wall. Results The pathobiomolecular mechanisms of vascular calcification are presented in order to provide the clinician – researcher a database of knowledge to assist in the clinical management of these high-risk patients and examine newer therapies. Calciphylaxis is associated with medial arteriolar vascular calcification and results in ischemic subcutaneous necrosis with vulnerable skin ulcerations and high mortality. Recently, this clinical syndrome (once thought to be rare is presenting with increasing frequency. Consequently, newer therapeutic modalities need to be explored. Intravenous sodium thiosulfate is currently used as an antidote for the treatment of cyanide poisioning and prevention of toxicities of cisplatin cancer therapies. It is used as a food and medicinal preservative and topically used as an antifungal medication. Conclusion A discussion of sodium thiosulfate's dual role as a potent antioxidant and chelator of calcium is presented in order to better understand its role as an emerging novel therapy for the clinical syndrome of calciphylaxis and its complications.

  12. Vascular Access in Children

    International Nuclear Information System (INIS)

    Krishnamurthy, Ganesh; Keller, Marc S.

    2011-01-01

    Establishment of stable vascular access is one of the essential and most challenging procedures in a pediatric hospital. Many clinical specialties provide vascular service in a pediatric hospital. At the top of the “expert procedural pyramid” is the pediatric interventional radiologist, who is best suited and trained to deliver this service. Growing awareness regarding the safety and high success rate of vascular access using image guidance has led to increased demand from clinicians to provide around-the-clock vascular access service by pediatric interventional radiologists. Hence, the success of a vascular access program, with the pediatric interventional radiologist as the key provider, is challenging, and a coordinated multidisciplinary team effort is essential for success. However, there are few dedicated pediatric interventional radiologists across the globe, and also only a couple of training programs exist for pediatric interventions. This article gives an overview of the technical aspects of pediatric vascular access and provides useful tips for obtaining vascular access in children safely and successfully using image guidance.

  13. Pediatric vascular access

    International Nuclear Information System (INIS)

    Donaldson, James S.

    2006-01-01

    Pediatric interventional radiologists are ideally suited to provide vascular access services to children because of inherent safety advantages and higher success from using image-guided techniques. The performance of vascular access procedures has become routine at many adult interventional radiology practices, but this service is not as widely developed at pediatric institutions. Although interventional radiologists at some children's hospitals offer full-service vascular access, there is little or none at others. Developing and maintaining a pediatric vascular access service is a challenge. Interventionalists skilled in performing such procedures are limited at pediatric institutions, and institutional support from clerical staff, nursing staff, and technologists might not be sufficiently available to fulfill the needs of such a service. There must also be a strong commitment by all members of the team to support such a demanding service. There is a slippery slope of expected services that becomes steeper and steeper as the vascular access service grows. This review is intended primarily as general education for pediatric radiologists learning vascular access techniques. Additionally, the pediatric or adult interventional radiologist seeking to expand services might find helpful tips. The article also provides education for the diagnostic radiologist who routinely interprets radiographs containing vascular access devices. (orig.)

  14. Resveratrol Protects and Restores Endothelium-Dependent Relaxation in Hypercholesterolemic Rabbit Corpus Cavernosum.

    Science.gov (United States)

    Murat, Nergiz; Korhan, Peyda; Kizer, Onur; Evcim, Sinem; Kefi, Aykut; Demir, Ömer; Gidener, Sedef; Atabey, Neşe; Esen, Ahmet Adil

    2016-01-01

    Oxidative stress dependent-decrease in nitric oxide (NO) bioavailability plays an integral role in hypercholesterolemia-induced erectile dysfunction (ED). Resveratrol has been demonstrated to exert beneficial effects against oxidative stress and improve NO bioavailability. The protective and restorative potentials of resveratrol on endothelium-dependent relaxations were evaluated in hypercholesterolemic rabbit corpus cavernosum (CC). Hypercholesterolemia was induced by administering 2% cholesterol diet (CD) (w/w) to the rabbits for 6 weeks. Two different protocols were applied to test the effects of resveratrol on hypercholesterolemia-induced ED. In Protocol-1 (P1), resveratrol was administrated to the rabbits simultaneously with CD in order to evaluate the protective effect, and for Protocol-2 (P2), resveratrol was administrated for 6 weeks after termination of CD in order to evaluate the restorative effect. Endothelium-dependent relaxations of CC were evaluated by using organ bath studies. In order to elucidate the possible molecular mechanisms, we measured endothelial NO synthase (eNOS) and phosphovasodilator-stimulated phosphoprotein (VASP) expressions and activations, NADPH oxidase, superoxide dismutase (SOD), and catalase (CAT) and glutathione peroxidase (GPx) activity in cavernosal tissues obtained at the end of the study. Resveratrol showed an improvement in the endothelium-dependent relaxation responses in vitro. We demonstrated significantly increased activatory-phosphorylation (p[S1177]-eNOS) and activated phosphovasodilator-stimulated phosphoprotein (phospho-VASP) levels, but reduced phosphorylation (p[T495]-eNOS) of eNOS and NADPH oxidase activity in the resveratrol-administered HC animals compared with hypercholesterolemic control rabbits in the P1. In the P2, resveratrol exhibited an improvement in endothelium-dependent relaxation responses and more pronounced effects on eNOS activation. Resveratrol administration, either simultaneously with HC diet

  15. The study of the functional state of the endothelium via a complex of markers with reactive hyperemia

    Directory of Open Access Journals (Sweden)

    Berezhniy V.

    2016-03-01

    Full Text Available Diagnosis of endothelial dysfunction is a key point in the prevention and treatment of cardiovascular diseases. In scientific research the study of the state of the endothelium used test with reactive hyperemia of brachial artery wich present as the value of endothelium dependent and independent artery dilatation. However, the disadvantage of this marker is ignoring the size of arteries, well know that small arteries has a greater degree of dilation more than big arterias, this fact making difficult to compare results between different patients. The aim of our study was to examine the state of endothelium using a complex of markers, compare them informative in children with JRA who are at risk for the development of endothelial dysfunction. Materials and Methods. The study was included 40 children with juvenile rheumatoid arthritis who were treated at the department of children's cardiorheumatology Kyiv City Children's Hospital #1 and Kiev Regional Hospital m. Boyarka. Results. The study found a development of endothelial dysfunction changes in endothelium dependent vasodilation, reactive hyperemia and coefficient of vasodilation. Simultaneous marked change of endothelium vasodilation of the brachial artery and coefficient of vasodilatation. There were no pathological changes in endothelial shear stress in patients compared with healthy children. Conclusions. Evaluate the state of the endothelium is necessary with the help of a set of indicators (RH, EDVD, VC that will help to avoid diagnostic mistakes during the test with the reactive hyperemia.

  16. Vascular malformations in pediatrics

    International Nuclear Information System (INIS)

    Reith, W.; Shamdeen, M.G.

    2003-01-01

    Vascular malformations are the cause of nearly all non-traumatic intracranial hemorrhage in children beyond the neonatal stage. Therefore, any child presenting with spontaneous intracranial hemorrhage should be evaluated for child abuse and for vascular malformations. Intracerebral malformations of the cerebral vasculature include vein of Galen malformations, arteriovenous malformation (AVM), cavernomas, dural arteriovenous fistulas, venous anomalies (DVA), and capillary teleangiectasies. Although a few familial vascular malformation have been reported, the majority are sporadic. Clinical symptoms, diagnostic and therapeutic options are discussed. (orig.) [de

  17. Triiodothyronine Potentiates Vasorelaxation via PKG/VASP Signaling in Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Sherin Samuel

    2017-04-01

    Full Text Available Background/Aims: Vascular relaxation caused by Triiodothyronine (T3 involves direct activation of endothelial cells (EC and vascular smooth muscle cells (VSMC. Activation of protein kinase G (PKG has risen as a novel contributor to the vasorelaxation mechanism triggered by numerous stimuli. We hypothesize that T3-induced vasorelaxation involves PKG/vasodilator-stimulated phosphoprotein (VASP signaling pathway in VSMC. Methods: Human aortic endothelial cells (HAEC and VSMC were treated with T3 for short (2 to 60 minutes and long term (24 hours. Nitric oxide (NO production was measured using DAF-FM. Expression of protein targets was determined using western blot. For functional studies, rat aortas were isolated and treated with T3 for 20 minutes and mounted in a wire myograph. Relaxation was measured by a concentration-dependent response to acetylcholine (ACh and sodium nitroprusside (SNP. Results: Aortas stimulated with T3 exhibited augmented sensitivity to ACh and SNP-induced relaxation, endothelium-dependent and endothelium-independent responses, respectively. T3 directly increased vasorelaxation, which was abolished in the presence of a PKG inhibitor. T3 markedly induced phosphorylation of Akt, eNOS and consequently increased NO production in EC. Likewise, T3 induced phosphorylation of VASP at serine 239 via the PKG pathway in VSMC. Conclusion: Our findings have uncovered a PKG/VASP signaling pathway in VSMC as a key molecular mechanism underlying T3-induced vascular relaxation.

  18. Triiodothyronine Potentiates Vasorelaxation via PKG/VASP Signaling in Vascular Smooth Muscle Cells.

    Science.gov (United States)

    Samuel, Sherin; Zhang, Kuo; Tang, Yi-Da; Gerdes, A Martin; Carrillo-Sepulveda, Maria Alicia

    2017-01-01

    Vascular relaxation caused by Triiodothyronine (T3) involves direct activation of endothelial cells (EC) and vascular smooth muscle cells (VSMC). Activation of protein kinase G (PKG) has risen as a novel contributor to the vasorelaxation mechanism triggered by numerous stimuli. We hypothesize that T3-induced vasorelaxation involves PKG/vasodilator-stimulated phosphoprotein (VASP) signaling pathway in VSMC. Human aortic endothelial cells (HAEC) and VSMC were treated with T3 for short (2 to 60 minutes) and long term (24 hours). Nitric oxide (NO) production was measured using DAF-FM. Expression of protein targets was determined using western blot. For functional studies, rat aortas were isolated and treated with T3 for 20 minutes and mounted in a wire myograph. Relaxation was measured by a concentration-dependent response to acetylcholine (ACh) and sodium nitroprusside (SNP). Aortas stimulated with T3 exhibited augmented sensitivity to ACh and SNP-induced relaxation, endothelium-dependent and endothelium-independent responses, respectively. T3 directly increased vasorelaxation, which was abolished in the presence of a PKG inhibitor. T3 markedly induced phosphorylation of Akt, eNOS and consequently increased NO production in EC. Likewise, T3 induced phosphorylation of VASP at serine 239 via the PKG pathway in VSMC. Our findings have uncovered a PKG/VASP signaling pathway in VSMC as a key molecular mechanism underlying T3-induced vascular relaxation. © 2017 The Author(s)Published by S. Karger AG, Basel.

  19. Arterial wall mechanics as a function of heart rate: role of vascular smooth muscle

    International Nuclear Information System (INIS)

    Salvucci, Fernando Pablo; Schiavone, Jonathan; Craiem, Damian; Barra, Juan Gabriel

    2007-01-01

    Vascular wall viscoelasticity can be evaluated using a first-order lumped model. This model consists of a spring with elastic constant E and a dashpot with viscous constant η. More importantly, this viscoelastic model can be fitted in-vivo measuring arterial pressure and diameter. The aim of this work is to analyze the influence of heart rate over E and η. In two anesthetized sheep, diameter in thoracic aorta and intravascular pressure has been registered. The right atrium was connected to a programmable stimulator through a pair of pace-maker wires to produce changes in stimulation heart rate (HR) from 80 to 160 bpm. Additionally, local activation of vascular smooth muscle was induced with phenylephrine. After converting pressure and diameter signals into stress and strain respectively, E y η were calculated in control state and during muscle activation. The elastic modulus E did not present significant changes with heart rate. The viscous modulus η decreased 49% with a two-fold acceleration in heart rate from 80 to 160 bpm. However, the product η HR remained stable. The viscous modulus η increased 39% with smooth muscle activation. No significant pressure changes were registered during the experiment. The contractile action of vascular smooth muscle could contribute to increasing arterial wall viscosity. The decrease of η when HR increased might be related to smooth muscle relaxation mediated by endothelium activity, which was stimulated by flow increase. We conclude that HR can modulate arterial wall viscoelasticity through endothelium-dependent mechanisms

  20. GPR68 Senses Flow and Is Essential for Vascular Physiology.

    Science.gov (United States)

    Xu, Jie; Mathur, Jayanti; Vessières, Emilie; Hammack, Scott; Nonomura, Keiko; Favre, Julie; Grimaud, Linda; Petrus, Matt; Francisco, Allain; Li, Jingyuan; Lee, Van; Xiang, Fu-Li; Mainquist, James K; Cahalan, Stuart M; Orth, Anthony P; Walker, John R; Ma, Shang; Lukacs, Viktor; Bordone, Laura; Bandell, Michael; Laffitte, Bryan; Xu, Yan; Chien, Shu; Henrion, Daniel; Patapoutian, Ardem

    2018-04-19

    Mechanotransduction plays a crucial role in vascular biology. One example of this is the local regulation of vascular resistance via flow-mediated dilation (FMD). Impairment of this process is a hallmark of endothelial dysfunction and a precursor to a wide array of vascular diseases, such as hypertension and atherosclerosis. Yet the molecules responsible for sensing flow (shear stress) within endothelial cells remain largely unknown. We designed a 384-well screening system that applies shear stress on cultured cells. We identified a mechanosensitive cell line that exhibits shear stress-activated calcium transients, screened a focused RNAi library, and identified GPR68 as necessary and sufficient for shear stress responses. GPR68 is expressed in endothelial cells of small-diameter (resistance) arteries. Importantly, Gpr68-deficient mice display markedly impaired acute FMD and chronic flow-mediated outward remodeling in mesenteric arterioles. Therefore, GPR68 is an essential flow sensor in arteriolar endothelium and is a critical signaling component in cardiovascular pathophysiology. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Effect of agmatine on experimental vascular endothelial dysfunction.

    Science.gov (United States)

    Nader, M A; Gamiel, N M; El-Kashef, H; Zaghloul, M S

    2016-05-01

    This study was designed to investigate the effect of agmatine sulfate (AG, CAS2482-00-0) in nicotine (NIC)-induced vascular endothelial dysfunction (VED) in rabbits. NIC was administered to produce VED in rabbits with or without AG for 6 weeks. Serum lipid profile, serum thiobarbituric acid reactive substances, reduced glutathione, superoxide dismutase generation, serum nitrite/nitrate, serum vascular cellular adhesion molecule-1 (VCAM-1), and aortic nuclear factor κB (NF-κB) levels were analyzed.Treatment with AG markedly improves lipid profile and prevented NIC-induced VED and oxidative stress. The mechanism of AG in improving NIC-induced VED may be due to the significant reduction in serum VCAM-1 levels and aortic NF-κB. Thus, it may be concluded that AG reduces the oxidative stress, nitric oxide production, VCAM-1 levels, and aortic NF-κB expression, thereby consequently improving the integrity of vascular endothelium. © The Author(s) 2015.

  2. Multifunctional silk-heparin biomaterials for vascular tissue engineering applications

    Science.gov (United States)

    Seib, F. Philipp; Herklotz, Manuela; Burke, Kelly A.; Maitz, Manfred F.; Werner, Carsten; Kaplan, David L.

    2013-01-01

    Over the past 30 years, silk has been proposed for numerous biomedical applications that go beyond its traditional use as a suture material. Silk sutures are well tolerated in humans, but the use of silk for vascular engineering applications still requires extensive biocompatibility testing. Some studies have indicated a need to modify silk to yield a hemocompatible surface. This study examined the potential of low molecular weight heparin as a material for refining silk properties by acting as a carrier for vascular endothelial growth factor (VEGF) and improving silk hemocompatibility. Heparinized silk showed a controlled VEGF release over 6 days; the released VEGF was bioactive and supported the growth of human endothelial cells. Silk samples were then assessed using a humanized hemocompatibility system that employs whole blood and endothelial cells. The overall thrombogenic response for silk was very low and similar to the clinical reference material polytetrafluoroethylene. Despite an initial inflammatory response to silk, apparent as complement and leukocyte activation, the endothelium was maintained in a resting, anticoagulant state. The low thrombogenic response and the ability to control VEGF release support the further development of silk for vascular applications. PMID:24099708

  3. Nutritional improvement of the endothelial control of vascular tone by polyphenols: role of NO and EDHF.

    Science.gov (United States)

    Schini-Kerth, Valérie B; Auger, Cyril; Kim, Jong-Hun; Etienne-Selloum, Nelly; Chataigneau, Thierry

    2010-05-01

    Numerous studies indicate that regular intake of polyphenol-rich beverages (red wine and tea) and foods (chocolate, fruit, and vegetables) is associated with a protective effect on the cardiovascular system in humans and animals. Beyond the well-known antioxidant properties of polyphenols, several other mechanisms have been shown to contribute to their beneficial cardiovascular effects. Indeed, both experimental and clinical studies indicate that polyphenols improve the ability of endothelial cells to control vascular tone. Experiments with isolated arteries have shown that polyphenols cause nitric oxide (NO)-mediated endothelium-dependent relaxations and increase the endothelial formation of NO. The polyphenol-induced NO formation is due to the redox-sensitive activation of the phosphatidylinositol3-kinase/Akt pathway leading to endothelial NO synthase (eNOS) activation subsequent to its phosphorylation on Ser 1177. Besides the phosphatidylinositol3-kinase/Akt pathway, polyphenols have also been shown to activate eNOS by increasing the intracellular free calcium concentration and by activating estrogen receptors in endothelial cells. In addition to causing a rapid and sustained activation of eNOS by phosphorylation, polyphenols can increase the expression level of eNOS in endothelial cells leading to an increased formation of NO. Moreover, the polyphenol-induced endothelium-dependent relaxation also involves endothelium-derived hyperpolarizing factor, besides NO, in several types of arteries. Altogether, polyphenols have the capacity to improve the endothelial control of vascular tone not only in several experimental models of cardiovascular diseases such as hypertension but also in healthy and diseased humans. Thus, these experimental and clinical studies highlight the potential of polyphenol-rich sources to provide vascular protection in health and disease.

  4. Benfotiamine Counteracts Smoking-Induced Vascular Dysfunction in Healthy Smokers

    Directory of Open Access Journals (Sweden)

    Alin Stirban

    2012-01-01

    Full Text Available Background. Smoking induces endothelial dysfunction (ED mainly by exacerbating oxidative stress (OS and inflammation. Benfotiamine, a thiamine prodrug with high bioavailability, prevents nicotine-induced vascular dysfunction in rats. It remained unknown whether this effect also occurs in humans. Methods. Therefore, 20 healthy volunteers (mean age: 38 years were investigated twice, 7–10 days apart in a randomized, cross-over, and investigator-blinded design. Vascular function was assessed by flow-mediated vasodilatation (FMD of the brachial artery and by measurements of the soluble vascular cell adhesion molecule (sVCAM-1. Investigations were performed after an overnight fast as well as 20 minutes after one cigarette smoking. On another day, the same procedure was applied following a 3-day oral therapy with benfotiamine (1050 mg/day. Ten patients were randomized to start with smoking alone, and ten started with benfotiamine. Results. Results are expressed as (mean ± SEM. Smoking acutely induced a decrease in FMD by 50% (∗∗P<0.001 versus baseline an effect significantly reduced by benfotiamine treatment to 25%∗§ (∗P<0.05 versus baseline, §P<0.05 versus smoking alone. Smoking-induced elevation in sVCAM-1 was also prevented by benfotiamine. The endothelium-independent vasodilatation remained unaltered between days. Conclusion. In healthy volunteers, smoking blunts vascular function mirrored by a decrease in FMD and an increase in sVCAM-1. Short-term treatment with benfotiamine significantly reduces these effects, showing protective vascular properties.

  5. Pathogenesis of vascular leak in dengue virus infection.

    Science.gov (United States)

    Malavige, Gathsaurie Neelika; Ogg, Graham S

    2017-07-01

    Endothelial dysfunction leading to vascular leak is the hallmark of severe dengue. Vascular leak typically becomes clinically evident 3-6 days after the onset of illness, which is known as the critical phase. This critical phase follows the period of peak viraemia, and lasts for 24-48 hr and usually shows rapid and complete reversal, suggesting that it is likely to occur as a result of inflammatory mediators, rather than infection of the endothelium. Cytokines such as tumour necrosis factor-α, which are known to be elevated in the critical phase of dengue, are likely to be contributing factors. Dengue NS1, a soluble viral protein, has also been shown to disrupt the endothelial glycocalyx and thus contribute to vascular leak, although there appears to be a discordance between the timing of NS1 antigenaemia and occurrence of vascular leak. In addition, many inflammatory lipid mediators are elevated in acute dengue viral infection such as platelet activating factor (PAF) and leukotrienes. Furthermore, many other inflammatory mediators such as vascular endothelial growth factor and angiopoietin-2 have been shown to be elevated in patients with dengue haemorrhagic fever, exerting their action in part by inducing the activity of phospholipases, which have diverse inflammatory effects including generation of PAF. Platelets have also been shown to significantly contribute to endothelial dysfunction by production of interleukin-1β through activation of the NLRP3 inflammasome and also by inducing production of inflammatory cytokines by monocytes. Drugs that block down-stream immunological mediator pathways such as PAF may also be beneficial in the treatment of severe disease. © 2017 John Wiley & Sons Ltd.

  6. Uterine Vascular Lesions

    Science.gov (United States)

    Vijayakumar, Abhishek; Srinivas, Amruthashree; Chandrashekar, Babitha Moogali; Vijayakumar, Avinash

    2013-01-01

    Vascular lesions of the uterus are rare; most reported in the literature are arteriovenous malformations (AVMs). Uterine AVMs can be congenital or acquired. In recent years, there has been an increasing number of reports of acquired vascular lesions of the uterus following pregnancy, abortion, cesarean delivery, and curettage. It can be seen from these reports that there is confusion concerning the terminology of uterine vascular lesions. There is also a lack of diagnostic criteria and management guidelines, which has led to an increased number of unnecessary invasive procedures (eg, angiography, uterine artery embolization, hysterectomy for abnormal vaginal bleeding). This article familiarizes readers with various vascular lesions of the uterus and their management. PMID:24340126

  7. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    International Nuclear Information System (INIS)

    Zhang, Haimou; Qin, Gangjian; Liang, Gang; Li, Jinan; Chiu, Isaac; Barrington, Robert A.; Liu, Dongxu

    2007-01-01

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanism of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-κB activation and nuclear translocation in an IκBα-dependent manner. The inhibitory effects were associated with reduction of inhibitor IκB kinase activity and stabilization of the NF-κB inhibitor IκB. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations

  8. Inferior vena cava leiomyosarcoma: vascular reconstruction is not ...

    African Journals Online (AJOL)

    ... vena cava is a rare and aggressive tumor, arising from the smooth muscle cells in the vessel wall. A large complete surgical resection is the essential treatment. The need of vascular reconstruction is not always mandatory. It's above all to understand the place of the reconstruction with artificial vascular patch prosthetics of ...

  9. Vascular smooth muscle modulates endothelial control of vasoreactivity via reactive oxygen species production through myoendothelial communications.

    Directory of Open Access Journals (Sweden)

    Marie Billaud

    Full Text Available BACKGROUND: Endothelial control of vascular smooth muscle plays a major role in the resulting vasoreactivity implicated in physiological or pathological circulatory processes. However, a comprehensive understanding of endothelial (EC/smooth muscle cells (SMC crosstalk is far from complete. Here, we have examined the role of gap junctions and reactive oxygen species (ROS in this crosstalk and we demonstrate an active contribution of SMC to endothelial control of vasomotor tone. METHODOLOGY/PRINCIPAL FINDINGS: In small intrapulmonary arteries, quantitative RT-PCR, Western Blot analyses and immunofluorescent labeling evidenced connexin (Cx 37, 40 and 43 in EC and/or SMC. Functional experiments showed that the Cx-mimetic peptide targeted against Cx 37 and Cx 43 ((37,43Gap27 (1 reduced contractile and calcium responses to serotonin (5-HT simultaneously recorded in pulmonary arteries and (2 abolished the diffusion in SMC of carboxyfluorescein-AM loaded in EC. Similarly, contractile and calcium responses to 5-HT were decreased by superoxide dismutase and catalase which, catabolise superoxide anion and H(2O(2, respectively. Both Cx- and ROS-mediated effects on the responses to 5-HT were reversed by L-NAME, a NO synthase inhibitor or endothelium removal. Electronic paramagnetic resonance directly demonstrated that 5-HT-induced superoxide anion production originated from the SMC. Finally, whereas 5-HT increased NO production, it also decreased cyclic GMP content in isolated intact arteries. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that agonist-induced ROS production in SMC targeting EC via myoendothelial gap junctions reduces endothelial NO-dependent control of pulmonary vasoreactivity. Such SMC modulation of endothelial control may represent a signaling pathway controlling vasoreactivity under not only physiological but also pathological conditions that often implicate excessive ROS production.

  10. The NADPH organizers NoxO1 and p47phox are both mediators of diabetes-induced vascular dysfunction in mice

    Directory of Open Access Journals (Sweden)

    Flávia Rezende

    2018-05-01

    Innovation and conclusion: ROS production stimulated by NoxO1 and p47phox limit endothelium-dependent relaxation and maintain blood pressure in mice. However, NoxO1 and p47phox cannot substitute each other despite their similar effect on vascular function. Deletion of NoxO1 induced an anti-inflammatory phenotype, whereas p47phox deletion rather elicited a hyper-inflammatory response.

  11. Moderate Champagne consumption promotes an acute improvement in acute endothelial-independent vascular function in healthy human volunteers.

    Science.gov (United States)

    Vauzour, David; Houseman, Emily J; George, Trevor W; Corona, Giulia; Garnotel, Roselyne; Jackson, Kim G; Sellier, Christelle; Gillery, Philippe; Kennedy, Orla B; Lovegrove, Julie A; Spencer, Jeremy P E

    2010-04-01

    Epidemiological studies have suggested an inverse correlation between red wine consumption and the incidence of CVD. However, Champagne wine has not been fully investigated for its cardioprotective potential. In order to assess whether acute and moderate Champagne wine consumption is capable of modulating vascular function, we performed a randomised, placebo-controlled, cross-over intervention trial. We show that consumption of Champagne wine, but not a control matched for alcohol, carbohydrate and fruit-derived acid content, induced an acute change in endothelium-independent vasodilatation at 4 and 8 h post-consumption. Although both Champagne wine and the control also induced an increase in endothelium-dependent vascular reactivity at 4 h, there was no significant difference between the vascular effects induced by Champagne or the control at any time point. These effects were accompanied by an acute decrease in the concentration of matrix metalloproteinase (MMP-9), a significant decrease in plasma levels of oxidising species and an increase in urinary excretion of a number of phenolic metabolites. In particular, the mean total excretion of hippuric acid, protocatechuic acid and isoferulic acid were all significantly greater following the Champagne wine intervention compared with the control intervention. Our data suggest that a daily moderate consumption of Champagne wine may improve vascular performance via the delivery of phenolic constituents capable of improving NO bioavailability and reducing matrix metalloproteinase activity.

  12. Consequences of PAI-1 specific deletion in endothelium on radiation-induced intestinal damage

    International Nuclear Information System (INIS)

    Rannou, Emilie

    2015-01-01

    Radiation-induced injury to healthy tissues is a real public health problem, since they are one of the most limiting factors that restrict efficiency of radiation therapy. This problematic is also part of the French Cancer Plan 2014-2017, and involves clinical research. Concepts surrounding the development of radiation-induced damage have gradually evolved into a contemporary and integrated view of the pathogenesis, involving all compartments of target tissue. Among them, endothelium seems to be central in the sequence of interrelated events that lead to the development of radiation-induced damage, although there are rare concrete elements that support this concept. By using new transgenic mouse models, this PhD project provides a direct demonstration of an endothelium-dependent continuum in evolution of radiation-induced intestinal damage. Indeed, changes in the endothelial phenotype through targeted deletion of the gene SERPINE1, chosen because of its key role in the development of radiation enteritis, influences various parameters of the development of the disease. Thus, lack of PAI-1 secretion by endothelial cells significantly improves survival of the animals, and limits severity of early and late tissue damage after a localized small bowel irradiation. Furthermore, these mice partially KO for PAI-1 showed a decrease in the number of apoptotic intestinal stem cells in the hours following irradiation, a decrease in the macrophages infiltrate density one week after irradiation, and a change in the polarization of macrophages throughout the pathophysiological process. In an effort to protect healthy tissues from radiation therapy side effects, without hindering the cancer treatment, PAI-1 seems to be an obvious therapeutic target. Conceptually, this work represents the direct demonstration of the link between endothelium phenotype and radiation enteritis pathogenesis. (author)

  13. Confocal microscopy and electrophysiological study of single patient corneal endothelium cell cultures

    Science.gov (United States)

    Tatini, Francesca; Rossi, Francesca; Coppi, Elisabetta; Magni, Giada; Fusco, Irene; Menabuoni, Luca; Pedata, Felicita; Pugliese, Anna Maria; Pini, Roberto

    2016-04-01

    The characterization of the ion channels in corneal endothelial cells and the elucidation of their involvement in corneal pathologies would lead to the identification of new molecular target for pharmacological treatments and to the clarification of corneal physiology. The corneal endothelium is an amitotic cell monolayer with a major role in preserving corneal transparency and in regulating the water and solute flux across the posterior surface of the cornea. Although endothelial cells are non-excitable, they express a range of ion channels, such as voltage-dependent Na+ channels and K+ channels, L-type Ca2 channels and many others. Interestingly, purinergic receptors have been linked to a variety of conditions within the eye but their presence in the endothelium and their role in its pathophysiology is still uncertain. In this study, we were able to extract endothelial cells from single human corneas, thus obtaining primary cultures that represent the peculiarity of each donor. Corneas were from tissues not suitable for transplant in patients. We characterized the endothelial cells by confocal microscopy, both within the intact cornea and in the primary endothelial cells cultures. We also studied the functional role of the purinergic system (adenosine, ATP and their receptors) by means of electrophysiological recordings. The experiments were performed by patch clamp recordings and confocal time-lapse microscopy and our results indicate that the application of purinergic compounds modulates the amplitude of outward currents in the isolated endothelial cells. These findings may lead to the proposal of new therapies for endothelium-related corneal diseases.

  14. Interphase death and repair of radiation injuries to thoracic aorta endothelium of mammals

    International Nuclear Information System (INIS)

    Shcherbova, E.N.; Ivanov, Yu.V.

    1978-01-01

    Using the method of plane preparations injury to the thoracic aorta endothelium of guinea-pigs, rats and rabbits exposed to various doses of γ-rays ( 60 Co) has been studied. The value of the threshold dose, tested by diminution of the endothelial cell quantity, has been found to be 250 R for guinea-pigs, 830 R, for rats and 880 R, for rabbits. It has been shown by means of the fractionated irradiation model that the interphase endothelial cells of guinea-pigs and rats can recover from sublethal radiation injuries

  15. The role of the endothelium in asthma and chronic obstructive pulmonary disease (COPD).

    Science.gov (United States)

    Green, Clara E; Turner, Alice M

    2017-01-18

    COPD and asthma are important chronic inflammatory disorders with a high associated morbidity. Much research has concentrated on the role of inflammatory cells, such as the neutrophil, in these diseases, but relatively little focus has been given to the endothelial tissue, through which inflammatory cells must transmigrate to reach the lung parenchyma and cause damage. There is evidence that there is an abnormal amount of endothelial tissue in COPD and asthma and that this tissue and its' progenitor cells behave in a dysfunctional manner. This article reviews the evidence of the involvement of pulmonary endothelium in COPD and asthma and potential treatment options for this.

