WorldWideScience

Sample records for understanding student problem-solving

  1. Investigation of the relationship between students' problem solving and conceptual understanding of electricity

    Science.gov (United States)

    Cobanoglu Aktan, Derya

    The purpose of this study was to investigate the relationship between students' qualitative problem solving and conceptual understanding of electricity. For the analysis data were collected from observations of group problem solving, from their homework artifacts, and from semi-structured interviews. The data for six undergraduate students were analyzed by qualitative research methods. The students in the study were found to use tools (such as computer simulations and formulas) differently from one another, and they made different levels of interpretations for the electricity representations. Consequently each student had different problem solving strategies. The students exhibited a wide range of levels of understanding of the electricity concepts. It was found that students' conceptual understandings and their problem solving strategies were closely linked with one another. The students who tended to use multiple tools to make high level interpretations for representations to arrive at a single solution exhibited a higher level of understanding than the students who tended to use tools to make low level interpretations to reach a solution. This study demonstrates a relationship between conceptual understanding and problem solving strategies. Similar to the results of the existing research on students' quantitative problem solving, it was found that students were able to give correct answers to some problems without fully understanding the concepts behind the problem. However, some problems required a conceptual understanding in order for a student to arrive at a correct answer. An implication of this study is that careful selection of qualitative questions is necessary for capturing high levels of conceptual understanding. Additionally, conceptual understanding among some types of problem solvers can be improved by activities or tasks that can help them reflect on their problem solving strategies and the tools they use.

  2. Geo-Sandbox: An Interactive Geoscience Training Tool with Analytics to Better Understand Student Problem Solving Approaches

    Science.gov (United States)

    Butt, N.; Pidlisecky, A.; Ganshorn, H.; Cockett, R.

    2015-12-01

    The software company 3 Point Science has developed three interactive learning programs designed to teach, test and practice visualization skills and geoscience concepts. A study was conducted with 21 geoscience students at the University of Calgary who participated in 2 hour sessions of software interaction and written pre and post-tests. Computer and SMART touch table interfaces were used to analyze user interaction, problem solving methods and visualization skills. By understanding and pinpointing user problem solving methods it is possible to reconstruct viewpoints and thought processes. This could allow us to give personalized feedback in real time, informing the user of problem solving tips and possible misconceptions.

  3. Students' Problem Solving and Justification

    Science.gov (United States)

    Glass, Barbara; Maher, Carolyn A.

    2004-01-01

    This paper reports on methods of students' justifications of their solution to a problem in the area of combinatorics. From the analysis of the problem solving of 150 students in a variety of settings from high-school to graduate study, four major forms of reasoning evolved: (1) Justification by Cases, (2) Inductive Argument, (3) Elimination…

  4. Exploring Effects of High School Students' Mathematical Processing Skills and Conceptual Understanding of Chemical Concepts on Algorithmic Problem Solving

    Science.gov (United States)

    Gultepe, Nejla; Yalcin Celik, Ayse; Kilic, Ziya

    2013-01-01

    The purpose of the study was to examine the effects of students' conceptual understanding of chemical concepts and mathematical processing skills on algorithmic problem-solving skills. The sample (N = 554) included grades 9, 10, and 11 students in Turkey. Data were collected using the instrument "MPC Test" and with interviews. The MPC…

  5. THE PHYSICAL LABORATORY ACTIVITIES WITH PROBLEM SOLVING APPROACH TO INCREASE CRITICAL THINKING SKILL AND UNDERSTANDING STUDENT CONCEPT

    Directory of Open Access Journals (Sweden)

    Eli Trisnowati

    2017-10-01

    Full Text Available This study aims to investigate the description of the improvement of students’ critical thinking skills and the concept understanding by implementing the problem-solving approach. This study was in laboratory activities. This study was done in four times meeting. The try out subjects was 31 students of grades X of MAN Yogyakarta III. This research is using the quasi experimental method with the pretest-posttest design. The data were collected by using multiple choices tests with assessment rubric and observation sheets. The data are analyzed by using multivariate analysis. Based on the result, the gain standard value of students’ conceptual understanding and students’ critical thinking skills for grade X who learned through student’s worksheet with a problem-solving approach, called treatment class, are higher than students who learned without student’s worksheet with a problem-solving approach, called control class.

  6. The effects of students' reasoning abilities on conceptual understandings and problem-solving skills in introductory mechanics

    International Nuclear Information System (INIS)

    Ates, S; Cataloglu, E

    2007-01-01

    The purpose of this study was to determine if there are relationships among freshmen/first year students' reasoning abilities, conceptual understandings and problem-solving skills in introductory mechanics. The sample consisted of 165 freshmen science education prospective teachers (female = 86, male = 79; age range 17-21) who were enrolled in an introductory physics course. Data collection was done during the fall semesters in two successive years. At the beginning of each semester, the force concept inventory (FCI) and the classroom test of scientific reasoning (CTSR) were administered to assess students' initial understanding of basic concepts in mechanics and reasoning levels. After completing the course, the FCI and the mechanics baseline test (MBT) were administered. The results indicated that there was a significant difference in problem-solving skill test mean scores, as measured by the MBT, among concrete, formal and postformal reasoners. There were no significant differences in conceptual understanding levels of pre- and post-test mean scores, as measured by FCI, among the groups. The Benferroni post hoc comparison test revealed which set of reasoning levels showed significant difference for the MBT scores. No statistical difference between formal and postformal reasoners' mean scores was observed, while the mean scores between concrete and formal reasoners and concrete and postformal reasoners were statistically significantly different

  7. Metacognition: Student Reflections on Problem Solving

    Science.gov (United States)

    Wismath, Shelly; Orr, Doug; Good, Brandon

    2014-01-01

    Twenty-first century teaching and learning focus on the fundamental skills of critical thinking and problem solving, creativity and innovation, and collaboration and communication. Metacognition is a crucial aspect of both problem solving and critical thinking, but it is often difficult to get students to engage in authentic metacognitive…

  8. A Rubric for Assessing Students' Experimental Problem-Solving Ability

    Science.gov (United States)

    Shadle, Susan E.; Brown, Eric C.; Towns, Marcy H.; Warner, Don L.

    2012-01-01

    The ability to couple problem solving both to the understanding of chemical concepts and to laboratory practices is an essential skill for undergraduate chemistry programs to foster in our students. Therefore, chemistry programs must offer opportunities to answer real problems that require use of problem-solving processes used by practicing…

  9. Encouraging Sixth-Grade Students' Problem-Solving Performance by Teaching through Problem Solving

    Science.gov (United States)

    Bostic, Jonathan D.; Pape, Stephen J.; Jacobbe, Tim

    2016-01-01

    This teaching experiment provided students with continuous engagement in a problem-solving based instructional approach during one mathematics unit. Three sections of sixth-grade mathematics were sampled from a school in Florida, U.S.A. and one section was randomly assigned to experience teaching through problem solving. Students' problem-solving…

  10. Understanding Problem-Solving Errors by Students with Learning Disabilities in Standards-Based and Traditional Curricula

    Science.gov (United States)

    Bouck, Emily C.; Bouck, Mary K.; Joshi, Gauri S.; Johnson, Linley

    2016-01-01

    Students with learning disabilities struggle with word problems in mathematics classes. Understanding the type of errors students make when working through such mathematical problems can further describe student performance and highlight student difficulties. Through the use of error codes, researchers analyzed the type of errors made by 14 sixth…

  11. The Effect of Learning Environments Based on Problem Solving on Students' Achievements of Problem Solving

    Science.gov (United States)

    Karatas, Ilhan; Baki, Adnan

    2013-01-01

    Problem solving is recognized as an important life skill involving a range of processes including analyzing, interpreting, reasoning, predicting, evaluating and reflecting. For that reason educating students as efficient problem solvers is an important role of mathematics education. Problem solving skill is the centre of mathematics curriculum.…

  12. Multiple Problem-Solving Strategies Provide Insight into Students' Understanding of Open-Ended Linear Programming Problems

    Science.gov (United States)

    Sole, Marla A.

    2016-01-01

    Open-ended questions that can be solved using different strategies help students learn and integrate content, and provide teachers with greater insights into students' unique capabilities and levels of understanding. This article provides a problem that was modified to allow for multiple approaches. Students tended to employ high-powered, complex,…

  13. Students' Competence in some Problem Solving Skills throughout ...

    African Journals Online (AJOL)

    Students' Competence in some Problem Solving Skills throughout their B.Sc. Course. ... there is a need for explicitly identifying important cognitive skills and strategies and ... Keywords: Cognitive skills, thinking skills, problem solving, students' ...

  14. Teaching Problem Solving Skills to Elementary Age Students with Autism

    Science.gov (United States)

    Cote, Debra L.; Jones, Vita L.; Barnett, Crystal; Pavelek, Karin; Nguyen, Hoang; Sparks, Shannon L.

    2014-01-01

    Students with disabilities need problem-solving skills to promote their success in solving the problems of daily life. The research into problem-solving instruction has been limited for students with autism. Using a problem-solving intervention and the Self Determined Learning Model of Instruction, three elementary age students with autism were…

  15. An Investigation of Secondary Teachers’ Understanding and Belief on Mathematical Problem Solving

    Science.gov (United States)

    Yuli Eko Siswono, Tatag; Wachidul Kohar, Ahmad; Kurniasari, Ika; Puji Astuti, Yuliani

    2016-02-01

    Weaknesses on problem solving of Indonesian students as reported by recent international surveys give rise to questions on how Indonesian teachers bring out idea of problem solving in mathematics lesson. An explorative study was undertaken to investigate how secondary teachers who teach mathematics at junior high school level understand and show belief toward mathematical problem solving. Participants were teachers from four cities in East Java province comprising 45 state teachers and 25 private teachers. Data was obtained through questionnaires and written test. The results of this study point out that the teachers understand pedagogical problem solving knowledge well as indicated by high score of observed teachers‘ responses showing understanding on problem solving as instruction as well as implementation of problem solving in teaching practice. However, they less understand on problem solving content knowledge such as problem solving strategies and meaning of problem itself. Regarding teacher's difficulties, teachers admitted to most frequently fail in (1) determining a precise mathematical model or strategies when carrying out problem solving steps which is supported by data of test result that revealed transformation error as the most frequently observed errors in teachers’ work and (2) choosing suitable real situation when designing context-based problem solving task. Meanwhile, analysis of teacher's beliefs on problem solving shows that teachers tend to view both mathematics and how students should learn mathematics as body static perspective, while they tend to believe to apply idea of problem solving as dynamic approach when teaching mathematics.

  16. Forms of Understanding in Mathematical Problem Solving.

    Science.gov (United States)

    1982-08-01

    mathematical concepts, but more recent studies (e.g., Gelman & Gallistel , 1978) indicate that significant understanding of those concepts should be...Beranek, & Newman, 1980. Gelman, R., & Gallistel , C. R. The child’s understanding of number. Cambridge, Mass.: Harvard University Press, 1978. 43 Greeno

  17. Contextualized teaching on the problem solving performance of students

    Directory of Open Access Journals (Sweden)

    Rolando V. Obiedo

    2017-12-01

    Full Text Available This study investigated the effect of contextualized teaching on students’ problem solving skills in physics through a quasi-experimental approach. Problem solving performance of students was described quantitatively through their mean problem solving scores and problem solving skills level. A unit plan patterned from the cognitive apprenticeship approach and contextualized using maritime context of ship stability was implemented on the experimental group while the control group had the conventional lecture method. Pre and post assessment, which is a researcher-developed word problem assessment, was administered to both groups. Results indicated increased problem solving mean scores (p < 0.001, problem solving skill level (p < 0.001 of the experimental group while the control group increased only their problem solving skill level (p = 0.008. Thus, contextualized teaching can improve the problem solving performance of students. This study recommends using contextualization using other physics topics where other contexts can be applied.

  18. Using Systemic Problem Solving (SPS) to Assess Student ...

    African Journals Online (AJOL)

    This paper focuses on the uses of systemic problem solving in chemistry at the tertiary level. Traditional problem solving (TPS) is a useful tool to help teachers examine recall of information, comprehension, and application. However, systemic problem solving (SPS) can challenge students and probe higher cognitive skills ...

  19. Determining Students' Attitude towards Physics through Problem-Solving Strategy

    Science.gov (United States)

    Erdemir, Naki

    2009-01-01

    In this study, the effects of teacher-directed and self-directed problem-solving strategies on students' attitudes toward physics were explored. Problem-solving strategies were used with the experimental group, while the control group was instructed using traditional teaching methods. The study was conducted with 270 students at various high…

  20. Elementary School Students Perception Levels of Problem Solving Skills

    Science.gov (United States)

    Yavuz, Günes; Yasemin, Deringöl; Arslan, Çigdem

    2017-01-01

    The purpose of this study is to reveal the perception levels of problem solving skills of elementary school students. The sample of the study is formed by totally 264 elementary students attending to 5th, 6th, 7th and 8th grade in a big city in Turkey. Data were collected by means of "Perception Scale for Problem Solving Skills" which…

  1. Characteristics of students in comparative problem solving

    Science.gov (United States)

    Irfan, M.; Sudirman; Rahardi, R.

    2018-01-01

    Often teachers provided examples and exercised to students with regard to comparative problems consisting of one quantity. In this study, the researchers gave the problem of comparison with the two quantities mixed. It was necessary to have a good understanding to solve this problem. This study aimed to determine whether students understand the comparison in depth and be able to solve the problem of non-routine comparison. This study used qualitative explorative methods, with researchers conducting in-depth interviews on subjects to explore the thinking process when solving comparative problems. The subject of this study was three students selected by purposive sampling of 120 students. From this research, researchers found there were three subjects with different characteristics, namely: subject 1, he did the first and second questions with methods of elimination and substitution (non-comparison); subject 2, he did the first question with the concept of comparison although the answer was wrong, and did the second question with the method of elimination and substitution (non-comparison); and subject 3, he did both questions with the concept of comparison. In the first question, he did wrong because he was unable to understand the problem, while on the second he did correctly. From the characteristics of the answers, the researchers divided into 3 groups based on thinking process, namely: blind-proportion, partial-proportion, and proportion thinking.

  2. Strategies, Not Solutions: Involving Students in Problem Solving.

    Science.gov (United States)

    Von Kuster, Lee N.

    1984-01-01

    Defines problem solving, discusses the use of problems developed by students that are relevant to their own lives, presents examples of practical mathematics problems that deal with local situations, discusses fringe benefits of this type of problem solving, and addresses teachers' concern that this method consumes too much time. (MBR)

  3. Network Analysis of Students' Use of Representations in Problem Solving

    Science.gov (United States)

    McPadden, Daryl; Brewe, Eric

    2016-03-01

    We present the preliminary results of a study on student use of representations in problem solving within the Modeling Instruction - Electricity and Magnetism (MI-E&M) course. Representational competence is a critical skill needed for students to develop a sophisticated understanding of college science topics and to succeed in their science courses. In this study, 70 students from the MI-E&M, calculus-based course were given a survey of 25 physics problem statements both pre- and post- instruction, covering both Newtonian Mechanics and Electricity and Magnetism (E&M). For each problem statement, students were asked which representations they would use in that given situation. We analyze the survey results through network analysis, identifying which representations are linked together in which contexts. We also compare the representation networks for those students who had already taken the first-semester Modeling Instruction Mechanics course and those students who had taken a non-Modeling Mechanics course.

  4. Social problem solving ability predicts mental health among undergraduate students.

    Science.gov (United States)

    Ranjbar, Mansour; Bayani, Ali Asghar; Bayani, Ali

    2013-11-01

    The main objective of this study was predicting student's mental health using social problem solving- ability. In this correlational. descriptive study, 369 (208 female and 161 male) from, Mazandaran University of Medical Science were selected through stratified random sampling method. In order to collect the data, the social problem solving inventory-revised and general health questionnaire were used. Data were analyzed through SPSS-19, Pearson's correlation, t test, and stepwise regression analysis. Data analysis showed significant relationship between social problem solving ability and mental health (P Social problem solving ability was significantly associated with the somatic symptoms, anxiety and insomnia, social dysfunction and severe depression (P social problem solving ability and mental health.

  5. Students' Competence in some Problem Solving Skills throughout ...

    African Journals Online (AJOL)

    NICO

    Cognitive skills, thinking skills, problem solving, students' difficulties with cognitive skills. 1. Introduction ... storage of information in memory, and the retrieval and use of ..... 18 P. Eggen and D. Kauchak, Educational Psychology, Windows on.

  6. Problem Solving: Helping Students Move From Novices Toward Experts

    Science.gov (United States)

    Harper, Kathleen A.

    2010-10-01

    When introductory physics students engage in problem solving, they often exhibit behaviors that can frustrate their teachers. Some well-known examples of these habits include refusing to draw free-body diagrams, hunting through the book to find an example problem to use as a (perhaps inappropriate) template, and the classic ``plug-n-chug'' mentality. Studies in science education and cognitive science have yielded rational explanations for many of these novice behaviors and lay a groundwork for instructors to aid their students in beginning to develop more expert-like skills and behaviors. A few examples of these studies, as well as curricular tools that have developed as a result, will be shared. These tools not only encourage students to try more expert-like strategies, but also prime them for developing conceptual understanding.

  7. Problem Solving and Critical Thinking Skills of Undergraduate Nursing Students

    Directory of Open Access Journals (Sweden)

    Yalçın KANBAY

    2013-12-01

    Full Text Available Due to the fact that critical thinking and problem solving skills are essential components of educational and social lives of individuals, this present study which investigate critical thinking and problem solving skills of undergraduate students of nursing was planned. This is a descriptive study. The study population consisted of undergraduate nursing students of a university during the 2011-2012 academic year. Any specific sampling method was not determined and only the voluntary students was enrolled in the study . Several participants were excluded due to incomplete questionnaires, and eventually a total of 231 nursing students were included in the final sampling. Socio Demographic Features Data Form and the California Critical Thinking Disposition Scale and Problem Solving Inventory were used for data collection. The mean age of 231 subjects (148 girls, 83 boys was 21.34. The mean score of critical thinking was 255.71 for the first-grade, 255.57 for the second-grade, 264.73 for the third-grade, and 256.468 for the forth-grade students. The mean score of critical thinking was determined as 257.41 for the sample, which can be considered as an average value. Although there are mean score differences of critical thinking between the classes , they were not statistically significant (p> 0.05. With regard to the mean score of problem solving, the first-grade students had 92.86, the second-grade students had 94. 29, the third-grade students had 87.00, and the forth-grade students had 92.87. The mean score of problem solving was determined as 92.450 for the sample. Although there are differences between the classes in terms of mean scores of problem solving, it was not found statistically significant (p> 0.05. In this study, statistically significant correlation could not be identified between age and critical thinking skills of the subjects (p>0.05. However, a negative correlation was identified at low levels between critical thinking skills and

  8. Junior High School Students’ Understanding and Problem Solving Skills on the Topics of Line and Angles

    Science.gov (United States)

    Irsal, I. L.; Jupri, A.; Prabawanto, S.

    2017-09-01

    Line and angles is important topics to learn to develop the geometry skills and also mathematics skills such as understanding and problem solving skills. But, the fact was given by Indonesian researcher show that Indonesian students’ understanding and problem solving skills still low in this topics. This fact be a background to investigate students’ understanding and problem solving skills in line and angles topics. To investigate these skills, this study used descriptive-qualitative approach. Individual written test (essay) and interview was used in this study. 72 students grade 8th from one of Junior High School in Lembang, worked the written test and 18 of them were interviewed. Based on result, almost of student were have a good instrumental understanding in line and angles topic in same area, but almost all student have a low instrumental understanding in line and angles topic in different area. Almost all student have a low relational understanding. Also, almost all student have a low problem solving skills especially in make and use strategy to solve the problem and looking back their answer. Based on result there is need a meaningfulness learning strategy, which can make students build their understanding and develop their problem solving skill independently.

  9. Teaching effective problem solving skills to radiation protection students

    International Nuclear Information System (INIS)

    Waller, Edward

    2008-01-01

    Full text: Problem solving skills are essential for all radiation protection personnel. Although some students have more natural problem solving skills than others, all students require practice to become comfortable using these skills. At the University of Ontario Institute of Technology (UOIT), a unique one-semester course was developed as part of the core curriculum to teach students problem solving skills and elements of modelling and simulation. The underlying emphasis of the course was to allow students to develop their own problem solving strategies, both individually and in groups. Direction was provided on how to examine problems from different perspectives, and how to determine the proper root problem statement. A five-point problem solving strategy was presented as: 1) Problem definition; 2) Solution generation; 3) Decision; 4) Implementation; 5) Evaluation. Within the strategy, problem solving techniques were integrated from diverse areas such as: De Bono 's six thinking hats, Kepner-Tregoe decision analysis, Covey's seven habits of highly effective people, Reason's swiss cheese theory of complex failure, and Howlett's common failure modes. As part of the evaluation step, students critically explore areas such as ethics and environmental responsibility. In addition to exploring problem solving methods, students learn the usefulness of simulation methods, and how to model and simulate complex phenomena of relevance to radiation protection. Computational aspects of problem solving are explored using the commercially available MATLAB computer code. A number of case studies are presented as both examples and problems to the students. Emphasis was placed on solutions to problems of interest to radiation protection, health physics and nuclear engineering. A group project, pertaining to an accident or event related to the nuclear industry is a course requirement. Students learn to utilize common time and project management tools such as flowcharting, Pareto

  10. Calculus Problem Solving Behavior of Mathematic Education Students

    Science.gov (United States)

    Rizal, M.; Mansyur, J.

    2017-04-01

    The purpose of this study is to obtain a description of the problem-solving behaviour of mathematics education students. The attainment of the purpose consisted of several stages: (1) to gain the subject from the mathematic education of first semester students, each of them who has a high, medium, and low competence of mathematic case. (2) To give two mathematical problems with different characteristics. The first problem (M1), the statement does not lead to a resolution. The second problem (M2), a statement leads to problem-solving. (3) To explore the behaviour of problem-solving based on the step of Polya (Rizal, 2011) by way of thinking aloud and in-depth interviews. The obtained data are analysed as suggested by Miles and Huberman (1994) but at first, time triangulation is done or data’s credibility by providing equivalent problem contexts and at different times. The results show that the behavioral problem solvers (mathematic education students) who are capable of high mathematic competency (ST). In understanding M1, ST is more likely to pay attention to an image first, read the texts piecemeal and repeatedly, then as a whole and more focus to the sentences that contain equations, numbers or symbols. As a result, not all information can be received well. When understanding the M2, ST can link the information from a problem that is stored in the working memory to the information on the long-term memory. ST makes planning to the solution of M1 and M2 by using a formula based on similar experiences which have been ever received before. Another case when implementing the troubleshooting plans, ST complete the M1 according to the plan, but not all can be resolved correctly. In contrast to the implementation of the solving plan of M2, ST can solve the problem according to plan quickly and correctly. According to the solving result of M1 and M2, ST conducts by reading the job based on an algorithm and reasonability. Furthermore, when SS and SR understand the

  11. The Effects of a Problem Solving Intervention on Problem Solving Skills of Students with Autism during Vocational Tasks

    Science.gov (United States)

    Yakubova, Gulnoza

    2013-01-01

    Problem solving is an important employability skill and considered valuable both in educational settings (Agran & Alper, 2000) and the workplace (Ju, Zhang, & Pacha, 2012). However, limited research exists instructing students with autism to engage in problem solving skills (e.g., Bernard-Opitz, Sriram, & Nakhoda-Sapuan, 2001). The…

  12. Teaching problem-solving skills to nuclear engineering students

    Science.gov (United States)

    Waller, E.; Kaye, M. H.

    2012-08-01

    Problem solving is an essential skill for nuclear engineering graduates entering the workforce. Training in qualitative and quantitative aspects of problem solving allows students to conceptualise and execute solutions to complex problems. Solutions to problems in high consequence fields of study such as nuclear engineering require rapid and accurate analysis of the problems, design of solutions (focusing on public safety, environmental stewardship and ethics), solution execution and monitoring results. A three-month course in problem solving, modelling and simulation was designed and a collaborative approach was undertaken with instructors from both industry and academia. Training was optimised for the laptop-based pedagogy, which provided unique advantages for a course that includes modelling and simulation components. The concepts and tools learned as part of the training were observed to be utilised throughout the duration of student university studies and interviews with students who have entered the workforce indicate that the approaches learned and practised are retained long term.

  13. Schoenfeld's problem solving theory in a student controlled learning environment

    NARCIS (Netherlands)

    Harskamp, E.; Suhre, C.

    2007-01-01

    This paper evaluates the effectiveness of a student controlled computer program for high school mathematics based on instruction principles derived from Schoenfeld's theory of problem solving. The computer program allows students to choose problems and to make use of hints during different episodes

  14. Mathematical Profiles and Problem Solving Abilities of Mathematically Promising Students

    Science.gov (United States)

    Budak, Ibrahim

    2012-01-01

    Mathematically promising students are defined as those who have the potential to become the leaders and problem solvers of the future. The purpose of this research is to reveal what problem solving abilities mathematically promising students show in solving non-routine problems and type of profiles they present in the classroom and during problem…

  15. Analysing student written solutions to investigate if problem-solving processes are evident throughout

    Science.gov (United States)

    Kelly, Regina; McLoughlin, Eilish; Finlayson, Odilla E.

    2016-07-01

    An interdisciplinary science course has been implemented at a university with the intention of providing students the opportunity to develop a range of key skills in relation to: real-world connections of science, problem-solving, information and communications technology use and team while linking subject knowledge in each of the science disciplines. One of the problems used in this interdisciplinary course has been selected to evaluate if it affords students the opportunity to explicitly display problem-solving processes. While the benefits of implementing problem-based learning have been well reported, far less research has been devoted to methods of assessing student problem-solving solutions. A problem-solving theoretical framework was used as a tool to assess student written solutions to indicate if problem-solving processes were present. In two academic years, student problem-solving processes were satisfactory for exploring and understanding, representing and formulating, and planning and executing, indicating that student collaboration on problems is a good initiator of developing these processes. In both academic years, students displayed poor monitoring and reflecting (MR) processes at the intermediate level. A key impact of evaluating student work in this way is that it facilitated meaningful feedback about the students' problem-solving process rather than solely assessing the correctness of problem solutions.

  16. Pedagogy and/or technology: Making difference in improving students' problem solving skills

    Science.gov (United States)

    Hrepic, Zdeslav; Lodder, Katherine; Shaw, Kimberly A.

    2013-01-01

    Pen input computers combined with interactive software may have substantial potential for promoting active instructional methodologies and for facilitating students' problem solving ability. An excellent example is a study in which introductory physics students improved retention, conceptual understanding and problem solving abilities when one of three weekly lectures was replaced with group problem solving sessions facilitated with Tablet PCs and DyKnow software [1,2]. The research goal of the present study was to isolate the effect of the methodology itself (using additional time to teach problem solving) from that of the involved technology. In Fall 2011 we compared the performance of students taking the same introductory physics lecture course while enrolled in two separate problem-solving sections. One section used pen-based computing to facilitate group problem solving while the other section used low-tech methods for one third of the semester (covering Kinematics), and then traded technologies for the middle third of the term (covering Dynamics). Analysis of quiz, exam and standardized pre-post test results indicated no significant difference in scores of the two groups. Combining this result with those of previous studies implies primacy of pedagogy (collaborative problem solving itself) over technology for student learning in problem solving recitations.

  17. Self-Assessment of Problem Solving Disposition in Medical Students

    Directory of Open Access Journals (Sweden)

    Silvia Lizett Olivares-Olivares

    2014-01-01

    Full Text Available Medical schools are committed to both students and society to develop capabilities required to succeed in health care environments. Present diagnosis and treatment methods become obsolete faster, demanding that medical schools incorporate competency-based education to keep pace with future demands. This study was conducted to assess the problem solving disposition of medical students. A three-subcategory model of the skill is proposed. The instrument was validated on content by a group of 17 experts in medical education and applied to 135 registered students on the sixth year of the M.D. Physician Surgeon program at a private medical school. Cronbach’s alpha indicated an internal consistency of 0.751. The findings suggest that selected items have both homogeneity and validity. The factor analysis resulted in components that were associated with three problem-solving subcategories. The students’ perceptions are higher in the pattern recognition and application of general strategies for problem solving subcategories of the Problem solving disposition model.

  18. Understanding adults’ strong problem-solving skills based on PIAAC

    OpenAIRE

    Hämäläinen, Raija; De Wever, Bram; Nissinen, Kari; Cincinnato, Sebastiano

    2017-01-01

    Purpose Research has shown that the problem-solving skills of adults with a vocational education and training (VET) background in technology-rich environments (TREs) are often inadequate. However, some adults with a VET background do have sound problem-solving skills. The present study aims to provide insight into the socio-demographic, work-related and everyday life factors that are associated with a strong problem-solving performance. Design/methodology/approach The study builds...

  19. Evaluating Students' Beliefs in Problem Solving Process: A Case Study

    Science.gov (United States)

    Ozturk, Tugba; Guven, Bulent

    2016-01-01

    Problem solving is not simply a process that ends when an answer is found; it is a scientific process that evolves from understanding the problem to evaluating the solution. This process is affected by several factors. Among these, one of the most substantial is belief. The purpose of this study was to evaluate the beliefs of high school students…

  20. Self-Assessment of Problem Solving Disposition in Medical Students

    OpenAIRE

    Olivares-Olivares, Silvia Lizett; López-Cabrera, Mildred Vanessa

    2014-01-01

    Medical schools are committed to both students and society to develop capabilities required to succeed in health care environments. Present diagnosis and treatment methods become obsolete faster, demanding that medical schools incorporate competency-based education to keep pace with future demands. This study was conducted to assess the problem solving disposition of medical students. A three-subcategory model of the skill is proposed. The instrument was validated on content by a group of 17 ...

  1. Problem solving strategies integrated into nursing process to promote clinical problem solving abilities of RN-BSN students.

    Science.gov (United States)

    Wang, Jing-Jy; Lo, Chi-Hui Kao; Ku, Ya-Lie

    2004-11-01

    A set of problem solving strategies integrated into nursing process in nursing core courses (PSNP) was developed for students enrolled in a post-RN baccalaureate nursing program (RN-BSN) in a university in Taiwan. The purpose of this study, therefore, was to evaluate the effectiveness of PSNP on students' clinical problem solving abilities. The one-group post-test design with repeated measures was used. In total 114 nursing students with 47 full-time students and 67 part-time students participated in this study. The nursing core courses were undertaken separately in three semesters. After each semester's learning, students would start their clinical practice, and were asked to submit three written nursing process recordings during each clinic. Assignments from the three practices were named post-test I, II, and III sequentially, and provided the data for this study. The overall score of problem solving indicated that score on the post-test III was significantly better than that on post-test I and II, meaning both full-time and part-time students' clinical problem solving abilities improved at the last semester. In conclusion, problem-solving strategies integrated into nursing process designed for future RN-BSN students are recommendable.

  2. Understanding catastrophizing from a misdirected problem-solving perspective.

    Science.gov (United States)

    Flink, Ida K; Boersma, Katja; MacDonald, Shane; Linton, Steven J

    2012-05-01

    The aim is to explore pain catastrophizing from a problem-solving perspective. The links between catastrophizing, problem framing, and problem-solving behaviour are examined through two possible models of mediation as inferred by two contemporary and complementary theoretical models, the misdirected problem solving model (Eccleston & Crombez, 2007) and the fear-anxiety-avoidance model (Asmundson, Norton, & Vlaeyen, 2004). In this prospective study, a general population sample (n= 173) with perceived problems with spinal pain filled out questionnaires twice; catastrophizing and problem framing were assessed on the first occasion and health care seeking (as a proxy for medically oriented problem solving) was assessed 7 months later. Two different approaches were used to explore whether the data supported any of the proposed models of mediation. First, multiple regressions were used according to traditional recommendations for mediation analyses. Second, a bootstrapping method (n= 1000 bootstrap resamples) was used to explore the significance of the indirect effects in both possible models of mediation. The results verified the concepts included in the misdirected problem solving model. However, the direction of the relations was more in line with the fear-anxiety-avoidance model. More specifically, the mediation analyses provided support for viewing catastrophizing as a mediator of the relation between biomedical problem framing and medically oriented problem-solving behaviour. These findings provide support for viewing catastrophizing from a problem-solving perspective and imply a need to examine and address problem framing and catastrophizing in back pain patients. ©2011 The British Psychological Society.

  3. Making Sense of Conceptual Tools in Student-Generated Cases: Student Teachers' Problem-Solving Processes

    Science.gov (United States)

    Jahreie, Cecilie Flo

    2010-01-01

    This article examines the way student teachers make sense of conceptual tools when writing cases. In order to understand the problem-solving process, an analysis of the interactions is conducted. The findings show that transforming practical experiences into theoretical reflection is not a straightforward matter. To be able to elaborate on the…

  4. Self-Monitoring Checklists for Inquiry Problem-Solving: Functional Problem-Solving Methods for Students with Intellectual Disability

    Science.gov (United States)

    Miller, Bridget; Taber-Doughty, Teresa

    2014-01-01

    Three students with mild to moderate intellectual and multiple disability, enrolled in a self-contained functional curriculum class were taught to use a self-monitoring checklist and science notebook to increase independence in inquiry problem-solving skills. Using a single-subject multiple-probe design, all students acquired inquiry…

  5. Interactive video tutorials for enhancing problem solving, reasoning, and meta-cognitive skills of introductory physics students

    OpenAIRE

    Singh, Chandralekha

    2016-01-01

    We discuss the development of interactive video tutorial-based problems to help introductory physics students learn effective problem solving heuristics. The video tutorials present problem solving strategies using concrete examples in an interactive environment. They force students to follow a systematic approach to problem solving and students are required to solve sub-problems (research-guided multiple choice questions) to show their level of understanding at every stage of prob lem solvin...

  6. Peer Instruction in Chemistry Education: Assessment of Students' Learning Strategies, Conceptual Learning and Problem Solving

    Science.gov (United States)

    Gok, Tolga; Gok, Ozge

    2016-01-01

    The aim of this research was to investigate the effects of peer instruction on learning strategies, problem solving performance, and conceptual understanding of college students in a general chemistry course. The research was performed students enrolled in experimental and control groups of a chemistry course were selected. Students in the…

  7. Asessing for Structural Understanding in Childrens' Combinatorial Problem Solving.

    Science.gov (United States)

    English, Lyn

    1999-01-01

    Assesses children's structural understanding of combinatorial problems when presented in a variety of task situations. Provides an explanatory model of students' combinatorial understandings that informs teaching and assessment. Addresses several components of children's structural understanding of elementary combinatorial problems. (Contains 50…

  8. The development and nature of problem-solving among first-semester calculus students

    Science.gov (United States)

    Dawkins, Paul Christian; Mendoza Epperson, James A.

    2014-08-01

    This study investigates interactions between calculus learning and problem-solving in the context of two first-semester undergraduate calculus courses in the USA. We assessed students' problem-solving abilities in a common US calculus course design that included traditional lecture and assessment with problem-solving-oriented labs. We investigate this blended instruction as a local representative of the US calculus reform movements that helped foster it. These reform movements tended to emphasize problem-solving as well as multiple mathematical registers and quantitative modelling. Our statistical analysis reveals the influence of the blended traditional/reform calculus instruction on students' ability to solve calculus-related, non-routine problems through repeated measures over the semester. The calculus instruction in this study significantly improved students' performance on non-routine problems, though performance improved more regarding strategies and accuracy than it did for drawing conclusions and providing justifications. We identified problem-solving behaviours that characterized top performance or attrition in the course. Top-performing students displayed greater algebraic proficiency, calculus skills, and more general heuristics than their peers, but overused algebraic techniques even when they proved cumbersome or inappropriate. Students who subsequently withdrew from calculus often lacked algebraic fluency and understanding of the graphical register. The majority of participants, when given a choice, relied upon less sophisticated trial-and-error approaches in the numerical register and rarely used the graphical register, contrary to the goals of US calculus reform. We provide explanations for these patterns in students' problem-solving performance in view of both their preparation for university calculus and the courses' assessment structure, which preferentially rewarded algebraic reasoning. While instruction improved students' problem-solving

  9. The Effect of Problem Solving and Problem Posing Models and Innate Ability to Students Achievement

    Directory of Open Access Journals (Sweden)

    Ratna Kartika Irawati

    2015-04-01

    Full Text Available Pengaruh Model Problem Solving dan Problem Posing serta Kemampuan Awal terhadap Hasil Belajar Siswa   Abstract: Chemistry concepts understanding features abstract quality and requires higher order thinking skills. Yet, the learning on chemistry has not boost the higher order thinking skills of the students. The use of the learning model of Problem Solving and Problem Posing in observing the innate ability of the student is expected to resolve the issue. This study aims to determine the learning model which is effective to improve the study of the student with different level of innate ability. This study used the quasi-experimental design. The research data used in this research is the quiz/test of the class which consist of 14 multiple choice questions and 5 essay questions. The data analysis used is ANOVA Two Ways. The results showed that Problem Posing is more effective to improve the student compared to Problem Solving, students with high level of innate ability have better outcomes in learning rather than the students with low level of innate ability after being applied with the Problem solving and Problem posing model, further, Problem Solving and Problem Posing is more suitable to be applied to the students with high level of innate ability. Key Words: problem solving, problem posing, higher order thinking skills, innate ability, learning outcomes   Abstrak: Pemahaman konsep-konsep kimia yang bersifat abstrak membutuhkan keterampilan berpikir tingkat tinggi. Pembelajaran kimia belum mendorong siswa melakukan keterampilan berpikir tingkat tinggi. Penggunaan model pembelajaran Problem Solving dan Problem Posing dengan memperhatikan kemampuan awal siswa diduga dapat mengatasi masalah tersebut. Penelitian ini bertujuan untuk mengetahui model pembelajaran yang efektif dalam meningkatkan hasil belajar dengan kemampuan awal siswa yang berbeda. Penelitian ini menggunakan rancangan eksperimen semu. Data penelitian menggunakan tes hasil belajar

  10. Problem solving: How can we help students overcome cognitive difficulties

    Directory of Open Access Journals (Sweden)

    Liberato Cardellini

    2014-12-01

    Full Text Available The traditional approach to teach problem solving usually consists in showing students the solutions of some example-problems and then in asking students to practice individually on solving a certain number of related problems. This approach does not ensure that students learn to solve problems and above all to think about the solution process in a consistent manner. Topics such as atoms, molecules, and the mole concept are fundamental in chemistry and instructors may think that, for our students, should be easy to learn these concepts and to use them in solving problems, but it is not always so. If teachers do not put emphasis on the logical process during solving problems, students are at risk to become more proficient at applying the formulas rather than to reason. This disappointing result is clear from the outcomes of questionnaires meant to measure the ability to calculate the mass of a sample from the number of atoms and vice versa. A suggestion from the cognitive load theory has proved a useful way to improve students’ skills for this type of problems: the use of worked out examples. The repetition after two weeks of the Friedel-Maloney test after the use of worked examples shows that students' skills significantly improve. Successful students in all questions jumped from 2 to 64%.

  11. Problem Solving vs. Troubleshooting Tasks: The Case of Sixth-Grade Students Studying Simple Electric Circuits

    Science.gov (United States)

    Safadi, Rafi'; Yerushalmi, Edit

    2014-01-01

    We compared the materialization of knowledge integration processes in class discussions that followed troubleshooting (TS) and problem-solving (PS) tasks and examined the impact of these tasks on students' conceptual understanding. The study was conducted in two sixth-grade classes taught by the same teacher, in six lessons that constituted a…

  12. Students' Problem Solving as Mediated by Their Cognitive Tool Use: A Study of Tool Use Patterns

    Science.gov (United States)

    Liu, M.; Horton, L. R.; Corliss, S. B.; Svinicki, M. D.; Bogard, T.; Kim, J.; Chang, M.

    2009-01-01

    The purpose of this study was to use multiple data sources, both objective and subjective, to capture students' thinking processes as they were engaged in problem solving, examine the cognitive tool use patterns, and understand what tools were used and why they were used. The findings of this study confirmed previous research and provided clear…

  13. Word Problem Solving of Students with Autistic Spectrum Disorders and Students with Typical Development

    Science.gov (United States)

    Bae, Young Seh

    2013-01-01

    Mathematical Word Problem Solving of Students with Autistic Spectrum Disorders and Students with Typical Development Young Seh Bae This study investigated mathematical word problem solving and the factors associated with the solution paths adopted by two groups of participants (N=40), students with autism spectrum disorders (ASDs) and typically…

  14. An Assessment of the Effect of Collaborative Groups on Students' Problem-Solving Strategies and Abilities

    Science.gov (United States)

    Cooper, Melanie M.; Cox, Charles T., Jr.; Nammouz, Minory; Case, Edward; Stevens, Ronald

    2008-01-01

    Improving students' problem-solving skills is a major goal for most science educators. While a large body of research on problem solving exists, assessment of meaningful problem solving is very difficult, particularly for courses with large numbers of students in which one-on-one interactions are not feasible. We have used a suite of software…

  15. Case of Two Electrostatics Problems: Can Providing a Diagram Adversely Impact Introductory Physics Students' Problem Solving Performance?

    Science.gov (United States)

    Maries, Alexandru; Singh, Chandralekha

    2018-01-01

    Drawing appropriate diagrams is a useful problem solving heuristic that can transform a problem into a representation that is easier to exploit for solving it. One major focus while helping introductory physics students learn effective problem solving is to help them understand that drawing diagrams can facilitate problem solution. We conducted an…

  16. ANALYZING THE RELATIONSHIP BETWEEN PROBLEM SOLVING SKILLS AND PERSONALITY CHARACTERISTICS OF UNIVERSITY STUDENTS

    OpenAIRE

    SÜLEYMAN DÜNDAR

    2013-01-01

    The aim of this study is to analyze problem solving skills of university students according to their personal characteristics. We try to find out if there is a difference in problem solving skills considering sex, class and personality harmony characteristics. Personal data form, Problem Solving Scale and Hacettepe Personality Scale are used as measurement tools. The results of the study indicate that there is no difference between male and female students in problem solving skills. Problem s...

  17. To what extent do student teachers develop their mathematical problem solving ability by self-study?

    OpenAIRE

    Kool, Marjolein; Keijzer, Ronald

    2017-01-01

    A primary teacher needs mathematical problem solving ability. That is why Dutch student teachers have to show this ability in a nationwide mathematics test that contains many non-routine problems. Most student teachers prepare for this test by working on their own solving test-like problems. To what extent does these individual problem solving activities really contribute to their mathematical problem solving ability? Developing mathematical problem solving ability requires reflective mathema...

  18. The impact of problem solving strategy with online feedback on students’ conceptual understanding

    Science.gov (United States)

    Pratiwi, H. Y.; Winarko, W.; Ayu, H. D.

    2018-04-01

    The study aimed to determine the impact of the implementation of problem solving strategy with online feedback towards the students’ concept understanding. This study used quasi experimental design with post-test only control design. The participants were all Physics Education students of Kanjuruhan University year 2015. Then, they were divided into two different groups; 30 students belong to experiment class and the remaining 30 students belong to class of control. The students’ concept understanding was measured by the concept understanding test on multiple integral lesson. The result of the concept understanding test was analyzed by prerequisite test and stated to be normal and homogenic distributed, then the hypothesis was examined by T-test. The result of the study shows that there is difference in the concept understanding between experiment class and control class. Next, the result also shows that the students’ concept understanding which was taught using problem solving strategy with online feedback was higher than those using conventional learning; with average score of 72,10 for experiment class and 52,27 for control class.

  19. Social problem solving ability predicts mental health among undergraduate students

    Directory of Open Access Journals (Sweden)

    Mansour Ranjbar

    2013-01-01

    Methods : In this correlational- descriptive study, 369 (208 female and 161 male from, Mazandaran University of Medical Science were selected through stratified random sampling method. In order to collect the data, the social problem solving inventory-revised and general health questionnaire were used. Data were analyzed through SPSS-19, Pearson′s correlation, t test, and stepwise regression analysis. Results : Data analysis showed significant relationship between social problem solving ability and mental health (P < 0.01. Social problem solving ability was significantly associated with the somatic symptoms, anxiety and insomnia, social dysfunction and severe depression (P < 0.01. Conclusions: The results of our study demonstrated that there is a significant correlation between social problem solving ability and mental health.

  20. Social Problem Solving Ability Predicts Mental Health Among Undergraduate Students

    OpenAIRE

    Ranjbar, Mansour; Bayani, Ali Asghar; Bayani, Ali

    2013-01-01

    Background : The main objective of this study was predicting student′s mental health using social problem solving- ability . Methods : In this correlational- descriptive study, 369 (208 female and 161 male) from, Mazandaran University of Medical Science were selected through stratified random sampling method. In order to collect the data, the social problem solving inventory-revised and general health questionnaire were used. Data were analyzed through SPSS-19, Pearson′s correlation, t tes...

  1. Using Coaching to Improve the Teaching of Problem Solving to Year 8 Students in Mathematics

    Science.gov (United States)

    Kargas, Christine Anestis; Stephens, Max

    2014-01-01

    This study investigated how to improve the teaching of problem solving in a large Melbourne secondary school. Coaching was used to support and equip five teachers, some with limited experiences in teaching problem solving, with knowledge and strategies to build up students' problem solving and reasoning skills. The results showed increased…

  2. The Development and Nature of Problem-Solving among First-Semester Calculus Students

    Science.gov (United States)

    Dawkins, Paul Christian; Epperson, James A. Mendoza

    2014-01-01

    This study investigates interactions between calculus learning and problem-solving in the context of two first-semester undergraduate calculus courses in the USA. We assessed students' problem-solving abilities in a common US calculus course design that included traditional lecture and assessment with problem-solving-oriented labs. We investigate…

  3. Exploring Primary Student's Problem-Solving Ability by Doing Tasks Like PISA's Question

    OpenAIRE

    Novita, Rita; Zulkardi, Zulkardi; Hartono, Yusuf

    2012-01-01

    Problem solving plays an important role in mathematics and should have a prominent role in the mathematics education. The term “problem solving” refers to mathematics tasks that have the potential to provide intellectual challenges for enhancing students’ mathematical understanding and development. In addition, the contextual problem that requires students to connect their mathematical knowledge in solving mathematical situational problem is believed to be an impact on the development student...

