WorldWideScience

Sample records for understanding systems engineering

  1. UNDERSTANDING THAI CULTURE AND ITS IMPACT ON REQUIREMENTS ENGINEERING PROCESS MANAGEMENT DURING INFORMATION SYSTEMS DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Theerasak Thanasankit

    2002-01-01

    Full Text Available This paper explores the impact of Thai culture on managing the decision making process in requirements engineering and contribution a better understand of its influence on the management of requirements engineering process. The paper illustrates the interaction of technology and culture and shows that rather than technology changing culture, culture can change the way technology is used. Thai culture is naturally inherent in Thai daily life and Thais bring that into their work practices. The concepts of power and uncertainty in Thai culture contribute toward hierarchical forms of communication and decision making process in Thailand, especially during requirements engineering, where information systems requirements need to be established for further development. The research shows that the decision making process in Thailand tends to take a much longer time, as every stage during requirements engineering needs to be reported to management for final decisions. The tall structure of Thai organisations also contributes to a bureaucratic, elongated decision-making process during information systems development. Understanding the influence of Thai culture on requirements engineering and information systems development will assist multinational information systems consulting organisations to select, adapt, better manage, or change requirements engineering process and information systems developments methodologies to work best with Thai organisations.

  2. Complex Adaptive Systems of Systems (CASOS) engineering environment.

    Energy Technology Data Exchange (ETDEWEB)

    Detry, Richard Joseph; Linebarger, John Michael; Finley, Patrick D.; Maffitt, S. Louise; Glass, Robert John, Jr.; Beyeler, Walter Eugene; Ames, Arlo Leroy

    2012-02-01

    Complex Adaptive Systems of Systems, or CASoS, are vastly complex physical-socio-technical systems which we must understand to design a secure future for the nation. The Phoenix initiative implements CASoS Engineering principles combining the bottom up Complex Systems and Complex Adaptive Systems view with the top down Systems Engineering and System-of-Systems view. CASoS Engineering theory and practice must be conducted together to develop a discipline that is grounded in reality, extends our understanding of how CASoS behave and allows us to better control the outcomes. The pull of applications (real world problems) is critical to this effort, as is the articulation of a CASoS Engineering Framework that grounds an engineering approach in the theory of complex adaptive systems of systems. Successful application of the CASoS Engineering Framework requires modeling, simulation and analysis (MS and A) capabilities and the cultivation of a CASoS Engineering Community of Practice through knowledge sharing and facilitation. The CASoS Engineering Environment, itself a complex adaptive system of systems, constitutes the two platforms that provide these capabilities.

  3. Energy production systems engineering

    CERN Document Server

    Blair, Thomas Howard

    2017-01-01

    Energy Production Systems Engineering presents IEEE, Electrical Apparatus Service Association (EASA), and International Electrotechnical Commission (IEC) standards of engineering systems and equipment in utility electric generation stations. Electrical engineers that practice in the energy industry must understand the specific characteristics of electrical and mechanical equipment commonly applied to energy production and conversion processes, including the mechanical and chemical processes involved, in order to design, operate and maintain electrical systems that support and enable these processes. To aid this understanding, Energy Production Systems Engineeringdescribes the equipment and systems found in various types of utility electric generation stations. This information is accompanied by examples and practice problems. It also addresses common issues of electrical safety that arise in electric generation stations.

  4. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXIII, I--MAINTAINING THE FUEL SYSTEM, PART II--CATERPILLAR DIESEL ENGINE, II--UNDERSTANDING STEERING SYSTEMS.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL INJECTION SYSTEM AND THE STEERING SYSTEM OF DIESEL POWERED VEHICLES. TOPICS ARE FUEL INJECTION SECTION, AND DESCRIPTION OF THE STEERING SYSTEM. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING…

  5. Challenges to Cognitive Systems Engineering:Understanding Qualitative Aspects of Control Actions

    DEFF Research Database (Denmark)

    Lind, Morten

    2009-01-01

    The paper discusses the future role of Cognitive Systems Engineering (CSE) in contributing to integrated design of process, automation and human machine systems. Existing concepts and methods of Cognitive Systems Engineering do not integrate well with control theory and industrial automation tools...

  6. Systems Engineering as a tool; Verktoeyet Systems Engineering : struktur fra start til maal

    Energy Technology Data Exchange (ETDEWEB)

    Carlsen, Randi

    2002-07-01

    Systems engineering integrates all types of specialists and disciplines into teams that try to create a structured development process from concept via production to operation. The idea is that by using systems engineering, projects can be completed efficiently and successfully. It is important that the individual participant in a project understands that he or she works within a system and that there is a need for skill, comprehensiveness and communication. Systems engineering comprises system design, computer aided design, cybernetics and mecatronics. The article describes the use of systems engineering in a student project in which a heat pump will be used to utilize the energy potential of ground water primarily to heat the visitors' area in a mine museum in Kongsberg, Norway.

  7. Optical engineering: understanding optical system by experiments

    Science.gov (United States)

    Scharf, Toralf

    2017-08-01

    Students have to be educated in theoretical and practical matters. Only one of them does not allow attacking complex problems in research, development, and management. After their study, students should be able to design, construct and analyze technical problems at highest levels of complexity. Who never experienced the difficulty of setting up measurements will not be able to understand, plan and manage such complex tasks in her/his future career. At EPFL a course was developed for bachelor education and is based on three pillars: concrete actions (enactive) to be done by the students, a synthesis of their work by writing a report (considered as the iconic part) and inputs from the teacher to generalize the findings and link it to a possible complete abstract description (symbolic). Intensive tutoring allowed an intermodal transfer between these categories. This EIS method originally introduced by Jerome Bruner for small children is particular well adapted for engineer education for which theoretical understanding often is not enough. The symbiosis of ex-cathedra lecture and practical work in a classroom-like situation presents an innovative step towards integrated learning that complements perfectly more abstract course principles like online courses.

  8. Systems Engineering Awareness

    Science.gov (United States)

    Lucero, John

    2016-01-01

    The presentation will provide an overview of the fundamentals and principles of Systems Engineering (SE). This includes understanding the processes that are used to assist the engineer in a successful design, build and implementation of solutions. The context of this presentation will be to describe the involvement of SE throughout the life-cycle of a project from cradle to grave. Due to the ever growing number of complex technical problems facing our world, a Systems Engineering approach is desirable for many reasons. The interdisciplinary technical structure of current systems, technical processes representing System Design, Technical Management and Product Realization are instrumental in the development and integration of new technologies into mainstream applications. This tutorial will demonstrate the application of SE tools to these types of problems..

  9. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    Science.gov (United States)

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-01-01

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. PMID:24709875

  10. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2013-10-01

    Full Text Available Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

  11. Understanding safety and production risks in rail engineering planning and protection.

    Science.gov (United States)

    Wilson, John R; Ryan, Brendan; Schock, Alex; Ferreira, Pedro; Smith, Stuart; Pitsopoulos, Julia

    2009-07-01

    Much of the published human factors work on risk is to do with safety and within this is concerned with prediction and analysis of human error and with human reliability assessment. Less has been published on human factors contributions to understanding and managing project, business, engineering and other forms of risk and still less jointly assessing risk to do with broad issues of 'safety' and broad issues of 'production' or 'performance'. This paper contains a general commentary on human factors and assessment of risk of various kinds, in the context of the aims of ergonomics and concerns about being too risk averse. The paper then describes a specific project, in rail engineering, where the notion of a human factors case has been employed to analyse engineering functions and related human factors issues. A human factors issues register for potential system disturbances has been developed, prior to a human factors risk assessment, which jointly covers safety and production (engineering delivery) concerns. The paper concludes with a commentary on the potential relevance of a resilience engineering perspective to understanding rail engineering systems risk. Design, planning and management of complex systems will increasingly have to address the issue of making trade-offs between safety and production, and ergonomics should be central to this. The paper addresses the relevant issues and does so in an under-published domain - rail systems engineering work.

  12. Fundamental understanding of matter: an engineering viewpoint

    International Nuclear Information System (INIS)

    Cullingford, H.S.; Cort, G.E.

    1980-01-01

    Fundamental understanding of matter is a continuous process that should produce physical data for use by engineers and scientists in their work. Lack of fundamental property data in any engineering endeavor cannot be mitigated by theoretical work that is not confirmed by physical experiments. An engineering viewpoint will be presented to justify the need for understanding of matter. Examples will be given in the energy engineering field to outline the importance of further understanding of material and fluid properties and behavior. Cases will be cited to show the effects of various data bases in energy, mass, and momentum transfer. The status of fundamental data sources will be discussed in terms of data centers, new areas of engineering, and the progress in measurement techniques. Conclusions and recommendations will be outlined to improve the current situation faced by engineers in carrying out their work. 4 figures

  13. Essentials of Project and Systems Engineering Management

    CERN Document Server

    Eisner, Howard S

    2008-01-01

    The Third Edition of Essentials of Project and Systems Engineering Management enables readers to manage the design, development, and engineering of systems effectively and efficiently. The book both defines and describes the essentials of project and systems engineering management and, moreover, shows the critical relationship and interconnection between project management and systems engineering. The author's comprehensive presentation has proven successful in enabling both engineers and project managers to understand their roles, collaborate, and quickly grasp and apply all the basic princip

  14. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXI, I--MAINTAINING THE AIR SYSTEM--CATERPILLAR DIESEL ENGINE, II--UNDERSTANDING REAR END SUSPENSION.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM AND REAR AXLE SUSPENSION USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) AIR INDUCTION AND EXHAUST SYSTEM, (2) VALVE MECHANISM, (3) TROUBLESHOOTING THE AIR SYSTEM, (4) PURPOSE OF VEHICLE SUSPENSION, (5) TANDEM…

  15. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXII, I--MAINTAINING THE FUEL SYSTEM (PART I)--CUMMINS DIESEL ENGINE, II--UNDERSTANDING THE DIFFERENTIAL.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE FUNCTION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM AND DIFFERENTIAL DRIVE UNITS USED IN DIESEL POWERED VEHICLES. TOPICS ARE (1) FUEL SYSTEM COMPARISONS, (2) FUEL SYSTEM SUPPLY COMPONENTS, (3) FUEL SUPPLY SECTION MAINTENANCE, (4) FUNCTION OF THE DIFFERENTIAL,…

  16. Pragmatic electrical engineering systems and instruments

    CERN Document Server

    Eccles, William

    2011-01-01

    Pragmatic Electrical Engineering: Systems and Instruments is about some of the non-energy parts of electrical systems, the parts that control things and measure physical parameters. The primary topics are control systems and their characterization, instrumentation, signals, and electromagnetic compatibility. This text features a large number of completely worked examples to aid the reader in understanding how the various principles fit together.While electric engineers may find this material useful as a review, engineers in other fields can use this short lecture text as a modest introduction

  17. Multidisciplinary systems engineering architecting the design process

    CERN Document Server

    Crowder, James A; Demijohn, Russell

    2016-01-01

    This book presents Systems Engineering from a modern, multidisciplinary engineering approach, providing the understanding that all aspects of systems design, systems, software, test, security, maintenance and the full life-cycle must be factored in to any large-scale system design; up front, not factored in later. It lays out a step-by-step approach to systems-of-systems architectural design, describing in detail the documentation flow throughout the systems engineering design process. It provides a straightforward look and the entire systems engineering process, providing realistic case studies, examples, and design problems that will enable students to gain a firm grasp on the fundamentals of modern systems engineering.  Included is a comprehensive design problem that weaves throughout the entire text book, concluding with a complete top-level systems architecture for a real-world design problem.

  18. Systems engineering and analysis

    CERN Document Server

    Blanchard, Benjamin S

    2010-01-01

    For senior-level undergraduate and first and second year graduate systems engineering and related courses. A total life-cycle approach to systems and their analysis. This practical introduction to systems engineering and analysis provides the concepts, methodologies, models, and tools needed to understand and implement a total life-cycle approach to systems and their analysis. The authors focus first on the process of bringing systems into being--beginning with the identification of a need and extending that need through requirements determination, functional analysis and allocation, design synthesis, evaluation, and validation, operation and support, phase-out, and disposal. Next, the authors discuss the improvement of systems currently in being, showing that by employing the iterative process of analysis, evaluation, feedback, and modification, most systems in existence can be improved in their affordability, effectiveness, and stakeholder satisfaction.

  19. System Engineering of Photonic Systems for Space Application

    Science.gov (United States)

    Watson, Michael D.; Pryor, Jonathan E.

    2014-01-01

    The application of photonics in space systems requires tight integration with the spacecraft systems to ensure accurate operation. This requires some detailed and specific system engineering to properly incorporate the photonics into the spacecraft architecture and to guide the spacecraft architecture in supporting the photonics devices. Recent research in product focused, elegant system engineering has led to a system approach which provides a robust approach to this integration. Focusing on the mission application and the integration of the spacecraft system physics incorporation of the photonics can be efficiently and effectively accomplished. This requires a clear understanding of the driving physics properties of the photonics device to ensure proper integration with no unintended consequences. The driving physics considerations in terms of optical performance will be identified for their use in system integration. Keywords: System Engineering, Optical Transfer Function, Optical Physics, Photonics, Image Jitter, Launch Vehicle, System Integration, Organizational Interaction

  20. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXIV, I--MAINTAINING THE FUEL SYSTEM PART III--CATERPILLAR DIESEL ENGINE, II--UNDERSTANDING THE VOLTAGE REGULATOR/ALTERNATOR.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL AND BATTERY CHARGING SYSTEM. TOPICS ARE (1) INJECTION TIMING CONTROLS, (2) GOVERNOR, (3) FUEL SYSTEM MAINTENANCE TIPS, (4) THE CHARGING SYSTEM, (5) REGULATING THE GENERATOR/ALTERNATOR, AND (6) CHARGING SYSTEM SERVICE…

  1. Data engineering systems: Computerized modeling and data bank capabilities for engineering analysis

    Science.gov (United States)

    Kopp, H.; Trettau, R.; Zolotar, B.

    1984-01-01

    The Data Engineering System (DES) is a computer-based system that organizes technical data and provides automated mechanisms for storage, retrieval, and engineering analysis. The DES combines the benefits of a structured data base system with automated links to large-scale analysis codes. While the DES provides the user with many of the capabilities of a computer-aided design (CAD) system, the systems are actually quite different in several respects. A typical CAD system emphasizes interactive graphics capabilities and organizes data in a manner that optimizes these graphics. On the other hand, the DES is a computer-aided engineering system intended for the engineer who must operationally understand an existing or planned design or who desires to carry out additional technical analysis based on a particular design. The DES emphasizes data retrieval in a form that not only provides the engineer access to search and display the data but also links the data automatically with the computer analysis codes.

  2. Recent Stirling engine loss - understanding results

    International Nuclear Information System (INIS)

    Tew, R.C.; Thieme, L.G.; Dudenhoefer, J.E.

    1994-01-01

    For several years, the National Aeronautics and Space Administration and other US Government agencies have been funding experimental and analytical efforts to improve the understanding of Stirling thermodynamic losses. NASA's objective is to improve Stirling engine design capability to support the development of new engines for space power. An overview of these efforts was last given at the 1988 IECEC. Recent results of this research are reviewed

  3. Engineering management of large scale systems

    Science.gov (United States)

    Sanders, Serita; Gill, Tepper L.; Paul, Arthur S.

    1989-01-01

    The organization of high technology and engineering problem solving, has given rise to an emerging concept. Reasoning principles for integrating traditional engineering problem solving with system theory, management sciences, behavioral decision theory, and planning and design approaches can be incorporated into a methodological approach to solving problems with a long range perspective. Long range planning has a great potential to improve productivity by using a systematic and organized approach. Thus, efficiency and cost effectiveness are the driving forces in promoting the organization of engineering problems. Aspects of systems engineering that provide an understanding of management of large scale systems are broadly covered here. Due to the focus and application of research, other significant factors (e.g., human behavior, decision making, etc.) are not emphasized but are considered.

  4. Site systems engineering: Systems engineering management plan

    Energy Technology Data Exchange (ETDEWEB)

    Grygiel, M.L. [Westinghouse Hanford Co., Richland, WA (United States)

    1996-05-03

    The Site Systems Engineering Management Plan (SEMP) is the Westinghouse Hanford Company (WHC) implementation document for the Hanford Site Systems Engineering Policy, (RLPD 430.1) and Systems Engineering Criteria Document and Implementing Directive, (RLID 430.1). These documents define the US Department of Energy (DOE), Richland Operations Office (RL) processes and products to be used at Hanford to implement the systems engineering process at the site level. This SEMP describes the products being provided by the site systems engineering activity in fiscal year (FY) 1996 and the associated schedule. It also includes the procedural approach being taken by the site level systems engineering activity in the development of these products and the intended uses for the products in the integrated planning process in response to the DOE policy and implementing directives. The scope of the systems engineering process is to define a set of activities and products to be used at the site level during FY 1996 or until the successful Project Hanford Management Contractor (PHMC) is onsite as a result of contract award from Request For Proposal DE-RP06-96RL13200. Following installation of the new contractor, a long-term set of systems engineering procedures and products will be defined for management of the Hanford Project. The extent to which each project applies the systems engineering process and the specific tools used are determined by the project`s management.

  5. Multi-disciplinary engineering for cyber-physical production systems data models and software solutions for handling complex engineering projects

    CERN Document Server

    Lüder, Arndt; Gerhard, Detlef

    2017-01-01

    This book discusses challenges and solutions for the required information processing and management within the context of multi-disciplinary engineering of production systems. The authors consider methods, architectures, and technologies applicable in use cases according to the viewpoints of product engineering and production system engineering, and regarding the triangle of (1) product to be produced by a (2) production process executed on (3) a production system resource. With this book industrial production systems engineering researchers will get a better understanding of the challenges and requirements of multi-disciplinary engineering that will guide them in future research and development activities. Engineers and managers from engineering domains will be able to get a better understanding of the benefits and limitations of applicable methods, architectures, and technologies for selected use cases. IT researchers will be enabled to identify research issues related to the development of new methods, arc...

  6. Complex Adaptive System of Systems (CASoS) Engineering Applications. Version 1.0.

    Energy Technology Data Exchange (ETDEWEB)

    Linebarger, John Michael; Maffitt, S. Louise (New Mexico Institute of Mining and Technology, Albuquerque, NM); Glass, Robert John, Jr.; Beyeler, Walter Eugene; Brown, Theresa Jean; Ames, Arlo Leroy

    2011-10-01

    Complex Adaptive Systems of Systems, or CASoS, are vastly complex eco-socio-economic-technical systems which we must understand to design a secure future for the nation and the world. Perturbations/disruptions in CASoS have the potential for far-reaching effects due to highly-saturated interdependencies and allied vulnerabilities to cascades in associated systems. The Phoenix initiative approaches this high-impact problem space as engineers, devising interventions (problem solutions) that influence CASoS to achieve specific aspirations. CASoS embody the world's biggest problems and greatest opportunities: applications to real world problems are the driving force of our effort. We are developing engineering theory and practice together to create a discipline that is grounded in reality, extends our understanding of how CASoS behave, and allows us to better control those behaviors. Through application to real-world problems, Phoenix is evolving CASoS Engineering principles while growing a community of practice and the CASoS engineers to populate it.

  7. NASA Systems Engineering Research Consortium: Defining the Path to Elegance in Systems

    Science.gov (United States)

    Watson, Michael D.; Farrington, Phillip A.

    2016-01-01

    The NASA Systems Engineering Research Consortium was formed at the end of 2010 to study the approaches to producing elegant systems on a consistent basis. This has been a transformative study looking at the engineering and organizational basis of systems engineering. The consortium has engaged in a variety of research topics to determine the path to elegant systems. In the second year of the consortium, a systems engineering framework emerged which structured the approach to systems engineering and guided our research. This led in the third year to set of systems engineering postulates that the consortium is continuing to refine. The consortium has conducted several research projects that have contributed significantly to the understanding of systems engineering. The consortium has surveyed the application of the NASA 17 systems engineering processes, explored the physics and statistics of systems integration, and considered organizational aspects of systems engineering discipline integration. The systems integration methods have included system exergy analysis, Akaike Information Criteria (AIC), State Variable Analysis, Multidisciplinary Coupling Analysis (MCA), Multidisciplinary Design Optimization (MDO), System Cost Modelling, System Robustness, and Value Modelling. Organizational studies have included the variability of processes in change evaluations, margin management within the organization, information theory of board structures, social categorization of unintended consequences, and initial looks at applying cognitive science to systems engineering. Consortium members have also studied the bidirectional influence of policy and law with systems engineering.

  8. Systems engineering implementation plan for the liquid effluents services program

    International Nuclear Information System (INIS)

    Lowe, S.S.

    1995-01-01

    A graded approach is being taken by the Liquid Effluents Services Program in implementing systems engineering because of the advanced state of the program. The approach is cost-effective and takes credit for related work already completed, yet retains the benefits of systems engineering. This plan describes how the Liquid Effluents Services Program will implement systems engineering so there is a common understanding. Systems engineering work to be performed and the products of that work are identified. The relation to the current planning process and integration with the sitewide systems engineering effort is described

  9. Systems engineering, systems thinking, and learning a case study in space industry

    CERN Document Server

    Moser, Hubert Anton

    2014-01-01

    This book focuses on systems engineering, systems thinking, and how that thinking can be learned in practice. It describes a novel analytical framework based on activity theory for understanding how systems thinking evolves and how it can be improved to support multidisciplinary teamwork in the context of system development and systems engineering. This method, developed using data collected over four years from three different small space systems engineering organizations, can be applied in a wide variety of work activities in the context of engineering design and beyond in order to monitor and analyze multidisciplinary interactions in working teams over time. In addition, the book presents a practical strategy called WAVES (Work Activity for a Evolution of Systems engineering and thinking), which fosters the practical learning of systems thinking with the aim of improving process development in different industries. The book offers an excellent resource for researchers and practitioners interested in system...

  10. Engineering Complex Embedded Systems with State Analysis and the Mission Data System

    Science.gov (United States)

    Ingham, Michel D.; Rasmussen, Robert D.; Bennett, Matthew B.; Moncada, Alex C.

    2004-01-01

    It has become clear that spacecraft system complexity is reaching a threshold where customary methods of control are no longer affordable or sufficiently reliable. At the heart of this problem are the conventional approaches to systems and software engineering based on subsystem-level functional decomposition, which fail to scale in the tangled web of interactions typically encountered in complex spacecraft designs. Furthermore, there is a fundamental gap between the requirements on software specified by systems engineers and the implementation of these requirements by software engineers. Software engineers must perform the translation of requirements into software code, hoping to accurately capture the systems engineer's understanding of the system behavior, which is not always explicitly specified. This gap opens up the possibility for misinterpretation of the systems engineer s intent, potentially leading to software errors. This problem is addressed by a systems engineering methodology called State Analysis, which provides a process for capturing system and software requirements in the form of explicit models. This paper describes how requirements for complex aerospace systems can be developed using State Analysis and how these requirements inform the design of the system software, using representative spacecraft examples.

  11. Phoenix : Complex Adaptive System of Systems (CASoS) engineering version 1.0.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Thomas W.; Quach, Tu-Thach; Detry, Richard Joseph; Conrad, Stephen Hamilton; Kelic, Andjelka; Starks, Shirley J.; Beyeler, Walter Eugene; Brodsky, Nancy S.; Verzi, Stephen J.; Brown, Theresa Jean; Glass, Robert John, Jr.; Sunderland, Daniel J.; Mitchell, Michael David; Ames, Arlo Leroy; Maffitt, S. Louise; Finley, Patrick D.; Russell, Eric Dean; Zagonel, Aldo A.; Reedy, Geoffrey E.; Mitchell, Roger A.; Corbet, Thomas Frank, Jr.; Linebarger, John Michael

    2011-08-01

    Complex Adaptive Systems of Systems, or CASoS, are vastly complex ecological, sociological, economic and/or technical systems which we must understand to design a secure future for the nation and the world. Perturbations/disruptions in CASoS have the potential for far-reaching effects due to pervasive interdependencies and attendant vulnerabilities to cascades in associated systems. Phoenix was initiated to address this high-impact problem space as engineers. Our overarching goals are maximizing security, maximizing health, and minimizing risk. We design interventions, or problem solutions, that influence CASoS to achieve specific aspirations. Through application to real-world problems, Phoenix is evolving the principles and discipline of CASoS Engineering while growing a community of practice and the CASoS engineers to populate it. Both grounded in reality and working to extend our understanding and control of that reality, Phoenix is at the same time a solution within a CASoS and a CASoS itself.

  12. Cognitive Systems Engineering: The Next 30 Years

    Science.gov (United States)

    Feary, Michael

    2012-01-01

    This presentation is part of panel discussion on Cognitive Systems Engineering. The purpose of this panel is to discuss the challenges and future directions of Cognitive Systems Engineering for the next 30 years. I intended to present the work we have been doing with the Aviation Safety program and Space Human Factors Engineering project on Work Domain Analysis and some areas of Research Focus. Specifically, I intend to focus on the shift on the need to understand and model attention in mixed-initiative systems, the need for methods which can generate results to be used in trade-off decisions, and the need to account for a range of human behavior in the design.

  13. Systems Engineering Leadership Development: Advancing Systems Engineering Excellence

    Science.gov (United States)

    Hall, Phil; Whitfield, Susan

    2011-01-01

    This slide presentation reviews the Systems Engineering Leadership Development Program, with particular emphasis on the work being done in the development of systems engineers at Marshall Space Flight Center. There exists a lack of individuals with systems engineering expertise, in particular those with strong leadership capabilities, to meet the needs of the Agency's exploration agenda. Therefore there is a emphasis on developing these programs to identify and train systems engineers. The presentation reviews the proposed MSFC program that includes course work, and developmental assignments. The formal developmental programs at the other centers are briefly reviewed, including the Point of Contact (POC)

  14. Physiology for engineers applying engineering methods to physiological systems

    CERN Document Server

    Chappell, Michael

    2016-01-01

    This book provides an introduction to qualitative and quantitative aspects of human physiology. It looks at biological and physiological processes and phenomena, including a selection of mathematical models, showing how physiological problems can be mathematically formulated and studied. It also illustrates how a wide range of engineering and physics topics, including electronics, fluid dynamics, solid mechanics and control theory can be used to describe and understand physiological processes and systems. Throughout the text there are introductions to measuring and quantifying physiological processes using both signal and imaging technologies. Physiology for Engineers describes the basic structure and models of cellular systems, the structure and function of the cardiovascular system, the electrical and mechanical activity of the heart and provides an overview of the structure and function of the respiratory and nervous systems. It also includes an introduction to the basic concepts and applications of reacti...

  15. First-Year University Science and Engineering Students' Understanding of Plagiarism

    Science.gov (United States)

    Yeo, Shelley

    2007-01-01

    This paper is a case study of first-year science and engineering students' understandings of plagiarism. Students were surveyed for their views on scenarios illustrating instances of plagiarism in the context of the academic work and assessment of science and engineering students. The aim was to explore their understandings of plagiarism and their…

  16. Biological Systems Thinking for Control Engineering Design

    Directory of Open Access Journals (Sweden)

    D. J. Murray-Smith

    2004-01-01

    Full Text Available Artificial neural networks and genetic algorithms are often quoted in discussions about the contribution of biological systems thinking to engineering design. This paper reviews work on the neuromuscular system, a field in which biological systems thinking could make specific contributions to the development and design of automatic control systems for mechatronics and robotics applications. The paper suggests some specific areas in which a better understanding of this biological control system could be expected to contribute to control engineering design methods in the future. Particular emphasis is given to the nonlinear nature of elements within the neuromuscular system and to processes of neural signal processing, sensing and system adaptivity. Aspects of the biological system that are of particular significance for engineering control systems include sensor fusion, sensor redundancy and parallelism, together with advanced forms of signal processing for adaptive and learning control. 

  17. State analysis requirements database for engineering complex embedded systems

    Science.gov (United States)

    Bennett, Matthew B.; Rasmussen, Robert D.; Ingham, Michel D.

    2004-01-01

    It has become clear that spacecraft system complexity is reaching a threshold where customary methods of control are no longer affordable or sufficiently reliable. At the heart of this problem are the conventional approaches to systems and software engineering based on subsystem-level functional decomposition, which fail to scale in the tangled web of interactions typically encountered in complex spacecraft designs. Furthermore, there is a fundamental gap between the requirements on software specified by systems engineers and the implementation of these requirements by software engineers. Software engineers must perform the translation of requirements into software code, hoping to accurately capture the systems engineer's understanding of the system behavior, which is not always explicitly specified. This gap opens up the possibility for misinterpretation of the systems engineer's intent, potentially leading to software errors. This problem is addressed by a systems engineering tool called the State Analysis Database, which provides a tool for capturing system and software requirements in the form of explicit models. This paper describes how requirements for complex aerospace systems can be developed using the State Analysis Database.

  18. Systems engineering simplified

    CERN Document Server

    Cloutier, Robert; Bone, Mary Alice

    2015-01-01

    IntroductionOverviewDiscussion of Common TerminologyThe Case for Systems EngineeringA Brief History of Systems EngineeringSystem ExamplesSummaryThe System Life CycleManaging System Development-The Vee ModelSystem ProductionSystem Utilization and SupportSystem Retirement and DisposalOther Systems Engineering Development ModelsSpiral ModelAgile Model for Systems EngineeringSystem of InterestAbstraction and DecompositionIntegrationDeveloping and Managing RequirementsCyclone Requiremen

  19. Introducing DAE Systems in Undergraduate and Graduate Chemical Engineering Curriculum

    Science.gov (United States)

    Mandela, Ravi Kumar; Sridhar, L. N.; Rengaswamy, Raghunathan

    2010-01-01

    Models play an important role in understanding chemical engineering systems. While differential equation models are taught in standard modeling and control courses, Differential Algebraic Equation (DAE) system models are not usually introduced. These models appear naturally in several chemical engineering problems. In this paper, the introduction…

  20. EXPERIMENTAL SEMIOTICS: AN ENGINE OF DISCOVERY FOR UNDERSTANDING HUMAN COMMUNICATION

    OpenAIRE

    BRUNO GALANTUCCI; GARETH ROBERTS

    2012-01-01

    The recent growth of Experimental Semiotics (ES) offers us a new option to investigate human communication. We briefly introduce ES, presenting results from three themes of research which emerged within it. Then we illustrate the contribution ES can make to the investigation of human communication systems, particularly in comparison with the other existing options. This comparison highlights how ES can provide an engine of discovery for understanding human communication. In fact, in complemen...

  1. Engineering Elegant Systems: Postulates, Principles, and Hypotheses of Systems Engineering

    Science.gov (United States)

    Watson, Michael D.

    2018-01-01

    Definition: System Engineering is the engineering discipline which integrates the system functions, system environment, and the engineering disciplines necessary to produce and/or operate an elegant system; Elegant System - A system that is robust in application, fully meeting specified and adumbrated intent, is well structured, and is graceful in operation. Primary Focus: System Design and Integration: Identify system couplings and interactions; Identify system uncertainties and sensitivities; Identify emergent properties; Manage the effectiveness of the system. Engineering Discipline Integration: Manage flow of information for system development and/or operations; Maintain system activities within budget and schedule. Supporting Activities: Process application and execution.

  2. Advancing Systems Engineering Excellence: The Marshall Systems Engineering Leadership Development Program

    Science.gov (United States)

    Hall, Philip; Whitfield, Susan

    2011-01-01

    As NASA undertakes increasingly complex projects, the need for expert systems engineers and leaders in systems engineering is becoming more pronounced. As a result of this issue, the Agency has undertaken an initiative to develop more systems engineering leaders through its Systems Engineering Leadership Development Program; however, the NASA Office of the Chief Engineer has also called on the field Centers to develop mechanisms to strengthen their expertise in systems engineering locally. In response to this call, Marshall Space Flight Center (MSFC) has developed a comprehensive development program for aspiring systems engineers and systems engineering leaders. This presentation will summarize the two-level program, which consists of a combination of training courses and on-the-job, developmental training assignments at the Center to help develop stronger expertise in systems engineering and technical leadership. In addition, it will focus on the success the program has had in its pilot year. The program hosted a formal kickoff event for Level I on October 13, 2009. The first class includes 42 participants from across MSFC and Michoud Assembly Facility (MAF). A formal call for Level II is forthcoming. With the new Agency focus on research and development of new technologies, having a strong pool of well-trained systems engineers is becoming increasingly more critical. Programs such as the Marshall Systems Engineering Leadership Development Program, as well as those developed at other Centers, help ensure that there is an upcoming generation of trained systems engineers and systems engineering leaders to meet future design challenges.

  3. Automotive Control Systems: For Engine, Driveline, and Vehicle

    Science.gov (United States)

    Kiencke, Uwe; Nielsen, Lars

    Advances in automotive control systems continue to enhance safety and comfort and to reduce fuel consumption and emissions. Reflecting the trend to optimization through integrative approaches for engine, driveline, and vehicle control, this valuable book enables control engineers to understand engine and vehicle models necessary for controller design, and also introduces mechanical engineers to vehicle-specific signal processing and automatic control. The emphasis on measurement, comparisons between performance and modeling, and realistic examples derive from the authors' unique industrial experience

  4. THE CONCEPT OF INTEGRATED ENGINEERING AND BUSINESS (EB EDUCATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Michał Charlak

    2013-12-01

    Full Text Available In our approach to engineering and business education system an engineer is a man working as creator and user of technical products. We stress that the process of understanding and gaining knowledge of technical reality and creativity of engineers are the essential for EB concept . Next, we describe briefly three perspectives for building the system of innovative product origination as a basis for EB system: 1 designer’s perspective; 2 business perspective. 3 consumer perspective.

  5. Creating meaningful learning experiences: Understanding students' perspectives of engineering design

    Science.gov (United States)

    Aleong, Richard James Chung Mun

    There is a societal need for design education to prepare holistic engineers with the knowledge, skills, and attitudes to innovate and compete globally. Design skills are paramount to the espoused values of higher education, as institutions of higher learning strive to develop in students the cognitive abilities of critical thinking, problem solving, and creativity. To meet these interests from industry and academia, it is important to advance the teaching and learning of engineering design. This research aims to understand how engineering students learn and think about design, as a way for engineering educators to optimize instructional practice and curriculum development. Qualitative research methodology was used to investigate the meaning that engineering students' ascribe to engineering design. The recruitment of participants and corresponding collection of data occurred in two phases using two different data collection techniques. The first phase involved the distribution of a one-time online questionnaire to all first year, third year, and fourth year undergraduate engineering students at three Canadian Universities. After the questionnaire, students were asked if they would be willing to participate in the second phase of data collection consisting of a personal interview. A total of ten students participated in interviews. Qualitative data analysis procedures were conducted on students' responses from the questionnaire and interviews. The data analysis process consisted of two phases: a descriptive phase to code and categorize the data, followed by an interpretative phase to generate further meaning and relationships. The research findings present a conceptual understanding of students' descriptions about engineering design, structured within two educational orientations: a learning studies orientation and a curriculum studies orientation. The learning studies orientation captured three themes of students' understanding of engineering design: awareness

  6. Advancing metabolic engineering through systems biology of industrial microorganisms

    DEFF Research Database (Denmark)

    Dai, Zongjie; Nielsen, Jens

    2015-01-01

    resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review......Development of sustainable processes to produce bio-based compounds is necessary due to the severe environmental problems caused by the use of fossil resources. Metabolic engineering can facilitate the development of highly efficient cell factories to produce these compounds from renewable...... the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further....

  7. Engineered barrier systems (EBS): design requirements and constraints

    International Nuclear Information System (INIS)

    2004-01-01

    A joint NEA-EC workshop entitled 'Engineered Barrier Systems: Design Requirements and Constraints' was organised in Turku, Finland on 26-29 August 2003 and hosted by Posiva Oy. The main objectives of the workshop were to promote interaction and collaboration among experts responsible for engineering design and safety assessment in order to develop a greater understanding of how to achieve the integration needed for the successful design of engineered barrier systems, and to clarify the role that an EBS can play in the overall safety case for a repository. These proceedings present the outcomes of this workshop. (author)

  8. Cognitive systems engineering in health care

    CERN Document Server

    Bisantz, Ann M; Fairbanks, Rollin J

    2014-01-01

    Cognitive Engineering for Better Health Care Systems, Ann M. Bisantz, Rollin J. Fairbanks, and Catherine M. BurnsThe Role of Cognitive Engineering in Improving Clinical Decision Support, Anne Miller and Laura MilitelloTeam Cognitive Work Analysis as an Approach for Understanding Teamwork in Health Care, Catherine M. BurnsCognitive Engineering Design of an Emergency Department Information System, Theresa K. Guarrera, Nicolette M. McGeorge, Lindsey N. Clark, David T. LaVergne, Zachary A. Hettinger, Rollin J. Fairbanks, and Ann M. BisantzDisplays for Health Care Teams: A Conceptual Framework and Design Methodology, Avi ParushInformation Modeling for Cognitive Work in a Health Care System, Priyadarshini R. PennathurSupport for ICU Clinician Cognitive Work through CSE, Christopher Nemeth, Shilo Anders, Jeffrey Brown, Anna Grome, Beth Crandall, and Jeremy PamplinMatching Cognitive Aids and the "Real Work" of Health Care in Support of Surgical Microsystem Teamwork, Sarah Henrickson Parker and Shawna J. PerryEngageme...

  9. The System Concept and Its Application to Engineering

    CERN Document Server

    Aslaksen, Erik W

    2013-01-01

    Systems engineering is a mandatory approach in some industries, and is gaining wider acceptance for complex projects in general. However, under the imperative of delivering these projects on time and within budget, the focus has been mainly on the management aspects, with less attention to improving the core engineering activity – design. This book addresses the application of the system concept to design in several ways: by developing a deeper understanding of the system concept, by defining design and its characteristics within the process of engineering, and by applying the system concept to the early stage of design, where it has the greatest impact.   A central theme of the book is that the purpose of engineering is to be useful in meeting the needs of society, and that therefore the ultimate measure of the benefit of applying the system concept should be the extent to which it advances the achievement of that purpose. Consequently, any consistent, top-down development of the functionality required of...

  10. Understanding renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Quaschning, Volker

    2005-01-15

    Beginning with an overview of renewable energy sources including biomass, hydroelectricity, geothermal, tidal, wind and solar power, this book explores the fundamentals of different renewable energy systems. The main focus is on technologies with high development potential such as solar thermal systems, photovoltaics and wind power. This text not only describes technological aspects, but also deals consciously with problems of the energy industry. In this way, the topics are treated in a holistic manner, bringing together maths, engineering, climate studies and economics, and enabling readers to gain a broad understanding of renewable energy technologies and their potential. The book also contains a free CD-ROM resource, which includes a variety of specialist simulation software and detailed figures from the book. (Author)

  11. Solar engine system

    International Nuclear Information System (INIS)

    Tan, K.K.; Bahrom Sanugi; Chen, L.C.; Chong, K.K.; Jasmy Yunus; Kannan, K.S.; Lim, B.H.; Noriah Bidin; Omar Aliman; Sahar Salehan; Sheikh Ab Rezan Sheikh A H; Tam, C.M.; Chen, Y.T.

    2001-01-01

    This paper reports the revolutionary solar engine system in Universiti Teknologi Malaysia (UTM). The solar engine is a single cylinder stirling engine driven by solar thermal energy. A first prototype solar engine has been built and demonstrated. A new-concept non-imaging focusing heliostat and a recently invented optical receiver are used in the demonstration. Second generation of prototype solar engine is described briefly. In this paper, the solar engine system development is reported. Measurement for the first prototype engine speed, temperature and specifications are presented. The benefits and potential applications for the future solar engine system, especially for the electricity generating aspect are discussed. (Author)

  12. Engineering of complex systems: The impact of systems engineering at NASA

    Science.gov (United States)

    Kludze, Ave-Klutse Kodzo Paaku

    The "true" impact or value of systems engineering to an organization unfortunately appears not to have been well-studied and understood. The principles of systems engineering are highly encouraged by NASA at all levels, and most practitioners, both internal and external to NASA, intuitively "believe" it adds some value to the development of complex systems by producing them faster, better and cheaper. This research, in trying to fill a gap that exists in the systems engineering literature, analyzes data collected within NASA and other sources external to NASA (INCOSE) for comparisons. Analyses involving a number of case studies performed on selected NASA projects are presented to draw attention to the impact systems engineering had or could have had on these projects. This research clearly shows that systems engineering does add value to projects within and outside NASA. The research results further demonstrate that systems engineering has been beneficial not only to NASA but also to organizations within which INCOSE members work. It was determined, however, that systems engineering does not operate in a vacuum and may not always guarantee success through mere application. During this research, it was discovered that the lack of or inadequate application of systems engineering in the development of complex systems may result in cost overruns, poor technical performance, project delays, and in some cases unmitigated risk with disastrous consequences including the loss of life and property. How much is saved (in terms of cost, schedule) or improved (in terms of technical performance) as a result of its implementation may never be known precisely, but by indirectly measuring its value or impact on a project, percentages of project budget spent on systems engineering activities and any schedule reductions or performance enhancements realized could be determined. According to this research, systems engineering is not a waste of time and resources; in most cases, it is

  13. Battery systems engineering

    CERN Document Server

    Rahn, Christopher D

    2012-01-01

    A complete all-in-one reference on the important interdisciplinary topic of Battery Systems Engineering Focusing on the interdisciplinary area of battery systems engineering, this book provides the background, models, solution techniques, and systems theory that are necessary for the development of advanced battery management systems. It covers the topic from the perspective of basic electrochemistry as well as systems engineering topics and provides a basis for battery modeling for system engineering of electric and hybrid electric vehicle platforms. This original

  14. Advancing metabolic engineering through systems biology of industrial microorganisms.

    Science.gov (United States)

    Dai, Zongjie; Nielsen, Jens

    2015-12-01

    Development of sustainable processes to produce bio-based compounds is necessary due to the severe environmental problems caused by the use of fossil resources. Metabolic engineering can facilitate the development of highly efficient cell factories to produce these compounds from renewable resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Understanding engineering mathematics

    CERN Document Server

    Cox, Bill

    2001-01-01

    * Unique interactive style enables students to diagnose their strengths and weaknesses and focus their efforts where needed* Ideal for self-study and tutorial work, building from an initially supportive approach to the development of independent learning skills * Free website includes solutions to all exercises, additional topics and applications, guide to learning mathematics, and practice materialStudents today enter engineering courses with a wide range of mathematical skills, due to the many different pre-university qualifications studied. Bill Cox''s aim is for students to gain a thorough understanding of the maths they are studying, by first strengthening their background in the essentials of each topic. His approach allows a unique self-paced study style, in which students Review their strengths and weaknesses through self-administered diagnostic tests, then focus on Revision where they need it, to finally Reinforce the skills required.The book is structured around a highly successful ''transition'' ma...

  16. Systems Engineering Analysis

    Directory of Open Access Journals (Sweden)

    Alexei Serna M.

    2013-07-01

    Full Text Available The challenges proposed by the development of the new computer systems demand new guidance related to engineer´s education, because they will solve these problems. In the XXI century, system engineers must be able to integrate a number of topics and knowledge disciplines that complement that traditionally has been known as Computer Systems Engineering. We have enough software development engineers, today we need professional engineers for software integration, leaders and system architects that make the most of the technological development for the benefit of society, leaders that integrate sciences to the solutions they build and propose. In this article the current situation of Computer Systems Engineering is analyzed and is presented a theory proposing the need for modifying the approach Universities have given to these careers, to achieve the education of leader engineers according to the needs of this century.

  17. NASA systems engineering handbook

    Science.gov (United States)

    Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; McDuffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou

    1995-06-01

    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive.

  18. Engineering Good: How Engineering Metaphors Help us to Understand the Moral Life and Change Society

    Science.gov (United States)

    2009-01-01

    Engineering can learn from ethics, but ethics can also learn from engineering. In this paper, I discuss what engineering metaphors can teach us about practical philosophy. Using metaphors such as calculation, performance, and open source, I articulate two opposing views of morality and politics: one that relies on images related to engineering as science and one that draws on images of engineering practice. I argue that the latter view and its metaphors provide a more adequate way to understand and guide the moral life. Responding to two problems of alienation and taking into account developments such as Fab Lab I then further explore the implications of this view for engineering and society. PMID:19722107

  19. Understanding Engineering Ethics

    Directory of Open Access Journals (Sweden)

    Abdi O. Shuriye

    2012-01-01

    Full Text Available Engineering ethics aims to enhance engineer’s ability to confront moral issues raised by engineering activities. It covers engineering as social experimentation, the engineer’s responsibility for safety, and the rights of engineers. What constitutes engineering ethics is the underlining question of this research. Hence, the objective of the research is to systematically provide answers to the aforementioned question. The research also studies the scope and the origin of the subject matter. At the same time, the research highlights the significance of the subject from diverse perspectives; including Western and Islamic perspectives. ABSTRAK: Etika kejuruteraan bertujuan meningkatkan keupayaan juruera menghadapi isu-isu moralyang timbul dari aktiviti-aktiviti kejuruteraan. Ia merangkumi kejuruteraan sebagai eksperimentasi sosial, tanggungjawab jurutera terhadap keselamatan dan hak-hak jurutera. Persoalan utama penyelidikan ini adalah apa yang merangkumi etika kejuruteraan. Penyelidikan ini juga mengkaji skop dan asal usul etika kejuruteraan. Kajian ini turut membincangkan subjek kajian dari pelbagai perspektif, Barat dan Islam.KEYWORDS: engineering ethics; engineer; akhlaq; values; confidentiality; corruption; conflict of interest; whistle-blowing

  20. A Model of Designing: Understanding Engineering Design Activity

    DEFF Research Database (Denmark)

    Ahmed, Saeema; Aurisicchio, Marco

    2007-01-01

    This research describes an understanding of design activity through design questions. From a number of previous studies two types of questions have been identified: 1) reasoning questions; and 2) strategic questions. Strategic questions are part of an experienced designers approach to solving a d...... solving model. An example of aerospace engineering design is used to illustrate the argument. The research contributes to an understanding of design activity....

  1. Applying Model Based Systems Engineering to NASA's Space Communications Networks

    Science.gov (United States)

    Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert

    2013-01-01

    System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its

  2. Understanding the Experience of Women in Undergraduate Engineering Programs at Public Universities

    Science.gov (United States)

    Perez, Jessica Ohanian

    2017-01-01

    Women earn bachelor's degrees in engineering at a rate of less than 17% at public universities in California. The purpose of this study was to understand how women experience undergraduate engineering programs at public universities. To understand this lack of attainment, a qualitative methodology and Feminist Poststructuralist perspective were…

  3. Understanding Combustion and Soot Formation in Diesel Engines

    Science.gov (United States)

    2016-09-09

    distributions of PLII signals help understand the soot distributions within diesel/ biodiesel flames. In addition, planar laser-induced Figure 1. Transported ...Prescribed by ANSI Std. Z39.18 Page 1 of 1FORM SF 298 9/14/2016https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll This project investigated biodiesel ...emissions testing. 1 FINAL REPORT Project title: Understanding combustion and soot formation in biodiesel fuelled diesel engines Lead Institute and

  4. Real-time embedded systems design principles and engineering practices

    CERN Document Server

    Fan, Xiaocong

    2015-01-01

    This book integrates new ideas and topics from real time systems, embedded systems, and software engineering to give a complete picture of the whole process of developing software for real-time embedded applications. You will not only gain a thorough understanding of concepts related to microprocessors, interrupts, and system boot process, appreciating the importance of real-time modeling and scheduling, but you will also learn software engineering practices such as model documentation, model analysis, design patterns, and standard conformance. This book is split into four parts to help you

  5. Systems engineering research

    OpenAIRE

    Sahraoui , Abd-El-Kader; Buede , Dennis ,; Sage , Andrew ,

    2008-01-01

    International audience; In this paper, we propose selected research topics that are believed central to progress and growth in the application of systems engineering (SE). As a professional activity, and as an intellectual activity, systems engineering has strong links to such associated disciplines as decision analysis, operation research, project management, quality management, and systems design. When focussing on systems engineering research, we should distinguish between subjects that ar...

  6. Systems engineering at the Superconducting Super Collider (one year later)

    International Nuclear Information System (INIS)

    Nonte, J.