  16. Vascular morphologic and functional effect of endogenous androgens in an experimental atherosclerotic rabbits model

    International Nuclear Information System (INIS)

    Echeverry, Dario; Delgadillo, Alexandra; Montes, Felix

    2007-01-01

    Previous clinical and experimental studies suggest that androgens could have adverse, neutral or beneficial effect on atherosclerosis and its clinical manifestations. Methods: an experimental, randomized controlled study in 40 New Zeland white male rabbits was realized. 20 rabbits underwent orchidectomy and 20 were fed with an atherogenic diet for 20 weeks. These were distributed in four groups: 1. non-castrated under normal diet, 2. Castrated under normal diet, 3. non-castrated under atherogenic diet, and 4. Castrated under atherogenic diet. Total cholesterol and free testosterone were measured. After euthanasia, arterial relaxation independent of endothelium was quantified in aorta, as well as the one depending on endothelium, in vitro, and histomorphometric analysis of thoracic aorta were made in order to quantify the atherosclerotic plaque formation. Results: animals that had a normal diet (n=20) had total cholesterol of 51.1 ± 8.5 mg/dl and those with atherogenic diet of 429.2 ± 262.0 mg/dl (p< 0.001). Testosterone levels in the non- castrated group were 2.1 ± 0.3 ng/ml and in the castrated were 0.8 ± 0.4 ng/ml (p= 0.024). In non-castrated rabbits the effect of hypercholesterolemia (366 ± 226.1 mg/dl) inducing atherosclerotic plaque and functional vascular alteration was mild. On the other hand, atherogenic diet in castrated rabbits induced an increment in total cholesterol from 387.6 ± 292.7 mg/dl (p <0.001) and severe morphological changes such as plaque area 2.6 ± 2.3mm (p <0.001), vessel plaque/area 0.25 ± 0.1 (p <0.001) and area index of plaque/area of the media 0.4 ± 0.3 (p <0.001). Endothelium independent relaxation percentage was 85.5 ± 14.3% (p = NS) and endothelium dependent relaxation was 38.5 ± 201% (p = 0.03). Conclusion: This study realized in rabbits demonstrates that endogenous testosterone might have a preventive effect on atherosclerosis and favor endothelium dependent vascular relaxation in the presence of severe

  17. Nucleotide Excision DNA Repair is Associated with Age-Related Vascular Dysfunction

    Science.gov (United States)

    Durik, Matej; Kavousi, Maryam; van der Pluijm, Ingrid; Isaacs, Aaron; Cheng, Caroline; Verdonk, Koen; Loot, Annemarieke E.; Oeseburg, Hisko; Musterd-Bhaggoe, Usha; Leijten, Frank; van Veghel, Richard; de Vries, Rene; Rudez, Goran; Brandt, Renata; Ridwan, Yanto R.; van Deel, Elza D.; de Boer, Martine; Tempel, Dennie; Fleming, Ingrid; Mitchell, Gary F.; Verwoert, Germaine C.; Tarasov, Kirill V.; Uitterlinden, Andre G.; Hofman, Albert; Duckers, Henricus J.; van Duijn, Cornelia M.; Oostra, Ben A.; Witteman, Jacqueline C.M.; Duncker, Dirk J.; Danser, A.H. Jan; Hoeijmakers, Jan H.; Roks, Anton J.M.

    2012-01-01

    Background Vascular dysfunction in atherosclerosis and diabetes, as observed in the aging population of developed societies, is associated with vascular DNA damage and cell senescence. We hypothesized that cumulative DNA damage during aging contributes to vascular dysfunction. Methods and Results In mice with genomic instability due to the defective nucleotide excision repair genes ERCC1 and XPD (Ercc1d/− and XpdTTD mice), we explored age-dependent vascular function as compared to wild-type mice. Ercc1d/− mice showed increased vascular cell senescence, accelerated development of vasodilator dysfunction, increased vascular stiffness and elevated blood pressure at very young age. The vasodilator dysfunction was due to decreased endothelial eNOS levels as well as impaired smooth muscle cell function, which involved phosphodiesterase (PDE) activity. Similar to Ercc1d/− mice, age-related endothelium-dependent vasodilator dysfunction in XpdTTD animals was increased. To investigate the implications for human vascular disease, we explored associations between single nucleotide polymorphisms (SNPs) of selected nucleotide excision repair genes and arterial stiffness within the AortaGen Consortium, and found a significant association of a SNP (rs2029298) in the putative promoter region of DDB2 gene with carotid-femoral pulse wave velocity. Conclusions Mice with genomic instability recapitulate age-dependent vascular dysfunction as observed in animal models and in humans, but with an accelerated progression, as compared to wild type mice. In addition, we found associations between variations in human DNA repair genes and markers for vascular stiffness which is associated with aging. Our study supports the concept that genomic instability contributes importantly to the development of cardiovascular disease. PMID:22705887

  18. Endothelial microparticles: Sophisticated vesicles modulating vascular function

    Science.gov (United States)

    Curtis, Anne M; Edelberg, Jay; Jonas, Rebecca; Rogers, Wade T; Moore, Jonni S; Syed, Wajihuddin; Mohler, Emile R

    2015-01-01

    Endothelial microparticles (EMPs) belong to a family of extracellular vesicles that are dynamic, mobile, biological effectors capable of mediating vascular physiology and function. The release of EMPs can impart autocrine and paracrine effects on target cells through surface interaction, cellular fusion, and, possibly, the delivery of intra-vesicular cargo. A greater understanding of the formation, composition, and function of EMPs will broaden our understanding of endothelial communication and may expose new pathways amenable for therapeutic manipulation. PMID:23892447

  19. EDRF [endothelium-derived relaxing factor]-release and Ca++-channel blockage by Magnolol, an antiplatelet agent isolated from Chinese herb Magnolia officinalis, in rat thoracic aorta

    International Nuclear Information System (INIS)

    Teng, Cheming; Yu, Sheumeei; Chen, Chienchih; Huang, Yulin; Huang, Turfu

    1990-01-01

    Magnolol is an antiplatelet agent isolated from Chinese herb Magnolia officinalis. It inhibited norepinephrine-induced phasic and tonic contractions in rat thoracic aorta. At the plateau of the NE-induced tonic contraction, addition of magnolol caused two phases (fast and slow) of relaxation. These two relaxations were concentration-dependent, and were not inhibited by indomethacin. The fast relaxation was completely antagonized by hemoglobin and methylene blue, and disappeared in de-endothelialized aorta while the slow relaxation was not affected by the above treatments. Magnolol also inhibited high potassium-induced, calcium-dependent contraction of rat aorta in a concentration-dependent manner. 45 Ca ++ influx induced by high potassium or NE was markedly inhibited by magnolol. Cyclic GMP, but not PGI 2 , was increased by magnolol in intact, but not in de-endothelialized aorta. It is concluded that magnolol relaxed vascular smooth muscle by releasing endothelium-derived relaxing factor (EDRF) and by inhibiting calcium influx through voltage-gated calcium channels

  20. Enhanced K+-channel-mediated endothelium-dependent local and conducted dilation of small mesenteric arteries from ApoE−/− mice

    Science.gov (United States)

    Beleznai, Timea; Takano, Hiromichi; Hamill, Claire; Yarova, Polina; Douglas, Gillian; Channon, Keith; Dora, Kim

    2011-01-01

    Aims Agonists that evoke smooth muscle cell hyperpolarization have the potential to stimulate both local and conducted dilation. We investigated whether the endothelium-dependent vasodilators acetylcholine (ACh) and SLIGRL stimulated conducted dilation and whether this was altered by deficiency in apolipoprotein E (ApoE−/−). Methods and results Isolated mesenteric arteries were cannulated, pressurized, and precontracted with phenylephrine. Agonists were either added to the bath to study local dilation or were restricted to one end of arteries to study conducted dilation. An enhanced sensitivity to both ACh and SLIGRL was observed in mesenteric arteries from ApoE−/− mice compared with wild-type controls. Inhibition of nitric oxide (NO) synthase blocked ACh responses, but had no effect on maximum dilation to SLIGRL. SLIGRL increased endothelial cell Ca2+, hyperpolarized smooth muscle cells, and fully dilated arteries. The NO-independent dilation to SLIGRL was blocked with high [KCl] or Ca2+-activated K+-channel blockers. The hyperpolarization and dilation to SLIGRL passed through the artery to at least 2.5 mm upstream. The conducted dilation was not affected by a deficit in ApoE and could also be stimulated by ACh, suggesting NO itself could stimulate conducted dilation. Conclusion In small mesenteric arteries of ApoE−/− mice, NO-independent dilation is enhanced. Since both NO-dependent and -independent pathways can stimulate local and conducted dilation, the potential for reducing vascular resistance is improved in these vessels. PMID:21690174

  1. Gou-teng (from Uncaria rhynchophylla Miquel)-induced endothelium-dependent and -independent relaxations in the isolated rat aorta.

    Science.gov (United States)

    Kuramochi, T; Chu, J; Suga, T

    1994-01-01

    Gou-teng is a drug used for treatment of hypertension in Chinese medicine. Its antihypertensive action has been previously confirmed in the spontaneously hypertensive rat (SHR). Here, its vasorelaxing effect and the mechanisms of actions were studied in vitro. Gou-teng extract (GTE) relaxed the norepinephrine (NE)-precontracted aortic ring preparations isolated from Wistar Kyoto rats (WKY) with and without intact endothelium; the latter was significantly less sensitive than the former. The GTE-induced endothelium-dependent relaxation was significantly inhibited by NG-monomethyl-L-arginine (NMMA) in a dose-dependent manner while indomethacin did not affect the relaxation. Atropine inhibited the acetylcholine (ACh)-induced endothelium-dependent relaxation but did not the GTE-induced one. Furthermore, once GTE was applied, the following NE-induced contraction was significantly reduced even after repeated washout. NMMA effectively reduced and rather reversed this residual effect of GTE. From these results, it is concluded that GTE relaxes the NE-precontracted rat aorta through endothelium-dependent and, to lesser extent, -independent mechanisms. The endothelium-dependent component would be mediated by EDRF/NO pathway in which the muscarinic cholinoceptors were not involved. Thus, GTE appears to be a potent and long-lasting vasodilator mainly through EDRF/NO release.

  2. Postnatal Deletion of Podoplanin in Lymphatic Endothelium Results in Blood Filling of the Lymphatic System and Impairs Dendritic Cell Migration to Lymph Nodes.

    Science.gov (United States)

    Bianchi, Roberta; Russo, Erica; Bachmann, Samia B; Proulx, Steven T; Sesartic, Marko; Smaadahl, Nora; Watson, Steve P; Buckley, Christopher D; Halin, Cornelia; Detmar, Michael

    2017-01-01

    The lymphatic vascular system exerts major physiological functions in the transport of interstitial fluid from peripheral tissues back to the blood circulation and in the trafficking of immune cells to lymph nodes. Previous studies in global constitutive knockout mice for the lymphatic transmembrane molecule podoplanin reported perinatal lethality and a complex phenotype with lung abnormalities, cardiac defects, lymphedema, blood-filled lymphatic vessels, and lack of lymph node organization, reflecting the importance of podoplanin expression not only by the lymphatic endothelium but also by a variety of nonendothelial cell types. Therefore, we aimed to dissect the specific role of podoplanin expressed by adult lymphatic vessels. We generated an inducible, lymphatic-specific podoplanin knockout mouse model (Pdpn ΔLEC ) and induced gene deletion postnatally. Pdpn ΔLEC mice were viable, and their lymphatic vessels appeared morphologically normal with unaltered fluid drainage function. Intriguingly, Pdpn ΔLEC mice had blood-filled lymph nodes and vessels, most frequently in the neck and axillary region, and displayed a blood-filled thoracic duct, suggestive of retrograde filling of blood from the blood circulation into the lymphatic system. Histological and fluorescence-activated cell sorter analyses revealed normal lymph node organization with the presence of erythrocytes within lymph node lymphatic vessels but not surrounding high endothelial venules. Moreover, fluorescein isothiocyanate painting experiments revealed reduced dendritic cell migration to lymph nodes in Pdpn ΔLEC mice. These results reveal an important role of podoplanin expressed by lymphatic vessels in preventing postnatal blood filling of the lymphatic vascular system and in contributing to efficient dendritic cell migration to the lymph nodes. © 2016 American Heart Association, Inc.

  3. TRPV1 channels in human skeletal muscle feed arteries: implications for vascular function.

    Science.gov (United States)

    Ives, Stephen J; Park, Song Young; Kwon, Oh Sung; Gifford, Jayson R; Andtbacka, Robert H I; Hyngstrom, John R; Richardson, Russell S

    2017-09-01

    What is the central question of this study? We sought to determine whether human skeletal muscle feed arteries (SFMAs) express TRPV 1 channels and what role they play in modulating vascular function. What is the main finding and its importance? Human SMFAs do express functional TRPV 1 channels that modulate vascular function, specifically opposing α-adrenergic receptor-mediated vasocontraction and potentiating vasorelaxation, in an endothelium-dependent manner, as evidenced by the α 1 -receptor-mediated responses. Thus, the vasodilatory role of TRPV 1 channels, and their ligand capsaicin, could be a potential therapeutic target for improving vascular function. Additionally, given the 'sympatholytic' effect of TRPV 1 activation and known endogenous activators (anandamide, reactive oxygen species, H + , etc.), TRPV 1 channels might contribute to functional sympatholysis during exercise. To examine the role of the transient receptor potential vanilloid type 1 (TRPV 1 ) ion channel in the vascular function of human skeletal muscle feed arteries (SMFAs) and whether activation of this heat-sensitive receptor could be involved in modulating vascular function, SMFAs from 16 humans (63 ± 5 years old, range 41-89 years) were studied using wire myography with capsaicin (TRPV 1 agonist) and without (control). Specifically, phenylephrine (α 1 -adrenergic receptor agonist), dexmedetomidine (α 2 -adrenergic receptor agonist), ACh and sodium nitroprusside concentration-response curves were established to assess the role of TRPV 1 channels in α-receptor-mediated vasocontraction as well as endothelium-dependent and -independent vasorelaxation, respectively. Compared with control conditions, capsaicin significantly attenuated maximal vasocontraction in response to phenylephrine [control, 52 ± 8% length-tension max (LT max ) and capsaicin, 21 ± 5%LT max ] and dexmedetomidine (control, 29 ± 12%LT max and capsaicin, 2 ± 3%LT max ), while robustly enhancing maximal

  4. Proton nuclear magnetic resonance study on the barrier function of pig corneal epithelium and endothelium

    International Nuclear Information System (INIS)

    Yokoi, Norihiko; Kinoshita, Shigeru; Morimoto, Taketoshi; Yoshizaki, Kazuo.

    1995-01-01

    Using gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) as a tracer, the barrier function of the corneal epithelium and endothelium was evaluated by proton nuclear magnetic resonance. Whole pig eyes and cornea excised with scleral rim, which had been incubated in dextran-added Gd-DTPA solution, were subjected to T 1 relaxation measurement and magnetic resonance imaging (MRI). After incubation, the T 1 relaxation rate (1/T 1 ) of the excised cornea increased to a steady value, whereas that of the cornea from the whole eye increased only slightly. These results indicated that the increase in the T 1 relaxation rate of the excised cornea was attributable to Gd-DTPA penetration from the corneal endothelium and that the corneal epithelium exhibited a strong barrier function against Gd-DTPA entry. The MRI study also confirmed the strong barrier, enhanced signals being detected within the aqueous fluid in the T 1 -weighted image only when the corneal epithelium was abraded. Since Gd-DTPA scarcely penetrates the intact corneal epithelium, Gd-DTPA-enhanced MRI shows potential as a quantitative tracer in evaluating epithelial barrier disruption. (author)

  5. Comparison of the effects of intraocular irrigating solutions on the corneal endothelium in intraocular lens implantation.

    Science.gov (United States)

    Matsuda, M; Kinoshita, S; Ohashi, Y; Shimomura, Y; Ohguro, N; Okamoto, H; Omoto, T; Hosotani, H; Yoshida, H

    1991-01-01

    We conducted a randomised prospective controlled study to determine the effects of a glucose glutathione bicarbonate solution (BSS Plus) and a citrate acetate bicarbonate solution (S-MA2) on the corneal endothelium in patients undergoing extracapsular cataract extraction with posterior chamber lens implantation. One eye of each patient was randomly assigned to receive BSS Plus, and the other eye to receive S-MA2. BSS Plus caused significantly less corneal swelling on the first postoperative day than did S-MA2. There was no difference between the two solutions in their effect on corneal thickness one week and one month postoperatively. Computer assisted morphometric analysis of wide-field specular microscopic photographs demonstrated minimal changes in endothelial morphological characteristics in the eyes irrigated with BSS Plus. By comparison S-MA2, caused a significant loss of endothelial cells and a marked reduction in the figure coefficient. These results indicated that BSS Plus has a clinical advantage over S-MA2 with respect to the corneal endothelium. PMID:1873266

  6. Endogenous ovarian hormones affect mitochondrial efficiency in cerebral endothelium via distinct regulation of PGC-1 isoforms.

    Science.gov (United States)

    Kemper, Martin F; Zhao, Yuanzi; Duckles, Sue P; Krause, Diana N

    2013-01-01

    Mitochondria support the energy-intensive functions of brain endothelium but also produce damaging-free radicals that lead to disease. Previously, we found that estrogen treatment protects cerebrovascular mitochondria, increasing capacity for ATP production while decreasing reactive oxygen species (ROS). To determine whether these effects occur specifically in endothelium in vivo and also explore underlying transcriptional mechanisms, we studied freshly isolated brain endothelial preparations from intact and ovariectomized female mice. This preparation reflects physiologic influences of circulating hormones, hemodynamic forces, and cell-cell interactions of the neurovascular unit. Loss of ovarian hormones affected endothelial expression of the key mitochondrial regulator family, peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1), but in a unique way. Ovariectomy increased endothelial PGC-1α mRNA but decreased PGC-1β mRNA. The change in PGC-1β correlated with decreased mRNA for crucial downstream mitochondrial regulators, nuclear respiratory factor 1 and mitochondrial transcription factor A, as well as for ATP synthase and ROS protection enzymes, glutamate-cysteine ligase and manganese superoxide dismutase. Ovariectomy also decreased mitochondrial biogenesis (mitochondrial/nuclear DNA ratio). These results indicate ovarian hormones normally act through a distinctive regulatory pathway involving PGC-1β to support cerebral endothelial mitochondrial content and guide mitochondrial function to favor ATP coupling and ROS protection.

  7. Progenitor cells in pulmonary vascular remodeling

    Science.gov (United States)

    Yeager, Michael E.; Frid, Maria G.; Stenmark, Kurt R.

    2011-01-01

    Pulmonary hypertension is characterized by cellular and structural changes in the walls of pulmonary arteries. Intimal thickening and fibrosis, medial hypertrophy and fibroproliferative changes in the adventitia are commonly observed, as is the extension of smooth muscle into the previously non-muscularized vessels. A majority of these changes are associated with the enhanced presence of α-SM-actin+ cells and inflammatory cells. Atypical abundances of functionally distinct endothelial cells, particularly in the intima (plexiform lesions), and also in the perivascular regions, are also described. At present, neither the origin(s) of these cells nor the molecular mechanisms responsible for their accumulation, in any of the three compartments of the vessel wall, have been fully elucidated. The possibility that they arise from either resident vascular progenitors or bone marrow–derived progenitor cells is now well established. Resident vascular progenitor cells have been demonstrated to exist within the vessel wall, and in response to certain stimuli, to expand and express myofibroblastic, endothelial or even hematopoietic markers. Bone marrow–derived or circulating progenitor cells have also been shown to be recruited to sites of vascular injury and to assume both endothelial and SM-like phenotypes. Here, we review the data supporting the contributory role of vascular progenitors (including endothelial progenitor cells, smooth muscle progenitor cells, pericytes, and fibrocytes) in vascular remodeling. A more complete understanding of the processes by which progenitor cells modulate pulmonary vascular remodeling will undoubtedly herald a renaissance of therapies extending beyond the control of vascular tonicity and reduction of pulmonary artery pressure. PMID:22034593

  8. Gene transfer therapy in vascular diseases.

    Science.gov (United States)

    McKay, M J; Gaballa, M A

    2001-01-01

    Somatic gene therapy of vascular diseases is a promising new field in modern medicine. Recent advancements in gene transfer technology have greatly evolved our understanding of the pathophysiologic role of candidate disease genes. With this knowledge, the expression of selective gene products provides the means to test the therapeutic use of gene therapy in a multitude of medical conditions. In addition, with the completion of genome sequencing programs, gene transfer can be used also to study the biologic function of novel genes in vivo. Novel genes are delivered to targeted tissue via several different vehicles. These vectors include adenoviruses, retroviruses, plasmids, plasmid/liposomes, and oligonucleotides. However, each one of these vectors has inherent limitations. Further investigations into developing delivery systems that not only allow for efficient, targeted gene transfer, but also are stable and nonimmunogenic, will optimize the clinical application of gene therapy in vascular diseases. This review further discusses the available mode of gene delivery and examines six major areas in vascular gene therapy, namely prevention of restenosis, thrombosis, hypertension, atherosclerosis, peripheral vascular disease in congestive heart failure, and ischemia. Although we highlight some of the recent advances in the use of gene therapy in treating vascular disease discovered primarily during the past two years, many excellent studies published during that period are not included in this review due to space limitations. The following is a selective review of practical uses of gene transfer therapy in vascular diseases. This review primarily covers work performed in the last 2 years. For earlier work, the reader may refer to several excellent review articles. For instance, Belalcazer et al. (6) reviewed general aspects of somatic gene therapy and the different vehicles used for the delivery of therapeutic genes. Gene therapy in restenosis and stimulation of

  9. Disruption of COX-2 and eNOS does not confer protection from cardiovascular failure in lipopolysaccharide-treated conscious mice and isolated vascular rings

    DEFF Research Database (Denmark)

    Stæhr, Mette; Madsen, Kirsten; Vanhoutte, Paul M

    2011-01-01

    (NS 398), disruption of COX-2, endothelium removal, or eNOS deletion (eNOS(-/-)) did not improve vascular reactivity after LPS, while the NO synthase blockers 1400W and N(G)-nitro-l-arginine methyl ester prevented loss of tone. COX-2 and eNOS activities are not necessary for LPS-induced decreases...... in blood pressure, heart rate, and vascular reactivity. Inducible NOS activity appears crucial. COX-2 and eNOS are not obvious therapeutic targets for cardiovascular rescue during gram-negative endotoxemic shock....

  10. Detection and Quantification of Vascular Endothelial Growth Factor Receptor Tyrosine Kinases in Primary Human Endothelial Cells.

    Science.gov (United States)

    Fearnley, Gareth W; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2015-01-01

    Proteins differ widely in their pattern of expression depending on organism, tissue, and regulation in response to changing conditions. In the mammalian vasculature, the endothelium responds to vascular endothelial growth factors (VEGFs) via membrane-bound receptor tyrosine kinases (VEGFRs) to modulate many aspects of vascular physiology including vasculogenesis, angiogenesis, and blood pressure. Studies on VEGFR biology are thus dependent on detecting expression levels in different cell types and evaluating how changes in protein levels correlate with changing conditions including circulating VEGF levels. Here, we present a robust immunoblot-based protocol for detecting and quantifying VEGFRs in human endothelial cells. Using internal and external standards, we can rapidly evaluate receptor copy number and assess how this is altered in response to the cellular environment.

  11. The role of inflammation in vascular insulin resistance with focus on IL-6

    DEFF Research Database (Denmark)

    Andersen, Kirsten; Pedersen, B.K.

    2008-01-01

    The present review focuses on the possible role of interleukin-(IL)-6 in vascular insulin resistance. The endothelium plays an important role in regulating the tone of the vasculature by releasing nitric oxide (NO) to the smooth muscles of the vessels, thereby regulating the distribution of blood....... It is likely that chronic low-level inflammation plays an important role in developing endothelial dysfunction mainly through proinflammatory actions of tumor necrosis factor alpha (TNF-alpha). TNF-alpha induces production of IL-6 and it has been suggested that a causal relationship exists between endothelial...... dysfunction and these cytokines. With regard to vascular insulin resistance, the available data point to a direct pathogenic role of TNF-alpha in mediating endothelial dysfunction, whereas with regard to IL-6 evidence is sparse and does not allow any firm conclusions Udgivelsesdato: 2008/9...

  12. Favorable Vascular Actions of Angiotensin-(1-7) in Human Obesity.

    Science.gov (United States)

    Schinzari, Francesca; Tesauro, Manfredi; Veneziani, Augusto; Mores, Nadia; Di Daniele, Nicola; Cardillo, Carmine

    2018-01-01

    Obese patients have vascular dysfunction related to impaired insulin-stimulated vasodilation and increased endothelin-1-mediated vasoconstriction. In contrast to the harmful vascular actions of angiotensin (Ang) II, the angiotensin-converting enzyme 2 product Ang-(1-7) has shown to exert cardiovascular and metabolic benefits in experimental models through stimulation of the Mas receptor. We, therefore, examined the effects of exogenous Ang-(1-7) on vasodilator tone and endothelin-1-dependent vasoconstriction in obese patients. Intra-arterial infusion of Ang-(1-7) (10 nmol/min) resulted in significant increase in unstimulated forearm flow ( P =0.03), an effect that was not affected by the Mas receptor antagonist A779 (10 nmol/min; P >0.05). In the absence of hyperinsulinemia, however, forearm flow responses to graded doses of acetylcholine and sodium nitroprusside were not different during Ang-(1-7) administration compared with saline (both P >0.05). During infusion of regular insulin (0.15 mU/kg per minute), by contrast, endothelium-dependent vasodilator response to acetylcholine was significantly enhanced by Ang-(1-7) ( P =0.04 versus saline), whereas endothelium-independent response to sodium nitroprusside was not modified ( P =0.91). Finally, Ang-(1-7) decreased the vasodilator response to endothelin A receptor blockade (BQ-123; 10 nmol/min) compared with saline (6±1% versus 93±17%; P obese patients Ang-(1-7) has favorable effects not only to improve insulin-stimulated endothelium-dependent vasodilation but also to blunt endothelin-1-dependent vasoconstrictor tone. These findings provide support for targeting Ang-(1-7) to counteract the hemodynamic abnormalities of human obesity. © 2017 American Heart Association, Inc.

  13. An Analysis of Responses to Defibrotide in the Pulmonary Vascular Bed of the Cat.

    Science.gov (United States)

    Kaye, Alan D; Skonieczny, Brendan D; Kaye, Aaron J; Harris, Zoey I; Luk, Eric J

    2016-01-01

    Defibrotide is a polydisperse mixture of single-stranded oligonucleotides with many pharmacologic properties and multiple actions on the vascular endothelium. Responses to defibrotide and other vasodepressor agents were evaluated in the pulmonary vascular bed of the cat under conditions of controlled pulmonary blood flow and constant left atrial pressure. Lobar arterial pressure was increased to a high steady level with the thromboxane A2 analog U-46619. Under increased-tone conditions, defibrotide caused dose-dependent decreases in lobar arterial pressure without altering systemic arterial and left atrial pressures. Responses to defibrotide were significantly attenuated after the administration of the cyclooxygenase inhibitor sodium meclofenamate. Responses to defibrotide were also significantly attenuated after the administration of both the adenosine 1 and 2 receptor antagonists 8-cyclopentyl-1,3-dimethylxanthine and 8-(3-chlorostyryl)caffeine. Responses to defibrotide were not altered after the administration of the vascular selective adenosine triphosphate-sensitive potassium channel blocker U-37883A, or after the administration of the nitric oxide synthase inhibitor L-N-(1-iminoethyl)-ornithine. These data show that defibrotide has significant vasodepressor activity in the pulmonary vascular bed of the cat. They also suggest that pulmonary vasodilator responses to defibrotide are partially dependent on both the activation of the cyclooxygenase enzyme and adenosine 1 and 2 receptor pathways and independent of the activation of adenosine triphosphate-sensitive potassium channels or the synthesis of nitric oxide in the pulmonary vascular bed of the cat.

  14. Vascular Reactivity: Evaluation of an acute suprasystolic occlusion with impedance plethysmography

    International Nuclear Information System (INIS)

    Herrera, M C; Bonaudo, M; Conde, A; Palavecino, L

    2007-01-01

    In the clinical set, the evaluation of endothelium- dependent vasodilator response of large vessels is carried out using ultrasound equipment for vascular flow determinations and during administration of vasoactive drugs. This work proposes to use a substantially cheaper technique and a sustained cuff arterial occlusion in order to cause vasodilation. Impedance plethysmography is used to detect the arterial pulse wave over radial artery while the forearm is occluded by above the recording site. From these plethysmographic waves, three indexes and their changes -between control and maximal response post-occlusion- were calculated. 33 complete records obtained from healthy low-risk volunteers were analyzed. Between control and post-occlusion maximal response, 'average percentual change of pulse wave amplitude' were (35±13)%, 'stiffness index' did not show significant differences (6,38±0,98 vs 6,38±0,94 and 'reflection index' was significant lower (58±15 vs 35±16)%. These results indicate that: 1- cuff occlusion maneuver was effective to cause endothelium-dependent vasodilation, 2-changes of pulse wave amplitude and reflection index could be used as markers of athero-arteriosclerotic damage in the vascular bed, even in sub-clinical conditions

  15. A Randomized Trial of Vitamin D Supplementation on Vascular Function in CKD.

    Science.gov (United States)

    Kumar, Vivek; Yadav, Ashok Kumar; Lal, Anupam; Kumar, Vinod; Singhal, Manphool; Billot, Laurent; Gupta, Krishan Lal; Banerjee, Debasish; Jha, Vivekanand

    2017-10-01

    Vitamin D deficiency associates with mortality in patients with CKD, and vitamin D supplementation might mitigate cardiovascular disease risk in CKD. In this randomized, double-blind, placebo-controlled trial, we investigated the effect of cholecalciferol supplementation on vascular function in 120 patients of either sex, aged 18-70 years, with nondiabetic CKD stage 3-4 and vitamin D deficiency (serum 25-hydroxyvitamin D ≤20 ng/ml). We randomized patients using a 1:1 ratio to receive either two directly observed oral doses of cholecalciferol (300,000 IU) or matching placebo at baseline and 8 weeks. The primary outcome was change in endothelium-dependent brachial artery flow-mediated dilation at 16 weeks. Secondary outcome measures included changes in pulse wave velocity and circulating biomarkers. Cholecalciferol supplementation significantly increased endothelium-dependent brachial artery flow-mediated dilation at 16 weeks, whereas placebo did not (between-group difference in mean change: 5.49%; 95% confidence interval, 4.34% to 6.64%; P vitamin D deficiency, vitamin D supplementation may improve vascular function. This study is registered with the Clinical Trials Registry of India (no.: CTRI/2013/05/003648). Copyright © 2017 by the American Society of Nephrology.

  16. Pulmonary allergic reactions impair systemic vascular relaxation in ragweed sensitive mice.

    Science.gov (United States)

    Hazarika, Surovi; Van Scott, Michael R; Lust, Robert M; Wingard, Christopher J

    2010-01-01

    Asthma is often associated with cardiovascular complications, and recent observations in animal models indicate that induction of pulmonary allergic inflammation increases susceptibility of the myocardium to ischemia and reperfusion injury. In this study, we used a murine model of allergen sensitization in which aspiration of allergen induces pulmonary and systemic inflammation, to test the hypothesis that pulmonary exposure to allergen alters vascular relaxation responses. BALB/C mice were sensitized by intraperitoneal injection of ragweed and challenged by intratracheal instillation of allergen. Airway hyperreactivity and pulmonary inflammation were confirmed, and endothelium-dependent and -independent reactivity of thoracic aorta rings were evaluated. Ragweed sensitization and challenge induced airway hyperreactivity to methacholine and pulmonary inflammation, but did not affect constrictor responses of the aortic rings to phenylephrine and K+ depolarization. In contrast, maximal relaxation of aortic rings to acetylcholine and sodium nitroprusside decreased from 87.6±3.9% and 97.7±1.2% to 32±4% and 51±6%, respectively (p<0.05). The sensitivity to acetylcholine was likewise reduced (EC₅₀=0.26±0.05 μM vs. 1.09±0.16 μM, p<0.001). The results demonstrate that induction of allergic pulmonary inflammation in mice depresses endothelium-dependent and -independent vascular relaxation, which can contribute to cardiovascular complications associated with allergic inflammation. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Teaching Teaching & Understanding Understanding

    DEFF Research Database (Denmark)

    2006-01-01

    "Teaching Teaching & Understanding Understanding" is a 19-minute award-winning short-film about teaching at university and higher-level educational institutions. It is based on the "Constructive Alignment" theory developed by Prof. John Biggs. The film delivers a foundation for understanding what...