  4. LETTERS AND COMMENTS: Comment on 'The effects of students' reasoning abilities on conceptual understanding and problem-solving skills in introductory mechanics'

    Science.gov (United States)

    Coletta, Vincent P.; Phillips, Jeffrey A.; Savinainen, Antti; Steinert, Jeffrey J.

    2008-09-01

    In a recent article, Ates and Cataloglu (2007 Eur. J. Phys. 28 1161-71), in analysing results for a course in introductory mechanics for prospective science teachers, found no statistically significant correlation between students' pre-instruction scores on the Lawson classroom test of scientific reasoning ability (CTSR) and post-instruction scores on the force concept inventory (FCI). As a possible explanation, the authors suggest that the FCI does not probe for skills required to determine reasoning abilities. Our previously published research directly contradicts the authors' finding. We summarize our research and present a likely explanation for their observation of no correlation.

  5. Problem solving of student with visual impairment related to mathematical literacy problem

    Science.gov (United States)

    Pratama, A. R.; Saputro, D. R. S.; Riyadi

    2018-04-01

    The student with visual impairment, total blind category depends on the sense of touch and hearing in obtaining information. In fact, the two senses can receive information less than 20%. Thus, students with visual impairment of the total blind categories in the learning process must have difficulty, including learning mathematics. This study aims to describe the problem-solving process of the student with visual impairment, total blind category on mathematical literacy issues based on Polya phase. This research using test method similar problems mathematical literacy in PISA and in-depth interviews. The subject of this study was a student with visual impairment, total blind category. Based on the result of the research, problem-solving related to mathematical literacy based on Polya phase is quite good. In the phase of understanding the problem, the student read about twice by brushing the text and assisted with information through hearing three times. The student with visual impairment in problem-solving based on the Polya phase, devising a plan by summoning knowledge and experience gained previously. At the phase of carrying out the plan, students with visual impairment implement the plan in accordance with pre-made. In the looking back phase, students with visual impairment need to check the answers three times but have not been able to find a way.

  6. Implementation of basic chemistry experiment based on metacognition to increase problem-solving and build concept understanding

    Science.gov (United States)

    Zuhaida, A.

    2018-04-01

    Implementation of the experiment have the three aspects of the goal: 1) develop basic skills of experimenting; 2) develop problem-solving skills with a scientific approach; 3) improve understanding of the subject matter. On the implementation of the experiment, students have some weaknesses include: observing, identifying problems, managing information, analyzing, and evaluating. This weakness is included in the metacognition indicator.The objective of the research is to implementation of Basic Chemistry Experiment based on metacognition to increase problem-solving skills and build concept understanding for students of Science Education Department. The method of this research is a quasi- experimental method with pretest-posttest control group design. Problem-solving skills are measured through performance assessments using rubrics from problem solving reports, and results presentation. The conceptual mastery is measured through a description test. The result of the research: (1) improve the problem solving skills of the students with very high category; (2) increase the students’ concept understanding better than the conventional experiment with the result of N-gain in medium category, and (3) increase student's response positively for learning implementation. The contribution of this research is to extend the implementation of practical learning for some subjects, and to improve the students' competence in science.

  7. Improving mathematical problem solving ability through problem-based learning and authentic assessment for the students of Bali State Polytechnic

    Science.gov (United States)

    Darma, I. K.

    2018-01-01

    This research is aimed at determining: 1) the differences of mathematical problem solving ability between the students facilitated with problem-based learning model and conventional learning model, 2) the differences of mathematical problem solving ability between the students facilitated with authentic and conventional assessment model, and 3) interaction effect between learning and assessment model on mathematical problem solving. The research was conducted in Bali State Polytechnic, using the 2x2 experiment factorial design. The samples of this research were 110 students. The data were collected using a theoretically and empirically-validated test. Instruments were validated by using Aiken’s approach of technique content validity and item analysis, and then analyzed using anova stylistic. The result of the analysis shows that the students facilitated with problem-based learning and authentic assessment models get the highest score average compared to the other students, both in the concept understanding and mathematical problem solving. The result of hypothesis test shows that, significantly: 1) there is difference of mathematical problem solving ability between the students facilitated with problem-based learning model and conventional learning model, 2) there is difference of mathematical problem solving ability between the students facilitated with authentic assessment model and conventional assessment model, and 3) there is interaction effect between learning model and assessment model on mathematical problem solving. In order to improve the effectiveness of mathematics learning, collaboration between problem-based learning model and authentic assessment model can be considered as one of learning models in class.

  8. Multi-representation ability of students on the problem solving physics

    Science.gov (United States)

    Theasy, Y.; Wiyanto; Sujarwata

    2018-03-01

    Accuracy in representing knowledge possessed by students will show how the level of student understanding. The multi-representation ability of students on the problem solving of physics has been done through qualitative method of grounded theory model and implemented on physics education student of Unnes academic year 2016/2017. Multiforms of representation used are verbal (V), images/diagrams (D), graph (G), and mathematically (M). High and low category students have an accurate use of graphical representation (G) of 83% and 77.78%, and medium category has accurate use of image representation (D) equal to 66%.

  9. The Effect of Reading Comprehension and Problem Solving Strategies on Classifying Elementary 4th Grade Students with High and Low Problem Solving Success

    Science.gov (United States)

    Ulu, Mustafa

    2017-01-01

    In this study, the effect of fluent reading (speed, reading accuracy percentage, prosodic reading), comprehension (literal comprehension, inferential comprehension) and problem solving strategies on classifying students with high and low problem solving success was researched. The sampling of the research is composed of 279 students at elementary…

  10. The Relationship between Students' Problem Solving Frames and Epistemological Beliefs

    Science.gov (United States)

    Wampler, Wendi N.

    2013-01-01

    Introductory undergraduate physics courses aim to help students develop the skills and strategies necessary to solve complex, real world problems, but many students not only leave these courses with serious gaps in their conceptual understanding, but also maintain a novice-like approach to solving problems. "Matter and Interactions"…

  11. Scientific Approach to Improve Mathematical Problem Solving Skills Students of Grade V

    Science.gov (United States)

    Roheni; Herman, T.; Jupri, A.

    2017-09-01

    This study investigates the skills of elementary school students’ in problem solving through the Scientific Approach. The purpose of this study is to determine mathematical problem solving skills of students by using Scientific Approach is better than mathematical problem solving skills of students by using Direct Instruction. This study is using quasi-experimental method. Subject of this study is students in grade V in one of state elementary school in Cirebon Regency. Instrument that used in this study is mathematical problem solving skills. The result of this study showed that mathematical problem solving skills of students who learn by using Scientific Approach is more significant than using Direct Instruction. Base on result and analysis, the conclusion is that Scientific Approach can improve students’ mathematical problem solving skills.

  12. Teaching nutrition to medical students: a community-based problem-solving approach.

    Science.gov (United States)

    Bhattacharji, S; Joseph, A; Abraham, S; Muliyil, J; John, K R; Ethirajan, N

    1990-01-01

    This paper presents a community-based problem-solving educational programme which aims at teaching medical and other health science students the importance of nutrition and its application. Through community surveys students assess the nutritional status of children under five using different anthropometric methods. They understand the cultural beliefs and customs related to food fads and the reasons for them. They also acquire the skill to educate the community using the information gathered. They use epidemiological methods such as case control study to find associations between malnutrition and other causative factors. Feedback from students has been positive and evaluation of students' knowledge before and after the programme has shown significant improvement.

  13. Modeling Students' Problem Solving Performance in the Computer-Based Mathematics Learning Environment

    Science.gov (United States)

    Lee, Young-Jin

    2017-01-01

    Purpose: The purpose of this paper is to develop a quantitative model of problem solving performance of students in the computer-based mathematics learning environment. Design/methodology/approach: Regularized logistic regression was used to create a quantitative model of problem solving performance of students that predicts whether students can…

  14. Students' Errors in Solving the Permutation and Combination Problems Based on Problem Solving Steps of Polya

    Science.gov (United States)

    Sukoriyanto; Nusantara, Toto; Subanji; Chandra, Tjang Daniel

    2016-01-01

    This article was written based on the results of a study evaluating students' errors in problem solving of permutation and combination in terms of problem solving steps according to Polya. Twenty-five students were asked to do four problems related to permutation and combination. The research results showed that the students still did a mistake in…

  15. Analyzing Interpersonal Problem Solving in Terms of Solution Focused Approach and Humor Styles of University Student

    Science.gov (United States)

    Koc, Hayri; Arslan, Coskun

    2017-01-01

    In this study university students interpersonal problem solving approaches were investigated in terms of solution focused approach and humor styles. The participants were 773 (542 female and 231 male, between 17-33 years old) university students. To determine the university students' problem solving approaches "Interpersonal Problem Solving…

  16. Examination of Turkish Junior High-School Students' Perceptions of the General Problem-Solving Process

    Science.gov (United States)

    Ekici, Didem Inel

    2016-01-01

    This study aimed to determine Turkish junior high-school students' perceptions of the general problem-solving process. The Turkish junior high-school students' perceptions of the general problem-solving process were examined in relation to their gender, grade level, age and their grade point with regards to the science course identified in the…

  17. The Investigation of Social Problem Solving Abilities of University Students in Terms of Perceived Social Support

    Science.gov (United States)

    Tras, Zeliha

    2013-01-01

    The purpose of this study is to analyze of university students' perceived social support and social problem solving. The participants were 827 (474 female and 353 male) university students. Data were collected Perceived Social Support Scale-Revised (Yildirim, 2004) and Social Problem Solving (Maydeu-Olivares and D'Zurilla, 1996) translated and…

  18. How Students Circumvent Problem-Solving Strategies that Require Greater Cognitive Complexity.

    Science.gov (United States)

    Niaz, Mansoor

    1996-01-01

    Analyzes the great diversity in problem-solving strategies used by students in solving a chemistry problem and discusses the relationship between these variables and different cognitive variables. Concludes that students try to circumvent certain problem-solving strategies by adapting flexible and stylistic innovations that render the cognitive…

  19. Surveying Turkish High School and University Students' Attitudes and Approaches to Physics Problem Solving

    Science.gov (United States)

    Balta, Nuri; Mason, Andrew J.; Singh, Chandralekha

    2016-01-01

    Students' attitudes and approaches to physics problem solving can impact how well they learn physics and how successful they are in solving physics problems. Prior research in the U.S. using a validated Attitude and Approaches to Problem Solving (AAPS) survey suggests that there are major differences between students in introductory physics and…

  20. Problem-Solving Training: Effects on the Problem-Solving Skills and Self-Efficacy of Nursing Students

    OpenAIRE

    Ancel, Gulsum

    2016-01-01

    Problem Statement: Problem-Solving (PS) skills have been determined to be an internationally useful strategy for better nursing. That is why PS skills underlie all nursing practice, teamwork, and health care management, and are a main topic in undergraduate nursing education. Thus, there is a need to develop effective methods to teach problem-solving skills. The present study, as a first study in Turkey, may provide valuable insight for nurse academicians employed at üniversities. Purpose of ...

  1. Leveling of Critical Thinking Abilities of Students of Mathematics Education in Mathematical Problem Solving

    Science.gov (United States)

    Rasiman

    2015-01-01

    This research aims to determine the leveling of critical thinking abilities of students of mathematics education in mathematical problem solving. It includes qualitative-explorative study that was conducted at University of PGRI Semarang. The generated data in the form of information obtained problem solving question and interview guides. The…

  2. Model Drawing Strategy for Fraction Word Problem Solving of Fourth-Grade Students with Learning Disabilities

    Science.gov (United States)

    Sharp, Emily; Shih Dennis, Minyi

    2017-01-01

    This study used a multiple probe across participants design to examine the effects of a model drawing strategy (MDS) intervention package on fraction comparing and ordering word problem-solving performance of three Grade 4 students. MDS is a form of cognitive strategy instruction for teaching word problem solving that includes explicit instruction…

  3. Dynamics of Undergraduate Student Generic Problem-Solving Skills Captured by a Campus-Wide Study

    Science.gov (United States)

    Klegeris, Andis; McKeown, Stephanie Barclay; Hurren, Heather; Spielman, Lindsay Joy; Stuart, Maegan; Bahniwal, Manpreet

    2017-01-01

    The ability to effectively problem solve is a highly valued competency expected of university graduates, independent of their area of study. Evaluation of problem-solving skill (PSS) development is hindered by a shortage of available tools for monitoring student progress and by lack of defined instructional strategies for development of these…

  4. Examining the Critical Thinking Dispositions and the Problem Solving Skills of Computer Engineering Students

    Science.gov (United States)

    Özyurt, Özcan

    2015-01-01

    Problem solving is an indispensable part of engineering. Improving critical thinking dispositions for solving engineering problems is one of the objectives of engineering education. In this sense, knowing critical thinking and problem solving skills of engineering students is of importance for engineering education. This study aims to determine…

  5. Toward Teaching Methods that Develop Learning and Enhance Problem Solving Skills in Engineering Students

    Science.gov (United States)

    Loji, K.

    2012-01-01

    Problem solving skills and abilities are critical in life and more specifically in the engineering field. Unfortunately, significant numbers of South African students who are accessing higher education lack problem solving skills and this results in poor academic performance jeopardizing their progress especially from first to second year. On the…

  6. An Intervention Framework Designed to Develop the Collaborative Problem-Solving Skills of Primary School Students

    Science.gov (United States)

    Gu, Xiaoqing; Chen, Shan; Zhu, Wenbo; Lin, Lin

    2015-01-01

    Considerable effort has been invested in innovative learning practices such as collaborative inquiry. Collaborative problem solving is becoming popular in school settings, but there is limited knowledge on how to develop skills crucial in collaborative problem solving in students. Based on the intervention design in social interaction of…

  7. The effect of problem posing and problem solving with realistic mathematics education approach to the conceptual understanding and adaptive reasoning

    Science.gov (United States)

    Mahendra, Rengga; Slamet, Isnandar; Budiyono

    2017-12-01

    One of the difficulties of students in learning mathematics is on the subject of geometry that requires students to understand abstract things. The aim of this research is to determine the effect of learning model Problem Posing and Problem Solving with Realistic Mathematics Education Approach to conceptual understanding and students' adaptive reasoning in learning mathematics. This research uses a kind of quasi experimental research. The population of this research is all seventh grade students of Junior High School 1 Jaten, Indonesia. The sample was taken using stratified cluster random sampling technique. The test of the research hypothesis was analyzed by using t-test. The results of this study indicate that the model of Problem Posing learning with Realistic Mathematics Education Approach can improve students' conceptual understanding significantly in mathematics learning. In addition tu, the results also showed that the model of Problem Solving learning with Realistic Mathematics Education Approach can improve students' adaptive reasoning significantly in learning mathematics. Therefore, the model of Problem Posing and Problem Solving learning with Realistic Mathematics Education Approach is appropriately applied in mathematics learning especially on the subject of geometry so as to improve conceptual understanding and students' adaptive reasoning. Furthermore, the impact can improve student achievement.

  8. Enhancement of problem solving ability of high school students through learning with real engagement in active problem solving (REAPS) model on the concept of heat transfer

    Science.gov (United States)

    Yulindar, A.; Setiawan, A.; Liliawati, W.

    2018-05-01

    This study aims to influence the enhancement of problem solving ability before and after learning using Real Engagement in Active Problem Solving (REAPS) model on the concept of heat transfer. The research method used is quantitative method with 35 high school students in Pontianak as sample. The result of problem solving ability of students is obtained through the test in the form of 3 description questions. The instrument has tested the validity by the expert judgment and field testing that obtained the validity value of 0.84. Based on data analysis, the value of N-Gain is 0.43 and the enhancement of students’ problem solving ability is in medium category. This was caused of students who are less accurate in calculating the results of answers and they also have limited time in doing the questions given.

  9. Problem-Solving Skills and Suicidal Ideation Among Malaysian College Students: the Mediating Role of Hopelessness.

    Science.gov (United States)

    Abdollahi, Abbas; Talib, Mansor Abu; Yaacob, Siti Nor; Ismail, Zanariah

    2016-04-01

    Recent evidence suggests that suicidal ideation has increased among Malaysian college students over the past two decades; therefore, it is essential to increase our knowledge concerning the etiology of suicidal ideation among Malaysian college students. This study was conducted to examine the relationships between problem-solving skills, hopelessness, and suicidal ideation among Malaysian college students. The participants included 500 undergraduate students from two Malaysian public universities who completed the self-report questionnaires. Structural equation modeling estimated that college students with poor problem-solving confidence, external personal control of emotion, and avoiding style were more likely to report suicidal ideation. Hopelessness partially mediated the relationship between problem-solving skills and suicidal ideation. These findings reinforce the importance of poor problem-solving skills and hopelessness as risk factors for suicidal ideation among college students.

  10. Student Teachers’ Self-Appraised Problem-Solving Ability and Willingness to Engage in Troubleshooting Activities

    Directory of Open Access Journals (Sweden)

    Benedict Iorzer Labe

    2015-07-01

    Full Text Available The purpose of this research was to determine the extent of student teachers’ willingness to engage in troubleshooting activities and their technological problem-solving self-appraised ability. The study used a cross-sectional descriptive correlational design to collect data from 310 purposively random sampled students from three universities in Northern Nigeria. Results of data analyses indicated that student teachers from the universities surveyed reported a moderate willingness to engage in troubleshooting activities as well as a moderately positive self-appraisal of their problem-solving ability. The student teachers’ willingness to engage in troubleshooting activities was also significantly related to the pattern of their self-appraised problem-solving ability. It was therefore concluded that the findings from this research do not support the pedestrian view that students from Nigerian universities are reluctant to engage in problem-solving activities.

  11. Problem-Solving Training: Effects on the Problem-Solving Skills and Self-Efficacy of Nursing Students

    Science.gov (United States)

    Ancel, Gulsum

    2016-01-01

    Problem Statement: Problem-Solving (PS) skills have been determined to be an internationally useful strategy for better nursing. That is why PS skills underlie all nursing practice, teamwork, and health care management, and are a main topic in undergraduate nursing education. Thus, there is a need to develop effective methods to teach…

  12. The effect of critical thinking education on nursing students' problem-solving skills.

    Science.gov (United States)

    Kanbay, Yalçın; Okanlı, Ayşe

    2017-06-01

    The aim of this study is to examine the effect of critical thinking education on nursing students' problem-solving skills. This study was conducted with 93 nursing students, 49 in the control group and 44 in the education group. The California Critical Thinking Disposition Inventory and the Problem-solving Inventory were administered to them before and after 12 weeks of critical thinking education. The education group's mean critical thinking score was 253.61 on the pretest and 268.72 on the posttest. This increase was statistically significant (p skills of education group increased significantly (p critical thinking education improves problem-solving skills.

  13. The Effect of Metacognitive Instruction on Problem Solving Skills in Iranian Students of Health Sciences.

    Science.gov (United States)

    Safari, Yahya; Meskini, Habibeh

    2015-05-17

    Learning requires application of such processes as planning, supervision, monitoring and reflection that are included in the metacognition. Studies have shown that metacognition is associated with problem solving skills. The current research was conducted to investigate the impact of metacognitive instruction on students' problem solving skills. The study sample included 40 students studying in the second semester at Kermanshah University of Medical Sciences, 2013-2014. They were selected through convenience sampling technique and were randomly assigned into two equal groups of experimental and control. For the experimental group, problem solving skills were taught through metacognitive instruction during ten two-hour sessions and for the control group, problem solving skills were taught via conventional teaching method. The instrument for data collection included problem solving inventory (Heppner, 1988), which was administered before and after instruction. The validity and reliability of the questionnaire had been previously confirmed. The collected data were analyzed by descriptive statistics, mean and standard deviation and the hypotheses were tested by t-test and ANCOVA. The findings of the posttest showed that the total mean scores of problem solving skills in the experimental and control groups were 151.90 and 101.65, respectively, indicating a significant difference between them (pproblem solving skills and its components, including problem solving confidence, orientation-avoidance coping style and personal control (pproblem solving skills and is required to enhance academic achievement, metacognitive strategies are recommended to be taught to the students.

  14. Reflective Learning and Prospective Teachers' Conceptual Understanding, Critical Thinking, Problem Solving, and Mathematical Communication Skills

    Science.gov (United States)

    Junsay, Merle L.

    2016-01-01

    This is a quasi-experimental study that explored the effects of reflective learning on prospective teachers' conceptual understanding, critical thinking, problem solving, and mathematical communication skills and the relationship of these variables. It involved 60 prospective teachers from two basic mathematics classes of an institution of higher…

  15. Complex Problem Solving in Radiologic Technology: Understanding the Roles of Experience, Reflective Judgment, and Workplace Culture

    Science.gov (United States)

    Yates, Jennifer L.

    2011-01-01

    The purpose of this research study was to explore the process of learning and development of problem solving skills in radiologic technologists. The researcher sought to understand the nature of difficult problems encountered in clinical practice, to identify specific learning practices leading to the development of professional expertise, and to…

  16. The Effect of Metacognitive Instruction on Problem Solving Skills in Iranian Students of Health Sciences

    OpenAIRE

    Safari, Yahya; Meskini, Habibeh

    2015-01-01

    Background: Learning requires application of such processes as planning, supervision, monitoring and reflection that are included in the metacognition. Studies have shown that metacognition is associated with problem solving skills. The current research was conducted to investigate the impact of metacognitive instruction on students? problem solving skills. Methods: The study sample included 40 students studying in the second semester at Kermanshah University of Medical Sciences, 2013-2014. T...

  17. Students' Epistemological Framing in Quantum Mechanics Problem Solving

    Science.gov (United States)

    Modir, Bahar; Thompson, John D.; Sayre, Eleanor C.

    2017-01-01

    Students' difficulties in quantum mechanics may be the result of unproductive framing and not a fundamental inability to solve the problems or misconceptions about physics content. We observed groups of students solving quantum mechanics problems in an upper-division physics course. Using the lens of epistemological framing, we investigated four…

  18. Didactical Handling of Students' Reasoning Processes in Problem Solving Situations

    Science.gov (United States)

    Brousseau, Guy; Gibel, Patrick

    2005-01-01

    In this paper, we analyze an investigative situation proposed to a class of 5th graders in a primary school. The situation is based on the following task: In a sale with group rates on a sliding scale, the students must find the lowest possible purchase price for a given number of tickets. A study of students' arguments made it possible to…

  19. Teaching Mathematical Problem Solving to Students with Limited English Proficiency.

    Science.gov (United States)

    Kaplan, Rochelle G.; Patino, Rodrigo A.

    Many mainstreamed students with limited English proficiency continue to face the difficulty of learning English as a second language (ESL) while studying mathematics and other content areas framed in the language of native speakers. The difficulty these students often encounter in mathematics classes and their poor performance on subsequent…

  20. Problem representation and mathematical problem solving of students of varying math ability.

    Science.gov (United States)

    Krawec, Jennifer L

    2014-01-01

    The purpose of this study was to examine differences in math problem solving among students with learning disabilities (LD, n = 25), low-achieving students (LA, n = 30), and average-achieving students (AA, n = 29). The primary interest was to analyze the processes students use to translate and integrate problem information while solving problems. Paraphrasing, visual representation, and problem-solving accuracy were measured in eighth grade students using a researcher-modified version of the Mathematical Processing Instrument. Results indicated that both students with LD and LA students struggled with processing but that students with LD were significantly weaker than their LA peers in paraphrasing relevant information. Paraphrasing and visual representation accuracy each accounted for a statistically significant amount of variance in problem-solving accuracy. Finally, the effect of visual representation of relevant information on problem-solving accuracy was dependent on ability; specifically, for students with LD, generating accurate visual representations was more strongly related to problem-solving accuracy than for AA students. Implications for instruction for students with and without LD are discussed.

  1. Students’ Relational Understanding in Quadrilateral Problem Solving Based on Adversity Quotient

    Science.gov (United States)

    Safitri, A. N.; Juniati, D.; Masriyah

    2018-01-01

    The type of research is qualitative approach which aims to describe how students’ relational understanding of solving mathematic problem that was seen from Adversity Quotient aspect. Research subjects were three 7th grade students of Junior High School. They were taken by category of Adversity Quotient (AQ) such quitter, camper, and climber. Data collected based on problem solving and interview. The research result showed that (1) at the stage of understanding the problem, the subjects were able to state and write down what is known and asked, and able to mention the concepts associated with the quadrilateral problem. (2) The three subjects devise a plan by linking concepts relating to quadrilateral problems. (3) The three subjects were able to solve the problem. (4) The three subjects were able to look back the answers. The three subjects were able to understand the problem, devise a plan, carry out the plan and look back. However, the quitter and camper subjects have not been able to give a reason for the steps they have taken.

  2. Problem-Solving Skills Appraisal Mediates Hardiness and Suicidal Ideation among Malaysian Undergraduate Students

    Science.gov (United States)

    Abdollahi, Abbas; Talib, Mansor Abu; Yaacob, Siti Nor; Ismail, Zanariah

    2015-01-01

    Objectives Recent evidence suggests that suicidal ideation is increased among university students, it is essential to increase our knowledge concerning the etiology of suicidal ideation among university students. This study was conducted to examine the relationships between problem-solving skills appraisal, hardiness, and suicidal ideation among university students. In addition, this study was conducted to examine problem-solving skills appraisal (including the three components of problem-solving confidence, approach-avoidance style, and personal control of emotion) as a potential mediator between hardiness and suicidal ideation. Methods The participants consisted of 500 undergraduate students from Malaysian public universities. Results Structural Equation Modelling (SEM) estimated that undergraduate students with lower hardiness, poor problem-solving confidence, external personal control of emotion, and avoiding style was associated with higher suicidal ideation. Problem-solving skills appraisal (including the three components of problem-solving confidence, approach-avoidance style, and personal control of emotion) partially mediated the relationship between hardiness and suicidal ideation. Conclusion These findings underline the importance of studying mediating processes that explain how hardiness affects suicidal ideation. PMID:25830229

  3. Problem-solving skills appraisal mediates hardiness and suicidal ideation among malaysian undergraduate students.

    Science.gov (United States)

    Abdollahi, Abbas; Talib, Mansor Abu; Yaacob, Siti Nor; Ismail, Zanariah

    2015-01-01

    Recent evidence suggests that suicidal ideation is increased among university students, it is essential to increase our knowledge concerning the etiology of suicidal ideation among university students. This study was conducted to examine the relationships between problem-solving skills appraisal, hardiness, and suicidal ideation among university students. In addition, this study was conducted to examine problem-solving skills appraisal (including the three components of problem-solving confidence, approach-avoidance style, and personal control of emotion) as a potential mediator between hardiness and suicidal ideation. The participants consisted of 500 undergraduate students from Malaysian public universities. Structural Equation Modelling (SEM) estimated that undergraduate students with lower hardiness, poor problem-solving confidence, external personal control of emotion, and avoiding style was associated with higher suicidal ideation. Problem-solving skills appraisal (including the three components of problem-solving confidence, approach-avoidance style, and personal control of emotion) partially mediated the relationship between hardiness and suicidal ideation. These findings underline the importance of studying mediating processes that explain how hardiness affects suicidal ideation.

  4. Investigating and developing engineering students' mathematical modelling and problem-solving skills

    Science.gov (United States)

    Wedelin, Dag; Adawi, Tom; Jahan, Tabassum; Andersson, Sven

    2015-09-01

    How do engineering students approach mathematical modelling problems and how can they learn to deal with such problems? In the context of a course in mathematical modelling and problem solving, and using a qualitative case study approach, we found that the students had little prior experience of mathematical modelling. They were also inexperienced problem solvers, unaware of the importance of understanding the problem and exploring alternatives, and impeded by inappropriate beliefs, attitudes and expectations. Important impacts of the course belong to the metacognitive domain. The nature of the problems, the supervision and the follow-up lectures were emphasised as contributing to the impacts of the course, where students show major development. We discuss these empirical results in relation to a framework for mathematical thinking and the notion of cognitive apprenticeship. Based on the results, we argue that this kind of teaching should be considered in the education of all engineers.

  5. Relations of social problem solving with interpersonal competence in Japanese students.

    Science.gov (United States)

    Sumi, Katsunori

    2011-12-01

    To clarify the relations of the dimensions of social problem solving with those of interpersonal competence in a sample of 234 Japanese college students, Japanese versions of the Social Problem-solving Inventory-Revised and the Social Skill Scale were administered. Pearson correlations between the two sets of variables were low, but higher within each set of subscales. Cronbach's alpha was low for four subscales assessing interpersonal competence.

  6. Factors affecting the social problem-solving ability of baccalaureate nursing students.

    Science.gov (United States)

    Lau, Ying

    2014-01-01

    The hospital environment is characterized by time pressure, uncertain information, conflicting goals, high stakes, stress, and dynamic conditions. These demands mean there is a need for nurses with social problem-solving skills. This study set out to (1) investigate the social problem-solving ability of Chinese baccalaureate nursing students in Macao and (2) identify the association between communication skill, clinical interaction, interpersonal dysfunction, and social problem-solving ability. All nursing students were recruited in one public institute through the census method. The research design was exploratory, cross-sectional, and quantitative. The study used the Chinese version of the Social Problem Solving Inventory short form (C-SPSI-R), Communication Ability Scale (CAS), Clinical Interactive Scale (CIS), and Interpersonal Dysfunction Checklist (IDC). Macao nursing students were more likely to use the two constructive or adaptive dimensions rather than the three dysfunctional dimensions of the C-SPSI-R to solve their problems. Multiple linear regression analysis revealed that communication ability (ß=.305, pproblem-solving after controlling for covariates. Macao has had no problem-solving training in its educational curriculum; an effective problem-solving training should be implemented as part of the curriculum. With so many changes in healthcare today, nurses must be good social problem-solvers in order to deliver holistic care. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Impact of Context-Rich, Multifaceted Problems on Students' Attitudes Towards Problem-Solving

    Science.gov (United States)

    Ogilvie, Craig

    2008-04-01

    Young scientists and engineers need strong problem-solving skills to enable them to address the broad challenges they will face in their careers. These challenges will likely be ill-defined and open-ended with either unclear goals, insufficient constraints, multiple possible solutions, and different criteria for evaluating solutions so that our young scientists and engineers must be able to make judgments and defend their proposed solutions. In contrast, many students believe that problem-solving is being able to apply set procedures or algorithms to tasks and that their job as students is to master an ever-increasing list of procedures. This gap between students' beliefs and the broader, deeper approaches of experts is a strong barrier to the educational challenge of preparing students to succeed in their future careers. To start to address this gap, we have used multi-faceted, context-rich problems in a sophomore calculus-based physics course. To assess whether there was any change in students' attitudes or beliefs towards problem-solving, students were asked to reflect on their problem-solving at the beginning and at the end of the semester. These reflections were coded as containing one or more problem-solving ideas. The change in students' beliefs will be shown in this talk.

  8. Case of two electrostatics problems: Can providing a diagram adversely impact introductory physics students' problem solving performance?

    Science.gov (United States)

    Maries, Alexandru; Singh, Chandralekha

    2018-06-01

    Drawing appropriate diagrams is a useful problem solving heuristic that can transform a problem into a representation that is easier to exploit for solving it. One major focus while helping introductory physics students learn effective problem solving is to help them understand that drawing diagrams can facilitate problem solution. We conducted an investigation in which two different interventions were implemented during recitation quizzes in a large enrollment algebra-based introductory physics course. Students were either (i) asked to solve problems in which the diagrams were drawn for them or (ii) explicitly told to draw a diagram. A comparison group was not given any instruction regarding diagrams. We developed rubrics to score the problem solving performance of students in different intervention groups and investigated ten problems. We found that students who were provided diagrams never performed better and actually performed worse than the other students on three problems, one involving standing sound waves in a tube (discussed elsewhere) and two problems in electricity which we focus on here. These two problems were the only problems in electricity that involved considerations of initial and final conditions, which may partly account for why students provided with diagrams performed significantly worse than students who were not provided with diagrams. In order to explore potential reasons for this finding, we conducted interviews with students and found that some students provided with diagrams may have spent less time on the conceptual analysis and planning stage of the problem solving process. In particular, those provided with the diagram were more likely to jump into the implementation stage of problem solving early without fully analyzing and understanding the problem, which can increase the likelihood of mistakes in solutions.

  9. Attitude and practice of physical activity and social problem-solving ability among university students.

    Science.gov (United States)

    Sone, Toshimasa; Kawachi, Yousuke; Abe, Chihiro; Otomo, Yuki; Sung, Yul-Wan; Ogawa, Seiji

    2017-04-04

    Effective social problem-solving abilities can contribute to decreased risk of poor mental health. In addition, physical activity has a favorable effect on mental health. These previous studies suggest that physical activity and social problem-solving ability can interact by helping to sustain mental health. The present study aimed to determine the association between attitude and practice of physical activity and social problem-solving ability among university students. Information on physical activity and social problem-solving was collected using a self-administered questionnaire. We analyzed data from 185 students who participated in the questionnaire surveys and psychological tests. Social problem-solving as measured by the Social Problem-Solving Inventory-Revised (SPSI-R) (median score 10.85) was the dependent variable. Multiple logistic regression analysis was employed to calculate the odds ratios (ORs) and 95% confidence intervals (CIs) for higher SPSI-R according to physical activity categories. The multiple logistic regression analysis indicated that the ORs (95% CI) in reference to participants who said they never considered exercising were 2.08 (0.69-6.93), 1.62 (0.55-5.26), 2.78 (0.86-9.77), and 6.23 (1.81-23.97) for participants who did not exercise but intended to start, tried to exercise but did not, exercised but not regularly, and exercised regularly, respectively. This finding suggested that positive linear association between physical activity and social problem-solving ability (p value for linear trend social problem-solving ability.

  10. Examination of Gifted Students' Probability Problem Solving Process in Terms of Mathematical Thinking

    Science.gov (United States)

    Baltaci, Serdal

    2016-01-01

    It is a widely known fact that gifted students have different skills compared to their peers. However, to what extent gifted students use mathematical thinking skills during probability problem solving process emerges as a significant question. Thence, the main aim of the present study is to examine 8th grade gifted students' probability…

  11. A Problem Solving Model for Use in Science Student Teacher Supervision.

    Science.gov (United States)

    Cavallo, Ann M. L.; Tice, Craig J.

    1993-01-01

    Describes and suggests the use of a problem-solving model that improves communication between student teachers and supervisors through the student teaching practicum. The aim of the model is to promote experimentation with various teaching techniques and to stimulate thinking among student teachers about their teaching experiences. (PR)

  12. Developing Student Programming and Problem-Solving Skills with Visual Basic

    Science.gov (United States)

    Siegle, Del

    2009-01-01

    Although most computer users will never need to write a computer program, many students enjoy the challenge of creating one. Computer programming enhances students' problem solving by forcing students to break a problem into its component pieces and reassemble it in a generic format that can be understood by a nonsentient entity. It promotes…

  13. An Investigation of Students' Performance after Peer Instruction with Stepwise Problem-Solving Strategies

    Science.gov (United States)

    Gok, Tolga

    2015-01-01

    The purpose of this study was to examine the effects of strategic problem solving with peer instruction on college students' performance in physics. The students enrolled in 2 sections of a physics course were studied; 1 section was the treatment group and the other section was the comparison group. Students in the treatment group received peer…

  14. The Use of a Bar Model Drawing to Teach Word Problem Solving to Students with Mathematics Difficulties

    Science.gov (United States)

    Morin, Lisa L.; Watson, Silvana M. R.; Hester, Peggy; Raver, Sharon

    2017-01-01

    For students with mathematics difficulties (MD), math word problem solving is especially challenging. The purpose of this study was to examine the effects of a problem-solving strategy, bar model drawing, on the mathematical problem-solving skills of students with MD. The study extended previous research that suggested that schematic-based…

  15. Construction and Validation of an Instrument to Measure Problem-Solving Skills of Suburban High School Physical Science Students

    Science.gov (United States)

    Herak, Patrick James

    2010-01-01

    The purpose of this study was to develop a problem-solving instrument that could easily be used by a classroom teacher. The research questions were (1) can the Problem-Solving Skills Assessments (PSSAs) differentiate between students with varying levels of selected problem-solving skills? (2) Can the PSSAs measure student growth due to…

  16. The profile of problem-solving ability of students of distance education in science learning

    Science.gov (United States)

    Widiasih; Permanasari, A.; Riandi; Damayanti, T.

    2018-05-01

    This study aims to analyze the students' problem-solving ability in science learning and lesson-planning ability. The method used is descriptive-quantitative. The subjects of the study were undergraduate students of Distance Higher Education located in Serang, majoring in Primary Teacher Education in-service training. Samples were taken thoroughly from 2 groups taking the course of Science Learning in Primary School in the first term of 2017, amounted to 39 students. The technique of data collection used is essay test of problem solving from case study done at the beginning of lecture in February 2017. The results of this research can be concluded that In-service Training of Primary School Teacher Education Program are categorized as quite capable (score 66) in solving science learning problem and planning science lesson. Therefore, efforts need to be done to improve the ability of students in problem solving, for instance through online tutorials with the basis of interactive discussions.

  17. Mathematical problem solving ability of sport students in the statistical study

    Science.gov (United States)

    Sari, E. F. P.; Zulkardi; Putri, R. I. I.

    2017-12-01

    This study aims to determine the problem-solving ability of sport students of PGRI Palembang semester V in the statistics course. Subjects in this study were sport students of PGRI Palembang semester V which amounted to 31 people. The research method used is quasi experiment type one case shoot study. Data collection techniques in this study use the test and data analysis used is quantitative descriptive statistics. The conclusion of this study shown that the mathematical problem solving ability of PGRI Palembang sport students of V semester in the statistical course is categorized well with the average of the final test score of 80.3.

  18. The Efficacy and Development of Students' Problem-Solving Strategies During Compulsory Schooling: Logfile Analyses.

    Science.gov (United States)

    Molnár, Gyöngyvér; Csapó, Benő

    2018-01-01

    The purpose of this study was to examine the role of exploration strategies students used in the first phase of problem solving. The sample for the study was drawn from 3 rd - to 12 th -grade students (aged 9-18) in Hungarian schools ( n = 4,371). Problems designed in the MicroDYN approach with different levels of complexity were administered to the students via the eDia online platform. Logfile analyses were performed to ascertain the impact of strategy use on the efficacy of problem solving. Students' exploration behavior was coded and clustered through Latent Class Analyses. Several theoretically effective strategies were identified, including the vary-one-thing-at-a-time (VOTAT) strategy and its sub-strategies. The results of the analyses indicate that the use of a theoretically effective strategy, which extract all information required to solve the problem, did not always lead to high performance. Conscious VOTAT strategy users proved to be the best problem solvers followed by non-conscious VOTAT strategy users and non-VOTAT strategy users. In the primary school sub-sample, six qualitatively different strategy class profiles were distinguished. The results shed new light on and provide a new interpretation of previous analyses of the processes involved in complex problem solving. They also highlight the importance of explicit enhancement of problem-solving skills and problem-solving strategies as a tool for knowledge acquisition in new contexts during and beyond school lessons.

  19. The Efficacy and Development of Students' Problem-Solving Strategies During Compulsory Schooling: Logfile Analyses

    Science.gov (United States)

    Molnár, Gyöngyvér; Csapó, Benő

    2018-01-01

    The purpose of this study was to examine the role of exploration strategies students used in the first phase of problem solving. The sample for the study was drawn from 3rd- to 12th-grade students (aged 9–18) in Hungarian schools (n = 4,371). Problems designed in the MicroDYN approach with different levels of complexity were administered to the students via the eDia online platform. Logfile analyses were performed to ascertain the impact of strategy use on the efficacy of problem solving. Students' exploration behavior was coded and clustered through Latent Class Analyses. Several theoretically effective strategies were identified, including the vary-one-thing-at-a-time (VOTAT) strategy and its sub-strategies. The results of the analyses indicate that the use of a theoretically effective strategy, which extract all information required to solve the problem, did not always lead to high performance. Conscious VOTAT strategy users proved to be the best problem solvers followed by non-conscious VOTAT strategy users and non-VOTAT strategy users. In the primary school sub-sample, six qualitatively different strategy class profiles were distinguished. The results shed new light on and provide a new interpretation of previous analyses of the processes involved in complex problem solving. They also highlight the importance of explicit enhancement of problem-solving skills and problem-solving strategies as a tool for knowledge acquisition in new contexts during and beyond school lessons. PMID:29593606

  20. The needs analysis of learning Inventive Problem Solving for technical and vocational students

    Science.gov (United States)

    Sai'en, Shanty; Tze Kiong, Tee; Yunos, Jailani Md; Foong, Lee Ming; Heong, Yee Mei; Mohaffyza Mohamad, Mimi

    2017-08-01

    Malaysian Ministry of Education highlighted in their National Higher Education Strategic plan that higher education’s need to focus adopting 21st century skills in order to increase a graduate’s employability. Current research indicates that most graduate lack of problem solving skills to help them securing the job. Realising the important of this skill hence an alternative way suggested as an option for high institution’s student to solve their problem. This study was undertaken to measure the level of problem solving skills, identify the needs of learning inventive problem solving skills and the needs of developing an Inventive problem solving module. Using a questionnaire, the study sampled 132 students from Faculty of Technical and Vocational Education. Findings indicated that majority of the students fail to define what is an inventive problem and the root cause of a problem. They also unable to state the objectives and goal thus fail to solve the problem. As a result, the students agreed on the developing Inventive Problem Solving Module to assist them.

  1. Gauging the gaps in student problem-solving skills: assessment of individual and group use of problem-solving strategies using online discussions.

    Science.gov (United States)

    Anderson, William L; Mitchell, Steven M; Osgood, Marcy P

    2008-01-01

    For the past 3 yr, faculty at the University of New Mexico, Department of Biochemistry and Molecular Biology have been using interactive online Problem-Based Learning (PBL) case discussions in our large-enrollment classes. We have developed an illustrative tracking method to monitor student use of problem-solving strategies to provide targeted help to groups and to individual students. This method of assessing performance has a high interrater reliability, and senior students, with training, can serve as reliable graders. We have been able to measure improvements in many students' problem-solving strategies, but, not unexpectedly, there is a population of students who consistently apply the same failing strategy when there is no faculty intervention. This new methodology provides an effective tool to direct faculty to constructively intercede in this area of student development.

  2. An interactive problem-solving approach to teach traumatology for medical students.

    Science.gov (United States)

    Abu-Zidan, Fikri M; Elzubeir, Margaret A

    2010-08-13

    We aimed to evaluate an interactive problem-solving approach for teaching traumatology from perspectives of students and consider its implications on Faculty development. A two hour problem-solving, interactive tutorial on traumatology was structured to cover main topics in trauma management. The tutorial was based on real cases covering specific topics and objectives. Seven tutorials (5-9 students in each) were given by the same tutor with the same format for fourth and fifth year medical students in Auckland and UAE Universities (n = 50). A 16 item questionnaire, on a 7 point Likert-type scale, focusing on educational tools, tutor-based skills, and student-centered skills were answered by the students followed by open ended comments. The tutorials were highly ranked by the students. The mean values of educational tools was the highest followed by tutor-centered skills and finally student-centered skills. There was a significant increase of the rating of studied attributes over time (F = 3.9, p = 0.004, ANOVA). Students' open ended comments were highly supportive of the interactive problem-solving approach for teaching traumatology. The interactive problem-solving approach for tutorials can be an effective enjoyable alternative or supplement to traditional instruction for teaching traumatology to medical students. Training for this approach should be encouraged for Faculty development.

  3. Personalized Computer-Assisted Mathematics Problem-Solving Program and Its Impact on Taiwanese Students

    Science.gov (United States)

    Chen, Chiu-Jung; Liu, Pei-Lin

    2007-01-01

    This study evaluated the effects of a personalized computer-assisted mathematics problem-solving program on the performance and attitude of Taiwanese fourth grade students. The purpose of this study was to determine whether the personalized computer-assisted program improved student performance and attitude over the nonpersonalized program.…

  4. Relation between Cyberbullying and Problem Solving: A Study on Turkish University Students

    Science.gov (United States)

    Gokler, Riza

    2013-01-01

    In this study, cyberbullying living frequency, what the cyber environments in which cyberbullying is lived are, and the relation between "being victim of cyberbullying" and "being cyberbullying" status and problem solving skill of university students are analysed. This research is done by attendance of 460 students from five…

  5. Culture-Based Contextual Learning to Increase Problem-Solving Ability of First Year University Student

    Science.gov (United States)

    Samo, Damianus Dao; Darhim; Kartasasmita, Bana G.