    1991-03-01

    After one year of systems engineering at the Superconducting Super Collider (SSC), the project baseline of costs, schedule milestones, and top-level (point design) physics parameters has been accepted by the Department of Energy (DOE). This paper describes the role of systems engineering in developing the baseline and in establishing requirements specifications, change control, and methods of tracking to a baseline. The differences between the Department of Defense and DOE--specifically at the SSC Laboratory (SSCL)--in application of systems engineering disciplines and tools are discussed. The aim of the paper is to inform participating industries of the anticipated requirements format and of the emphasis that will be placed on physics requirements as opposed to procedures. Industry subcontractors should have a better understanding of the systems engineering expected by the SSCL. 3 figs

  7. Marketers Understanding Engineers and Engineers Understanding Marketers: The Opportunities and Constraints of a Cross-Discipline Course Using 3D Printing to Develop Marketable Innovations

    Science.gov (United States)

    Reifschneider, Louis; Kaufman, Peter; Langrehr, Frederick W.; Kaufman, Kristina

    2015-01-01

    Marketers are criticized for not understanding the steps in the engineering research and development process and the challenges of manufacturing a new product at a profit. Engineers are criticized for not considering the marketability of and customer interest in such a product during the planning stages. With the development of 3D printing, rapid…

  8. Perspectives in metabolic engineering: understanding cellular regulation towards the control of metabolic routes.

    Science.gov (United States)

    Zadran, Sohila; Levine, Raphael D

    2013-01-01

    Metabolic engineering seeks to redirect metabolic pathways through the modification of specific biochemical reactions or the introduction of new ones with the use of recombinant technology. Many of the chemicals synthesized via introduction of product-specific enzymes or the reconstruction of entire metabolic pathways into engineered hosts that can sustain production and can synthesize high yields of the desired product as yields of natural product-derived compounds are frequently low, and chemical processes can be both energy and material expensive; current endeavors have focused on using biologically derived processes as alternatives to chemical synthesis. Such economically favorable manufacturing processes pursue goals related to sustainable development and "green chemistry". Metabolic engineering is a multidisciplinary approach, involving chemical engineering, molecular biology, biochemistry, and analytical chemistry. Recent advances in molecular biology, genome-scale models, theoretical understanding, and kinetic modeling has increased interest in using metabolic engineering to redirect metabolic fluxes for industrial and therapeutic purposes. The use of metabolic engineering has increased the productivity of industrially pertinent small molecules, alcohol-based biofuels, and biodiesel. Here, we highlight developments in the practical and theoretical strategies and technologies available for the metabolic engineering of simple systems and address current limitations.

  9. Complex Adaptive Systems of Systems (CASoS) engineering and foundations for global design.

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Nancy S.; Finley, Patrick D.; Beyeler, Walter Eugene; Brown, Theresa Jean; Linebarger, John Michael; Moore, Thomas W.; Glass, Robert John, Jr.; Maffitt, S. Louise; Mitchell, Michael David; Ames, Arlo Leroy

    2012-01-01

    Complex Adaptive Systems of Systems, or CASoS, are vastly complex ecological, sociological, economic and/or technical systems which must be recognized and reckoned with to design a secure future for the nation and the world. Design within CASoS requires the fostering of a new discipline, CASoS Engineering, and the building of capability to support it. Towards this primary objective, we created the Phoenix Pilot as a crucible from which systemization of the new discipline could emerge. Using a wide range of applications, Phoenix has begun building both theoretical foundations and capability for: the integration of Applications to continuously build common understanding and capability; a Framework for defining problems, designing and testing solutions, and actualizing these solutions within the CASoS of interest; and an engineering Environment required for 'the doing' of CASoS Engineering. In a secondary objective, we applied CASoS Engineering principles to begin to build a foundation for design in context of Global CASoS

  10. Micro electromechanical systems (MEMS) for mechanical engineers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A. P., LLNL

    1996-11-18

    engineers made impact. Through a basic understanding of the history of MEMS, the background physics and scaling in micromechanical systems, and an introduction to baseline MEMS processes, a mechanical engineer should be well on his way to Alice's wonderland in the ever-exciting playground of MEMS.

  11. LEARNING MANAGEMENT SYSTEMS: ENGINEERING THE EDUCATION INDUSTRY TO EDUCATE THE INDUSTRIAL ENGINEER

    Directory of Open Access Journals (Sweden)

    L. Van Dyk

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: A learning management system (LMS is any infrastructure on which e-learning can be built and delivered. In this article two sides of the LMS coin are investigated: On the one side, it is argued that industrial and systems engineering skills are equally relevant for learning systems as for as for any other system. To support this argument, an analogy is drawn between the management of learning systems and the management of manufacturing systems. On the other side of the coin, the educational issues and concerns related to implementing an LMS at the University of Pretoria are investigated by means of a case study in the Industrial Engineering department. It is concluded that the industrial engineering educator is in the unique position of understanding and contributing towards the engineering of the education industry whilst educating the industrial engineer.

    AFRIKAANSE OPSOMMING: ‘n Leerbestuurstelsel (LMS is enige infrastruktuur waarop e-leer gebou en afgelewer kan word. In hierdie artikel word beide kante van die LMS muntstuk ondersoek: Aan die een kant word getoon dat bedryfsingenieursvaardighede en -beginsels ewe toepaslik is op leerstelsels as op vervaardigingstelsels. Om hierdie argument te steun word 'n analogie getrek tussen the bestuur van leerstelsels en die bestuur van vervaardigingstelsels. Aan die ander kant van die muntstuk word die opvoedkundige aspekte verbonde aan die implementering van ‘n leerbestuurstelsel (LMS aan die Universiteit van Pretoria ondersoek aan die hand van ‘n gevallestudie in die Bedryfsingenieursdepartment. Die gevolgtrekking word gemaak dat die bedryfsingenieurs-opleier in 'n unieke posisie is om die opleidingsindustrie te begryp en by dra tot the ontwikkeling daarvan terwyl die bedryfsingenieur opgelei word.

  12. Understanding radar systems

    CERN Document Server

    Kingsley, Simon

    1999-01-01

    What is radar? What systems are currently in use? How do they work? This book provides engineers and scientists with answers to these critical questions, focusing on actual radar systems in use today. It is a perfect resource for those just entering the field, or as a quick refresher for experienced practitioners. The book leads readers through the specialized language and calculations that comprise the complex world of radar engineering as seen in dozens of state-of-the-art radar systems. An easy to read, wide ranging guide to the world of modern radar systems.

  13. Systems engineering for very large systems

    Science.gov (United States)

    Lewkowicz, Paul E.

    Very large integrated systems have always posed special problems for engineers. Whether they are power generation systems, computer networks or space vehicles, whenever there are multiple interfaces, complex technologies or just demanding customers, the challenges are unique. 'Systems engineering' has evolved as a discipline in order to meet these challenges by providing a structured, top-down design and development methodology for the engineer. This paper attempts to define the general class of problems requiring the complete systems engineering treatment and to show how systems engineering can be utilized to improve customer satisfaction and profit ability. Specifically, this work will focus on a design methodology for the largest of systems, not necessarily in terms of physical size, but in terms of complexity and interconnectivity.

  14. Educational Method of Engineering Ethics Aiming for Comprehensive Understanding

    Science.gov (United States)

    Yasui, Mitsukuni; Fujiki, Hiroyuki; Aoyagi, Manabu; Sugata, Noriyuki; Hayasaka, Narihito

    We have proposed the omnibus style to teach an engineering ethics program. This paper showed the essentials to practice the class. The engineering ethics program is constituted with the factors; grade, subject, objective even if it is operated by some themes and teachers in the style of omnibus. Also, teachers have to select the cases which have dilemma of the engineer and the good effect. And they should teach how to analyze the case. Evaluation of student activity must be made up by versatile style according to objective. And student is recommended to understand the relation of activity and object.

  15. Engine systems and methods of operating an engine

    Science.gov (United States)

    Scotto, Mark Vincent

    2015-08-25

    One embodiment of the present invention is a unique method for operating an engine. Another embodiment is a unique engine system. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for engines and engine systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.

  16. Engine systems and methods of operating an engine

    Energy Technology Data Exchange (ETDEWEB)

    Scotto, Mark Vincent

    2018-01-23

    One embodiment of the present invention is a unique method for operating an engine. Another embodiment is a unique engine system. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for engines and engine systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.

  17. Understanding Immunology via Engineering Design: The Role of Mathematical Prototyping

    Science.gov (United States)

    Klinke, David J.; Wang, Qing

    2012-01-01

    A major challenge in immunology is how to translate data into knowledge given the inherent complexity and dynamics of human physiology. Both the physiology and engineering communities have rich histories in applying computational approaches to translate data obtained from complex systems into knowledge of system behavior. However, there are some differences in how disciplines approach problems. By referring to mathematical models as mathematical prototypes, we aim to highlight aspects related to the process (i.e., prototyping) rather than the product (i.e., the model). The objective of this paper is to review how two related engineering concepts, specifically prototyping and “fitness for use,” can be applied to overcome the pressing challenge in translating data into improved knowledge of basic immunology that can be used to improve therapies for disease. These concepts are illustrated using two immunology-related examples. The prototypes presented focus on the beta cell mass at the onset of type 1 diabetes and the dynamics of dendritic cells in the lung. This paper is intended to illustrate some of the nuances associated with applying mathematical modeling to improve understanding of the dynamics of disease progression in humans. PMID:22973412

  18. Systems Engineering Workshops | Wind | NREL

    Science.gov (United States)

    Workshops Systems Engineering Workshops The Wind Energy Systems Engineering Workshop is a biennial topics relevant to systems engineering and the wind industry. The presentations and agendas are available for all of the Systems Engineering Workshops: The 1st NREL Wind Energy Systems Engineering Workshop

  19. Computer-aided software understanding systems to enhance confidence of scientific codes

    International Nuclear Information System (INIS)

    Sheng, G.; Oeren, T.I.

    1991-01-01

    A unique characteristic of nuclear waste disposal is the very long time span over which the combined engineered and natural containment system must remain effective: hundreds of thousands of years. Since there is no precedent in human history for such an endeavour, simulation with the use of computers is the only means we have of forecasting possible future outcomes quantitatively. The need for reliable models and software to make such forecasts so far into the future is obvious. One of the critical elements necessary to ensure reliability is the degree of reviewability of the computer program. Among others, there are two very important reasons for this. Firstly, if there is to be any chance at all of validating the conceptual models as implemented by the computer code, peer reviewers must be able to see and understand what the program is doing. It is all but impossible to achieve this understanding by just looking at the code due to possible unfamiliarity with the language and often due as well to the length and complexity of the code. Secondly, a thorough understanding of the code is also necessary to carry out code maintenance activities which include among others, error detection, error correction and code modification for purposes of enhancing its performance, functionality or to adapt it to a changed environment. The emerging concepts of computer-aided software understanding and reverse engineering can answer precisely these needs. This paper will discuss the role they can play in enhancing the confidence one has on computer codes and several examples will be provided. Finally a brief discussion of combining state-of-art forward engineering systems with reverse engineering systems will show how powerfully they can contribute to the overall quality assurance of a computer program. (13 refs., 7 figs.)

  20. Interdisciplinary Interactions During R&D and Early Design of Large Engineered Systems

    Science.gov (United States)

    McGowan, Anna-Maria Rivas

    2014-01-01

    Designing Large-Scale Complex Engineered Systems (LaCES) such as aircraft and submarines requires the input of thousands of engineers and scientists whose work is proximate in neither time nor space. Comprehensive knowledge of the system is dispersed among specialists whose expertise is in typically one system component or discipline. This study examined the interactive work practices among such specialists seeking to improve engineering practice through a rigorous and theoretical understanding of current practice. This research explored current interdisciplinary practices and perspectives during R&D and early LaCES design and identified why these practices and perspectives prevail and persist. The research design consisted of a three-fold, integrative approach that combined an open-ended survey, semi-structured interviews, and ethnography. Significant empirical data from experienced engineers and scientists in a large engineering organization were obtained and integrated with theories from organization science and engineering. Qualitative analysis was used to obtain a holistic, contextualized understanding. The over-arching finding is that issues related to cognition, organization, and social interrelations mostly dominate interactions across disciplines. Engineering issues, such as the integration of hardware or physics-based models, are not as significant. For example, organization culture is an important underlying factor that guided researchers more toward individual sovereignty over cross-disciplinarity. The organization structure and the engineered system architecture also serve as constraints to the engineering work. Many differences in work practices were observed, including frequency and depth of interactions, definition or co-construction of requirements, clarity or creation of the system architecture, work group proximity, and cognitive challenges. Practitioners are often unaware of these differences resulting in confusion and incorrect assumptions

  1. Systems engineering management process maturity of South African manufacturing organisations

    CSIR Research Space (South Africa)

    Lemberger, ID

    2014-07-01

    Full Text Available to integrate people, processes and technologies to deliver innovative complex systems. The investigation set out to improve the understanding of systems engineering (SE) with focus on organisations in manufacturing of coke, petroleum, chemical products, rubber...

  2. Microfluidic systems for stem cell-based neural tissue engineering.

    Science.gov (United States)

    Karimi, Mahdi; Bahrami, Sajad; Mirshekari, Hamed; Basri, Seyed Masoud Moosavi; Nik, Amirala Bakhshian; Aref, Amir R; Akbari, Mohsen; Hamblin, Michael R

    2016-07-05

    Neural tissue engineering aims at developing novel approaches for the treatment of diseases of the nervous system, by providing a permissive environment for the growth and differentiation of neural cells. Three-dimensional (3D) cell culture systems provide a closer biomimetic environment, and promote better cell differentiation and improved cell function, than could be achieved by conventional two-dimensional (2D) culture systems. With the recent advances in the discovery and introduction of different types of stem cells for tissue engineering, microfluidic platforms have provided an improved microenvironment for the 3D-culture of stem cells. Microfluidic systems can provide more precise control over the spatiotemporal distribution of chemical and physical cues at the cellular level compared to traditional systems. Various microsystems have been designed and fabricated for the purpose of neural tissue engineering. Enhanced neural migration and differentiation, and monitoring of these processes, as well as understanding the behavior of stem cells and their microenvironment have been obtained through application of different microfluidic-based stem cell culture and tissue engineering techniques. As the technology advances it may be possible to construct a "brain-on-a-chip". In this review, we describe the basics of stem cells and tissue engineering as well as microfluidics-based tissue engineering approaches. We review recent testing of various microfluidic approaches for stem cell-based neural tissue engineering.

  3. Introducing Model-Based System Engineering Transforming System Engineering through Model-Based Systems Engineering

    Science.gov (United States)

    2014-03-31

    Web  Presentation...Software  .....................................................  20   Figure  6.  Published   Web  Page  from  Data  Collection...the  term  Model  Based  Engineering  (MBE),  Model  Driven  Engineering  ( MDE ),  or  Model-­‐Based  Systems  

  4. Systems Engineering

    OpenAIRE

    Vaughan, William W.

    2016-01-01

    The term “systems engineering” when entered into the Google search page, produces a significant number of results, evidence that systems engineering is recognized as being important for the success of essentially all products. Since most readers of this item will be rather well versed in documents concerning systems engineering, I have elected to share some of the points made on this subject in a document developed by the European Cooperation for Space Standardization (ECSS), a component of t...

  5. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XI, PART I--MAINTAINING THE FUEL SYSTEM (PART I), CUMMINS DIESEL ENGINES, PART II--UNIT REPLACEMENT (ENGINE).

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF DIFFERENCES BETWEEN TWO AND FOUR CYCLE ENGINES, THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM, AND THE PROCEDURES FOR DIESEL ENGINE REMOVAL. TOPICS ARE (1) REVIEW OF TWO CYCLE AND FOUR CYCLE CONCEPT, (2) SOME BASIC CHARACTERISTICS OF FOUR CYCLE ENGINES,…

  6. The history and evolution of optically accessible research engines and their impact on our understanding of engine combustion

    Energy Technology Data Exchange (ETDEWEB)

    Miles, Paul C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-03-01

    The development and application of optically accessible engines to further our understanding of in-cylinder combustion processes is reviewed, spanning early efforts in simplified engines to the more recent development of high-pressure, high-speed engines that retain the geometric complexities of modern production engines. Limitations of these engines with respect to the reproduction of realistic metal test engine characteristics and performance are identified, as well as methods that have been used to overcome these limitations. Finally, the role of the work performed in these engines on clarifying the fundamental physical processes governing the combustion process and on laying the foundation for predictive engine simulation is summarized.

  7. Expert System Architecture for Rocket Engine Numerical Simulators: A Vision

    Science.gov (United States)

    Mitra, D.; Babu, U.; Earla, A. K.; Hemminger, Joseph A.

    1998-01-01

    Simulation of any complex physical system like rocket engines involves modeling the behavior of their different components using mostly numerical equations. Typically a simulation package would contain a set of subroutines for these modeling purposes and some other ones for supporting jobs. A user would create an input file configuring a system (part or whole of a rocket engine to be simulated) in appropriate format understandable by the package and run it to create an executable module corresponding to the simulated system. This module would then be run on a given set of input parameters in another file. Simulation jobs are mostly done for performance measurements of a designed system, but could be utilized for failure analysis or a design job such as inverse problems. In order to use any such package the user needs to understand and learn a lot about the software architecture of the package, apart from being knowledgeable in the target domain. We are currently involved in a project in designing an intelligent executive module for the rocket engine simulation packages, which would free any user from this burden of acquiring knowledge on a particular software system. The extended abstract presented here will describe the vision, methodology and the problems encountered in the project. We are employing object-oriented technology in designing the executive module. The problem is connected to the areas like the reverse engineering of any simulation software, and the intelligent systems for simulation.

  8. Understanding IEC standard wind turbine models using SimPowerSystems

    DEFF Research Database (Denmark)

    Das, Kaushik; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2016-01-01

    This article describes and exemplifies the IEC 61400-27 generic wind turbine models through an interactive multimedia learning environment - Matlab SimPowerSystems. The article aims help engineers with different backgrounds to get a better understanding of wind turbine dynamics and control...

  9. Hybrid intelligent engineering systems

    CERN Document Server

    Jain, L C; Adelaide, Australia University of

    1997-01-01

    This book on hybrid intelligent engineering systems is unique, in the sense that it presents the integration of expert systems, neural networks, fuzzy systems, genetic algorithms, and chaos engineering. It shows that these new techniques enhance the capabilities of one another. A number of hybrid systems for solving engineering problems are presented.

  10. Systems Engineering Management Plan

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of this Monitored Retrievable Storage (MRS) Project Systems Engineering Management Plan (SEMP) is to define and establish the MRS Project Systems Engineering process that implements the approved policy and requirements of the Office of Civilian Radioactive Waste Management (OCRWM) for the US Department of Energy (DOE). This plan is Volume 5 of the MRS Project Management Plan (PMP). This plan provides the framework for implementation of systems engineering on the MRS Project consistent with DOE Order 4700.1, the OCRWM Program Management System Manual (PMSM), and the OCRWM Systems Engineering Management Plan (SEMP)

  11. Understanding dental CAD/CAM for restorations--accuracy from a mechanical engineering viewpoint.

    Science.gov (United States)

    Tapie, Laurent; Lebon, Nicolas; Mawussi, Bernardin; Fron-Chabouis, Hélène; Duret, Francois; Attal, Jean-Pierre

    2015-01-01

    As is the case in the field of medicine, as well as in most areas of daily life, digital technology is increasingly being introduced into dental practice. Computer-aided design/ computer-aided manufacturing (CAD/CAM) solutions are available not only for chairside practice but also for creating inlays, crowns, fixed partial dentures (FPDs), implant abutments, and other dental prostheses. CAD/CAM dental practice can be considered as the handling of devices and software processing for the almost automatic design and creation of dental restorations. However, dentists who want to use dental CAD/CAM systems often do not have enough information to understand the variations offered by such technology practice. Knowledge of the random and systematic errors in accuracy with CAD/CAM systems can help to achieve successful restorations with this technology, and help with the purchasing of a CAD/CAM system that meets the clinical needs of restoration. This article provides a mechanical engineering viewpoint of the accuracy of CAD/ CAM systems, to help dentists understand the impact of this technology on restoration accuracy.

  12. NASA Systems Engineering Handbook

    Science.gov (United States)

    Hirshorn, Steven R.; Voss, Linda D.; Bromley, Linda K.

    2017-01-01

    The update of this handbook continues the methodology of the previous revision: a top-down compatibility with higher level Agency policy and a bottom-up infusion of guidance from the NASA practitioners in the field. This approach provides the opportunity to obtain best practices from across NASA and bridge the information to the established NASA systems engineering processes and to communicate principles of good practice as well as alternative approaches rather than specify a particular way to accomplish a task. The result embodied in this handbook is a top-level implementation approach on the practice of systems engineering unique to NASA. Material used for updating this handbook has been drawn from many sources, including NPRs, Center systems engineering handbooks and processes, other Agency best practices, and external systems engineering textbooks and guides. This handbook consists of six chapters: (1) an introduction, (2) a systems engineering fundamentals discussion, (3) the NASA program project life cycles, (4) systems engineering processes to get from a concept to a design, (5) systems engineering processes to get from a design to a final product, and (6) crosscutting management processes in systems engineering. The chapters are supplemented by appendices that provide outlines, examples, and further information to illustrate topics in the chapters. The handbook makes extensive use of boxes and figures to define, refine, illustrate, and extend concepts in the chapters.

  13. The Influence of Toy Design Activities on Middle School Students' Understanding of the Engineering Design Processes

    Science.gov (United States)

    Zhou, Ninger; Pereira, Nielsen L.; George, Tarun Thomas; Alperovich, Jeffrey; Booth, Joran; Chandrasegaran, Senthil; Tew, Jeffrey David; Kulkarni, Devadatta M.; Ramani, Karthik

    2017-10-01

    The societal demand for inspiring and engaging science, technology, engineering, and mathematics (STEM) students and preparing our workforce for the emerging creative economy has necessitated developing students' self-efficacy and understanding of engineering design processes from as early as elementary school levels. Hands-on engineering design activities have shown the potential to promote middle school students' self-efficacy and understanding of engineering design processes. However, traditional classrooms often lack hands-on engineering design experiences, leaving students unprepared to solve real-world design problems. In this study, we introduce the framework of a toy design workshop and investigate the influence of the workshop activities on students' understanding of and self-efficacy beliefs in engineering design. Using a mixed method approach, we conducted quantitative analyses to show changes in students' engineering design self-efficacy and qualitative analyses to identify students' understanding of the engineering design processes. Findings show that among the 24 participants, there is a significant increase in students' self-efficacy beliefs after attending the workshop. We also identified major themes such as design goals and prototyping in students' understanding of engineering design processes. This research provides insights into the key elements of middle school students' engineering design learning and the benefits of engaging middle school students in hands-on toy design workshops.

  14. Exploring Students' Understanding of Ordinary Differential Equations Using Computer Algebraic System (CAS)

    Science.gov (United States)

    Maat, Siti Mistima; Zakaria, Effandi

    2011-01-01

    Ordinary differential equations (ODEs) are one of the important topics in engineering mathematics that lead to the understanding of technical concepts among students. This study was conducted to explore the students' understanding of ODEs when they solve ODE questions using a traditional method as well as a computer algebraic system, particularly…

  15. Optomechanical systems engineering

    CERN Document Server

    Kasunic, Keith J

    2015-01-01

    Covers the fundamental principles behind optomechanical design This book emphasizes a practical, systems-level overview of optomechanical engineering, showing throughout how the requirements on the optical system flow down to those on the optomechanical design. The author begins with an overview of optical engineering, including optical fundamentals as well as the fabrication and alignment of optical components such as lenses and mirrors. The concepts of optomechanical engineering are then applied to the design of optical systems, including the structural design of mechanical and optical co

  16. Systems engineering and integration as a foundation for mission engineering

    OpenAIRE

    Beam, David F.

    2015-01-01

    Approved for public release; distribution is unlimited This paper investigates the emerging term mission engineering through the framework of systems engineering and systems integration. Systems engineering concepts, processes, and methodologies are extrapolated for use in conjunction with a systems integration, life-cycle based framework to effect mission engineering. The specific systems engineering concepts of measures of effectiveness, performance and suitability are recommended as fou...

  17. Videogame Construction by Engineering Students for Understanding Modelling Processes: The Case of Simulating Water Behaviour

    Science.gov (United States)

    Pretelín-Ricárdez, Angel; Sacristán, Ana Isabel

    2015-01-01

    We present some results of an ongoing research project where university engineering students were asked to construct videogames involving the use of physical systems models. The objective is to help them identify and understand the elements and concepts involved in the modelling process. That is, we use game design as a constructionist approach…

  18. The systems engineering overview and process (from the Systems Engineering Management Guide, 1990)

    Science.gov (United States)

    1993-01-01

    The past several decades have seen the rise of large, highly interactive systems that are on the forward edge of technology. As a result of this growth and the increased usage of digital systems (computers and software), the concept of systems engineering has gained increasing attention. Some of this attention is no doubt due to large program failures which possibly could have been avoided, or at least mitigated, through the use of systems engineering principles. The complexity of modern day weapon systems requires conscious application of systems engineering concepts to ensure producible, operable and supportable systems that satisfy mission requirements. Although many authors have traced the roots of systems engineering to earlier dates, the initial formalization of the systems engineering process for military development began to surface in the mid-1950s on the ballistic missile programs. These early ballistic missile development programs marked the emergence of engineering discipline 'specialists' which has since continued to grow. Each of these specialties not only has a need to take data from the overall development process, but also to supply data, in the form of requirements and analysis results, to the process. A number of technical instructions, military standards and specifications, and manuals were developed as a result of these development programs. In particular, MILSTD-499 was issued in 1969 to assist both government and contractor personnel in defining the systems engineering effort in support of defense acquisition programs. This standard was updated to MIL-STD499A in 1974, and formed the foundation for current application of systems engineering principles to military development programs.

  19. Assessing Freshman Engineering Students' Understanding of Ethical Behavior.

    Science.gov (United States)

    Henslee, Amber M; Murray, Susan L; Olbricht, Gayla R; Ludlow, Douglas K; Hays, Malcolm E; Nelson, Hannah M

    2017-02-01

    Academic dishonesty, including cheating and plagiarism, is on the rise in colleges, particularly among engineering students. While students decide to engage in these behaviors for many different reasons, academic integrity training can help improve their understanding of ethical decision making. The two studies outlined in this paper assess the effectiveness of an online module in increasing academic integrity among first semester engineering students. Study 1 tested the effectiveness of an academic honesty tutorial by using a between groups design with a Time 1- and Time 2-test. An academic honesty quiz assessed participants' knowledge at both time points. Study 2, which incorporated an improved version of the module and quiz, utilized a between groups design with three assessment time points. The additional Time 3-test allowed researchers to test for retention of information. Results were analyzed using ANCOVA and t tests. In Study 1, the experimental group exhibited significant improvement on the plagiarism items, but not the total score. However, at Time 2 there was no significant difference between groups after controlling for Time 1 scores. In Study 2, between- and within-group analyses suggest there was a significant improvement in total scores, but not plagiarism scores, after exposure to the tutorial. Overall, the academic integrity module impacted participants as evidenced by changes in total score and on specific plagiarism items. Although future implementation of the tutorial and quiz would benefit from modifications to reduce ceiling effects and improve assessment of knowledge, the results suggest such tutorial may be one valuable element in a systems approach to improving the academic integrity of engineering students.

  20. AUTOMOTIVE DIESEL MAINTENANCE L. UNIT XII, PART I--MAINTAINING THE FUEL SYSTEM (PART II), CUMMINS DIESEL ENGINE, PART II--UNIT INSTALLATION (ENGINE).

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM AND THE PROCEDURES FOR DIESEL ENGINE INSTALLATION. TOPICS ARE FUEL FLOW CHARACTERISTICS, PTG FUEL PUMP, PREPARATION FOR INSTALLATION, AND INSTALLING ENGINE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH…

  1. Understanding performance properties of chemical engines under a trade-off optimization: Low-dissipation versus endoreversible model

    Science.gov (United States)

    Tang, F. R.; Zhang, Rong; Li, Huichao; Li, C. N.; Liu, Wei; Bai, Long

    2018-05-01

    The trade-off criterion is used to systemically investigate the performance features of two chemical engine models (the low-dissipation model and the endoreversible model). The optimal efficiencies, the dissipation ratios, and the corresponding ratios of the dissipation rates for two models are analytically determined. Furthermore, the performance properties of two kinds of chemical engines are precisely compared and analyzed, and some interesting physics is revealed. Our investigations show that the certain universal equivalence between two models is within the framework of the linear irreversible thermodynamics, and their differences are rooted in the different physical contexts. Our results can contribute to a precise understanding of the general features of chemical engines.

  2. Offshore Wind Energy Systems Engineering Curriculum Development

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Jon G. [Univ. of Massachusetts, Amherst, MA (United States); Manwell, James F. [Univ. of Massachusetts, Amherst, MA (United States); Lackner, Matthew A. [Univ. of Massachusetts, Amherst, MA (United States)

    2012-12-31

    Utility-scale electricity produced from offshore wind farms has the potential to contribute significantly to the energy production of the United States. In order for the U.S. to rapidly develop these abundant resources, knowledgeable scientists and engineers with sound understanding of offshore wind energy systems are critical. This report summarizes the development of an upper-level engineering course in "Offshore Wind Energy Systems Engineering." This course is designed to provide students with a comprehensive knowledge of both the technical challenges of offshore wind energy and the practical regulatory, permitting, and planning aspects of developing offshore wind farms in the U.S. This course was offered on a pilot basis in 2011 at the University of Massachusetts and the National Renewable Energy Laboratory (NREL), TU Delft, and GL Garrad Hassan have reviewed its content. As summarized in this report, the course consists of 17 separate topic areas emphasizing appropriate engineering fundamentals as well as development, planning, and regulatory issues. In addition to the course summary, the report gives the details of a public Internet site where references and related course material can be obtained. This course will fill a pressing need for the education and training of the U.S. workforce in this critically important area. Fundamentally, this course will be unique due to two attributes: an emphasis on the engineering and technical aspects of offshore wind energy systems, and a focus on offshore wind energy issues specific to the United States.

  3. Transforming Systems Engineering through Model-Centric Engineering

    Science.gov (United States)

    2018-02-28

    Contract No. HQ0034-13-D-0004 Research Tasks: 48, 118, 141, 157, 170 Report No. SERC-2018-TR-103 Transforming Systems Engineering through...Model-Centric Engineering Technical Report SERC-2018-TR-103 February 28, 2018 Principal Investigator Dr. Mark Blackburn, Stevens Institute of...Systems Engineering Research Center This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the

  4. Fusing Quantitative Requirements Analysis with Model-based Systems Engineering

    Science.gov (United States)

    Cornford, Steven L.; Feather, Martin S.; Heron, Vance A.; Jenkins, J. Steven

    2006-01-01

    A vision is presented for fusing quantitative requirements analysis with model-based systems engineering. This vision draws upon and combines emergent themes in the engineering milieu. "Requirements engineering" provides means to explicitly represent requirements (both functional and non-functional) as constraints and preferences on acceptable solutions, and emphasizes early-lifecycle review, analysis and verification of design and development plans. "Design by shopping" emphasizes revealing the space of options available from which to choose (without presuming that all selection criteria have previously been elicited), and provides means to make understandable the range of choices and their ramifications. "Model-based engineering" emphasizes the goal of utilizing a formal representation of all aspects of system design, from development through operations, and provides powerful tool suites that support the practical application of these principles. A first step prototype towards this vision is described, embodying the key capabilities. Illustrations, implications, further challenges and opportunities are outlined.

  5. INCOSE Systems Engineering Handbook v3.2: Improving the Process for SE Practitioners

    Energy Technology Data Exchange (ETDEWEB)

    R. Douglas Hamelin; David D. Walden; Michael E. Krueger

    2010-07-01

    The INCOSE Systems Engineering Handbook is the official INCOSE reference document for understanding systems engineering (SE) methods and conducting SE activities. Over the years, the Handbook has evolved to accommodate advances in the SE discipline and now serves as the basis for the Certified Systems Engineering Professional (CSEP) exam. Due to its evolution, the Handbook had become somewhat disjointed in its treatment and presentation of SE topics and was not aligned with the latest version of International Organization for Standardization (ISO)/International Electrotechnical Commission (IEC) 15288:2008, Systems and Software Engineering. As a result, numerous inconsistencies were identified that could confuse practitioners and directly impact the probability of success in passing the CSEP exam. Further, INCOSE leadership had previously submitted v3.1 of the Handbook to ISO/IEC for consideration as a Technical Report, but was told that the Handbook would have to be updated to conform with the terminology and structure of new ISO/IEC15288:2008, Systems and software engineering, prior to being considered. The revised INCOSE Systems Engineering Handbook v3.2 aligns with the structure and principles of ISO/IEC 15288:2008 and presents the generic SE life-cycle process steps in their entirety, without duplication or redundancy, in a single location within the text. As such, the revised Handbook v3.2 serves as a comprehensive instructional and reference manual for effectively understanding SE processes and conducting SE and better serves certification candidates preparing for the CSEP exam.

  6. Model-Based Systems Engineering in Concurrent Engineering Centers

    Science.gov (United States)

    Iwata, Curtis; Infeld, Samantha; Bracken, Jennifer Medlin; McGuire, Melissa; McQuirk, Christina; Kisdi, Aron; Murphy, Jonathan; Cole, Bjorn; Zarifian, Pezhman

    2015-01-01

    Concurrent Engineering Centers (CECs) are specialized facilities with a goal of generating and maturing engineering designs by enabling rapid design iterations. This is accomplished by co-locating a team of experts (either physically or virtually) in a room with a narrow design goal and a limited timeline of a week or less. The systems engineer uses a model of the system to capture the relevant interfaces and manage the overall architecture. A single model that integrates other design information and modeling allows the entire team to visualize the concurrent activity and identify conflicts more efficiently, potentially resulting in a systems model that will continue to be used throughout the project lifecycle. Performing systems engineering using such a system model is the definition of model-based systems engineering (MBSE); therefore, CECs evolving their approach to incorporate advances in MBSE are more successful in reducing time and cost needed to meet study goals. This paper surveys space mission CECs that are in the middle of this evolution, and the authors share their experiences in order to promote discussion within the community.

  7. The First Year of College: Understanding Student Persistence in Engineering

    OpenAIRE

    Hayden, Marina Calvet

    2017-01-01

    This research study aimed to expand our understanding of the factors that influence student persistence in engineering. The unique experiences of engineering students were examined as they transitioned into and navigated their first year of college at a public research university in California. Most students provided similar responses with respect to the way they experienced the transition to college and social life. There was, however, wide student response variation regarding their experien...

  8. Stirling Engine Dynamic System Modeling

    Science.gov (United States)

    Nakis, Christopher G.

    2004-01-01

    The Thermo-Mechanical systems branch at the Glenn Research Center focuses a large amount time on Stirling engines. These engines will be used on missions where solar power is inefficient, especially in deep space. I work with Tim Regan and Ed Lewandowski who are currently developing and validating a mathematical model for the Stirling engines. This model incorporates all aspects of the system including, mechanical, electrical and thermodynamic components. Modeling is done through Simplorer, a program capable of running simulations of the model. Once created and then proven to be accurate, a model is used for developing new ideas for engine design. My largest specific project involves varying key parameters in the model and quantifying the results. This can all be done relatively trouble-free with the help of Simplorer. Once the model is complete, Simplorer will do all the necessary calculations. The more complicated part of this project is determining which parameters to vary. Finding key parameters depends on the potential for a value to be independently altered in the design. For example, a change in one dimension may lead to a proportional change to the rest of the model, and no real progress is made. Also, the ability for a changed value to have a substantial impact on the outputs of the system is important. Results will be condensed into graphs and tables with the purpose of better communication and understanding of the data. With the changing of these parameters, a more optimal design can be created without having to purchase or build any models. Also, hours and hours of results can be simulated in minutes. In the long run, using mathematical models can save time and money. Along with this project, I have many other smaller assignments throughout the summer. My main goal is to assist in the processes of model development, validation and testing.

  9. Engineering Review Information System

    Science.gov (United States)

    Grems, III, Edward G. (Inventor); Henze, James E. (Inventor); Bixby, Jonathan A. (Inventor); Roberts, Mark (Inventor); Mann, Thomas (Inventor)

    2015-01-01

    A disciplinal engineering review computer information system and method by defining a database of disciplinal engineering review process entities for an enterprise engineering program, opening a computer supported engineering item based upon the defined disciplinal engineering review process entities, managing a review of the opened engineering item according to the defined disciplinal engineering review process entities, and closing the opened engineering item according to the opened engineering item review.

  10. 13th Annual Systems Engineering Conference: Tues- Wed

    Science.gov (United States)

    2010-10-28

    afknprod/ASPs/Reg/ GroupAdmin.asp?Filter=23843&EventID=1464 7 &GroupID=19841 No-Host Social, 1700-1900 Hamlet Restaurant I n t e g r i t y - S e r v i c e...Engineering Relationship Between SE and other Disciplines Systems People • Behaviours (The Head) – Understanding system concepts and viewpoints...level, and used/ consumed by SEs at both the SoS and single system level in the process of developing, maintaining, enhancing, deploying, and assessing

  11. Adaptive Systems Engineering: A Medical Paradigm for Practicing Systems Engineering

    Energy Technology Data Exchange (ETDEWEB)

    R. Douglas Hamelin; Ron D. Klingler; Christopher Dieckmann

    2011-06-01

    From its inception in the defense and aerospace industries, SE has applied holistic, interdisciplinary tools and work-process to improve the design and management of 'large, complex engineering projects.' The traditional scope of engineering in general embraces the design, development, production, and operation of physical systems, and SE, as originally conceived, falls within that scope. While this 'traditional' view has expanded over the years to embrace wider, more holistic applications, much of the literature and training currently available is still directed almost entirely at addressing the large, complex, NASA and defense-sized systems wherein the 'ideal' practice of SE provides the cradle-to-grave foundation for system development and deployment. Under such scenarios, systems engineers are viewed as an integral part of the system and project life-cycle from conception to decommissioning. In far less 'ideal' applications, SE principles are equally applicable to a growing number of complex systems and projects that need to be 'rescued' from overwhelming challenges that threaten imminent failure. The medical profession provides a unique analogy for this latter concept and offers a useful paradigm for tailoring our 'practice' of SE to address the unexpected dynamics of applying SE in the real world. In short, we can be much more effective as systems engineers as we change some of the paradigms under which we teach and 'practice' SE.

  12. Space Station Environmental Control/Life Support System engineering

    Science.gov (United States)

    Miller, C. W.; Heppner, D. B.

    1985-01-01

    The present paper is concerned with a systems engineering study which has provided an understanding of the overall Space Station ECLSS (Environmental Control and Life Support System). ECLSS/functional partitioning is considered along with function criticality, technology alternatives, a technology description, single thread systems, Space Station architectures, ECLSS distribution, mechanical schematics per space station, and Space Station ECLSS characteristics. Attention is given to trade studies and system synergism. The Space Station functional description had been defined by NASA. The ECLSS will utilize technologies which embody regenerative concepts to minimize the use of expendables.

  13. Signals and Systems in Biomedical Engineering Signal Processing and Physiological Systems Modeling

    CERN Document Server

    Devasahayam, Suresh R

    2013-01-01

    The use of digital signal processing is ubiquitous in the field of physiology and biomedical engineering. The application of such mathematical and computational tools requires a formal or explicit understanding of physiology. Formal models and analytical techniques are interlinked in physiology as in any other field. This book takes a unitary approach to physiological systems, beginning with signal measurement and acquisition, followed by signal processing, linear systems modelling, and computer simulations. The signal processing techniques range across filtering, spectral analysis and wavelet analysis. Emphasis is placed on fundamental understanding of the concepts as well as solving numerical problems. Graphs and analogies are used extensively to supplement the mathematics. Detailed models of nerve and muscle at the cellular and systemic levels provide examples for the mathematical methods and computer simulations. Several of the models are sufficiently sophisticated to be of value in understanding real wor...

  14. CDMA systems capacity engineering

    CERN Document Server

    Kim, Kiseon

    2004-01-01

    This new hands-on resource tackles capacity planning and engineering issues that are crucial to optimizing wireless communication systems performance. Going beyond the system physical level and investigating CDMA system capacity at the service level, this volume is the single-source for engineering and analyzing systems capacity and resources.

  15. The necessity of a theory of biology for tissue engineering: metabolism-repair systems.

    Science.gov (United States)

    Ganguli, Suman; Hunt, C Anthony

    2004-01-01

    Since there is no widely accepted global theory of biology, tissue engineering and bioengineering lack a theoretical understanding of the systems being engineered. By default, tissue engineering operates with a "reductionist" theoretical approach, inherited from traditional engineering of non-living materials. Long term, that approach is inadequate, since it ignores essential aspects of biology. Metabolism-repair systems are a theoretical framework which explicitly represents two "functional" aspects of living organisms: self-repair and self-replication. Since repair and replication are central to tissue engineering, we advance metabolism-repair systems as a potential theoretical framework for tissue engineering. We present an overview of the framework, and indicate directions to pursue for extending it to the context of tissue engineering. We focus on biological networks, both metabolic and cellular, as one such direction. The construction of these networks, in turn, depends on biological protocols. Together these concepts may help point the way to a global theory of biology appropriate for tissue engineering.

  16. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XIII, I--MAINTAINING THE FUEL SYSTEM (PART III), CUMMINS DIESEL ENGINES, II--RADIATOR SHUTTER SYSTEM.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE CONSTRUCTION, OPERATION, AND MAINTENANCE OF THE DIESEL ENGINE FUEL AND RADIATOR SHUTTER SYSTEMS. TOPICS ARE (1) MORE ABOUT THE CUMMINS FUEL SYSTEM, (2) CALIBRATING THE PT FUEL PUMP, (3) CALIBRATING THE FUEL INJECTORS, (4) UNDERSTANDING THE SHUTTER SYSTEM, (5) THE…

  17. Developing the Next Generation of Science Data System Engineers

    Science.gov (United States)

    Moses, J. F.; Durachka, C. D.; Behnke, J.

    2015-12-01

    At Goddard, engineers and scientists with a range of experience in science data systems are needed to employ new technologies and develop advances in capabilities for supporting new Earth and Space science research. Engineers with extensive experience in science data, software engineering and computer-information architectures are needed to lead and perform these activities. The increasing types and complexity of instrument data and emerging computer technologies coupled with the current shortage of computer engineers with backgrounds in science has led the need to develop a career path for science data systems engineers and architects. The current career path, in which undergraduate students studying various disciplines such as Computer Engineering or Physical Scientist, generally begins with serving on a development team in any of the disciplines where they can work in depth on existing Goddard data systems or serve with a specific NASA science team. There they begin to understand the data, infuse technologies, and begin to know the architectures of science data systems. From here the typical career involves peer mentoring, on-the-job training or graduate level studies in analytics, computational science and applied science and mathematics. At the most senior level, engineers become subject matter experts and system architect experts, leading discipline-specific data centers and large software development projects. They are recognized as a subject matter expert in a science domain, they have project management expertise, lead standards efforts and lead international projects. A long career development remains necessary not only because of the breath of knowledge required across physical sciences and engineering disciplines, but also because of the diversity of instrument data being developed today both by NASA and international partner agencies and because multi-discipline science and practitioner communities expect to have access to all types of observational

  18. Developing the Next Generation of Science Data System Engineers

    Science.gov (United States)

    Moses, John F.; Behnke, Jeanne; Durachka, Christopher D.

    2016-01-01

    At Goddard, engineers and scientists with a range of experience in science data systems are needed to employ new technologies and develop advances in capabilities for supporting new Earth and Space science research. Engineers with extensive experience in science data, software engineering and computer-information architectures are needed to lead and perform these activities. The increasing types and complexity of instrument data and emerging computer technologies coupled with the current shortage of computer engineers with backgrounds in science has led the need to develop a career path for science data systems engineers and architects.The current career path, in which undergraduate students studying various disciplines such as Computer Engineering or Physical Scientist, generally begins with serving on a development team in any of the disciplines where they can work in depth on existing Goddard data systems or serve with a specific NASA science team. There they begin to understand the data, infuse technologies, and begin to know the architectures of science data systems. From here the typical career involves peermentoring, on-the-job training or graduate level studies in analytics, computational science and applied science and mathematics. At the most senior level, engineers become subject matter experts and system architect experts, leading discipline-specific data centers and large software development projects. They are recognized as a subject matter expert in a science domain, they have project management expertise, lead standards efforts and lead international projects. A long career development remains necessary not only because of the breadth of knowledge required across physical sciences and engineering disciplines, but also because of the diversity of instrument data being developed today both by NASA and international partner agencies and because multidiscipline science and practitioner communities expect to have access to all types of observational data

  19. Training of system engineers for Salem and Hope Creek nuclear power plant personnel

    International Nuclear Information System (INIS)

    Ketcham, S.

    1988-01-01

    To establish and maintain a high level of plant reliability at a nuclear power station, a conscientious, integrated, day-to-day effort is required from operations and maintenance personnel, as well as the engineering support groups. The catalyst and focus to ensure that this occurs within the Public Service Electric and Gas Company system is the station system engineer. These engineers have total responsibility for their designated systems. For these individuals to communicate with the operations and maintenance departments effectively, they must have an understanding of the design and operation of each and every system and the effect they may have on the overall plant. (author)

  20. Dynamic systems for everyone understanding how our world works

    CERN Document Server

    Ghosh, Asish

    2015-01-01

    This book is a study of the interactions between different types of systems, their environment, and their subsystems.  The author explains how basic systems principles are applied in engineered (mechanical, electromechanical, etc.) systems and then guides the reader to understand how the same principles can be applied to social, political, economic systems, as well as in everyday life.  Readers from a variety of disciplines will benefit from the understanding of system behaviors and will be able to apply those principles in various contexts.  The book includes many examples covering various types of systems.  The treatment of the subject is non-mathematical, and the book considers some of the latest concepts in the systems discipline, such as agent-based systems, optimization, and discrete events and procedures.  ·         Shows how system knowledge may be applied in many different areas without the need for deep mathematical knowledge; ·         Demonstrates how to model and simulate s...

  1. Tank waste remediation system systems engineering management plan

    International Nuclear Information System (INIS)

    Peck, L.G.

    1998-01-01

    This Systems Engineering Management Plan (SEMP) describes the Tank Waste Remediation System (TWRS) implementation of the US Department of Energy (DOE) systems engineering policy provided in 97-IMSD-193. The SEMP defines the products, process, organization, and procedures used by the TWRS Project to implement the policy. The SEMP will be used as the basis for tailoring the systems engineering applications to the development of the physical systems and processes necessary to achieve the desired end states of the program. It is a living document that will be revised as necessary to reflect changes in systems engineering guidance as the program evolves. The US Department of Energy-Headquarters has issued program management guidance, DOE Order 430. 1, Life Cycle Asset Management, and associated Good Practice Guides that include substantial systems engineering guidance

  2. Human factors and systems engineering approach to patient safety for radiotherapy.

    Science.gov (United States)

    Rivera, A Joy; Karsh, Ben-Tzion

    2008-01-01

    The traditional approach to solving patient safety problems in healthcare is to blame the last person to touch the patient. But since the publication of To Err is Human, the call has been instead to use human factors and systems engineering methods and principles to solve patient safety problems. However, an understanding of the human factors and systems engineering is lacking, and confusion remains about what it means to apply their principles. This paper provides a primer on them and their applications to patient safety.

  3. Human Factors and Systems Engineering Approach to Patient Safety for Radiotherapy

    International Nuclear Information System (INIS)

    Rivera, A. Joy; Karsh, Ben-Tzion

    2008-01-01

    The traditional approach to solving patient safety problems in healthcare is to blame the last person to touch the patient. But since the publication of To Err is Human, the call has been instead to use human factors and systems engineering methods and principles to solve patient safety problems. However, an understanding of the human factors and systems engineering is lacking, and confusion remains about what it means to apply their principles. This paper provides a primer on them and their applications to patient safety

  4. Evolution of a Unique Systems Engineering Capability

    Energy Technology Data Exchange (ETDEWEB)

    Robert M. Caliva; James A. Murphy; Kyle B. Oswald

    2011-06-01

    The Idaho National Laboratory (INL) is a science-based, applied engineering laboratory dedicated to supporting U.S. Department of Energy missions in nuclear and energy research, science, and national security. The INL’s Systems Engineering organization supports all of the various programs under this wide array of missions. As with any multifaceted organization, strategic planning is essential to establishing a consistent culture and a value discipline throughout all levels of the enterprise. While an organization can pursue operational excellence, product leadership or customer intimacy, it is extremely difficult to excel or achieve best-in-class at all three. In fact, trying to do so has resulted in the demise of a number of organizations given the very intricate balancing act that is necessary. The INL’s Systems Engineering Department has chosen to focus on customer intimacy where the customer’s needs are first and foremost and a more total solution is the goal. Frequently a total solution requires the employment of specialized tools to manage system complexity. However, it is only after understanding customer needs that tool selection and use would be pursued. This results in using both commercial-off-the-shelf (COTS) tools and, in some cases, requires internal development of specialized tools. This paper describes how a unique systems engineering capability, through the development of customized tools, evolved as a result of this customer-focused culture. It also addresses the need for a common information model or analysis framework and presents an overview of the tools developed to manage and display relationships between entities, support trade studies through the application of utility theory, and facilitate the development of a technology roadmap to manage system risk and uncertainty.