  18. Three-dimensional bioprinting of thick vascularized tissues

    Science.gov (United States)

    Kolesky, David B.; Homan, Kimberly A.; Skylar-Scott, Mark A.; Lewis, Jennifer A.

    2016-03-01

    The advancement of tissue and, ultimately, organ engineering requires the ability to pattern human tissues composed of cells, extracellular matrix, and vasculature with controlled microenvironments that can be sustained over prolonged time periods. To date, bioprinting methods have yielded thin tissues that only survive for short durations. To improve their physiological relevance, we report a method for bioprinting 3D cell-laden, vascularized tissues that exceed 1 cm in thickness and can be perfused on chip for long time periods (>6 wk). Specifically, we integrate parenchyma, stroma, and endothelium into a single thick tissue by coprinting multiple inks composed of human mesenchymal stem cells (hMSCs) and human neonatal dermal fibroblasts (hNDFs) within a customized extracellular matrix alongside embedded vasculature, which is subsequently lined with human umbilical vein endothelial cells (HUVECs). These thick vascularized tissues are actively perfused with growth factors to differentiate hMSCs toward an osteogenic lineage in situ. This longitudinal study of emergent biological phenomena in complex microenvironments represents a foundational step in human tissue generation.

  19. Mesoglycan: Clinical Evidences for Use in Vascular Diseases

    Directory of Open Access Journals (Sweden)

    Antonella Tufano

    2010-01-01

    Full Text Available Vascular glycosaminoglycans (GAG are essential components of the endothelium and vessel wall and have been shown to be involved in several biologic functions. Mesoglycan, a natural GAG preparation, is a polysaccharide complex rich in sulphur radicals with strong negative electric charge. It is extracted from porcine intestinal mucosa and is composed of heparan sulfate, dermatan sulfate, electrophoretically slow-moving heparin, and variable and minimal quantities of chondroitin sulfate. Data on antithrombotic and profibrinolytic activities of the drug show that mesoglycan, although not indicated in the treatment of acute arterial or venous thrombosis because of the low antithrombotic effect, may be useful in the management of vascular diseases, when combined with antithrombotics in the case of disease of cerebral vasculature, and with antithrombotics and vasodilator drugs in the case of chronic peripheral arterial disease. The protective effect of mesoglycan in patients with venous thrombosis and the absence of side effects, support the use of GAG in patients with chronic venous insufficiency and persistent venous ulcers, in association with compression therapy (zinc bandages, multiple layer bandages, etc., elastic compression stockings, and local care, and in the prevention of recurrences in patients with previous DVT following the standard course of oral anticoagulation treatment.

  20. The effect of chronic nitric oxide inhibition on vascular reactivity and blood pressure in pregnant rats

    Directory of Open Access Journals (Sweden)

    Nilton Hideto Takiuti

    1999-09-01

    Full Text Available CONTEXT: The exact mechanism involved in changes in blood pressure and peripheral vascular resistance during pregnancy is unknown. OBJECTIVE:To evaluate the importance of endothelium-derivated relaxing factor (EDRF and its main component, nitric oxide, in blood pressure and vascular reactivity in pregnant rats. DESIGN: Clinical trial in experimentation animals. SETTING: University laboratory of Pharmacology. SAMPLE: Female Wistar rats with normal blood pressure, weight (152 to 227 grams and age (90 to 116 days. INTERVENTION: The rats were divided in to four groups: pregnant rats treated with L-NAME (13 rats; pregnant control rats (8 rats; virgin rats treated with L-NAME (10 rats; virgin control rats (12 rats. The vascular preparations and caudal blood pressure were obtained at the end of pregnancy, or after the administration of L-NAME in virgin rats. MAIN MEASUREMENTS: The caudal blood pressure and the vascular response to acetylcholine in pre-contracted aortic rings, both with and without endothelium, and the effect of nitric oxide inhibition, Nw-L-nitro-arginine methyl-ester (L-NAME, in pregnant and virgin rats. The L-NAME was administered in the drinking water over a 10-day period. RESULTS: The blood pressure decreased in pregnancy. Aortic rings of pregnant rats were more sensitive to acetylcholine than those of virgin rats. After L-NAME treatment, the blood pressure increased and relaxation was blocked in both groups. The fetal-placental unit weight of the L-NAME group was lower than that of the control group. CONCLUSION: Acetylcholine-induced vasorelaxation sensitivity was greater in pregnant rats and that blood pressure increased after L-NAME administration while the acetylcholine-induced vasorelaxation response was blocked.

  1. Differential expression of the Slc4 bicarbonate transporter family in murine corneal endothelium and cell culture.

    Science.gov (United States)

    Shei, William; Liu, Jun; Htoon, Hla M; Aung, Tin; Vithana, Eranga N

    2013-01-01

    To characterize the relative expression levels of all the solute carrier 4 (Slc4) transporter family members (Slc4a1-Slc4a11) in murine corneal endothelium using real-time quantitative (qPCR), to identify further important members besides Slc4a11 and Slc4a4, and to explore how close to the baseline levels the gene expressions remain after cells have been subjected to expansion and culture. Descemet's membrane-endothelial layers of 8-10-week-old C57BL6 mice were stripped from corneas and used for both primary cell culture and direct RNA extraction. Total RNA (from uncultured cells as well as cultured cells at passages 2 and 7) was reverse transcribed, and the cDNA was used for real time qPCR using specific primers for all the Slc4 family members. The geNorm method was applied to determine the most stable housekeeping genes and normalization factor, which was calculated from multiple housekeeping genes for more accurate and robust quantification. qPCR analyses revealed that all Slc4 bicarbonate transporter family members were expressed in mouse corneal endothelium. Slc4a11 showed the highest expression, which was approximately three times higher than that of Slc4a4 (3.4±0.3; p=0.004). All Slc4 genes were also expressed in cultured cells, and interestingly, the expression of Slc4a11 in cultured cells was significantly reduced by approximately 20-fold (0.05±0.001; p=0.000001) in early passage and by approximately sevenfold (0.14±0.002; p=0.000002) in late passage cells. Given the known involvement of SLC4A4 and SLC4A11 in corneal dystrophies, we speculate that the other two highly expressed genes in the uncultured corneal endothelium, SLC4A2 and SLC4A7, are worthy of being considered as potential candidate genes for corneal endothelial diseases. Moreover, as cell culture can affect expression levels of Slc4 genes, caution and careful design of experiments are necessary when undertaking studies of Slc4-mediated ion transport in cultured cells.

  2. Impaired vascular function in physically active premenopausal women with functional hypothalamic amenorrhea is associated with low shear stress and increased vascular tone.

    Science.gov (United States)

    O'Donnell, Emma; Goodman, Jack M; Mak, Susanna; Harvey, Paula J

    2014-05-01

    Exercise-trained hypoestrogenic premenopausal women with functional hypothalamic amenorrhea (ExFHA) exhibit impaired endothelial function. The vascular effects of an acute bout of exercise, a potent nitric oxide stimulus, in these women are unknown. Three groups were studied: recreationally active ExFHA women (n = 12; 24.2 ± 1.2 years of age; mean ± SEM), and recreationally active (ExOv; n = 14; 23.5 ± 1.2 years of age) and sedentary (SedOv; n = 15; 23.1 ± 0.5 years of age) ovulatory eumenorrheic women. Calf blood flow (CBF) and brachial artery flow-mediated dilation (FMD) were evaluated using plethysmographic and ultrasound techniques, respectively, both before and 1 hour after 45 minutes of moderate-intensity exercise. Endothelium-independent dilation was assessed at baseline using glyceryl trinitrate. Calf vascular resistance (CVR) and brachial peak shear rate, as determined by the area under the curve (SRAUCpk), were also calculated. FMD and glyceryl trinitrate responses were lower (P .05) the findings. CBF was lower (P .05) between the groups. CBF in ExFHA was increased (P < .05) and CVR decreased (P < .05) to levels observed in ovulatory women. Acute dynamic exercise improves vascular function in ExFHA women. Although the role of estrogen deficiency per se is unclear, our findings suggest that low shear rate and increased vasoconstrictor tone may play a role in impaired basal vascular function in these women.

  3. The Anti-Apoptotic Properties of APEX1 in the Endothelium Require the First 20 Amino Acids and Converge on Thioredoxin-1.

    Science.gov (United States)

    Dyballa-Rukes, Nadine; Jakobs, Philipp; Eckers, Anna; Ale-Agha, Niloofar; Serbulea, Vlad; Aufenvenne, Karin; Zschauer, Tim-Christian; Rabanter, Lothar L; Jakob, Sascha; von Ameln, Florian; Eckermann, Olaf; Leitinger, Norbert; Goy, Christine; Altschmied, Joachim; Haendeler, Judith

    2017-04-20

    The APEX nuclease (multifunctional DNA repair enzyme) 1 (APEX1) has a disordered N-terminus, a redox, and a DNA repair domain. APEX1 has anti-apoptotic properties, which have been linked to both domains depending on cell type and experimental conditions. As protection against apoptosis is a hallmark of vessel integrity, we wanted to elucidate whether APEX1 acts anti-apoptotic in primary human endothelial cells and, if so, what the underlying mechanisms are. APEX1 inhibits apoptosis in endothelial cells by reducing Cathepsin D (CatD) cleavage, potentially by binding to the unprocessed form. Diminished CatD activation results in increased Thioredoxin-1 protein levels leading to reduced Caspase 3 activation. Consequently, apoptosis rates are decreased. This depends on the first twenty amino acids in APEX1, because APEX1 (21-318) induces CatD activity, decreases Thioredoxin-1 protein levels, and, thus, increases Caspase 3 activity and apoptosis. Along the same lines, APEX1 (1-20) inhibits Caspase 3 cleavage and apoptosis. Furthermore, re-expression of Thioredoxin-1 via lentiviral transduction rescues endothelial cells from APEX1 (21-318)-induced apoptosis. In an in vivo model of restenosis, which is characterized by oxidative stress, endothelial activation, and smooth muscle cell proliferation, Thioredoxin-1 protein levels are reduced in the endothelium of the carotids. APEX1 acts anti-apoptotic in endothelial cells. This anti-apoptotic effect depends on the first 20 amino acids of APEX1. As proper function of the endothelium during life span is a hallmark for individual health span, a detailed characterization of the functions of the APEX1N-terminus is required to understand all its cellular properties. Antioxid. Redox Signal. 26, 616-629.

  4. Influence of metabolism modifiers of cyclic nucleotides on contractility of right ventricle of rat heart with intact and removed endocardial endothelium

    Directory of Open Access Journals (Sweden)

    Savić Slađana

    2010-01-01

    Full Text Available Introduction. Endocardial endothelium, a natural biological barrier between circulating blood in heart ventricle and cells, creates a complex yet finely tuned balance of interactions with the immediate environment. Objective. We investigated the roles of theophylline, nonspecific phosphodiesterase inhibitor, and imidazole, an activator of phosphodiesterase on contractility of the right ventricle of rat heart, with intact and removed endocardial endothelium. Methods. Adult rats, of both sexes, type Wistar albino, were used in this experiment. All experiments were conducted on the preparations of the right ventricle using two experimental models. In the first experimental model, an endocardial endothelium (EE was preserved, and in the second model, an endocardial endothelium (-EE was removed using 1% solution Triton X-100. Results. Theophylline (1x10-2 mol/l expressed the positive inotropic effect on the heart, regardless of the presence of the endocardial endothelium. Inotropic response as multiple process can be induced by inhibition of phosphodiesterase, accumulation of cyclic nucleotides and activation of Ca2+ channels. Imidazole (2x10-3 mol/l increased the contractility of the right ventricle of the heart with EE. The modulator effect of endocardial endothelium on contractility of imidazole proved to be significant. As imidazole influenced the contractility of the right ventricle only in the presence of the endocardial endothelium, it is assumed that its effect is mediated via deliverance of endothelial mediators with positive inotropic effect. Conclusion. An intact endocardial endothelium is necessary for completion of contractile performance of the heart.

  5. Endothelium-derived vasoactive factors and hypertension: possible roles in pathogenesis and as treatment targets

    DEFF Research Database (Denmark)

    Félétou, Michel; Köhler, Ralf; Vanhoutte, Paul M

    2010-01-01

    Endothelial cells regulate vascular tone by releasing various contracting and relaxing factors including nitric oxide (NO), arachidonic acid metabolites (derived from cyclooxygenases, lipoxygenases, and cytochrome P450 monooxygenases), reactive oxygen species, and vasoactive peptides. Additionally...

  6. Abnormal endothelium-dependent microvascular dilator reactivity in pregnancies complicated by normotensive intrauterine growth restriction

    NARCIS (Netherlands)

    Koopmans, C.M.; Blaauw, Judith; van Pampus, Maria; Rakhorst, G.; Aarnoudse, J.G.

    OBJECTIVE: Normotensive intrauterine growth restriction and preeclampsia share a similar placenta pathophysiology, whereas maternal clinical manifestations differ. Clinical symptoms of preeclampsia are partly attributed to vascular endothelial dysfunction, but it is unclear whether this phenomenon

  7. Major Vascular Neurocognitive Disorder: A Reappraisal to Vascular Dementia

    Directory of Open Access Journals (Sweden)

    Emre Kumral

    2017-03-01

    Full Text Available Major vascular neurocognitive disorder (NCD is the second leading form of dementia after Alzheimer’s disease, accounting for 17-20% of all dementias. Vascular NCD is a progressive disease caused by reduced cerebral blood flow related to multiple large volume or lacunar infarcts that induce a sudden onset and stepwise decline in cognitive abilities. Despite its prevalence and clinical importance, there is still controversy in the terminology of vascular NCD. Only after the release of Diagnostic and Statistical Manual of Mental Disorders-5 (DSM-5 (2013 did the American Psychiatric Association define vascular dementia as “major vascular NCD”. This review includes an overview of risk factors, pathophysiology, types, diagnostic and clinical features of major vascular NCD, and current treatment options of vascular NCD regarding to DSM-5 criteria

  8. Circulating endothelial progenitor cells do not contribute to regeneration of endothelium after murine arterial injury

    DEFF Research Database (Denmark)

    Hagensen, Mette; Raarup, Merete Krog; Mortensen, Martin Bødtker

    2012-01-01

    into endothelial cells (ECs). We tested this theory in a murine arterial injury model using carotid artery transplants and fluorescent reporter mice. METHODS AND RESULTS: Wire-injured carotid artery segments from wild-type mice were transplanted into TIE2-GFP transgenic mice expressing green fluorescent protein...... (GFP) in ECs. We found that the endothelium regenerated with GFP(+) ECs as a function of time, evolving from the anastomosis sites towards the centre of the transplant. A migration front of ECs at Day 7 was verified by scanning electron microscopy and by bright-field microscopy using recipient TIE2-lac......Z mice with endothelial β-galactosidase expression. These experiments indicated migration of flanking ECs rather than homing of circulating cells as the underlying mechanism. To confirm this, we interposed non-injured wild-type carotid artery segments between the denuded transplant and the TIE2-GFP...

  9. Effects of prolonged ingestion of epigallocatechin gallate on diabetes type 1-induced vascular modifications in the erectile tissue of rats.

    Science.gov (United States)

    Lombo, C; Morgado, C; Tavares, I; Neves, D

    2016-07-01

    Diabetes Mellitus type 1 is a metabolic disease that predisposes to erectile dysfunction, partly owing to structural and molecular changes in the corpus cavernosum (CC) vessels. The aim of this study was to determine the effects of early treatment with the antioxidant epigallocatechin gallate (EGCG) in cavernous diabetes-induced vascular modifications. Diabetes was induced in two groups of young Wistar rats; one group was treated with EGCG for 10 weeks. A reduction in smooth muscle content was observed in the CC of diabetic rats, which was significantly attenuated with EGCG consumption. No differences were observed among groups, neither in the expression of VEGF assayed by western blotting nor in the immunofluorescent labeling of vascular endothelial growth factor (VEGF) and its receptors (VEGFR1 and VEGFR2). VEGFR2 was restricted to the endothelium, whereas VEGF and VEGFR1 co-localized in the smooth muscle layer. With regard to the Angiopoietin/Tie-2 system, no quantitative differences in Angiopoietin 1 were observed among the experimental groups. Ang1 localization was restricted to the smooth muscle layer, and receptor Tie2 and Angiopoietin 2 were both expressed in the endothelium. In brief, our results suggest that EGCG consumption prevented diabetes-induced loss of cavernous smooth muscle but does not affect vascular growth factor expression in young rats.

  10. Activated Fps/Fes partially rescues the in vivo developmental potential of Flk1-deficient vascular progenitor cells.

    Science.gov (United States)

    Haigh, Jody J; Ema, Masatsugu; Haigh, Katharina; Gertsenstein, Marina; Greer, Peter; Rossant, Janet; Nagy, Andras; Wagner, Erwin F

    2004-02-01

    Relatively little is known about the modulators of the vascular endothelial growth factor A (VEGF-A)/Flk1 signaling cascade. To functionally characterize this pathway, VEGF-A stimulation of endothelial cells was performed. VEGF-A-mediated Flk1 activation resulted in increased translocation of the endogenous Fps/Fes cytoplasmic tyrosine kinase to the plasma membrane and increased tyrosine phosphorylation, suggesting a role for Fps/Fes in VEGF-A/Flk1 signaling events. Addition of a myristoylation consensus sequence to Fps/Fes resulted in VEGF-A-independent membrane localization of Fps/Fes in endothelial cells. Expression of the activated Fps/Fes protein in Flk1-deficient embryonic stem (ES) cells rescued their contribution to the developing vascular endothelium in vivo by using ES cell-derived chimeras. Activated Fps/Fes contributed to this rescue event by restoring the migratory potential to Flk1 null progenitors, which is required for movement of hemangioblasts from the primitive streak region into the yolk sac proper. Activated Fps/Fes in the presence of Flk1 increased the number of hemangioblast colonies in vitro and increased the number of mesodermal progenitors in vivo. These results suggest that Fps/Fes may act synergistically with Flk1 to modulate hemangioblast differentiation into the endothelium. We have also demonstrated that activated Fps/Fes causes hemangioma formation in vivo, independently of Flk1, as a result of increasing vascular progenitor density.

  11. γ-Oryzanol reduces adhesion molecule expression in vascular endothelial cells via suppression of nuclear factor-κB activation.

    Science.gov (United States)

    Sakai, Satoshi; Murata, Takahisa; Tsubosaka, Yoshiki; Ushio, Hideki; Hori, Masatoshi; Ozaki, Hiroshi

    2012-04-04

    γ-Oryzanol (γ-ORZ) is a mixture of phytosteryl ferulates purified from rice bran oil. In this study, we examined whether γ-ORZ represents a suppressive effect on the lipopolysaccharide (LPS)-induced adhesion molecule expression on vascular endothelium. Treatment with LPS elevated the mRNA expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin in bovine aortic endothelial cells (BAECs). Pretreatment with γ-ORZ dose-dependently decreased the LPS-mediated expression of these genes. Western blotting also revealed that pretreatment with γ-ORZ dose-dependently inhibited LPS-induced VCAM-1 expression in human umbilical vein endothelial cells. Consistently, pretreatment with γ-ORZ dose-dependently reduced LPS-induced U937 monocyte adhesion to BAECs. In immunofluorescence, LPS caused nuclear factor-κB (NF-κB) nuclear translocation in 40% of BAECs, which indicates NF-κB activation. Pretreatment with γ-ORZ, as well as its components (cycloartenyl ferulate, ferulic acid, or cycloartenol), dose-dependently inhibited LPS-mediated NF-κB activation. Collectively, our results suggested that γ-ORZ reduced LPS-mediated adhesion molecule expression through NF-κB inhibition in vascular endothelium.

  12. Time Window Is Important for Adenosine Preventing Cold-induced Injury to the Endothelium.

    Science.gov (United States)

    Li, Yan; Hu, Xiao-Xia; Fu, Li; Chen, Jing; Lu, Li-He; Liu, Xiang; Xu, Zhe; Zhou, Li; Wang, Zhi-Ping; Zhang, Xi; Ou, Zhi-Jun; Ou, Jing-Song

    2017-06-01

    Cold cardioplegia is used to induce heart arrest during cardiac surgery. However, endothelial function may be compromised after this procedure. Accordingly, interventions such as adenosine, that mimic the effects of preconditioning, may minimize endothelial injury. Herein, we investigated whether adenosine prevents cold-induced injury to the endothelium. Cultured human cardiac microvascular endothelial cells were treated with adenosine for different durations. Phosphorylation and expression of endothelial nitric oxide synthase (eNOS), p38MAPK, ERK1/2, and p70S6K6 were measured along with nitric oxide (NO) production using diaminofluorescein-2 diacetate (DAF-2DA) probe. Cold-induced injury by hypothermia to 4°C for 45 minutes to mimic conditions of cold cardioplegia during open heart surgery was induced in human cardiac microvascular endothelial cells. Under basal conditions, adenosine stimulated NO production, eNOS phosphorylation at serine 1177 from 5 minutes to 4 hours and inhibited eNOS phosphorylation at threonine 495 from 5 minutes to 6 hours, but increased phosphorylation of ERK1/2, p38MAPK, and p70S6K only after exposure for 5 minutes. Cold-induced injury inhibited NO production and the phosphorylation of the different enzymes. Importantly, adenosine prevented these effects of hypothermic injury. Our data demonstrated that adenosine prevents hypothermic injury to the endothelium by activating ERK1/2, eNOS, p70S6K, and p38MAPK signaling pathways at early time points. These findings also indicated that 5 minutes after administration of adenosine or release of adenosine is an important time window for cardioprotection during cardiac surgery.

  13. Endothelium-dependent relaxation and angiotensin II sensitivity in experimental preeclampsia.

    Directory of Open Access Journals (Sweden)

    Anne Marijn van der Graaf

    Full Text Available OBJECTIVE: We investigated endothelial dysfunction and the role of angiotensin (Ang-II type I (AT1-R and type II (AT2-R receptor in the changes in the Ang-II sensitivity in experimental preeclampsia in the rat. METHODS: Aortic rings were isolated from low dose lipopolysaccharide (LPS infused pregnant rats (experimental preeclampsia; n=9, saline-infused pregnant rats (n=8, and saline (n=8 and LPS (n=8 infused non-pregnant rats. Endothelium-dependent acetylcholine-mediated relaxation was studied in phenylephrine-preconstricted aortic rings in the presence of vehicle, N(G-nitro-L-arginine methyl ester and/or indomethacin. To evaluate the role for AT1-R and AT2-R in Ang-II sensitivity, full concentration response curves were obtained for Ang-II in the presence of losartan or PD123319. mRNA expression of the AT1-R and AT2-R, eNOS and iNOS, COX1 and COX2 in aorta were evaluated using real-time RT-PCR. RESULTS: The role of vasodilator prostaglandins in the aorta was increased and the role of endothelium-derived hyperpolarizing factor and response of the AT1-R and AT2-R to Ang-II was decreased in pregnant saline infused rats as compared with non-pregnant rats. These changes were not observed during preeclampsia. CONCLUSION: Pregnancy induced adaptations in endothelial function, which were not observed in the rat model for preeclampsia. This role of lack of pregnancy induced endothelial adaptation in the pathophysiology of experimental preeclampsia needs further investigation.

  14. Net Fluorescein Flux Across Corneal Endothelium Strongly Suggests Fluid Transport is due to Electro-osmosis.

    Science.gov (United States)

    Sanchez, J M; Cacace, V; Kusnier, C F; Nelson, R; Rubashkin, A A; Iserovich, P; Fischbarg, J

    2016-08-01

    We have presented prior evidence suggesting that fluid transport results from electro-osmosis at the intercellular junctions of the corneal endothelium. Such phenomenon ought to drag other extracellular solutes. We have investigated this using fluorescein-Na2 as an extracellular marker. We measured unidirectional fluxes across layers of cultured human corneal endothelial (HCE) cells. SV-40-transformed HCE layers were grown to confluence on permeable membrane inserts. The medium was DMEM with high glucose and no phenol red. Fluorescein-labeled medium was placed either on the basolateral or the apical side of the inserts; the other side carried unlabeled medium. The inserts were held in a CO2 incubator for 1 h (at 37 °C), after which the entire volume of the unlabeled side was collected. After that, label was placed on the opposite side, and the corresponding paired sample was collected after another hour. Fluorescein counts were determined with a (Photon Technology) DeltaScan fluorometer (excitation 380 nm; emission 550 nm; 2 nm bwth). Samples were read for 60 s. The cells utilized are known to transport fluid from the basolateral to the apical side, just as they do in vivo in several species. We used 4 inserts for influx and efflux (total: 20 1-h periods). We found a net flux of fluorescein from the basolateral to the apical side. The flux ratio was 1.104 ± 0.056. That difference was statistically significant (p = 0.00006, t test, paired samples). The endothelium has a definite restriction at the junctions. Hence, an asymmetry in unidirectional fluxes cannot arise from osmosis, and can only point instead to paracellular solvent drag. We suggest, once more, that such drag is due to electro-osmotic coupling at the paracellular junctions.

  15. Plant Vascular Biology 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Biao

    2014-11-17

    This grant supported the Second International Conference on Plant Vascular Biology (PVB 2010) held July 24-28, 2010 on the campus of Ohio State University, Columbus, Ohio. Biao Ding (Ohio State University; OSU) and David Hannapel (Iowa State University; ISU) served as co-chairs of this conference. Biao Ding served as the local organizer. PVB is defined broadly here to include studies on the biogenesis, structure and function of transport systems in plants, under conditions of normal plant growth and development as well as of plant interactions with pathogens. The transport systems cover broadly the xylem, phloem, plasmodesmata and vascular cell membranes. The PVB concept has emerged in recent years to emphasize the integrative nature of the transport systems and approaches to investigate them.

  16. Vascular cognitive impairment

    Directory of Open Access Journals (Sweden)

    N.V. Vakhnina

    2014-01-01

    Full Text Available Vascular pathology of the brain is the second most common cause of cognitive impairment after Alzheimer's disease. The article describes the modern concepts of etiology, pathogenetic mechanisms, clinical features and approaches to diagnosis and therapy of vascular cognitive impairment (VCI. Cerebrovascular accident, chronic cerebral circulatory insufficiency and their combination, sometimes in combination with a concomitant neurodegenerative process, are shown to be the major types of brain lesions leading to VCI. The clinical presentation of VCI is characterized by the neuropsychological status dominated by impairment of the executive frontal functions (planning, control, attention in combination with focal neurological symptoms. The diagnosis is based on comparing of the revealed neuropsychological and neurological features with neuroimaging data. Neurometabolic, acetylcholinergic, glutamatergic, and other vasoactive drugs and non-pharmacological methods are widely used to treat VCI. 

  17. Vascular Surgery and Robotics

    Directory of Open Access Journals (Sweden)

    Indrani Sen

    2016-01-01

    Full Text Available The application of robotics to Vascular surgery has not progressed as rapidly as of endovascular technology, but this is changing with the amalgamation of these two fields. The advent of Endovascular robotics is an exciting field which overcomes many of the limitations of endovascular therapy like vessel tortuosity and operator fatigue. This has much clinical appeal for the surgeon and hold significant promise of better patient outcomes. As with most newer technological advances, it is still limited by cost and availability. However, this field has seen some rapid progress in the last decade with the technology moving into the clinical realm. This review details the development of robotics, applications, outcomes, advantages, disadvantages and current advances focussing on Vascular and Endovascular robotics

  18. The pathology and pathophysiology of vascular dementia.

    Science.gov (United States)

    Kalaria, Raj N

    2017-12-19

    Vascular dementia (VaD) is widely recognised as the second most common type of dementia. Consensus and accurate diagnosis of clinically suspected VaD relies on wide-ranging clinical, neuropsychological and neuroimaging measures in life but more importantly pathological confirmation. Factors defining subtypes of VaD include the nature and extent of vascular pathologies, degree of involvement of extra and intracranial vessels and the anatomical location of tissue changes as well as time after the initial vascular event. Atherosclerotic and cardioembolic diseases combined appear the most common subtypes of vascular brain injury. In recent years, cerebral small vessel disease (SVD) has gained prominence worldwide as an important substrate of cognitive impairment. SVD is characterised by arteriolosclerosis, lacunar infarcts and cortical and subcortical microinfarcts and diffuse white matter changes, which involve myelin loss and axonal abnormalities. Global brain atrophy and focal degeneration of the cerebrum including medial temporal lobe atrophy are also features of VaD similar to Alzheimer's disease. Hereditary arteriopathies have provided insights into the mechanisms of dementia particularly how arteriolosclerosis, a major contributor of SVD promotes cognitive impairment. Recently developed and validated neuropathology guidelines indicated that the best predictors of vascular cognitive impairment were small or lacunar infarcts, microinfarcts, perivascular space dilation, myelin loss, arteriolosclerosis and leptomeningeal cerebral amyloid angiopathy. While these substrates do not suggest high specificity, VaD is likely defined by key neuronal and dendro-synaptic changes resulting in executive dysfunction and related cognitive deficits. Greater understanding of the molecular pathology is needed to clearly define microvascular disease and vascular substrates of dementia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Acetylcholine-induced vasodilation in the uterine vascular bed of pregnant rats with adriamycin-induced nephrosis.

    Science.gov (United States)

    Yousif, Mariam H; Adeagbo, Ayotunde S; Kadavil, Elizabeth A; Chandrasekhar, Bindu; Oriowo, Mabayoje A

    2002-01-01

    This project was designed to study endothelium-dependent vasodilation in the uterine vascular bed during experimentally induced preeclampsia in rats. Uterine vascular beds were isolated from non-pregnant and pregnant rats with or without treatment with adriamycin (ADR) and perfused with physiological solution. Thereafter, vasodilator responses to acetylcholine were recorded. RECORDS: Pregnant ADR-treated rats displayed symptoms of preeclampsia including hypertension and proteinuria. Blood pressure was 110.0 +/- 4.7 mm Hg (n = 5) in control pregnant rats and 136.0 +/- 5.3 mm Hg (n = 5) in ADR-treated pregnant rats, and urinary protein concentrations were 0.35 mg/ml (n = 5) and 13.2 +/- 3.6 mg/ml (n = 9), respectively. Both blood pressure and proteinuria values were significantly (p acetylcholine-induced dose-dependent vasodilator responses in the vascular beds were not significantly different between the pregnant and nonpregnant rats. Although acetylcholine-induced vasodilation was significantly reduced by N omega-nitro-L-arginine methyl ester hydrochloride (L-NAME) in both groups, the residual response to acetylcholine was not affected by indomethacin, suggesting that prostanoids were not involved in this response. The L-NAME-resistant component, endothelium-derived hyperpolarizing factor (EDHF), was greater in ADR-treated uterine beds than in those of the controls, indicating a significant contribution from EDHF in these vessels. In the presence of an elevated external potassium ion concentration, acetylcholine produced similar vasodilator responses, indicating that the release of nitric oxide was not impaired. These results indicate that endothelium-dependent vasodilation was not impaired in this model of preeclampsia.

  20. Diverse Imaging characteristics of a mandibular intraosseous vascular lesion

    International Nuclear Information System (INIS)

    Handa, Hina; Naidu, Giridhar S.; Dara, Balaji Gandhi Babu; Deshpande, Ashwini; Raghavendra, Raju

    2014-01-01

    Intraosseous vascular lesions of the maxillofacial region are rare, and the differential diagnosis of intraosseous vascular malformations from other jaw lesions can be challenging. In the present case, magnetic resonance imaging and three-dimensional computed tomographic angiography (CTA) was used for diagnosis, and the lesion was treated with surgical excision. Diverse characteristics such as the 'honeycomb' and 'sunburst' radiographic appearances and the absence of major peripheral feeder vessels in the CTA were noted. Intraosseous vascular malformations have a varied radiographic appearance, and the nomenclature of these lesions is equally diverse, with several overlapping terms. Pathologists do not generally differentiate among intraosseous vascular lesions on the basis of histopathology, although these lesions may present with contrasting immunohistochemical and clinical behaviors requiring varied treatment strategies. This case report highlights the need for multiple imaging modalities to differentiate among vascular lesions, as well as to better understand the behaviors of these unique lesions.