    2018-01-01

    The purpose of this study is to show the differences in problem-solving ability between first-year University students who received culture-based contextual learning and conventional learning. This research is a quantitative research using quasi-experimental research design. Samples were the First-year students of mathematics education department;…

  6. Against All Odds: Problem-Solving Strategies and Behavioural Characteristics of Novice Students

    Science.gov (United States)

    Chang, Pei-Fen; Lin, Miao-Chen

    2015-01-01

    This study investigates problem-solving difficulties of novices in a classroom setting, using a German instructional tool, the Fischertechnik kit of approximately 400 parts. In order to analyse the students' thinking processes as they solved the problems, verbal protocol analysis (VPA) was used to record the students'' thinking processes and…

  7. Primary School Students' Strategies in Early Algebra Problem Solving Supported by an Online Game

    Science.gov (United States)

    van den Heuvel-Panhuizen, Marja; Kolovou, Angeliki; Robitzsch, Alexander

    2013-01-01

    In this study we investigated the role of a dynamic online game on students' early algebra problem solving. In total 253 students from grades 4, 5, and 6 (10-12 years old) used the game at home to solve a sequence of early algebra problems consisting of contextual problems addressing covarying quantities. Special software monitored the…

  8. Mobile App Development to Increase Student Engagement and Problem Solving Skills

    Science.gov (United States)

    Dekhane, Sonal; Xu, Xin; Tsoi, Mai Yin

    2013-01-01

    This paper describes a project designed to promote problem solving and critical thinking skills in a general education, computing course at an open access institution. A visual programming tool, GameSalad, was used to enable students to create educational apps for mobile platforms. The students worked on a game development project for the entire…

  9. Middle-School Students' Online Information Problem Solving Behaviors on the Information Retrieval Interface

    Science.gov (United States)

    Yeh, Yi-Fen; Hsu, Ying-Shao; Chuang, Fu-Tai; Hwang, Fu-Kwun

    2014-01-01

    With the near-overload of online information, it is necessary to equip our students with the skills necessary to deal with Information Problem Solving (IPS). This study also intended to help students develop major IPS strategies with the assistance of an instructor's scaffolding in a designed IPS course as well as on an Online Information…

  10. Teaching Handwriting to Elementary Students with Learning Disabilities: A Problem-Solving Approach

    Science.gov (United States)

    Datchuk, Shawn

    2015-01-01

    Problems with handwriting can negatively impact the writing of students with learning disabilities. In this article, an example is provided of a fourth-grade special education teacher's efforts to assist a new student by using a problem-solving approach to help determine an efficient course of action for special education teachers who are trying…

  11. Students' Achievement, Skill and Confidence in Using Stepwise Problem-Solving Strategies

    Science.gov (United States)

    Gok, Tolga

    2014-01-01

    The main purpose of this study was to examine the effects of Problem-Solving Strategy Steps (PSSS) on students' achievement, skill, and confidence. The study was conducted in a two-year college classroom with 70 students from two different groups enrolled in a physics course. One of them was randomly selected as an experimental group (EG) and the…

  12. Problem-Based Learning: Student Engagement, Learning and Contextualized Problem-Solving. Occasional Paper

    Science.gov (United States)

    Mossuto, Mark

    2009-01-01

    The adoption of problem-based learning as a teaching method in the advertising and public relations programs offered by the Business TAFE (Technical and Further Education) School at RMIT University is explored in this paper. The effect of problem-based learning on student engagement, student learning and contextualised problem-solving was…

  13. Investigating and Developing Engineering Students' Mathematical Modelling and Problem-Solving Skills

    Science.gov (United States)

    Wedelin, Dag; Adawi, Tom; Jahan, Tabassum; Andersson, Sven

    2015-01-01

    How do engineering students approach mathematical modelling problems and how can they learn to deal with such problems? In the context of a course in mathematical modelling and problem solving, and using a qualitative case study approach, we found that the students had little prior experience of mathematical modelling. They were also inexperienced…

  14. To what extent do student teachers develop their mathematical problem solving ability by self-study?

    NARCIS (Netherlands)

    Marjolein Kool; Ronald Keijzer

    2017-01-01

    A primary teacher needs mathematical problem solving ability. That is why Dutch student teachers have to show this ability in a nationwide mathematics test that contains many non-routine problems. Most student teachers prepare for this test by working on their own solving test-like problems. To what

  15. Student Debt, Problem-Solving, and Decision-Making of Adult Learners: A Basic Qualitative Study

    Science.gov (United States)

    Brooks, William J.

    2013-01-01

    A basic qualitative research study was conducted to develop insights into how adult learners employ problem-solving and decision-making (PSDM), when considering college financing, student loans, and student debt. Using the social media Website Facebook, eight qualified participants were recruited. Participants were interviewed via telephone, and…

  16. Assessing the Relation between Seventh-Grade Students' Engagement and Mathematical Problem Solving Performance

    Science.gov (United States)

    Lein, Amy E.; Jitendra, Asha K.; Starosta, Kristin M.; Dupuis, Danielle N.; Hughes-Reid, Cheyenne L.; Star, Jon R.

    2016-01-01

    In this study, the authors assessed the contribution of engagement (on-task behavior) to the mathematics problem-solving performance of seventh-grade students after accounting for prior mathematics achievement. A subsample of seventh-grade students in four mathematics classrooms (one high-, two average-, and one low-achieving) from a larger…

  17. Assessing the Relation between Seventh-Grade Students' Engagement and Proportional Problem Solving Performance

    Science.gov (United States)

    Lein, Amy E.; Jitendra, Asha K.; Starosta, Kristin M.; Dupuis, Danielle N.; Hughes-Reid, Cheyenne L.; Star, John R.

    2016-01-01

    In this study, the authors assessed the contribution of engagement (on-task behavior) to the mathematics problem-solving performance of seventh-grade students after accounting for prior mathematics achievement. A subsample of seventh-grade students in four mathematics classrooms (one high-, two average-, and one low-achieving) from a larger…

  18. Helping students learn effective problem solving strategies by reflecting with peers

    Science.gov (United States)

    Mason, Andrew; Singh, Chandralekha

    2010-07-01

    We study how introductory physics students engage in reflection with peers about problem solving. The recitations for an introductory physics course with 200 students were broken into a "peer reflection" (PR) group and a traditional group. Each week in recitation, small teams of students in the PR group reflected on selected problems from the homework and discussed why the solutions of some students employed better problem solving strategies than others. The graduate and undergraduate teaching assistants in the PR recitations provided guidance and coaching to help students learn effective problem solving heuristics. In the traditional group recitations students could ask the graduate TA questions about the homework before they took a weekly quiz. The traditional group recitation quiz questions were similar to the homework questions selected for peer reflection in the PR group recitations. As one measure of the impact of this intervention, we investigated how likely students were to draw diagrams to help with problem solving on the final exam with only multiple-choice questions. We found that the PR group drew diagrams on more problems than the traditional group even when there was no explicit reward for doing so. Also, students who drew more diagrams for the multiple-choice questions outperformed those who did not, regardless of which group they were a member.

  19. Evaluation of Students' Mathematical Problem Solving Skills in Relation to Their Reading Levels

    Science.gov (United States)

    Özsoy, Gökhan; Kuruyer, Hayriye Gül; Çakiroglu, Ahmet

    2015-01-01

    The purpose of the current study is to investigate the correlation between students' reading levels and mathematical problem solving skills. The present study was conducted in line with a qualitative research method, i.e., the phenomenological method. The study group of the current research is composed of six third grade students with different…

  20. The Problem-Solving Process in Physics as Observed When Engineering Students at University Level Work in Groups

    Science.gov (United States)

    Gustafsson, Peter; Jonsson, Gunnar; Enghag, Margareta

    2015-01-01

    The problem-solving process is investigated for five groups of students when solving context-rich problems in an introductory physics course included in an engineering programme. Through transcripts of their conversation, the paths in the problem-solving process have been traced and related to a general problem-solving model. All groups exhibit…

  1. The enhancement of students' mathematical problem solving ability through teaching with metacognitive scaffolding approach

    Science.gov (United States)

    Prabawanto, Sufyani

    2017-05-01

    This research aims to investigate the enhancement of students' mathematical problem solving through teaching with metacognitive scaffolding approach. This research used a quasi-experimental design with pretest-posttest control. The subjects were pre-service elementary school teachers in a state university in Bandung. In this study, there were two groups: experimental and control groups. The experimental group consists of 60 studentswho acquire teaching mathematicsunder metacognitive scaffolding approach, while the control group consists of 58 studentswho acquire teaching mathematicsunder direct approach. Students were classified into three categories based on the mathematical prior ability, namely high, middle, and low. Data collection instruments consist of mathematical problem solving test instruments. By usingmean difference test, two conclusions of the research:(1) there is a significant difference in the enhancement of mathematical problem solving between the students who attended the course under metacognitive scaffolding approach and students who attended the course under direct approach, and(2) thereis no significant interaction effect of teaching approaches and ability level based on the mathematical prior ability toward enhancement of students' mathematical problem solving.

  2. Problem-solving in organizations : A methodological handbook for business students

    NARCIS (Netherlands)

    Van Aken, Joan Ernst; Berends, Hans; van der Bij, Hans

    2007-01-01

    This concise introduction to the methodology of Business Problem Solving (BPS) is an indispensable guide to the design and execution of practical projects in real organizational settings. The methodology is both result-oriented and theory-based, encouraging students to use the knowledge gained on

  3. Analysing Student Written Solutions to Investigate if Problem-Solving Processes Are Evident Throughout

    Science.gov (United States)

    Kelly, Regina; McLoughlin, Eilish; Finlayson, Odilla E.

    2016-01-01

    An interdisciplinary science course has been implemented at a university with the intention of providing students the opportunity to develop a range of key skills in relation to: real-world connections of science, problem-solving, information and communications technology use and team while linking subject knowledge in each of the science…

  4. Investigation of Problem-Solving and Problem-Posing Abilities of Seventh-Grade Students

    Science.gov (United States)

    Arikan, Elif Esra; Ünal, Hasan

    2015-01-01

    This study aims to examine the effect of multiple problem-solving skills on the problem-posing abilities of gifted and non-gifted students and to assess whether the possession of such skills can predict giftedness or affect problem-posing abilities. Participants' metaphorical images of problem posing were also explored. Participants were 20 gifted…

  5. Empowering Educationally Disadvantaged Mathematics Students through a Strategies-Based Problem Solving Approach

    Science.gov (United States)

    Ramnarain, Umesh

    2014-01-01

    A major impediment to problem solving in mathematics in the great majority of South African schools is that disadvantaged students from seriously impoverished learning environments are lacking in the necessary informal mathematical knowledge to develop their own strategies for solving non-routine problems. A randomized pretest-posttest control…

  6. Problem Solving Instruction for Overcoming Students' Difficulties in Stoichiometric Problems

    Science.gov (United States)

    Shadreck, Mandina; Enunuwe, Ochonogor Chukunoye

    2017-01-01

    The study sought to find out difficulties encountered by high school chemistry students when solving stoichiometric problems and how these could be overcome by using a problem-solving approach. The study adopted a quasi-experimental design. 485 participants drawn from 8 highs schools in a local education district in Zimbabwe participated in the…

  7. Building Virtual Cities, Inspiring Intelligent Citizens: Digital Games for Developing Students' Problem Solving and Learning Motivation

    Science.gov (United States)

    Yang, Ya-Ting Carolyn

    2012-01-01

    This study investigates the effectiveness digital game-based learning (DGBL) on students' problem solving, learning motivation, and academic achievement. In order to provide substantive empirical evidence, a quasi-experimental design was implemented over the course of a full semester (23 weeks). Two ninth-grade Civics and Society classes, with a…

  8. The "Iron Inventor": Using Creative Problem Solving to Spur Student Creativity

    Science.gov (United States)

    Lee, Seung Hwan; Hoffman, K. Douglas

    2014-01-01

    Based on the popular television show the "Iron Chef," an innovative marketing activity called the "Iron Inventor" is introduced. Using the creative problem-solving approach and active learning techniques, the Iron Inventor facilitates student learning pertaining to the step-by-step processes of creating a new product and…

  9. Students Use Graphic Organizers to Improve Mathematical Problem-Solving Communications

    Science.gov (United States)

    Zollman, Alan

    2009-01-01

    Improving students' problem-solving abilities is a major, if not the major, goal of middle grades mathematics. To address this goal, the author, who is a university mathematics educator, and nine inner-city middle school teachers developed a math/science action research project. This article describes their unique approach to mathematical problem…

  10. Students' Mathematics Word Problem-Solving Achievement in a Computer-Based Story

    Science.gov (United States)

    Gunbas, N.

    2015-01-01

    The purpose of this study was to investigate the effect of a computer-based story, which was designed in anchored instruction framework, on sixth-grade students' mathematics word problem-solving achievement. Problems were embedded in a story presented on a computer as computer story, and then compared with the paper-based version of the same story…

  11. Problem-solving in organizations : a methodological handbook for business students

    NARCIS (Netherlands)

    Aken, van J.E.; Berends, J.J.; Bij, van der J.D.

    2007-01-01

    This concise introduction to the methodology of Business Problem Solving (BPS) is an indispensable guide to the design and execution of practical projects in real organizational settings. The methodology is both result-oriented and theory-based, encouraging students to use the knowledge gained on

  12. The Effects of Training and Other Factors on Problem Solving in Students

    Science.gov (United States)

    Puran, Robabeh; Behzadi, Mohamad Hasan; Shahvarani, Ahmad; Lotfi, Farhad Hosseinzadeh

    2017-01-01

    The purpose of this article is to identify the factors which affect students' creative thinking in problem solving. The research which was performed was quasi-experimental. It used one experimental group and two control groups from three second-grade high school classes. They received either traditional, active or heuristic problem-solving…

  13. Effectiveness of Word Solving: Integrating Morphological Problem-Solving within Comprehension Instruction for Middle School Students

    Science.gov (United States)

    Goodwin, Amanda P.

    2016-01-01

    This study explores the effectiveness of integrating morphological instruction within comprehension strategy instruction. Participants were 203 students (N = 117 fifth-grade; 86 sixth-grade) from four urban schools who were randomly assigned to the intervention (N = 110; morphological problem-solving within comprehension strategy instruction) or…

  14. Do Students Trust in Mathematics or Intuition during Physics Problem Solving? An Epistemic Game Perspective

    Science.gov (United States)

    Yavuz, Ahmet

    2015-01-01

    This study aims to investigate (1) students' trust in mathematics calculation versus intuition in a physics problem solving and (2) whether this trust is related to achievement in physics in the context of epistemic game theoretical framework. To achieve this research objective, paper-pencil and interview sessions were conducted. A paper-pencil…

  15. Write Is Right: Using Graphic Organizers to Improve Student Mathematical Problem Solving

    Science.gov (United States)

    Zollman, Alan

    2012-01-01

    Teachers have used graphic organizers successfully in teaching the writing process. This paper describes graphic organizers and their potential mathematics benefits for both students and teachers, elucidates a specific graphic organizer adaptation for mathematical problem solving, and discusses results using the "four-corners-and-a-diamond"…

  16. Problem solving based learning model with multiple representations to improve student's mental modelling ability on physics

    Science.gov (United States)

    Haili, Hasnawati; Maknun, Johar; Siahaan, Parsaoran

    2017-08-01

    Physics is a lessons that related to students' daily experience. Therefore, before the students studying in class formally, actually they have already have a visualization and prior knowledge about natural phenomenon and could wide it themselves. The learning process in class should be aimed to detect, process, construct, and use students' mental model. So, students' mental model agree with and builds in the right concept. The previous study held in MAN 1 Muna informs that in learning process the teacher did not pay attention students' mental model. As a consequence, the learning process has not tried to build students' mental modelling ability (MMA). The purpose of this study is to describe the improvement of students' MMA as a effect of problem solving based learning model with multiple representations approach. This study is pre experimental design with one group pre post. It is conducted in XI IPA MAN 1 Muna 2016/2017. Data collection uses problem solving test concept the kinetic theory of gasses and interview to get students' MMA. The result of this study is clarification students' MMA which is categorized in 3 category; High Mental Modelling Ability (H-MMA) for 7Mental Modelling Ability (M-MMA) for 3Mental Modelling Ability (L-MMA) for 0 ≤ x ≤ 3 score. The result shows that problem solving based learning model with multiple representations approach can be an alternative to be applied in improving students' MMA.

  17. Implementation Authentic Task to Enhance Problem Solving and Self-Management for Physics College Students

    Science.gov (United States)

    Festiyed; Djamas, D.; Pilendia, D.

    2018-04-01

    The purpose of this study is to enhance the problem solving and self-management abilities of student teachers through individual and group authentic task. Preliminary results showed that the learning outcomes in high category, nevertheless problem solving and self-management abilities are still low and average categories (scattered at interval 40 ≤ N ≤ 65). Initiative to improve this condition is needed. Action research is the alternative solution for that condition through planning, acting, evaluating, and reflecting. This study is allowed in 4 cycles. The acting step result with integrated discuss method, case study, and presentation including self-assessment for individual and group. This method was effective to enhance problem solving and self-management abilities. The final learning outcomes seen from the correlation between student self-assessment and lecture-assessment (r=0.19). Its means there are unidirectional relationship between the result of self-assessment and lecture-assessment. The Conclusion of the research was effective to enhance problem solving and self-management ability.

  18. Critical Thinking and Problem Solving Skills in Mathematics of Grade-7 Public Secondary Students

    Directory of Open Access Journals (Sweden)

    Emil C. Alcantara

    2017-11-01

    Full Text Available The study aimed to assess the academic performance, critical thinking skills, and problem solving skills in mathematics of Grade-7 students in the five central public secondary schools of Area 2, Division of Batangas, Philippines. This study utilized descriptive method of research. Three hundred forty one (341 students of the public secondary schools out of the total of 2,324 Grade-7 students were selected through systematic random sampling as the subjects of the study. It was found out that the level of performance in Mathematics of the Grade-7 students is proficient. The level of critical thinking skills of students from the different schools is above average as well as their level of problem solving skills. The mathematics performance of the students is positively correlated to their level of critical thinking skills and problem solving skills. Students considered the following learning competencies in the different content areas of Grade-7 Mathematics as difficult to master: solving problems involving sets, describing the development of measurement from the primitive to the present international system of units, finding a solution of an equation or inequality involving one variable, using compass and straightedge to bisect line segments and angles, and analyzing, interpreting accurately and drawing conclusions from graphic and tabular presentations of statistical data.

  19. Understanding Time and Problem Solving Experience: A Case Study of the Invisible Police

    Directory of Open Access Journals (Sweden)

    Amir Khorasani

    Full Text Available In this paper we will explore the relation between the actors’ understanding of time and the problem solving strategies in a complicated situation. Drawing on ethnography and conversation analysis we will focus on the institutional interaction order governing the scenes these movies exhibit. Using phenomenology and Ernest Pople indices, we aim to analyze the understanding made of the time in these conversations. In doing so we will consider the moment in which the violators rationalize the reasons behind their violations. The results show that while the time that law, the police and even the road technologies rely on is homogeneous and linear, the drivers employ the expressions connotating an iterative understanding of time. The paper concludes with showing how the law breaking drivers base their conversations on a nonlinear time to manage the difficult situations they are involved with. This suggests that far from a universal category, time is a category constantly taking different shapes in different everyday encounters.

  20. Metacognition Process of Students with High Mathematics Anxiety in Mathematics Problem-Solving

    OpenAIRE

    Patrisius Afrisno Udil; Tri Atmojo Kusmayadi; Riyadi Riyadi

    2017-01-01

    This study aims to find out students’ metacognition process while solving the mathematics problem. It focuses on analyzing the metacognition process of students with high mathematics anxiety based on Polya’s problem solving phases. This study uses qualitative research with case study strategy. The subjects consist of 8 students of 7th grade selected through purposive sampling. Data in the form of Mathematics Anxiety Scale (MAS) result and recorded interview while solving mathematics problems ...

  1. Building Interactivity in Higher Education to Support Student Engagement in Spatial Problem Solving and Programming

    Science.gov (United States)

    Gulland, E.-K.; Veenendaal, B.; Schut, A. G. T.

    2012-07-01

    Problem-solving knowledge and skills are an important attribute of spatial sciences graduates. The challenge of higher education is to build a teaching and learning environment that enables students to acquire these skills in relevant and authentic applications. This study investigates the effectiveness of traditional face-to-face teaching and online learning technologies in supporting the student learning of problem-solving and computer programming skills, techniques and solutions. The student cohort considered for this study involves students in the surveying as well as geographic information science (GISc) disciplines. Also, students studying across a range of learning modes including on-campus, distance and blended, are considered in this study. Student feedback and past studies reveal a lack of student interest and engagement in problem solving and computer programming. Many students do not see such skills as directly relevant and applicable to their perceptions of what future spatial careers hold. A range of teaching and learning methods for both face-to-face teaching and distance learning were introduced to address some of the perceived weaknesses of the learning environment. These included initiating greater student interaction in lectures, modifying assessments to provide greater feedback and student accountability, and the provision of more interactive and engaging online learning resources. The paper presents and evaluates the teaching methods used to support the student learning environment. Responses of students in relation to their learning experiences were collected via two anonymous, online surveys and these results were analysed with respect to student pass and retention rates. The study found a clear distinction between expectations and engagement of surveying students in comparison to GISc students. A further outcome revealed that students who were already engaged in their learning benefited the most from the interactive learning resources and

  2. BUILDING INTERACTIVITY IN HIGHER EDUCATION TO SUPPORT STUDENT ENGAGEMENT IN SPATIAL PROBLEM SOLVING AND PROGRAMMING

    Directory of Open Access Journals (Sweden)

    E.-K. Gulland

    2012-07-01

    Full Text Available Problem-solving knowledge and skills are an important attribute of spatial sciences graduates. The challenge of higher education is to build a teaching and learning environment that enables students to acquire these skills in relevant and authentic applications. This study investigates the effectiveness of traditional face-to-face teaching and online learning technologies in supporting the student learning of problem-solving and computer programming skills, techniques and solutions. The student cohort considered for this study involves students in the surveying as well as geographic information science (GISc disciplines. Also, students studying across a range of learning modes including on-campus, distance and blended, are considered in this study. Student feedback and past studies reveal a lack of student interest and engagement in problem solving and computer programming. Many students do not see such skills as directly relevant and applicable to their perceptions of what future spatial careers hold. A range of teaching and learning methods for both face-to-face teaching and distance learning were introduced to address some of the perceived weaknesses of the learning environment. These included initiating greater student interaction in lectures, modifying assessments to provide greater feedback and student accountability, and the provision of more interactive and engaging online learning resources. The paper presents and evaluates the teaching methods used to support the student learning environment. Responses of students in relation to their learning experiences were collected via two anonymous, online surveys and these results were analysed with respect to student pass and retention rates. The study found a clear distinction between expectations and engagement of surveying students in comparison to GISc students. A further outcome revealed that students who were already engaged in their learning benefited the most from the interactive

  3. Understanding and quantifying cognitive complexity level in mathematical problem solving items

    Directory of Open Access Journals (Sweden)

    SUSAN E. EMBRETSON

    2008-09-01

    Full Text Available The linear logistic test model (LLTM; Fischer, 1973 has been applied to a wide variety of new tests. When the LLTM application involves item complexity variables that are both theoretically interesting and empirically supported, several advantages can result. These advantages include elaborating construct validity at the item level, defining variables for test design, predicting parameters of new items, item banking by sources of complexity and providing a basis for item design and item generation. However, despite the many advantages of applying LLTM to test items, it has been applied less often to understand the sources of complexity for large-scale operational test items. Instead, previously calibrated item parameters are modeled using regression techniques because raw item response data often cannot be made available. In the current study, both LLTM and regression modeling are applied to mathematical problem solving items from a widely used test. The findings from the two methods are compared and contrasted for their implications for continued development of ability and achievement tests based on mathematical problem solving items.

  4. The Effect of Problem Based Learning (PBL) Instruction on Students' Motivation and Problem Solving Skills of Physics

    Science.gov (United States)

    Argaw, Aweke Shishigu; Haile, Beyene Bashu; Ayalew, Beyene Tesfaw; Kuma, Shiferaw Gadisa

    2017-01-01

    Through the learning of physics, students will acquire problem solving skills which are relevant to their daily life. Determining the best way in which students learn physics takes a priority in physics education. The goal of the present study was to determine the effect of problem based learning strategy on students' problem solving skills and…

  5. Mathematical Enculturation from the Students' Perspective: Shifts in Problem-Solving Beliefs and Behaviour during the Bachelor Programme

    Science.gov (United States)

    Perrenet, Jacob; Taconis, Ruurd

    2009-01-01

    This study investigates the changes in mathematical problem-solving beliefs and behaviour of mathematics students during the years after entering university. Novice bachelor students fill in a questionnaire about their problem-solving beliefs and behaviour. At the end of their bachelor programme, as experienced bachelor students, they again fill…

  6. Anticipating students' reasoning and planning prompts in structured problem-solving lessons

    Science.gov (United States)

    Vale, Colleen; Widjaja, Wanty; Doig, Brian; Groves, Susie

    2018-02-01

    Structured problem-solving lessons are used to explore mathematical concepts such as pattern and relationships in early algebra, and regularly used in Japanese Lesson Study research lessons. However, enactment of structured problem-solving lessons which involves detailed planning, anticipation of student solutions and orchestration of whole-class discussion of solutions is an ongoing challenge for many teachers. Moreover, primary teachers have limited experience in teaching early algebra or mathematical reasoning actions such as generalising. In this study, the critical factors of enacting the structured problem-solving lessons used in Japanese Lesson Study to elicit and develop primary students' capacity to generalise are explored. Teachers from three primary schools participated in two Japanese Lesson Study teams for this study. The lesson plans and video recordings of teaching and post-lesson discussion of the two research lessons along with students' responses and learning are compared to identify critical factors. The anticipation of students' reasoning together with preparation of supporting and challenging prompts was critical for scaffolding students' capacity to grasp and communicate generality.

  7. Do problem-solving skills affect success in nursing process applications? An application among Turkish nursing students.

    Science.gov (United States)

    Bayindir Çevik, Ayfer; Olgun, Nermin

    2015-04-01

    This study aimed to determine the relationship between problem-solving and nursing process application skills of nursing. This is a longitudinal and correlational study. The sample included 71 students. An information form, Problem-Solving Inventory, and nursing processes the students presented at the end of clinical courses were used for data collection. Although there was no significant relationship between problem-solving skills and nursing process grades, improving problem-solving skills increased successful grades. Problem-solving skills and nursing process skills can be concomitantly increased. Students were suggested to use critical thinking, practical approaches, and care plans, as well as revising nursing processes in order to improve their problem-solving skills and nursing process application skills. © 2014 NANDA International, Inc.

  8. Problem Solving-based Learning Materials on Fraction for Training Creativity of Elementary School Students

    Science.gov (United States)

    Widhitama, Y. N.; Lukito, A.; Khabibah, S.

    2018-01-01

    The aim of this research is to develop problem solving based learning materials on fraction for training creativity of elementary school students. Curriculum 2006 states that mathematics should be studied by all learners starting from elementary level in order for them mastering thinking skills, one of them is creative thinking. To our current knowledge, there is no such a research topic being done. To promote this direction, we initiate by developing learning materials with problem solving approach. The developed materials include Lesson Plan, Student Activity Sheet, Mathematical Creativity Test, and Achievement Test. We implemented a slightly modified 4-D model by Thiagajan et al. (1974) consisting of Define, Design, Development, and Disseminate. Techniques of gathering data include observation, test, and questionnaire. We applied three good qualities for the resulted materials; that is, validity, practicality, and effectiveness. The results show that the four mentioned materials meet the corresponding criteria of good quality product.

  9. Assessment of collaborative problem solving skills in Undergraduate Medical Students at Ziauddin College of Medicine, Karachi.

    Science.gov (United States)

    Mughal, Arsalan Manzoor; Shaikh, Sirajul Haque

    2018-01-01

    Collaborative Problem Solving Empirical Progressions from the Assessment and Teaching of 21st Century Skills (ATC21S) framework were used to determine the level of collaborative problem solving skills (CPS) in first, second and third year MBBS students at Ziauddin College of Medicine during Problem-Based Learning (PBL) sessions. Variations based on gender and roles were studied. It is an analytical comparative cross-sectional study in which seven PBL groups were selected per year by non-probability convenient sampling. Data was collected using the Collaborative Problem Solving Five Strands Empirical Progressions by the primary investigator through observation of the students during PBL sessions. Duration of study was six months. We found that in our students, development of social dimension skills is facilitated to a greater extent than the development of cognitive dimension skills through the process of PBL. These skills are generally better developed in the leader compared to the scribe and members in a group. They are also more developed in females compared to males. Modification in them is also observed as the year's progress. Although PBLs facilitate development of CPS skills' progression however in our curriculum, PBLs mainly focus on social skills development and have less emphasis on cognitive skill development. Thus, hybrid instructional strategies with components from TBL and mentorship are recommended for better development of CPS skills.

  10. Assessment of collaborative problem solving skills in Undergraduate Medical Students at Ziauddin College of Medicine, Karachi

    Science.gov (United States)

    Mughal, Arsalan Manzoor; Shaikh, Sirajul Haque

    2018-01-01

    Objective: Collaborative Problem Solving Empirical Progressions from the Assessment and Teaching of 21st Century Skills (ATC21S) framework were used to determine the level of collaborative problem solving skills (CPS) in first, second and third year MBBS students at Ziauddin College of Medicine during Problem-Based Learning (PBL) sessions. Variations based on gender and roles were studied. Methods: It is an analytical comparative cross-sectional study in which seven PBL groups were selected per year by non-probability convenient sampling. Data was collected using the Collaborative Problem Solving Five Strands Empirical Progressions by the primary investigator through observation of the students during PBL sessions. Duration of study was six months. Results: We found that in our students, development of social dimension skills is facilitated to a greater extent than the development of cognitive dimension skills through the process of PBL. These skills are generally better developed in the leader compared to the scribe and members in a group. They are also more developed in females compared to males. Modification in them is also observed as the year's progress. Conclusion: Although PBLs facilitate development of CPS skills' progression however in our curriculum, PBLs mainly focus on social skills development and have less emphasis on cognitive skill development. Thus, hybrid instructional strategies with components from TBL and mentorship are recommended for better development of CPS skills. PMID:29643904

  11. Problem Solving, Scaffolding and Learning

    Science.gov (United States)

    Lin, Shih-Yin

    2012-01-01

    Helping students to construct robust understanding of physics concepts and develop good solving skills is a central goal in many physics classrooms. This thesis examine students' problem solving abilities from different perspectives and explores strategies to scaffold students' learning. In studies involving analogical problem solving…

  12. Spatial problem-solving strategies of middle school students: Wayfinding with geographic information systems

    Science.gov (United States)

    Wigglesworth, John C.

    2000-06-01

    Geographic Information Systems (GIS) is a powerful computer software package that emphasizes the use of maps and the management of spatially referenced environmental data archived in a systems data base. Professional applications of GIS have been in place since the 1980's, but only recently has GIS gained significant attention in the K--12 classroom. Students using GIS are able to manipulate and query data in order to solve all manners of spatial problems. Very few studies have examined how this technological innovation can support classroom learning. In particular, there has been little research on how experience in using the software correlates with a child's spatial cognition and his/her ability to understand spatial relationships. This study investigates the strategies used by middle school students to solve a wayfinding (route-finding) problem using the ArcView GIS software. The research design combined an individual background questionnaire, results from the Group Assessment of Logical Thinking (GALT) test, and analysis of reflective think-aloud sessions to define the characteristics of the strategies students' used to solve this particular class of spatial problem. Three uniquely different spatial problem solving strategies were identified. Visual/Concrete Wayfinders used a highly visual strategy; Logical/Abstract Wayfinders used GIS software tools to apply a more analytical and systematic approach; Transitional Wayfinders used an approach that showed evidence of one that was shifting from a visual strategy to one that was more analytical. The triangulation of data sources indicates that this progression of wayfinding strategy can be correlated both to Piagetian stages of logical thought and to experience with the use of maps. These findings suggest that GIS teachers must be aware that their students' performance will lie on a continuum that is based on cognitive development, spatial ability, and prior experience with maps. To be most effective, GIS teaching

  13. Schema-Based Strategy Instruction and the Mathematical Problem-Solving Performance of Two Students with Emotional or Behavioral Disorders

    Science.gov (United States)

    Peltier, Corey; Vannest, Kimberly J.

    2016-01-01

    The purpose of this study was to analyze the effects of schema instruction on the mathematical problem solving of students with emotional or behavioral disorders (EBD). The participants were two fourth-grade students identified with EBD. The intervention package consisted of schema instruction, strategy instruction on problem-solving heuristics…

  14. Mathematical enculturation from the students' perspective: shifts in problem-solving beliefs and behaviour during the bachelor programme

    NARCIS (Netherlands)

    Perrenet, J.C.; Taconis, R.

    2009-01-01

    This study investigates the changes in mathematical problem-solving beliefs and behaviour of mathematics students during the years after entering university. Novice bachelor students fill in a questionnaire about their problem-solving beliefs and behaviour. At the end of their bachelor programme, as

  15. Errors and Understanding: The Effects of Error-Management Training on Creative Problem-Solving

    Science.gov (United States)

    Robledo, Issac C.; Hester, Kimberly S.; Peterson, David R.; Barrett, Jamie D.; Day, Eric A.; Hougen, Dean P.; Mumford, Michael D.

    2012-01-01

    People make errors in their creative problem-solving efforts. The intent of this article was to assess whether error-management training would improve performance on creative problem-solving tasks. Undergraduates were asked to solve an educational leadership problem known to call for creative thought where problem solutions were scored for…

  16. Understanding Adults' Strong Problem-Solving Skills Based on PIAAC

    Science.gov (United States)

    Hämäläinen, Raija; De Wever, Bram; Nissinen, Kari; Cincinnato, Sebastiano

    2017-01-01

    Purpose: Research has shown that the problem-solving skills of adults with a vocational education and training (VET) background in technology-rich environments (TREs) are often inadequate. However, some adults with a VET background do have sound problem-solving skills. The present study aims to provide insight into the socio-demographic,…

  17. Threshold Effects of Creative Problem-Solving Attributes on Creativity in the Math Abilities of Taiwanese Upper Elementary Students

    OpenAIRE

    Lin, Chia-Yi

    2017-01-01

    This study aimed to help determine what the typology of math creative problem-solving is. Different from studies that have discussed the threshold effect between creativity and intelligence, this research investigated the threshold effect between creativity and other attributes. The typology of the math creative problem-solving abilities of 409 fifth- and sixth-grade Taiwanese students was identified and compared in this study. A Creative Problem-Solving Attribute Instrument was devised for t...

  18. A STUDY OF THE PROBLEM SOLVING ACTIVITY IN HIGH SCHOOL STUDENTS: STRATEGIES AND SELF-REGULATED LEARNING

    Directory of Open Access Journals (Sweden)

    Alexandru Brad

    2011-03-01

    Full Text Available This study was conducted with the purpose of analyzing high school students’ approach to problem solving activities, namely the metacognitive abilities and the strategies they employ. The results show that although students apply basic strategies well, they use a trial-and-error approach, they give-up when faced with difficulties and have deficiencies in metacognitive abilities, which are signals that must be taken into account. The conclusions suggest that greater attention should be given to the students’ needs, putting more emphasis on reasoning and understanding, so that students can improve their self-regulated learning.

  19. The Influence of Self-Efficacy Beliefs and Metacognitive Prompting on Genetics Problem Solving Ability among High School Students in Kenya

    Science.gov (United States)

    Aurah, Catherine Muhonja

    Within the framework of social cognitive theory, the influence of self-efficacy beliefs and metacognitive prompting on genetics problem solving ability among high school students in Kenya was examined through a mixed methods research design. A quasi-experimental study, supplemented by focus group interviews, was conducted to investigate both the outcomes and the processes of students' genetics problem-solving ability. Focus group interviews substantiated and supported findings from the quantitative instruments. The study was conducted in 17 high schools in Western Province, Kenya. A total of 2,138 high school students were purposively sampled. A sub-sample of 48 students participated in focus group interviews to understand their perspectives and experiences during the study so as to corroborate the quantitative data. Quantitative data were analyzed through descriptive statistics, zero-order correlations, 2 x 2 factorial ANOVA,, and sequential hierarchical multiple regressions. Qualitative data were transcribed, coded, and reported thematically. Results revealed metacognitive prompts had significant positive effects on student problem-solving ability independent of gender. Self-efficacy and metacognitive prompting significantly predicted genetics problem-solving ability. Gender differences were revealed, with girls outperforming boys on the genetics problem-solving test. Furthermore, self-efficacy moderated the relationship between metacognitive prompting and genetics problem-solving ability. This study established a foundation for instructional methods for biology teachers and recommendations are made for implementing metacognitive prompting in a problem-based learning environment in high schools and science teacher education programs in Kenya.

  20. Are diagrams always helpful tools? developmental and individual differences in the effect of presentation format on student problem solving.

    Science.gov (United States)

    Booth, Julie L; Koedinger, Kenneth R

    2012-09-01

    High school and college students demonstrate a verbal, or textual, advantage whereby beginning algebra problems in story format are easier to solve than matched equations (Koedinger & Nathan, 2004). Adding diagrams to the stories may further facilitate solution (Hembree, 1992; Koedinger & Terao, 2002). However, diagrams may not be universally beneficial (Ainsworth, 2006; Larkin & Simon, 1987). To identify developmental and individual differences in the use of diagrams, story, and equation representations in problem solving. When do diagrams begin to aid problem-solving performance? Does the verbal advantage replicate for younger students? Three hundred and seventy-three students (121 sixth, 117 seventh, 135 eighth grade) from an ethnically diverse middle school in the American Midwest participated in Experiment 1. In Experiment 2, 84 sixth graders who had participated in Experiment 1 were followed up in seventh and eighth grades. In both experiments, students solved algebra problems in three matched presentation formats (equation, story, story + diagram). The textual advantage was replicated for all groups. While diagrams enhance performance of older and higher ability students, younger and lower-ability students do not benefit, and may even be hindered by a diagram's presence. The textual advantage is in place by sixth grade. Diagrams are not inherently helpful aids to student understanding and should be used cautiously in the middle school years, as students are developing competency for diagram comprehension during this time. ©2011 The British Psychological Society.

  1. Impact of problem-based learning in a large classroom setting: student perception and problem-solving skills.

    Science.gov (United States)

    Klegeris, Andis; Hurren, Heather

    2011-12-01

    Problem-based learning (PBL) can be described as a learning environment where the problem drives the learning. This technique usually involves learning in small groups, which are supervised by tutors. It is becoming evident that PBL in a small-group setting has a robust positive effect on student learning and skills, including better problem-solving skills and an increase in overall motivation. However, very little research has been done on the educational benefits of PBL in a large classroom setting. Here, we describe a PBL approach (using tutorless groups) that was introduced as a supplement to standard didactic lectures in University of British Columbia Okanagan undergraduate biochemistry classes consisting of 45-85 students. PBL was chosen as an effective method to assist students in learning biochemical and physiological processes. By monitoring student attendance and using informal and formal surveys, we demonstrated that PBL has a significant positive impact on student motivation to attend and participate in the course work. Student responses indicated that PBL is superior to traditional lecture format with regard to the understanding of course content and retention of information. We also demonstrated that student problem-solving skills are significantly improved, but additional controlled studies are needed to determine how much PBL exercises contribute to this improvement. These preliminary data indicated several positive outcomes of using PBL in a large classroom setting, although further studies aimed at assessing student learning are needed to further justify implementation of this technique in courses delivered to large undergraduate classes.

  2. The Role of Content Knowledge in Ill-Structured Problem Solving for High School Physics Students

    Science.gov (United States)

    Milbourne, Jeff; Wiebe, Eric

    2018-02-01

    While Physics Education Research has a rich tradition of problem-solving scholarship, most of the work has focused on more traditional, well-defined problems. Less work has been done with ill-structured problems, problems that are better aligned with the engineering and design-based scenarios promoted by the Next Generation Science Standards. This study explored the relationship between physics content knowledge and ill-structured problem solving for two groups of high school students with different levels of content knowledge. Both groups of students completed an ill-structured problem set, using a talk-aloud procedure to narrate their thought process as they worked. Analysis of the data focused on identifying students' solution pathways, as well as the obstacles that prevented them from reaching "reasonable" solutions. Students with more content knowledge were more successful reaching reasonable solutions for each of the problems, experiencing fewer obstacles. These students also employed a greater variety of solution pathways than those with less content knowledge. Results suggest that a student's solution pathway choice may depend on how she perceives the problem.

  3. Holistic Mathematics Instruction: Interactive Problem Solving and Real Life Situations Help Learners Understand Math Concepts.

    Science.gov (United States)

    Archambeault, Betty

    1993-01-01

    Holistic math focuses on problem solving with numbers and concepts. Whole math activities for adults include shopping for groceries, eating in restaurants, buying gas, taking medicine, measuring a room, estimating servings, and compiling a family cookbook. (SK)

  4. Effects of a Research-Based Intervention to Improve Seventh-Grade Students' Proportional Problem Solving: A Cluster Randomized Trial

    Science.gov (United States)

    Jitendra, Asha K.; Harwell, Michael R.; Dupuis, Danielle N.; Karl, Stacy R.; Lein, Amy E.; Simonson, Gregory; Slater, Susan C.

    2015-01-01

    This experimental study evaluated the effectiveness of a research-based intervention, schema-based instruction (SBI), on students' proportional problem solving. SBI emphasizes the underlying mathematical structure of problems, uses schematic diagrams to represent information in the problem text, provides explicit problem-solving and metacognitive…

  5. Prompting in Web-Based Environments: Supporting Self-Monitoring and Problem Solving Skills in College Students

    Science.gov (United States)

    Kauffman, Douglas F.; Ge, Xun; Xie, Kui; Chen, Ching-Huei

    2008-01-01

    This study explored Metacognition and how automated instructional support in the form of problem-solving and self-reflection prompts influenced students' capacity to solve complex problems in a Web-based learning environment. Specifically, we examined the independent and interactive effects of problem-solving prompts and reflection prompts on…

  6. A Structural Equation Model to Analyse the Antecedents to Students' Web-Based Problem-Solving Performance

    Science.gov (United States)

    Hwang, Gwo-Jen; Kuo, Fan-Ray

    2015-01-01

    Web-based problem-solving, a compound ability of critical thinking, creative thinking, reasoning thinking and information-searching abilities, has been recognised as an important competence for elementary school students. Some researchers have reported the possible correlations between problem-solving competence and information searching ability;…

  7. The Effects of Schema-Based Instruction on the Mathematical Problem Solving of Students with Emotional and Behavioral Disorders

    Science.gov (United States)

    Peltier, Corey; Vannest, Kimberly J.

    2018-01-01

    The current study examines the effects of schema instruction on the problem-solving performance of four second-grade students with emotional and behavioral disorders. The existence of a functional relationship between the schema instruction intervention and problem-solving accuracy in mathematics is examined through a single case experiment using…

  8. Teaching Problem Solving to Students Receiving Tiered Interventions Using the Concrete-Representational-Abstract Sequence and Schema-Based Instruction

    Science.gov (United States)

    Flores, Margaret M.; Hinton, Vanessa M.; Burton, Megan E.

    2016-01-01

    Mathematical word problems are the most common form of mathematics problem solving implemented in K-12 schools. Identifying key words is a frequent strategy taught in classrooms in which students struggle with problem solving and show low success rates in mathematics. Researchers show that using the concrete-representational-abstract (CRA)…

  9. Metacognitive experience of mathematics education students in open start problem solving based on intrapersonal intelligence

    Science.gov (United States)

    Sari, D. P.; Usodo, B.; Subanti, S.

    2018-04-01

    This research aims to describe metacognitive experience of mathematics education students with strong, average, and weak intrapersonal intelligence in open start problem solving. Type of this research was qualitative research. The research subject was mathematics education students in Muhammadiyah University of Surakarta in academic year 2017/2018. The selected students consisted of 6 students with details of two students in each intrapersonal intelligence category. The research instruments were questionnaire, open start problem solving task, and interview guidelines. Data validity used time triangulation. Data analyses were done through data collection, data reduction, data presentation, and drawing conclusion. Based on findings, subjects with strong intrapersonal intelligence had high self confidence that they were able to solve problem correctly, able to do planning steps and able to solve the problem appropriately. Subjects with average intrapersonal intelligence had high self-assessment that they were able to solve the problem, able to do planning steps appropriately but they had not maximized in carrying out the plan so that it resulted incorrectness answer. Subjects with weak intrapersonal intelligence had high self confidence in capability of solving math problem, lack of precision in taking plans so their task results incorrectness answer.

  10. Problem solving performance and learning strategies of undergraduate students who solved microbiology problems using IMMEX educational software

    Science.gov (United States)

    Ebomoyi, Josephine Itota

    The objectives of this study were as follows: (1) Determine the relationship between learning strategies and performance in problem solving, (2) Explore the role of a student's declared major on performance in problem solving, (3) Understand the decision making process of high and low achievers during problem solving. Participants (N = 65) solved problems using the Interactive multimedia exercise (IMMEX) software. All participants not only solved "Microquest," which focuses on cellular processes and mode of action of antibiotics, but also "Creeping Crud," which focuses on the cause, origin and transmission of diseases. Participants also responded to the "Motivated Strategy Learning Questionnaire" (MSLQ). Hierarchical multiple regression was used for analysis with GPA (Gracie point average) as a control. There were 49 (78.6%) that successfully solved "Microquest" while 52 (82.5%) successfully solved "Creeping Crud". Metacognitive self regulation strategy was significantly (p low achievers. Common strategies and attributes included metacognitive skills, writing to keep track, using prior knowledge. Others included elements of frustration/confusion and self-esteem problems. The implications for educational and relevance to real life situations are discussed.

  11. A comparison of problem-based and traditional education on nursing students' locus of control and problem-solving skills.