  5. Systems engineering agile design methodologies

    CERN Document Server

    Crowder, James A

    2013-01-01

    This book examines the paradigm of the engineering design process. The authors discuss agile systems and engineering design. The book captures the entire design process (functionbases), context, and requirements to affect real reuse. It provides a methodology for an engineering design process foundation for modern and future systems design. This book captures design patterns with context for actual Systems Engineering Design Reuse and contains a new paradigm in Design Knowledge Management.

  6. Systems Engineering 2010 Workshop | Wind | NREL

    Science.gov (United States)

    0 Workshop Systems Engineering 2010 Workshop The 1st NREL Wind Energy Systems Engineering Workshop of the system engineering model. In the middle of the model is optimization, metric tracking &M model, capital cost model, and balance of station. Systems engineering represents a holistic

  7. ENGINEERING OF UNIVERSITY INTELLIGENT LEARNING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Vasiliy M. Trembach

    2016-01-01

    Full Text Available In the article issues of engineering intelligent tutoring systems of University with adaptation are considered. The article also dwells on some modern approaches to engineering of information systems. It shows the role of engineering e-learning devices (systems in system engineering. The article describes the basic principles of system engineering and these principles are expanded regarding to intelligent information systems. The structure of intelligent learning systems with adaptation of the individual learning environments based on services is represented in the article.

  8. Nuclear propulsion systems engineering

    International Nuclear Information System (INIS)

    Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

    1992-01-01

    The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960's and early 1970's was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts

  9. Integrating system safety into the basic systems engineering process

    Science.gov (United States)

    Griswold, J. W.

    1971-01-01

    The basic elements of a systems engineering process are given along with a detailed description of what the safety system requires from the systems engineering process. Also discussed is the safety that the system provides to other subfunctions of systems engineering.

  10. Synthetic Biology: Engineering Living Systems from Biophysical Principles.

    Science.gov (United States)

    Bartley, Bryan A; Kim, Kyung; Medley, J Kyle; Sauro, Herbert M

    2017-03-28

    Synthetic biology was founded as a biophysical discipline that sought explanations for the origins of life from chemical and physical first principles. Modern synthetic biology has been reinvented as an engineering discipline to design new organisms as well as to better understand fundamental biological mechanisms. However, success is still largely limited to the laboratory and transformative applications of synthetic biology are still in their infancy. Here, we review six principles of living systems and how they compare and contrast with engineered systems. We cite specific examples from the synthetic biology literature that illustrate these principles and speculate on their implications for further study. To fully realize the promise of synthetic biology, we must be aware of life's unique properties. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Students' Understanding of Equilibrium and Stability: The Case of Dynamic Systems

    Science.gov (United States)

    Canu, Michaël; de Hosson, Cécile; Duque, Mauricio

    2016-01-01

    Engineering students in control courses have been observed to lack an understanding of equilibrium and stability, both of which are crucial concepts in this discipline. The introduction of these concepts is generally based on the study of classical examples from Newtonian mechanics supplemented with a control system. Equilibrium and stability are…

  12. Recommendation systems in software engineering

    CERN Document Server

    Robillard, Martin P; Walker, Robert J; Zimmermann, Thomas

    2014-01-01

    With the growth of public and private data stores and the emergence of off-the-shelf data-mining technology, recommendation systems have emerged that specifically address the unique challenges of navigating and interpreting software engineering data.This book collects, structures and formalizes knowledge on recommendation systems in software engineering. It adopts a pragmatic approach with an explicit focus on system design, implementation, and evaluation. The book is divided into three parts: "Part I - Techniques" introduces basics for building recommenders in software engineering, including techniques for collecting and processing software engineering data, but also for presenting recommendations to users as part of their workflow.?"Part II - Evaluation" summarizes methods and experimental designs for evaluating recommendations in software engineering.?"Part III - Applications" describes needs, issues and solution concepts involved in entire recommendation systems for specific software engineering tasks, fo...

  13. Systems engineering: A problem of perception

    Energy Technology Data Exchange (ETDEWEB)

    Senglaub, M.

    1995-08-01

    The characterization of systems engineering as a discipline, process, procedure or a set of heuristics will have an impact on the implementation strategy, the training methodology, and operational environment. The systems engineering upgrade activities in the New Mexico Weapons Development Center and a search of systems engineering related information provides evidence of a degree of ambiguity in this characterization of systems engineering. A case is made in this article for systems engineering being the engineering discipline applied to the science of complexity. Implications of this characterization and some generic issues are delineated with the goal of providing an enterprise with a starting point for developing its business environment.

  14. Transforming Systems Engineering through Model Centric Engineering

    Science.gov (United States)

    2017-08-08

    Contract No. HQ0034-13-D-0004 Report No. SERC-2017-TR-110 Date: August 8, 2017 Transforming Systems Engineering through Model-Centric... Engineering Technical Report SERC-2017-TR-110 Update: August 8, 2017 Principal Investigator: Mark Blackburn, Stevens Institute of Technology Co...Evangelista Sponsor: U.S. Army Armament Research, Development and Engineering Center (ARDEC), Office of the Deputy Assistant Secretary of Defense for

  15. Information technology security system engineering methodology

    Science.gov (United States)

    Childs, D.

    2003-01-01

    A methodology is described for system engineering security into large information technology systems under development. The methodology is an integration of a risk management process and a generic system development life cycle process. The methodology is to be used by Security System Engineers to effectively engineer and integrate information technology security into a target system as it progresses through the development life cycle. The methodology can also be used to re-engineer security into a legacy system.

  16. Systems engineering management plan

    International Nuclear Information System (INIS)

    Conner, C.W.

    1985-10-01

    The purpose of this Systems Engineering Management Plan (SEMP) is to prescribe the systems engineering procedures to be implemented at the Program level and the minimum requirements for systems engineering at the Program-element level. The Program level corresponds to the Director, OCRWM, or to the organizations within OCRWM to which the Director delegates responsibility for the development of the System and for coordinating and integrating the activities at the Program-element level. The Office of Policy and Outreach (OPO) and the Office of Resource Management (ORM) support the Director at the Program level. The Program-element level corresponds to the organizations within OCRWM (i.e., the Office of Geologic Repositories (OGR) and the Office of Storage and Transportation Systems (OSTS)) with overall responsibility for developing the System elements - that is, the mined geologic disposal system (MGDS), monitored retrievable storage (MRS) (if approved by Congress), and the transportation system

  17. Systems engineering: A formal approach. Part 1: System concepts

    Science.gov (United States)

    Vanhee, K. M.

    1993-03-01

    Engineering is the scientific discipline focused on the creation of new artifacts that are supposed to be of some use to our society. Different types of artifacts require different engineering approaches. However, in all these disciplines the development of a new artifact is divided into stages. Three stages can always be recognized: Analysis, Design, and Realization. The book considers only the first two stages of the development process. It focuses on a specific type of artifacts, called discrete dynamic systems. These systems consist of active components of actors that consume and produce passive components or tokens. Three subtypes are studied in more detail: business systems (like a factory or restaurant), information systems (whether automated or not), and automated systems (systems that are controlled by an automated information system). The first subtype is studied by industrial engineers, the last by software engineers and electrical engineers, whereas the second is a battlefield for all three disciplines. The union of these disciplines is called systems engineering.

  18. Power systems engineering and mathematics

    CERN Document Server

    Knight, U G

    1972-01-01

    Power Systems Engineering and Mathematics investigates the application of mathematical aids, particularly the techniques of resource planning, to some of the technical-economic problems of power systems engineering. Topics covered include the process of engineering design and the use of computers in system design and operation; power system planning and operation; time scales and computation in system operation; and load prediction and generation capacity. This volume is comprised of 13 chapters and begins by outlining the stages in the synthesis of designs (or operating states) for engineerin

  19. Collaboration between Industrial Designers and Design Engineers - Comparing the Understanding of Design Intent.

    Science.gov (United States)

    Laursen, Esben Skov; Møller, Louise

    2015-01-01

    This paper describes a case study comparing the understanding of design intent between industrial designers and design engineers. The study is based on the hypothesis that it is not all aspects of the design intent that are equally difficult to share between industrial designers and design engineers in the product development process. The study builds on five semi-structured interviews, where two industrial designers and three design engineers were interviewed about different aspects of the design intent. Based on our results, there seem to be indications that the more complex and abstract elements of industrial design knowledge such as the meaning, semantics, values, emotions and social aspects of the product are less shared by the design engineers. Moreover, the results also indicate that the different aspects of the design intent are perceived separately, rather than as part of a whole by the design engineers. The connection between the different aspects of the design intent is not shared between the industrial designer and design engineer making the shared knowledge less meaningful to the design engineers. The results of this study cannot be claimed to be conclusive due to the limited empirical material. Further investigation and analytically richer data are required in order to verify and broaden the findings. More case studies have therefore been planned in order to understand the area better.

  20. Systemic thinking fundamentals for understanding problems and messes

    CERN Document Server

    Hester, Patrick T

    2014-01-01

    Whether you’re an academic or a practitioner, a sociologist, a manager, or an engineer, one can benefit from learning to think systemically.  Problems (and messes) are everywhere and they’re getting more complicated every day.  How we think about these problems determines whether or not we’ll be successful in understanding and addressing them.  This book presents a novel way to think about problems (and messes) necessary to attack these always-present concerns.  The approach draws from disciplines as diverse as mathematics, biology, and psychology to provide a holistic method for dealing with problems that can be applied to any discipline. This book develops the systemic thinking paradigm, and introduces practical guidelines for the deployment of a systemic thinking approach.

  1. Performance of the engineering analysis and data system 2 common file system

    Science.gov (United States)

    Debrunner, Linda S.

    1993-01-01

    The Engineering Analysis and Data System (EADS) was used from April 1986 to July 1993 to support large scale scientific and engineering computation (e.g. computational fluid dynamics) at Marshall Space Flight Center. The need for an updated system resulted in a RFP in June 1991, after which a contract was awarded to Cray Grumman. EADS II was installed in February 1993, and by July 1993 most users were migrated. EADS II is a network of heterogeneous computer systems supporting scientific and engineering applications. The Common File System (CFS) is a key component of this system. The CFS provides a seamless, integrated environment to the users of EADS II including both disk and tape storage. UniTree software is used to implement this hierarchical storage management system. The performance of the CFS suffered during the early months of the production system. Several of the performance problems were traced to software bugs which have been corrected. Other problems were associated with hardware. However, the use of NFS in UniTree UCFM software limits the performance of the system. The performance issues related to the CFS have led to a need to develop a greater understanding of the CFS organization. This paper will first describe the EADS II with emphasis on the CFS. Then, a discussion of mass storage systems will be presented, and methods of measuring the performance of the Common File System will be outlined. Finally, areas for further study will be identified and conclusions will be drawn.

  2. Principles of Sociology in Systems Engineering

    Science.gov (United States)

    Watson, Michael D.; Andrews, James G.; Larsen, Jordan A.

    2017-01-01

    Systems engineering involves both the integration of the system and the integration of the disciplines which develop and operate the system. Integrating the disciplines is a sociological effort to bring together different groups, often with different terminology, to achieve a common goal, the system. The focus for the systems engineer is information flow through the organization, between the disciplines, to ensure the system is developed and operated with all relevant information informing system decisions. Robert K. Merton studied the sociological principles of the sciences and the sociological principles he developed apply to systems engineering. Concepts such as specification of ignorance, common terminology, opportunity structures, role-sets, and the reclama (reconsideration) process are all important sociological approaches that should be employed by the systems engineer. In bringing the disciplines together, the systems engineer must also be wary of social ambivalence, social anomie, social dysfunction, insider-outsider behavior, unintended consequences, and the self-fulfilling prophecy. These sociological principles provide the systems engineer with key approaches to manage the information flow through the organization as the disciplines are integrated and share their information. This also helps identify key sociological barriers to information flow through the organization. This paper will discuss this theoretical basis for the application of sociological principles to systems engineering.

  3. Using A Model-Based Systems Engineering Approach For Exploration Medical System Development

    Science.gov (United States)

    Hanson, A.; Mindock, J.; McGuire, K.; Reilly, J.; Cerro, J.; Othon, W.; Rubin, D.; Urbina, M.; Canga, M.

    2017-01-01

    NASA's Human Research Program's Exploration Medical Capabilities (ExMC) element is defining the medical system needs for exploration class missions. ExMC's Systems Engineering (SE) team will play a critical role in successful design and implementation of the medical system into exploration vehicles. The team's mission is to "Define, develop, validate, and manage the technical system design needed to implement exploration medical capabilities for Mars and test the design in a progression of proving grounds." Development of the medical system is being conducted in parallel with exploration mission architecture and vehicle design development. Successful implementation of the medical system in this environment will require a robust systems engineering approach to enable technical communication across communities to create a common mental model of the emergent engineering and medical systems. Model-Based Systems Engineering (MBSE) improves shared understanding of system needs and constraints between stakeholders and offers a common language for analysis. The ExMC SE team is using MBSE techniques to define operational needs, decompose requirements and architecture, and identify medical capabilities needed to support human exploration. Systems Modeling Language (SysML) is the specific language the SE team is utilizing, within an MBSE approach, to model the medical system functional needs, requirements, and architecture. Modeling methods are being developed through the practice of MBSE within the team, and tools are being selected to support meta-data exchange as integration points to other system models are identified. Use of MBSE is supporting the development of relationships across disciplines and NASA Centers to build trust and enable teamwork, enhance visibility of team goals, foster a culture of unbiased learning and serving, and be responsive to customer needs. The MBSE approach to medical system design offers a paradigm shift toward greater integration between

  4. An engineering approach to modelling, decision support and control for sustainable systems.

    Science.gov (United States)

    Day, W; Audsley, E; Frost, A R

    2008-02-12

    Engineering research and development contributes to the advance of sustainable agriculture both through innovative methods to manage and control processes, and through quantitative understanding of the operation of practical agricultural systems using decision models. This paper describes how an engineering approach, drawing on mathematical models of systems and processes, contributes new methods that support decision making at all levels from strategy and planning to tactics and real-time control. The ability to describe the system or process by a simple and robust mathematical model is critical, and the outputs range from guidance to policy makers on strategic decisions relating to land use, through intelligent decision support to farmers and on to real-time engineering control of specific processes. Precision in decision making leads to decreased use of inputs, less environmental emissions and enhanced profitability-all essential to sustainable systems.

  5. A nuclear power plant system engineering workstation

    International Nuclear Information System (INIS)

    Mason, J.H.; Crosby, J.W.

    1989-01-01

    System engineers offer an approach for effective technical support for operation and maintenance of nuclear power plants. System engineer groups are being set up by most utilities in the United States. Institute of Nuclear Power operations (INPO) and U.S. Nuclear Regulatory Commission (NRC) have endorsed the concept. The INPO Good Practice and a survey of system engineer programs in the southeastern United States provide descriptions of system engineering programs. The purpose of this paper is to describe a process for developing a design for a department-level information network of workstations for system engineering groups. The process includes the following: (1) application of a formal information engineering methodology, (2) analysis of system engineer functions and activities; (3) use of Electric Power Research Institute (EPRI) Plant Information Network (PIN) data; (4) application of the Information Engineering Workbench. The resulting design for this system engineer workstation can provide a reference for design of plant-specific systems

  6. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT IV, MAINTAINING THE COOLING SYSTEM--DETROIT DIESEL ENGINES.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE COOLING SYSTEM. TOPICS ARE PURPOSE OF THE COOLING SYSTEM, CARE MAINTENANCE OF THE COOLING SYSTEM, COOLING SYSTEM COMPONENTS, AND TROUBLESHOOTING TIPS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING…

  7. Diesel engine management systems and components

    CERN Document Server

    2014-01-01

    This reference book provides a comprehensive insight into todays diesel injection systems and electronic control. It focusses on minimizing emissions and exhaust-gas treatment. Innovations by Bosch in the field of diesel-injection technology have made a significant contribution to the diesel boom. Calls for lower fuel consumption, reduced exhaust-gas emissions and quiet engines are making greater demands on the engine and fuel-injection systems. Contents History of the diesel engine.- Areas of use for diesel engines.- Basic principles of the diesel engine.- Fuels: Diesel fuel.- Fuels: Alternative fuels.- Cylinder-charge control systems.- Basic principles of diesel fuel-injection.- Overview of diesel fuel-injection systems.- Fuel supply to the low pressure stage.- Overview of discrete cylinder systems.- Unit injector system.- Unit pump system.- Overview of common-rail systems.- High pressure components of the common-rail system.- Injection nozzles.- Nozzle holders.- High pressure lines.- Start assist systems.-...

  8. Shape understanding system machine understanding and human understanding

    CERN Document Server

    Les, Zbigniew

    2015-01-01

    This is the third book presenting selected results of research on the further development of the shape understanding system (SUS) carried out by authors in the newly founded Queen Jadwiga Research Institute of Understanding. In this book the new term Machine Understanding is introduced referring to a new area of research aiming to investigate the possibility of building machines with the ability to understand. It is presented that SUS needs to some extent mimic human understanding and for this reason machines are evaluated according to the rules applied for the evaluation of human understanding. The book shows how to formulate problems and how it can be tested if the machine is able to solve these problems.    

  9. Welcome to Systems — A New Interdisciplinary Open Access Journal for Systems Science and Engineering

    Directory of Open Access Journals (Sweden)

    Thomas Huynh

    2012-04-01

    Full Text Available Natural and human-made systems abound around us. Our solar system, the human body, the food chain, and ecosystems are some examples of natural systems. Some human-made systems are transportation systems, weapon systems, computer systems, software systems, satellite communications systems, ships, missile defense systems, health care systems, the internet, financial systems, and regional economies. Understanding of natural systems is essential to the survival of the human species, which is intertwined with the survival of other species on earth. Having the knowledge and ability to build human-made systems is critical to the employment of systems that effectively serve the needs of their users. To gain such understanding and to acquire such knowledge and ability, it is necessary that cutting-edge research in systems science, systems engineering, and systems-related fields continue. This open access journal aims to achieve quick and global dissemination of results of such research. [...

  10. Engineered Barrier System performance requirements systems study report. Revision 02

    International Nuclear Information System (INIS)

    Balady, M.A.

    1997-01-01

    This study evaluates the current design concept for the Engineered Barrier System (EBS), in concert with the current understanding of the geologic setting to assess whether enhancements to the required performance of the EBS are necessary. The performance assessment calculations are performed by coupling the EBS with the geologic setting based on the models (some of which were updated for this study) and assumptions used for the 1995 Total System Performance Assessment (TSPA). The need for enhancements is determined by comparing the performance assessment results against the EBS related performance requirements. Subsystem quantitative performance requirements related to the EBS include the requirement to allow no more than 1% of the waste packages (WPs) to fail before 1,000 years after permanent closure of the repository, as well as a requirement to control the release rate of radionuclides from the EBS. The EBS performance enhancements considered included additional engineered components as well as evaluating additional performance available from existing design features but for which no performance credit is currently being taken

  11. Engineered Barrier System performance requirements systems study report. Revision 02

    Energy Technology Data Exchange (ETDEWEB)

    Balady, M.A.

    1997-01-14

    This study evaluates the current design concept for the Engineered Barrier System (EBS), in concert with the current understanding of the geologic setting to assess whether enhancements to the required performance of the EBS are necessary. The performance assessment calculations are performed by coupling the EBS with the geologic setting based on the models (some of which were updated for this study) and assumptions used for the 1995 Total System Performance Assessment (TSPA). The need for enhancements is determined by comparing the performance assessment results against the EBS related performance requirements. Subsystem quantitative performance requirements related to the EBS include the requirement to allow no more than 1% of the waste packages (WPs) to fail before 1,000 years after permanent closure of the repository, as well as a requirement to control the release rate of radionuclides from the EBS. The EBS performance enhancements considered included additional engineered components as well as evaluating additional performance available from existing design features but for which no performance credit is currently being taken.

  12. Integration and framing between system engineering, enterprise engineering and whole of society

    CSIR Research Space (South Africa)

    Erasmus, Louwrence D

    2017-07-01

    Full Text Available with the semantic theoretical constructs of systems levels of Boulding’s General Systems Theory. The construct of systems hierarchy levels addresses the progression from complicated engineered levels to the complexity of human interaction with engineered... predicates in: • A theory of the systems engineering process (Doeben-Henisch, et al., 2008) (Erasmus & Doeben-Henisch, 2011a) • A theory of systems engineering management (SEMBASE) (Erasmus & Doeben-Henisch, 2011b). In the structuralist programme...

  13. Gasoline engine management systems and components

    CERN Document Server

    2015-01-01

    The call for environmentally compatible and economical vehicles necessitates immense efforts to develop innovative engine concepts. Technical concepts such as gasoline direct injection helped to save fuel up to 20 % and reduce CO2-emissions. Descriptions of the cylinder-charge control, fuel injection, ignition and catalytic emission-control systems provides comprehensive overview of today´s gasoline engines. This book also describes emission-control systems and explains the diagnostic systems. The publication provides information on engine-management-systems and emission-control regulations. Contents History of the automobile.- Basics of the gasoline engine.- Fuels.- Cylinder-charge control systems.- Gasoline injection systems over the years.- Fuel supply.- Manifold fuel injection.- Gasoline direct injection.- Operation of gasoline engines on natural gas.- Ignition systems over the years.- Inductive ignition systems.- Ignition coils.- Spark plugs.- Electronic control.- Sensors.- Electronic control unit.- Exh...

  14. The Case for Distributed Engine Control in Turbo-Shaft Engine Systems

    Science.gov (United States)

    Culley, Dennis E.; Paluszewski, Paul J.; Storey, William; Smith, Bert J.

    2009-01-01

    The turbo-shaft engine is an important propulsion system used to power vehicles on land, sea, and in the air. As the power plant for many high performance helicopters, the characteristics of the engine and control are critical to proper vehicle operation as well as being the main determinant to overall vehicle performance. When applied to vertical flight, important distinctions exist in the turbo-shaft engine control system due to the high degree of dynamic coupling between the engine and airframe and the affect on vehicle handling characteristics. In this study, the impact of engine control system architecture is explored relative to engine performance, weight, reliability, safety, and overall cost. Comparison of the impact of architecture on these metrics is investigated as the control system is modified from a legacy centralized structure to a more distributed configuration. A composite strawman system which is typical of turbo-shaft engines in the 1000 to 2000 hp class is described and used for comparison. The overall benefits of these changes to control system architecture are assessed. The availability of supporting technologies to achieve this evolution is also discussed.

  15. AUTOMOTIVE DIESEL MAINTENANCE, UNIT V, MAINTAINING THE LUBRICATION SYSTEM--DETROIT DIESEL ENGINE.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE LUBRICATION SYSTEM. TOPICS ARE LUBE OILS USED, MAINTENANCE OF THE LUBRICATION SYSTEM, AND CRANKCASE VENTILATION COMPONENTS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "BASIC ENGINE…

  16. Metabolic engineering of Bacillus subtilis fueled by systems biology: Recent advances and future directions.

    Science.gov (United States)

    Liu, Yanfeng; Li, Jianghua; Du, Guocheng; Chen, Jian; Liu, Long

    By combining advanced omics technology and computational modeling, systems biologists have identified and inferred thousands of regulatory events and system-wide interactions of the bacterium Bacillus subtilis, which is commonly used both in the laboratory and in industry. This dissection of the multiple layers of regulatory networks and their interactions has provided invaluable information for unraveling regulatory mechanisms and guiding metabolic engineering. In this review, we discuss recent advances in the systems biology and metabolic engineering of B. subtilis and highlight current gaps in our understanding of global metabolism and global pathway engineering in this organism. We also propose future perspectives in the systems biology of B. subtilis and suggest ways that this approach can be used to guide metabolic engineering. Specifically, although hundreds of regulatory events have been identified or inferred via systems biology approaches, systematic investigation of the functionality of these events in vivo has lagged, thereby preventing the elucidation of regulatory mechanisms and further rational pathway engineering. In metabolic engineering, ignoring the engineering of multilayer regulation hinders metabolic flux redistribution. Post-translational engineering, allosteric engineering, and dynamic pathway analyses and control will also contribute to the modulation and control of the metabolism of engineered B. subtilis, ultimately producing the desired cellular traits. We hope this review will aid metabolic engineers in making full use of available systems biology datasets and approaches for the design and perfection of microbial cell factories through global metabolism optimization. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. B-2 Systems Engineering Case Study

    Science.gov (United States)

    2007-01-01

    of four small circles on the top view in front of the cockpit and on the bottom view engine bay doors. This air data system has no standard pitot ...Skantze, General, Air Force, Source Selection Advisory Board Chairman Erich Smith, Vought, Test Engineer, Systems Engineer, Chief engineer Henry

  18. Unified Engineering Software System

    Science.gov (United States)

    Purves, L. R.; Gordon, S.; Peltzman, A.; Dube, M.

    1989-01-01

    Collection of computer programs performs diverse functions in prototype engineering. NEXUS, NASA Engineering Extendible Unified Software system, is research set of computer programs designed to support full sequence of activities encountered in NASA engineering projects. Sequence spans preliminary design, design analysis, detailed design, manufacturing, assembly, and testing. Primarily addresses process of prototype engineering, task of getting single or small number of copies of product to work. Written in FORTRAN 77 and PROLOG.

  19. Sustainable solid waste management a systems engineering approach

    CERN Document Server

    Chang, N

    2015-01-01

    Interactions between human activities and the environment are complicated and often difficult to quantify. In many occasions, judging where the optimal balance should lie among environmental protection, social well-being, economic growth, and technological progress is complex. The use of a systems engineering approach will fill in the gap contributing to how we understand the intricacy by a holistic way and how we generate better sustainable solid waste management practices. This book aims to advance interdisciplinary understanding of intertwined facets between policy and technology relevant to solid waste management issues interrelated to climate change, land use, economic growth, environmental pollution, industrial ecology, and population dynamics.

  20. Understanding Biological Regulation Through Synthetic Biology.

    Science.gov (United States)

    Bashor, Caleb J; Collins, James J

    2018-03-16

    Engineering synthetic gene regulatory circuits proceeds through iterative cycles of design, building, and testing. Initial circuit designs must rely on often-incomplete models of regulation established by fields of reductive inquiry-biochemistry and molecular and systems biology. As differences in designed and experimentally observed circuit behavior are inevitably encountered, investigated, and resolved, each turn of the engineering cycle can force a resynthesis in understanding of natural network function. Here, we outline research that uses the process of gene circuit engineering to advance biological discovery. Synthetic gene circuit engineering research has not only refined our understanding of cellular regulation but furnished biologists with a toolkit that can be directed at natural systems to exact precision manipulation of network structure. As we discuss, using circuit engineering to predictively reorganize, rewire, and reconstruct cellular regulation serves as the ultimate means of testing and understanding how cellular phenotype emerges from systems-level network function. Expected final online publication date for the Annual Review of Biophysics Volume 47 is May 20, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  1. Diving Deep: A Comparative Study of Educator Undergraduate and Graduate Backgrounds and Their Effect on Student Understanding of Engineering and Engineering Careers, Utilizing an Underwater Robotics Program

    Science.gov (United States)

    Scribner, J. Adam

    Numerous studies have demonstrated that educators having degrees in their subjects significantly enhances student achievement, particularly in secondary mathematics and science (Chaney, 1995; Goe, 2007; Rowan, Chiang, & Miller, 1997; Wenglinsky, 2000). Yet, science teachers in states that adopt the Next Generation Science Standards will be facilitating classroom engineering activities despite the fact that few have backgrounds in engineering. This quantitative study analyzed ex-post facto WaterBotics (an innovative underwater robotics curriculum for middle and high school students) data to determine if educators having backgrounds in engineering (i.e., undergraduate and graduate degrees in engineering) positively affected student learning on two engineering outcomes: 1) the engineering design process, and 2) understanding of careers in engineering (who engineers are and what engineers do). The results indicated that educators having backgrounds in engineering did not significantly affect student understanding of the engineering design process or careers in engineering when compared to educators having backgrounds in science, mathematics, technology education, or other disciplines. There were, however, statistically significant differences between the groups of educators. Students of educators with backgrounds in technology education had the highest mean score on assessments pertaining to the engineering design process while students of educators with disciplines outside of STEM had the highest mean scores on instruments that assess for student understanding of careers in engineering. This might be due to the fact that educators who lack degrees in engineering but who teach engineering do a better job of "sticking to the script" of engineering curricula.

  2. Application of Chaos Theory to Engine Systems

    OpenAIRE

    Matsumoto, Kazuhiro; Diebner, Hans H.; Tsuda, Ichiro; Hosoi, Yukiharu

    2008-01-01

    We focus on the control issue for engine systems from the perspective of chaos theory, which is based on the fact that engine systems have a low-dimensional chaotic dynamics. Two approaches are discussed: controlling chaos and harnessing chaos, respectively. We apply Pyragas' chaos control method to an actual engine system. The experimental results show that the chaotic motion of an engine system may be stabilized to a periodic motion. Alternatively, harnessing chaos for engine systems is add...

  3. OCRWM Systems Engineering Management Plan (SEMP)

    International Nuclear Information System (INIS)

    1994-06-01

    The Office of Civilian Radioactive Waste Management Systems Engineering Management Plan (OCRWM SEMP) specifies the technical management approach for the development of the waste management system, and specifies the approach for the development of each of the system elements -- the waste acceptance system, the transportation system, the Monitored Retrievable Storage (MRS) facility, and the mined geologic disposal system, which includes site characterization activity. The SEMP also delineates how systems engineering will be used by OCRWM to describe the system development process; it identifies responsibilities for its implementation, and specifies the minimum requirements for systems engineering. It also identifies the close interrelationship of system engineering and licensing processes. This SEMP, which is a combined OCRWM and M ampersand O SEMP, is part of the top-level program documentation and is prepared in accordance with the direction provided in the Program Management System Manual (PMSM). The relationship of this document to other top level documents in the CRWMS document hierarchy is defined in the PMSM. A systems engineering management plan for each project, which specifies the actions to be taken in implementing systems engineering at the project level, shall be prepared by the respective project managers. [''Program'' refers to the CRWMS-wide activity and ''project'' refers to that level responsible for accomplishing the specific activities of that segment of the program.] The requirements for the project level SEMPs are addressed in Section 4.2.2.2. They represent the minimum set of requirements, and do not preclude the broadening of systems engineering activities to meet the specific needs of each project

  4. Improvement of Engineering Work Efficiency through System Integration

    International Nuclear Information System (INIS)

    Lee, Sangdae; Jo, Sunghan; Hyun, Jinwoo

    2016-01-01

    This paper presents the concept of developing an integrated engineering system for ER to improve efficiency and utilization of engineering system. Each process including computer system and database was introduced separately by each department at that different time. Each engineering process has a close relation with other engineering processes. The introduction of processes in a different time has caused the several problems such as lack of interrelationship between engineering processes, lack of integration fleet-wide statistical data, lack of the function of data comparison among plants and increase of access time by different access location on internet. These problems have caused inefficiency of engineering system utilization to get proper information and degraded engineering system utilization. KHNP has introduced and conducted advanced engineering processes to maintain equipment effectively in a highly reliable condition since 2000s. But engineering systems for process implementation have been developed in each department at a different time. This has caused the problems of process inefficiency and data discordance. Integrated Engineering System(IES) to integrate dispersed engineering processes will improve work efficiency and utilization of engineering system because integration system would enable engineer to get total engineering information easily and do engineering work efficiently

  5. Improvement of Engineering Work Efficiency through System Integration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangdae; Jo, Sunghan; Hyun, Jinwoo [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    This paper presents the concept of developing an integrated engineering system for ER to improve efficiency and utilization of engineering system. Each process including computer system and database was introduced separately by each department at that different time. Each engineering process has a close relation with other engineering processes. The introduction of processes in a different time has caused the several problems such as lack of interrelationship between engineering processes, lack of integration fleet-wide statistical data, lack of the function of data comparison among plants and increase of access time by different access location on internet. These problems have caused inefficiency of engineering system utilization to get proper information and degraded engineering system utilization. KHNP has introduced and conducted advanced engineering processes to maintain equipment effectively in a highly reliable condition since 2000s. But engineering systems for process implementation have been developed in each department at a different time. This has caused the problems of process inefficiency and data discordance. Integrated Engineering System(IES) to integrate dispersed engineering processes will improve work efficiency and utilization of engineering system because integration system would enable engineer to get total engineering information easily and do engineering work efficiently.

  6. Creating to understand – developmental biology meets engineering in Paris

    NARCIS (Netherlands)

    Kicheva, Anna; Rivron, Nicolas C.

    2017-01-01

    In November 2016, developmental biologists, synthetic biologists and engineers gathered in Paris for a meeting called ‘Engineering the embryo’. The participants shared an interest in exploring how synthetic systems can reveal new principles of embryonic development, and how the in vitro manipulation

  7. Security Research on Engineering Database System

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Engine engineering database system is an oriented C AD applied database management system that has the capability managing distributed data. The paper discusses the security issue of the engine engineering database management system (EDBMS). Through studying and analyzing the database security, to draw a series of securi ty rules, which reach B1, level security standard. Which includes discretionary access control (DAC), mandatory access control (MAC) and audit. The EDBMS implem ents functions of DAC, ...

  8. Bioprocess systems engineering: transferring traditional process engineering principles to industrial biotechnology.

    Science.gov (United States)

    Koutinas, Michalis; Kiparissides, Alexandros; Pistikopoulos, Efstratios N; Mantalaris, Athanasios

    2012-01-01

    The complexity of the regulatory network and the interactions that occur in the intracellular environment of microorganisms highlight the importance in developing tractable mechanistic models of cellular functions and systematic approaches for modelling biological systems. To this end, the existing process systems engineering approaches can serve as a vehicle for understanding, integrating and designing biological systems and processes. Here, we review the application of a holistic approach for the development of mathematical models of biological systems, from the initial conception of the model to its final application in model-based control and optimisation. We also discuss the use of mechanistic models that account for gene regulation, in an attempt to advance the empirical expressions traditionally used to describe micro-organism growth kinetics, and we highlight current and future challenges in mathematical biology. The modelling research framework discussed herein could prove beneficial for the design of optimal bioprocesses, employing rational and feasible approaches towards the efficient production of chemicals and pharmaceuticals.

  9. Bioprocess systems engineering: transferring traditional process engineering principles to industrial biotechnology

    Directory of Open Access Journals (Sweden)

    Michalis Koutinas

    2012-10-01

    Full Text Available The complexity of the regulatory network and the interactions that occur in the intracellular environment of microorganisms highlight the importance in developing tractable mechanistic models of cellular functions and systematic approaches for modelling biological systems. To this end, the existing process systems engineering approaches can serve as a vehicle for understanding, integrating and designing biological systems and processes. Here, we review the application of a holistic approach for the development of mathematical models of biological systems, from the initial conception of the model to its final application in model-based control & optimisation. We also discuss the use of mechanistic models that account for gene regulation, in an attempt to advance the empirical expressions traditionally used to describe micro-organism growth kinetics, and we highlight current and future challenges in mathematical biology. The modelling research framework discussed herein could prove beneficial for the design of optimal bioprocesses, employing rational and feasible approaches towards the efficient production of chemicals and pharmaceuticals.

  10. BIOPROCESS SYSTEMS ENGINEERING: TRANSFERRING TRADITIONAL PROCESS ENGINEERING PRINCIPLES TO INDUSTRIAL BIOTECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Michalis Koutinas

    2012-10-01

    Full Text Available The complexity of the regulatory network and the interactions that occur in the intracellular environment of microorganisms highlight the importance in developing tractable mechanistic models of cellular functions and systematic approaches for modelling biological systems. To this end, the existing process systems engineering approaches can serve as a vehicle for understanding, integrating and designing biological systems and processes. Here, we review the application of a holistic approach for the development of mathematical models of biological systems, from the initial conception of the model to its final application in model-based control and optimisation. We also discuss the use of mechanistic models that account for gene regulation, in an attempt to advance the empirical expressions traditionally used to describe micro-organism growth kinetics, and we highlight current and future challenges in mathematical biology. The modelling research framework discussed herein could prove beneficial for the design of optimal bioprocesses, employing rational and feasible approaches towards the efficient production of chemicals and pharmaceuticals.

  11. Integrated engineering system for nuclear facilities building

    International Nuclear Information System (INIS)

    Tomura, H.; Miyamoto, A.; Futami, F.; Yasuda, S.; Ohtomo, T.

    1995-01-01

    In the construction of buildings for nuclear facilities in Japan, construction companies are generally in charge of the building engineering work, coordinating with plant engineering. An integrated system for buildings (PROMOTE: PROductive MOdeling system for Total nuclear Engineering) described here is a building engineering system including the entire life cycle of buildings for nuclear facilities. A Three-dimensional (3D) building model (PRO-model) is to be in the core of the system (PROMOTE). Data sharing in the PROMOTE is also done with plant engineering systems. By providing these basic technical foundations, PROMOTE is oriented toward offering rational, highquality engineering for the projects. The aim of the system is to provide a technical foundation in building engineering. This paper discusses the characteristics of buildings for nuclear facilities and the outline of the PROMOTE. (author)

  12. Tank waste remediation system engineering plan

    International Nuclear Information System (INIS)

    Rifaey, S.H.

    1998-01-01

    This Engineering Plan describes the engineering process and controls that will be in place to support the Technical Baseline definition and manage its evolution and implementation to the field operations. This plan provides the vision for the engineering required to support the retrieval and disposal mission through Phase 1 and 2, which includes integrated data management of the Technical Baseline. Further, this plan describes the approach for moving from the ''as is'' condition of engineering practice, systems, and facilities to the desired ''to be'' configuration. To make this transition, Tank Waste Remediation System (TWRS) Engineering will become a center of excellence for TWRS which,will perform engineering in the most effective manner to meet the mission. TWRS engineering will process deviations from sitewide systems if necessary to meet the mission most effectively

  13. Environmental Restoration Project - Systems Engineering Management Plan

    International Nuclear Information System (INIS)

    Anderson, T.D.

    1998-06-01

    This Environmental Restoration (ER) Project Systems Engineering Management Plan (SEMP) describes relevant Environmental Restoration Contractor (ERC) management processes and shows how they implement systems engineering. The objective of this SEMP is to explain and demonstrate how systems engineering is being approached and implemented in the ER Project. The application of systems engineering appropriate to the general nature and scope of the project is summarized in Section 2.0. The basic ER Project management approach is described in Section 3.0. The interrelation and integration of project practices and systems engineering are outlined in Section 4.0. Integration with sitewide systems engineering under the Project Hanford Management Contract is described in Section 5.0

  14. Department of Defense Systems Engineering FY 2012 Annual Report

    Science.gov (United States)

    2013-03-01

    by the Utility Helicopter PMO, is utilizing the latest Defense Acquisition Guidelines and previously approved PEO AVN SEP examples to develop all...efforts. As a whole, all of PEO AVN Program Management Offices understand the importance of systems engineering. They stress the continued use of...established SE guidelines, practices and procedures throughout our acquisition processes. PEO AVN , working with the AMRDEC SE Division, has

  15. Importance of systems biology in engineering microbes for biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Aindrila; Redding, Alyssa M.; Rutherford, Becky J.; Keasling, Jay D.

    2009-12-02

    Microorganisms have been rich sources for natural products, some of which have found use as fuels, commodity chemicals, specialty chemicals, polymers, and drugs, to name a few. The recent interest in production of transportation fuels from renewable resources has catalyzed numerous research endeavors that focus on developing microbial systems for production of such natural products. Eliminating bottlenecks in microbial metabolic pathways and alleviating the stresses due to production of these chemicals are crucial in the generation of robust and efficient production hosts. The use of systems-level studies makes it possible to comprehensively understand the impact of pathway engineering within the context of the entire host metabolism, to diagnose stresses due to product synthesis, and provides the rationale to cost-effectively engineer optimal industrial microorganisms.

  16. Applications of Systems Engineering to the Research, Design, and Development of Wind Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, K.; Meadows, R.; Felker, F.; Graf, P.; Hand, M.; Lunacek, M.; Michalakes, J.; Moriarty, P.; Musial, W.; Veers, P.

    2011-12-01

    development. To address these challenges, NREL has embarked on an initiative to evaluate how methods of systems engineering can be applied to the research, design and development of wind energy systems. Systems engineering is a field within engineering with a long history of research and application to complex technical systems in domains such as aerospace, automotive, and naval architecture. As such, the field holds potential for addressing critical issues that face the wind industry today. This paper represents a first step for understanding this potential through a review of systems engineering methods as applied to related technical systems. It illustrates how this might inform a Wind Energy Systems Engineering (WESE) approach to the research, design, and development needs for the future of the industry. Section 1 provides a brief overview of systems engineering and wind as a complex system. Section 2 describes these system engineering methods in detail. Section 3 provides an overview of different types of design tools for wind energy with emphasis on NREL tools. Finally, Section 4 provides an overview of the role and importance of software architecture and computing to the use of systems engineering methods and the future development of any WESE programs. Section 5 provides a roadmap of potential research integrating systems engineering research methodologies and wind energy design tools for a WESE framework.

  17. Framework for systems engineering research

    CSIR Research Space (South Africa)

    Erasmus, L

    2013-08-01

    Full Text Available In this paper a framework is proposed to perform systems engineering research within South Africa. It is proposed that within the reference of the National Research Foundation (NRF) classification of research, systems engineering is a Field...

  18. Corynebacterium glutamicum for Sustainable Bioproduction: From Metabolic Physiology to Systems Metabolic Engineering.

    Science.gov (United States)

    Becker, Judith; Gießelmann, Gideon; Hoffmann, Sarah Lisa; Wittmann, Christoph

    Since its discovery 60 years ago, Corynebacterium glutamicum has evolved into a workhorse for industrial biotechnology. Traditionally well known for its remarkable capacity to produce amino acids, this Gram-positive soil bacterium, has become a flexible, efficient production platform for various bulk and fine chemicals, materials, and biofuels. The central turnstile of all these achievements is our excellent understanding of its metabolism and physiology. This knowledge base, together with innovative systems metabolic engineering concepts, which integrate systems and synthetic biology into strain engineering, has upgraded C. glutamicum into one of the most successful industrial microorganisms in the world.

  19. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT II, MAINTAINING THE AIR SYSTEM--DETROIT DIESEL ENGINES.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM. TOPICS ARE (1) OPERATION AND FUNCTION, (2) AIR CLEANER, (3) AIR SHUT-DOWN HOUSING, (4) EXHAUST SYSTEM, (5) BLOWER, (6) TURBOCHARGER, AND (7) TROUBLE-SHOOTING TIPS ON THE AIR SYSTEM. THE MODULE CONSISTS OF A…

  20. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT III, MAINTAINING THE FUEL SYSTEM--DETROIT DIESEL ENGINE.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM. TOPICS ARE (1) PURPOSE OF THE FUEL SYSTEM, (2) TRACING THE FUEL FLOW, (3) MINOR COMPONENTS OF THE FUEL SYSTEM, (4) MAINTENANCE TIPS, (5) CONSTRUCTION AND FUNCTION OF THE FUEL INJECTORS, AND (6)…

  1. Developing an Understanding of Higher Education Science and Engineering Learning Communities

    Science.gov (United States)

    Coll, Richard K.; Eames, Chris

    2008-01-01

    This article sets the scene for this special issue of "Research in Science & Technological Education", dedicated to understanding higher education science and engineering learning communities. We examine what the literature has to say about the nature of, and factors influencing, higher education learning communities. A discussion of…

  2. Geo-engineering, Governance, and Social-Ecological Systems: Critical Issues and Joint Research Needs

    Directory of Open Access Journals (Sweden)

    Victor Galaz

    2012-03-01

    Full Text Available The debate about the possibilities to engineer the Earth's climate has changed drastically in the last years. Suggestions of large-scale technological interventions to combat climate change that a decade ago would have been discarded as science fiction are slowly moving into the center of international climate change discussions, research, and politics. In this article, I elaborate three joint key challenges to geo-engineering research from a resilience perspective, with a special emphasis on governance issues. First, I discuss the need to understand geo-engineering proposals from a "planetary boundaries" perspective. Second, I elaborate why the notion of Earth stewardship and geo-engineering are not necessarily in conflict, but instead could be viewed as complementary approaches. Last, I discuss the critical need to explore an institutional setting that is strong enough to weed out geo-engineering proposals that carry considerable ecological risk, but still allow for novelty, fail-safe experimentation, and continuous learning. These issues are critical for our understanding of how to effectively govern global environmental risks, complex systems, and emerging technologies in the Anthropocene.

  3. System safety engineering analysis handbook

    Science.gov (United States)

    Ijams, T. E.

    1972-01-01

    The basic requirements and guidelines for the preparation of System Safety Engineering Analysis are presented. The philosophy of System Safety and the various analytic methods available to the engineering profession are discussed. A text-book description of each of the methods is included.

  4. Automotive systems engineering

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, Markus [Technische Univ. Braunschweig (Germany). Inst. fuer Regelungstechnik; Winner, Hermann (eds.) [Technische Univ. Darmstadt (Germany). Fachgebiet Fahrzeugtechnik

    2013-06-01

    Innovative state-of-the-art book. Presents brand new results of a joint workshop in the field of automotive systems engineering. Recommendable to students for further reading even though not a primary text book. This book reflects the shift in design paradigm in automobile industry. It presents future innovations, often referred as ''automotive systems engineering''. These cause fundamental innovations in the field of driver assistance systems and electro-mobility as well as fundamental changes in the architecture of the vehicles. New driving functionalities can only be realized if the software programs of multiple electronic control units work together correctly. This volume presents the new and innovative methods which are mandatory to master the complexity of the vehicle of the future.

  5. Developing a New Industrial Engineering Curriculum Using a Systems Engineering Approach

    Science.gov (United States)

    Buyurgan, Nebil; Kiassat, Corey

    2017-01-01

    This paper reports on the development of an engineering curriculum for a new industrial engineering programme at a medium-sized private university in the northeast United States. A systems engineering process has been followed to design and develop the new curriculum. Considering the programme curriculum as a system, first the stakeholders have…

  6. NASA System Engineering Design Process

    Science.gov (United States)

    Roman, Jose

    2011-01-01

    This slide presentation reviews NASA's use of systems engineering for the complete life cycle of a project. Systems engineering is a methodical, disciplined approach for the design, realization, technical management, operations, and retirement of a system. Each phase of a NASA project is terminated with a Key decision point (KDP), which is supported by major reviews.

  7. Selected systems engineering process deficiencies and their consequences

    Science.gov (United States)

    Thomas, L. Dale

    2007-06-01

    The systems engineering process is well established and well understood. While this statement could be argued in the light of the many systems engineering guidelines and that have been developed, comparative review of these respective descriptions reveal that they differ primarily in the number of discrete steps or other nuances, and are at their core essentially common. Likewise, the systems engineering textbooks differ primarily in the context for application of systems engineering or in the utilization of evolved tools and techniques, not in the basic method. Thus, failures in systems engineering cannot credibly be attributed to implementation of the wrong systems engineering process among alternatives. However, numerous system failures can be attributed to deficient implementation of the systems engineering process. What may clearly be perceived as a systems engineering deficiency in retrospect can appear to be a well considered system engineering efficiency in real time—an efficiency taken to reduce cost or meet a schedule, or more often both. Typically these efficiencies are grounded on apparently solid rationale, such as reuse of heritage hardware or software. Over time, unintended consequences of a systems engineering process deficiency may begin to be realized, and unfortunately often the consequence is systems failure. This paper describes several actual cases of system failures that resulted from deficiencies in their systems engineering process implementation, including the Ariane 5 and the Hubble Space Telescope.

  8. Applying systems engineering in the civil engineering industry : an analysis of systems engineering projects of a Dutch water board

    NARCIS (Netherlands)

    de Graaf, R. S. (Robin); Vromen, R. M.(Rick); Boes, J. (Hans)

    2017-01-01

    The past decade, practice and literature have shown an increasing interest in Systems Engineering (SE) in the civil engineering industry. The aim of this study is to analyse to what extent SE is applied in six civil engineering SE projects of a Dutch water board. The projects were analysed using a

  9. Users' Understanding of Search Engine Advertisements

    Directory of Open Access Journals (Sweden)

    Lewandowski, Dirk

    2017-12-01

    Full Text Available In this paper, a large-scale study on users' understanding of search-based advertising is presented. It is based on (1 a survey, (2 a task-based user study, and (3 an online experiment. Data were collected from 1,000 users representative of the German online population. Findings show that users generally lack an understanding of Google's business model and the workings of search-based advertising. 42% of users self-report that they either do not know that it is possible to pay Google for preferred listings for one's company on the SERPs or do not know how to distinguish between organic results and ads. In the task-based user study, we found that only 1.3 percent of participants were able to mark all areas correctly. 9.6 percent had all their identifications correct but did not mark all results they were required to mark. For none of the screenshots given were more than 35% of users able to mark all areas correctly. In the experiment, we found that users who are not able to distinguish between the two results types choose ads around twice as often as users who can recognize the ads. The implications are that models of search engine advertising and of information seeking need to be amended, and that there is a severe need for regulating search-based advertising.