  1. Vascular lesions of head and neck: A literature review

    Directory of Open Access Journals (Sweden)

    Nazia Masoom Syed

    2016-01-01

    Full Text Available Vascular lesions are among the most common congenital and neonatal abnormalities. These anomalies can occur throughout the whole body, with 60%, however, being located in the head and neck region probably due to its intricate vascular anatomy of region. There is a significant confusion in the literature because of the use of confusing descriptive terminology for the same vascular entity and eponyms. Correct naming of lesion, appropriate classification, and clinical appearance of vascular lesions have a direct impact on understanding of etiologies of these complex lesions, diagnosis, and in treating patients. Thus, the aim of this article is to provide comprehensive knowledge about classifications and to have an insight of various important vascular lesions affecting head and neck region based on its pathogenesis, clinical presentation, and management.

  2. Vascular lesions following radiation

    International Nuclear Information System (INIS)

    Fajardo, L.F.; Berthrong, M.

    1988-01-01

    The special radiation sensitivity of the vascular system is mainly linked to that of endothelial cells, which are perhaps the most radiation-vulnerable elements of mesenchymal tissues. Within the vascular tree, radiation injures most often capillaries, sinusoids, and small arteries, in that order. Lesions of veins are observed less often, but in certain tissues the veins are regularly damaged (e.g., intestine) or are the most affected structures (i.e., liver). Large arteries do suffer the least; however, when significant damage does occur in an elastic artery (e.g., thrombosis or rupture), it tends to be clinically significant and even fatal. Although not always demonstrable in human tissues, radiation vasculopathy generally is dose and time dependent. Like other radiation-induced lesions, the morphology in the vessels is not specific, but it is characteristic enough to be often recognizable. Vascular injury, especially by therapeutic radiation is not just a morphologic marker. It is a mediator of tissue damage; perhaps the most consistent pathogenetic mechanism in delayed radiation injury

  3. New molecular probes of vascular inflammation

    International Nuclear Information System (INIS)

    Molecular Cardiovascular Imaging, Westfälische Wilhelms University Münster, Münster, (Germany))" data-affiliation=" (Department of Nuclear Medicine, University Hospital Münster, Münster, and DFG CRC 656 Molecular Cardiovascular Imaging, Westfälische Wilhelms University Münster, Münster, (Germany))" >VRACHIMIS, Alexis; HONOLD, Lisa; Cells in Motion Cluster of Excellence, Westfälische Wilhelms University Münster, Münster, (Germany))" data-affiliation=" (European Institute of Molecular Imaging, Westfälische Wilhelms University Münster, Münster, and DFG EXC 1003 Cells in Motion Cluster of Excellence, Westfälische Wilhelms University Münster, Münster, (Germany))" >FAUST, Andreas; Cells in Motion Cluster of Excellence, Westfälische Wilhelms University Münster, Münster, (Germany))" data-affiliation=" (European Institute of Molecular Imaging, Westfälische Wilhelms University Münster, Münster, and DFG EXC 1003 Cells in Motion Cluster of Excellence, Westfälische Wilhelms University Münster, Münster, (Germany))" >HERMANN, Sven; SCHÄFERS, Michael

    2016-01-01

    New molecular imaging approaches featuring the assessment of inflammatory processes in the vascular wall on top of existing anatomic and functional vessel imaging procedures could emerge as decisive tools for the understanding and prevention of cardiovascular events. In this respect imaging approaches addressing specific molecular and cellular targets in atherosclerosis are of high interest. This review summarizes the rationale and current status of nuclear imaging probes which possess high translational potential.

  4. The atypical structure and function of newborn arterial endothelium is mediated by Rho/Rho kinase signaling.

    Science.gov (United States)

    Flavahan, Sheila; Flavahan, Nicholas A

    2014-08-15

    Endothelium of fetal or newborn arteries is atypical, displaying actin stress fibers and reduced nitric oxide (NO)-mediated dilatation. This study tested the hypothesis that Rho/Rho kinase signaling, which promotes endothelial stress fibers and inhibits endothelial dilatation, contributed to this phenotype. Carotid arteries were isolated from newborn [postnatal day 1 (P1)], P7, and P21 mice. Endothelial dilatation to acetylcholine (pressure myograph) was minimal at P1, increased at P7, and further increased at P21. Inhibition of Rho (C3 transferase) or Rho kinase (Y27632, fasudil) significantly increased dilatation to acetylcholine in P1 arteries but had no effect in P7 or P21 arteries. After inhibition of NO synthase (N(G)-nitro-l-arginine methyl ester), Rho kinase inhibition no longer increased acetylcholine responses in P1 arteries. Rho kinase inhibition did not affect dilatation to the NO donor DEA-NONOate. The endothelial actin cytoskeleton was labeled with phalloidin and visualized by laser-scanning microscopy. In P1 arteries, the endothelium had prominent transcytoplasmic stress fibers, whereas in P7 and P21 arteries, the actin fibers had a significantly reduced intensity and were restricted to cell borders. Phosphorylation of myosin light chains, a Rho kinase substrate, was highest in P1 endothelium and significantly reduced in P7 and P21 endothelium (laser-scanning microscopy). In P1 arteries, inhibition of Rho (C3 transferase) or Rho kinase (Y27632) significantly reduced the intensity of actin fibers, which were restricted to cell borders. Similarly, in P1 arteries, Rho inhibition significantly reduced endothelial levels of phosphorylated myosin light chains. These results indicate that the atypical function and morphology of newborn endothelium is mediated by Rho/Rho kinase signaling. Copyright © 2014 the American Physiological Society.

  5. VASCULAR INJURIES IN TEHRAN: A REVIEW OF 123 CASES

    Directory of Open Access Journals (Sweden)

    M. Karbakhsh M. R. Zarei

    2006-09-01

    Full Text Available Abstract- Studies of the epidemiology of civilian vascular trauma in developing countries are rather few. This is a prospective study of our experience with vascular trauma in a referral university hospital in Tehran, Iran. The aim was to study the etiology, pattern of injuries and the mortality and morbidity rates due to vascular trauma in our population. In this cross-sectional study, all trauma patients suspicious of having vascular injuries who were admitted to Sina Hospital between March 2002 and May 2003 were included. Among 123 studied cases, there were 109 males and 14 females.Blunt injuries were more common than penetrating ones (56.1% vs. 43.9%. The most common anatomical site of vascular injuries had been knee and lower leg. In fact, cases with lower extremities vascular trauma were twice as common as those with vascular trauma in upper limbs (59.1% vs. 27.3%. The commonest injured vessels were popliteal artery followed by femoral artery. Arterial repair with graft interposition was done in 23 cases and bypass graft in 13 cases. Procedures on veins were performed in 24 cases. Five patients (4.06% died and in 3 cases the patients died because of non-vascular reasons. The present study allows an understanding of the epidemiology of vascular trauma in the one of the major trauma centers in the metropolitan city of Tehran. The majority of our cases were young males sustaining vascular injuries due to road traffic accidents or being stabbed with knives. It also has important implications for vascular injury prevention in our community.

  6. Synergistic actions of hematopoietic and mesenchymal stem/progenitor cells in vascularizing bioengineered tissues.

    Directory of Open Access Journals (Sweden)

    Eduardo K Moioli

    Full Text Available Poor angiogenesis is a major road block for tissue repair. The regeneration of virtually all tissues is limited by angiogenesis, given the diffusion of nutrients, oxygen, and waste products is limited to a few hundred micrometers. We postulated that co-transplantation of hematopoietic and mesenchymal stem/progenitor cells improves angiogenesis of tissue repair and hence the outcome of regeneration. In this study, we tested this hypothesis by using bone as a model whose regeneration is impaired unless it is vascularized. Hematopoietic stem/progenitor cells (HSCs and mesenchymal stem/progenitor cells (MSCs were isolated from each of three healthy human bone marrow samples and reconstituted in a porous scaffold. MSCs were seeded in micropores of 3D calcium phosphate (CP scaffolds, followed by infusion of gel-suspended CD34(+ hematopoietic cells. Co-transplantation of CD34(+ HSCs and CD34(- MSCs in microporous CP scaffolds subcutaneously in the dorsum of immunocompromised mice yielded vascularized tissue. The average vascular number of co-transplanted CD34(+ and MSC scaffolds was substantially greater than MSC transplantation alone. Human osteocalcin was expressed in the micropores of CP scaffolds and was significantly increased upon co-transplantation of MSCs and CD34(+ cells. Human nuclear staining revealed the engraftment of transplanted human cells in vascular endothelium upon co-transplantation of MSCs and CD34(+ cells. Based on additional in vitro results of endothelial differentiation of CD34(+ cells by vascular endothelial growth factor (VEGF, we adsorbed VEGF with co-transplanted CD34(+ and MSCs in the microporous CP scaffolds in vivo, and discovered that vascular number and diameter further increased, likely owing to the promotion of endothelial differentiation of CD34(+ cells by VEGF. Together, co-transplantation of hematopoietic and mesenchymal stem/progenitor cells may improve the regeneration of vascular dependent tissues such as bone

  7. Vascular dysfunction by myofibroblast activation in patients with idiopathic pulmonary fibrosis and prognostic significance

    Directory of Open Access Journals (Sweden)

    E.R. Parra

    2012-07-01

    Full Text Available In this study, we demonstrated the importance of telomerase protein expression and determined the relationships among telomerase, endothelin-1 (ET-1 and myofibroblasts during early and late remodeling of parenchymal and vascular areas in usual interstitial pneumonia (UIP using 27 surgical lung biopsies from patients with idiopathic pulmonary fibrosis (IPF. Telomerase+, myofibroblasts α-SMA+, smooth muscle cells caldesmon+, endothelium ET-1+ cellularity, and fibrosis severity were evaluated in 30 fields covering normal lung parenchyma, minimal fibrosis (fibroblastic foci, severe (mural fibrosis, and vascular areas of UIP by the point-counting technique and a semiquantitative score. The impact of these markers was determined in pulmonary functional tests and follow-up until death from IPF. Telomerase and ET-1 expression was significantly increased in normal and vascular areas compared to areas of fibroblast foci. Telomerase and ET-1 expression was inversely correlated with minimal fibrosis in areas of fibroblast foci and directly associated with severe fibrosis in vascular areas. Telomerase activity in minimal fibrosis areas was directly associated with diffusing capacity of the lung for oxygen/alveolar volume and ET-1 expression and indirectly associated with diffusing capacity of the lungs for carbon monoxide and severe fibrosis in vascular areas. Cox proportional hazards regression revealed a low risk of death for females with minimal fibrosis displaying high telomerase and ET-1 expression in normal areas. Vascular dysfunction by telomerase/ET-1 expression was found earlier than vascular remodeling by myofibroblast activation in UIP with impact on IPF evolution, suggesting that strategies aimed at preventing the effect of these mediators may have a greater impact on patient outcome.

  8. Anti-Inflammatory Effects of Interleukin-19 in Vascular Disease

    Directory of Open Access Journals (Sweden)

    Ross N. England

    2012-01-01

    Full Text Available Despite aggressive dietary modification, lipid-lowering medications, and other interventional medical therapy, vascular disease continues to be a leading cause of mortality in the western world. It is a significant medical and socioeconomic problem contributing to mortality of multiple diseases including myocardial infarction, stroke, renal failure, and peripheral vascular disease. Morbidity and mortality of vascular disease are expected to worsen with the increasing number of patients with comorbid conditions such as obesity, metabolic syndrome, and diabetes mellitus type 2. Vascular diseases such as atherosclerosis, restenosis, and allograft vasculopathy are recognized to be driven by inflammation, and as such, cytokines which mediate inflammation not only represent important targets of rational therapy, but also can be considered as possible therapeutic modalities themselves. In this paper, we will examine the role of inflammatory cytokines and lymphocyte Th1/Th2 polarity in vascular inflammation, with a focus on atherosclerotic vascular disease. We will then introduce a recently described Th2 interleukin, interleukin-19 (IL-19, as a previously unrecognized mediator of vascular inflammatory disorders. We will review our current understanding of this interleukin in health and disease and present the possibility that IL-19 could represent a potential therapeutic to combat vascular inflammatory disease.

  9. Vascular Contributions to Cognitive Impairment and Dementia

    Science.gov (United States)

    Gorelick, Philip B.; Scuteri, Angelo; Black, Sandra E.; DeCarli, Charles; Greenberg, Steven M.; Iadecola, Costantino; Launer, Lenore J.; Laurent, Stephane; Lopez, Oscar L.; Nyenhuis, David; Petersen, Ronald C.; Schneider, Julie A.; Tzourio, Christophe; Arnett, Donna K.; Bennett, David A.; Chui, Helena C.; Higashida, Randall T.; Lindquist, Ruth; Nilsson, Peter M.; Roman, Gustavo C.; Sellke, Frank W.; Seshadri, Sudha

    2013-01-01

    Background and Purpose This scientific statement provides an overview of the evidence on vascular contributions to cognitive impairment and dementia. Vascular contributions to cognitive impairment and dementia of later life are common. Definitions of vascular cognitive impairment (VCI), neuropathology, basic science and pathophysiological aspects, role of neuroimaging and vascular and other associated risk factors, and potential opportunities for prevention and treatment are reviewed. This statement serves as an overall guide for practitioners to gain a better understanding of VCI and dementia, prevention, and treatment. Methods Writing group members were nominated by the writing group co-chairs on the basis of their previous work in relevant topic areas and were approved by the American Heart Association Stroke Council Scientific Statement Oversight Committee, the Council on Epidemiology and Prevention, and the Manuscript Oversight Committee. The writing group used systematic literature reviews (primarily covering publications from 1990 to May 1, 2010), previously published guidelines, personal files, and expert opinion to summarize existing evidence, indicate gaps in current knowledge, and, when appropriate, formulate recommendations using standard American Heart Association criteria. All members of the writing group had the opportunity to comment on the recommendations and approved the final version of this document. After peer review by the American Heart Association, as well as review by the Stroke Council leadership, Council on Epidemiology and Prevention Council, and Scientific Statements Oversight Committee, the statement was approved by the American Heart Association Science Advisory and Coordinating Committee. Results The construct of VCI has been introduced to capture the entire spectrum of cognitive disorders associated with all forms of cerebral vascular brain injury—not solely stroke—ranging from mild cognitive impairment through fully developed

  10. Akita spontaneously type 1 diabetic mice exhibit elevated vascular arginase and impaired vascular endothelial and nitrergic function.

    Science.gov (United States)

    Toque, Haroldo A; Nunes, Kenia P; Yao, Lin; Xu, Zhimin; Kondrikov, Dmitry; Su, Yunchao; Webb, R Clinton; Caldwell, Ruth B; Caldwell, R William

    2013-01-01

    Elevated arginase (Arg) activity is reported to be involved in diabetes-induced vascular endothelial dysfunction. It can reduce L-arginine availability to nitric oxide (NO) synthase (NOS) and NO production. Akita mice, a genetic non-obese type 1 diabetes model, recapitulate human diabetes. We determined the role of Arg in a time-course of diabetes-associated endothelial dysfunction in aorta and corpora cavernosa (CC) from Akita mice. Endothelium-dependent relaxation, Arg and NOS activity, and protein expression levels of Arg and constitutive NOS were assessed in aortas and CC from Akita and non-diabetic wild type (WT) mice at 4, 12 and 24 wks of age. Systolic blood pressure (SBP) was assessed by tail cuff. In aorta and CC, Akita mice exhibited a progressive impairment of vascular endothelial and nitrergic function increased Arg activity and expression (Arg1 in aorta and both Arg1 and Arg2 in CC) compared with that of age-matched WT mice. Treatment of aorta and CC from Akita mice with an Arg inhibitor (BEC or ABH) reduced diabetes-induced elevation of Arg activity and restored endothelial and nitrergic function. Reduced levels of phospho-eNOS at Ser(1177) (in aorta and CC) and nNOS expression (in CC) were observed in Akita mice at 12 and 24 wks. Akita mice also had decreased NOS activity in aorta and CC at 12 and 24 wks that was restored by BEC treatment. Further, Akita mice exhibited moderately increased SBP at 24 wks and increased sensitivity to PE-induced contractions in aorta and sympathetic nerve stimulation in CC at 12 and 24 wks. Over 24 wks of diabetes in Akita mice, both aortic and cavernosal tissues exhibited increased Arg activity/expression, contributing to impaired endothelial and nitrergic function and reduced NO production. Our findings demonstrate involvement of Arg activity in diabetes-induced impairment of vascular function in Akita mouse.

  11. Akita spontaneously type 1 diabetic mice exhibit elevated vascular arginase and impaired vascular endothelial and nitrergic function.

    Directory of Open Access Journals (Sweden)

    Haroldo A Toque

    Full Text Available Elevated arginase (Arg activity is reported to be involved in diabetes-induced vascular endothelial dysfunction. It can reduce L-arginine availability to nitric oxide (NO synthase (NOS and NO production. Akita mice, a genetic non-obese type 1 diabetes model, recapitulate human diabetes. We determined the role of Arg in a time-course of diabetes-associated endothelial dysfunction in aorta and corpora cavernosa (CC from Akita mice.Endothelium-dependent relaxation, Arg and NOS activity, and protein expression levels of Arg and constitutive NOS were assessed in aortas and CC from Akita and non-diabetic wild type (WT mice at 4, 12 and 24 wks of age. Systolic blood pressure (SBP was assessed by tail cuff. In aorta and CC, Akita mice exhibited a progressive impairment of vascular endothelial and nitrergic function increased Arg activity and expression (Arg1 in aorta and both Arg1 and Arg2 in CC compared with that of age-matched WT mice. Treatment of aorta and CC from Akita mice with an Arg inhibitor (BEC or ABH reduced diabetes-induced elevation of Arg activity and restored endothelial and nitrergic function. Reduced levels of phospho-eNOS at Ser(1177 (in aorta and CC and nNOS expression (in CC were observed in Akita mice at 12 and 24 wks. Akita mice also had decreased NOS activity in aorta and CC at 12 and 24 wks that was restored by BEC treatment. Further, Akita mice exhibited moderately increased SBP at 24 wks and increased sensitivity to PE-induced contractions in aorta and sympathetic nerve stimulation in CC at 12 and 24 wks.Over 24 wks of diabetes in Akita mice, both aortic and cavernosal tissues exhibited increased Arg activity/expression, contributing to impaired endothelial and nitrergic function and reduced NO production. Our findings demonstrate involvement of Arg activity in diabetes-induced impairment of vascular function in Akita mouse.

  12. Dietary sodium restriction reverses vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure

    Science.gov (United States)

    Jablonski, Kristen L.; Racine, Matthew L.; Geolfos, Candace J.; Gates, Phillip E.; Chonchol, Michel; McQueen, Matthew B.; Seals, Douglas R.

    2013-01-01

    Objectives We determined the efficacy of dietary sodium restriction (DSR) for improving vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure (SBP; 130–159 mmHg) and the associated physiological mechanisms. Background Vascular endothelial dysfunction develops with advancing age and elevated SBP, contributing to increased cardiovascular risk. DSR lowers BP, but its effect on vascular endothelial function and mechanisms involved are unknown. Methods Seventeen subjects (11M/6F; 62±7 yrs, mean±S.D.) completed a randomized, crossover study of 4 weeks of both low and normal sodium intake. Vascular endothelial function (endothelium-dependent dilation; EDD), nitric oxide (NO)/tetrahydrobiopterin (BH4) bioavailability and oxidative stress-associated mechanisms were assessed following each condition. Results Urinary sodium excretion was reduced by ~50% (to 70±30 mmol/day), and conduit (brachial artery flow-mediated dilation [FMDBA]) and resistance (forearm blood flow responses to acetylcholine [FBFACh]) artery EDD were 68% and 42% (peak FBFACh) higher following the low sodium diet (psodium markedly enhanced NO- mediated EDD (greater ΔFBFACh with endothelial NO synthase [eNOS] inhibition) without changing eNOS expression/activation (Ser1177 phosphorylation), restored BH4 bioactivity (less ΔFMDBA with acute BH4), abolished tonic superoxide suppression of EDD (less ΔFMDBA and ΔFBFACh with ascorbic acid infusion), and increased circulating superoxide dismutase activity (p<0.05). These effects were independent of ΔSBP. Other subject characteristics/dietary factors and endothelium-independent dilation were unchanged. Conclusions DSR largely reverses both macro- and microvascular endothelial dysfunction by enhancing NO and BH4 bioavailability and reducing oxidative stress. Our findings support the emerging concept that DSR induces “vascular protection” beyond that attributable to its BP-lowering effects. PMID

  13. Crossing the Vascular Wall: Common and Unique Mechanisms Exploited by Different Leukocyte Subsets during Extravasation

    Directory of Open Access Journals (Sweden)

    Michael Schnoor

    2015-01-01

    Full Text Available Leukocyte extravasation is one of the essential and first steps during the initiation of inflammation. Therefore, a better understanding of the key molecules that regulate this process may help to develop novel therapeutics for treatment of inflammation-based diseases such as atherosclerosis or rheumatoid arthritis. The endothelial adhesion molecules ICAM-1 and VCAM-1 are known as the central mediators of leukocyte adhesion to and transmigration across the endothelium. Engagement of these molecules by their leukocyte integrin receptors initiates the activation of several signaling pathways within both leukocytes and endothelium. Several of such events have been described to occur during transendothelial migration of all leukocyte subsets, whereas other mechanisms are known only for a single leukocyte subset. Here, we summarize current knowledge on regulatory mechanisms of leukocyte extravasation from a leukocyte and endothelial point of view, respectively. Specifically, we will focus on highlighting common and unique mechanisms that specific leukocyte subsets exploit to succeed in crossing endothelial monolayers.

  14. Vascular remodeling and mineralocorticoids.

    Science.gov (United States)

    Weber, K T; Sun, Y; Campbell, S E; Slight, S H; Ganjam, V K

    1995-01-01

    Circulating mineralocorticoid hormones are so named because of their important homeostatic properties that regulate salt and water balance via their action on epithelial cells. A broader range of functions in nonclassic target cellular sites has been proposed for these steroids and includes their contribution to wound healing following injury. A chronic, inappropriate (relative to intravascular volume and dietary sodium intake) elevation of these circulating hormones evokes a wound healing response in the absence of tissue injury--a wound healing response gone awry. The adverse remodeling of vascularized tissues seen in association with chronic mineralocorticoid excess is the focus of this review.

  15. Role of platelets in maintenance of pulmonary vascular permeability to protein

    International Nuclear Information System (INIS)

    Lo, S.K.; Burhop, K.E.; Kaplan, J.E.; Malik, A.B.

    1988-01-01

    The authors examined the role of platelets in maintenance of pulmonary vascular integrity by inducing thrombocytopenia in sheep using antiplatelet serum (APS). A causal relationship between thrombocytopenia and increase in pulmonary vascular permeability was established by platelet repletion using platelet-rich plasma (PRP). Sheep were chronically instrumented and lung lymph fistulas prepared to monitor pulmonary lymph flow (Q lym ). A balloon catheter was positioned in the left atrium to assess pulmonary vascular permeability to protein after raising the left atrial pressure (P la ). Thrombocytopenia was maintained for 3 days by daily intramuscular APS injections. In studies using cultured bovine pulmonary artery endothelial monolayers, transendothelia permeability of 125 I-labeled albumin was reduced 50 and 95%, respectively, when 2.5 x 10 7 or 5 x 10 7 platelets were added onto endothelial monolayers. However, addition of 5 x 10 6 platelets or 5 x 10 7 red blood cells did not reduce endothelial monolayer albumin permeability. Results indicate that platelets are required for the maintenance of pulmonary vascular permeability. Reduction in permeability appears to involve an interaction of platelets with the endothelium

  16. Nonclinical safety biomarkers of drug-induced vascular injury: current status and blueprint for the future.

    Science.gov (United States)

    Mikaelian, Igor; Cameron, Mark; Dalmas, Deidre A; Enerson, Bradley E; Gonzalez, Raymond J; Guionaud, Silvia; Hoffmann, Peter K; King, Nicholas M P; Lawton, Michael P; Scicchitano, Marshall S; Smith, Holly W; Thomas, Roberta A; Weaver, James L; Zabka, Tanja S

    2014-06-01

    Better biomarkers are needed to identify, characterize, and/or monitor drug-induced vascular injury (DIVI) in nonclinical species and patients. The Predictive Safety Testing Consortium (PSTC), a precompetitive collaboration of pharmaceutical companies and the U.S. Food and Drug Administration (FDA), formed the Vascular Injury Working Group (VIWG) to develop and qualify translatable biomarkers of DIVI. The VIWG focused its research on acute DIVI because early detection for clinical and nonclinical safety monitoring is desirable. The VIWG developed a strategy based on the premise that biomarkers of DIVI in rat would be translatable to humans due to the morphologic similarity of vascular injury between species regardless of mechanism. The histomorphologic lexicon for DIVI in rat defines degenerative and adaptive findings of the vascular endothelium and smooth muscles, and characterizes inflammatory components. We describe the mechanisms of these changes and their associations with candidate biomarkers for which advanced analytical method validation was completed. Further development is recommended for circulating microRNAs, endothelial microparticles, and imaging techniques. Recommendations for sample collection and processing, analytical methods, and confirmation of target localization using immunohistochemistry and in situ hybridization are described. The methods described are anticipated to aid in the identification and qualification of translational biomarkers for DIVI. © 2014 by The Author(s).

  17. Crucial roles of Nox2-derived oxidative stress in deteriorating the function of insulin receptors and endothelium in dietary obesity of middle-aged mice.

    Science.gov (United States)

    Du, Junjie; Fan, Lampson M; Mai, Anna; Li, Jian-Mei

    2013-11-01

    Systemic oxidative stress associated with dietary calorie overload plays an important role in the deterioration of vascular function in middle-aged patients suffering from obesity and insulin resistance. However, effective therapy is still lacking. In this study, we used a mouse model of middle-aged obesity to investigate the therapeutic potential of pharmaceutical inhibition (apocynin, 5 mM supplied in the drinking water) or knockout of Nox2, an enzyme generating reactive oxygen species (ROS), in high-fat diet (HFD)-induced obesity, oxidative stress, insulin resistance and endothelial dysfunction. Littermates of C57BL/6J wild-type (WT) and Nox2 knockout (KO) mice (7 months old) were fed with a HFD (45% kcal fat) or normal chow diet (NCD, 12% kcal fat) for 16 weeks and used at 11 months of age. Compared to NCD WT mice, HFD WT mice developed obesity, insulin resistance, dyslipidaemia and hypertension. Aortic vessels from these mice showed significantly increased Nox2 expression and ROS production, accompanied by significantly increased ERK1/2 activation, reduced insulin receptor expression, decreased Akt and eNOS phosphorylation and impaired endothelium-dependent vessel relaxation to acetylcholine. All these HFD-induced abnormalities (except the hyperinsulinaemia) were absent in apocynin-treated WT or Nox2 KO mice given the same HFD. In conclusion, Nox2-derived ROS played a key role in damaging insulin receptor and endothelial function in dietary obesity after middle-age. Targeting Nox2 could represent a valuable therapeutic strategy in the metabolic syndrome. © 2013 The British Pharmacological Society.

  18. 6D.03: FLOW-MEDIATED DILATATION (FMD) AND ENDOTHELIUM-INDEPENDENT DILATATION (EID) IN PATIENTS WITH MULTIFOCAL FIBROMUSCULAR DYSPLASIA: A CROSS-SECTIONAL STUDY.

    Science.gov (United States)

    Khettab, H; Lorthior, A; Niarra, R; Chambon, Y; Jeunemaitre, X; Plouin, P F; Laurent, S; Boutouyrie, P; Azizi, M

    2015-06-01

    Fibromuscular dysplasia (FD) is a rare idiopathic, segmental, non-atherosclerotic non-inflammatory vascular disease. We previously showed that FD is a general arterial disease with focal exacerbation of the trait. However, whether endothelial dysfunction may be involved in the pathophysiology of FD is unclear. In a cross sectional study, we compared the endothelial function between 50 patients with multifocal FD of renal/carotid arteries confirmed by CT-angiography, 50 essential hypertensive (EH) patients matched for age, sex, ethnicity and BP and 50 healthy subjects (HS) matched for age, sex and ethnicity. Exclusion criteria were: tobacco consumption, hypercholesterolemia, diabetes, aspirin or statin treatment. Brachial artery (BA) FMD after release of hand ischemia and glyceryl trinitrate (GTN)-induced EID was measured using a high-resolution radiofrequency-based echotracking system blind to the diagnosis. FD, EH and HS were well matched (52yrs, 85% women, 80% caucasian). SBP was higher in FD (125 ± 15mmHg) and EH (121 ± 12mmHg) than EH (113 ± 10mmHg) despite antihypertensive treatments. BA external diameter was significantly lower in FD than in both HS and EH before, during and after hand ischemia and after GTN. BA intima media thickness (IMT), internal diameter did not differ between the 3 groups. FMD (%) or EID (%) did not significantly differ between the 3 groups. BA flow velocity did not significantly differ in any experimental condition.(Figure is included in full-text article.) : In conclusion, despite showing similar acute vasodilatory responses to flow and GTN, FD patients differed from EH and HS in terms of arterial morphology with smaller BA diameter associated with similar IMT. This paradoxical remodeling may suggest a chronic defect in the endothelium-dependent pathways involved in arterial remodeling in FD patients.

  19. Antioxidant treatment alters peripheral vascular dysfunction induced by postnatal glucocorticoid therapy in rats.

    Directory of Open Access Journals (Sweden)

    Emilio A Herrera

    2010-02-01

    Full Text Available Postnatal glucocorticoid therapy in premature infants diminishes chronic lung disease, but it also increases the risk of hypertension in adulthood. Since glucocorticoid excess leads to overproduction of free radicals and endothelial dysfunction, this study tested the hypothesis that adverse effects on cardiovascular function of postnatal glucocorticoids are secondary to oxidative stress. Therefore, combined postnatal treatment of glucocorticoids with antioxidants may diminish unwanted effects.Male rat pups received a course of dexamethasone (Dex, or Dex with vitamins C and E (DexCE, on postnatal days 1-6 (P1-6. Controls received vehicle (Ctrl or vehicle with vitamins (CtrlCE. At P21, femoral vascular reactivity was determined via wire myography. Dex, but not DexCE or CtrlCE, increased mortality relative to Ctrl (81.3 versus 96.9 versus 90.6 versus 100% survival, respectively; P<0.05. Constrictor responses to phenylephrine (PE and thromboxane were enhanced in Dex relative to Ctrl (84.7+/-4.8 versus 67.5+/-5.7 and 132.7+/-4.9 versus 107.0+/-4.9% Kmax, respectively; P<0.05; effects that were diminished in DexCE (58.3+/-7.5 and 121.1+/-4.3% Kmax, respectively; P<0.05. Endothelium-dependent dilatation was depressed in Dex relative to Ctrl (115.3+/-11.9 versus 216.9+/-18.9, AUC; P<0.05; however, this effect was not restored in DexCE (68.3+/-8.3, AUC. Relative to Ctrl, CtrlCE alone diminished PE-induced constriction (43.4+/-3.7% Kmax and the endothelium-dependent dilatation (74.7+/-8.7 AUC; P<0.05.Treatment of newborn rats with dexamethasone has detrimental effects on survival and peripheral vasoconstrictor function. Coadministration of dexamethasone with antioxidant vitamins improves survival and partially restores vascular dysfunction. Antioxidant vitamins alone affect peripheral vascular function.

  20. Effect of lithium on endothelium-dependent and neurogenic relaxation of rat corpus cavernosum: role of nitric oxide pathway.