    Science.gov (United States)

    Günüşen, Neslihan Partlak; Serçekuş, Pınar; Edeer, Aylin Durmaz

    2014-06-01

    The purpose of this study is to compare the locus of control and problem-solving skills of nursing students studying with the problem-based learning method with those of nursing students studying with the traditional method. This is a descriptive and comparative study. For data collection, the Problem-Solving Skills Inventory and the Locus of Control Scale were used. The study sample included 680 nursing students. It was determined that the problem-based learning method was more effective in the development of problem-solving skills and internal locus of control than was the traditional method. © 2014 NANDA International.

  12. Implementing Mixed Method of Peer Teaching and Problem Solving on Undergraduate Students

    Directory of Open Access Journals (Sweden)

    A. Firli

    2017-02-01

    Full Text Available This study examined the application of problem solving method combined with student centered learning (peer teaching method as a mixed method to improve student’s passing level of financial management course. The object of this study was the 84 students of financial management course separated within two classes during the odd semester period 2014/2015, July until December 2015 with fourteen meeting courses. Data used to measure the results of the application is mid and final exam scores of both classes. Researcher used observation, interview and documentation as data collect technique also triangulation technique as data validity check. This study used problem solving method combined with student centered learning (peer teaching method as a mixed method which included into the Classroom Action Research. The final results show the increase in class A passing level is 17%. Class B passing level increased 3%. From the research we also know that in practical use of mixed method learning, leader’s quality and conducive learning environment are influencing factors in improving student’s learning performance. While the result confirms that mixed method improving learning performance, this study also founds additional factors that might be considerably affecting the results of learning performance when implementing the mixed method.

  13. Student Learning of Complex Earth Systems: A Model to Guide Development of Student Expertise in Problem-Solving

    Science.gov (United States)

    Holder, Lauren N.; Scherer, Hannah H.; Herbert, Bruce E.

    2017-01-01

    Engaging students in problem-solving concerning environmental issues in near-surface complex Earth systems involves developing student conceptualization of the Earth as a system and applying that scientific knowledge to the problems using practices that model those used by professionals. In this article, we review geoscience education research…

  14. Assessing Student Written Problem Solutions: A Problem-Solving Rubric with Application to Introductory Physics

    Science.gov (United States)

    Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie

    2016-01-01

    Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic…

  15. The Effectiveness of Metacognition Strategies Training on Problem-Solving Function in Guidance School Students

    Directory of Open Access Journals (Sweden)

    Ali Reza Jazayeri

    2003-01-01

    Full Text Available Objective: The main purpose of this study is to assign the effect and role of metacognition strategies trainings in problem-solving function. In other word, a comparison among-different educational methods in these skills and assigning the most effective strategy for training metacognition skills. Materials & Methods: For this reason, through a multi-stages clustral sampling, 62 senior guidance school students were selected as sample group in Tehran. Then, all the subjects completed children attribution styles Questionnaire (Peterson & Seligman, 1984 and metacognition knowledge Questionnaire (Flavell, 1985 as pre-test. Results: Also, each subject was exposed to hanging situation individually. Then, the sample group was divided to three experimental groups include: Compound training, reciprocal/raining and attributional training, and a control group. After training, all four groups accomplished questionnaires as post-test. The data gathered from pre-test and post-test were analyzed through nonparametric procedures. Conclusion: We concluded that metacognition strategies training has too effects on problem-solving functions in students.

  16. Problem Solving and Learning

    Science.gov (United States)

    Singh, Chandralekha

    2009-07-01

    One finding of cognitive research is that people do not automatically acquire usable knowledge by spending lots of time on task. Because students' knowledge hierarchy is more fragmented, "knowledge chunks" are smaller than those of experts. The limited capacity of short term memory makes the cognitive load high during problem solving tasks, leaving few cognitive resources available for meta-cognition. The abstract nature of the laws of physics and the chain of reasoning required to draw meaningful inferences makes these issues critical. In order to help students, it is crucial to consider the difficulty of a problem from the perspective of students. We are developing and evaluating interactive problem-solving tutorials to help students in the introductory physics courses learn effective problem-solving strategies while solidifying physics concepts. The self-paced tutorials can provide guidance and support for a variety of problem solving techniques, and opportunity for knowledge and skill acquisition.

  17. Problem-solving skills and perceived stress among undergraduate students: The moderating role of hardiness.

    Science.gov (United States)

    Abdollahi, Abbas; Abu Talib, Mansor; Carlbring, Per; Harvey, Richard; Yaacob, Siti Nor; Ismail, Zanariah

    2016-06-01

    This study was designed to examine the relationships between problem-solving skills, hardiness, and perceived stress and to test the moderating role of hardiness in the relationship between problem-solving skills and perceived stress among 500 undergraduates from Malaysian public universities. The analyses showed that undergraduates with poor problem-solving confidence, external personal control of emotion, and approach-avoidance style were more likely to report perceived stress. Hardiness moderated the relationships between problem-solving skills and perceived stress. These findings reinforce the importance of moderating role of hardiness as an influencing factor that explains how problem-solving skills affect perceived stress among undergraduates.

  18. Understanding Managerial Problem-Solving, Knowledge Use and Information Processing: Investigating Stages from School to the Workplace

    Science.gov (United States)

    Arts, Jos A. R.; Gijselaers, Wim H.; Boshuizen, Henny P. A.

    2006-01-01

    The present study explores stages in managerial problem-solving skills of participants beginning with formal education, and continuing through the professional workplace setting. We studied nine different levels of expertise: from novice student groups, to graduates and expert groups. Participants were asked to diagnose and solve business cases.…

  19. Understanding the determinants of problem-solving behavior in a complex environment

    Science.gov (United States)

    Casner, Stephen A.

    1994-01-01

    It is often argued that problem-solving behavior in a complex environment is determined as much by the features of the environment as by the goals of the problem solver. This article explores a technique to determine the extent to which measured features of a complex environment influence problem-solving behavior observed within that environment. In this study, the technique is used to determine how complex flight deck and air traffic control environment influences the strategies used by airline pilots when controlling the flight path of a modern jetliner. Data collected aboard 16 commercial flights are used to measure selected features of the task environment. A record of the pilots' problem-solving behavior is analyzed to determine to what extent behavior is adapted to the environmental features that were measured. The results suggest that the measured features of the environment account for as much as half of the variability in the pilots' problem-solving behavior and provide estimates on the probable effects of each environmental feature.

  20. Reviewing the relation between the problem solving skills of school of health students and their social skill levels

    OpenAIRE

    Gül Ergün; Buket Şimşek Arslan

    2017-01-01

    This research aims at reviewing the relation between the problem solving skills of health high school students and their social skill levels.  It was planned to be descriptive. The universe of the research was composed of nursing students in the health high school. The sample was determined to be the whole of the universe. A written permission was taken from the management of the health high school regarding the research. Problem Solving Inventory and Social Skill Inventory; the form towards ...

  1. The Effect of Problem-Solving Video Games on the Science Reasoning Skills of College Students

    Science.gov (United States)

    Fanetti, Tina M.

    As the world continues to rapidly change, students are faced with the need to develop flexible skills, such as science reasoning that will help them thrive in the new knowledge economy. Prensky (2001), Gee (2003), and Van Eck (2007) have all suggested that the way to engage learners and teach them the necessary skills is through digital games, but empirical studies focusing on popular games are scant. One way digital games, especially video games, could potentially be useful if there were a flexible and inexpensive method a student could use at their convenience to improve selected science reasoning skills. Problem-solving video games, which require the use of reasoning and problem solving to answer a variety of cognitive challenges could be a promising method to improve selected science reasoning skills. Using think-aloud protocols and interviews, a qualitative study was carried out with a small sample of college students to examine what impact two popular video games, Professor Layton and the Curious Village and Professor Layton and the Diabolical Box, had on specific science reasoning skills. The subject classified as an expert in both gaming and reasoning tended to use more higher order thinking and reasoning skills than the novice reasoners. Based on the assessments, the science reasoning of college students did not improve during the course of game play. Similar to earlier studies, students tended to use trial and error as their primary method of solving the various puzzles in the game and additionally did not recognize when to use the appropriate reasoning skill to solve a puzzle, such as proportional reasoning.

  2. Testing foreign language impact on engineering students' scientific problem-solving performance

    Science.gov (United States)

    Tatzl, Dietmar; Messnarz, Bernd

    2013-12-01

    This article investigates the influence of English as the examination language on the solution of physics and science problems by non-native speakers in tertiary engineering education. For that purpose, a statistically significant total number of 96 students in four year groups from freshman to senior level participated in a testing experiment in the Degree Programme of Aviation at the FH JOANNEUM University of Applied Sciences, Graz, Austria. Half of each test group were given a set of 12 physics problems described in German, the other half received the same set of problems described in English. It was the goal to test linguistic reading comprehension necessary for scientific problem solving instead of physics knowledge as such. The results imply that written undergraduate English-medium engineering tests and examinations may not require additional examination time or language-specific aids for students who have reached university-entrance proficiency in English as a foreign language.

  3. How Does the Degree of Guidance Support Students' Metacognitive and Problem Solving Skills in Educational Robotics?

    Science.gov (United States)

    Atmatzidou, Soumela; Demetriadis, Stavros; Nika, Panagiota

    2018-02-01

    Educational robotics (ER) is an innovative learning tool that offers students opportunities to develop higher-order thinking skills. This study investigates the development of students' metacognitive (MC) and problem-solving (PS) skills in the context of ER activities, implementing different modes of guidance in two student groups (11-12 years old, N1 = 30, and 15-16 years old, N2 = 22). The students of each age group were involved in an 18-h group-based activity after being randomly distributed in two conditions: "minimal" (with minimal MC and PS guidance) and "strong" (with strong MC and PS guidance). Evaluations were based on the Metacognitive Awareness Inventory measuring students' metacognitive awareness and on a think-aloud protocol asking students to describe the process they would follow to solve a certain robot-programming task. The results suggest that (a) strong guidance in solving problems can have a positive impact on students' MC and PS skills and (b) students reach eventually the same level of MC and PS skills development independently of their age and gender.

  4. Guided-inquiry based laboratory instruction: Investigation of critical thinking skills, problem solving skills, and implementing student roles in chemistry

    Science.gov (United States)

    Gupta, Tanya

    Recent initiatives in the laboratory curriculum have encouraged an inquiry-based approach to learning and teaching in the laboratory. It has been argued that laboratory instruction should not just be hands-on, but it should portray the essence of inquiry through the process of experiential learning and reflective engagement in collaboration with peers and in facilitation by the instructor. A student-centered active learning approach may be an effective way to enhance student understanding of concepts in the laboratory. The dissertation research work explores the impact of laboratory instruction and its relevance for college-level chemistry. Each chapter is different from the preceding chapter in terms of the purpose of the study and the research questions asked. However, the overarching idea is to address the importance of guided-inquiry based laboratory instruction in chemistry and its relevance in helping students to make connections with the chemistry content and in imparting skills to students. Such skills include problem solving, collaborative group work and critical thinking. The first research study (Chapter 2) concerns the impact of first year co-requisite general chemistry laboratory instruction on the problem-solving skills of students. The second research study (Chapter 3) examines the impact of implementing student roles also known as Student-Led Instructor Facilitated Guided-Inquiry based Laboratories, SLIFGIL) by modifying the Science Writing Heuristic approach of laboratory instruction. In the third research study (Chapter 4), critical thinking skills of first semester general chemistry laboratory students were compared to advanced (third or fourth year) chemistry laboratory students based on the analysis of their laboratory reports.

  5. Deaf and hard of hearing students' problem-solving strategies with signed arithmetic story problems.

    Science.gov (United States)

    Pagliaro, Claudia M; Ansell, Ellen

    2012-01-01

    The use of problem-solving strategies by 59 deaf and hard of hearing children, grades K-3, was investigated. The children were asked to solve 9 arithmetic story problems presented to them in American Sign Language. The researchers found that while the children used the same general types of strategies that are used by hearing children (i.e., modeling, counting, and fact-based strategies), they showed an overwhelming use of counting strategies for all types of problems and at all ages. This difference may have its roots in language or instruction (or in both), and calls attention to the need for conceptual rather than procedural mathematics instruction for deaf and hard of hearing students.

  6. Problem-based learning for technical students on the base TRIZ (theory of inventive problem solving

    Directory of Open Access Journals (Sweden)

    Babenko Oksana

    2016-01-01

    Full Text Available The basis of modern educational technology in teaching is problem-based learning through the use of educational technologies Powerful Thinking - Theory of Inventive Problem Solving (TRIZ, including a systematic approach to the complex organization of independent work of search and research character. Developed by systemic administration of the physical features workshops on the basis TRIZ in the cycle of the natural sciences with the implementation of all aspects of the educational activities - substantive, procedural and motivational. A new model of the physical design of the workshop and its form of organization, which is based on problem-based learning with the use of TRIZ Interactive form of organization of the workshop allows you to get high-quality substantive and personality of the students who have a significant role in the formation of professional competencies and affect the quality of produce practice-oriented specialists.

  7. Assessing student written problem solutions: A problem-solving rubric with application to introductory physics

    OpenAIRE

    Jennifer L. Docktor; Jay Dornfeld; Evan Frodermann; Kenneth Heller; Leonardo Hsu; Koblar Alan Jackson; Andrew Mason; Qing X. Ryan; Jie Yang

    2016-01-01

    Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic classroom work. It is also useful if such tools can be employed by instructors to guide their pedagogy. We describe the design, development, and testing of...

  8. The Effect of Hints and Model Answers in a Student-Controlled Problem-Solving Program for Secondary Physics Education

    NARCIS (Netherlands)

    Pol, Henk J.; Harskamp, Egbert G.; Suhre, Cor J. M.; Goedhart, Martin J.

    Many students experience difficulties in solving applied physics problems. Most programs that want students to improve problem-solving skills are concerned with the development of content knowledge. Physhint is an example of a student-controlled computer program that supports students in developing

  9. Effects of team-based learning on problem-solving, knowledge and clinical performance of Korean nursing students.

    Science.gov (United States)

    Kim, Hae-Ran; Song, Yeoungsuk; Lindquist, Ruth; Kang, Hee-Young

    2016-03-01

    Team-based learning (TBL) has been used as a learner-centered teaching strategy in efforts to improve students' problem-solving, knowledge and practice performance. Although TBL has been used in nursing education in Korea for a decade, few studies have studied its effects on Korean nursing students' learning outcomes. To examine the effects of TBL on problem-solving ability and learning outcomes (knowledge and clinical performance) of Korean nursing students. Randomized controlled trial. 63 third-year undergraduate nursing students attending a single university were randomly assigned to the TBL group (n=32), or a control group (n=31). The TBL and control groups attended 2h of class weekly for 3weeks. Three scenarios with pulmonary disease content were employed in both groups. However, the control group received lectures and traditional case study teaching/learning strategies instead of TBL. A questionnaire of problem-solving ability was administered at baseline, prior to students' exposure to the teaching strategies. Students' problem-solving ability, knowledge of pulmonary nursing care, and clinical performance were assessed following completion of the three-week pulmonary unit. After the three-week educational interventions, the scores on problem-solving ability in the TBL group were significantly improved relative to that of the control group (t=10.89, pproblem-solving ability, knowledge and clinical performance. More research on other specific learning outcomes of TBL for nursing students is recommended. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Study of Scientific Problem-Solving Abilities Based on Scientific Knowledge about Atmosphere and Weather for Seventh Grade Students

    Directory of Open Access Journals (Sweden)

    Phoorin Thaengnoi

    2017-06-01

    Full Text Available The purposes of this research were: 1 to develop scientific problem-solving abilities test based on scientific knowledge about atmosphere and weather for seventh grade students and 2 to study the scientific problem-solving abilities of seventh grade students. The samples used in this study were 47 students who were studying in seventh grade in academic year 2015 of a school in Chai Nat province, Thailand. Purposive sampling was applied for identifying the samples. The research instrument of this study was the scientific problem-solving abilities test developed by the researcher. The research data was analyzed by comparing students’ scores with the criteria and considering students’ answers in each element of scientific problem-solving abilities. The results of the study were as follows: The scientific problem-solving abilities test composed of 2 parts. The first part was multiple-choice questions which was composed of 4 situations, a total of 20 questions. The Index of Item Objective Congruence of this part was varied in the range between 0.67 – 1.00. The difficulty and the discrimination level were in the range between 0.33 – 0.63 and 0.27 – 0.67, respectively. The reliability levels of this part was equal to 0.81. The second part of the test was subjective questions which composed of 2 situations, a total of 10 questions. The Index of Item Objective Congruence of this part was varied in the range between 0.67 – 1.00. The reliability level of this part was equal to 0.83. Besides, all questions in the test were covered all elements of scientific problem-solving abilities ; 1 identifying the problem 2 making the hypothesis 3 collecting data and knowledge to solve the problem 4 identifying problem-solving method and 5 predicting the characteristics of the results. The problem-solving abilities of the students revealed that 40.43% of students (n=19 were in a moderate level and 59.57% of students (n=28 were in a low level with the

  11. Utilization of mathematics amongst healthcare students towards problem solving during their occupational safety health internship

    Science.gov (United States)

    Umasenan a/l Thanikasalam

    2017-05-01

    Occupational safety health is a multidisciplinary discipline concentrating on the safety, health and welfare of workers in the working place. Healthcare Students undergoing Occupational Safety Health internships are required to apply mathematical in areas such as safety legislation, safety behavior, ergonomics, chemical safety, OSH practices, industrial hygiene, risk management and safety health practices as problem solving. The aim of this paper is to investigate the level of mathematics and logic utilization from these students during their internship looking at areas of Hazard identification, Determining the population exposed to the hazard, Assessing the risk of the exposure to the hazards and Taking preventive and control. A total of 142 returning healthcare students from their Occupational Safety Health, internship were given a questionnaire to measure their perceptions towards mathematical and logic utilization. The overall results indicated a strong positive skewed result towards the use of Mathematics during their internship. The findings showed that mathematics were well delivered by the students during their internship. Mathematics could not be separated from OSH practice as a needed precision in quantifying safety, health an d welfare of workers in addition to empiricism.

  12. Problem solving strategies used by RN-to-BSN students in an online problem-based learning course.

    Science.gov (United States)

    Oldenburg, Nancy L; Hung, Wei-Chen

    2010-04-01

    It is essential that nursing students develop the problem solving and critical thinking skills required in the current health care environment. Problem-based learning has been promoted as a way to help students acquire those skills; however, gaps exist in the knowledge base of the strategies used by learners. The purpose of this case study was to gain insight into the problem solving experience of a group of six RN-to-BSN students in an online problem-based learning course. Data, including discussion transcripts, reflective papers, and interview transcripts, were analyzed using a qualitative approach. Students expanded their use of resources and resolved the cases, identifying relevant facts and clinical applications. They had difficulty communicating their findings, establishing the credibility of sources, and offering challenging feedback. Increased support and direction are needed to facilitate the development of problem solving abilities of students in the problem-based learning environment.

  13. A Comparison of Students in Physical Education and Sports College and the Students in Other Departments in Terms of Problem Solving Skills

    Science.gov (United States)

    Görücü, Alpaslan; Cantav, Erkan

    2017-01-01

    In this research, it is aimed to analyze the problem solving skills of university students in terms of different variables and to analyze the differences among the levels of perceived problem solving skill of the students of Physical Education and Sports College and other branch students. The sample consists of the university students from the…

  14. The Impact of Parental Attitudes on Problem Solving Skills in High School Students

    Science.gov (United States)

    Tösten, Rasim; Han, Bünyamin; Anik, Sabri

    2017-01-01

    Problem solving skill is one of the important skills which are expected to be gained during the educational programs. In the development of children's skills and shaping the behaviors, parental attitudes are believed to be effective. That means problem-solving skills and behavioral characteristics of individuals are closely related. From that…

  15. Using Science Inquiry Methods to Promote Self-Determination and Problem-Solving Skills for Students with Moderate Intellectual Disability

    Science.gov (United States)

    Miller, Bridget; Doughty, Teresa; Krockover, Gerald

    2015-01-01

    This study investigated the use of guided science inquiry methods with self-monitoring checklists to support problem-solving for students and increased autonomy during science instruction for students with moderate intellectual disability. Three students with moderate intellectual disability were supported in not only accessing the general…

  16. How Does the Degree of Guidance Support Students' Metacognitive and Problem Solving Skills in Educational Robotics?

    Science.gov (United States)

    Atmatzidou, Soumela; Demetriadis, Stavros; Nika, Panagiota

    2018-01-01

    Educational robotics (ER) is an innovative learning tool that offers students opportunities to develop higher-order thinking skills. This study investigates the development of students' metacognitive (MC) and problem-solving (PS) skills in the context of ER activities, implementing different modes of guidance in two student groups (11-12 years…

  17. The implementation of multiple intelligences based teaching model to improve mathematical problem solving ability for student of junior high school

    Science.gov (United States)

    Fasni, Nurli; Fatimah, Siti; Yulanda, Syerli

    2017-05-01

    This research aims to achieve some purposes such as: to know whether mathematical problem solving ability of students who have learned mathematics using Multiple Intelligences based teaching model is higher than the student who have learned mathematics using cooperative learning; to know the improvement of the mathematical problem solving ability of the student who have learned mathematics using Multiple Intelligences based teaching model., to know the improvement of the mathematical problem solving ability of the student who have learned mathematics using cooperative learning; to know the attitude of the students to Multiple Intelligences based teaching model. The method employed here is quasi-experiment which is controlled by pre-test and post-test. The population of this research is all of VII grade in SMP Negeri 14 Bandung even-term 2013/2014, later on two classes of it were taken for the samples of this research. A class was taught using Multiple Intelligences based teaching model and the other one was taught using cooperative learning. The data of this research were gotten from the test in mathematical problem solving, scale questionnaire of the student attitudes, and observation. The results show the mathematical problem solving of the students who have learned mathematics using Multiple Intelligences based teaching model learning is higher than the student who have learned mathematics using cooperative learning, the mathematical problem solving ability of the student who have learned mathematics using cooperative learning and Multiple Intelligences based teaching model are in intermediate level, and the students showed the positive attitude in learning mathematics using Multiple Intelligences based teaching model. As for the recommendation for next author, Multiple Intelligences based teaching model can be tested on other subject and other ability.

  18. Effects of the Problem-Posing Approach on Students' Problem Solving Skills and Metacognitive Awareness in Science Education

    Science.gov (United States)

    Akben, Nimet

    2018-05-01

    The interrelationship between mathematics and science education has frequently been emphasized, and common goals and approaches have often been adopted between disciplines. Improving students' problem-solving skills in mathematics and science education has always been given special attention; however, the problem-posing approach which plays a key role in mathematics education has not been commonly utilized in science education. As a result, the purpose of this study was to better determine the effects of the problem-posing approach on students' problem-solving skills and metacognitive awareness in science education. This was a quasi-experimental based study conducted with 61 chemistry and 40 physics students; a problem-solving inventory and a metacognitive awareness inventory were administered to participants both as a pre-test and a post-test. During the 2017-2018 academic year, problem-solving activities based on the problem-posing approach were performed with the participating students during their senior year in various university chemistry and physics departments throughout the Republic of Turkey. The study results suggested that structured, semi-structured, and free problem-posing activities improve students' problem-solving skills and metacognitive awareness. These findings indicated not only the usefulness of integrating problem-posing activities into science education programs but also the need for further research into this question.

  19. Threshold Effects of Creative Problem-Solving Attributes on Creativity in the Math Abilities of Taiwanese Upper Elementary Students

    Directory of Open Access Journals (Sweden)

    Chia-Yi Lin

    2017-01-01

    Full Text Available This study aimed to help determine what the typology of math creative problem-solving is. Different from studies that have discussed the threshold effect between creativity and intelligence, this research investigated the threshold effect between creativity and other attributes. The typology of the math creative problem-solving abilities of 409 fifth- and sixth-grade Taiwanese students was identified and compared in this study. A Creative Problem-Solving Attribute Instrument was devised for this study, with the aim of measuring students’ perceptions on their motivation, knowledge, and skills, both in general and in specific domains. Divergent and convergent thinking were also measured. Cluster analyses yielded three creative problem-solving typologies: High, Medium, and Low. The High Attribute group scored significantly higher in the Math Creative Problem-Solving Ability Test than did the Medium Attribute and Low Attribute groups. The results suggest a threshold effect from several attributes—divergent thinking, convergent thinking, motivation, general knowledge and skills, domain-specific knowledge and skills, and environment—on students’ creative problem-solving abilities. Balanced development of attributes may be an important consideration in nurturing creativity in children.

  20. Risk of suicide ideation associated with problem-solving ability and attitudes toward suicidal behavior in university students.

    Science.gov (United States)

    McAuliffe, Carmel; Corcoran, Paul; Keeley, Helen S; Perry, Ivan J

    2003-01-01

    The present paper investigates the risk of lifetime suicide ideation associated with problem-solving ability and attitudes toward suicidal behavior in a sample of 328 university students (41% male, 59% female). The response rate was 77% based on the total number of students registered for the relevant courses. A series of questions assessed lifetime suicide ideation, while problem solving and attitudes toward suicide were measured using the Self-Rating Problem Solving scale and four subscales of the Suicide Opinion Questionnaire, respectively (McLeavey, 1986; Domino et al., 1989). Almost one-third of the students surveyed had lifetime suicide ideation. Both genders were similar in terms of their suicide ideation history, problem solving, and attitudes toward suicidal behavior with the exception that male students were more in agreement with the attitude that suicidal behavior lacks real intent. Compared with 2% of nonideators and ideators, one in four planners reported that they would more than likely attempt suicide at some point in their life. Greater agreement with the attitude that suicidal behavior is normal was associated with significantly increased risk of being an ideator, as was poor problem solving and less agreement with the attitude that suicidal behavior is associated with mental illness.

  1. Mining EEG with SVM for Understanding Cognitive Underpinnings of Math Problem Solving Strategies.

    Science.gov (United States)

    Bosch, Paul; Herrera, Mauricio; López, Julio; Maldonado, Sebastián

    2018-01-01

    We have developed a new methodology for examining and extracting patterns from brain electric activity by using data mining and machine learning techniques. Data was collected from experiments focused on the study of cognitive processes that might evoke different specific strategies in the resolution of math problems. A binary classification problem was constructed using correlations and phase synchronization between different electroencephalographic channels as characteristics and, as labels or classes, the math performances of individuals participating in specially designed experiments. The proposed methodology is based on using well-established procedures of feature selection, which were used to determine a suitable brain functional network size related to math problem solving strategies and also to discover the most relevant links in this network without including noisy connections or excluding significant connections.

  2. Mining EEG with SVM for Understanding Cognitive Underpinnings of Math Problem Solving Strategies

    Directory of Open Access Journals (Sweden)

    Paul Bosch

    2018-01-01

    Full Text Available We have developed a new methodology for examining and extracting patterns from brain electric activity by using data mining and machine learning techniques. Data was collected from experiments focused on the study of cognitive processes that might evoke different specific strategies in the resolution of math problems. A binary classification problem was constructed using correlations and phase synchronization between different electroencephalographic channels as characteristics and, as labels or classes, the math performances of individuals participating in specially designed experiments. The proposed methodology is based on using well-established procedures of feature selection, which were used to determine a suitable brain functional network size related to math problem solving strategies and also to discover the most relevant links in this network without including noisy connections or excluding significant connections.

  3. Assessment of students' critical-thinking and problem-solving abilities across a 6-year doctor of pharmacy program.

    Science.gov (United States)

    Gleason, Brenda L; Gaebelein, Claude J; Grice, Gloria R; Crannage, Andrew J; Weck, Margaret A; Hurd, Peter; Walter, Brenda; Duncan, Wendy

    2013-10-14

    To determine the feasibility of using a validated set of assessment rubrics to assess students' critical-thinking and problem-solving abilities across a doctor of pharmacy (PharmD) curriculum. Trained faculty assessors used validated rubrics to assess student work samples for critical-thinking and problem-solving abilities. Assessment scores were collected and analyzed to determine student achievement of these 2 ability outcomes across the curriculum. Feasibility of the process was evaluated in terms of time and resources used. One hundred sixty-one samples were assessed for critical thinking, and 159 samples were assessed for problem-solving. Rubric scoring allowed assessors to evaluate four 5- to 7-page work samples per hour. The analysis indicated that overall critical-thinking scores improved over the curriculum. Although low yield for problem-solving samples precluded meaningful data analysis, it was informative for identifying potentially needed curricular improvements. Use of assessment rubrics for program ability outcomes was deemed authentic and feasible. Problem-solving was identified as a curricular area that may need improving. This assessment method has great potential to inform continuous quality improvement of a PharmD program.

  4. Teaching with Concrete and Abstract Visual Representations: Effects on Students' Problem Solving, Problem Representations, and Learning Perceptions

    Science.gov (United States)

    Moreno, Roxana; Ozogul, Gamze; Reisslein, Martin

    2011-01-01

    In 3 experiments, we examined the effects of using concrete and/or abstract visual problem representations during instruction on students' problem-solving practice, near transfer, problem representations, and learning perceptions. In Experiments 1 and 2, novice students learned about electrical circuit analysis with an instructional program that…

  5. Effects of the SOLVE Strategy on the Mathematical Problem Solving Skills of Secondary Students with Learning Disabilities

    Science.gov (United States)

    Freeman-Green, Shaqwana M.; O'Brien, Chris; Wood, Charles L.; Hitt, Sara Beth

    2015-01-01

    This study examined the effects of explicit instruction in the SOLVE Strategy on the mathematical problem solving skills of six Grade 8 students with specific learning disabilities. The SOLVE Strategy is an explicit instruction, mnemonic-based learning strategy designed to help students in solving mathematical word problems. Using a multiple probe…

  6. A Science-Technology-Society Paradigm and Cross River State Secondary School Students' Scientific Literacy: Problem Solving and Decision Making

    Science.gov (United States)

    Umoren, Grace

    2007-01-01

    The aim of this study was to investigate the effect of Science-Technology-Society (STS) curriculum on students' scientific literacy, problem solving and decision making. Four hundred and eighty (480) Senior Secondary two science and non-science students were randomly selected from intact classes in six secondary schools in Calabar Municipality of…

  7. Factors Affecting Differential Equation Problem Solving Ability of Students at Pre-University Level: A Conceptual Model

    Science.gov (United States)

    Aisha, Bibi; Zamri, Sharifa NorulAkmar Syed; Abdallah, Nabeel; Abedalaziz, Mohammad; Ahmad, Mushtaq; Satti, Umbreen

    2017-01-01

    In this study, different factors affecting students' differential equations (DEs) solving abilities were explored at pre university level. To explore main factors affecting students' differential equations problem solving ability, articles for a 19-year period, from 1996 to 2015, were critically reviewed and analyzed. It was revealed that…

  8. The Effect of Concept Mapping and Problem Solving Teaching Strategies on Achievement in Biology among Nigerian Secondary School Students

    Science.gov (United States)

    Okoye, Nnamdi S.; Okechukwu, Rose N.

    2010-01-01

    The study examined the effect of concept-mapping and problem-solving teaching strategies on achievement in biology among Nigerian secondary school students. The method used for the study was a quasi-experimental pre-test treatment design. One hundred and thirteen senior secondary three (S.S. 111) students randomly selected from three mixed…

  9. Relations between Young Students' Strategic Behaviours, Domain-Specific Self-Concept, and Performance in a Problem-Solving Situation

    Science.gov (United States)

    Dermitzaki, Irini; Leondari, Angeliki; Goudas, Marios

    2009-01-01

    This study aimed at investigating the relations between students' strategic behaviour during problem solving, task performance and domain-specific self-concept. A total of 167 first- and second-graders were individually examined in tasks involving cubes assembly and in academic self-concept in mathematics. Students' cognitive, metacognitive, and…

  10. Comparison of student's learning achievement through realistic mathematics education (RME) approach and problem solving approach on grade VII

    Science.gov (United States)

    Ilyas, Muhammad; Salwah

    2017-02-01

    The type of this research was experiment. The purpose of this study was to determine the difference and the quality of student's learning achievement between students who obtained learning through Realistic Mathematics Education (RME) approach and students who obtained learning through problem solving approach. This study was a quasi-experimental research with non-equivalent experiment group design. The population of this study was all students of grade VII in one of junior high school in Palopo, in the second semester of academic year 2015/2016. Two classes were selected purposively as sample of research that was: year VII-5 as many as 28 students were selected as experiment group I and VII-6 as many as 23 students were selected as experiment group II. Treatment that used in the experiment group I was learning by RME Approach, whereas in the experiment group II by problem solving approach. Technique of data collection in this study gave pretest and posttest to students. The analysis used in this research was an analysis of descriptive statistics and analysis of inferential statistics using t-test. Based on the analysis of descriptive statistics, it can be concluded that the average score of students' mathematics learning after taught using problem solving approach was similar to the average results of students' mathematics learning after taught using realistic mathematics education (RME) approach, which are both at the high category. In addition, It can also be concluded that; (1) there was no difference in the results of students' mathematics learning taught using realistic mathematics education (RME) approach and students who taught using problem solving approach, (2) quality of learning achievement of students who received RME approach and problem solving approach learning was same, which was at the high category.

  11. Promotion of Problem Solving Skills by Using Metacognitive-based Instruction in Students of Kermanshah University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    yahya safari

    2017-06-01

    Full Text Available Background and objective: Studies have indicated that metacognitive strategies control and direct cognitive strategies. Thus, application of metacognitive and cognitive strategies together is essential for successful learning to happen. The present study was conducted to examine the effect of metacognitive-oriented instruction on development of problem solving skills in students of Kermanshah University of Medical Sciences. Materials and Methods: This study was a quasi-experimental research with pretest/posttest and control group design. The study sample included the students of Kermanshah University of Medical Sciences (n=4283 in the academic year of 2013-2014. A total number of 40 students were selected through convenient sampling method as the study sample. The samples were randomly placed in experimental and control groups. For the experimental group, problem solving skills were taught based on metacognitive strategies in 8 sessions, each session for 1 and half hours. For the control group, however, problem solving skills were taught through conventional teaching method. The instrument for data collection was Heppner’s problem solving inventory (1988 whose validity and reliability were confirmed previously. Data were analyzed by descriptive statistics, mean and standard deviation, and the hypotheses were tested through t-test. Results: The results of the posttest showed that the total mean of scores for problem solving skills in the experimental group (99.75 was higher than that of the control group (26.800 (p<0.0001. This difference was significant in the case of confidence, approach/avoidance and personal control components (p<0.0001. Moreover, the mean of students’ scores was not significant in terms of gender and major. Conclusion: Given the positive effect of metacognitive strategies on the students’ performance and the necessity of teaching metacognition for the sake of academic achievement, these strategies are recommended to be

  12. Schizophrenia, Narrative, and Neurocognition: The Utility of Life-Stories in Understanding Social Problem-Solving Skills.

    Science.gov (United States)

    Moe, Aubrey M; Breitborde, Nicholas J K; Bourassa, Kyle J; Gallagher, Colin J; Shakeel, Mohammed K; Docherty, Nancy M

    2018-01-22

    Schizophrenia researchers have focused on phenomenological aspects of the disorder to better understand its underlying nature. In particular, development of personal narratives-that is, the complexity with which people form, organize, and articulate their "life stories"-has recently been investigated in individuals with schizophrenia. However, less is known about how aspects of narrative relate to indicators of neurocognitive and social functioning. The objective of the present study was to investigate the association of linguistic complexity of life-story narratives to measures of cognitive and social problem-solving abilities among people with schizophrenia. Thirty-two individuals with a diagnosis of schizophrenia completed a research battery consisting of clinical interviews, a life-story narrative, neurocognitive testing, and a measure assessing multiple aspects of social problem solving. Narrative interviews were assessed for linguistic complexity using computerized technology. The results indicate differential relationships of linguistic complexity and neurocognition to domains of social problem-solving skills. More specifically, although neurocognition predicted how well one could both describe and enact a solution to a social problem, linguistic complexity alone was associated with accurately recognizing that a social problem had occurred. In addition, linguistic complexity appears to be a cognitive factor that is discernible from other broader measures of neurocognition. Linguistic complexity may be more relevant in understanding earlier steps of the social problem-solving process than more traditional, broad measures of cognition, and thus is relevant in conceptualizing treatment targets. These findings also support the relevance of developing narrative-focused psychotherapies. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  13. The Enhancement of Junior High School Students' Abilities in Mathematical Problem Solving Using Soft Skill-based Metacognitive Learning

    OpenAIRE

    Murni, Atma; Sabandar, Jozua; S. Kusumah, Yaya; Kartasamita, Bana Goerbana

    2013-01-01

    The aim of this study is to know the differences of enhancement in mathematical problem solving ability (MPSA) between the students who received soft skill- based metacognitive learning (SSML) with the students who got conventional learning (CL). This research is a quasi experimental design with pretest-postest control group. The population in this study is the students of Junior High School in Pekanbaru city. The sample consist of 135 students, 68 of them are from the high-level...

  14. The Effectiveness of Verbal Self-Instruction Training on Math Problem-Solving of Intellectually Disabled Students

    Directory of Open Access Journals (Sweden)

    Masoume Pourmohamadreza-Tajrishi

    2015-12-01

    Full Text Available Objectives: The study was aimed to determine the effectiveness of verbal self-instruction training on math problem-solving of intellectually disabled boy students in Tehran Provinces. Methods: The study was a semi-experimental with pre-test and post-test design with control group. Thirty intellectually disabled boy students were selected randomly through cluster sampling method from 9th grade students. They were assigned to experimental and control group equally. Experimental group participated in 8 sessions and were trained by verbal self-instruction program but control group did not. All students answered to a teacher-made math problem-solving test before and after the training sessions. Data were analyzed by analysis of covariance. Results: Findings showed that there was a significant difference between two groups according to math problem-solving performance (P<0.002. Discussion: It can conclude that verbal self-instruction training probably leads to promote math problem-solving performance of intellectually disabled boy students.

  15. Schema-Based Instruction with Concrete and Virtual Manipulatives to Teach Problem Solving to Students with Autism

    Science.gov (United States)

    Root, Jenny R.; Browder, Diane M.; Saunders, Alicia F.; Lo, Ya-yu

    2017-01-01

    The current study evaluated the effects of modified schema-based instruction on the mathematical word problem solving skills of three elementary students with autism spectrum disorders and moderate intellectual disability. Participants learned to solve compare problem type with themes that related to their interests and daily experiences. In…

  16. The Effect of Digital Documentary Production through Field Work on Geography Students' Problem-Solving Skills

    Science.gov (United States)

    Adanali, Rukiye

    2018-01-01

    In this study, views of students about the applicability of the digital documentary production through fieldwork model and the effect of it on their problem-solving skills were examined. The study was conducted in Turkey, in 2016-2017 spring term with 15 geography teacher candidates who chosen by convenience sampling method. In this study, within…

  17. Examining the Effects of Principals' Transformational Leadership on Teachers' Creative Practices and Students' Performance in Problem-Solving

    Science.gov (United States)

    Owoh, Jeremy Strickland

    2015-01-01

    In today's technology enriched schools and workforces, creative problem-solving is involved in many aspects of a person's life. The educational systems of developed nations are designed to raise students who are creative and skillful in solving complex problems. Technology and the age of information require nations to develop generations of…

  18. A Meta-Analysis of Schema Instruction on the Problem-Solving Performance of Elementary School Students

    Science.gov (United States)

    Peltier, Corey; Vannest, Kimberly J.

    2017-01-01

    A variety of instructional practices have been recommended to increase the problem-solving (PS) performance of elementary school children. The purpose of this meta-analysis was to systematically review research on the use of schema instruction to increase the PS performance of elementary school-age students. A total of 21 studies, with 3,408…

  19. Effects of Singapore's Model Method on Elementary Student Problem Solving Performance: Single Subject Research

    Science.gov (United States)

    Mahoney, Kevin

    2012-01-01

    This research investigation examined the effects of Singapore's Model Method, also known as "model drawing" or "bar modeling" on the word problem-solving performance of American third and fourth grade students. Employing a single-case design, a researcher-designed teaching intervention was delivered to a child in third…

  20. Elementary School Counselors' Perceptions of Reality Play Counseling in Students' Relationship Building and Problem-Solving Skills

    Science.gov (United States)

    Davis, Eric S.; Clark, Mary Ann

    2012-01-01

    In this qualitative study, eight school counselors participated in a series of reality play counseling trainings introducing techniques appropriate for counseling upper-grade elementary school students to enhance positive relationship building and problem solving skills. Participants were interviewed and their transcripts were analyzed using…

  1. Adapting Experiential Learning to Develop Problem-Solving Skills in Deaf and Hard-of-Hearing Engineering Students.

    Science.gov (United States)

    Marshall, Matthew M; Carrano, Andres L; Dannels, Wendy A

    2016-10-01

    Individuals who are deaf and hard-of-hearing (DHH) are underrepresented in science, technology, engineering, and mathematics (STEM) professions, and this may be due in part to their level of preparation in the development and retention of mathematical and problem-solving skills. An approach was developed that incorporates experiential learning and best practices of STEM instruction to give first-year DHH students enrolled in a postsecondary STEM program the opportunity to develop problem-solving skills in real-world scenarios. Using an industrial engineering laboratory that provides manufacturing and warehousing environments, students were immersed in real-world scenarios in which they worked on teams to address prescribed problems encountered during the activities. The highly structured, Plan-Do-Check-Act approach commonly used in industry was adapted for the DHH student participants to document and communicate the problem-solving steps. Students who experienced the intervention realized a 14.6% improvement in problem-solving proficiency compared with a control group, and this gain was retained at 6 and 12 months, post-intervention. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Effects of the Digital Game-Development Approach on Elementary School Students' Learning Motivation, Problem Solving, and Learning Achievement

    Science.gov (United States)

    Chu, Hui-Chun; Hung, Chun-Ming

    2015-01-01

    In this study, the game-based development approach is proposed for improving the learning motivation, problem solving skills, and learning achievement of students. An experiment was conducted on a learning activity of an elementary school science course to evaluate the performance of the proposed approach. A total of 59 sixth graders from two…

  3. An Investigation into Students' Difficulties in Numerical Problem Solving Questions in High School Biology Using a Numeracy Framework

    Science.gov (United States)

    Scott, Fraser J.

    2016-01-01

    The "mathematics problem" is a well-known source of difficulty for students attempting numerical problem solving questions in the context of science education. This paper illuminates this problem from a biology education perspective by invoking Hogan's numeracy framework. In doing so, this study has revealed that the contextualisation of…

  4. A Case Study: The Implementation of a Problem-Solving Model with a Student with Reading Difficulties in Turkey

    Science.gov (United States)

    Ozmen, E. Ruya; Doganay-Bilgi, Arzu

    2016-01-01

    The purpose of this case study was to improve the reading accuracy and reading comprehension of a 10-year-old fourth-grade female student with reading difficulties. For that purpose, the problem- solving model was implemented in four stages. These stages included problem identification, problem analysis, intervention, and evaluation. During the…

  5. Mathematical Problem Solving Ability of Junior High School Students through Ang’s Framework for Mathematical Modelling Instruction

    Science.gov (United States)

    Fasni, N.; Turmudi, T.; Kusnandi, K.

    2017-09-01

    This research background of this research is the importance of student problem solving abilities. The purpose of this study is to find out whether there are differences in the ability to solve mathematical problems between students who have learned mathematics using Ang’s Framework for Mathematical Modelling Instruction (AFFMMI) and students who have learned using scientific approach (SA). The method used in this research is a quasi-experimental method with pretest-postest control group design. Data analysis of mathematical problem solving ability using Indepent Sample Test. The results showed that there was a difference in the ability to solve mathematical problems between students who received learning with Ang’s Framework for Mathematical Modelling Instruction and students who received learning with a scientific approach. AFFMMI focuses on mathematical modeling. This modeling allows students to solve problems. The use of AFFMMI is able to improve the solving ability.

  6. The Development of a Culture of Problem Solving with Secondary Students through Heuristic Strategies

    Science.gov (United States)

    Eisenmann, Petr; Novotná, Jarmila; Pribyl, Jirí; Brehovský, Jirí

    2015-01-01

    The article reports the results of a longitudinal research study conducted in three mathematics classes in Czech schools with 62 pupils aged 12-18 years. The pupils were exposed to the use of selected heuristic strategies in mathematical problem solving for a period of 16 months. This was done through solving problems where the solution was the…

  7. Assessing student written problem solutions: A problem-solving rubric with application to introductory physics

    Science.gov (United States)

    Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie

    2016-06-01

    Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic classroom work. It is also useful if such tools can be employed by instructors to guide their pedagogy. We describe the design, development, and testing of a simple rubric to assess written solutions to problems given in undergraduate introductory physics courses. In particular, we present evidence for the validity, reliability, and utility of the instrument. The rubric identifies five general problem-solving processes and defines the criteria to attain a score in each: organizing problem information into a Useful Description, selecting appropriate principles (Physics Approach), applying those principles to the specific conditions in the problem (Specific Application of Physics), using Mathematical Procedures appropriately, and displaying evidence of an organized reasoning pattern (Logical Progression).

  8. Interpersonal Problem Solving, Self-Compassion and Personality Traits in University Students

    Science.gov (United States)

    Arslan, Coskun

    2016-01-01

    The aim of this study was to investigate interpersonal problem solving in terms of self-compassion and personality traits. The participants were 570 (274 females and 296 males) who participated in the research voluntarily. The mean age of the participants was 21.54 years (between 17-32 years old) with a standard deviation of 2.68 years. Data were…

  9. Assessing student written problem solutions: A problem-solving rubric with application to introductory physics

    Directory of Open Access Journals (Sweden)

    Jennifer L. Docktor

    2016-05-01

    Full Text Available Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic classroom work. It is also useful if such tools can be employed by instructors to guide their pedagogy. We describe the design, development, and testing of a simple rubric to assess written solutions to problems given in undergraduate introductory physics courses. In particular, we present evidence for the validity, reliability, and utility of the instrument. The rubric identifies five general problem-solving processes and defines the criteria to attain a score in each: organizing problem information into a Useful Description, selecting appropriate principles (Physics Approach, applying those principles to the specific conditions in the problem (Specific Application of Physics, using Mathematical Procedures appropriately, and displaying evidence of an organized reasoning pattern (Logical Progression.