  10. Understanding engineering professionalism: a reflection on the rights of engineers.

    Science.gov (United States)

    Stieb, James A

    2011-03-01

    Engineering societies such as the National Society of Professional Engineers (NSPE) and associated entities have defined engineering and professionalism in such a way as to require the benefit of humanity (NSPE 2009a, Engineering Education Resource Document. NSPE Position Statements. Governmental Relations). This requirement has been an unnecessary and unfortunate "add-on." The trend of the profession to favor the idea of requiring the benefit of humanity for professionalism violates an engineer's rights. It applies political pressure that dissuades from inquiry, approaches to new knowledge and technologies, and the presentation, publication, and use of designs and research findings. Moreover, a more politically neutral definition of engineering and/or professionalism devoid of required service or benefit to mankind does not violate adherence to strong ethical standards.

  11. Understanding Patterns for System-of-Systems Integration

    DEFF Research Database (Denmark)

    Kazman, Rick; Nielsen, Claus Ballegård; Schmid, Klaus

    Creating a successful system of systems—one that meets the needs of its stakeholders today and can evolve and scale to sustain those stakeholders into the future—is a very complex engineering challenge. In a system of systems (SoS), one of the biggest challenges is in achieving cooperation and in...

  12. System Reliability Engineering

    International Nuclear Information System (INIS)

    Lim, Tae Jin

    2005-02-01

    This book tells of reliability engineering, which includes quality and reliability, reliability data, importance of reliability engineering, reliability and measure, the poisson process like goodness of fit test and the poisson arrival model, reliability estimation like exponential distribution, reliability of systems, availability, preventive maintenance such as replacement policies, minimal repair policy, shock models, spares, group maintenance and periodic inspection, analysis of common cause failure, and analysis model of repair effect.

  13. Development of the next generation code system as an engineering modeling language (1)

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Uto, Nariaki; Kasahara, Naoto; Nagura, Fuminori; Ishikawa, Makoto; Ohira, Masanori; Kato, Masayuki

    2002-11-01

    In the fast reactor development, numerical simulation using analytical codes plays an important role for complementing theory and experiment. It is necessary that the engineering models and analysis methods can be flexibly changed, because the phenamine to be investigated become more complicated due to the diversity of the needs for research. And, there are large problems in combining physical properties and engineering models in many different fields. In this study, the goal is to develop a flexible and general-purposive analysis system, in which the physical properties and engineering models are represented as a programming language or a diagrams that are easily understandable for humans and executable for computers. The authors named this concept the Engineering Modeling Language (EML). This report describes the result of the investigation for latest computer technologies and software development techniques which seem to be usable for a realization of the analysis code system for nuclear engineering as an EML. (author)

  14. The characteristics of mechanical engineering systems

    CERN Document Server

    Holmes, R

    1977-01-01

    The Characteristics of Mechanical Engineering Systems focuses on the characteristics that must be considered when designing a mechanical engineering system. Mechanical systems are presented on the basis of component input-output relationships, paying particular attention to lumped-parameter problems and the interrelationships between lumped components or """"black-boxes"""" in an engineering system. Electric motors and generators are treated in an elementary manner, and the principles involved are explained as far as possible from physical and qualitative reasoning. This book is comprised of

  15. A Framework of Working Across Disciplines in Early Design and R&D of Large Complex Engineered Systems

    Science.gov (United States)

    McGowan, Anna-Maria Rivas; Papalambros, Panos Y.; Baker, Wayne E.

    2015-01-01

    This paper examines four primary methods of working across disciplines during R&D and early design of large-scale complex engineered systems such as aerospace systems. A conceptualized framework, called the Combining System Elements framework, is presented to delineate several aspects of cross-discipline and system integration practice. The framework is derived from a theoretical and empirical analysis of current work practices in actual operational settings and is informed by theories from organization science and engineering. The explanatory framework may be used by teams to clarify assumptions and associated work practices, which may reduce ambiguity in understanding diverse approaches to early systems research, development and design. The framework also highlights that very different engineering results may be obtained depending on work practices, even when the goals for the engineered system are the same.

  16. Systems Safety and Engineering Division

    Data.gov (United States)

    Federal Laboratory Consortium — Volpe's Systems Safety and Engineering Division conducts engineering, research, and analysis to improve transportation safety, capacity, and resiliency. We provide...

  17. A demonstration of expert systems applications in transportation engineering : volume I, transportation engineers and expert systems.

    Science.gov (United States)

    1987-01-01

    Expert systems, a branch of artificial-intelligence studies, is introduced with a view to its relevance in transportation engineering. Knowledge engineering, the process of building expert systems or transferring knowledge from human experts to compu...

  18. A Return to Innovative Engineering Design, Critical Thinking and Systems Engineering

    Science.gov (United States)

    Camarda, Charles J.

    2007-01-01

    I believe we are facing a critical time where innovative engineering design is of paramount importance to the success of our aerospace industry. However, the very qualities and attributes necessary for enhancing, educating, and mentoring a creative spirit are in decline in important areas. The importance of creativity and innovation in this country was emphasized by a special edition of the Harvard Business Review OnPoint entitled: "The Creative Company" which compiled a series of past and present articles on the subject of creativity and innovation and stressed its importance to our national economy. There is also a recognition of a lack of engineering, critical thinking and problem-solving skills in our education systems and a trend toward trying to enhance those skills by developing K-12 educational programs such as Project Lead the Way, "Science for All Americans", Benchmarks 2061 , etc. In addition, with respect to spacecraft development, we have a growing need for young to mid-level engineers with appropriate experience and skills in spacecraft design, development, analysis, testing, and systems engineering. As the Director of Engineering at NASA's Johnson Space Center, I realized that sustaining engineering support of an operational human spacecraft such as the Space Shuttle is decidedly different than engineering design and development skills necessary for designing a new spacecraft such as the Crew Exploration Vehicle of the Constellation Program. We learned a very important lesson post Columbia in that the Space Shuttle is truly an experimental and not an operational vehicle and the strict adherence to developed rules and processes and chains of command of an inherently bureaucratic organizational structure will not protect us from a host of known unknowns let alone unknown unknowns. There are no strict rules, processes, or procedures for understanding anomalous results of an experiment, anomalies with an experimental spacecraft like Shuttle, or in the

  19. Method Engineering: Engineering of Information Systems Development Methods and Tools

    NARCIS (Netherlands)

    Brinkkemper, J.N.; Brinkkemper, Sjaak

    1996-01-01

    This paper proposes the term method engineering for the research field of the construction of information systems development methods and tools. Some research issues in method engineering are identified. One major research topic in method engineering is discussed in depth: situational methods, i.e.

  20. On the analysis of complex biological supply chains: From Process Systems Engineering to Quantitative Systems Pharmacology.

    Science.gov (United States)

    Rao, Rohit T; Scherholz, Megerle L; Hartmanshenn, Clara; Bae, Seul-A; Androulakis, Ioannis P

    2017-12-05

    The use of models in biology has become particularly relevant as it enables investigators to develop a mechanistic framework for understanding the operating principles of living systems as well as in quantitatively predicting their response to both pathological perturbations and pharmacological interventions. This application has resulted in a synergistic convergence of systems biology and pharmacokinetic-pharmacodynamic modeling techniques that has led to the emergence of quantitative systems pharmacology (QSP). In this review, we discuss how the foundational principles of chemical process systems engineering inform the progressive development of more physiologically-based systems biology models.

  1. Security Engineering FY17 Systems Aware Cybersecurity

    Science.gov (United States)

    2017-12-07

    Security Engineering – FY17 Systems Aware Cybersecurity Technical Report SERC-2017-TR-114 December 7 2017 Principal Investigator: Dr...December 7, 2017 Copyright © 2017 Stevens Institute of Technology, Systems Engineering Research Center The Systems Engineering Research Center (SERC...supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD

  2. Industrial biosystems engineering and biorefinery systems.

    Science.gov (United States)

    Chen, Shulin

    2008-06-01

    The concept of Industrial Biosystems Engineering (IBsE) was suggested as a new engineering branch to be developed for meeting the needs for science, technology and professionals by the upcoming bioeconomy. With emphasis on systems, IBsE builds upon the interfaces between systems biology, bioprocessing, and systems engineering. This paper discussed the background, the suggested definition, the theoretical framework and methodologies of this new discipline as well as its challenges and future development.

  3. Driven by Beliefs: Understanding Challenges Physical Science Teachers Face When Integrating Engineering and Physics

    Science.gov (United States)

    Dare, Emily A.; Ellis, Joshua A.; Roehrig, Gillian H.

    2014-01-01

    It is difficult to ignore the increased use of technological innovations in today's world, which has led to various calls for the integration of engineering into K-12 science standards. The need to understand how engineering is currently being brought to science classrooms is apparent and necessary in order to address these calls for integration.…

  4. Sensemaking in a Value Based Context for Large Scale Complex Engineered Systems

    Science.gov (United States)

    Sikkandar Basha, Nazareen

    The design and the development of Large-Scale Complex Engineered Systems (LSCES) requires the involvement of multiple teams and numerous levels of the organization and interactions with large numbers of people and interdisciplinary departments. Traditionally, requirements-driven Systems Engineering (SE) is used in the design and development of these LSCES. The requirements are used to capture the preferences of the stakeholder for the LSCES. Due to the complexity of the system, multiple levels of interactions are required to elicit the requirements of the system within the organization. Since LSCES involves people and interactions between the teams and interdisciplinary departments, it should be socio-technical in nature. The elicitation of the requirements of most large-scale system projects are subjected to creep in time and cost due to the uncertainty and ambiguity of requirements during the design and development. In an organization structure, the cost and time overrun can occur at any level and iterate back and forth thus increasing the cost and time. To avoid such creep past researches have shown that rigorous approaches such as value based designing can be used to control it. But before the rigorous approaches can be used, the decision maker should have a proper understanding of requirements creep and the state of the system when the creep occurs. Sensemaking is used to understand the state of system when the creep occurs and provide a guidance to decision maker. This research proposes the use of the Cynefin framework, sensemaking framework which can be used in the design and development of LSCES. It can aide in understanding the system and decision making to minimize the value gap due to requirements creep by eliminating ambiguity which occurs during design and development. A sample hierarchical organization is used to demonstrate the state of the system at the occurrence of requirements creep in terms of cost and time using the Cynefin framework. These

  5. Fostering Creative Engineers: A Key to Face the Complexity of Engineering Practice

    Science.gov (United States)

    Zhou, Chunfang

    2012-01-01

    Recent studies have argued a shift of thinking about engineering practice from a linear conception to a system understanding. The complexity of engineering practice has been thought of as the root of challenges for engineers. Moreover, creativity has been emphasised as one key capability that engineering students should master. This paper aims to…

  6. A framework for systems engineering research

    CSIR Research Space (South Africa)

    Erasmus, L

    2013-08-01

    Full Text Available This presentation discusses a framework which is proposed to perform systems engineering research within South Africa and the necessity for hybrid research methods in systems engineering....

  7. Software engineering for the EBR-II data acquisition system conversion

    International Nuclear Information System (INIS)

    Schorzman, W.

    1988-01-01

    The purpose of this paper is to outline how EBR-II engineering approached the data acquisition system (DAS) software conversion project with the restraints of operational transparency and six weeks for final implementation and testing. Software engineering is a relatively new discipline that provides a structured philosopy for software conversion. The software life cycle is structured into six basic steps: 1) initiation, 2) requirements definition, 3) design, 4) programming, 5) testing, and 6) operations. These steps are loosely defined and can be altered to fit specific software applications. DAS software is encompassed from three sources: 1) custom software, 2) system software, and 3) in-house application software. A data flow structure is used to describe the DAS software. The categories are: 1) software used to bring signals into the central processer, 2) software that transforms the analog data to engineering units and then logs the data in the data store, and 3) software used to transport and display the data. The focus of this paper is to describe how the conversion team used a structured engineering approach and utilized the resources available to produce a quality system on time. Although successful, the conversion process provided some pit falls and stumbling blocks. Working through these obstacles enhanced our understanding and surfaced in the form of LESSONS LEARNED, which are gracefully shared in this paper

  8. A Dynamic Intelligent Decision Approach to Dependency Modeling of Project Tasks in Complex Engineering System Optimization

    Directory of Open Access Journals (Sweden)

    Tinggui Chen

    2013-01-01

    Full Text Available Complex engineering system optimization usually involves multiple projects or tasks. On the one hand, dependency modeling among projects or tasks highlights structures in systems and their environments which can help to understand the implications of connectivity on different aspects of system performance and also assist in designing, optimizing, and maintaining complex systems. On the other hand, multiple projects or tasks are either happening at the same time or scheduled into a sequence in order to use common resources. In this paper, we propose a dynamic intelligent decision approach to dependency modeling of project tasks in complex engineering system optimization. The approach takes this decision process as a two-stage decision-making problem. In the first stage, a task clustering approach based on modularization is proposed so as to find out a suitable decomposition scheme for a large-scale project. In the second stage, according to the decomposition result, a discrete artificial bee colony (ABC algorithm inspired by the intelligent foraging behavior of honeybees is developed for the resource constrained multiproject scheduling problem. Finally, a certain case from an engineering design of a chemical processing system is utilized to help to understand the proposed approach.

  9. Complex engineering systems science meets technology

    CERN Document Server

    Minai, Ali A; Bar-Yam, Yaneer

    2006-01-01

    Every time that we take money out of an ATM, surf the internet or simply turn on a light switch, we enjoy the benefits of complex engineered systems. Systems like power grids and global communication networks are so ubiquitous in our daily lives that we usually take them for granted, only noticing them when they break down. But how do such amazing technologies and infrastructures come to be what they are? How are these systems designed? How do distributed networks work? How are they made to respond rapidly in 'real time'? And as the demands that we place on these systems become increasingly complex, are traditional systems-engineering practices still relevant? This volume examines the difficulties that arise in creating highly complex engineered systems and new approaches that are being adopted. Topics addressed range from the formal representation and classification of distributed networked systems to revolutionary engineering practices inspired by biological evolution. By bringing together the latest resear...

  10. Anomaly Detection for Resilient Control Systems Using Fuzzy-Neural Data Fusion Engine

    Energy Technology Data Exchange (ETDEWEB)

    Ondrej Linda; Milos Manic; Timothy R. McJunkin

    2011-08-01

    Resilient control systems in critical infrastructures require increased cyber-security and state-awareness. One of the necessary conditions for achieving the desired high level of resiliency is timely reporting and understanding of the status and behavioral trends of the control system. This paper describes the design and development of a neural-network based data-fusion system for increased state-awareness of resilient control systems. The proposed system consists of a dedicated data-fusion engine for each component of the control system. Each data-fusion engine implements three-layered alarm system consisting of: (1) conventional threshold-based alarms, (2) anomalous behavior detector using self-organizing maps, and (3) prediction error based alarms using neural network based signal forecasting. The proposed system was integrated with a model of the Idaho National Laboratory Hytest facility, which is a testing facility for hybrid energy systems. Experimental results demonstrate that the implemented data fusion system provides timely plant performance monitoring and cyber-state reporting.

  11. Selected Topics on Managing Complexity and Information Systems Engineering: Editorial Introduction to Issue 8 of CSIMQ

    Directory of Open Access Journals (Sweden)

    Peter Forbrig

    2016-10-01

    Full Text Available Business process models greatly contribute to analyze and understand the activities of enterprises. However, it is still a challenge to cope with the complexity of systems specifications and their requirements. This issue of the journal of Complex Systems Informatics and Modeling (CSIMQ presents papers that discuss topics on managing complexity and information systems engineering. The papers are extended versions of selected papers from the workshop on Continuous Requirements Engineering held at the requirements engineering conference REFSQ 2016 in Gothenburg, the workshop on Managed Complexity held at the business informatics conference BIR 2016 in Prague, and the CAiSE 2016 Forum held in Ljubljana.

  12. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XVII, I--MAINTAINING THE LUBRICATION SYSTEM--CUMMINS DIESEL ENGINE, II--UNIT INSTALLATION AND REMOVAL--DRIVE LINES.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE DIESEL ENGINE LUBRICATION SYSTEM AND THE PROCEDURES FOR REMOVAL AND INSTALLATION OF THE DRIVE LINE USED IN DIESEL ENGINE POWER DISTRIBUTION. TOPICS ARE (1) PROLONGING ENGINE LIFE, (2) FUNCTIONS OF THE LUBRICATING SYSTEM, (3) TRACING THE LUBRICANT FLOW, (4) DETERMINING…

  13. Master of Engineering Energy Systems Engineering Program: Smart Campus Energy Systems Demonstration DE-SC0005523

    Energy Technology Data Exchange (ETDEWEB)

    Dodge, Martha [Lehigh Univ., Bethlehem, PA (United States); Coulter, John [Lehigh Univ., Bethlehem, PA (United States)

    2014-09-25

    Program Purpose and Position: The mission of the Master of Engineering in Energy Systems Engineering program is to invigorate the pipeline of new engineering graduates interested in energy oriented careers and thus produce a new generation of technical leaders for the energy and power industries. Over the next decade, nearly 50% of the skilled workers and technical leaders in the gas and electric utility industries will retire -- a much larger void than the current available and qualified professionals could fill [CEWD, 2012 survey]. The Masters of Engineering in Energy System Engineering program provides an opportunity for cross-discipline education for graduates interested in a career in the energy industry. It focuses on electric power and the challenges and opportunities to develop a sustainable, reliable and resilient system that meets human needs in an increasingly sustainable manner through the use of environmentally sound energy resources and delivery. Both graduates and employers benefit from a well-trained professional workforce that is ready to hit the road running and be immediately productive in meeting these challenges, through this innovative and unique program.

  14. Exploration Medical Cap Ability System Engineering Overview

    Science.gov (United States)

    McGuire, K.; Mindock, J.

    2018-01-01

    Deep Space Gateway and Transport missions will change the way NASA currently practices medicine. The missions will require more autonomous capability compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The ExMC Systems Engineering team's mission is to "Define, develop, validate, and manage the technical system design needed to implement exploration medical capabilities for Mars and test the design in a progression of proving grounds." The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is using Model-Based System Engineering (MBSE) to accomplish its integrative goals. The MBSE approach to medical system design offers a paradigm shift toward greater integration between vehicle and the medical system, and directly supports the transition of Earth-reliant ISS operations to the Earth-independent operations envisioned for Mars. This talk will discuss how ExMC is using MBSE to define operational needs, decompose requirements and architecture, and identify medical capabilities needed to support human exploration. How MBSE is being used to integrate across disciplines and NASA Centers will also be described. The medical system being discussed in this talk is one system within larger habitat systems. Data generated within the medical system will be inputs to other systems and vice versa. This talk will also describe the next steps in model development that include: modeling the different systems that comprise the larger system and interact with the medical system, understanding how the various systems work together, and

  15. Advances in complex societal, environmental and engineered systems

    CERN Document Server

    Essaaidi, Mohammad

    2017-01-01

    This book addresses recent technological progress that has led to an increased complexity in many natural and artificial systems. The resulting complexity research due to the emergence of new properties and spatio-temporal interactions among a large number of system elements - and between the system and its environment - is the primary focus of this text. This volume is divided into three parts: Part one focuses on societal and ecological systems, Part two deals with approaches for understanding, modeling, predicting and mastering socio-technical systems, and Part three includes real-life examples. Each chapter has its own special features; it is a self-contained contribution of distinguished experts working on different fields of science and technology relevant to the study of complex systems. Advances in Complex Systems of Contemporary Reality: Societal, Environmental and Engineered Systems will provide postgraduate students, researchers and managers with qualitative and quantitative methods for handling th...

  16. A Review of Modeling Bioelectrochemical Systems: Engineering and Statistical Aspects

    Directory of Open Access Journals (Sweden)

    Shuai Luo

    2016-02-01

    Full Text Available Bioelectrochemical systems (BES are promising technologies to convert organic compounds in wastewater to electrical energy through a series of complex physical-chemical, biological and electrochemical processes. Representative BES such as microbial fuel cells (MFCs have been studied and advanced for energy recovery. Substantial experimental and modeling efforts have been made for investigating the processes involved in electricity generation toward the improvement of the BES performance for practical applications. However, there are many parameters that will potentially affect these processes, thereby making the optimization of system performance hard to be achieved. Mathematical models, including engineering models and statistical models, are powerful tools to help understand the interactions among the parameters in BES and perform optimization of BES configuration/operation. This review paper aims to introduce and discuss the recent developments of BES modeling from engineering and statistical aspects, including analysis on the model structure, description of application cases and sensitivity analysis of various parameters. It is expected to serves as a compass for integrating the engineering and statistical modeling strategies to improve model accuracy for BES development.

  17. The engineering of microprocessor systems guidelines on system development

    CERN Document Server

    1979-01-01

    The Engineering of Microprocessor Systems: Guidelines on System Development provides economical and technical guidance for use when incorporating microprocessors in products or production processes and assesses the alternatives that are available. This volume is part of Project 0251 undertaken by The Electrical Research Association, which aims to give managers and development engineers advice and comment on the development process and the hardware and software needed to support the engineering of microprocessor systems. The results of Phase 1 of the five-phase project are contained in this fir

  18. Method Engineering: Engineering of Information Systems Development Methods and Tools

    OpenAIRE

    Brinkkemper, J.N.; Brinkkemper, Sjaak

    1996-01-01

    This paper proposes the term method engineering for the research field of the construction of information systems development methods and tools. Some research issues in method engineering are identified. One major research topic in method engineering is discussed in depth: situational methods, i.e. the configuration of a project approach that is tuned to the project at hand. A language and support tool for the engineering of situational methods are discussed.

  19. Rotary engine cooling system

    Science.gov (United States)

    Jones, Charles (Inventor); Gigon, Richard M. (Inventor); Blum, Edward J. (Inventor)

    1985-01-01

    A rotary engine has a substantially trochoidal-shaped housing cavity in which a rotor planetates. A cooling system for the engine directs coolant along a single series path consisting of series connected groups of passages. Coolant enters near the intake port, passes downwardly and axially through the cooler regions of the engine, then passes upwardly and axially through the hotter regions. By first flowing through the coolest regions, coolant pressure is reduced, thus reducing the saturation temperature of the coolant and thereby enhancing the nucleate boiling heat transfer mechanism which predominates in the high heat flux region of the engine during high power level operation.

  20. Verification and Validation in Systems Engineering

    CERN Document Server

    Debbabi, Mourad; Jarraya, Yosr; Soeanu, Andrei; Alawneh, Luay

    2010-01-01

    "Verification and validation" represents an important process used for the quality assessment of engineered systems and their compliance with the requirements established at the beginning of or during the development cycle. Debbabi and his coauthors investigate methodologies and techniques that can be employed for the automatic verification and validation of systems engineering design models expressed in standardized modeling languages. Their presentation includes a bird's eye view of the most prominent modeling languages for software and systems engineering, namely the Unified Model

  1. Industrial and Systems Engineering Applications in NASA

    Science.gov (United States)

    Shivers, Charles H.

    2006-01-01

    A viewgraph presentation on the many applications of Industrial and Systems Engineering used for safe NASA missions is shown. The topics include: 1) NASA Information; 2) Industrial Engineering; 3) Systems Engineering; and 4) Major NASA Programs.

  2. Understanding dental CAD/CAM for restorations--the digital workflow from a mechanical engineering viewpoint.

    Science.gov (United States)

    Tapie, L; Lebon, N; Mawussi, B; Fron Chabouis, H; Duret, F; Attal, J-P

    2015-01-01

    As digital technology infiltrates every area of daily life, including the field of medicine, so it is increasingly being introduced into dental practice. Apart from chairside practice, computer-aided design/computer-aided manufacturing (CAD/CAM) solutions are available for creating inlays, crowns, fixed partial dentures (FPDs), implant abutments, and other dental prostheses. CAD/CAM dental solutions can be considered a chain of digital devices and software for the almost automatic design and creation of dental restorations. However, dentists who want to use the technology often do not have the time or knowledge to understand it. A basic knowledge of the CAD/CAM digital workflow for dental restorations can help dentists to grasp the technology and purchase a CAM/CAM system that meets the needs of their office. This article provides a computer-science and mechanical-engineering approach to the CAD/CAM digital workflow to help dentists understand the technology.

  3. Collaborative Systems Thinking: A Response to the Problems Faced by Systems Engineering's 'Middle Tier'

    Science.gov (United States)

    Phfarr, Barbara B.; So, Maria M.; Lamb, Caroline Twomey; Rhodes, Donna H.

    2009-01-01

    Experienced systems engineers are adept at more than implementing systems engineering processes: they utilize systems thinking to solve complex engineering problems. Within the space industry demographics and economic pressures are reducing the number of experienced systems engineers that will be available in the future. Collaborative systems thinking within systems engineering teams is proposed as a way to integrate systems engineers of various experience levels to handle complex systems engineering challenges. This paper uses the GOES-R Program Systems Engineering team to illustrate the enablers and barriers to team level systems thinking and to identify ways in which performance could be improved. Ways NASA could expand its engineering training to promote team-level systems thinking are proposed.

  4. The Influence of Toy Design Activities on Middle School Students' Understanding of the Engineering Design Processes

    Science.gov (United States)

    Zhou, Ninger; Pereira, Nielsen L.; Tarun, Thomas George; Alperovich, Jeffrey; Booth, Joran; Chandrasegaran, Senthil; Tew, Jeffrey David; Kulkarni, Devadatta M.; Ramani, Karthik

    2017-01-01

    The societal demand for inspiring and engaging science, technology, engineering, and mathematics (STEM) students and preparing our workforce for the emerging creative economy has necessitated developing students' self-efficacy and understanding of engineering design processes from as early as elementary school levels. Hands-on engineering design…

  5. Experimental Approach of Fault Movement on an Engineered Barrier System

    International Nuclear Information System (INIS)

    Lee, Minsoo; Choi, Heuijoo; Kim, Heuna

    2012-01-01

    Safety evaluation of an engineered barrier system against fault movement at underground disposal region for high level waste (HLW) is tried using a miniature bore-shear apparatus. For the purpose, a miniature bore-shear apparatus simulating an EBS (engineered barrier system) was manufactured in 1/30 scale. And using the developed apparatus, bore-shear tests were performed twice. During the tests, pressure variations were checked at 6 points around buffer zone, and then a rotational angle of the test vessel was checked. The achieved pressure data were compared with those from analytical modeling, which is based on Drucker-Prager model. At initial shearing step, high pressure was recorded at some point but it decreased rapidly. For the better understanding of fault movement, the modification of an analytical model and the accumulation of experimental experience were required

  6. Experimental Approach of Fault Movement on an Engineered Barrier System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Minsoo; Choi, Heuijoo; Kim, Heuna [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-03-15

    Safety evaluation of an engineered barrier system against fault movement at underground disposal region for high level waste (HLW) is tried using a miniature bore-shear apparatus. For the purpose, a miniature bore-shear apparatus simulating an EBS (engineered barrier system) was manufactured in 1/30 scale. And using the developed apparatus, bore-shear tests were performed twice. During the tests, pressure variations were checked at 6 points around buffer zone, and then a rotational angle of the test vessel was checked. The achieved pressure data were compared with those from analytical modeling, which is based on Drucker-Prager model. At initial shearing step, high pressure was recorded at some point but it decreased rapidly. For the better understanding of fault movement, the modification of an analytical model and the accumulation of experimental experience were required.

  7. Computer systems and software engineering

    Science.gov (United States)

    Mckay, Charles W.

    1988-01-01

    The High Technologies Laboratory (HTL) was established in the fall of 1982 at the University of Houston Clear Lake. Research conducted at the High Tech Lab is focused upon computer systems and software engineering. There is a strong emphasis on the interrelationship of these areas of technology and the United States' space program. In Jan. of 1987, NASA Headquarters announced the formation of its first research center dedicated to software engineering. Operated by the High Tech Lab, the Software Engineering Research Center (SERC) was formed at the University of Houston Clear Lake. The High Tech Lab/Software Engineering Research Center promotes cooperative research among government, industry, and academia to advance the edge-of-knowledge and the state-of-the-practice in key topics of computer systems and software engineering which are critical to NASA. The center also recommends appropriate actions, guidelines, standards, and policies to NASA in matters pertinent to the center's research. Results of the research conducted at the High Tech Lab/Software Engineering Research Center have given direction to many decisions made by NASA concerning the Space Station Program.

  8. Screening candidate systems engineers: a research design

    CSIR Research Space (South Africa)

    Goncalves, DP

    2009-07-01

    Full Text Available engineering screening methodology that could be used to screen potential systems engineers. According to their design, this can be achieved by defining a system engineering profile according to specific psychological attributes, and using this profile...

  9. Cyber-Informed Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Benjamin, Jacob [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Virginia L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Quinones, Luis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Paz, Jonathan [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-03-01

    A continuing challenge for engineers who utilize digital systems is to understand the impact of cyber-attacks across the entire product and program lifecycle. This is a challenge due to the evolving nature of cyber threats that may impact the design, development, deployment, and operational phases of all systems. Cyber Informed Engineering is the process by which engineers are made aware of both how to use their engineering knowledge to positively impact the cyber security in the processes by which they architect and design components and the services and security of the components themselves.

  10. Cyber-Informed Engineering

    International Nuclear Information System (INIS)

    Anderson, Robert S.; Benjamin, Jacob; Wright, Virginia L.; Quinones, Luis; Paz, Jonathan

    2017-01-01

    A continuing challenge for engineers who utilize digital systems is to understand the impact of cyber-attacks across the entire product and program lifecycle. This is a challenge due to the evolving nature of cyber threats that may impact the design, development, deployment, and operational phases of all systems. Cyber Informed Engineering is the process by which engineers are made aware of both how to use their engineering knowledge to positively impact the cyber security in the processes by which they architect and design components and the services and security of the components themselves.

  11. Vehicle Systems Engineering and Integration Activities

    Science.gov (United States)

    2012-08-31

    liter turbo diesel Bolt on armor required upgraded suspension, engine, and steering Mattracks or wheels Imbalance in cupola required motorized...liter turbo diesel engine, a new transmission, improved suspension and frame for an increased armor capability, 1,800- 4,400 lb payload and GVW 18,000...space (14 cubic feet), enhanced 6500 turbo diesel engine, higher capacity transmission, air induction system and exhaust systems. Lessons

  12. Engine control system having speed-based timing

    Science.gov (United States)

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2012-02-14

    A control system for an engine having a cylinder is disclosed having an engine valve movable to regulate a fluid flow of the cylinder and an actuator associated with the engine valve. The control system also has a controller in communication with the actuator. The controller is configured to receive a signal indicative of engine speed and compare the engine speed signal with a desired engine speed. The controller is also configured to selectively regulate the actuator to adjust a timing of the engine valve to control an amount of air/fuel mixture delivered to the cylinder based on the comparison.

  13. Stratified charge rotary engine combustion studies

    Science.gov (United States)

    Shock, H.; Hamady, F.; Somerton, C.; Stuecken, T.; Chouinard, E.; Rachal, T.; Kosterman, J.; Lambeth, M.; Olbrich, C.

    1989-07-01

    Analytical and experimental studies of the combustion process in a stratified charge rotary engine (SCRE) continue to be the subject of active research in recent years. Specifically to meet the demand for more sophisticated products, a detailed understanding of the engine system of interest is warranted. With this in mind the objective of this work is to develop an understanding of the controlling factors that affect the SCRE combustion process so that an efficient power dense rotary engine can be designed. The influence of the induction-exhaust systems and the rotor geometry are believed to have a significant effect on combustion chamber flow characteristics. In this report, emphasis is centered on Laser Doppler Velocimetry (LDV) measurements and on qualitative flow visualizations in the combustion chamber of the motored rotary engine assembly. This will provide a basic understanding of the flow process in the RCE and serve as a data base for verification of numerical simulations. Understanding fuel injection provisions is also important to the successful operation of the stratified charge rotary engine. Toward this end, flow visualizations depicting the development of high speed, high pressure fuel jets are described. Friction is an important consideration in an engine from the standpoint of lost work, durability and reliability. MSU Engine Research Laboratory efforts in accessing the frictional losses associated with the rotary engine are described. This includes work which describes losses in bearing, seal and auxillary components. Finally, a computer controlled mapping system under development is described. This system can be used to map shapes such as combustion chamber, intake manifolds or turbine blades accurately.

  14. Systems engineering approach for future automotive microcontroller solutions; Systems-Engineering-Ansatz zur Entwicklung zukuenftiger Mikrocontroller

    Energy Technology Data Exchange (ETDEWEB)

    Hilgert, J.; Turski, K.; Vollhardt, S. [NEC Electronics Europe, Duesseldorf (Germany)

    2005-09-01

    In the future, microcontrollers used in automotive applications will have to meet escalating demands from different areas. For this reason, NEC Electronics (Europe) regards the concept of Systems Engineering as the key to handling the development of the complex system vehicle. This article describes how the Systems Engineering approach is applied to the development of new microcontrollers. The example used is the development platform for NEC's upcoming gateway product. (orig.)

  15. Non-Toxic Orbital Maneuvering System Engine Development

    Science.gov (United States)

    Green, Christopher; Claflin, Scott; Maeding, Chris; Butas, John

    1999-01-01

    Recent results using the Aestus engine operated with LOx/ethanol propellant are presented. An experimental program at Rocketdyne Propulsion and Power is underway to adapt this engine for the Boeing Reusable Space Systems Division non-toxic Orbital Maneuvering System/Reaction control System (OMS/RCS) system. Daimler-Chrysler Aerospace designed the Aestus as an nitrogen tetroxide/monomethyl hydrazine (NTO/MMH) upper-stage engine for the Ariane 5. The non-toxic OMS/RCS system's preliminary design requires a LOx/ethanol (O2/C2H5OH) engine that operates with a mixture ratio of 1.8, a specific impulse of 323 seconds, and fits within the original OMS design envelope. This paper describes current efforts to meet these requirements including, investigating engine performance using LOx/ethanol, developing the en-ine system sizing package, and meeting the vehicle operation parameters. Data from hot-fire testing are also presented and discussed.

  16. Advancing the practice of systems engineering at JPL

    Science.gov (United States)

    Jansma, Patti A.; Jones, Ross M.

    2006-01-01

    In FY 2004, JPL launched an initiative to improve the way it practices systems engineering. The Lab's senior management formed the Systems Engineering Advancement (SEA) Project in order to "significantly advance the practice and organizational capabilities of systems engineering at JPL on flight projects and ground support tasks." The scope of the SEA Project includes the systems engineering work performed in all three dimensions of a program, project, or task: 1. the full life-cycle, i.e., concept through end of operations 2. the full depth, i.e., Program, Project, System, Subsystem, Element (SE Levels 1 to 5) 3. the full technical scope, e.g., the flight, ground and launch systems, avionics, power, propulsion, telecommunications, thermal, etc. The initial focus of their efforts defined the following basic systems engineering functions at JPL: systems architecture, requirements management, interface definition, technical resource management, system design and analysis, system verification and validation, risk management, technical peer reviews, design process management and systems engineering task management, They also developed a list of highly valued personal behaviors of systems engineers, and are working to inculcate those behaviors into members of their systems engineering community. The SEA Project is developing products, services, and training to support managers and practitioners throughout the entire system lifecycle. As these are developed, each one needs to be systematically deployed. Hence, the SEA Project developed a deployment process that includes four aspects: infrastructure and operations, communication and outreach, education and training, and consulting support. In addition, the SEA Project has taken a proactive approach to organizational change management and customer relationship management - both concepts and approaches not usually invoked in an engineering environment. This paper'3 describes JPL's approach to advancing the practice of

  17. 46 CFR 184.620 - Propulsion engine control systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Propulsion engine control systems. 184.620 Section 184... Communications Systems § 184.620 Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of...

  18. Building an Understanding of Heat Transfer Concepts in Undergraduate Chemical Engineering Courses

    Science.gov (United States)

    Nottis, Katharyn E. K.; Prince, Michael J.; Vigeant, Margot A.

    2010-01-01

    Understanding the distinctions among heat, energy and temperature can be difficult for students at all levels of instruction, including those in engineering. Misconceptions about heat transfer have been found to persist, even after students successfully complete relevant coursework. New instructional methods are needed to address these…

  19. System dynamics for mechanical engineers

    CERN Document Server

    Davies, Matthew

    2015-01-01

    This textbook is ideal for mechanical engineering students preparing to enter the workforce during a time of rapidly accelerating technology, where they will be challenged to join interdisciplinary teams. It explains system dynamics using analogies familiar to the mechanical engineer while introducing new content in an intuitive fashion. The fundamentals provided in this book prepare the mechanical engineer to adapt to continuous technological advances with topics outside traditional mechanical engineering curricula by preparing them to apply basic principles and established approaches to new problems. This book also: ·         Reinforces the connection between the subject matter and engineering reality ·         Includes an instructor pack with the online publication that describes in-class experiments with minimal preparation requirements ·         Provides content dedicated to the modeling of modern interdisciplinary technological subjects, including opto-mechanical systems, high...

  20. Unmanned Aerial Aircraft Systems for transportation engineering: Current practice and future challenges

    Directory of Open Access Journals (Sweden)

    Emmanouil N. Barmpounakis

    2016-10-01

    Full Text Available Acquiring and processing video streams from static cameras has been proposed as one of the most efficient tools for visualizing and gathering traffic information. With the latest advances in technology and visual media, combined with the increased needs in dealing with congestion more effectively and directly, the use of Unmanned Aerial Aircraft Systems (UAS has emerged in the field of traffic engineering. In this paper, we review studies and applications that incorporate UAS in transportation research and practice with the aim to set the grounds from the proper understanding and implementation of UAS related surveillance systems in transportation and traffic engineering. The studies reviewed are categorized in different transportation engineering areas. Additional significant applications from other research fields are also referenced to identify other promising applications. Finally, issues and emerging challenges in both a conceptual and methodological level are revealed and discussed.

  1. 46 CFR 121.620 - Propulsion engine control systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion engine control systems. 121.620 Section 121... Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of shaft rotation, and engine...

  2. Visualizing systems engineering data with Java

    International Nuclear Information System (INIS)

    Barter, R; Vinzant, A.

    1998-01-01

    Systems Engineers are required to deal with complex sets of data. To be useful, the data must be managed effectively, and presented in meaningful terms to a wide variety of information consumers. Two software patterns are presented as the basis for exploring the visualization of systems engineering data. The Model, View, Controller pattern defines an information management system architecture. The Entity, Relation, Attribute pattern defines the information model. MVC Views then form the basis for the user interface between the information consumer and the MVC Controller/Model combination. A Java tool set is described for exploring alternative views into the underlying complex data structures encountered in systems engineering

  3. Neurophysiology and neural engineering: a review.

    Science.gov (United States)

    Prochazka, Arthur

    2017-08-01

    Neurophysiology is the branch of physiology concerned with understanding the function of neural systems. Neural engineering (also known as neuroengineering) is a discipline within biomedical engineering that uses engineering techniques to understand, repair, replace, enhance, or otherwise exploit the properties and functions of neural systems. In most cases neural engineering involves the development of an interface between electronic devices and living neural tissue. This review describes the origins of neural engineering, the explosive development of methods and devices commencing in the late 1950s, and the present-day devices that have resulted. The barriers to interfacing electronic devices with living neural tissues are many and varied, and consequently there have been numerous stops and starts along the way. Representative examples are discussed. None of this could have happened without a basic understanding of the relevant neurophysiology. I also consider examples of how neural engineering is repaying the debt to basic neurophysiology with new knowledge and insight. Copyright © 2017 the American Physiological Society.

  4. Using a systems engineering process to develop engineered barrier system design concepts

    International Nuclear Information System (INIS)

    Jardine, L.J.; Short, D.W.

    1991-05-01

    The methodology used to develop conceptual designs of the engineered barrier system and waste packages for a geologic repository is based on an iterative systems engineering process. The process establishes a set of general mission requirements and then conducts detailed requirements analyses using functional analyses, system concept syntheses, and trade studies identifications to develop preliminary system concept descriptions. The feasible concept descriptions are ranked based on selection factors and criteria and a set of preferred concept descriptions is then selected for further development. For each of the selected concept descriptions, a specific set of requirements, including constraints, is written to provide design guidance for the next and more detailed phase of design. The process documents all relevant waste management system requirements so that the basis and source for the specific design requirements are traceable and clearly established. Successive iterations performed during design development help to insure that workable concepts are generated to satisfy the requirements. 4 refs., 2 figs

  5. Practical Application of Sociology in Systems Engineering

    Science.gov (United States)

    Watson, Michael D.; Andrews, James G.; Eckley, Jeri Cassel; Culver, Michael L.

    2017-01-01

    Systems engineering involves both the integration of the system and the integration of the disciplines which develop and operate the system. Integrating the disciplines is a sociological effort to bring together different groups, who often have different terminology, to achieve a common goal, the system. The focus for the systems engineer is information flow through the organization, between the disciplines, to ensure the system is developed and operated will all relevant information informing system decisions. The practical application of the sociology in systems engineering brings in various organizational development concepts including the principles of planned renegotiation and the application of principles to address information barriers created by organizational culture. Concepts such as specification of ignorance, consistent terminology, opportunity structures, role-sets, and the reclama (reconsideration) process are all important sociological approaches that help address the organizational social structure (culture). In bringing the disciplines together, the systems engineer must also be wary of social ambivalence, social anomie, social dysfunction, and insider-outsider behavior. Unintended consequences can result when these social issues are present. These issues can occur when localized subcultures shift from the overarching organizational culture, or when the organizational culture prevents achievement of system goals. These sociological principles provide the systems engineer with key approaches to manage the information flow through the organization as the disciplines are integrated and share their information and provides key sociological barriers to information flow through the organization. This paper will discuss the practical application of sociological principles to systems engineering.

  6. 23rd International Conference on Systems Engineering

    CERN Document Server

    Zydek, Dawid; Chmaj, Grzegorz

    2015-01-01

    This collection of proceedings from the International Conference on Systems Engineering, Las Vegas, 2014 is orientated toward systems engineering, including topics like aerospace, power systems, industrial automation and robotics, systems theory, control theory, artificial intelligence, signal processing, decision support, pattern recognition and machine learning, information and communication technologies, image processing, and computer vision as well as its applications. The volume’s main focus is on models, algorithms, and software tools that facilitate efficient and convenient utilization of modern achievements in systems engineering.

  7. Study of Scramjet Engine System

    OpenAIRE

    苅田, 丈士; KANDA, Takeshi

    2001-01-01

    1. Introduction The scramjet engine for the single-stage-to-orbit (SSTO) aerospace plane has been studied in the ramjet propulsion research division. The problems of the scramjet are (1) combustion, (2) light structure, (3) startability of the inlet, (4) integration of engines, and (5) cooling. The construction of the cooling system is important for the scramjet engine, because of high heat flux during operation. Cooling is not only a problem for the engine itself, but also for the airframe. ...

  8. PEBS. Long-term performance of engineered barrier systems

    Energy Technology Data Exchange (ETDEWEB)

    Wieczorek, Klaus; Czaikowski, Oliver; Miehe, Ruediger

    2014-12-15

    The evolution of the engineered barrier system (EBS) of geological repositories for radioactive waste has been the subject of many national and international research programmes. The emphasis of the research activities was on the elaboration of a detailed understanding of the complex THMC processes, which are expected to evolve in the early post closure period in the near field. From the perspective of radiological long-term safety, an in-depth understanding of these coupled processes is of great significance, because the evolution of the EBS during the early post-closure phase may have a non-negligible impact on the radiological safety functions at the time when the canisters breach. Unexpected process interactions during the resaturation phase could impair the safety-relevant parameters in the EBS (e. g. swelling pressure, hydraulic conductivity, diffusivity).

  9. Model-Based Systems Engineering Pilot Program at NASA Langley

    Science.gov (United States)

    Vipavetz, Kevin G.; Murphy, Douglas G.; Infeld, Samatha I.

    2012-01-01

    NASA Langley Research Center conducted a pilot program to evaluate the benefits of using a Model-Based Systems Engineering (MBSE) approach during the early phase of the Materials International Space Station Experiment-X (MISSE-X) project. The goal of the pilot was to leverage MBSE tools and methods, including the Systems Modeling Language (SysML), to understand the net gain of utilizing this approach on a moderate size flight project. The System Requirements Review (SRR) success criteria were used to guide the work products desired from the pilot. This paper discusses the pilot project implementation, provides SysML model examples, identifies lessons learned, and describes plans for further use on MBSE on MISSE-X.

  10. Nuclear energy and professional engineers. Possibility of utilization of professional engineer system

    International Nuclear Information System (INIS)

    Tanaka, Shunichi; Nariai, Hideki; Madarame, Haruki; Hattori, Takuya; Kitamura, Masaharu; Fujie, Takao

    2008-01-01

    Nuclear and radiation professional engineer system started in 2004 and more than 250 persons have passed the second-step professional engineer examination, while more than 1,000 persons for the first-step examination. This special issue on possibility of utilization of professional engineer system consists of six relevant articles from experts of nuclear organizations and academia. They expect the role of professional engineer in the area of nuclear energy to enhance technology advancement and awareness of professional ethics from their respective standpoints. (T. Tanaka)

  11. 20th Annual Systems Engineering Conference, Thursday, Volume 4

    Science.gov (United States)

    2017-10-26

    20th Annual Systems Engineering Conference October 23-26, 2017 | Waterford at Springfield | Springfield, VA NDIA.org/systemsengineering...Conference Program SYSTEMS ENGINEERING CONFERENCE 2 Welcome to the NDIA Systems Engineering Conference On behalf of the National Defense Industrial...Association’s Systems Engineering Division, I would like to extend a very warm welcome to the 20th Annual Systems Engineering Conference. Yes, the 20th Annual

  12. Advancing Capabilities for Understanding the Earth System Through Intelligent Systems, the NSF Perspective

    Science.gov (United States)

    Gil, Y.; Zanzerkia, E. E.; Munoz-Avila, H.

    2015-12-01

    The National Science Foundation (NSF) Directorate for Geosciences (GEO) and Directorate for Computer and Information Science (CISE) acknowledge the significant scientific challenges required to understand the fundamental processes of the Earth system, within the atmospheric and geospace, Earth, ocean and polar sciences, and across those boundaries. A broad view of the opportunities and directions for GEO are described in the report "Dynamic Earth: GEO imperative and Frontiers 2015-2020." Many of the aspects of geosciences research, highlighted both in this document and other community grand challenges, pose novel problems for researchers in intelligent systems. Geosciences research will require solutions for data-intensive science, advanced computational capabilities, and transformative concepts for visualizing, using, analyzing and understanding geo phenomena and data. Opportunities for the scientific community to engage in addressing these challenges are available and being developed through NSF's portfolio of investments and activities. The NSF-wide initiative, Cyberinfrastructure Framework for 21st Century Science and Engineering (CIF21), looks to accelerate research and education through new capabilities in data, computation, software and other aspects of cyberinfrastructure. EarthCube, a joint program between GEO and the Advanced Cyberinfrastructure Division, aims to create a well-connected and facile environment to share data and knowledge in an open, transparent, and inclusive manner, thus accelerating our ability to understand and predict the Earth system. EarthCube's mission opens an opportunity for collaborative research on novel information systems enhancing and supporting geosciences research efforts. NSF encourages true, collaborative partnerships between scientists in computer sciences and the geosciences to meet these challenges.

  13. Exploring the Art and Science of Systems Engineering

    Science.gov (United States)

    Jansma, P. A.

    2012-01-01

    There has been much discussion of late in the NASA systems engineering community about the fact that systems engineering cannot be just about process and technical disciplines. The belief is that there is both an art and science to systems engineering, and that both aspects are necessary for designing and implementing a successful system or mission. How does one go about differentiating between and characterizing these two aspects? Some say that the art of systems engineering is about designing systems that not only function well, but that are also elegant, beautiful and engaging. What does that mean? How can you tell when a system has been designed with that holistic "art" component? This paper attempts to answer these questions by exploring various ways of looking at the Art and Science of Systems Engineering.

  14. Engineering America's Future in Space: Systems Engineering Innovations for Sustainable Exploration

    Science.gov (United States)

    Dumbacher, Daniel L.; Caruso, Pamela W.; Jones, Carl P.