    Science.gov (United States)

    Sadeghipour, Hamed; Ghasemi, Mehdi; Ebrahimi, Farzad; Dehpour, Ahmad Reza

    2007-02-01

    Some studies have reported erectile dysfunction in patients receiving lithium through a mechanism that has not yet been defined. The aim of the present study was to verify the effect of acute lithium administration on the nonadrenergic noncholinergic (NANC)- and endothelium-mediated relaxation of rat isolated corpus cavernosum. The isolated rat corporeal strips were precontracted with phenylephrine hydrochloride (7.5 microM) and electrical field stimulation (EFS) was applied at different frequencies (2, 5, 10, and 15 Hz) to obtain NANC-mediated relaxation or relaxed by adding cumulative doses of acetylcholine (10nM-1mM) to obtain endothelium-dependent relaxation in the presence or absence of lithium (0.3, 0.5, 1, and 5mM). Also, effects of combining lithium (0.3mM) with 30 nM and 0.1 nM L-NAME (an NO synthase inhibitor) on NANC- and acetylcholine-mediated relaxation was investigated, respectively. Moreover, effects of combining lithium (1mM) with 0.1mM and 10 microM L-arginine (a precursor of NO) on NANC- and endothelium-mediated relaxation was assessed, respectively. Also, the effect of lithium (1mM) on relaxation to sodium nitroprusside (SNP; 1nM-1mM), an NO donor, was investigated. The NANC-mediated relaxation was significantly (Pacetylcholine in a concentration-dependent manner. Combination of lithium (0.3mM) with 30 and 0.1 nM L-NAME, which separately had a minimum effect on NANC- and endothelium-mediated relaxation, significantly (Pacetylcholine and EFS, it improved the inhibition by lithium (1mM) of relaxant responses to acetylcholine and EFS, respectively. Also, SNP produced similar concentration-dependent relaxations from both groups. Our experiments indicated that lithium likely by interfering with NO pathway in both endothelium and nitrergic nerve can result in impairment of both the endothelium- and NANC-mediated relaxation of rat corpus cavernosum.

  1. Nitric oxide, cholesterol oxides and endothelium-dependent vasodilation in plasma of patients with essential hypertension

    Directory of Open Access Journals (Sweden)

    P. Moriel

    2002-11-01

    Full Text Available The objective of the present study was to identify disturbances of nitric oxide radical (·NO metabolism and the formation of cholesterol oxidation products in human essential hypertension. The concentrations of·NO derivatives (nitrite, nitrate, S-nitrosothiols and nitrotyrosine, water and lipid-soluble antioxidants and cholesterol oxides were measured in plasma of 11 patients with mild essential hypertension (H: 57.8 ± 9.7 years; blood pressure, 148.3 ± 24.8/90.8 ± 10.2 mmHg and in 11 healthy subjects (N: 48.4 ± 7.0 years; blood pressure, 119.4 ± 9.4/75.0 ± 8.0 mmHg.Nitrite, nitrate and S-nitrosothiols were measured by chemiluminescence and nitrotyrosine was determined by ELISA. Antioxidants were determined by reverse-phase HPLC and cholesterol oxides by gas chromatography. Hypertensive patients had reduced endothelium-dependent vasodilation in response to reactive hyperemia (H: 9.3 and N: 15.1% increase of diameter 90 s after hyperemia, and lower levels of ascorbate (H: 29.2 ± 26.0, N: 54.2 ± 24.9 µM, urate (H: 108.5 ± 18.9, N: 156.4 ± 26.3 µM, ß-carotene (H: 1.1 ± 0.8, N: 2.5 ± 1.2 nmol/mg cholesterol, and lycopene (H: 0.4 ± 0.2, N: 0.7 ± 0.2 nmol/mg cholesterol, in plasma, compared to normotensive subjects. The content of 7-ketocholesterol, 5alpha-cholestane-3ß,5,6ß-triol and 5,6alpha-epoxy-5alpha-cholestan-3alpha-ol in LDL, and the concentration of endothelin-1 (H: 0.9 ± 0.2, N: 0.7 ± 0.1 ng/ml in plasma were increased in hypertensive patients. No differences were found for ·NO derivatives between groups. These data suggest that an increase in cholesterol oxidation is associated with endothelium dysfunction in essential hypertension and oxidative stress, although ·NO metabolite levels in plasma are not modified in the presence of elevated cholesterol oxides.

  2. Endothelium adhesion molecules ICAM-1, ICAM-2, VCAM-1 and VLA-4 expression in leprosy.

    Science.gov (United States)

    de Sousa, Juarez; Sousa Aarão, Tinara Leila; Rodrigues de Sousa, Jorge; Hirai, Kelly Emi; Silva, Luciana Mota; Dias, Leonidas Braga; Oliveira Carneiro, Francisca Regina; Fuzii, Hellen Thais; Quaresma, Juarez Antonio Simões

    2017-03-01

    Leprosy triggers a complex relationship between the pathogen and host immune response. Endothelium plays an important role in this immune response by directly influencing cell migration to infected tissues. The objective of this work is to investigate the possible role of endothelium in M. leprae infection, correlating the characteristics of endothelial markers with the expression pattern of cytokines. Thirty-six skin biopsy samples were cut into 5-μm thick sections and stained with hematoxylin-eosin and Ziehl-Neelsen for morphological analysis and then submitted to immunohistochemical analysis using monoclonal antibodies against ICAM-1, ICAM-2, VCAM-1, and VLA-4. Immunostaining for ICAM-1 showed a significantly larger number of stained endothelial cells in the tuberculoid leprosy (9.92 ± 1.11 cells/mm 2 ) when compared to lepromatous samples (5.87 ± 1.01 cells/mm 2 ) and ICAM-2 revealed no significant difference in the number of endothelial cells expressing this marker between the tuberculoid (13.21 ± 1.27 cells/mm 2 ) and lepromatous leprosy (14.3 ± 1.02 cells/mm 2 ). VCAM-1-immunostained showed 18.28 ± 1.46/mm 2 cells in tuberculoid leprosy and 10.67 ± 1.25 cells/mm 2 in the lepromatous leprosy. VLA-4 exhibited 22.46 ± 1.38 cells/mm 2 in the tuberculoid leprosy 16.04 ± 1.56 cells/mm 2 in the lepromatous leprosy. Samples with characteristics of the tuberculoid leprosy exhibited a larger number of cells stained with ICAM-1, VCAM-1 and VLA-4, demonstrating the importance of these molecules in the migration and selection of cells that reach the inflamed tissue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Vascular pattern formation in plants.

    Science.gov (United States)

    Scarpella, Enrico; Helariutta, Ykä

    2010-01-01

    Reticulate tissue systems exist in most multicellular organisms, and the principles underlying the formation of cellular networks have fascinated philosophers, mathematicians, and biologists for centuries. In particular, the beautiful and varied arrangements of vascular tissues in plants have intrigued mankind since antiquity, yet the organizing signals have remained elusive. Plant vascular tissues form systems of interconnected cell files throughout the plant body. Vascular cells are aligned with one another along continuous lines, and vascular tissues differentiate at reproducible positions within organ environments. However, neither the precise path of vascular differentiation nor the exact geometry of vascular networks is fixed or immutable. Several recent advances converge to reconcile the seemingly conflicting predictability and plasticity of vascular tissue patterns. A control mechanism in which an apical-basal flow of signal establishes a basic coordinate system for body axis formation and vascular strand differentiation, and in which a superimposed level of radial organizing cues elaborates cell patterns, would generate a reproducible tissue configuration in the context of an underlying robust, self-organizing structure, and account for the simultaneous regularity and flexibility of vascular tissue patterns. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Additive Manufacturing of Vascular Grafts and Vascularized Tissue Constructs.

    Science.gov (United States)

    Elomaa, Laura; Yang, Yunzhi Peter

    2017-10-01

    There is a great need for engineered vascular grafts among patients with cardiovascular diseases who are in need of bypass therapy and lack autologous healthy blood vessels. In addition, because of the severe worldwide shortage of organ donors, there is an increasing need for engineered vascularized tissue constructs as an alternative to organ transplants. Additive manufacturing (AM) offers great advantages and flexibility of fabrication of cell-laden, multimaterial, and anatomically shaped vascular grafts and vascularized tissue constructs. Various inkjet-, extrusion-, and photocrosslinking-based AM techniques have been applied to the fabrication of both self-standing vascular grafts and porous, vascularized tissue constructs. This review discusses the state-of-the-art research on the use of AM for vascular applications and the key criteria for biomaterials in the AM of both acellular and cellular constructs. We envision that new smart printing materials that can adapt to their environment and encourage rapid endothelialization and remodeling will be the key factor in the future for the successful AM of personalized and dynamic vascular tissue applications.

  5. Vascular anatomy of the spinal cord

    International Nuclear Information System (INIS)

    Thron, A.K.

    1988-01-01

    The book summarizes the anatomic guidelines of external blood supply to the spinal cord. The basic principles of arterial supply and venous drainage are illustrated by explicit schemes for quick orientation. In the first part of the book, systematic radiologic-anatomic investigations of the superficial and deep vessels of all segments of the spinal cord are introduced. The microvascular morphology is portrayed by numerous microradiographic sections in all three dimensions without overshadowing. The three-dimensional representation of the vascular architecture illustrates elementary outlines and details of arterial territories, anastomotic cross-linking as well as the capillary system, particularly the hitherto unknown structure of the medullary venous system with its functionally important anastomoses and varying regional structures. These often now radiologic-anatomic findings are discussed as to their functional and pathophysiologic impact and constitute the basic on which to improve one's understanding of vascular syndromes of the spinal cord

  6. Biophysical Regulation of Vascular Differentiation and Assembly

    CERN Document Server

    Gerecht, Sharon

    2011-01-01

    The ability to grow stem cells in the laboratory and to guide their maturation to functional cells allows us to study the underlying mechanisms that govern vasculature differentiation and assembly in health and disease. Accumulating evidence suggests that early stages of vascular growth are exquisitely tuned by biophysical cues from the microenvironment, yet the scientific understanding of such cellular environments is still in its infancy. Comprehending these processes sufficiently to manipulate them would pave the way to controlling blood vessel growth in therapeutic applications. This book assembles the works and views of experts from various disciplines to provide a unique perspective on how different aspects of its microenvironment regulate the differentiation and assembly of the vasculature. In particular, it describes recent efforts to exploit modern engineering techniques to study and manipulate various biophysical cues. Biophysical Regulation of Vascular Differentiation and Assembly provides an inter...

  7. Ca2+ signaling in injured in situ endothelium of rat aorta.

    Science.gov (United States)

    Berra-Romani, Roberto; Raqeeb, Abdul; Avelino-Cruz, José Everardo; Moccia, Francesco; Oldani, Amanda; Speroni, Francisco; Taglietti, Vanni; Tanzi, Franco

    2008-09-01

    The inner wall of excised rat aorta was scraped by a microelectrode and Ca2+ signals were investigated by fluorescence microscopy in endothelial cells (ECs) directly coupled with injured cells. The injury caused an immediate increase in the intracellular Ca2+ concentration ([Ca2+]i), followed by a long-lasting decay phase due to Ca2+ influx from extracellular space. The immediate response was mainly due to activation of purinergic receptors, as shown by the effect of P2X and P2Y receptors agonists and antagonists, such as suramin, alpha,beta-MeATP, MRS-2179 and 2-MeSAMP. Inhibition of store-operated Ca2+ influx did not affect either the peak response or the decay phase. Furthermore, the latter was: (i) insensitive to phospholipase C inhibition, (ii) sensitive to the gap junction blockers, palmitoleic acid, heptanol, octanol and oleamide, and (iii) sensitive to La3+ and Ni2+, but not to Gd3+. Finally, ethidium bromide or Lucifer Yellow did not enter ECs facing the scraped area. These results suggest that endothelium scraping: (i) causes a short-lasting stimulation of healthy ECs by extracellular nucleotides released from damaged cells and (ii) uncouples the hemichannels of the ECs facing the injury site; these hemichannels do not fully close and allow a long-lasting Ca2+ entry.

  8. Glutaminolysis is Essential for Energy Production and Ion Transport in Human Corneal Endothelium

    Directory of Open Access Journals (Sweden)

    Wenlin Zhang

    2017-02-01

    Full Text Available Corneal endothelium (CE is among the most metabolically active tissues in the body. This elevated metabolic rate helps the CE maintain corneal transparency by its ion and fluid transport properties, which when disrupted, leads to visual impairment. Here we demonstrate that glutamine catabolism (glutaminolysis through TCA cycle generates a large fraction of the ATP needed to maintain CE function, and this glutaminolysis is severely disrupted in cells deficient in NH3:H+ cotransporter Solute Carrier Family 4 Member 11 (SLC4A11. Considering SLC4A11 mutations leads to corneal endothelial dystrophy and sensorineural deafness, our results indicate that SLC4A11-associated developmental and degenerative disorders result from altered glutamine catabolism. Overall, our results describe an important metabolic mechanism that provides CE cells with the energy required to maintain high level transport activity, reveal a direct link between glutamine metabolism and developmental and degenerative neuronal diseases, and suggest an approach for protecting the CE during ophthalmic surgeries.

  9. Connexins and M3 Muscarinic Receptors Contribute to Heterogeneous Ca2+ Signaling in Mouse Aortic Endothelium

    Directory of Open Access Journals (Sweden)

    François-Xavier Boittin

    2013-02-01

    Full Text Available Background/Aims: Smooth muscle tone is controlled by Ca2+ signaling in the endothelial layer. Mouse endothelial cells are interconnected by gap junctions made of Connexin40 (Cx40 and Cx37, which allow the exchange of signaling molecules to coordinate their activity. Here, we investigated the role of Cx40 in the endothelial Ca2+ signaling of the mouse aorta. Methods: Ca2+ imaging was performed on intact aortic endothelium from both wild type (Cx40+/+ and Connexin40-deficient (Cx40 -/- mice. Results: Acetylcholine (ACh induced early fast and high amplitude Ca2+ transients in a fraction of endothelial cells expressing the M3 muscarinic receptors. Inhibition of intercellular communication using carbenoxolone or octanol fully blocked the propagation of ACh-induced Ca2+ transients toward adjacent cells in WT and Cx40-/- mice. As compared to WT, Cx40-/- mice displayed a reduced propagation of ACh-induced Ca2+ waves, indicating that Cx40 contributes to the spreading of Ca2+ signals. The propagation of those Ca2+ responses was not blocked by suramin, a blocker of purinergic ATP receptors, indicating that there is no paracrine effect of ATP release on the Ca2+ waves. Conclusions: Altogether our data show that Cx40 and Cx37 contribute to the propagation and amplification of the Ca2+ signaling triggered by ACh in endothelial cells expressing the M3 muscarinic receptors.

  10. Uptake of low density lipoproteins by the hamster lung. Interactions with capillary endothelium

    International Nuclear Information System (INIS)

    Nistor, A.; Simionescu, M.

    1986-01-01

    The mechanism by which the circulating low density lipoproteins (LDL) contribute to the lung surfactant cholesterol was investigated by perfusing the hamster lung in situ with LDL either radiolabeled or coupled to gold, or both. Part of [ 125 I]-LDL and [ 3 H]-cholesterol LDL were taken up by a specific process which was time- and concentration-dependent and reached saturation within 20 to 30 min of perfusion. Competition experiments and removal of receptor-bound LDL by heparin suggested that about 50% of LDL uptake is receptor-independent. Experiments using double labeled LDL showed a preferential uptake of 3 H-cholesterol versus 125 I by the lung both in situ and in vivo. LDL-gold particles (LDL-Au), recirculated through the isolated lung, bound to the endothelial luminal plasma membrane and to features potentially involved in receptor-mediated endocytosis (coated pits, coated vesicles, lysosomelike structures) and in transcytosis (plasmalemmal vesicles). The results suggest that LDL uptake by the lung takes place by both receptor-mediated and receptor-independent mechanisms. Cholesterol may be in part transferred to the lung without the apoprotein moiety; the alveolar capillary endothelium appears to be the first monitor of this complex process

  11. Enhanced endothelial cell functions on rosette nanotube-coated titanium vascular stents

    Directory of Open Access Journals (Sweden)

    Eli Fine

    2009-04-01

    Full Text Available Eli Fine1, Lijie Zhang1, Hicham Fenniri2, Thomas J Webster1 1Department of Engineering, Brown University, Providence, RI, USA; 2National Institute for Nanotechnology and Department of Chemistry, University of Alberta, Edmonton, AB, CanadaAbstract: One of the main problems with current vascular stents is a lack of endothelial cell interactions, which if sufficient, would create a uniform healthy endothelium masking the underlying foreign metal from inflammatory cell interference. Moreover, if endothelial cells from the arterial wall do not adhere to the stent, the stent can become loose and dislodge. Therefore, the objective of this in vitro study was to design a novel biomimetic nanostructured coating (that does not contain drugs on conventional vascular stent materials (specifically, titanium for improving vascular stent applications. Rosette nanotubes (RNTs are a new class of biomimetic nanotubes that self-assemble from DNA base analogs and have been shown in previous studies to sufficiently coat titanium and enhance osteoblast cell functions. RNTs have many desirable properties for use as vascular stent coatings including spontaneous self-assembly in body fluids, tailorable surface chemistry for specific implant applications, and nanoscale dimensions similar to those of the natural vascular extracellular matrix. Importantly, the results of this study provided the first evidence that RNTs functionalized with lysine (RNT–K, even at low concentrations, significantly increase endothelial cell density over uncoated titanium. Specifically, 0.01 mg/mL RNT–K coated titanium increased endothelial cell density by 37% and 52% compared to uncoated titanium after 4 h and three days, respectively. The excellent cytocompatibility properties of RNTs (as demonstrated here for the first time for endothelial cells suggest the need for the further exploration of these novel nanostructured materials for vascular stent applications.Keywords: stents

  12. Composite vascular grafts with high cell infiltration by co-electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Zhikai, E-mail: tanzk@hnu.edu.cn; Wang, Hongjie; Gao, Xiangkai; Liu, Tong; Tan, Yongjun

    2016-10-01

    There is an increasing demand for functional small-diameter vascular grafts (diameter < 6 mm) to be used in clinical arterial replacement. An ideal vascular graft should have appropriate biomechanical properties and be biocompatible. Electrospinning has become a popular polymer processing technique for vascular tissue engineering, but the grafts fabricated by electrospinning often have relatively small pores and low porosity, which limit cell infiltration into scaffolds and hinder the regeneration and remodeling of grafts. In the present study, we aimed to develop an efficient method to prepare electrospun composite vascular grafts comprising natural and synthetic materials. We fabricated grafts made of polycaprolactone, gelatin, and polyvinyl alcohol (PVA) by co-electrospinning, and the scaffolds were further functionalized by immobilizing heparin on them. The PVA fibers degraded rapidly in vivo and generated electrospun scaffolds with high porosity, which significantly enhanced cell proliferation and infiltration. The mechanical properties of the grafts are suitable for use in artery replacement. Heparin functionalization of the grafts yielded a good antithrombogenic effect, which was demonstrated in platelet adhesion tests. Moreover, in vitro and in vivo results demonstrated that the heparin release from the grafts enhanced the growth of endothelial cells, which is important for the endothelium of implanted grafts. The results of this study indicate that our method is effective and controllable for the fabrication of vascular grafts that meet the clinical requirements for blood vessel transplantation. - Highlights: • This study indicate an effective method for the fabrication of vascular grafts that meet the clinical requirements. • Co-electrospinning were used to fabricate grafts made of polycaprolactone (PCL), gelatin (GT), and polyvinyl alcohol (PVA). • PVA was used to create large pores within the hybrid scaffolds, thereby enhancing cell infiltration

  13. Composite vascular grafts with high cell infiltration by co-electrospinning

    International Nuclear Information System (INIS)

    Tan, Zhikai; Wang, Hongjie; Gao, Xiangkai; Liu, Tong; Tan, Yongjun

    2016-01-01

    There is an increasing demand for functional small-diameter vascular grafts (diameter < 6 mm) to be used in clinical arterial replacement. An ideal vascular graft should have appropriate biomechanical properties and be biocompatible. Electrospinning has become a popular polymer processing technique for vascular tissue engineering, but the grafts fabricated by electrospinning often have relatively small pores and low porosity, which limit cell infiltration into scaffolds and hinder the regeneration and remodeling of grafts. In the present study, we aimed to develop an efficient method to prepare electrospun composite vascular grafts comprising natural and synthetic materials. We fabricated grafts made of polycaprolactone, gelatin, and polyvinyl alcohol (PVA) by co-electrospinning, and the scaffolds were further functionalized by immobilizing heparin on them. The PVA fibers degraded rapidly in vivo and generated electrospun scaffolds with high porosity, which significantly enhanced cell proliferation and infiltration. The mechanical properties of the grafts are suitable for use in artery replacement. Heparin functionalization of the grafts yielded a good antithrombogenic effect, which was demonstrated in platelet adhesion tests. Moreover, in vitro and in vivo results demonstrated that the heparin release from the grafts enhanced the growth of endothelial cells, which is important for the endothelium of implanted grafts. The results of this study indicate that our method is effective and controllable for the fabrication of vascular grafts that meet the clinical requirements for blood vessel transplantation. - Highlights: • This study indicate an effective method for the fabrication of vascular grafts that meet the clinical requirements. • Co-electrospinning were used to fabricate grafts made of polycaprolactone (PCL), gelatin (GT), and polyvinyl alcohol (PVA). • PVA was used to create large pores within the hybrid scaffolds, thereby enhancing cell infiltration

  14. Endothelium-Dependent Relaxation Effect of Apocynum venetum Leaf Extract via Src/PI3K/Akt Signalling Pathway

    Directory of Open Access Journals (Sweden)

    Yeh Siang Lau

    2015-06-01

    Full Text Available Botanical herbs are consumed globally not only as an essential diet but also as medicines or as functional/recreational food supplements. The extract of the Apocynum venetum leaves (AVLE, also known as Luobuma, exerts its antihypertensive effect via dilating the blood vessels in an endothelium- and concentration-dependent manner with optimal effect seen at as low as 10 µg/mL. A commercial Luoboma “antihypertensive tea” is available commercially in the western province of China. The present study seeks to investigate the underlying cellular mechanisms of the nitric oxide (NO-releasing property of AVLE in rat aortas and human umbilical vein endothelial cells (HUVECs. Endothelium-dependent relaxation induced by AVLE was assessed in organ chambers in the presence or absence of polyethyleneglycol catalase (PP2, 20 µM; inhibitor of Src kinase, wortmannin (30 nM and LY294002 (20 µM; PI3 (phosphatidylinositol3-Kinase inhibitor, NG-nitro-l-arginine (L-NAME, 100 µM; endothelial NO synthase inhibitor (eNOS and ODQ (1 µM; soluble guanylyl cyclase inhibitor. Total nitrite and nitrate (NOx level and protein expression of p-Akt and p-eNOS were measured. AVLE-induced endothelium-dependent relaxation was reduced by PP2, wortmannin and LY294002 and abolished by L-NAME and ODQ. AVLE significantly increased total NOx level in rat aortas and in HUVECs compared to control. It also instigated phosphorylation of Akt and eNOS in cultured HUVECs in a concentration-dependent manner and this was markedly suppressed by PP2, wortmannin and LY294002. AVLE also inhibited superoxide generated from both NADPH oxidase and xanthine/xanthine oxidase system. Taken together, AVLE causes endothelium-dependent NO mediated relaxations of rat aortas through Src/PI3K/Akt dependent NO signalling pathway and possesses superoxide scavenging activity.

  15. HIF-1α Deletion in the Endothelium, but Not in the Epithelium, Protects From Radiation-Induced Enteritis

    Directory of Open Access Journals (Sweden)

    Aurore Toullec

    2018-01-01

    Conclusions: We demonstrate in vivo that HIF-1α impacts radiation-induced enteritis and that this role differs according to the targeted cell type. Our work provides a new role for HIF-1α and endothelium-dependent mechanisms driving inflammatory processes in gut mucosae. Results presented show that effects on normal tissues have to be taken into account in approaches aiming to modulate hypoxia or hypoxia-related molecular mechanisms.

  16. Cardiac and vascular malformations

    International Nuclear Information System (INIS)

    Ley, S.; Ley-Zaporozhan, J.

    2015-01-01

    Malformations of the heart and great vessels show a high degree of variation. There are numerous variants and defects with only few clinical manifestations and are only detected by chance, such as a persistent left superior vena cava or a partial anomalous pulmonary venous connection. Other cardiovascular malformations are manifested directly after birth and need prompt mostly surgical interventions. At this point in time echocardiography is the diagnostic modality of choice for morphological and functional characterization of malformations. Additional imaging using computed tomography (CT) or magnetic resonance imaging (MRI) is only required in a minority of cases. If so, the small anatomical structures, the physiological tachycardia and tachypnea are a challenge for imaging modalities and strategies. This review article presents the most frequent vascular, cardiac and complex cardiovascular malformations independent of the first line diagnostic imaging modality. (orig.) [de

  17. Deleterious effects of tributyltin on porcine vascular stem cells physiology.

    Science.gov (United States)

    Bernardini, Chiara; Zannoni, Augusta; Bertocchi, Martina; Bianchi, Francesca; Salaroli, Roberta; Botelho, Giuliana; Bacci, Maria Laura; Ventrella, Vittoria; Forni, Monica

    2016-01-01

    The vascular functional and structural integrity is essential for the maintenance of the whole organism and it has been demonstrated that different types of vascular progenitor cells resident in the vessel wall play an important role in this process. The purpose of the present research was to observe the effect of tributyltin (TBT), a risk factor for vascular disorders, on porcine Aortic Vascular Precursor Cells (pAVPCs) in term of cytotoxicity, gene expression profile, functionality and differentiation potential. We have demonstrated that pAVPCs morphology deeply changed following TBT treatment. After 48h a cytotoxic effect has been detected and Annexin binding assay demonstrated that TBT induced apoptosis. The transcriptional profile of characteristic pericyte markers has been altered: TBT 10nM substantially induced alpha-SMA, while, TBT 500nM determined a significant reduction of all pericyte markers. IL-6 protein detected in the medium of pAVPCs treated with TBT at both doses studied and with a dose response. TBT has interfered with normal pAVPC functionality preventing their ability to support a capillary-like network. In addition TBT has determined an increase of pAVPC adipogenic differentiation. In conclusion in the present paper we have demonstrated that TBT alters the vascular stem cells in terms of structure, functionality and differentiating capability, therefore effects of TBT in blood should be deeply explored to understand the potential vascular risk associated with the alteration of vascular stem cell physiology. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Visual outcomes after deep anterior lamellar keratoplasty using donor corneas without removal of Descemet membrane and endothelium

    Directory of Open Access Journals (Sweden)

    Tatiana Moura Bastos Prazeres

    Full Text Available ABSTRACT Purpose: The optical quality of the interface after deep anterior lamellar keratoplasty (DALK using the big-bubble technique has been shown to be excellent, leading to results comparable to penetrating keratoplasty. However, there is little in the literature with respect to the controversy surrounding the preparation of the donor cornea. The purpose of this study was to evaluate visual acuity (VA in patients with keratoconus who underwent DALK without removal of the donor graft endothelium. Methods: The records of 90 patients who underwent DALK without the removal of the Descemet membrane (DM and endothelium were retrospectively reviewed. Data collected included uncorrected VA (UCVA and spectacle-corrected VA (SCVA at 7, 30, 180 days, and 1 year postoperatively. Contact lens-corrected visual acuity (CLVA was evaluated after 1 year of the procedure. Results: UCVA was significantly better than preoperative values at 7 days (p<0.001, 30 days (p<0.001, 180 days (p<0.001, and 1 year (p<0.001 after surgery. The 1-year postoperative mean SCVA and CLVA also improved when compared with preoperative SCVA (p<0.001 for both. Conclusions: DALK utilizing donor corneas with attached Descemet membrane and endothelium results in satisfactory VA in patients with keratoconus.

  19. In vitro study of histamine and histamine receptor ligands influence on the adhesion of purified human eosinophils to endothelium.

    Science.gov (United States)

    Grosicki, Marek; Wójcik, Tomasz; Chlopicki, Stefan; Kieć-Kononowicz, Katarzyna

    2016-04-15

    It is a well-known fact that histamine is involved in eosinophil-dependent inflammatory responses including cellular chemotaxis and migration. Nevertheless, the relative role of histamine receptors in the mechanisms of eosinophils adhesion to endothelial cells is not known. Therefore the aim of presented study was to examine the effect of selective histamine receptors ligands on eosinophils adhesion to endothelium. For that purpose the highly purified human eosinophils have been isolated from the peripheral blood. The viability and functional integrity of isolated eosinophils have been validated in several tests. Histamine as well as 4-methylhistamine (selective H4 agonist) in concentration-dependent manner significantly increased number of eosinophils that adhere to endothelium. Among the selective histamine receptors antagonist or H1 inverse agonist only JNJ7777120 (histamine H4 antagonist) and thioperamide (dual histamine H3/H4 antagonist) had direct effect on eosinophils adhesion to endothelial cells. Antagonists of H1 (diphenhydramine, mepyramine) H2 (ranitidine and famotidine) and H3 (pitolisant) histamine receptors were ineffective. To the best of our knowledge, this is the first study to demonstrate that histamine receptor H4 plays a dominant role in histamine-induced eosinophils adhesion to endothelium. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. CIRSE Vascular Closure Device Registry

    NARCIS (Netherlands)

    Reekers, Jim A.; Müller-Hülsbeck, Stefan; Libicher, Martin; Atar, Eli; Trentmann, Jens; Goffette, Pierre; Borggrefe, Jan; Zeleňák, Kamil; Hooijboer, Pieter; Belli, Anna-Maria

    2011-01-01

    Vascular closure devices are routinely used after many vascular interventional radiology procedures. However, there have been no major multicenter studies to assess the safety and effectiveness of the routine use of closure devices in interventional radiology. The CIRSE registry of closure devices

  1. Dynamic adaption of vascular morphology

    DEFF Research Database (Denmark)

    Okkels, Fridolin; Jacobsen, Jens Christian Brings

    2012-01-01

    The structure of vascular networks adapts continuously to meet changes in demand of the surrounding tissue. Most of the known vascular adaptation mechanisms are based on local reactions to local stimuli such as pressure and flow, which in turn reflects influence from the surrounding tissue. Here ...

  2. Diagnostic criteria for vascular dementia

    NARCIS (Netherlands)

    Scheltens, P.; Hijdra, A. H.

    1998-01-01

    The term vascular dementia implies the presence of a clinical syndrome (dementia) caused by, or at least assumed to be caused by, a specific disorder (cerebrovascular disease). In this review, the various sets of criteria used to define vascular dementia are outlined. The various sets of criteria

  3. The vascular secret of Klotho

    DEFF Research Database (Denmark)

    Lewin, Ewa; Olgaard, Klaus

    2015-01-01

    Klotho is an evolutionarily highly conserved protein related to longevity. Increasing evidence of a vascular protecting effect of the Klotho protein has emerged and might be important for future treatments of uremic vascular calcification. It is still disputed whether Klotho is locally expressed ...

  4. Vascular inflammatory cells in hypertension

    Directory of Open Access Journals (Sweden)

    David G. Harrison

    2012-05-01

    Full Text Available Hypertension is a common disorder with uncertain etiology. In the last several years, it has become evident that components of both the innate and adaptive immune system play an essential role in hypertension. Macrophages and T cells accumulate in the perivascular fat, the heart and the kidney of hypertensive patients and in animals with experimental hypertension. Various immunosuppressive agents lower blood pressure and prevent end-organ damage. Mice lacking lymphocytes are protected against hypertension, and adoptive transfer of T cells, but not B cells in the animals restores their blood pressure response to stimuli such as angiotensin II or high salt. Recent studies have shown that mice lacking macrophages have blunted hypertension in response to angiotensin II and that genetic deletion of macrophages markedly reduces experimental hypertension. Dendritic cells have also been implicated in this disease. Many hypertensive stimuli have triggering effects on the central nervous system and signals arising from the circumventricular organ seem to promote inflammation. Studies have suggested that central signals activate macrophages and T cells, which home to the kidney and vasculature and release cytokines, including IL-6 and IL-17, which in turn cause renal and vascular dysfunction and lead to blood pressure elevation. These recent discoveries provide a new understanding of hypertension and provide novel therapeutic opportunities for treatment of this serious disease.