  10. Individual Differences in Students' Complex Problem Solving Skills: How They Evolve and What They Imply

    Science.gov (United States)

    Wüstenberg, Sascha; Greiff, Samuel; Vainikainen, Mari-Pauliina; Murphy, Kevin

    2016-01-01

    Changes in the demands posed by increasingly complex workplaces in the 21st century have raised the importance of nonroutine skills such as complex problem solving (CPS). However, little is known about the antecedents and outcomes of CPS, especially with regard to malleable external factors such as classroom climate. To investigate the relations…

  11. The Motivation of Secondary School Students in Mathematical Word Problem Solving

    Science.gov (United States)

    Gasco, Javier; Villarroel, Jose-Domingo

    2014-01-01

    Introduction: Motivation is an important factor in the learning of mathematics. Within this area of education, word problem solving is central in most mathematics curricula of Secondary School. The objective of this research is to detect the differences in motivation in terms of the strategies used to solve word problems. Method: It analyzed the…

  12. The Role of Content Knowledge in Ill-Structured Problem Solving for High School Physics Students

    Science.gov (United States)

    Milbourne, Jeff; Wiebe, Eric

    2018-01-01

    While Physics Education Research has a rich tradition of problem-solving scholarship, most of the work has focused on more traditional, well-defined problems. Less work has been done with ill-structured problems, problems that are better aligned with the engineering and design-based scenarios promoted by the Next Generation Science Standards. This…

  13. Generic Science Skills Enhancement of Students through Implementation of IDEAL Problem Solving Model on Genetic Information Course

    Science.gov (United States)

    Zirconia, A.; Supriyanti, F. M. T.; Supriatna, A.

    2018-04-01

    This study aims to determine generic science skills enhancement of students through implementation of IDEAL problem-solving model on genetic information course. Method of this research was mixed method, with pretest-posttest nonequivalent control group design. Subjects of this study were chemistry students enrolled in biochemistry course, consisted of 22 students in the experimental class and 19 students in control class. The instrument in this study was essayed involves 6 indicators generic science skills such as indirect observation, causality thinking, logical frame, self-consistent thinking, symbolic language, and developing concept. The results showed that genetic information course using IDEAL problem-solving model have been enhancing generic science skills in low category with of 20,93%. Based on result for each indicator, showed that there are indicators of generic science skills classified in the high category.

  14. Problem Solving on a Monorail.

    Science.gov (United States)

    Barrow, Lloyd H.; And Others

    1994-01-01

    This activity was created to address a lack of problem-solving activities for elementary children. A "monorail" activity from the Evening Science Program for K-3 Students and Parents program is presented to illustrate the problem-solving format. Designed for performance at stations by groups of two students. (LZ)

  15. EFFECTIVENESS OF PROBLEM BASED LEARNING AS A STRATEGY TO FOSTER PROBLEM SOLVING AND CRITICAL REASONING SKILLS AMONG MEDICAL STUDENTS.

    Science.gov (United States)

    Asad, Munazza; Iqbal, Khadija; Sabir, Mohammad

    2015-01-01

    Problem based learning (PBL) is an instructional approach that utilizes problems or cases as a context for students to acquire problem solving skills. It promotes communication skills, active learning, and critical thinking skills. It encourages peer teaching and active participation in a group. It was a cross-sectional study conducted at Al Nafees Medical College, Isra University, Islamabad, in one month duration. This study was conducted on 193 students of both 1st and 2nd year MBBS. Each PBL consists of three sessions, spaced by 2-3 days. In the first session students were provided a PBL case developed by both basic and clinical science faculty. In Session 2 (group discussion), they share, integrate their knowledge with the group and Wrap up (third session), was concluded at the end. A questionnaire based survey was conducted to find out overall effectiveness of PBL sessions. Teaching through PBLs greatly improved the problem solving and critical reasoning skills with 60% students of first year and 71% of 2nd year agreeing that the acquisition of knowledge and its application in solving multiple choice questions (MCQs) was greatly improved by these sessions. They observed that their self-directed learning, intrinsic motivation and skills to relate basic concepts with clinical reasoning which involves higher order thinking have greatly enhanced. Students found PBLs as an effective strategy to promote teamwork and critical thinking skills. PBL is an effective method to improve critical thinking and problem solving skills among medical students.

  16. Improving Problem Solving Skill and Self Regulated Learning of Senior High School Students through Scientific Approach using Quantum Learning strategy

    Directory of Open Access Journals (Sweden)

    M Sudirman

    2017-12-01

    Full Text Available This research is quasi experiment with control group pretest-postest design. The sampel in this research using the techique of purposive sampling so the samples used were two classes of the 11th grade students of SMAN 14 Bandung in the academic year 2017/2018. The experiment group uses saintific approach using Quantum Learning strategy and control group uses saintific approach. In collecting the data the researcher will use the test of problem solving ability and self regulated learning as the instrument. The aims of this research are to:1find out the improvement of students mathematical problem solving through scientific approach using Quantum Learning study, 2 find out students self regulated learning through scientific approach using Quantum Learning.

  17. Developing Creativity and Problem-Solving Skills of Engineering Students: A Comparison of Web- and Pen-and-Paper-Based Approaches

    Science.gov (United States)

    Valentine, Andrew; Belski, Iouri; Hamilton, Margaret

    2017-01-01

    Problem-solving is a key engineering skill, yet is an area in which engineering graduates underperform. This paper investigates the potential of using web-based tools to teach students problem-solving techniques without the need to make use of class time. An idea generation experiment involving 90 students was designed. Students were surveyed…

  18. WWC Review of the Report "The Effects of Cognitive Strategy Instruction on Math Problem Solving of Middle School Students of Varying Ability." What Works Clearinghouse Single Study Review

    Science.gov (United States)

    What Works Clearinghouse, 2014

    2014-01-01

    A recent study, "The Effects of Cognitive Strategy Instruction on Math Problem Solving of Middle School Students of Varying Ability," examined the effectiveness of "Solve It!," a program intended to improve the problem-solving skills of seventh-grade math students. During the program, students are taught cognitive strategies of…

  19. The Effect of Training Problem-Solving Skills on Coping Skills of Depressed Nursing and Midwifery Students

    Science.gov (United States)

    Ebrahimi, Hossein; Barzanjeh Atri, Shirin; Ghavipanjeh, Somayeh; Farnam, Alireza; Gholizadeh, Leyla

    2013-01-01

    Introduction: Nurses have a considerable role in caring and health promotion. Depressed nurses are deficient in their coping skills that are important in mental health. This study evaluated the effectiveness of training problem-solving skills on coping skills of depressed nursing and midwifery students. Methods: The Beck Depression Scale and coping skills questionnaire were administered in Tabriz and Urmia nursing and midwifery schools. 92 students, who had achieved a score above 10 on the Beck Depression Scale, were selected. 46 students as study group and 46 students as control group were selected randomly. The intervention group received six sessions of problem-solving training within three weeks. Finally, after the end of sessions, coping skills and depression scales were administered and analyzed for both groups. Results: Comparing the mean coping skills showed that before the intervention there were no significant differences between the control and study groups. However, after the intervention, a significant difference was observed between the control group and the study group. By comparing the mean coping skills before and after the intervention, a significant difference was observed in the study group. Conclusion: Training problem-solving skills increased the coping skills of depressed students. According to the role of coping skills in people's mental health, increasing coping skills can promote mental health, provide the basis for caring skills, and improve the quality of nurses’ caring skills. PMID:25276704

  20. The effect of training problem-solving skills on coping skills of depressed nursing and midwifery students.

    Science.gov (United States)

    Ebrahimi, Hossein; Barzanjeh Atri, Shirin; Ghavipanjeh, Somayeh; Farnam, Alireza; Gholizadeh, Leyla

    2013-03-01

    Nurses have a considerable role in caring and health promotion. Depressed nurses are deficient in their coping skills that are important in mental health. This study evaluated the effectiveness of training problem-solving skills on coping skills of depressed nursing and midwifery students. The Beck Depression Scale and coping skills questionnaire were administered in Tabriz and Urmia nursing and midwifery schools. 92 students, who had achieved a score above 10 on the Beck Depression Scale, were selected. 46 students as study group and 46 students as control group were selected randomly. The intervention group received six sessions of problem-solving training within three weeks. Finally, after the end of sessions, coping skills and depression scales were administered and analyzed for both groups. Comparing the mean coping skills showed that before the intervention there were no significant differences between the control and study groups. However, after the intervention, a significant difference was observed between the control group and the study group. By comparing the mean coping skills before and after the intervention, a significant difference was observed in the study group. Training problem-solving skills increased the coping skills of depressed students. According to the role of coping skills in people's mental health, increasing coping skills can promote mental health, provide the basis for caring skills, and improve the quality of nurses' caring skills.

  1. Using Science to Promote Preservice Teacher Understanding of Problem Solving in Mathematics

    Science.gov (United States)

    Tobias, Jennifer M.; Ortiz, Enrique

    2007-01-01

    Preservice elementary teachers need to be given the experiences of integrating mathematics with other subjects. They need to go into the classroom with the understanding that mathematics is not an isolated topic. This article describes a paper airplane activity that was presented in a class of preservice elementary education teachers to show how…

  2. Struggling Students' Use of Representation When Developing Number Sense and Problem Solving Abilities

    OpenAIRE

    Roxburgh, Allison L.

    2016-01-01

    Through my experience I have found students often rely on concrete or pictorial strategies to solve mathematical problems. These strategies are great to build an understanding in mathematical concepts. However, using these strategies becomes a tedious task when working with multi-digit numbers to solve problems involving mathematical operations. For example, a student who relies on drawing base ten blocks to solve three-digit addition problems may experience fatigue, as this is not the most e...

  3. Teachers Beliefs in Problem Solving in Rural Malaysian Secondary Schools

    Science.gov (United States)

    Palraj, Shalini; DeWitt, Dorothy; Alias, Norlidah

    2017-01-01

    Problem solving is the highest level of cognitive skill. However, this skill seems to be lacking among secondary school students. Teachers' beliefs influence the instructional strategies used for students' learning. Hence, it is important to understand teachers' beliefs so as to improve the processes for teaching problem solving. The purpose of…

  4. Putting Two and Two Together: Middle School Students' Morphological Problem-Solving Strategies for Unknown Words

    Science.gov (United States)

    Pacheco, Mark B.; Goodwin, Amanda P.

    2013-01-01

    Adolescents often use root word and affix knowledge to figure out unknown words. Anglin (1993) found that younger readers favor the Part-to-Whole strategy, and Tyler and Nagy (1989) confirmed the importance of root-word knowledge for middle school students. This study seeks to understand the different strategies middle school readers use so that…

  5. How to make university students solve physics problems requiring mathematical skills: The "Adventurous Problem Solving" approach

    NARCIS (Netherlands)

    de Mul, F.F.M.; Martin Batlle, C.; Martin i Batlle, Cristina; de Bruijn, Imme; Rinzema, K.; Rinzema, Kees

    2003-01-01

    Teaching physics to first-year university students (in the USA: junior/senior level) is often hampered by their lack of skills in the underlying mathematics, and that in turn may block their understanding of the physics and their ability to solve problems. Examples are vector algebra, differential

  6. DEVELOPING PROBLEM SOLVING SKILLS FOR LIFELONG LEARNING THROUGH WORK-BASED LEARNING AMONG COMMUNITY COLLEGE STUDENTS

    OpenAIRE

    Wan Azlinda Wan Mohamed; Badrul Omar; Mohd Faroul Rafiq Romli

    2010-01-01

    Many training providers are working to improve their curricula to meet the demand of today’s industries. The Malaysian College Communities, one of the major providers for lifelong learning program, had introduced the Work-Based Learning (WBL) concept since 2007 to ensure that their graduates met these demands. One of the key skills required by industry is problem solving skill. The ability to solve a complex or an ill-structured work problem in the workplace is the kind of skill demanded at a...

  7. Determining the Effects of Cognitive Style, Problem Complexity, and Hypothesis Generation on the Problem Solving Ability of School-Based Agricultural Education Students

    Science.gov (United States)

    Blackburn, J. Joey; Robinson, J. Shane

    2016-01-01

    The purpose of this experimental study was to assess the effects of cognitive style, problem complexity, and hypothesis generation on the problem solving ability of school-based agricultural education students. Problem solving ability was defined as time to solution. Kirton's Adaption-Innovation Inventory was employed to assess students' cognitive…

  8. The Effects of Cognitive Strategy Instruction on Knowledge of Math Problem-Solving Processes of Middle School Students with Learning Disabilities

    Science.gov (United States)

    Krawec, Jennifer; Huang, Jia; Montague, Marjorie; Kressler, Benikia; de Alba, Amanda Melia

    2013-01-01

    This study investigated the effectiveness of "Solve It!" instruction on students' knowledge of math problem-solving strategies. "Solve It!" is a cognitive strategy intervention designed to improve the math problem solving of middle school students with learning disabilities (LD). Participants included seventh- and eighth-grade…

  9. Effects of performance feedback and coaching on the problem-solving process: Improving the integrity of implementation and enhancing student outcomes

    Science.gov (United States)

    Lundahl, Allison A.

    Schools implementing Response to Intervention (RtI) procedures frequently engage in team problem-solving processes to address the needs of students who require intensive and individualized services. Because the effectiveness of the problem-solving process will impact the overall success of RtI systems, the present study was designed to learn more about how to strengthen the integrity of the problem-solving process. Research suggests that school districts must ensure high quality training and ongoing support to enhance the effectiveness, acceptability, and sustainability of the problem-solving process within an RtI model; however, there is a dearth of research examining the effectiveness of methods to provide this training and support. Consequently, this study investigated the effects of performance feedback and coaching strategies on the integrity with which teams of educators conducted the problem-solving process in schools. In addition, the relationships between problem-solving integrity, teacher acceptability, and student outcomes were examined. Results suggested that the performance feedback increased problem-solving procedural integrity across two of the three participating schools. Conclusions about the effectiveness of the (a) coaching intervention and (b) interventions implemented in the third school were inconclusive. Regression analyses indicated that the integrity with which the teams conducted the problem-solving process was a significant predictor of student outcomes. However, the relationship between problem-solving procedural integrity and teacher acceptability was not statistically significant.

  10. Development of a problem solving evaluation instrument; untangling of specific problem solving assets

    Science.gov (United States)

    Adams, Wendy Kristine

    The purpose of my research was to produce a problem solving evaluation tool for physics. To do this it was necessary to gain a thorough understanding of how students solve problems. Although physics educators highly value problem solving and have put extensive effort into understanding successful problem solving, there is currently no efficient way to evaluate problem solving skill. Attempts have been made in the past; however, knowledge of the principles required to solve the subject problem are so absolutely critical that they completely overshadow any other skills students may use when solving a problem. The work presented here is unique because the evaluation tool removes the requirement that the student already have a grasp of physics concepts. It is also unique because I picked a wide range of people and picked a wide range of tasks for evaluation. This is an important design feature that helps make things emerge more clearly. This dissertation includes an extensive literature review of problem solving in physics, math, education and cognitive science as well as descriptions of studies involving student use of interactive computer simulations, the design and validation of a beliefs about physics survey and finally the design of the problem solving evaluation tool. I have successfully developed and validated a problem solving evaluation tool that identifies 44 separate assets (skills) necessary for solving problems. Rigorous validation studies, including work with an independent interviewer, show these assets identified by this content-free evaluation tool are the same assets that students use to solve problems in mechanics and quantum mechanics. Understanding this set of component assets will help teachers and researchers address problem solving within the classroom.

  11. Diagrams benefit symbolic problem-solving.

    Science.gov (United States)

    Chu, Junyi; Rittle-Johnson, Bethany; Fyfe, Emily R

    2017-06-01

    The format of a mathematics problem often influences students' problem-solving performance. For example, providing diagrams in conjunction with story problems can benefit students' understanding, choice of strategy, and accuracy on story problems. However, it remains unclear whether providing diagrams in conjunction with symbolic equations can benefit problem-solving performance as well. We tested the impact of diagram presence on students' performance on algebra equation problems to determine whether diagrams increase problem-solving success. We also examined the influence of item- and student-level factors to test the robustness of the diagram effect. We worked with 61 seventh-grade students who had received 2 months of pre-algebra instruction. Students participated in an experimenter-led classroom session. Using a within-subjects design, students solved algebra problems in two matched formats (equation and equation-with-diagram). The presence of diagrams increased equation-solving accuracy and the use of informal strategies. This diagram benefit was independent of student ability and item complexity. The benefits of diagrams found previously for story problems generalized to symbolic problems. The findings are consistent with cognitive models of problem-solving and suggest that diagrams may be a useful additional representation of symbolic problems. © 2017 The British Psychological Society.

  12. Assessing student expertise in introductory physics with isomorphic problems. II. Effect of some potential factors on problem solving and transfer

    Directory of Open Access Journals (Sweden)

    Chandralekha Singh

    2008-03-01

    Full Text Available In this paper, we explore the use of isomorphic problem pairs (IPPs to assess introductory physics students’ ability to solve and successfully transfer problem-solving knowledge from one context to another in mechanics. We call the paired problems “isomorphic” because they require the same physics principle to solve them. We analyze written responses and individual discussions for a range of isomorphic problems. We examine potential factors that may help or hinder transfer of problem-solving skills from one problem in a pair to the other. For some paired isomorphic problems, one context often turned out to be easier for students in that it was more often correctly solved than the other. When quantitative and conceptual questions were paired and given back to back, students who answered both questions in the IPP often performed better on the conceptual questions than those who answered the corresponding conceptual questions only. Although students often took advantage of the quantitative counterpart to answer a conceptual question of an IPP correctly, when only given the conceptual question, students seldom tried to convert it into a quantitative question, solve it, and then reason about the solution conceptually. Even in individual interviews when students who were given only conceptual questions had difficulty and the interviewer explicitly encouraged them to convert the conceptual question into the corresponding quantitative problem by choosing appropriate variables, a majority of students were reluctant and preferred to guess the answer to the conceptual question based upon their gut feeling. Misconceptions associated with friction in some problems were so robust that pairing them with isomorphic problems not involving friction did not help students discern their underlying similarities. Alternatively, from the knowledge-in-pieces perspective, the activation of the knowledge resource related to friction was so strongly and automatically

  13. Technology in the curriculum: A vehicle for the development of children's understanding of science concepts through problem solving

    Science.gov (United States)

    Jane, Beverley; Smith, Leanne

    1992-12-01

    This research was carried out over a period of ten months with children in Grades 2 and 3 (aged 7 and 8) who were participating in a sequence of technology activities. Since the introduction into Victorian primary schools of The Technology Studies Framework P-10 (Crawford, 1988), more teachers are including technology studies in their classrooms and by so doing may assist children's understanding of science concepts. Children are being exposed to science phenomena related to the technology activities and Technology Studies may be a way of providing children with science experiences. ‘Technology Studies’ in this context refers to children carrying out practical problem solving tasks which can be completed without any particular scientific knowledge. Participation in the technology activities may encourage children to become actively involved, thereby facilitating an exploration of the related science concepts. The project identified the importance of challenge in relation to the children's involvement in the technology activities and the conference paper (available from the first author) discusses particular topics in terms of the balance between cognitive/metacognitive and affective influences (Baird et al., 1990)

  14. Teacher-Student Interaction in Joint Word Problem Solving. The Role of Situational and Mathematical Knowledge in Mainstream Classrooms

    Science.gov (United States)

    Rosales, Javier; Vicente, Santiago; Chamoso, Jose M.; Munez, David; Orrantia, Josetxu

    2012-01-01

    Word problem solving involves the construction of two different mental representations, namely, mathematical and situational. Although educational research in word problem solving has documented different kinds of instruction at these levels, less is known about how both representational levels are evoked during word problem solving in day-to-day…

  15. Scaffolding the Development of Problem-Solving Skills in Chemistry: Guiding Novice Students out of Dead Ends and False Starts

    Science.gov (United States)

    Yuriev, Elizabeth; Naidu, Som; Schembri, Luke S.; Short, Jennifer L.

    2017-01-01

    To scaffold the development of problem-solving skills in chemistry, chemistry educators are exploring a variety of instructional techniques. In this study, we have designed, implemented, and evaluated a problem-solving workflow--''Goldilocks Help''. This workflow builds on work done in the field of problem solving in chemistry and provides…

  16. The Effect of Problem-Solving Instruction on the Programming Self-efficacy and Achievement of Introductory Computer Science Students

    Science.gov (United States)

    Maddrey, Elizabeth

    Research in academia and industry continues to identify a decline in enrollment in computer science. One major component of this decline in enrollment is a shortage of female students. The primary reasons for the gender gap presented in the research include lack of computer experience prior to their first year in college, misconceptions about the field, negative cultural stereotypes, lack of female mentors and role models, subtle discriminations in the classroom, and lack of self-confidence (Pollock, McCoy, Carberry, Hundigopal, & You, 2004). Male students are also leaving the field due to misconceptions about the field, negative cultural stereotypes, and a lack of self-confidence. Analysis of first year attrition revealed that one of the major challenges faced by students of both genders is a lack of problem-solving skills (Beaubouef, Lucas & Howatt, 2001; Olsen, 2005; Paxton & Mumey, 2001). The purpose of this study was to investigate whether specific, non-mathematical problem-solving instruction as part of introductory programming courses significantly increased computer programming self-efficacy and achievement of students. The results of this study showed that students in the experimental group had significantly higher achievement than students in the control group. While this shows statistical significance, due to the effect size and disordinal nature of the data between groups, care has to be taken in its interpretation. The study did not show significantly higher programming self-efficacy among the experimental students. There was not enough data collected to statistically analyze the effect of the treatment on self-efficacy and achievement by gender. However, differences in means were observed between the gender groups, with females in the experimental group demonstrating a higher than average degree of self-efficacy when compared with males in the experimental group and both genders in the control group. These results suggest that the treatment from this

  17. Effects of case-based learning on communication skills, problem-solving ability, and learning motivation in nursing students.

    Science.gov (United States)

    Yoo, Moon-Sook; Park, Hyung-Ran

    2015-06-01

    The purpose of this study was to explore the effects of case-based learning on communication skills, problem-solving ability, and learning motivation in sophomore nursing students. In this prospective, quasi-experimental study, we compared the pretest and post-test scores of an experimental group and a nonequivalent, nonsynchronized control group. Both groups were selected using convenience sampling, and consisted of students enrolled in a health communication course in the fall semesters of 2011 (control group) and 2012 (experimental group) at a nursing college in Suwon, South Korea. The two courses covered the same material, but in 2011 the course was lecture-based, while in 2012, lectures were replaced by case-based learning comprising five authentic cases of patient-nurse communication. At post-test, the case-based learning group showed significantly greater communication skills, problem-solving ability, and learning motivation than the lecture-based learning group. This finding suggests that case-based learning is an effective learning and teaching method. © 2014 Wiley Publishing Asia Pty Ltd.

  18. A comparison between the effectiveness of PBL and LBL on improving problem-solving abilities of medical students using questioning

    DEFF Research Database (Denmark)

    He, Yunfeng; Du, Xiangyun; Toft, Egon

    2018-01-01

    of problem-based learning (PBL) and lecture-based learning in improving the questioning abilities of medical students (N = 104) was assessed by a modified 20-question task. In this task, the participants were asked to identify target pictures by asking questions, the problem-solving process of which......In daily patient-history taking and diagnosis practice, doctors ask questions to gather information from patients and narrow down diagnostic hypotheses. Training medical students to be efficient problem solvers through the use of questioning is therefore important. In this study, the effectiveness....... This finding suggests that PBL curricula may help improve the questioning strategies of medical students and help them diagnose more efficiently in future diagnosis practice....

  19. Exploring the Use of Faded Worked Examples as a Problem Solving Approach for Underprepared Students

    Science.gov (United States)

    Hesser, Tiffany L.; Gregory, Jess L.

    2015-01-01

    It is not uncommon for students to find themselves underprepared when entering a post secondary institution. In additional to lower levels of academic achievement, underprepared students may not be aware that they lack the skills needed to be successful and effectively acquire and process information. Because of this, students that enter…

  20. Elementary Students' Metacognitive Processes and Post-Performance Calibration on Mathematical Problem-Solving Tasks

    Science.gov (United States)

    García, Trinidad; Rodríguez, Celestino; González-Castro, Paloma; González-Pienda, Julio Antonio; Torrance, Mark

    2016-01-01

    Calibration, or the correspondence between perceived performance and actual performance, is linked to students' metacognitive and self-regulatory skills. Making students more aware of the quality of their performance is important in elementary school settings, and more so when math problems are involved. However, many students seem to be poorly…

  1. Teaching Mathematical Problem Solving to Middle School Students in Math, Technology Education, and Special Education Classrooms

    Science.gov (United States)

    Bottge, Brian A.; Heinrichs, Mary; Mehta, Zara Dee; Rueda, Enrique; Hung, Ya-Hui; Danneker, Jeanne

    2004-01-01

    This study compared two approaches for teaching sixth-grade middle school students to solve math problems in math, technology education, and special education classrooms. A total of 17 students with disabilities and 76 students without disabilities were taught using either enhanced anchored instruction (EAI) or text-based instruction coupled with…

  2. Improving problem solving in primary school students: The effect of a training programme focusing on metacognition and working memory.

    Science.gov (United States)

    Cornoldi, Cesare; Carretti, Barbara; Drusi, Silvia; Tencati, Chiara

    2015-09-01

    Despite doubts voiced on their efficacy, a series of studies has been carried out on the capacity of training programmes to improve academic and reasoning skills by focusing on underlying cognitive abilities and working memory in particular. No systematic efforts have been made, however, to test training programmes that involve both general and specific underlying abilities. If effective, these programmes could help to increase students' motivation and competence. This study examined the feasibility of improving problem-solving skills in school children by means of a training programme that addresses general and specific abilities involved in problem solving, focusing on metacognition and working memory. The project involved a sample of 135 primary school children attending eight classes in the third, fourth, and fifth grades (age range 8-10 years). The classes were assigned to two groups, one attending the training programme in the first 3 months of the study (Training Group 1) and the other serving as a waiting-list control group (Training Group 2). In the second phase of the study, the role of the two groups was reversed, with Training Group 2 attending the training instead of Training Group 1. The training programme led to improvements in both metacognitive and working memory tasks, with positive-related effects on the ability to solve problems. The gains seen in Training Group 1 were also maintained at the second post-test (after 3 months). Specific activities focusing on metacognition and working memory may contribute to modifying arithmetical problem-solving performance in primary school children. © 2015 The British Psychological Society.

  3. Metacognitive skills and students' motivation toward chemical equilibrium problem solving ability: A correlational study on students of XI IPA SMAN 2 Banjarmasin

    Science.gov (United States)

    Muna, Khairiatul; Sanjaya, Rahmat Eko; Syahmani, Bakti, Iriani

    2017-12-01

    The demand for students to have metacognitive skills and problem solving ability can be seen in the core competencies of the 2013 curriculum. Metacognitive skills are the skills which affect students' success in solving problems depending on students' motivation. This explains the possibility of the relationship between metacognition and motivation in affecting students' achievement including problem solving. Due to the importance of metacognitive skills to solve problems and the possible relationship between metacognition and motivation, a study to find the relationship among the variables is necessary to conduct, particularly on chemistry problem solving. This one shot case study using quantitative method aimed to investigate the correlation between metacognitive skills and motivation toward problem solving ability focusing on chemical equilibrium. The research population was students of grade XI of majoring Science of Banjarmasin Public High Scool 2 (XI IPA SMAN 2 Banjarmasin) with the samples of 33 students obtained by using purposive sampling technique. The research data were collected using test and non-test and analyzed using multiple regression in SPSS 21. The results of this study showed that (1) the students' metacognitive skills and motivation correlated positively with coefficient of +0.450 to problem solving ability on chemical equilibrium: (2) inter-variables of students' motivation (self-efficacy, active learning strategies, science/chemistry learning value, performance goal, achievement goal, and learning environment stimulations) correlated positively to metacognitive skills with the correlation coefficients of +0.580, +0.537, +0.363, +0.241, +0.516, and +0.271, respectively. Based on the results, it is necessary for teachers to implement learning which develops students' metacognitive skills and motivation, such as learning with scientific approach. The implementation of the learning is also supposed to be complemented with the use of learning

  4. "I'm Not Very Good at Solving Problems": An Exploration of Students' Problem Solving Behaviours

    Science.gov (United States)

    Muir, Tracey; Beswick, Kim; Williamson, John

    2008-01-01

    This paper reports one aspect of a larger study which looked at the strategies used by a selection of grade 6 students to solve six non-routine mathematical problems. The data revealed that the students exhibited many of the behaviours identified in the literature as being associated with novice and expert problem solvers. However, the categories…

  5. Effects of Regulatory Self-Questioning on Secondary-Level Students' Problem-Solving Performance

    Science.gov (United States)

    Pate, Michael L.; Miller, Greg

    2011-01-01

    A randomized posttest-only control group experimental design was used to determine the effects of regulatory self-questioning on secondary-level career and technical education students' electrical circuit theory test scores. Students who participated in the self-questioning group were asked to answer a list of regulatory questions as they solved…

  6. Analysis of 4th Grade Students' Problem Solving Skills in Terms of Several Variables

    Science.gov (United States)

    Sungur, Gülcan; Bal, Pervin Nedim

    2016-01-01

    The aim of this study is to examine if the level of primary school students in solving problems differs according to some demographic variables. The research is descriptive type in the general survey method, it was carried out with quantitative research techniques. The sample of the study consisted of 587 primary school students in Grade 4. The…

  7. Problem-solving activities in Biology for Open University students [poster session

    OpenAIRE

    Ash, P.; Robinson, D.

    2006-01-01

    Problem-based learning is a valuable tool for enhancing student learning and for providing remedial help in grasping difficult concepts in Biology. Most teaching at the Open University is by course texts, DVDs and television. Teaching material is written by academics and\\ud expert consultants. An important feature of the material is that it includes interactive in-text and self-assessed questions, and also activities which may be home experiments or computer-based.\\ud Students are provided wi...

  8. Chemistry: content, context and choices : towards students' higher order problem solving in upper secondary school

    OpenAIRE

    Broman, Karolina

    2015-01-01

    Chemistry is often claimed to be difficult, irrelevant, and uninteresting to school students. Even students who enjoy doing science often have problems seeing themselves as being scientists. This thesis explores and challenges the negative perception of chemistry by investigating upper secondary students’ views on the subject. Based on students’ ideas for improving chemistry education to make the subject more interesting and meaningful, new learning approaches rooted in context-based learning...

  9. Improving Science Scores of Middle School Students with Learning Disabilities through Engineering Problem Solving Activities

    Science.gov (United States)

    Starling, A. Leyf Peirce; Lo, Ya-Yu; Rivera, Christopher J.

    2015-01-01

    This study evaluated the differential effects of three different science teaching methods, namely engineering teaching kit (ETK), explicit instruction (EI), and a combination of the two methods (ETK+EI), in two sixth-grade science classrooms. Twelve students with learning disabilities (LD) and/or attention deficit hyperactivity disorder (ADHD)…

  10. Web Based Technical Problem Solving for Enhancing Writing Skills of Secondary Vocational Students

    Science.gov (United States)

    Papantoniou, Eleni; Hadzilacos, Thanasis

    2017-01-01

    We discuss some aspects of a pilot e-learning technical writing course addressed to 11th grade vocational high school students in Greece. The application of this alternative teaching intervention stemmed from the researcher-instructor's reflections relating to the integration of a problem based e-pedagogy that aims not just to familiarize students…

  11. The Effects of a Communicative Approach on the Mathematical Problem Solving Proficiency of Language Minority Students.

    Science.gov (United States)

    Kaplan, Rochelle G.; Patino, Rodrigo A.

    Although it takes only 2 years to attain conversational competence in a second language, it takes up to 7 years to realize sufficient language competence to achieve academically at the level of native speakers. Specific adaptations in instructional methods in mathematics for language minority students should include techniques from English as a…

  12. Testing Foreign Language Impact on Engineering Students' Scientific Problem-Solving Performance

    Science.gov (United States)

    Tatzl, Dietmar; Messnarz, Bernd

    2013-01-01

    This article investigates the influence of English as the examination language on the solution of physics and science problems by non-native speakers in tertiary engineering education. For that purpose, a statistically significant total number of 96 students in four year groups from freshman to senior level participated in a testing experiment in…

  13. Using an Epistemic Game to Facilitate Students' Problem-Solving: The Case of Hospitality Management

    Science.gov (United States)

    Wang, Shwu-Huey; Wang, Hsiu-Yuan

    2017-01-01

    Hospitality students are required to be able to address challenging cases or problems in the work environment. However, traditional lecture- or exam-based instruction leaves a gap between theory and practice. On the other hand, modern youth live and socialise in an increasingly digital environment, and one of their biggest pastimes is playing…

  14. Student Perceptions regarding Vocational High School Teachers' Problem Solving Methods against Undesired Behaviors in Classroom Management

    Science.gov (United States)

    Gulcan, Murat Gurkan

    2010-01-01

    Teachers' classroom management approach varies depending on several factors such as the social, psychological, cultural and educational status of the student, classroom level, the physical conditions of the school, organization structure. There are different approaches in classroom management. These approaches are gathered under three headings in…

  15. Using a Model to Describe Students' Inductive Reasoning in Problem Solving

    Science.gov (United States)

    Canadas, Maria C.; Castro, Encarnacion; Castro, Enrique

    2009-01-01

    Introduction: We present some aspects of a wider investigation (Canadas, 2007), whose main objective is to describe and characterize inductive reasoning used by Spanish students in years 9 and 10 when they work on problems that involved linear and quadratic sequences. Method: We produced a test composed of six problems with different…

  16. Factors Related to Problem Solving by College Students in Developmental Algebra.

    Science.gov (United States)

    Schonberger, Ann K.

    A study was conducted to contrast the characteristics of three groups of college students who completed a developmental algebra course at the University of Maine at Orono during 1980-81. On the basis of a two-part final examination, involving a multiple-choice test of algebraic concepts and skills and a free-response test of problem-solving…

  17. Addressing Students' Difficulties with Faraday's Law: A Guided Problem Solving Approach

    Science.gov (United States)

    Zuza, Kristina; Almudí, José-Manuel; Leniz, Ane; Guisasola, Jenaro

    2014-01-01

    In traditional teaching, the fundamental concepts of electromagnetic induction are usually quickly analyzed, spending most of the time solving problems in a more or less rote manner. However, physics education research has shown that the fundamental concepts of the electromagnetic induction theory are barely understood by students. This article…

  18. LEGO Robotics: An Authentic Problem Solving Tool?

    Science.gov (United States)

    Castledine, Alanah-Rei; Chalmers, Chris

    2011-01-01

    With the current curriculum focus on correlating classroom problem solving lessons to real-world contexts, are LEGO robotics an effective problem solving tool? This present study was designed to investigate this question and to ascertain what problem solving strategies primary students engaged with when working with LEGO robotics and whether the…

  19. Utilization of online technologies in mathematical problem solving at high school level: Student and teacher perceptions

    Directory of Open Access Journals (Sweden)

    Zeynep Yurtseven Avci

    2014-08-01

    Full Text Available The availability of internet-based technologies and practices are increasing every day for our daily lives. Most of those contemporary technologies have interactive features and provide unique opportunities for today’s learners. Although a growing amount of research focuses on learning with online tools, little known about which features and affordances contribute for effective classroom learning. This study investigates student and teacher perceptions on how students’ mathematics learning was impacted by online practice, communication and collaboration tools. The present experimental research has been designed with using qualitative case study method and provides detailed accounts of students' experiences with the technologies along with investigation of the features and affordances of the tools that made them contribute to effective learning.

  20. Application of Learning Engineering Techniques Thinking Aloud Pair Problem Solving in Learning Mathematics Students Class VII SMPN 15 Padang

    Science.gov (United States)

    Widuri, S. Y. S.; Almash, L.; Zuzano, F.

    2018-04-01

    The students activity and responsible in studying mathematic is still lack. It gives an effect for the bad result in studying mathematic. There is one of learning technic to increase students activity in the classroom and the result of studying mathematic with applying a learning technic. It is “Thinking Aloud Pair Problem Solving (TAPPS)”. The purpose of this research is to recognize the developing of students activity in mathematic subject during applying that technic “TAPPS” in seven grade at SMPN 15 Padang and compare the students proportion in learning mathematic with TAPPS between learning process without it in seven grade at SMPN 15 Padang. Students activity for indicators 1, 2, 3, 4, 5, 6 at each meeting is likely to increase and students activity for indicator 7 at each meeting is likely to decrease. The finding of this research is χ 2 = 9,42 and the value of p is 0,0005 < p < 0,005. Therefore p < 0,05 has means H 0 was rejected and H 1 was accepted. Thus, it was concluded that the activities and result in studying mathematic increased after applying learning technic the TAPPS.

  1. Student self-assessment in dental hygiene education: a cornerstone of critical thinking and problem-solving.

    Science.gov (United States)

    Mould, Michelle R; Bray, Kimberly Krust; Gadbury-Amyot, Cynthia C

    2011-08-01

    Self-assessment is an integral component of learning and developing decision making and critical thinking skills in the practice of dental hygiene. Dental hygienists must think critically and develop problem-solving strategies during their formal education to ensure lifelong quality and ongoing development of their personal knowledge and skill as related to providing comprehensive, evidence-based patient care. The primary focus of this qualitative investigation was to obtain undergraduate dental hygiene students' perceptions of and experiences with self-assessment. The sample consisted of an intact undergraduate dental hygiene class of seventeen students in their final semester of a two-year, entry-level dental hygiene program at a community college in the southeast United States. Data for this research were obtained from three sources: 1) a program-designed self-assessment survey assignment, 2) in-depth interviews with four second-year dental hygiene students, and 3) program-designed clinical competence evaluation forms. Inductive data analysis revealed that the majority of students perceived that they had no prior experience with self-assessment in any prerequisite coursework and thus felt unprepared for its use in the dental hygiene program. As they matriculated in the program, students began to see the advantages of self-assessment in clinical practice. Programmatic orientation to self-assessment may therefore be beneficial due to the varying backgrounds of students entering dental hygiene programs.

  2. The Effect of Montessori Method Supported by Social Skills Training Program on Turkish Kindergarten Children's Skills of Understanding Feelings and Social Problem Solving

    Science.gov (United States)

    Kayili, Gökhan; Ari, Ramazan

    2016-01-01

    The current research was conducted with the purpose of analyzing the effect of Montessori method supported by Social Skills Training Program on kindergarten children's skills of understanding feelings and social problem solving. 53 children attending Ihsan Dogramaci Applied Nursery School affiliated to Selcuk University, Faculty of Health Sciences…

  3. Self-Regulation in the Midst of Complexity: A Case Study of High School Physics Students Engaged in Ill-Structured Problem Solving

    Science.gov (United States)

    Milbourne, Jeffrey David

    The purpose of this dissertation study was to explore the experiences of high school physics students who were solving complex, ill-structured problems, in an effort to better understand how self-regulatory behavior mediated the project experience. Consistent with Voss, Green, Post, and Penner's (1983) conception of an ill-structured problem in the natural sciences, the 'problems' consisted of scientific research projects that students completed under the supervision of a faculty mentor. Zimmerman and Campillo's (2003) self-regulatory framework of problem solving provided a holistic guide to data collection and analysis of this multi-case study, with five individual student cases. The study's results are explored in two manuscripts, each targeting a different audience. The first manuscript, intended for the Science Education Research community, presents a thick, rich description of the students' project experiences, consistent with a qualitative, case study analysis. Findings suggest that intrinsic interest was an important self-regulatory factor that helped motivate students throughout their project work, and that the self-regulatory cycle of forethought, performance monitoring, and self-reflection was an important component of the problem-solving process. Findings also support the application of Zimmerman and Campillo's framework to complex, ill-structured problems, particularly the cyclical nature of the framework. Finally, this study suggests that scientific research projects, with the appropriate support, can be a mechanism for improving students' selfregulatory behavior. The second manuscript, intended for Physics practitioners, combines the findings of the first manuscript with the perspectives of the primary, on-site research mentor, who has over a decade's worth of experience mentoring students doing physics research. His experience suggests that a successful research experience requires certain characteristics, including: a slow, 'on-ramp' to the research

  4. The Role of Arts-Related Information and Communication Technology Use in Problem Solving and Achievement: Findings from the Programme for International Student Assessment

    Science.gov (United States)

    Liem, Gregory Arief D.; Martin, Andrew J.; Anderson, Michael; Gibson, Robyn; Sudmalis, David

    2014-01-01

    Drawing on the Programme for International Student Assessment 2003 data set comprising over 190,000 15-year-old students in 25 countries, the current study sought to examine the role of arts-related information and communication technology (ICT) use in students' problem-solving skill and science and mathematics achievement. Structural equation…

  5. A Problem-Solving Intervention Using iPads to Improve Transition-Related Task Performance of Students with Autism Spectrum Disorder

    Science.gov (United States)

    Yakubova, Gulnoza; Zeleke, Waganesh A.

    2016-01-01

    In this study, the effectiveness of teaching problem-solving to improve transition-related task performance of three students with autism spectrum disorder (ASD) was examined using a multiple probe across students design. Target behaviors included various transition-related tasks individualized for each student based on their individual…

  6. Investigating Ongoing Strategic Behaviour of Students with Mild Mental Retardation: Implementation and Relations to Performance in a Problem-Solving Situation

    Science.gov (United States)

    Dermitzaki, Irini; Stavroussi, Panayiota; Bandi, Maria; Nisiotou, Ioulia

    2008-01-01

    The aim of this study was to investigate to what extent students with mild mental retardation exhibit strategic behaviour during problem solving and to investigate the relationships between the ongoing behaviours examined and the students' respective performance. Eleven students with non-organic mild mental retardation participated in the study.…

  7. The Relationship of Social Problem-Solving Skills and Dysfunctional Attitudes with Risk of Drug Abuse among Dormitory Students at Isfahan University of Medical Sciences.

    Science.gov (United States)

    Nasrazadani, Ehteram; Maghsoudi, Jahangir; Mahrabi, Tayebeh

    2017-01-01

    Dormitory students encounter multiple social factors which cause pressure, such as new social relationships, fear of the future, and separation from family, which could cause serious problems such as tendency toward drug abuse. This research was conducted with the goal to determine social problem-solving skills, dysfunctional attitudes, and risk of drug abuse among dormitory students of Isfahan University of Medical Sciences, Iran. This was a descriptive-analytical, correlational, and cross-sectional research. The research sample consisted of 211 students living in dormitories. The participants were selected using randomized quota sampling method. The data collection tools included the Social Problem-Solving Inventory (SPSI), Dysfunctional Attitude Scale (DAS), and Identifying People at Risk of Addiction Questionnaire. The results indicated an inverse relationship between social problem-solving skills and risk of drug abuse ( P = 0.0002), a direct relationship between dysfunctional attitude and risk of drug abuse ( P = 0.030), and an inverse relationship between social problem-solving skills and dysfunctional attitude among students ( P = 0.0004). Social problem-solving skills have a correlation with dysfunctional attitudes. As a result, teaching these skills and the way to create efficient attitudes should be considered in dormitory students.

  8. Student performance and their perception of a patient-oriented problem-solving approach with audiovisual aids in teaching pathology: a comparison with traditional lectures

    Directory of Open Access Journals (Sweden)

    Arjun Singh

    2010-12-01

    Full Text Available Arjun SinghDepartment of Pathology, Sri Venkateshwara Medical College Hospital and Research Centre, Pondicherry, IndiaPurpose: We use different methods to train our undergraduates. The patient-oriented problem-solving (POPS system is an innovative teaching–learning method that imparts knowledge, enhances intrinsic motivation, promotes self learning, encourages clinical reasoning, and develops long-lasting memory. The aim of this study was to develop POPS in teaching pathology, assess its effectiveness, and assess students’ preference for POPS over didactic lectures.Method: One hundred fifty second-year MBBS students were divided into two groups: A and B. Group A was taught by POPS while group B was taught by traditional lectures. Pre- and post-test numerical scores of both groups were evaluated and compared. Students then completed a self-structured feedback questionnaire for analysis.Results: The mean (SD difference in pre- and post-test scores of groups A and B was 15.98 (3.18 and 7.79 (2.52, respectively. The significance of the difference between scores of group A and group B teaching methods was 16.62 (P < 0.0001, as determined by the z-test. Improvement in post-test performance of group A was significantly greater than of group B, demonstrating the effectiveness of POPS. Students responded that POPS facilitates self-learning, helps in understanding topics, creates interest, and is a scientific approach to teaching. Feedback response on POPS was strong in 57.52% of students, moderate in 35.67%, and negative in only 6.81%, showing that 93.19% students favored POPS over simple lectures.Conclusion: It is not feasible to enforce the PBL method of teaching throughout the entire curriculum; However, POPS can be incorporated along with audiovisual aids to break the monotony of dialectic lectures and as alternative to PBL.Keywords: medical education, problem-solving exercise, problem-based learning

  9. The influence of contextual teaching with the problem solving method on students' knowledge and attitudes toward horticulture, science, and school

    Science.gov (United States)

    Whitcher, Carrie Lynn

    2005-08-01

    Adolescence is marked with many changes in the development of higher order thinking skills. As students enter high school they are expected to utilize these skills to solve problems, become abstract thinkers, and contribute to society. The goal of this study was to assess horticultural science knowledge achievement and attitude toward horticulture, science, and school in high school agriculture students. There were approximately 240 high school students in the sample including both experimental and control groups from California and Washington. Students in the experimental group participated in an educational program called "Hands-On Hortscience" which emphasized problem solving in investigation and experimentation activities with greenhouse plants, soilless media, and fertilizers. Students in the control group were taught by the subject matter method. The activities included in the Hands-On Hortscience curriculum were created to reinforce teaching the scientific method through the context of horticulture. The objectives included evaluating whether the students participating in the Hands-On Hortscience experimental group benefited in the areas of science literacy, data acquisition and analysis, and attitude toward horticulture, science, and school. Pre-tests were administered in both the experimental and control groups prior to the research activities and post-tests were administered after completion. The survey questionnaire included a biographical section and attitude survey. Significant increases in hortscience achievement were found from pre-test to post-test in both control and experimental study groups. The experimental treatment group had statistically higher achievement scores than the control group in the two areas tested: scientific method (p=0.0016) and horticulture plant nutrition (p=0.0004). In addition, the students participating in the Hands-On Hortscience activities had more positive attitudes toward horticulture, science, and school (p=0

  10. Using realistic mathematics education and the DAPIC problem-solving process to enhance secondary school students' mathematical literacy

    Directory of Open Access Journals (Sweden)

    Sunisa Sumirattana

    2017-09-01

    This study was based on research and development design. The main purposes of this study were to develop an instructional process for enhancing mathematical literacy among students in secondary school and to study the effects of the developed instructional process on mathematical literacy. The instructional process was developed by analyzing and synthesizing realistic mathematics education and the DAPIC problem-solving process. The developed instructional process was verified by experts and was trialed. The designated pre-test/post-test control method was used to study the effectiveness of the developed instructional process on mathematical literacy. The sample consisted of 104 ninth grade students from a secondary school in Bangkok, Thailand. The developed instructional process consisted of five steps, namely (1 posing real life problems, (2 solving problems individually or in a group, (3 presenting and discussing, (4 developing formal mathematics, and (5 applying knowledge. The mathematical literacy of the experimental group was significantly higher after being taught through the instructional process. The same results were obtained when comparing the results of the experimental group with the control group.

  11. The Investigation of the Effects of Physical Education Lessons Planned in Accordance with Cooperative Learning Approach on Secondary School Students' Problem Solving Skills

    Science.gov (United States)

    Gorucu, Alpaslan

    2016-01-01

    The purpose of the present research was to investigate the effects of physical education lessons planned in accordance with cooperative learning approach on secondary school students' problem solving skills. The research was conducted on 48 students studying at Konya/Selçuklu Sehit Mustafa Çuhadar Secondary School in fall semester of 2015-2016…

  12. The Effects of Computer Programming on High School Students' Reasoning Skills and Mathematical Self-Efficacy and Problem Solving

    Science.gov (United States)

    Psycharis, Sarantos; Kallia, Maria

    2017-01-01

    In this paper we investigate whether computer programming has an impact on high school student's reasoning skills, problem solving and self-efficacy in Mathematics. The quasi-experimental design was adopted to implement the study. The sample of the research comprised 66 high school students separated into two groups, the experimental and the…

  13. The Relationship between EQ & Constructive and Non-Constructive Problem Solving Styles among Payame Noor University's Students of Abadan in the Year 2014

    Science.gov (United States)

    Rajaeipoor, Saeed; Siadat, Ali; Hoveida, Reza; Mohammadi, Nazanin; Keshavarz, Akbar; Salimi, Mohammad Hossein; Abbasian, Mohammad Reza; Shamsi, Ali

    2015-01-01

    The objective of the present study is considering the relationship between EQ & constructive and non-constructive problem solving styles among students. The applied methodology is cross-correlation method. The statistical population in this study is all the educational sciences' students of Payame Noor university of Abadan in the year 2014 and…

  14. Problem-Solving Skills among Precollege Students in Clinical Immunology and Microbiology: Classifying Strategies with a Rubric and Artificial Neural Network Technology.

    Science.gov (United States)

    Kanowith-Klein, Susan; Stave, Mel; Stevens, Ron; Casillas, Adrian M.

    2001-01-01

    Investigates methods for classifying problem solving strategies of high school students who studied infectious and non-infectious diseases by using a software system that can generate a picture of students' strategies in solving problems. (Contains 24 references.) (Author/YDS)

  15. Engineering-Based Problem Solving Strategies in AP Calculus: An Investigation into High School Student Performance on Related Rate Free-Response Problems

    Science.gov (United States)

    Thieken, John

    2012-01-01

    A sample of 127 high school Advanced Placement (AP) Calculus students from two schools was utilized to study the effects of an engineering design-based problem solving strategy on student performance with AP style Related Rate questions and changes in conceptions, beliefs, and influences. The research design followed a treatment-control multiple…

  16. Difficulties in Genetics Problem Solving.

    Science.gov (United States)

    Tolman, Richard R.

    1982-01-01

    Examined problem-solving strategies of 30 high school students as they solved genetics problems. Proposes a new sequence of teaching genetics based on results: meiosis, sex chromosomes, sex determination, sex-linked traits, monohybrid and dihybrid crosses (humans), codominance (humans), and Mendel's pea experiments. (JN)

  17. Teaching Creative Problem Solving.

    Science.gov (United States)

    Christensen, Kip W.; Martin, Loren

    1992-01-01

    Interpersonal and cognitive skills, adaptability, and critical thinking can be developed through problem solving and cooperative learning in technology education. These skills have been identified as significant needs of the workplace as well as for functioning in society. (SK)

  18. Design and Production of Multimedia Training Programs for Problem Solving Skill and its Effect on the Mental Health of High School Female Students in Kermanshah

    OpenAIRE

    Shahnaz Bahrami; Saeed Vaziri Yazdi

    2014-01-01

    This paper addresses the design and production of multimedia training programs for problem solving skill and its effect on the mental health of high school female students in Kermanshah. The studied group included students sponsored by Imam Khomeini Relief Foundation. From five Relief Foundations in Kermanshah, Foundation Office Region 2 was randomly selected; female students were selected from all male and female students sponsored by the foundation. High school students were selected among ...

  19. The Effect of Social Problem Solving Skills in the Relationship between Traumatic Stress and Moral Disengagement among Inner-City African American High School Students

    Science.gov (United States)

    Coker, Kendell L.; Ikpe, Uduakobong N.; Brooks, Jeannie S.; Page, Brian; Sobell, Mark B.

    2014-01-01

    This study examined the relationship between traumatic stress, social problem solving, and moral disengagement among African American inner-city high school students. Participants consisted of 45 (25 males and 20 females) African American students enrolled in grades 10 through 12. Mediation was assessed by testing for the indirect effect using the confidence interval derived from 10,000 bootstrapped resamples. The results revealed that social problem-solving skills have an indirect effect on the relationship between traumatic stress and moral disengagement. The findings suggest that African American youth that are negatively impacted by trauma evidence deficits in their social problem solving skills and are likely to be at an increased risk to morally disengage. Implications for culturally sensitive and trauma-based intervention programs are also provided. PMID:25071874

  20. Assessing metacognition of grade 2 and grade 4 students using an adaptation of multi-method interview approach during mathematics problem-solving

    Science.gov (United States)

    Kuzle, A.

    2018-06-01

    The important role that metacognition plays as a predictor for student mathematical learning and for mathematical problem-solving, has been extensively documented. But only recently has attention turned to primary grades, and more research is needed at this level. The goals of this paper are threefold: (1) to present metacognitive framework during mathematics problem-solving, (2) to describe their multi-method interview approach developed to study student mathematical metacognition, and (3) to empirically evaluate the utility of their model and the adaptation of their approach in the context of grade 2 and grade 4 mathematics problem-solving. The results are discussed not only with regard to further development of the adapted multi-method interview approach, but also with regard to their theoretical and practical implications.

  1. Promoting Learning Achievement, Problem Solving, and Learning Curiosity of High School Students: Empirical Thai Study of Self-directed Learning in Physics Course

    Directory of Open Access Journals (Sweden)

    Wittaya Worapun

    2017-11-01

    Full Text Available Three phases of this research were employed to study learning achievement, problem solving, and learning curiosity among 43 students in the 11th grade through self-directed learning in a Physics course. Research instruments included: a learning achievement test, a test of curiosity, observations using anecdotal evidence of curiosity, and a test of problem solving ability. The findings show that six components of self-directed learning were evident, i.e. principles and basic concepts, syntax, social system, principle of reaction, and support system. It was found that five main procedures of self-directed learning were applicable in a management model: diagnosis, strategies, growth in habit, taking action, and summarizing and assessing. Students gained in their learning achievement ; furthermore, their posttest scores in problem solving were greater than their pretest scores at .05 level of statistical significance.

  2. The Effect of Social Problem Solving Skills in the Relationship between Traumatic Stress and Moral Disengagement among Inner-City African American High School Students.

    Science.gov (United States)

    Coker, Kendell L; Ikpe, Uduakobong N; Brooks, Jeannie S; Page, Brian; Sobell, Mark B

    2014-06-01

    This study examined the relationship between traumatic stress, social problem solving, and moral disengagement among African American inner-city high school students. Participants consisted of 45 (25 males and 20 females) African American students enrolled in grades 10 through 12. Mediation was assessed by testing for the indirect effect using the confidence interval derived from 10,000 bootstrapped resamples. The results revealed that social problem-solving skills have an indirect effect on the relationship between traumatic stress and moral disengagement. The findings suggest that African American youth that are negatively impacted by trauma evidence deficits in their social problem solving skills and are likely to be at an increased risk to morally disengage. Implications for culturally sensitive and trauma-based intervention programs are also provided.

  3. Effective Teaching in Case-Based Education: Patterns in Teacher Behavior and Their Impact on the Students' Clinical Problem Solving and Learning

    Science.gov (United States)

    Ramaekers, Stephan; van Keulen, Hanno; Kremer, Wim; Pilot, Albert; van Beukelen, Peter

    2011-01-01

    Case-based learning formats, in which relevant case information is provided just in time, require teachers to combine their scaffolding role with an information-providing one. The objective of this study is to establish how this combination of roles affects teacher behavior and that, in turn, mediates students' reasoning and problem solving. Data…

  4. Evaluation of the Effect of Mathematical Routines on the Development of Skills in Mathematical Problem Solving and School Motivation of Primary School Students in Abitibi-Témiscamingue

    Science.gov (United States)

    Rajotte, Thomas; Marcotte, Christine; Bureau-Levasseur, Lisa

    2016-01-01

    In recent decades, the dropout rate in Abitibi-Témiscamingue is a worrying phenomenon. An analysis of ministerial examination results identifies that students in Abitibi-Témiscamingue have specific difficulties with mathematical problem solving tasks. Among the activities that develop those skills, the daily routines in mathematics seem to be a…

  5. Effects of Modified Schema-Based Instruction on Real-World Algebra Problem Solving of Students with Autism Spectrum Disorder and Moderate Intellectual Disability

    Science.gov (United States)

    Root, Jenny Rose

    2016-01-01

    The current study evaluated the effects of modified schema-based instruction (SBI) on the algebra problem solving skills of three middle school students with autism spectrum disorder and moderate intellectual disability (ASD/ID). Participants learned to solve two types of group word problems: missing-whole and missing-part. The themes of the word…

  6. Robotics and STEM Learning: Students' Achievements in Assignments According to the P3 Task Taxonomy--Practice, Problem Solving, and Projects

    Science.gov (United States)

    Barak, Moshe; Assal, Muhammad

    2018-01-01

    This study presents the case of development and evaluation of a STEM-oriented 30-h robotics course for junior high school students (n = 32). Class activities were designed according to the P3 Task Taxonomy, which included: (1) practice-basic closed-ended tasks and exercises; (2) problem solving--small-scale open-ended assignments in which the…

  7. Improvement of Word Problem Solving and Basic Mathematics Competencies in Students with Attention Deficit/Hyperactivity Disorder and Mathematical Learning Difficulties

    Science.gov (United States)

    González-Castro, Paloma; Cueli, Marisol; Areces, Débora; Rodríguez, Celestino; Sideridis, Georgios

    2016-01-01

    Problem solving represents a salient deficit in students with mathematical learning difficulties (MLD) primarily caused by difficulties with informal and formal mathematical competencies. This study proposes a computerized intervention tool, the integrated dynamic representation (IDR), for enhancing the early learning of basic mathematical…

  8. The Effect of Scratch- and Lego Mindstorms Ev3-Based Programming Activities on Academic Achievement, Problem-Solving Skills and Logical-Mathematical Thinking Skills of Students

    Science.gov (United States)

    Korkmaz, Özgen

    2016-01-01

    The aim of this study was to investigate the effect of the Scratch and Lego Mindstorms Ev3 programming activities on academic achievement with respect to computer programming, and on the problem-solving and logical-mathematical thinking skills of students. This study was a semi-experimental, pretest-posttest study with two experimental groups and…

  9. Strategy Keys as Tools for Problem Solving

    Science.gov (United States)

    Herold-Blasius, Raja

    2017-01-01

    Problem solving is one of the main competences we seek to teach students at school for use in their future lives. However, when dealing with mathematical problems, teachers encounter a wide variety of difficulties. To foster students' problem-solving skills, the authors developed "strategy keys." Strategy keys can serve as material to…

  10. Conceptual problem solving in high school physics

    OpenAIRE

    Jennifer L. Docktor; Natalie E. Strand; José P. Mestre; Brian H. Ross

    2015-01-01

    Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS) which guides students to identify principles, justify their use, and plan their solution in w...

  11. The Comparison of the Effectiveness of Cognitive and Cognitive-Metacognitive Strategies based on Mathematical Problem-Solving Skills on 9th Grade Girl Students with Intellectual Disability

    Directory of Open Access Journals (Sweden)

    Seyyedeh Somayyeh Jalil-Abkenar

    2012-01-01

    Full Text Available Objective: The purpose of present research was the comparison of the effectiveness of cognitive & cognitive-metacognitive strategies based on mathematical problem-solving skills on 9th grade girl students with intellectual disability in Tehran Province. Materials & Methods: The research is an experimental, comparing pre-test and post-test data. The participants were chosen by cluster sampling from three schools three districts of Tehran Province (Gharchak, Shahrerey and Shahryar. Fifteen female students with Intellectual disability were assigned from each school and they were divided into three, one control and two experiment groups. For experimental groups students cognitive & cognitive-metacognitive strategies were taught in the 15 instructional sessions, but the control group students did not receive none of strategies in the same sessions. The instruments consist of Wechsler intelligence test was used for matching the groups in terms of IQ, a teacher performed the tests for mathematical problem-solving and instructional pakage of cognitive and cognitive-metacognitive strategies. The data analysis was done by using descriptive statistics (mean, standard deviation and frequency table and ANCOVA. Results: The findings of this research showed that there was significant increasing in mathematical problem-solving skills in the group receiving cognitive-metacognitive strategies in comparison with the cognitive group (P<0.005 and control group (P<0.001. Beside, the mean difference of the cognitive group was significantly more than the control group (P<0.003. Conclusion: The mathematical problem-solving skill of the students have been improved through cognitive-metacognitive and cognitive strategies. Also, the instruction of cognitive-metacognitive strategies, in compared with cognitive strategy caused more improvement on the performance of mathematical problem-solving skills.

  12. Communication, Critical Thinking, Problem Solving: A Suggested Course for All High School Students in the 21st Century

    Science.gov (United States)

    Carlgren, Terresa

    2013-01-01

    The skills of communication, critical thinking, and problem solving are essential to thriving as a citizen in the 21st century. These skills are required in order to contribute as a member of society, operate effectively in post-secondary institutions, and be competitive in the global market. Unfortunately they are not always intuitive or simple…

  13. Deaf and Hard of Hearing Students' Problem-Solving Strategies with Signed Arithmetic Story Problems

    Science.gov (United States)

    Pagliaro, Claudia M.; Ansell, Ellen

    2011-01-01

    The use of problem-solving strategies by 59 deaf and hard of hearing children, grades K-3, was investigated. The children were asked to solve 9 arithmetic story problems presented to them in American Sign Language. The researchers found that while the children used the same general types of strategies that are used by hearing children (i.e.,…

  14. Efficacy of an Online Resource for Teaching Interpersonal Problem Solving Skills to Women Graduate Students in Engineering

    Science.gov (United States)

    Bekki, Jennifer M.; Bernstein, Bianca; Fabert, Natalie; Gildar, Natalie; Way, Amy

    2014-01-01

    Interpersonal problem solving skills allow engineers to prevent interpersonal difficulties more effectively and to manage conflict, both of which are critical to successful participation on teams. This research provides evidence that the "Career"WISE online learning environment can improve those skills among women in engineering graduate…

  15. Adapting Experiential Learning to Develop Problem-Solving Skills in Deaf and Hard-of-Hearing Engineering Students

    Science.gov (United States)

    Marshall, Matthew M.; Carrano, Andres L.; Dannels, Wendy A.

    2016-01-01

    Individuals who are deaf and hard-of-hearing (DHH) are underrepresented in science, technology, engineering, and mathematics (STEM) professions, and this may be due in part to their level of preparation in the development and retention of mathematical and problem-solving skills. An approach was developed that incorporates experiential learning and…

  16. Introspection in Problem Solving

    Science.gov (United States)

    Jäkel, Frank; Schreiber, Cornell

    2013-01-01

    Problem solving research has encountered an impasse. Since the seminal work of Newell und Simon (1972) researchers do not seem to have made much theoretical progress (Batchelder and Alexander, 2012; Ohlsson, 2012). In this paper we argue that one factor that is holding back the field is the widespread rejection of introspection among cognitive…

  17. Problem Solving in Practice

    Science.gov (United States)

    Greene, Kim; Heyck-Williams, Jeff; Timpson Gray, Elicia

    2017-01-01

    Problem solving spans all grade levels and content areas, as evidenced by this compilation of projects from schools across the United States. In one project, high school girls built a solar-powered tent to serve their city's homeless population. In another project, 4th graders explored historic Jamestown to learn about the voices lost to history.…

  18. Genetics problem solving and worldview

    Science.gov (United States)

    Dale, Esther

    The research goal was to determine whether worldview relates to traditional and real-world genetics problem solving. Traditionally, scientific literacy emphasized content knowledge alone because it was sufficient to solve traditional problems. The contemporary definition of scientific literacy is, "The knowledge and understanding of scientific concepts and processes required for personal decision-making, participation in civic and cultural affairs and economic productivity" (NRC, 1996). An expanded definition of scientific literacy is needed to solve socioscientific issues (SSI), complex social issues with conceptual, procedural, or technological associations with science. Teaching content knowledge alone assumes that students will find the scientific explanation of a phenomenon to be superior to a non-science explanation. Formal science and everyday ways of thinking about science are two different cultures (Palmer, 1999). Students address this rift with cognitive apartheid, the boxing away of science knowledge from other types of knowledge (Jedege & Aikenhead, 1999). By addressing worldview, cognitive apartheid may decrease and scientific literacy may increase. Introductory biology students at the University of Minnesota during fall semester 2005 completed a written questionnaire-including a genetics content-knowledge test, four genetic dilemmas, the Worldview Assessment Instrument (WAI) and some items about demographics and religiosity. Six students responded to the interview protocol. Based on statistical analysis and interview data, this study concluded the following: (1) Worldview, in the form of metaphysics, relates to solving traditional genetic dilemmas. (2) Worldview, in the form of agency, relates to solving traditional genetics problems. (3) Thus, worldview must be addressed in curriculum, instruction, and assessment.

  19. Language and mathematical problem solving among bilinguals.

    Science.gov (United States)

    Bernardo, Allan B I

    2002-05-01

    Does using a bilingual's 1st or 2nd language have an effect on problem solving in semantically rich domains like school mathematics? The author conducted a study to determine whether Filipino-English bilingual students' understanding and solving of word problems in arithmetic differed when the problems were in the students' 1st and 2nd languages. Two groups participated-students whose 1st language was Filipino and students whose 1st language was English-and easy and difficult arithmetic problems were used. The author used a recall paradigm to assess how students understood the word problems and coded the solution accuracy to assess problem solving. The results indicated a 1st-language advantage; that is, the students were better able to understand and solve problems in their 1st language, whether the 1st language was English or Filipino. Moreover, the advantage was more marked with the easy problems. The theoretical and practical implications of the results are discussed.

  20. Improvement in Generic Problem-Solving Abilities of Students by Use of Tutor-less Problem-Based Learning in a Large Classroom Setting

    Science.gov (United States)

    Klegeris, Andis; Bahniwal, Manpreet; Hurren, Heather

    2013-01-01

    Problem-based learning (PBL) was originally introduced in medical education programs as a form of small-group learning, but its use has now spread to large undergraduate classrooms in various other disciplines. Introduction of new teaching techniques, including PBL-based methods, needs to be justified by demonstrating the benefits of such techniques over classical teaching styles. Previously, we demonstrated that introduction of tutor-less PBL in a large third-year biochemistry undergraduate class increased student satisfaction and attendance. The current study assessed the generic problem-solving abilities of students from the same class at the beginning and end of the term, and compared student scores with similar data obtained in three classes not using PBL. Two generic problem-solving tests of equal difficulty were administered such that students took different tests at the beginning and the end of the term. Blinded marking showed a statistically significant 13% increase in the test scores of the biochemistry students exposed to PBL, while no trend toward significant change in scores was observed in any of the control groups not using PBL. Our study is among the first to demonstrate that use of tutor-less PBL in a large classroom leads to statistically significant improvement in generic problem-solving skills of students. PMID:23463230

  1. Measuring Problem Solving Skills in "Portal 2"

    Science.gov (United States)

    Shute, Valerie J.; Wang, Lubin

    2013-01-01

    This paper examines possible improvement to problem solving skills as a function of playing the video game "Portal 2." Stealth assessment is used in the game to evaluate students' problem solving abilities--specifically basic and flexible rule application. The stealth assessment measures will be validated against commonly accepted…

  2. Improving mathematical problem solving : A computerized approach

    NARCIS (Netherlands)

    Harskamp, EG; Suhre, CJM

    Mathematics teachers often experience difficulties in teaching students to become skilled problem solvers. This paper evaluates the effectiveness of two interactive computer programs for high school mathematics problem solving. Both programs present students with problems accompanied by instruction

  3. Effects of problem-based learning vs. traditional lecture on Korean nursing students' critical thinking, problem-solving, and self-directed learning.

    Science.gov (United States)

    Choi, Eunyoung; Lindquist, Ruth; Song, Yeoungsuk

    2014-01-01

    Problem-based learning (PBL) is a method widely used in nursing education to develop students' critical thinking skills to solve practice problems independently. Although PBL has been used in nursing education in Korea for nearly a decade, few studies have examined its effects on Korean nursing students' learning outcomes, and few Korean studies have examined relationships among these outcomes. The objectives of this study are to examine outcome abilities including critical thinking, problem-solving, and self-directed learning of nursing students receiving PBL vs. traditional lecture, and to examine correlations among these outcome abilities. A quasi-experimental non-equivalent group pretest-posttest design was used. First-year nursing students (N=90) were recruited from two different junior colleges in two cities (GY and GJ) in South Korea. In two selected educational programs, one used traditional lecture methods, while the other used PBL methods. Standardized self-administered questionnaires of critical thinking, problem-solving, and self-directed learning abilities were administered before and at 16weeks (after instruction). Learning outcomes were significantly positively correlated, however outcomes were not statistically different between groups. Students in the PBL group improved across all abilities measured, while student scores in the traditional lecture group decreased in problem-solving and self-directed learning. Critical thinking was positively associated with problem-solving and self-directed learning (r=.71, and r=.50, respectively, plearning (r=.75, pLearning outcomes of PBL were not significantly different from traditional lecture in this small underpowered study, despite positive trends. Larger studies are recommended to study effects of PBL on critical student abilities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Student performance and their perception of a patient-oriented problem-solving approach with audiovisual aids in teaching pathology: a comparison with traditional lectures.

    Science.gov (United States)

    Singh, Arjun

    2011-01-01

    We use different methods to train our undergraduates. The patient-oriented problem-solving (POPS) system is an innovative teaching-learning method that imparts knowledge, enhances intrinsic motivation, promotes self learning, encourages clinical reasoning, and develops long-lasting memory. The aim of this study was to develop POPS in teaching pathology, assess its effectiveness, and assess students' preference for POPS over didactic lectures. One hundred fifty second-year MBBS students were divided into two groups: A and B. Group A was taught by POPS while group B was taught by traditional lectures. Pre- and posttest numerical scores of both groups were evaluated and compared. Students then completed a self-structured feedback questionnaire for analysis. The mean (SD) difference in pre- and post-test scores of groups A and B was 15.98 (3.18) and 7.79 (2.52), respectively. The significance of the difference between scores of group A and group B teaching methods was 16.62 (P effectiveness of POPS. Students responded that POPS facilitates self-learning, helps in understanding topics, creates interest, and is a scientific approach to teaching. Feedback response on POPS was strong in 57.52% of students, moderate in 35.67%, and negative in only 6.81%, showing that 93.19% students favored POPS over simple lectures. It is not feasible to enforce the PBL method of teaching throughout the entire curriculum; However, POPS can be incorporated along with audiovisual aids to break the monotony of dialectic lectures and as alternative to PBL.

  5. An Online Game Approach for Improving Students' Learning Performance in Web-Based Problem-Solving Activities

    Science.gov (United States)

    Hwang, Gwo-Jen; Wu, Po-Han; Chen, Chi-Chang

    2012-01-01

    In this paper, an online game was developed in the form of a competitive board game for conducting web-based problem-solving activities. The participants of the game determined their move by throwing a dice. Each location of the game board corresponds to a gaming task, which could be a web-based information-searching question or a mini-game; the…

  6. Creativity and Problem Solving

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui

    2004-01-01

    This paper presents some modern and interdisciplinary concepts about creativity and creative processes of special relevance for Operational Research workers. Central publications in the area Creativity-Operational Research are shortly reviewed. Some creative tools and the Creative Problem Solving...... approach are also discussed. Finally, some applications of these concepts and tools are outlined. Some central references are presented for further study of themes related to creativity or creative tools....

  7. Creativity and problem Solving

    Directory of Open Access Journals (Sweden)

    René Victor Valqui Vidal

    2004-12-01

    Full Text Available This paper presents some modern and interdisciplinary concepts about creativity and creative processes of special relevance for Operational Research workers. Central publications in the area Creativity-Operational Research are shortly reviewed. Some creative tools and the Creative Problem Solving approach are also discussed. Finally, some applications of these concepts and tools are outlined. Some central references are presented for further study of themes related to creativity or creative tools.

  8. The problem solving skills and student generated representations (SGRs) profile of senior high school students in Bandung on the topic of work and energy

    Science.gov (United States)

    Alami, Y.; Sinaga, P.; Setiawan, A.

    2018-05-01

    Based on recommendations from the Physics Education literature recommend the use of multiple representations to help students solve problems. The use of some good representations is considered important to study physics, so many good motivations to learn how students use multiple representations while solving problems and to learn how to solve problems using multiple representations. This study aims to explore the profile of high school students’ problem solving abilities and this study is part of a larger research focus on improving this ability in students in physics. The data is needed to determine the appropriate treatment to be used in subsequent research. A purposive sampling technique was used in this study and a survey was conducted to collect data. 74 students from one high school in Bandung were involved in this research.

  9. Interactive problem-solving sessions in an introductory bioscience course engaged students and gave them feedback, but did not increase their exam scores.

    Science.gov (United States)

    McEvoy, James P

    2017-10-02

    Active learning, including the promotion of student interactivity in lectures, has been found to improve student engagement and performance in university science classes. This letter describes the use of Pearson's Learning Catalytics to run regular, formatively assessed problem-solving sessions as part of the semiflipped redesign of an introductory level university bioscience course. Students found the problem-solving sessions more engaging than a traditional lecture, and felt that they were receiving better feedback on their progress in the course. Their participation in the problem-solving sessions was strongly associated with their performance in the course's summative assessments, making it possible to identify and assist probable poor performers early in the course. Other measures of student engagement with the course were not improved, and neither were their average exam grades when compared with their grades in a course which had not been redesigned. Possible reasons for this are discussed. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. The Enhancement of Students’ Skill in Classifying and Concept Mastery in Salt Hydrolysis Material Through Problem Solving Learning Model

    OpenAIRE

    Safitri, Esty Indriyani; Rosilawati, Ila; Efkar, Tasviri

    2012-01-01

    The purpose of this research is to find out effectiveness of problem solving learning model on salt hydrolysis material in improve the skill of classifying and concept mastery. The population of the research was all students in XI science class in SMAN I Way Jepara number in 120 students. The samples were 30 students in XI science 3 class and 30 students in XI science 4 that have equal academic abilities. This research was a quasi experiment using non equivalent (pretest-postest) control grou...

  11. Appreciative Problem Solving

    DEFF Research Database (Denmark)

    Hansen, David

    2012-01-01

    Many industrial production work systems have increased in complexity, and their new business model scompete on innovation, rather than low cost.At a medical device production facility committed to Lean Production, a research project was carried out to use Appreciative Inquiry to better engage...... employee strengths in continuou simprovements of the work system. The research question was: “How can Lean problem solving and Appreciative Inquiry be combined for optimized work system innovation?” The research project was carried out as a co-creation process with close cooperation between researcher...

  12. Simon on problem solving

    DEFF Research Database (Denmark)

    Foss, Kirsten; Foss, Nicolai Juul

    2006-01-01

    as a general approach to problem solving. We apply these Simonian ideas to organisational issues, specifically new organisational forms. Specifically, Simonian ideas allow us to develop a morphology of new organisational forms and to point to some design problems that characterise these forms.......Two of Herbert Simon's best-known papers are 'The Architecture of Complexity' and 'The Structure of Ill-Structured Problems.' We discuss the neglected links between these two papers, highlighting the role of decomposition in the context of problems on which constraints have been imposed...

  13. The effects of duration of exposure to the REAPS model in developing students' general creativity and creative problem solving in science

    Science.gov (United States)

    Alhusaini, Abdulnasser Alashaal F.

    The Real Engagement in Active Problem Solving (REAPS) model was developed in 2004 by C. June Maker and colleagues as an intervention for gifted students to develop creative problem solving ability through the use of real-world problems. The primary purpose of this study was to examine the effects of the REAPS model on developing students' general creativity and creative problem solving in science with two durations as independent variables. The long duration of the REAPS model implementation lasted five academic quarters or approximately 10 months; the short duration lasted two quarters or approximately four months. The dependent variables were students' general creativity and creative problem solving in science. The second purpose of the study was to explore which aspects of creative problem solving (i.e., generating ideas, generating different types of ideas, generating original ideas, adding details to ideas, generating ideas with social impact, finding problems, generating and elaborating on solutions, and classifying elements) were most affected by the long duration of the intervention. The REAPS model in conjunction with Amabile's (1983; 1996) model of creative performance provided the theoretical framework for this study. The study was conducted using data from the Project of Differentiation for Diverse Learners in Regular Classrooms (i.e., the Australian Project) in which one public elementary school in the eastern region of Australia cooperated with the DISCOVER research team at the University of Arizona. All students in the school from first to sixth grade participated in the study. The total sample was 360 students, of which 115 were exposed to a long duration and 245 to a short duration of the REAPS model. The principal investigators used a quasi-experimental research design in which all students in the school received the treatment for different durations. Students in both groups completed pre- and posttests using the Test of Creative Thinking

  14. IDEAL Problem Solving dalam Pembelajaran Matematika

    Directory of Open Access Journals (Sweden)

    Eny Susiana

    2012-01-01

    Full Text Available Most educators agree that problem solving is among the most meaningful and importantkinds of learning and thingking. That is, the central focus of learning and instructionshould be learning to solve problems. There are several warrants supporting that claims.They are authenticity, relevance, problem solving engages deeper learning angtherefore enhances meaning making, and constructed to represent problems (problemsolving is more meaningful. It is the reason why we must provide teaching and learningto make student’s problem solving skill in progress. There are many informationprocessingmodels of problem solving, such as simplified model of the problem-solvingprocess by Gicks, Polya’s problem solving process etc. One of them is IDEAL problemsolving. Each letter of IDEAL is stand for an aspect of thinking that is important forproblem solving. IDEAL is identify problem, Define Goal, Explore possible strategies,Anticipate outcme and Act, and Look back and learn. Using peer interaction andquestion prompt in small group in IDEAL problem solving teaching and Learning canimprove problem solving skill.Kata kunci: IDEAL Problem Solving, Interaksi Sebaya, Pertanyaan Penuntun, KelompokKecil.

  15. Using Digital Mapping Tool in Ill-Structured Problem Solving

    Science.gov (United States)

    Bai, Hua

    2013-01-01

    Scaffolding students' problem solving and helping them to improve problem solving skills are critical in instructional design courses. This study investigated the effects of students' uses of a digital mapping tool on their problem solving performance in a design case study. It was found that the students who used the digital mapping tool…

  16. Distributed Problem-Solving

    DEFF Research Database (Denmark)

    Chemi, Tatiana

    2016-01-01

    This chapter aims to deconstruct some persistent myths about creativity: the myth of individualism and of the genius. By looking at literature that approaches creativity as a participatory and distributed phenomenon and by bringing empirical evidence from artists’ studios, the author presents a p......, what can educators at higher education learn from the ways creative groups solve problems? How can artists contribute to inspiring higher education?......This chapter aims to deconstruct some persistent myths about creativity: the myth of individualism and of the genius. By looking at literature that approaches creativity as a participatory and distributed phenomenon and by bringing empirical evidence from artists’ studios, the author presents...... a perspective that is relevant to higher education. The focus here is on how artists solve problems in distributed paths, and on the elements of creative collaboration. Creative problem-solving will be looked at as an ongoing dialogue that artists engage with themselves, with others, with recipients...

  17. How Culture Influences Teacher Self-Reflective Problem Solving Behavior and Self-Efficacy: Experiences of White Female Teachers Working through Relationship with Black Students in a Mid-Western American City

    Science.gov (United States)

    Tolson, Bonnie Lynn

    2013-01-01

    Teachers make a difference. White female middle-class teachers represent 84 percent of Americas' teachers. How does culture influence the self-reflective problem-solving behaviors of urban teachers? Urban schools fail youth by opening the doors for a mass exodus. The problem solving behavior of urban teachers may contribute to the student exodus…

  18. Relative Effects of Problem-Solving and Concept Mapping ...

    African Journals Online (AJOL)

    Relative Effects of Problem-Solving and Concept Mapping Instructional ... mapping strategies are also discussed and their significance and importance to students. ... development of problem solving skills before the end of SSCE Programmebr ...

  19. Students interest in learning science through fieldwork activity encourage critical thinking and problem solving skills among UPSI pre-university students

    Science.gov (United States)

    Jamil, Siti Zaheera Muhamad; Khairuddin, Raja Farhana Raja

    2017-05-01

    Graduates with good critical thinking and problem solving (CTPS) skills are likely to boost their employability to live in 21st century. The demands of graduates to be equipped with CTPS skills have shifted our education system in focusing on these elements in all levels of education, from primary, the secondary, and up to the tertiary education, by fostering interesting teaching and learning activities such as fieldwork activity in science classes. Despite the importance of the CTPS skills, little is known about whether students' interests in teaching and learning activities, such as fieldwork activity, have any influence on the students CTPS skills. Therefore, in this investigation, firstly to examine students interests in learning science through fieldwork activity. Secondly, this study examined whether the students' interest in learning science through fieldwork activity have affect on how the students employ CTPS skills. About 100 Diploma of Science students in Universiti Pendidikan Sultan Idris (UPSI) were randomly chosen to participate in this study. All of the participants completed a survey on how they find the fieldwork activity implemented in their science classes and it relevents towards their CTPS skills development. From our findings, majority of the students (91%) find that fieldwork activity is interesting and helpful in increasing their interest in learning science (learning factor) and accommodate their learning process (utility). Results suggest that students' interest on the fieldwork activity in science classes does have some influence on the students development of CTPS skills. The findings could be used as an initial guideline by incorporating students' interest on other teaching and learning activities that being implemented in science classes in order to know the impacts of these learning activities in enhancing their CTPS skills.

  20. Assertiveness and problem solving in midwives.

    Science.gov (United States)

    Yurtsal, Zeliha Burcu; Özdemir, Levent

    2015-01-01

    Midwifery profession is required to bring solutions to problems and a midwife is expected to be an assertive person and to develop midwifery care. This study was planned to examine the relationship between assertiveness and problem-solving skills of midwives. This cross-sectional study was conducted with 201 midwives between July 2008 and February 2009 in the city center of Sivas. The Rathus Assertiveness Schedule (RAS) and Problem Solving Inventory (PSI) were used to determine the level of assertiveness and problem-solving skills of midwives. Statistical methods were used as mean, standard deviation, percentage, Student's T, ANOVA and Tukey HSD, Kruskal Wallis, Fisher Exact, Pearson Correlation and Chi-square tests and P problem-solving skills training. A statistically significant negative correlation was found between the RAS and PSI scores. The RAS scores decreased while the problem-solving scores increased (r: -0451, P problem solving skills of midwives, and midwives who were assertive solved their problems better than did others. Assertiveness and problem-solving skills training will contribute to the success of the midwifery profession. Midwives able to solve problems, and display assertive behaviors will contribute to the development of midwifery profession.

  1. Teaching Problem Solving without Modeling through "Thinking Aloud Pair Problem Solving."

    Science.gov (United States)

    Pestel, Beverly C.

    1993-01-01

    Reviews research relevant to the problem of unsatisfactory student problem-solving abilities and suggests a teaching strategy that addresses the issue. Author explains how she uses teaching aloud problem solving (TAPS) in college chemistry and presents evaluation data. Among the findings are that the TAPS class got fewer problems completely right,…

  2. Environmental problem-solving: Psychosocial factors

    Science.gov (United States)

    Miller, Alan

    1982-11-01

    This is a study of individual differences in environmental problem-solving, the probable roots of these differences, and their implications for the education of resource professionals. A group of student Resource Managers were required to elaborate their conception of a complex resource issue (Spruce Budworm management) and to generate some ideas on management policy. Of particular interest was the way in which subjects dealt with the psychosocial aspects of the problem. A structural and content analysis of responses indicated a predominance of relatively compartmentalized styles, a technological orientation, and a tendency to ignore psychosocial issues. A relationship between problem-solving behavior and personal (psychosocial) style was established which, in the context of other evidence, suggests that problem-solving behavior is influenced by more deep seated personality factors. The educational implication drawn was that problem-solving cannot be viewed simply as an intellectual-technical activity but one that involves, and requires the education of, the whole person.

  3. Effects of Blended Cardiopulmonary Resuscitation and Defibrillation E-learning on Nursing Students' Self-efficacy, Problem Solving, and Psychomotor Skills.

    Science.gov (United States)

    Park, Ju Young; Woo, Chung Hee; Yoo, Jae Yong

    2016-06-01

    This study was conducted to identify the educational effects of a blended e-learning program for graduating nursing students on self-efficacy, problem solving, and psychomotor skills for core basic nursing skills. A one-group pretest/posttest quasi-experimental design was used with 79 nursing students in Korea. The subjects took a conventional 2-week lecture-based practical course, together with spending an average of 60 minutes at least twice a week during 2 weeks on the self-guided e-learning content for basic cardiopulmonary resuscitation and defibrillation using Mosby's Nursing Skills database. Self- and examiner-reported data were collected between September and November 2014 and analyzed using descriptive statistics, paired t test, and Pearson correlation. The results showed that subjects who received blended e-learning education had improved problem-solving abilities (t = 2.654) and self-efficacy for nursing practice related to cardiopulmonary resuscitation and defibrillation (t = 3.426). There was also an 80% to 90% rate of excellent postintervention performance for the majority of psychomotor skills, but the location of chest compressions, compression rate per minute, artificial respiration, and verification of patient outcome still showed low levels of performance. In conclusion, blended E-learning, which allows self-directed repetitive learning, may be more effective in enhancing nursing competencies than conventional practice education.

  4. The Influence of Cognitive Abilities on Mathematical Problem Solving Performance

    Science.gov (United States)

    Bahar, Abdulkadir

    2013-01-01

    Problem solving has been a core theme in education for several decades. Educators and policy makers agree on the importance of the role of problem solving skills for school and real life success. A primary purpose of this study was to investigate the influence of cognitive abilities on mathematical problem solving performance of students. The…

  5. Could HPS Improve Problem-Solving?

    Science.gov (United States)

    Coelho, Ricardo Lopes

    2013-05-01

    It is generally accepted nowadays that History and Philosophy of Science (HPS) is useful in understanding scientific concepts, theories and even some experiments. Problem-solving strategies are a significant topic, since students' careers depend on their skill to solve problems. These are the reasons for addressing the question of whether problem solving could be improved by means of HPS. Three typical problems in introductory courses of mechanics—the inclined plane, the simple pendulum and the Atwood machine—are taken as the object of the present study. The solving strategies of these problems in the eighteenth and nineteenth century constitute the historical component of the study. Its philosophical component stems from the foundations of mechanics research literature. The use of HPS leads us to see those problems in a different way. These different ways can be tested, for which experiments are proposed. The traditional solving strategies for the incline and pendulum problems are adequate for some situations but not in general. The recourse to apparent weights in the Atwood machine problem leads us to a new insight and a solving strategy for composed Atwood machines. Educational implications also concern the development of logical thinking by means of the variety of lines of thought provided by HPS.

  6. Students' understandings of electrochemistry

    Science.gov (United States)

    O'Grady-Morris, Kathryn

    Electrochemistry is considered by students to be a difficult topic in chemistry. This research was a mixed methods study guided by the research question: At the end of a unit of study, what are students' understandings of electrochemistry? The framework of analysis used for the qualitative and quantitative data collected in this study was comprised of three categories: types of knowledge used in problem solving, levels of representation of knowledge in chemistry (macroscopic, symbolic, and particulate), and alternative conceptions. Although individually each of the three categories has been reported in previous studies, the contribution of this study is the inter-relationships among them. Semi-structured, task-based interviews were conducted while students were setting up and operating electrochemical cells in the laboratory, and a two-tiered, multiple-choice diagnostic instrument was designed to identify alternative conceptions that students held at the end of the unit. For familiar problems, those involving routine voltaic cells, students used a working-forwards problem-solving strategy, two or three levels of representation of knowledge during explanations, scored higher on both procedural and conceptual knowledge questions in the diagnostic instrument, and held fewer alternative conceptions related to the operation of these cells. For less familiar problems, those involving non-routine voltaic cells and electrolytic cells, students approached problem-solving with procedural knowledge, used only one level of representation of knowledge when explaining the operation of these cells, scored higher on procedural knowledge than conceptual knowledge questions in the diagnostic instrument, and held a greater number of alternative conceptions. Decision routines that involved memorized formulas and procedures were used to solve both quantitative and qualitative problems and the main source of alternative conceptions in this study was the overgeneralization of theory

  7. Developing Students' Critical Thinking, Problem Solving, and Analysis Skills in an Inquiry-Based Synthetic Organic Laboratory Course

    Science.gov (United States)

    Weaver, Marisa G.; Samoshin, Andrey V.; Lewis, Robert B.; Gainer, Morgan J.

    2016-01-01

    A course is described where students are engaged in an inquiry-based quarter-long research project to synthesize a known pharmaceutical target. Students use literature search engines, such as Reaxys and SciFinder, and the primary chemical literature as resources to plan and perform the synthesis of their pharmaceutical target. Through this…

  8. Potato Problem Solving

    Science.gov (United States)

    Carrier, Sarah J.; Thomas, Annie

    2010-01-01

    "Watch out, the stove will burn you," "Ooh, ice cream headache!" Students construct their conceptions about heat and temperature through their own intuitions about daily life experiences. As a result, misconceptions can be born from these constructed concepts. The activity described here addresses student misconceptions about thermal insulation…

  9. Manage Your Life Online (MYLO): a pilot trial of a conversational computer-based intervention for problem solving in a student sample.

    Science.gov (United States)

    Gaffney, Hannah; Mansell, Warren; Edwards, Rachel; Wright, Jason

    2014-11-01

    Computerized self-help that has an interactive, conversational format holds several advantages, such as flexibility across presenting problems and ease of use. We designed a new program called MYLO that utilizes the principles of METHOD of Levels (MOL) therapy--based upon Perceptual Control Theory (PCT). We tested the efficacy of MYLO, tested whether the psychological change mechanisms described by PCT mediated its efficacy, and evaluated effects of client expectancy. Forty-eight student participants were randomly assigned to MYLO or a comparison program ELIZA. Participants discussed a problem they were currently experiencing with their assigned program and completed measures of distress, resolution and expectancy preintervention, postintervention and at 2-week follow-up. MYLO and ELIZA were associated with reductions in distress, depression, anxiety and stress. MYLO was considered more helpful and led to greater problem resolution. The psychological change processes predicted higher ratings of MYLO's helpfulness and reductions in distress. Positive expectancies towards computer-based problem solving correlated with MYLO's perceived helpfulness and greater problem resolution, and this was partly mediated by the psychological change processes identified. The findings provide provisional support for the acceptability of the MYLO program in a non-clinical sample although its efficacy as an innovative computer-based aid to problem solving remains unclear. Nevertheless, the findings provide tentative early support for the mechanisms of psychological change identified within PCT and highlight the importance of client expectations on predicting engagement in computer-based self-help.

  10. Safety in numbers 4: The relationship between exposure to authentic and didactic environments and nursing students' learning of medication dosage calculation problem solving knowledge and skills.

    Science.gov (United States)

    Weeks, Keith W; Clochesy, John M; Hutton, B Meriel; Moseley, Laurie

    2013-03-01

    Advancing the art and science of education practice requires a robust evaluation of the relationship between students' exposure to learning and assessment environments and the development of their cognitive competence (knowing that and why) and functional competence (know-how and skills). Healthcare education translation research requires specific education technology assessments and evaluations that consist of quantitative analyses of empirical data and qualitative evaluations of the lived student experience of the education journey and schemata construction (Weeks et al., 2013a). This paper focuses on the outcomes of UK PhD and USA post-doctorate experimental research. We evaluated the relationship between exposure to traditional didactic methods of education, prototypes of an authentic medication dosage calculation problem-solving (MDC-PS) environment and nursing students' construction of conceptual and calculation competence in medication dosage calculation problem-solving skills. Empirical outcomes from both UK and USA programmes of research identified highly significant differences in the construction of conceptual and calculation competence in MDC-PS following exposure to the authentic learning environment to that following exposure to traditional didactic transmission methods of education (p students exposure to authentic learning environments is an essential first step in the development of conceptual and calculation competence and relevant schemata construction (internal representations of the relationship between the features of authentic dosage problems and calculation functions); and how authentic environments more ably support all cognitive (learning) styles in mathematics than traditional didactic methods of education. Functional competence evaluations are addressed in Macdonald et al. (2013) and Weeks et al. (2013e). Copyright © 2012. Published by Elsevier Ltd.

  11. Response to Dr. Smith's Comments and Criticisms Concerning "Identification of Student Misconceptions in Genetics Problem Solving via Computer Program."

    Science.gov (United States)

    Browning, Mark; Lehman, James D.

    1991-01-01

    Authors respond to criticisms by Smith in the same issue and defend their use of the term "gene" and "misconception." Authors indicate that they did not believe that the use of computers significantly skewed their data concerning student errors. (PR)

  12. Learning style preferences and their influence on students' problem solving in kinematics observed by eye-tracking method

    Science.gov (United States)

    Kekule, Martina

    2017-01-01

    The article presents eye-tracking method and its using for observing students when they solve problems from kinematics. Particularly, multiple-choice items in TUG-K test by Robert Beichner. Moreover, student's preference for visual way of learning as a possible influential aspect is proofed and discussed. Learning Style Inventory by Dunn, Dunn&Price was administered to students in order to find out their preferences. More than 20 high school and college students about 20 years old took part in the research. Preferred visual way of learning in contrast to the other ways of learning (audio, tactile, kinesthetic) shows very slight correlation with the total score of the test, none correlation with the average fixation duration and slight correlation with average fixation count on a task and average total visit duration on a task.

  13. Does psychological strengths and subjective well-being predicting parental involvement and problem solving among Malaysian and Indian students?

    OpenAIRE

    Khan, Aqeel; Ahmad, Roslee; Hamdan, Abdul Rahim; Mustaffa, Mohamed Sharif; Tahir, Lokman Mohd

    2014-01-01

    The present study examined the predictors of psychological strengths and subjective well-being for dealing with academic stress perceived by university engineering students. Sample of 400 Malaysian (N?=?180 boys and N?=?220 girls) age varies 18 to 25?years and 400 Indian students (N?=?240 boys and N?=?160 girls) age varies 18 to 25?years from public universities were participated. Quantitative method was used for data analysis. Findings shows that gender, religiosity and socioeconomic status ...

  14. Conceptual problem solving in high school physics

    Science.gov (United States)

    Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.

    2015-12-01

    Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS) which guides students to identify principles, justify their use, and plan their solution in writing before solving a problem. The CPS approach was implemented by high school physics teachers at three schools for major theorems and conservation laws in mechanics and CPS-taught classes were compared to control classes taught using traditional problem solving methods. Information about the teachers' implementation of the approach was gathered from classroom observations and interviews, and the effectiveness of the approach was evaluated from a series of written assessments. Results indicated that teachers found CPS easy to integrate into their curricula, students engaged in classroom discussions and produced problem solutions of a higher quality than before, and students scored higher on conceptual and problem solving measures.

  15. Conceptual problem solving in high school physics

    Directory of Open Access Journals (Sweden)

    Jennifer L. Docktor

    2015-09-01

    Full Text Available Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS which guides students to identify principles, justify their use, and plan their solution in writing before solving a problem. The CPS approach was implemented by high school physics teachers at three schools for major theorems and conservation laws in mechanics and CPS-taught classes were compared to control classes taught using traditional problem solving methods. Information about the teachers’ implementation of the approach was gathered from classroom observations and interviews, and the effectiveness of the approach was evaluated from a series of written assessments. Results indicated that teachers found CPS easy to integrate into their curricula, students engaged in classroom discussions and produced problem solutions of a higher quality than before, and students scored higher on conceptual and problem solving measures.

  16. Collaborative Problem Solving Methods towards Critical Thinking

    Science.gov (United States)

    Yin, Khoo Yin; Abdullah, Abdul Ghani Kanesan; Alazidiyeen, Naser Jamil

    2011-01-01

    This research attempts to examine the collaborative problem solving methods towards critical thinking based on economy (AE) and non economy (TE) in the SPM level among students in the lower sixth form. The quasi experiment method that uses the modal of 3X2 factorial is applied. 294 lower sixth form students from ten schools are distributed…

  17. Quickfire Challenges to Inspire Problem Solving

    Science.gov (United States)

    Harper, Suzanne R.; Cox, Dana C.

    2017-01-01

    In the authors' attempts to incorporate problem solving into their mathematics courses, they have found that student ambition and creativity are often hampered by feelings of risk, as many students are conditioned to value a produced solution over the actual process of building one. Eliminating risk is neither possible nor desired. The challenge,…

  18. Using Computer Simulations in Chemistry Problem Solving

    Science.gov (United States)

    Avramiotis, Spyridon; Tsaparlis, Georgios

    2013-01-01

    This study is concerned with the effects of computer simulations of two novel chemistry problems on the problem solving ability of students. A control-experimental group, equalized by pair groups (n[subscript Exp] = n[subscript Ctrl] = 78), research design was used. The students had no previous experience of chemical practical work. Student…

  19. Nanomedicine: Problem Solving to Treat Cancer

    Science.gov (United States)

    Hemling, Melissa A.; Sammel, Lauren M.; Zenner, Greta; Payne, Amy C.; Crone, Wendy C.

    2006-01-01

    Many traditional classroom science and technology activities often ask students to complete prepackaged labs that ensure that everyone arrives at the same "scientifically accurate" solution or theory, which ignores the important problem-solving and creative aspects of scientific research and technological design. Students rarely have the…

  20. Students’ difficulties in probabilistic problem-solving

    Science.gov (United States)

    Arum, D. P.; Kusmayadi, T. A.; Pramudya, I.

    2018-03-01

    There are many errors can be identified when students solving mathematics problems, particularly in solving the probabilistic problem. This present study aims to investigate students’ difficulties in solving the probabilistic problem. It focuses on analyzing and describing students errors during solving the problem. This research used the qualitative method with case study strategy. The subjects in this research involve ten students of 9th grade that were selected by purposive sampling. Data in this research involve students’ probabilistic problem-solving result and recorded interview regarding students’ difficulties in solving the problem. Those data were analyzed descriptively using Miles and Huberman steps. The results show that students have difficulties in solving the probabilistic problem and can be divided into three categories. First difficulties relate to students’ difficulties in understanding the probabilistic problem. Second, students’ difficulties in choosing and using appropriate strategies for solving the problem. Third, students’ difficulties with the computational process in solving the problem. Based on the result seems that students still have difficulties in solving the probabilistic problem. It means that students have not able to use their knowledge and ability for responding probabilistic problem yet. Therefore, it is important for mathematics teachers to plan probabilistic learning which could optimize students probabilistic thinking ability.

  1. A Comparison between the Effectiveness of PBL and LBL on Improving Problem-Solving Abilities of Medical Students Using Questioning

    Science.gov (United States)

    He, Yunfeng; Du, Xiangyun; Toft, Egon; Zhang, Xingli; Qu, Bo; Shi, Jiannong; Zhang, Huan; Zhang, Hui

    2018-01-01

    In daily patient-history taking and diagnosis practice, doctors ask questions to gather information from patients and narrow down diagnostic hypotheses. Training medical students to be efficient problem solvers through the use of questioning is therefore important. In this study, the effectiveness of problem-based learning (PBL) and lecture-based…

  2. Analysis of difficulties in mathematics learning on students with guardian personality type in problem-solving HOTS geometry test

    Science.gov (United States)

    Karimah, R. K. N.; Kusmayadi, T. A.; Pramudya, I.

    2018-04-01

    Learning in the current 2013 curriculum is based on contextual issues based on questions that can encourage students to think broadly. HOTS is a real-life based assessment of everyday life, but in practice, the students are having trouble completing the HOTS issue. Learning difficulty is also influenced by personality type Based on the fact that the real difference one can see from a person is behavior. Kersey classifies the personality into 4 types, namely Idealist, Rational, Artisan, and Guardian. The researcher focuses on the type of guardian personality that is the type of personality that does not like the picture. This study aims to describe the difficulty of learning mathematics in students with a type of guardian personality in the completion of Geometry materials especially in solving HOTS. This research type is descriptive qualitative research. Instruments used in this study were the researchers themselves, personality class test sheets, learning difficulty test sheets in the form of HOTS Geometry test, and interview guides. The results showed that students with guardian personality it was found that a total of 3.37 % difficulties of number fact skill, 4.49 % difficulties of arithmetics skill, 37.08 % difficulties of information skill, 31.46% difficulties of language skill, 23.60 % difficulties of visual-spatial skill.

  3. The Development of Physics Learning Instrument Based on Hypermedia and Its Influence on the Student Problem Solving Skill

    Science.gov (United States)

    Amin, Bunga Dara; Mahmud, Alimuddin; Muris

    2016-01-01

    This research aims to produce a learning instrument based on hypermedia which is valid, interesting, practical, and effective as well as to know its influence on the problem based skill of students Mathematical and Science Faculty, Makassar State University. This research is a research and development at (R&D) type. The development procedure…

  4. Tool Storage Problem Solved!

    Science.gov (United States)

    Klenke, Andrew M.; Dell, Tim W.

    2007-01-01

    Graduates of the automotive technology program at Pittsburg State University (PSU) generally enter the workforce in some type of automotive management role. As a result, the program does not require students to purchase their own tools, and it does not have room for all 280 majors to roll around a personal tool chest. Each instructor must maintain…

  5. EFFECTIVENESS OF QUIZ TEAM AND MURDER METHOD ON LEARNING ACTIVITIES AND PROBLEM SOLVING SKILLS IN SOCIAL SCIENCE LEARNING FOR 8th GRADE STUDENTS AT UPI LABORATORY JUNIOR HIGH SCHOOL

    Directory of Open Access Journals (Sweden)

    Darwanti Darwanti

    2017-06-01

    Full Text Available There are three objectives that shape the study, first, the study is aimed at identifying different problem-solving skills of the students' who were acquainted with quiz team, lecture and MURDER method. Secondly, the study is to point out the difference of students' problem-solving skills when they are exposed to the three methods in a high, moderate, and low intensity. The third objective is to determine interactions among learning methods, learning activities and problem-solving skills. Quasi experiment is used as a method of the study by applying two experiment classes, and one controlled factorial designed class. In analyzing the data, a two-way Anova analysis and variants analysis are implemented to measure the interaction level among the three variables. The results of the study indicate that (1 there are differences in students' problem-solving skills who were exposed to quiz team, lecture and MURDER method; (2 there are also differences in students' problem-solving skills when they were exposed by the mentioned methods in a high, moderate, and low intensity; there are no relevant interactions among learning methods, learning activities and problem-solving skills. The current results are presented such that they can be used as an aid to the methods of social science learning.

  6. Safety in numbers 7: Veni, vidi, duci: a grounded theory evaluation of nursing students' medication dosage calculation problem-solving schemata construction.

    Science.gov (United States)

    Weeks, Keith W; Higginson, Ray; Clochesy, John M; Coben, Diana

    2013-03-01

    This paper evaluates nursing students' transition through schemata construction and competence development in medication dosage calculation problem-solving (MDC-PS). We advance a grounded theory from interview data that reflects the experiences and perceptions of two groups of undergraduate pre-registration nursing students: eight students exposed to a prototype authentic MDC-PS environment and didactic transmission methods of education and 15 final year students exposed to the safeMedicate authentic MDC-PS environment. We advance a theory of how classroom-based 'chalk and talk' didactic transmission environments offered multiple barriers to accurate MDC-PS schemata construction among novice students. While conversely it was universally perceived by all students that authentic learning and assessment environments enabled MDC-PS schemata construction through facilitating: 'seeing' the authentic features of medication dosage problems; context-based and situational learning; learning within a scaffolded environment that supported construction of cognitive links between the concrete world of clinical MDC-PS and the abstract world of mathematics; and confidence-building in their cognitive and functional competence ability. Drawing on the principle of veni, vidi, duci (I came, I saw, I calculated), we combined the two sets of evaluations to offer a grounded theoretical basis for schemata construction and competence development within this critical domain of professional practice. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Students' Perceptions of the Effectiveness of Assessment Feedback as a Learning Tool in an Introductory Problem-solving Course

    Directory of Open Access Journals (Sweden)

    Lynn Randall

    2012-09-01

    Full Text Available There have been calls in the literature for reforms to assessment to enhance student learning (Shepard, 2000. In many instances, this refers to the need to move from traditional assessment procedures that are characterized as content-heavy, summative, and norm-referenced approaches to more constructivist and student-centred approaches, often characterized as more “…flexible, integrative, contextualized, process oriented, criteria referenced and formative” (Ellery, 2008, p. 421. Whereas summative assessment techniques rarely allow students to act on the feedback provided, formative feedback provided throughout the learning process can be used to improve future work and promote learning (Ellery, 2008; Higgins, Hartley & Skelton, 2002 by providing students an opportunity to learn from mistakes.Allowing students to learn from their mistakes makes good pedagogical sense. To date there has been little research examining students’ use of feedback (Higgins, Hartley, and Skelton, 2002. In an effort to begin to add to the literature in this area, this paper describes a study that explored the effectiveness of oral and written formative feedback when students were provided the opportunity to use it. The paper begins by reviewing literature related to assessment and how assessment relates to feedback in general. It then presents what the research has found in relation to students’ perspectives of effective feedback and how they use it. The paper ends by presenting the results and discussion.La documentation fait état de demandes de réforme de l’évaluation pour améliorer l’apprentissage des étudiants (Shepard, 2000. Dans plusieurs cas, cela traduit le besoin de passer des procédures d’évaluation traditionnelles caractérisées par la lourdeur de leur contenu, par leur aspect sommatif et par leurs approches normatives à des approches plus constructivistes et centrées sur les étudiants, souvent qualifiées de plus « ... souples, int

  8. Geometry Skill Analysis In Problem Solving Reviewed From The Difference Of Cognitive Style Students Junior High School

    Directory of Open Access Journals (Sweden)

    Andi Saparuddin Nur

    2017-12-01

    Full Text Available This study aimed to analyze the geometry skills in solving problems in terms of cognitive styles differences in the students of SMP Negeri Urumb. The type of this research is descriptive research that is qualitative with case study approach. The subject of this research is all students of SMP Negeri Urumb. Subject selection is done by using snowball sampling technique. The main instrument in this study is the researchers themselves and accompanied by supporting instruments such as diagnostic tests, geometry solving test, and interview guides. Validity and reliability of data is done through credibility test, transferability test, dependability test, and confirmability test. Data analysis consists of data collection, data reduction, data presentation, and conclusions. The results of this study were (1 reflective FI subjects showing visual, verbal, drawing, and logic skills with level of geometry thinking at level 2 (informal deduction; (2 impulsive FI subjects exhibiting visual, verbal, and drawing skills with geometric thinking level at level 1 (analysis, (3 reflective FD subjects exhibit visual skills, and draw with level of geometric thinking at level 0 (visualization, and (4 impulsive FD subjects exhibit visual, verbal skills with geometric level thinking at level 0 (visualization.

  9. Lesion mapping of social problem solving.

    Science.gov (United States)

    Barbey, Aron K; Colom, Roberto; Paul, Erick J; Chau, Aileen; Solomon, Jeffrey; Grafman, Jordan H

    2014-10-01

    Accumulating neuroscience evidence indicates that human intelligence is supported by a distributed network of frontal and parietal regions that enable complex, goal-directed behaviour. However, the contributions of this network to social aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 144) that investigates the neural bases of social problem solving (measured by the Everyday Problem Solving Inventory) and examine the degree to which individual differences in performance are predicted by a broad spectrum of psychological variables, including psychometric intelligence (measured by the Wechsler Adult Intelligence Scale), emotional intelligence (measured by the Mayer, Salovey, Caruso Emotional Intelligence Test), and personality traits (measured by the Neuroticism-Extraversion-Openness Personality Inventory). Scores for each variable were obtained, followed by voxel-based lesion-symptom mapping. Stepwise regression analyses revealed that working memory, processing speed, and emotional intelligence predict individual differences in everyday problem solving. A targeted analysis of specific everyday problem solving domains (involving friends, home management, consumerism, work, information management, and family) revealed psychological variables that selectively contribute to each. Lesion mapping results indicated that social problem solving, psychometric intelligence, and emotional intelligence are supported by a shared network of frontal, temporal, and parietal regions, including white matter association tracts that bind these areas into a coordinated system. The results support an integrative framework for understanding social intelligence and make specific recommendations for the application of the Everyday Problem Solving Inventory to the study of social problem solving in health and disease. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved

  10. Mathematical problem solving in primary school

    NARCIS (Netherlands)

    Kolovou, A.

    2011-01-01

    A student is engaged in (non-routine) problem solving when there is no clear pathway to the solution. In contrast to routine problems, non-routine ones cannot be solved through the direct application of a standard procedure. Consider the following problem: In a quiz you get two points for each

  11. A reflexive perspective in problem solving

    OpenAIRE

    Chio, José Angel; Álvarez, Aida; López, Margarita

    2013-01-01

    The objective of this paper is to favour the methodological process of reflexive analysis in problem solving in the general teaching methods that concentrates in strengthening the dimensional analysis, to gain a greater preparation of the students for the solution of mathematical problems.

  12. Problem Solving with General Semantics.

    Science.gov (United States)

    Hewson, David

    1996-01-01

    Discusses how to use general semantics formulations to improve problem solving at home or at work--methods come from the areas of artificial intelligence/computer science, engineering, operations research, and psychology. (PA)

  13. Interactive Problem-Solving Interventions

    African Journals Online (AJOL)

    Frew Demeke Alemu

    concerted efforts of unofficial actors to establish unofficial communication ... Frew Demeke Alemu (LLB, LLM in International Human Rights Law from Lund ..... 24 Tamra Pearson d'Estrée (2009), “Problem-Solving Approaches”, (in The SAGE ...

  14. Students applying their knowledge of material science in problem-solving: implications for competence based-learning at the University of Zimbabwe

    Directory of Open Access Journals (Sweden)

    Peter Kwaira

    2017-05-01

    Full Text Available This study involved a class of serving teachers in their second year of a Bachelor of Education degree programme, in which one of the pre-requisite courses covered during first year was ‘Principles of Material Science (PMS. At the time of study, they were studying ‘Machine-shop Practice’ (MsP; a course based on the Design and Technology (D&T approach, in terms of teaching and learning. They were required to solve practical-technical problems through hands-on practical activities, supported by relevant ancillary theory. In practice, during such activities, students are expected to demonstrate the ability to apply their knowledge of Material Science (MS in various ways; for example, in the choice of materials for given projects aimed at solving specific problems and in the methods of working such materials. Now given this background, the problem was therefore to determine the extent to which students applied their knowledge of MS in solving selected problems under MsP. Data were gathered through interviews, discussions, observations and document analysis. Findings showed students being able to apply their knowledge of MS effectively during problem-solving under MsP; thereby, qualifying their learning as having been outcome-based in nature.

  15. Using a general problem-solving strategy to promote transfer.

    Science.gov (United States)

    Youssef-Shalala, Amina; Ayres, Paul; Schubert, Carina; Sweller, John

    2014-09-01

    Cognitive load theory was used to hypothesize that a general problem-solving strategy based on a make-as-many-moves-as-possible heuristic could facilitate problem solutions for transfer problems. In four experiments, school students were required to learn about a topic through practice with a general problem-solving strategy, through a conventional problem solving strategy or by studying worked examples. In Experiments 1 and 2 using junior high school students learning geometry, low knowledge students in the general problem-solving group scored significantly higher on near or far transfer tests than the conventional problem-solving group. In Experiment 3, an advantage for a general problem-solving group over a group presented worked examples was obtained on far transfer tests using the same curriculum materials, again presented to junior high school students. No differences between conditions were found in Experiments 1, 2, or 3 using test problems similar to the acquisition problems. Experiment 4 used senior high school students studying economics and found the general problem-solving group scored significantly higher than the conventional problem-solving group on both similar and transfer tests. It was concluded that the general problem-solving strategy was helpful for novices, but not for students that had access to domain-specific knowledge. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  16. Problem Solving Model for Science Learning

    Science.gov (United States)

    Alberida, H.; Lufri; Festiyed; Barlian, E.

    2018-04-01

    This research aims to develop problem solving model for science learning in junior high school. The learning model was developed using the ADDIE model. An analysis phase includes curriculum analysis, analysis of students of SMP Kota Padang, analysis of SMP science teachers, learning analysis, as well as the literature review. The design phase includes product planning a science-learning problem-solving model, which consists of syntax, reaction principle, social system, support system, instructional impact and support. Implementation of problem-solving model in science learning to improve students' science process skills. The development stage consists of three steps: a) designing a prototype, b) performing a formative evaluation and c) a prototype revision. Implementation stage is done through a limited trial. A limited trial was conducted on 24 and 26 August 2015 in Class VII 2 SMPN 12 Padang. The evaluation phase was conducted in the form of experiments at SMPN 1 Padang, SMPN 12 Padang and SMP National Padang. Based on the development research done, the syntax model problem solving for science learning at junior high school consists of the introduction, observation, initial problems, data collection, data organization, data analysis/generalization, and communicating.

  17. Using In-class Group Exercises to Enhance Lectures and Provide Introductory Physics Students an Opportunity to Perfect Problem Solving Skills through Interactions with Fellow Students

    Science.gov (United States)

    Trout, Joseph; Bland, Jared

    2013-03-01

    In this pilot project, one hour of lecture time was replaced with one hour of in-class assignments, which groups of students collaborated on. These in-class assignments consisted of problems or projects selected for the calculus-based introductory physics students The first problem was at a level of difficulty that the majority of the students could complete with a small to moderate amount of difficulty. Each successive problem was increasingly more difficult, the last problem being having a level of difficulty that was beyond the capabilities of the majority of the students and required some instructor intervention. The students were free to choose their own groups. Students were encouraged to interact and help each other understand. The success of the in-class exercises were measured using pre-tests and post-tests. The pre-test and post-test were completed by each student independently. Statistics were also compiled on each student's attendance record and the amount of time spent reading and studying, as reported by the student. Statistics were also completed on the student responses when asked if they had sufficient time to complete the pre-test and post-test and if they would have completed the test with the correct answers if they had more time. The pre-tests and post-tests were not used in the computation of the grades of the students.

  18. The Effect of Using Brainstorming Strategy in Developing Creative Problem Solving Skills among Male Students in Kuwait: A Field Study on Saud Al-Kharji School in Kuwait City

    Science.gov (United States)

    AlMutairi, Abdullahi Naser Mohammad

    2015-01-01

    The purpose of this study is to investigate the effect of using brainstorm strategy in developing creative problem solving skills among male students in Saud Al-Kharji School in Kuwait. The sample of the study consisted of (98) male students. The sample was distributed into two classes, the first represents the experimental group totaling (47)…

  19. Serving Up Number Sense and Problem Solving: Dinner at the Panda Palace.

    Science.gov (United States)

    Wickett, Maryann S.

    1997-01-01

    Describes strategies for using literature to teach number sense and problem solving. Reports that the rich class discussions reflected some of the students' thinking, gave students opportunities to share their approaches and understandings, and gave the teacher additional insights into students' thinking. (JRH)

  20. A real-time spoken-language system for interactive problem-solving, combining linguistic and statistical technology for improved spoken language understanding

    Science.gov (United States)

    Moore, Robert C.; Cohen, Michael H.

    1993-09-01

    Under this effort, SRI has developed spoken-language technology for interactive problem solving, featuring real-time performance for up to several thousand word vocabularies, high semantic accuracy, habitability within the domain, and robustness to many sources of variability. Although the technology is suitable for many applications, efforts to date have focused on developing an Air Travel Information System (ATIS) prototype application. SRI's ATIS system has been evaluated in four ARPA benchmark evaluations, and has consistently been at or near the top in performance. These achievements are the result of SRI's technical progress in speech recognition, natural-language processing, and speech and natural-language integration.

  1. Threshold Concepts in the Development of Problem-Solving Skills

    Science.gov (United States)

    Wismath, Shelly; Orr, Doug; MacKay, Bruce

    2015-01-01

    Problem-solving skills are often identified as a key component of 21st century education. This study collected data from students enrolled in a university-level Liberal Education science course called "Problems and Puzzles," which introduced students to the theory and practice of problem solving via puzzles. Based on classroom…

  2. Measuring Problem Solving Skills in Plants vs. Zombies 2

    Science.gov (United States)

    Shute, Valerie J.; Moore, Gregory R.; Wang, Lubin

    2015-01-01

    We are using stealth assessment, embedded in "Plants vs. Zombies 2," to measure middle-school students' problem solving skills. This project started by developing a problem solving competency model based on a thorough review of the literature. Next, we identified relevant in-game indicators that would provide evidence about students'…

  3. Instructional Design-Based Research on Problem Solving Strategies

    Science.gov (United States)

    Emre-Akdogan, Elçin; Argün, Ziya

    2016-01-01

    The main goal of this study is to find out the effect of the instructional design method on the enhancement of problem solving abilities of students. Teaching sessions were applied to ten students who are in 11th grade, to teach them problem solving strategies which are working backwards, finding pattern, adopting a different point of view,…

  4. Glogs as Non-Routine Problem Solving Tools in Mathematics

    Science.gov (United States)

    Devine, Matthew T.

    2013-01-01

    In mathematical problem solving, American students are falling behind their global peers because of a lack of foundational and reasoning skills. A specific area of difficulty with problem solving is working non-routine, heuristic-based problems. Many students are not provided with effective instruction and often grow frustrated and dislike math.…

  5. Relationship between Problem-Solving Ability and Career Maturity ...

    African Journals Online (AJOL)

    This study investigated the relationship between problem-solving ability and career maturity of secondary school students in Ibadan, Oyo State, Nigeria. 230 final year secondary school students completed self-report measures of problem solving and career maturity. Multiple regression analysis was used to analyse the data ...

  6. The relation between early constructive play and mathematical word problem solving is mediated by spatial ability. A path analysis in sixth grade students.

    NARCIS (Netherlands)

    Oostermeijer, M.; Boonen, A.J.H.; Jolles, J.

    2014-01-01

    The scientific literature shows that constructive play activities are positively related to children's spatial ability. Likewise, a close positive relation is found between spatial ability and mathematical word problem-solving performances. The relation between children's constructive play and their

  7. Simon on Problem-Solving

    DEFF Research Database (Denmark)

    Foss, Kirsten; Foss, Nicolai Juul

    as a general approach to problem solving. We apply these Simonian ideas to organizational issues, specifically new organizational forms. Specifically, Simonian ideas allow us to develop a morphology of new organizational forms and to point to some design problems that characterize these forms.Keywords: Herbert...... Simon, problem-solving, new organizational forms. JEL Code: D23, D83......Two of Herbert Simon's best-known papers are "The Architecture of Complexity" and "The Structure of Ill-Structured Problems." We discuss the neglected links between these two papers, highlighting the role of decomposition in the context of problems on which constraints have been imposed...

  8. Interactive problem solving using LOGO

    CERN Document Server

    Boecker, Heinz-Dieter; Fischer, Gerhard

    2014-01-01

    This book is unique in that its stress is not on the mastery of a programming language, but on the importance and value of interactive problem solving. The authors focus on several specific interest worlds: mathematics, computer science, artificial intelligence, linguistics, and games; however, their approach can serve as a model that may be applied easily to other fields as well. Those who are interested in symbolic computing will find that Interactive Problem Solving Using LOGO provides a gentle introduction from which one may move on to other, more advanced computational frameworks or more

  9. Inference rule and problem solving

    Energy Technology Data Exchange (ETDEWEB)

    Goto, S

    1982-04-01

    Intelligent information processing signifies an opportunity of having man's intellectual activity executed on the computer, in which inference, in place of ordinary calculation, is used as the basic operational mechanism for such an information processing. Many inference rules are derived from syllogisms in formal logic. The problem of programming this inference function is referred to as a problem solving. Although logically inference and problem-solving are in close relation, the calculation ability of current computers is on a low level for inferring. For clarifying the relation between inference and computers, nonmonotonic logic has been considered. The paper deals with the above topics. 16 references.

  10. Analysis of problem solving in terms of cognitive style

    Science.gov (United States)

    Anthycamurty, Rr C. C.; Mardiyana; Saputro, D. R. S.

    2018-03-01

    The purpose of this study was to analyze the problem solving based on the type of cognitive style. Subjects used in this study are students of class X SMK located in Purworejo. The method used in this research is qualitative descriptive. Data collection techniques used in this research is a problem-solving test to determine student problem solving and GEFT to determine the type of cognitive style possessed by students. The result of this research is to determine the mastery of each type in cognitive style, that is Field Independent type and Field Dependent type on problem solving indicator. The impact of this research is the teacher can know the mastery of student problem solving on each type of cognitive style so that teacher can determine the proper way of delivering to student at next meeting.

  11. Investigating a Proposed Problem Solving Theory in the Context of Mathematical Problem Solving: A Multi-Case Study

    Science.gov (United States)

    Mills, Nadia Monrose

    2015-01-01

    The ability to succeed in Science, Technology, Engineering, and Mathematics (STEM) careers is contingent on a student's ability to engage in mathematical problem solving. As a result, there has been increased focus on students' ability to think critically by providing them more with problem solving experiences in the classroom. Much research has…

  12. The effectiveness of problem-based learning on students’ problem solving ability in vector analysis course

    Science.gov (United States)

    Mushlihuddin, R.; Nurafifah; Irvan

    2018-01-01

    The student’s low ability in mathematics problem solving proved to the less effective of a learning process in the classroom. Effective learning was a learning that affects student’s math skills, one of which is problem-solving abilities. Problem-solving capability consisted of several stages: understanding the problem, planning the settlement, solving the problem as planned, re-examining the procedure and the outcome. The purpose of this research was to know: (1) was there any influence of PBL model in improving ability Problem solving of student math in a subject of vector analysis?; (2) was the PBL model effective in improving students’ mathematical problem-solving skills in vector analysis courses? This research was a quasi-experiment research. The data analysis techniques performed from the test stages of data description, a prerequisite test is the normality test, and hypothesis test using the ANCOVA test and Gain test. The results showed that: (1) there was an influence of PBL model in improving students’ math problem-solving abilities in vector analysis courses; (2) the PBL model was effective in improving students’ problem-solving skills in vector analysis courses with a medium category.

  13. Human Problem Solving in 2012

    Science.gov (United States)

    Funke, Joachim

    2013-01-01

    This paper presents a bibliography of 263 references related to human problem solving, arranged by subject matter. The references were taken from PsycInfo and Academic Premier data-base. Journal papers, book chapters, and dissertations are included. The topics include human development, education, neuroscience, and research in applied settings. It…

  14. Error Patterns in Problem Solving.

    Science.gov (United States)

    Babbitt, Beatrice C.

    Although many common problem-solving errors within the realm of school mathematics have been previously identified, a compilation of such errors is not readily available within learning disabilities textbooks, mathematics education texts, or teacher's manuals for school mathematics texts. Using data on error frequencies drawn from both the Fourth…

  15. Improving of Junior High School Visual Thinking Representation Ability in Mathematical Problem Solving by CTL

    Science.gov (United States)

    Surya, Edy; Sabandar, Jozua; Kusumah, Yaya S.; Darhim

    2013-01-01

    The students' difficulty which was found is in the problem of understanding, drawing diagrams, reading the charts correctly, conceptual formal mathematical understanding, and mathematical problem solving. The appropriate problem representation is the basic way in order to understand the problem itself and make a plan to solve it. This research was…

  16. Problem solving skills for schizophrenia.

    Science.gov (United States)

    Xia, J; Li, Chunbo

    2007-04-18

    The severe and long-lasting symptoms of schizophrenia are often the cause of severe disability. Environmental stress such as life events and the practical problems people face in their daily can worsen the symptoms of schizophrenia. Deficits in problem solving skills in people with schizophrenia affect their independent and interpersonal functioning and impair their quality of life. As a result, therapies such as problem solving therapy have been developed to improve problem solving skills for people with schizophrenia. To review the effectiveness of problem solving therapy compared with other comparable therapies or routine care for those with schizophrenia. We searched the Cochrane Schizophrenia Group's Register (September 2006), which is based on regular searches of BIOSIS, CENTRAL, CINAHL, EMBASE, MEDLINE and PsycINFO. We inspected references of all identified studies for further trials. We included all clinical randomised trials comparing problem solving therapy with other comparable therapies or routine care. We extracted data independently. For homogenous dichotomous data we calculated random effects, relative risk (RR), 95% confidence intervals (CI) and, where appropriate, numbers needed to treat (NNT) on an intention-to-treat basis. For continuous data, we calculated weighted mean differences (WMD) using a random effects statistical model. We included only three small trials (n=52) that evaluated problem solving versus routine care, coping skills training or non-specific interaction. Inadequate reporting of data rendered many outcomes unusable. We were unable to undertake meta-analysis. Overall results were limited and inconclusive with no significant differences between treatment groups for hospital admission, mental state, behaviour, social skills or leaving the study early. No data were presented for global state, quality of life or satisfaction. We found insufficient evidence to confirm or refute the benefits of problem solving therapy as an additional

  17. Exploring Primary Student’s Problem-Solving Ability by Doing Tasks Like PISA's Question

    Directory of Open Access Journals (Sweden)

    Rita Novita

    2012-07-01

    Full Text Available Problem solving plays an important role in mathematics and should have a prominent role in the mathematics education. The term “problem solving” refers to mathematics tasks that have the potential to provide intellectual challenges for enhancing students’ mathematical understanding and development. In addition, the contextual problem that requires students to connect their mathematical knowledge in solving mathematical situational problem is believed to be an impact on the development students’ problem-solving ability. The tasks that have been developed by PISA meet both of these criteria. As stated by the NCTM, that problem-solving skill and ability should be developed to students when they were in primary school (K5-8, therefore, it is important to do an effort to guide students in developing problem-solving ability from primary school such as accustom students to do some mathematical solving-problem tasks. Thus, in this research we tried to investigate how to develop mathematical problem-solving tasks like PISA’s question that have potential effect toward students’ mathematical problem-solving abilities?. We used a  formative evaluation type of development research as an mean  to achieve this research goal. This type of research is conducted in two steps, namely preliminary stage and formative evaluation stage covering self evaluation, prototyping (expert reviews, one-to-one, and small group, and  field test. This research involve four primary schools in Palembang, there are SD Muhammadiyah 6 Palembang, MIN 1 & MIN 2 Palembang, and SDN 179 Palembang. The result of this research showed that the mathematical problem-solving tasks  that have been developed have potential effect in exploring mathematical problem-solving ability of the primary school students. It  is shown from their work in solving problem where all of the indicators of problem solving competency have emerged quite well category. In addition, based on interview

  18. The semantic system is involved in mathematical problem solving.

    Science.gov (United States)

    Zhou, Xinlin; Li, Mengyi; Li, Leinian; Zhang, Yiyun; Cui, Jiaxin; Liu, Jie; Chen, Chuansheng

    2018-02-01

    Numerous studies have shown that the brain regions around bilateral intraparietal cortex are critical for number processing and arithmetical computation. However, the neural circuits for more advanced mathematics such as mathematical problem solving (with little routine arithmetical computation) remain unclear. Using functional magnetic resonance imaging (fMRI), this study (N = 24 undergraduate students) compared neural bases of mathematical problem solving (i.e., number series completion, mathematical word problem solving, and geometric problem solving) and arithmetical computation. Direct subject- and item-wise comparisons revealed that mathematical problem solving typically had greater activation than arithmetical computation in all 7 regions of the semantic system (which was based on a meta-analysis of 120 functional neuroimaging studies on semantic processing). Arithmetical computation typically had greater activation in the supplementary motor area and left precentral gyrus. The results suggest that the semantic system in the brain supports mathematical problem solving. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Effectiveness of discovery learning model on mathematical problem solving

    Science.gov (United States)

    Herdiana, Yunita; Wahyudin, Sispiyati, Ririn

    2017-08-01

    This research is aimed to describe the effectiveness of discovery learning model on mathematical problem solving. This research investigate the students' problem solving competency before and after learned by using discovery learning model. The population used in this research was student in grade VII in one of junior high school in West Bandung Regency. From nine classes, class VII B were randomly selected as the sample of experiment class, and class VII C as control class, which consist of 35 students every class. The method in this research was quasi experiment. The instrument in this research is pre-test, worksheet and post-test about problem solving of mathematics. Based on the research, it can be conclude that the qualification of problem solving competency of students who gets discovery learning model on level 80%, including in medium category and it show that discovery learning model effective to improve mathematical problem solving.

  20. Fifth and Sixth Grade Students' Deficiencies on Word Problem Solving and Failures in the Problem Solving Process [Beşinci ve Altıncı Sınıf Öğrencilerinin Sözel Problemleri Çözme Konusundaki Yetersizlikleri ve Problem Çözümlerindeki Hataları

    Directory of Open Access Journals (Sweden)

    Dilek Sezgin Memnun

    2014-08-01

    Full Text Available In this research, it was aimed to determine the deficiencies of secondary school fifth- and sixth-grade students on word problem solving and their failures in this process. For this purpose, four separate word problems were asked to the students and their written answers were taken at the implementation process. The analysis of the data suggests that a significant part of these secondary school students had deficiencies during word problem solving and their failures in this process. Moreover, these deficiencies and failures were reported to be related to the understanding of word problems and the planning for solutions in the solving process. In addition, it was found that the fifth- and sixth- grade students rarely attempted to use drawing in order to solve the word problems. They mostly had deficiencies in deciding which arithmetic operations to be used while approaching the problems and they had failures at their arithmetic operations. [Bu araştırmada, ortaokul beşinci ve altıncı sınıf öğrencilerinin sözel problemleri çözme konusundaki yetersizlikleri ile bu tür problem çözümlerindeki hatalarının belirlenmesi amaçlanmıştır. Bu amaçla, beşinci ve altıncı sınıf öğrencilerine dört farklı sözel problem sorulmuş ve cevapları yazılı olarak alınmıştır. Ulaşılan verilerin analizi, ortaokul öğrencilerinin önemli bir kısmının sözel problemleri çözme konusunda yetersizlikleri ve problem çözümlerinde hataları bulunduğunu göstermiştir. Ayrıca, bu yetersizlik ve hatalarının çoğunlukla problem çözme süreci kapsamında problemin anlaşılması ve çözüm için plan yapma aşamalarına ilişkin olduğu belirlenmiştir. Bununla birlikte, beşinci ve altıncı sınıf öğrencilerinin sözel problem çözümlerinde şekil çizmeye çok az yer verdikleri anlaşılmıştır. Öğrenciler problemlere yaklaşımlarında kullanacakları uygun aritmetik işlemlere karar vermede çoğunlukla yetersiz

  1. Analysis of mathematical problem-solving ability based on metacognition on problem-based learning

    Science.gov (United States)

    Mulyono; Hadiyanti, R.

    2018-03-01

    Problem-solving is the primary purpose of the mathematics curriculum. Problem-solving abilities influenced beliefs and metacognition. Metacognition as superordinate capabilities can direct, regulate cognition and motivation and then problem-solving processes. This study aims to (1) test and analyzes the quality of problem-based learning and (2) investigate the problem-solving capabilities based on metacognition. This research uses mixed method study with The subject research are class XI students of Mathematics and Science at High School Kesatrian 2 Semarang which divided into tacit use, aware use, strategic use and reflective use level. The collecting data using scale, interviews, and tests. The data processed with the proportion of test, t-test, and paired samples t-test. The result shows that the students with levels tacit use were able to complete the whole matter given, but do not understand what and why a strategy is used. Students with aware use level were able to solve the problem, be able to build new knowledge through problem-solving to the indicators, understand the problem, determine the strategies used, although not right. Students on the Strategic ladder Use can be applied and adopt a wide variety of appropriate strategies to solve the issues and achieved re-examine indicators of process and outcome. The student with reflective use level is not found in this study. Based on the results suggested that study about the identification of metacognition in problem-solving so that the characteristics of each level of metacognition more clearly in a more significant sampling. Teachers need to know in depth about the student metacognitive activity and its relationship with mathematical problem solving and another problem resolution.

  2. Self-affirmation improves problem-solving under stress.

    Science.gov (United States)

    Creswell, J David; Dutcher, Janine M; Klein, William M P; Harris, Peter R; Levine, John M

    2013-01-01

    High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings.

  3. Emergent Leadership in Children's Cooperative Problem Solving Groups

    Science.gov (United States)

    Sun, Jingjng; Anderson, Richard C.; Perry, Michelle; Lin, Tzu-Jung

    2017-01-01

    Social skills involved in leadership were examined in a problem-solving activity in which 252 Chinese 5th-graders worked in small groups on a spatial-reasoning puzzle. Results showed that students who engaged in peer-managed small-group discussions of stories prior to problem solving produced significantly better solutions and initiated…

  4. Problem solving and problem strategies in the teaching and learning ...

    African Journals Online (AJOL)

    Perennial poor performance recorded annually in both internal and external examinations in Mathematics has been a great concern for the Mathematics Educators in Nigeria. This paper discusses problem-solving and influence of problem-solving strategies on students' performance in mathematics. The concept of ...

  5. Internet Computer Coaches for Introductory Physics Problem Solving

    Science.gov (United States)

    Xu Ryan, Qing

    2013-01-01

    The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the…

  6. Best Known Problem Solving Strategies in "High-Stakes" Assessments

    Science.gov (United States)

    Hong, Dae S.

    2011-01-01

    In its mathematics standards, National Council of Teachers of Mathematics (NCTM) states that problem solving is an integral part of all mathematics learning and exposure to problem solving strategies should be embedded across the curriculum. Furthermore, by high school, students should be able to use, decide and invent a wide range of strategies.…

  7. Extricating Justification Scheme Theory in Middle School Mathematical Problem Solving

    Science.gov (United States)

    Matteson, Shirley; Capraro, Mary Margaret; Capraro, Robert M.; Lincoln, Yvonna S.

    2012-01-01

    Twenty middle grades students were interviewed to gain insights into their reasoning about problem-solving strategies using a Problem Solving Justification Scheme as our theoretical lens and the basis for our analysis. The scheme was modified from the work of Harel and Sowder (1998) making it more broadly applicable and accounting for research…

  8. Logo Programming, Problem Solving, and Knowledge-Based Instruction.

    Science.gov (United States)

    Swan, Karen; Black, John B.

    The research reported in this paper was designed to investigate the hypothesis that computer programming may support the teaching and learning of problem solving, but that to do so, problem solving must be explicitly taught. Three studies involved students in several grades: 4th, 6th, 8th, 11th, and 12th. Findings collectively show that five…

  9. Problem Solving in Technology Education: A Taoist Perspective.

    Science.gov (United States)

    Flowers, Jim

    1998-01-01

    Offers a new approach to teaching problem solving in technology education that encourages students to apply problem-solving skills to improving the human condition. Suggests that technology teachers incorporate elements of a Taoist approach in teaching by viewing technology as a tool with a goal of living a harmonious life. (JOW)

  10. Innovation and problem solving: a review of common mechanisms.

    Science.gov (United States)

    Griffin, Andrea S; Guez, David

    2014-11-01

    Behavioural innovations have become central to our thinking about how animals adjust to changing environments. It is now well established that animals vary in their ability to innovate, but understanding why remains a challenge. This is because innovations are rare, so studying innovation requires alternative experimental assays that create opportunities for animals to express their ability to invent new behaviours, or use pre-existing ones in new contexts. Problem solving of extractive foraging tasks has been put forward as a suitable experimental assay. We review the rapidly expanding literature on problem solving of extractive foraging tasks in order to better understand to what extent the processes underpinning problem solving, and the factors influencing problem solving, are in line with those predicted, and found, to underpin and influence innovation in the wild. Our aim is to determine whether problem solving can be used as an experimental proxy of innovation. We find that in most respects, problem solving is determined by the same underpinning mechanisms, and is influenced by the same factors, as those predicted to underpin, and to influence, innovation. We conclude that problem solving is a valid experimental assay for studying innovation, propose a conceptual model of problem solving in which motor diversity plays a more central role than has been considered to date, and provide recommendations for future research using problem solving to investigate innovation. This article is part of a Special Issue entitled: Cognition in the wild. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Fellowship Connects Principal Learning to Student Achievement: How an External Benefactor, a Research University, and an Urban School District Build Capacity for Problem Solving

    Science.gov (United States)

    Dunbar, Krista; Monson, Robert J.

    2011-01-01

    Much has been written about the disconnect between education research produced in graduate schools of education and the practice of school leaders. In this article, the authors share one story of an external partnership that promotes the development of a principal's capacity for complex problem solving and the early research that suggests this…

  12. Teachers' Conceptualization and Actual Practice in the Student Evaluation Process at the Upper Secondary School Level in Japan, Focusing on Problem Solving Skills.

    Science.gov (United States)

    Wai, Nu Nu; Hirakawa, Yukiko

    2001-01-01

    Studied the participation and performance of upper secondary school teachers in Japan through surveys completed by 360 Geography teachers. Findings suggest that the importance of developing problem-solving skills is widely recognized among these teachers. Implementing training in such skills is much more difficult. Developing effective teaching…

  13. Relationship among Students' Problem-Solving Attitude, Perceived Value, Behavioral Attitude, and Intention to Participate in a Science and Technology Contest

    Science.gov (United States)

    Huang, Neng-Tang Norman; Chiu, Li-Jia; Hong, Jon-Chao

    2016-01-01

    The strong humanistic and ethics-oriented philosophy of Confucianism tends to lead people influenced by these principles to undervalue the importance of hands-on practice and creativity in education. GreenMech, a science and technology contest, was implemented to encourage real-world, hands-on problem solving in an attempt to mitigate this effect.…

  14. "We Definitely Wouldn't Be Able to Solve It All by Ourselves, but Together…": Group Synergy in Tertiary Students' Problem-Solving Practices

    Science.gov (United States)

    Clark, Kathleen; James, Alex; Montelle, Clemency

    2014-01-01

    The ability to address and solve problems in minimally familiar contexts is the core business of research mathematicians. Recent studies have identified key traits and techniques that individuals exhibit while problem solving, and revealed strategies and behaviours that are frequently invoked in the process. We studied advanced calculus students…

  15. Flexibility in Mathematics Problem Solving Based on Adversity Quotient

    Science.gov (United States)

    Dina, N. A.; Amin, S. M.; Masriyah

    2018-01-01

    Flexibility is an ability which is needed in problem solving. One of the ways in problem solving is influenced by Adversity Quotient (AQ). AQ is the power of facing difficulties. There are three categories of AQ namely climber, camper, and quitter. This research is a descriptive research using qualitative approach. The aim of this research is to describe flexibility in mathematics problem solving based on Adversity Quotient. The subjects of this research are climber student, camper student, and quitter student. This research was started by giving Adversity Response Profile (ARP) questioner continued by giving problem solving task and interviews. The validity of data measurement was using time triangulation. The results of this research shows that climber student uses two strategies in solving problem and doesn’t have difficulty. The camper student uses two strategies in solving problem but has difficulty to finish the second strategies. The quitter student uses one strategy in solving problem and has difficulty to finish it.

  16. Threshold Concepts in the Development of Problem-solving Skills

    Directory of Open Access Journals (Sweden)

    Shelly Wismath

    2015-03-01

    Full Text Available Problem-solving skills are often identified as a key component of 21st century education. This study collected data from students enrolled in a university-level Liberal Education science course called Problems and Puzzles, which introduced students to the theory and practice of problem solving via puzzles. Based on classroom observation and other qualitative data collected over three semesters, we have identified three significant changes in student behaviour at specific points in the course. These changes can be posited to reveal three underlying threshold concepts in the evolution and establishment of students’ problem-solving skills.

  17. Threshold Concepts in the Development of Problem-solving Skills

    OpenAIRE

    Shelly Wismath; Doug Orr; Bruce MacKay

    2015-01-01

    Problem-solving skills are often identified as a key component of 21st century education. This study collected data from students enrolled in a university-level Liberal Education science course called Problems and Puzzles, which introduced students to the theory and practice of problem solving via puzzles. Based on classroom observation and other qualitative data collected over three semesters, we have identified three significant changes in student behaviour at specific points in the course....

  18. Problem solving and inference mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, K; Nakajima, R; Yonezawa, A; Goto, S; Aoyama, A

    1982-01-01

    The heart of the fifth generation computer will be powerful mechanisms for problem solving and inference. A deduction-oriented language is to be designed, which will form the core of the whole computing system. The language is based on predicate logic with the extended features of structuring facilities, meta structures and relational data base interfaces. Parallel computation mechanisms and specialized hardware architectures are being investigated to make possible efficient realization of the language features. The project includes research into an intelligent programming system, a knowledge representation language and system, and a meta inference system to be built on the core. 30 references.

  19. Examining problem solving in physics-intensive Ph.D. research

    Science.gov (United States)

    Leak, Anne E.; Rothwell, Susan L.; Olivera, Javier; Zwickl, Benjamin; Vosburg, Jarrett; Martin, Kelly Norris

    2017-12-01

    Problem-solving strategies learned by physics undergraduates should prepare them for real-world contexts as they transition from students to professionals. Yet, graduate students in physics-intensive research face problems that go beyond problem sets they experienced as undergraduates and are solved by different strategies than are typically learned in undergraduate coursework. This paper expands the notion of problem solving by characterizing the breadth of problems and problem-solving processes carried out by graduate students in physics-intensive research. We conducted semi-structured interviews with ten graduate students to determine the routine, difficult, and important problems they engage in and problem-solving strategies they found useful in their research. A qualitative typological analysis resulted in the creation of a three-dimensional framework: context, activity, and feature (that made the problem challenging). Problem contexts extended beyond theory and mathematics to include interactions with lab equipment, data, software, and people. Important and difficult contexts blended social and technical skills. Routine problem activities were typically well defined (e.g., troubleshooting), while difficult and important ones were more open ended and had multiple solution paths (e.g., evaluating options). In addition to broadening our understanding of problems faced by graduate students, our findings explore problem-solving strategies (e.g., breaking down problems, evaluating options, using test cases or approximations) and characteristics of successful problem solvers (e.g., initiative, persistence, and motivation). Our research provides evidence of the influence that problems students are exposed to have on the strategies they use and learn. Using this evidence, we have developed a preliminary framework for exploring problems from the solver's perspective. This framework will be examined and refined in future work. Understanding problems graduate students

  20. Examining problem solving in physics-intensive Ph.D. research

    Directory of Open Access Journals (Sweden)

    Anne E. Leak

    2017-07-01

    Full Text Available Problem-solving strategies learned by physics undergraduates should prepare them for real-world contexts as they transition from students to professionals. Yet, graduate students in physics-intensive research face problems that go beyond problem sets they experienced as undergraduates and are solved by different strategies than are typically learned in undergraduate coursework. This paper expands the notion of problem solving by characterizing the breadth of problems and problem-solving processes carried out by graduate students in physics-intensive research. We conducted semi-structured interviews with ten graduate students to determine the routine, difficult, and important problems they engage in and problem-solving strategies they found useful in their research. A qualitative typological analysis resulted in the creation of a three-dimensional framework: context, activity, and feature (that made the problem challenging. Problem contexts extended beyond theory and mathematics to include interactions with lab equipment, data, software, and people. Important and difficult contexts blended social and technical skills. Routine problem activities were typically well defined (e.g., troubleshooting, while difficult and important ones were more open ended and had multiple solution paths (e.g., evaluating options. In addition to broadening our understanding of problems faced by graduate students, our findings explore problem-solving strategies (e.g., breaking down problems, evaluating options, using test cases or approximations and characteristics of successful problem solvers (e.g., initiative, persistence, and motivation. Our research provides evidence of the influence that problems students are exposed to have on the strategies they use and learn. Using this evidence, we have developed a preliminary framework for exploring problems from the solver’s perspective. This framework will be examined and refined in future work. Understanding problems

  1. Developing material for promoting problem-solving ability through bar modeling technique

    Science.gov (United States)

    Widyasari, N.; Rosiyanti, H.

    2018-01-01

    This study aimed at developing material for enhancing problem-solving ability through bar modeling technique with thematic learning. Polya’s steps of problem-solving were chosen as the basis of the study. The methods of the study were research and development. The subject of this study were five teen students of the fifth grade of Lab-school FIP UMJ elementary school. Expert review and student’ response analysis were used to collect the data. Furthermore, the data were analyzed using qualitative descriptive and quantitative. The findings showed that material in theme “Selalu Berhemat Energi” was categorized as valid and practical. The validity was measured by using the aspect of language, contents, and graphics. Based on the expert comments, the materials were easy to implement in the teaching-learning process. In addition, the result of students’ response showed that material was both interesting and easy to understand. Thus, students gained more understanding in learning problem-solving.

  2. Student performance and their perception of a patient-oriented problem-solving approach with audiovisual aids in teaching pathology: a comparison with traditional lectures

    OpenAIRE

    Singh, Arjun

    2010-01-01

    Arjun SinghDepartment of Pathology, Sri Venkateshwara Medical College Hospital and Research Centre, Pondicherry, IndiaPurpose: We use different methods to train our undergraduates. The patient-oriented problem-solving (POPS) system is an innovative teaching–learning method that imparts knowledge, enhances intrinsic motivation, promotes self learning, encourages clinical reasoning, and develops long-lasting memory. The aim of this study was to develop POPS in teaching pathology, asse...

  3. Learning via problem solving in mathematics education

    Directory of Open Access Journals (Sweden)

    Piet Human

    2009-09-01

    problem-solving movement, over the last twenty years, mathematics educators around the world started increasingly to appreciate the role of social interaction and mathematical discourse in classrooms, and to take into consideration the infl uence of the social, socio-mathematical and mathematical norms established in classrooms. This shift away from an emphasis on individualised instruction towards classroom practices characterised by rich and focused social interaction orchestrated by the teacher, became the second element, next to problem-solving, of what is now known as the “reform agenda”. Learning and teaching by means of problem-solving in a socially-interactive classroom, with a strong demand for conceptual understanding, is radically different from traditional expository teaching. However, contrary to commonly-held misunderstandings, it requires substantial teacher involvement. It also requires teachers to assume a much higher level of responsibility for the extent and quality of learning than that which teachers tended to assume traditionally. Over the last 10 years, teaching for and via problem solving has become entrenched in the national mathematics curriculum statements of many countries, and programs have been launched to induce and support teachers to implement it. Actual implementation of the “reform agenda” in classrooms is, however, still limited. The limited implementation is ascribed to a number of factors, including the failure of assessment practices to accommodate problem solving and higher levels of understanding that may be facilitated by teaching via problem solving, lack of clarity about what teaching for and via problem solving may actually mean in practice, and limited mathematical expertise of teachers. Some leading mathematics educators (for example, Schoenfeld, Stigler and Hiebert believe that the reform agenda specifi es classroom practices that are fundamentally foreign to culturally embedded pedagogical traditions, and hence

  4. Improving of Junior High School Visual Thinking Representation Ability in Mathematical Problem Solving by CTL

    Directory of Open Access Journals (Sweden)

    Edy Surya

    2013-01-01

    Full Text Available The students’  difficulty which was found is in the problem of understanding, drawing diagrams, reading the charts correctly, conceptual formal  mathematical understanding, and  mathematical problem solving. The appropriate problem representation is the basic way in order to understand the problem itself and make a plan to solve it. This research was the experimental classroom design with a pretest-posttest control in order to increase the representation of visual thinking ability on mathematical problem solving approach  with  contextual learning. The research instrument was a test, observation and interviews. Contextual approach increases of mathematical representations ability increases in students with high initial category, medium, and low compared to conventional approaches. Keywords: Visual Thinking Representation, Mathematical  Problem Solving, Contextual Teaching Learning Approach DOI: http://dx.doi.org/10.22342/jme.4.1.568.113-126

  5. Applying Cooperative Techniques in Teaching Problem Solving

    Directory of Open Access Journals (Sweden)

    Krisztina Barczi

    2013-12-01

    Full Text Available Teaching how to solve problems – from solving simple equations to solving difficult competition tasks – has been one of the greatest challenges for mathematics education for many years. Trying to find an effective method is an important educational task. Among others, the question arises as to whether a method in which students help each other might be useful. The present article describes part of an experiment that was designed to determine the effects of cooperative teaching techniques on the development of problem-solving skills.

  6. The Chem-Math Project: Enhancing Success in General Chemistry through the Integration of Mathematics, Problem-Solving and Conceptual Understanding. An Action-Research Study

    Science.gov (United States)

    Kilner, William Cary

    2014-01-01

    Freshmen with declared life-science majors typically matriculate with a determination to succeed. However, inadequately-prepared students are easily overwhelmed and at risk of abandoning their aspirations for a STEM career. The investigator designed and taught weekly recitations for approximately 850 students during a five-year span, and…

  7. Cognitive Development, Genetics Problem Solving, and Genetics Instruction: A Critical Review.

    Science.gov (United States)

    Smith, Mike U.; Sims, O. Suthern, Jr.

    1992-01-01

    Review of literature concerning problem solving in genetics and Piagetian stage theory. Authors conclude the research suggests that formal-operational thought is not strictly required for the solution of the majority of classical genetics problems; however, some genetic concepts are difficult for concrete operational students to understand.…

  8. THE INFLUENCE OF SCIENCE LEARNING SET USING SCIENTIFIC APPROACH AND PROBLEM SOLVING MODEL ON LEARNING OUTCOMES OF JUNIOR HIGH SCHOOL STUDENTS IN THE SUBJECT OF HEAT AND TEMPERATURE

    OpenAIRE

    T. Triyuni

    2016-01-01

    This research aims to produce the scientific approach for science learning using a problem solving model on the topic of heat and temperatureon the junior high school learning outcome. The curriculum used during the study was curriculum 2013 (valid, practical and effective). The development of the learning setfollowed the four-D model which was reduced to three-D model (without dissemination). The study was tested in Class VIIA, VIIB, and VIIC in SMP Negeri 5 Academic Year 2015/2016. The data...

  9. Internet computer coaches for introductory physics problem solving

    Science.gov (United States)

    Xu Ryan, Qing

    The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the educational system, national studies have shown that the majority of students emerge from such courses having made little progress toward developing good problem-solving skills. The Physics Education Research Group at the University of Minnesota has been developing Internet computer coaches to help students become more expert-like problem solvers. During the Fall 2011 and Spring 2013 semesters, the coaches were introduced into large sections (200+ students) of the calculus based introductory mechanics course at the University of Minnesota. This dissertation, will address the research background of the project, including the pedagogical design of the coaches and the assessment of problem solving. The methodological framework of conducting experiments will be explained. The data collected from the large-scale experimental studies will be discussed from the following aspects: the usage and usability of these coaches; the usefulness perceived by students; and the usefulness measured by final exam and problem solving rubric. It will also address the implications drawn from this study, including using this data to direct future coach design and difficulties in conducting authentic assessment of problem-solving.

  10. Probabilities and Predictions: Modeling the Development of Scientific Problem-Solving Skills

    Science.gov (United States)

    2005-01-01

    The IMMEX (Interactive Multi-Media Exercises) Web-based problem set platform enables the online delivery of complex, multimedia simulations, the rapid collection of student performance data, and has already been used in several genetic simulations. The next step is the use of these data to understand and improve student learning in a formative manner. This article describes the development of probabilistic models of undergraduate student problem solving in molecular genetics that detailed the spectrum of strategies students used when problem solving, and how the strategic approaches evolved with experience. The actions of 776 university sophomore biology majors from three molecular biology lecture courses were recorded and analyzed. Each of six simulations were first grouped by artificial neural network clustering to provide individual performance measures, and then sequences of these performances were probabilistically modeled by hidden Markov modeling to provide measures of progress. The models showed that students with different initial problem-solving abilities choose different strategies. Initial and final strategies varied across different sections of the same course and were not strongly correlated with other achievement measures. In contrast to previous studies, we observed no significant gender differences. We suggest that instructor interventions based on early student performances with these simulations may assist students to recognize effective and efficient problem-solving strategies and enhance learning. PMID:15746978

  11. Dissociative conceptual and quantitative problem solving outcomes across interactive engagement and traditional format introductory physics

    Directory of Open Access Journals (Sweden)

    Mark A. McDaniel

    2016-11-01

    Full Text Available The existing literature indicates that interactive-engagement (IE based general physics classes improve conceptual learning relative to more traditional lecture-oriented classrooms. Very little research, however, has examined quantitative problem-solving outcomes from IE based relative to traditional lecture-based physics classes. The present study included both pre- and post-course conceptual-learning assessments and a new quantitative physics problem-solving assessment that included three representative conservation of energy problems from a first-semester calculus-based college physics course. Scores for problem translation, plan coherence, solution execution, and evaluation of solution plausibility were extracted for each problem. Over 450 students in three IE-based sections and two traditional lecture sections taught at the same university during the same semester participated. As expected, the IE-based course produced more robust gains on a Force Concept Inventory than did the lecture course. By contrast, when the full sample was considered, gains in quantitative problem solving were significantly greater for lecture than IE-based physics; when students were matched on pre-test scores, there was still no advantage for IE-based physics on gains in quantitative problem solving. Further, the association between performance on the concept inventory and quantitative problem solving was minimal. These results highlight that improved conceptual understanding does not necessarily support improved quantitative physics problem solving, and that the instructional method appears to have less bearing on gains in quantitative problem solving than does the kinds of problems emphasized in the courses and homework and the overlap of these problems to those on the assessment.

  12. Perspectives on Problem Solving and Instruction

    Science.gov (United States)

    van Merrienboer, Jeroen J. G.

    2013-01-01

    Most educators claim that problem solving is important, but they take very different perspective on it and there is little agreement on how it should be taught. This article aims to sort out the different perspectives and discusses problem solving as a goal, a method, and a skill. As a goal, problem solving should not be limited to well-structured…

  13. A Flipped Pedagogy for Expert Problem Solving

    Science.gov (United States)

    Pritchard, David

    The internet provides free learning opportunities for declarative (Wikipedia, YouTube) and procedural (Kahn Academy, MOOCs) knowledge, challenging colleges to provide learning at a higher cognitive level. Our ``Modeling Applied to Problem Solving'' pedagogy for Newtonian Mechanics imparts strategic knowledge - how to systematically determine which concepts to apply and why. Declarative and procedural knowledge is learned online before class via an e-text, checkpoint questions, and homework on edX.org (see http://relate.mit.edu/physicscourse); it is organized into five Core Models. Instructors then coach students on simple ``touchstone problems'', novel exercises, and multi-concept problems - meanwhile exercising three of the four C's: communication, collaboration, critical thinking and problem solving. Students showed 1.2 standard deviations improvement on the MIT final exam after three weeks instruction, a significant positive shift in 7 of the 9 categories in the CLASS, and their grades improved by 0.5 standard deviation in their following physics course (Electricity and Magnetism).

  14. ACTIVE AND PARTICIPATORY METHODS IN BIOLOGY: PROBLEM-SOLVING

    Directory of Open Access Journals (Sweden)

    Adela NEMEŞ

    2010-01-01

    Full Text Available We face with considerable challenge of developing students’ problem solving skills in our difficult environment. Good problem solving skills empower managers in their professional and personal lives. Problem solving skills are valued by academics and employers. The informations in Biology are often presented in abstract forms without contextualisation. Creative problem-solving process involves a few steps, which together provide a structured procedure for identifying challenges, generating ideas and implementing innovative solutions: identifying the problem, searching for possible solutions, selecting the most optimal solution and implementing a possible solution. Each aspect of personality has a different orientation to problem solving, different criteria for judging the effectiveness of the process and different associated strengths. Using real-world data in sample problems will also help facilitate the transfer process, since students can more easily identify with the context of a given situation. The paper describes the use of the Problem-Solving in Biology and the method of its administration. It also presents the results of a study undertaken to evaluate the value in teaching Biology. Problem-solving is seen as an essential skill that is developed in biology education.

  15. Problem solving teaching practices: Observer and teacher's view

    OpenAIRE

    Felmer , Patricio; Perdomo-Díaz , Josefa; Giaconi , Valentina; Espinoza , Carmen ,

    2015-01-01

    International audience; In this article, we report on an exploratory study on teaching practices related to problem solving of a group of 29 novel secondary mathematics teachers. For this purpose, two independent instruments were designed, the first one is based on lesson observations, and the second one is a questionnaire answered by teachers about their teaching practices while working on non-routine problem solving with their students. For each instrument, we perform a statistical analysis...

  16. A broad look at the literature on math word problem-solving interventions for third graders

    Directory of Open Access Journals (Sweden)

    Sheri Kingsdorf

    2016-12-01

    Full Text Available Though research on effective instruction in math word problem solving is prominent at the middle and secondary levels, much less work has been done in elementary grades. In this article, we review the research on varied problem-solving instructional interventions at the third-grade level for students across ability levels. Third grade was chosen as the focus due to the fact that word problem-solving requirements are first introduced into the curriculum and standardized assessment at this point in time. Drawing on quantitative studies using single subject, quasi-experimental, and randomized controlled trial designs, we examine the instructional components and instructional content identified as effective across the 13 studies that met search criteria. Conclusions focus on current understanding of best practices, limitations of the existing research, and important considerations for future research.

  17. Comprehension and computation in Bayesian problem solving

    Directory of Open Access Journals (Sweden)

    Eric D. Johnson

    2015-07-01

    Full Text Available Humans have long been characterized as poor probabilistic reasoners when presented with explicit numerical information. Bayesian word problems provide a well-known example of this, where even highly educated and cognitively skilled individuals fail to adhere to mathematical norms. It is widely agreed that natural frequencies can facilitate Bayesian reasoning relative to normalized formats (e.g. probabilities, percentages, both by clarifying logical set-subset relations and by simplifying numerical calculations. Nevertheless, between-study performance on transparent Bayesian problems varies widely, and generally remains rather unimpressive. We suggest there has been an over-focus on this representational facilitator (i.e. transparent problem structures at the expense of the specific logical and numerical processing requirements and the corresponding individual abilities and skills necessary for providing Bayesian-like output given specific verbal and numerical input. We further suggest that understanding this task-individual pair could benefit from considerations from the literature on mathematical cognition, which emphasizes text comprehension and problem solving, along with contributions of online executive working memory, metacognitive regulation, and relevant stored knowledge and skills. We conclude by offering avenues for future research aimed at identifying the stages in problem solving at which correct versus incorrect reasoners depart, and how individual difference might influence this time point.

  18. Inquiry-based problem solving in introductory physics

    Science.gov (United States)

    Koleci, Carolann

    What makes problem solving in physics difficult? How do students solve physics problems, and how does this compare to an expert physicist's strategy? Over the past twenty years, physics education research has revealed several differences between novice and expert problem solving. The work of Chi, Feltovich, and Glaser demonstrates that novices tend to categorize problems based on surface features, while experts categorize according to theory, principles, or concepts1. If there are differences between how problems are categorized, then are there differences between how physics problems are solved? Learning more about the problem solving process, including how students like to learn and what is most effective, requires both qualitative and quantitative analysis. In an effort to learn how novices and experts solve introductory electricity problems, a series of in-depth interviews were conducted, transcribed, and analyzed, using both qualitative and quantitative methods. One-way ANOVA tests were performed in order to learn if there are any significant problem solving differences between: (a) novices and experts, (b) genders, (c) students who like to answer questions in class and those who don't, (d) students who like to ask questions in class and those who don't, (e) students employing an interrogative approach to problem solving and those who don't, and (f) those who like physics and those who dislike it. The results of both the qualitative and quantitative methods reveal that inquiry-based problem solving is prevalent among novices and experts, and frequently leads to the correct physics. These findings serve as impetus for the third dimension of this work: the development of Choose Your Own Adventure Physics(c) (CYOAP), an innovative teaching tool in physics which encourages inquiry-based problem solving. 1Chi, M., P. Feltovich, R. Glaser, "Categorization and Representation of Physics Problems by Experts and Novices", Cognitive Science, 5, 121--152 (1981).

  19. An Examination of the Personality Constructs Underlying Dimensions of Creative Problem-Solving Style

    Science.gov (United States)

    Isaksen, Scott G.; Kaufmann, Astrid H.; Bakken, Bjørn T.

    2016-01-01

    This study investigated the personality facets that underpin the construct of problem-solving style, particularly when approaching more creative kinds of problem-solving. Cattell's Sixteen Personality Factors Questionnaire and VIEW--An Assessment of Problem Solving Style were administered to 165 students from the Norwegian Business School. We…

  20. Protocol Analysis of Group Problem Solving in Mathematics: A Cognitive-Metacognitive Framework for Assessment.

    Science.gov (United States)

    Artzt, Alice F.; Armour-Thomas, Eleanor

    The roles of cognition and metacognition were examined in the mathematical problem-solving behaviors of students as they worked in small groups. As an outcome, a framework that links the literature of cognitive science and mathematical problem solving was developed for protocol analysis of mathematical problem solving. Within this framework, each…

  1. Teaching Elementary Mathematics through Problem Solving and Its Relationship to Mathematics Achievement

    Science.gov (United States)

    Bullock, Audrey N.

    2017-01-01

    Problem solving in mathematics has been a goal for students for decades. In the reviewed literature, problem solving was most often treated as the dependent variable and was defined very broadly; however, few studies were found that included problem solving as a treatment or independent variable. The purpose of this study was to investigate the…

  2. Teaching genetics using hands-on models, problem solving, and inquiry-based methods

    Science.gov (United States)

    Hoppe, Stephanie Ann

    Teaching genetics can be challenging because of the difficulty of the content and misconceptions students might hold. This thesis focused on using hands-on model activities, problem solving, and inquiry-based teaching/learning methods in order to increase student understanding in an introductory biology class in the area of genetics. Various activities using these three methods were implemented into the classes to address any misconceptions and increase student learning of the difficult concepts. The activities that were implemented were shown to be successful based on pre-post assessment score comparison. The students were assessed on the subjects of inheritance patterns, meiosis, and protein synthesis and demonstrated growth in all of the areas. It was found that hands-on models, problem solving, and inquiry-based activities were more successful in learning concepts in genetics and the students were more engaged than tradition styles of lecture.

  3. An Integrated Architecture for Engineering Problem Solving

    National Research Council Canada - National Science Library

    Pisan, Yusuf

    1998-01-01

    .... This thesis describes the Integrated Problem Solving Architecture (IPSA) that combines qualitative, quantitative and diagrammatic reasoning skills to produce annotated solutions to engineering problems...

  4. Cognitive functioning and social problem-solving skills in schizophrenia.

    Science.gov (United States)

    Hatashita-Wong, Michi; Smith, Thomas E; Silverstein, Steven M; Hull, James W; Willson, Deborah F

    2002-05-01

    This study examined the relationships between symptoms, cognitive functioning, and social skill deficits in schizophrenia. Few studies have incorporated measures of cognitive functioning and symptoms in predictive models for social problem solving. For our study, 44 participants were recruited from consecutive outpatient admissions. Neuropsychological tests were given to assess cognitive function, and social problem solving was assessed using structured vignettes designed to evoke the participant's ability to generate, evaluate, and apply solutions to social problems. A sequential model-fitting method of analysis was used to incorporate social problem solving, symptom presentation, and cognitive impairment into linear regression models. Predictor variables were drawn from demographic, cognitive, and symptom domains. Because this method of analysis was exploratory and not intended as hierarchical modelling, no a priori hypotheses were proposed. Participants with higher scores on tests of cognitive flexibility were better able to generate accurate, appropriate, and relevant responses to the social problem-solving vignettes. The results suggest that cognitive flexibility is a potentially important mediating factor in social problem-solving competence. While other factors are related to social problem-solving skill, this study supports the importance of cognition and understanding how it relates to the complex and multifaceted nature of social functioning.

  5. Self-affirmation improves problem-solving under stress.

    Directory of Open Access Journals (Sweden)

    J David Creswell

    Full Text Available High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings.

  6. Effects of Singapore Model Method with Explicit Instruction on Math Problem Solving Skills of Students at Risk for or Identified with Learning Disabilities

    Science.gov (United States)

    Preston, Angela Irene

    2016-01-01

    Over the last two decades, students in Singapore consistently scored above students from other nations on the Trends in International Mathematics and Science Study (TIMSS; Provasnik et al., 2012). In contrast, students in the United States have not performed as well on international and national mathematics assessments and students with…

  7. Examining the Relationship of Scientific Reasoning with Physics Problem Solving

    Science.gov (United States)

    Fabby, Carol; Koenig, Kathleen

    2015-01-01

    Recent research suggests students with more formal reasoning patterns are more proficient learners. However, little research has been done to establish a relationship between scientific reasoning and problem solving abilities by novices. In this exploratory study, we compared scientific reasoning abilities of students enrolled in a college level…

  8. Integrating Study Skills and Problem Solving into Remedial Mathematics

    Science.gov (United States)

    Cornick, Jonathan; Guy, G. Michael; Beckford, Ian

    2015-01-01

    Students at a large urban community college enrolled in seven classes of an experimental remedial algebra programme, which integrated study skills instruction and collaborative problem solving. A control group of seven classes was taught in a traditional lecture format without study skills instruction. Student performance in the course was…

  9. Creativity and Insight in Problem Solving

    Science.gov (United States)

    Golnabi, Laura

    2016-01-01

    This paper analyzes the thought process involved in problem solving and its categorization as creative thinking as defined by psychologist R. Weisberg (2006). Additionally, the notion of insight, sometimes present in unconscious creative thinking and often leading to creative ideas, is discussed in the context of geometry problem solving. In…

  10. Conceptual Problem Solving in High School Physics

    Science.gov (United States)

    Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.

    2015-01-01

    Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an…

  11. Concept mapping instrumental support for problem solving

    NARCIS (Netherlands)

    Stoyanov, S.; Stoyanov, Slavi; Kommers, Petrus A.M.

    2008-01-01

    The main theoretical position of this paper is that it is the explicit problem-solving support in concept mapping software that produces a stronger effect in problem-solving performance than the implicit support afforded by the graphical functionality of concept mapping software. Explicit

  12. Problem Solving Methods in Engineering Design

    DEFF Research Database (Denmark)

    Hartvig, Susanne C

    1999-01-01

    This short paper discusses typical engineering tasks and problem solving methods, based on a field study of engineering tasks at a Danish engineering firm. The field study has identified ten classes of design tasks and in this paper these classes are related to problem solving methods. The descri...

  13. Problem Solving Strategies among Primary School Teachers

    Science.gov (United States)

    Yew, Wun Thiam; Lian, Lim Hooi; Meng, Chew Cheng

    2017-01-01

    The purpose of this article was to examine problem solving strategies among primary school teachers. The researchers employed survey research design to examine their problem solving strategies. The participants of this study consisted of 120 primary school teachers from a public university in Peninsula Malaysia who enrolled in a 4-year Graduating…

  14. Teaching Effective Problem Solving Strategies for Interns

    Science.gov (United States)

    Warren, Louis L.

    2005-01-01

    This qualitative study investigates what problem solving strategies interns learn from their clinical teachers during their internships. Twenty-four interns who completed their internship in the elementary grades shared what problem solving strategies had the greatest impact upon them in learning how to deal with problems during their internship.…

  15. A Multivariate Model of Physics Problem Solving

    Science.gov (United States)

    Taasoobshirazi, Gita; Farley, John

    2013-01-01

    A model of expertise in physics problem solving was tested on undergraduate science, physics, and engineering majors enrolled in an introductory-level physics course. Structural equation modeling was used to test hypothesized relationships among variables linked to expertise in physics problem solving including motivation, metacognitive planning,…

  16. Problem Solving in Physics: Undergraduates' Framing, Procedures, and Decision Making

    Science.gov (United States)

    Modir, Bahar

    In this dissertation I will start with the broad research question of what does problem solving in upper division physics look like? My focus in this study is on students' problem solving in physics theory courses. Some mathematical formalisms are common across all physics core courses such as using the process of separation of variables, doing Taylor series, or using the orthogonality properties of mathematical functions to set terms equal to zero. However, there are slight differences in their use of these mathematical formalisms across different courses, possibly because of how students map different physical systems to these processes. Thus, my first main research question aims to answer how students perform these recurring processes across upper division physics courses. I break this broad question into three particular research questions: What knowledge pieces do students use to make connections between physics and procedural math? How do students use their knowledge pieces coherently to provide reasoning strategies in estimation problems? How do students look ahead into the problem to read the information out of the physical scenario to align their use of math in physics? Building on the previous body of the literature, I will use the theory family of Knowledge in Pieces and provide evidence to expand this theoretical foundation. I will compare my study with previous studies and provide suggestions on how to generalize these theory expansions for future use. My experimental data mostly come from video-based classroom data. Students in groups of 2-4 students solve in-class problems in quantum mechanics and electromagnetic fields 1 courses collaboratively. In addition, I will analyze clinical interviews to demonstrate how a single case study student plays an epistemic game to estimate the total energy in a hurricane. My second research question is more focused on a particular instructional context. How do students frame problem solving in quantum mechanics? I

  17. Exploring the Use of Electroencephalography to Gather Objective Evidence of Cognitive Processing During Problem Solving

    Science.gov (United States)

    Delahunty, Thomas; Seery, Niall; Lynch, Raymond

    2018-04-01

    Currently, there is significant interest being directed towards the development of STEM education to meet economic and societal demands. While economic concerns can be a powerful driving force in advancing the STEM agenda, care must be taken that such economic imperative does not promote research approaches that overemphasize pragmatic application at the expense of augmenting the fundamental knowledge base of the discipline. This can be seen in the predominance of studies investigating problem solving approaches and procedures, while neglecting representational and conceptual processes, within the literature. Complementing concerns about STEM graduates' problem solving capabilities, raised within the pertinent literature, this paper discusses a novel methodological approach aimed at investigating the cognitive elements of problem conceptualization. The intention is to demonstrate a novel method of data collection that overcomes some of the limitations cited in classic problem solving research while balancing a search for fundamental understanding with the possibility of application. The methodology described in this study employs an electroencephalographic (EEG) headset, as part of a mixed methods approach, to gather objective evidence of students' cognitive processing during problem solving epochs. The method described provides rich evidence of students' cognitive representations of problems during episodes of applied reasoning. The reliability and validity of the EEG method is supported by the stability of the findings across the triangulated data sources. The paper presents a novel method in the context of research within STEM education and demonstrates an effective procedure for gathering rich evidence of cognitive processing during the early stages of problem conceptualization.

  18. Problem solving through recreational mathematics

    CERN Document Server

    Averbach, Bonnie

    1999-01-01

    Historically, many of the most important mathematical concepts arose from problems that were recreational in origin. This book takes advantage of that fact, using recreational mathematics - problems, puzzles and games - to teach students how to think critically. Encouraging active participation rather than just observation, the book focuses less on mathematical results than on how these results can be applied to thinking about problems and solving them. Each chapter contains a diverse array of problems in such areas as logic, number and graph theory, two-player games of strategy, solitaire ga

  19. Influences of an Inquiry-based Ubiquitous Gaming Design on Students' Learning Achievements, Motivation, Behavioral Patterns, and Tendency towards Critical Thinking and Problem Solving

    Science.gov (United States)

    Hwang, Gwo-Jen; Chen, Chih-Hung

    2017-01-01

    In this paper, an inquiry-based ubiquitous gaming approach was proposed. The objective of the study was to enhance students' performances in in-field learning activities. To show the advantages of the approach, an experiment was carried out to assess the effects of it on students' learning achievement, motivation, critical thinking, and problem…

  20. The Missing Curriculum in Physics Problem-Solving Education

    Science.gov (United States)

    Williams, Mobolaji

    2018-05-01

    Physics is often seen as an excellent introduction to science because it allows students to learn not only the laws governing the world around them, but also, through the problems students solve, a way of thinking which is conducive to solving problems outside of physics and even outside of science. In this article, we contest this latter idea and argue that in physics classes, students do not learn widely applicable problem-solving skills because physics education almost exclusively requires students to solve well-defined problems rather than the less-defined problems which better model problem solving outside of a formal class. Using personal, constructed, and the historical accounts of Schrödinger's development of the wave equation and Feynman's development of path integrals, we argue that what is missing in problem-solving education is practice in identifying gaps in knowledge and in framing these knowledge gaps as questions of the kind answerable using techniques students have learned. We discuss why these elements are typically not taught as part of the problem-solving curriculum and end with suggestions on how to incorporate these missing elements into physics classes.

  1. Teaching problem solving using non-routine tasks

    Science.gov (United States)

    Chong, Maureen Siew Fang; Shahrill, Masitah; Putri, Ratu Ilma Indra; Zulkardi

    2018-04-01

    Non-routine problems are related to real-life context and require some realistic considerations and real-world knowledge in order to resolve them. This study examines several activity tasks incorporated with non-routine problems through the use of an emerging mathematics framework, at two junior colleges in Brunei Darussalam. The three sampled teachers in this study assisted in selecting the topics and the lesson plan designs. They also recommended the development of the four activity tasks: incorporating the use of technology; simulation of a reality television show; designing real-life sized car park spaces for the school; and a classroom activity to design a real-life sized dustpan. Data collected from all four of the activity tasks were analyzed based on the students' group work. The findings revealed that the most effective activity task in teaching problem solving was to design a real-life sized car park. This was because the use of real data gave students the opportunity to explore, gather information and give or receive feedback on the effect of their reasons and proposed solutions. The second most effective activity task was incorporating the use of technology as it enhanced the students' understanding of the concepts learnt in the classroom. This was followed by the classroom activity that used real data as it allowed students to work and assess the results mathematically. The simulation of a television show was found to be the least effective since it was viewed as not sufficiently challenging to the students.

  2. Analysis of the benefits of designing and implementing a virtual didactic model of multiple choice exam and problem-solving heuristic report, for first year engineering students

    OpenAIRE

    Bennun, Leonardo; Santibanez, Mauricio

    2015-01-01

    Improvements in performance and approval obtained by first year engineering students from University of Concepcion, Chile, were studied, once a virtual didactic model of multiple-choice exam, was implemented. This virtual learning resource was implemented in the Web ARCO platform and allows training, by facing test models comparable in both time and difficulty to those that they will have to solve during the course. It also provides a feedback mechanism for both: 1) The students, since they c...

  3. [Methods for teaching problem-solving in medical schools].

    Science.gov (United States)

    Shumway, J M; Vargas, M E; Heller, L E

    1984-01-01

    The need to include in the medical curriculum instructional activities to promote the development of problem-solving abilities has been asserted at the national and international levels. In research on the mental process involved in the solution of problems in medicine, problem-solving has been defined as a hypothetical-deductive activity engaged in by experienced physicians, in which the early generation of hypotheses influences the subsequent gathering of information. This article comments briefly on research on the mental process by which medical problems are solved. It describes the methods that research has shown to be most applicable in instruction to develop problem-solving abilities, and presents some educational principles that justify their application. The "trail-following" approach is the method that has been most commonly used to study the physician's problem-solving behavior. The salient conclusions from this research are that in the problem-solving process the diagnostic hypothesis is generated very early on and with limited data; the number of hypotheses is small; the problem-solving approach is specific to the type of medical problem and case in hand; and the accumulation of medical knowledge and experience forms the basis of clinical competence. Four methods for teaching the solution of problems are described: case presentation, the rain of ideas, the nominal groups technique and decision-making consensus, the census and analysis of forces in the field, and the analysis of clinical decisions. These methods are carried out in small groups. The advantages of the small groups are that the students are active participants in the learning process, they receive formative evaluation of their performance in a setting conductive to learning, and are able to interact with their instructor if he makes proper use of the right questioning techniques. While no single problem-solving method can be useful to all students or in all the problems they encounter

  4. Improving mathematical problem solving skills through visual media

    Science.gov (United States)

    Widodo, S. A.; Darhim; Ikhwanudin, T.

    2018-01-01

    The purpose of this article was to find out the enhancement of students’ mathematical problem solving by using visual learning media. The ability to solve mathematical problems is the ability possessed by students to solve problems encountered, one of the problem-solving model of Polya. This preliminary study was not to make a model, but it only took a conceptual approach by comparing the various literature of problem-solving skills by linking visual learning media. The results of the study indicated that the use of learning media had not been appropriated so that the ability to solve mathematical problems was not optimal. The inappropriateness of media use was due to the instructional media that was not adapted to the characteristics of the learners. Suggestions that can be given is the need to develop visual media to increase the ability to solve problems.

  5. Designing WebQuests to Support Creative Problem Solving

    Science.gov (United States)

    Rubin, Jim

    2013-01-01

    WebQuests have been a popular alternative for collaborative group work that utilizes internet resources, but studies have questioned how effective they are in challenging students to use higher order thinking processes that involve creative problem solving. This article explains how different levels of inquiry relate to categories of learning…

  6. Teaching science problem solving: an overview of experimental work

    NARCIS (Netherlands)

    Taconis, R.; Ferguson-Hessler, M.G.M.; Broekkamp, H.

    2001-01-01

    The traditional approach to teaching science problem solving is having the students work individually on a large number of problems. This approach has long been overtaken by research suggesting and testing other methods, which are expected to be more effective. To get an overview of the

  7. Effects of Problem-Solving, Guided-Discovery and Expository ...

    African Journals Online (AJOL)

    This study investigated the relative effectiveness of problem-solving, guideddiscovery, and expository methods of instruction on students performance in redox reaction, considering their mathematics ability. It was a quasiexperimental research using non-randomized-pre-test post-test control group design with expository ...

  8. Solution Tree Problem Solving Procedure for Engineering Analysis ...

    African Journals Online (AJOL)

    Illustrations are provided in the thermofluid engineering area to showcase the procedure's applications. This approach has proved to be a veritable tool for enhancing the problem-solving and computer algorithmic skills of engineering students, eliciting their curiosity, active participation and appreciation of the taught course.

  9. (CBTP) on knowledge, problem-solving and learning approach

    African Journals Online (AJOL)

    In the first instance attention is paid to the effect of a computer-based teaching programme (CBTP) on the knowledge, problem-solving skills and learning approach of student ... In the practice group (oncology wards) no statistically significant change in the learning approach of respondents was found after using the CBTP.

  10. Pendekatan Problem Solving berbantuan Komputer dalam Pembelajaran Matematika

    Directory of Open Access Journals (Sweden)

    Laswadi Laswadi

    2015-06-01

    Full Text Available Creating effective mathematics learning is a complex and continuous undertaking. Using the right approach of learning and utilizing technological developments is an attempt to improve the quality of learning. This paper examines the problem solving learning computer-assisted and how its potential in developing high-order thinking skills of students

  11. Effects of Concept Mapping and Problem Solving Instructional ...

    African Journals Online (AJOL)

    The aim of the study was to determine the effect of concept mapping and problem solving instructional strategies on secondary school students' learning outcomes in Chemistry. The study adopted pre-test, post-test, control group quasiexperimental design, using a 3×2×2 factorial matrix. Two null hypotheses were tested at ...

  12. A descriptive model of information problem solving while using internet

    NARCIS (Netherlands)

    Brand-Gruwel, Saskia; Wopereis, Iwan; Walraven, Amber

    2009-01-01

    This paper presents the IPS-I-model: a model that describes the process of information problem solving (IPS) in which the Internet (I) is used to search information. The IPS-I-model is based on three studies, in which students in secondary and (post) higher education were asked to solve information

  13. Impact of the Curriculum Reform on Problem Solving Ability in ...

    African Journals Online (AJOL)

    An ex post facto study was conducted to examine the effect of the curriculum reform on 60 Dilla University chemistry education students' problem solving ability. The study shows that the curriculum reform that shifted university introductory courses of the old curriculum into preparatory school levels in the new curriculum ...

  14. Development and Evaluation of Problem-Solving Skills in Microbiology.

    Science.gov (United States)

    Schuytema, Eunice C.; And Others

    A problem solving, laboratory experience was devised in which first-year medical students were given a case description and then required to make judgments about what microbiology specimens should be collected and to analyze the results of laboratory tests in terms of implications for patient care. Over a four-year period revisions were made in…

  15. Cultivating Peace through Design Thinking: Problem Solving with PAST Foundation

    Science.gov (United States)

    Deaner, Kat; McCreery-Kellert, Heather

    2018-01-01

    Design thinking is a methodology that emphasizes reasoning and decision-making as part of the problem-solving process. It is a structured framework for identifying challenges, gathering information, generating potential solutions, refining ideas, and testing solutions. Design thinking offers valuable skills that will serve students well as they…

  16. Elementary Teachers' Perspectives of Mathematics Problem Solving Strategies

    Science.gov (United States)

    Bruun, Faye

    2013-01-01

    Participants in this study were asked to report what strategies were most often used in their attempts to foster their students' problem solving abilities. Participants included 70 second through fifth-grade elementary teachers from 42 schools in a large state of the south central region in the U.S. Data analyses of the interviews revealed that…

  17. Towards efficient measurement of metacognition in mathematical problem solving

    NARCIS (Netherlands)

    Jacobse, Annemieke E.; Harskamp, Egbert G.

    Metacognitive monitoring and regulation play an essential role in mathematical problem solving. Therefore, it is important for researchers and practitioners to assess students' metacognition. One proven valid, but time consuming, method to assess metacognition is by using think-aloud protocols.

  18. Adventures in Exercise Physiology: Enhancing Problem Solving and Assessment

    Science.gov (United States)

    FitzPatrick, Kathleen A.

    2004-01-01

    I altered the format of an exercise physiology course from traditional lecture to emphasizing daily reading quizzes and group problem-solving activities. I used the SALGains evaluation to compare the two approaches and saw significant improvements in the evaluation ratings of students who were taught using the new format. Narrative responses…

  19. Grading Homework to Emphasize Problem-Solving Process Skills

    Science.gov (United States)

    Harper, Kathleen A.

    2012-01-01

    This article describes a grading approach that encourages students to employ particular problem-solving skills. Some strengths of this method, called "process-based grading," are that it is easy to implement, requires minimal time to grade, and can be used in conjunction with either an online homework delivery system or paper-based homework.

  20. Indoor Air Quality Problem Solving Tool

    Science.gov (United States)

    Use the IAQ Problem Solving Tool to learn about the connection between health complaints and common solutions in schools. This resource provides an easy, step-by-step process to start identifying and resolving IAQ problems found at your school.