    2008-01-01

    This viewgraph presentation reviews systems engineering innovations for Ares I and Ares V launch vehicles. The contents include: 1) NASA's Exploratoin Roadmap; 2) Launch Vehicle Comparisons; 3) Designing the Ares I and Ares V in House; 4) Exploring the Moon; and 5) Systems Engineering Adds Value Throughout the Project Lifecycle.

  15. Systems design and engineering : facilitating multidisciplinary development projects

    NARCIS (Netherlands)

    Bonnema, Gerrit Maarten; Veenvliet, Karel; Broenink, Johannes F.

    2016-01-01

    As its name implies, the aim of Systems Design and Engineering: Facilitating Multidisciplinary Development Projects is to help systems engineers develop the skills and thought processes needed to successfully develop and implement engineered systems. Such expertise typically does not come through

  16. Applied clinical engineering

    International Nuclear Information System (INIS)

    Feinberg, B.

    1986-01-01

    This book demonstrates how clinical engineering has applied engineering principles to the development and use of complex medical devices for the diagnosis and treatment of the sick and injured. It discusses the proper utilization of medical devices and equipment in the health-care industry and provides understanding of complex engineering systems, and their uses in the modern hospital or other health-care facility

  17. Spent Nuclear Fuel project systems engineering management plan

    International Nuclear Information System (INIS)

    Womack, J.C.

    1995-01-01

    The purpose of the WHC Systems Engineering Management Plan (SEMP) is to describe the systems engineering approach and methods that will be integrated with established WHC engineering practices to enhance the WHC engineering management of the SNF Project. The scope of the SEMP encompasses the efforts needed to manage the WHC implementation of systems engineering on the SNF Project. This implementation applies to, and is tailored to the needs of the SNF project and all its subprojects, including all current and future subprojects

  18. The Systems Engineering Process for Human Support Technology Development

    Science.gov (United States)

    Jones, Harry

    2005-01-01

    Systems engineering is designing and optimizing systems. This paper reviews the systems engineering process and indicates how it can be applied in the development of advanced human support systems. Systems engineering develops the performance requirements, subsystem specifications, and detailed designs needed to construct a desired system. Systems design is difficult, requiring both art and science and balancing human and technical considerations. The essential systems engineering activity is trading off and compromising between competing objectives such as performance and cost, schedule and risk. Systems engineering is not a complete independent process. It usually supports a system development project. This review emphasizes the NASA project management process as described in NASA Procedural Requirement (NPR) 7120.5B. The process is a top down phased approach that includes the most fundamental activities of systems engineering - requirements definition, systems analysis, and design. NPR 7120.5B also requires projects to perform the engineering analyses needed to ensure that the system will operate correctly with regard to reliability, safety, risk, cost, and human factors. We review the system development project process, the standard systems engineering design methodology, and some of the specialized systems analysis techniques. We will discuss how they could apply to advanced human support systems development. The purpose of advanced systems development is not directly to supply human space flight hardware, but rather to provide superior candidate systems that will be selected for implementation by future missions. The most direct application of systems engineering is in guiding the development of prototype and flight experiment hardware. However, anticipatory systems engineering of possible future flight systems would be useful in identifying the most promising development projects.

  19. A road map for implementing systems engineering

    Energy Technology Data Exchange (ETDEWEB)

    Dean, F.F. [Sandia National Labs., Albuquerque, NM (United States). New Mexico Weapons Systems Engineering Center; Bentz, B.; Bahill, A.T. [Univ. of Arizona, Tucson, AZ (United States)

    1997-02-01

    Studies by academia, industry, and government indicate that applying a sound systems engineering process to development programs is an important tool for preventing cost and schedule overruns and performance deficiencies. There is an enormous body of systems engineering knowledge. Where does one start? How can the principles of systems engineering be applied in the Sandia environment? This road map is intended to be an aid to answering these questions.

  20. Engine control system having pressure-based timing

    Science.gov (United States)

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2011-10-04

    A control system for an engine having a first cylinder and a second cylinder is disclosed having a first engine valve movable to regulate a fluid flow of the first cylinder and a first actuator associated with the first engine valve. The control system also has a second engine valve movable to regulate a fluid flow of the second cylinder and a sensor configured to generate a signal indicative of a pressure within the first cylinder. The control system also has a controller that is in communication with the first actuator and the sensor. The controller is configured to compare the pressure within the first cylinder with a desired pressure and selectively regulate the first actuator to adjust a timing of the first engine valve independently of the timing of the second engine valve based on the comparison.

  1. Fundamentals of electric power engineering engineering from electromagnetics to power systems

    CERN Document Server

    Ceraolo, Massimo

    2014-01-01

    At the basis of many sectors of engineering, electrical engineering deals with electricity phenomena involved in the transfer of energy and power. Professionals requiring a refresher course in this interdisciplinary branch need look no further than Fundamentals of Electric Power Engineering, which imparts tools and trade tricks to remembering basic concepts and grasping new developments. Even established engineers must supplement their careers with an invigorated knowledge base, and this comprehensive resource helps non-electrical engineers amass power system information quickly.

  2. Applying Systems Engineering on Energy Challenges

    NARCIS (Netherlands)

    Safi, J.; Muller, G.; Bonnema, Gerrit Maarten

    2012-01-01

    Systems engineering is a discipline with methods and techniques to address complex problems. We want to study how Systems Engineering methods can help to address today's grand challenges, such as the energy problem. The first step is problem definition which aims at articulating the problem in its

  3. Software And Systems Engineering Risk Management

    Science.gov (United States)

    2010-04-01

    RSKM 2004 COSO Enterprise RSKM Framework 2006 ISO/IEC 16085 Risk Management Process 2008 ISO/IEC 12207 Software Lifecycle Processes 2009 ISO/IEC...1 Software And Systems Engineering Risk Management John Walz VP Technical and Conferences Activities, IEEE Computer Society Vice-Chair Planning...Software & Systems Engineering Standards Committee, IEEE Computer Society US TAG to ISO TMB Risk Management Working Group Systems and Software

  4. The Role of Systems Thinking in Systems Engineering, Design and Management

    Directory of Open Access Journals (Sweden)

    Chan W.T.

    2015-12-01

    Full Text Available Systems thinking is a widely recognized and subscribed-to concept. Many benefits are ascribed to systems thinking and its result - the holistic solution. Yet, there is a wide range of opinion as to what systems thinking really is, and how its benefits can be realized in engineering practice. In fact, the concept of what constitutes a ‘system’ is wide and variable. The purpose of the paper is to draw together diverse perspectives of systems thinking useful in engineering, and to present a set of core concepts that are useful in the successful design and operation of engineered systems. These concepts will be illustrated with examples drawn from the author’s experience in teaching and research on engineered systems.

  5. Advances in communication systems and electrical engineering

    CERN Document Server

    Huang, Xu

    2008-01-01

    This volume contains contributions from participants in the 2007 International Multiconference of Engineers and Computer Scientists Topics covered include communications theory, communications protocols, network management, wireless networks, telecommunication, electronics, power engineering, control engineering, signal processing, and industrial applications. The book will offer the states of arts of tremendous advances in communication systems and electrical engineering and also serve as an excellent reference work for researchers and graduate students working with/on communication systems a

  6. Interaction between systems and software engineering in safety-critical systems

    International Nuclear Information System (INIS)

    Knight, J.

    1994-01-01

    There are three areas of concern: when is software to be considered safe; what, exactly, is the role of the software engineer; and how do systems, or sometimes applications, engineers and software engineers interact with each other. The author presents his perspective on these questions which he feels differ from those of many in the field. He argues for a clear definition of safety in the software arena, so the engineer knows what he is engineering toward. Software must be viewed as part of the entire system, since it does not function on its own, or isolation. He argues for the establishment of clear specifications in this area

  7. Mars 2020 Model Based Systems Engineering Pilot

    Science.gov (United States)

    Dukes, Alexandra Marie

    2017-01-01

    The pilot study is led by the Integration Engineering group in NASA's Launch Services Program (LSP). The Integration Engineering (IE) group is responsible for managing the interfaces between the spacecraft and launch vehicle. This pilot investigates the utility of Model-Based Systems Engineering (MBSE) with respect to managing and verifying interface requirements. The main objectives of the pilot are to model several key aspects of the Mars 2020 integrated operations and interface requirements based on the design and verification artifacts from Mars Science Laboratory (MSL) and to demonstrate how MBSE could be used by LSP to gain further insight on the interface between the spacecraft and launch vehicle as well as to enhance how LSP manages the launch service. The method used to accomplish this pilot started through familiarization of SysML, MagicDraw, and the Mars 2020 and MSL systems through books, tutorials, and NASA documentation. MSL was chosen as the focus of the model since its processes and verifications translate easily to the Mars 2020 mission. The study was further focused by modeling specialized systems and processes within MSL in order to demonstrate the utility of MBSE for the rest of the mission. The systems chosen were the In-Flight Disconnect (IFD) system and the Mass Properties process. The IFD was chosen as a system of focus since it is an interface between the spacecraft and launch vehicle which can demonstrate the usefulness of MBSE from a system perspective. The Mass Properties process was chosen as a process of focus since the verifications for mass properties occur throughout the lifecycle and can demonstrate the usefulness of MBSE from a multi-discipline perspective. Several iterations of both perspectives have been modeled and evaluated. While the pilot study will continue for another 2 weeks, pros and cons of using MBSE for LSP IE have been identified. A pro of using MBSE includes an integrated view of the disciplines, requirements, and

  8. Systems and Control Engineering

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 5. Systems and Control Engineering - Control Systems-Analysis and Design. A Rama Kalyan J R Vengateswaran. General Article Volume 4 Issue 5 May 1999 pp 88-94 ...

  9. KESS: Knowledge Engineering Support System

    OpenAIRE

    Said, Mohamed Ben; Dougherty, Nini; Anderson, Curtis; Altman, Stanley J.; Bouhaddou, Omar; Warner, Homer R.

    1987-01-01

    KESS (Knowledge Engineering Support System) is a relational information management system created at the University of Utah to document each step in the building of four expert knowledge bases. In weekly knowledge engineering sessions, groups of experts propose decision making criteria and examine information sources in the process of creating HELP knowledge frames. KESS utilizes many-to-many links with multiple files and central link files to track the different kinds of information generate...

  10. Nuclear engine system simulation (NESS) program update

    International Nuclear Information System (INIS)

    Scheil, C.M.; Pelaccio, D.G.; Petrosky, L.J.

    1993-01-01

    The second phase of development of a Nuclear Thermal Propulsion (NTP) engine system design analysis code has been completed. The standalone, versatile Nuclear Engine System Simulation (NESS) code provides an accurate, detailed assessment of engine system operating performance, weight, and sizes. The critical information is required to support ongoing and future engine system and stage design study efforts. This recent development effort included incorporation of an updated solid-core nuclear thermal reactor model that yields a reduced core weight and higher fuel power density when compared to a NERVA type reactor. NESS can now analyze expander, gas generator, and bleed cycles, along with multi-redundant propellant pump feed systems. Performance and weight of efficient multi-stage axial turbopump can now be determined, in addition to the traditional centrifugal pump

  11. Engineering surveying

    CERN Document Server

    Schofield, W

    2001-01-01

    The aim of Engineering Surveying has always been to impart and develop a clear understanding of the basic topics of the subject. The author has fully revised the book to make it the most up-to-date and relevant textbook available on the subject.The book also contains the latest information on trigonometric levelling, total stations and one-person measuring systems. A new chapter on satellites ensures a firm grasp of this vitally important topic.The text covers engineering surveying modules for civil engineering students on degree courses and forms a reference for the engineering surveying module in land surveying courses. It will also prove to be a valuable reference for practitioners.* Simple clear introduction to surveying for engineers* Explains key techniques and methods* Details reading systems and satellite position fixing

  12. A systems engineering primer for every engineer and scientist

    International Nuclear Information System (INIS)

    Edwards, William R.

    2001-01-01

    The Systems Engineering (SE) staff at LBNL has generated the following artifacts to assist projects with implementing a systems approach: (1) The present document that focuses on the what, why, and when of SE. It also provides a simple case-study to illustrate several SE tasks. (2) A web site with primary emphasis on the project life-cycle and workflow, (http://www-eng.LBNL.gov/Systems/index.html). It includes: SE guidelines and principles; A list of in-house tools; Templates; Case studies with ''how to'' examples; and Links to useful SE material. These sources are living documents to be updated as necessary. The viewpoint adopted in this document is that what LBNL engineers and scientists need is a set of principles and guiding practices for developing R and D systems rather than a ''cookbook''. There are many excellent ''how to'' resources such as the ''INCOSE Systems Engineering Handbook'' to guide those in search of more details. The SE staff is another resource available to consult and support projects. This document specifies SE principles and activities that are applicable to all LBNL projects independent of their specific differences. Each project should tailor the SE implementation to meet its individual needs and culture including project-specific resources, procedures, products, and tools

  13. Control systems engineering

    CERN Document Server

    Nise, Norman S

    1995-01-01

    This completely updated new edition shows how to use MATLAB to perform control-system calculations. Designed for the professional or engineering student who needs a quick and readable update on designing control systems, the text features a series of tightly focused examples that clearly illustrate each concept of designing control systems. Most chapters conclude with a detailed application from the two case studies that run throughout the book: an antenna asimuth control system and a submarine. The author also refers to many examples of design methods.

  14. Science Outside the Lab: Helping Graduate Students in Science and Engineering Understand the Complexities of Science Policy.

    Science.gov (United States)

    Bernstein, Michael J; Reifschneider, Kiera; Bennett, Ira; Wetmore, Jameson M

    2017-06-01

    Helping scientists and engineers challenge received assumptions about how science, engineering, and society relate is a critical cornerstone for macroethics education. Scientific and engineering research are frequently framed as first steps of a value-free linear model that inexorably leads to societal benefit. Social studies of science and assessments of scientific and engineering research speak to the need for a more critical approach to the noble intentions underlying these assumptions. "Science Outside the Lab" is a program designed to help early-career scientists and engineers understand the complexities of science and engineering policy. Assessment of the program entailed a pre-, post-, and 1 year follow up survey to gauge student perspectives on relationships between science and society, as well as a pre-post concept map exercise to elicit student conceptualizations of science policy. Students leave Science Outside the Lab with greater humility about the role of scientific expertise in science and engineering policy; greater skepticism toward linear notions of scientific advances benefiting society; a deeper, more nuanced understanding of the actors involved in shaping science policy; and a continued appreciation of the contributions of science and engineering to society. The study presents an efficacious program that helps scientists and engineers make inroads into macroethical debates, reframe the ways in which they think about values of science and engineering in society, and more thoughtfully engage with critical mediators of science and society relationships: policy makers and policy processes.

  15. Reducing acquisition risk through integrated systems of systems engineering

    Science.gov (United States)

    Gross, Andrew; Hobson, Brian; Bouwens, Christina

    2016-05-01

    In the fall of 2015, the Joint Staff J7 (JS J7) sponsored the Bold Quest (BQ) 15.2 event and conducted planning and coordination to combine this event into a joint event with the Army Warfighting Assessment (AWA) 16.1 sponsored by the U.S. Army. This multipurpose event combined a Joint/Coalition exercise (JS J7) with components of testing, training, and experimentation required by the Army. In support of Assistant Secretary of the Army for Acquisition, Logistics, and Technology (ASA(ALT)) System of Systems Engineering and Integration (SoSE&I), Always On-On Demand (AO-OD) used a system of systems (SoS) engineering approach to develop a live, virtual, constructive distributed environment (LVC-DE) to support risk mitigation utilizing this complex and challenging exercise environment for a system preparing to enter limited user test (LUT). AO-OD executed a requirements-based SoS engineering process starting with user needs and objectives from Army Integrated Air and Missile Defense (AIAMD), Patriot units, Coalition Intelligence, Surveillance and Reconnaissance (CISR), Focused End State 4 (FES4) Mission Command (MC) Interoperability with Unified Action Partners (UAP), and Mission Partner Environment (MPE) Integration and Training, Tactics and Procedures (TTP) assessment. The SoS engineering process decomposed the common operational, analytical, and technical requirements, while utilizing the Institute of Electrical and Electronics Engineers (IEEE) Distributed Simulation Engineering and Execution Process (DSEEP) to provide structured accountability for the integration and execution of the AO-OD LVC-DE. As a result of this process implementation, AO-OD successfully planned for, prepared, and executed a distributed simulation support environment that responsively satisfied user needs and objectives, demonstrating the viability of an LVC-DE environment to support multiple user objectives and support risk mitigation activities for systems in the acquisition process.

  16. Heat engine development for solar thermal power systems

    Science.gov (United States)

    Pham, H. Q.; Jaffe, L. D.

    The parabolic dish solar collector systems for converting sunlight to electrical power through a heat engine will, require a small heat engine of high performance long lifetime to be competitive with conventional power systems. The most promising engine candidates are Stirling, high temperature Brayton, and combined cycle. Engines available in the current market today do not meet these requirements. The development of Stirling and high temperature Brayton for automotive applications was studied which utilizes much of the technology developed in this automotive program for solar power engines. The technical status of the engine candidates is reviewed and the components that may additional development to meet solar thermal system requirements are identified.

  17. Spacecraft systems engineering: An introduction to the process at GSFC

    Science.gov (United States)

    Fragomeni, Tony; Ryschkewitsch, Michael G.

    1993-01-01

    The main objective in systems engineering is to devise a coherent total system design capable of achieving the stated requirements. Requirements should be rigid. However, they should be continuously challenged, rechallenged and/or validated. The systems engineer must specify every requirement in order to design, document, implement and conduct the mission. Each and every requirement must be logically considered, traceable and evaluated through various analysis and trade studies in a total systems design. Margins must be determined to be realistic as well as adequate. The systems engineer must also continuously close the loop and verify system performance against the requirements. The fundamental role of the systems engineer, however, is to engineer, not manage. Yet, in large, complex missions, where more than one systems engineer is required, someone needs to manage the systems engineers, and we call them 'systems managers.' Systems engineering management is an overview function which plans, guides, monitors and controls the technical execution of a project as implemented by the systems engineers. As the project moves on through Phases A and B into Phase C/D, the systems engineering tasks become a small portion of the total effort. The systems management role increases since discipline subsystem engineers are conducting analyses and reviewing test data for final review and acceptance by the systems managers.

  18. Dependency visualization for complex system understanding

    Energy Technology Data Exchange (ETDEWEB)

    Smart, J. Allison Cory [Univ. of California, Davis, CA (United States)

    1994-09-01

    With the volume of software in production use dramatically increasing, the importance of software maintenance has become strikingly apparent. Techniques now sought and developed for reverse engineering and design extraction and recovery. At present, numerous commercial products and research tools exist which are capable of visualizing a variety of programming languages and software constructs. The list of new tools and services continues to grow rapidly. Although the scope of the existing commercial and academic product set is quite broad, these tools still share a common underlying problem. The ability of each tool to visually organize object representations is increasingly impaired as the number of components and component dependencies within systems increases. Regardless of how objects are defined, complex ``spaghetti`` networks result in nearly all large system cases. While this problem is immediately apparent in modem systems analysis involving large software implementations, it is not new. As will be discussed in Chapter 2, related problems involving the theory of graphs were identified long ago. This important theoretical foundation provides a useful vehicle for representing and analyzing complex system structures. While the utility of directed graph based concepts in software tool design has been demonstrated in literature, these tools still lack the capabilities necessary for large system comprehension. This foundation must therefore be expanded with new organizational and visualization constructs necessary to meet this challenge. This dissertation addresses this need by constructing a conceptual model and a set of methods for interactively exploring, organizing, and understanding the structure of complex software systems.

  19. Engineering Electromagnetics

    International Nuclear Information System (INIS)

    Kim, Se Yun

    2009-01-01

    This book deals with engineering electromagnetics. It contains seven chapters, which treats understanding of engineering electromagnetics such as magnet and electron spin, current and a magnetic field and an electromagnetic wave, Essential tool for engineering electromagnetics on rector and scalar, rectangular coordinate system and curl vector, electrostatic field with coulomb rule and method of electric images, Biot-Savart law, Ampere law and magnetic force, Maxwell equation and an electromagnetic wave and reflection and penetration of electromagnetic plane wave.

  20. Rethinking the Systems Engineering Process in Light of Design Thinking

    Science.gov (United States)

    2016-04-30

    systems engineering process models (Blanchard & Fabrycky, 1990) and the majority of engineering design education (Dym et al., 2005). The waterfall model ...Engineering Career Competency Model Clifford Whitcomb, Systems Engineering Professor, NPS Corina White, Systems Engineering Research Associate, NPS...Postgraduate School (NPS) in Monterey, CA. He teaches and conducts research in the design of enterprise systems, systems modeling , and system

  1. NVESTIGATION OF INTERNATIONAL ENGINEERING LICENSURE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Selim BARADAN

    2009-01-01

    Full Text Available In many countries, engineers are legally required to register to a "licensure" system, which is founded on education and experience criteria and administered by a government body, to use the "engineer" title and offer professional services to the public. In today's globalized world, international alliances such as FEANI, APEC and EMF award engineers with European, APEC and International Professional engineer titles within a framework of mutual recognition of qualifications enabling them to practice outside their own country. This article examines such international licensure systems, particularly their administration processes and registration criteria, and discusses how current licensure procedures in Turkey should be revamped in case of joining an international alliance such as European Union.

  2. 7th Annual Systems Biology Symposium: Systems Biology and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Galitski, Timothy P.

    2008-04-01

    Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology has been hosted by the Institute for Systems Biology in Seattle, Washington, since 2002. The annual two-day event gathers the most influential researchers transforming biology into an integrative discipline investingating complex systems. Engineering and application of new technology is a central element of systems biology. Genome-scale, or very small-scale, biological questions drive the enigneering of new technologies, which enable new modes of experimentation and computational analysis, leading to new biological insights and questions. Concepts and analytical methods in engineering are now finding direct applications in biology. Therefore, the 2008 Symposium, funded in partnership with the Department of Energy, featured global leaders in "Systems Biology and Engineering."

  3. Metric-driven Robust Design – Robustness Quantification of Complex Engineering Systems

    DEFF Research Database (Denmark)

    Göhler, Simon Moritz

    2017-01-01

    by the Danish Council for Strategic Research. Other supporters of the project have been MAN Diesel & Turbo A/S, DTU Mechanical Engineering, DTU Chemical Engineering, Sandia National Laboratories USA, Norwegian University of Science & Technology (NTNU) and University of Nottingham, Malaysia Campus......This PhD dissertation was carried out at the Technical University of Denmark in the Department of Mechanical Engineering and has been supervised by Associate Professor Anders Ivarsson and co-supervised by Professor Jesper Schramm. The project has been a part of the RADIADE project funded....... The continuing stringency of emission regulations for marine diesel engines forces a deeper understanding of the complex physical processes occurring inside the engine cylinder. A deeper understanding can lead to higher accuracy of predictive numerical models, thereby enabling evaluation of multiple engine...

  4. Interactive Model-Centric Systems Engineering (IMCSE) Phase 5

    Science.gov (United States)

    2018-02-28

    Interactive Model-Centric Systems Engineering (IMCSE) Phase 5 Technical Report SERC-2018-TR-104 Feb 28, 2018 Principal Investigator...Date February 28, 2018 Copyright © 2018 Stevens Institute of Technology, Systems Engineering ...Research Center The Systems Engineering Research Center (SERC) is a federally funded University Affiliated Research Center managed by Stevens

  5. Non-ideal Stirling engine thermodynamic model suitable for the integration into overall energy systems

    International Nuclear Information System (INIS)

    Araoz, Joseph A.; Salomon, Marianne; Alejo, Lucio; Fransson, Torsten H.

    2014-01-01

    The reliability of modelling and simulation of energy systems strongly depends on the prediction accuracy of each system component. This is the case of Stirling engine-based systems, where an accurate modelling of the engine performance is very important to understand the overall system behaviour. In this sense, many Stirling engine analyses with different approaches have been already developed. However, there is a lack of Stirling engine models suitable for the integration into overall system simulations. In this context, this paper aims to develop a rigorous Stirling engine model that could be easily integrated into combined heat and power schemes for the overall techno-economic analysis of these systems. The model developed considers a Stirling engine with adiabatic working spaces, isothermal heat exchangers, dead volumes, and imperfect regeneration. Additionally, it considers mechanical pumping losses due to friction, limited heat transfer and thermal losses on the heat exchangers. The model is suitable for different engine configurations (alpha beta and gamma engines). It was developed using Aspen Custom Modeller ® (ACM®) as modelling software. The set of equations were solved using ACM ® equation solver for steady-state operation. However, due to the dynamic behaviour of the cycle, a C++ code was integrated to solve iteratively a set of differential equations. This resulted in a cyclic steady-state model that calculates the power output and thermal requirements of the system. The predicted efficiency and power output were compared with the numerical model and the experimental work reported by the NASA Lewis Research Centre for the GPU-3 Stirling engine. This showed average absolute errors around ±4% for the brake power, and ±5% for the brake efficiency at different frequencies. However, the model also showed large errors (±15%) for these calculations at higher frequencies and low pressures. Additional results include the calculation of the cyclic

  6. Content Analysis in Systems Engineering Acquisition Activities

    Science.gov (United States)

    2016-04-30

    Acquisition Activities Karen Holness, Assistant Professor, NPS Update on the Department of the Navy Systems Engineering Career Competency Model Clifford...systems engineering toolkit . Having a common analysis tool that is easy to use would support the feedback of observed system performance trends from the

  7. 29 CFR 1926.758 - Systems-engineered metal buildings.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Systems-engineered metal buildings. 1926.758 Section 1926... Systems-engineered metal buildings. (a) All of the requirements of this subpart apply to the erection of systems-engineered metal buildings except §§ 1926.755 (column anchorage) and 1926.757 (open web steel...

  8. A Virtual Engineering Framework for Simulating Advanced Power System

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Dave Swensen; Martin Denison; Stanislav Borodai

    2008-06-18

    In this report is described the work effort performed to provide NETL with VE-Suite based Virtual Engineering software and enhanced equipment models to support NETL's Advanced Process Engineering Co-simulation (APECS) framework for advanced power generation systems. Enhancements to the software framework facilitated an important link between APECS and the virtual engineering capabilities provided by VE-Suite (e.g., equipment and process visualization, information assimilation). Model enhancements focused on improving predictions for the performance of entrained flow coal gasifiers and important auxiliary equipment (e.g., Air Separation Units) used in coal gasification systems. In addition, a Reduced Order Model generation tool and software to provide a coupling between APECS/AspenPlus and the GE GateCycle simulation system were developed. CAPE-Open model interfaces were employed where needed. The improved simulation capability is demonstrated on selected test problems. As part of the project an Advisory Panel was formed to provide guidance on the issues on which to focus the work effort. The Advisory Panel included experts from industry and academics in gasification, CO2 capture issues, process simulation and representatives from technology developers and the electric utility industry. To optimize the benefit to NETL, REI coordinated its efforts with NETL and NETL funded projects at Iowa State University, Carnegie Mellon University and ANSYS/Fluent, Inc. The improved simulation capabilities incorporated into APECS will enable researchers and engineers to better understand the interactions of different equipment components, identify weaknesses and processes needing improvement and thereby allow more efficient, less expensive plants to be developed and brought on-line faster and in a more cost-effective manner. These enhancements to APECS represent an important step toward having a fully integrated environment for performing plant simulation and engineering

  9. Developing Systems Engineering Skills Through NASA Summer Intern Project

    Science.gov (United States)

    Bhasin, Kul; Barritt, Brian; Golden, Bert; Knoblock, Eric; Matthews, Seth; Warner, Joe

    2010-01-01

    During the Formulation phases of the NASA Project Life Cycle, communication systems engineers are responsible for designing space communication links and analyzing their performance to ensure that the proposed communication architecture is capable of satisfying high-level mission requirements. Senior engineers with extensive experience in communications systems perform these activities. However, the increasing complexity of space systems coupled with the current shortage of communications systems engineers has led to an urgent need for expedited training of new systems engineers. A pilot program, in which college-bound high school and undergraduate students studying various engineering disciplines are immersed in NASA s systems engineering practices, was conceived out of this need. This rapid summerlong training approach is feasible because of the availability of advanced software and technology tools and the students inherent ability to operate such tools. During this pilot internship program, a team of college-level and recently-hired engineers configured and utilized various software applications in the design and analysis of communication links for a plausible lunar sortie mission. The approach taken was to first design the direct-to-Earth communication links for the lunar mission elements, then to design the links between lunar surface and lunar orbital elements. Based on the data obtained from these software applications, an integrated communication system design was realized and the students gained valuable systems engineering knowledge. This paper describes this approach to rapidly training college-bound high school and undergraduate engineering students from various disciplines in NASA s systems engineering practices and tools. A summary of the potential use of NASA s emerging systems engineering internship program in broader applications is also described.

  10. A systems engineering primer for every engineer and scientist

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, William R.

    2001-12-10

    The Systems Engineering (SE) staff at LBNL has generated the following artifacts to assist projects with implementing a systems approach: (1) The present document that focuses on the what, why, and when of SE. It also provides a simple case-study to illustrate several SE tasks. (2) A web site with primary emphasis on the project life-cycle and workflow, (http://www-eng.LBNL.gov/Systems/index.html). It includes: SE guidelines and principles; A list of in-house tools; Templates; Case studies with ''how to'' examples; and Links to useful SE material. These sources are living documents to be updated as necessary. The viewpoint adopted in this document is that what LBNL engineers and scientists need is a set of principles and guiding practices for developing R and D systems rather than a ''cookbook''. There are many excellent ''how to'' resources such as the ''INCOSE Systems Engineering Handbook'' to guide those in search of more details. The SE staff is another resource available to consult and support projects. This document specifies SE principles and activities that are applicable to all LBNL projects independent of their specific differences. Each project should tailor the SE implementation to meet its individual needs and culture including project-specific resources, procedures, products, and tools.

  11. OCRWM Systems Engineering Management Plan (SEMP)

    International Nuclear Information System (INIS)

    1990-03-01

    The Nuclear Waste Policy Act of 1982 established the Office of Civilian Radioactive Waste Management (OCRWM) in the Department of Energy (DOE) to implement a program for the safe and permanent disposal of spent nuclear fuel and high-level radioactive waste. To achieve this objective, the OCRWM is developing an integrated waste-management system consisting of three elements: the transportation system, the monitored retrievable storage (MRS) facility, and the mined geologic disposal system (MGDS). The development of such a system requires management of many diverse disciplines that are involved in research, siting, design, licensing, and external interactions. The purpose of this Systems Engineering Management Plan (SEMP) is to prescribe how the systems-engineering process will be implemented in the development of the waste-management system. Systems engineering will be used by the OCRWM to manage, integrate, and document all aspects of the technical development of the waste-management system and its system elements to ensure that the requirements of the waste-management program are met. It will be applied to all technical activities of the OCRWM program. It will be used by the OCRWM to specify the sequence of technical activities necessary to define the requirements the waste-management system must satisfy, to develop the waste-management system, to relate system elements to each other, and to determine how the waste-management system can be optimized to most effectively satisfy the requirements. Furthermore, systems engineering will be used in the management of Program activities at the program, program-element, and project levels by specifying procedures, studies, reviews, and documentation requirements. 9 refs., 1 fig

  12. Systems Engineering Analysis for Office Space Management

    Science.gov (United States)

    2017-09-01

    ENGINEERING ANALYSIS FOR OFFICE SPACE MANAGEMENT by James E. Abellana September 2017 Thesis Advisor: Diana Angelis Second Reader: Walter E. Owen...Master’s thesis 4. TITLE AND SUBTITLE SYSTEMS ENGINEERING ANALYSIS FOR OFFICE SPACE MANAGEMENT 5. FUNDING NUMBERS 6. AUTHOR(S) James E. Abellana 7...of the systems engineering method, this thesis develops a multicriteria decision-making framework applicable to space allocation decisions for

  13. Understanding structural engineering from theory to practice

    CERN Document Server

    Chen, Wai-Fah

    2011-01-01

    In our world of seemingly unlimited computing, numerous analytical approaches to the estimation of stress, strain, and displacement, including analytical, numerical, physical, and analog techniques, have greatly advanced the practice of engineering. Combining theory and experimentation, computer simulation has emerged as a third path for engineering design and performance evaluation. As a result, structural engineers working in the practical world of engineering must apply, and ideally, thrive, on these idealizations of science-based theories. Analyzing the major achievements in the field, Und

  14. Computational Intelligence for Engineering Systems

    CERN Document Server

    Madureira, A; Vale, Zita

    2011-01-01

    "Computational Intelligence for Engineering Systems" provides an overview and original analysis of new developments and advances in several areas of computational intelligence. Computational Intelligence have become the road-map for engineers to develop and analyze novel techniques to solve problems in basic sciences (such as physics, chemistry and biology) and engineering, environmental, life and social sciences. The contributions are written by international experts, who provide up-to-date aspects of the topics discussed and present recent, original insights into their own experien

  15. Enhancing Systems Engineering Education Through Case Study Writing

    Science.gov (United States)

    Stevens, Jennifer Stenger

    2016-01-01

    Developing and refining methods for teaching systems engineering is part of Systems Engineering grand challenges and agenda for research in the SE research community. Retention of systems engineering knowledge is a growing concern in the United States as the baby boom generation continues to retire and the faster pace of technology development does not allow for younger generations to gain experiential knowledge through years of practice. Government agencies, including the National Aeronautics and Space Administration (NASA), develop their own curricula and SE leadership development programs to "grow their own" systems engineers. Marshall Space Flight Center (MSFC) conducts its own Center-focused Marshall Systems Engineering Leadership Development Program (MSELDP), a competitive program consisting of coursework, a guest lecture series, and a rotational assignment into an unfamiliar organization engaged in systems engineering. Independently, MSFC developed two courses to address knowledge retention and sharing concerns: Real World Marshall Mission Success course and its Case Study Writers Workshop and Writers Experience. Teaching case study writing and leading students through a hands-on experience at writing a case study on an SE topic can enhance SE training and has the potential to accelerate the transfer of experiential knowledge. This paper is an overview of the pilot experiences with teaching case study writing, its application in case study-based learning, and identifies potential areas of research and application for case study writing in systems engineering education.

  16. 20th Annual Systems Engineering Conference. Volume 1, Monday-Tuesday

    Science.gov (United States)

    2017-10-26

    20th Annual Systems Engineering Conference October 23-26, 2017 | Waterford at Springfield | Springfield, VA NDIA.org/systemsengineering...Conference Program SYSTEMS ENGINEERING CONFERENCE 2 Welcome to the NDIA Systems Engineering Conference On behalf of the National Defense Industrial...Association’s Systems Engineering Division, I would like to extend a very warm welcome to the 20th Annual Systems Engineering Conference. Yes, the 20th Annual

  17. Embedded expert system for space shuttle main engine maintenance

    Science.gov (United States)

    Pooley, J.; Thompson, W.; Homsley, T.; Teoh, W.; Jones, J.; Lewallen, P.

    1987-01-01

    The SPARTA Embedded Expert System (SEES) is an intelligent health monitoring system that directs analysis by placing confidence factors on possible engine status and then recommends a course of action to an engineer or engine controller. The technique can prevent catastropic failures or costly rocket engine down time because of false alarms. Further, the SEES has potential as an on-board flight monitor for reusable rocket engine systems. The SEES methodology synergistically integrates vibration analysis, pattern recognition and communications theory techniques with an artificial intelligence technique - the Embedded Expert System (EES).

  18. Engineering design of systems models and methods

    CERN Document Server

    Buede, Dennis M

    2009-01-01

    The ideal introduction to the engineering design of systems-now in a new edition. The Engineering Design of Systems, Second Edition compiles a wealth of information from diverse sources to provide a unique, one-stop reference to current methods for systems engineering. It takes a model-based approach to key systems engineering design activities and introduces methods and models used in the real world. Features new to this edition include: * The addition of Systems Modeling Language (SysML) to several of the chapters, as well as the introduction of new terminology * Additional material on partitioning functions and components * More descriptive material on usage scenarios based on literature from use case development * Updated homework assignments * The software product CORE (from Vitech Corporation) is used to generate the traditional SE figures and the software product MagicDraw UML with SysML plugins (from No Magic, Inc.) is used for the SysML figures This book is designed to be an introductory reference ...

  19. COBRA System Engineering Processes to Achieve SLI Strategic Goals

    Science.gov (United States)

    Ballard, Richard O.

    2003-01-01

    The COBRA Prototype Main Engine Development Project was an endeavor conducted as a joint venture between Pratt & Whitney and Aerojet to conduct risk reduction in LOX/LH2 main engine technology for the NASA Space Launch Initiative (SLI). During the seventeen months of the project (April 2001 to September 2002), approximately seventy reviews were conducted, beginning with the Engine Systems Requirements Review (SRR) and ending with the Engine Systems Interim Design Review (IDR). This paper discusses some of the system engineering practices used to support the reviews and the overall engine development effort.

  20. Engineering surveying

    CERN Document Server

    Schofield, W

    2007-01-01

    Engineering surveying involves determining the position of natural and man-made features on or beneath the Earth's surface and utilizing these features in the planning, design and construction of works. It is a critical part of any engineering project. Without an accurate understanding of the size, shape and nature of the site the project risks expensive and time-consuming errors or even catastrophic failure.Engineering Surveying 6th edition covers all the basic principles and practice of this complex subject and the authors bring expertise and clarity. Previous editions of this classic text have given readers a clear understanding of fundamentals such as vertical control, distance, angles and position right through to the most modern technologies, and this fully updated edition continues that tradition.This sixth edition includes:* An introduction to geodesy to facilitate greater understanding of satellite systems* A fully updated chapter on GPS, GLONASS and GALILEO for satellite positioning in surveying* Al...

  1. Requirements engineering for software and systems

    CERN Document Server

    Laplante, Phillip A

    2014-01-01

    Solid requirements engineering has increasingly been recognized as the key to improved, on-time and on-budget delivery of software and systems projects. This book provides practical teaching for graduate and professional systems and software engineers. It uses extensive case studies and exercises to help students grasp concepts and techniques. With a focus on software-intensive systems, this text provides a probing and comprehensive review of recent developments in intelligent systems, soft computing techniques, and their diverse applications in manufacturing. The second edition contains 100% revised content and approximately 30% new material

  2. System Design and Engineering, lubricating multidisciplinary development projects

    NARCIS (Netherlands)

    Bonnema, Gerrit Maarten; Veenvliet, Karel; Broenink, Johannes F.

    This text book introduces systems engineering for designing systems in multidisciplinary projects. First an overview of the systems engineering process is given. Several systems thinking tracks are presented, to think about the system in a number of ways, its context, its user, its functionality,

  3. User engineering: A new look at system engineering

    Science.gov (United States)

    Mclaughlin, Larry L.

    1987-01-01

    User Engineering is a new System Engineering perspective responsible for defining and maintaining the user view of the system. Its elements are a process to guide the project and customer, a multidisciplinary team including hard and soft sciences, rapid prototyping tools to build user interfaces quickly and modify them frequently at low cost, and a prototyping center for involving users and designers in an iterative way. The main consideration is reducing the risk that the end user will not or cannot effectively use the system. The process begins with user analysis to produce cognitive and work style models, and task analysis to produce user work functions and scenarios. These become major drivers of the human computer interface design which is presented and reviewed as an interactive prototype by users. Feedback is rapid and productive, and user effectiveness can be measured and observed before the system is built and fielded. Requirements are derived via the prototype and baselined early to serve as an input to the architecture and software design.

  4. DEVELOPMENT OF OPERATING DRIVE SYSTEMS IN ENGINEERING EQUIPMENT

    Directory of Open Access Journals (Sweden)

    A. A. Kotlobai

    2015-01-01

    Full Text Available Engineering machines being in operational service with military units of  engineer troops are fit to their purpose and their application is relevant in modern conditions. Maintenance of operating conditions in engineering equipment which was produced earlier by the USSR enterprises is considered as a rather complicated task due to lack of spare parts because their production has been discontinued.One of the approaches used for maintenance of engineering equipment combat capabilities is modernization of operating drive systems that presupposes replacement of mechanical systems in working element drives by hydrostatic drives which are realized while using modern element base. Usage of hydraulic units in drive systems being in mass production for replacement of mechanical systems manufactured earlier in small batches makes it possible to reduce labour inputs for maintenance and repair of machines. The paper presents some possibilities for development of operating drive systems in engineering equipment. The proposed approach is given through an example of  engineering obstacle-clearing vehicle (IMR-2M and excavation machines (MDK-3 and MDK-2M.Application of a hydraulic drive in working elements of the excavation machines permits to withdraw from cardan  shafts, a gear box, a rotary gear and an overload clutch. A hydraulic motor of the cutter and thrower drive is mounted  on a working element gearbox. While executing modernization of hydraulic systems in excavation machines a pump unit has been proposed for the cutter and thrower drive which consists of a controlled pump and a system for automatic maintenance of the pump operational parameters. While developing the operating drive systems in engineering equipment in accordance with the proposed requirements it is possible to simplify drive systems of working elements and  ensure reliable machinery operation in the units of engineer troops. 

  5. How Systems Engineering and Risk Management Defend Against Murphy's Law and Human Error

    Science.gov (United States)

    Bay, Michael; Connley, Warren

    2004-01-01

    Systems Engineering and Risk Management processes can work synergistically to defend against the causes of many mission ending failures. Defending against mission ending failures is facilitated by fostering a team that has a healthy respect for Murphy's Law and a team with a of curiosity for how things work, how they can fail, and what they need to know. This curiosity is channeled into making the unknowns known or what is uncertain more certain. Efforts to assure mission success require the expenditure of energy in the following areas: 1. Understanding what defines Mission Success as guided by the customer's needs, objectives and constraints. 2. Understanding how the system is supposed to work and how the system is to be produced, fueled by the curiosity of how the system should work and how it should be produced. 3. Understanding how the system can fail and how the system might not be produced on time and within cost, fueled by the curiosity of how the system might fail and how production might be difficult. 4. Understanding what we need to know and what we need learn for proper completion of the above three items, fueled by the curiosity of what we might not know in order to make the best decisions.

  6. Microscale technologies for cell engineering

    CERN Document Server

    Gaharwar, Akhilesh

    2016-01-01

    This book offers readers cutting-edge research at the interface of polymer science and engineering, biomedical engineering, materials science, and biology. State-of-the-art developments in microscale technologies for cell engineering applications are covered, including technologies relevant to both pluripotent and adult stem cells, the immune system, and somatic cells of the animal and human origin. This book bridges the gap in the understanding of engineering biology at multiple length scale, including microenvironmental control, bioprocessing, and tissue engineering in the areas of cardiac, cartilage, skeletal, and vascular tissues, among others. This book also discusses unique, emerging areas of micropatterning and three-dimensional printing models of cellular engineering, and contributes to the better understanding of the role of biophysical factors in determining the cell fate. Microscale Technologies for Cell Engineering is valuable for bioengineers, biomaterial scientists, tissue engineers, clinicians,...

  7. AUTOMOTIVE DIESEL MAINTENACE 1. UNIT XV, I--MAINTAINING THE COOLING SYSTEM, CUMMINS DIESEL ENGINE, I--UNIT INSTALLATION--TRANSMISSION.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE FUNCTION AND MAINTENANCE OF THE DIESEL ENGINE COOLING SYSTEM AND THE PROCEDURES FOR TRANSMISSION INSTALLATION. TOPICS ARE (1) IMPORTANCE OF THE COOLING SYSTEM, (2) COOLING SYSTEM COMPONENTS, (3) EVALUATING COOLING SYSTEM FAILURES, (4) CARING FOR THE COOLING SYSTEM,…

  8. MEMS Rotary Engine Power System

    Science.gov (United States)

    Fernandez-Pello, A. Carlos; Pisano, Albert P.; Fu, Kelvin; Walther, David C.; Knobloch, Aaron; Martinez, Fabian; Senesky, Matt; Stoldt, Conrad; Maboudian, Roya; Sanders, Seth; Liepmann, Dorian

    This work presents a project overview and recent research results for the MEMS Rotary Engine Power System project at the Berkeley Sensor & Actuator Center of the University of California at Berkeley. The research motivation for the project is the high specific energy density of hydrocarbon fuels. When compared with the energy density of batteries, hydrocarbon fuels may have as much as 20x more energy. However, the technical challenge is the conversion of hydrocarbon fuel to electricity in an efficient and clean micro engine. A 12.9 mm diameter Wankel engine will be shown that has already generated 4 Watts of power at 9300rpm. In addition, the 1mm and 2.4 mm Wankel engines that BSAC is developing for power generation at the microscale will be discussed. The project goal is to develop electrical power output of 90milliwatts from the 2.4 mm engine. Prototype engine components have already been fabricated and these will be described. The integrated generator design concept utilizes a nickel-iron alloy electroplated in the engine rotor poles, so that the engine rotor also serves as the generator rotor.

  9. Engine control system having fuel-based adjustment

    Science.gov (United States)

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2011-03-15

    A control system for an engine having a cylinder is disclosed having an engine valve configured to affect a fluid flow of the cylinder, an actuator configured to move the engine valve, and an in-cylinder sensor configured to generate a signal indicative of a characteristic of fuel entering the cylinder. The control system also has a controller in communication with the actuator and the sensor. The controller is configured to determine the characteristic of the fuel based on the signal and selectively regulate the actuator to adjust a timing of the engine valve based on the characteristic of the fuel.

  10. Phage Genetic Engineering Using CRISPR–Cas Systems

    Directory of Open Access Journals (Sweden)

    Asma Hatoum-Aslan

    2018-06-01

    Full Text Available Since their discovery over a decade ago, the class of prokaryotic immune systems known as CRISPR–Cas have afforded a suite of genetic tools that have revolutionized research in model organisms spanning all domains of life. CRISPR-mediated tools have also emerged for the natural targets of CRISPR–Cas immunity, the viruses that specifically infect bacteria, or phages. Despite their status as the most abundant biological entities on the planet, the majority of phage genes have unassigned functions. This reality underscores the need for robust genetic tools to study them. Recent reports have demonstrated that CRISPR–Cas systems, specifically the three major types (I, II, and III, can be harnessed to genetically engineer phages that infect diverse hosts. Here, the mechanisms of each of these systems, specific strategies used, and phage editing efficacies will be reviewed. Due to the relatively wide distribution of CRISPR–Cas systems across bacteria and archaea, it is anticipated that these immune systems will provide generally applicable tools that will advance the mechanistic understanding of prokaryotic viruses and accelerate the development of novel technologies based on these ubiquitous organisms.

  11. A Vision for Systems Engineering Applied to Wind Energy (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Felker, F.; Dykes, K.

    2015-01-01

    This presentation was given at the Third Wind Energy Systems Engineering Workshop on January 14, 2015. Topics covered include the importance of systems engineering, a vision for systems engineering as applied to wind energy, and application of systems engineering approaches to wind energy research and development.

  12. Screening candidate systems engineers: exploratory results

    CSIR Research Space (South Africa)

    Gonçalves, D

    2010-09-01

    Full Text Available systems engineers for further development. Data were collected on personality, cognition, values and competence on 21 SE competencies using four computerised assessments. We report on the cognitive style distribution of the participating engineers...

  13. Understanding the Front-end of Large-scale Engineering Programs

    DEFF Research Database (Denmark)

    Lucae, Sebastian; Rebentisch, Eric; Oehmen, Josef

    2014-01-01

    Large engineering programs like sociotechnical infrastructure constructions of airports, plant constructions, or the development of radically innovative, high-tech industrial products such as electric vehicles or aircraft are affected by a number of serious risks, and subsequently commonly suffer...... from large cost overruns. Significant problems in program execution can be traced back to practices performed, or more frequently not performed, in the so-called “fuzzy front end” of the program. The lack of sufficient and effective efforts in the early stages of a program can result in unstable......, unclear and incomplete requirements, unclear roles and responsibilities within the program organization, insufficient planning, and unproductive tensions between program management and systems engineering. This study intends to clarify the importance of up-front planning to improve program performance...

  14. System Engineering Management and Implementation Plan for Project W-211, ''Initial Tank Retrieval Systems'' (ITRS)

    International Nuclear Information System (INIS)

    VAN BEEK, J.E.

    2000-01-01

    This systems Engineering Management and Implementation Plan (SEMIP) describes the Project W-211 implementation of the Tank Farm Contractor Systems Engineering Management Plan (TFC SEMP). The SEMIP defines the systems engineering products and processes used by the project to comply with the TFC SEMP, and provides the basis for tailoring systems engineering processes by applying a graded approach to identify appropriate systems engineering requirements for W-211

  15. System Engineering Management and Implementation Plan for Project W-211 Initial Tank Retrieval Systems (ITRS)

    Energy Technology Data Exchange (ETDEWEB)

    VAN BEEK, J.E.