  5. Social media in vascular surgery.

    Science.gov (United States)

    Indes, Jeffrey E; Gates, Lindsay; Mitchell, Erica L; Muhs, Bart E

    2013-04-01

    There has been a tremendous growth in the use of social media to expand the visibility of various specialties in medicine. The purpose of this paper is to describe the latest updates on some current applications of social media in the practice of vascular surgery as well as existing limitations of use. This investigation demonstrates that the use of social networking sites appears to have a positive impact on vascular practice, as is evident through the incorporation of this technology at the Cleveland Clinic and by the Society for Vascular Surgery into their approach to patient care and physician communication. Overall, integration of social networking technology has current and future potential to be used to promote goals, patient awareness, recruitment for clinical trials, and professionalism within the specialty of vascular surgery. Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  6. Prognostic Factors Influencing the Patency of Hemodialysis Vascular Access: Literature Review and Novel Therapeutic Modality by Far Infrared Therapy

    Directory of Open Access Journals (Sweden)

    Chih-Ching Lin

    2009-03-01

    Full Text Available In Taiwan, more than 85% of patients with end-stage renal disease undergo maintenance hemodialysis (HD. The native arteriovenous fistula (AVF accounts for a prevalence of more than 80% of the vascular access in our patients. Some mechanical factors may affect the patency of hemodialysis vascular access, such as surgical skill, puncture technique and shear stress on the vascular endothelium. Several medical factors have also been identified to be associated with vascular access prognosis in HD patients, including stasis, hypercoagulability, endothelial cell injury, medications, red cell mass and genotype polymorphisms of transforming growth factor-β1 and methylene tetrahydrofolate reductase. According to our previous study, AVF failure was associated with a longer dinucleotide (GTn repeat (n ≥ 30 in the promoter of the heme oxygenase-1 (HO-1 gene. Our recent study also demonstrated that far-infrared therapy, a noninvasive and convenient therapeutic modality, can improve access flow, inflammatory status and survival of the AVF in HD patients through both its thermal and non-thermal (endothelial-improving, anti-inflammatory, antiproliferative, antioxidative effects by upregulating NF-E2-related factor-2-dependent HO-1 expression, leading to the inhibition of expression of E-selectin, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1.

  7. VEGF signaling inside vascular endothelial cells and beyond.

    Science.gov (United States)

    Eichmann, Anne; Simons, Michael

    2012-04-01

    Vascular endothelial growth factor-A (VEGF-A) has long been recognized as the key regulator of vascular development and function in health and disease. VEGF is a secreted polypeptide that binds to transmembrane tyrosine kinase VEGF receptors on the plasma membrane, inducing their dimerization, activation and assembly of a membrane-proximal signaling complex. Recent studies have revealed that many key events of VEGFR signaling occur inside the endothelial cell and are regulated by endosomal receptor trafficking. Plasma membrane VEGFR interacting molecules, including vascular guidance receptors Neuropilins and Ephrins also regulate VEGFR endocytosis and trafficking. VEGF signaling is increasingly recognized for its roles outside of the vascular system, notably during neural development, and blood vessels regulate epithelial branching morphogenesis. We review here recent advances in our understanding of VEGF signaling and its biological roles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Endothelial sirtuin 1 deficiency perpetrates nephrosclerosis through downregulation of matrix metalloproteinase-14: relevance to fibrosis of vascular senescence.

    Science.gov (United States)

    Vasko, Radovan; Xavier, Sandhya; Chen, Jun; Lin, Chi Hua Sarah; Ratliff, Brian; Rabadi, May; Maizel, Julien; Tanokuchi, Rina; Zhang, Frank; Cao, Jian; Goligorsky, Michael S

    2014-02-01

    Sirtuin 1 (SIRT1) depletion in vascular endothelial cells mediates endothelial dysfunction and premature senescence in diverse cardiovascular and renal diseases. However, the molecular mechanisms underlying these pathologic effects remain unclear. Here, we examined the phenotype of a mouse model of vascular senescence created by genetically ablating exon 4 of Sirt1 in endothelial cells (Sirt1(endo-/-)). Under basal conditions, Sirt1(endo-/-) mice showed impaired endothelium-dependent vasorelaxation and angiogenesis, and fibrosis occurred spontaneously at low levels at an early age. In contrast, induction of nephrotoxic stress (acute and chronic folic acid-induced nephropathy) in Sirt1(endo-/-) mice resulted in robust acute renal functional deterioration followed by an exaggerated fibrotic response compared with control animals. Additional studies identified matrix metalloproteinase-14 (MMP-14) as a target of SIRT1. In the kidneys of Sirt1(endo-/-) mice, impaired angiogenesis, reduced matrilytic activity, and retention of the profibrotic cleavage substrates tissue transglutaminase and endoglin accompanied MMP-14 suppression. Furthermore, restoration of MMP-14 expression in SIRT1-depeleted mice improved angiogenic and matrilytic functions of the endothelium, prevented renal dysfunction, and attenuated nephrosclerosis. Our findings establish a novel mechanistic molecular link between endothelial SIRT1 depletion, downregulation of MMP-14, and the development of nephrosclerosis.

  9. [The age-related macular degeneration as a vascular disease/part of systemic vasculopathy: contributions to its pathogenesis].

    Science.gov (United States)

    Fischer, Tamás

    2015-03-01

    The wall of blood vessels including those in choroids may be harmed by several repeated and/or prolonged mechanical, physical, chemical, microbiological, immunologic, and genetic impacts (risk factors), which may trigger a protracted response, the so-called host defense response. As a consequence, pathological changes resulting in vascular injury (e. g. atherosclerosis, age-related macular degeneration) may be evolved. Risk factors can also act directly on the endothelium through an increased production of reactive oxygen species promoting an endothelial activation, which leads to endothelial dysfunction, the onset of vascular disease. Thus, endothelial dysfunction is a link between the harmful stimulus and vascular injury; any kind of harmful stimuli may trigger the defensive chain that results in inflammation that may lead to vascular injury. It has been shown that even early age-related macular degeneration is associated with the presence of diffuse arterial disease and patients with early age-related macular degeneration demonstrate signs of systemic and retinal vascular alterations. Chronic inflammation, a feature of AMD, is tightly linked to diseases associated with ED: AMD is accompanied by a general inflammatory response, in the form of complement system activation, similar to that observed in degenerative vascular diseases such as atherosclerosis. All these facts indicate that age-related macular degeneration may be a vascular disease (or part of a systemic vasculopathy). This recognition could have therapeutic implications because restoration of endothelial dysfunction may prevent the development or improve vascular disease resulting in prevention or improvement of age-related macular degeneration as well.

  10. The Protective Effect of Antioxidants Consumption on Diabetes and Vascular Complications

    Directory of Open Access Journals (Sweden)

    Stéphanie Dal

    2016-07-01

    Full Text Available Obesity and diabetes is generally accompanied by a chronic state of oxidative stress, disequilibrium in the redox balance, implicated in the development and progression of complications such as micro- and macro-angiopathies. Disorders in the inner layer of blood vessels, the endothelium, play an early and critical role in the development of these complications. Blunted endothelium-dependent relaxation and/or contractions are quietly associated to oxidative stress. Thus, preserving endothelial function and oxidative stress seems to be an optimization strategy in the prevention of vascular complications associated with diabetes. Diet is a major lifestyle factor that can greatly influence the incidence and the progression of type 2 diabetes and cardiovascular complications. The notion that foods not only provide basic nutrition but can also prevent diseases and ensure good health and longevity is now attained greater prominence. Some dietary and lifestyle modifications associated to antioxidative supply could be an effective prophylactic means to fight against oxidative stress in diabesity and complications. A significant benefit of phytochemicals (polyphenols in wine, grape, teas, vitamins (ascorbate, tocopherol, minerals (selenium, magnesium, and fruits and vegetables in foods is thought to be capable of scavenging free radicals, lowering the incidence of chronic diseases. In this review, we discuss the role of oxidative stress in diabetes and complications, highlight the endothelial dysfunction, and examine the impact of antioxidant foods, plants, fruits, and vegetables, currently used medication with antioxidant properties, in relation to the development and progression of diabetes and cardiovascular complications.

  11. Beneficial Effects of Apelin on Vascular Function in Patients With Central Obesity.

    Science.gov (United States)

    Schinzari, Francesca; Veneziani, Augusto; Mores, Nadia; Barini, Angela; Di Daniele, Nicola; Cardillo, Carmine; Tesauro, Manfredi

    2017-05-01

    Patients with central obesity have impaired insulin-stimulated vasodilation and increased ET-1 (endothelin 1) vasoconstriction, which may contribute to insulin resistance and vascular damage. Apelin enhances insulin sensitivity and glucose disposal but also acts as a nitric oxide (NO)-dependent vasodilator and a counter-regulator of AT 1 (angiotensin [Ang] II type 1) receptor-induced vasoconstriction. We, therefore, examined the effects of exogenous (Pyr 1 )apelin on NO-mediated vasodilation and Ang II- or ET-1-dependent vasoconstrictor tone in obese patients. In the absence of hyperinsulinemia, forearm blood flow responses to graded doses of acetylcholine and sodium nitroprusside were not different during saline or apelin administration (both P >0.05). During intra-arterial infusion of regular insulin, however, apelin enhanced the vasodilation induced by both acetylcholine and nitroprusside (both P 0.05). In conclusion, in patients with central obesity, apelin has favorable effects not only to improve insulin-stimulated endothelium-dependent and endothelium-independent vasodilator responses but also to blunt Ang II- and ET-1-dependent vasoconstriction by a mechanism not involving NO. Taken together, our results suggest that targeting the apelin system might favorably impact some hemodynamic abnormalities of insulin-resistant states like obesity. © 2017 American Heart Association, Inc.

  12. Potential of Food and Natural Products to Promote Endothelial and Vascular Health.

    Science.gov (United States)

    Auger, Cyril; Said, Amissi; Nguyen, Phuong Nga; Chabert, Philippe; Idris-Khodja, Noureddine; Schini-Kerth, Valérie B

    2016-07-01

    Endothelial dysfunction is now well established as a pivotal early event in the development of major cardiovascular diseases including hypertension, atherosclerosis, and diabetes. The alteration of the endothelial function is often triggered by an imbalance between the endothelial formation of vasoprotective factors including nitric oxide (NO) and endothelium-dependent hyperpolarization, and an increased level of oxidative stress involving several prooxidant enzymes such as NADPH oxidase and, often also, the appearance of cyclooxygenase-derived vasoconstrictors. Preclinical studies have indicated that polyphenol-rich food and food-derived products such as grape-derived products, black and red berries, green and black teas and cocoa, and omega-3 fatty acids can trigger activating pathways in endothelial cells promoting an increased formation of nitric oxide and endothelium-dependent hyperpolarization. Moreover, intake of such food-derived products has been associated with the prevention and/or the improvement of an established endothelial dysfunction in several experimental models of cardiovascular diseases and in humans with cardiovascular diseases. This review will discuss both experimental and clinical evidences indicating that different types of food and natural products are able to promote endothelial and vascular health, as well as the underlying mechanisms.

  13. Fructose intake exacerbates the contractile response elicited by norepinephrine in mesenteric vascular bed of rats via increased endothelial prostanoids.

    Science.gov (United States)

    Sousa, Glauciene J; Oliveira, Phablo Wendell C; Nogueira, Breno V; Melo, Antônio F; Faria, Thaís de Oliveira; Meira, Eduardo Frizera; Mill, José G; Bissoli, Nazaré S; Baldo, Marcelo P

    2017-10-01

    Chronic fructose intake induces major cardiovascular and metabolic disturbances and is associated with the development of hypertension due to changes in vascular function. We hypothesized that high fructose intake for 6 weeks would cause metabolic syndrome and lead to initial vascular dysfunction. Male Wistar rats were assigned to receive fructose (FRU, 10%) or drinking water (CON) for 6 weeks. Systolic blood pressure was evaluated by tail plethysmography. Fasting glucose, insulin and glucose tolerance were measured at the end of the follow-up. Mesenteric vascular bed reactivity was tested before and after pharmacological blockade. Western blot analysis was performed for iNOS, eNOS, Nox2 and COX-2. DHE staining was used for vascular superoxide anion detection. Vessel structure was evaluated by optical and electronic microscopy. Fructose intake did not alter blood pressure, but did increase visceral fat deposition and fasting glucose as well as impair insulin and glucose tolerance. Fructose increased NE-induced vasoconstriction compared with CON, and this difference was abrogated by indomethacin perfusion as well as endothelium removal. ACh-induced relaxation was preserved, and the NO modulation tested after L-NAME perfusion was similar between groups. SNP-induced relaxation was not altered. Inducible NOS was increased; however, there were no changes in eNOS, Nox2 or COX-2 protein expression. Basal or stimulated superoxide anion production was not changed by fructose intake. In conclusion, high fructose intake increased NE-induced vasoconstriction through the endothelial prostanoids even in the presence of a preserved endothelium-mediated relaxation. No major changes in vessel structure were detected. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Vascular-targeted therapies for Duchenne muscular dystrophy

    Science.gov (United States)

    2013-01-01

    Duchenne muscular dystrophy (DMD) is the most common muscular dystrophy and an X-linked recessive, progressive muscle wasting disease caused by the absence of a functional dystrophin protein. Dystrophin has a structural role as a cytoskeletal stabilization protein and protects cells against contraction-induced damage. Dystrophin also serves a signaling role through mechanotransduction of forces and localization of neuronal nitric oxide synthase (nNOS), which produces nitric oxide (NO) to facilitate vasorelaxation. In DMD, the signaling defects produce inadequate tissue perfusion caused by functional ischemia due to a diminished ability to respond to shear stress induced endothelium-dependent dilation. Additionally, the structural defects seen in DMD render myocytes with an increased susceptibility to mechanical stress. The combination of both defects is necessary to generate myocyte damage, which induces successive rounds of myofiber degeneration and regeneration, loss of calcium homeostasis, chronic inflammatory response, fibrosis, and myonecrosis. In individuals with DMD, these processes inevitably cause loss of ambulation shortly after the first decade and an abbreviated life with death in the third or fourth decade due to cardio-respiratory anomalies. There is no known cure for DMD, and although the culpable gene has been identified for more than twenty years, research on treatments has produced few clinically relevant results. Several recent studies on novel DMD therapeutics are vascular targeted and focused on attenuating the inherent functional ischemia. One approach improves vasorelaxation capacity through pharmaceutical inhibition of either phosphodiesterase 5 (PDE5) or angiotensin-converting enzyme (ACE). Another approach increases the density of the underlying vascular network by inducing angiogenesis, and this has been accomplished through either direct delivery of vascular endothelial growth factor (VEGF) or by downregulating the VEGF decoy

  15. Understanding the NSAID related risk of vascular events

    NARCIS (Netherlands)

    Vonkeman, Harald Erwin; Brouwers, Jacobus R.B.J.; van de Laar, Mart A F J

    2006-01-01

    Concern is growing about an increased risk of thrombotic events (including myocardial infarction and stroke) during the use of non-steroidal anti-inflammatory drugs (NSAIDs), in particular the so called selective cyclo-oxygenase-2 (COX 2) inhibitors. Although clinical trials give conflicting results

  16. Endothelial dysfunction, vascular disease and stroke: the ARTICO study.

    Science.gov (United States)

    Roquer, J; Segura, T; Serena, J; Castillo, J

    2009-01-01

    Endothelial dysfunction is a fundamental step in the atherosclerotic disease process. Its presence is a risk factor for the development of clinical events, and may represent a marker of atherothrombotic burden. Also, endothelial dysfunction contributes to enhanced plaque vulnerability, may trigger plaque rupture, and favors thrombus formation. The assessment of endothelial vasomotion is a useful marker of atherosclerotic vascular disease. There are different methods to assess endothelial function: endothelium-dependent vasodilatation brachial flow-mediated dilation, cerebrovascular reactivity to L-arginine, and the determination of some biomarkers such as microalbuminuria, platelet function, and C-reactive protein. Endothelial dysfunction has been observed in stroke patients and has been related to stroke physiopathology, stroke subtypes, clinical severity and outcome. Resting ankle-brachial index (ABI) is also considered an indicator of generalized atherosclerosis, and a low ABI is associated with an increase in stroke incidence in the elderly. Despite all these data, there are no studies analyzing the predictive value of ABI for new cardiovascular events in patients after suffering an acute ischemic stroke. ARTICO is an ongoing prospective, observational, multicenter study being performed in 50 Spanish hospitals. The aim of the ARTICO study is to evaluate the prognostic value of a pathological ABI (ARTICO study will increase the knowledge of patient outcome after ischemic stroke and may help to improve our ability to detect patients at high risk of stroke recurrence or major cardiovascular events. (c) 2009 S. Karger AG, Basel.

  17. Platelet and Erythrocyte Sources of S1P Are Redundant for Vascular Development and Homeostasis, but Both Rendered Essential After Plasma S1P Depletion in Anaphylactic Shock.

    Science.gov (United States)

    Gazit, Salomé L; Mariko, Boubacar; Thérond, Patrice; Decouture, Benoit; Xiong, Yuquan; Couty, Ludovic; Bonnin, Philippe; Baudrie, Véronique; Le Gall, Sylvain M; Dizier, Blandine; Zoghdani, Nesrine; Ransinan, Jessica; Hamilton, Justin R; Gaussem, Pascale; Tharaux, Pierre-Louis; Chun, Jerold; Coughlin, Shaun R; Bachelot-Loza, Christilla; Hla, Timothy; Ho-Tin-Noé, Benoit; Camerer, Eric

    2016-09-30

    Sphingosine-1-phosphate (S1P) signaling is essential for vascular development and postnatal vascular homeostasis. The relative importance of S1P sources sustaining these processes remains unclear. To address the level of redundancy in bioactive S1P provision to the developing and mature vasculature. S1P production was selectively impaired in mouse platelets, erythrocytes, endothelium, or smooth muscle cells by targeted deletion of genes encoding sphingosine kinases -1 and -2. S1P deficiency impaired aggregation and spreading of washed platelets and profoundly reduced their capacity to promote endothelial barrier function ex vivo. However, and in contrast to recent reports, neither platelets nor any other source of S1P was essential for vascular development, vascular integrity, or hemostasis/thrombosis. Yet rapid and profound depletion of plasma S1P during systemic anaphylaxis rendered both platelet- and erythrocyte-derived S1P essential for survival, with a contribution from blood endothelium observed only in the absence of circulating sources. Recovery was sensitive to aspirin in mice with but not without platelet S1P, suggesting that platelet activation and stimulus-response coupling is needed. S1P deficiency aggravated vasoplegia in this model, arguing a vital role for S1P in maintaining vascular resistance during recovery from circulatory shock. Accordingly, the S1P2 receptor mediated most of the survival benefit of S1P, whereas the endothelial S1P1 receptor was dispensable for survival despite its importance for maintaining vascular integrity. Although source redundancy normally secures essential S1P signaling in developing and mature blood vessels, profound depletion of plasma S1P renders both erythrocyte and platelet S1P pools necessary for recovery and high basal plasma S1P levels protective during anaphylactic shock. © 2016 American Heart Association, Inc.

  18. Hyperhomocysteinemia potentiates diabetes-impaired EDHF-induced vascular relaxation: Role of insufficient hydrogen sulfide

    Directory of Open Access Journals (Sweden)

    Zhongjian Cheng

    2018-06-01

    Full Text Available Insufficient hydrogen sulfide (H2S has been implicated in Type 2 diabetic mellitus (T2DM and hyperhomocysteinemia (HHcy-related cardiovascular complications. We investigated the role of H2S in T2DM and HHcy-induced endothelial dysfunction in small mesenteric artery (SMA of db/db mice fed a high methionine (HM diet. HM diet (8 weeks induced HHcy in both T2DM db/db mice and non-diabetic db/+ mice (total plasma Hcy: 48.4 and 31.3 µM, respectively, and aggravated the impaired endothelium-derived hyperpolarization factor (EDHF-induced endothelium-dependent relaxation to acetylcholine (ACh, determined by the presence of eNOS inhibitor N(ω-nitro-L-arginine methyl ester (L-NAME and prostacyclin (PGI2 inhibitor indomethacin (INDO, in SMA from db/db mice but not that from db/+ mice. A non-selective Ca2+-active potassium channel (KCa opener NS309 rescued T2DM/HHcy-impaired EDHF-mediated vascular relaxation to ACh. EDHF-induced relaxation to ACh was inhibited by a non-selective KCa blocker TEA and intermediate-conductance KCa blocker (IKCa Tram-34, but not by small-conductance KCa (SKCa blocker Apamin. HHcy potentiated the reduction of free sulfide, H2S and cystathionine γ-lyase protein, which converts L-cysteine to H2S, in SMA of db/db mice. Importantly, a stable H2S donor DATS diminished the enhanced O2- production in SMAs and lung endothelial cells of T2DM/HHcy mice. Antioxidant PEG-SOD and DATS improved T2DM/HHcy impaired relaxation to ACh. Moreover, HHcy increased hyperglycemia-induced IKCa tyrosine nitration in human micro-vascular endothelial cells. EDHF-induced vascular relaxation to L-cysteine was not altered, whereas such relaxation to NaHS was potentiated by HHcy in SMA of db/db mice which was abolished by ATP-sensitive potassium channel blocker Glycolamide but not by KCa blockers. Conclusions: Intermediate HHcy potentiated H2S reduction via CSE-downregulation in microvasculature of T2DM mice. H2S is justified as an EDHF. Insufficient H2S

  19. Evidence for thyroxine transport by the lung and heart capillary endothelium

    International Nuclear Information System (INIS)

    Heltianu, C.; Dobrila, L.; Antohe, F.; Simionescu, M.

    1989-01-01

    The uptake and transport of carrier-bound thyroxine by the endothelium were investigated by perfusing through the heart and lung of young rats radiolabeled thyroxine bound to prealbumin ([125I]T4Pa) or serum ([125I]T4S). In addition these complexes were tagged to 5-nm gold particles to obtain quantitative (radioassay) and qualitative (autoradiography) data from the same experiment. The complexes (prewarmed at 37 degrees) were perfused in situ at various concentrations (1 to 50 muCi/ml) for time intervals ranging from 5 to 30 min. After thorough washing of the unbound probe, tissue fragments were either measured for total uptake in a gamma counter or processed for electron microscopy autoradiography. The results showed that both the lung and heart take up [125I]T4 complexes by a process that is saturable at low hormone concentration; uptake is completed by free T4 and Pa. In specimens perfused with double-labeled complexes (iodinated and tagged to gold) autoradiography revealed that silver grains and gold particles colocalize predominantly on endothelial plasmalemmal vesicles. The probe appeared first in vesicles open to the capillary lumen (5 min) and further on in vesicles apparently free within the cytoplasm or open to the abluminal front. At 30 min, only silver grains seem to be present in the pericapillary space, on the alveolar epithelial cells, as well as on the nucleus and mitochondria of heart myocytes. The findings suggest that (1) T4Pa uptake by the endothelial cell (EC) is a specific process (possibly via specific binding sites); (2) T4Pa is taken up and transported across capillary EC by plasmalemmal vesicles; (3) in the pericapillary space T4 seems to dissociate from its carrier

  20. Segmentation of corneal endothelium images using a U-Net-based convolutional neural network.

    Science.gov (United States)

    Fabijańska, Anna

    2018-04-18

    Diagnostic information regarding the health status of the corneal endothelium may be obtained by analyzing the size and the shape of the endothelial cells in specular microscopy images. Prior to the analysis, the endothelial cells need to be extracted from the image. Up to today, this has been performed manually or semi-automatically. Several approaches to automatic segmentation of endothelial cells exist; however, none of them is perfect. Therefore this paper proposes to perform cell segmentation using a U-Net-based convolutional neural network. Particularly, the network is trained to discriminate pixels located at the borders between cells. The edge probability map outputted by the network is next binarized and skeletonized in order to obtain one-pixel wide edges. The proposed solution was tested on a dataset consisting of 30 corneal endothelial images presenting cells of different sizes, achieving an AUROC level of 0.92. The resulting DICE is on average equal to 0.86, which is a good result, regarding the thickness of the compared edges. The corresponding mean absolute percentage error of cell number is at the level of 4.5% which confirms the high accuracy of the proposed approach. The resulting cell edges are well aligned to the ground truths and require a limited number of manual corrections. This also results in accurate values of the cell morphometric parameters. The corresponding errors range from 5.2% for endothelial cell density, through 6.2% for cell hexagonality to 11.93% for the coefficient of variation of the cell size. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Effect of inorganic lead on some functions of the cerebral microvessel endothelium

    International Nuclear Information System (INIS)

    Maxwell, K.; Vinters, H.V.; Berliner, J.A.; Bready, J.V.; Cancilla, P.A.

    1986-01-01

    The effect of inorganic lead on two functions of cerebral microvessel endothelium, cell division and glucose analog uptake, was investigated. Lead concentrations considered to be toxic in humans inhibited both functions in cultured endothelial cells. Both effects were dependent on the length of lead exposure and dose over the range of 10(-4) to 10(-6) M lead acetate. After 4 days of exposure there were 76% fewer cells in 10(-4) M lead-exposed cultures relative to control cultures. After 4 days of exposure to 10(-5) M lead there were 55% fewer cells, and after 10(-6) M lead exposure there were 15% fewer cells. Two days after 10(-4) M lead exposure [methyl-3H]thymidine incorporation into endothelial cells was inhibited by 71%. Incorporation was inhibited 47% by 10(-5) M lead but 10(-6) M lead did not inhibit incorporation after 2 days of exposure. Glucose analog uptake was inhibited in both contact-inhibited and log-phase cells; however, the latter were more sensitive to lead and this increased sensitivity correlated with a higher lead content in this cell population. Both the specific carrier-mediated and the nonspecific components of glucose analog uptake were inhibited by exposure of the endothelial cells to lead. A lead exposure of 40 min produced a significant effect on the uptake mechanism. In order to manifest its effects the lead had to be present in serum-containing medium, suggesting that some serum component was necessary to present the lead to the endothelial cells. These findings imply that the initial target of inorganic lead in the CNS may be the plasma membrane of the capillary endothelial cells, and that lead may act by altering the physiological function of these membranes

  2. Excess L-arginine restores endothelium-dependent relaxation impaired by monocrotaline pyrrole

    International Nuclear Information System (INIS)

    Cheng Wei; Oike, Masahiro; Hirakawa, Masakazu; Ohnaka, Keizo; Koyama, Tetsuya; Ito, Yushi

    2005-01-01

    The pyrrolizidine alkaloid plant toxin monocrotaline pyrrole (MCTP) causes pulmonary hypertension in experimental animals. The present study aimed to examine the effects of MCTP on the endothelium-dependent relaxation. We constructed an in vitro disease model of pulmonary hypertension by overlaying MCTP-treated bovine pulmonary artery endothelial cells (CPAEs) onto pulmonary artery smooth muscle cell-embedded collagen gel lattice. Acetylcholine (Ach) induced a relaxation of the control CPAEs-overlaid gels that were pre-contracted with noradrenaline, and the relaxation was inhibited by L-NAME, an inhibitor of NO synthase (NOS). In contrast, when MCTP-treated CPAEs were overlaid, the pre-contracted gels did not show a relaxation in response to Ach in the presence of 0.5 mM L-arginine. Expression of endothelial NOS protein, Ach-induced Ca 2+ transients and cellular uptake of L-[ 3 H]arginine were significantly smaller in MCTP-treated CPAEs than in control cells, indicating that these changes were responsible for the impaired NO production in MCTP-treated CPAEs. Since cellular uptake of L-[ 3 H]arginine linearly increased according to its extracellular concentration, we hypothesized that the excess concentration of extracellular L-arginine might restore NO production in MCTP-treated CPAEs. As expected, in the presence of 10 mM L-arginine, Ach showed a relaxation of the MCTP-treated CPAEs-overlaid gels. These results indicate that the impaired NO production in damaged endothelial cells can be reversed by supplying excess L-arginine

  3. Early Vascular Ageing - A Concept in Development.

    Science.gov (United States)

    M Nilsson, Peter

    2015-04-01

    Cardiovascular disease (CVD) is a prevalent condition in the elderly, often associated with metabolic disturbance and type 2 diabetes. For a number of years, research dedicated to understand atherosclerosis dominated, and for many good reasons, this pathophysiological process being proximal to the CVD events. In recent years, research has been devoted to an earlier stage of vascular pathology named arteriosclerosis (arterial stiffness) and the new concept of early vascular ageing (EVA), developed by a group of mostly European researchers. This overview describes recent developments in research dedicated to EVA and new emerging aspects found in studies of families at high cardiovascular risk. There are new aspects related to genetics, telomere biology and the role of gut microbiota. However, there is still no unifying definition available of EVA and no direct treatment, but rather only recommendations for conventional cardiovascular risk factor control. New interventions are being developed - not only new antihypertensive drugs, but also new drugs for vascular protection - the selective angiotensin-II (AT2) agonist Compound 21 (C21). Human studies are eagerly awaited. Even new functional food products could have the potential to positively influence cardiometabolic regulation, to be confirmed.

  4. Vascular disease in cocaine addiction.

    Science.gov (United States)

    Bachi, Keren; Mani, Venkatesh; Jeyachandran, Devi; Fayad, Zahi A; Goldstein, Rita Z; Alia-Klein, Nelly

    2017-07-01

    Cocaine, a powerful vasoconstrictor, induces immune responses including cytokine elevations. Chronic cocaine use is associated with functional brain impairments potentially mediated by vascular pathology. Although the Crack-Cocaine epidemic has declined, its vascular consequences are increasingly becoming evident among individuals with cocaine use disorder of that period, now aging. Paradoxically, during the period when prevention efforts could make a difference, this population receives psychosocial treatment at best. We review major postmortem and in vitro studies documenting cocaine-induced vascular toxicity. PubMed and Academic Search Complete were used with relevant terms. Findings consist of the major mechanisms of cocaine-induced vasoconstriction, endothelial dysfunction, and accelerated atherosclerosis, emphasizing acute, chronic, and secondary effects of cocaine. The etiology underlying cocaine's acute and chronic vascular effects is multifactorial, spanning hypertension, impaired homeostasis and platelet function, thrombosis, thromboembolism, and alterations in blood flow. Early detection of vascular disease in cocaine addiction by multimodality imaging is discussed. Treatment may be similar to indications in patients with traditional risk-factors, with few exceptions such as enhanced supportive care and use of benzodiazepines and phentolamine for sedation, and avoiding β-blockers. Given the vascular toxicity cocaine induces, further compounded by smoking and alcohol comorbidity, and interacting with aging of the crack generation, there is a public health imperative to identify pre-symptomatic markers of vascular impairments in cocaine addiction and employ preventive treatment to reduce silent disease progression. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. [The future of vascular medicine].

    Science.gov (United States)

    Kroeger, K; Luther, B

    2014-10-01

    In the future vascular medicine will still have a great impact on health of people. It should be noted that the aging of the population does not lead to a dramatic increase in patient numbers, but will be associated with a changing spectrum of co-morbidities. In addition, vascular medical research has to include the intensive care special features of vascular patients, the involvement of vascular medicine in a holistic concept of fast-track surgery, a geriatric-oriented intensive monitoring and early geriatric rehabilitation. For the future acceptance of vascular medicine as a separate subject area under delimitation of cardiology and radiology is important. On the other hand, the subject is so complex and will become more complex in future specialisations that mixing of surgery and angiology is desirable, with the aim to preserve the vascular surgical knowledge and skills on par with the medical and interventional measures and further develop them. Only large, interdisciplinary guided vascular centres will be able to provide timely diagnosis and therapy, to deal with the growing multi-morbidity of the patient, to perform complex therapies even in an acute emergency and due to sufficient number of cases to present with well-trained and experienced teams. These requirements are mandatory to decrease patients' mortality step by step. Georg Thieme Verlag KG Stuttgart · New York.

  6. Contemporary vascular smartphone medical applications.

    Science.gov (United States)

    Carter, Thomas; O'Neill, Stephen; Johns, Neil; Brady, Richard R W

    2013-08-01

    Use of smartphones and medical mHealth applications (apps) within the clinical environment provides a potential means for delivering elements of vascular care. This article reviews the contemporary availability of apps specifically themed to major vascular diseases and the opportunities and concerns regarding their integration into practice. Smartphone apps relating to major vascular diseases were identified from the app stores for the 6 most popular smartphone platforms, including iPhone, Android, Blackberry, Nokia, Windows, and Samsung. Search terms included peripheral artery (arterial) disease, varicose veins, aortic aneurysm, carotid artery disease, amputation, ulcers, hyperhydrosis, thoracic outlet syndrome, vascular malformation, and lymphatic disorders. Forty-nine vascular-themed apps were identified. Sixteen (33%) were free of charge. Fifteen apps (31%) had customer satisfaction ratings, but only 3 (6%) had greater than 100. Only 13 apps (27%) had documented medical professional involvement in their design or content. The integration of apps into the delivery of care has the potential to benefit vascular health care workers and patients. However, high-quality apps designed by clinicians with vascular expertise are currently lacking and represent an area of concern in the mHealth market. Improvement in the quality and reliability of these apps will require the development of robust regulation. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Protective effects on vascular endothelial cell in N'-nitro-L-arginine (L-NNA)-induced hypertensive rats from the combination of effective components of Uncaria rhynchophylla and Semen Raphani.

    Science.gov (United States)

    Li, Yunlun; Yang, Wenqing; Zhu, Qingjun; Yang, Jinguo; Wang, Zhen

    2015-08-01

    Endothelial dysfunction is closely associated with hypertension. Protection of vascular endothelial cell is the key to prevention and treatment of hypertension. Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid, isolated from traditional Chinese medicine Uncaria rbyncbopbylla and Semen Raphani respectively, exhibit properties of anti-hypertension and protection of blood vessels. In the present study, we observed the protective effect of the combined use of Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid to the vascular endothelial cell in N'-nitro-L-arginine-induced hypertensive rats and investigate the preliminary mechanism. Blood pressure was detected by non-invasive rats tail method to observe the anti-hypertension effect of drugs. Scanning electron microscopy was used to observe the integrity or shedding state of vascular endothelial cell. The amount of circulating endothelial cells and CD54 and CD62P expression on circulating endothelial cells were tested to evaluate the endothelium function. In this study, we found that the Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid compatibility can effectively lower the blood pressure, improve the structural integrity of vascular endothelium, and significantly reduce the number of circulating endothelial cells. Furthermore, the mean fluorescence intensity of CD54 and CD62P expressed showed decrease after the intervention of Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid compatibility. In conclusion, the combination of effective components of the Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid demonstrated good antihypertension effect and vascular endothelium protective effect. The preliminary mechanism of the protective effect may attribute to relieve the overall low-grade inflammation.

  8. Constructal vascularized structures

    Science.gov (United States)

    Cetkin, Erdal

    2015-06-01

    Smart features such as self-healing and selfcooling require bathing the entire volume with a coolant or/and healing agent. Bathing the entire volume is an example of point to area (or volume) flows. Point to area flows cover all the distributing and collecting kinds of flows, i.e. inhaling and exhaling, mining, river deltas, energy distribution, distribution of products on the landscape and so on. The flow resistances of a point to area flow can be decreased by changing the design with the guidance of the constructal law, which is the law of the design evolution in time. In this paper, how the flow resistances (heat, fluid and stress) can be decreased by using the constructal law is shown with examples. First, the validity of two assumptions is surveyed: using temperature independent Hess-Murray rule and using constant diameter ducts where the duct discharges fluid along its edge. Then, point to area types of flows are explained by illustrating the results of two examples: fluid networks and heating an area. Last, how the structures should be vascularized for cooling and mechanical strength is documented. This paper shows that flow resistances can be decreased by morphing the shape freely without any restrictions or generic algorithms.

  9. The diaphragms of fenestrated endothelia: gatekeepers of vascular permeability and blood composition.

    Science.gov (United States)

    Stan, Radu V; Tse, Dan; Deharvengt, Sophie J; Smits, Nicole C; Xu, Yan; Luciano, Marcus R; McGarry, Caitlin L; Buitendijk, Maarten; Nemani, Krishnamurthy V; Elgueta, Raul; Kobayashi, Takashi; Shipman, Samantha L; Moodie, Karen L; Daghlian, Charles P; Ernst, Patricia A; Lee, Hong-Kee; Suriawinata, Arief A; Schned, Alan R; Longnecker, Daniel S; Fiering, Steven N; Noelle, Randolph J; Gimi, Barjor; Shworak, Nicholas W; Carrière, Catherine

    2012-12-11

    Fenestral and stomatal diaphragms are endothelial subcellular structures of unknown function that form on organelles implicated in vascular permeability: fenestrae, transendothelial channels, and caveolae. PV1 protein is required for diaphragm formation in vitro. Here, we report that deletion of the PV1-encoding Plvap gene in mice results in the absence of diaphragms and decreased survival. Loss of diaphragms did not affect the fenestrae and transendothelial channels formation but disrupted the barrier function of fenestrated capillaries, causing a major leak of plasma proteins. This disruption results in early death of animals due to severe noninflammatory protein-losing enteropathy. Deletion of PV1 in endothelium, but not in the hematopoietic compartment, recapitulates the phenotype of global PV1 deletion, whereas endothelial reconstitution of PV1 rescues the phenotype. Taken together, these data provide genetic evidence for the critical role of the diaphragms in fenestrated capillaries in the maintenance of blood composition. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Combined treatment with atorvastatin and imipenem improves survival and vascular functions in mouse model of sepsis.

    Science.gov (United States)

    Choudhury, Soumen; Kannan, Kandasamy; Pule Addison, M; Darzi, Sazad A; Singh, Vishakha; Singh, Thakur Uttam; Thangamalai, Ramasamy; Dash, Jeevan Ranjan; Parida, Subhashree; Debroy, Biplab; Paul, Avishek; Mishra, Santosh Kumar

    2015-08-01

    We have recently reported that pre-treatment, but not the post-treatment with atorvastatin showed survival benefit and improved hemodynamic functions in cecal ligation and puncture (CLP) model of sepsis in mice. Here we examined whether combined treatment with atorvastatin and imipenem after onset of sepsis can prolong survival and improve vascular functions. At 6 and 18h after sepsis induction, treatment with atorvastatin plus imipenem, atorvastatin or imipenem alone or placebo was initiated. Ex vivo experiments were done on mouse aorta to examine the vascular reactivity to nor-adrenaline and acetylcholine and mRNA expressions of α1D AR, GRK2 and eNOS. Atorvastatin plus imipenem extended the survival time to 56.00±4.62h from 20.00±1.66h observed in CLP mice. The survival time with atorvastatin or imipenem alone was 20.50±1.89h and 27.00±4.09h, respectively. The combined treatment reversed the hyporeactivity to nor-adrenaline through preservation of α1D AR mRNA/protein expression and reversal of α1D AR desensitization mediated by GRK2/Gβγ pathway. The treatment also restored endothelium-dependent relaxation to ACh through restoration of aortic eNOS mRNA expression and NO availability. In conclusion, combined treatment with atorvastatin and imipenem exhibited survival benefit and improved vascular functions in septic mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Time-Dependent Vascular Effects of Endocannabinoids Mediated by Peroxisome Proliferator-Activated Receptor Gamma (PPAR

    Directory of Open Access Journals (Sweden)

    Saoirse E. O'Sullivan

    2009-01-01

    Full Text Available The aim of the present study was to examine whether endocannabinoids cause PPAR-mediated vascular actions. Functional vascular studies were carried out in rat aortae. Anandamide and N-arachidonoyl-dopamine (NADA, but not palmitoylethanolamide, caused significant vasorelaxation over time (2 hours. Vasorelaxation to NADA, but not anandamide, was inhibited by CB1 receptor antagonism (AM251, 1 M, and vasorelaxation to both anandamide and NADA was inhibited by PPAR antagonism (GW9662, 1 M. Pharmacological inhibition of de novo protein synthesis, nitric oxide synthase, and super oxide dismutase abolished the responses to anandamide and NADA. Removal of the endothelium partly inhibited the vasorelaxant responses to anandamide and NADA. Inhibition of fatty acid amide hydrolase (URB597, 1 M inhibited the vasorelaxant response to NADA, but not anandamide. These data indicate that endocannabinoids cause time-dependent, PPAR-mediated vasorelaxation. Activation of PPAR in the vasculature may represent a novel mechanism by which endocannabinoids are involved in vascular regulation.

  12. Neural Vascular Mechanism for the Cerebral Blood Flow Autoregulation after Hemorrhagic Stroke

    Directory of Open Access Journals (Sweden)

    Ming Xiao

    2017-01-01

    Full Text Available During the initial stages of hemorrhagic stroke, including intracerebral hemorrhage and subarachnoid hemorrhage, the reflex mechanisms are activated to protect cerebral perfusion, but secondary dysfunction of cerebral flow autoregulation will eventually reduce global cerebral blood flow and the delivery of metabolic substrates, leading to generalized cerebral ischemia, hypoxia, and ultimately, neuronal cell death. Cerebral blood flow is controlled by various regulatory mechanisms, including prevailing arterial pressure, intracranial pressure, arterial blood gases, neural activity, and metabolic demand. Evoked by the concept of vascular neural network, the unveiled neural vascular mechanism gains more and more attentions. Astrocyte, neuron, pericyte, endothelium, and so forth are formed as a communicate network to regulate with each other as well as the cerebral blood flow. However, the signaling molecules responsible for this communication between these new players and blood vessels are yet to be definitively confirmed. Recent evidence suggested the pivotal role of transcriptional mechanism, including but not limited to miRNA, lncRNA, exosome, and so forth, for the cerebral blood flow autoregulation. In the present review, we sought to summarize the hemodynamic changes and underline neural vascular mechanism for cerebral blood flow autoregulation in stroke-prone state and after hemorrhagic stroke and hopefully provide more systematic and innovative research interests for the pathophysiology and therapeutic strategies of hemorrhagic stroke.

  13. Activation of the NLRP3 inflammasome induces vascular dysfunction in obese OLETF rats

    International Nuclear Information System (INIS)

    Liu, Penghao; Xie, Qihai; Wei, Tong; Chen, Yichen; Chen, Hong; Shen, Weili

    2015-01-01

    Objective: Obesity-induced vascular dysfunction is related to chronic low-grade systemic inflammation. Recent studies indicate that NLRP3, a multiprotein complex formed by NOD-like receptor (NLR) family members, is a key component mediating internal sterile inflammation, but the role in obesity-related vascular dysfunction is largely unknown. In the present study, we investigate whether NLRP3 activation is involved in vascular inflammation in obese Otsuka Long-Evans Tokushima Fatty rats (OLETF). Methods and results: Male OLETF with their control Long-Evans Tokushima Otsuka rats (LETO) were studied at 3 and 12 months of age. Aortic relaxation in response to acetylcholine decreased gradually with age in both strains, with early and persistent endothelium dysfunction in obese OLETF compared with age-matched LETO controls. These changes are associated with parallel changes of aortic endothelial nitric oxide synthase (eNOS) content, macrophage accumulation and intimal thickening. NLRP3 increased in OLETF rats compared to LETO. Consistent with inflammasome activation, the conversion of procaspase-1 to cleaved and activated forms as well as IL-1β markedly increased in OLETF rats. Additionally, we observed increased expression of dynamin-related protein-1 (Drp1) and decreased fusion-relative protein optic atropy-1(OPA1). Altered mitochondrial dynamics was associated with elevated oxidative stress level in OLETF aortas. Conclusions: These results demonstrate that obesity seems to accelerate endothelial dysfunction in OLETFs via the activation of NLRP3 and mitochondrial dysfunction. - Highlights: • NLRP3 is involved in obesity-induced vascular dysfunction. • Impaired mitochondrial dynamics may have been linked to mitochondrial defect and inflammasome activation. • Obesity seems to accelerate vascular dysfunction via NLRP3 activation and mitochondrial dysfunction.

  14. Activation of the NLRP3 inflammasome induces vascular dysfunction in obese OLETF rats

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Penghao [State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Xie, Qihai [Department of Cardiology, Shanghai Jiading District Central Hospital, Shanghai (China); Wei, Tong [State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Chen, Yichen [Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Chen, Hong, E-mail: hchen100@shsmu.edu.cn [Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Shen, Weili, E-mail: wlshen@sibs.ac.cn [State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China)

    2015-12-04

    Objective: Obesity-induced vascular dysfunction is related to chronic low-grade systemic inflammation. Recent studies indicate that NLRP3, a multiprotein complex formed by NOD-like receptor (NLR) family members, is a key component mediating internal sterile inflammation, but the role in obesity-related vascular dysfunction is largely unknown. In the present study, we investigate whether NLRP3 activation is involved in vascular inflammation in obese Otsuka Long-Evans Tokushima Fatty rats (OLETF). Methods and results: Male OLETF with their control Long-Evans Tokushima Otsuka rats (LETO) were studied at 3 and 12 months of age. Aortic relaxation in response to acetylcholine decreased gradually with age in both strains, with early and persistent endothelium dysfunction in obese OLETF compared with age-matched LETO controls. These changes are associated with parallel changes of aortic endothelial nitric oxide synthase (eNOS) content, macrophage accumulation and intimal thickening. NLRP3 increased in OLETF rats compared to LETO. Consistent with inflammasome activation, the conversion of procaspase-1 to cleaved and activated forms as well as IL-1β markedly increased in OLETF rats. Additionally, we observed increased expression of dynamin-related protein-1 (Drp1) and decreased fusion-relative protein optic atropy-1(OPA1). Altered mitochondrial dynamics was associated with elevated oxidative stress level in OLETF aortas. Conclusions: These results demonstrate that obesity seems to accelerate endothelial dysfunction in OLETFs via the activation of NLRP3 and mitochondrial dysfunction. - Highlights: • NLRP3 is involved in obesity-induced vascular dysfunction. • Impaired mitochondrial dynamics may have been linked to mitochondrial defect and inflammasome activation. • Obesity seems to accelerate vascular dysfunction via NLRP3 activation and mitochondrial dysfunction.

  15. Dietary saturated and unsaturated fats as determinants of blood pressure and vascular function.

    Science.gov (United States)

    Hall, Wendy L

    2009-06-01

    The amount and type of dietary fat have long been associated with the risk of CVD. Arterial stiffness and endothelial dysfunction are important risk factors in the aetiology of CHD. A range of methods exists to assess vascular function that may be used in nutritional science, including clinic and ambulatory blood pressure monitoring, pulse wave analysis, pulse wave velocity, flow-mediated dilatation and venous occlusion plethysmography. The present review focuses on the quantity and type of dietary fat and effects on blood pressure, arterial compliance and endothelial function. Concerning fat quantity, the amount of dietary fat consumed habitually appears to have little influence on vascular function independent of fatty acid composition, although single high-fat meals postprandially impair endothelial function compared with low-fat meals. The mechanism is related to increased circulating lipoproteins and NEFA which may induce pro-inflammatory pathways and increase oxidative stress. Regarding the type of fat, cross-sectional data suggest that saturated fat adversely affects vascular function whereas polyunsaturated fat (mainly linoleic acid (18 : 2n-6) and n-3 PUFA) are beneficial. EPA (20 : 5n-3) and DHA (22 : 6n-3) can reduce blood pressure, improve arterial compliance in type 2 diabetics and dyslipidaemics, and augment endothelium-dependent vasodilation. The mechanisms for this vascular protection, and the nature of the separate physiological effects induced by EPA and DHA, are priorities for future research. Since good-quality observational or interventional data on dietary fatty acid composition and vascular function are scarce, no further recommendations can be suggested in addition to current guidelines at the present time.

  16. Maternal exposure to cadmium during gestation perturbs the vascular system of the adult rat offspring

    International Nuclear Information System (INIS)

    Ronco, Ana Maria; Montenegro, Marcela; Castillo, Paula; Urrutia, Manuel; Saez, Daniel; Hirsch, Sandra; Zepeda, Ramiro; Llanos, Miguel N.

    2011-01-01

    Several cardiovascular diseases (CVD) observed in adulthood have been associated with environmental influences during fetal growth. Here, we show that maternal exposure to cadmium, a ubiquitously distributed heavy metal and main component of cigarette smoke is able to induce cardiovascular morpho-functional changes in the offspring at adult age. Heart morphology and vascular reactivity were evaluated in the adult offspring of rats exposed to 30 ppm of cadmium during pregnancy. Echocardiographic examination shows altered heart morphology characterized by a concentric left ventricular hypertrophy. Also, we observed a reduced endothelium-dependent reactivity in isolated aortic rings of adult offspring, while endothelium-independent reactivity remained unaltered. These effects were associated with an increase of hem-oxygenase 1 (HO-1) expression in the aortas of adult offspring. The expression of HO-1 was higher in females than males, a finding likely related to the sex-dependent expression of the vascular cell adhesion molecule 1 (VCAM-1), which was lower in the adult female. All these long-term consequences were observed along with normal birth weights and absence of detectable levels of cadmium in fetal and adult tissues of the offspring. In placental tissues however, cadmium levels were detected and correlated with increased NF-κB expression - a transcription factor sensitive to inflammation and oxidative stress - suggesting a placentary mechanism that affect genes related to the development of the cardiovascular system. Our results provide, for the first time, direct experimental evidence supporting that exposure to cadmium during pregnancy reprograms cardiovascular development of the offspring which in turn may conduce to a long term increased risk of CVD.

  17. Diabetes and Retinal Vascular Dysfunction

    Directory of Open Access Journals (Sweden)

    Eui Seok Shin

    2014-01-01

    Full Text Available Diabetes predominantly affects the microvascular circulation of the retina resulting in a range of structural changes unique to this tissue. These changes ultimately lead to altered permeability, hyperproliferation of endothelial cells and edema, and abnormal vascularization of the retina with resulting loss of vision. Enhanced production of inflammatory mediators and oxidative stress are primary insults with significant contribution to the pathogenesis of diabetic retinopathy (DR. We have determined the identity of the retinal vascular cells affected by hyperglycemia, and have delineated the cell autonomous impact of high glucose on function of these cells. We discuss some of the high glucose specific changes in retinal vascular cells and their contribution to retinal vascular dysfunction. This knowledge provides novel insight into the molecular and cellular defects contributing to the development and progression of diabetic retinopathy, and will aid in the development of innovative, as well as target specific therapeutic approaches for prevention and treatment of DR.

  18. Vascular graft infections with Mycoplasma

    DEFF Research Database (Denmark)

    Levi-Mazloum, Niels Donald; Skov Jensen, J; Prag, J

    1995-01-01

    laboratory techniques, the percentage of culture-negative yet grossly infected vascular grafts seems to be increasing and is not adequately explained by the prior use of antibiotics. We have recently reported the first case of aortic graft infection with Mycoplasma. We therefore suggest the hypothesis...... that the large number of culture-negative yet grossly infected vascular grafts may be due to Mycoplasma infection not detected with conventional laboratory technique....

  19. Limb vascular function in women

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Gliemann, Lasse

    2018-01-01

    Throughout life, women are subjected to both acute fluctuations in sex hormones, associated with the menstrual cycle, and chronic changes following the onset of menopause. Female sex hormones, and in particular estrogen, strongly influence cardiovascular function such as the regulation of vascular...... studies. Physical activity should be recommended for women of all ages, but the most essential timing for maintenance of vascular health may be from menopause and onwards....

  20. Facial vascular malformations in children

    International Nuclear Information System (INIS)

    Brunelle, F.O.; Lallemand, D.; Chaumont, P.; Teillac, D.; Manach, Y.

    1988-01-01

    The authors present their experience with conventional and digital angiography of vascular malformations of the head and neck in children. 22 hemangioendotheliomas, 8 venous angiomas, and 3 arteriovenous fistula were studied. 22 patients were embolised. DSA offers many advantages during the diagnostic as well as during the therapeutic phase of angiography. Embolization appears to have a major role in treatment of such vascular malformations. (orig.)

  1. The influence of perivascular adipose tissue on vascular homeostasis.

    Science.gov (United States)

    Szasz, Theodora; Bomfim, Gisele Facholi; Webb, R Clinton

    2013-01-01

    The perivascular adipose tissue (PVAT) is now recognized as an active contributor to vascular function. Adipocytes and stromal cells contained within PVAT are a source of an ever-growing list of molecules with varied paracrine effects on the underlying smooth muscle and endothelial cells, including adipokines, cytokines, reactive oxygen species, and gaseous compounds. Their secretion is regulated by systemic or local cues and modulates complex processes, including vascular contraction and relaxation, smooth muscle cell proliferation and migration, and vascular inflammation. Recent evidence demonstrates that metabolic and cardiovascular diseases alter the morphological and secretory characteristics of PVAT, with notable consequences. In obesity and diabetes, the expanded PVAT contributes to vascular insulin resistance. PVAT-derived cytokines may influence key steps of atherogenesis. The physiological anticontractile effect of PVAT is severely diminished in hypertension. Above all, a common denominator of the PVAT dysfunction in all these conditions is the immune cell infiltration, which triggers the subsequent inflammation, oxidative stress, and hypoxic processes to promote vascular dysfunction. In this review, we discuss the currently known mechanisms by which the PVAT influences blood vessel function. The important discoveries in the study of PVAT that have been made in recent years need to be further advanced, to identify the mechanisms of the anticontractile effects of PVAT, to explore the vascular-bed and species differences in PVAT function, to understand the regulation of PVAT secretion of mediators, and finally, to uncover ways to ameliorate cardiovascular disease by targeting therapeutic approaches to PVAT.

  2. Endothelial Estrogen Receptor-α Does Not Protect Against Vascular Stiffness Induced by Western Diet in Female Mice.

    Science.gov (United States)

    Manrique, Camila; Lastra, Guido; Ramirez-Perez, Francisco I; Haertling, Dominic; DeMarco, Vincent G; Aroor, Annayya R; Jia, Guanghong; Chen, Dongqing; Barron, Brady J; Garro, Mona; Padilla, Jaume; Martinez-Lemus, Luis A; Sowers, James R

    2016-04-01

    Consumption of a diet high in fat and refined carbohydrates (Western diet [WD]) is associated with obesity and insulin resistance, both major risk factors for cardiovascular disease (CVD). In women, obesity and insulin resistance abrogate the protection against CVD likely afforded by estrogen signaling through estrogen receptor (ER)α. Indeed, WD in females results in increased vascular stiffness, which is independently associated with CVD. We tested the hypothesis that loss of ERα signaling in the endothelium exacerbates WD-induced vascular stiffening in female mice. We used a novel model of endothelial cell (EC)-specific ERα knockout (EC-ERαKO), obtained after sequential crossing of the ERα double floxed mice and VE-Cadherin Cre-recombinase mice. Ten-week-old females, EC-ERαKO and aged-matched genopairs were fed either a regular chow diet (control diet) or WD for 8 weeks. Vascular stiffness was measured in vivo by pulse wave velocity and ex vivo in aortic explants by atomic force microscopy. In addition, vascular reactivity was assessed in isolated aortic rings. Initial characterization of the model fed a control diet did not reveal changes in whole-body insulin sensitivity, aortic vasoreactivity, or vascular stiffness in the EC-ERαKO mice. Interestingly, ablation of ERα in ECs reduced WD-induced vascular stiffness and improved endothelial-dependent dilation. In the setting of a WD, endothelial ERα signaling contributes to vascular stiffening in females. The precise mechanisms underlying the detrimental effects of endothelial ERα in the setting of a WD remain to be elucidated.

  3. Relational databases for rare disease study: application to vascular anomalies.

    Science.gov (United States)

    Perkins, Jonathan A; Coltrera, Marc D

    2008-01-01

    To design a relational database integrating clinical and basic science data needed for multidisciplinary treatment and research in the field of vascular anomalies. Based on data points agreed on by the American Society of Pediatric Otolaryngology (ASPO) Vascular Anomalies Task Force. The database design enables sharing of data subsets in a Health Insurance Portability and Accountability Act (HIPAA)-compliant manner for multisite collaborative trials. Vascular anomalies pose diagnostic and therapeutic challenges. Our understanding of these lesions and treatment improvement is limited by nonstandard terminology, severity assessment, and measures of treatment efficacy. The rarity of these lesions places a premium on coordinated studies among multiple participant sites. The relational database design is conceptually centered on subjects having 1 or more lesions. Each anomaly can be tracked individually along with their treatment outcomes. This design allows for differentiation between treatment responses and untreated lesions' natural course. The relational database design eliminates data entry redundancy and results in extremely flexible search and data export functionality. Vascular anomaly programs in the United States. A relational database correlating clinical findings and photographic, radiologic, histologic, and treatment data for vascular anomalies was created for stand-alone and multiuser networked systems. Proof of concept for independent site data gathering and HIPAA-compliant sharing of data subsets was demonstrated. The collaborative effort by the ASPO Vascular Anomalies Task Force to create the database helped define a common vascular anomaly data set. The resulting relational database software is a powerful tool to further the study of vascular anomalies and the development of evidence-based treatment innovation.

  4. Hormonal therapy with estradiol and drospirenone improves endothelium-dependent vasodilation in the coronary bed of ovariectomized spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Borgo, M.V.; Claudio, E.R.G.; Silva, F.B.; Romero, W.G.; Gouvea, S.A.; Moysés, M.R.; Santos, R.L.; Almeida, S.A.; Podratz, P.L.; Graceli, J.B.; Abreu, G.R.

    2015-01-01

    Drospirenone (DRSP) is a progestin with anti-aldosterone properties and it reduces blood pressure in hypertensive women. However, the effects of DRSP on endothelium-dependent coronary vasodilation have not been evaluated. This study investigated the effects of combined therapy with estrogen (E2) and DRSP on endothelium-dependent vasodilation of the coronary bed of ovariectomized (OVX) spontaneously hypertensive rats. Female spontaneously hypertensive rats (n=87) at 12 weeks of age were randomly divided into sham operated (Sham), OVX, OVX treated with E2 (E2), and OVX treated with E2 and DRSP (E2+DRSP) groups. Hemodynamic parameters were directly evaluated by catheter insertion into the femoral artery. Endothelium-dependent vasodilation in response to bradykinin in the coronary arterial bed was assessed using isolated hearts according to a modified Langendorff method. Coronary protein expression of endothelial nitric oxide synthase and estrogen receptor alpha (ER-α) was assessed by Western blotting. Histological slices of coronary arteries were stained with hematoxylin and eosin, and morphometric parameters were analyzed. Oxidative stress was assessed in situ by dihydroethidium fluorescence. Ovariectomy increased systolic blood pressure, which was only prevented by E2+DRSP treatment. Estrogen deficiency caused endothelial dysfunction, which was prevented by both treatments. However, the vasodilator response in the E2+DRSP group was significantly higher at the three highest concentrations compared with the OVX group. Reduced ER-α expression in OVX rats was restored by both treatments. Morphometric parameters and oxidative stress were augmented by OVX and reduced by E2 and E2+DRSP treatments. Hormonal therapy with E2 and DRSP may be an important therapeutic option in the prevention of coronary heart disease in hypertensive post-menopausal women

  5. Hormonal therapy with estradiol and drospirenone improves endothelium-dependent vasodilation in the coronary bed of ovariectomized spontaneously hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Borgo, M.V.; Claudio, E.R.G.; Silva, F.B.; Romero, W.G.; Gouvea, S.A.; Moysés, M.R.; Santos, R.L.; Almeida, S.A. [Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal de Espírito Santo, Vitória, ES (Brazil); Podratz, P.L.; Graceli, J.B. [Departamento de Morfologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Abreu, G.R. [Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal de Espírito Santo, Vitória, ES (Brazil)

    2015-11-17

    Drospirenone (DRSP) is a progestin with anti-aldosterone properties and it reduces blood pressure in hypertensive women. However, the effects of DRSP on endothelium-dependent coronary vasodilation have not been evaluated. This study investigated the effects of combined therapy with estrogen (E2) and DRSP on endothelium-dependent vasodilation of the coronary bed of ovariectomized (OVX) spontaneously hypertensive rats. Female spontaneously hypertensive rats (n=87) at 12 weeks of age were randomly divided into sham operated (Sham), OVX, OVX treated with E2 (E2), and OVX treated with E2 and DRSP (E2+DRSP) groups. Hemodynamic parameters were directly evaluated by catheter insertion into the femoral artery. Endothelium-dependent vasodilation in response to bradykinin in the coronary arterial bed was assessed using isolated hearts according to a modified Langendorff method. Coronary protein expression of endothelial nitric oxide synthase and estrogen receptor alpha (ER-α) was assessed by Western blotting. Histological slices of coronary arteries were stained with hematoxylin and eosin, and morphometric parameters were analyzed. Oxidative stress was assessed in situ by dihydroethidium fluorescence. Ovariectomy increased systolic blood pressure, which was only prevented by E2+DRSP treatment. Estrogen deficiency caused endothelial dysfunction, which was prevented by both treatments. However, the vasodilator response in the E2+DRSP group was significantly higher at the three highest concentrations compared with the OVX group. Reduced ER-α expression in OVX rats was restored by both treatments. Morphometric parameters and oxidative stress were augmented by OVX and reduced by E2 and E2+DRSP treatments. Hormonal therapy with E2 and DRSP may be an important therapeutic option in the prevention of coronary heart disease in hypertensive post-menopausal women.

  6. Hormonal therapy with estradiol and drospirenone improves endothelium-dependent vasodilation in the coronary bed of ovariectomized spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    M.V. Borgo

    2016-01-01

    Full Text Available Drospirenone (DRSP is a progestin with anti-aldosterone properties and it reduces blood pressure in hypertensive women. However, the effects of DRSP on endothelium-dependent coronary vasodilation have not been evaluated. This study investigated the effects of combined therapy with estrogen (E2 and DRSP on endothelium-dependent vasodilation of the coronary bed of ovariectomized (OVX spontaneously hypertensive rats. Female spontaneously hypertensive rats (n=87 at 12 weeks of age were randomly divided into sham operated (Sham, OVX, OVX treated with E2 (E2, and OVX treated with E2 and DRSP (E2+DRSP groups. Hemodynamic parameters were directly evaluated by catheter insertion into the femoral artery. Endothelium-dependent vasodilation in response to bradykinin in the coronary arterial bed was assessed using isolated hearts according to a modified Langendorff method. Coronary protein expression of endothelial nitric oxide synthase and estrogen receptor alpha (ER-α was assessed by Western blotting. Histological slices of coronary arteries were stained with hematoxylin and eosin, and morphometric parameters were analyzed. Oxidative stress was assessed in situ by dihydroethidium fluorescence. Ovariectomy increased systolic blood pressure, which was only prevented by E2+DRSP treatment. Estrogen deficiency caused endothelial dysfunction, which was prevented by both treatments. However, the vasodilator response in the E2+DRSP group was significantly higher at the three highest concentrations compared with the OVX group. Reduced ER-α expression in OVX rats was restored by both treatments. Morphometric parameters and oxidative stress were augmented by OVX and reduced by E2 and E2+DRSP treatments. Hormonal therapy with E2 and DRSP may be an important therapeutic option in the prevention of coronary heart disease in hypertensive post-menopausal women.