    2000-05-05

    This systems Engineering Management and Implementation Plan (SEMIP) describes the Project W-211 implementation of the Tank Farm Contractor Systems Engineering Management Plan (TFC SEMP). The SEMIP defines the systems engineering products and processes used by the project to comply with the TFC SEMP, and provides the basis for tailoring systems engineering processes by applying a graded approach to identify appropriate systems engineering requirements for W-211.

  16. Systems Engineering Model for ART Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Cruz, Carmen Margarita [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rochau, Gary E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, Mollye C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    The near-term objective of the EC team is to establish an operating, commercially scalable Recompression Closed Brayton Cycle (RCBC) to be constructed for the NE - STEP demonstration system (demo) with the lowest risk possible. A systems engineering approach is recommended to ensure adequate requirements gathering, documentation, and mode ling that supports technology development relevant to advanced reactors while supporting crosscut interests in potential applications. A holistic systems engineering model was designed for the ART Energy Conversion program by leveraging Concurrent Engineering, Balance Model, Simplified V Model, and Project Management principles. The resulting model supports the identification and validation of lifecycle Brayton systems requirements, and allows designers to detail system-specific components relevant to the current stage in the lifecycle, while maintaining a holistic view of all system elements.

  17. Systems engineering management plan for the Salt Repository Project

    International Nuclear Information System (INIS)

    Neff, J.O.

    1986-08-01

    This document presents the plan for using systems engineering in conducting and managing the technical work of the Salt Repository Project (SRP) of the US Department of Energy's Civilian Radioactive Waste Management Program. The need for preparing a Systems Engineering Management Plan (SEMP) is traced back to relevant DOE directives. These directives are interpreted as SRP requirements in the context of the Mined Geologic Disposal System. The strategy for conducting systems engineering on the SRP, including the role of the systems engineering process, is then described. The SEMP also designates who in the project organization will be responsible for carrying out the activities. Finally, the management tools that are used to implement the systems engineering process, including associated documentation on the SRP, are described

  18. An engineering design approach to systems biology.

    Science.gov (United States)

    Janes, Kevin A; Chandran, Preethi L; Ford, Roseanne M; Lazzara, Matthew J; Papin, Jason A; Peirce, Shayn M; Saucerman, Jeffrey J; Lauffenburger, Douglas A

    2017-07-17

    Measuring and modeling the integrated behavior of biomolecular-cellular networks is central to systems biology. Over several decades, systems biology has been shaped by quantitative biologists, physicists, mathematicians, and engineers in different ways. However, the basic and applied versions of systems biology are not typically distinguished, which blurs the separate aspirations of the field and its potential for real-world impact. Here, we articulate an engineering approach to systems biology, which applies educational philosophy, engineering design, and predictive models to solve contemporary problems in an age of biomedical Big Data. A concerted effort to train systems bioengineers will provide a versatile workforce capable of tackling the diverse challenges faced by the biotechnological and pharmaceutical sectors in a modern, information-dense economy.

  19. Systems engineering at the nanoscale

    Science.gov (United States)

    Benkoski, Jason J.; Breidenich, Jennifer L.; Wei, Michael C.; Clatterbaughi, Guy V.; Keng, Pei Yuin; Pyun, Jeffrey

    2012-06-01

    Nanomaterials have provided some of the greatest leaps in technology over the past twenty years, but their relatively early stage of maturity presents challenges for their incorporation into engineered systems. Perhaps even more challenging is the fact that the underlying physics at the nanoscale often run counter to our physical intuition. The current state of nanotechnology today includes nanoscale materials and devices developed to function as components of systems, as well as theoretical visions for "nanosystems," which are systems in which all components are based on nanotechnology. Although examples will be given to show that nanomaterials have indeed matured into applications in medical, space, and military systems, no complete nanosystem has yet been realized. This discussion will therefore focus on systems in which nanotechnology plays a central role. Using self-assembled magnetic artificial cilia as an example, we will discuss how systems engineering concepts apply to nanotechnology.

  20. Analysis and simulation of mobile air conditioning system coupled with engine cooling system

    International Nuclear Information System (INIS)

    Qi, Zhao-gang; Chen, Jiang-ping; Chen, Zhi-jiu

    2007-01-01

    Many components of the mobile air conditioning system and engine cooling system are closely interrelated and make up the vehicle climate control system. In the present paper, a vehicle climate control system model including air conditioning system and engine cooling system has been proposed under different operational conditions. All the components have been modeled on the basis of experimental data. Based on the commercial software, a computer simulation procedure of the vehicle climate control system has been developed. The performance of the vehicle climate control system is simulated, and the calculational data have good agreement with experimental data. Furthermore, the vehicle climate control simulation results have been compared with an individual air conditioning system and engine cooling system. The influences between the mobile air conditioning system and the engine cooling system are discussed

  1. System for measuring engine exhaust constituents

    International Nuclear Information System (INIS)

    Carduner, K.R.; Colvin, A.D.; Leong, D.Y.W.

    1992-01-01

    This patent describes a system for measuring an automotive engine exhaust constituent. It comprises: a meter for determining the mass of air flowing through the engine and for generating an engine airflow signal corresponding to the airflow; sample handling apparatus; diluent adding means; processor means. This patent also describes a method for using an analyzer to determine the amount of lubricating oil consumed by an automotive engine. It comprises: determining the amount of sulfur dioxide within the room air being drawn into the engine; maintaining a constant total flow comprised of a constant fraction of the engine's exhaust gas and a diluent gas through the analyzer, while: determining the amount of sulfur dioxide contained within the engine's exhaust, determining the amount of sulfur dioxide contained within the engine's exhaust, while operating the engine on room air; determining an efficiency factor for the analyzer; and using the efficiency factor and the concentration of sulfur in the engine oil and the amounts of sulfur dioxide determined in steps a and d to determine the amount of lubrication oil leaving the engine through its exhaust

  2. Discovery of Nigri/nox and Panto/pox site-specific recombinase systems facilitates advanced genome engineering.

    Science.gov (United States)

    Karimova, Madina; Splith, Victoria; Karpinski, Janet; Pisabarro, M Teresa; Buchholz, Frank

    2016-07-22

    Precise genome engineering is instrumental for biomedical research and holds great promise for future therapeutic applications. Site-specific recombinases (SSRs) are valuable tools for genome engineering due to their exceptional ability to mediate precise excision, integration and inversion of genomic DNA in living systems. The ever-increasing complexity of genome manipulations and the desire to understand the DNA-binding specificity of these enzymes are driving efforts to identify novel SSR systems with unique properties. Here, we describe two novel tyrosine site-specific recombination systems designated Nigri/nox and Panto/pox. Nigri originates from Vibrio nigripulchritudo (plasmid VIBNI_pA) and recombines its target site nox with high efficiency and high target-site selectivity, without recombining target sites of the well established SSRs Cre, Dre, Vika and VCre. Panto, derived from Pantoea sp. aB, is less specific and in addition to its native target site, pox also recombines the target site for Dre recombinase, called rox. This relaxed specificity allowed the identification of residues that are involved in target site selectivity, thereby advancing our understanding of how SSRs recognize their respective DNA targets.

  3. Systems Engineering of Electric and Hybrid Vehicles

    Science.gov (United States)

    Kurtz, D. W.; Levin, R. R.

    1986-01-01

    Technical paper notes systems engineering principles applied to development of electric and hybrid vehicles such that system performance requirements support overall program goal of reduced petroleum consumption. Paper discusses iterative design approach dictated by systems analyses. In addition to obvious peformance parameters of range, acceleration rate, and energy consumption, systems engineering also considers such major factors as cost, safety, reliability, comfort, necessary supporting infrastructure, and availability of materials.

  4. Industrial deployment of system engineering methods

    CERN Document Server

    Romanovsky, Alexander

    2013-01-01

    A formal method is not the main engine of a development process, its contribution is to improve system dependability by motivating formalisation where useful. This book summarizes the results of the DEPLOY research project on engineering methods for dependable systems through the industrial deployment of formal methods in software development. The applications considered were in automotive, aerospace, railway, and enterprise information systems, and microprocessor design.  The project introduced a formal method, Event-B, into several industrial organisations and built on the lessons learned to

  5. Intelligent Engine Systems Work Element 1.3: Sub System Health Management

    Science.gov (United States)

    Ashby, Malcolm; Simpson, Jeffrey; Singh, Anant; Ferguson, Emily; Frontera, mark

    2005-01-01

    The objectives of this program were to develop health monitoring systems and physics-based fault detection models for engine sub-systems including the start, lubrication, and fuel. These models will ultimately be used to provide more effective sub-system fault identification and isolation to reduce engine maintenance costs and engine down-time. Additionally, the bearing sub-system health is addressed in this program through identification of sensing requirements, a review of available technologies and a demonstration of a demonstration of a conceptual monitoring system for a differential roller bearing. This report is divided into four sections; one for each of the subtasks. The start system subtask is documented in section 2.0, the oil system is covered in section 3.0, bearing in section 4.0, and the fuel system is presented in section 5.0.

  6. Implementing Systems Engineering in the Civil Engineering Consulting Firm: An Evaluation

    NARCIS (Netherlands)

    de Graaf, Robin S.; Voordijk, Johannes T.; van den Heuvel, Len

    2016-01-01

    This study explores the challenges that civil engineering consulting firms face in their projects when they apply Systems Engineering (SE). It is also explained were these firms should focus when improving the use of SE. To conduct this study, the methodology of Eisenhardt (Building theories from

  7. Pragmatic electrical engineering fundamentals

    CERN Document Server

    Eccles, William

    2011-01-01

    Pragmatic Electrical Engineering: Fundamentals introduces the fundamentals of the energy-delivery part of electrical systems. It begins with a study of basic electrical circuits and then focuses on electrical power. Three-phase power systems, transformers, induction motors, and magnetics are the major topics.All of the material in the text is illustrated with completely-worked examples to guide the student to a better understanding of the topics. This short lecture book will be of use at any level of engineering, not just electrical. Its goal is to provide the practicing engineer with a practi

  8. 46 CFR 113.35-15 - Mechanical engine order telegraph systems; application.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Mechanical engine order telegraph systems; application...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-15 Mechanical engine order telegraph systems; application. If a mechanical engine order telegraph...

  9. IERIAS: inference engine for reactor accident diagnostic system using knowledge engineering technique

    International Nuclear Information System (INIS)

    Yokobayashi, Masao; Yoshida, Kazuo; Kohsaka, Atsuo; Yamamoto, Minoru.

    1984-11-01

    This report describes an inference engine IERIAS which has been devoloped for a diagnostic system to identify the cause and type of an abnormal transient of a reactor plant. This system using knowledge engineering technique consists of a knowledge base and an inference engine. The inference engine IERIAS is designed so as to treat time-varying data of a plant. The major features of IERIAS are ; (1) histroy of transients can be treated, (2) knowledge base can be divided into some knowledge units, (3) program language UTILISP is used which is suitable for symbolic data manipulation. Inference was made using IERIAS with a knowledge base which was created from simulated results of various transients by a PWR plant simulator. The results showed a good applicability of IERIAS for reactor diagnosis. (author)

  10. Systems metabolic engineering in an industrial setting.

    Science.gov (United States)

    Sagt, Cees M J

    2013-03-01

    Systems metabolic engineering is based on systems biology, synthetic biology, and evolutionary engineering and is now also applied in industry. Industrial use of systems metabolic engineering focuses on strain and process optimization. Since ambitious yields, titers, productivities, and low costs are key in an industrial setting, the use of effective and robust methods in systems metabolic engineering is becoming very important. Major improvements in the field of proteomics and metabolomics have been crucial in the development of genome-wide approaches in strain and process development. This is accompanied by a rapid increase in DNA sequencing and synthesis capacity. These developments enable the use of systems metabolic engineering in an industrial setting. Industrial systems metabolic engineering can be defined as the combined use of genome-wide genomics, transcriptomics, proteomics, and metabolomics to modify strains or processes. This approach has become very common since the technology for generating large data sets of all levels of the cellular processes has developed quite fast into robust, reliable, and affordable methods. The main challenge and scope of this mini review is how to translate these large data sets in relevant biological leads which can be tested for strain or process improvements. Experimental setup, heterogeneity of the culture, and sample pretreatment are important issues which are easily underrated. In addition, the process of structuring, filtering, and visualization of data is important, but also, the availability of a genetic toolbox and equipment for medium/high-throughput fermentation is a key success factor. For an efficient bioprocess, all the different components in this process have to work together. Therefore, mutual tuning of these components is an important strategy.

  11. Visualization of construction engineering

    International Nuclear Information System (INIS)

    Okada, Hisako; Miura, Jun

    2000-01-01

    It is required for nuclear power plant construction to reduce construction cost and shorten construction period. An early and accurate construction planning including schedule coordination among the companies has recently become more important and it is possible to obtain necessary information for construction planning in early stage. In this situation, we have been developing a visualization system for construction engineering for nuclear power plants. This system has an interface with the existing Plant Layout 3D-CAD system and consists of three sub systems: (1) Scheduling and simulation system, (2) Yard planning system and (3) Scaffolding planning system. This paper describes overview of this system. This visualization system is very helpful for construction engineers to easily understand situation and environment around installation area, to easily plan a work sequence and confirm the planned schedule, and it is also effective for customers and workers to understand the planning. As a result, this visualization system enables safety and high quality construction. (author)

  12. 4+ Dimensional nuclear systems engineering

    International Nuclear Information System (INIS)

    Suh, Kune Y.

    2009-01-01

    Nuclear power plants (NPPs) require massive quantity of data during the design, construction, operation, maintenance and decommissioning stages because of their special features like size, cost, radioactivity, and so forth. The system engineering thus calls for a fully integrated way of managing the information flow spanning their life cycle. This paper proposes digital systems engineering anchored in three dimensional (3D) computer aided design (CAD) models. The signature in the proposal lies with the four plus dimensional (4 + D) Technology TM , a critical know how for digital management. ESSE (Engineering Super Simulation Emulation) features a 4 + D Technology TM for nuclear energy systems engineering. The technology proposed in the 3D space and time plus cost coordinates, i.e. 4 + D, is the backbone of digital engineering in the nuclear systems design and management. Dased on an integrated 3D configuration management system, ESSE consists of solutions JANUS (Junctional Analysis Neodynamic Unit SoftPower), EURUS (Engineering Utilities Research Unit SoftPower), NOTUS (Neosystemic Optimization Technical Unit SoftPower), VENUS (Virtual Engineering Neocybernetic Unit SoftPower) and INUUS (Informative Neographic Utilities Unit SoftPower). NOTUS contributes to reducing the construction cost of the NPPs by optimizing the component manufacturing procedure and the plant construction process. Planning and scheduling construction projects can thus benefit greatly by integrating traditional management techniques with digital process simulation visualization. The 3D visualization of construction processes and the resulting products intrinsically afford most of the advantages realized by incorporating a purely schedule level detail based the 4 + D system. Problems with equipment positioning and manpower congestion in certain areas can be visualized prior to the actual operation, thus preventing accidents and safety problems such as collision between two machines and losses in

  13. Two Rotor Stratified Charge Rotary Engine (SCRE) Engine System Technology Evaluation

    Science.gov (United States)

    Hoffman, T.; Mack, J.; Mount, R.

    1994-01-01

    This report summarizes results of an evaluation of technology enablement component technologies as integrated into a two rotor Stratified Charge Rotary Engine (SCRE). The work constitutes a demonstration of two rotor engine system technology, utilizing upgraded and refined component technologies derived from prior NASA Contracts NAS3-25945, NAS3-24628 and NAS-23056. Technical objectives included definition of, procurement and assembly of an advanced two rotor core aircraft engine, operation with Jet-A fuel at Take-Off rating of 340 BHP (254kW) and operation at a maximum cruise condition of 255 BHP (190kW), 75% cruise. A fuel consumption objective of 0.435 LBS/BHP-Hr (265 GRS/kW-Hr) was identified for the maximum cruise condition. A critical technology component item, a high speed, unit injector fuel injection system with electronic control was defined, procured and tested in conjunction with this effort. The two rotor engine configuration established herein defines an affordable, advanced, Jet-A fuel capability core engine (not including reduction gear, propeller shaft and some aircraft accessories) for General Aviation of the mid-1990's and beyond.

  14. 46 CFR 113.35-9 - Mechanical engine order telegraph systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Mechanical engine order telegraph systems. 113.35-9 Section 113.35-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-9 Mechanical engine order...

  15. Alternative approaches to reliability modeling of a multiple engineered barrier system

    International Nuclear Information System (INIS)

    Ananda, M.M.A.; Singh, A.K.

    1994-01-01

    The lifetime of the engineered barrier system used for containment of high-level radioactive waste will significantly impact the total performance of a geological repository facility. Currently two types of designs are under consideration for an engineered barrier system, single engineered barrier system and multiple engineered barrier system. Multiple engineered barrier system consists of several metal barriers and the waste form (cladding). Some recent work show that a significant improvement of performance can be achieved by utilizing multiple engineered barrier systems. Considering sequential failures for each barrier, we model the reliability of the multiple engineered barrier system. Weibull and exponential lifetime distributions are used through out the analysis. Furthermore, the number of failed engineered barrier systems in a repository at a given time is modeled using a poisson approximation

  16. Symbolic simulation of engineering systems on a supercomputer

    International Nuclear Information System (INIS)

    Ragheb, M.; Gvillo, D.; Makowitz, H.

    1986-01-01

    Model-Based Production-Rule systems for analysis are developed for the symbolic simulation of Complex Engineering systems on a CRAY X-MP Supercomputer. The Fault-Tree and Event-Tree Analysis methodologies from Systems-Analysis are used for problem representation and are coupled to the Rule-Based System Paradigm from Knowledge Engineering to provide modelling of engineering devices. Modelling is based on knowledge of the structure and function of the device rather than on human expertise alone. To implement the methodology, we developed a production-Rule Analysis System that uses both backward-chaining and forward-chaining: HAL-1986. The inference engine uses an Induction-Deduction-Oriented antecedent-consequent logic and is programmed in Portable Standard Lisp (PSL). The inference engine is general and can accommodate general modifications and additions to the knowledge base. The methodologies used will be demonstrated using a model for the identification of faults, and subsequent recovery from abnormal situations in Nuclear Reactor Safety Analysis. The use of the exposed methodologies for the prognostication of future device responses under operational and accident conditions using coupled symbolic and procedural programming is discussed

  17. Human engineering in mobile radwaste systems

    International Nuclear Information System (INIS)

    Jones, D.; McMahon, J.; Motl, G.

    1988-01-01

    To a large degree, mobile radwaste systems are replacing installed plant systems at US nuclear plants due to regulatory obsolescence, high capital and maintenance costs, and increased radiation exposure. Well over half the power plants in the United States now use some sort of mobile system similar to those offered by LN Technologies Corporation. Human engineering is reflected in mobile radwaste system design due to concerns about safety, efficiency, and cost. The radwaste services business is so competitive that vendors must reflect human engineering in several areas of equipment design in order to compete. The paper discusses radiation exposure control, contamination control, compact components, maintainability, operation, and transportability

  18. Exploring Young Children's Understanding about the Concept of Volume through Engineering Design in a STEM Activity: A Case Study

    Science.gov (United States)

    Park, Do-Yong; Park, Mi-Hwa; Bates, Alan B.

    2018-01-01

    This case study explores young children's understanding and application of the concept of volume through the practices of engineering design in a STEM activity. STEM stands for science, technology, engineering, and mathematics. However, engineering stands out as a challenging area to implement. In addition, most early engineering education…

  19. Engine control system having fuel-based timing

    Science.gov (United States)

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2012-04-03

    A control system for an engine having a cylinder is disclosed having an engine valve movable to regulate a fluid flow of the cylinder and an actuator associated with the engine valve. The control system also has a sensor configured to generate a signal indicative of an amount of an air/fuel mixture remaining within the cylinder after completion of a first combustion event and a controller in communication with the actuator and the sensor. The controller may be configured to compare the amount with a desired amount, and to selectively regulate the actuator to adjust a timing of the engine valve associated with a subsequent combustion event based on the comparison.

  20. Model-driven engineering of information systems principles, techniques, and practice

    CERN Document Server

    Cretu, Liviu Gabriel

    2015-01-01

    Model-driven engineering (MDE) is the automatic production of software from simplified models of structure and functionality. It mainly involves the automation of the routine and technologically complex programming tasks, thus allowing developers to focus on the true value-adding functionality that the system needs to deliver. This book serves an overview of some of the core topics in MDE. The volume is broken into two sections offering a selection of papers that helps the reader not only understand the MDE principles and techniques, but also learn from practical examples. Also covered are the

  1. Reusable Rocket Engine Turbopump Health Management System

    Science.gov (United States)

    Surko, Pamela

    1994-01-01

    A health monitoring expert system software architecture has been developed to support condition-based health monitoring of rocket engines. Its first application is in the diagnosis decisions relating to the health of the high pressure oxidizer turbopump (HPOTP) of Space Shuttle Main Engine (SSME). The post test diagnostic system runs off-line, using as input the data recorded from hundreds of sensors, each running typically at rates of 25, 50, or .1 Hz. The system is invoked after a test has been completed, and produces an analysis and an organized graphical presentation of the data with important effects highlighted. The overall expert system architecture has been developed and documented so that expert modules analyzing other line replaceable units may easily be added. The architecture emphasizes modularity, reusability, and open system interfaces so that it may be used to analyze other engines as well.

  2. Reactor protection system including engineered features actuation system

    International Nuclear Information System (INIS)

    Palmaers, W.

    1982-01-01

    The safety concept requires to ensure that - the reactor protection system - the active engineered safeguard - and the necessary auxiliary systems are so designed and interfaced in respect of design and mode of action that, in the event of single component failure reliable control of the consequences of accidents remains ensured at all times and that the availability of the power plant is not limited unnecessarily. In order to satisfy these requirements due, importance was attached to a consistent spacial separation of the mutually redundant subsystems of the active safety equipment. The design and layout of the reactor protection system, of the power supply (emergency power supply), and of the auxiliary systems important from the safety engineering point of view, are such that their subsystems also largely satisfy the requirements of independence and spacial separation. (orig./RW)

  3. Current Developments in the French Engineering Education System

    Science.gov (United States)

    Lemaître, Denis

    2017-01-01

    The French engineering education system has been established in quite a different way from others in Europe, such as the German and British systems, for instance. Due to both the whole state system and the private initiatives during the industrial revolution, the engineering education system today is composed of a large number (nearly 200) of…

  4. Dynamic Systems and Control Engineering

    International Nuclear Information System (INIS)

    Kim, Jong Seok

    1994-02-01

    This book deals with introduction of dynamic system and control engineering, frequency domain modeling of dynamic system, temporal modeling of dynamic system, typical dynamic system and automatic control device, performance and stability of control system, root locus analysis, analysis of frequency domain dynamic system, design of frequency domain dynamic system, design and analysis of space, space of control system and digital control system such as control system design of direct digital and digitalization of consecutive control system.

  5. Dynamic Systems and Control Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Seok

    1994-02-15

    This book deals with introduction of dynamic system and control engineering, frequency domain modeling of dynamic system, temporal modeling of dynamic system, typical dynamic system and automatic control device, performance and stability of control system, root locus analysis, analysis of frequency domain dynamic system, design of frequency domain dynamic system, design and analysis of space, space of control system and digital control system such as control system design of direct digital and digitalization of consecutive control system.

  6. Collaborative damage mapping for emergency response: the role of Cognitive Systems Engineering

    Science.gov (United States)

    Kerle, N.; Hoffman, R. R.

    2013-01-01

    Remote sensing is increasingly used to assess disaster damage, traditionally by professional image analysts. A recent alternative is crowdsourcing by volunteers experienced in remote sensing, using internet-based mapping portals. We identify a range of problems in current approaches, including how volunteers can best be instructed for the task, ensuring that instructions are accurately understood and translate into valid results, or how the mapping scheme must be adapted for different map user needs. The volunteers, the mapping organizers, and the map users all perform complex cognitive tasks, yet little is known about the actual information needs of the users. We also identify problematic assumptions about the capabilities of the volunteers, principally related to the ability to perform the mapping, and to understand mapping instructions unambiguously. We propose that any robust scheme for collaborative damage mapping must rely on Cognitive Systems Engineering and its principal method, Cognitive Task Analysis (CTA), to understand the information and decision requirements of the map and image users, and how the volunteers can be optimally instructed and their mapping contributions merged into suitable map products. We recommend an iterative approach involving map users, remote sensing specialists, cognitive systems engineers and instructional designers, as well as experimental psychologists.

  7. TWRS Systems Engineering Working Plan

    International Nuclear Information System (INIS)

    Eiholzer, C.R.

    1994-01-01

    The purpose of this Systems Engineering (SE) Working Plan (SEWP) is to describe how the Westinghouse Hanford Company (WHC) Tank Waste Remediation System (TWRS) will implement the SE polity and guidance provided in the Tank Waste Remediation System (TWRS) Systems Engineering Management Plan (SEMP). Sections 2.0 through 4.0 cover how the SE process and management will be performed to develop a technical baseline within TWRS. Section 5.0 covers the plans and schedules to implement the SE process and management within TWRS. Detailed information contained in the TWRS Program SEMP is not repeated in this document. This SEWP and the SE discipline defined within apply to the TWRS Program and new and ongoing TWRS projects or activities, including new facilities and safety. The SE process will be applied to the existing Tank Farm operations where the Richland TWRS Program Office management determines the process appropriate and where value will be added to existing Tank Farm system and operations

  8. Predicted performance of an integrated modular engine system

    Science.gov (United States)

    Binder, Michael; Felder, James L.

    1993-01-01

    Space vehicle propulsion systems are traditionally comprised of a cluster of discrete engines, each with its own set of turbopumps, valves, and a thrust chamber. The Integrated Modular Engine (IME) concept proposes a vehicle propulsion system comprised of multiple turbopumps, valves, and thrust chambers which are all interconnected. The IME concept has potential advantages in fault-tolerance, weight, and operational efficiency compared with the traditional clustered engine configuration. The purpose of this study is to examine the steady-state performance of an IME system with various components removed to simulate fault conditions. An IME configuration for a hydrogen/oxygen expander cycle propulsion system with four sets of turbopumps and eight thrust chambers has been modeled using the Rocket Engine Transient Simulator (ROCETS) program. The nominal steady-state performance is simulated, as well as turbopump thrust chamber and duct failures. The impact of component failures on system performance is discussed in the context of the system's fault tolerant capabilities.

  9. Current understanding of interactions between nanoparticles and the immune system.

    Science.gov (United States)

    Dobrovolskaia, Marina A; Shurin, Michael; Shvedova, Anna A

    2016-05-15

    The delivery of drugs, antigens, and imaging agents benefits from using nanotechnology-based carriers. The successful translation of nanoformulations to the clinic involves thorough assessment of their safety profiles, which, among other end-points, includes evaluation of immunotoxicity. The past decade of research focusing on nanoparticle interaction with the immune system has been fruitful in terms of understanding the basics of nanoparticle immunocompatibility, developing a bioanalytical infrastructure to screen for nanoparticle-mediated immune reactions, beginning to uncover the mechanisms of nanoparticle immunotoxicity, and utilizing current knowledge about the structure-activity relationship between nanoparticles' physicochemical properties and their effects on the immune system to guide safe drug delivery. In the present review, we focus on the most prominent pieces of the nanoparticle-immune system puzzle and discuss the achievements, disappointments, and lessons learned over the past 15years of research on the immunotoxicity of engineered nanomaterials. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Development of teaching modules for geology and engineering coursework using terrestrial LiDAR scanning systems

    Science.gov (United States)

    Yarbrough, L. D.; Katzenstein, K.

    2012-12-01

    Exposing students to active and local examples of physical geologic processes is beneficial to the learning process. Students typically respond with interest to examples that use state-of-the-art technologies to investigate local or regional phenomena. For lower cognitive level of learning (e.g. knowledge, comprehension, and application), the use of "close-to-home" examples ensures that students better understand concepts. By providing these examples, the students may already have a familiarity or can easily visit the location. Furthermore, these local and regional examples help students to offer quickly other examples of similar phenomena. Investigation of these examples using normal photographic techniques, as well as a more sophisticated 3-D Light Detection And Ranging (LiDAR) (AKA Terrestrial Laser Scanning or TLS) system, allows students to gain a better understanding of the scale and the mechanics of the geologic processes and hazards. The systems are used for research, teaching and outreach efforts and depending on departmental policies can be accessible to students are various learning levels. TLS systems can yield scans at sub-centimeter resolution and contain surface reflectance of targets. These systems can serve a number of learning goals that are essential for training geoscientists and engineers. While querying the data to answer geotechnical or geomorphologic related questions, students will develop skills using large, spatial databases. The upper cognitive level of learning (e.g. analysis, synthesis, and evaluation) is also promoted by using a subset of the data and correlating the physical geologic process of stream bank erosion and rock slope failures with mathematical and computer models using the scanned data. Students use the examples and laboratory exercises to help build their engineering judgment skills with Earth materials. The students learn not only applications of math and engineering science but also the economic and social implication

  11. Middle-School Teachers' Understanding and Teaching of the Engineering Design Process: A Look at Subject Matter and Pedagogical Content Knowledge

    Science.gov (United States)

    Hynes, Morgan M.

    2012-01-01

    This paper reports on research investigating six middle school teachers without engineering degrees as they taught an engineering unit on the engineering design process. Videotaped classroom sessions and teacher interviews were analyzed to understand the subject matter and pedagogical content knowledge the teachers used and developed as they…

  12. Systems Engineering and Integration for Advanced Life Support System and HST

    Science.gov (United States)

    Kamarani, Ali K.

    2005-01-01

    Systems engineering (SE) discipline has revolutionized the way engineers and managers think about solving issues related to design of complex systems: With continued development of state-of-the-art technologies, systems are becoming more complex and therefore, a systematic approach is essential to control and manage their integrated design and development. This complexity is driven from integration issues. In this case, subsystems must interact with one another in order to achieve integration objectives, and also achieve the overall system's required performance. Systems engineering process addresses these issues at multiple levels. It is a technology and management process dedicated to controlling all aspects of system life cycle to assure integration at all levels. The Advanced Integration Matrix (AIM) project serves as the systems engineering and integration function for the Human Support Technology (HST) program. AIM provides means for integrated test facilities and personnel for performance trade studies, analyses, integrated models, test results, and validated requirements of the integration of HST. The goal of AIM is to address systems-level integration issues for exploration missions. It will use an incremental systems integration approach to yield technologies, baselines for further development, and possible breakthrough concepts in the areas of technological and organizational interfaces, total information flow, system wide controls, technical synergism, mission operations protocols and procedures, and human-machine interfaces.

  13. Computer-Aided System of Virtual Testing of Gas Turbine Engines

    Directory of Open Access Journals (Sweden)

    Rybakov Viktor N.

    2016-01-01

    Full Text Available The article describes the concept of a virtual lab that includes subsystem of gas turbine engine simulation, subsystem of experiment planning, subsystem of measurement errors simulation, subsystem of simulator identification and others. The basis for virtual lab development is the computer-aided system of thermogasdynamic research and analysis “ASTRA”. The features of gas turbine engine transient modes simulator are described. The principal difference between the simulators of transient and stationary modes of gas turbine engines is that the energy balance of the compressor and turbine becomes not applicable. The computer-aided system of virtual gas turbine engine testing was created using the developed transient modes simulator. This system solves the tasks of operational (throttling, speed, climatic, altitude characteristics calculation, analysis of transient dynamics and selection of optimal control laws. Besides, the system of virtual gas turbine engine testing is a clear demonstration of gas turbine engine working process and the regularities of engine elements collaboration. The interface of the system of virtual gas turbine engine testing is described in the article and some screenshots of the interface elements are provided. The developed system of virtual gas turbine engine testing provides means for reducing the laboriousness of gas turbine engines testing. Besides, the implementation of this system in the learning process allows the diversification of lab works and therefore improve the quality of training.

  14. Intelligent Control Systems with an Introduction to System of Systems Engineering

    CERN Document Server

    Nanayakkara, Thrishantha

    2009-01-01

    From aeronautics and manufacturing to healthcare and disaster management, systems engineering (SE) focuses on designing applications that ensure performance optimization. This title integrates the fundamentals of artificial intelligence and systems control in a framework applicable to both simple dynamic systems and large-scale system of systems

  15. Recent advances in systems metabolic engineering tools and strategies.

    Science.gov (United States)

    Chae, Tong Un; Choi, So Young; Kim, Je Woong; Ko, Yoo-Sung; Lee, Sang Yup

    2017-10-01

    Metabolic engineering has been playing increasingly important roles in developing microbial cell factories for the production of various chemicals and materials to achieve sustainable chemical industry. Nowadays, many tools and strategies are available for performing systems metabolic engineering that allows systems-level metabolic engineering in more sophisticated and diverse ways by adopting rapidly advancing methodologies and tools of systems biology, synthetic biology and evolutionary engineering. As an outcome, development of more efficient microbial cell factories has become possible. Here, we review recent advances in systems metabolic engineering tools and strategies together with accompanying application examples. In addition, we describe how these tools and strategies work together in simultaneous and synergistic ways to develop novel microbial cell factories. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Software engineering practices for control system reliability

    International Nuclear Information System (INIS)

    S. K. Schaffner; K. S White

    1999-01-01

    This paper will discuss software engineering practices used to improve Control System reliability. The authors begin with a brief discussion of the Software Engineering Institute's Capability Maturity Model (CMM) which is a framework for evaluating and improving key practices used to enhance software development and maintenance capabilities. The software engineering processes developed and used by the Controls Group at the Thomas Jefferson National Accelerator Facility (Jefferson Lab), using the Experimental Physics and Industrial Control System (EPICS) for accelerator control, are described. Examples are given of how their procedures have been used to minimized control system downtime and improve reliability. While their examples are primarily drawn from their experience with EPICS, these practices are equally applicable to any control system. Specific issues addressed include resource allocation, developing reliable software lifecycle processes and risk management

  17. Modeling and fuzzy control of the engine coolant conditioning system in an IC engine test bed

    International Nuclear Information System (INIS)

    Mohtasebi, Seyed Saeid; Shirazi, Farzad A.; Javaheri, Ahmad; Nava, Ghodrat Hamze

    2010-01-01

    Mechanical and thermodynamical performance of internal combustion engines is significantly affected by the engine working temperature. In an engine test bed, the internal combustion engines are tested in different operating conditions using a dynamometer. It is required that the engine temperature be controlled precisely, particularly in transient states. This precise control can be achieved by an engine coolant conditioning system mainly consisting of a heat exchanger, a control valve, and a controller. In this study, constitutive equations of the system are derived first. These differential equations show the second- order nonlinear time-varying dynamics of the system. The model is validated with the experimental data providing satisfactory results. After presenting the dynamic equations of the system, a fuzzy controller is designed based on our prior knowledge of the system. The fuzzy rules and the membership functions are derived by a trial and error and heuristic method. Because of the nonlinear nature of the system the fuzzy rules are set to satisfy the requirements of the temperature control for different operating conditions of the engine. The performance of the fuzzy controller is compared with a PI one for different transient conditions. The results of the simulation show the better performance of the fuzzy controller. The main advantages of the fuzzy controller are the shorter settling time, smaller overshoot, and improved performance especially in the transient states of the system

  18. Fuzzy systems and soft computing in nuclear engineering

    International Nuclear Information System (INIS)

    Ruan, D.

    2000-01-01

    This book is an organized edited collection of twenty-one contributed chapters covering nuclear engineering applications of fuzzy systems, neural networks, genetic algorithms and other soft computing techniques. All chapters are either updated review or original contributions by leading researchers written exclusively for this volume. The volume highlights the advantages of applying fuzzy systems and soft computing in nuclear engineering, which can be viewed as complementary to traditional methods. As a result, fuzzy sets and soft computing provide a powerful tool for solving intricate problems pertaining in nuclear engineering. Each chapter of the book is self-contained and also indicates the future research direction on this topic of applications of fuzzy systems and soft computing in nuclear engineering. (orig.)

  19. Tools for Developing a Quality Management Program: Human Factors and Systems Engineering Tools

    International Nuclear Information System (INIS)

    Caldwell, Barrett S.

    2008-01-01

    During the past 10 years, there has been growing acceptance and encouragement of partnerships between medical teams and engineers. Using human factors and systems engineering descriptions of process flows and operational sequences, the author's research laboratory has helped highlight opportunities for reducing adverse events and improving performance in health care and other high-consequence environments. This research emphasized studying human behavior that enhances system performance and a range of factors affecting adverse events, rather than a sole emphasis on human error causation. Developing a balanced evaluation requires novel approaches to causal analyses of adverse events and, more importantly, methods of recovery from adverse conditions. Recent work by the author's laboratory in collaboration with the Regenstrief Center for Healthcare Engineering has started to address possible improvements in taxonomies describing health care tasks. One major finding includes enhanced understanding of events and how event dynamics influence provider tasks and constraints. Another element of this research examines team coordination tasks that strongly affect patient care and quality management, but may be undervalued as 'indirect patient care' activities

  20. FY 1995 annual report on research and development of propulsion systems for supersonic transport aircraft. Pt. 2. Research and development of methane-fueled engines for aircraft; 1995 nendo choonsoku yusokiyo suishin system no kenkyu kaihatsu seika hokokusho. 2. Methane nenryo kokukiyo engine no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Described herein are the R and D results of FY 1995 for the total system as part of R and D of propulsion systems for supersonic transport aircraft. For R and D of the intake, researches on aerodynamic flow passages at a combined intake design point of Mach 5 are conducted, in which the effects of the boundary layer are taken into consideration, and the wind tunnel tests are conducted for the combined intake. For R and D of the nozzle, experiments are conducted to establish the techniques for designing exhaust nozzle variable schedules in the turbo region, aerodynamic force in the turbo and ram regions, cooling systems, and composite liners. For R and D of the turbojet engines, the second phase engine tests are conducted with the engine of improved designs and two-dimensional variable exhaust nozzle. The tests produce good results in terms of engine endurance and mechanical soundness of the low-pressure systems. For R and D of the combined cycle engine incorporating the turbojet and ramjet engines, the model tests are conducted to understand aerodynamic characteristics when these engines are switched to each other. (NEDO)

  1. Evolving social responsibility understandings, motivations, and career goals of undergraduate students initially pursuing engineering degrees

    Science.gov (United States)

    Rulifson, Gregory A.

    Engineers impact the lives of every person every day, and need to have a strong sense of social responsibility. Understanding what students think about social responsibility in engineering and their futures is very important. Further, by identifying influences that change these ideas and shape their conceptualizations, we can intervene to help prepare students for their responsibilities as part of the profession in the future. This thesis presents the experiences, in their own words, of 34 students who started in engineering. The study is composed of three parts: (i) engineering students' ideas about socially responsible engineering and what influenced these ideas, (ii) how students see themselves as future socially responsible engineers and how this idea changes over their first three years of college, and (iii) what social responsibility-related reasons students who leave engineering have for choosing a new major. Results show that students are complicated and have varied paths through and out of engineering studies. Students came up with their own ideas about socially responsible engineering that converged over the years on legal and safety related aspects of the profession. Relatedly, students identified with the engineering profession through internships and engineering courses, and rarely described socially responsible aspirations that could be accomplished with engineering. More often, those students who desired to help the disadvantaged through their engineering work left engineering. Their choice to leave was a combination of an unsupportive climate, disinterest in their classes, and a desire to combine their personal and professional social responsibility ambitions. If we want engineering students to push the engineering profession forward to be more socially responsible, we can identify the effective influences and develop a curriculum that encourages critical thinking about the social context and impacts of engineering. Additionally, a social

  2. On-Board Hydrogen Gas Production System For Stirling Engines

    Science.gov (United States)

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  3. The art and science of Systems Engineering

    Directory of Open Access Journals (Sweden)

    Jerome Longrew

    2014-12-01

    Full Text Available In this work are collected years of experience and the work of systems engineering, and debates centered in the industry leadership, of engineer and instructors around the world. A recurrent issue in this experiences and discussions is that community used a lot of terms and titles more diffused with the aim of achieve an agreement toward a common comprehension of this area of knowledge. Besides, it does not matter how are divided the functions and responsibilities among teams, the obligatoriness is ensure that this be clears and are run as a functional whole. The goal is provide a wide definition of systems engineer, described the characteristics of behave of highly effective engineered, and make explicit the expectations of the same.

  4. Waste feed delivery program systems engineering implementation plan

    International Nuclear Information System (INIS)

    O'Toole, S.M.; Hendel, B.J.

    1998-01-01

    This document defines the systems engineering processes and products planned by the Waste Feed Delivery Program to develop the necessary and sufficient systems to provide waste feed to the Privatization Contractor for Phase 1. It defines roles and responsibilities for the performance of the systems engineering processes and generation of products

  5. Airbreathing engine selection criteria for SSTO propulsion system

    Science.gov (United States)

    Ohkami, Yoshiaki; Maita, Masataka

    1995-02-01

    This paper presents airbreathing engine selection criteria to be applied to the propulsion system of a Single Stage To Orbit (SSTO). To establish the criteria, a relation among three major parameters, i.e., delta-V capability, weight penalty, and effective specific impulse of the engine subsystem, is derived as compared to these parameters of the LH2/LOX rocket engine. The effective specific impulse is a function of the engine I(sub sp) and vehicle thrust-to-drag ratio which is approximated by a function of the vehicle velocity. The weight penalty includes the engine dry weight, cooling subsystem weight. The delta-V capability is defined by the velocity region starting from the minimum operating velocity up to the maximum velocity. The vehicle feasibility is investigated in terms of the structural and propellant weights, which requires an iteration process adjusting the system parameters. The system parameters are computed by iteration based on the Newton-Raphson method. It has been concluded that performance in the higher velocity region is extremely important so that the airbreathing engines are required to operate beyond the velocity equivalent to the rocket engine exhaust velocity (approximately 4500 m/s).

  6. 46 CFR 113.35-13 - Mechanical engine order telegraph systems; operation.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Mechanical engine order telegraph systems; operation...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-13 Mechanical engine order telegraph systems; operation. If more than one transmitter operates a...

  7. Application of systems engineering: An acquisition agent perspective

    CSIR Research Space (South Africa)

    Niken, A

    2014-10-01

    Full Text Available This article covers a descriptive case study on the application of systems engineering and systems engineering management at Armscor. The report also covers the investigation into development methods used and the how the requirements changes...

  8. Application of systems engineering: An acquisition agent perspective

    CSIR Research Space (South Africa)

    Niken, A

    2014-09-01

    Full Text Available This article covers a descriptive case study on the application of systems engineering and systems engineering management at Armscor. The report also covers the investigation into development methods used and the how the requirements changes...

  9. HPT Clearance Control: Intelligent Engine Systems-Phase 1

    Science.gov (United States)

    2005-01-01

    The following work has been completed to satisfy the Phase I Deliverables for the "HPT Clearance Control" project under NASA GRC's "Intelligent Engine Systems" program: (1) Need for the development of an advanced HPT ACC system has been very clearly laid out, (2) Several existing and potential clearance control systems have been reviewed, (3) A scorecard has been developed to document the system, performance (fuel burn, range, payload, etc.), thermal, and mechanical characteristics of the existing clearance control systems, (4) Engine size and flight cycle selection for the advanced HPT ACC system has been reviewed with "large engine"/"long range mission" combination showing the most benefit, (5) A scoring criteria has been developed to tie together performance parameters for an objective, data driven comparison of competing systems, and (6) The existing HPT ACC systems have been scored based on this scoring system.

  10. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    Science.gov (United States)

    Monell, Donald W.; Piland, William M.

    1999-01-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g. manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative

  11. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    Science.gov (United States)

    Monell, Donald W.; Piland, William M.

    2000-07-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often led to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative

  12. Advanced Engine/Aftertreatment System R&D

    Energy Technology Data Exchange (ETDEWEB)

    Pihl, J.; West, B.; Toops, T.; Adelman, B. (Navistar, Inc.); Derybowski, E. (Navistar, Inc.)

    2011-09-30

    Navistar and ORNL established this CRADA to develop diesel engine aftertreatment configurations and control strategies that could meet emissions regulations while maintaining or improving vehicle efficiency. The early years of the project focused on reducing the fuel penalty associated with lean NOx trap (LNT, also known as NOx adsorber catalyst) regeneration and desulfation. While Navistar pursued engine-based (in-cylinder) approaches to LNT regeneration, complementary experiments at ORNL focused on in-exhaust fuel injection. ORNL developed a PC-based controller for transient electronic control of EGR valve position, intake throttle position, and actuation of fuel injectors in the exhaust system of a Navistar engine installed at Oak Ridge. Aftertreatment systems consisting of different diesel oxidation catalysts (DOCs) in conjunction with a diesel particle filter and LNT were evaluated under quasi-steady-state conditions. Hydrocarbon (HC) species were measured at multiple locations in the exhaust system with Gas chromatograph mass spectrometry (GC-MS) and Fourier transform infrared (FTIR) spectroscopy.

  13. Computer tools for systems engineering at LaRC

    Science.gov (United States)

    Walters, J. Milam

    1994-01-01

    The Systems Engineering Office (SEO) has been established to provide life cycle systems engineering support to Langley research Center projects. over the last two years, the computing market has been reviewed for tools which could enhance the effectiveness and efficiency of activities directed towards this mission. A group of interrelated applications have been procured, or are under development including a requirements management tool, a system design and simulation tool, and project and engineering data base. This paper will review the current configuration of these tools and provide information on future milestones and directions.

  14. Grid Integration Science, NREL Power Systems Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, Benjamin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-25

    This report highlights journal articles published in 2016 by researchers in the Power Systems Engineering Center. NREL's Power Systems Engineering Center published 47 journal and magazine articles in the past year, highlighting recent research in grid modernization.

  15. Advanced Engineering Environments for Space Transportation System Development

    Science.gov (United States)

    Thomas, L. Dale; Smith, Charles A.; Beveridge, James

    2000-01-01

    There are significant challenges facing today's launch vehicle industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker, all face the developer of a space transportation system. Within NASA, multiple technology development and demonstration projects are underway toward the objectives of safe, reliable, and affordable access to space. New information technologies offer promising opportunities to develop advanced engineering environments to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. At the Marshall Space Flight Center, work has begun on development of an advanced engineering environment specifically to support the design, modeling, and analysis of space transportation systems. This paper will give an overview of the challenges of developing space transportation systems in today's environment and subsequently discuss the advanced engineering environment and its anticipated benefits.

  16. Engineering systems reliability, safety, and maintenance an integrated approach

    CERN Document Server

    Dhillon, B S

    2017-01-01

    Today, engineering systems are an important element of the world economy and each year billions of dollars are spent to develop, manufacture, operate, and maintain various types of engineering systems around the globe. Many of these systems are highly sophisticated and contain millions of parts. For example, a Boeing jumbo 747 is made up of approximately 4.5 million parts including fasteners. Needless to say, reliability, safety, and maintenance of systems such as this have become more important than ever before.  Global competition and other factors are forcing manufacturers to produce highly reliable, safe, and maintainable engineering products. Therefore, there is a definite need for the reliability, safety, and maintenance professionals to work closely during design and other phases. Engineering Systems Reliability, Safety, and Maintenance: An Integrated Approach eliminates the need to consult many different and diverse sources in the hunt for the information required to design better engineering syste...

  17. An Architecture, System Engineering, and Acquisition Approach for Space System Software Resiliency

    Science.gov (United States)

    Phillips, Dewanne Marie

    Software intensive space systems can harbor defects and vulnerabilities that may enable external adversaries or malicious insiders to disrupt or disable system functions, risking mission compromise or loss. Mitigating this risk demands a sustained focus on the security and resiliency of the system architecture including software, hardware, and other components. Robust software engineering practices contribute to the foundation of a resilient system so that the system "can take a hit to a critical component and recover in a known, bounded, and generally acceptable period of time". Software resiliency must be a priority and addressed early in the life cycle development to contribute a secure and dependable space system. Those who develop, implement, and operate software intensive space systems must determine the factors and systems engineering practices to address when investing in software resiliency. This dissertation offers methodical approaches for improving space system resiliency through software architecture design, system engineering, increased software security, thereby reducing the risk of latent software defects and vulnerabilities. By providing greater attention to the early life cycle phases of development, we can alter the engineering process to help detect, eliminate, and avoid vulnerabilities before space systems are delivered. To achieve this objective, this dissertation will identify knowledge, techniques, and tools that engineers and managers can utilize to help them recognize how vulnerabilities are produced and discovered so that they can learn to circumvent them in future efforts. We conducted a systematic review of existing architectural practices, standards, security and coding practices, various threats, defects, and vulnerabilities that impact space systems from hundreds of relevant publications and interviews of subject matter experts. We expanded on the system-level body of knowledge for resiliency and identified a new software

  18. Usability engineering: domain analysis activities for augmented-reality systems

    Science.gov (United States)

    Gabbard, Joseph; Swan, J. E., II; Hix, Deborah; Lanzagorta, Marco O.; Livingston, Mark; Brown, Dennis B.; Julier, Simon J.