  7. Platelets are required for enhanced activation of the endothelium and fibrinogen in a mouse thrombosis model of APS.

    Science.gov (United States)

    Proulle, Valerie; Furie, Richard A; Merrill-Skoloff, Glenn; Furie, Barbara C; Furie, Bruce

    2014-07-24

    Antiphospholipid syndrome (APS) is defined by thrombosis, fetal loss, and the presence of antiphospholipid antibodies, including anti-β2-glycoprotein-1 autoantibodies (anti-β2GP1) that have a direct role in the pathogenesis of thrombosis in vivo. The cellular targets of the anti-β2GP1 autoantibody/β2GP1 complex in vivo were studied using a laser-induced thrombosis model of APS in a live mouse and human anti-β2GP1 autoantibodies affinity-purified from APS patients. Cell binding of fluorescently labeled β2GP1 and anti-β2GP1 autoantibodies revealed their colocalization on the platelet thrombus but not the endothelium. Anti-β2GP1 autoantibodies enhanced platelet activation, monitored by calcium mobilization, and endothelial activation, monitored by intercellular adhesion molecule-1 expression. When eptifibatide was infused to block platelet thrombus formation, enhanced fibrin generation and endothelial cell activation were eliminated. Thus, the anti-β2GP1 autoantibody/β2GP1 complex binds to the thrombus, enhancing platelet activation, and platelet secretion leads to enhanced endothelium activation and fibrin generation. These results lead to a paradigm shift away from the concept that binding of the anti-β2GP1 autoantibody/β2GP1 complex activates both endothelial cells and platelets toward one in which activation of platelets in response to anti-β2GP1 autoantibody/β2GP1 complex binding leads to subsequent enhanced endothelium activation and fibrin generation. © 2014 by The American Society of Hematology.

  8. Amiodarona causa vasodilatação dependente do endotélio em artérias coronárias caninas Amiodarone causes endothelium-dependent vasodilation in canine coronary arteries

    Directory of Open Access Journals (Sweden)

    Alfredo José Rodrigues

    2005-03-01

    Full Text Available OBJETIVO: Avaliar os efeitos vasodilatadores da amiodarona em artérias coronárias caninas empregando soluções de amiodarona dissolvida em polisorbato 80 ou em água. MÉTODOS: Anéis de artéria coronária, com e sem o endotélio íntegro, foram imersos em solução de krebs e conectadas a um transdutor para aferição de força isométrica promovida por contração vascular. As artérias foram expostas a concentrações crescentes de polisorbato 80, amiodarona dissolvida em água, amiodarona dissolvida em polisorbato 80 e uma apresentação comercial da amiodarona (Cordarone®. Os experimentos foram conduzidos na presença e na ausência dos seguintes bloqueadores enzimáticos: apenas indometacina, Nômega-nitro-L-arginina associada à indometacina e apenas Nômega-nitro-L-arginina. RESULTADOS: O polisorbato 80 causou pequeno relaxamento não dependente do endotélio. O Cordarone®, a amiodarona dissolvida em água e em polisorbato 80 promoveram relaxamento dependente do endotélio, que foi de maior magnitude para a amiodarona dissolvida em polisorbato e para o Cordarone®. Apenas a associação de indometacina com a Nômega-nitro-L-arginina foi capaz de abolir o relaxamento dependente do endotélio provocado pela amiodarona dissolvida em polisorbato 80. CONCLUSÃO: Os resultados obtidos indicam que a vasodilatação promovida pela amiodarona em artérias coronárias caninas é causada principalmente pela estimulação da liberação de óxido nítrico e fatores endoteliais relaxantes dependentes das ciclo-oxigenases.OBJECTIVE: To assess the vasodilating effects of amiodarone on canine coronary arteries by using solutions of amiodarone dissolved in polysorbate 80 or water. METHODS: Rings of coronary arteries, with or without intact endothelium, were immersed in Krebs solution and connected to a transducer for measuring the isometric force promoted by a vascular contraction. The arteries were exposed to increasing concentrations of

  9. Data on the effects of losartan on protein expression, vascular reactivity and antioxidant capacity in the aorta of ethanol-treated rats

    Directory of Open Access Journals (Sweden)

    Carla S. Ceron

    2017-04-01

    Full Text Available We describe the effects of losartan, a selective AT1 receptor antagonist on the alterations induced by treatment with ethanol in the rat aorta. The data shown here are related to the article entitled “Angiotensin type 1 receptor mediates chronic ethanol consumption-induced hypertension and vascular oxidative stress” (P. Passaglia, C.S. Ceron, A.S. Mecawi, J. Antunes-Rodrigues, E.B. Coelho, C.R. Tirapelli, 2015 [1]. Here we include new data on the protective effect of losartan against ethanol-induced oxidative stress. Male Wistar rats treated for 2 weeks with ethanol (20%, vol./vol. exhibited increased aortic production of reactive oxygen species (ROS and losartan (10 mg/kg/day; p.o. gavage prevented this response. Ethanol did not alter the expression of eNOS in the rat aorta. Losartan prevented ethanol-induced increase in the aortic expression of nNOS. Neither ethanol nor losartan affected superoxide dismutase (SOD or catalase (CAT activities in the rat aorta. Treatment with ethanol increased the contraction induced by phenylephrine in both endothelium-intact and endothelium-denuded aortas and these responses were prevented by losartan. Conversely, neither ethanol nor losartan affected the endothelium-dependent relaxation induced by acetylcholine.

  10. [Changes of vascular reactivity and reactive oxygen species in conditions of varying duration of permanent stay in the alienation zone in mice].

    Science.gov (United States)

    Tkachenko, M M; Kotsiuruba, A V; Baziliuk, O V; Horot', I V; Sahach, V F

    2010-01-01

    Peculiarities of changes in the vascular reactivity and in the content of reactive forms of oxygen and stable metabolites of nitric oxide (NO) were studied in the aorta preparations of C57BL/6 and BALB/c mice of the two age groups (6 and 18 mo.), which were born and permanently kept in the Chernobyl alienation zone. The results obtained showed a disturbance of acetylcholine-induced endothelium-dependent reactions of relaxation of smooth muscles of the thoracic aorta. A lower level of NO synthesis and lower level of oxidative arginase metabolism of arginine corresponded to a higher degree of damage of endothelium-dependent reactions of relaxation of the thoracic aorta smooth muscles. A decrease of NO synthesis in conditions of permanent effects of low doses of radiation was conditioned by an increase of generation of reactive forms of oxygen, namely, superoxide and hydroxyl radicals, which might be formed in mitochondria. In conditions of permanent effects of low doses of radiation a lesser level of protein nitrosothilation, same as lesser one of generation of OH-radical, corresponded to a higher level of damage of endothelium-dependent reactions.

  11. Calcium dynamics in vascular smooth muscle

    OpenAIRE

    Amberg, Gregory C.; Navedo, Manuel F.

    2013-01-01

    Smooth muscle cells are ultimately responsible for determining vascular luminal diameter and blood flow. Dynamic changes in intracellular calcium are a critical mechanism regulating vascular smooth muscle contractility. Processes influencing intracellular calcium are therefore important regulators of vascular function with physiological and pathophysiological consequences. In this review we discuss the major dynamic calcium signals identified and characterized in vascular smooth muscle cells....

  12. Changes in corneal endothelium cell characteristics after cataract surgery with and without use of viscoelastic substances during intraocular lens implantation

    Directory of Open Access Journals (Sweden)

    Schulze SD

    2015-11-01

    Full Text Available Stephan D Schulze,1 Thomas Bertelmann,1 Irena Manojlovic,2 Stefan Bodanowitz,2 Sebastian Irle,3 Walter Sekundo11Department of Ophthalmology, Philipps University of Marburg, Marburg, 2Private Practice and Ambulatory Surgical Center, Bremen, 3Freelance Statistician, Friedberg, GermanyPurpose: To evaluate whether the use of balanced salt solution (BSS or an ophthalmic viscoelastic device (OVD during hydrophilic acrylic intraocular lens (IOL implantation variously impacts corneal endothelial cell characteristics in eyes undergoing uneventful phacoemulsifications.Methods: Prospective nonrandomized observational clinical trial. Patients were assigned either to the BSS plus® or to the OVD Z-Celcoat™ group depending on the substance used during IOL implantation. Corneal endothelium cell characteristics were obtained before, 1 week, and 6 weeks after surgery. Intraoperative parameters (eg, surgery time, phacoemulsification energy were recorded.Results: Ninety-seven eyes were assigned to the BSS plus and 86 eyes to the Z-Celcoat group. Preoperative corneal endothelium cell density (ECD and endothelium cell size were 2,506±310 cells/mm2/2,433±261 cells/mm2 and 406±47 µm2/416±50 µm2 (P=0.107/P=0.09. After 1 and 6 weeks, ECD decreased and endothelium cell size increased significantly in both groups (each P<0.001 without significant differences between both groups (each P>0.05. Irrigation–aspiration suction time (30.3±16.6 versus 36.3±14.5 seconds and overall surgical time (7.2±1.2 versus 8.0±1.4 minutes were significantly longer in the OVD Z-Celcoat group (each P<0.001. No complications or serious side effects occurred.Conclusion: Implantation of a hydrophilic acrylic IOL under BSS infusion seems to be a useful and faster alternative in experienced hands without generating higher ECD loss rates.Keywords: phacoemulsification, ophthalmic viscoelastic device, endothelial cell density, IOL

  13. Effect of topical 0.05% cyclosporine A on corneal endothelium in patients with dry eye disease

    OpenAIRE

    Pérez-Rico, Consuelo; Germain, Francisco; Castro-Rebollo, María; Moreno-Salgueiro, Agustín; Teus, Miguel Ángel

    2013-01-01

    AIM:To determine the effect of topical 0.05% cyclosporine A (CsA) on corneal endothelium in patients with dry eye disease.METHODS: Observational, prospective, case series study. Fifty-five eyes of 29 consecutive patients (9 males and 20 females; median age:66.8 years, interquartile range:61-73.2 years) with moderate-severe dry eye disease were evaluated. All patients were treated with topical 0.05% CsA ophthalmic emulsion twice a day in addition to lubricant eyedrops 5 times a day. The follow...

  14. Insight into 144 patients with ocular vascular events during VEGF antagonist injections

    Directory of Open Access Journals (Sweden)

    Shami M

    2012-03-01

    Full Text Available Ahmad M Mansour1, Maha Shahin2, Peter K Kofoed3, Maurizio B Parodi4, Michel Shami5, Stephen G Schwartz6, Collaborative Anti-VEGF Ocular Vascular Complications GroupDepartment of Ophthalmology, 1American University of Beirut, Beirut, Lebanon, Rafic Hariri University Hospital, Beirut, Lebanon; 2Mansoura University, Mansoura City, Egypt; 3Glostrup Hospital, University of Copenhagen, Denmark, National Eye Clinic, Kennedy Center, Glostrup, Denmark; 4University Vita-Salute, Scientific Institute San Raffaele, Milan, Italy; 5Texas Tech University Health Sciences Center, Lubbock, TX, USA; 6Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Naples and Miami, FL, USAAim: To record ocular vascular events following injections of vascular endothelium growth factor (VEGF antagonists.Methods: Collaborative multicenter case series (48 cases, literature reviews (32 cases, and reports to the FDA (64 cases of patients that had vascular occlusions during anti-VEGF therapy were collected and analyzed.Results: A total of 144 cases of ocular vascular events were identified, with these diagnosed a median of 15 days after anti-VEGF injection. The majority of patients had pre-existing risk factors for cardiovascular events and nine patients had a prior history of glaucoma. Mean visual acuity dropped by 6.4 lines with severe visual loss after injection to NLP (five eyes, LP (six eyes, and HM (two eyes. The overall risk of ocular vascular events following a VEGF antagonist injection was 0.108% in the general population and 2.61% in the diabetic population. Mean retinal arterial constriction after intravitreal bevacizumab in 13 eyes was 21% (standard deviation = 27%, and mean retinal venous constriction was 8% (standard deviation = 30%.Conclusion: Ocular vascular events are rare during anti-VEGF therapy, but can lead to severe visual loss and may be caused by a number of factors including the vasoconstrictor effect of the drug, a post-injection rise

  15. Effects of endothelium-derived nitric oxide on skin and digital blood flow in humans.

    Science.gov (United States)

    Coffman, J D

    1994-12-01

    The effects of NG-monomethyl-L-arginine (L-NMMA) on total finger and forearm, and dorsal finger and forearm skin, blood flows were studied in the basal state and during reflex sympathetic vasoconstriction in normal subjects. Total flows were measured by venous occlusion plethysmography and skin flows by laser-Doppler flowmetry (LDF). L-NMMA in doses of 2, 4, and 8 microM/min given by constant infusion via a brachial artery catheter significantly decreased finger blood flow, forearm blood flow, and vascular conductances. At 8 microM/min, total finger blood flow decreased 38.4% and forearm blood flow decreased 24.8%. Dorsal finger and forearm skin LDF were also significantly decreased (25 and 37% at 8 microM/min). Body cooling significantly decreased finger blood flow (73.6%), vascular conductance, and finger LDF (59.7%). L-NMMA had no effect on total finger blood flow or dorsal finger LDF during body cooling. Nitric oxide or related compounds contribute to the basal dilator tone of the dorsal finger and forearm skin but not during reflex sympathetic vasoconstriction.

  16. Non-invasive vascular imaging: assessing tumour vascularity

    International Nuclear Information System (INIS)

    Delorme, S.; Knopp, M.V.

    1998-01-01

    Non-invasive assessment of vascularity is a new diagnostic approach to characterise tumours. Vascular assessment is based on the pathophysiology of tumour angiogenesis and its diagnostic implications for tumour biology, prognosis and therapy response. Two current techniques investigating vascular features in addition to morphology are Doppler ultrasonography and contrast-enhanced MRI. Diagnostic differentiation has been shown to be possible with Doppler, and a high degree of observed vascularity could be linked to an aggressive course of the disease. Dynamic MRI using gadolinium chelates is already used clinically to detect and differentiate tumours. The histological correlation shows that capillary permeability is increased in malignant tumours and is the best criterion for differentiation from benign processes. Permeability and perfusion factors seem to be more diagnostic than overall vessel density. New clinical applications are currently being established for therapy monitoring. Further instrumental developments will bring harmonic imaging in Doppler, and faster imaging techniques, higher spatial resolution and novel pharmacokinetic concepts in MRI. Upcoming contrast agents for both Doppler and MRI will further improve estimation of intratumoural blood volume and vascular permeability. (orig.)

  17. Sarpogrelate hydrochloride, a selective 5-hydroxytryptamine(2A) antagonist, augments autologous bone marrow mononuclear cell implantation-induced improvement in endothelium-dependent vasodilation in patients with critical limb ischemia.

    Science.gov (United States)

    Higashi, Yukihito; Miyazaki, Masanori; Goto, Chikara; Sanada, Hiroaki; Sueda, Taijiro; Chayama, Kazuaki

    2010-01-01

    The purpose of this study was to determine the effect of a combination of bone marrow mononuclear cell (BM-MNC) implantation and sarpogrelate, a selective 5-HT(2A) antagonist, on endothelial function in patients with critical limb ischemia (CLI). We evaluated the leg blood flow (LBF) responses to acetylcholine (ACh) and sodium nitroprusside before and after BM-MNC implantation in 16 patients with CLI. We divided patients with CLI into 2 groups: those cotreated with sarpogrelate orally for 12 weeks (sarpogrelate group, n = 8) and those who remained on conventional therapy (control group, n = 8). LBF was measured by strain gauge plethysmography. BM-MNC implantation improved ankle brachial pressure index, transcutaneous oxygen pressure, and pain-free walking time. There was no significant difference in these parameters between the 2 groups. Before BM-MNC implantation, LBF responses to ACh were similar in the sarpogrelate group and control group. Twelve weeks of BM-MNC implantation enhanced LBF responses to ACh in the sarpogrelate and control groups. After 12 weeks of BM-MNC implantation, LBF response to ACh was significantly greater in the sarpogrelate group than in the control group. BM-MNC implantation did not alter the LBF responses to sodium nitroprusside in either group. These findings suggest that BM-MNC implantation improved not only limb ischemic symptoms but also endothelium-dependent vasodilation in patients with CLI. A combination of BM-MNC implantation and sarpogrelate had a more beneficial effect on vascular function in these patients.

  18. Systemic vascular function, measured with forearm flow mediated dilatation, in acute and stable cerebrovascular disease: a case-control study

    Directory of Open Access Journals (Sweden)

    Blacker David

    2010-10-01

    Full Text Available Abstract Background Acute ischaemic stroke is associated with alteration in systemic markers of vascular function. We measured forearm vascular function (using forearm flow mediated dilatation to clarify whether recent acute ischaemic stroke/TIA is associated with impaired systemic vascular function. Methods Prospective case control study enrolling 17 patients with recent acute ischaemic stroke/TIA and 17 sex matched controls with stroke more than two years previously. Forearm vascular function was measured using flow medicated dilatation (FMD. Results Flow mediated dilatation was 6.0 ± 1.1% in acute stroke/TIA patients and 4.7 ± 1.0% among control subjects (p = 0.18. The mean paired difference in FMD between subjects with recent acute stroke and controls was 1.25% (95% CI -0.65, 3.14; p = 0.18. Endothelium independent dilatation was measured in six pairs of participants and was similar in acute stroke/TIA patients (22.6 ± 4.3% and control subjects (19.1 ± 2.6%; p = 0.43. Conclusions Despite the small size of this study, these data indicate that recent acute stroke is not necessarily associated with a clinically important reduction in FMD.

  19. Taurine Supplementation Lowers Blood Pressure and Improves Vascular Function in Prehypertension: Randomized, Double-Blind, Placebo-Controlled Study.

    Science.gov (United States)

    Sun, Qianqian; Wang, Bin; Li, Yingsha; Sun, Fang; Li, Peng; Xia, Weijie; Zhou, Xunmei; Li, Qiang; Wang, Xiaojing; Chen, Jing; Zeng, Xiangru; Zhao, Zhigang; He, Hongbo; Liu, Daoyan; Zhu, Zhiming

    2016-03-01

    Taurine, the most abundant, semiessential, sulfur-containing amino acid, is well known to lower blood pressure (BP) in hypertensive animal models. However, no rigorous clinical trial has validated whether this beneficial effect of taurine occurs in human hypertension or prehypertension, a key stage in the development of hypertension. In this randomized, double-blind, placebo-controlled study, we assessed the effects of taurine intervention on BP and vascular function in prehypertension. We randomly assigned 120 eligible prehypertensive individuals to receive either taurine supplementation (1.6 g per day) or a placebo for 12 weeks. Taurine supplementation significantly decreased the clinic and 24-hour ambulatory BPs, especially in those with high-normal BP. Mean clinic systolic BP reduction for taurine/placebo was 7.2/2.6 mm Hg, and diastolic BP was 4.7/1.3 mm Hg. Mean ambulatory systolic BP reduction for taurine/placebo was 3.8/0.3 mm Hg, and diastolic BP was 3.5/0.6 mm Hg. In addition, taurine supplementation significantly improved endothelium-dependent and endothelium-independent vasodilation and increased plasma H2S and taurine concentrations. Furthermore, changes in BP were negatively correlated with both the plasma H2S and taurine levels in taurine-treated prehypertensive individuals. To further elucidate the hypotensive mechanism, experimental studies were performed both in vivo and in vitro. The results showed that taurine treatment upregulated the expression of hydrogen sulfide-synthesizing enzymes and reduced agonist-induced vascular reactivity through the inhibition of transient receptor potential channel subtype 3-mediated calcium influx in human and mouse mesenteric arteries. In conclusion, the antihypertensive effect of chronic taurine supplementation shows promise in the treatment of prehypertension through improvement of vascular function. © 2016 American Heart Association, Inc.

  20. Pediatric interventional radiology: vascular interventions

    International Nuclear Information System (INIS)

    Kandasamy, Devasenathipathy; Gamanagatti, Shivanand; Gupta, Arun Kumar

    2016-01-01

    Pediatric interventional radiology (PIR) comprises a range of minimally invasive diagnostic and therapeutic procedures that are performed using image guidance. PIR has emerged as an essential adjunct to various surgical and medical conditions. Over the years, technology has undergone dramatic and continuous evolution, making this speciality grow. In this review, the authors will discuss various vascular interventional procedures undertaken in pediatric patients. It is challenging for the interventional radiologist to accomplish a successful interventional procedure. There are many vascular interventional radiology procedures which are being performed and have changed the way the diseases are managed. Some of the procedures are life saving and have become the treatment of choice in those patients. The future is indeed bright for the practice and practitioners of pediatric vascular and non-vascular interventions. As more and more of the procedures that are currently being performed in adults get gradually adapted for use in the pediatric population, it may be possible to perform safe and successful interventions in many of the pediatric vascular lesions that are otherwise being referred for surgery. (author)

  1. Effect of 21-day head down bed rest on urine proteins related to endothelium: Correlations with changes in carbohydrate metabolism

    Science.gov (United States)

    Kashirina, D.; Pastushkova, L.; Custaud, M. A.; Dobrokhotov, I.; Brzhozovsky, A.; Navasiolava, N.; Nosovsky, A.; Kononikhin, A.; Nikolaev, E.; Larina, I.

    2017-08-01

    We performed liquid chromatography-mass spectrometric study of the urine proteome in 8 healthy volunteers aged between 20 and 44 y.o. who have completed 21-day head-down bed rest. ANDSystem software which builds associative networks was used to identify the urinary proteins functionally related to the endothelium. We identified 7 endothelium-related biological processes, directly linked to 13 urine proteins. We performed manual annotation of the proteins which were the most important in terms of endothelial functions. Analysis of the correlations with biochemical variables revealed a positive correlation between fasting blood glucose and the following urine proteins: albumin, CD44 antigen, endothelial protein C receptor, mucin-1, osteopontin, receptor tyrosine kinase. As well, we found a positive correlation between HOMA-insulin resistance index and the following urine proteins: endothelial protein C receptor and syndecan-4. These results might suggest the involvement of above-mentioned proteins in glucose metabolism and their participation in the response to changes in blood glucose level.

  2. Endothelium-dependent hyperpolarization-related relaxations diminish with age in murine saphenous arteries of both sexes

    DEFF Research Database (Denmark)

    Chennupati, R.; Lamers, W. H.; Koehler, S. E.

    2013-01-01

    nitroprusside and to ACh in the absence of pharmacological inhibitors (indomethacin and L-NAME), were similar in all age groups and sexes, but those mediated by endothelium-derived NO were slightly but significantly increased in 64-week-old male mice. In the presence of inhibitors, 12-week-old animals showed...... pronounced ACh-induced relaxation, which was significantly reduced in 34- and 64-week-old mice of both sexes. The EDH-related component of ACh-induced relaxations was abolished by TRAM-34 (K(Ca)3.1 blocker) or UCL 1684 (K(Ca)2.3 blocker). Although the maximal relaxation induced by NS309 (K-Ca activator......) was not affected by aging, the sensitivity for NS309 significantly decreased with aging. The presence of SKA-31 (K-Ca modulator) potentiated relaxations induced by ACh in arteries of 12-week-old but not older mice. CONCLUSION AND IMPLICATIONS In a small muscular artery of mice of either sex, total endothelium...

  3. Gamma irradiation induces acetylcholine-evoked, endothelium-independent relaxation and activatesk-channels of isolated pulmonary artery of rats

    International Nuclear Information System (INIS)

    Eder, Veronique; Gautier, Mathieu; Boissiere, Julien; Girardin, Catherine; Rebocho, Manuel; Bonnet, Pierre

    2004-01-01

    Purpose: To test the effects of irradiation (R*) on the pulmonary artery (PA). Methods and materials: Isolated PA rings were submitted to gamma irradiation (cesium, 8 Gy/min -1 ) at doses of 20 Gy-140 Gy. Rings were placed in an organ chamber, contracted with serotonin (10 -4 M 5-hydroxytryptamine [5-HT]), then exposed to acetylcholine (ACh) in incremental concentrations. Smooth muscle cell (SMC) membrane potential was measured with microelectrodes. Results: A high dose of irradiation (60 Gy) increased 5HT contraction by 20%, whereas lower (20 Gy) doses slightly decreased it compared with control. In the absence of the endothelium, 5-HT precontracted rings exposed to 20 Gy irradiation developed a dose-dependent relaxation induced by acetylcholine (EI-ACh) with maximal relaxation of 60 ± 17% (n = 13). This was totally blocked by L-NAME (10 -4 M), partly by 7-nitro indazole; it was abolished by hypoxia and iberiotoxin, decreased by tetra-ethyl-ammonium, and not affected by free radical scavengers. In irradiated rings, hypoxia induced a slight contraction which was never observed in control rings. No differences in SMC membrane potential were observed between irradiated and nonirradiated PA rings. Conclusion: Irradiation mediates endothelium independent relaxation by a mechanism involving the nitric oxide pathway and K-channels

  4. T Lymphocyte-Endothelial Interactions: Emerging Understanding of Trafficking and Antigen-Specific Immunity

    Directory of Open Access Journals (Sweden)

    Christopher Vincent Carman

    2015-11-01

    Full Text Available Antigen-specific immunity requires regulated trafficking of T cells in and out of diverse tissues in order to orchestrate lymphocyte development, immune surveillance, responses and memory. The endothelium serves as a unique barrier, as well as a sentinel, between the blood and the tissues and as such it plays an essential locally tuned role in regulating T cell migration and information exchange. While it is well established that chemoattractants and adhesion molecules are major determinants of T cell trafficking, emerging studies have now enumerated a large number of molecular players as well as a range of discrete cellular remodeling activities (e.g. transmigratory cups and invadosome-like protrusions, IPLs that participate in directed migration and pathfinding by T cells. In addition to providing trafficking cues, intimate cell-cell interaction between lymphocytes and endothelial cells provide instruction to T cells that influence their activation and differentiation states. Perhaps the most intriguing and underappreciated of these ‘sentinel’ roles is the ability of the endothelium to act as a non-hematopoietic ‘semi-professional’ antigen-presenting cell. Close contacts between circulating T cells and antigen-presenting endothelium may play unique non-redundant roles in shaping adaptive immune responses within the periphery. A better understanding of the mechanisms directing T cell trafficking and the antigen-presenting role of the endothelium may not only increase our knowledge of the adaptive immune response but also empower the utility of emerging immunomodulatory therapeutics.

  5. Fetal origin of vascular aging

    Directory of Open Access Journals (Sweden)

    Shailesh Pitale

    2011-01-01

    Full Text Available Aging is increasingly regarded as an independent risk factor for development of cardiovascular diseases such as atherosclerosis and hypertension and their complications (e.g. MI and Stroke. It is well known that vascular disease evolve over decades with progressive accumulation of cellular and extracellular materials and many inflammatory processes. Metabolic syndrome, obesity and diabetes are conventionally recognized as risk factors for development of coronary vascular disease (CVD. These conditions are known to accelerate ageing process in general and vascular ageing in particular. Adverse events during intrauterine life may programme organ growth and favour disease later in life, popularly known as, ′Barker′s Hypothesis′. The notion of fetal programming implies that during critical periods of prenatal growth, changes in the hormonal and nutritional milieu of the conceptus may alter the full expression of the fetal genome, leading to permanent effects on a range of physiological.

  6. Imaging after vascular gene therapy

    International Nuclear Information System (INIS)

    Manninen, Hannu I.; Yang, Xiaoming

    2005-01-01

    Targets for cardiovascular gene therapy currently include limiting restenosis after balloon angioplasty and stent placement, inhibiting vein bypass graft intimal hyperplasia/stenosis, therapeutic angiogenesis for cardiac and lower-limb ischemia, and prevention of thrombus formation. While catheter angiography is still standard method to follow-up vascular gene transfer, other modern imaging techniques, especially intravascular ultrasound (IVUS), magnetic resonance (MR), and positron emission tomography (PET) imaging provide complementary information about the therapeutic effect of vascular gene transfer in humans. Although molecular imaging of therapeutic gene expression in the vasculatures is still in its technical development phase, it has already offered basic medical science an extremely useful in vivo evaluation tool for non- or minimally invasive imaging of vascular gene therapy

  7. Vascular Gene Expression: A Hypothesis

    Directory of Open Access Journals (Sweden)

    Angélica Concepción eMartínez-Navarro

    2013-07-01

    Full Text Available The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a primitive vascular tissue (a lycophyte, as well as from others that lack a true vascular tissue (a bryophyte, and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non- vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants.

  8. Roselle supplementation prevents nicotine-induced vascular endothelial dysfunction and remodelling in rats.

    Science.gov (United States)

    Si, Lislivia Yiang-Nee; Kamisah, Yusof; Ramalingam, Anand; Lim, Yi Cheng; Budin, Siti Balkis; Zainalabidin, Satirah

    2017-07-01

    Vascular endothelial dysfunction (VED) plays an important role in the initiation of cardiovascular diseases. Roselle, enriched with antioxidants, demonstrates high potential in alleviating hypertension. This study was undertaken to investigate the effects of roselle supplementation of VED and remodelling in a rodent model with prolonged nicotine administration. Male Sprague-Dawley rats (n = 6 per group) were administered with 0.6 mg/kg nicotine for 28 days to induce VED. The rats were given either aqueous roselle (100 mg/kg) or normal saline orally 30 min prior to nicotine injection daily. One additional group of rats served as control. Thoracic aorta was isolated from rats to measure vascular reactivity, vascular remodelling and oxidative stress. Roselle significantly lowered aortic sensitivity to phenylephrine-induced vasoconstriction (Endo-(+) C max = 234.5 ± 3.9%, Endo-(-) C max = 247.6 ± 5.2%) compared with untreated nicotine group (Endo-(+) C max = 264.5 ± 6.9%, Endo-(-) C max = 276.5 ± 6.8%). Roselle also improved aortic response to endothelium-dependent vasodilator, acetylcholine (Endo-(+) R max = 73.2 ± 2.1%, Endo-(-) R max = 26.2 ± 0.8%) compared to nicotine group (Endo-(+) R max = 57.8 ± 1.7%, Endo-(-) R max = 20.9 ± 0.8%). In addition, roselle prevented an increase in intimal media thickness and elastic lamellae proliferation to preserve vascular architecture. Moreover, we also observed a significantly lowered degree of oxidative stress in parallel with increased antioxidant enzymes in aortic tissues of the roselle-treated group. This study demonstrated that roselle prevents VED and remodelling, and as such it has high nutraceutical value as supplement to prevent cardiovascular diseases.

  9. Functional heterogeneity of NADPH oxidase-mediated contractions to endothelin with vascular aging.

    Science.gov (United States)

    Meyer, Matthias R; Barton, Matthias; Prossnitz, Eric R

    2014-11-24

    Aging, a physiological process and main risk factor for cardiovascular and renal diseases, is associated with endothelial cell dysfunction partly resulting from NADPH oxidase-dependent oxidative stress. Because increased formation of endothelium-derived endothelin-1 (ET-1) may contribute to vascular aging, we studied the role of NADPH oxidase function in age-dependent contractions to ET-1. Renal arteries and abdominal aortas from young and old C57BL6 mice (4 and 24 months of age) were prepared for isometric force measurements. Contractions to ET-1 (0.1-100 nmol/L) were determined in the presence and absence of the NADPH oxidase-selective inhibitor gp91ds-tat (3 μmol/L). To exclude age-dependent differential effects of NO bioactivity between vascular beds, all experiments were conducted in the presence of the NO synthase inhibitor L-NAME (300 μmol/L). In young animals, ET-1-induced contractions were 6-fold stronger in the renal artery than in the aorta (prenal artery and aorta, respectively (pAging had no effect on NADPH oxidase-dependent and -independent contractions to ET-1 in the renal artery. In contrast, contractions to ET-1 were markedly reduced in the aged aorta (5-fold, page-dependent heterogeneity of NADPH oxidase-mediated vascular contractions to ET-1, demonstrating an inherent resistance to functional changes in the renal artery but not in the aorta with aging. Thus, local activity of NADPH oxidase differentially modulates responses to ET-1 with aging in distinct vascular beds. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  10. WNT5A-JNK regulation of vascular insulin resistance in human obesity.

    Science.gov (United States)

    Farb, Melissa G; Karki, Shakun; Park, Song-Young; Saggese, Samantha M; Carmine, Brian; Hess, Donald T; Apovian, Caroline; Fetterman, Jessica L; Bretón-Romero, Rosa; Hamburg, Naomi M; Fuster, José J; Zuriaga, María A; Walsh, Kenneth; Gokce, Noyan

    2016-12-01

    Obesity is associated with the development of vascular insulin resistance; however, pathophysiological m