    2002-05-01

    This paper discusses our usability engineering process for the Battlefield Augmented Reality System (BARS). Usability engineering is a structured, iterative, stepwise development process. Like the related disciplines of software and systems engineering, usability engineering is a combination of management principals and techniques, formal and semi- formal evaluation techniques, and computerized tools. BARS is an outdoor augmented reality system that displays heads- up battlefield intelligence information to a dismounted warrior. The paper discusses our general usability engineering process. We originally developed the process in the context of virtual reality applications, but in this work we are adapting the procedures to an augmented reality system. The focus of this paper is our work on domain analysis, the first activity of the usability engineering process. We describe our plans for and our progress to date on our domain analysis for BARS. We give results in terms of a specific urban battlefield use case we have designed.

  19. Mammalian Synthetic Biology: Engineering Biological Systems.

    Science.gov (United States)

    Black, Joshua B; Perez-Pinera, Pablo; Gersbach, Charles A

    2017-06-21

    The programming of new functions into mammalian cells has tremendous application in research and medicine. Continued improvements in the capacity to sequence and synthesize DNA have rapidly increased our understanding of mechanisms of gene function and regulation on a genome-wide scale and have expanded the set of genetic components available for programming cell biology. The invention of new research tools, including targetable DNA-binding systems such as CRISPR/Cas9 and sensor-actuator devices that can recognize and respond to diverse chemical, mechanical, and optical inputs, has enabled precise control of complex cellular behaviors at unprecedented spatial and temporal resolution. These tools have been critical for the expansion of synthetic biology techniques from prokaryotic and lower eukaryotic hosts to mammalian systems. Recent progress in the development of genome and epigenome editing tools and in the engineering of designer cells with programmable genetic circuits is expanding approaches to prevent, diagnose, and treat disease and to establish personalized theranostic strategies for next-generation medicines. This review summarizes the development of these enabling technologies and their application to transforming mammalian synthetic biology into a distinct field in research and medicine.

  20. Introducing systems engineering to industrial design engineering students with hands-on experience

    NARCIS (Netherlands)

    Bonnema, Gerrit Maarten; Lutters-Weustink, Ilanit F.; van Houten, Frederikus J.A.M.; Selvaraj, H.; Muthukumar, V.

    2005-01-01

    The article presents an innovative educational project to introduce systems engineering to third year students in industrial design engineering at the University of Twente. In a short period the students are confronted with new technology, namely sensors and actuators. They have to apply this

  1. Understanding the leaky engineering pipeline: Motivation and job adaptability of female engineers

    Science.gov (United States)

    Saraswathiamma, Manjusha Thekkedathu

    This dissertation is a mixed-method study conducted using qualitative grounded theory and quantitative survey and correlation approaches. This study aims to explore the motivation and adaptability of females in the engineering profession and to develop a theoretical framework for both motivation and adaptability issues. As a result, this study endeavors to design solutions for the low enrollment and attenuation of female engineers in the engineering profession, often referred to as the "leaky female engineering pipeline." Profiles of 123 female engineers were studied for the qualitative approach, and 98 completed survey responses were analyzed for the quantitative approach. The qualitative, grounded-theory approach applied the constant comparison method; open, axial, and selective coding was used to classify the information in categories, sub-categories, and themes for both motivation and adaptability. The emergent themes for decisions motivating female enrollment include cognitive, emotional, and environmental factors. The themes identified for adaptability include the seven job adaptability factors: job satisfaction, risk- taking attitude, career/skill development, family, gender stereotyping, interpersonal skills, and personal benefit, as well as the self-perceived job adaptability factor. Illeris' Three-dimensional Learning Theory was modified as a model for decisions motivating female enrollment. This study suggests a firsthand conceptual parallelism of McClusky's Theory of Margin for the adaptability of female engineers in the profession. Also, this study attempted to design a survey instrument to measure job adaptability of female engineers. The study identifies two factors that are significantly related to job adaptability: interpersonal skills (related.

  2. Development of the environmental management integrated baseline at the Idaho National Engineering Laboratory using systems engineering

    International Nuclear Information System (INIS)

    Murphy, J.A.; Caliva, R.M.; Wixson, J.R.

    1997-01-01

    The Idaho National Engineering Laboratory (INEL) is one of many Department of Energy (DOE) national laboratories that has been performing environmental cleanup and stabilization, which was accelerated upon the end of the cold war. In fact, the INEL currently receives two-thirds of its scope to perform these functions. However, the cleanup is a highly interactive system that creates an opportunity for systems engineering methodology to be employed. At the INEL, a group called EM (Environmental Management) Integration has been given this charter along with a small core of systems engineers. This paper discusses the progress to date of converting the INEL legacy system into one that uses the systems engineering discipline as the method to ensure that external requirements are met

  3. Active Learning Session Based on Didactical Engineering Framework for Conceptual Change in Students' Equilibrium and Stability Understanding

    Science.gov (United States)

    Canu, Michael; Duque, Mauricio; de Hosson, Cécile

    2017-01-01

    Engineering students on control courses lack a deep understanding of equilibrium and stability that are crucial concepts in this discipline. Several studies have shown that students find it difficult to understand simple familiar or academic static equilibrium cases as well as dynamic ones from mechanics even if they know the discipline's criteria…

  4. Engineered Geothermal System Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Petty, Susan

    2014-06-19

    In June 2009, AltaRock Energy began field work on a project supported by the U.S. Department of Energy entitled “Use of Multiple Stimulations to Improve Economics of Engineered Geothermal Systems in Shallow High Temperature Intrusives.” The goal of the project was to develop an Engineered Geothermal System (EGS) in the portion of The Geysers geothermal field operated by the Northern California Power Agency (NCPA). The project encountered several problems while deepening Well E-7 which culminated in the suspension of field activities in September 2009. Some of the problems encountered are particular to The Geysers area, while others might be encountered in any geothermal field, and they might be avoided in future operations.

  5. Current Hitachi knowledge engineering systems: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Masui, S; Maeda, A; Masuishi, T [Hitachi, Ltd., Tokyo (Japan)

    1992-02-01

    In order to bring the knowledge engineering technology up to the practical phase, Hitachi has provided several knowledge engineering system products, including expert system building tools, knowledge acquisition tools, and many kinds of stand-alone and build-in expert systems in both the business and process control fields. In this review article, an overview of Hitachi{prime}s recent knowledge systems is described, which includes a trend analysis on recent market recognition. In addition, to introduce the Hitachi{prime}s current activities, a new product, a user interface building tool, and a new method of tuning fuzzy membership functions using a neuro-computing algorithm are also described. Furthermore, it is pointed out that not only practical tools and methodologies, but also a practical development team, including a planning section, a cooperating expert, a user section, and experienced knowledge engineers, is needed to achieve practical expert systems. 20 refs., 10 figs., 1 tab.

  6. An Event-driven, Value-based, Pull Systems Engineering Scheduling Approach

    Science.gov (United States)

    2012-03-01

    combining a services approach to systems engineering with a kanban -based scheduling system. It provides the basis for validating the approach with...agent-based simulations. Keywords-systems engineering; systems engineering process; lean; kanban ; process simulation I. INTRODUCTION AND BACKGROUND...approaches [8], [9], we are investigating the use of flow-based pull scheduling techniques ( kanban systems) in a rapid response development

  7. Alternative Approach to Power Engineering

    DEFF Research Database (Denmark)

    Pedersen, Knud Ole Helgesen; Havemann, Henrik

    2000-01-01

    as young and dynamic. Consequently, the new courses apply IT as a gateway to power engineering. The courses present the students with: (1) a meaningful, easy understandable power engineering problem; (2) a realistic set-up in the laboratory; and (3) a microprocessor system used as a tool to solve...

  8. Data systems and computer science: Software Engineering Program

    Science.gov (United States)

    Zygielbaum, Arthur I.

    1991-01-01

    An external review of the Integrated Technology Plan for the Civil Space Program is presented. This review is specifically concerned with the Software Engineering Program. The goals of the Software Engineering Program are as follows: (1) improve NASA's ability to manage development, operation, and maintenance of complex software systems; (2) decrease NASA's cost and risk in engineering complex software systems; and (3) provide technology to assure safety and reliability of software in mission critical applications.

  9. An Efficient Energy Regeneration System for Diesel Engines

    OpenAIRE

    HUANG, Ying; YANG, Fuyuan; OUYANG, Minggao; CHEN, Lin; GAO, Guojing; He, Yongsheng

    2010-01-01

    In order to further improve the fuel economy of vehicles, an efficient energy regeneration system for diesel engines is designed and constructed. An additional automatic clutch is added between the engine and the motor in a conventional ISG (Integrated Starter and Generator) system. During regenerative braking, the clutch can be disengaged and the engine braking is avoided. Control strategy is redesigned to determine the braking torque distribution and coordinate all the components. The gener...

  10. Systems and Control Engineering

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 1. Systems and Control Engineering - Notions of Control. A Rama Kalyan J R Vengateswaran. General Article Volume 4 Issue 1 January 1999 pp 45-52. Fulltext. Click here to view fulltext PDF. Permanent link:

  11. Annular tidal regenerator engine for nuclear circulatory support systems

    International Nuclear Information System (INIS)

    Hagen, K.G.; Ruggles, A.E.; Fam, S.S.; Torti, V.A.

    1975-01-01

    In order to simplify the configuration of the tidal regenerator engine nuclear-powered circulatory support system, thereby drastically reducing its size and improving the intrinsic reliability, the engine has been redesigned. This redesign focuses on allowing power to be extracted at the low temperature end of the engine utilizing a piston-cylinder arrangement wherein all of the necessary heat transfer processes occur in the annular gap between the piston and cylinder. In all other respects the engine retains its basic characteristics as a hybrid between a Stirling engine and a Rankine engine. A significant advantage of the new arrangement is the ability to raise the superheat temperature limit from 650 0 F to over 900 0 F. This has yielded an increase in engine efficiency from 10 percent to 14 percent, and further increases are anticipated by utilizing an expansion and/or a binary version of the engine. The implantable system volume has been reduced by a factor of three and orientation insensitivity with respect to gravity has been demonstrated. Many system components have already demonstrated endurances of several thousand hours

  12. Systems Engineering Initiative: Undergraduate Education Enhancement in a Regional Education Network

    International Nuclear Information System (INIS)

    Kurwitz, R. C.; Peddicord, K.; Poston, J.; Yang, X.; Bostanci, H.

    2016-01-01

    Full text: The Systems Engineering Initiative (SEI) is an experience based education enhancement programme that forms teams of undergraduate students with faculty and industry mentors to solve problems of interest to industry. This model of innovation creates a new learning paradigm that is outside the traditional classroom based model and fits more of the Master-apprentice model as applied to engineering teams. The SEI programme is currently administered by the Nuclear Power Institute (NPI), a regional nuclear education network, and is being carried out at three partner universities. Previous nuclear related projects have benefited industry and are of high technical quality with publications in peer-reviewed journals and awards for presentations in various forums. Students within the programme have benefited through development of soft skills outside the traditional curriculum, understanding of how their knowledge fits into a nuclear organization, and exposure to career opportunities. Industry and other NPI stakeholders benefit from the development of capable engineers and technicians, positive outreach to the community, and most importantly, knowledge transfer to the next generation of nuclear professionals. (author

  13. A genetic replacement system for selection-based engineering of essential proteins

    Science.gov (United States)

    2012-01-01

    Background Essential genes represent the core of biological functions required for viability. Molecular understanding of essentiality as well as design of synthetic cellular systems includes the engineering of essential proteins. An impediment to this effort is the lack of growth-based selection systems suitable for directed evolution approaches. Results We established a simple strategy for genetic replacement of an essential gene by a (library of) variant(s) during a transformation. The system was validated using three different essential genes and plasmid combinations and it reproducibly shows transformation efficiencies on the order of 107 transformants per microgram of DNA without any identifiable false positives. This allowed for reliable recovery of functional variants out of at least a 105-fold excess of non-functional variants. This outperformed selection in conventional bleach-out strains by at least two orders of magnitude, where recombination between functional and non-functional variants interfered with reliable recovery even in recA negative strains. Conclusions We propose that this selection system is extremely suitable for evaluating large libraries of engineered essential proteins resulting in the reliable isolation of functional variants in a clean strain background which can readily be used for in vivo applications as well as expression and purification for use in in vitro studies. PMID:22898007

  14. Complete modeling for systems of a marine diesel engine

    Science.gov (United States)

    Nahim, Hassan Moussa; Younes, Rafic; Nohra, Chadi; Ouladsine, Mustapha

    2015-03-01

    This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations. The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine's output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).

  15. Development of an engine system simulation software package - ESIM

    Energy Technology Data Exchange (ETDEWEB)

    Erlandsson, Olof

    2000-10-01

    A software package, ESIM is developed for simulating internal combustion engine systems, including models for engine, manifolds, turbocharger, charge-air cooler (inter cooler) and inlet air heater. This study focus on the thermodynamic treatment and methods used in the models. It also includes some examples of system simulations made with these models for validation purposes. The engine model can be classified as a zero-dimensional, single zone model. It includes calculation of the valve flow process, models for heat release and models for in-cylinder, exhaust port and manifold heat transfer. Models are developed for handling turbocharger performance and charge air cooler characteristics. The main purpose of the project related to this work is to use the ESIM software to study heat balance and performance of homogeneous charge compression ignition (HCCI) engine systems. A short description of the HCCI engine is therefore included, pointing out the difficulties, or challenges regarding the HCCI engine, from a system perspective. However, the relations given here, and the code itself, is quite general, making it possible to use these models to simulate spark ignited, as well as direct injected engines.

  16. Emerging Trends in Computing, Informatics, Systems Sciences, and Engineering

    CERN Document Server

    Elleithy, Khaled

    2013-01-01

    Emerging Trends in Computing, Informatics, Systems Sciences, and Engineering includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of  Industrial Electronics, Technology & Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning. This book includes the proceedings of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2010). The proceedings are a set of rigorously reviewed world-class manuscripts presenting the state of international practice in Innovative Algorithms and Techniques in Automation, Industrial Electronics and Telecommunications.

  17. Using hybrid expert system approaches for engineering applications

    Science.gov (United States)

    Allen, R. H.; Boarnet, M. G.; Culbert, C. J.; Savely, R. T.

    1987-01-01

    In this paper, the use of hybrid expert system shells and hybrid (i.e., algorithmic and heuristic) approaches for solving engineering problems is reported. Aspects of various engineering problem domains are reviewed for a number of examples with specific applications made to recently developed prototype expert systems. Based on this prototyping experience, critical evaluations of and comparisons between commercially available tools, and some research tools, in the United States and Australia, and their underlying problem-solving paradigms are made. Characteristics of the implementation tool and the engineering domain are compared and practical software engineering issues are discussed with respect to hybrid tools and approaches. Finally, guidelines are offered with the hope that expert system development will be less time consuming, more effective, and more cost-effective than it has been in the past.

  18. WDM Systems and Networks Modeling, Simulation, Design and Engineering

    CERN Document Server

    Ellinas, Georgios; Roudas, Ioannis

    2012-01-01

    WDM Systems and Networks: Modeling, Simulation, Design and Engineering provides readers with the basic skills, concepts, and design techniques used to begin design and engineering of optical communication systems and networks at various layers. The latest semi-analytical system simulation techniques are applied to optical WDM systems and networks, and a review of the various current areas of optical communications is presented. Simulation is mixed with experimental verification and engineering to present the industry as well as state-of-the-art research. This contributed volume is divided into three parts, accommodating different readers interested in various types of networks and applications. The first part of the book presents modeling approaches and simulation tools mainly for the physical layer including transmission effects, devices, subsystems, and systems), whereas the second part features more engineering/design issues for various types of optical systems including ULH, access, and in-building system...

  19. A systems engineering perspective on the human-centered design of health information systems.

    Science.gov (United States)

    Samaras, George M; Horst, Richard L

    2005-02-01

    The discipline of systems engineering, over the past five decades, has used a structured systematic approach to managing the "cradle to grave" development of products and processes. While elements of this approach are typically used to guide the development of information systems that instantiate a significant user interface, it appears to be rare for the entire process to be implemented. In fact, a number of authors have put forth development lifecycle models that are subsets of the classical systems engineering method, but fail to include steps such as incremental hazard analysis and post-deployment corrective and preventative actions. In that most health information systems have safety implications, we argue that the design and development of such systems would benefit by implementing this systems engineering approach in full. Particularly with regard to bringing a human-centered perspective to the formulation of system requirements and the configuration of effective user interfaces, this classical systems engineering method provides an excellent framework for incorporating human factors (ergonomics) knowledge and integrating ergonomists in the interdisciplinary development of health information systems.

  20. International conference in electrical engineering and intelligent systems

    CERN Document Server

    Gelman, Len; Electrical Engineering and Intelligent Systems

    2013-01-01

    The revised and extended papers collected in this volume represent the cutting-edge of research at the nexus of electrical engineering and intelligent systems. They were selected from well over 1000 papers submitted to the high-profile international World Congress on Engineering held in London in July 2011. The chapters cover material across the full spectrum of work in the field, including computational intelligence, control engineering, network management, and wireless networks. Readers will also find substantive papers on signal processing, Internet computing, high performance computing, and industrial applications.   The Electrical Engineering and Intelligent Systems conference, as part of the 2011 World Congress on Engineering was organized under the auspices of the non-profit International Association of Engineers (IAENG). With more than 30 nations represented on the conference committees alone, the Congress features the best and brightest scientific minds from a multitude of disciplines related to eng...

  1. Main control system verification and validation of NPP digital I and C system based on engineering simulator

    International Nuclear Information System (INIS)

    Lin Meng; Hou Dong; Liu Pengfei; Yang Zongwei; Yang Yanhua

    2010-01-01

    Full-scope digital instrumentation and controls system (I and C) technique is being introduced in Chinese new constructed Nuclear Power Plant (NPP), which mainly includes three parts: control system, reactor protection system and engineered safety feature actuation system. For example, SIEMENS TELEPERM XP and XS distributed control system (DCS) have been used in Ling Ao Phase II NPP, which is located in Guangdong province, China. This is the first NPP project in China that Chinese engineers are fully responsible for all the configuration of actual analog and logic diagram, although experience in NPP full-scope digital I and C is very limited. For the safety, it has to be made sure that configuration is right and control functions can be accomplished before the phase of real plant testing on reactor. Therefore, primary verification and validation (V and V) of I and C needs to be carried out. Except the common and basic way, i.e. checking the diagram configuration one by one according to original design, NPP engineering simulator is applied as another effective approach of V and V. For this purpose, a virtual NPP thermal-hydraulic model is established as a basis according to Ling Ao Phase II NPP design, and the NPP simulation tools can provide plant operation parameters to DCS, accept control signal from I and C and give response. During the test, one set of data acquisition equipments are used to build a connection between the engineering simulator (software) and SIEMENS DCS I/O cabinet (hardware). In this emulation, original diagram configuration in DCS and field hardware structures are kept unchanged. In this way, firstly judging whether there are some problems by observing the input and output of DCS without knowing the internal configuration. Then secondly, problems can be found and corrected by understanding and checking the exact and complex configuration in detail. At last, the correctness and functionality of the control system are verified. This method is

  2. 2005 8th Annual Systems Engineering Conference. Volume 1, Tuesday

    Science.gov (United States)

    2005-10-27

    systems engineering – Based on ISO 12207 – software engineering – Measure using best practices of CMMI® • Benefits – Facilitates sharing of tools... 12207 Software Life-Cycle Processes IEEE SSC-C Software Engineering Process SECNAV 5000.2C DoD Architecture Framework ISO 9001:2000 Quality Systems GIG...Comparisons and Contrasts Between ISO 14001, OHSAS 18001, and MIL-STD-882D and their Suitability for the Systems Engineering Process Mr. Kenneth Dormer

  3. International Conference on Intelligent Technologies and Engineering System (ICITES 2012)

    CERN Document Server

    Huang, Yi-Cheng; Intelligent Technologies and Engineering Systems

    2013-01-01

    This book concentrates on intelligent technologies as it relates to engineering systems. The book covers the following topics: networking, signal processing, artificial intelligence, control and software engineering, intelligent electronic circuits and systems, communications, and materials and mechanical engineering. The book is a collection of original papers that have been reviewed by technical editors. These papers were presented at the International Conference on Intelligent Technologies and Engineering Systems, held Dec. 13-15, 2012.

  4. On Cloud-Based Engineering of Dependable Systems

    OpenAIRE

    Alajrami, Sami

    2014-01-01

    The cloud computing paradigm is being adopted by many organizations in different application domains as it is cost effective and offers a virtually unlimited pool of resources. Engineering critical systems can benefit from clouds in attaining all dependability means: fault tolerance, fault prevention, fault removal and fault forecasting. Our research aims to investigate the potential of supporting engineering of dependable software systems with cloud computing and proposes an open, extensible...

  5. Qualitative models for space system engineering

    Science.gov (United States)

    Forbus, Kenneth D.

    1990-01-01

    The objectives of this project were: (1) to investigate the implications of qualitative modeling techniques for problems arising in the monitoring, diagnosis, and design of Space Station subsystems and procedures; (2) to identify the issues involved in using qualitative models to enhance and automate engineering functions. These issues include representing operational criteria, fault models, alternate ontologies, and modeling continuous signals at a functional level of description; and (3) to develop a prototype collection of qualitative models for fluid and thermal systems commonly found in Space Station subsystems. Potential applications of qualitative modeling to space-systems engineering, including the notion of intelligent computer-aided engineering are summarized. Emphasis is given to determining which systems of the proposed Space Station provide the most leverage for study, given the current state of the art. Progress on using qualitative models, including development of the molecular collection ontology for reasoning about fluids, the interaction of qualitative and quantitative knowledge in analyzing thermodynamic cycles, and an experiment on building a natural language interface to qualitative reasoning is reported. Finally, some recommendations are made for future research.

  6. Artistic and Engineering Design of Platform-Based Production Systems: A Study of Swedish Architectural Practice

    Directory of Open Access Journals (Sweden)

    Gustav Jansson

    2018-02-01

    Full Text Available Research on platform-based production systems for house-building has focused on production and manufacturing issues. The aim of this research is to explore how the architectural design process contributes to the industrialised house-building industry from the perspective of creative design work. It also aims to describe how constraints affect architectural design work in the engineer-to-order context, when using platform-based production systems. Architects with experience in using platform-based building systems with different degrees of constraints were interviewed regarding creative aspects of the design work. The interviews, together with documents relating to platform constraints, were then analysed from the perspective of artistic and engineering design theories. The results show the benefits and issues of using platform constraints, both with prefabrication of volumetric modules, as well as prefabricated slab and wall elements. The study highlights a major research gap by describing how architectural work, from both the creative artistic and engineering design perspectives, is affected by constraints in the building platform: (1 the architectural design work goes through a series of divergent and convergent processes where the divergent processes are explorative and the convergent processes are solution-oriented; and (2, there is a trade-off between creativity and efficiency in the design work. Open parameters for layout design are key to architectural creativity, while predefinition supports efficiency. The results also provide an understanding of the potential for creativity in artistic and engineering work tasks through different phases in design, and how they are related to constraints in the platform. The main limitation of the research is the number of interviewed architects who had different background experiences of working with different types of platform constraints. More studies are needed to confirm the observations and to

  7. DIDACTIC ENGINEERING: DESIGNING NEW GENERATION LEARNING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Nail K. Nuriyev

    2016-09-01

    Full Text Available Introduction: the article deals with the organisation of training activities in the man-made environment. Didactic engineering is seen as a methodology within which problems of didactics are solved with application of pedagogical, psychological, engineering methods. It is obvious that in order to implement the training of future engineers in a competence-based format (according to educational standard a new type of teaching system is needed, with new capacities (properties. These systems should set each student towards the development of professionally significant (key abilities, taking into account his/her psychological characteristics; ensure training on the verge of permissible difficulties (developing training, and thereby achieve rapid development of key skills, through his/her zone of “immediate development”; to diagnose the quality of possession of a competence in the academic sense. For the objectivity and reliability of assessment of the level and depth of learned knowledge it is necessary to generate this evaluation in a metric format. As a result, we created a didactic system, which combines all the listed properties and the properties of classical systems. This allowed us to construct a new generation of didactic systems. Materials and Methods: the research is based on a systematic analysis of the activity of an engineer; on models of “zones of immediate development” by L. S. Vygotsky; on “developmental education” by L. N. Zankova; on the use of pedagogical and psychological patterns as well as taxonomic methods, didactic engineering, theory of probability and mathematical statistics. Results: constructed is a model for training engineers in the metric format of competence, which envisages a rapid development of students project and constructive abilit ies based on their knowledge learned. Discussion and Conclusions: the parameters defining the probability of engineer’s success have been described; the taxonomic scale

  8. Engineered Barrier System: Physical and Chemical Environment

    International Nuclear Information System (INIS)

    Dixon, P.

    2004-01-01

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports

  9. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    Jarek, R.

    2004-01-01

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports

  10. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    G.H. Nieder-Westermann

    2005-01-01

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports

  11. A Process for Capturing the Art of Systems Engineering

    Science.gov (United States)

    Owens, Clark V., III; Sekeres, Carrie; Roumie, Yasmeen

    2016-01-01

    There is both an art and a science to systems engineering. The science of systems engineering is effectively captured in processes and procedures, but the art is much more elusive. We propose that there is six step process that can be applied to any systems engineering organization to create an environment from which the "art" of that organization can be captured, be allowed to evolve collaboratively and be shared with all members of the organization. This paper details this process as it was applied to NASA Launch Services Program (LSP) Integration Engineering Branch during a pilot program of Confluence, a Commercial Off The Shelf (COTS) wiki tool.

  12. Innovations and Advances in Computer, Information, Systems Sciences, and Engineering

    CERN Document Server

    Sobh, Tarek

    2013-01-01

    Innovations and Advances in Computer, Information, Systems Sciences, and Engineering includes the proceedings of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2011). The contents of this book are a set of rigorously reviewed, world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of  Industrial Electronics, Technology and Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning.

  13. A cylinder pressure based engine management system

    Energy Technology Data Exchange (ETDEWEB)

    Truscott, A.; Noble, A. [Ricardo Consulting Engineers Ltd. (United Kingdom); Mueller, R.; Hart, M.; Kroetz, G.; Eickhoff, M. [DaimlerChrysler AG (Germany); Cavalloni, C.; Gnielka, M. [Kistler Instrumente AG (Switzerland)

    2000-07-01

    Worldwide demands on fuel economy and lower emissions from automotive vehicles have led to stringent requirements in the development of Engine Management Systems (EMS). Cylinder Pressure based Engine Management Systems (CPEMS) provide a way forward in EMS technology by combining intelligent control algorithms with innovative sensing techniques. The full utilisation of model-based control and diagnostics to provide improvements in cost, efficiency, emissions and comfort requires the close monitoring of engine conditions. This is made possible with the advent of new inexpensive sensor materials that can withstand the harsh environment of the combustion chamber. AENEAS is a collaborative project undertaken by Ricardo, DaimlerChrysler and Kistler, with financial support from the European Commission and the Swiss Government, aimed at demonstrating the major benefits of CPEMS technology. This paper describes the application of CPEMS technology to a spark ignition (SI) engine. It describes how the combination of model based algorithms, incorporating physical principles, and cylinder pressure sensing can provide an effective means of engine control and diagnostics. Results are presented to demonstrate the benefits of this new technology. (author)

  14. An initial bibliometric analysis and mapping of systems engineering research

    CSIR Research Space (South Africa)

    Oosthuizen, Rudolph

    2016-07-01

    Full Text Available Systems engineering is still a growing field that depends on continuous research to develop and mature. Research in systems engineering is difficult and the classic approaches for other engineering disciplines may not be sufficient. Additional...

  15. The arrangement of deformation monitoring project and analysis of monitoring data of a hydropower engineering safety monitoring system

    Science.gov (United States)

    Wang, Wanshun; Chen, Zhuo; Li, Xiuwen

    2018-03-01

    The safety monitoring is very important in the operation and management of water resources and hydropower projects. It is the important means to understand the dam running status, to ensure the dam safety, to safeguard people’s life and property security, and to make full use of engineering benefits. This paper introduces the arrangement of engineering safety monitoring system based on the example of a water resource control project. The monitoring results of each monitoring project are analyzed intensively to show the operating status of the monitoring system and to provide useful reference for similar projects.

  16. 4+DTM Soft Power for Nuclear Systems Engineering

    International Nuclear Information System (INIS)

    Suh, Kune Y.

    2006-01-01

    Nuclear Power Plants (NPPs) of a bulky and complex structure consisting of hundreds of thousands of parts require huge volume of data during the design, construction, operation, maintenance and decommissioning stages. The systems engineering thus calls for a fully automated way of managing the information spanning their life cycle, i. e. from cradle to grave. In line with practice in disciplines of naval architecture, aerospace engineering, and automotive manufacturing, the paper proposes total digital systems engineering based on three-dimensional (3D) computer-aided design (CAD) models. The signature in the proposal lies with the four-plus-dimensional (4 + D) TM Soft Power engineering, a critical technology for digital management. The technology proposed in the 3D space and time plus cost coordinates, i. e. 4 + D TM coordinates, constitutes, the backbone of digital engineering in the nuclear systems design. This solution will help the preliminary simulation capability for NPP to supply the vital information not only for the design and management of the engineered structures but also for the online maintenance. NPP can be built utilizing the optimized construction schedule and the structural design. The efficiency of project management will also be improved by dynamically storing voluminous information in the advanced database. The 4 + D TM digital engineering will eventually lead to paperless design and construction planing in the global marker place

  17. The First Year of College: Understanding Student Persistence in Engineering

    Science.gov (United States)

    Hayden, Marina Calvet

    This research study aimed to expand our understanding of the factors that influence student persistence in engineering. The unique experiences of engineering students were examined as they transitioned into and navigated their first year of college at a public research university in California. Most students provided similar responses with respect to the way they experienced the transition to college and social life. There was, however, wide student response variation regarding their experience of academic life and academic policies, as well as in their level of pre-college academic preparation and financial circumstances. One key finding was that students' experiences during the first year of college varied widely based on the extent to which they had acquired organizational and learning skills prior to college. The study used a mixed methods approach. Quantitative and qualitative data were collected through an online survey and one-on-one interviews conducted with freshman students near the end of their first year of college. The theoretical foundations of this study included Astin's Theory of Student Involvement and Tinto's Theory of Student Departure. The design of the study was guided by these theories which emphasize the critical importance of student involvement with the academic and social aspects of college during the first year of college.

  18. Car engine breather icing

    OpenAIRE

    Horoufi, Aryan

    2012-01-01

    Icing in an engine breather system can block the engine breather pipe, cause excessive crankcase pressure and degrade the engine performance. In this project, a numerical study, experimental tests and CFD analysis are employed in order to understand condensation and the extent of freezing inside a vertical pipe, a horizontal pipe and a T-joint pipe which are exposed to an external convective cooling. The pipe internal flow is assumed to be a vapour/air mixture. This study has l...

  19. Microwave system engineering principles

    CERN Document Server

    Raff, Samuel J

    1977-01-01

    Microwave System Engineering Principles focuses on the calculus, differential equations, and transforms of microwave systems. This book discusses the basic nature and principles that can be derived from thermal noise; statistical concepts and binomial distribution; incoherent signal processing; basic properties of antennas; and beam widths and useful approximations. The fundamentals of propagation; LaPlace's Equation and Transmission Line (TEM) waves; interfaces between homogeneous media; modulation, bandwidth, and noise; and communications satellites are also deliberated in this text. This bo

  20. Engineering education as a complex system

    Science.gov (United States)

    Gattie, David K.; Kellam, Nadia N.; Schramski, John R.; Walther, Joachim

    2011-12-01

    This paper presents a theoretical basis for cultivating engineering education as a complex system that will prepare students to think critically and make decisions with regard to poorly understood, ill-structured issues. Integral to this theoretical basis is a solution space construct developed and presented as a benchmark for evaluating problem-solving orientations that emerge within students' thinking as they progress through an engineering curriculum. It is proposed that the traditional engineering education model, while analytically rigorous, is characterised by properties that, although necessary, are insufficient for preparing students to address complex issues of the twenty-first century. A Synthesis and Design Studio model for engineering education is proposed, which maintains the necessary rigor of analysis within a uniquely complex yet sufficiently structured learning environment.

  1. Developing a new industrial engineering curriculum using a systems engineering approach

    Science.gov (United States)

    Buyurgan, Nebil; Kiassat, Corey

    2017-11-01

    This paper reports on the development of an engineering curriculum for a new industrial engineering programme at a medium-sized private university in the northeast United States. A systems engineering process has been followed to design and develop the new curriculum. Considering the programme curriculum as a system, first the stakeholders have been identified, and some preliminary analysis on their needs and requirements has been conducted. Following that, the phases of conceptual design, preliminary design, and detailed design have been pursued during which different levels of validation, assessment, and evaluation processes have been utilised. In addition, a curriculum assessment and continuous improvement process have been developed to assess the curriculum and the courses frequently. The resulting curriculum is flexible, allowing the pursuit of accelerated graduate programmes, a second major, various minor options, and study-abroad; relevant, tailored to the needs of industry partners in the vicinity; and practical, providing hands-on education, resulting in employment-ready graduates.

  2. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XIV, I--MAINTAINING THE AIR SYSTEM, CUMMINS DIESEL ENGINE, II--UNIT REMOVAL--TRANSMISSION.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATING PRINCIPLES AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM AND THE PROCEDURES FOR TRANSMISSION REMOVAL. TOPICS ARE (1) DEFINITION OF TERMS RELATED TO THE DIESEL AIR SYSTEM, (2) PRNCIPLES OF DIESEL AIR COMPRESSORS, (3) PRINCIPLES OF AIR STARTING MOTORS, (4)…

  3. Targeting engineering synchronization in chaotic systems

    Science.gov (United States)

    Bhowmick, Sourav K.; Ghosh, Dibakar

    2016-07-01

    A method of targeting engineering synchronization states in two identical and mismatch chaotic systems is explained in detail. The method is proposed using linear feedback controller coupling for engineering synchronization such as mixed synchronization, linear and nonlinear generalized synchronization and targeting fixed point. The general form of coupling design to target any desire synchronization state under unidirectional coupling with the help of Lyapunov function stability theory is derived analytically. A scaling factor is introduced in the coupling definition to smooth control without any loss of synchrony. Numerical results are done on two mismatch Lorenz systems and two identical Sprott oscillators.

  4. Execution Of Systems Integration Principles During Systems Engineering Design

    Science.gov (United States)

    2016-09-01

    application utilized a paper-based approach to systems design. The customer directed utilization of an SE Waterfall process model . These new...regarding requirements, stakeholders, testing, and system boundaries. Additionally, this thesis discusses use of systems architecture frameworks and models ...and the consistent use of model - based systems engineering throughout development. Lastly, it proposes formal methods language for improving models

  5. Protein design in systems metabolic engineering for industrial strain development.

    Science.gov (United States)

    Chen, Zhen; Zeng, An-Ping

    2013-05-01

    Accelerating the process of industrial bacterial host strain development, aimed at increasing productivity, generating new bio-products or utilizing alternative feedstocks, requires the integration of complementary approaches to manipulate cellular metabolism and regulatory networks. Systems metabolic engineering extends the concept of classical metabolic engineering to the systems level by incorporating the techniques used in systems biology and synthetic biology, and offers a framework for the development of the next generation of industrial strains. As one of the most useful tools of systems metabolic engineering, protein design allows us to design and optimize cellular metabolism at a molecular level. Here, we review the current strategies of protein design for engineering cellular synthetic pathways, metabolic control systems and signaling pathways, and highlight the challenges of this subfield within the context of systems metabolic engineering. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. System engineering workstations - critical tool in addressing waste storage, transportation, or disposal

    International Nuclear Information System (INIS)

    Mar, B.W.

    1987-01-01

    The ability to create, evaluate, operate, and manage waste storage, transportation, and disposal systems (WSTDSs) is greatly enhanced when automated tools are available to support the generation of the voluminous mass of documents and data associated with the system engineering of the program. A system engineering workstation is an optimized set of hardware and software that provides such automated tools to those performing system engineering functions. This paper explores the functions that need to be performed by a WSTDS system engineering workstation. While the latter stages of a major WSTDS may require a mainframe computer and specialized software systems, most of the required system engineering functions can be supported by a system engineering workstation consisting of a personnel computer and commercial software. These findings suggest system engineering workstations for WSTDS applications will cost less than $5000 per unit, and the payback on the investment can be realized in a few months. In most cases the major cost element is not the capital costs of hardware or software, but the cost to train or retrain the system engineers in the use of the workstation and to ensure that the system engineering functions are properly conducted

  7. Review of vascularised bone tissue-engineering strategies with a focus on co-culture systems.

    Science.gov (United States)

    Liu, Yuchun; Chan, Jerry K Y; Teoh, Swee-Hin

    2015-02-01

    Poor angiogenesis within tissue-engineered grafts has been identified as a main challenge limiting the clinical introduction of bone tissue-engineering (BTE) approaches for the repair of large bone defects. Thick BTE grafts often exhibit poor cellular viability particularly at the core, leading to graft failure and lack of integration with host tissues. Various BTE approaches have been explored for improving vascularisation in tissue-engineered constructs and are briefly discussed in this review. Recent investigations relating to co-culture systems of endothelial and osteoblast-like cells have shown evidence of BTE efficacy in increasing vascularization in thick constructs. This review provides an overview of key concepts related to bone formation and then focuses on the current state of engineered vascularized co-culture systems using bone repair as a model. It will also address key questions regarding the generation of clinically relevant vascularized bone constructs as well as potential directions and considerations for research with the objective of pursuing engineered co-culture systems in other disciplines of vascularized regenerative medicine. The final objective is to generate serious and functional long-lasting vessels for sustainable angiogenesis that will enable enhanced cellular survival within thick voluminous bone grafts, thereby aiding in bone formation and remodelling in the long term. However, more evidence about the quality of blood vessels formed and its associated functional improvement in bone formation as well as a mechanistic understanding of their interactions are necessary for designing better therapeutic strategies for translation to clinical settings. Copyright © 2012 John Wiley & Sons, Ltd.

  8. High efficiency stoichiometric internal combustion engine system

    Science.gov (United States)

    Winsor, Richard Edward; Chase, Scott Allen

    2009-06-02

    A power system including a stoichiometric compression ignition engine in which a roots blower is positioned in the air intake for the engine to control air flow. Air flow is decreased during part power conditions to maintain the air-fuel ratio in the combustion chamber of the engine at stoichiometric, thus enabling the use of inexpensive three-way catalyst to reduce oxides of nitrogen. The roots blower is connected to a motor generator so that when air flow is reduced, electrical energy is stored which is made available either to the roots blower to temporarily increase air flow or to the system electrical load and thus recapture energy that would otherwise be lost in reducing air flow.

  9. Combustion pressure-based engine management system

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, R.; Hart, M. [DaimlerChrysler, Stuttart (Germany); Truscott, A.; Noble, A. [Ricardo, Shoreham-by-Sea (United Kingdom); Kroetz, G.; Richter, C. [DaimlerChrysler, Munchen (Germany); Cavalloni, C. [Kistler Instruments AG, Winterthur (Switzerland)

    2000-07-01

    In order to fulfill future emissions and OBD regulations, whilst meeting increasing demands for driveability and refinement, new technologies for SI engines have to be found in terms of sensors and algorithms for engine control units. One promising way, explored in the AENEAS collaborative project between DaimlerChrysler, Kistler, Ricardo and the European Commission, is to optimize the behavior of the system by using in-cylinder measurements and analysing them with modern control algorithms. In this paper a new engine management system based on combustion pressure sensing is presented. The pressure sensor is designed to give a reliable and accurate signal of the full pressure trace during a working cycle. With the application of new technologies low cost manufacturing appears to be achievable, so that an application in mass production can be considered. Furthermore, model-based algorithms were developed to allow optimal control of the engine based on the in-cylinder measurements. The algorithms incorporate physical principles to improve efficiency, emissions and to reduce the parameterisation effort. In the paper, applications of the combustion pressure signal for air mass estimation, knock detection, ignition control cam phase detection and diagnosis are discussed. (author)

  10. Theory of Technical Systems--Educational Tool for Engineering

    Science.gov (United States)

    Eder, Wolfgang Ernst

    2016-01-01

    Hubka's theory of technical systems (TTS) is briefly outlined. It describes commonalities in all engineering devices, whatever their physical principles of action. This theory is based on a general transformation system (TrfS), which can be used to show engineering in the contexts of society, economics and historic developments. The life cycle of…

  11. Reduced friction in engine sealing system for truck engines; Reibungsreduzierende Motorabdichtung bei Nutzfahrzeugmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, Joachim [Kaco GmbH und Co. KG, Heilbronn (Germany). RADIA-Dichtsysteme; Schaefer, Peter [Kaco GmbH und Co. KG, Heilbronn (Germany). Nutzfahrzeuganwendungen

    2010-04-15

    The mechanical efficiency of the drive unit components, e.g. the prevention of friction loss, becomes more the focus point of many new developments in engines and drive trains. Radia rotary shaft seal rings as commonly used in utility vehicles cause an accordingly high friction, particularly when in big dimensions. Kaco has engineered a tailor made design of state of the art friction reducing sealing system generation called Fred. In the acronym ''F'' stands for friction and ''red'' stands for reduced. Kaco has defined three focus points of the performance profile from the already established Fred sealing system generation for further engineering when applied in utility vehicles. (orig.)

  12. Re-Engineering Complex Legacy Systems at NASA

    Science.gov (United States)

    Ruszkowski, James; Meshkat, Leila

    2010-01-01

    The Flight Production Process (FPP) Re-engineering project has established a Model-Based Systems Engineering (MBSE) methodology and the technological infrastructure for the design and development of a reference, product-line architecture as well as an integrated workflow model for the Mission Operations System (MOS) for human space exploration missions at NASA Johnson Space Center. The design and architectural artifacts have been developed based on the expertise and knowledge of numerous Subject Matter Experts (SMEs). The technological infrastructure developed by the FPP Re-engineering project has enabled the structured collection and integration of this knowledge and further provides simulation and analysis capabilities for optimization purposes. A key strength of this strategy has been the judicious combination of COTS products with custom coding. The lean management approach that has led to the success of this project is based on having a strong vision for the whole lifecycle of the project and its progress over time, a goal-based design and development approach, a small team of highly specialized people in areas that are critical to the project, and an interactive approach for infusing new technologies into existing processes. This project, which has had a relatively small amount of funding, is on the cutting edge with respect to the utilization of model-based design and systems engineering. An overarching challenge that was overcome by this project was to convince upper management of the needs and merits of giving up more conventional design methodologies (such as paper-based documents and unwieldy and unstructured flow diagrams and schedules) in favor of advanced model-based systems engineering approaches.

  13. Usability evaluation of an experimental text summarization system and three search engines: implications for the reengineering of health care interfaces.

    Science.gov (United States)

    Kushniruk, Andre W; Kan, Min-Yem; McKeown, Kathleen; Klavans, Judith; Jordan, Desmond; LaFlamme, Mark; Patel, Vimia L

    2002-01-01

    This paper describes the comparative evaluation of an experimental automated text summarization system, Centrifuser and three conventional search engines - Google, Yahoo and About.com. Centrifuser provides information to patients and families relevant to their questions about specific health conditions. It then produces a multidocument summary of articles retrieved by a standard search engine, tailored to the user's question. Subjects, consisting of friends or family of hospitalized patients, were asked to "think aloud" as they interacted with the four systems. The evaluation involved audio- and video recording of subject interactions with the interfaces in situ at a hospital. Results of the evaluation show that subjects found Centrifuser's summarization capability useful and easy to understand. In comparing Centrifuser to the three search engines, subjects' ratings varied; however, specific interface features were deemed useful across interfaces. We conclude with a discussion of the implications for engineering Web-based retrieval systems.

  14. High energy density propulsion systems and small engine dynamometer

    Science.gov (United States)

    Hays, Thomas

    2009-07-01

    Scope and Method of Study. This study investigates all possible methods of powering small unmanned vehicles, provides reasoning for the propulsion system down select, and covers in detail the design and production of a dynamometer to confirm theoretical energy density calculations for small engines. Initial energy density calculations are based upon manufacturer data, pressure vessel theory, and ideal thermodynamic cycle efficiencies. Engine tests are conducted with a braking type dynamometer for constant load energy density tests, and show true energy densities in excess of 1400 WH/lb of fuel. Findings and Conclusions. Theory predicts lithium polymer, the present unmanned system energy storage device of choice, to have much lower energy densities than other conversion energy sources. Small engines designed for efficiency, instead of maximum power, would provide the most advantageous method for powering small unmanned vehicles because these engines have widely variable power output, loss of mass during flight, and generate rotational power directly. Theoretical predictions for the energy density of small engines has been verified through testing. Tested values up to 1400 WH/lb can be seen under proper operating conditions. The implementation of such a high energy density system will require a significant amount of follow-on design work to enable the engines to tolerate the higher temperatures of lean operation. Suggestions are proposed to enable a reliable, small-engine propulsion system in future work. Performance calculations show that a mature system is capable of month long flight times, and unrefueled circumnavigation of the globe.

  15. Instruction understanding for intelligent robots in nuclear facilities

    International Nuclear Information System (INIS)

    Kambayashi, Shaw; Abe, Yasuaki

    1993-01-01

    As a first step to realize an autonomous mobile robot for plant maintenance, where the robot is capable to understand instructions written in natural languages, we have developed a prototype of instruction understanding system which makes the robot construct its motion sequences to approach instrumentations and inspect them from input sentences written in Japanese. In the prototype system, the instruction understanding and planning capabilities are integrated by an inference engine which consists of a cyclic operation of three processings, i.e., sensing, decision, and execution. Based on environmental data and current states of the robot, a proper process such as natural language processing is triggered by the decision part of the inference engine to accomplish the input instructions. The multiple- and dynamic-planning capabilities, which are necessary to cope with dynamic changes of environments surrounding the robot, are achieved by utilizing the cyclic inference engine together with a set of the inference packets which keep intermediate results of natural language processing and planning for respective input instructions. (orig.)

  16. Introduction to System Health Engineering and Management in Aerospace

    Science.gov (United States)

    Johnson, Stephen B.

    2005-01-01

    This paper provides a technical overview of Integrated System Health Engineering and Management (ISHEM). We define ISHEM as "the paper provides a techniques, and technologies used to design, analyze, build, verify, and operate a system to prevent faults and/or minimize their effects." This includes design and manufacturing techniques as well operational and managerial methods. ISHEM is not a "purely technical issue" as it also involves and must account for organizational, communicative, and cognitive f&ms of humans as social beings and as individuals. Thus the paper will discuss in more detail why all of these elements, h m the technical to the cognitive and social, are necessary to build dependable human-machine systems. The paper outlines a functional homework and architecture for ISHEM operations, describes the processes needed to implement ISHEM in the system life-cycle, and provides a theoretical framework to understand the relationship between the different aspects of the discipline. It then derives from these and the social and cognitive bases a set of design and operational principles for ISHEM.

  17. Proceedings of the Real-Time Systems Engineering Workshop

    Science.gov (United States)

    2001-08-01

    real - time systems engineering. The workshop was held as part of the SEI Symposium in...Washington, DC, during September 2000. The objective of the workshop was to identify key issues and obtain feedback from attendees concerning real - time systems engineering...and interoperability. This report summarizes the workshop in terms of foundation, management, and technical topics, and it contains a discussion related to developing a community of interest for real - time systems

  18. Reliability engineering for nuclear and other high technology systems

    International Nuclear Information System (INIS)

    Lakner, A.A.; Anderson, R.T.

    1985-01-01

    This book is written for the reliability instructor, program manager, system engineer, design engineer, reliability engineer, nuclear regulator, probability risk assessment (PRA) analyst, general manager and others who are involved in system hardware acquisition, design and operation and are concerned with plant safety and operational cost-effectiveness. It provides criteria, guidelines and comprehensive engineering data affecting reliability; it covers the key aspects of system reliability as it relates to conceptual planning, cost tradeoff decisions, specification, contractor selection, design, test and plant acceptance and operation. It treats reliability as an integrated methodology, explicitly describing life cycle management techniques as well as the basic elements of a total hardware development program, including: reliability parameters and design improvement attributes, reliability testing, reliability engineering and control. It describes how these elements can be defined during procurement, and implemented during design and development to yield reliable equipment. (author)

  19. Systems Engineering Assessment & Workforce Development Plan

    Science.gov (United States)

    2012-11-05

    Government or its technical domains. Other fields, such as culinary and healthcare, have also identified these emerging and growing issues (Calhoun...et al. (2009). "The Art and Science of Systems Engineering." Systems Research Forum 3(2): 81-100. Shenhar, A. and B. Sauser, Eds. (2009). Systems

  20. Review on the application of system engineer model in nuclear power plant

    International Nuclear Information System (INIS)

    Chen Guocai

    2005-01-01

    system engineer was adopted deeply and play important roles in nuclear power plants in United States and Canada, the plant performance indicates that system engineer mode is a good practice. Qinshan CANDU nuclear power plant, established the system engineer mode since commissioning, as a core, system engineer took charge of the preparation of commissioning procedures, organization, coordination and guidance of commissioning execution. Unit 1 was put into commercial operation 43 days in advance and 112 days ahead of schedule for Unit 2 with excellent quality. Commissioning period are just 10.5 and 7.8 months for both Units respectively. Which is the shortest record in the history of CANDU nuclear power plant commissioning up to now. During operation, systems engineer has strength in routine operating and units reliability improvement. Based on the practice of Qinshan CANDU nuclear power plant commissioning and production technical management, the main form of the article in the era of knowledge: its characteristics and advantage and operating mode of the system engineer mode. System engineer is different from project engineer, he act as the master of systems and takes full responsibility for systems technical management. System engineer should do many jobs and improvement schedule to ensure his system in health status. System health monitor is a basic tool in system management, which is useful for equipment performance improvement. At last, the author made a forecast and comment on the prospects for the system engineer in the future. (author)

  1. Morphogenetic Engineering Toward Programmable Complex Systems

    CERN Document Server

    Sayama, Hiroki; Michel, Olivier

    2012-01-01

    Generally, spontaneous pattern formation phenomena are random and repetitive, whereas elaborate devices are the deterministic product of human design. Yet, biological organisms and collective insect constructions are exceptional examples of complex systems that are both self-organized and architectural.   This book is the first initiative of its kind toward establishing a new field of research, Morphogenetic Engineering, to explore the modeling and implementation of “self-architecturing” systems. Particular emphasis is placed on the programmability and computational abilities of self-organization, properties that are often underappreciated in complex systems science—while, conversely, the benefits of self-organization are often underappreciated in engineering methodologies.   Altogether, the aim of this work is to provide a framework for and examples of a larger class of “self-architecturing” systems, while addressing fundamental questions such as   > How do biological organisms carry out morphog...

  2. Systems Engineering a Naval Railgun

    National Research Council Canada - National Science Library

    Bean, John; Shebalin, Paul; Solitario, William

    2006-01-01

    ... to a viable acquisition program. The detailed formulation and application of the railgun systems engineering process will be defined by government acquisition agents and the selected private sector contractors in accordance with United States (US...

  3. Transient performance simulation of aircraft engine integrated with fuel and control systems

    International Nuclear Information System (INIS)

    Wang, C.; Li, Y.G.; Yang, B.Y.

    2017-01-01

    Highlights: • A new performance simulation method for engine hydraulic fuel systems is introduced. • Time delay of engine performance due to fuel system model is noticeable but small. • The method provides details of fuel system behavior in engine transient processes. • The method could be used to support engine and fuel system designs. - Abstract: A new method for the simulation of gas turbine fuel systems based on an inter-component volume method has been developed. It is able to simulate the performance of each of the hydraulic components of a fuel system using physics-based models, which potentially offers more accurate results compared with those using transfer functions. A transient performance simulation system has been set up for gas turbine engines based on an inter-component volume (ICV) method. A proportional-integral (PI) control strategy is used for the simulation of engine controller. An integrated engine and its control and hydraulic fuel systems has been set up to investigate their coupling effect during engine transient processes. The developed simulation system has been applied to a model aero engine. The results show that the delay of the engine transient response due to the inclusion of the fuel system model is noticeable although relatively small. The developed method is generic and can be applied to any other gas turbines and their control and fuel systems.

  4. Engineered Barrier System: Physical and Chemical Environment

    Energy Technology Data Exchange (ETDEWEB)

    P. Dixon

    2004-04-26

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  5. DEWEY: the DICOM-enabled workflow engine system.

    Science.gov (United States)

    Erickson, Bradley J; Langer, Steve G; Blezek, Daniel J; Ryan, William J; French, Todd L

    2014-06-01

    Workflow is a widely used term to describe the sequence of steps to accomplish a task. The use of workflow technology in medicine and medical imaging in particular is limited. In this article, we describe the application of a workflow engine to improve workflow in a radiology department. We implemented a DICOM-enabled workflow engine system in our department. We designed it in a way to allow for scalability, reliability, and flexibility. We implemented several workflows, including one that replaced an existing manual workflow and measured the number of examinations prepared in time without and with the workflow system. The system significantly increased the number of examinations prepared in time for clinical review compared to human effort. It also met the design goals defined at its outset. Workflow engines appear to have value as ways to efficiently assure that complex workflows are completed in a timely fashion.

  6. System engineering approach to GPM retrieval algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Rose, C. R. (Chris R.); Chandrasekar, V.

    2004-01-01

    System engineering principles and methods are very useful in large-scale complex systems for developing the engineering requirements from end-user needs. Integrating research into system engineering is a challenging task. The proposed Global Precipitation Mission (GPM) satellite will use a dual-wavelength precipitation radar to measure and map global precipitation with unprecedented accuracy, resolution and areal coverage. The satellite vehicle, precipitation radars, retrieval algorithms, and ground validation (GV) functions are all critical subsystems of the overall GPM system and each contributes to the success of the mission. Errors in the radar measurements and models can adversely affect the retrieved output values. Ground validation (GV) systems are intended to provide timely feedback to the satellite and retrieval algorithms based on measured data. These GV sites will consist of radars and DSD measurement systems and also have intrinsic constraints. One of the retrieval algorithms being studied for use with GPM is the dual-wavelength DSD algorithm that does not use the surface reference technique (SRT). The underlying microphysics of precipitation structures and drop-size distributions (DSDs) dictate the types of models and retrieval algorithms that can be used to estimate precipitation. Many types of dual-wavelength algorithms have been studied. Meneghini (2002) analyzed the performance of single-pass dual-wavelength surface-reference-technique (SRT) based algorithms. Mardiana (2003) demonstrated that a dual-wavelength retrieval algorithm could be successfully used without the use of the SRT. It uses an iterative approach based on measured reflectivities at both wavelengths and complex microphysical models to estimate both No and Do at each range bin. More recently, Liao (2004) proposed a solution to the Do ambiguity problem in rain within the dual-wavelength algorithm and showed a possible melting layer model based on stratified spheres. With the No and Do

  7. Automotive Engines; Automotive Mechanics I: 9043.03.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This automotive engines course studies and demonstrates the theory and principles of operation of the automotive four stroke cycle engine. The student will develop an understanding of the systems necessary to make the engine perform as designed, such as cooling, fuel, ignition and lubrication. This is a one or two quinmester credit course of 45…

  8. Charter for Systems Engineer Working Group

    Science.gov (United States)

    Suffredini, Michael T.; Grissom, Larry

    2015-01-01

    This charter establishes the International Space Station Program (ISSP) Mobile Servicing System (MSS) Systems Engineering Working Group (SEWG). The MSS SEWG is established to provide a mechanism for Systems Engineering for the end-to-end MSS function. The MSS end-to-end function includes the Space Station Remote Manipulator System (SSRMS), the Mobile Remote Servicer (MRS) Base System (MBS), Robotic Work Station (RWS), Special Purpose Dexterous Manipulator (SPDM), Video Signal Converters (VSC), and Operations Control Software (OCS), the Mobile Transporter (MT), and by interfaces between and among these elements, and United States On-Orbit Segment (USOS) distributed systems, and other International Space Station Elements and Payloads, (including the Power Data Grapple Fixtures (PDGFs), MSS Capture Attach System (MCAS) and the Mobile Transporter Capture Latch (MTCL)). This end-to-end function will be supported by the ISS and MSS ground segment facilities. This charter defines the scope and limits of the program authority and document control that is delegated to the SEWG and it also identifies the panel core membership and specific operating policies.

  9. Pike River Mine Disaster: Systems-Engineering and Organisational Contributions

    Directory of Open Access Journals (Sweden)

    Dirk J. Pons

    2016-10-01

    Full Text Available The Pike River mine (PRM, an underground coal mine in New Zealand (NZ, exploded in 2010. This paper analyses the causes of the disaster, with a particular focus on the systems engineering and organisational contributions. Poor systems-engineering contributed via poorly designed ventilation, use of power-electronics underground, and placement of the main ventilation fan underground. Management rushed prematurely into production even though the technology development in the mine was incomplete. Investment in non-productive infrastructure was deprioritised resulting in inadequate ventilation, and the lack of a viable second emergency egress. The risk assessments were deficient, incomplete, or not actioned. Warnings and feedback from staff were ignored. Risk arises as a consequence of the complex interactions between the components of the sociotechnical system. Organisations will need to strengthen the integrity of their risk management processes at engineering, management, and board levels. The systems engineering perspective shows the interacting causality between the engineering challenges (ventilation, mining method, electrical power, project deliverables, management priorities, organisational culture, and workers’ behaviour. Use of the barrier method provides a new way to examine the risk-management strategies of the mine. The breakdowns in organisational safety management systems are explicitly identified.

  10. Bridging the engineering gap: integrated systems thinking

    Science.gov (United States)

    Weintré, J. R.; Delfi, M.

    2017-09-01

    On visits to rural Indonesia it is apparent that the advances made possible by technical engineered solutions, are rarely at the same pace as the human captivation of technical development. This uneven pace has limited the application of labour-saving equipment and efficiency. It is suggested to be of primary importance to advance technical application skills among communities as part of the continuous advancement cycle in our human environment. A creative approach to inclusive technology and internal transfer of equipment knowledge in society, reduces barriers and could diminish structural or societal undesired situations. Earlier theoretical concepts provide us a lens for describing the practices of habitus, conceptualization of social capital and integrated systems thinking. The interrelationship and complexities in technical and social systems requires to be investigated. This paper aims to describe those, combined with technological applications in an empirical ethnographic approach. The study analyses the negotiations of community members with the available technology. It intends to foster a better understanding of the various cultural-economic values by exploring the systems thinking theory, with a focus on rice cultivation in Indonesia, Japan and Australia. This research suggests that cultural, economic and technical advances vary considerably and human expectations are strongly influenced by local culture.

  11. 14 CFR 33.91 - Engine system and component tests.

    Science.gov (United States)

    2010-01-01

    ... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system and..., reliability, and durability. (c) Each unpressurized hydraulic fluid tank may not fail or leak when subjected... hydraulic fluid tank must meet the requirements of § 33.64. (d) For an engine type certificated for use in...

  12. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    R. Jarek

    2004-11-23

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  13. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    G.H. Nieder-Westermann

    2005-04-07

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  14. Integrating Social Science, Environmental Science, and Engineering to Understand Vulnerability and Resilience to Environmental Hazards in the Bengal Delta

    Science.gov (United States)

    Gilligan, J. M.; Ackerly, B.; Goodbred, S. L.

    2013-12-01

    In populated delta environments, it is impossible to separate human and natural systems. Human activities change the landscape by altering the dynamics of water and sediment and in return, humans themselves are affected by the natural and anthropogenic changes to the landscape. Such interactions can also have significant impacts on the ecology and natural resources of a delta system, affecting local and regional food supply, livelihoods, and economies, particularly in developing nations. Successful adaptation to environmental change in a strongly coupled human-natural system, such as the Bengal delta, requires understanding how the physical environment and the changing social, political, and economic conditions of people's lives interact. Research on human-delta interactions has largely focused on macro-scale effects from major dams, water diversions, and catchment-scale land use; but at the smaller scale of households and communities, decisions, actions, and outcomes may occur abruptly and have significant local impacts (positive or negative). Southwest Bangladesh experiences profound environmental problems at the local human-landscape interface, including groundwater salinity, soil fertility, conflicting land-use practices, management of engineering structures, and declining land-surface elevations. The impacts of climate-induced sea-level rise, especially with respect to population migration, receive great attention and concern, but neither sea level rise nor migration occurs against a background of static physical or human environments. For example, changing land use (e.g., building embankments, which affect drainage, sediment transport, and the evolution of tidal channels; and the transformation of rice fields to shrimp aquaculture, which affects soil chemistry, labor markets, river ecology, and possibly the integrity of embankments) can significantly change the impact that sea level rise will have on flood hazards and the resulting effect on people living on

  15. Systems engineering approach towards performance monitoring of emergency diesel generator

    International Nuclear Information System (INIS)

    Nurhayati Ramli; Lee, Y.K.

    2013-01-01

    Full-text: Systems engineering is an interdisciplinary approach and means to enable the realization of successful systems. In this study, systems engineering approach towards the performance monitoring of Emergency Diesel Generator (EDG) is presented. Performance monitoring is part and parcel of predictive maintenance where the systems and components conditions can be detected before they result into failures. In an effort to identify the proposal for addressing performance monitoring, the EDG boundary has been defined. Based on the Probabilistic Safety Analysis (PSA) results and industry operating experiences, the most critical component is identified. This paper proposed a systems engineering concept development framework towards EDG performance monitoring. The expected output of this study is that the EDG reliability can be improved by the performance monitoring alternatives through the systems engineering concept development effort. (author)

  16. Practical electrical engineering

    CERN Document Server

    N Makarov, Sergey; Bitar, Stephen J

    2016-01-01

    This textbook provides comprehensive, in-depth coverage of the fundamental concepts of electrical and computer engineering. It is written from an engineering perspective, with special emphasis on circuit functionality and applications. Reliance on higher-level mathematics and physics, or theoretical proofs has been intentionally limited in order to prioritize the practical aspects of electrical engineering. This text is therefore suitable for a number of introductory circuit courses for other majors such as robotics, mechanical, biomedical, aerospace, civil, architecture, petroleum, and industrial engineering. The authors’ primary goal is to teach the aspiring engineering student all fundamental tools needed to understand, analyze and design a wide range of practical circuits and systems. Their secondary goal is to provide a comprehensive reference, for both major and non-major students as well as practicing engineers. Provides a self-contained, fundamental textbook on electric circuits and basic electronic...

  17. Test-Driven, Model-Based Systems Engineering

    DEFF Research Database (Denmark)

    Munck, Allan

    Hearing systems have evolved over many years from simple mechanical devices (horns) to electronic units consisting of microphones, amplifiers, analog filters, loudspeakers, batteries, etc. Digital signal processors replaced analog filters to provide better performance end new features. Central....... This thesis concerns methods for identifying, selecting and implementing tools for various aspects of model-based systems engineering. A comprehensive method was proposed that include several novel steps such as techniques for analyzing the gap between requirements and tool capabilities. The method...... was verified with good results in two case studies for selection of a traceability tool (single-tool scenario) and a set of modeling tools (multi-tool scenarios). Models must be subjected to testing to allow engineers to predict functionality and performance of systems. Test-first strategies are known...

  18. New trends in networking, computing, e-learning, systems sciences, and engineering

    CERN Document Server

    Sobh, Tarek

    2015-01-01

    This book includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Computer Science, Informatics, and Systems Sciences, and Engineering. It includes selected papers form the conference proceedings of the Ninth International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2013). Coverage includes topics in: Industrial Electronics, Technology & Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning.  • Provides the latest in a series of books growing out of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering; • Includes chapters in the most advanced areas of Computing, Informatics, Systems Sciences, and Engineering; • Accessible to a wide range of readership, including professors, researchers, practitioners and...

  19. Agent-based re-engineering of ErbB signaling: a modeling pipeline for integrative systems biology.

    Science.gov (United States)

    Das, Arya A; Ajayakumar Darsana, T; Jacob, Elizabeth

    2017-03-01

    Experiments in systems biology are generally supported by a computational model which quantitatively estimates the parameters of the system by finding the best fit to the experiment. Mathematical models have proved to be successful in reverse engineering the system. The data generated is interpreted to understand the dynamics of the underlying phenomena. The question we have sought to answer is that - is it possible to use an agent-based approach to re-engineer a biological process, making use of the available knowledge from experimental and modelling efforts? Can the bottom-up approach benefit from the top-down exercise so as to create an integrated modelling formalism for systems biology? We propose a modelling pipeline that learns from the data given by reverse engineering, and uses it for re-engineering the system, to carry out in-silico experiments. A mathematical model that quantitatively predicts co-expression of EGFR-HER2 receptors in activation and trafficking has been taken for this study. The pipeline architecture takes cues from the population model that gives the rates of biochemical reactions, to formulate knowledge-based rules for the particle model. Agent-based simulations using these rules, support the existing facts on EGFR-HER2 dynamics. We conclude that, re-engineering models, built using the results of reverse engineering, opens up the possibility of harnessing the power pack of data which now lies scattered in literature. Virtual experiments could then become more realistic when empowered with the findings of empirical cell biology and modelling studies. Implemented on the Agent Modelling Framework developed in-house. C ++ code templates available in Supplementary material . liz.csir@gmail.com. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  20. Study on vibration behaviors of engineered barrier system

    International Nuclear Information System (INIS)

    Mikoshiba, Tadashi; Ogawa, Nobuyuki; Minowa, Chikahiro

    1998-01-01

    High-level radioactive wastes have been buried underground by packing into a strong sealed container made from carbon steel (over-pack) with buffer material (bentonite). The engineered barrier system constructed with an overpack and buffer materials must be resistant to earthquakes as well as invasion of groundwater for a long period. Therefore, seismic evaluation of barrier system for earthquakes is indispensable especially in Japan to keep its structural safety. Here, the effects of earthquake vibration on the engineered barrier systems were investigated experimentally. Random-wave vibration and practical seismic wave one were loaded for the systems and fundamental data were obtained. For the former vibration the response characteristics of both engineered barrier models constructed with overpack and bentonite were non-linear. For the latter one, the stress in bentonite was increased in proportion to the vibration level. (M.N.)

  1. Gas Turbine Engine Behavioral Modeling

    OpenAIRE

    Meyer, Richard T; DeCarlo, Raymond A.; Pekarek, Steve; Doktorcik, Chris

    2014-01-01

    This paper develops and validates a power flow behavioral model of a gas tur- bine engine with a gas generator and free power turbine. “Simple” mathematical expressions to describe the engine’s power flow are derived from an understand- ing of basic thermodynamic and mechanical interactions taking place within the engine. The engine behavioral model presented is suitable for developing a supervisory level controller of an electrical power system that contains the en- gine connected to a gener...

  2. 46 CFR 62.35-35 - Starting systems for internal-combustion engines.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Starting systems for internal-combustion engines. 62.35-35 Section 62.35-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE... Starting systems for internal-combustion engines. The starting systems for propulsion engines and for prime...

  3. Process Systems Engineering Education: Learning by Research

    Science.gov (United States)

    Abbas, A.; Alhammadi, H. Y.; Romagnoli, J. A.

    2009-01-01

    In this paper, we discuss our approach in teaching the final-year course Process Systems Engineering. Students are given ownership of the course by transferring to them the responsibility of learning. A project-based group environment stimulates learning while solving a real engineering problem. We discuss postgraduate student involvement and how…

  4. Development of sustainable energy systems: a new challenge for process systems engineering education

    OpenAIRE

    Astier, Stéphan; Ayache, Antoine; Azzaro-Pantel, Catherine; David, Maria; Fontes, Guillaume; Gourdon, Christophe; Joulia, Xavier; Le Lann, Jean-Marc

    2008-01-01

    This paper presents the main features of the master-level programme in “EcoEnergy” offered as a full-time one year course at “Institut National Polytechnique of Toulouse” in order to provide engineers with a state-of-the-art education in the area of advanced energy technologies and systems. It is based on an original and equilibrated combination of process systems engineering and electrical engineering disciplines, with an interdisciplinary problem-solving approach necessary for identifying s...

  5. Understanding the Gender Gap in Science and Engineering: Evidence from the Chilean College Admissions Tests

    Science.gov (United States)

    Gándara, Fernanda; Silva, Monica

    2016-01-01

    This study seeks to develop a better understanding of the underrepresentation of women in science and engineering by analyzing the gender gaps (a) in the interest in pursuing a science degree and (b) on science achievement. We use national-level college admissions data to examine gender differences and to explore the association between these…

  6. Radioisotope power system based on derivative of existing Stirling engine

    International Nuclear Information System (INIS)

    Schock, A.; Or, C.T.; Kumar, V.

    1995-01-01

    In a recent paper, the authors presented the results of a system design study of a 75-watt(c) RSG (Radioisotope Stirling Generator) for possible application to the Pluto Fast Flyby mission. That study was based on a Stirling engine design generated by MTI (Mechanical Technology, Inc.). The MTI design was a derivative of a much larger (13 kwe) engine that they had developed and tested for NASA's LERC. Clearly, such a derivative would be a major extrapolation (downsizing) from what has actually been built and tested. To avoid that, the present paper describes a design for a 75-watt RSG system based on derivatives of a small (11-watt) engine and linear alternator system that has been under development by STC (Stirling Technology Company) for over three years and that has operated successfully for over 15,000 hours as of March 1995. Thus, the STC engines would require much less extrapolation from proven designs. The design employs a heat source consisting of two standard General Purpose Heat Source (GPHS) modules, coupled to four Stirling engines with linear alternators, any three of which could deliver the desired 75-watt(e) output if the fourth should fail. The four engines are coupled to four common radiators with redundant heatpipes for rejecting the engines' waste heat to space. The above engine and radiator redundancies promote system reliability. The paper describes detailed analyses to determine the effect of radiator geometry on system mass and performance, before and after an engine or heatpipe failure

  7. Building Information Modeling in engineering teaching

    DEFF Research Database (Denmark)

    Andersson, Niclas; Andersson, Pernille Hammar

    2010-01-01

    technological development of ICT systems and the increased application of ICT in industry significantly influence the management and organisation of construction projects, and consequently, ICT has implications for the education of engineers and the preparation of students for their future professional careers....... In engineering education there is an obvious aim to provide students with sufficient disciplinary knowledge in science and engineering principles. The implementation of ICT in engineering education requires, however, that valuable time and teaching efforts are spent on adequate software training needed...... to operate the ICT systems properly. This study takes on the challenge of using ICT in engineering education without diminishing the body of technical disciplinary knowledge and the understanding of the engineering context in which it is taught, practiced, and learned. The objective of the study...

  8. Developments in REDES: The Rocket Engine Design Expert System

    Science.gov (United States)

    Davidian, Kenneth O.

    1990-01-01

    The Rocket Engine Design Expert System (REDES) was developed at NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP; a nozzle design program named RAO; a regenerative cooling channel performance evaluation code named RTE; and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES was built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.

  9. Advanced Control of Turbofan Engines

    CERN Document Server

    Richter, Hanz

    2012-01-01

    Advanced Control of Turbofan Engines describes the operational performance requirements of turbofan (commercial)engines from a controls systems perspective, covering industry-standard methods and research-edge advances. This book allows the reader to design controllers and produce realistic simulations using public-domain software like CMAPSS: Commercial Modular Aero-Propulsion System Simulation, whose versions are released to the public by NASA. The scope of the book is centered on the design of thrust controllers for both steady flight and transient maneuvers. Classical control theory is not dwelled on, but instead an introduction to general undergraduate control techniques is provided. This book also: Develops a thorough understanding of the challenges associated with engine operability from a control systems perspective, describing performance demands and operational constraints into the framework and language of modern control theory Presents solid theoretical support for classical and advanced engine co...

  10. Customizing CAD system and its application for engineering design

    International Nuclear Information System (INIS)

    Shin, Jeong Ho; Kwak, Byung Man

    2003-01-01

    The computer is an important tool to design an engineering system and CAD systems are widely used for various design practice. To meet the market requirements, the old mass production system is being changed into the mass customization system. As for CAD systems, it is increasingly required to extend, automate, and customize a wide range of functionality. This article describes the state-of-the-art of the principal technologies for customizing CAD systems. And we have implemented an application that enables the parametric design by directly inputting numerical values of parameters for a CAD model. Based on this application, we have developed another system that makes it possible sharing of part family data between SolidEdge and Pro/Engineer. Through customization of CAD systems, it is possible to improve the product quality using external knowledge-based systems or to integrate with external system such as CAE tools. This paper can be a guide for engineering designers who want to customize CAD systems

  11. How Engineers Negotiate Domain Boundaries in a Complex, Interdisciplinary Engineering Project

    Science.gov (United States)

    Panther, Grace; Montfort, Devlin; Pirtle, Zachary

    2017-01-01

    Engineering educators have an essential role in preparing engineers to work in a complex, interdisciplinary workforce. While much engineering education focuses on teaching students to develop disciplinary expertise in specific engineering domains, there is a strong need to teach engineers about the knowledge that they develop or use in their work (Bucciarelli 1994, Allenby Sarewitz, 2011; Frodeman, 2013). The purpose of this research is to gain a better understanding of the knowledge systems of practicing engineers through observations of their practices such that the insights learned can guide future education efforts. Using an example from a complex and interdisciplinary engineering project, this paper presents a case study overviewing the types of epistemological (or knowledge-acquiring or using) complexities that engineers navigate. Specifically, we looked at a discussion of the thermal design of a CubeSat that occurred during an engineering review at NASA. We analyzed the review using a framework that we call 'peak events', or pointed discussions between reviewers, project engineers, and managers. We examined the dialog within peak events to identify the ways that knowledge was brought to bear, highlighting discussions of uncertainty and the boundaries of knowledge claims. We focus on one example discussion surrounding the thermal design of the CubeSat, which provides a particularly thorough example of a knowledge system since the engineers present explained, justified, negotiated, and defended knowledge within a social setting. Engineering students do not get much practice or instruction in explicitly negotiating knowledge systems and epistemic standards in this way. We highlight issues that should matter to engineering educators, such as the need to discuss what level of uncertainty is sufficient and the need to negotiate boundaries of system responsibility. Although this analysis is limited to a single discussion or 'peak event', our case shows that this

  12. Practice-based systems engineering programme

    CSIR Research Space (South Africa)

    Goncalves, D

    2010-08-01

    Full Text Available the required system engineering competencies is introduced. A practice-based approach is presented as part of the solution, including the roles of universities, students and industry within this approach. Finally we elaborate on a proposed curriculum for a...

  13. Introduction to Waste Engineering

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    Solid waste management as introduced in Chapter 1.1 builds in many ways on engineering. Waste engineering here means the skills and ability to understand quantitatively how a waste management system works in such a detail that waste management can be planned, facilities can be designed and sited......) regional plans for waste management, including (3) the selection of main management technologies and siting of facilities, (4) the design of individual technological units and, for example, (5) the operation of recycling schemes within a municipality. This chapter gives an introduction to waste engineering...

  14. The electric power engineering handbook power systems

    CERN Document Server

    2012-01-01

    Power Systems, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) covers all aspects of power system protection, dynamics, stability, operation, and control. Under the editorial guidance of L.L. Grigsby, a respected and accomplished authority in power engineering, and section editors Andrew Hanson, Pritindra Chowdhuri, Gerry Sheble, and Mark Nelms, this carefully crafted reference includes substantial new and revised contributions from worldwide leaders in the field. This content provides convenient access to overviews and detailed information on a diverse arr

  15. Entropy generation in a diesel engine turbocharging system

    International Nuclear Information System (INIS)

    Nakonieczny, K.

    2002-01-01

    The paper describes a model of entropy production in a diesel engine turbocharging system, discussing the processes occurring in the compressor, turbine, piping system, charge-air cooler and valves with the exclusion of combustion. The charging efficiency of the system is studied in two distinct engine operating states, conforming to maximum torque and nominal power conditions. Unlike in the standard approach, where the irreversibilities are derived from the balance equation for exergy and thus are addressed inexactly, the criterion function based on the notion of entropy generation, introduced in this paper, improves second law analysis of turbocharged engines by accounting for a direct description of the system internal irreversibilities. This function is used for the examination of an impact of the system design parameters on its efficiency. Computations based on the unsteady one-dimensional flow model show that, under the variations of the inlet pipe length, the timings of inlet valve opening and exhaust valve closure, and the valve overlap period, a favourable correlation can be found between the decrease of entropy production and the increase in amount of air charged into the engine cylinders. The other variables under study, including the turbine equivalent area, temperature decrease in intercooler and wastegate effective area ratio, show an opposite correlation, and thus, can be viewed as constraints in the system optimisation

  16. Eighth International Conference on Intelligent Systems and Knowledge Engineering

    CERN Document Server

    Li, Tianrui; ISKE 2013; Foundations of Intelligent Systems; Knowledge Engineering and Management; Practical Applications of Intelligent Systems

    2014-01-01

    "Foundations of Intelligent Systems" presents selected papers from the 2013 International Conference on Intelligent Systems and Knowledge Engineering (ISKE2013). The aim of this conference is to bring together experts from different expertise areas to discuss the state-of-the-art in Intelligent Systems and Knowledge Engineering, and to present new research results and perspectives on future development. The topics in this volume include, but not limited to: Artificial Intelligence Theories, Pattern Recognition, Intelligent System Models, Speech Recognition, Computer Vision, Multi-Agent Systems, Machine Learning, Soft Computing and Fuzzy Systems, Biological Inspired Computation, Game Theory, Cognitive Systems and Information Processing, Computational Intelligence, etc. The proceedings are benefit for both researchers and practitioners who want to utilize intelligent methods in their specific research fields. Dr. Zhenkun Wen is a Professor at the College of Computer and Software Engineering, Shenzhen University...

  17. Innovations and advances in computing, informatics, systems sciences, networking and engineering

    CERN Document Server

    Elleithy, Khaled

    2015-01-01

    Innovations and Advances in Computing, Informatics, Systems Sciences, Networking and Engineering  This book includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Computer Science, Informatics, and Systems Sciences, and Engineering. It includes selected papers from the conference proceedings of the Eighth and some selected papers of the Ninth International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2012 & CISSE 2013). Coverage includes topics in: Industrial Electronics, Technology & Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning.  ·       Provides the latest in a series of books growing out of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering; ·       Includes chapters in the most a...

  18. Computational simulation of concurrent engineering for aerospace propulsion systems

    Science.gov (United States)

    Chamis, C. C.; Singhal, S. N.

    1992-01-01

    Results are summarized of an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulations methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties - fundamental in developing such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering for propulsion systems and systems in general. Benefits and facets needing early attention in the development are outlined.

  19. Computational simulation for concurrent engineering of aerospace propulsion systems

    Science.gov (United States)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Results are summarized for an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulation methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties--fundamental to develop such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering of propulsion systems and systems in general. Benefits and issues needing early attention in the development are outlined.

  20. Optimized application of systems engineering to nuclear waste repository projects

    International Nuclear Information System (INIS)

    Miskimin, P.A.; Shepard, M.

    1986-01-01

    The purpose of this presentation is to describe a fully optimized application of systems engineering methods and philosophy to the management of a large nuclear waste repository project. Knowledge gained from actual experience with the use of the systems approach on two repository projects is incorporated in the material presented. The projects are currently evaluating the isolation performance of different geologic settings and are in different phases of maturity. Systems engineering methods were applied by the principal author at the Waste Isolation Pilot Plant (WIPP) in the form of a functional analysis. At the Basalt Waste Isolation Project (BWIP), the authors assisted the intergrating contractor with the development and application of systems engineering methods. Based on this experience and that acquired from other waste management projects, an optimized plan for applying systems engineering techniques was developed. The plan encompasses the following aspects: project organization, developing and defining requirements, assigning work responsibilities, evaluating system performance, quality assurance, controlling changes, enhancing licensability, optimizing project performance, and addressing regulatory issues. This information is presented in the form of a roadmap for the practical application of system engineering principles to a nuclear waste repository project

  1. Developing systems engineers

    CSIR Research Space (South Africa)

    Goncalves, D

    2008-07-01

    Full Text Available will have rendered him incapable of dealing with the majority of problems that will face him.” (Quoted in [12]). UP has applied the SPICES model, proposed by Harden et al. [12], for developing their medical curriculum. Some aspects of the model... are useful to developing systems engineers and will be considered in SE terms at a relevant level of detail. The SPICES model is contrasted against traditional medical curriculum approaches in TABLE 1. These are two extremes on a continuum. Traditional...

  2. SMAP Instrument Mechanical System Engineering

    Science.gov (United States)

    Slimko, Eric; French, Richard; Riggs, Benjamin

    2013-01-01

    The Soil Moisture Active Passive (SMAP) mission, scheduled for launch by the end of 2014, is being developed to measure the soil moisture and soil freeze/thaw state on a global scale over a three-year period. The accuracy, resolution, and global coverage of SMAP measurements are invaluable across many science and applications disciplines including hydrology, climate, carbon cycle, and the meteorological, environment, and ecology applications communities. The SMAP observatory is composed of a despun bus and a spinning instrument platform that includes both a deployable 6 meter aperture low structural frequency Astromesh reflector and a spin control system. The instrument section has engendered challenging mechanical system issues associated with the antenna deployment, flexible antenna pointing in the context of a multitude of disturbances, spun section mass properties, spin control system development, and overall integration with the flight system on both mechanical and control system levels. Moreover, the multitude of organizations involved, including two major vendors providing the spin subsystem and reflector boom assembly plus the flight system mechanical and guidance, navigation, and control teams, has led to several unique system engineering challenges. Capturing the key physics associated with the function of the flight system has been challenging due to the many different domains that are applicable. Key interfaces and operational concepts have led to complex negotiations because of the large number of organizations that integrate with the instrument mechanical system. Additionally, the verification and validation concerns associated with the mechanical system have had required far-reaching involvement from both the flight system and other subsystems. The SMAP instrument mechanical systems engineering issues and their solutions are described in this paper.

  3. Spent nuclear fuel application of CORE reg-sign systems engineering software

    International Nuclear Information System (INIS)

    Grimm, R.J.

    1996-01-01

    The DOE has adopted a systems engineering approach for the successful completion of the Spent Nuclear Fuel (SNF) Program mission. The DOE has utilized systems engineering principles to develop the SNF program guidance documents and has held several systems engineering workshops to develop the functional hierarchies of both the programmatic and technical side of the SNF program. The sheer size and complexity of the SNF program has led to problems that the Westinghouse Savannah River Company (WSRC) is working to manage through the use of systems engineering software. WSRC began using CORE reg-sign, an off the shelf PC based software package, to assist DOE in management of the SNF program. This paper details the successful use of the CORE reg-sign systems engineering software to date and the proposed future activities

  4. Systems Engineering Education Development(SEED)Case Study

    Science.gov (United States)

    Bagg, Thomas C., III; Brumfield, Mark D.; Jamison, Donald E.; Granata, Raymond L.; Casey, Carolyn A.

    2003-01-01

    The Systems Engineering Development Program (SEED) was initiated to help Goddard resolve a Systems Engineering skill shortage. The chronology of events and the experiences of the pilot program are outlined to describe the development of the present program. The program goals are included in order to give a focus on what the developers saw as the program drivers. Lessons learned from a pilot program were incorporated into the present program. This program is constantly learning from its past efforts and looks for continuous improvement. We list several future ideas for improvement and change.

  5. The engineering of cybernetic systems

    Science.gov (United States)

    Fry, Robert L.

    2002-05-01

    This tutorial develops a logical basis for the engineering of systems that operate cybernetically. The term cybernetic system has a clear quantitative definition. It is a system that dynamically matches acquired information to selected actions relative to a computational issue that defines the essential purpose of the system or machine. This notion requires that information and control be further quantified. The logic of questions and assertions as developed by Cox provides one means of doing this. The design and operation of cybernetic systems can be understood by contrasting these kinds of systems with communication systems and information theory as developed by Shannon. The joint logic of questions and assertions can be seen to underlie and be common to both information theory as applied to the design of discrete communication systems and to a theory of discrete general systems. The joint logic captures a natural complementarity between systems that transmit and receive information and those that acquire and act on it. Specific comparisons and contrasts are made between the source rate and channel capacity of a communication system and the acquisition rate and control capacity of a general system. An overview is provided of the joint logic of questions and assertions and the ties that this logic has to both conventional information theory and to a general theory of systems. I-diagrams, the interrogative complement of Venn diagrams, are described as providing valuable reasoning tools. An initial framework is suggested for the design of cybernetic systems. Two examples are given to illustrate this framework as applied to discrete cybernetic systems. These examples include a predator-prey problem as illustrated through "The Dog Chrysippus Pursuing its Prey," and the derivation of a single-neuron system that operates cybernetically and is biologically plausible. Future areas of research are highlighted which require development for a mature engineering framework.

  6. ESSE: Engineering Super Simulation Emulation for Virtual Reality Systems Environment

    International Nuclear Information System (INIS)

    Suh, Kune Y.; Yeon, Choul W.

    2008-01-01

    The trademark 4 + D Technology TM based Engineering Super Simulation Emulation (ESSE) is introduced. ESSE resorting to three-dimensional (3D) Virtual Reality (VR) technology pledges to provide with an interactive real-time motion, sound and tactile and other forms of feedback in the man machine systems environment. In particular, the 3D Virtual Engineering Neo cybernetic Unit Soft Power (VENUS) adds a physics engine to the VR platform so as to materialize a physical atmosphere. A close cooperation system and prompt information share are crucial, thereby increasing the necessity of centralized information system and electronic cooperation system. VENUS is further deemed to contribute towards public acceptance of nuclear power in general, and safety in particular. For instance, visualization of nuclear systems can familiarize the public in answering their questions and alleviating misunderstandings on nuclear power plants answering their questions and alleviating misunderstandings on nuclear power plants (NPPs) in general, and performance, security and safety in particular. An in-house flagship project Systemic Three-dimensional Engine Platform Prototype Engineering (STEPPE) endeavors to develop the Systemic Three-dimensional Engine Platform (STEP) for a variety of VR applications. STEP is home to a level system providing the whole visible scene of virtual engineering of man machine system environment. The system is linked with video monitoring that provides a 3D Computer Graphics (CG) visualization of major events. The database linked system provides easy access to relevant blueprints. The character system enables the operators easy access to visualization of major events. The database linked system provides easy access to relevant blueprints. The character system enables the operators to access the virtual systems by using their virtual characters. Virtually Engineered NPP Informative systems by using their virtual characters. Virtually Engineered NPP Informative

  7. Understanding and modelling man-machine interaction

    International Nuclear Information System (INIS)

    Cacciabue, P.C.

    1996-01-01

    This paper gives an overview of the current state of the art in man-machine system interaction studies, focusing on the problems derived from highly automated working environments and the role of humans in the control loop. In particular, it is argued that there is a need for sound approaches to the design and analysis of man-machine interaction (MMI), which stem from the contribution of three expertises in interfacing domains, namely engineering, computer science and psychology: engineering for understanding and modelling plants and their material and energy conservation principles; psychology for understanding and modelling humans an their cognitive behaviours; computer science for converting models in sound simulations running in appropriate computer architectures. (orig.)

  8. Understanding and modelling Man-Machine Interaction

    International Nuclear Information System (INIS)

    Cacciabue, P.C.

    1991-01-01

    This paper gives an overview of the current state of the art in man machine systems interaction studies, focusing on the problems derived from highly automated working environments and the role of humans in the control loop. In particular, it is argued that there is a need for sound approaches to design and analysis of Man-Machine Interaction (MMI), which stem from the contribution of three expertises in interfacing domains, namely engineering, computer science and psychology: engineering for understanding and modelling plants and their material and energy conservation principles; psychology for understanding and modelling humans and their cognitive behaviours; computer science for converting models in sound simulations running in appropriate computer architectures. (author)

  9. Embarked diagnosis applied to a mechanical system "diesel engine ...

    African Journals Online (AJOL)

    The implementation of OBD (on-board diagnostic) systems for diesel engines has become an unavoidable necessity. From the models described in the literature, the latest generation diesel engine models as well as defects affecting it were established. A board diagnostic system based on the use of fuzzy pattern ...

  10. Systems Engineering in the Information Age: The Challenge of Mega-Systems

    National Research Council Canada - National Science Library

    Stevens, Renee

    2004-01-01

    .... We call these mega-systems. This paper focuses on the engineering of this class of systems which is characterized by increasing scale, the nature and pace of change of the technologies involved, the complexity of system...

  11. Integration of project management and systems engineering: Tools for a total-cycle environmental management system

    International Nuclear Information System (INIS)

    Blacker, P.B.; Winston, R.

    1997-01-01

    An expedited environmental management process has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL). This process is one result of the Lockheed Martin commitment to the US Department of Energy to incorporate proven systems engineering practices with project management and program controls practices at the INEEL. Lockheed Martin uses a graded approach of its management, operations, and systems activities to tailor the level of control to the needs of the individual projects. The Lockheed Martin definition of systems engineering is: ''''Systems Engineering is a proven discipline that defines and manages program requirements, controls risk, ensures program efficiency, supports informed decision making, and verifies that products and services meet customer needs.'''' This paper discusses: the need for an expedited environmental management process; how the system was developed; what the system is; what the system does; and an overview of key components of the process

  12. Requirements Engineering for a Pervasive Health Care System

    DEFF Research Database (Denmark)

    Jørgensen, Jens Bæk; Bossen, Claus

    2003-01-01

    We describe requirements engineering for a new pervasive health care system for hospitals in Denmark. The chosen requirements engineering approach composes iterative prototyping and explicit environment description in terms of workflow modelling. New work processes and their proposed computer...

  13. Spent fuel reprocessing system security engineering capability maturity model

    International Nuclear Information System (INIS)

    Liu Yachun; Zou Shuliang; Yang Xiaohua; Ouyang Zigen; Dai Jianyong

    2011-01-01

    In the field of nuclear safety, traditional work places extra emphasis on risk assessment related to technical skills, production operations, accident consequences through deterministic or probabilistic analysis, and on the basis of which risk management and control are implemented. However, high quality of product does not necessarily mean good safety quality, which implies a predictable degree of uniformity and dependability suited to the specific security needs. In this paper, we make use of the system security engineering - capability maturity model (SSE-CMM) in the field of spent fuel reprocessing, establish a spent fuel reprocessing systems security engineering capability maturity model (SFR-SSE-CMM). The base practices in the model are collected from the materials of the practice of the nuclear safety engineering, which represent the best security implementation activities, reflect the regular and basic work of the implementation of the security engineering in the spent fuel reprocessing plant, the general practices reveal the management, measurement and institutional characteristics of all process activities. The basic principles that should be followed in the course of implementation of safety engineering activities are indicated from 'what' and 'how' aspects. The model provides a standardized framework and evaluation system for the safety engineering of the spent fuel reprocessing system. As a supplement to traditional methods, this new assessment technique with property of repeatability and predictability with respect to cost, procedure and quality control, can make or improve the activities of security engineering to become a serial of mature, measurable and standard activities. (author)

  14. A Mathematical Model of Marine Diesel Engine Speed Control System

    Science.gov (United States)

    Sinha, Rajendra Prasad; Balaji, Rajoo

    2018-02-01

    Diesel engine is inherently an unstable machine and requires a reliable control system to regulate its speed for safe and efficient operation. Also, the diesel engine may operate at fixed or variable speeds depending upon user's needs and accordingly the speed control system should have essential features to fulfil these requirements. This paper proposes a mathematical model of a marine diesel engine speed control system with droop governing function. The mathematical model includes static and dynamic characteristics of the control loop components. Model of static characteristic of the rotating fly weights speed sensing element provides an insight into the speed droop features of the speed controller. Because of big size and large time delay, the turbo charged diesel engine is represented as a first order system or sometimes even simplified to a pure integrator with constant gain which is considered acceptable in control literature. The proposed model is mathematically less complex and quick to use for preliminary analysis of the diesel engine speed controller performance.

  15. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXV, I--CATERPILLAR DIESEL ENGINE COOLING SYSTEM D-8 AND 824 MODELS, II--TIRES AND TIRE HARDWARE.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE COOLING SYSTEM AND TO PROVIDE A DESCRIPTION OF HEAVY TIRES AND WHEELS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) THEORY OF THE COOLING SYSTEM, (2) COOLING SYSTEM COMPONENTS, (3) MAINTENANCE TIPS (COOLING SYSTEM), (4)…

  16. Shaping the Future Landscape: Catchment Systems Engineering and the Decision Support Matrix Approach

    Science.gov (United States)

    Hewett, Caspar; Quinn, Paul; Wilkinson, Mark; Wainwright, John

    2017-04-01

    Land degradation is widely recognised as one of the great environmental challenges facing humanity today, much of which is directly associated with human activity. The negative impacts of climate change and of the way in which we have engineered the landscape through, for example, agriculture intensification and deforestation, need to be addressed. However, the answer is not a simple matter of doing the opposite of current practice. Nor is non-intervention a viable option. There is a need to bring together approaches from the natural and social sciences both to understand the issues and to act to solve real problems. We propose combining a Catchment Systems Engineering (CSE) approach that builds on existing approaches such as Natural Water Retention Measures, Green infrastructure and Nature-Based Solutions with a multi-scale framework for decision support that has been successfully applied to diffuse pollution and flood risk management. The CSE philosophy follows that of Earth Systems Engineering and Management, which aims to engineer and manage complex coupled human-natural systems in a highly integrated, rational manner. CSE is multi-disciplinary, and necessarily involves a wide range of subject areas including anthropology, engineering, environmental science, ethics and philosophy. It offers a rational approach which accepts the fact that we need to engineer and act to improve the functioning of the existing catchment entity on which we rely. The decision support framework proposed draws on physical and mathematical modelling; Participatory Action Research; and demonstration sites at which practical interventions are implemented. It is predicated on the need to work with stakeholders to co-produce knowledge that leads to proactive interventions to reverse the land degradation we observe today while sustaining the agriculture humanity needs. The philosophy behind CSE and examples of where it has been applied successfully are presented. The Decision Support Matrix

  17. System engineering and science projects: lessons from MeerKAT

    Science.gov (United States)

    Kapp, Francois

    2016-08-01

    The Square Kilometre Array (SKA) is a large science project planning to commence construction of the world's largest Radio Telescope after 2018. MeerKAT is one of the precursor projects to the SKA, based on the same site that will host the SKA Mid array in the central Karoo area of South Africa. From the perspective of signal processing hardware development, we analyse the challenges that MeerKAT encountered and extrapolate them to SKA in order to prepare the System Engineering and Project Management methods that could contribute to a successful completion of SKA. Using the MeerKAT Digitiser, Correlator/Beamformer and Time and Frequency Reference Systems as an example, we will trace the risk profile and subtle differences in engineering approaches of these systems over time and show the effects of varying levels of System Engineering rigour on the evolution of their risk profiles. It will be shown that the most rigorous application of System Engineering discipline resulted in the most substantial reduction in risk over time. Since the challenges faced by SKA are not limited to that of MeerKAT, we also look into how that translates to a system development where there is substantial complexity in both the created system as well as the creating system. Since the SKA will be designed and constructed by consortia made up from the ten member countries, there are many additional complexities to the organisation creating the system - a challenge the MeerKAT project did not encounter. Factors outside of engineering, for instance procurement models and political interests, also play a more significant role, and add to the project risks of SKA when compared to MeerKAT.

  18. Understanding land administration systems

    DEFF Research Database (Denmark)

    P. Williamson, Ian; Enemark, Stig; Wallace, Judy

    2008-01-01

    This paper introduces basic land administration theory and highlights four key concepts that are fundamental to understanding modern land administration systems. Readers may recall the first part of the paper in October issue of Coordinates. Here is the concluding part that focuses on the changing...

  19. Developing a framework for qualitative engineering: Research in design and analysis of complex structural systems

    Science.gov (United States)

    Franck, Bruno M.

    1990-01-01

    The research is focused on automating the evaluation of complex structural systems, whether for the design of a new system or the analysis of an existing one, by developing new structural analysis techniques based on qualitative reasoning. The problem is to identify and better understand: (1) the requirements for the automation of design, and (2) the qualitative reasoning associated with the conceptual development of a complex system. The long-term objective is to develop an integrated design-risk assessment environment for the evaluation of complex structural systems. The scope of this short presentation is to describe the design and cognition components of the research. Design has received special attention in cognitive science because it is now identified as a problem solving activity that is different from other information processing tasks (1). Before an attempt can be made to automate design, a thorough understanding of the underlying design theory and methodology is needed, since the design process is, in many cases, multi-disciplinary, complex in size and motivation, and uses various reasoning processes involving different kinds of knowledge in ways which vary from one context to another. The objective is to unify all the various types of knowledge under one framework of cognition. This presentation focuses on the cognitive science framework that we are using to represent the knowledge aspects associated with the human mind's abstraction abilities and how we apply it to the engineering knowledge and engineering reasoning in design.

  20. Engineered Barrier System: Physical and Chemical Environment Model

    International Nuclear Information System (INIS)

    Jolley, D. M.; Jarek, R.; Mariner, P.

    2004-01-01

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports