WorldWideScience

Sample records for understanding soil redistribution

  1. Infiltration and redistribution of water in soils

    International Nuclear Information System (INIS)

    Stroosnijder, L.

    1976-01-01

    The flow of the liquid phase through a soil can be predicted from pressure gradients. Different ways of predicting infiltration for irrigation of a basin were compared: numerical approximation; semi-analytical and analytical. A partly empirical equation was developed for description of rate of infiltration, after examination of existing equations. Under certain conditions, infiltration was influenced by under or over pressure of the trapped gas phase and by swelling of clays. Complex models for redistribution were of little value in practice, since they could not be generalized and required too many physical data about the soil. A scheme was developed that grouped techniques for estimating physical properties of soil, according to cost and expertise required. A new experimental technique based on gamma transmission is described for estimating the physical properties of the soil. (Auth.)

  2. Using 137 Cs measurements to investigate the influence of erosion and soil redistribution on soil properties.

    Science.gov (United States)

    Du, P; Walling, D E

    2011-05-01

    Information on the interaction between soil erosion and soil properties is an important requirement for sustainable management of the soil resource. The relationship between soil properties and the soil redistribution rate, reflecting both erosion and deposition, is an important indicator of this interaction. This relationship is difficult to investigate using traditional approaches to documenting soil redistribution rates involving erosion plots and predictive models. However, the use of the fallout radionuclide (137)Cs to document medium-term soil redistribution rates offers a means of overcoming many of the limitations associated with traditional approaches. The study reported sought to demonstrate the potential for using (137)Cs measurements to assess the influence of soil erosion and redistribution on soil properties (particle size composition, total C, macronutrients N, P, K and Mg, micronutrients Mn, Mo, Fe, Cu and Zn and other elements, including Ti and As). (137)Cs measurements undertaken on 52 soil cores collected within a 7 ha cultivated field located near Colebrooke in Devon, UK were used to establish the magnitude and spatial pattern of medium-term soil redistribution rates within the field. The soil redistribution rates documented for the individual sampling points within the field ranged from an erosion rate of -12.9 t ha(-1) yr(-1) to a deposition rate of 19.2 t ha(-1) yr(-1). Composite samples of surface soil (0-5 cm) were collected immediately adjacent to each coring point and these samples were analysed for a range of soil properties. Individual soil properties associated with these samples showed significant variability, with CV values generally lying in the range 10-30%. The relationships between the surface soil properties and the soil redistribution rate were analysed. This analysis demonstrated statistically significant relationships between some soil properties (total phosphorus, % clay, Ti and As) and the soil redistribution rate, but for

  3. Using 137Cs measurements to investigate the influence of erosion and soil redistribution on soil properties

    International Nuclear Information System (INIS)

    Du, P.; Walling, D.E.

    2011-01-01

    Information on the interaction between soil erosion and soil properties is an important requirement for sustainable management of the soil resource. The relationship between soil properties and the soil redistribution rate, reflecting both erosion and deposition, is an important indicator of this interaction. This relationship is difficult to investigate using traditional approaches to documenting soil redistribution rates involving erosion plots and predictive models. However, the use of the fallout radionuclide 137 Cs to document medium-term soil redistribution rates offers a means of overcoming many of the limitations associated with traditional approaches. The study reported sought to demonstrate the potential for using 137 Cs measurements to assess the influence of soil erosion and redistribution on soil properties (particle size composition, total C, macronutrients N, P, K and Mg, micronutrients Mn, Mo, Fe, Cu and Zn and other elements, including Ti and As). 137 Cs measurements undertaken on 52 soil cores collected within a 7 ha cultivated field located near Colebrooke in Devon, UK were used to establish the magnitude and spatial pattern of medium-term soil redistribution rates within the field. The soil redistribution rates documented for the individual sampling points within the field ranged from an erosion rate of -12.9 t ha -1 yr -1 to a deposition rate of 19.2 t ha -1 yr -1 . Composite samples of surface soil (0-5 cm) were collected immediately adjacent to each coring point and these samples were analysed for a range of soil properties. Individual soil properties associated with these samples showed significant variability, with CV values generally lying in the range 10-30%. The relationships between the surface soil properties and the soil redistribution rate were analysed. This analysis demonstrated statistically significant relationships between some soil properties (total phosphorus, % clay, Ti and As) and the soil redistribution rate, but for most

  4. Topographic Metric Predictions of Soil redistribution and Organic Carbon Distribution in Croplands

    Science.gov (United States)

    Mccarty, G.; Li, X.

    2017-12-01

    Landscape topography is a key factor controlling soil redistribution and soil organic carbon (SOC) distribution in Iowa croplands (USA). In this study, we adopted a combined approach based on carbon () and cesium (137Cs) isotope tracers, and digital terrain analysis to understand patterns of SOC redistribution and carbon sequestration dynamics as influenced by landscape topography in tilled cropland under long term corn/soybean management. The fallout radionuclide 137Cs was used to estimate soil redistribution rates and a Lidar-derived DEM was used to obtain a set of topographic metrics for digital terrain analysis. Soil redistribution rates and patterns of SOC distribution were examined across 560 sampling locations at two field sites as well as at larger scale within the watershed. We used δ13C content in SOC to partition C3 and C4 plant derived C density at 127 locations in one of the two field sites with corn being the primary source of C4 C. Topography-based models were developed to simulate SOC distribution and soil redistribution using stepwise ordinary least square regression (SOLSR) and stepwise principal component regression (SPCR). All topography-based models developed through SPCR and SOLSR demonstrated good simulation performance, explaining more than 62% variability in SOC density and soil redistribution rates across two field sites with intensive samplings. However, the SOLSR models showed lower reliability than the SPCR models in predicting SOC density at the watershed scale. Spatial patterns of C3-derived SOC density were highly related to those of SOC density. Topographic metrics exerted substantial influence on C3-derived SOC density with the SPCR model accounting for 76.5% of the spatial variance. In contrast C4 derived SOC density had poor spatial structure likely reflecting the substantial contribution of corn vegetation to recently sequestered SOC density. Results of this study highlighted the utility of topographic SPCR models for scaling

  5. Lead sequestration and species redistribution during soil organic matter decomposition

    Science.gov (United States)

    Schroth, A.W.; Bostick, B.C.; Kaste, J.M.; Friedland, A.J.

    2008-01-01

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest Oi samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases (???20-35%) and SOM (???65-80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility. ?? 2008 American Chemical Society.

  6. Using {sup 137}Cs measurements to investigate the influence of erosion and soil redistribution on soil properties

    Energy Technology Data Exchange (ETDEWEB)

    Du, P. [School of Geography, Beijing Normal University, Beijing (China); Geography, College of Life and Environmental Sciences, University of Exeter, Amory Building, Rennes Drive, Exeter, EX4 4RJ, Devon (United Kingdom); Walling, D.E., E-mail: d.e.walling@exeter.ac.u [Geography, College of Life and Environmental Sciences, University of Exeter, Amory Building, Rennes Drive, Exeter, EX4 4RJ, Devon (United Kingdom)

    2011-05-15

    Information on the interaction between soil erosion and soil properties is an important requirement for sustainable management of the soil resource. The relationship between soil properties and the soil redistribution rate, reflecting both erosion and deposition, is an important indicator of this interaction. This relationship is difficult to investigate using traditional approaches to documenting soil redistribution rates involving erosion plots and predictive models. However, the use of the fallout radionuclide {sup 137}Cs to document medium-term soil redistribution rates offers a means of overcoming many of the limitations associated with traditional approaches. The study reported sought to demonstrate the potential for using {sup 137}Cs measurements to assess the influence of soil erosion and redistribution on soil properties (particle size composition, total C, macronutrients N, P, K and Mg, micronutrients Mn, Mo, Fe, Cu and Zn and other elements, including Ti and As). {sup 137}Cs measurements undertaken on 52 soil cores collected within a 7 ha cultivated field located near Colebrooke in Devon, UK were used to establish the magnitude and spatial pattern of medium-term soil redistribution rates within the field. The soil redistribution rates documented for the individual sampling points within the field ranged from an erosion rate of -12.9 t ha{sup -1} yr{sup -1} to a deposition rate of 19.2 t ha{sup -1} yr{sup -1}. Composite samples of surface soil (0-5 cm) were collected immediately adjacent to each coring point and these samples were analysed for a range of soil properties. Individual soil properties associated with these samples showed significant variability, with CV values generally lying in the range 10-30%. The relationships between the surface soil properties and the soil redistribution rate were analysed. This analysis demonstrated statistically significant relationships between some soil properties (total phosphorus, % clay, Ti and As) and the soil

  7. Effect of Incident Rainfall Redistribution by Maize Canopy on Soil Moisture at the Crop Row Scale

    Directory of Open Access Journals (Sweden)

    Marco Martello

    2015-05-01

    Full Text Available The optimization of irrigation use in agriculture is a key challenge to increase farm profitability and reduce its ecological footprint. To this context, an understanding of more efficient irrigation systems includes the assessment of water redistribution at the microscale. This study aimed to investigate rainfall interception by maize canopy and to model the soil water dynamics at row scale as a result of rain and sprinkler irrigation with HYDRUS 2D/3D. On average, 78% of rainfall below the maize canopy was intercepted by the leaves and transferred along the stem (stemflow, while only 22% reached the ground directly (throughfall. In addition, redistribution of the water with respect to the amount (both rain and irrigation showed that the stemflow/throughfall ratio decreased logarithmically at increasing values of incident rainfall, suggesting the plant capacity to confine the water close to the roots and diminish water stress conditions. This was also underlined by higher soil moisture values observed in the row than in the inter-row at decreasing rainfall events. Modelled data highlighted different behavior in terms of soil water dynamics between simulated irrigation water distributions, although they did not show significant changes in terms of crop water use efficiency. These results were most likely affected by the soil type (silty-loam where the experiment was conducted, as it had unfavorable physical conditions for the rapid vertical water movement that would have increased infiltration and drainage.

  8. [Effects of rainfall intensity on rainfall infiltration and redistribution in soil on Loess slope land].

    Science.gov (United States)

    Li, Yi; Shao, Ming'an

    2006-12-01

    With simulation test, this paper studied the patterns of rainfall infiltration and redistribution in soil on typical Loess slope land, and analyzed the quantitative relations between the infiltration and redistribution and the movement of soil water and mass, with rainfall intensity as the main affecting factor. The results showed that rainfall intensity had significant effects on the rainfall infiltration and water redistribution in soil, and the microcosmic movement of soil water. The larger the rainfall intensity, the deeper the wetting front of rainfall infiltration and redistribution was, and the wetting front of soil water redistribution had a slower increase velocity than that of rainfall infiltration. The power function of the wetting front with time, and also with rainfall intensity, was fitted well. There was also a quantitative relation between the wetting front of rainfall redistribution and the duration of rainfall. The larger the rainfall intensity, the higher the initial and steady infiltration rates were, and the cumulative infiltration increased faster with time. Moreover, the larger the rainfall intensity, the smaller the wetting front difference was at the top and the end of the slope. With the larger rainfall intensity, both the difference of soil water content and its descending trend between soil layers became more obvious during the redistribution process on slope land.

  9. Soil organic carbon redistribution by water erosion--the role of CO2 emissions for the carbon budget.

    Science.gov (United States)

    Wang, Xiang; Cammeraat, Erik L H; Romeijn, Paul; Kalbitz, Karsten

    2014-01-01

    A better process understanding of how water erosion influences the redistribution of soil organic carbon (SOC) is sorely needed to unravel the role of soil erosion for the carbon (C) budget from local to global scales. The main objective of this study was to determine SOC redistribution and the complete C budget of a loess soil affected by water erosion. We measured fluxes of SOC, dissolved organic C (DOC) and CO2 in a pseudo-replicated rainfall-simulation experiment. We characterized different C fractions in soils and redistributed sediments using density fractionation and determined C enrichment ratios (CER) in the transported sediments. Erosion, transport and subsequent deposition resulted in significantly higher CER of the sediments exported ranging between 1.3 and 4.0. In the exported sediments, C contents (mg per g soil) of particulate organic C (POC, C not bound to soil minerals) and mineral-associated organic C (MOC) were both significantly higher than those of non-eroded soils indicating that water erosion resulted in losses of C-enriched material both in forms of POC and MOC. The averaged SOC fluxes as particles (4.7 g C m(-2) yr(-1)) were 18 times larger than DOC fluxes. Cumulative emission of soil CO2 slightly decreased at the erosion zone while increased by 56% and 27% at the transport and depositional zone, respectively, in comparison to non-eroded soil. Overall, CO2 emission is the predominant form of C loss contributing to about 90.5% of total erosion-induced C losses in our 4-month experiment, which were equal to 18 g C m(-2). Nevertheless, only 1.5% of the total redistributed C was mineralized to CO2 indicating a large stabilization after deposition. Our study also underlines the importance of C losses by particles and as DOC for understanding the effects of water erosion on the C balance at the interface of terrestrial and aquatic ecosystems.

  10. Soil Organic Carbon Redistribution by Water Erosion – The Role of CO2 Emissions for the Carbon Budget

    Science.gov (United States)

    Wang, Xiang; Cammeraat, Erik L. H.; Romeijn, Paul; Kalbitz, Karsten

    2014-01-01

    A better process understanding of how water erosion influences the redistribution of soil organic carbon (SOC) is sorely needed to unravel the role of soil erosion for the carbon (C) budget from local to global scales. The main objective of this study was to determine SOC redistribution and the complete C budget of a loess soil affected by water erosion. We measured fluxes of SOC, dissolved organic C (DOC) and CO2 in a pseudo-replicated rainfall-simulation experiment. We characterized different C fractions in soils and redistributed sediments using density fractionation and determined C enrichment ratios (CER) in the transported sediments. Erosion, transport and subsequent deposition resulted in significantly higher CER of the sediments exported ranging between 1.3 and 4.0. In the exported sediments, C contents (mg per g soil) of particulate organic C (POC, C not bound to soil minerals) and mineral-associated organic C (MOC) were both significantly higher than those of non-eroded soils indicating that water erosion resulted in losses of C-enriched material both in forms of POC and MOC. The averaged SOC fluxes as particles (4.7 g C m−2 yr−1) were 18 times larger than DOC fluxes. Cumulative emission of soil CO2 slightly decreased at the erosion zone while increased by 56% and 27% at the transport and depositional zone, respectively, in comparison to non-eroded soil. Overall, CO2 emission is the predominant form of C loss contributing to about 90.5% of total erosion-induced C losses in our 4-month experiment, which were equal to 18 g C m−2. Nevertheless, only 1.5% of the total redistributed C was mineralized to CO2 indicating a large stabilization after deposition. Our study also underlines the importance of C losses by particles and as DOC for understanding the effects of water erosion on the C balance at the interface of terrestrial and aquatic ecosystems. PMID:24802350

  11. Influence of management history and landscape variables on soil organic carbon and soil redistribution

    Science.gov (United States)

    Venteris, E.R.; McCarty, G.W.; Ritchie, J.C.; Gish, T.

    2004-01-01

    Controlled studies to investigate the interaction between crop growth, soil properties, hydrology, and management practices are common in agronomy. These sites (much as with real world farmland) often have complex management histories and topographic variability that must be considered. In 1993 an interdisiplinary study was started for a 20-ha site in Beltsville, MD. Soil cores (271) were collected in 1999 in a 30-m grid (with 5-m nesting) and analyzed as part of the site characterization. Soil organic carbon (SOC) and 137Cesium (137Cs) were measured. Analysis of aerial photography from 1992 and of farm management records revealed that part of the site had been maintained as a swine pasture and the other portion as cropped land. Soil properties, particularly soil redistribution and SOC, show large differences in mean values between the two areas. Mass C is 0.8 kg m -2 greater in the pasture area than in the cropped portion. The pasture area is primarily a deposition site, whereas the crop area is dominated by erosion. Management influence is suggested, but topographic variability confounds interpretation. Soil organic carbon is spatially structured, with a regionalized variable of 120 m. 137Cs activity lacks spatial structure, suggesting disturbance of the profile by animal activity and past structures such as swine shelters and roads. Neither SOC nor 137Cs were strongly correlated to terrain parameters, crop yields, or a seasonal soil moisture index predicted from crop yields. SOC and 137Cs were weakly correlated (r2 ???0.2, F-test P-value 0.001), suggesting that soil transport controls, in part, SOC distribution. The study illustrates the importance of past site history when interpreting the landscape distribution of soil properties, especially those strongly influenced by human activity. Confounding variables, complex soil hydrology, and incomplete documentation of land use history make definitive interpretations of the processes behind the spatial distributions

  12. The impact of soil redistribution on SOC pools in a Mediterranean agroforestry catchment

    Science.gov (United States)

    Quijano, Laura; Gaspar, Leticia; Lizaga, Iván; Navas, Ana

    2017-04-01

    Soil redistribution processes play an important role influencing the spatial distribution patterns of soil and associated soil organic carbon (SOC) at landscape scale. Information on drivers of SOC dynamics is key for evaluating both soil degradation and SOC stability that can affect soil quality and sustainability. 137Cs measurements provide a very effective tool to infer spatial patterns of soil redistribution and quantify soil redistribution rates in different landscapes, but to date these data are scarce in mountain Mediterranean agroecosystems. We evaluate the effect of soil redistribution on SOC and SOC pools in relation to land use in a Mediterranean mountain catchment (246 ha). To this purpose, two hundred and four soil bulk cores were collected on a 100 m grid in the Estaña lakes catchment located in the central sector of the Spanish Pyrenees (31T 4656250N 295152E). The study area is an agroforestry and endorheic catchment characterized by the presence of evaporite dissolution induced dolines, some of which host permanent lakes. The selected landscape is representative of rainfed areas of Mediterranean continental climate with erodible lithology and shallow soils, and characterized by an intense anthropogenic activity through cultivation and water management. The cultivated and uncultivated areas are heterogeneously distributed. SOC and SOC pools (the active and decomposable fraction, ACF and the stable carbon fraction SCF) were measured by the dry combustion method and soil redistribution rates were derived from 137Cs measurements. The results showed that erosion predominated in the catchment, most of soil samples were identified as eroded sites (n=114) with an average erosion rate of 26.9±51.4 Mg ha-1 y-1 whereas the mean deposition rate was 13.0±24.2 Mg ha-1 y-1. In cultivated soils (n=54) the average of soil erosion rate was significantly higher (78.5±74.4 Mg ha-1 y-1) than in uncultivated soils (6.8±10.4 Mg ha-1 y-1). Similarly, the mean of soil

  13. Transmission gamma ray study in horizon transition interface in soil, during infiltration and water redistribution process

    International Nuclear Information System (INIS)

    Appoloni, C.R.; Saito, H.; Algozini Junior, A.

    1992-01-01

    The horizontal erosion process in soil internal layers, in which exists a interface between different horizons or a high degree compaction region, can be emphasized through an alteration on hydraulic conductivity and diffusivity functions. With this objective, we measured the vertical infiltration and the water redistribution, in soil sample 'latossolo vermelho escuro - fase argilosa'. (author)

  14. In situ separation of root hydraulic redistribution of soil water from liquid and vapor transport

    Science.gov (United States)

    Jeffrey M. Warren; J. Renée Brooks; Maria I. Dragila; Frederick C. Meinzer

    2011-01-01

    Nocturnal increases in water potential and water content in the upper soil profile are often attributed to root water efflux, a process termed hydraulic redistribution (HR). However, unsaturated liquid or vapor flux of water between soil layers independent of roots also contributes to the daily recovery in water content, confounding efforts to determine the actual...

  15. Linking spatial patterns of soil redistribution traced with 137Cs and soil nutrients in a Mediterranean mountain agroecosystem (NE Spain)

    Science.gov (United States)

    Quijano, Laura; Gaspar, Leticia; Navas, Ana

    2016-04-01

    Mediterranean mountain agroecosystems are prone to soil loss mainly due to the accelerated erosion as a consequence of human induced changes from agriculture and grazing practices over the last centuries and the climatic conditions (i.e. irregular and scarce precipitations and drought periods). Soil erosion leads to soil degradation inducing the loss of soil functions. The progressive decline of soil functions thereof soil quality is associated to a decrease of soil productivity and can threat the sustainability of cultivated soils. The use of fallout 137Cs as a soil movement tracer provides useful data to identify areas where loss and gain of 137Cs occurs and that of soil. This study aims to address soil movement and soil nutrient dynamics closely related to the status of soil degradation. A rain-fed cereal field (1.6 ha) representative of Mediterranean mountain agricultural landscapes (42°25'41''N 1°13'8''W) was selected to examine the effects of soil redistribution processes on the spatial variability of soil organic carbon (SOC) and nitrogen (SON) and their relationships with soil properties and topographic characteristics. From the hydrological point of view, the field is isolated due to the effect of landscape features and man-made structures. Climate is continental Mediterranean with an average annual rainfall of 500 mm and soils are Calcisols. The reference inventories of 137Cs and soil nutrients were established from 21 soil samples collected in nearby undisturbed areas under typical Mediterranean vegetation cover. A total of 156 bulk soil samples (30-50 cm depth) and 156 topsoil samples (5 cm) were collected on a 10 m grid. 137Cs and soil nutrients loss and gain areas were identified by comparing the reference inventories with the values of inventories at the sampling points. A new approach to characterize and measure active (ACF) and stable (SCF) carbon fraction contents by using a dry combustion method based on the oxidation temperature of carbon

  16. Cost-effective sampling of 137Cs-derived net soil redistribution: part 1 – estimating the spatial mean across scales of variation

    International Nuclear Information System (INIS)

    Li, Y.; Chappell, A.; Nyamdavaa, B.; Yu, H.; Davaasuren, D.; Zoljargal, K.

    2015-01-01

    The 137 Cs technique for estimating net time-integrated soil redistribution is valuable for understanding the factors controlling soil redistribution by all processes. The literature on this technique is dominated by studies of individual fields and describes its typically time-consuming nature. We contend that the community making these studies has inappropriately assumed that many 137 Cs measurements are required and hence estimates of net soil redistribution can only be made at the field scale. Here, we support future studies of 137 Cs-derived net soil redistribution to apply their often limited resources across scales of variation (field, catchment, region etc.) without compromising the quality of the estimates at any scale. We describe a hybrid, design-based and model-based, stratified random sampling design with composites to estimate the sampling variance and a cost model for fieldwork and laboratory measurements. Geostatistical mapping of net (1954–2012) soil redistribution as a case study on the Chinese Loess Plateau is compared with estimates for several other sampling designs popular in the literature. We demonstrate the cost-effectiveness of the hybrid design for spatial estimation of net soil redistribution. To demonstrate the limitations of current sampling approaches to cut across scales of variation, we extrapolate our estimate of net soil redistribution across the region, show that for the same resources, estimates from many fields could have been provided and would elucidate the cause of differences within and between regional estimates. We recommend that future studies evaluate carefully the sampling design to consider the opportunity to investigate 137 Cs-derived net soil redistribution across scales of variation. - Highlights: • The 137 Cs technique estimates net time-integrated soil redistribution by all processes. • It is time-consuming and dominated by studies of individual fields. • We use limited resources to estimate soil

  17. Partitioning of heavy metals in a soil contaminated by slag: A redistribution study

    International Nuclear Information System (INIS)

    Bunzl, K.; Trautmannsheimer, M.; Schramel, P.

    1999-01-01

    In order to interpret reasonably the partitioning of heavy metals in a contaminated soil as observed from applying a sequential extraction procedure, information on possible redistribution processes of the metals during the various extraction steps is essential. For this purpose, sequential extraction was used to study the chemical partitioning of Ag, Cu, Ni, Pb, and Zn in a soil contaminated wither by a slag from coal firing or by a slag from pyrite roasting. Through additional application of sequential extraction to the pure slags as well as to the uncontaminated soil, it was shown that during the various extraction steps applied to the soil/slag mixtures, substantial redistribution processes of the metals between the slag- and soil particles can occur. In many cases, metals ions released during the extraction with acid hydroxylamine or acid hydrogen peroxide are partially readsorbed by solid constituents of the mixture and will therefore be found in the subsequent fractions extracted. As a result, one has to realize that (1) it will be difficult to predict the chemical partitioning of these metals in contaminated soils by investigating pure slags only, and (2) information on the partitioning of a metal in a slag contaminated soil will not necessarily give any relevant information on the form of this metal in the slag or in the slag/soil mixture, because the redistribution processes during sequential extraction will not be the same as those occurring in the soil solution under natural conditions

  18. Evaluation of a model framework to estimate soil and soil organic carbon redistribution by water and tillage using 137Cs in two U.S. Midwest agricultural fields

    Science.gov (United States)

    Young, Claudia J.; Liu, Shuguang; Schumacher, Joseph A.; Schumacher, Thomas E.; Kaspar, Thomas C.; McCarty, Gregory W.; Napton, Darrell; Jaynes, Dan B.

    2014-01-01

    Cultivated lands in the U.S. Midwest have been affected by soil erosion, causing soil organic carbon (SOC) redistribution in the landscape and other environmental and agricultural problems. The importance of SOC redistribution on soil productivity and crop yield, however, is still uncertain. In this study, we used a model framework, which includes the Unit Stream Power-based Erosion Deposition (USPED) and the Tillage Erosion Prediction (TEP) models, to understand the soil and SOC redistribution caused by water and tillage erosion in two agricultural fields in the U.S. Midwest. This model framework was evaluated for different digital elevation model (DEM) spatial resolutions (10-m, 24-m, 30-m, and 56-m) and topographic exponents (m = 1.0–1.6 and n = 1.0–1.3) using soil redistribution rates from 137Cs measurements. The results showed that the aggregated 24-m DEM, m = 1.4 and n = 1.0 for rill erosion, and m = 1.0 and n = 1.0 for sheet erosion, provided the best fit with the observation data at both sites. Moreover, estimated average SOC redistributions were 1.3 ± 9.8 g C m− 2 yr− 1 in field site 1 and 3.6 ± 14.3 g C m− 2 yr− 1 in field site 2. Spatial distribution patterns showed SOC loss (negative values) in the eroded areas and SOC gain (positive value) in the deposition areas. This study demonstrated the importance of the spatial resolution and the topographic exponents to estimate and map soil redistribution and the SOC dynamics throughout the landscape, helping to identify places where erosion and deposition from water and tillage are occurring at high rates. Additional research is needed to improve the application of the model framework for use in local and regional studies where rainfall erosivity and cover management factors vary. Therefore, using this model framework can help to improve the information about the spatial distribution of soil erosion across agricultural landscapes and to gain a better understanding of SOC

  19. Redistribution of contaminants from pig slurry after direct injection into soil

    DEFF Research Database (Denmark)

    Amin, Mostofa; Bech, T B; Forslund, A

    2010-01-01

    The redistribution of pig manure-borne contaminants after direct injection to soil was investigated in a field study. The spatial distribution of Escherichia coli, Salmonella Typhimurium Bacteriophage 28B and other slurry components in and around the injection slit was measured on day 0.15, 1, 6...

  20. Tree species effect on the redistribution of soil metals

    International Nuclear Information System (INIS)

    Mertens, Jan; Van Nevel, Lotte; De Schrijver, An; Piesschaert, Frederic; Oosterbaan, Anne; Tack, Filip M.G.; Verheyen, Kris

    2007-01-01

    Phytostabilization of metals using trees is often promoted although the influence of different tree species on the mobilization of metals is not yet clear. Soil and biomass were sampled 33 years after planting four tree species (Quercus robur, Fraxinus excelsior, Acer pseudoplatanus, Populus 'Robusta') in a plot experiment on dredged sediment. Poplar took up high amounts of Cd and Zn and this was associated with increased Cd and Zn concentrations in the upper soil layer. The other species contained normal concentrations of Cd, Cu, Cr, Pb and Zn in their tissues. Oak acidified the soil more than the other species and caused a decrease in the concentration of metals in the upper soil layer. The pH under poplar was lower than expected and associated with high carbon concentrations in the top soil. This might be assigned to retardation of the litter decomposition due to elevated Cd and Zn concentrations in the litter. - Trees (33-year-old) growing on polluted dredged sediment have influenced the metal concentration in the upper soil layer and there was a significant tree species effect

  1. Tree species effect on the redistribution of soil metals

    NARCIS (Netherlands)

    Mertens, J.; Nevel, Van L.; Schrijver, De A.; Piesschaert, F.; Oosterbaan, A.; Tack, F.M.G.; Verheyen, K.

    2007-01-01

    Phytostabilization of metals using trees is often promoted although the influence of different tree species on the mobilization of metals is not yet clear. Soil and biomass were sampled 33 years after planting four tree species (Quercus robur, Fraxinus excelsior, Acer pseudoplatanus, Populus

  2. Cultural Patterns of Soil Understanding

    Science.gov (United States)

    Patzel, Nikola; Feller, Christian

    2017-04-01

    Living soil supports all terrestrial ecosystems. The only global threat to earth's soils comes from human societies' land use and resource consuming activities. Soil perception and understanding by soil scientists are mainly drawn from biophysical parameters and found within Cartesian rationality, and not, or much less consciously from its rather intangible cultural dimension. But nevertheless, human soil perception, soil awareness, and soil relation are a cultural phenomenon, too. Aiming at soil awareness and education, it is of first order importance for the soil science community and the IUSS to study, discuss and communicate also about the cultural perceptions and representations of soil. For any society, cultural patterns in their relation to soil encompass: (i) General culturally underlying structures like (religious or 'secular') myths and belief systems. (ii) The personal, individual relation to/with and behaviour towards soil. This includes implicit concepts of soil being part integral concepts of landscape because the large majority of humans don't see soil as a distinct object. This communication would be to make evident: (i) the importance of cultural patterns and psychic/psychological background concerning soil, by case studies and overviews on different cultural areas, (ii) the necessity to develop reflections on this topic as well to communicate about soil with large public, as to raise awareness soil scientists to the cultural dimension of soils. A working group was recently founded at IUSS (Division 4) on this topic.

  3. Post-fire redistribution of soil carbon and nitrogen at a grassland-shrubland ecotone

    Science.gov (United States)

    Wang, Guan; Li, Junran; Ravi, Sujith; Dukes, David; Gonzales, Howell B.; Sankey, Joel B.

    2018-01-01

    The rapid conversion of grasslands into shrublands has been observed in many arid and semiarid regions worldwide. Studies have shown that fire can provide certain forms of reversibility for shrub-grass transition due to resource homogenization and shrub mortality, especially in the early stages of shrub encroachment. Field-level post-fire soil resource redistribution has rarely been tested. Here we used prescribed fire in a shrubland-grassland transition zone in the northern Chihuahuan Desert to test the hypothesis that fire facilitates the remobilization of nutrient-enriched soil from shrub microsites to grass and bare microsites and thereby reduces the spatial heterogeneity of soil resources. Results show that the shrub microsites had the lowest water content compared to grass and bare microsites after fire, even when rain events occurred. Significant differences of total soil carbon (TC) and total soil nitrogen (TN) among the three microsites disappeared one year after the fire. The spatial autocorrelation distance increased from 1~2 m, approximately the mean size of an individual shrub canopy, to over 5 m one year after the fire for TC and TN. Patches of high soil C and N decomposed one year after the prescribed fire. Overall, fire stimulates the transfer of soil C and N from shrub microsites to nutrient-depleted grass and bare microsites. Such a redistribution of soil C and N, coupled with the reduced soil water content under the shrub canopies, suggests that fire might influence the competition between shrubs and grasses, leading to a higher grass, compared to shrub, coverage in this ecotone.

  4. Redistribution of caesium-137 by erosion and deposition on an australian soil

    International Nuclear Information System (INIS)

    McCallan, M.E.; Rose, C.W.; O'Leary, B.M.

    1980-01-01

    Caesium-137, a nuclear fallout product which is carried down to the ground by rainfall and becomes tightly adsorbed to soil particles, is being used to study soil erosion and accumulation. The measurement of 137 Cs activity in soil cores in an upland catchment on the Darling Downs has revealed a vertical and areal distribution of this isotope which is in general agreement with expectations based on the topography, the observed erosion and deposition sites, the variation in 137 Cs fallout through time, and hypotheses of 137 Cs redistribution. Such information may allow the development of a practical technique for estimating soil erosion and accumulation rates using this isotope; it also allows testing of mathematical models of erosion/deposition processes

  5. In situ separation of root hydraulic redistribution of soil water from liquid and vapor transport

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Jeffrey [ORNL; Brooks, J Renee [U.S. Environmental Protection Agency, Corvallis, OR; Dragila, Maria [Oregon State University, Corvallis; Meinzer, Rick [USDA Forest Service

    2011-01-01

    Nocturnal increases in water potential ( ) and water content (WC) in the upper soil profile are often attributed to root water efflux into the soil, a process termed hydraulic lift or hydraulic redistribution (HR). We have previously reported HR values up to ~0.29 mm day-1 in the upper soil for a seasonally dry old-growth ponderosa pine site. However, unsaturated liquid or vapor flux of water between soil layers independent of roots also contributes to the diurnal patterns in WC, confounding efforts to determine the actual magnitude of HR. In this study, we estimated liquid (Jl) and vapor (Jv) soil water fluxes and their impacts on quantifying HR in situ by applying existing data sets of , WC, temperature (T) and soil physical properties to soil water transport equations. Under moist conditions, Jl between layers was estimated to be larger than necessary to account for measured nocturnal increases in WC of upper soil layers. However, as soil drying progressed unsaturated hydraulic conductivity declined rapidly such that Jl was irrelevant (< 2E-06 cm hr-1 at 0-60 cm depths) to total water flux by early August. In surface soil at depths above 15 cm, large T fluctuations can impact Jv leading to uncertainty concerning the role, if any, of HR in nocturnal WC dynamics. Vapor flux was estimated to be the highest at the shallowest depths measured (20 - 30 cm) where it could contribute up to 40% of hourly increases in nocturnal soil moisture depending on thermal conditions. While both HR and net soil water flux between adjacent layers contribute to WC in the 15-65 cm soil layer, HR was the dominant process and accounted for at least 80% of the diurnal increases in WC. While the absolute magnitude of HR is not easily quantified, total diurnal fluctuations in upper soil water content can be quantified and modeled, and remain highly applicable for establishing the magnitude and temporal dynamics of total ecosystem water flux.

  6. [Rainfall and soil moisture redistribution induced by xerophytic shrubs in an arid desert ecosystem].

    Science.gov (United States)

    Wang, Zheng Ning; Wang, Xin Ping; Liu, Bo

    2016-03-01

    Rainfall partitioning by desert shrub canopy modifies the redistribution of incident rainfall under the canopy, and may affect the distribution pattern of soil moisture around the plant. This study examined the distribution of rainfall and the response of soil moisture beneath the canopy of two dominant desert shrubs, Caragana korshinskii and Artemisia ordosica, in the revegetation area at the southeastern edge of the Tengger Desert. The results showed that throughfall and stemflow ave-ragely occupied 74.4%, 11.3% and 61.8%, 5.5% of the gross precipitation for C. korshinskii and A. ordosica, respectively. The mean coefficients of variation (CV) of throughfall were 0.25 and 0.30, respectively. C. korshinski were more efficient than A. ordosica on stemflow generation. The depth of soil wetting front around the stem area was greater than other areas under shrub canopy for C. korshinski, and it was only significantly greater under bigger rain events for A. ordosica. The shrub canopy could cause the unevenness of soil wetting front under the canopy in consequence of rainfall redistribution induced by xerophytic shrub.

  7. Moment analysis description of wetting and redistribution plumes in wettable and water-repellent soils

    Science.gov (United States)

    Xiong, Yunwu; Furman, Alex; Wallach, Rony

    2012-02-01

    SummaryWater repellency has a significant impact on water flow patterns in the soil profile. Transient 2D flow in wettable and natural water-repellent soils was monitored in a transparent flow chamber. The substantial differences in plume shape and spatial water content distribution during the wetting and subsequent redistribution stages were related to the variation of contact angle while in contact with water. The observed plumes shape, internal water content distribution in general and the saturation overshoot behind the wetting front in particular in the repellent soils were associated with unstable flow. Moment analysis was applied to characterize the measured plumes during the wetting and subsequent redistribution. The center of mass and spatial variances determined for the measured evolving plumes were fitted by a model that accounts for capillary and gravitational driving forces in a medium of temporally varying wettability. Ellipses defined around the stable and unstable plumes' centers of mass and whose semi-axes represented a particular number of spatial variances were used to characterize plume shape and internal moisture distribution. A single probability curve was able to characterize the corresponding fractions of the total added water in the different ellipses for all measured plumes, which testify the competence and advantage of the moment analysis method.

  8. Plant Clonal Integration Mediates the Horizontal Redistribution of Soil Resources, Benefiting Neighboring Plants.

    Science.gov (United States)

    Ye, Xue-Hua; Zhang, Ya-Lin; Liu, Zhi-Lan; Gao, Shu-Qin; Song, Yao-Bin; Liu, Feng-Hong; Dong, Ming

    2016-01-01

    Resources such as water taken up by plants can be released into soils through hydraulic redistribution and can also be translocated by clonal integration within a plant clonal network. We hypothesized that the resources from one (donor) microsite could be translocated within a clonal network, released into different (recipient) microsites and subsequently used by neighbor plants in the recipient microsite. To test these hypotheses, we conducted two experiments in which connected and disconnected ramet pairs of Potentilla anserina were grown under both homogeneous and heterogeneous water regimes, with seedlings of Artemisia ordosica as neighbors. The isotopes [(15)N] and deuterium were used to trace the translocation of nitrogen and water, respectively, within the clonal network. The water and nitrogen taken up by P. anserina ramets in the donor microsite were translocated into the connected ramets in the recipient microsites. Most notably, portions of the translocated water and nitrogen were released into the recipient microsite and were used by the neighboring A. ordosica, which increased growth of the neighboring A. ordosica significantly. Therefore, our hypotheses were supported, and plant clonal integration mediated the horizontal hydraulic redistribution of resources, thus benefiting neighboring plants. Such a plant clonal integration-mediated resource redistribution in horizontal space may have substantial effects on the interspecific relations and composition of the community and consequently on ecosystem processes.

  9. Plant clonal integration mediates the horizontal redistribution of soil resources, benefiting neighbouring plants

    Directory of Open Access Journals (Sweden)

    Xuehua eYe

    2016-02-01

    Full Text Available Resources such as water taken up by plants can be released into soils through hydraulic redistribution and can also be translocated by clonal integration within a plant clonal network. We hypothesized that the resources from one (donor microsite could be translocated within a clonal network, released into different (recipient microsites and subsequently used by neighbour plants in the recipient microsite. To test these hypotheses, we conducted two experiments in which connected and disconnected ramet pairs of Potentilla anserina were grown under both homogeneous and heterogeneous water regimes, with seedlings of Artemisia ordosica as neighbours. The isotopes [15N] and deuterium were used to trace the translocation of nitrogen and water, respectively, within the clonal network. The water and nitrogen taken up by P. anserina ramets in the donor microsite were translocated into the connected ramets in the recipient microsites. Most notably, portions of the translocated water and nitrogen were released into the recipient microsite and were used by the neighbouring A. ordosica, which increased growth of the neighbouring A. ordosica significantly. Therefore, our hypotheses were supported, and plant clonal integration mediated the horizontal hydraulic redistribution of resources, thus benefiting neighbouring plants. Such a plant clonal integration-mediated resource redistribution in horizontal space may have substantial effects on the interspecific relations and composition of the community and consequently on ecosystem processes.

  10. Study of soil redistribution in cultivated fields using fallout cesium-137 at Fateh Jang, Attock, Pakistan

    International Nuclear Information System (INIS)

    Ahmad, M.; Rafique, M.; Iqbal, N.; Akram, W.; Aasi, M.R.

    2009-11-01

    The study was carried out to investigate soil redistribution and net soil losses from two cultivated fields located in the dissected loess plains in the Pothwar Plateau at Mangial (33.6 N; 72.8 E), District Attock, Pakistan. For reference site, soil samples were collected by scrapper plate at 2 cm intervals and bulk cores in a grid, while the cultivated fields were sampled taking bulk cores in grid and along transect. /sup 137/Cs was measured by gamma spectroscopy using Soil 6 (IAEA) as a standard. The established reference inventory of /sup 137/Cs for this area is 3204 Bq/m/sup 2/. The technique provides very clear quantitative information on medium-term erosion and deposition rates at different locations, and net soil loss from cultivated fields, while no other methods available can be applied so simply. Gradient of the cultivated fields play an important role in the soil redistribution and net soil loss. Due to higher gradient of Field 2, the net soil losses determined by PM and MBM-1 using 20 cm plough layer (14.18 t ha/sup -1/ yr/sup -1/ and 16.37 t ha/sup -1/ yr/sup -1/ respectively) are much higher than that for Field 1 determined by the same models (0.24 t ha-1 yr-1 and 3.84 t ha/sup -1/ yr/sup -1/). Therefore, the cultivated fields should be as much leveled as possible. Major implication arises in using soil conversion models when thickness of /sup 137/Cs bearing layer becomes more than the normal plough layer due to deposition of eroded soil at low-lying areas. In case of Field 2, using 30 cm thickness of plough layer having significant /sup 137/Cs in the deposition areas the net erosion estimates using by PM and MBM-1 are 8.71 t ha/sup -1/ yr/sup -1/ and 10.05 t ha-1 yr/sup -1/, respectively, which seem more reliable because maximum /sup 137/Cs inventory is taken into accounted. The herbicide residue varies spatially in the field, but these three distributions corresponding to the three sampling dates indicate reduction in the residue with time. The

  11. Hydraulic redistribution of soil water by roots affects whole-stand evapotranspiration and net ecosystem carbon exchange

    Science.gov (United States)

    J.-C. Domec; J.S. King; A. Noormets; E. Treasure; M.J. Gavazzi; G. Sun; S.G. McNulty

    2010-01-01

    Hydraulic redistribution (HR) of water via roots from moist to drier portions of the soil occurs in many ecosystems, potentially influencing both water use and carbon assimilation. By measuring soil water content, sap flow and eddy covariance, we investigated the temporal variability of HR in a loblolly pine (Pinus taeda) plantation during months of...

  12. The assessment of soil redistribution on agricultural land using the environmental isotope of Caesium-137

    International Nuclear Information System (INIS)

    Zainudin Othman

    2002-01-01

    Environmental radionuclides have the potential to be used to trace sediment movements. Caesium-137 ( 137 Cs), a radionuclide released during nuclear weapon tests from 1950s to 1960s is strongly adsorbed on to clay. It enters the Malaysian environment through cold continental polar (cPk) air mass circulation and Hadley cell effects from the higher latitude regions, converged during Inter-tropical Convergence Zones (ITCZ) oscillation and deposited through precipitation on to the soil as fallouts. Its content in the soil profile has been used to estimate soil loss due to water erosion in agricultural land. Two soil sampling methods, incremental and bulk sampling, were adopted to collect samples from the erosion plot and reference sites to a depth of 40 cm for the determination of 137 Cs inventories. The soil depth-profile of 137 Cs inventory at an undisturbed site exhibits an exponential function with most of the contents are accumulated within the upper 12 cm portion of the soil profile whereas in the disturbed sites the 137 Cs content were partially mixed within the plough layer. The average 137 Cs reference inventory from two different locations was 580.7 Bq/ m 2 while local 137 Cs reference inventory was 551.9 Bq/ m 2 . The USLE, Ritchie equation and three mathematical models were used to estimate the rate of soil loss. The Proportional Model was found suitable to be used in this environment. Net soil loss from the study slope was estimated by the USLE of 4.34 ton/ ha/ yr. The soil redistribution patterns show that the upper and middle slopes had been eroded while deposition was observed at the foot slope. The maximum land form evolutions of the eroded areas was 4.5 mm/ yr and 0.5 mm/ yr for the depositional areas. The long-term erosion rate of the study area was considered low. (author)

  13. Elemental Redistribution at the Onset of Soil Genesis from Basalt as Measured in a Soil Lysimeter System

    Science.gov (United States)

    Wang, Y.; Umanzor, M.; Alves Meira Neto, A.; Sengupta, A.; Amistadi, M. K.; Root, R.; Troch, P.; Chorover, J.

    2017-12-01

    Elemental translocation, resulting in enrichment or depletion relative to parent rock, is a consequence of mineral dissolution and precipitation reactions of soil genesis. Accurate measurement of translocation in natural systems is complicated by factors such as parent material heterogeneity and dust deposition. In the present work, a fully controlled and monitored 10° sloping soil lysimeter with known homogeneous initial conditions, was utilized to investigate initial stages of soil genesis from 1 m3 of crushed basalt. Throughout the two-year experiment, periodic irrigation coupled with sensor measurements enabled monitoring of changes in internal moisture states. A total 15-meter water influx resulted in distinct efflux patterns, wetting and drying cycles, as well as high volume water storage. Biological changes, such as algal and grass emergence, were visible on the soil surface, and microbial colonization throughout the profile was measured in a companion study, suggesting that biogeochemical hotspots may have formed. Forensic excavation and sampling of 324 voxels captured the final state heterogeneity of the lysimeter with respect to length and depth. Total elemental concentrations and a five-step sequential extraction (SE) scheme quantified elemental redistributions into operationally-defined pools including exchangeable, poorly-crystalline (hydr)oxides, and crystalline (hydr)oxides. Data were correlated to water flux and storage that was determined from sensor and tracer data over the two years of rock-water interaction; then used to map 2D cross-sections and identify geochemical hotspots. Total and SE Fe concentrations were used to establish a governing mass balance equation, and sub mass balance equations with unique partitioning coefficients of Fe were developed for each SE pool, respectively. The results help to explain elemental (e.g., Fe) lability and redistribution due to physical and geochemical weathering during the initial stages of soil genesis.

  14. Impacts of soil redistribution on the transport and fate of organic carbon in loess soils

    NARCIS (Netherlands)

    Wang, X.

    2014-01-01

    Soil erosion is an important environmental process leading to loss of topsoil including carbon (C) and nutrients, reducing soil quality and loss of biomass production. So far, the fate of soil organic carbon (SOC) in eroding landscapes is not yet fully understood and remains an important uncertainty

  15. Measurement of the vertical infiltration parameters and water redistribution in LRd and LEa soils by gamma-ray transmission technique

    International Nuclear Information System (INIS)

    Souza, A.D.B. de; Saito, H.; Appoloni, C.R.; Coimbra, M.M.; Parreira, P.S.

    1991-01-01

    The properties of soil water diffusivity and soil hydraulic conductivity of two horizons (0-20 cm and 20-40 cm) from Latossolo Roxo distrofico (LRd) and Latossolo Vermelho escuro (LEa) soil samples, have been measured in laboratory through the vertical infiltration and redistribution of water in soil columns. The moisture profile as a function of time for each position in the soil column were obtained with the gamma-ray transmission technique, using a sup(241)Am gamma-ray source, a Na (I) T1 scintillation detector and gamma spectrometry standard electronic. (author)

  16. Electrical Resistivity Tomography Reveals Upward Redistribution of Soil-Water by Coyote Brush in a Shrub-Grassland Ecotone

    Science.gov (United States)

    Manning, J. E.; Schulz, M. S.; Lambrecht, D. S.

    2016-12-01

    Species imbalance within many California plant assemblages may arise due to more intense wildfires as well as climate warming. Given this, coyote brush (Baccharis pilularis DC), a native evergreen shrub known as a ready colonizer of disturbed soil, may become more dominant. While prolonged spring soil moisture is required for seedling establishment, 1+ year-old coyote brush can withstand low soil water potentials (-1.2 MPa). Beyond this, little is known about its soil-water dynamics. Hydraulic redistribution of water within the soil profile by plant roots has been established in numerous species in the past 20 years. Recent quantification of the water quantity re-distributed by root systems are beginning to provide detail that could inform ET, weathering, and carbon cycling models. Electrical resistivity tomography (ERT) has been used to study soil hydraulics in natural as well as cropland settings. This study is the first known to use ERT to investigate hydraulic redistribution in coyote brush. One mid-size shrub surrounded by open grassland was selected at the study site, located on a coastal marine terrace west of Santa Cruz, CA. The soil profile, previously characterized with ERT and auger-based soil-water sampling, includes a clay-rich B horizon and is texturally non-uniform due to bioturbation to 0.6 meter. The 12-m ERT survey transect had 48 semi-permanent electrodes, with the 4-m wide shrub canopy at probes 16 to 32. Five repeats of evening and morning surveys were conducted. Heterogeneous texture and severe soil drying necessitated qualitative comparison across time. Overnight resistivity changes using differences plots of the modelled data revealed increased moisture beneath the shrub canopy during the night. Areas beyond the canopy—presumably outside the root zone—experienced variable overnight changes, with moisture increasing in the clay-rich horizon. Preliminary analysis suggests that coyote brush roots redistribute water upward within the soil

  17. Spatial glyphosate and AMPA redistribution on the soil surface driven by sediment transport processes – A flume experiment

    NARCIS (Netherlands)

    Bento, Célia P.M.; Commelin, Meindert C.; Baartman, Jantiene E.M.; Yang, Xiaomei; Peters, Piet; Mol, Hans G.J.; Ritsema, Coen J.; Geissen, Violette

    2018-01-01

    This study investigates the influence of small-scale sediment transport on glyphosate and AMPA redistribution on the soil surface and on their off-site transport during water erosion events. Both a smooth surface (T1) and a surface with “seeding lines on the contour” (T2) were tested in a rainfall

  18. Application of the 137Cs technique to quantify soil redistribution rates in paleohumults from Central-South Chile

    International Nuclear Information System (INIS)

    Schuller, P.; Sepulveda, A.; Trumper, R.E.; Castillo, A.

    2000-01-01

    The objective of the present study was to evaluate the applicability of the 137 Cs technique in obtaining spatial distributed information on mean soil redistribution rates in Central-South Chile. For this purpose four fields of Palehumult soil and contrasting land use and management were selected in the Coastal Mountain Range of the 9th Region: Crop fields under subsistence and commercial management and non-permanent prairies under subsistence and commercial management. The spatial distribution of the soil redistribution rates obtained by the 137 Cs method was similar to the one obtained by pedological observations. Also, annual sediment fluxes measured at experimental plots were similar to the erosion rates determined by the 137 Cs method at adjacent points. The 137 Cs technique is seen as an efficient method to obtain long-term soil redistribution rates under the climatic conditions and the soil type selected in Chile. In the future, it is necessary to study the applicability of the method under other climatic conditions and soil types occurring in Chile in which erosion is not so evident, and to adjust the method to optimise costs and benefits. (author) [es

  19. Study of 137Cs redistribution in semi-arid land of western Algeria for soil loss assessment

    Directory of Open Access Journals (Sweden)

    Ahmed Azbouche

    2017-06-01

    Full Text Available Abstract: Soil erosion is a global environmental problem, and anthropogenic fallout radionuclides offer a promising tool for describing and quantifying soil redistribution on decadal time scales. The 137Cs technique for investigating rates and patterns of soil erosion has now been successfully applied in a wide range of environments. This radionuclide strongly adheres to soil particles and therefore can be used as a tracer in soil movement studies. In this work we present the 137Cs redistribution in an agricultural area, to assess the soil erosion and sedimentation zones. 36 samples were collected in small watershed called Sidi Mohamed Cherif at Oued Isser located in North West of Algeria. The preparation of soil samples required drying, crushing and sieving to finally lower than 2mm diameter. The sample analysis was analyzed by gamma spectrometry technique composed with a high resolution HPGe semi-conductor detector with 1.8 keV to 60Co 1332.5 keV line, after soil characterization with WDXRF. The spectrums treatment was carried out using the Genie 2000 software dedicated to the processing of gamma spectra. The specific activity of 137Cs is obtained variable from 0.25Bq kg-1 and 7.8 Bq kg-1. These results allow determining the erosion global erosion rate, is about 12.5 t ha?1 yr?1. Keywords: 137Cs, Soil Characterization, Soil erosion, Gamma spectrometry, North West of Algeria.

  20. Modeling redistribution of α-HCH in Chinese soil induced by environment factors

    International Nuclear Information System (INIS)

    Tian, Chongguo; Liu Liyan; Ma Jianmin; Tang Jianhui; Li Yifan

    2011-01-01

    This study explores long-term environmental fate of α-HCH in China from 1952 to 2007 using ChnGPERM (Chinese Gridded Pesticide Emission and Residue Model). The model captures well the temporal and spatial variations of α-HCH concentration in Chinese soils by comparing with a number of measured data across China in different periods. The results demonstrate α-HCH grasshopping effect in Eastern China and reveal several important features of the chemical in Northeast and Southeast China. It is found that Northeast China is a prominent sink region of α-HCH emitted from Chinese sources and α-HCH contamination in Southwest China is largely attributed to foreign sources. Southeast China is shown to be a major source contributing to α-HCH contamination in Northeast China, incurred by several environmental factors including temperature, soil organic carbon content, wind field and precipitation. - Highlights: → Grasshopping effect is found in Eastern China. → Northeast China is a prominent sink region of α-HCH emitted from Chinese sources. → Southeast China is a major source region to α-HCH contamination in Northeast China. → The source-sink relationship is incurred by several environmental factors. - This study provides the first comprehensive overview to redistribution of a toxic chemical incurred by long-term variation of environmental factors across China.

  1. Estimating soil erosion from the redistribution of fallout cesium 137 in an agricultural land of province of Camaguey

    International Nuclear Information System (INIS)

    Brigido Flores, O.; Barreras Caballero, A.A.; Montalvan Estrada, A.; Gandarilla Benitez, J. E.; Font Vila, L.

    2000-01-01

    The redistribution of soil has a profound impact on its quality and ultimately on its productivity for crop growth. Significant amounts of fallout Cesium-137 ( Cs) from nuclear weapons tests were introduced to the landscape during the 1950s and 1960s. Once Cs reaches the soil surface it is strongly and quickly adsorbed by clay particles, and is essentially nonexchangeable in most environments. Thus, in recent years, the fallout Cs has found increasing application in investigations of soil erosion on agricultural land. By comparing Cs inventories from different points in fields with the reference inventory for the area it is possible to assemble information on the rates and patterns of soil loss. An investigation of soil erosion was undertaken in the 4 ha field of La Victoria 1 Farm. Three models for converting Cs measurements to estimates of soil redistribution rates on studied cultivated field have been used, The Proportional Model, The Gravimetric Approach and Simplified Mass Balance Model. Using the first one net soil erosion was calculated to be 9.6 t.ha .year . Estimates of soil loss using the gravimetric method and simplified mass balance model were found to be 9.5 and 14.9 t.ha .year ,respectively. Preliminary results suggest that Cs technique may be of considerable value in assembling data on the rates and spatial distribution of soil loss

  2. Determination of soil parameters during the water horizontal infiltration and redistribution by gamma ray attenuation method and tensiometry

    International Nuclear Information System (INIS)

    Oliveira, J.C.M. de.

    1991-04-01

    The present work studies the water diffusivity and hydraulic conductivity in a Latossolo Roxo distrofico soil, during the water infiltration and redistribution processes. Variation water flow equations were utilized for the calculations. The data of wetting front positions and of soil water content profiles were obtained through the gamma ray attenuation from a 241-Am source, with 100 mCi activity detected by a standard electronic equipment of gamma spectrometry, with NaI CTD scintillation detector. From the soil water content data in function of space and time and from analytic models, the properties of soil water diffusivity and soil hydraulic conductivity were determined in the laboratory for the 0-10 cm and 10-25 soil layers. (author)

  3. A first generation dynamic ingress, redistribution and transport model of soil track-in: DIRT.

    Science.gov (United States)

    Johnson, D L

    2008-12-01

    This work introduces a spatially resolved quantitative model, based on conservation of mass and first order transfer kinetics, for following the transport and redistribution of outdoor soil to, and within, the indoor environment by track-in on footwear. Implementations of the DIRT model examined the influence of room size, rug area and location, shoe size, and mass transfer coefficients for smooth and carpeted floor surfaces using the ratio of mass loading on carpeted to smooth floor surfaces as a performance metric. Results showed that in the limit for large numbers of random steps the dual aspects of deposition to and track-off from the carpets govern this ratio. Using recently obtained experimental measurements, historic transport and distribution parameters, cleaning efficiencies for the different floor surfaces, and indoor dust deposition rates to provide model boundary conditions, DIRT predicts realistic floor surface loadings. The spatio-temporal variability in model predictions agrees with field observations and suggests that floor surface dust loadings are constantly in flux; steady state distributions are hardly, if ever, achieved.

  4. Soil fertility and 137 Cs redistribution as related to land use, landscape and texture in a watershed of Paraiba State

    International Nuclear Information System (INIS)

    Santos, Antonio Clementino dos

    2004-03-01

    Intensive land use and growing deforestation of the natural vegetation in Northeastern Brazil have contributed to the degradation of resources, particularly the decrease of soil fertility. As a result, biodiversity and ecosystem capacity to restore its resources after disturbances have been diminished. The decrease in soil fertility is more substantial in areas dominated by an undulating topography. In these areas, erosion is intensified when crops or pasture replaces natural vegetation. Even though degradation processes are reflected in environmental, social, and economical changes, there is a lack of information regarding the interrelationship between these changes and soil fertility and erosion. Thus, the 'Vaca Brava' watershed (14,04 km 2 ), located in the 'Agreste' region of Paraiba State, was selected to study the interrelationships between land use, landscape, particle size distribution, soil fertility and erosion using 137 Cs redistribution. Small farms, where subsistence agriculture is intensive, are common in this watershed, as well as areas for environmental protection. A georreferenced survey of the watershed topography was initially carried out. Based on the survey data, the watershed was digitalized using a scale of 1:5000, and a 3-D map was created. Each landform element had its area determined on a area (absolute value) and percentage (relative value) basis. Shoulder, backslope and footslope positions represented 83% of the cultivated area in the watershed. A data base of 360 georreferenced soil samples (0-20 cm), collected using a stratified sampling scheme, was further created. Sites were stratified based on their landscape position (summit, shoulder, backslope, footslope, and toeslope) in factorial combination with land use (annual crops, pasture, Pennisetum purpureum, Mimosa caesalpiniae folia, bush fallow, and native forest). Physical analyses of the soil samples included particle size distribution and bulk density, whereas soil chemical

  5. Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: Repeated harvests and arsenic redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Gonzaga, Maria I.S.; Santos, Jorge A.G. [Department of Soil Chemistry, Universidade Federal da Bahia, Cruz das Almas, 44380000 (Brazil); Ma, Lena Q. [Soil and Water Science Department, University of Florida, 2169 McCarty Hall, Gainesville, FL 32611-0290 (United States)], E-mail: lqma@ifas.ufl.edu

    2008-07-15

    This greenhouse experiment evaluated arsenic removal by Pteris vittata and its effects on arsenic redistribution in soils. P. vittata grew in six arsenic-contaminated soils and its fronds were harvested and analyzed for arsenic in October, 2003, April, 2004, and October, 2004. The soil arsenic was separated into five fractions via sequential extraction. The ferns grew well and took up arsenic from all soils. Fern biomass ranged from 24.8 to 33.5 g plant{sup -1} after 4 months of growth but was reduced in the subsequent harvests. The frond arsenic concentrations ranged from 66 to 6,151 mg kg{sup -1}, 110 to 3,056 mg kg{sup -1}, and 162 to 2,139 mg kg{sup -1} from the first, second and third harvest, respectively. P. vittata reduced soil arsenic by 6.4-13% after three harvests. Arsenic in the soils was primarily associated with amorphous hydrous oxides (40-59%), which contributed the most to arsenic taken up by P. vittata (45-72%). It is possible to use P. vittata to remediate arsenic-contaminated soils by repeatedly harvesting its fronds. - Pteris vittata was effective in continuously removing arsenic from contaminated soils after three repeated harvests.

  6. Partitioning and redistribution of exogenous Ra226 in farm soils from the vicinity of the First Brazilian Mine and Mill

    International Nuclear Information System (INIS)

    Teixeira, V.S.; Franca, E.P.

    1988-01-01

    A sequential selective extration method was employed to assess the partitioning and redistribution of exogenous 226 Ra into geochemical fractions of farm soils collected around the first Brazilian Uranium Mine and Mill. Six soil samples were contaminated in the laboratory by 226 a solution, simulating an irrigation procedure. After selective extractions, 226 Ra was analysed in six geochemical fractions: soluble (A); exchangeable (E); bound to carbonates (C); reducible (R); oxidizable (O); residual or matricial (M). The same method was also used in these soils before and after cultivation. The exogenous 226 Ra was mainly associated to the (R) and (O) fractions followed by the (E) and (C) ones. Exchangeable 226 Ra (fractions (A) + (E)) represents 21.8%. Statistically significant differences before and after cultivation were obtained only in the fractions (C) and (M). (Author) [pt

  7. Adapting the Caesium-137 technique to document soil redistribution rates associated with traditional cultivation practices in Haiti.

    Science.gov (United States)

    Velasco, H; Astorga, R Torres; Joseph, D; Antoine, J S; Mabit, L; Toloza, A; Dercon, G; Walling, Des E

    2018-03-01

    Large-scale deforestation, intensive land use and unfavourable rainfall conditions are responsible for significant continuous degradation of the Haitian uplands. To develop soil conservation strategies, simple and cost-effective methods are needed to assess rates of soil loss from farmland in Haiti. The fallout radionuclide caesium-137 ( 137 Cs) provides one such means of documenting medium-term soil redistribution rates. In this contribution, the authors report the first use in Haiti of 137 Cs measurements to document soil redistribution rates and the associated pattern of erosion/sedimentation rates along typical hillslopes within a traditional upland Haitian farming area. The local 137 Cs reference inventory, measured at an adjacent undisturbed flat area, was 670 Bq m -2 (SD = 100 Bq m -2 , CV = 15%, n = 7). Within the study area, where cultivation commenced in 1992 after deforestation, three representative downslope transects were sampled. These were characterized by 137 Cs inventories ranging from 190 to 2200 Bq m -2 . Although, the study area was cultivated by the local farmers, the 137 Cs depth distributions obtained from the area differed markedly from those expected from a cultivated area. They showed little evidence of tillage mixing within the upper part of the soil or, more particularly, of the near-uniform activities normally associated with the plough layer or cultivation horizon. They were very similar to that found at the reference site and were characterized by high 137 Cs activities at the surface and much lower activities at greater depths. This situation is thought to reflect the traditional manual tillage practices which cause limited disturbance and mixing of the upper part of the soil. It precluded the use of the conversion models normally used to estimate soil redistribution rates from 137 Cs measurements on cultivated soils and the Diffusion and Migration conversion model frequently used for uncultivated soils was modified for

  8. Examination of the soil redistribution through the vertical distribution of the radionuclide-content of undisturbed soils

    International Nuclear Information System (INIS)

    Bihari, A.; Dezsoe, Z.; Szabo, Sz.

    2006-01-01

    Recent concern for the problems of natural and anthropogenic landscape- and slope transformation has highlighted the need for quantitative data on longer term soil redistribution rates. The analysis of the vertical distribution of fallout 137 Cs in soils can be used to deduce information on the magnitude and temporal pattern of soil erosion. This paper summarizes the intermediate results of a pilot study testing the capabilities of this kind of analysis in Hungary. The basics of the fallout 137 Cs method, the characteristics of the studied area and the determination of the reference inventory and depth distribution have been introduced in our previous report [1]. Continuing, we have started to examine a rapidly evolving dell downslope to the ref. point. It is an uncultivated piece of land with an altitude between approx. 230 and 260 m a.s.l. This area is of particular interest because its deepening and opening in the backward direction threatens the sustainability of the agricultural work around the valley head (near the ref. point). The basic assumption of the fallout 137 Cs method is that landscape points with higher/lower radiocaesium inventory compared to the local ref. inventory are subjected to net accumulation/erosion, respectively. This assumption is valid mostly for cultivated areas where radiocaesium is thoroughly homogenized in the plough layer so the 137 Cs content of the eroded/accumulated material is more or- less constant. In case of uncultivated soils, however, usually there is a decrease in 137 Cs activity concentration (AC Cs ) with increasing depth. This means that the radiocaesium content of the eroded and the accumulated sediment can be rather different for the same landscape point as these possess a much larger temporal variation, compared to a cultivated area receiving the same fallout input. This kind of depth dependent radionuclide analysis is very rarely applied in practice (e.g. [2]) because commonly used models require the knowledge of

  9. Rock Outcrops Redistribute Organic Carbon and Nutrients to Nearby Soil Patches in Three Karst Ecosystems in SW China.

    Directory of Open Access Journals (Sweden)

    Dianjie Wang

    Full Text Available Emergent rock outcrops are common in terrestrial ecosystems. However, little research has been conducted regarding their surface function in redistributing organic carbon and nutrient fluxes to soils nearby. Water that fell on and ran off 10 individual rock outcrops was collected in three 100 × 100 m plots within a rock desertification ecosystem, an anthropogenic forest ecosystem, and a secondary forest ecosystem between June 2013 and June 2014 in Shilin, SW China. The concentrations of total organic carbon (TOC, total nitrogen (N, total phosphorus (P, and potassium (K in the water samples were determined during three seasons, and the total amounts received by and flowing out from the outcrops were calculated. In all three ecosystems, TOC and N, P, and K were found throughout the year in both the water received by and delivered to nearby soil patches. Their concentrations and amounts were generally greater in forested ecosystems than in the rock desertification ecosystem. When rock outcrops constituted a high percentage (≥ 30% of the ground surface, the annual export of rock outcrop runoff contributed a large amount of organic carbon and N, P, and K nutrients to soil patches nearby by comparison to the amount soil patches received via atmospheric deposition. These contributions may increase the spatial heterogeneity of soil fertility within patches, as rock outcrops of different sizes, morphologies, and emergence ratios may surround each soil patch.

  10. Using plot experiments to test the validity of mass balance models employed to estimate soil redistribution rates from 137Cs and 210Pb(ex) measurements.

    Science.gov (United States)

    Porto, Paolo; Walling, Des E

    2012-10-01

    Information on rates of soil loss from agricultural land is a key requirement for assessing both on-site soil degradation and potential off-site sediment problems. Many models and prediction procedures have been developed to estimate rates of soil loss and soil redistribution as a function of the local topography, hydrometeorology, soil type and land management, but empirical data remain essential for validating and calibrating such models and prediction procedures. Direct measurements using erosion plots are, however, costly and the results obtained relate to a small enclosed area, which may not be representative of the wider landscape. In recent years, the use of fallout radionuclides and more particularly caesium-137 ((137)Cs) and excess lead-210 ((210)Pb(ex)) has been shown to provide a very effective means of documenting rates of soil loss and soil and sediment redistribution in the landscape. Several of the assumptions associated with the theoretical conversion models used with such measurements remain essentially unvalidated. This contribution describes the results of a measurement programme involving five experimental plots located in southern Italy, aimed at validating several of the basic assumptions commonly associated with the use of mass balance models for estimating rates of soil redistribution on cultivated land from (137)Cs and (210)Pb(ex) measurements. Overall, the results confirm the general validity of these assumptions and the importance of taking account of the fate of fresh fallout. However, further work is required to validate the conversion models employed in using fallout radionuclide measurements to document soil redistribution in the landscape and this could usefully direct attention to different environments and to the validation of the final estimates of soil redistribution rate as well as the assumptions of the models employed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Redistribution of fractions of zinc, cadmium, nickel, copper, and lead in contaminated calcareous soils treated with EDTA.

    Science.gov (United States)

    Jalali, Mohsen; Khanlari, Zahra V

    2007-11-01

    Effect of ethylene diamine tetraacetic acid (EDTA) on the fractionation of zinc (Zn), cadmium (Cd), nickel (Ni), copper (Cu), and lead (Pb) in contaminated calcareous soils was investigated. Soil samples containing variable levels of contamination, from 105.9 to 5803 mg/kg Zn, from 2.2 to 1361 mg/kg Cd, from 31 to 64.0 mg/kg Ni, from 24 to 84 mg/kg Cu, and from 109 to 24,850 mg/kg Pb, were subjected to EDTA treatment at different dosages of 0, 1.0, and 2.0 g/kg. Metals in the incubated soils were fractionated after 5 months by a sequential extraction procedure, in which the metal fractions were experimentally defined as exchangeable (EXCH), carbonate (CARB), Mn oxide (MNO), Fe oxide (FEO), organic matter (OM), and residual (RES) fractions. In contaminated soils without EDTA addition, Zn, Ni, Cu, and Pb were predominately present in the RES fraction, up to 60.0%, 32.3%, 41.1%, and 36.8%, respectively. In general, with the EDTA addition, the EXCH and CARB fractions of these metals increased dramatically while the OM fraction decreased. The Zn, Ni, Cu, and Pb were distributed mostly in RES, OM, FEO, and CARB fractions in contaminated soils, but Cd was found predominately in the CARB, MNO, and RES fractions. The OM fraction decreased with increasing amounts of EDTA. In the contaminated soils, EDTA removed some Pb, Zn, Cu, and Ni from MNO, FEO, and OM fractions and redistributed them into CARB and EXCH fractions. Based on the relative percent in the EXCH and CARB fractions, the order of solubility was Cd > Pb > Ni > Cu > Zn for contaminated soils, before adding of EDTA, and after adding of EDTA, the order of solubility was Pb > Cd > Zn > Ni > Cu. The risk of groundwater contamination will increase after applying EDTA and it needed to be used very carefully.

  12. A model to predict element redistribution in unsaturated soil: Its simplification and validation

    International Nuclear Information System (INIS)

    Sheppard, M.I.; Stephens, M.E.; Davis, P.A.; Wojciechowski, L.

    1991-01-01

    A research model has been developed to predict the long-term fate of contaminants entering unsaturated soil at the surface through irrigation or atmospheric deposition, and/or at the water table through groundwater. The model, called SCEMR1 (Soil Chemical Exchange and Migration of Radionuclides, Version 1), uses Darcy's law to model water movement, and the soil solid/liquid partition coefficient, K d , to model chemical exchange. SCEMR1 has been validated extensively on controlled field experiments with several soils, aeration statuses and the effects of plants. These validation results show that the model is robust and performs well. Sensitivity analyses identified soil K d , annual effective precipitation, soil type and soil depth to be the four most important model parameters. SCEMR1 consumes too much computer time for incorporation into a probabilistic assessment code. Therefore, we have used SCEMR1 output to derive a simple assessment model. The assessment model reflects the complexity of its parent code, and provides a more realistic description of containment transport in soils than would a compartment model. Comparison of the performance of the SCEMR1 research model, the simple SCEMR1 assessment model and the TERRA compartment model on a four-year soil-core experiment shows that the SCEMR1 assessment model generally provides conservative soil concentrations. (15 refs., 3 figs.)

  13. Using 137Cs to quantify the redistribution of soil organic carbon and total N affected by intensive soil erosion in the headwaters of the Yangtze River, China

    International Nuclear Information System (INIS)

    Wei Guoxiao; Wang Yibo; Wang Yanlin

    2008-01-01

    Characteristics of soil organic carbon (SOC) and total nitrogen (total N) are important for determining the overall quality of soils. Studies on spatial and temporal variation in SOC and total N are of great importance because of global environmental concerns. Soil erosion is one of the major processes affecting the redistribution of SOC and total N in the test fields. To characterize the distribution and dynamics of SOC and N in the intensively eroded soil of the headwaters of the Yangtze River, China, we measured profiles of soil organic C, total N stocks, and 137 Cs in a control plot and a treatment plot. The amounts of SOC, 137 Cs of sampling soil profiles increased in the following order, lower>middle>upper portions on the control plot, and the amounts of total N of sampling soil profile increase in the following order: upper>middle>lower on the control plot. Intensive soil erosion resulted in a significant decrease of SOC amounts by 34.9%, 28.3% and 52.6% for 0-30 cm soil layer at upper, middle and lower portions and 137 Cs inventory decreased by 68%, 11% and 85% at upper, middle and lower portions, respectively. On the treatment plot total N decreased by 50.2% and 14.6% at the upper and middle portions and increased by 48.9% at the lower portion. Coefficients of variation (CVs) of SOC decreased by 31%, 37% and 30% in the upper, middle and lower slope portions, respectively. Similar to the variational trend of SOC, CVs of 137 Cs decreased by 19.2%, 0.5% and 36.5%; and total N decreased by 45.7%, 65.1% and 19% in the upper, middle and lower slope portions, respectively. The results showed that 137 Cs, SOC and total N moved on the sloping land almost in the same physical mechanism during the soil erosion procedure, indicating that fallout of 137 Cs could be used directly for quantifying dynamic SOC and total N redistribution as the soil was affected by intensive soil erosion

  14. Using (137)Cs to quantify the redistribution of soil organic carbon and total N affected by intensive soil erosion in the headwaters of the Yangtze River, China.

    Science.gov (United States)

    Guoxiao, Wei; Yibo, Wang; Yan Lin, Wang

    2008-12-01

    Characteristics of soil organic carbon (SOC) and total nitrogen (total N) are important for determining the overall quality of soils. Studies on spatial and temporal variation in SOC and total N are of great importance because of global environmental concerns. Soil erosion is one of the major processes affecting the redistribution of SOC and total N in the test fields. To characterize the distribution and dynamics of SOC and N in the intensively eroded soil of the headwaters of the Yangtze River, China, we measured profiles of soil organic C, total N stocks, and (137)Cs in a control plot and a treatment plot. The amounts of SOC, (137)Cs of sampling soil profiles increased in the following order, lower>middle>upper portions on the control plot, and the amounts of total N of sampling soil profile increase in the following order: upper>middle>lower on the control plot. Intensive soil erosion resulted in a significant decrease of SOC amounts by 34.9%, 28.3% and 52.6% for 0-30cm soil layer at upper, middle and lower portions and (137)Cs inventory decreased by 68%, 11% and 85% at upper, middle and lower portions, respectively. On the treatment plot total N decreased by 50.2% and 14.6% at the upper and middle portions and increased by 48.9% at the lower portion. Coefficients of variation (CVs) of SOC decreased by 31%, 37% and 30% in the upper, middle and lower slope portions, respectively. Similar to the variational trend of SOC, CVs of (137)Cs decreased by 19.2%, 0.5% and 36.5%; and total N decreased by 45.7%, 65.1% and 19% in the upper, middle and lower slope portions, respectively. The results showed that (137)Cs, SOC and total N moved on the sloping land almost in the same physical mechanism during the soil erosion procedure, indicating that fallout of (137)Cs could be used directly for quantifying dynamic SOC and total N redistribution as the soil was affected by intensive soil erosion.

  15. The use of a numerical mass-balance model to estimate rates of soil redistribution on uncultivated land from 137Cs measurements

    International Nuclear Information System (INIS)

    Owens, P.N.; Walling, D.E.

    1988-01-01

    A numerical mass-balance model is developed which can be used to estimate rates of soil redistribution on uncultivated land from measurements of bombderived 137 Cs inventories. The model uses a budgeting approach, which takes account of temporal variations in atmospheric fallout of 137 Cs, radioactive decay, and net gains or losses of 137 Cs due to erosion and deposition processes, combined with parameters which describe internal 137 Cs redistribution processes, to estimate the 137 Cs content of topsoil and the 137 Cs inventory at specific points, from the start of 137 Cs fallout in the 1950s to the present day. The model is also able to account for potential differences in particle size composition and organic matter content between mobilised soil particles and the original soil, and the effect that these may have on 137 Cs concentrations and inventories. By running the model for a range of soil erosion and deposition rates, a calibration relationship can be constructed which relates the 137 Cs inventory at a sampling point to the average net soil loss or gain at that location. In addition to the magnitude and temporal distribution of the 137 Cs atmospheric fallout flux, the soil redistribution rates estimated by the model are sensitive to parameters which describe the relative texture and organic matter content of the eroded or deposited material, and the ability of the soil to retain 137 Cs in the upper part of the soil profile. (Copyright (c) 1988 Elsevier Science B.V., Amsterdam. All rights reserved.)

  16. Roots bridge water to nutrients: a study of utilizing hydraulic redistribution through root systems to extract nutrients in the dry soils

    Science.gov (United States)

    Yan, J.; Ghezzehei, T. A.

    2017-12-01

    The rhizosphere is the region of soil that surrounds by individual plant roots. While its small volume and narrow region compared to bulk soil, the rhizosphere regulates numerous processes that determine physical structure, nutrient distribution, and biodiversity of soils. One of the most important and distinct functions of the rhizosphere is the capacity of roots to bridge and redistribute soil water from wet soil layers to drier layers. This process was identified and defined as hydraulic lift or hydraulic redistribution, a passive process driven by gradients in water potentials and it has attracted much research attention due to its important role in global water circulation and agriculture security. However, while previous studies mostly focused on the hydrological or physiological impacts of hydraulic redistribution, limited research has been conducted to elucidate its role in nutrient cycling and uptake. In this study, we aim to test the possibility of utilizing hydraulic redistribution to facilitate the nutrient movement and uptake from resource segregated zone. Our overarching hypothesis is that plants can extract nutrients from the drier but nutrient-rich regions by supplying sufficient amounts of water from the wet but nutrient-deficient regions. To test our hypothesis, we designed split-root systems of tomatoes with unequal supply of water and nutrients in different root compartments. More specifically, we transplanted tomato seedlings into sand or soil mediums, and grew them under conditions with alternate 12-h lightness and darkness. We continuously monitored the temperature, water and nutrient content of soils in these separated compartments. The above and below ground biomass were also quantified to evaluate the impacts on the plant growth. The results were compared to a control with evenly supply of water and nutrients to assess the plant growth, nutrient leaching and uptake without hydraulic redistribution.

  17. Process based modelling of soil organic carbon redistribution on landscape scale

    Science.gov (United States)

    Schindewolf, Marcus; Seher, Wiebke; Amorim, Amorim S. S.; Maeso, Daniel L.; Jürgen, Schmidt

    2014-05-01

    Recent studies have pointed out the great importance of erosion processes in global carbon cycling. Continuous erosion leads to a massive loss of top soils including the loss of organic carbon accumulated over long time in the soil humus fraction. Lal (2003) estimates that 20% of the organic carbon eroded with top soils is emitted into atmosphere, due to aggregate breakdown and carbon mineralization during transport by surface runoff. Furthermore soil erosion causes a progressive decrease of natural soil fertility, since cation exchange capacity is associated with organic colloids. As a consequence the ability of soils to accumulate organic carbon is reduced proportionately to the drop in soil productivity. The colluvial organic carbon might be protected from further degradation depending on the depth of the colluvial cover and local decomposing conditions. Some colluvial sites can act as long-term sinks for organic carbon. The erosional transport of organic carbon may have an effect on the global carbon budget, however, it is uncertain, whether erosion is a sink or a source for carbon in the atmosphere. Another part of eroded soils and organic carbon will enter surface water bodies and might be transported over long distances. These sediments might be deposited in the riparian zones of river networks. Erosional losses of organic carbon will not pass over into atmosphere for the most part. But soil erosion limits substantially the potential of soils to sequester atmospheric CO2 by generating humus. The present study refers to lateral carbon flux modelling on landscape scale using the process based EROSION 3D soil loss simulation model, using existing parameter values. The selective nature of soil erosion results in a preferentially transport of fine particles while less carbonic larger particles remain on site. Consequently organic carbon is enriched in the eroded sediment compared to the origin soil. For this reason it is essential that EROSION 3D provides the

  18. Evaluating water erosion prediction project model using Cesium-137-derived spatial soil redistribution data

    Science.gov (United States)

    The lack of spatial soil erosion data has been a major constraint on the refinement and application of physically based erosion models. Spatially distributed models can only be thoroughly validated with distributed erosion data. The fallout cesium-137 has been widely used to generate spatial soil re...

  19. Four decades of post-agricultural forest development have caused major redistributions of soil phosphorus fractions

    DEFF Research Database (Denmark)

    Schrijver, An De; Vesterdal, Lars; Hansen, Karin Irene

    2012-01-01

    , slowly cycling P and occluded P); in particular, we addressed the timerelated alterations in the inorganic versus organic P fractions. In less than 40 years of oak forest development, significant redistributions have occurred between different P fractions. While both the labile and the slowly cycling...... inorganic P fractions significantly decreased with forest age, the organic fractions significantly increased. The labile P pool (inorganic ? organic), which is considered to be the pool of P most likely to contribute to plant-available P, significantly decreased with forest age (from[20 to\\10% of total P......), except in the 0–5 cm of topsoil, where labile P remained persistently high. The shift from inorganic to organic P and the shifts between the different inorganic P fractions are driven by biological processes and also by physicochemical changes related to forest development. It is concluded...

  20. Heavy metal removal by GLDA washing: Optimization, redistribution, recycling, and changes in soil fertility.

    Science.gov (United States)

    Wang, Guiyin; Zhang, Shirong; Xu, Xiaoxun; Zhong, Qinmei; Zhang, Chuer; Jia, Yongxia; Li, Ting; Deng, Ouping; Li, Yun

    2016-11-01

    Soil washing, an emerging method for treating soils contaminated by heavy metals, requires an evaluation of its efficiency in simultaneously removing different metals, the quality of the soil following remediation, and the reusability of the recycled washing agent. In this study, we employed N,N-bis (carboxymethyl)-l-glutamic acid (GLDA), a novel and readily biodegradable chelator to remove Cd, Pb, and Zn from polluted soils. We investigated the influence of washing conditions, including GLDA concentration, pH, and contact time on their removal efficiencies. The single factor experiments showed that Cd, Pb, and Zn removal efficiencies reached 70.62, 74.45, and 34.43% in mine soil at a GLDA concentration of 75mM, a pH of 4.0, and a contact time of 60min, and in polluted farmland soil, removal efficiencies were 69.12, 78.30, and 39.50%, respectively. We then employed response surface methodology to optimize the washing parameters. The optimization process showed that the removal efficiencies were 69.50, 88.09, and 40.45% in mine soil and 71.34, 81.02, and 50.95% in polluted farmland soil for Cd, Pb, and Zn, respectively. Moreover, the overall highly effective removal of Cd and Pb was connected mainly to their highly effective removal from the water-soluble, exchangeable, and carbonate fractions. GLDA-washing eliminated the same amount of metals as EDTA-washing, while simultaneously retaining most of the soil nutrients. Removal efficiencies of recycled GLDA were no >5% lower than those of the fresh GLDA. Therefore, GLDA could potentially be used for the rehabilitation of soil contaminated by heavy metals. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Using plot experiments to test the validity of mass balance models employed to estimate soil redistribution rates from 137Cs and 210Pbex measurements

    International Nuclear Information System (INIS)

    Porto, Paolo; Walling, Des E.

    2012-01-01

    Information on rates of soil loss from agricultural land is a key requirement for assessing both on-site soil degradation and potential off-site sediment problems. Many models and prediction procedures have been developed to estimate rates of soil loss and soil redistribution as a function of the local topography, hydrometeorology, soil type and land management, but empirical data remain essential for validating and calibrating such models and prediction procedures. Direct measurements using erosion plots are, however, costly and the results obtained relate to a small enclosed area, which may not be representative of the wider landscape. In recent years, the use of fallout radionuclides and more particularly caesium-137 ( 137 Cs) and excess lead-210 ( 210 Pb ex ) has been shown to provide a very effective means of documenting rates of soil loss and soil and sediment redistribution in the landscape. Several of the assumptions associated with the theoretical conversion models used with such measurements remain essentially unvalidated. This contribution describes the results of a measurement programme involving five experimental plots located in southern Italy, aimed at validating several of the basic assumptions commonly associated with the use of mass balance models for estimating rates of soil redistribution on cultivated land from 137 Cs and 210 Pb ex measurements. Overall, the results confirm the general validity of these assumptions and the importance of taking account of the fate of fresh fallout. However, further work is required to validate the conversion models employed in using fallout radionuclide measurements to document soil redistribution in the landscape and this could usefully direct attention to different environments and to the validation of the final estimates of soil redistribution rate as well as the assumptions of the models employed. - Highlights: ► Soil erosion is an important threat to the long-term sustainability of agriculture.

  2. The role of pore soil solutions in redistribution of 137Cs, 90Sr, 239,240Pu and 241Am within soil-vegetative cover

    International Nuclear Information System (INIS)

    Ovsiannikova, S.V.; Sokolik, G.A.; Kilchitskaya, S.L.; Eismont, E.A.; Zhukovich, N.V.; Kimlenko, I.M.

    1998-01-01

    The role of pore soil solutions in the migration of 137 Cs, 90 Sr, 239,240 Pu and 241 Am within soil-vegetative cover of natural ecosystems was examined. The soil solutions were found to play an important role in the redistribution of 137 Cs, 90 Sr, 239,240 Pu and 241 Am in the soil-plant systems. Obvious relationships between the distribution coefficients of radionuclides between solid and liquid phases (K d ) and the intensity of vertical migration of 137 Cs, 90 Sr, 239,240 Pu and 241 Am along the soil profiles and with intensity of their accumulation by grass vegetation of natural meadows have been obtained. It means that the distribution coefficient may be used as a criterion of the radionuclide mobility in the soil-plant system whatever its level of radioactive contamination is. The influence of the degree of soil moistening, the content of mobile radionuclide forms in the soils and some characteristics of pore soil solutions (pH, content of K + , Ca 2+ , NH 4 + , water soluble organic substances) on the concentration of radionuclide in the soil solutions and on the value of radionuclide distribution coefficient have been analysed. The results of investigation are of great importance in the evaluation of radioecological situation and in solution of problems of radioecological rehabilitation of the contaminated territories. The received data constitute a part of scientific basis for the development of a system of countermeasures to decrease the mobility and biological availability of radionuclides of high and very high radiotoxicity

  3. A test of hypothetical hill-slope-gully-streambed soil redistribution model using fallout cs-137 a first use of the technique in pakistan

    International Nuclear Information System (INIS)

    Ahmad, M.; Sheikh, M.R.; Akram, W.; Ali, M.; Iqbal, N.

    2007-07-01

    Soil degradation by water erosion, which is further responsible for sedimentation in the conveyance systems and reservoirs, is a matter of growing concern in Pakistan. Caesium-137, a fallout radioisotope produced from atmospheric nuclear weapon tests, has become a well-established radiotracer of soil movement. To assess the potential for application of caesium-137 as an indicator of soil erosion and sedimentation, a hypothetical hill slope-gully-streambed redistribution model was tested in Mangla Watershed, Pakistan, as a first use of the technique in the country. The results indicate that the soil redistribution along the different components follows the hypothetical model, with severe net soil loss (sheet erosion) at the hill-slope, no labeling of gully head, and high sedimentation on the streambed. The reference inventory of 137CS obtained by scraper plate (4380 Bq m-2 was in agreement with the mean value of bulk cores (i.e. 3945 +- 457 Bq m-2). The net soil loss along the hill slope estimated by the profile distribution model was 17.2 t ha-1 yr-l. The sedimentation rate in the main stream was more before the year 1974 (8 cm yr-l) than afterwards reducing to 5.9 cm yr-1 due to re-vegetation. The 137CS technique proved to be less time consuming in the provision of information on soil redistribution rates than direct measurement would have been and can be used to assess watershed management practices in Pakistan. (author)

  4. Measurement of surface redistribution of rainfall and modelling its effect on water balance calculations for a millet field on sandy soil in Niger.

    NARCIS (Netherlands)

    Gaze, S.R.; Simmonds, L.P.; Brouwer, J.; Bouma, J.

    1997-01-01

    During rain there can be substantial redistribution of water at the surface of sandy soils in the Sudano-Sahelian zone, because of localised runoff and runon. This results in variable infiltration over a field. Measurements of spatial variability in infiltration and crop growth were made in a millet

  5. 137Cs redistribution in time in wet bory and sugrudy soils in forests of Ukrainian Polissia

    Directory of Open Access Journals (Sweden)

    V. P. Krasnov

    2016-06-01

    Full Text Available The data on 137Cs distribution in sod-podzol forest soils of Ukrainian Polissia contaminated by radionuclides after Chornobyl accident are presented. Researches were conducted on the permanent sample areas in wet bory and sugrudy in 2000 and in 2012 years. It is proved that 137Cs migration from the forest litter to the soil mineral part occurred comparatively quickly. It can be explained by a thin layer and a high mineralization of the forest litter in wet sugrudy. Nevertheless, wet bory are characterized by more intensive radionuclide migration to the deeper layers of the soil mineral part. Such regularity can be explained by a small amount of humus and fine-dispersed particles as well as higher soil acidity in wet bory.

  6. 137 Cs redistribution in time in wet body and sugrudy soils in forests of Ukrainian Polissia

    International Nuclear Information System (INIS)

    Krasnov, V.P.; Kurbet, T.V.; Shelest, Z.M.; Boiko, O.I.

    2016-01-01

    The data on 137 Cs distribution in sod-podzol forest soils of Ukrainian Polissia contaminated by radionuclides after Chornobyl accident are presented. Researches were conducted on the permanent sample areas in wet bory and sugrudy in 2000 and in 2012 years. It is proved that 137 Cs migration from the forest litter to the soil mineral part occurred comparatively quickly. It can be explained by a thin layer and a high mineralization of the forest litter in wet sugrudy. Nevertheless, wet bory are characterized by more intensive radionuclide migration to the deeper layers of the soil mineral part. Such regularity can be explained by a small amount of humus and fine-dispersed particles as well as higher soil acidity in wet bory

  7. Long-term manure amendments reduced soil aggregate stability via redistribution of the glomalin-related soil protein in macroaggregates

    Science.gov (United States)

    Xie, Hongtu; Li, Jianwei; Zhang, Bin; Wang, Lianfeng; Wang, Jingkuan; He, Hongbo; Zhang, Xudong

    2015-01-01

    Glomalin-related soil protein (GRSP) contributes to the formation and maintenance of soil aggregates, it is however remains unclear whether long-term intensive manure amendments alter soil aggregates stability and whether GRSP regulates these changes. Based on a three-decade long fertilization experiment in northeast China, this study examined the impact of long-term manure input on soil organic carbon (SOC), total and easily extractable GRSP (GRSPt and GRSPe) and their respective allocations in four soil aggregates (>2000 μm; 2000–250 μm; 250–53 μm; and soil and SOC in each aggregate generally increased with increasing manure input, GRSPt and GRSPe in each aggregate showed varying changes with manure input. Both GRSP in macroaggregates (2000–250 μm) were significantly higher under low manure input, a pattern consistent with changes in soil aggregate stability. Constituting 38~49% of soil mass, macroaggregates likely contributed to the nonlinear changes of aggregate stability under manure amendments. The regulatory process of GRSP allocations in soil aggregates has important implications for manure management under intensive agriculture. PMID:26423355

  8. Specificity of Cs-137 redistribution in toposequence of arable soils cultivated after the Chernobyl accident

    Science.gov (United States)

    Korobova, Elena; Romanov, Sergey; Baranchukov, Vladimir; Berezkin, Victor; Moiseenko, Fedor; Kirov, Sergey

    2017-04-01

    Investigations performed after the Chernobyl accident showed high spatial variation of radionuclide contamination of the soil cover in elementary landscape geochemical systems (ELGS) that characterize catena's structure. Our studies of Cs-137 distribution along and cross the slopes of local ridges in natural forested key site revealed a cyclic character of variation of the radionuclide surface activity along the studied transections (Korobova et al, 2008; Korobova, Romanov, 2009; 2011). We hypothesized that the observed pattern reflects a specific secondary migration of Cs-137 with water, and that this process could have taken place in any ELGS. To test this hypothesis a detailed field measurement of Cs-137 surface activity was performed in ELGS in agricultural area cultivated after the Chernobyl accident but later withdrawn from land-use. In situ measurements carried out by field gamma-spectrometry were accompanied by soil core sampling at the selected points. Soil samples were taken in increments of 2 cm down to 20 cm and of 5 cm down to 40 cm. The samples were analyzed for Cs-137 in laboratory using Canberra gamma-spectrometer with HP-Ge detector. Obtained results confirmed the fact of area cultivation down to 20 cm that was clearly traced by Cs-137 profile in soil columns. At the same time, the measurements also showed a cyclic character of Cs-137 variation in a sequence of ELGS from watershed to the local depression similar to that found in woodland key site. This proved that the observed pattern is a natural process typical for matter migration in ELGS independently of the vegetation type and ploughing. Therefore, spatial aspect is believed to be an important issue for development of adequate technique for a forecast of contamination of agricultural production and remediation of the soil cover on the local scale within the contaminated areas. References Korobova, E.M., Romanov, S.L., 2009. A Chernobyl 137Cs contamination study as an example for the spatial

  9. Soil phosphorus redistribution among iron-bearing minerals under redox fluctuation

    Science.gov (United States)

    Lin, Y.; Bhattacharyya, A.; Campbell, A.; Nico, P. S.; Pett-Ridge, J.; Silver, W. L.

    2016-12-01

    Phosphorus (P) is a key limiting nutrient in tropical forests that governs primary production, litter decomposition, and soil respiration. A large proportion of P in these highly weathered soils is bound to short-range ordered or poorly crystalline iron (Fe) minerals. It is well-documented that these Fe minerals are redox-sensitive; however, little is known about how Fe-redox interactions affect soil P turnover. We evaluated the impacts of oxic/anoxic fluctuation on soil P fractions and reactive Fe species in a laboratory incubation experiment. Soils from a humid tropical forest were amended with plant biomass and incubated for up to 44 days under four redox regimes: static oxic, static anoxic, high frequency fluctuating (4-day oxic/4-day anoxic), and low frequency fluctuating (8-day oxic/4-day anoxic). We found that the static anoxic treatment induced a 10-fold increase in Fe(II) (extracted by hydrochloric acid) and a 1.5-fold increase in poorly crystalline Fe (extracted by ammonium oxalate), suggesting that anoxic conditions drastically increased Fe(III) reduction and the formation of amorphous Fe minerals. Static anoxic conditions also increased Fe-bound P (extracted by sodium hydroxide) and increased the oxalate-extractable P by up to 110% relative to static oxic conditions. In two fluctuating treatments, Fe(II) and oxalate-extractable Fe and P were all increased by short-term reduction events after 30 minutes, but fell back to their initial levels after 3 hours. These results suggest that reductive dissolution of Fe(III) minerals mobilized a significant amount of P; however, this P could be rapidly re-adsorbed. Furthermore, bioavailable P extracted by sodium bicarbonate solution was largely unaffected by redox regimes and was only increased by static anoxic conditions after 20 days. Overall, our data demonstrate that a significant amount of soil P may be liberated and re-adsorbed by Fe minerals during redox fluctuation. Even though bioavailable P appears to be

  10. Spatial glyphosate and AMPA redistribution on the soil surface driven by sediment transport processes - A flume experiment.

    Science.gov (United States)

    Bento, Célia P M; Commelin, Meindert C; Baartman, Jantiene E M; Yang, Xiaomei; Peters, Piet; Mol, Hans G J; Ritsema, Coen J; Geissen, Violette

    2018-03-01

    This study investigates the influence of small-scale sediment transport on glyphosate and AMPA redistribution on the soil surface and on their off-site transport during water erosion events. Both a smooth surface (T1) and a surface with "seeding lines on the contour" (T2) were tested in a rainfall simulation experiment using soil flumes (1 × 0.5 m) with a 5% slope. A dose of 178 mg m -2 of a glyphosate-based formulation (CLINIC ® ) was applied on the upper 0.2 m of the flumes. Four 15-min rainfall events (RE) with 30-min interval in between and a total rainfall intensity of 30 mm h -1 were applied. Runoff samples were collected after each RE in a collector at the flume outlet. At the end of the four REs, soil and sediment samples were collected in the application area and in four 20 cm-segments downslope of the application area. Samples were collected according to the following visually distinguished soil surface groups: light sedimentation (LS), dark sedimentation (DS), background and aggregates. Results showed that runoff, suspended sediment and associated glyphosate and AMPA off-site transport were significantly lower in T2 than in T1. Glyphosate and AMPA off-site deposition was higher for T2 than for T1, and their contents on the soil surface decreased with increasing distance from the application area for all soil surface groups and in both treatments. The LS and DS groups presented the highest glyphosate and AMPA contents, but the background group contributed the most to the downslope off-site deposition. Glyphosate and AMPA off-target particle-bound transport was 9.4% (T1) and 17.8% (T2) of the applied amount, while water-dissolved transport was 2.8% (T1) and 0.5% (T2). Particle size and organic matter influenced the mobility of glyphosate and AMPA to off-target areas. These results indicate that the pollution risk of terrestrial and aquatic environments through runoff and deposition can be considerable. Copyright © 2017 Elsevier Ltd

  11. Omaha Soil Mixing Study: Redistribution of Lead in Remediated Residential Soils Due to Excavation or Homeowner Disturbance.

    Science.gov (United States)

    Urban soils within the Omaha Lead Superfund Site have been contaminated with lead (Pb) from atmospheric deposition of particulate materials from lead smelting and recycling activities. In May of 2009 the Final Record of Decision stated that any residential soil exceeding the pre...

  12. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil.

    Science.gov (United States)

    Lu, Kouping; Yang, Xing; Gielen, Gerty; Bolan, Nanthi; Ok, Yong Sik; Niazi, Nabeel Khan; Xu, Song; Yuan, Guodong; Chen, Xin; Zhang, Xiaokai; Liu, Dan; Song, Zhaoliang; Liu, Xingyuan; Wang, Hailong

    2017-01-15

    Biochar has emerged as an efficient tool to affect bioavailability of heavy metals in contaminated soils. Although partially understood, a carefully designed incubation experiment was performed to examine the effect of biochar on mobility and redistribution of Cd, Cu, Pb and Zn in a sandy loam soil collected from the surroundings of a copper smelter. Bamboo and rice straw biochars with different mesh sizes (Heavy metal concentrations in pore water were determined after extraction with 0.01 M CaCl 2 . Phytoavailable metals were extracted using DTPA/TEA (pH 7.3). The European Union Bureau of Reference (EUBCR) sequential extraction procedure was adopted to determine metal partitioning and redistribution of heavy metals. Results showed that CaCl 2 -and DTPA-extractable Cd, Cu, Pb and Zn concentrations were significantly (p soils, especially at 5% application rate, than those in the unamended soil. Soil pH values were significantly correlated with CaCl 2 -extractable metal concentrations (p metal fractions, and the effect was more pronounced with increasing biochar application rate. The effect of biochar particle size on extractable metal concentrations was not consistent. The 5% rice straw biochar treatment reduced the DTPA-extractable metal concentrations in the order of Cd metals were mainly bound in the soil organic matter fraction. The results demonstrated that the rice straw biochar can effectively immobilize heavy metals, thereby reducing their mobility and bioavailability in contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Understanding Soil Erosion in Irrigated Agriculture

    OpenAIRE

    O' Schwankl, Lawrence J

    2006-01-01

    A soil's physical and chemical properties determine whether it is vulnerable to erosion, which can reduce soil quality and cause other problems besides. Learn the basics of identifying what type of erosion is affecting your land and what's causing it.

  14. Macroscopic Modeling of Plant Water Uptake in a Forest Stand Involving Root-Mediated Soil Water Redistribution

    Czech Academy of Sciences Publication Activity Database

    Vogel, T.; Dohnal, M.; Dušek, J.; Votrubová, J.; Tesař, Miroslav

    2013-01-01

    Roč. 12, č. 1 (2013) ISSN 1539-1663 R&D Projects: GA ČR GA205/08/1174 Institutional support: RVO:67985874 Keywords : flux potential approach * hydraulic redistribution * nightime transpiration * preferential flow * hillslope runoff * extraction * moisture Subject RIV: DA - Hydrology ; Limnology Impact factor: 2.412, year: 2013

  15. Grounded in the landscape: Eliciting farmers' understanding of soil and soil fertility, Mali (West Africa)

    OpenAIRE

    Crane, T.

    2002-01-01

    In order to develop convincing messages and sustainable interventions, it is necessary to understand how farmers themselves perceive soil conditions and how these perceptions influence their soil management and land use decisions. This brief illustrates an ethno-scientific methodology for eliciting farmers' conceptualization of soil and soil fertility.

  16. Water Redistribution, Temperature Change and CO2 Diffusion of Reconstruction Soil Profiles Filled with Gangue in Coal Mining Areas

    Science.gov (United States)

    Wang, S.; Zhan, H.; Chen, X.; Hu, Y.

    2017-12-01

    There were a great many projects of reconstruction soil profile filled with gangue to restore ecological environment and land resources in coal mining areas. A simulation experimental system in laboratory was designed for studying water transport and gas-heat diffusion of the reconstruction soil as to help the process of engineering and soil-ripening technology application. The system could be used for constantly measuring soil content, temperature and soil CO2 concentration by laid sensors and detectors in different depth of soil column. The results showed that soil water infiltration process was slowed down and the water-holding capacity of the upper soil was increased because of good water resistance from coal gangue layer. However, the water content of coal gangue layer, 10% approximately, was significantly lower than that of topsoil for the poor water-holding capacity of gangue. The temperature of coal gangue layer was also greater than that of soil layer and became easily sustainable temperature gradient under the condition with heating in reconstruction soil due to the higher thermal diffusivity from gangue, especially being plenty of temperature difference between gangue and soil layers. The effects of heated from below on topsoil was small, which it was mainly influenced from indoor temperature in the short run. In addition, the temperature changing curve of topsoil is similar with the temperature of laboratory and its biggest fluctuation range was for 2.89°. The effects of aerating CO2 from column bottom on CO2 concentration of topsoil soil was also very small, because gas transport from coal gangue layers to soil ones would easily be cut off as so to gas accumulated below the soil layer. The coal gangue could have a negative impact on microbial living environment to adjacent topsoil layers and declined microorganism activities. The effects of coal gangue on topsoil layer were brought down when the cove soil thickness was at 60 cm. And the influences

  17. Redistribution of soil nitrogen, carbon and organic matter by mechanical disturbance during whole-tree harvesting in northern hardwoods

    Science.gov (United States)

    Ryan, D.F.; Huntington, T.G.; Wayne, Martin C.

    1992-01-01

    To investigate whether mechanical mixing during harvesting could account for losses observed from forest floor, we measured surface disturbance on a 22 ha watershed that was whole-tree harvested. Surface soil on each 10 cm interval along 81, randomly placed transects was classified immediately after harvesting as mineral or organic, and as undisturbed, depressed, rutted, mounded, scarified, or scalped (forest floor scraped away). We quantitatively sampled these surface categories to collect soil in which preharvest forest floor might reside after harvest. Mechanically mixed mineral and organic soil horizons were readily identified. Buried forest floor under mixed mineral soil occurred in 57% of mounds with mineral surface soil. Harvesting disturbed 65% of the watershed surface and removed forest floor from 25% of the area. Mechanically mixed soil under ruts with organic or mineral surface soil, and mounds with mineral surface soil contained organic carbon and nitrogen pools significantly greater than undisturbed forest floor. Mechanical mixing into underlying mineral soil could account for the loss of forest floor observed between the preharvest condition and the second growing season after whole-tree harvesting. ?? 1992.

  18. Mapping of soil erosion and redistribution on two agricultural areas in Czech Republic by using of magnetic parameters.

    Science.gov (United States)

    Kapicka, Ales; Stejskalova, Sarka; Grison, Hana; Petrovsky, Eduard; Jaksik, Ondrej; Kodesova, Radka

    2015-04-01

    Soil erosion is one of the major concerns in sustainability of agricultural systems in different areas. Therefore there is a need to develop suitable innovative indirect methods of soil survey. One of this methods is based on well established differentiation in magnetic signature with depth in soil profile. Magnetic method can be applied in the field as well as in the laboratory on collected soil samples. The aim of this study is to evaluate suitability of magnetic method to assess soil degradation and construct maps of cumulative soil loss due to erosion at two morphologically diverse areas with different soil types. Dominant soil unit in the first locality (Brumovice) is chernozem, which is gradually degraded on slopes to regosols. In the second site (Vidim), the dominant soil unit is luvisol, gradualy transformed to regosol due to erosion. Field measurements of magnetic susceptibility were carried out on regular grid, resulting in 101 data points in Brumovice and 65 in Vidim locality. Mass specific magnetic susceptibility χ and its frequency dependence χFD was used to estimate the significance of SP ferrimagnetic particles of pedogenic origin in top soil horizons. Strong correlation was found between the volume magnetic susceptibility (field measurement) and mass- specific magnetic susceptibility measured in the laboratory (Kapicka et al 2013). Values of magnetic susceptibility are spatially distributed depending on terrain position. Higher values were measured at the flat parts (where the original topsoil horizon remained). The lowest values magnetic susceptibility were obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). Positive correlation between the organic carbon content and volume magnetic susceptibility (R2= 0.89) was found for chernozem area. The differences between the values of susceptibility in the undisturbed soil profile and the magnetic signal after uniform mixing of the

  19. A coupled hydrogeophysical modeling approach to estimate soil moisture redistribution in the face of land use changes

    Science.gov (United States)

    Kuhl, A.; Hyndman, D. W.; Van Dam, R. L.

    2013-12-01

    Predicting the impacts of land use changes on local water balances requires knowledge of the detailed water uptake dynamics associated with different plants. Mapping the extent of roots and quantifying their relationships to the movement of water through the vadose zone is critical to better understand this aspect of plant physiology. Electrical resistivity (ER) methods offer the ability to non-invasively capture this crucial hydrologic information at relevant scales, bridging the spatial gap between remote sensing and in-situ point measurements. Our research uses a coupled hydrogeophysical model to image the boundary of root zones and the control roots have on hydrologic fluxes. Advantages of this approach include: incorporating basic hydrologic parameters to constrain the model physics and using a forward geophysical model to avoid errors related to non-unique solutions and imaging. The model optimizes root distributions to correlate with soil moisture variability characterized by ER surveys, maximizing the value of the geophysics and yielding information that can answer questions related to water budgets in the face of land use and climate changes. To validate this approach, preliminary ER data was collected from two sites in south-east Michigan instrumented with permanent lines of electrodes, enabling consistent surveys through time. One site traverses a progression of vegetation types over a relatively short distance, reflecting the type of natural plant succession associated with passive land use changes in the area. Early interpretations of the ER results indicate that apparent resistivity is controlled by the varying plant regimes. The other is part of the Great Lakes Bioenergy Research Center, spanning a stand of maize, which is ideal for initial models because root zone development has been extensively researched for this crop.

  20. Redistribution of magnetic iron oxide along soil profile after eight years managing a commercial olive orchard in a Vertisol

    Science.gov (United States)

    Guzmán, Gema; Gómez, José Alfonso

    2017-04-01

    Magnetic iron oxide has been used as a tracer to monitor top soil movement and to identify source of sediments at the short-term scale, after high intensity rainfall events (Guzmán et al., 2010; Obereder et al., 2016) and periods up to two years (Guzmán et al., 2013). As it can be strongly bound to soil particles, its use allows the tacking of tagged soil all over the years until all this soil is lost or it is totally diluted with blank soil making the signal undetectable. Olive orchards planted on Vertisols are subject not only to tillage operations modifying soil profile but also to expansion-compression cycles and cracks appearance due to soil moisture changes. The aim of communication is to assess the soil movement at the mid-term scale, taking advantage of a tracer trial already performed by Guzmán et al. (2013) and a new sampling after 8 years of soil disturbance. In October 2008 two plots of 330 m2 were delimited and in which the top 5 cm of the inter tree rows were tagged with magnetite. Seventy locations at both plots were sampled so as to measure magnetic susceptibility twice (just after the tagging and March 2010), at three depth intervals (0-1, 1-8 and 8-12 cm) and distinguishing two zones: tree and inter tree rows. A third sampling was carried out at 0-2, 2-10 and 10-20 cm in August 2016 at the same locations and zones. Furthermore, in twenty of the sampling points additional samples from 20-30, 30-40, 40-50 and 50-60 cm were taken to check if tagged soil went deeper into the soil profile. Background values of susceptibility and bulk density at each depth, were characterized as well at the three sampling campaigns. Rainfall, soil management during these years and the inherent characteristics of a Vertisol have enhanced the movement of top soil not only superficially but also within the soil profile. First results comparing the evolution of magnetite distribution along soil profile indicate that while in 2008 and 2010 background values were measured

  1. Assessment of soil redistribution rates by (137)Cs and (210)Pbex in a typical Malagasy agricultural field.

    Science.gov (United States)

    Rabesiranana, N; Rasolonirina, M; Solonjara, A F; Ravoson, H N; Raoelina Andriambololona; Mabit, L

    2016-02-01

    Soil degradation processes affect more than one-third of the Malagasy territory and are considered as the major environmental threat impacting the natural resources of the island. This innovative study reports about a pioneer test and use of radio-isotopic techniques (i.e. Cs-137 and Pb-210ex) under Madagascar agroclimatic condition to evaluate soil erosion magnitude. This preliminary investigation has been conducted in a small agricultural field situated in the eastern central highland of Madagascar, 40 km East from Antananarivo. Both anthropogenic Cs-137 and geogenic Pb-210 soil tracers provided similar results highlighting soil erosion rates reaching locally 18 t ha(-1) yr(-1,) a level almost two times higher than the sustainable soil loss rate under Madagascar agroclimatic condition. The sediment delivery ratio established with both radiotracers was above 80% indicating that most of the mobilized sediment exits the field. Assessing soil erosion rate through fallout radionuclides in Madagascar is a first step towards an efficient land and water resource management policy to optimise the effectiveness of future agricultural soil conservation practices. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Assessment of soil redistribution rates by 137Cs and 210Pbex in a typical Malagasy agricultural field

    International Nuclear Information System (INIS)

    Rabesiranana, N.; Rasolonirina, M.; Solonjara, A.F.; Ravoson, H.N.; Raoelina Andriambololona; Mabit, L.

    2016-01-01

    Soil degradation processes affect more than one-third of the Malagasy territory and are considered as the major environmental threat impacting the natural resources of the island. This innovative study reports about a pioneer test and use of radio-isotopic techniques (i.e. Cs-137 and Pb-210ex) under Madagascar agroclimatic condition to evaluate soil erosion magnitude. This preliminary investigation has been conducted in a small agricultural field situated in the eastern central highland of Madagascar, 40 km East from Antananarivo. Both anthropogenic Cs-137 and geogenic Pb-210 soil tracers provided similar results highlighting soil erosion rates reaching locally 18 t ha −1  yr −1, a level almost two times higher than the sustainable soil loss rate under Madagascar agroclimatic condition. The sediment delivery ratio established with both radiotracers was above 80% indicating that most of the mobilized sediment exits the field. Assessing soil erosion rate through fallout radionuclides in Madagascar is a first step towards an efficient land and water resource management policy to optimise the effectiveness of future agricultural soil conservation practices. - Highlights: • A pioneer test of radioisotopic techniques under Madagascar agroclimatic condition for estimating soil erosion magnitude. • Cs-137 and Pb-210 ex Mass Balance Models (MBM) conjointly used to highlight timescale discrimination of erosion process. • Timescale discrimination suggests significant increase of erosion magnitude during the last 50 years. • Estimated erosion rates above 10 t ha −1 yr −1 indicate a clear threat for the sustainability of Malagasy soil resources. • Findings indicate the potential of using jointly Cs-137 and Pb-210 ex under local agroecological conditions.

  3. Soil erosion evaluation in a small watershed in Brazil through 137Cs fallout redistribution analysis and conventional models

    International Nuclear Information System (INIS)

    Bacchi, O.O.S.; Reichard, K.; Sparovek, G.; Ranieri, S.B.L.

    2000-01-01

    An investigation of rates and patterns of soil erosion on agricultural land cultivated with sugarcane was undertaken using the 137 Cs technique, USLE (Universal Soil Loss Equation) and WEPP (Water Erosion Prediction Project) model. The study was carried out on a representative catchment of a small watershed of the Piracicaba river basin, State of Sao Paulo, Brazil, called Ceveiro watershed, well known for its severe soil degradation caused by erosion. The results from the 137 Cs technique indicate that most part of the studied area (94%) are eroded at erosion rates that go up to 59 Mg ha -1 y -1 , with a weighted average rate of 23 Mg ha -1 y -1 . The weighted average rate of infield deposition and sediment retrieval that occurs in only 6% of the total area was estimated to be around 12 Mg ha -1 y -1 . These values led to very high net soil loss from the field, with rates of the order of 21 Mg ha -1 y -1 , which represents a sediment delivery ratio of 97%. A linear correlation between soil erosion rate estimated by the 137 Cs technique and the amount of available K in the top soil layer (0-20 cm) was observed. Based on this correlation the estimated amounts of net and gross K loss in the grid area due to soil erosion were of 0.2 and 1.52 kg ha -1 y -1 , respectively. The erosion rate estimated by USLE was 39 Mg ha -1 y -1 and by WEPP model 16.5 Mg ha -1 y -1 with a sediment delivery of 12.4 Mg ha -1 y -1 (75%). The results are a confirmation that the soil conservation practices adopted in the area are very poor and can explain the high siltation level of water reservoirs in the watershed. (author) [pt

  4. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips - Part 1: nonuniform infiltration and soil water redistribution

    Science.gov (United States)

    Muñoz-Carpena, Rafael; Lauvernet, Claire; Carluer, Nadia

    2018-01-01

    Vegetation buffers like vegetative filter strips (VFSs) are often used to protect water bodies from surface runoff pollution from disturbed areas. Their typical placement in floodplains often results in the presence of a seasonal shallow water table (WT) that can decrease soil infiltration and increase surface pollutant transport during a rainfall-runoff event. Simple and robust components of hydrological models are needed to analyze the impacts of WT in the landscape. To simulate VFS infiltration under realistic rainfall conditions with WT, we propose a generic infiltration solution (Shallow Water table INfiltration algorithm: SWINGO) based on a combination of approaches by Salvucci and Entekhabi (1995) and Chu (1997) with new integral formulae to calculate singular times (time of ponding, shift time, and time to soil profile saturation). The algorithm was tested successfully on five distinct soils, both against Richards's numerical solution and experimental data in terms of infiltration and soil moisture redistribution predictions, and applied to study the combined effects of varying WT depth, soil type, and rainfall intensity and duration. The results show the robustness of the algorithm and its ability to handle various soil hydraulic functions and initial nonponding conditions under unsteady rainfall. The effect of a WT on infiltration under ponded conditions was found to be effectively decoupled from surface infiltration and excess runoff processes for depths larger than 1.2 to 2 m, being shallower for fine soils and shorter events. For nonponded initial conditions, the influence of WT depth also varies with rainfall intensity. Also, we observed that soils with a marked air entry (bubbling pressure) exhibit a distinct behavior with WT near the surface. The good performance, robustness, and flexibility of SWINGO supports its broader use to study WT effects on surface runoff, infiltration, flooding, transport, ecological, and land use processes. SWINGO is

  5. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips – Part 1: nonuniform infiltration and soil water redistribution

    Directory of Open Access Journals (Sweden)

    R. Muñoz-Carpena

    2018-01-01

    Full Text Available Vegetation buffers like vegetative filter strips (VFSs are often used to protect water bodies from surface runoff pollution from disturbed areas. Their typical placement in floodplains often results in the presence of a seasonal shallow water table (WT that can decrease soil infiltration and increase surface pollutant transport during a rainfall-runoff event. Simple and robust components of hydrological models are needed to analyze the impacts of WT in the landscape. To simulate VFS infiltration under realistic rainfall conditions with WT, we propose a generic infiltration solution (Shallow Water table INfiltration algorithm: SWINGO based on a combination of approaches by Salvucci and Entekhabi (1995 and Chu (1997 with new integral formulae to calculate singular times (time of ponding, shift time, and time to soil profile saturation. The algorithm was tested successfully on five distinct soils, both against Richards's numerical solution and experimental data in terms of infiltration and soil moisture redistribution predictions, and applied to study the combined effects of varying WT depth, soil type, and rainfall intensity and duration. The results show the robustness of the algorithm and its ability to handle various soil hydraulic functions and initial nonponding conditions under unsteady rainfall. The effect of a WT on infiltration under ponded conditions was found to be effectively decoupled from surface infiltration and excess runoff processes for depths larger than 1.2 to 2 m, being shallower for fine soils and shorter events. For nonponded initial conditions, the influence of WT depth also varies with rainfall intensity. Also, we observed that soils with a marked air entry (bubbling pressure exhibit a distinct behavior with WT near the surface. The good performance, robustness, and flexibility of SWINGO supports its broader use to study WT effects on surface runoff, infiltration, flooding, transport, ecological, and land use processes

  6. Soil redistribution and nutrient delivery in a Mediterranean rain-fed agro-ecosystem with different crops and management: environmental and economic aspects

    Science.gov (United States)

    López-Vicente, Manuel; Álvarez, Sara

    2017-04-01

    Mediterranean agro-ecosystems are characterised by fragmented fields and patched vegetation. This shape governs the spatial patterns of water, soil and nutrient redistribution. Rainfall parameters, human infrastructures, crop management, support practices, and land use changes (set aside crops, land abandonment) control the magnitude of these processes. Under rain-fed water supply conditions, runoff generation and soil water content are two important factors in determining crop yield. Soil erosion and nutrient delivery are two of the factors which limit crop yield and thus, the gross earning of the landowner. In hilly landscapes, farmers usually supply extra soil to fill in the ephemeral gullies, and nutrient replenishment with fertilizers is a common practice. The aim of this study is to evaluate the environmental (runoff yield, soil erosion and nutrient delivery) and economic (replenishment of soil and nutrient losses with new soil and fertilizers) consequences of different conventional and conservative practices (fallow/crop rotation, cover crops, land abandonment, buffer strips) in a Mediterranean rain-fed agro-ecosystem (27 ha) with vineyards, cereal crops, cultivated and abandoned olive orchards, several trails and patches of natural vegetation. The five winter cereal fields (wheat and barley) follow fallow/crop rotation. The four vineyards are devoted to the Garnacha variety: one planted in 2007 with white wine grapes, and three planted in 2008 with red wine grapes. The inter-crop strips are managed with a mixture of plant species as cover crop (CC), including: i) spontaneous vegetation, and ii) plantation of common sainfoin (Onobrychis viciifolia). The maintenance of the CC includes one mowing pass at the end of spring, between May and June. The appearance and development of ephemeral gullies and the deposition of soil at the bottom of the hillslope are two of the main concerns of the landowners. In some places, the accumulation of soil complicates grape

  7. UNDERSTANDING AND APPLICABILITY OF THE FOREST SOIL CONCEPT

    Directory of Open Access Journals (Sweden)

    Ana Paula Moreira Rovedder

    2013-08-01

    Full Text Available http://dx.doi.org/10.5902/1980509810563The forestry sector plays an important role in the socioeconomic and environmental Brazilian context, therefore the improvement of the knowledge about forest soil becomes essential for its sustainable use as a conservation base of natural heritage as resource for economical development. Forest soil can be characterized by pedogenesis occurred under influence of a forestry typology or under a currently natural or cultivated forest coverage. Differentiating forest soils from those occupied with other uses helps the understanding of possible alterations related to vegetal coverage and the developing of better management strategies to soil and forest use. Nevertheless, there is no consensus about this term because the soils present variations according to the forest characteristics, stimulating the discussion concerning its interpretation and applicability. This review aimed to analyze the utilization of forest soil concept, highlighting the differentiation characteristics and the relation with coverage type, natural or cultivated. Aspects related to deposition, quality and management of residues, nutrients cycling, soil compaction and site productivity are emphasized. The forest soil concept is widely used by specific literature and useful to collect specific information and to plan the sustainable use of soil and forest. The improvement of knowledge about these resources provides the creation of a common identity, supporting comparative studies and consolidating the research regarding to this theme.

  8. Soil color - a window for public and educators to understands soils

    Science.gov (United States)

    Libohova, Zamir; Beaudette, Dylan; Wills, Skye; Monger, Curtis; Lindbo, David

    2017-04-01

    Soil color is one of the most visually striking properties recorded by soil scientists around the world. Soil color is an important characteristic related to soil properties such organic matter, parent materials, drainage. It is a simplified way for the public and educators alike to understand soils and their functions. Soil color is a quick measurement that can be recorded by people using color charts or digital cameras, offering an opportunity for the citizen science projects to contribute to soil science. The US Soil Survey has recorded soil colors using Munsell color system for over 20,000 soil types representing a wide range of conditions throughout the Unites States. The objective of this research was to generate a US soil color map based on color descriptions from the Official Series Descriptions (OSDs). A color calculator developed in R and ArcMap were used to spatially display the soil colors. Soil colors showed vertical trends related to soil depth and horizontal trends related to parent material and climate. Soil colors represent development processes depending upon environment and time that have influenced their appearance and geographic distribution. Dark colors represent soils that are rich in organic matter, such as the soils of the Midwest USA, which are some of the most fertile soils in the world. These soils are relatively "young" in that they developed over the last 20,000 years in materials left behind after continental Glaciers retreated and reflect long- term prairie vegetation that dominated this area prior to European settlements. Dark soils of the Pacific Northwest reflect the influence of forests (and volcanic activity) but are shallower and less fertile than the deep dark Midwest soils. Soils of the eastern and southern Coastal Plains are older and are enriched with iron oxides ('rust') which gives them their red coloring. Soils of flood plains, like the broad Mississippi Valley, have multi-colored soils that reflect the process of

  9. From Process Understanding Via Soil Functions to Sustainable Soil Management - A Systemic Approach

    Science.gov (United States)

    Wollschlaeger, U.; Bartke, S.; Bartkowski, B.; Daedlow, K.; Helming, K.; Kogel-Knabner, I.; Lang, B.; Rabot, E.; Russell, D.; Stößel, B.; Weller, U.; Wiesmeier, M.; Rabot, E.; Vogel, H. J.

    2017-12-01

    Fertile soils are central resources for the production of biomass and the provision of food and energy. A growing world population and latest climate targets lead to an increasing demand for both, food and bio-energy, which requires preserving and improving the long-term productivity of soils as a bio-economic resource. At the same time, other soil functions and ecosystem services need to be maintained: filter for clean water, carbon sequestration, provision and recycling of nutrients, and habitat for biological activity. All these soil functions result from the interaction of a multitude of physical, chemical and biological processes that are not yet sufficiently understood. In addition, we lack understanding about the interplay between the socio-economic system and the soil system and how soil functions benefit human wellbeing. Hence, a solid and integrated assessment of soil quality requires the consideration of the ensemble of soil functions and its relation to soil management to finally be able to develop site-specific options for sustainable soil management. We present an integrated modeling approach that investigates the influence of soil management on the ensemble of soil functions. It is based on the mechanistic relationships between soil functional attributes, each explained by a network of interacting processes as derived from scientific evidence. As the evidence base required for feeding the model is for the most part stored in the existing scientific literature, another central component of our work is to set up a public "knowledge-portal" providing the infrastructure for a community effort towards a comprehensive knowledge base on soil processes as a basis for model developments. The connection to the socio-economic system is established using the Drivers-Pressures-Impacts-States-Responses (DPSIR) framework where our improved understanding about soil ecosystem processes is linked to ecosystem services and resource efficiency via the soil functions.

  10. Understanding and Enhancing Soil Biological Health: The Solution for Reversing Soil Degradation

    Directory of Open Access Journals (Sweden)

    R. Michael Lehman

    2015-01-01

    Full Text Available Our objective is to provide an optimistic strategy for reversing soil degradation by increasing public and private research efforts to understand the role of soil biology, particularly microbiology, on the health of our world’s soils. We begin by defining soil quality/soil health (which we consider to be interchangeable terms, characterizing healthy soil resources, and relating the significance of soil health to agroecosystems and their functions. We examine how soil biology influences soil health and how biological properties and processes contribute to sustainability of agriculture and ecosystem services. We continue by examining what can be done to manipulate soil biology to: (i increase nutrient availability for production of high yielding, high quality crops; (ii protect crops from pests, pathogens, weeds; and (iii manage other factors limiting production, provision of ecosystem services, and resilience to stresses like droughts. Next we look to the future by asking what needs to be known about soil biology that is not currently recognized or fully understood and how these needs could be addressed using emerging research tools. We conclude, based on our perceptions of how new knowledge regarding soil biology will help make agriculture more sustainable and productive, by recommending research emphases that should receive first priority through enhanced public and private research in order to reverse the trajectory toward global soil degradation.

  11. Measuring and understanding soil water repellency through novel interdisciplinary approaches

    Science.gov (United States)

    Balshaw, Helen; Douglas, Peter; Doerr, Stefan; Davies, Matthew

    2017-04-01

    Food security and production is one of the key global issues faced by society. It has become evermore essential to work the land efficiently, through better soil management and agronomy whilst protecting the environment from air and water pollution. The failure of soil to absorb water - soil water repellency - can lead to major environmental problems such as increased overland flow and soil erosion, poor uptake of agricultural chemicals and increased risk of groundwater pollution due to the rapid transfer of contaminants and nutrient leaching through uneven wetting and preferential flow pathways. Understanding the causes of soil hydrophobicity is essential for the development of effective methods for its amelioration, supporting environmental stability and food security. Organic compounds deposited on soil mineral or aggregate surfaces have long been recognised as a major factor in causing soil water repellency. It is widely accepted that the main groups of compounds responsible are long-chain acids, alkanes and other organic compounds with hydrophobic properties. However, when reapplied to sands and soils, the degree of water repellency induced by these compounds and mixtures varied widely with compound type, amount and mixture, in a seemingly unpredictable way. Our research to date involves two new approaches for studying soil wetting. 1) We challenge the theoretical basis of current ideas on the measured water/soil contact angle measurements. Much past and current discussion involves Wenzel and Cassie-Baxter models to explain anomalously high contact angles for organics on soils, however here we propose that these anomalously high measured contact angles are a consequence of the measurement of a water drop on an irregular non-planar surface rather than the thermodynamic factors of the Cassie-Baxter and Wenzel models. In our analysis we have successfully used a much simpler geometric approach for non-flat surfaces such as soil. 2) Fluorescent and phosphorescent

  12. Carbon redistribution by erosion processes in an intensively disturbed catchment

    Science.gov (United States)

    Boix-Fayos, Carolina; Martínez-Mena, María; Pérez Cutillas, Pedro; de Vente, Joris; Barberá, Gonzalo G.; Mosch, Wouter; Navarro Cano, Jose Antonio; Gaspar, Leticia; Navas, Ana

    2016-04-01

    Understanding how organic carbon moves with sediments along the fluvial system is crucial to close catchment scale carbon budgets. Especially challenging is the analysis of organic carbon dynamics during fluvial transport in heterogeneous, fragile and disturbed environments with ephemeral and intense hydrological pulses, typical of Mediterranean conditions. This paper explores the catchment scale organic carbon redistribution by lateral flows in extreme Mediterranean environmental conditions from a geomorphological perspective. The study area is a catchment (Cárcavo) in SE Spain with a semiarid climate, erodible lithologies, shallow soils, and highly disturbed by agricultural terraces, land levelling, reforestations and construction of check-dams. To increase understanding of erosion induced catchment scale organic carbon redistribution, we studied the subcatchments of 8 check-dams distributed along the catchment main channel in detail. We determined 137Cs, physicochemical characteristics and organic carbon pools of soils and sediments deposited behind each check-dam, performed spatial analysis of properties of the catchment and buffer areas around check-dams, and carried out geomorphological analysis of the slope-channel connections. Soils showed very low Total Organic Carbon (TOC) values oscillating between 15.2 and 4.4 g Kg-1 for forest and agricultural soils, respectively. Sediments mobilized by erosion were poor in TOC compared to the eroded (forest) soils (6.6±0.7 g Kg-1), and the redistribution of organic carbon through the catchment, especially of the Mineral Associated Organic Carbon (MAC) pool, showed the same pattern as clay particles and 137Cs. The TOC erosion rates (0.031±0.03 Mg ha-1 y-1) were comparable to others reported for subhumid Mediterranean catchments and to those modelled worldwide for pasture land. Those lateral fluxes were equivalent to 10.4 % of the TOC stock from the topsoil at the moment of the check-dam construction and

  13. Understanding the soil underfoot: building a national postgraduate soils cohort through participative learning

    Science.gov (United States)

    Quinton, John; Haygarth, Phil; Black, Helaina; Allton, Kathryn

    2015-04-01

    Many of the PhD students starting Soil Science PhDs have only a limited understanding of the wider importance of soils, the state -of-art in other sub disciplines, and have often never seen a soil profile in the field. As the number of students nationally in the UK is also small compared to some other disciplines there is also a need to build a cohort of early career researchers. To address these issues, Lancaster University and the James Hutton Institute together with support from the British Society of Soil Science and the Natural Environment Research Council (NERC), ran a 5 day residential foundation soil science 'Summer School' in March 2015. The training school was an intense programme for ambitious and energetic post-graduate students. The course was specifically designed for students who were keen to develop skills in the development of inter-disciplinary research ideas and proposals. Specifically the course addressed: • the different functions in land uses and across landscapes • novel approaches for investigating how soils function • the basics of making a soil description and soil sampling in the field; • the current key challenges in soil science research • the requirements of, and approaches to, soil science research that requires multi-disciplinary and interdisciplinary approaches • the essentials of developing and planning a research project Our approach was to provide a space for the students to both learn from, but also work with some of the leading UK Soil Science experts. We used workshop style lectures, including some delivered via the internet, combined with student research teams working alongside research mentors to produce research proposals to be 'pitched' to a panel at the end of the course. These proposals formed the focus for engagement with the 'experts' making the time the students spent with them concentrated and productive. Feedback from the students was excellent and a variant of the course will be repeated by Cranfield

  14. Understanding the relationship between livelihood strategy and soil management

    DEFF Research Database (Denmark)

    Oumer, Ali Mohammed; Hjortsø, Carsten Nico Portefée; de Neergaard, Andreas

    2013-01-01

    help build livelihood strategies with high-economic return that in turn provide incentives to undertake improved soil management practices. The identified household types may guide entry points for development interventions targeting both food security and agricultural sustainability concerns......This paper aims to understand the relationship between households’ livelihood strategy and soil management using commonalities among rural households. We grouped households into four distinct types according to similar livelihood diversification strategies. For each household type, we identified...... the dominant income-generating strategies as well as the main agronomic activities pursued. The household types were: (I) households that pursue a cereal-based livelihood diversification strategy (23 %); (II) households predominantly engaged in casual off-farm-based strategy (15 %); (III) households...

  15. Understanding the pathophysiology of intra-uterine growth retardation: the role of the 'lower limb reflex' in redistribution of blood flow.

    Science.gov (United States)

    Akalin-Sel, T; Campbell, S

    1992-09-23

    Doppler ultrasound was used to investigate the circulatory redistribution and underlying reflex responses of fetal cardiovascular compensation in 30 small-for-gestational age (SGA) fetuses. The utero-placental bed, umbilical artery and vein, thoracic and abdominal aorta, internal and external cerebral arteries were evaluated. The values were compared to reference ranges constructed from 135 normal pregnancies, correlated to fetal blood gases obtained by cordocentesis and compared to the outcomes. In Group I (mortality and morbidity), all fetuses had loss of end-diastolic frequencies (L-EDF) in the abdominal aorta (100%), but only 20 (87%) and 13 (56%) had L-EDF in the thoracic aorta and umbilical artery respectively. High vascular resistance in the placental bed and low impedance in the middle cerebral and common carotid arteries was found in 14 (61%), 12 (52%) and 20 (87%) fetuses, respectively. In Group II (Healthy infants) two fetuses had high utero-placental vascular resistance and one had brain-sparing. Doppler indices did not always reflect fetal hypoxaemia demonstrating that redistribution in SGA fetuses may not be triggered by a fall in pO2, and that hypoxaemia is an associated pathology but may not be the underlying cause. It is postulated that redistribution in SGA fetuses is regulated by reflex mechanisms (the 'lower limb reflex') which result in severe vasoconstriction in the abdominal aorta, mesentery and carcass, favouring the brain and cardiac muscles. This mechanism explains the good predictive value of L-EDF in the abdominal aorta for poor neonatal outcome (sensitivity, specificity and positive predictive value, all 100%).(ABSTRACT TRUNCATED AT 250 WORDS)

  16. An interdisciplinary approach towards improved understanding of soil deformation during compaction

    DEFF Research Database (Denmark)

    Keller, T.; Lamandé, Mathieu; Peth, S.

    2013-01-01

    and validation of new soil compaction models. The integration of concepts underlying dynamic processes that modify soil pore spaces and bulk properties will improve the understanding of how soil management affect vital soil mechanical, hydraulic and ecological functions supporting plant growth.......Soil compaction not only reduces available pore volume in which fluids are stored, but it alters the arrangement of soil constituents and pore geometry, thereby adversely impacting fluid transport and a range of soil ecological functions. Quantitative understanding of stress transmission...... and deformation processes in arable soils remains limited. Yet such knowledge is essential for better predictions of effects of soil management practices such as agricultural field traffic on soil functioning. Concepts and theory used in agricultural soil mechanics (soil compaction and soil tillage) are often...

  17. Cultural Patterns of Soil Understanding in Organic Agriculture

    Science.gov (United States)

    Patzel, Nikola

    2017-04-01

    Different branches of modern agriculture rely on different cultural patterns of soil understanding; and they are supported by different schools of thought in soil science with their specific values and perspectives. For example, the European branch of organic agriculture, as it developed mainly in the 20th Century, is rooted in specific cultural concepts and was supported by associated minorities, or rather marginalised tendencies, within the soil science community. Some cases: It is about the transformations of living or organic matter, linked with debates on "microbes" and "life particles", "tissues" and macromolecules in the humus-sphere. It is about the "industrialised economical-technical paradigm" versus an "organic" or "ecological paradigm" - whatever both may be. It is about the relevance respectively of the "duties" of control by power, or by relatedness and "intercourse" in agricultural human-nature interaction. It is about the male and female qualities of effective God-images - both in their "religious" as well as their "secular" representations in individuals' and society's relation with nature and when dealing with soil. In today's conceptual and strategic debates and power struggles over how to sustainably feed from the land, we see patterns similar to those from the 19th and 20th Centuries in action. But the threats they pose are not yet sufficiently realised; the opportunities they offer are not yet sufficiently fulfilled. In this presentation, using the example of cultural patterns inside organic agriculture in Europe, some cultural problems and tasks will be highlighted, to which geosciences are of course confronted, being part of human society.

  18. Soil fertility and {sup 137} Cs redistribution as related to land use, landscape and texture in a watershed of Paraiba State; Fertilidade do solo e redistribuicao de {sup 137} Cs em funcao da cobertura vegetal, relevo, e classes texturais, em uma microbacia hidrografica do Estado da Paraiba

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Antonio Clementino dos

    2004-03-15

    , whereas soil chemical analyses were total C and N, extractable P (Mehlich-1), pH (water, exchangeable acidity and cations). The soils of the watershed generally exhibited low fertility, regardless of their landscape position (p<0.05). However, land use and texture contributed significantly to the soil fertility (p<0.05). The contents of C, N, Ca, Mg, and ECEC were significantly higher (p<0.05) for the forest soils, whereas P, K, and exchangeable acidity were higher (p<0,05) in the cultivated soils. Forest soils were classified as sandy clay and sandy clay loam (65%), whereas cultivated soils were identified as sand and sandy loam (64%). Particle size distribution and topography were interrelated as sand contents decreased with the increase in slope. Overall, soils with finer texture showed higher fertility levels, regardless of the landscape position. Catchment sites were not discriminated as areas of significant gain of nutrients. It was observed a strong P deficiency, regardless of the landscape position, land use or particle size distribution. The catena segmentation, based on landform elements, land use and soil depths, was an efficient tool to understand the erosion/sedimentation processes by using the {sup 137} Cs redistribution approach. Soils of the topossequences under native forest (n 2) and pasture (n = 3) were sampled for this purpose. It was observed a significant correlation between clay content and {sup 137} Cs activity in the soil (r = 0.75, p<0.01). At the summit positions of the forest soil, the average {sup 137} Cs stock down to a depth of 28 cm was 38,7 Bq m{sup -2}. At the backslope positions the {sup 137} Cs stock was similar for the same depth range. On the other hand, the average {sup 137} Cs stock in soils under pasture at the summit landscape position was 58,0 Bq m{sup -2}, with a maximum of 74,9 Bq m{sup -2}. Levels of {sup 137} Cs were below detection limit (0,03 Bq kg{sup -1}) on soils under pasture from the shoulder and backslope positions

  19. Using infrared thermography for understanding and quantifying soil surface processes

    Science.gov (United States)

    de Lima, João L. M. P.

    2017-04-01

    At present, our understanding of the soil hydrologic response is restricted by measurement limitations. In the literature, there have been repeatedly calls for interdisciplinary approaches to expand our knowledge in this field and eventually overcome the limitations that are inherent to conventional measuring techniques used, for example, for tracing water at the basin, hillslope and even field or plot scales. Infrared thermography is a versatile, accurate and fast technique of monitoring surface temperature and has been used in a variety of fields, such as military surveillance, medical diagnosis, industrial processes optimisation, building inspections and agriculture. However, many applications are still to be fully explored. In surface hydrology, it has been successfully employed as a high spatial and temporal resolution non-invasive and non-destructive imaging tool to e.g. access groundwater discharges into waterbodies or quantify thermal heterogeneities of streams. It is believed that thermal infrared imagery can grasp the spatial and temporal variability of many processes at the soil surface. Thermography interprets the heat signals and can provide an attractive view for identifying both areas where water is flowing or has infiltrated more, or accumulated temporarily in depressions or macropores. Therefore, we hope to demonstrate the potential for thermal infrared imagery to indirectly make a quantitative estimation of several hydrologic processes. Applications include: e.g. mapping infiltration, microrelief and macropores; estimating flow velocities; defining sampling strategies; identifying water sources, accumulation of waters or even connectivity. Protocols for the assessment of several hydrologic processes with the help of IR thermography will be briefly explained, presenting some examples from laboratory soil flumes and field.

  20. PUNCS: Towards Predictive Understanding of Nitrogen Cycling in Soils

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, Frank E. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Microbiology. Dept. of Civil and Environmental Engineering. Center for Environmental Biotechnology; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division; Konstantinidis, Konstantinos T. [Georgia Inst. of Technology, Atlanta, GA (United States); Sanford, Robert A. [Univ. of Illinois, Urbana, IL (United States)

    2015-11-30

    In anoxic environments, the major nitrate/nitrite-consuming processes are respiratory ammonification (also known as dissimilatory nitrate reduction to ammonium) and denitrification (i.e., the formation of the gaseous products N2O and N2). Respiratory ammonification oxidizes more carbon per mole of nitrate than denitrification and generates a cation (NH4+), which is retained in soils and bioavailable for plants. Thus, these processes have profoundly different impacts on N retention and greenhouse gas (CO2, N2O) emissions. Microbes capable of respiratory ammonification or denitrification coexist but the environmental controls over these competing nitrate/nitrite-reducing processes are largely unknown. With the current level of understanding, predictions under what environmental conditions respiratory ammonification activity predominates leading to N-retention rather than N-loss are tenuous. Further, the diversity of genes encoding the ammonium-forming nitrite reductase NrfA is poorly defined hampering the development of tools to assess and monitor this activity in environmental systems. Incomplete denitrification leads to N2O, a gas implicated in ozone layer destruction and climate change. The conversion of the greenhouse gas N2O to benign N2 is catalyzed by N2O reductase, the characteristic enzyme system of complete denitrifiers. Thus, efforts to estimate N2O conversion to N2 have focused on the well-characterized denitrifier nosZ genes; however, our understanding of the diversity of genes and organisms contributing to N2O consumption is incomplete. This paucity of information limits the development of more accurate, predictive models for C- and N-fluxes and greenhouse gas emissions. A comprehensive analysis of the key catalyst of respiratory ammonification, ammonia-forming nitrite reductase NrfA, revealed the evolutionary history of

  1. Understanding the role of soil erosion on co{sub 2}-c loss using {sup 13}c isotopic signatures in abandoned Mediterranean agricultural land

    Energy Technology Data Exchange (ETDEWEB)

    Novara, Agata, E-mail: agata.novara@unipa.it [Department of Scienze Agrarie e Forestali, University of Palermo, viale delle Scienze, ed.4, 90128 Palermo (Italy); Keesstra, Saskia, E-mail: saskia.keesstra@wur.nl [Soil Physics and Land Management Group, Wageningen University, Droevendaalsesteeg 4, 6708PB Wageningen (Netherlands); Cerdà, Artemio, E-mail: artemio.cerda@uv.es [Soil Erosion and Degradation Research Group, Department of Geography, University of Valencia, Valencia (Spain); Pereira, Paulo, E-mail: paulo@mruni.eu [Environmental Management Centre, Mykolas Romeris University, Vilnius (Lithuania); Gristina, Luciano [Department of Scienze Agrarie e Forestali, University of Palermo, viale delle Scienze, ed.4, 90128 Palermo (Italy)

    2016-04-15

    Understanding soil water erosion processes is essential to evaluate the redistribution of soil organic carbon (SOC) within a landscape and is fundamental to assess the role of soil erosion in the global carbon (C) budget. The main aim of this study was to estimate the C redistribution and losses using {sup 13}C natural abundance. Carbon losses in soil sediment, dissolved organic carbon (DOC) and CO{sub 2} emission were determined. Four bounded parallel plots were installed on a 10% slope. In the upper part of the plots, C{sub 3}soil was replaced with C{sub 4}soil. The SOC and δ{sup 13}C were measured after 145.2 mm rainfall in the upper (2 m far from C{sub 4}strip), middle (4 m far from C{sub 4}strip) lower (6 m far from C{sub 4}strip) trams of the plot and in the sediments collected in the Gerlach collector at the lower part of the plot. A laboratory incubation experiment was performed to evaluate the CO{sub 2} emission rate of soils in each area. OC was mainly lost in the sediments as 2.08 g{sup −2} of C was lost after 145.2 mm rainfall. DOC losses were only 5.61% of off-site OC loss. Three months after the beginning of the experiment, 15.90% of SOC in the upper tram of the plot had a C{sub 4} origin. The C{sub 4}-SOC content decreased along the 6 m length of the plot, and in the sediments collected by the Gerlach collector. CO{sub 2} emission rate was high in the upper plot tram due to the high SOC content. The discrimination of CO{sub 2} in C{sub 3} and C{sub 4} portion permitted to increase our level of understanding on the stability of SOC and its resilience to decomposition. The transport of sediments along the plot increased SOC mineralization by 43%. Our study underlined the impact of rainfall in C losses in soil and water in abandoned Mediterranean agriculture fields and the consequent implications on the C balance. - Highlights: • The soil C isotopic difference is a useful tracer for erosion processes studies. • The main loss of Carbon was

  2. Soil organic matter dynamics and CO2 fluxes in relation to landscape scale processes: linking process understanding to regional scale carbon mass-balances

    Science.gov (United States)

    Van Oost, Kristof; Nadeu, Elisabet; Wiaux, François; Wang, Zhengang; Stevens, François; Vanclooster, Marnik; Tran, Anh; Bogaert, Patrick; Doetterl, Sebastian; Lambot, Sébastien; Van wesemael, Bas

    2014-05-01

    In this paper, we synthesize the main outcomes of a collaborative project (2009-2014) initiated at the UCL (Belgium). The main objective of the project was to increase our understanding of soil organic matter dynamics in complex landscapes and use this to improve predictions of regional scale soil carbon balances. In a first phase, the project characterized the emergent spatial variability in soil organic matter storage and key soil properties at the regional scale. Based on the integration of remote sensing, geomorphological and soil analysis techniques, we quantified the temporal and spatial variability of soil carbon stock and pool distribution at the local and regional scales. This work showed a linkage between lateral fluxes of C in relation with sediment transport and the spatial variation in carbon storage at multiple spatial scales. In a second phase, the project focused on characterizing key controlling factors and process interactions at the catena scale. In-situ experiments of soil CO2 respiration showed that the soil carbon response at the catena scale was spatially heterogeneous and was mainly controlled by the catenary variation of soil physical attributes (soil moisture, temperature, C quality). The hillslope scale characterization relied on advanced hydrogeophysical techniques such as GPR (Ground Penetrating Radar), EMI (Electromagnetic induction), ERT (Electrical Resistivity Tomography), and geophysical inversion and data mining tools. Finally, we report on the integration of these insights into a coupled and spatially explicit model and its application. Simulations showed that C stocks and redistribution of mass and energy fluxes are closely coupled, they induce structured spatial and temporal patterns with non negligible attached uncertainties. We discuss the main outcomes of these activities in relation to sink-source behavior and relevance of erosion processes for larger-scale C budgets.

  3. Impact of cornstalk buffer strip on hillslope soil erosion and its hydrodynamic understanding

    Science.gov (United States)

    Soil erosion is still a serious concern on the Loess Plateau despite extensive soil conservation measures. Cornstalk buffer strip is not well utilized on the Loess Plateau, and there is little information on the hydrodynamic understanding of this soil erosion control practice. A simulated rainfall e...

  4. Understanding the Mechanism of Soil Erosion from Outdoor Model ...

    African Journals Online (AJOL)

    A method for obtaining important data on eroded soils, using a one eight experimental slope model is presented. The scope of the investigation herein described encompassed three locations in the south- eastern parts of Nigeria, which are belts of severe erosion, namely Opi-Nsukka, Agulu and Udi, [Fig. 1.] Soil samples ...

  5. UNDERSTANDING PLANT-SOIL RELATIONSHIPS USING CONTROLLED ENVIRONMENT FACILITIES

    Science.gov (United States)

    Although soil is a component of terrestrial ecosystems, it is comprised of a complex web of interacting organisms, and therefore, can be considered itself as an ecosystem. Soil microflora and fauna derive energy from plants and plant residues and serve important functions in mai...

  6. Understanding soil food web dynamics, how close do we get?

    NARCIS (Netherlands)

    Morriën, E.

    2016-01-01

    Soil food webs are traditionally considered to have distinct energy channels through which resources flow belowground. Resources enter the soil food web either from roots or from detrital inputs. Compared to this traditional view we are now much more aware of the flow of carbon, nitrogen and other

  7. The CSSIAR v.1.00 Software: A new tool based on SIAR to assess soil redistribution using Compound Specific Stable Isotopes

    Directory of Open Access Journals (Sweden)

    de los Santos-Villalobos Sergio

    2017-01-01

    Full Text Available Soil erosion is one of the biggest challenges for food production around the world. Many techniques have been used to evaluate and mitigate soil degradation. Nowadays isotopic techniques are becoming a powerful tool to assess soil apportionment. One of the innovative techniques used is the Compound Specific Stable Isotopes (CSSI analysis, which has been used to track down sediments and specify their sources by the isotopic signature of δ13C in specific fatty acids. The application of this technique on soil apportionment has been recently developed, however there is a lack of user-friendly Software for data processing and interpretation. The aim of this article is to introduce a new open source tool for working with data sets generated by the use of the CSSI technique to assess soil apportionment, called the CSSIARv1.00 Software

  8. The CSSIAR v.1.00 Software: A new tool based on SIAR to assess soil redistribution using Compound Specific Stable Isotopes

    Science.gov (United States)

    Sergio, de los Santos-Villalobos; Claudio, Bravo-Linares; dos Anjos Roberto, Meigikos; Renan, Cardoso; Max, Gibbs; Andrew, Swales; Lionel, Mabit; Gerd, Dercon

    Soil erosion is one of the biggest challenges for food production around the world. Many techniques have been used to evaluate and mitigate soil degradation. Nowadays isotopic techniques are becoming a powerful tool to assess soil apportionment. One of the innovative techniques used is the Compound Specific Stable Isotopes (CSSI) analysis, which has been used to track down sediments and specify their sources by the isotopic signature of δ13 C in specific fatty acids. The application of this technique on soil apportionment has been recently developed, however there is a lack of user-friendly Software for data processing and interpretation. The aim of this article is to introduce a new open source tool for working with data sets generated by the use of the CSSI technique to assess soil apportionment, called the CSSIARv1.00 Software

  9. Understanding on Soil Inorganic Carbon Transformation in North China

    Science.gov (United States)

    Li, Guitong; Yang, Lifang; Zhang, Chenglei; Zhang, Hongjie

    2015-04-01

    Soil total carbon balance in long-term fertilization field experiments in North China Plain. Four long-term fertilization experiments (20-30 years) were investigated on SOC in 40 cm, calcium carbonate and active carbonate (AC) in 180 or 100 cm soil profile, δ13C values of SOC and δ13C and δ18O values of carbonate in soil profile, particle distribution of SOC and SIC in main soil layers, and ratios of pedogenic carbonate (PC) in SIC and C3-SOC in SOC. The most important conclusion is that fertilization of more than 20 years can produce detectable impact on pool size, profile distribution, ratio of active component and PC of SIC, which make it clear that SIC pool must be considered in the proper evaluation of the response of soil carbon balance to human activities in arid and semi-arid region. Land use impact on soil total carbon pool in Inner Mongolia. With the data of the second survey of soils in Inner Mongolia and the 58 soil profile data from Wu-lan-cha-bu-meng and Xi-lin-hao-te, combining with the 13C and 18O techniques, SIC density and stock in Inner Mongolia is estimated. The main conclusion is that soils in inner Mongolia have the same level of SOC and SIC, with the density in 100cm pedons of 8.97 kg•m-2 and 8.61 kg•m-2, respectively. Meanwhile, the significantly positive relationship between SOC and SIC in A layer indicates co-sequestration of SOC and SIC exist. Evaluation of the methods for measuring CA enzyme activity in soil. In laboratory, method in literature to measure CA activity in soil sample was repeated, and found it was not valid indeed. The failure could not attribute to the disturbance of common ions like NO3-, SO42-, Ca2+, and Mg2+. The adsorption of CA to soil material was testified as the main reason for that failure. A series of extractants were tested but no one can extract the adsorbed CA and be used in measuring CA activity in soil sample. Carbonate transformation in field with straw returned and biochar added. In 2009, a field

  10. Radiography as a tool in understanding soil insect behavior in turfgrass

    International Nuclear Information System (INIS)

    Villani, M.G.; Wright, R.J.

    1987-01-01

    In an effort to gain a more realistic picture of the events that occur within the soil matrix an x-ray technique has been developed that has been used to study seed insects, parasitized cocoons, and wood boring insects in trees to study soil insect movement and behavior. This technique makes it possible to study the movement of the target insects within simulated or natural soil blocks over time. This method also shows physical properties of the soil matrix: particle size, extent of compaction, differences in soil moisture, horizons, and random soil heterogeneity. Blocks of soil up to 14'' x 17'' x 5'' have been removed from the field and x-rayed in my laboratory using this technique. These radiographs are of sufficient quality to determine the movement of white grubs in situ. Such blocks retain their field characteristics and therefore allow for the careful monitoring and manipulation of the system over relatively long (several months) periods of time. Radiographic data are presented which document the behavior of several white grub species in response to dynamic soil ecosystem processes such as moisture and temperature flux. Additional data on the effects of specific soil insecticides on the behavior of white grubs in the soil and the movement of these insecticides through the soil profile are also presented. The importance of understanding the dynamic interaction of soil insect and soil insecticide provided through x-ray technology, both in understanding white grub behavior in the field and maximizing management efforts is discussed

  11. Exposure to inequality affects support for redistribution.

    Science.gov (United States)

    Sands, Melissa L

    2017-01-24

    The distribution of wealth in the United States and countries around the world is highly skewed. How does visible economic inequality affect well-off individuals' support for redistribution? Using a placebo-controlled field experiment, I randomize the presence of poverty-stricken people in public spaces frequented by the affluent. Passersby were asked to sign a petition calling for greater redistribution through a "millionaire's tax." Results from 2,591 solicitations show that in a real-world-setting exposure to inequality decreases affluent individuals' willingness to redistribute. The finding that exposure to inequality begets inequality has fundamental implications for policymakers and informs our understanding of the effects of poverty, inequality, and economic segregation. Confederate race and socioeconomic status, both of which were randomized, are shown to interact such that treatment effects vary according to the race, as well as gender, of the subject.

  12. Exposure to inequality affects support for redistribution

    Science.gov (United States)

    Sands, Melissa L.

    2017-01-01

    The distribution of wealth in the United States and countries around the world is highly skewed. How does visible economic inequality affect well-off individuals’ support for redistribution? Using a placebo-controlled field experiment, I randomize the presence of poverty-stricken people in public spaces frequented by the affluent. Passersby were asked to sign a petition calling for greater redistribution through a “millionaire’s tax.” Results from 2,591 solicitations show that in a real-world-setting exposure to inequality decreases affluent individuals’ willingness to redistribute. The finding that exposure to inequality begets inequality has fundamental implications for policymakers and informs our understanding of the effects of poverty, inequality, and economic segregation. Confederate race and socioeconomic status, both of which were randomized, are shown to interact such that treatment effects vary according to the race, as well as gender, of the subject. PMID:28069960

  13. understanding the mechanism of soil erosion from outdoor model

    African Journals Online (AJOL)

    Dr Obe

    to agricultural and transportation progress. This phenomenon arises from the lack of proper control of storm water on the highway fight of way and tributary slopes. It is therefore a prerequisite in erosion control designs to secure accurate hydrological and soil data for the affected regions. The extent of the degradation of.

  14. Fluorescent probes for understanding soil water repellency: the novel application of a chemist's tool to soil science

    Science.gov (United States)

    Balshaw, Helen M.; Davies, Matthew L.; Doerr, Stefan H.; Douglas, Peter

    2015-04-01

    Food security and production is one of the key global issues faced by society. It has become essential to work the land efficiently, through better soil management and agronomy whilst protecting the environment from air and water pollution. The failure of soil to absorb water - soil water repellency can lead to major environmental problems such as increased overland flow and soil erosion, poor uptake of agricultural chemicals, and increased risk of groundwater pollution due to the rapid transfer of contaminants and nutrient leaching through uneven wetting and preferential flow pathways. Understanding the causes of soil hydrophobicity is essential for the development of effective methods for its amelioration, supporting environmental stability and food security. Organic compounds deposited on soil mineral or aggregate surfaces have long been recognised as a major factor in causing soil water repellency. It is widely accepted that the main groups of compounds responsible are long-chain acids, alkanes and other organic compounds with hydrophobic properties. However, when reapplied to sands and soils, the degree of water repellency induced by these compounds and mixtures varied widely with compound type, amount, and mixture, in a seemingly unpredictable way. Fluorescent and phosphorescent probes are widely used in chemistry and biochemistry due to their sensitive response to their physical and chemical environment, such as polarity, and viscosity. However, they have to-date not been used to study soil water repellency. Here we present preliminary work on the evaluation of fluorescent probes as tools to study two poorly understood features that determine the degree of wettability for water repellent soils: (i) the distribution of organics on soils; (ii) the changes in polarity at soil surfaces required for water drops to infiltrate. In our initial work we have examined probes adsorbed onto model soils, prepared by adsorption of specific organics onto acid washed sand

  15. Redistribution of cesium-137 in southeastern watersheds

    International Nuclear Information System (INIS)

    McHenry, J.R.; Ritchie, J.C.

    1975-01-01

    Sediment samples from 14 southeastern agricultural reservoirs and surface samples from representative soils from the contributing water shed areas were analyzed for 137 Cs. The concentrations of 137 Cs measured reflect the nature of the watershed, its cover, its use, and man's activities. Since the redistribution of 137 Cs was assumed to result from soil erosion, recent erosion rates can be calculated from the measured 137 Cs accumulations in sediments and from the decreases in the 137 Cs calculated to have been deposited on upland soils. Measured concentrations of 137 Cs ranged from 14 to 158 nCi/m 2 in surface soils. As much as 525 nCi/m 2 of 137 Cs was measured in the deposited sediment profile. Watershed budgets for 137 Cs were calculated for three representative watersheds using available sediment survey information and the measured 137 Cs concentrations

  16. Improved Understanding of In Situ Chemical Oxidation Soil Reactivity

    Science.gov (United States)

    2007-12-01

    followed by a mixture of nitric and perchloric acids . This sequence uses precise heat ramping and holding cycles which takes the sample to dryness...release different kinds of products (e.g., benzenepolycarboxylic acids , phenolic acids , and fatty acids ) with varying resistance to the attack of... oxalate might be the only organic product in the oxidation of humic and non-humic soils by permanganate or even hydrogen peroxide (Harada and Inoko

  17. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips - Part 1: nonuniform infiltration and soil water redistribution

    OpenAIRE

    Munoz Carpena, R.; Lauvernet, C.; Carluer, N.

    2018-01-01

    Vegetation buffers like vegetative filter strips (VFSs) are often used to protect water bodies from surface runoff pollution from disturbed areas. Their typical placement in floodplains often results in the presence of a seasonal shallow water table (WT) that can decrease soil infiltration and increase surface pollutant transport during a rainfall-runoff event. Simple and robust components of hydrological models are needed to analyze the impacts of WT in the landscape. To si...

  18. Understanding cassava yield response to soil and fertilizer nutrient supply in West Africa

    NARCIS (Netherlands)

    Ezui, K.S.; Franke, A.C.; Ahiabor, B.D.K.; Tetteh, F.M.; Sogbedji, J.; Janssen, B.H.; Mando, A.; Giller, K.E.

    2017-01-01

    Background and aims: Enhanced understanding of plant and nutrient interactions is key to improving yields. We adapted the model for QUantitative Evaluation of the Fertility of Tropical Soils (QUEFTS) to assess cassava yield response to soil and fertilizer nutrients in West Africa. Methods: Data

  19. Understanding the Role of Microorganisms in Soil Quality and Fertility under changing Climatic Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dercon, Gerd; Adu-Gyamfi, Joseph; Heiling, Maria; Aigner, Martina; Nguyen, Minh-Long [Soil and Water Management and Crop Nutrition Laboratory, Joint FAO/IAEA Division for Nuclear Techniques in Food and Agriculture, Seibersdorf (Austria); Schwartz, Egbert [Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, (United States); Dexin, Lin [Soil and Water Management and Crop Nutrition Laboratory, Joint FAO/IAEA Division for Nuclear Techniques in Food and Agriculture, Seibersdorf, (Austria); Fujian Agriculture and Forestry University, Fujian (China)

    2013-01-15

    The Soil and Water Management and Crop Nutrition (SWMCN) Subprogramme (Section and Laboratory) assists FAO and IAEA Member States in the development, validation and dissemination of a range of soil, water and crop management technology packages using nuclear and nuclear-related techniques. In the coming years, SWMCN aims to (i) improve soil quality and soil resilience against the impacts of climate change and variability and (ii) reduce greenhouse gas emissions and increase soil carbon sequestration in both productive and marginal lands. To achieve these aims, the SWMCN Subprogramme is planning to put major emphasis on applied microbial ecology. Microbial communities play a major role in soil fertility improvement through the decomposition of crop residues, live- stock manure and soil organic matter. These microbes are often affected by variations in rainfall and temperature patterns caused by climate change. Recent advances in the use of stable isotopes like carbon-3, nitrogen-5 and oxygen-18 as biomarkers to characterize microbial communities and their interactions with soil nutrient and organic matter processes, known as stable isotope probing (SIP), are important for soil-water-nutrient management. SIP helps us to understand the interactions between soil microbial communities and their specific functions in soil carbon sequestration, soil organic matter stabilization, soil fertility and soil resilience, as well as the soil productive capacity for sustainable intensification of cropping and livestock production. SIP involves the introduction of a stable isotope labelled substrate into a soil microbial community to trace the fate of the substrate. This allows direct observations of substrate assimilation to be made in minimally disturbed communities of microorganisms. Microorganisms that are actively involved in specific metabolic processes can be identified under in-situ conditions. SIP is most developed for carbon-13 probing, but studies using nitrogen-15 and

  20. Towards a global understanding of vertical soil carbon dynamics: meta-analysis of soil 14C data

    Science.gov (United States)

    hatte, C.; Balesdent, J.; Guiot, J.

    2012-12-01

    Soil represents the largest terrestrial storage mechanism for atmospheric carbon from photosynthesis, with estimates ranging from 1600 Pg C within the top 1 meter to 2350 Pg C for the top 3 meters. These values are at least 2.5 times greater than atmospheric C pools. Small changes in soil organic carbon storage could result in feedback to atmospheric CO2 and the sensitivity of soil organic matter to changes in temperature, and precipitation remains a critical area of research with respect to the global carbon cycle. As an intermediate storage mechanism for organic material through time, the vertical profile of carbon generally shows an age continuum with depth. Radiocarbon provides critical information for understanding carbon exchanges between soils and atmosphere, and within soil layers. Natural and "bomb" radiocarbon has been used to demonstrate the importance and nature of the soil carbon response to climatic and human impacts on decadal to millennial timescales. Radiocarbon signatures of bulk, or chemically or physically fractionated soil, or even of specific organic compounds, offer one of the only ways to infer terrestrial carbon turnover times or test ecosystem carbon models. We compiled data from the literature on radiocarbon distribution on soil profiles and characterized each study according to the following categories: soil type, analyzed organic fraction, location (latitude, longitude, elevation), climate (temperature, precipitation), land use and sampling year. Based on the compiled data, soil carbon 14C profiles were reconstructed for each of the 226 sites. We report here partial results obtained by statistical analyses of portion of this database, i.e. bulk and bulk-like organic matter and sampling year posterior to 1980. We highlight here 14C vertical pattern in relationship with external parameters (climate, location and land use).

  1. A soil-landscape framework for understanding spatial and temporal variability in biogeochemical processes in catchments

    Science.gov (United States)

    McGuire, K. J.; Bailey, S. W.; Ross, D. S.

    2017-12-01

    Heterogeneity in biophysical properties within catchments challenges how we quantify and characterize biogeochemical processes and interpret catchment outputs. Interactions between the spatiotemporal variability of hydrological states and fluxes and soil development can spatially structure catchments, leading to a framework for understanding patterns in biogeochemical processes. In an upland, glaciated landscape at the Hubbard Brook Experimental Forest (HBEF) in New Hampshire, USA, we are embracing the structure and organization of soils to understand the spatial relations between runoff production zones, distinct soil-biogeochemical environments, and solute retention and release. This presentation will use observations from the HBEF to demonstrate that a soil-landscape framework is essential in understanding the spatial and temporal variability of biogeochemical processes in this catchment. Specific examples will include how laterally developed soils reveal the location of active runoff production zones and lead to gradients in primary mineral dissolution and the distribution of weathering products along hillslopes. Soil development patterns also highlight potential carbon and nitrogen cycling hotspots, differentiate acidic conditions, and affect the regulation of surface water quality. Overall, this work demonstrates the importance of understanding the landscape-level structural organization of soils in characterizing the variation and extent of biogeochemical processes that occur in catchments.

  2. Cu, Zn and Mn uptake and redistribution in Cabernet Sauvignon grapes and wine: effect of soil metal content and plant vigor

    Science.gov (United States)

    Concepción Ramos, Maria; Romero, María Paz

    2015-04-01

    This study investigated the influence of leaf thinning on micronutrient (Cu, Zn and Mn) uptake and distribution in grape tissues, in a 16 year-old Cabernet Sauvignon vineyard. The analysis was carried out in two plots with differences in vigor (P1- high and P2-low) grown in calcareous soils. Vigour was analysed by the NDVI values. In each plot, two treatments (with and without leaf thinning after bloom) were applied. Total and the CaCl2-DTPA extractable fraction of these micronutrients were evaluated. Nutrient concentration in petiole were evaluated from veraison to harvest as well as the concentration of those elements in seeds and skins at ripening and in wines elaborated with grapes grown in each plot and treatment in 2013. Their relationships were evaluated. The soil extractable fraction did not give a good correlation with petiole concentrations. However, Mn in petiole was strongly correlated with soil total Mn. Cu and Zn had higher concentration at veraison than at harvest, while for Mn it was the opposite. Cu concentration in petiole and seeds was greater in the most vigorous plots, but there were not clear differences between treatments. Cu in seeds and skins correlated significantly but there was not correlation with Cu in petiole. Zn concentration in skins was quite similar in both plots, but with higher values in vines without leaf thinning. Zn concentrations in skins were correlated with Zn in petiole but no significant correlation was found with Zn in seeds. Higher concentrations were found in the no thinning treatment in skins. For Mn, petiole concentrations were greater in the high vigorous plot and in the leaf thinning treatment. However, petiole Zn concentrations were greater in the less vigorous plot and without clear effect of leaf thinning. Mn concentration in skins was greater in the less vigorous vines in both treatments and it was inversely correlated with Mn in seeds, but there were no significant correlation between them and Mn in petiole

  3. Population redistribution in Nigeria.

    Science.gov (United States)

    Adebayo, A

    1984-07-01

    One of the major consequences of the reorganization of Nigeria from 4 states into 12 states in 1967 and then into 19 states in the late 1970s was the redistribution of the Nigerian population. Prior to 1967 Nigeria's rural population migrated primarily to the 4 state capitals of Kaduna, Ibadan, Enugu, Benin City and to the federal capital of Lagos. The creation of additional states, each with their own capital, provided new urban environments where migrants from rural areas were afforded opportunities for employment and social mobility. Between 1960-1980, World Bank estimates indicate that 1) population in Nigerian cityes of over 500,000 population increased from 22-57%; 2) the number of cities with a population of 500,000 or more increased from 2 to 9 and 3) the urban population increased from 13-20%. Given Nigeria's estimated population growth rate of 3.6%/year, it is imperative that the goverment continue its decentralization efforts. Tables show 1) population by region based on the 1963 census; 2) estimated population of the 19 state capitals for 1963 and 1975; and 3) estimated population of the areas included in each of the 19 states for 196o, 1977, 1979, and 19819

  4. Sustainable Materials Management (SMM) Web Academy Webinar: Compost from Food Waste: Understanding Soil Chemistry and Soil Biology on a College/University Campus

    Science.gov (United States)

    This page contains information about the Sustainable Materials Management (SMM) Web Academy Webinar Series titled Compost from Food Waste:Understanding Soil Chemistry and Soil Biology on a College/University Campus

  5. From patterns to causal understanding: Structural equation modeling (SEM) in soil ecology

    Science.gov (United States)

    Eisenhauer, Nico; Powell, Jeff R; Grace, James B.; Bowker, Matthew A.

    2015-01-01

    In this perspectives paper we highlight a heretofore underused statistical method in soil ecological research, structural equation modeling (SEM). SEM is commonly used in the general ecological literature to develop causal understanding from observational data, but has been more slowly adopted by soil ecologists. We provide some basic information on the many advantages and possibilities associated with using SEM and provide some examples of how SEM can be used by soil ecologists to shift focus from describing patterns to developing causal understanding and inspiring new types of experimental tests. SEM is a promising tool to aid the growth of soil ecology as a discipline, particularly by supporting research that is increasingly hypothesis-driven and interdisciplinary, thus shining light into the black box of interactions belowground.

  6. Portable nitrous oxide sensor for understanding agricultural and soil emissions

    Energy Technology Data Exchange (ETDEWEB)

    Stanton, Alan [Southwest Sciences, Inc., Santa Fe, NM (United States); Zondlo, Mark [Princeton Univ., NJ (United States); Gomez, Anthony [Southwest Sciences, Inc., Santa Fe, NM (United States); Pan, Da [Princeton Univ., NJ (United States)

    2017-02-27

    Nitrous oxide (N2O) is the third most important greenhouse gas (GHG,) with an atmospheric lifetime of ~114 years and a global warming impact ~300 times greater than that of carbon dioxide. The main cause of nitrous oxide’s atmospheric increase is anthropogenic emissions, and over 80% of the current global anthropogenic flux is related to agriculture, including associated land-use change. An accurate assessment of N2O emissions from agriculture is vital not only for understanding the global N2O balance and its impact on climate but also for designing crop systems with lower GHG emissions. Such assessments are currently hampered by the lack of instrumentation and methodologies to measure ecosystem-level fluxes at appropriate spatial and temporal scales. Southwest Sciences and Princeton University are developing and testing new open-path eddy covariance instrumentation for continuous and fast (10 Hz) measurement of nitrous oxide emissions. An important advance, now being implemented, is the use of new mid-infrared laser sources that enable the development of exceptionally low power (<10 W) compact instrumentation that can be used even in remote sites lacking in power. The instrumentation will transform the ability to measure and understand ecosystem-level nitrous oxide fluxes. The Phase II results included successful extended field testing of prototype flux instruments, based on quantum cascade lasers, in collaboration with Michigan State University. Results of these tests demonstrated a flux detection limit of 5 µg m-2 s-1 and showed excellent agreement and correlation with measurements using chamber techniques. Initial tests of an instrument using an interband cascade laser (ICL) were performed, verifying that an order of magnitude reduction in instrument power requirements can be realized. These results point toward future improvements and testing leading to introduction of a commercial open path instrument for N2O flux measurements that is truly portable and

  7. QUANTITATIVE ASSESSMENT OF SEDIMENT REDISTRIBUTION IN THE SICHUAN HILLY BASIN AND THE CENTRAL RUSSIAN UPLAND DURING THE PAST 60 YEARS

    Directory of Open Access Journals (Sweden)

    Valentin N. Golosov

    2014-01-01

    Full Text Available Agricultural lands around the globe have been seriously affected by soil erosion and resultant on- and off-site eco-environmental problems. Quantitative assessment of sediment redistribution allows for explicit understanding the effects of natural and anthropogenic agents on catchment soil erosion and sediment delivery. To this end, sediment redistribution at field and catchment scales in two agricultural regions of the Sichuan Hilly Basin in southwestern China and the Central Russian Upland was comprehensively assessed using multiple approaches including 137Cs tracing, soil morphology comparison, empirical-mathematic modeling, sediment budgeting, discharge and sediment monitoring, and sediment dating. Field measurements were undertaken in the zero-order small catchments (with drainage area less than 0,25 km2, and soil erosion rates were found to be 6-7 t ha-1-yr-1. Long-term repeated measurements indicated that both precipitation changes and conservation practices had contributed to the alleviation of soil erosion on hillslopes. However, eroded sediment was transferred from hillslopes to streams through different pathways for both regions. High slope-channel connectivity and substantial proportions of sediment delivery were observed in the Sichuan Hilly Basin. Changes of riverine suspended sediment yield were indicative of soil erosion and sediment delivery on upland catchments. Large quantity of sediment was redeposited on first-order dry-valley bottoms and only 4-12% of the gross sediment load was delivered into adjacent river channels in the Central Russian Upland.

  8. Impact of hydraulic redistribution on multispecies vegetation water use in a semi-arid ecosystem: An experimental and modeling synthesis

    Science.gov (United States)

    Lee, E.; Kumar, P.; Barron-Gafford, G.; Scott, R. L.; Hendryx, S. M.; Sanchez-Canete, E. P.; Minor, R. L.; Colella, A.

    2017-12-01

    A key challenge in critical zone science is to understand and predict the interaction between aboveground and belowground ecohydrologic processes. One of the links that facilitates the interaction is hydraulic redistribution (HR), a phenomenon by which roots serve as preferential pathways for water movement from wet to dry soil layers. We use a multi-layer canopy model in conjunction with experimental data to examine the influence of HR on eco-hydrologic processes, such as transpiration, soil evaporation, and soil moisture, which characterize the competitive and facilitative dynamics between velvet mesquite and understory bunchgrass. Both measured and simulated results show that hydraulic descent (HD) dominates sap flux during the wet monsoon season, whereas hydraulic lift (HL) occurs between precipitation events. About 17% of precipitation is absorbed as soil-moisture, with the rest of the precipitation returning to the atmosphere as evapotranspiration. In the wet season, 13% of precipitation is transferred to deep soil (>2m) through mesquite roots, and in the dry season, 9% of this redistributed water is transported back to shallow soil depth (competitive advantage over understory bunchgrass through HR.

  9. Projecting the Dependence of Sage-steppe Vegetation on Redistributed Snow in a Warming Climate.

    Science.gov (United States)

    Soderquist, B.; Kavanagh, K.; Link, T. E.; Seyfried, M. S.; Strand, E. K.

    2015-12-01

    In mountainous regions, the redistribution of snow by wind can increase the effective precipitation available to vegetation. Moisture subsidies caused by drifting snow may be critical to plant productivity in semi-arid ecosystems. However, with increasing temperatures, the distribution of precipitation is becoming more uniform as rain replaces drifting snow. Understanding the ecohydrological interactions between sagebrush steppe vegetation communities and the heterogeneous distribution of soil moisture is essential for predicting and mitigating future losses in ecosystem diversity and productivity in regions characterized by snow dominated precipitation regimes. To address the dependence of vegetation productivity on redistributed snow, we simulated the net primary production (NPP) of aspen, sagebrush, and C3 grass plant functional types spanning a precipitation phase (rain:snow) gradient in the Reynolds Creek Experimental Watershed and Critical Zone Observatory (RCEW-CZO). The biogeochemical process model Biome-BGC was used to simulate NPP at three sites located directly below snowdrifts that provide melt water late into the spring. To assess climate change impacts on future plant productivity, mid-century (2046-2065) NPP was simulated using the average temperature increase from the Multivariate Adaptive Constructed Analogs (MACA) data set under the RCP 8.5 emission scenario. At the driest site, mid-century projections of decreased snow cover and increased growing season evaporative demand resulted in limiting soil moisture up to 30 and 40 days earlier for aspen and sage respectively. While spring green up for aspen occurred an average of 13 days earlier under climate change scenarios, NPP remained negative up to 40 days longer during the growing season. These results indicate that the loss of the soil moisture subsidy stemming from prolonged redistributed snow water resources can directly influence ecosystem productivity in the rain:snow transition zone.

  10. Long-term experiments to better understand soil-human interactions

    Science.gov (United States)

    Bormann, B. T.; Homann, P. S.

    2011-12-01

    Interactions between soils and people may be transforming global conditions, but the interactions are poorly understood. Changes in soils have proven difficult to quantify, especially in complex ecosystems manifesting large spatiotemporal variability. Long-term ecosystem experiments that evaluate soil change and demonstrate alternative choices are important to understanding changes, discovering new controls and drivers, and influencing decisions. Inspired by agriculture studies, like Rothamsted, the US Forest Service established in 1990 a network of operational-scale experiments across the Pacific Northwest to evaluate long-term effects of different forest management and disturbance regimes. With a strong experimental design, these experiments are now helping to better understand the long-term effects of managing tree harvesting (clearcutting and thinning), woody debris, and tree and understory species composition, and-serendipitously-the effects of fire. Initial results from the Southern Oregon experimental site indicate surprisingly rapid soil changes in some regimes but not others. We've also learned that rapid change presents challenges to repeat sampling. We present our sample-archive and comparable-layer approaches that seek to accommodate changes in surface elevation, aggregation and disaggregation, and mineral-soil exports. Thinning mature forest stands (80-100 yrs old) did not significantly change soil C in 11-yrs. A small upper-layer C increase was observed after thinning, but it was similar to the control. Significant increases in upper-layer soil N were observed with most treatments, but all increases were similar to the control. Leaving woody debris had little effect. The most remarkable change occurred when mature stands were clearcut and Douglas-firs were planted and tended. Associated with rapid growth of Douglas-fir, an average of 8 Mg C ha-1 was lost from weathered soil 4-18 cm deep. This contrasts with clearcuts where early-seral hardwoods and

  11. Understanding the solid phase chemical fractionation of uranium in soil and effect of ageing

    Energy Technology Data Exchange (ETDEWEB)

    Rout, Sabyasachi, E-mail: srout.barc@gmail.com [Health Physics Division, Bhabha Atomic Research Centre, Mumbai (India); Kumar, Ajay [Health Physics Division, Bhabha Atomic Research Centre, Mumbai (India); Ravi, P.M.; Tripathi, R.M. [Homi Bhabha National Institute Anushaktinagar, Mumbai (India)

    2016-11-05

    Highlights: • Apart of U(VI) converted to U(IV) during adsorption to soil. • Ageing leads to rearrangement of chemical fractionation of U in soil. • Organic matter and carbonate minerals responsible for Surface enrichment of U. • There occurs Occlusion of U-Fe-Oxides (Hydroxide) in to silica. - Abstract: The aim of the present work is to understand the solid phase chemical fractionation of Uranium (U) in soil and the mechanism involved. This study integrated batch experiments of U(VI) adsorption to soil, study of U in different soil fractions, ageing impact on fractionation of U and spectroscopic investigation of adsorbed U(VI) using X-ray Photoelectron Spectroscopy (XPS). For the study three soils, pedogenically different (S1: Igneous, S2: Sedimentary and S3: Metamorphic) were amended with U(VI) and chemical fractionation of U was studied by sequential extraction after an interval of one month and 12 months. It was found that there occurs a significant rearrangement of U in different fractions with ageing and no correlation was observed between the U content in different fractions and the adsorbents of respective fractions such as soil organic matter (SOM), Fe/Mn oxides (hydroxides) carbonates, soil cation exchange capacity (CEC). XPS study revealed that surface enrichment of U mainly governed by the carbonate minerals and SOM, whereas bulk concentration was controlled by the oxides (hydroxides) of Si and Al. Occlusion of U-Fe-oxides (hydroxides) on silica was identified as an important mechanism for bulk enrichment (Increase in residual fraction) and depletion of U concentration in reducible fraction.

  12. Understanding the solid phase chemical fractionation of uranium in soil and effect of ageing

    International Nuclear Information System (INIS)

    Rout, Sabyasachi; Kumar, Ajay; Ravi, P.M.; Tripathi, R.M.

    2016-01-01

    Highlights: • Apart of U(VI) converted to U(IV) during adsorption to soil. • Ageing leads to rearrangement of chemical fractionation of U in soil. • Organic matter and carbonate minerals responsible for Surface enrichment of U. • There occurs Occlusion of U-Fe-Oxides (Hydroxide) in to silica. - Abstract: The aim of the present work is to understand the solid phase chemical fractionation of Uranium (U) in soil and the mechanism involved. This study integrated batch experiments of U(VI) adsorption to soil, study of U in different soil fractions, ageing impact on fractionation of U and spectroscopic investigation of adsorbed U(VI) using X-ray Photoelectron Spectroscopy (XPS). For the study three soils, pedogenically different (S1: Igneous, S2: Sedimentary and S3: Metamorphic) were amended with U(VI) and chemical fractionation of U was studied by sequential extraction after an interval of one month and 12 months. It was found that there occurs a significant rearrangement of U in different fractions with ageing and no correlation was observed between the U content in different fractions and the adsorbents of respective fractions such as soil organic matter (SOM), Fe/Mn oxides (hydroxides) carbonates, soil cation exchange capacity (CEC). XPS study revealed that surface enrichment of U mainly governed by the carbonate minerals and SOM, whereas bulk concentration was controlled by the oxides (hydroxides) of Si and Al. Occlusion of U-Fe-oxides (hydroxides) on silica was identified as an important mechanism for bulk enrichment (Increase in residual fraction) and depletion of U concentration in reducible fraction.

  13. Nitrous oxide emissions from soils: how well do we understand the processes and their controls?

    Science.gov (United States)

    Butterbach-Bahl, Klaus; Baggs, Elizabeth M.; Dannenmann, Michael; Kiese, Ralf; Zechmeister-Boltenstern, Sophie

    2013-01-01

    Although it is well established that soils are the dominating source for atmospheric nitrous oxide (N2O), we are still struggling to fully understand the complexity of the underlying microbial production and consumption processes and the links to biotic (e.g. inter- and intraspecies competition, food webs, plant–microbe interaction) and abiotic (e.g. soil climate, physics and chemistry) factors. Recent work shows that a better understanding of the composition and diversity of the microbial community across a variety of soils in different climates and under different land use, as well as plant–microbe interactions in the rhizosphere, may provide a key to better understand the variability of N2O fluxes at the soil–atmosphere interface. Moreover, recent insights into the regulation of the reduction of N2O to dinitrogen (N2) have increased our understanding of N2O exchange. This improved process understanding, building on the increased use of isotope tracing techniques and metagenomics, needs to go along with improvements in measurement techniques for N2O (and N2) emission in order to obtain robust field and laboratory datasets for different ecosystem types. Advances in both fields are currently used to improve process descriptions in biogeochemical models, which may eventually be used not only to test our current process understanding from the microsite to the field level, but also used as tools for up-scaling emissions to landscapes and regions and to explore feedbacks of soil N2O emissions to changes in environmental conditions, land management and land use. PMID:23713120

  14. Radioisotope tracer approach for understanding the impacts of global change-induced pedoturbation on soil C dynamics

    Science.gov (United States)

    Gonzalez-Meler, M. A.; Sturchio, N. C.; Sanchez-de Leon, Y.; Blanc-Betes, E.; Taneva, L.; Poghosyan, A.; Norby, R. J.; Filley, T. R.; Guilderson, T. P.; Welker, J. M.

    2010-12-01

    Biogeochemical carbon-cycle feedbacks to climate are apparent but uncertain, primarily because of gaps in mechanistic understanding on the ecosystem processes that drive carbon cycling and storage in terrestrial ecosystems, particularly in soils. Recent findings are increasingly recognizing the interaction between soil biota and the soil physical environment. Soil carbon turnover is partly determined by burial of organic matter and its physical and chemical protection. These factors are potentially affected by changes in climate (freezing-thawing or wet-drying cycles) or ecosystem structure including biological invasions. A major impediment to understanding dynamics of soil C in terrestrial systems is our inability to measure soil physical processes such as soil mixing rates or turnover of soil structures, including aggregates. Here we present a multiple radioisotope tracer approach (naturally occurring and man-made) to measure soil mixing rates in response to global change. We will present evidence of soil mixing rate changes in a temperate forest exposed to increased levels of atmospheric CO2 and in a tundra ecosystem exposed to increased thermal insulation. In both cases, radioisotope tracers proved to be an effective way to measure effects of global change on pedoturbation. Results also provided insights into the specific mechanisms involved in the responses. Elevated CO2 resulted in deeper soil mixing cells (increased by about 5cm on average) when compared to control soils as a consequence of changes in biota (increased root growth, higher earthworm density). In the tundra, soil warming induced higher rates of cryoturbation, resulting in what appears to be a net uplift of organic matter to the surface thereby exposing deeper C to decomposers. In both cases, global change factors affected the vertical distribution of C and changed the amount of bulk soil actively involved in soil processes. As a consequence, comparisons of C budgets to a given soil depth in

  15. The global warming hiatus: Slowdown or redistribution?

    Science.gov (United States)

    Yan, Xiao-Hai; Boyer, Tim; Trenberth, Kevin; Karl, Thomas R.; Xie, Shang-Ping; Nieves, Veronica; Tung, Ka-Kit; Roemmich, Dean

    2016-11-01

    Global mean surface temperatures (GMST) exhibited a smaller rate of warming during 1998-2013, compared to the warming in the latter half of the 20th Century. Although, not a "true" hiatus in the strict definition of the word, this has been termed the "global warming hiatus" by IPCC (2013). There have been other periods that have also been defined as the "hiatus" depending on the analysis. There are a number of uncertainties and knowledge gaps regarding the "hiatus." This report reviews these issues and also posits insights from a collective set of diverse information that helps us understand what we do and do not know. One salient insight is that the GMST phenomenon is a surface characteristic that does not represent a slowdown in warming of the climate system but rather is an energy redistribution within the oceans. Improved understanding of the ocean distribution and redistribution of heat will help better monitor Earth's energy budget and its consequences. A review of recent scientific publications on the "hiatus" shows the difficulty and complexities in pinpointing the oceanic sink of the "missing heat" from the atmosphere and the upper layer of the oceans, which defines the "hiatus." Advances in "hiatus" research and outlooks (recommendations) are given in this report.

  16. Using Remotely Sensed Fluorescence and Soil Moisture to Better Understand the Seasonal Cycle of Tropical Grasslands

    Science.gov (United States)

    Smith, Dakota Carlysle

    Seasonal grasslands account for a large area of Earth's land cover. Annual and seasonal changes in these grasslands have profound impacts on Earth's carbon, energy, and water cycles. In tropical grasslands, growth is commonly water-limited and the landscape oscillates between highly productive and unproductive. As the monsoon begins, soils moisten providing dry grasses the water necessary to photosynthesize. However, along with the rain come clouds that obscure satellite products that are commonly used to study productivity in these areas. To navigate this issue, we used solar induced fluorescence (SIF) products from OCO-2 along with soil moisture products from the Soil Moisture Active Passive satellite (SMAP) to "see through" the clouds to monitor grassland productivity. To get a broader understanding of the vegetation dynamics, we used the Simple Biosphere Model (SiB4) to simulate the seasonal cycles of vegetation. In conjunction with SiB4, the remotely sensed SIF and soil moisture observations were utilized to paint a clearer picture of seasonal productivity in tropical grasslands. The remotely sensed data is not available for every place at one time or at every time for one place. Thus, the study was focused on a large area from 15° E to 35° W and from 8°S to 20°N in the African Sahel. Instead of studying productivity relative to time, we studied it relative to soil moisture. Through this investigation we found soil moisture thresholds for the emergence of grassland growth, near linear grassland growth, and maturity of grassland growth. We also found that SiB4 overestimates SIF by about a factor of two for nearly every value of soil moisture. On the whole, SiB4 does a surprisingly good job of predicting the response of seasonal growth in tropical grasslands to soil moisture. Future work will continue to integrate remotely sensed SIF & soil moisture with SiB4 to add to our growing knowledge of carbon, water, and energy cycling in tropical grasslands.

  17. Can Process Understanding Help Elucidate The Structure Of The Critical Zone? Comparing Process-Based Soil Formation Models With Digital Soil Mapping.

    Science.gov (United States)

    Vanwalleghem, T.; Román, A.; Peña, A.; Laguna, A.; Giráldez, J. V.

    2017-12-01

    There is a need for better understanding the processes influencing soil formation and the resulting distribution of soil properties in the critical zone. Soil properties can exhibit strong spatial variation, even at the small catchment scale. Especially soil carbon pools in semi-arid, mountainous areas are highly uncertain because bulk density and stoniness are very heterogeneous and rarely measured explicitly. In this study, we explore the spatial variability in key soil properties (soil carbon stocks, stoniness, bulk density and soil depth) as a function of processes shaping the critical zone (weathering, erosion, soil water fluxes and vegetation patterns). We also compare the potential of traditional digital soil mapping versus a mechanistic soil formation model (MILESD) for predicting these key soil properties. Soil core samples were collected from 67 locations at 6 depths. Total soil organic carbon stocks were 4.38 kg m-2. Solar radiation proved to be the key variable controlling soil carbon distribution. Stone content was mostly controlled by slope, indicating the importance of erosion. Spatial distribution of bulk density was found to be highly random. Finally, total carbon stocks were predicted using a random forest model whose main covariates were solar radiation and NDVI. The model predicts carbon stocks that are double as high on north versus south-facing slopes. However, validation showed that these covariates only explained 25% of the variation in the dataset. Apparently, present-day landscape and vegetation properties are not sufficient to fully explain variability in the soil carbon stocks in this complex terrain under natural vegetation. This is attributed to a high spatial variability in bulk density and stoniness, key variables controlling carbon stocks. Similar results were obtained with the mechanistic soil formation model MILESD, suggesting that more complex models might be needed to further explore this high spatial variability.

  18. Redistribution of Income: Policy Directions

    Directory of Open Access Journals (Sweden)

    James B. Davies

    2013-08-01

    Full Text Available Poverty and rising income inequality in Canada have brought demands for improved government action on redistribution. Unfortunately, such pleas risk being overshadowed by a looming fiscal crunch as the baby boomers retire. An expanding population of seniors will add at least one percent annually to both growing health and OAS/GIS costs so that, absent meaningful change, other spending will have to be slashed by an average of 20.2 percent by 2032 if total spending and revenues are not to rise relative to GDP. For Canada’s tax-transfer system to keep fulfilling its redistributive role, a fundamental rethink is required. With non-seniors spending being squeezed, some changes in tax mix, moderate revenue increases and refined targeting of transfers will be needed to protect the system’s progressive nature. Increasing personal income tax and reducing property tax by an offsetting amount would improve redistribution without raising taxes. More revenue could be obtained without severe distortions via a capital transfer tax, the elimination of boutique credits aimed at niche beneficiaries, or perhaps a dual income tax which exacts more from labor than capital income. Improvements to existing transfer programs are another way forward. The conversion of EI to a purely insurance basis, freeing up funds to support redistribution via refundable credits is a possibility. Another cost-saver involves removing the indexation of the OAS/GIS income threshold and allowing its real value to decline, making more recipients subject to clawbacks. Whichever course governments pursue, revamping Canada’s taxtransfer system will be a delicate and difficult task. This paper explores the policy choices available, and makes it clear that time is not on our side.

  19. Biodiversity redistribution under climate change

    DEFF Research Database (Denmark)

    Pecl, Gretta T.; Bastos, Miguel; Bell, Johann D.

    2017-01-01

    Distributions of Earth’s species are changing at accelerating rates, increasingly driven by humanmediated climate change. Such changes are already altering the composition of ecological communities, but beyond conservation of natural systems, how and why does this matter? We review evidence that ...... by changes in species distribution. Consideration of these effects of biodiversity redistribution is critical yet lacking in most mitigation and adaptation strategies, including the United Nation’s Sustainable Development Goals....

  20. Understanding Plant-Microbe Interactions for Phytoremediation of Petroleum-Polluted Soil

    Science.gov (United States)

    Nie, Ming; Wang, Yijing; Yu, Jiayi; Xiao, Ming; Jiang, Lifen; Yang, Ji; Fang, Changming; Chen, Jiakuan; Li, Bo

    2011-01-01

    at these stages. The information provided by this study enhances our understanding of the effects of petroleum pollution on plant-microbe interactions and the roles of these interactions in the phytoremediation of petroleum-polluted soil. PMID:21437257

  1. Using rainfall simulations to understand the relationship between precipitation, soil crust and infiltration in four agricultural soils

    Science.gov (United States)

    Angulo-Martinez, Marta; Alastrué, Juan; Moret-Fernández, David; Beguería, Santiago; López, Mariví; Navas, Ana

    2017-04-01

    Rainfall simulation experiments were carried out in order to study soil crust formation and its relation with soil infiltration parameters—sorptivity (S) and hydraulic conductivity (K)—on four common agricultural soils with contrasted properties; namely, Cambisol, Gypsisol, Solonchak, and Solonetz. Three different rainfall simulations, replicated three times each of them, were performed over the soils. Prior to rainfall simulations all soils were mechanically tilled with a rototiller to create similar soil surface conditions and homogeneous soils. Rainfall simulation parameters were monitored in real time by a Thies Laser Precipitation Monitor, allowing a complete characterization of simulated rainfall microphysics (drop size and velocity distributions) and integrated variables (accumulated rainfall, intensity and kinetic energy). Once soils dried after the simulations, soil penetration resistance was measured and soil hydraulic parameters, S and K, were estimated using the disc infiltrometry technique. There was little variation in rainfall parameters among simulations. Mean intensity and mean median diameter (D50) varied in simulations 1 ( 0.5 bar), 2 ( 0.8 bar) and 3 ( 1.2 bar) from 26.5 mm h-1 and 0.43 mm (s1) to 40.5 mm h-1 and 0.54 mm (s2) and 41.1 mm h-1 and 0.56 mm for (s3), respectively. Crust formation by soil was explained by D50 and subsequently by the total precipitation amount and the percentage of silt and clay in soil, being Cambisol and Gypsisol the soils that showed more increase in penetration resistance by simulation. All soils showed similar S values by simulations which were explained by rainfall intensity. Different patterns of K were shown by the four soils, which were explained by the combined effect of D50 and intensity, together with soil physico-chemical properties. This study highlights the importance of monitoring all precipitation parameters to determine their effect on different soil processes.

  2. Voluntary income redistribution with migration.

    Science.gov (United States)

    Crane, R

    1992-01-01

    This study is concerned with the welfare magnet problem, in which disparities in transfer policies across states are believed to encourage recipient and possibly resource migration. "This study clarifies the terms of the debate by showing how the value of redistributing local resources depends not only on the value of income to each group, but also on the cost of the transfer in erosion of the resource base through migration and through the general equilibrium effects of such activity on local prices." The geographical focus is on the United States. excerpt

  3. Strategic campaigns and redistributive politics

    DEFF Research Database (Denmark)

    Schultz, Christian

    2007-01-01

    The article investigates strategic, informative campaigning by two parties when politics concern redistribution. Voters are uncertain about whether parties favour special groups. Parties will target campaigns on groups where most votes are gained by informing about policies. In equilibrium......, campaigning will be most intensive in groups where the uncertainty is largest and where voters are most mobile, most likely to vote, most receptive to campaigns and relatively uninformed initially. These groups will become more informed about policy. Parties will therefore gain more votes by treating...... these groups well so these groups will gain from strategic campaigning. Welfare effects are assessed...

  4. Modelling soil-water dynamics in the rootzone of structured and water-repellent soils

    Science.gov (United States)

    Brown, Hamish; Carrick, Sam; Müller, Karin; Thomas, Steve; Sharp, Joanna; Cichota, Rogerio; Holzworth, Dean; Clothier, Brent

    2018-04-01

    In modelling the hydrology of Earth's critical zone, there are two major challenges. The first is to understand and model the processes of infiltration, runoff, redistribution and root-water uptake in structured soils that exhibit preferential flows through macropore networks. The other challenge is to parametrise and model the impact of ephemeral hydrophobicity of water-repellent soils. Here we have developed a soil-water model, which is based on physical principles, yet possesses simple functionality to enable easier parameterisation, so as to predict soil-water dynamics in structured soils displaying time-varying degrees of hydrophobicity. Our model, WEIRDO (Water Evapotranspiration Infiltration Redistribution Drainage runOff), has been developed in the APSIM Next Generation platform (Agricultural Production Systems sIMulation). The model operates on an hourly time-step. The repository for this open-source code is https://github.com/APSIMInitiative/ApsimX. We have carried out sensitivity tests to show how WEIRDO predicts infiltration, drainage, redistribution, transpiration and soil-water evaporation for three distinctly different soil textures displaying differing hydraulic properties. These three soils were drawn from the UNSODA (Unsaturated SOil hydraulic Database) soils database of the United States Department of Agriculture (USDA). We show how preferential flow process and hydrophobicity determine the spatio-temporal pattern of soil-water dynamics. Finally, we have validated WEIRDO by comparing its predictions against three years of soil-water content measurements made under an irrigated alfalfa (Medicago sativa L.) trial. The results provide validation of the model's ability to simulate soil-water dynamics in structured soils.

  5. Coastal plain soils and geomorphology: a key to understanding forest hydrology

    Science.gov (United States)

    Thomas M. Williams; Devendra M. Amatya

    2016-01-01

    In the 1950s, Coile published a simple classification of southeastern coastal soils using three characteristics: drainage class, sub-soil depth, and sub-soil texture. These ideas were used by Warren Stuck and Bill Smith to produce a matrix of soils with drainage class as one ordinate and subsoil texture as the second for the South Carolina coastal plain. Soils...

  6. Geographical redistribution of radionuclides in forest and wetland

    International Nuclear Information System (INIS)

    Tjaernhage, Aasa; Plamboeck, Agnetha; Nylen, Torbjoern; Lidstroem, Kenneth; Aagren, Goeran; Lindgren, Jonas

    2000-12-01

    This report summarizes the results from a survey concerning the presence of caesium-137 in soil in two different areas, Verkmyraan in Gaestrikland and Nyaenget in Vaesterbotten. This has been done with a portable NaI gamma spectrometer connected to a GPS, called back pack. Soil samples have also been taken in the two areas to compare the results from these with the back pack measurements. The results from a survey of Cesium-137 1989 in Nyaenget has also been included to see if there has been a redistribution of Cs-137 in the area in the last ten years. At Verkmyraan there is an increase in Cs-137 deposition at the lower part of the catchment which probably depends on a transport of Cs-137 to the outflow. In Nyaenget the results show a possible levelling of the Cs-137 activity between the different soil types, but to verify that, more soil samples must be taken and analysed

  7. Geographical redistribution of radionuclides in forest and wetland

    Energy Technology Data Exchange (ETDEWEB)

    Tjaernhage, Aasa; Plamboeck, Agnetha; Nylen, Torbjoern; Lidstroem, Kenneth; Aagren, Goeran; Lindgren, Jonas

    2000-12-01

    This report summarizes the results from a survey concerning the presence of caesium-137 in soil in two different areas, Verkmyraan in Gaestrikland and Nyaenget in Vaesterbotten. This has been done with a portable NaI gamma spectrometer connected to a GPS, called back pack. Soil samples have also been taken in the two areas to compare the results from these with the back pack measurements. The results from a survey of Cesium-137 1989 in Nyaenget has also been included to see if there has been a redistribution of Cs-137 in the area in the last ten years. At Verkmyraan there is an increase in Cs-137 deposition at the lower part of the catchment which probably depends on a transport of Cs-137 to the outflow. In Nyaenget the results show a possible levelling of the Cs-137 activity between the different soil types, but to verify that, more soil samples must be taken and analysed.

  8. Managing consequences of climate-driven species redistribution requires integration of ecology, conservation and social science.

    Science.gov (United States)

    Bonebrake, Timothy C; Brown, Christopher J; Bell, Johann D; Blanchard, Julia L; Chauvenet, Alienor; Champion, Curtis; Chen, I-Ching; Clark, Timothy D; Colwell, Robert K; Danielsen, Finn; Dell, Anthony I; Donelson, Jennifer M; Evengård, Birgitta; Ferrier, Simon; Frusher, Stewart; Garcia, Raquel A; Griffis, Roger B; Hobday, Alistair J; Jarzyna, Marta A; Lee, Emma; Lenoir, Jonathan; Linnetved, Hlif; Martin, Victoria Y; McCormack, Phillipa C; McDonald, Jan; McDonald-Madden, Eve; Mitchell, Nicola; Mustonen, Tero; Pandolfi, John M; Pettorelli, Nathalie; Possingham, Hugh; Pulsifer, Peter; Reynolds, Mark; Scheffers, Brett R; Sorte, Cascade J B; Strugnell, Jan M; Tuanmu, Mao-Ning; Twiname, Samantha; Vergés, Adriana; Villanueva, Cecilia; Wapstra, Erik; Wernberg, Thomas; Pecl, Gretta T

    2018-02-01

    Climate change is driving a pervasive global redistribution of the planet's species. Species redistribution poses new questions for the study of ecosystems, conservation science and human societies that require a coordinated and integrated approach. Here we review recent progress, key gaps and strategic directions in this nascent research area, emphasising emerging themes in species redistribution biology, the importance of understanding underlying drivers and the need to anticipate novel outcomes of changes in species ranges. We highlight that species redistribution has manifest implications across multiple temporal and spatial scales and from genes to ecosystems. Understanding range shifts from ecological, physiological, genetic and biogeographical perspectives is essential for informing changing paradigms in conservation science and for designing conservation strategies that incorporate changing population connectivity and advance adaptation to climate change. Species redistributions present challenges for human well-being, environmental management and sustainable development. By synthesising recent approaches, theories and tools, our review establishes an interdisciplinary foundation for the development of future research on species redistribution. Specifically, we demonstrate how ecological, conservation and social research on species redistribution can best be achieved by working across disciplinary boundaries to develop and implement solutions to climate change challenges. Future studies should therefore integrate existing and complementary scientific frameworks while incorporating social science and human-centred approaches. Finally, we emphasise that the best science will not be useful unless more scientists engage with managers, policy makers and the public to develop responsible and socially acceptable options for the global challenges arising from species redistributions. © 2017 Cambridge Philosophical Society.

  9. Spies and Bloggers: New Synthetic Biology Tools to Understand Microbial Processes in Soils and Sediments

    Science.gov (United States)

    Masiello, C. A.; Silberg, J. J.; Cheng, H. Y.; Del Valle, I.; Fulk, E. M.; Gao, X.; Bennett, G. N.

    2017-12-01

    Microbes can be programmed through synthetic biology to report on their behavior, informing researchers when their environment has triggered changes in their gene expression (e.g. in response to shifts in O2 or H2O), or when they have participated in a specific step of an elemental cycle (e.g. denitrification). This use of synthetic biology has the potential to significantly improve our understanding of microbes' roles in elemental and water cycling, because it allows reporting on the environment from the perspective of a microbe, matching the measurement scale exactly to the scale that a microbe experiences. However, synthetic microbes have not yet seen wide use in soil and sediment laboratory experiments because synthetic organisms typically report by fluorescing, making their signals difficult to detect outside the petri dish. We are developing a new suite of microbial programs that report instead by releasing easily-detected gases, allowing the real-time, noninvasive monitoring of behaviors in sediments and soils. Microbial biosensors can, in theory, be programmed to detect dynamic processes that contribute to a wide range of geobiological processes, including C cycling (biofilm production, methanogenesis, and synthesis of extracellular enzymes that degrade organic matter), N cycling (expression of enzymes that underlie different steps of the N cycle) and potentially S cycling. We will provide an overview of the potential uses of gas-reporting biosensors in soil and sediment lab experiments, and will report the development of the systematics of these sensors. Successful development of gas biosensors for laboratory use will require addressing issues including: engineering the intensity and selectivity of microbial gas production to maximize the signal to noise ratio; normalizing the gas reporter signal to cell population size, managing gas diffusion effects on signal shape; and developing multiple gases that can be used in parallel.

  10. Understanding the Impacts of Soil, Climate, and Farming Practices on Soil Organic Carbon Sequestration: A Simulation Study in Australia.

    Science.gov (United States)

    Godde, Cécile M; Thorburn, Peter J; Biggs, Jody S; Meier, Elizabeth A

    2016-01-01

    Carbon sequestration in agricultural soils has the capacity to mitigate greenhouse gas emissions, as well as to improve soil biological, physical, and chemical properties. The review of literature pertaining to soil organic carbon (SOC) dynamics within Australian grain farming systems does not enable us to conclude on the best farming practices to increase or maintain SOC for a specific combination of soil and climate. This study aimed to further explore the complex interactions of soil, climate, and farming practices on SOC. We undertook a modeling study with the Agricultural Production Systems sIMulator modeling framework, by combining contrasting Australian soils, climates, and farming practices (crop rotations, and management within rotations, such as fertilization, tillage, and residue management) in a factorial design. This design resulted in the transposition of contrasting soils and climates in our simulations, giving soil-climate combinations that do not occur in the study area to help provide insights into the importance of the climate constraints on SOC. We statistically analyzed the model's outputs to determinate the relative contributions of soil parameters, climate, and farming practices on SOC. The initial SOC content had the largest impact on the value of SOC, followed by the climate and the fertilization practices. These factors explained 66, 18, and 15% of SOC variations, respectively, after 80 years of constant farming practices in the simulation. Tillage and stubble management had the lowest impacts on SOC. This study highlighted the possible negative impact on SOC of a chickpea phase in a wheat-chickpea rotation and the potential positive impact of a cover crop in a sub-tropical climate (QLD, Australia) on SOC. It also showed the complexities in managing to achieve increased SOC, while simultaneously aiming to minimize nitrous oxide (N2O) emissions and nitrate leaching in farming systems. The transposition of contrasting soils and climates in

  11. Understanding the Impacts of Soil, Climate and Farming Practices on Soil Organic Carbon Sequestration: a Simulation Study in Australia

    Directory of Open Access Journals (Sweden)

    Cecile Marie Godde

    2016-05-01

    Full Text Available Carbon sequestration in agricultural soils has the capacity to mitigate greenhouse gas emissions, as well as to improve soil biological, physical and chemical properties. The review of literature pertaining to soil organic carbon (SOC dynamics within Australian grain farming systems does not enable us to conclude on the best farming practices to increase or maintain SOC for a specific combination of soil and climate. This study aimed to further explore the complex interactions of soil, climate and farming practices on SOC. We undertook a modeling study with the APSIM (Agricultural Production Systems sIMulator modeling framework, by combining contrasting Australian soils, climates and farming practices (crop rotations, and management within rotations, such as fertilization, tillage and residue management in a factorial design. This design resulted in the transposition of contrasting soils and climates in our simulations, giving soil-climate combinations that do not occur in the study area to help provide insights into the importance of the climate constraints on SOC. We statistically analyzed the model’s outputs to determinate the relative contributions of soil parameters, climate and farming practices on SOC. The initial SOC content had the largest impact on the value of SOC, followed by the climate and the fertilization practices. These factors explained 66%, 18% and 15% of SOC variations, respectively, after 80 years of constant farming practices in the simulation. Tillage and stubble management had the lowest impacts on SOC. This study highlighted the possible negative impact on SOC of a chickpea phase in a wheat-chickpea rotation and the potential positive impact of a cover crop in a sub-tropical climate (Queensland on SOC. It also showed the complexities in managing to achieve increased SOC, while simultaneously aiming to minimize nitrous oxide (N2O emissions and nitrate leaching in farming systems. The transposition of contrasting soils

  12. Inequality Aversion and Voting on Redistribution

    DEFF Research Database (Denmark)

    Höchtl, Wolfgang; Sausgruber, Rupert; Tyran, Jean-Robert

    of income classes. We experimentally study voting on redistribution between two income classes and show that the effect of inequality aversion is asymmetric. Inequality aversion is more likely to matter if the “rich” are in majority. With a “poor” majority, we find that redistribution outcomes look...

  13. Inequality aversion and voting on redistribution

    DEFF Research Database (Denmark)

    Höchtl, Wolfgang; Sausgruber, Rupert; Tyran, Jean-Robert Karl

    2012-01-01

    of income classes. We experimentally study voting on redistribution between two income classes and show that the effect of inequality aversion is asymmetric. Inequality aversion is more likely to matter if the “rich” are in majority. With a “poor” majority, we find that redistribution outcomes look...

  14. ASH REDISTRIBUTION FOLLOWING A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN

    International Nuclear Information System (INIS)

    J. Pelletier; S. deLong; M.L. Cline; C. Harrington; G. Keating

    2005-01-01

    The redistribution of contaminated tephra by hillslope, fluvial, and pedologic processes is a poorly-constrained but important aspect of evaluating the radiological dose from an unlikely volcanic eruption at Yucca Mountain (YM). To better evaluate this hazard, we developed a spatially distributed, numerical model of tephra redistribution that integrates contaminated tephra from hill slopes and active channels, mixes it with clean sediment in the channel system, distributes it on the fan, and migrates it into the soil column. The model is coupled with an atmospheric dispersion model that predicts the deposition of radioactive waste-contaminated tephra at specified grid points. The redistribution model begins in the upper Fortymile Wash drainage basin where it integrates the tephra deposited on steep slopes and active channel beds within a GIS framework. The Fortymile Wash drainage basin is the focus of this model because tephra from only this basin reaches the Fortymile Wash alluvial fan by fluvial processes, and it is on this fan where the radiological dose to a hypothetical individual is compared to the regulatory standard (via additional biosphere models). The dilution effect of flood scour, mixing, and re-deposition within the upper basin is modeled using a dilution-mixing model widely used in the contaminant-transport literature. The accuracy of this model is established by comparing the model prediction with tephra concentrations measured in channels draining the Lathrop Wells volcanic center. The model combines the contaminated tephra transported from the upper basin with the tephra deposited directly on the fan as primary fallout. On the Fortymile Wash fan, channels and interchannel-divide areas are divided on the basis of soil-geomorphic mapping according to whether they are Holocene or Pleistocene in age. This approach allows the model to incorporate the effects of channel migration on the fan within the past 10,000 yr. The model treats the redistribution

  15. Oxygen diffusion in soils: Understanding the factors and processes needed for modeling

    Directory of Open Access Journals (Sweden)

    José Neira

    2015-08-01

    Full Text Available Oxygen is an important element for plant growth. Reducing its concentration in the soil affects plant physiological processes such as nutrient and water uptake as well as respiration, the redox potential of soil elements and the activity of microorganisms. The main mechanism of oxygen transport in the soil is by diffusion, a dynamic process greatly influenced by soil physical properties such as texture and structure, conditioning, pore size distribution, tortuosity and connectivity. Organic matter is a modifying agent of the soil's chemical and physical properties, affecting its structure and the porous matrix, which are determinants of oxygen transport. This study reviews the theory of soil gas diffusion and the effect of soil organic matter on the soil's physical properties and transport of gases. It also reviews gas diffusion models, particularly those including the effect of soil organic matter.

  16. Understanding plant-to-plant interactions for soil resources in multilayered Iberian dehesas

    Science.gov (United States)

    Moreno, G.; Rolo, V.; Cubera, E.; López-Díaz, L.

    2009-04-01

    Iberian dehesa is usually defined as two-layered silvopastoral system, where native grasses cohabit with a scattered widely-space tree layer. In the last two decades, an intense debate has been developed on the sustainability of this simplified type of dehesa. While some authors argue that that the forest cycle has been disrupted in most dehesas, where the lack of regeneration is an inherent problem to their exploitation, other authors have showed that dehesa degradation is easily reversible if certain abandonment is periodically exerted. The coexistence of two-layered plots with multilayered plots (encroached open woodlands) and mono-layered plots (either closed forest or mono-pasture/monocrops) has been a common feature of dehesas, as result of a systematic combination of agricultural, pastoral, and forestry uses. Different structures of vegetation depend on land use, giving a mosaic at both estate and landscape scales. These mosaic-type systems allow finding several scenarios of plant-to-plant interactions, mostly at belowground level. A key issue for sustainable management of oak woodland is to understand the complexity of the plant-to-plant relationships and their consequences in the ecosystem functioning in terms of productivity and stability. The competitive abilities of component systems are modified by the environment conditions. Dehesas, as most savanna systems, exhibit a low rainfall with high variability within and between years as well as a high evaporative demand during the summer. Indeed, water availability is one of the major ecological factors influencing either natural savannas or man-made open woodlands. Although most of the available studies have focused different aspects of the mature tree-grass interactions, we also present here some recent results on tree-tree, tree-shrub, shrub-seedling and seedling-grass interactions, explained mostly in terms of competition for soil water and nutrients. Trees can modify the soil and microclimate

  17. Potential and limitations of using soil mapping information to understand landscape hydrology

    Directory of Open Access Journals (Sweden)

    F. Terribile

    2011-12-01

    Full Text Available This paper addresses the following points: how can whole soil data from normally available soil mapping databases (both conventional and those integrated by digital soil mapping procedures be usefully employed in hydrology? Answering this question requires a detailed knowledge of the quality and quantity of information embedded in and behind a soil map.

    To this end a description of the process of drafting soil maps was prepared (which is included in Appendix A of this paper. Then a detailed screening of content and availability of soil maps and database was performed, with the objective of an analytical evaluation of the potential and the limitations of soil data obtained through soil surveys and soil mapping. Then we reclassified the soil features according to their direct, indirect or low hydrologic relevance. During this phase, we also included information regarding whether this data was obtained by qualitative, semi-quantitative or quantitative methods. The analysis was performed according to two main points of concern: (i the hydrological interpretation of the soil data and (ii the quality of the estimate or measurement of the soil feature.

    The interaction between pedology and hydrology processes representation was developed through the following Italian case studies with different hydropedological inputs: (i comparative land evaluation models, by means of an exhaustive itinerary from simple to complex modelling applications depending on soil data availability, (ii mapping of soil hydrological behaviour for irrigation management at the district scale, where the main hydropedological input was the application of calibrated pedo-transfer functions and the Hydrological Function Unit concept, and (iii flood event simulation in an ungauged basin, with the functional aggregation of different soil units for a simplified soil pattern.

    In conclusion, we show that special care is required in handling data from soil

  18. Representation and redistribution in federations.

    Science.gov (United States)

    Dragu, Tiberiu; Rodden, Jonathan

    2011-05-24

    Many of the world's most populous democracies are political unions composed of states or provinces that are unequally represented in the national legislature. Scattered empirical studies, most of them focusing on the United States, have discovered that overrepresented states appear to receive larger shares of the national budget. Although this relationship is typically attributed to bargaining advantages associated with greater legislative representation, an important threat to empirical identification stems from the fact that the representation scheme was chosen by the provinces. Thus, it is possible that representation and fiscal transfers are both determined by other characteristics of the provinces in a specific country. To obtain an improved estimate of the relationship between representation and redistribution, we collect and analyze provincial-level data from nine federations over several decades, taking advantage of the historical process through which federations formed and expanded. Controlling for a variety of country- and province-level factors and using a variety of estimation techniques, we show that overrepresented provinces in political unions around the world are rather dramatically favored in the distribution of resources.

  19. Understanding cropping systems in the semi-arid environments of Zimbabwe: options for soil fertility management

    NARCIS (Netherlands)

    Ncube, B.

    2007-01-01

    African smallholder farmers face perennial food shortages due to low crop yields. The major cause of poor crop yields is soil fertility decline. The diversity of sites and soils between African farming systems isgreat,therefore strategies to solve soil fertility problems

  20. Determining the Role of Hydraulic Redistribution Regimes in the Critical Zone

    Science.gov (United States)

    Lee, E.; Kumar, P.; Barron-Gafford, G.; Scott, R. L.; Hendryx, S.; Sanchez-Canete, E. P.

    2015-12-01

    A primary challenge in critical zone science is to understand and predict the interaction between aboveground and belowground ecohydrologic processes. We study the role of hydraulic redistribution (HR) by roots as a mechanism for facilitating aboveground-belowground interactions that drive water and carbon dynamics and the development of emergent spatial patterns of soil moisture and vegetation distribution. By linking field measurements of stem, taproot, and lateral root sap flux, with a shared resource model where the soil is a common reservoir, we examine competitive and facilitative dependencies between the co-occurring plant species. We used trenching as a means of severing any HR connectivity between overstory and understory plants in a subset of plots. We monitored leaf- level transpiration, photosynthesis, sub-canopy ET, NEE, soil evaporation, and soil respiration for trenched and un-trenched (control) trees in a dryland savanna that lacks access to stable soil moisture sources. HR in the trees at the site is detected, but the implications of HR on overstory-understory interactions and resulting spatial patterns and gradients remain untested. During an inter-storm period of the rainy season, we observed hydraulic lift, which may be increasing water availability to understory. Understory grasses may survive inter-storm dry periods by way of facilitative dependency on water resources supplied by overstory trees. On the other hand, immediately after storms we observe hydraulic descent that may be reducing water availability for the understory. Modeling is incorporated to capture the competitive and facilitative interaction between aboveground and belowground as detected in the field. This study provides deep insights for dryland regions, which enables broader generalizations regarding the interaction between groundwater, vegetation roots and aboveground assemblage and their role in whole-ecosystem performance.

  1. The Welfare State vs. the Redistributive State.

    Science.gov (United States)

    Plattner, Marc F.

    1979-01-01

    While the principles of progressive taxation and the welfare state have come to be almost universally accepted, it would be a serious error to infer that American policy has ever embraced the idea of income redistribution. (Author)

  2. Verifiable Secret Redistribution for Threshold Sharing Schemes

    National Research Council Canada - National Science Library

    Wong, Theodore M; Wang, Chenxi; Wing, Jeannette M

    2002-01-01

    .... Our protocol guards against dynamic adversaries. We observe that existing protocols either cannot be readily extended to allow redistribution between different threshold schemes, or have vulnerabilities that allow faulty old shareholders...

  3. Measuring, understanding and implementing (or at least trying) soil and water conservation in agricultural areas in Mediterranean conditions

    Science.gov (United States)

    Gómez, Jose Alfonso; Burguet, María; Castillo, Carlos; de Luna, Elena; Guzmán, Gema; Lora, Ángel; Lorite, Ignacio; Mora, José; Pérez, Rafael; Soriano, María A.; Taguas, Encarnación V.

    2015-04-01

    Understanding soil erosion processes is the first step for designing and implementing effective soil conservation strategies. In agricultural areas, spatially in arid and semiarid conditions, water conservation is interlinked with soil conservation, and usually need to be addressed simultaneously to achieve success in their use by farmers. This is so for different reasons, but usually because some reduction in runoff is required to prevent soil erosion or to the need to design soil conservation systems that do maintain a favourable water balance for the crop to prevent yield reductions. The team presenting this communication works around both issues in Southern Spain, interconnecting several lines of research with the final objective of contribute to reverse some severe issues relating soil conservation in agricultural areas, mostly on tree crops (olives and vineyards). One of these lines is long-term experiments measuring, runoff and sediment losses at plot and small catchment scale. In these experiments we test the effect of different soil management alternatives on soil and water conservation. We also measured the evolution of soil properties and, in some cases, the evolution of soil moisture as well as nutrient and carbon losses with runoff and sediment. We also tests in these experiments new cover crops, from species better adapted to the rainfall regime of the region to mixes with several species to increase biodiversity. We complement these studies with surveys of soil properties in commercial farms. I some of these farms we follow the introduction by farmers of the cover crop strategies previously developed in our experimental fields. These data are invaluable to elaborate, calibrate and validate different runoff generation, water balance, and water erosion models and hillslope and small catchment scale. This allows us to elaborate regional analysis of the effect of different strategies to soil and water conservation in olive growing areas, and to refine

  4. The scale effect on soil erosion. A plot approach to understand connectivity on slopes under cultivation at variable plot sizes and under Mediterranean climatic conditions

    Science.gov (United States)

    Cerdà, Artemi; Bagarello, Vicenzo; Ferro, Vito; Iovino, Massimo; Borja, Manuel Estaban Lucas; Francisco Martínez Murillo, Juan; González Camarena, Rafael

    2017-04-01

    It is well known that soil erosion changes along time and seasons and attention was paid to this issue in the past (González Hidalgo et al., 2010; 2012). However, although the scientific community knows that soil erosion is also a time spatial scale-scale dependent process (Parsons et al., 1990; Cerdà et al., 2009; González Hidalgo et al., 2013; Sadeghi et al., 2015) very little is done on this topic. This is due to the fact that at different scales, different soil erosion mechanisms (splash, sheetflow, rill development) are active and their rates change with the scale of measurement (Wainwright et al., 2002; López-Vicente et al., 2015). This is making the research on soil erosion complex and difficult, and it is necessary to develop a conceptual framework but also measurements that will inform about the soil erosion behaviour. Connectivity is the key concept to understand how changes in the scale results in different rates of soil and water losses (Parsons et al., 1996; Parsons et al., 2015; Poeppl et al., 2016). Most of the research developed around the connectivity concept was applied in watershed or basin scales (Galdino et al., 2016; Martínez-Casasnovas et al., 2016; López Vicente et al., 2016; Marchamalo et al., 2015; Masselink et al., 2016), but very little is known about the connectivity issue at slope scale (Cerdà and Jurgensen, 2011). El Teularet (Eastern Iberian Peninsula) and Sparacia (Sicily) soil erosion experimental stations are being active for 15 years and data collected on different plots sizes can shed light into the effect of scale on runoff generation and soil losses at different scales and give information to understand how the transport of materials is determined by the connectivity between pedon to slope scale (Cerdà et al., 2014; Bagarello et al., 2015a; 2015b). The comparison of the results of the two research stations will shed light into the rates of soil erosion and mechanisms involved that act under different scales. Our

  5. Simulating the Dependence of Aspen on Redistributed Snow

    Science.gov (United States)

    Soderquist, B.; Kavanagh, K.; Link, T. E.; Seyfried, M. S.; Winstral, A. H.

    2013-12-01

    In mountainous regions across the western USA, the distribution of aspen (Populus tremuloides) is often directly related to heterogeneous soil moisture subsidies resulting from redistributed snow. With decades of climate and precipitation data across elevational and precipitation gradients, the Reynolds Creek Experimental Watershed (RCEW) in southwest Idaho provides a unique opportunity to study the relationship between aspen and redistributed snow. Within the RCEW, the total amount of precipitation has not changed in the past 50 years, but there are sharp declines in the percentage of the precipitation falling as snow. As shifts in the distribution of available moisture continue, future trends in aspen net primary productivity (NPP) remain uncertain. In order to assess the importance of snowdrift subsidies, NPP of three aspen stands was simulated at sites spanning elevational and precipitation gradients using the biogeochemical process model BIOME-BGC. At the aspen site experiencing the driest climate and lowest amount of precipitation from snow, approximately 400 mm of total precipitation was measured from November to March of 2008. However, peak measured snow water equivalent (SWE) held in drifts directly upslope of this stand was approximately 2100 mm, 5 times more moisture than the uniform winter precipitation layer initially assumed by BIOME-BGC. BIOME-BGC simulations in dry years forced by adjusted precipitation data resulted in NPP values approximately 30% higher than simulations assuming a uniform precipitation layer. Using BIOME-BGC and climate data from 1985-2011, the relationship between simulated NPP and measured basal area increments (BAI) improved after accounting for redistributed snow, indicating increased simulation representation. In addition to improved simulation capabilities, soil moisture data, diurnal branch water potential, and stomatal conductance observations at each site detail the use of soil moisture in the rooting zone and the onset

  6. Migration, income redistribution, and international capital mobility

    OpenAIRE

    Meckl, Jürgen

    1994-01-01

    This paper studies income-redistribution effects from labor migration in a small open economy under alternative assumptions on the international mobility of capital. Our principal result is that induced international capital flows dampen or may even reverse redistribution effects. However, as long as the location of capital is unaffected by migration redistribntion effects may be greater if some of the capital is foreign owned, depending on whether labor and capital are friends or enemies. On...

  7. Understanding Farmers: Explaining Soil and Water Conservation in Konso, Wolaita and Wello, Ethiopia

    NARCIS (Netherlands)

    Beshah, T.

    2003-01-01

    Soil erosion by water is an old problem in Ethiopia. The prevalence of mountainous and undulating landscapes, coupled with the expansion of arable farming on steep areas due to population pressure have aggravated the soil erosion problem in the country. Prompted by one of the great famines in the

  8. Towards Understanding Soil Forming in Santa Clotilde Critical Zone Observatory: Modelling Soil Mixing Processes in a Hillslope using Luminescence Techniques

    Science.gov (United States)

    Sanchez, A. R.; Laguna, A.; Reimann, T.; Giráldez, J. V.; Peña, A.; Wallinga, J.; Vanwalleghem, T.

    2017-12-01

    Different geomorphological processes such as bioturbation and erosion-deposition intervene in soil formation and landscape evolution. The latter processes produce the alteration and degradation of the materials that compose the rocks. The degree to which the bedrock is weathered is estimated through the fraction of the bedrock which is mixing in the soil either vertically or laterally. This study presents an analytical solution for the diffusion-advection equation to quantify bioturbation and erosion-depositions rates in profiles along a catena. The model is calibrated with age-depth data obtained from profiles using the luminescence dating based on single grain Infrared Stimulated Luminescence (IRSL). Luminescence techniques contribute to a direct measurement of the bioturbation and erosion-deposition processes. Single-grain IRSL techniques is applied to feldspar minerals of fifteen samples which were collected from four soil profiles at different depths along a catena in Santa Clotilde Critical Zone Observatory, Cordoba province, SE Spain. A sensitivity analysis is studied to know the importance of the parameters in the analytical model. An uncertainty analysis is carried out to stablish the better fit of the parameters to the measured age-depth data. The results indicate a diffusion constant at 20 cm in depth of 47 (mm2/year) in the hill-base profile and 4.8 (mm2/year) in the hilltop profile. The model has high uncertainty in the estimation of erosion and deposition rates. This study reveals the potential of luminescence single-grain techniques to quantify pedoturbation processes.

  9. Understanding environmental drivers in the regulation of soil respiration dynamics after fire in semi-arid ecosystems

    Science.gov (United States)

    Muñoz-Rojas, Miriam; Lewandrowski, Wolfgang; Erickson, Todd E.; Dixon, Kingsley W.; Merritt, David J.

    2016-04-01

    Keywords: Pilbara, soil CO2 efflux, soil C, soil moisture, soil temperature Introduction Soil respiration (Rs) has become a major research focus given the increase in atmospheric CO2 emissions and the large contribution of these CO2 fluxes from soils (Van Groenigen et al., 2014). In addition to its importance in the global C cycle, Rs is a fundamental indicator of soil health and quality that reflects the level of microbial activity and provides an indication of the ability of soils to support plant growth (Oyonarte et al., 2012; Munoz-Rojas et al., 2015). Wildfires can have a significant impact on Rs rates, with the scale of the impact depending on environmental factors such as temperature and moisture, and organic C content in the soil. Vegetation cover can have a significant effect on regulating organic C contents; and while advances are made into understanding the effects of fire on organic C contents and CO2 fluxes (Granged et al., 2011; Willaarts et al., 2015; Muñoz-Rojas et al., 2016), there is limited knowledge of the variability of Rs across ecosystem types, vegetation communities, and responses to fire. In this research we aimed to assess the impacts of a wildfire on the soil CO2 fluxes and soil respiration in a semi-arid ecosystem of Western Australia (Pilbara biogeographical region), and to understand the main environmental drivers controlling these fluxes in different vegetation types. The study has application for other arid and semi-arid regions of the world. Methods The study area was selected following a wildfire that affected 25 ha in February 2014. Twelve plots were established in the burnt site (B) within a 400 m2 area, and 12 plots in an adjacent unburnt control site. At each site, three plots were installed below the canopy of each of the most representative vegetation types of the areas: Eucalyptus trees, Acacia shrubs and Triodia grasses, and three on bare soil. Soil sampling and measurement of soil CO2 efflux, temperature and moisture were

  10. Regularities of in-regional redistribution of the nuclear test products in the atmosphere

    International Nuclear Information System (INIS)

    Tsitskishvili, M.S.; Chkhartishvili, A.G.; Nozadze, M.R.; Intskirveli, L.N.; Buachidze, N.D.; Churguliya, E.R.; Shatberashvili, I.G.; Diasamidze, R.I.; Karchava, G.V.; Gugushvili, B.S.

    2003-01-01

    Regularities of artificial radionuclides redistribution in the Caucasus atmosphere are studied. The structure of global fallout in the region is considered. It is noted, that Caucasus is characterizing by a wide diversity of the landscapes and soils. This diversity results a different migration regime for radioisotopes in soils. Penetration of the nuclear tests products into the soils depends on the annual precipitation amount (soil humidification), and incoming level of the radioisotopes. At evaluation of external and internal irradiation doses on South Caucasus population the Caucasus was divided into regions by levels of the global reactive fallout

  11. Soils

    Science.gov (United States)

    Emily Moghaddas; Ken Hubbert

    2014-01-01

    When managing for resilient forests, each soil’s inherent capacity to resist and recover from changes in soil function should be evaluated relative to the anticipated extent and duration of soil disturbance. Application of several key principles will help ensure healthy, resilient soils: (1) minimize physical disturbance using guidelines tailored to specific soil types...

  12. Soil-structure interaction studies for understanding the behavior of integral abutment bridges.

    Science.gov (United States)

    2012-03-01

    Integral Abutment Bridges (IAB) are bridges without any joints within the bridge deck or between the : superstructure and the abutments. An IAB provides many advantages during construction and maintenance of : a bridge. Soil-structure interactions at...

  13. Understanding the driving forces behind the losses of soil carbon across England and Wales

    Science.gov (United States)

    Bellamy, Patricia

    2010-05-01

    More than twice as much carbon is held in soils as in vegetation or the atmosphere, and changes in soil carbon content can have a large effect on the global carbon budget. The possibility that climate change is being reinforced by increased carbon dioxide emissions from soils owing to rising temperature is the subject of a continuing debate. But evidence for the suggested feedback mechanism has to date come solely from small-scale laboratory and field experiments and modelling studies. Here we use data from the National Soil Inventory of England and Wales obtained between 1978 and 2003 to show that carbon was lost from soils across England and Wales over the survey period at a mean rate of 0.6% yr-1 (relative to the existing soil carbon content). We find that the relative rate of carbon loss increased with soil carbon content and was more than 2% yr-1 in soils with carbon contents greater than 100 g kg-1. The relationship between rate of carbon loss and carbon content is irrespective of land use, suggesting a link to climate change. Our findings indicate that losses of soil carbon in England and Wales—and by inference in other temperate regions—are likely to have been offsetting absorption of carbon by terrestrial sinks. To investigate the possible driving forces of the measured losses of soil carbon we applied a simple model of soil carbon turnover to evaluate alternative explanations for the observed trends. We find that neither changes in decomposition resulting from the effects of climate change on soil temperature and moisture, nor changes in carbon input from vegetation, could account on their own for the overall trends. Of other explanations, results indicate that past changes in land use and management were probably dominant. The climate change signal, such as it is, is masked by these other changes. A more sophisticated model of carbon change (DAYCENT) has now been applied across the whole range of soils in England and Wales. This model has been

  14. Advances in understanding of soil biogeochemical cycles: the mechanism of HS entry into the root interior

    Science.gov (United States)

    Aleksandrova, Olga

    2017-04-01

    Humic substances represent the major reservoir of carbon (C) in ecosystems, and their turnover is crucial for understanding the global C cycle. As shown by some investigators [1-2], the phenomenon of the uptake of the whole humic particles by plant roots is a significant step of biogeochemical cycle of carbon in soils. The mechanism of HS entry the root interior remained unknown for a long time. However recently, the last one was discovered [3]. An advanced model [3] includes two hypotheses. These hypotheses are as follows: (1) each nano-size particle possesses a quantum image that can be revealed as a packet of electromagnetic waves; (2) the interaction of nano-size particle with the membrane (plasma membrane) of living cells, on which it is adsorbed, occurs via the development of the Rayleigh-Taylor (RT) instability on the membrane surface. An advanced model allows us to look insight some into some phenomena that were observed by experiments but remained not understood [2]. The authors [2] applied tritium autoradiography to wheat seedlings cultivated with tritium-labeled HS to consider the uptake of humic particles by plant roots. They found a significant increase in the content of some polar (monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyl diacylglycerol (SQDG) and phosphatidylcholine (PC)) and neutral (free fatty acids, FFA) lipids which were detected in the wheat seedlings treated with humic particles. Authors [2] pointed that lipids MGDG, DGDG, SQDG are crucial for functional and structural integrity of the photosystem complex. Therefore, a stimulating action of adsorbed humic particles evoked phenomena like photosynthesis in root cells that can be interpreted using an advanced model: humic particles being nano-size particles become adsorbed on the plant roots in soils, and influence their micro environment, where they are located, with the specific electromagnetic exposure. Another finding of authors consisted in the

  15. The importance of Soil Science to understand and remediate Land Degradation and Desertification processes

    Science.gov (United States)

    Bouma, Johan; Keesstra, Saskia; Cerdà, Artemi

    2017-04-01

    Documentation is abundantly available to demonstrate the devastating effect of Land degradation and desertification on sustainable development in many countries. This present a major barrier to achieving the UN Sustainable Development Goals by 2030, as agreed upon at the General Assembly of the UN in September 2015. Research has certainly been successful in reversing these two processes in many case studies but persistant problems remain not only in developing countries but also in developed countries where, for example, soil compaction and loss of soil organic matter due to the industrialization of agriculture, result in a structural decline of agricultural productivity and environmental quality. The problems are quite complex because not only technical matters play a role but also, and often quite prominantly, socio-economic factors. What turn out to be successful remediation procedures at a given location or region, based on the characterization of underlying soil processes, will most likely not work in other regions inhibiting the extrapolation of local research results to areas elsewhere. One important reason for location specificity of research is the variation of soil properties in combination with the location of soils in a given landscape which governs its water, energy and nutrient dynamics, also considering the climate. Different soils are characterized by different natural riks for degradation and , in arid regions, deserticification and their particular remediation potential differs widely as well. Such risks can sometimes be overcome by innovative soil management and knowing the soil type, the climate and landscape processes, extrapolation of such types of innovative management to comparable soils and landscapes elsewhere may be feasible and effective , provided that socio-economic conditions allow the required risk-reducing measures to be realized in practice. More cooperation between soil scientists and physical geographers, familiar with landscape

  16. Understanding spatial heterogeneity in soil carbon and nitrogen cycling in regenerating tropical dry forests

    Science.gov (United States)

    Waring, B. G.; Powers, J. S.; Branco, S.; Adams, R.; Schilling, E.

    2015-12-01

    Tropical dry forests (TDFs) currently store significant amounts of carbon in their biomass and soils, but these highly seasonal ecosystems may be uniquely sensitive to altered climates. The ability to quantitatively predict C cycling in TDFs under global change is constrained by tremendous spatial heterogeneity in soil parent material, land-use history, and plant community composition. To explore this variation, we examined soil carbon and nitrogen dynamics in 18 permanent plots spanning orthogonal gradients of stand age and soil fertility. Soil C and N pools, microbial biomass, and microbial extracellular enzyme activities were most variable at small (m2) spatial scales. However, the ratio of organic vs. inorganic N cycling was consistently higher in forest stands dominated by slow-growing, evergreen trees that associate with ectomycorrhizal fungi. Similarly, although bulk litter stocks and turnover rates varied greatly among plots, litter decomposition tended to be slower in ectomycorrhizae-dominated stands. Soil N cycling tended to be more conservative in older plots, although the relationship between stand age and element cycling was weak. Our results emphasize that microscale processes, particularly interactions between mycorrhizal fungi and free-living decomposers, are important controls on ecosystem-scale element cycling.

  17. A Holistic Approach to Understanding the Desorption of Phosphorus in Soils.

    Science.gov (United States)

    Menezes-Blackburn, Daniel; Zhang, Hao; Stutter, Marc; Giles, Courtney D; Darch, Tegan; George, Timothy S; Shand, Charles; Lumsdon, David; Blackwell, Martin; Wearing, Catherine; Cooper, Patricia; Wendler, Renate; Brown, Lawrie; Haygarth, Philip M

    2016-04-05

    The mobility and resupply of inorganic phosphorus (P) from the solid phase were studied in 32 soils from the UK. The combined use of diffusive gradients in thin films (DGT), diffusive equilibration in thin films (DET) and the "DGT-induced fluxes in sediments" model (DIFS) were adapted to explore the basic principles of solid-to-solution P desorption kinetics in previously unattainable detail. On average across soil types, the response time (Tc) was 3.6 h, the desorption rate constant (k-1) was 0.0046 h(-1), and the desorption rate was 4.71 nmol l(-1) s(-1). While the relative DGT-induced inorganic P flux responses in the first hour is mainly a function of soil water retention and % Corg, at longer times it is a function of the P resupply from the soil solid phase. Desorption rates and resupply from solid phase were fundamentally influenced by P status as reflected by their high correlation with P concentration in FeO strips, Olsen, NaOH-EDTA and water extracts. Soil pH and particle size distribution showed no significant correlation with the evaluated mobility and resupply parameters. The DGT and DET techniques, along with the DIFS model, were considered accurate and practical tools for studying parameters related to soil P desorption kinetics.

  18. Understanding the influence of biofilm accumulation on the hydraulic properties of soils: a mechanistic approach based on experimental data

    Science.gov (United States)

    Carles Brangarí, Albert; Sanchez-Vila, Xavier; Freixa, Anna; Romaní, Anna M.; Fernàndez-Garcia, Daniel

    2017-04-01

    The distribution, amount, and characteristics of biofilms and its components govern the capacity of soils to let water through, to transport solutes, and the reactions occurring. Therefore, unraveling the relationship between microbial dynamics and the hydraulic properties of soils is of concern for the management of natural systems and many technological applications. However, the increased complexity of both the microbial communities and the geochemical processes entailed by them causes that the phenomenon of bioclogging remains poorly understood. This highlights the need for a better understanding of the microbial components such as live and dead bacteria and extracellular polymeric substances (EPS), as well as of their spatial distribution. This work tries to shed some light on these issues, providing experimental data and a new mechanistic model that predicts the variably saturated hydraulic properties of bio-amended soils based on these data. We first present a long-term laboratory infiltration experiment that aims at studying the temporal variation of selected biogeochemical parameters along the infiltration path. The setup consists of a 120-cm-high soil tank instrumented with an array of sensors plus soil and liquid samplers. Sensors measured a wide range of parameters in continuous, such as volumetric water content, electrical conductivity, temperature, water pressure, soil suction, dissolved oxygen, and pH. Samples were kept for chemical and biological analyses. Results indicate that: i) biofilm is present at all depths, denoting the potential for deep bioclogging, ii) the redox conditions profile shows different stages, indicating that the community was adapted to changing redox conditions, iii) bacterial activity, richness and diversity also exhibit zonation with depth, and iv) the hydraulic properties of the soil experienced significant changes as biofilm proliferated. Based on experimental evidences, we propose a tool to predict changes in the

  19. Entanglement redistribution in the Schwarzschild spacetime

    International Nuclear Information System (INIS)

    Wang, Jieci; Pan, Qiyuan; Jing, Jiliang

    2010-01-01

    The effect of Hawking radiation on the redistribution of the entanglement and mutual information in the Schwarzschild spacetime is investigated. Our analysis shows that the physically accessible correlations degrade while the unaccessible correlations increase as the Hawking temperature increases because the initial correlations described by inertial observers are redistributed between all the bipartite modes. It is interesting to note that, in the limit case that the temperature tends to infinity, the accessible mutual information equals to just half of its initial value, and the unaccessible mutual information between mode A and II also equals to the same value.

  20. Elemental redistribution behavior in tellurite glass induced by high repetition rate femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Teng, Yu; Zhou, Jiajia; Khisro, Said Nasir; Zhou, Shifeng; Qiu, Jianrong

    2014-01-01

    Highlights: • Abnormal elements redistribution behavior was observed in tellurite glass. • The refractive index and Raman intensity distribution changed significantly. • The relative glass composition remained unchanged while the glass density changed. • First time report on the abnormal element redistribution behavior in glass. • The glass network structure determines the elemental redistribution behavior. - Abstract: The success in the fabrication of micro-structures in glassy materials using femtosecond laser irradiation has proved its potential applications in the construction of three-dimensional micro-optical components or devices. In this paper, we report the elemental redistribution behavior in tellurite glass after the irradiation of high repetition rate femtosecond laser pulses. The relative glass composition remained unchanged while the glass density changed significantly, which is quite different from previously reported results about the high repetition rate femtosecond laser induced elemental redistribution in silicate glasses. The involved mechanism is discussed with the conclusion that the glass network structure plays the key role to determine the elemental redistribution. This observation not only helps to understand the interaction process of femtosecond laser with glassy materials, but also has potential applications in the fabrication of micro-optical devices

  1. A contribution to the better understanding of swelling in soils and soft rocks

    Directory of Open Access Journals (Sweden)

    Ana Petkovšek

    2010-12-01

    Full Text Available Swelling and shrinkage of sediments rich with clay belong to geologically conditioned risk factors. Economicloss as the consequence of volume changes in the geological catchment area of buildings and infrastructuralobjects is immense. Untimely detected swelling causes higher prices and unnecessary delays during the construction.In those cases when deep cuts and underground spaces are used as intervention into highly preconsolidatedsoils and soft rock with clay contents, failures of embankments and improperly designed supporting measures dueto swelling are not infrequent. Also periodic appearance of landslides at certain areas can be the consequence ofswelling. Some countries, such as the USA, introduced the guidelines and standards for the detection, assessmentand handling with swellable geological materials decades ago. Due to some other more urgent geologically conditionedrisks, such as landslides, earthquakes and constructions on soft ground, in Slovenia the development ofknowledge in the area of swelling soils was several years behind the knowledge in the rest of the world. With theconstruction of the Slovenian-Hungarian railway connection after 1998, motorways and the introduction of newknowledge about soil suction, also Slovenian experts were introduced to a different dimension of the problem ofswelling soils, as well as some important experiences were learned and new possibilities for the investigation andunderstanding of volume behaviour of swelling soils were opened. This is especially important for the predictedweather extremes, as only adequate knowledge will allow us to adequately explain any new phenomena in theground and prepare appropriate protection.

  2. Three Dimensional Response Spectrum Soil Structure Modeling Versus Conceptual Understanding To Illustrate Seismic Response Of Structures

    International Nuclear Information System (INIS)

    Touqan, Abdul Razzaq

    2008-01-01

    Present methods of analysis and mathematical modeling contain so many assumptions that separate them from reality and thus represent a defect in design which makes it difficult to analyze reasons of failure. Three dimensional (3D) modeling is so superior to 1D or 2D modeling, static analysis deviates from the true nature of earthquake load which is ''a dynamic punch'', and conflicting assumptions exist between structural engineers (who assume flexible structures on rigid block foundations) and geotechnical engineers (who assume flexible foundations supporting rigid structures). Thus a 3D dynamic soil-structure interaction is a step that removes many of the assumptions and thus clears reality to a greater extent. However such a model cannot be analytically analyzed. We need to anatomize and analogize it. The paper will represent a conceptual (analogical) 1D model for soil structure interaction and clarifies it by comparing its outcome with 3D dynamic soil-structure finite element analysis of two structures. The aim is to focus on how to calculate the period of the structure and to investigate effect of variation of stiffness on soil-structure interaction

  3. Understanding the diverse roles of soil organic matter in the cereal - Striga hermontica interaction

    NARCIS (Netherlands)

    Ayongwa, G.C.

    2011-01-01

    Keywords: Striga hermonthica, Sorghum bicolor, soil fertility, organic matter, N-mineralisation, farmers’ priority, production constraints, intensification.


    The problem of the parasitic weed striga (Striga hermonthica (Del.) Benth.) has worsened for African farmers, in conjunction

  4. Can income redistribution help changing rising inequality?

    NARCIS (Netherlands)

    Salverda, W.

    2014-01-01

    In this article compares the rise in inequality concerning net household incomes in a number of European countries and Canada, the USA and Australia. Two important factors are used to explain this worrying trend: a growing of unequal market incomes and/or a declining redistribution of income through

  5. Trade and the political economy of redistribution

    NARCIS (Netherlands)

    Vannoorenberghe, Gonzague; Janeba, E.

    2016-01-01

    This paper shows how international trade affects the support for policies which redistribute income between workers across sectors, and how the existence of such policies changes the support for trade liberalization. Workers, who are imperfectly mobile across sectors, vote on whether to subsidize

  6. Inequality, redistribution and growth : Theory and evidence

    NARCIS (Netherlands)

    Haile, D.

    2005-01-01

    From a macro-perspective, the thesis provides a political economic model that analyses the joint determination of inequality, corruption, taxation, education and economic growth in a dynamic environment. It demonstrates how redistributive taxation is affected by the distribution of wealth and

  7. Cognitive ability and the demand for redistribution.

    Directory of Open Access Journals (Sweden)

    Johanna Mollerstrom

    Full Text Available Empirical research suggests that the cognitively able are politically more influential than the less able, by being more likely to vote and to assume leadership positions. This study asks whether this pattern matters for public policy by investigating what role a person's cognitive ability plays in determining his preferences for redistribution of income among citizens in society. To answer this question, we use a unique Swedish data set that matches responses to a tailor-made questionnaire to administrative tax records and to military enlistment records for men, with the latter containing a measure of cognitive ability. On a scale of 0 to 100 percent redistribution, a one-standard-deviation increase in cognitive ability reduces the willingness to redistribute by 5 percentage points, or by the same amount as a $35,000 increase in mean annual income. We find support for two channels mediating this economically strong and statistically significant relation. First, higher ability is associated with higher income. Second, ability is positively correlated with the view that economic success is the result of effort, rather than luck. Both these factors are, in turn, related to lower demand for redistribution.

  8. Towards a molecular level understanding of the sulfanilamide-soil organic matter-interaction

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Ashour A., E-mail: ashour.ahmed@uni-rostock.de [University of Rostock, Institute of Physics, Albert-Einstein-Str. 23-24, D-18059 Rostock (Germany); Steinbeis GmbH & Co. KG für Technologietransfer, 70174 Stuttgart (Germany); University of Cairo, Faculty of Science, Department of Chemistry, 12613 Giza (Egypt); Thiele-Bruhn, Sören, E-mail: thiele@uni-trier.de [University of Trier, Soil Science, D-54286 Trier (Germany); Leinweber, Peter, E-mail: peter.leinweber@uni-rostock.de [Steinbeis GmbH & Co. KG für Technologietransfer, 70174 Stuttgart (Germany); University of Rostock, Soil Science, D-18051 Rostock (Germany); Kühn, Oliver, E-mail: oliver.kuehn@uni-rostock.de [University of Rostock, Institute of Physics, Albert-Einstein-Str. 23-24, D-18059 Rostock (Germany)

    2016-07-15

    Sorption experiments of sulfanilamide (SAA) on well-characterized samples of soil size-fractions were combined with the modeling of SAA-soil-interaction via quantum chemical calculations. Freundlich unit capacities were determined in batch experiments and it was found that they increase with the soil organic matter (SOM) content according to the order fine silt > medium silt > clay > whole soil > coarse silt > sand. The calculated binding energies for mass-spectrometrically quantified sorption sites followed the order ionic species > peptides > carbohydrates > phenols and lignin monomers > lignin dimers > heterocyclic compounds > fatty acids > sterols > aromatic compounds > lipids, alkanes, and alkenes. SAA forms H-bonds through its polar centers with the polar SOM sorption sites. In contrast dispersion and π-π-interactions predominate the interaction of the SAA aromatic ring with the non-polar moieties of SOM. Moreover, the dipole moment, partial atomic charges, and molecular volume of the SOM sorption sites are the main physical properties controlling the SAA-SOM-interaction. Further, reasonable estimates of the Freundlich unit capacities from the calculated binding energies have been established. Consequently, we suggest using this approach in forthcoming studies to disclose the interactions of a wide range of organic pollutants with SOM. - Highlights: • Experiment and theory showed that SAA obeys a site-specific sorption on soil surfaces. • SAA-SOM-interaction increases by increasing polarity of SOM sorption site. • H-bonds, dispersion, and π-π-interactions were observed for SAA-SOM-interaction. • Dipole moment and atomic charges of SOM sorption sites control SAA-SOM-interaction. • The Freundlich unit capacities were estimated from the calculated binding energies. • The current SOM model is flexible to describe interactions of SOM with other pollutants.

  9. Hydraulic redistribution study in two native tree species of agroforestry parklands of West African dry savanna

    Science.gov (United States)

    Bayala, Jules; Heng, Lee Kheng; van Noordwijk, Meine; Ouedraogo, Sibiri Jean

    2008-11-01

    Hydraulic redistribution (HR) in karité ( Vitellaria paradoxa) and néré ( Parkia biglobosa) tree species was studied by monitoring the soil water potential ( ψs) using thermocouple psychrometers at four compass directions, various distances from trees and at different soil depths (max depth 80 cm) during the dry seasons of 2004 and 2005. A modified WaNuLCAS model was then used to infer the amount of water redistribued based on ψs values. Tree transpiration rate was also estimated from sap velocity using thermal dissipative probes (TDP) and sapwood area, and the contribution of hydraulically redistributed water in tree transpiration was determined. The results revealed on average that 46% of the psychrometer readings under karité and 33% under néré showed the occurrence of HR for the two years. Soil under néré displayed significantly lower fluctuations of ψs (0.16 MPa) compared to soil under karité (0.21 MPa). The results of this study indicated that the existence of HR leads to a higher ψs in the plant rhizosphere and hence is important for soil water dynamics and plant nutrition by making more accessible the soluble elements. The simulation showed that the amount of water redistributed would be approximately 73.0 L and 247.1 L per tree per day in 2005 for karité and néré, and would represent respectively 60% and 53% of the amount transpired a day. Even though the model has certainly overestimated the volume of water hydraulically redistributed by the two species, this water may play a key role in maintaining fine root viability and ensuring the well adaptation of these species to the dry areas. Therefore, knowledge of the extent of such transfers and of the seasonal patterns is required and is of paramount importance in parkland systems both for trees and associated crops.

  10. Integrating plant-microbe interactions to understand soil C stabilization with the MIcrobial-MIneral Carbon Stabilization model (MIMICS)

    Science.gov (United States)

    Grandy, Stuart; Wieder, Will; Kallenbach, Cynthia; Tiemann, Lisa

    2014-05-01

    If soil organic matter is predominantly microbial biomass, plant inputs that build biomass should also increase SOM. This seems obvious, but the implications fundamentally change how we think about the relationships between plants, microbes and SOM. Plant residues that build microbial biomass are typically characterized by low C/N ratios and high lignin contents. However, plants with high lignin contents and high C/N ratios are believed to increase SOM, an entrenched idea that still strongly motivates agricultural soil management practices. Here we use a combination of meta-analysis with a new microbial-explicit soil biogeochemistry model to explore the relationships between plant litter chemistry, microbial communities, and SOM stabilization in different soil types. We use the MIcrobial-MIneral Carbon Stabilization (MIMICS) model, newly built upon the Community Land Model (CLM) platform, to enhance our understanding of biology in earth system processes. The turnover of litter and SOM in MIMICS are governed by the activity of r- and k-selected microbial groups and temperature sensitive Michaelis-Menten kinetics. Plant and microbial residues are stabilized short-term by chemical recalcitrance or long-term by physical protection. Fast-turnover litter inputs increase SOM by >10% depending on temperature in clay soils, and it's only in sandy soils devoid of physical protection mechanisms that recalcitrant inputs build SOM. These results challenge centuries of lay knowledge as well as conventional ideas of SOM formation, but are they realistic? To test this, we conducted a meta-analysis of the relationships between the chemistry of plant liter inputs and SOM concentrations. We find globally that the highest SOM concentrations are associated with plant inputs containing low C/N ratios. These results are confirmed by individual tracer studies pointing to greater stabilization of low C/N ratio inputs, particularly in clay soils. Our model and meta-analysis results suggest

  11. ATMOSPHERIC HEAT REDISTRIBUTION ON HOT JUPITERS

    International Nuclear Information System (INIS)

    Perez-Becker, Daniel; Showman, Adam P.

    2013-01-01

    Infrared light curves of transiting hot Jupiters present a trend in which the atmospheres of the hottest planets are less efficient at redistributing the stellar energy absorbed on their daysides—and thus have a larger day-night temperature contrast—than colder planets. To this day, no predictive atmospheric model has been published that identifies which dynamical mechanisms determine the atmospheric heat redistribution efficiency on tidally locked exoplanets. Here we present a shallow-water model of the atmospheric dynamics on synchronously rotating planets that explains why heat redistribution efficiency drops as stellar insolation rises. Our model shows that planets with weak friction and weak irradiation exhibit a banded zonal flow with minimal day-night temperature differences, while models with strong irradiation and/or strong friction exhibit a day-night flow pattern with order-unity fractional day-night temperature differences. To interpret the model, we develop a scaling theory which shows that the timescale for gravity waves to propagate horizontally over planetary scales, τ wave , plays a dominant role in controlling the transition from small to large temperature contrasts. This implies that heat redistribution is governed by a wave-like process, similar to the one responsible for the weak temperature gradients in the Earth's tropics. When atmospheric drag can be neglected, the transition from small to large day-night temperature contrasts occurs when τ wave ∼√(τ rad /Ω), where τ rad is the radiative relaxation time and Ω is the planetary rotation frequency. Alternatively, this transition criterion can be expressed as τ rad ∼ τ vert , where τ vert is the timescale for a fluid parcel to move vertically over the difference in day-night thickness. These results subsume the more widely used timescale comparison for estimating heat redistribution efficiency between τ rad and the horizontal day-night advection timescale, τ adv . Only

  12. Redistributive Politics in a Political Union

    DEFF Research Database (Denmark)

    Citi, Manuele; Justesen, Mogens Kamp

    One of the main functions of centralized budgets in federal and political unions is to act as an equalizing mechanism to support economic cohesion. This is also the case with the European Union’s budget, which operates as a redistributive mechanism that counteracts the cross-national and cross...... remarkably over the last decades. In this paper, we investigate how and why the net fiscal position of each member state towards the rest of the EU changes over time. Using a novel panel dataset (1979-2014), we study how some key national and EU-level political and economic variables affect the EU...... find that the political orientation of national governments does not per se influence redistributive politics with in the EU. However, when the unemployment rate is rising, right-wing governments are able to extract significantly larger budgetary benefits....

  13. Redistributive effects of Swedish health care finance.

    Science.gov (United States)

    Gerdtham, U G; Sundberg, G

    1998-01-01

    This paper investigates the redistributive effects of the Swedish health care financing system in 1980 and 1990 for four different financial sources: county council taxes, payroll taxes, direct payments and state grants. The redistributive effects are decomposed into vertical, horizontal and 'reranking' segments for each of the four financial sources. The data used are based on probability samples of the Swedish population, from the Level of Living Survey (LNU) from 1981 and 1991. The paper concludes that the Swedish health care financing system is weakly progressive, although direct payments are regressive. There is some horizontal inequity and 'reranking', which mainly comes from the county council taxes, since those tax rates vary for each county council. The implication is that, to some extent, people with equal incomes are treated unequally.

  14. Redistributive taxation, multinational enterprises, and economic integration

    OpenAIRE

    Haufler, Andreas; Klemm, Alexander; Schjelderup, Guttorm

    2008-01-01

    Increased activity of multinational firms exposes national corporate tax bases to cross-country profit shifting, but also leads to rising profitability of the corporate sector. We incorporate these two effects of economic integration into a simple political economy model where the median voter decides on a redistributive income tax rate. In this setting economic integration may raise or lower the equilibrium tax rate, and it is more likely to raise the tax rate of a low-tax country. The impli...

  15. Molecular approaches to understand the regulation of N2O emission from denitrifying bacteria - model strains and soil communities (Invited)

    Science.gov (United States)

    Frostegard, A.; Bakken, L. R.

    2010-12-01

    Emissions of N2O from agricultural soils are largely caused by denitrifying bacteria. Field measurements of N2O fluxes show large variations and depend on several environmental factors, and possibly also on the composition of the denitrifying microbial community. The temporal and spatial variation of fluxes are not adequately captured by biogeochemical models, and few options for mitigations have been invented, which underscores the need to understand the mechanisms underlying the emissions of N2O. Analyses of denitrification genes and transcripts extracted from soils are important for describing the system, but may have limited value for prediction of N2O emissions. In contrast, phenotypic analyses are direct measures of the organisms’ responses to changing environmental conditions. Our approach is to combine phenotypic characterizations using high-resolution gas kinetics, with gene transcription analyses to study denitrification regulatory phenotypes (DRP) of bacterial strains or complex microbial communities. The rich data sets obtained provide a basis for refinement of biochemical and physiological research on this key process in the nitrogen cycle. The strength of this combined approach is illustrated by a series of experiments investigating effects of soil pH on denitrification. Soil pH emerges as a master variable determining the microbial community composition as well as its denitrification product ratio (N2O/N2), with higher ratio in acid than in alkaline soil. It is therefore likely that emissions of N2O from agro-ecosystems will increase in large parts of the world where soil pH is decreasing due to intensified management and increased use of chemical fertilizers. Considering its immense implications, surprisingly few attempts have been made to unravel the mechanisms involved in the pH-control of the product stoichiometry of denitrification. We investigated the kinetics of gas transformations (O2, NO, N2O and N2) and transcription of functional genes

  16. Simulation of infiltration and redistribution of intense rainfall using Land Surface Models

    Science.gov (United States)

    Mueller, Anna; Verhoef, Anne; Cloke, Hannah

    2016-04-01

    Flooding from intense rainfall (FFIR) can cause widespread damage and disruption. Numerical Weather Prediction (NWP) models provide distributed information about atmospheric conditions, such as precipitation, that can lead to a flooding event. Short duration, high intensity rainfall events are generally poorly predicted by NWP models, because of the high spatiotemporal resolution required and because of the way the convective rainfall is described in the model. The resolution of NWP models is ever increasing. Better understanding of complex hydrological processes and the effect of scale is important in order to improve the prediction of magnitude and duration of such events, in the context of disaster management. Working as part of the NERC SINATRA project, we evaluated how the Land Surface Model (LSM) components of NWP models cope with high intensity rainfall input and subsequent infiltration problems. Both in terms of the amount of water infiltrated in the soil store, as well as the timing and the amount of surface and subsurface runoff generated. The models investigated are SWAP (Soil Water Air Plant, Alterra, the Netherlands, van Dam 1997), JULES (Joint UK Land Environment Simulator a component of Unified Model in UK Met Office, Best et al. 2011) and CHTESSEL (Carbon and Hydrology- Tiled ECMWF Scheme for Surface Exchanges over Land, Balsamo et al. 2009) We analysed the numerical aspects arising from discontinuities (or sharp gradients) in forcing and/or the model solution. These types of infiltration configurations were tested in the laboratory (Vachaud 1971), for some there are semi-analytical solutions (Philip 1957, Parlange 1972, Vanderborght 2005) or reference numerical solutions (Haverkamp 1977, van Dam 2000, Vanderborght 2005). The maximum infiltration by the surface, Imax, is in general dependent on atmospheric conditions, surface type, soil type, soil moisture content θ, and surface orographic factor σ. The models used differ in their approach to

  17. Soil

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2002-01-01

    Environmental soil surveys in each province of Austria have been performed, soils of about 5,000 sites were described and analyzed for nutrients and pollutants, the majority of these data are recorded in the soil information system of Austria (BORIS) soil database, http://www.ubavie.gv.at/umweltsituation/boden/boris), which also contains a soil map of Austria, data from 30 specific investigations mainly in areas with industry and results from the Austria - wide cesium investigation. With respect to the environmental state of soils a short discussion is given, including two geographical charts, one showing which sites have soil data (2001) and the other the cadmium distribution in top soils according land use (forest, grassland, arable land, others). Information related to the soil erosion, Corine land cover (Europe-wide land cover database), evaluation of pollutants in soils (reference values of As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Se, Pb, Tl, Va, Zn, AOX, PAH, PCB, PCDD/pcdf, dioxin), and relevant Austrian and European standards and regulations is provided. Figs. 2, Tables 4. (nevyjel)

  18. Redistribution effects for OMVPE InP/GaAs

    International Nuclear Information System (INIS)

    Oh, T.I.

    1989-01-01

    The authors have analyzed the redistribution parameters for InP grown by organometallic vapor phase epitaxy (OMVPE) on GaAs substrates. The layers, grown using (trimethyl Indium) TMIn at atmospheric pressure, have been characterized for epitaxial quality using photoluminescence, energy dispersed x-ray analysis, and optical microscopy. In order to better understand the effects of inter-diffusion and inter-mixing for the GaAs into the InP epitaxial layer, the layer-substrate interface was first probed by growing consecutive samples of InP for increasingly longer growth times, and thus characterizing the layers as one moves away from the interface. For more detailed analysis, cross-sections of the InP/GaAs interface were prepared for scanning transmission electron microscopy (STEM). Energy dispersed x-ray analysis has shown that all elements In, Ga, As, and P, are present on the epitaxial side of the interface, while only Ga and As are present on the substrate side. A combination of electron diffraction and luminescence measurements show the epitaxy is at least 80% InP at the interface and essentially 100% InP at a distance of 6000 angstrom into the epilayer. Electron diffraction and bright field investigation at the interface show the existence of a second phase, existing in a mostly InP matrix. The effects of redistribution in heteroepitaxial InP/GaAs are discussed

  19. Evaluating the effect of nutrient redistribution by animals on the phosphorus cycle of lowland Amazonia

    Directory of Open Access Journals (Sweden)

    C. Buendía

    2018-01-01

    Full Text Available Phosphorus (P availability decreases with soil age and potentially limits the productivity of ecosystems growing on old and weathered soils. Despite growing on ancient soils, ecosystems of lowland Amazonia are highly productive and are among the most biodiverse on Earth. P eroded and weathered in the Andes is transported by the rivers and deposited in floodplains of the lowland Amazon basin creating hotspots of P fertility. We hypothesize that animals feeding on vegetation and detritus in these hotspots may redistribute P to P-depleted areas, thus contributing to dissipate the P gradient across the landscape. Using a mathematical model, we show that animal-driven spatial redistribution of P from rivers to land and from seasonally flooded to terra firme (upland ecosystems may sustain the P cycle of Amazonian lowlands. Our results show how P imported to land by terrestrial piscivores in combination with spatial redistribution of herbivores and detritivores can significantly enhance the P content in terra firme ecosystems, thereby highlighting the importance of food webs for the biogeochemical cycling of Amazonia.

  20. Evaluating the effect of nutrient redistribution by animals on the phosphorus cycle of lowland Amazonia

    Science.gov (United States)

    Buendía, Corina; Kleidon, Axel; Manzoni, Stefano; Reu, Björn; Porporato, Amilcare

    2018-01-01

    Phosphorus (P) availability decreases with soil age and potentially limits the productivity of ecosystems growing on old and weathered soils. Despite growing on ancient soils, ecosystems of lowland Amazonia are highly productive and are among the most biodiverse on Earth. P eroded and weathered in the Andes is transported by the rivers and deposited in floodplains of the lowland Amazon basin creating hotspots of P fertility. We hypothesize that animals feeding on vegetation and detritus in these hotspots may redistribute P to P-depleted areas, thus contributing to dissipate the P gradient across the landscape. Using a mathematical model, we show that animal-driven spatial redistribution of P from rivers to land and from seasonally flooded to terra firme (upland) ecosystems may sustain the P cycle of Amazonian lowlands. Our results show how P imported to land by terrestrial piscivores in combination with spatial redistribution of herbivores and detritivores can significantly enhance the P content in terra firme ecosystems, thereby highlighting the importance of food webs for the biogeochemical cycling of Amazonia.

  1. Soils

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2001-01-01

    For Austria there exists a comprehensive soil data collection, integrated in a GIS (geographical information system). The content values of pollutants (cadmium, mercury, lead, copper, mercury, radio-cesium) are given in geographical charts and in tables by regions and by type of soil (forests, agriculture, greenland, others) for the whole area of Austria. Erosion effects are studied for the Austrian region. Legal regulations and measures for an effective soil protection, reduction of soil degradation and sustainable development in Austria and the European Union are discussed. (a.n.)

  2. Precipitation and soil impacts on partitioning of subsurface moisture in Avena barbata: Observations from a greenhouse experiment

    Energy Technology Data Exchange (ETDEWEB)

    Salve, R.; Torn, M.S.

    2011-03-01

    The primary objective of this study was to assess the impact of two grassland soils and precipitation regimes on soil-moisture dynamics. We set up an experiment in a greenhouse, and monitored soil moisture dynamics in mesocosms planted with Avena barbata, an annual species found in California grasslands. By repeating the precipitation input at regular intervals, we were able to observe plant manipulation of soil moisture during well-defined periods during the growing season. We found that the amount of water partitioned to evapotranspiration, seepage, and soil storage varied among different growth stages. Further, both soil type and precipitation regimes had a significant impact on redistributing soil moisture. Whereas in the low-precipitation treatments most water was released to the atmosphere as evapotranspiration, major losses from the high-precipitation treatment occurred as gravity drainage. Observations from this study emphasize the importance of understanding intra-seasonal relationships between vegetation, soil, and water.

  3. Pyrogenic Carbon redistribution from hillslopes to stream corridors following a large montane wildfire

    Science.gov (United States)

    Cotrufo, M. Francesca; Boot, Claudia; Kampf, Stephanie; MacDonald, Lee; Nelson, Peter; Hall, Ed

    2017-04-01

    Pyrogenic Carbon (PyC) is a ubiquitous, important and often neglected form of organic carbon, which forms from incomplete combustion of biomass during fire. Following the large High Park wildfire in the Cache la Poudre watershed of the Rocky Mountains (CO, USA), we tracked PyC from the litter layer and soil, through eroded, suspended, and dissolved sediments to alluvial deposits along river sides. Additionally, we separated deposited sediment in a high- and a low-density fraction to identify preferential forms of PyC later transport, and used 14C dating to estimate the age of alluvial deposits. A few months after the fire, PyC had yet to move vertically into the mineral soil and remained in the organic layer or had been transported off site by rainfall driven overland flow. During major storm events PyC was associated with suspended sediments in the water column, and later identified in low-density riverbank deposits. Flows from an unusually long-duration and high magnitude rain storm either removed or buried the riverbank sediments approximately one year after their deposition. Buried alluvial deposits contained significant amounts of PyC, dating back over a thousand years. We conclude that PyC redistributes after wildfire in patterns that are consistent with erosion and deposition of low-density sediments. A more complete understanding of PyC dynamics requires attention to the interaction of post-fire precipitation patterns and geomorphological features that control surface erosion and deposition throughout the watershed.

  4. NATIVE ROOT XYLEM EMBOLISM AND STOMATAL CLOSURE IN STANDS OF DOUGLAS-FIR AND PONDEROSA PINE: MITIGATION BY HYDRAULIC REDISTRIBUTION

    Science.gov (United States)

    Hydraulic redistribution (HR), the passive movement of water via roots from moist to drier portions of the soil, occurs in many ecosystems, influencing both plant and ecosystem-water use. We examined the effects of HR on root hydraulic functioning during drought in young and old-...

  5. Understanding Litter Input Controls on Soil Organic Matter Turnover and Formation are Essential for Improving Carbon-Climate Feedback Predictions for Arctic, Tundra Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Wallenstein, Matthew [Colorado State Univ., Fort Collins, CO (United States)

    2017-12-05

    The Arctic region stored vast amounts of carbon (C) in soils over thousands of years because decomposition has been limited by cold, wet conditions. Arctic soils now contain roughly as much C that is contained in all other soils across the globe combined. However, climate warming could unlock this oil C as decomposition accelerates and permafrost thaws. In addition to temperature-driven acceleration of decomposition, several additional processes could either counteract or augment warming-induced SOM losses. For example, increased plant growth under a warmer climate will increase organic matter inputs to soils, which could fuel further soil decomposition by microbes, but will also increase the production of new SOM. Whether Arctic ecosystems store or release carbon in the future depends in part on the balance between these two counteracting processes. By differentiating SOM decomposition and formation and understanding the drivers of these processes, we will better understand how these systems function. We did not find evidence of priming under current conditions, defined as an increase in the decomposition of native SOM stocks. This suggests that decomposition is unlikely to be further accelerated through this mechanism. We did find that decomposition of native SOM did occur when nitrogen was added to these soils, suggesting that nitrogen limits decomposition in these systems. Our results highlight the resilience and extraordinary C storage capacity of these soils, and suggest shrub expansion may partially mitigate C losses from decomposition of old SOM as Arctic soils warm.

  6. New perspectives on the soil erosion-soil quality relationship

    International Nuclear Information System (INIS)

    Pennock, D.J.

    1998-01-01

    The redistribution of soil has a profound impact on its quality (defined as its ability to function within its ecosystem and within adjacent ecosystems) and ultimately on its productivity for crop growth. The application of 137 Cs-redistribution techniques to the study of erosion has yielded major new insights into the soil erosion-soil quality relationship. In highly mechanized agricultural systems, tillage erosion can be the dominant cause of soil redistribution; in other agroecosystems, wind and water erosion dominate. Each causal factor results in characteristic landscape-scale patterns of redistribution. In landscapes dominated by tillage redistribution, highest losses occur in shoulder positions (those with convex downslope curvatures); in water-erosion-dominated landscapes, highest losses occur where slope gradient and length are at a maximum. Major impacts occur through the loss of organically-enriched surface material and through the incorporation of possibly yield-limiting subsoils into the rooting zone of the soil column. The potential impact of surface soil losses and concomitant subsoil incorporation on productivity may be assessed by examining the pedological nature of the affected soils and their position in the landscape. The development of sound conservation policies requires that the soil erosion-quality relationship be rigorously examined in the full range of pedogenic environments, and future applications of the 137 Cs technique hold considerable promise for providing this comprehensive global database. (author)

  7. A natural saline soil as a model for understanding to what extent the concentration of salt affects the distribution of microorganisms

    Science.gov (United States)

    Canfora, Loredana; Pinzari, Flavia; Lo Papa, Giuseppe; Vittori Antisari, Livia; Vendramin, Elisa; Salvati, Luca; Dazzi, Carmelo; Benedetti, Anna

    2017-04-01

    Soils preserve and sustain life. Their health and functioning are crucial for crop production and for the maintenance of major ecosystem services. Human induced salinity is one of the main soil threats that reduces soil fertility and affect crop yields. In recent times, great attention has been paid to the general shortage of arable land and to the increasing demand for ecological restoration of areas affected by salinization processes. Despite the diffuse interest on the effects of salinization on plants' growth, and all the derived socioeconomic issues, very few studies analyzed the ecology of the microbial species in naturally saline soils and the resilience of biological fertility in these extreme habitats. Microorganisms inhabiting such environments may share a strategy, may have developed multiple adaptations for maintaining their populations, and cope eventually to extreme conditions by altruistic or cooperative behaviors for maintaining their metabolism active. The understanding and the knowledge of the composition and distribution of microbial communities in natural hypersaline soils can be interesting for ecological reasons but also to develop new restoration strategy where soil fertility was compromised by natural accidents or human mismanagement. The aim of this research was to provide specific information on saline soils in Italy, stressing mainly their distribution, the socioeconomic issues and the understanding of the characterizing ecological processes. Moreover, natural saline soils were used as a model for understanding to what extent the concentration of salt can affect some basic microbial processes. In the present study, physical, chemical and microbiological soil properties were investigated in the shallower horizons of natural salt affected soils in Sicily (Italy), where some ecological contrasting variables acted as strong drivers in fungal and bacterial spatial distribution. Furthermore, the interface between biological and geochemical

  8. A New and Improved Carbon Dioxide Isotope Analyzer for Understanding Soil-Plant-Atmosphere Interactions

    Science.gov (United States)

    Huang, Y. W.; Berman, E. S.; Owano, T. G.; Verfaillie, J. G.; Oikawa, P. Y.; Baldocchi, D. D.; Still, C. J.; Gardner, A.; Baer, D. S.; Rastogi, B.

    2015-12-01

    Stable CO2 isotopes provide information on biogeochemical processes that occur at the soil-plant-atmosphere interface. While δ13C measurement can provide information on the sources of the CO2, be it photosynthesis, natural gas combustion, other fossil fuel sources, landfills or other sources, δ18O, and δ17O are thought to be determined by the hydrological cycling of the CO2. Though researchers have called for analytical tools for CO2 isotope measurements that are reliable and field-deployable, developing such instrument remains a challenge. The carbon dioxide isotope analyzer developed by Los Gatos Research (LGR) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology and incorporates proprietary internal thermal control for high sensitivity and optimal instrument stability. This new and improved analyzer measures CO2 concentration as well as δ13C, δ18O, and δ17O from CO2 at natural abundance (150-2500 ppm). The laboratory precision is ±200 ppb (1σ) in CO2 at 1 s, with a long-term (2 min) precision of ±20 ppb. The 1-second precision for both δ13C and δ18O is 0.7 ‰, and for δ17O is 1.8 ‰. The long-term (2 min) precision for both δ13C and δ18O is 0.08 ‰, and for δ17O is 0.18 ‰. The instrument has improved precision, stability and user interface over previous LGR CO2 isotope instruments and can be easily programmed for periodic referencing and sampling from different sources when coupled with LGR's multiport inlet unit (MIU). We have deployed two of these instruments at two different field sites, one at Twitchell Island in Sacramento County, CA to monitor the CO2 isotopic fluxes from an alfalfa field from 6/29/2015-7/13/2015, and the other at the Wind River Experimental Forest in Washington to monitor primarily the oxygen isotopes of CO2 within the canopy from 8/4/2015 through mid-November 2015. Methodology, laboratory development and testing and field performance are presented.

  9. Organizations of food redistribution and rescue.

    Science.gov (United States)

    Mousa, T Y; Freeland-Graves, J H

    2017-11-01

    Food insecurity affects 13.4% of the USA population, despite the fact that 30-40% of all food is deposited in a landfill. Food rescue nutrition is the process of redistribution of surplus food to the impoverished. The aim of this study is to document the extent of involvement of organizations in food rescue nutrition. In this cross-sectional study, a survey about organizations involved in food rescue nutrition was developed, validated, and then tested. Directors of 100 organizations involved in food rescue nutrition from eight Southwestern States in the USA participated in this research. These organizations provided an average of 2 million kg of food to more than 40,000 clients each month. Food assistance programs had an average of eight workers and 3081 volunteers. In addition to food, these organizations provided other services such as clothing, clinical, and childcare. The agencies encountered several challenges, including lack of resources that resulted in reducing food portions and turning away clients. The extent of involvement of community-based programs in food rescue nutrition was strong in eight Southwestern states in the USA. Organizations involved in food redistribution helped alleviate food insecurity in their clients. Sustainability of these charitable networks was dependent on availability of resources and sufficient volunteers. Health professionals should encourage these organizations by providing support through donations of time, money, and/or food. Copyright © 2017 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  10. Redistribution of natural radioactive elements resulting from animal and plant life activity in regions with high radioactivity

    International Nuclear Information System (INIS)

    Malslov, V.I.; Maslova, K.I.; Alexakhin, R.M.

    1980-01-01

    A quantitative assessment is made of the influence of plant and animal life on the migration and redistribution of naturally occurring radionuclides in several localized areas with unusually high soil concentrations of 226 Ra, 238 U, or 232 Th. In the taiga and tundra zones examined, the effects of radionuclide accumulation in certain plant species and of the feeding and burrowing habits of small mammals were particularly significant. The observed regularities have predictive applications in assessing the redistribution of radionuclides in regions of high radioactivity

  11. Redistributive effect of personal income taxation in Pakistan

    OpenAIRE

    Ahmed, Vaqar; O'Donoghue, Cathal

    2009-01-01

    This paper studies the redistribution effect of personal income tax in Pakistan. We decompose the overall tax system in order to evaluate the contribution of rate, allowances, deductions, exemptions and credits. The structure given in Income Tax Ordinance, 2001, is applied to gross household incomes in 2002 (low growth year) and 2005 (high growth year). Our findings reveal that the reforms laid down in this Ordinance resulted in a greater redistribution of incomes. The redistributive effect i...

  12. Be2D: A model to understand the distribution of meteoric 10Be in soilscapes

    Science.gov (United States)

    Campforts, Benjamin; Vanacker, Veerle; Vanderborght, Jan; Govers, Gerard

    2016-04-01

    Cosmogenic nuclides have revolutionised our understanding of earth surface process rates. They have become one of the standard tools to quantify soil production by weathering, soil redistribution and erosion. Especially Beryllium-10 has gained much attention due to its long half-live and propensity to be relatively conservative in the landscape. The latter makes 10Be an excellent tool to assess denudation rates over the last 1000 to 100 × 103 years, bridging the anthropogenic and geological time scale. Nevertheless, the mobility of meteoric 10Be in soil systems makes translation of meteoric 10Be inventories into erosion and deposition rates difficult. Here we present a coupled soil hillslope model, Be2D, that is applied to synthetic and real topography to address the following three research questions. (i) What is the influence of vertical meteoric Be10 mobility, caused by chemical mobility, clay translocation and bioturbation, on its lateral redistribution over the soilscape, (ii) How does vertical mobility influence erosion rates and soil residence times inferred from meteoric 10Be inventories and (iii) To what extent can a tracer with a half-life of 1.36 Myr be used to distinguish between natural and human-disturbed soil redistribution rates? The model architecture of Be2D is designed to answer these research questions. Be2D is a dynamic model including physical processes such as soil formation, physical weathering, clay migration, bioturbation, creep, overland flow and tillage erosion. Pathways of meteoric 10Be mobility are simulated using a two step approach which is updated each timestep. First, advective and diffusive mobility of meteoric 10Be is simulated within the soil profile and second, lateral redistribution because of lateral soil fluxes is calculated. The performance and functionality of the model is demonstrated through a number of synthetic and real model runs using existing datasets of meteoric 10Be from case-studies in southeastern US. Brute

  13. Towards understanding of carbon stocks and stabilization in volcanic ash soils in natural Andean ecosystems of northern Ecuador

    NARCIS (Netherlands)

    Tonneijck, F.H.; Jansen, B.; Nierop, K.G.J.; Verstraten, J.M.; Sevink, J.; de Lange, L.

    2010-01-01

    Volcanic ash soils contain very large stocks of soil organic matter (SOM) per unit area. Consequently, they constitute potential sources or sinks for the greenhouse gas carbon dioxide. Whether soils become a net carbon source or sink with climate and/or land-use change depends on the stability of

  14. Redistribution of Kinetic Energy in Turbulent Flows

    Directory of Open Access Journals (Sweden)

    Alain Pumir

    2014-10-01

    Full Text Available In statistically homogeneous turbulent flows, pressure forces provide the main mechanism to redistribute kinetic energy among fluid elements, without net contribution to the overall energy budget. This holds true in both two-dimensional (2D and three-dimensional (3D flows, which show fundamentally different physics. As we demonstrate here, pressure forces act on fluid elements very differently in these two cases. We find in numerical simulations that in 3D pressure forces strongly accelerate the fastest fluid elements, and that in 2D this effect is absent. In 3D turbulence, our findings put forward a mechanism for a possibly singular buildup of energy, and thus may shed new light on the smoothness problem of the solution of the Navier-Stokes equation in 3D.

  15. Recent changes in sediment redistribution in the upper parts of the fluvial system of European Russia: regional aspects

    Directory of Open Access Journals (Sweden)

    O. P. Yermolaev

    2015-03-01

    Full Text Available Quantitative assessments of soil loss from cultivated land and sediment redistribution along pathways from cultivated fields to river channels have been undertaken using a range of different methods and techniques, including erosion models, detailed studies of sediment redistribution in representative catchments, monitoring of gully head retreat and evaluation of sediment deposition in ponds and small reservoirs. Most of the sediment eroded from arable land is deposited between the lower portions of the cultivated slopes and the river channels. Less than 15% of the eroded sediment is delivered to the river channels. Sediment redistribution rates in the upper parts of the fluvial system have declined during the last 25 years in both the western and eastern parts of the Russian Plain, because of a major reduction of surface runoff during snowmelt and a reduction of the area of arable land in some parts of the study area.

  16. Redistribution of boron in leaves reduces boron toxicity.

    Science.gov (United States)

    Reid, Robert J; Fitzpatrick, Kate L

    2009-11-01

    High soil boron (B) concentrations lead to the accumulation of B in leaves, causing the development of necrotic regions in leaf tips and margins, gradually extending back along the leaf. Plants vary considerably in their tolerance to B toxicity, and it was recently discovered that one of the tolerance mechanisms involved extrusion of B from the root. Expression of a gene encoding a root B efflux transporter was shown to be much higher in tolerant cultivars. In our current research we have shown that the same gene is also upregulated in leaves. However, unlike in the root, the increased activity of the B efflux transporter in the leaves cannot reduce the tissue B concentration. Instead, we have shown that in tolerant cultivars, these transporters redistribute B from the intracellular phase where it is toxic, into the apoplast which is much less sensitive to B. These results provide an explanation of why different cultivars with the same leaf B concentrations can show markedly different toxicity symptoms. We have also shown that rain can remove a large proportion of leaf B, leading to significant improvements of growth of both leaves and roots.

  17. Overlap in nitrogen sources and redistribution of nitrogen between trees and grasses in a semi-arid savanna.

    Science.gov (United States)

    Priyadarshini, K V R; Prins, Herbert H T; de Bie, Steven; Heitkönig, Ignas M A; Woodborne, Stephan; Gort, Gerrit; Kirkman, Kevin; Fry, Brian; de Kroon, Hans

    2014-04-01

    A key question in savanna ecology is how trees and grasses coexist under N limitation. We used N stable isotopes and N content to study N source partitioning across seasons from trees and associated grasses in a semi-arid savanna. We also used (15)N tracer additions to investigate possible redistribution of N by trees to grasses. Foliar stable N isotope ratio (δ(15)N) values were consistent with trees and grasses using mycorrhiza-supplied N in all seasons except in the wet season when they switched to microbially fixed N. The dependence of trees and grasses on mineralized soil N seemed highly unlikely based on seasonal variation in mineralization rates in the Kruger Park region. Remarkably, foliar δ(15)N values were similar for all three tree species differing in the potential for N fixation through nodulation. The tracer experiment showed that N was redistributed by trees to understory grasses in all seasons. Our results suggest that the redistribution of N from trees to grasses and uptake of N was independent of water redistribution. Although there is overlap of N sources between trees and grasses, dependence on biological sources of N coupled with redistribution of subsoil N by trees may contribute to the coexistence of trees and grasses in semi-arid savannas.

  18. Understanding the fate of black (pyrogenic) carbon in soil: Preliminary results from a long term field trial

    Science.gov (United States)

    Meredith, Will; Ascough, Philippa; Bird, Michael; Large, David; Shen, Licheng; Snape, Colin

    2014-05-01

    Black carbon (BC, also known as pyrogenic carbon) is an 'inert' form of carbon and has been proposed as a means of long-term carbon sequestration, particularly by amending soils and sediments with BC known as biochar. While there is abundant anecdotal evidence of biochar stability over extended timescales it is essential to gain a greater understanding of the degree and mechanisms of biochar degradation in the environment. This study aims to quantitatively assess the stability of biochar by investigating samples from field degradation trials first buried during 2009 in a tropical soil, and recovered after 12 and 36 month intervals. Catalytic hydropyrolysis (HyPy) is a novel analytical tool for the isolation of BC [1] in which high hydrogen pressure (150 bar) and a sulphided Mo catalyst reductively remove the non-BC fraction of the chars, and so isolate the most stable portion of the biochar, defined as BC(HyPy). This method also allows for the non-BC(HyPy) fraction of a sample, which from charcoal is known to include small ring PAHs (soil depth and pH to be investigated. Char stability (as measured by BC(HyPy) content) is dependent on both the feedstock and temperature of formation. HyPy is known to discriminate (in terms of BC isolation) against low temperature chars, composed of relatively small aromatic clusters [1], resulting in the low BC(HyPy) contents reported for the 305°C chars. Fresh charcoals, and those not subject to environmental degradation have display a similar distribution of aromatic clusters in the non-BC(HyPy) fraction, with 2 to 7 ring PAHs abundant [2]. However, environmentally degraded charcoals such as that from a Chinese river sediment, and an Australian river estuary [3] show a more restricted distribution with markedly fewer 2- and 3- ring PAH structures apparent. This may be evidence for the partial solubilisation of the charcoal as observed for a forest soil [4] and suggested as a mechanism for the transport of BC to the oceans [5

  19. The influence of flow redistribution on working rat muscle oxygenation.

    NARCIS (Netherlands)

    Hoofd, L.J.C.; Degens, H.

    2009-01-01

    We applied a theoretical model of muscle tissue O2 transport to investigate the effects of flow redistribution on rat soleus muscle oxygenation. The situation chosen was the anaerobic threshold where redistribution of flow is expected to have the largest impact. In the basic situation all

  20. Democracies under rising inequality : New tests of the redistributive thesis

    NARCIS (Netherlands)

    van der Linde, D.E.

    2017-01-01

    Recent increases in income inequality have led a number of authors to question the redistributive thesis, which predicts higher levels of income inequality will be met with increased redistribution of income, curbing inequality. This dissertation offers a new test of this theory, and sets out to

  1. Inequality and redistribution behavior in a give-or-take game

    Science.gov (United States)

    Bechtel, Michael M.; Scheve, Kenneth F.

    2018-01-01

    Political polarization and extremism are widely thought to be driven by the surge in economic inequality in many countries around the world. Understanding why inequality persists depends on knowing the causal effect of inequality on individual behavior. We study how inequality affects redistribution behavior in a randomized “give-or-take” experiment that created equality, advantageous inequality, or disadvantageous inequality between two individuals before offering one of them the opportunity to either take from or give to the other. We estimate the causal effect of inequality in representative samples of German and American citizens (n = 4,966) and establish two main findings. First, individuals imperfectly equalize payoffs: On average, respondents transfer 12% of the available endowments to realize more equal wealth distributions. This means that respondents tolerate a considerable degree of inequality even in a setting in which there are no costs to redistribution. Second, redistribution behavior in response to disadvantageous and advantageous inequality is largely asymmetric: Individuals who take from those who are richer do not also tend to give to those who are poorer, and individuals who give to those who are poorer do not tend to take from those who are richer. These behavioral redistribution types correlate in meaningful ways with support for heavy taxes on the rich and the provision of welfare benefits for the poor. Consequently, it seems difficult to construct a majority coalition willing to back the type of government interventions needed to counter rising inequality. PMID:29555734

  2. Short-Term Changes in Physical and Chemical Properties of Soil Charcoal Support Enhanced Landscape Mobility

    Science.gov (United States)

    Pyle, Lacey A.; Magee, Kate L.; Gallagher, Morgan E.; Hockaday, William C.; Masiello, Caroline A.

    2017-11-01

    Charcoal is a major component of the stable soil organic carbon reservoir, and the physical and chemical properties of charcoal can sometimes significantly alter bulk soil properties (e.g., by increasing soil water holding capacity). However, our understanding of the residence time of soil charcoal remains uncertain, with old measured soil charcoal ages in apparent conflict with relatively short modeled and measured residence times. These discrepancies may exist because the fate of charcoal on the landscape is a function not just of its resistance to biological decomposition but also its physical mobility. Mobility may be important in controlling charcoal landscape residence time and may artificially inflate estimates of its degradability, but few studies have examined charcoal vulnerability to physical redistribution. Charcoal landscape redistribution is likely higher than other organic carbon fractions owing to charcoal's low bulk density, typically less than 1.0 g/cm3. Here we examine both the physical and chemical properties of soil and charcoal over a period of two years following a 2011 wildfire in Texas. We find little change in properties with time; however, we find evidence of enhanced mobility of charcoal relative to other forms of soil organic matter. These data add to a growing body of evidence that charcoal is preferentially eroded, offering another explanation for variations observed in its environmental residence times.

  3. Reverse Redistribution in Myocardial Perfusion Imaging: Revisited with 64-slice MDCT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Kyung; Kim, Jeong Ho; Hwang, Kyung Hoon; Choi, In Suck; Choi, Soo Jin; Choe, Won Sick [Gachon University Gil Hospital, Incheon (Korea, Republic of); Yoon, Min Ki [Good Samaritan Hospital, Pohang (Korea, Republic of)

    2010-06-15

    The authors report myocardial perfusion imaging of a patient showing reverse redistribution (RR) and a 64-slice multidetector-row computed tomography (MDCT) with corresponding findings. The patient had subendocardial myocardial infarction (MI) with positive electrocardiogram (EMG) findings and elevated levels of cardiac isoenzymes. Experiencing this case emphasizes the importance of complementary correlation of a new diagnostic modality that helps us to understand the nature of RR.

  4. Toward a Simple Framework for Understanding the Influence of Litter Quality on Vertical and Horizontal Patterns of Soil Organic Matter Pools

    Science.gov (United States)

    Craig, M.; Phillips, R.

    2016-12-01

    Decades of research have revealed that plant litter quality fundamentally influences soil organic matter (SOM) properties. Yet we lack the predictive frameworks necessary to up-scale our understanding of these dynamics in biodiverse systems. Given that ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) plants are thought to differ in their litter quality, we ask whether this dichotomy represents a framework for understanding litter quality effects on SOM in temperate forests. To do this, we sampled soils from 250 spatially referenced locations within a 25-Ha plot where 28,000 trees had been georeferenced, and analyzed spatial patterns of plant and SOM properties. We then examined the extent to which the dominance of AM- versus EM-trees relates to 1) the quality of litter inputs to forest soils and 2) the horizontal and vertical distribution of SOM fractions. We found that leaf litters produced by EM-associated trees were generally of lower quality, having a lower concentration of soluble compounds and higher C:N. Concomitant with this, we observed higher soil C:N under EM trees. Interestingly, this reflected greater N storage in AM-dominated soils rather than greater C storage in EM-dominated soils. These patterns were driven by the storage of SOM in N-rich fractions in AM-dominated soils. Specifically, trees with high litter quality were associated with greater amounts of deep and mineral-associated SOM; pools that are generally considered stable. Our results support the recent contention that high-quality plant inputs should lead to the formation of stable SOM and suggest that the AM-EM framework may provide a way forward for representing litter quality effects on SOM in earth system models.

  5. Organizing groundwater regimes and response thresholds by soils: A framework for understanding runoff generation in a headwater catchment

    Science.gov (United States)

    John P. Gannon; Scott W. Bailey; Kevin J. McGuire

    2014-01-01

    A network of shallow groundwater wells in a headwater catchment at the Hubbard Brook Experimental Forest in New Hampshire, U.S. was used to investigate the hydrologic behavior of five distinct soil morphological units. The soil morphological units were hypothesized to be indicative of distinct water table regimes. Water table fluctuations in the wells were...

  6. Biophysical-and socioeconomic aspects of land degradation in the Guadalentin (SE-Spain): towards understanding and effective soil conservation

    International Nuclear Information System (INIS)

    Vente, J. de; Sole-Benet, A.; Boix-Fayos, C.; Nainggolan, D.; Romero-Diaz, A.

    2009-01-01

    Desertification and land degradation have been widely studied in the Guadalentin basin (SE Spain) through various national and international research projects. Most important identified degradation types are due to soil erosion, soil surface crusting, aridity, soil organic matter decline and salinisation. On the one hand, political and socioeconomic drivers have caused important land use and management changes, which have formed an important driver for further land degradation. On the other hand, soil conservation practice were initiated by the government and by individual land users, although there is very limited knowledge on their effectiveness. the objective of this work is to provide and overview of previous studies that addressed land degradation in the Guadalentin and to present an integrated synthesis of the main biophysical and socioeconomic factors identifies in these studies as being responsible for land degradation, with a focus on feasible soil conservation strategies. (Author) 18 refs.

  7. Biophysical-and socioeconomic aspects of land degradation in the Guadalentin (SE-Spain): towards understanding and effective soil conservation

    Energy Technology Data Exchange (ETDEWEB)

    Vente, J. de; Sole-Benet, A.; Boix-Fayos, C.; Nainggolan, D.; Romero-Diaz, A.

    2009-07-01

    Desertification and land degradation have been widely studied in the Guadalentin basin (SE Spain) through various national and international research projects. Most important identified degradation types are due to soil erosion, soil surface crusting, aridity, soil organic matter decline and salinisation. On the one hand, political and socioeconomic drivers have caused important land use and management changes, which have formed an important driver for further land degradation. On the other hand, soil conservation practice were initiated by the government and by individual land users, although there is very limited knowledge on their effectiveness. the objective of this work is to provide and overview of previous studies that addressed land degradation in the Guadalentin and to present an integrated synthesis of the main biophysical and socioeconomic factors identifies in these studies as being responsible for land degradation, with a focus on feasible soil conservation strategies. (Author) 18 refs.

  8. Understanding the paradox of selenium contamination in mercury mining areas: high soil content and low accumulation in rice.

    Science.gov (United States)

    Zhang, Hua; Feng, Xinbin; Jiang, Chengxin; Li, Qiuhua; Liu, Yi; Gu, Chunhao; Shang, Lihai; Li, Ping; Lin, Yan; Larssen, Thorjørn

    2014-05-01

    Rice is an important source of Se for billions of people throughout the world. The Wanshan area can be categorized as a seleniferous region due to its high soil Se content, but the Se content in the rice in Wanshan is much lower than that from typical seleniferous regions with an equivalent soil Se level. To investigate why the Se bioaccumulation in Wanshan is low, we measured the soil Se speciation using a sequential partial dissolution technique. The results demonstrated that the bioavailable species only accounted for a small proportion of the total Se in the soils from Wanshan, a much lower quantity than that found in the seleniferous regions. The potential mechanisms may be associated with the existence of Hg contamination, which is likely related to the formation of an inert Hg-Se insoluble precipitate in soils in Wanshan. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The VULCAN Project: Toward a better understanding of the vulnerability of soil organic matter to climate change in permafrost ecosystems

    Science.gov (United States)

    Plaza, C.; Schuur, E.; Maestre, F. T.

    2015-12-01

    Despite much recent research, high uncertainty persists concerning the extent to which global warming influences the rate of permafrost soil organic matter loss and how this affects the functioning of permafrost ecosystems and the net transfer of C to the atmosphere. This uncertainty continues, at least in part, because the processes that protect soil organic matter from decomposition and stabilize fresh plant-derived organic materials entering the soil are largely unknown. The objective of the VULCAN (VULnerability of soil organic CArboN to climate change in permafrost and dryland ecosystems) project is to gain a deeper insight into these processes, especially at the molecular level, and to explore potential implications in terms of permafrost ecosystem functioning and feedback to climate change. We will capitalize on a globally unique ecosystem warming experiment in Alaska, the C in Permafrost Experimental Heating Research (CiPEHR) project, which is monitoring soil temperature and moisture, thaw depth, water table depth, plant productivity, phenology, and nutrient status, and soil CO2 and CH4 fluxes. Soil samples have been collected from the CiPEHR experiment from strategic depths, depending on thaw depth, and allow us to examine effects related to freeze/thaw, waterlogging, and organic matter relocation along the soil profile. We will use physical fractionation methods to separate soil organic matter pools characterized by different preservation mechanisms of aggregation and mineral interaction. We will determine organic C and total N content, transformation rates, turnovers, ages, and structural composition of soil organic matter fractions by elemental analysis, stable and radioactive isotope techniques, and nuclear magnetic resonance tools. Acknowledgements: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 654132. Web site: http://vulcan.comule.com

  10. Simulating the Dependence of Sagebrush Steppe Vegetation on Redistributed Snow in a Semi-Arid Watershed.

    Science.gov (United States)

    Soderquist, B.; Kavanagh, K.; Link, T. E.; Strand, E. K.; Seyfried, M. S.

    2014-12-01

    In mountainous regions across the western USA, the composition of aspen (Populus tremuloides) and sagebrush steppe plant communities is often closely related to heterogeneous soil moisture subsidies resulting from redistributed snow. With decades of climate and precipitation data across elevational and precipitation gradients, the Reynolds Creek Experimental Watershed (RCEW) and critical zone observatory (CZO) in southwest Idaho provides a unique opportunity to study the relationship between vegetation types and redistributed snow. Within the RCEW, the total amount of precipitation has remained unchanged over the past 50 years, however the percentage of the precipitation falling as snow has declined by approximately 4% per decade at mid-elevation sites. As shifts in precipitation phase continue, future trends in vegetation composition and net primary productivity (NPP) of different plant functional types remains a critical question. We hypothesize that redistribution of snow may supplement drought sensitive species like aspen more so than drought tolerant species like mountain big sagebrush (Artemisia tridentata spp. vaseyana). To assess the importance of snowdrift subsidies on sagebrush steppe vegetation, NPP of aspen, shrub, and grass species was simulated at three sites using the biogeochemical process model BIOME-BGC. Each site is located directly downslope from snowdrifts providing soil moisture inputs to aspen stands and neighboring vegetation. Drifts vary in size with the largest containing up to four times the snow water equivalent (SWE) of a uniform precipitation layer. Precipitation inputs used by BIOME-BGC were modified to represent the redistribution of snow and simulations were run using daily climate data from 1985-2013. Simulated NPP of annual grasses at each site was not responsive to subsidies from drifting snow. However, at the driest site, aspen and shrub annual NPP was increased by as much as 44 and 30%, respectively, with the redistribution of

  11. Perancangan dan Analisis Redistribution Routing Protocol OSPF dan EIGRP

    Directory of Open Access Journals (Sweden)

    DWI ARYANTA

    2016-02-01

    Full Text Available Abstrak OSPF (Open Shortest Path First dan EIGRP (Enhanced Interior Gateway Routing Protocol adalah dua routing protokol yang banyak digunakan dalam jaringan komputer. Perbedaan karakteristik antar routing protokol menimbulkan masalah dalam pengiriman paket data. Teknik redistribution adalah solusi untuk melakukan komunikasi antar routing protokol. Dengan menggunakan software Cisco Packet Tracer 5.3 pada penelitian ini dibuat simulasi OSPF dan EIGRP yang dihubungkan oleh teknik redistribution, kemudian dibandingkan kualitasnya dengan single routing protokol EIGRP dan OSPF. Parameter pengujian dalam penelitian ini adalah nilai time delay dan trace route. Nilai trace route berdasarkan perhitungan langsung cost dan metric dibandingkan dengan hasil simulasi. Hasilnya dapat dilakukan proses redistribution OSPF dan EIGRP. Nilai delay redistribution lebih baik 1% dibanding OSPF dan 2-3% di bawah EIGRP tergantung kepadatan traffic. Dalam perhitungan trace route redistribution dilakukan 2 perhitungan, yaitu cost untuk area OSPF dan metric pada area EIGRP. Pengambilan jalur utama dan alternatif pengiriman paket berdasarkan nilai cost dan metric yang terkecil, hal ini terbukti berdasarkan perhitungan dan simulasi. Kata kunci: OSPF, EIGRP, Redistribution, Delay, Cost, Metric. Abstract OSPF (Open Shortest Path First and EIGRP (Enhanced Interior Gateway Routing Protocol are two routing protocols are widely used in computer networks. Differences between the characteristics of routing protocols pose a problem in the delivery of data packets. Redistribution technique is the solution for communication between routing protocols. By using the software Cisco Packet Tracer 5.3 in this study were made simulating OSPF and EIGRP redistribution linked by technique, then compared its quality with a single EIGRP and OSPF routing protocols. Testing parameters in this study is the value of the time delay and trace route. Value trace route based on direct calculation of cost

  12. A more holistic understanding of soil organic matter pools of alpine and pre-alpine grassland soils in a changing climate

    Science.gov (United States)

    Garcia Franco, Noelia; Wiesmeier, Martin; Kiese, Ralf; Dannenmann, Michael; Wolf, Benjamin; Brandhuber, Robert; Beck, Robert; Kögel-Knabner, Ingrid

    2016-04-01

    In southern Germany, the alpine and pre-alpine grassland systems (> 1 Mio ha) provide an important economic value via fodder used for milk and meat production and grassland soils support environmental key functions (C and N storage, water retention, erosion control and biodiversity hot spot). In addition, these grassland soils constitute important regions for tourism and recreation. However, the different land use and management practices in this area introduce changes which are likely to accelerate due to climate change. The newly launched SUPSALPS project within the BonaRes Initiative of the German Ministry for Education and Research is focused on the development and evaluation of innovative grassland management strategies under climate change with an emphasis on soil functions, which are on the one hand environmental sustainable and on the other hand economically viable. Several field experiments of the project will be initialized in order to evaluate grassland soil functioning for a range of current and climate adapted management practices. A multi-factorial design combines ongoing and new plant-soil meso-/macrocosm and field studies at a multitude of existing long-term research sites along an elevation gradient in Bavaria. One of the specific objectives of the project is to improve our knowledge on the sensitivity of specific soil organic matter (SOM) fractions to climate change. Moreover, the project aims to determine the processes and mechanisms involved in the build-up and stabilization of C and N pools under different management practices. In order to derive sensitive SOM pools, a promising physical fractionation method was developed that enables the separation of five different SOM fractions by density, ultrasonication and sieving separation: fine particulate organic matter (fPOM), occluded particulate organic matter (oPOM>20μm and oPOM 20 μm; medium + fine silt and clay, management changes.

  13. Carrying away and redistribution of radioisotopes on the Peyne catchment basin. Preliminary report; Entrainement et redistribution des radionucleides sur le bassin versant de la Peyne. Rapport preliminaire

    Energy Technology Data Exchange (ETDEWEB)

    Duffa, C.; Danic, F

    2006-07-01

    The transfers of radioisotopes present in soils and sediments are essentially conditioned by the mobilities of the physical vectors which constitute their supports. The water is the main vector of natural transfer, radioisotopes being associated with it under dissolved or particulate shape. The rainout and the hydrous erosion are responsible in particular for the carrying away and for the redistribution of contaminants following an atmospheric deposit on a catchment basin. However their effect is not the same in any point of the catchment basin. The work begun here aims at elaborating a classification of the grounds sensitivity towards this phenomenon of radioisotopes carrying away. The different factors of sensitivity have been identified: pluviometry, slope, soils occupation and soils nature. The Peyne catchment basin, that presents an important variability of these four parameters, constitutes the experimental site for this study. On this catchment basin, we search to identify the areas the most sensitive to the carrying away of radioisotopes, by combining a theoretical predictive approach based on the cartography and a descriptive approach basing on the sampling and the analysis of soils samples. (N.C.)

  14. Combining soil and tree-stem flux measurements and soil gas profiles to understand CH4 pathways in Fagus sylvatica forests

    Czech Academy of Sciences Publication Activity Database

    Maier, M.; Macháčová, Kateřina; Lang, F.; Svobodová, Kateřina; Urban, Otmar

    2018-01-01

    Roč. 181, č. 1 (2018), s. 31-35 ISSN 1436-8730 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:86652079 Keywords : ch4 * soil gas profile * gas flux * co2 * methanogenesis Subject RIV: ED - Physiology OBOR OECD: Plant sciences, botany Impact factor: 2.102, year: 2016

  15. Radial plutonium redistribution in mixed-oxide fuel

    International Nuclear Information System (INIS)

    Lawrence, L.A.; Schwinkendorf, K.N.; Karnesky, R.A.

    1981-10-01

    Alpha autoradiographs from all HEDL fuel pin metallography samples are evaluated and catalogued according to different plutonium distribution patterns. The data base is analyzed for effects of fabrication and operating parameters on redistribution

  16. Macroeconomic and social change and popular demand for redistribution

    DEFF Research Database (Denmark)

    Jæger, Mads Meier

    This paper tests the self-interest hypothesis arguing that changes in macroeconomic and social conditions affect popular demand for redistribution. I analyze data from four waves of the European Social Survey and use a synthetic cohort design to generate pseudo panel data for socio......-demographic groups that are matched over time. I estimate fixed effect models and find that (1) changes in macroeconomic and social conditions affect the demand for redistribution; (2) results are mostly consistent with the self-interest hypothesis claiming that agents demand more redistribution in economically hard...... times (and vice versa in good times); and (3) the effect of macroeconomic and social conditions on the demand for redistribution are highly non-linear....

  17. Autoradiographic analysis of iodoamphetamine redistribution in experimental brain ischemia

    International Nuclear Information System (INIS)

    Matsuda, H.; Tsuji, S.; Oba, H.; Shiba, K.; Terada, H.; Kinuya, K.; Mori, H.; Sumiya, H.; Hisada, K.

    1990-01-01

    The pathophysiologic significance of iodoamphetamine (IMP) redistribution was analyzed using a double radionuclide autoradiography technique in experimental brain ischemia in the rat. Within 4 hr after unilateral arterial occlusion, IMP almost completely redistributed at 150 min postinjection in the affected areas. At 2 min postinjection, both a remarkable decrease of IMP accumulation and histopathologic change of diminished staining were observed in these areas. The redistribution amplitude was higher in the affected hemisphere, especially in the regions surrounding the ischemic core than in the unaffected hemisphere. These findings were consistent with computer simulation studies of the time course of brain activity based on the standard diffusible tracer model. The results suggest that IMP redistribution in the ischemic area is due to differences of the temporal changes of the brain activity between the unaffected and affected areas and that it is a physical phenomenon (only flow related) rather than a biologic one

  18. Redistribution of intestinal microcirculatory oxygenation during acute hemodilution in pigs

    NARCIS (Netherlands)

    Schwarte, Lothar A.; Fournell, Artur; van Bommel, Jasper; Ince, Can

    2005-01-01

    Acute normovolemic hemodilution (ANH) compromizes intestinal microcirculatory oxygenation; however, the underlying mechanisms are incompletely understood. We hypothesized that contributors herein include redistribution of oxygen away from the intestines and shunting of oxygen within the intestines.

  19. Micro morphological and Chemical Approaches to Understand Changes in Ecological Functions of Metal-Impacted Soils under Various Land Uses

    International Nuclear Information System (INIS)

    Acosta, J.A; Martinez, S.M; Faz, A; Van Mourik, J.M; Arocena, J.M

    2011-01-01

    We investigated the changes in faunal activities as measures of the ecological functions of soils impacted by potentially toxic metals (PTMs) under urban, industrial, agricultural, and natural uses. Concentrations and distributions of Zn, Cd, Pb, Cu, Mn, and Fe were estimated by sequential chemical extractions, while relicts and present faunal activities were studied by micro morphological analyses. Urban and natural lands were contaminated with Pb, Cd, and Zn. Micro arthropods and fungi are observed to be active in the litter decomposition in natural, agricultural and urban lands which indicates that total concentration of PTMs in soils is not a good indicator to evaluate the limitations of PTMs to fauna activity. Metals immobilization on carbonates and Fe/Mn oxides, and fertilizations reduced the negative effects of metals on faunal activity. Micro morphological analyses showed the impacts of metal on soil ecological functions in industrial site, where the surface soils are devoid of any evidence of faunal activity; likely due to high proportion of Pb and Zn in organic components. Therefore, the impacts of metals in soil fauna activities, hence ecological functions of soils, are best evaluated by the knowledge of metal partitioning on solid phases in combination with observations of fauna activities using micro morphological techniques.

  20. Micromorphological and Chemical Approaches to Understand Changes in Ecological Functions of Metal-Impacted Soils under Various Land Uses

    Directory of Open Access Journals (Sweden)

    J. A. Acosta

    2011-01-01

    Full Text Available We investigated the changes in faunal activities as measures of the ecological functions of soils impacted by potentially toxic metals (PTMs under urban, industrial, agricultural, and natural uses. Concentrations and distributions of Zn, Cd, Pb, Cu, Mn, and Fe were estimated by sequential chemical extractions, while relicts and present faunal activities were studied by micromorphological analyses. Urban and natural lands were contaminated with Pb, Cd, and Zn. Microarthropods and fungi are observed to be active in the litter decomposition in natural, agricultural and urban lands which indicates that total concentration of PTMs in soils is not a good indicator to evaluate the limitations of PTMs to fauna activity. Metals immobilization on carbonates and Fe/Mn oxides, and fertilizations reduced the negative effects of metals on faunal activity. Micromorphological analyses showed the impacts of metal on soil ecological functions in industrial site, where the surface soils are devoid of any evidence of faunal activity; likely due to high proportion of Pb and Zn in organic components. Therefore, the impacts of metals in soil fauna activities, hence ecological functions of soils, are best evaluated by the knowledge of metal partitioning on solid phases in combination with observations of fauna activities using micromorphological techniques.

  1. Modelling marine community responses to climate-driven species redistribution to guide monitoring and adaptive ecosystem-based management

    NARCIS (Netherlands)

    Marzloff, Martin Pierre; Melbourne-Thomas, Jessica; Hamon, Katell G.; Hoshino, Eriko; Jennings, Sarah; Putten, Van Ingrid E.; Pecl, Gretta T.

    2016-01-01

    As a consequence of global climate-driven changes, marine ecosystems are experiencing polewards redistributions of species – or range shifts – across taxa and throughout latitudes worldwide. Research on these range shifts largely focuses on understanding and predicting changes in the distribution of

  2. Capital mobility, tax competition, and lobbying for redistributive capital taxation

    OpenAIRE

    Lorz, Jens Oliver

    1996-01-01

    This paper analyzes the impact of international capital mobility on redistributive capital taxation and on lobbying activities by interest groups. It employs a model where different capital endowments lead to a conflict between households concerning their most preferred capital tax rate. Three main results are derived: First, redistributive source based capital taxes or subsidies decline as international tax competition intensifies. Second, lobbying activities of certain interest groups may e...

  3. Social norms on rent seeking and preferences for redistribution

    OpenAIRE

    Sabatini, Fabio; Sarracino, Francesco; Yamamura, Eiji

    2014-01-01

    Empirical studies have shown that preferences for redistribution are sig- nificantly correlated with expectations of future mobility and the belief that society offers equal opportunities. We add to previous research by inves- tigating the role of individual and social norms on rent seeking. We find that the individual propensity for stigmatizing rent seeking significantly and positively affects preferences for redistribution. On the other hand, living in an area where most citizens do not st...

  4. Working time flexibilization and the redistribution of work

    OpenAIRE

    Gomes, Joana Adelina Madeira

    2017-01-01

    Nowadays, the fast pace of the transformations in the world of labour and the threat of unemployment lead us to assess the need of work redistribution measures, among which is the flexibilization of working hours. In this context, this thesis’ main aim is to investigate whether or not the flexibilization of working time is the best approach towards work redistribution. Adopting a qualitative approach, this study sets out to evaluate different flexibilization policies and to see to what extent...

  5. Perancangan dan Analisis Redistribution Routing Protocol OSPF dan EIGRP

    Directory of Open Access Journals (Sweden)

    DWI ARYANTA

    2014-07-01

    OSPF (Open Shortest Path First and EIGRP (Enhanced Interior Gateway Routing Protocol are two routing protocols are widely used in computer networks. Differences between the characteristics of routing protocols pose a problem in the delivery of data packets. Redistribution technique is the solution for communication between routing protocols. By using the software Cisco Packet Tracer 5.3 in this study were made simulating OSPF and EIGRP redistribution linked by technique, then compared its quality with a single EIGRP and OSPF routing protocols. Testing parameters in this study is the value of the time delay and trace route. Value trace route based on direct calculation of cost and metric compared with the simulation results. The result can be OSPF and EIGRP redistribution process. Value delay redistribution 1% better than OSPF and EIGRP 2-3% under traffic density dependent. In calculating the trace route redistribution is done 2 calculations, the cost for OSPF area and the area of the EIGRP metric. Making primary and alternate paths based on the packet delivery rate and the cost of the smallest metric, it is proved by calculation and simulation. Keywords: OSPF, EIGRP, Redistribution, Delay, Cost, Metric.

  6. Uncertainty in soil carbon accounting due to unrecognized soil erosion.

    Science.gov (United States)

    Sanderman, Jonathan; Chappell, Adrian

    2013-01-01

    The movement of soil organic carbon (SOC) during erosion and deposition events represents a major perturbation to the terrestrial carbon cycle. Despite the recognized impact soil redistribution can have on the carbon cycle, few major carbon accounting models currently allow for soil mass flux. Here, we modified a commonly used SOC model to include a soil redistribution term and then applied it to scenarios which explore the implications of unrecognized erosion and deposition for SOC accounting. We show that models that assume a static landscape may be calibrated incorrectly as erosion of SOC is hidden within the decay constants. This implicit inclusion of erosion then limits the predictive capacity of these models when applied to sites with different soil redistribution histories. Decay constants were found to be 15-50% slower when an erosion rate of 15 t soil ha(-1)  yr(-1) was explicitly included in the SOC model calibration. Static models cannot account for SOC change resulting from agricultural management practices focused on reducing erosion rates. Without accounting for soil redistribution, a soil sampling scheme which uses a fixed depth to support model development can create large errors in actual and relative changes in SOC stocks. When modest levels of erosion were ignored, the combined uncertainty in carbon sequestration rates was 0.3-1.0 t CO2  ha(-1)  yr(-1) . This range is similar to expected sequestration rates for many management options aimed at increasing SOC levels. It is evident from these analyses that explicit recognition of soil redistribution is critical to the success of a carbon monitoring or trading scheme which seeks to credit agricultural activities. © 2012 Blackwell Publishing Ltd.

  7. Interactive effects of nocturnal transpiration and climate change on the root hydraulic redistribution and carbon and water budgets of southern United States pine plantations

    Science.gov (United States)

    Jean-Christophe Domec; Jérôme Ogée; Asko Noormets; Julien Jouangy; Michael Gavazzi; Emrys Treasure; Ge Sun; Steve G. McNulty; John S. King

    2012-01-01

    Deep root water uptake and hydraulic redistribution (HR) have been shown to play a major role in forest ecosystems during drought, but little is known about the impact of climate change, fertilization and soil characteristics on HR and its consequences on water and carbon fluxes. Using data from three mid-rotation loblolly pine plantations, and simulations with the...

  8. Understanding Natural Gas Methane Leakage from Buried Pipelines as Affected by Soil and Atmospheric Conditions - Field Scale Experimental and Modeling Study

    Science.gov (United States)

    Smits, K. M.; Mitton, M.; Moradi, A.; Chamindu, D. K.

    2017-12-01

    Reducing the amount of leaked natural gas (NG) from pipelines from production to use has become a high priority in efforts to cut anthropogenic emissions of methane. In addition to environmental impacts, NG leakage can cause significant economic losses and safety failures such as fires and explosions. However, tracking and evaluating NG pipeline leaks requires a better understanding of the leak from the source to the detector as well as more robust quantification methods. Although recent measurement-based approaches continue to make progress towards this end, efforts are hampered due to the complexity of leakage scenarios. Sub- surface transport of leaked NG from pipelines occurs through complex transport pathways due to soil heterogeneities and changes in soil moisture. Furthermore, it is affected by variable atmospheric conditions such as winds, frontal passages and rain. To better understand fugitive emissions from NG pipelines, we developed a field scale testbed that simulates low pressure gas leaks from pipe buried in soil. The system is equipped with subsurface and surface sensors to continuously monitor changes in soil and atmospheric conditions (e.g. moisture, pressure, temperature) and methane concentrations. Using this testbed, we are currently conducting a series of gas leakage experiments to study of the impact of subsurface (e.g. soil moisture, heterogeneity) and atmospheric conditions (near-surface wind and temperature) on the detected gas signals and establish the relative importance of the many pathways for methane migration between the source and the sensor location. Accompanying numerical modeling of the system using the multiphase transport simulator TOUGH2-EOS7CA demonstrates the influence of leak location and direction on gas migration. These findings will better inform leak detectors of the leak severity before excavation, aiding with safety precautions and work order categorization for improved efficiency.

  9. New era of satellite chlorophyll fluorescence and soil moisture observations leads to advances in the predictive understanding of global terrestrial coupled carbon-water cycles

    Science.gov (United States)

    Qiu, B.; Xue, Y.; Fisher, J.; Guo, W.

    2017-12-01

    The terrestrial carbon cycle and water cycle are coupled through a multitude of connected processes among soil, roots, leaves, and the atmosphere. The strength and sensitivity of these couplings are not yet well known at the global scale, which contributes to uncertainty in predicting the terrestrial water and carbon budgets. For the first time, we now have synchronous, high fidelity, global-scale satellite observations of critical terrestrial carbon and water cycle components: sun-induced chlorophyll fluorescence (SIF) and soil moisture. We used these observations within the framework of a well-established global terrestrial biosphere model (Simplified Simple Biosphere Model version 2.0, SSiB2) to investigate carbon-water coupling processes. We updated SSiB2 to include a mechanistic representation of SIF and tested the sensitivity of model parameters to improve the simulation of both SIF and soil moisture with the ultimate objective of improving the first-order terrestrial carbon component, gross primary production (GPP). Although several vegetation parameters, such as leaf area index (LAI) and green leaf fraction, improved the simulated SIF, and several soil parameters, such as hydraulic conductivity, improved simulated soil moisture, their effects were mainly limited to their respective cycles. One parameter emerged as the key coupler between the carbon and water cycles: the wilting point. Updates to the wilting point significantly improved the simulations for both soil moisture and SIF, as well as GPP. This study demonstrates the value of synchronous global measurements of the terrestrial carbon and water cycles in improving the understanding of coupled carbon-water cycles.

  10. Fire as an agent in redistributing fallout 137Cs in the Canadian boreal forest

    International Nuclear Information System (INIS)

    Paliouris, G.; Svoboda, J.; Mierzynski, B.; Taylor, H.W.; Wein, R.W.

    1994-01-01

    The presence of fallout 137 Cs in the boreal forest and the effect of fire in redistributing 137 Cs were studied in the remote region of Wood Buffalo National Park, N.W.T., Canada. Results of a preliminary study of five burned (the fire occurred in 1981) and five unburned stands conducted in 1986 revealed that 137 Cs concentrations were higher in the surface soil of the burned stands than in the unburned ones. In 1989, a comprehensive study was conducted, in which one burned and one unburned white spruce stand were sampled in greater detail. The latter investigation also revealed a difference in the distribution of 137 Cs within the burned stand compared to the unburned one. Specifically, in the unburned stand, the highest 137 Cs concentration was identified in the epiphytic lichens and in the mosses, whereas in the burned stand, the highest concentration was measured in the surface organic soil. These results indicate that fire caused the mobilization of part of the 137 Cs bound to the above-ground matter and concentrated it in the ash layer of the burned surface soil. An additional ecologically important finding in our study was that significantly lower total 137 Cs load was observed in the burned stand compared to the unburned one. Hence, our data not only provide evidence that 137 Cs is being redistributed within the burned stand to the surface soil, but also that part of the 137 Cs is lost due to fire, presumably contaminating other ecosystems. Volatilization and fly-ash during the fire, and runoff (e.g. from snow melt) after the fire are the most likely mechanisms for the 137 Cs removal. These findings point to fire as an agent of 137 Cs secondary contamination for initially unaffected systems, as well as for those previously contaminated

  11. Spatially Resolved Carbon Isotope and Elemental Analyses of the Root-Rhizosphere-Soil System to Understand Below-ground Nutrient Interactions

    Science.gov (United States)

    Denis, E. H.; Ilhardt, P.; Tucker, A. E.; Huggett, N. L.; Rosnow, J. J.; Krogstad, E. J.; Moran, J.

    2017-12-01

    The intimate relationships between plant roots, rhizosphere, and soil are fostered by the release of organic compounds from the plant (through various forms of rhizodeposition) into soil and the simultaneous harvesting and delivery of inorganic nutrients from the soil to the plant. This project's main goal is to better understand the spatial controls on bi-directional nutrient exchange through the rhizosphere and how they impact overall plant health and productivity. Here, we present methods being developed to 1) spatially track the release and migration of plant-derived organics into the rhizosphere and soil and 2) map the local inorganic geochemical microenvironments within and surrounding the rhizosphere. Our studies focused on switchgrass microcosms containing soil from field plots at the Kellogg Biological Station (Hickory Corners, Michigan), which have been cropped with switchgrass for nearly a decade. We used a 13CO2 tracer to label our samples for both one and two diel cycles and tracked subsequent movement of labeled organic carbon using spatially specific δ13C analysis (with 50 µm resolution). The laser ablation-isotope ratio mass spectrometry (LA-IRMS) approach allowed us to map the extent of 13C-label migration into roots, rhizosphere, and surrounding soil. Preliminary results show the expected decrease of organic exudates with distance from a root and that finer roots (<0.1 mm) incorporated more 13C-label than thicker roots, which likely correlates to specific root growth rates. We are adapting both laser induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to spatially map inorganic nutrient content in the exact same samples used for LA-IRMS analysis. Both of these methods provide rapid surface mapping of a wide range of elements (with high dynamic range) at 150 μm spatial resolution. Preliminary results show that, based on elemental content, we can distinguish between roots, rhizosphere

  12. Effect of soil moisture and treatment volume on bentazone mobility in soil

    OpenAIRE

    Guimont, Sophie; Perrin-Ganier, Corinne; Real, Benoit; Schiavon, Michel

    2005-01-01

    Soil moisture affects the leaching behaviour of pesticides by inducing their physical entrapment in the soil structure. Columns containing soil aggregates were dampened to specific initial moisture levels. Bentazon was dripped onto surface aggregates in different volumes. The columns were then percolated after an equilibration period. Soil water from the columns was divided arbitrarily among mobile and immobile regions in order to describe the herbicide redistribution processes in the soil. W...

  13. Overload cascading failure on complex networks with heterogeneous load redistribution

    Science.gov (United States)

    Hou, Yueyi; Xing, Xiaoyun; Li, Menghui; Zeng, An; Wang, Yougui

    2017-09-01

    Many real systems including the Internet, power-grid and financial networks experience rare but large overload cascading failures triggered by small initial shocks. Many models on complex networks have been developed to investigate this phenomenon. Most of these models are based on the load redistribution process and assume that the load on a failed node shifts to nearby nodes in the networks either evenly or according to the load distribution rule before the cascade. Inspired by the fact that real power-grid tends to place the excess load on the nodes with high remaining capacities, we study a heterogeneous load redistribution mechanism in a simplified sandpile model in this paper. We find that weak heterogeneity in load redistribution can effectively mitigate the cascade while strong heterogeneity in load redistribution may even enlarge the size of the final failure. With a parameter θ to control the degree of the redistribution heterogeneity, we identify a rather robust optimal θ∗ = 1. Finally, we find that θ∗ tends to shift to a larger value if the initial sand distribution is homogeneous.

  14. Rhizosphere bacterial carbon turnover is higher in nucleic acids than membrane lipids: implications for understanding soil carbon cycling

    Directory of Open Access Journals (Sweden)

    Ashish A. Malik

    2015-04-01

    Full Text Available Using a pulse-chase 13CO2 plant labeling experiment we compared the flow of plant carbon into macromolecular fractions of root-associated soil microorganisms. Time dependent 13C dilution patterns in microbial cellular fractions were used to calculate their turnover time. The turnover times of microbial biomolecules were found to vary: microbial RNA (19 h and DNA (30 h turned over fastest followed by chloroform fumigation extraction-derived soluble cell lysis products (14 d, while phospholipid fatty acids (PLFAs had the slowest turnover (42 d. PLFA/NLFA 13C analyses suggest that both mutualistic arbuscular mycorrhizal and saprophytic fungi are dominant in initial plant carbon uptake. In contrast, high initial 13C enrichment in RNA hints at bacterial importance in initial C uptake due to the dominance of bacterial derived RNA in total extracts of soil RNA. To explain this discrepancy, we observed low renewal rate of bacterial lipids, which may therefore bias lipid fatty acid based interpretations of the role of bacteria in soil microbial food webs. Based on our findings, we question current assumptions regarding plant-microbe carbon flux and suggest that the rhizosphere bacterial contribution to plant assimilate uptake could be higher. This highlights the need for more detailed quantitative investigations with nucleic acid biomarkers to further validate these findings.

  15. Redistribution of thallium-201 into right ventricle through collateral circulation

    International Nuclear Information System (INIS)

    Kataoka, Hajime; Ohkubo, Toshitaka; Takaoka, Shigeru; Ohshige, Tamao; Miyahara, Kenkichi.

    1984-01-01

    The cases of reversible right ventricular ischemia, which demonstrated redistribution of thallium (Tl)-201 into the right ventricular free wall (RVFW) through collateral channels, were reported. Two cases with complete obstruction in the proximal right coronary artery accompanied by collateral channels (left coronary artery to distal right coronary artery) underwent submaximal exercise stress Tl-201 myocardial imaging. Although the RVFW was not visualized on immediate myocardial images in one or both of the 30 0 and 60 0 left anterior oblique views in each case, three-hour delayed myocardial images showed redistribution of Tl-201 into the RVFW. It was concluded that collateral circulation affects the occurrence of redistribution of Tl-201 into the RVFW. (author)

  16. The Redistribution of Trade Gains When Income Inequality Matters

    Directory of Open Access Journals (Sweden)

    Marco de Pinto

    2015-10-01

    Full Text Available How does a redistribution of trade gains affect welfare when income inequality matters? To answer this question, we extend the [1] model to unionized labor markets and heterogeneous workers. As redistribution schemes, we consider unemployment benefits that are financed either by a wage tax, a payroll tax or a profit tax. Assuming that welfare declines in income inequality, we find that welfare increases up to a maximum in the case of wage tax funding, while welfare declines weakly (sharply if a profit tax (payroll tax is implemented. These effects are caused by the wage tax neutrality (due to union wage setting and by a profit tax-induced decline in long-term unemployment. As a result, the government’s optimal redistribution scheme is to finance unemployment benefits by a wage tax.

  17. Global Redistributive Obligations in the Face of Severe Poverty

    DEFF Research Database (Denmark)

    Axelsen, David Vestergaard

    ? In the debate on global justice, a number of theorists argue that this discrepancy can indeed be justified (so-called anti-cosmopolitans). Thus, to bring us closer to answer regarding our redistributive obligations towards foreigners, I analyze and evaluate such arguments. My critical examination reveals...... comprehensive obligations to foreigners and compatriots simultaneously. Thus, even if we are duty-bound to redistribute comprehensively to compatriots, this does not entail that we could not also do so towards non-compatriots. Hence, their arguments are incomplete. Thirdly, I show that anti...

  18. Void redistribution in sand under post-earthquake loading

    International Nuclear Information System (INIS)

    Boulanger, R.W.; Truman, S.P.

    1996-01-01

    A mechanism for void redistribution in an infinite slope under post-earthquake loading conditions is described by consideration of the in situ loading paths that can occur under post-earthquake conditions and the results of triaxial tests designed to represent specific in situ post-earthquake loading paths. The mechanism is illustrated by application to an example problem. Void redistribution is shown to be a phenomena that may be more pronounced at the field scale than at the laboratory scale. (author). 12 refs., 4 figs

  19. [International migration and income redistribution: a trade-theoretic analysis].

    Science.gov (United States)

    Leiner, N; Meckl, J

    1995-05-01

    "We analyze the income-redistribution effects of international migration in the host and source country in a general equilibrium framework. The well-known result that marginal migration leaves the welfare of nonmigrants unaffected is discussed in more detail with regard to shifts in national income distributions. With endogenous goods' prices the consequences for the income distribution are in general ambiguous--we show possibilities for an estimation of their magnitude. As long as wage disparities determine the direction of migration it increases world efficiency. However, redistributive policies may generate migration towards the low-wage country." (SUMMARY IN ENG) excerpt

  20. Collisional redistribution effects on x-ray laser saturation behavior

    International Nuclear Information System (INIS)

    Koch, J.A.; MacGowan, B.J.; Da Silva, L.B.; Matthews, D.J.; Lee, R.W.; London, R.A.; Mrowka, S.; Underwood, J.H.; Batson, P.J.

    1994-06-01

    We recently published a detailed summary of our experimental and theoretical research on Ne-like Se x-ray laser line widths, and one of our conclusions was that collisional redistribution rates are likely to have an effect on the saturation behavior of the 206.4 angstrom Se x-ray laser. In this paper we focus on the effects of collisional redistribution on x-ray laser gain coefficients, and discuss ways of including these effects in existing laser line- transfer models

  1. Species redistribution during solidification of nuclear fuel waste metal castings

    Energy Technology Data Exchange (ETDEWEB)

    Naterer, G F; Schneider, G E [Waterloo Univ., ON (Canada)

    1994-12-31

    An enthalpy-based finite element model and a binary system species redistribution model are developed and applied to problems associated with solidification of nuclear fuel waste metal castings. Minimal casting defects such as inhomogeneous solute segregation and cracks are required to prevent container corrosion and radionuclide release. The control-volume-based model accounts for equilibrium solidification for low cooling rates and negligible solid state diffusion for high cooling rates as well as intermediate conditions. Test problems involving nuclear fuel waste castings are investigated and correct limiting cases of species redistribution are observed. (author). 11 refs., 1 tab., 13 figs.

  2. Carrying away and redistribution of radioisotopes on the Peyne catchment basin. Preliminary report

    International Nuclear Information System (INIS)

    Duffa, C.; Danic, F.

    2006-01-01

    The transfers of radioisotopes present in soils and sediments are essentially conditioned by the mobilities of the physical vectors which constitute their supports. The water is the main vector of natural transfer, radioisotopes being associated with it under dissolved or particulate shape. The rainout and the hydrous erosion are responsible in particular for the carrying away and for the redistribution of contaminants following an atmospheric deposit on a catchment basin. However their effect is not the same in any point of the catchment basin. The work begun here aims at elaborating a classification of the grounds sensitivity towards this phenomenon of radioisotopes carrying away. The different factors of sensitivity have been identified: pluviometry, slope, soils occupation and soils nature. The Peyne catchment basin, that presents an important variability of these four parameters, constitutes the experimental site for this study. On this catchment basin, we search to identify the areas the most sensitive to the carrying away of radioisotopes, by combining a theoretical predictive approach based on the cartography and a descriptive approach basing on the sampling and the analysis of soils samples. (N.C.)

  3. Redistribution of energetic particles by background turbulence

    International Nuclear Information System (INIS)

    Hauff, T.; Jenko, F.

    2007-01-01

    The quest to understand the turbulent transport of particles, momentum and energy in magnetized plasmas remains a key challenge in fusion research. A basic issue being .still relatively poorly understood is the turbulent ExB advection of charged test particles with large gyroradii. Especially the interaction of alpha particles or impurities with the background turbulence is of great interest. In order to understand the dependence of the particle diffusivity on the interaction mechanisms between FLR effects and the special structure of a certain type of turbulence, direct numerical simulations are done in artificially created two dimensional turbulent electrostatic fields, assuming a constant magnetic field. Finite gyroradius effects are introduced using the gyrokinetic approximation which means that the gyrating particle is simply replaced by a charged ring. Starting from an idealized isotropic potential with Gaussian autocorrelation function, numerous test particle simulations are done varying both the gyroradius and the Kubo number of the potential. It is found that for Kubo numbers larger than about unity, the particle diffusivity is almost independent of the gyroradius as long as the latter does not exceed the correlation length of the electrostatic potential, whereas for small Kubo numbers the diffusivity is monotonically reduced. The underlying physical mechanisms of this behavior are identified and an analytic approach is developed which favorably agrees with the simulation results. The investigations are extended by introducing anisotropic structures like streamers and zonal flows into the artificial potential, leading to quantitative modulations of the gyroradius dependence of the diffusion coefficient. Analytic models are used to explain these various effects. After having developed a general overview on the behavior in simplified artificial potentials, test particle simulations in realistic turbulence created by the gyrokinetic turbulence code GENE are

  4. Dissolved organic matter from soils contaminated by coal tars: towards a better understanding of its nature and reactivity

    International Nuclear Information System (INIS)

    Hanser, Ogier

    2015-01-01

    A large amount of wastelands inherited from former industrial activities contains persistent organic contamination (coal, coal tar...). While the regulation requires an evaluation of the contamination degree of these soils, it doesn't take into account the transformation byproducts such as polar compounds, poorly studied. Yet they solubilize in aqueous phase by percolation of meteoric waters through these contaminated sites. Despite the fact that literature targeting the fresh DOM is abundant, it is not directly transposable to the anthropogenic DOM coming from wastelands, which still need to be more precisely defined to improve our knowledge of this specific DOM and its evolution over time. A multi-technical approach was developed to comprehend the anthropogenic DOM coming from former coking and gas plant soils, thanks to a combination of laboratory experiments (under controlled conditions) and on field devices (lysimeters). Their study show that they contained a high aromatic DOM, while the aromatic polycyclic compounds only consist of a low proportion of the total DOM. Complementary experiences targeting the influence of some parameters (pH, hydrophobicity) suggest a strong link between the pH and the spatial DOM organization and a decrease in the apparent molecular weight with the hydrophobicity. Artificial aging experiences show an enrichment in polar condensed compounds leading to their water mobilization. (author) [fr

  5. Understanding SMAP-L4 soil moisture estimation skill and their dependence with topography, precipitation and vegetation type using Mesonet and Micronet networks.

    Science.gov (United States)

    Moreno, H. A.; Basara, J. B.; Thompson, E.; Bertrand, D.; Johnston, C. S.

    2017-12-01

    Soil moisture measurements using satellite information can benefit from a land data assimilation model Goddard Earth Observing System (GEOS-5) and land data assimilation system (LDAS) to improve the representation of fine-scale dynamics and variability. This work presents some advances to understand the predictive skill of L4-SM product across different land-cover types, topography and precipitation totals, by using a dense network of multi-level soil moisture sensors (i.e. Mesonet and Micronet) in Oklahoma. 130 soil moisture stations are used across different precipitation gradients (i.e. arid vs wet), land cover (e.g. forest, shrubland, grasses, crops), elevation (low, mid and high) and slope to assess the improvements by the L4_SM product relative to the raw SMAP L-band brightness temperatures. The comparisons are conducted between July 2015 and July 2016 at the daily time scale. Results show the highest L4-SM overestimations occur in pastures and cultivated crops, during the rainy season and at higher elevation lands (over 800 meters asl). The smallest errors occur in low elevation lands, low rainfall and developed lands. Forested area's soil moisture biases lie in between pastures (max biases) and low intensity/developed lands (min biases). Fine scale assessment of L4-SM should help GEOS-5 and LDAS teams refine model parameters in light of observed differences and improve assimilation techniques in light of land-cover, topography and precipitation regime. Additionally, regional decision makers could have a framework to weight the utility of this product for water resources applications.

  6. Inelastic diffraction nuclear processes with redistribution of particles

    International Nuclear Information System (INIS)

    Sitenko, A.G.; Goryachij, V.V.; Peresypkin, V.V.

    1979-01-01

    The inelastic nuclear processes at high energies with redistribution of particles are described within the framework of the diffraction approach. The capture processes (p,d) and (p,p'n) generated by the high energy nucleon collision with nuclei are considered. The angular distribution of 4 He(p,d) 3 He reaction is calculated and compared with experimental data

  7. Income inequality, redistribution and the position of the decisive voter

    NARCIS (Netherlands)

    Groot, L.F.M.; van der Linde, D.E.

    2016-01-01

    A large literature explaining patterns of redistribution makes use of the median voter theorem. Using a novel approach, this contribution shows that in OECD countries the decisive voter, determined by the earner who sees her preferred tax rate being implemented, on average sits around the 50th

  8. Decentralisation and Interregional Redistribution in the Italian Education System

    Science.gov (United States)

    Ferrari, Irene; Zanardi, Alberto

    2014-01-01

    The aim of this paper is to evaluate the potential impact of the reform designed to decentralise public education in Italy, currently under discussion, on interregional redistribution. The central government has always played a prominent financial and administrative role in the provision of compulsory education in Italy. This has had a strong…

  9. Isotope exchange investigation of nitrogen redistribution in expanded austenite

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Drouet, M.; Martinavičius, A.

    2013-01-01

    Sequential plasma and gaseous nitriding of Fe–18Cr–10Ni–3Mo stainless steel at 390°C with 14N and 15N isotopes followed by denitriding in flowing hydrogen was investigated. Redistribution of plasma-inserted nitrogen atoms (15N) by subsequent gaseous nitriding (14N) was observed. Denitriding after...

  10. Fast Ion Redistribution and Implications for the Hybrid Regime

    International Nuclear Information System (INIS)

    Nazikian, R.; Austin, M.E.; Budny, R.V.; Chu, M.S.; Heidbrink, W.W.; Makowski, M.A.; Petty, C.C.; Politzer, P.A.; Solomon, W.M.; Van Zeeland, M.A.

    2007-01-01

    Time dependent TRANSP analysis indicates that radial redistribution of fast ions is unlikely to affect the central current density in hybrid plasmas sufficient to raise q(0) above unity. The results suggest that some other mechanism other than fast ion transport must be involved in raising q(0) and preventing sawteeth in hybrid plasmas.

  11. Helical undulator based on partial redistribution of uniform magnetic field

    Science.gov (United States)

    Balal, N.; Bandurkin, I. V.; Bratman, V. L.; Fedotov, A. E.

    2017-12-01

    A new type of helical undulator based on redistribution of magnetic field of a solenoid by ferromagnetic helix has been proposed and studied both in theory and experiment. Such undulators are very simple and efficient for promising sources of coherent spontaneous THz undulator radiation from dense electron bunches formed in laser-driven photo-injectors.

  12. Helical undulator based on partial redistribution of uniform magnetic field

    Directory of Open Access Journals (Sweden)

    N. Balal

    2017-12-01

    Full Text Available A new type of helical undulator based on redistribution of magnetic field of a solenoid by ferromagnetic helix has been proposed and studied both in theory and experiment. Such undulators are very simple and efficient for promising sources of coherent spontaneous THz undulator radiation from dense electron bunches formed in laser-driven photo-injectors.

  13. Is a Minimum Wage an Appropriate Instrument for Redistribution?

    NARCIS (Netherlands)

    A.A.F. Gerritsen (Aart); B. Jacobs (Bas)

    2016-01-01

    textabstractWe analyze the redistributional (dis)advantages of a minimum wage over income taxation in competitive labor markets, without imposing assumptions on the (in)efficiency of labor rationing. Compared to a distributionally equivalent tax change, a minimum-wage increase raises involuntary

  14. The redistribution of granulocytes following E. coli endotoxin induced sepsis

    DEFF Research Database (Denmark)

    Toft, P; Lillevang, S T; Tønnesen, Else Kirstine

    1994-01-01

    Infusion of endotoxin elicits granulocytopenia followed by increased numbers of granulocytes in peripheral blood. The purpose of this study was to investigate the redistribution and sequestration of granulocytes in the tissues following E. coli endotoxin induced sepsis. From 16 rabbits granulocytes...

  15. Redistribution, Recognition and Representation: Working against Pedagogies of Indifference

    Science.gov (United States)

    Lingard, Bob; Keddie, Amanda

    2013-01-01

    This paper reports on an Australian government-commissioned research study that documented classroom pedagogies in 24 Queensland schools. The research created the model of "productive pedagogies", which conjoined what Nancy Fraser calls a politics of redistribution, recognition and representation. In this model pedagogies are…

  16. Complex boron redistribution kinetics in strongly doped polycrystalline-silicon/nitrogen-doped-silicon thin bi-layers

    Energy Technology Data Exchange (ETDEWEB)

    Abadli, S. [Department of Electrical Engineering, University Aout 1955, Skikda, 21000 (Algeria); LEMEAMED, Department of Electronics, University Mentouri, Constantine, 25000 (Algeria); Mansour, F. [LEMEAMED, Department of Electronics, University Mentouri, Constantine, 25000 (Algeria); Pereira, E. Bedel [CNRS-LAAS, 7 avenue du colonel Roche, 31077 Toulouse (France)

    2012-10-15

    We have investigated the complex behaviour of boron (B) redistribution process via silicon thin bi-layers interface. It concerns the instantaneous kinetics of B transfer, trapping, clustering and segregation during the thermal B activation annealing. The used silicon bi-layers have been obtained by low pressure chemical vapor deposition (LPCVD) method at 480 C, by using in-situ nitrogen-doped-silicon (NiDoS) layer and strongly B doped polycrystalline-silicon (P{sup +}) layer. To avoid long-range B redistributions, thermal annealing was carried out at relatively low-temperatures (600 C and 700 C) for various times ranging between 30 min and 2 h. To investigate the experimental secondary ion mass spectroscopy (SIMS) doping profiles, a redistribution model well adapted to the particular structure of two thin layers and to the effects of strong-concentrations has been established. The good adjustment of the simulated profiles with the experimental SIMS profiles allowed a fundamental understanding about the instantaneous physical phenomena giving and disturbing the complex B redistribution profiles-shoulders. The increasing kinetics of the B peak concentration near the bi-layers interface is well reproduced by the established model. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. A computational model of the fetal circulation to quantify blood redistribution in intrauterine growth restriction.

    Directory of Open Access Journals (Sweden)

    Patricia Garcia-Canadilla

    2014-06-01

    Full Text Available Intrauterine growth restriction (IUGR due to placental insufficiency is associated with blood flow redistribution in order to maintain delivery of oxygenated blood to the brain. Given that, in the fetus the aortic isthmus (AoI is a key arterial connection between the cerebral and placental circulations, quantifying AoI blood flow has been proposed to assess this brain sparing effect in clinical practice. While numerous clinical studies have studied this parameter, fundamental understanding of its determinant factors and its quantitative relation with other aspects of haemodynamic remodeling has been limited. Computational models of the cardiovascular circulation have been proposed for exactly this purpose since they allow both for studying the contributions from isolated parameters as well as estimating properties that cannot be directly assessed from clinical measurements. Therefore, a computational model of the fetal circulation was developed, including the key elements related to fetal blood redistribution and using measured cardiac outflow profiles to allow personalization. The model was first calibrated using patient-specific Doppler data from a healthy fetus. Next, in order to understand the contributions of the main parameters determining blood redistribution, AoI and middle cerebral artery (MCA flow changes were studied by variation of cerebral and peripheral-placental resistances. Finally, to study how this affects an individual fetus, the model was fitted to three IUGR cases with different degrees of severity. In conclusion, the proposed computational model provides a good approximation to assess blood flow changes in the fetal circulation. The results support that while MCA flow is mainly determined by a fall in brain resistance, the AoI is influenced by a balance between increased peripheral-placental and decreased cerebral resistances. Personalizing the model allows for quantifying the balance between cerebral and peripheral

  18. Redistribution effects of energy and climate policy: The electricity market

    International Nuclear Information System (INIS)

    Hirth, Lion; Ueckerdt, Falko

    2013-01-01

    Energy and climate policies are usually seen as measures to internalize externalities. However, as a side effect, the introduction of these policies redistributes wealth between consumers and producers, and within these groups. While redistribution is seldom the focus of the academic literature in energy economics, it plays a central role in public debates and policy decisions. This paper compares the distributional effects of two major electricity policies: support schemes for renewable energy sources, and CO 2 pricing. We find that the redistribution effects of both policies are large, and they work in opposed directions. While renewables support transfers wealth from producers to consumers, carbon pricing does the opposite. More specifically, we show that moderate amounts of wind subsidies can increase consumer surplus, even if consumers bear the subsidy costs. CO 2 pricing, in contrast, increases aggregated producer surplus, even without free allocation of emission allowances; however, not all types of producers benefit. These findings are derived from an analytical model of electricity markets, and a calibrated numerical model of Northwestern Europe. Our findings imply that if policy makers want to avoid large redistribution they might prefer a mix of policies, even if CO 2 pricing alone is the first-best climate policy in terms of allocative efficiency. -- Graphical abstract: Display Omitted -- Highlights: •CO 2 pricing and renewables support have strikingly different impacts on rents. •Carbon pricing increases producer surplus and decreases consumer surplus. •Renewable support schemes (portfolio standards, feed-in tariffs) do the opposite. •We model these impacts theoretically and quantify them for Europe. •Redistribution of wealth is found to be significant in size

  19. Life cycle assessment of pig slurry treatment technologies for nutrient redistribution in Denmark

    DEFF Research Database (Denmark)

    ten Hoeve, Marieke; Hutchings, Nicholas John; Peters, Gregory M.

    2014-01-01

    Animal slurry management is associated with a range of impacts on fossil resource use and the environment. The impacts are greatest when large amounts of nutrient-rich slurry from livestock production cannot be adequately utilised on adjacent land. To facilitate nutrient redistribution, a range...... of different technologies are available. This study comprised a life cycle assessment of the environmental impacts from handling 1000. kg of pig slurry ex-animal. Application of untreated pig slurry onto adjacent land was compared with using four different treatment technologies to enable nutrient...... on a combination of values derived from the literature and simulations with the Farm-N model for Danish agricultural and climatic conditions. The environmental impact categories assessed were climate change, freshwater eutrophication, marine eutrophication, terrestrial acidification, natural resource use, and soil...

  20. Rooted in the Soil: How Understanding the Perspectives of Landowners Can Enhance the Management of Environmental Disputes.

    Science.gov (United States)

    Peterson, Tarla Rai; Horton, Cristi Choat

    1995-01-01

    Uses mythic criticism to examine missed opportunities for identifying with landowners in ways that would enhance the constructive management of environmental disputes. Offers an alternative mythic understanding of the American West drawn from discourse with Texas ranchers. Argues for the inclusion of communities that are directly influenced, yet…

  1. The fate of eroded soil organic carbon along a European transect – controls after deposition in terrestrial and aquatic systems

    DEFF Research Database (Denmark)

    Kirkels, Frédérique; Cammeraat, Erik; Kalbitz, Karsten

    that the turnover of deposited C is significantly affected by soil and organic matter properties, and whether deposition occurs in terrestrial or aquatic environments. We sampled topsoils from 10 agricultural sites along a European transect, spanning a wide range of SOC and soil characteristics (e.g. texture......The potential fate of eroded soil organic carbon (SOC) after deposition is key to understand carbon cycling in eroding landscapes. Globally, large quantities of sediments and SOC are redistributed by soil erosion on agricul-tural land, particularly after heavy precipitation events. Deposition......, aggregation, C content, etc.). Turnover of SOC was determined for terrestrial and aquatic depositional conditions in a 10-week incubation study. Moreover, we studied the impact of labile carbon inputs (‘priming’) on SOC stability using 13C labelled cellulose. We evaluated potentially important controls...

  2. Effects of plutonium redistribution on lung counting

    International Nuclear Information System (INIS)

    Swinth, K.L.

    1976-01-01

    Early counts of Pu deposition in lungs will tend to overestimate lung contents since calibrations are performed with a uniform distribution and since a more favorable geometry exists in contaminated subjects because the activity is closer to the periphery of the lungs. Although the concentration into the outer regions of the lungs continues as evidenced by the autopsy studies, the counts performed by L X-rays will probably underestimate the lung content; because, simplistically, the geometry several years after exposure consists of a spherical shell with a point of activity in the center. This point of activity represents concentration in the lymph nodes from which the 60 keV gamma of 241 Am will be counted, but from which few of the L X-rays will be counted (this is an example of interorgan distribution). When a correction is made to the L X-ray intensity, the lymph node contribution will tend to increase the amount subtracted while correcting for 241 Am X-rays. It is doubtful that the relative increase in X-ray intensity by concentration in the pleural and sub-pleural regions will compensate for this effect. This will make the plutonium burden disappear while the 241 Am can still be detected. This effect has been observed in a case where counts with an intraesophageal probe indicated a substantial lymph node burden. In order to improve the accuracy of in vivo plutonium measurements, an improved understanding of pulmonary distribution and of distribution effects on in vivo counting are required

  3. Modelled hydraulic redistribution by sunflower (Helianthus annuus L.) matches observed data only after including night-time transpiration.

    Science.gov (United States)

    Neumann, Rebecca B; Cardon, Zoe G; Teshera-Levye, Jennifer; Rockwell, Fulton E; Zwieniecki, Maciej A; Holbrook, N Michele

    2014-04-01

    The movement of water from moist to dry soil layers through the root systems of plants, referred to as hydraulic redistribution (HR), occurs throughout the world and is thought to influence carbon and water budgets and ecosystem functioning. The realized hydrologic, biogeochemical and ecological consequences of HR depend on the amount of redistributed water, whereas the ability to assess these impacts requires models that correctly capture HR magnitude and timing. Using several soil types and two ecotypes of sunflower (Helianthus annuus L.) in split-pot experiments, we examined how well the widely used HR modelling formulation developed by Ryel et al. matched experimental determination of HR across a range of water potential driving gradients. H. annuus carries out extensive night-time transpiration, and although over the last decade it has become more widely recognized that night-time transpiration occurs in multiple species and many ecosystems, the original Ryel et al. formulation does not include the effect of night-time transpiration on HR. We developed and added a representation of night-time transpiration into the formulation, and only then was the model able to capture the dynamics and magnitude of HR we observed as soils dried and night-time stomatal behaviour changed, both influencing HR. © 2013 John Wiley & Sons Ltd.

  4. Soil shrinkage characteristics in swelling soils

    International Nuclear Information System (INIS)

    Taboada, M.A.

    2004-01-01

    The objectives of this presentation are to understand soil swelling and shrinkage mechanisms, and the development of desiccation cracks, to distinguish between soils having different magnitude of swelling, as well as the consequences on soil structural behaviour, to know methods to characterize soil swell/shrink potential and to construct soil shrinkage curves, and derive shrinkage indices, as well to apply them to assess soil management effects

  5. 47 CFR 73.9001 - Redistribution control of digital television broadcasts.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Redistribution control of digital television... RADIO SERVICES RADIO BROADCAST SERVICES Digital Broadcast Television Redistribution Control § 73.9001 Redistribution control of digital television broadcasts. Licensees of TV broadcast stations may utilize the...

  6. Radiative redistribution modeling for hot and dense plasmas

    International Nuclear Information System (INIS)

    Mosse, C.; Calisti, A.; Talin, B.; Stamm, R.; Lee, R. W.; Klein, L.

    1999-01-01

    A model based on an extension of the Frequency Fluctuation Model (FFM) is developed to investigate the two-photon processes and particularly the radiative redistribution functions for complex emitters in a wide range of plasmas conditions. The FFM, originally, designed as a fast and reliable numerical procedure for the calculation of the spectral shape of the Stark broadened lines emitted by multi-electron ions, relies on the hypothesis that the emitter-plasma system can be well represented by a set of 'Stark Dressed Transitions', SDT. These transitions connected to each others through a stochastic mixing process accounting for the local microfield random fluctuations, form the basis for the extension of the FFM to computation of non-linear response functions. The formalism of the second order radiative redistribution function is presented and examples are shown

  7. Charge redistribution and properties of high-temperature superconductors

    International Nuclear Information System (INIS)

    Khomskii, D.I.; Kusmartsev, F.V.

    1992-01-01

    We show that in high-T c superconductors (HTSC) with two groups of electrons (e.g., holes in CuO 2 planes and in a ''reservoir'') there should exist a charge redistribution with the temperature: the hole concentration N h in ''active'' superconducting CuO 2 planes increases below T c . This effect may explain structural changes such as the shift of the apical oxygen atom, anomalous thermal expansion, the shift of nuclear quadrupole resonance lines, the change of the positron lifetime, and the modification of the ion channeling below T c . Some other possible consequences of the charge redistribution (the modification of the temperature dependence of a gap Δ and of the ratio 2Δ 0 /T c , the phenomena at a contact of HTSC with normal metals and semiconductors) are discussed

  8. The redistribution of granulocytes following E. coli endotoxin induced sepsis

    DEFF Research Database (Denmark)

    Toft, P; Lillevang, S T; Tønnesen, Else Kirstine

    1994-01-01

    Infusion of endotoxin elicits granulocytopenia followed by increased numbers of granulocytes in peripheral blood. The purpose of this study was to investigate the redistribution and sequestration of granulocytes in the tissues following E. coli endotoxin induced sepsis. From 16 rabbits granulocytes...... were isolated, labelled with Indium and reinjected intravenously. Eight rabbits received an infusion of E. coli endotoxin 2 micrograms kg-1 while eight received isotonic saline. The redistribution of granulocytes was imaged with a gamma camera and calculated with a connected computer before and 2 and 6...... hours after infusion of endotoxin or saline. Serum cortisol and interleukin-1 beta were measured. In another seven rabbits, respiratory burst activity and degranulation of granulocytes were measured prior to and from 5 min to 6 hours after infusion of E. coli endotoxin 2 micrograms kg-1 BW. Following...

  9. Responsibility and Redistribution: The Case of First Best Taxation

    OpenAIRE

    Bertil Tungodden

    2001-01-01

    It is not straightforward to define the ethics of responsibility in cases where the consequences of changes in factors within our control are partly determined by factors beyond our control. In this paper, we suggest that one plausible view is to keep us responsible for the parts of the consequences that are independent of the factors beyond our control. Within the framework of a first best taxation problem, we present and characterise a redistributive mechanism that both satisfies this inter...

  10. Myocardial viability assessed by Tl-201 SPECT. Redistribution versus reinjection

    International Nuclear Information System (INIS)

    Chalela, William Azem; Pimentel, Flavio Ferrarini de Oliveira; Uchida, Augusto Hiroshi; Bottega, Augusto; Ramires, Jose Antonio Franchine; Izaki, Marisa; Moraes, Aguinaldo Pereira; Soares Junior, Jose; Giorgi, Maria C. Pinto; Moffa, Paulo Jorge; Bellotti, Giovanni; Giovanni Guido Cerri; Meneghetti, Jose Claudio

    1994-01-01

    The purpose of this study was to verify if a third series of images acquired by reinjection thallium-201, 24 h after conventional myocardial perfusion with the radioisotope, improves the identification of myocardial viability segments. The methods: we studied 30 patients, mean age 57.7 ±9.4 years, with old myocardial infarction using thallium (Tl)-201 SPECT, and we obtained three series of images (stress, redistribution after 4 h and reinjection after 24 h. Cardiac images were divided in 5 segments (apical, lateral, anterior, septal and inferior) and each one received a value by a score system according to the Tl-201 myocardial uptake (0=normal uptake; 1=mild hypoperfusion; 2=moderate hypoperfusion; 3=severe hypoperfusion or no myocardial uptake). We considered viable myocardium when the uptake of Tl-201 in the segment related to te myocardial infarction increases at least 1 point in two different axis of Tl-201 SPECT. The results: seven (23,3%) patients demonstrated increase of Tl-201 uptake only at reinjection images, showing a high efficacy of the method. Nine (30%) patients showed persistent hypoperfusion at all series of images suggesting only fibrosis in the are related to the infarction. Fourteen (46,7%) patients showed increase of Tl-201 concentration at redistribution images; among these patients, six showed improvement of myocardial uptake at reinjection. This condition was interpreted as regional chronic ischemic process: hibernating myocardium. The conclusion was that Tl-201 hypoperfusion at redistribution images without significant changes in relation to the stress images do not represent fibrosis at all. The reinjection technic was better than conventional redistribution in the detection of viable myocardium. This data allows a better therapeutic orientation. (author)

  11. Cascading failures in interdependent systems under a flow redistribution model

    Science.gov (United States)

    Zhang, Yingrui; Arenas, Alex; Yaǧan, Osman

    2018-02-01

    Robustness and cascading failures in interdependent systems has been an active research field in the past decade. However, most existing works use percolation-based models where only the largest component of each network remains functional throughout the cascade. Although suitable for communication networks, this assumption fails to capture the dependencies in systems carrying a flow (e.g., power systems, road transportation networks), where cascading failures are often triggered by redistribution of flows leading to overloading of lines. Here, we consider a model consisting of systems A and B with initial line loads and capacities given by {LA,i,CA ,i} i =1 n and {LB,i,CB ,i} i =1 n, respectively. When a line fails in system A , a fraction of its load is redistributed to alive lines in B , while remaining (1 -a ) fraction is redistributed equally among all functional lines in A ; a line failure in B is treated similarly with b giving the fraction to be redistributed to A . We give a thorough analysis of cascading failures of this model initiated by a random attack targeting p1 fraction of lines in A and p2 fraction in B . We show that (i) the model captures the real-world phenomenon of unexpected large scale cascades and exhibits interesting transition behavior: the final collapse is always first order, but it can be preceded by a sequence of first- and second-order transitions; (ii) network robustness tightly depends on the coupling coefficients a and b , and robustness is maximized at non-trivial a ,b values in general; (iii) unlike most existing models, interdependence has a multifaceted impact on system robustness in that interdependency can lead to an improved robustness for each individual network.

  12. Land Policy Changes and Land Redistribution in Ecuador

    Directory of Open Access Journals (Sweden)

    María Belén Albornoz Barriga

    2016-12-01

    Full Text Available This paper examines three distinct periods of policy change and land redistribution in Ecuador through the agrarian reform laws of 1964, 1973 and 2010. A comparative case study of each moment of the law reforms was based on the instruments and policy network approach. In order to explain public policy process design, the high incidence of collective domains led by agribusiness on government management, and the incidence of indigenous organizations and farmers over the state action.

  13. Solute redistribution in dendritic solidification with diffusion in the solid

    Science.gov (United States)

    Ganesan, S.; Poirier, D. R.

    1989-01-01

    An investigation of solute redistribution during dendritic solidification with diffusion in the solid has been performed using numerical techniques. The extent of diffusion is characterized by the instantaneous and average diffusion parameters. These parameters are functions of the diffusion Fourier number, the partition ratio and the fraction solid. Numerical results are presented as an approximate model, which is used to predict the average diffusion parameter and calculate the composition of the interdendritic liquid during solidification.

  14. Electromagnetic Field Redistribution in Metal Nanoparticle on Graphene.

    Science.gov (United States)

    Li, Keke; Liu, Anping; Wei, Dapeng; Yu, Keke; Sun, Xiaonan; Yan, Sheng; Huang, Yingzhou

    2018-04-25

    Benefiting from the induced image charge on metal film, the light energy is confined on a film surface under metal nanoparticle dimer, which is called electromagnetic field redistribution. In this work, electromagnetic field distribution of metal nanoparticle monomer or dimer on graphene is investigated through finite-difference time-domain method. The results point out that the electromagnetic field (EM) redistribution occurs in this nanoparticle/graphene hybrid system at infrared region where light energy could also be confined on a monolayer graphene surface. Surface charge distribution was analyzed using finite element analysis, and surface-enhanced Raman spectrum (SERS) was utilized to verify this phenomenon. Furthermore, the data about dielectric nanoparticle on monolayer graphene demonstrate this EM redistribution is attributed to strong coupling between light-excited surface charge on monolayer graphene and graphene plasmon-induced image charge on dielectric nanoparticle surface. Our work extends the knowledge of monolayer graphene plasmon, which has a wide range of applications in monolayer graphene-related film.

  15. Role of Sink Density in Nonequilibrium Chemical Redistribution in Alloys

    Science.gov (United States)

    Martínez, Enrique; Senninger, Oriane; Caro, Alfredo; Soisson, Frédéric; Nastar, Maylise; Uberuaga, Blas P.

    2018-03-01

    Nonequilibrium chemical redistribution in open systems submitted to external forces, such as particle irradiation, leads to changes in the structural properties of the material, potentially driving the system to failure. Such redistribution is controlled by the complex interplay between the production of point defects, atomic transport rates, and the sink character of the microstructure. In this work, we analyze this interplay by means of a kinetic Monte Carlo (KMC) framework with an underlying atomistic model for the Fe-Cr model alloy to study the effect of ideal defect sinks on Cr concentration profiles, with a particular focus on the role of interface density. We observe that the amount of segregation decreases linearly with decreasing interface spacing. Within the framework of the thermodynamics of irreversible processes, a general analytical model is derived and assessed against the KMC simulations to elucidate the structure-property relationship of this system. Interestingly, in the kinetic regime where elimination of point defects at sinks is dominant over bulk recombination, the solute segregation does not directly depend on the dose rate but only on the density of sinks. This model provides new insight into the design of microstructures that mitigate chemical redistribution and improve radiation tolerance.

  16. McMaster Mesonet soil moisture dataset: description and spatio-temporal variability analysis

    Directory of Open Access Journals (Sweden)

    K. C. Kornelsen

    2013-04-01

    Full Text Available This paper introduces and describes the hourly, high-resolution soil moisture dataset continuously recorded by the McMaster Mesonet located in the Hamilton-Halton Watershed in Southern Ontario, Canada. The McMaster Mesonet consists of a network of time domain reflectometer (TDR probes collecting hourly soil moisture data at six depths between 10 cm and 100 cm at nine locations per site, spread across four sites in the 1250 km2 watershed. The sites for the soil moisture arrays are designed to further improve understanding of soil moisture dynamics in a seasonal climate and to capture soil moisture transitions in areas that have different topography, soil and land cover. The McMaster Mesonet soil moisture constitutes a unique database in Canada because of its high spatio-temporal resolution. In order to provide some insight into the dominant processes at the McMaster Mesonet sites, a spatio-temporal and temporal stability analysis were conducted to identify spatio-temporal patterns in the data and to suggest some physical interpretation of soil moisture variability. It was found that the seasonal climate of the Great Lakes Basin causes a transition in soil moisture patterns at seasonal timescales. During winter and early spring months, and at the meadow sites, soil moisture distribution is governed by topographic redistribution, whereas following efflorescence in the spring and summer, soil moisture spatial distribution at the forested site was also controlled by vegetation canopy. Analysis of short-term temporal stability revealed that the relative difference between sites was maintained unless there was significant rainfall (> 20 mm or wet conditions a priori. Following a disturbance in the spatial soil moisture distribution due to wetting, the relative soil moisture pattern re-emerged in 18 to 24 h. Access to the McMaster Mesonet data can be provided by visiting www.hydrology.mcmaster.ca/mesonet.

  17. Current redistribution in resistor networks: Fat-tail statistics in regular and small-world networks.

    Science.gov (United States)

    Lehmann, Jörg; Bernasconi, Jakob

    2017-03-01

    The redistribution of electrical currents in resistor networks after single-bond failures is analyzed in terms of current-redistribution factors that are shown to depend only on the topology of the network and on the values of the bond resistances. We investigate the properties of these current-redistribution factors for regular network topologies (e.g., d-dimensional hypercubic lattices) as well as for small-world networks. In particular, we find that the statistics of the current redistribution factors exhibits a fat-tail behavior, which reflects the long-range nature of the current redistribution as determined by Kirchhoff's circuit laws.

  18. Zirconium hydrides and Fe redistribution in Zr-2.5%Nb alloy under ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Idrees, Y.; Yao, Z. [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, Canada, K7L 3N6 (Canada); Cui, J.; Shek, G.K. [Kinetrics, Mississauga, ON (Canada); Daymond, M.R., E-mail: daymond@queensu.ca [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, Canada, K7L 3N6 (Canada)

    2016-11-15

    Zr-2.5%Nb alloy is used to fabricate the pressure tubes of the CANDU reactor. The pressure tube is the primary pressure boundary for coolant in the CANDU design and is susceptible to delayed hydride cracking, reduction in fracture toughness upon hydride precipitation and potentially hydride blister formation. The morphology and nature of hydrides in Zr-2.5%Nb with 100 wppm hydrogen has been investigated using transmission electron microscopy. The effect of hydrides on heavy ion irradiation induced decomposition of the β phase has been reported. STEM-EDX mapping was employed to investigate the distribution of alloying elements. The results show that hydrides are present in the form of stacks of different sizes, with length scales from nano- to micro-meters. Heavy ion irradiation experiments at 250 °C on as-received and hydrided Zr-2.5%Nb alloy, show interesting effects of hydrogen on the irradiation induced redistribution of Fe. It was found that Fe is widely redistributed from the β phase into the α phase in the as-received material, however, the loss of Fe from the β phase and subsequent precipitation is retarded in the hydrided material. This preliminary work will further the current understanding of microstructural evolution of Zr based alloys in the presence of hydrogen. - Graphical abstract: STEM HAADF micrographs at low magnification showing the hydride structure in Zr-2.5Nb alloy.

  19. Segregation and Clustering Effects on Complex Boron Redistribution in Strongly Doped Polycrystalline-Silicon Layers

    International Nuclear Information System (INIS)

    Abadli, S.; Mansour, F.

    2011-01-01

    This work deals with the investigation of the complex phenomenon of boron (B) transient enhanced diffusion (TED) in strongly implanted silicon (Si) layers. It concerns the instantaneous influences of the strong B concentrations, the Si layers crystallization, the clustering and the B trapping/segregation during thermal post-implantation annealing. We have used Si thin layers obtained from disilane (Si2H6) by low pressure chemical vapor deposition (LPCVD) and then B implanted with a dose of 4 x 1015 atoms/cm2 at an energy of 15 keV. To avoid long redistributions, thermal annealing was carried out at relatively low-temperatures (700, 750 and 800 'deg'C) for various short-times ranging between 1 and 30 minutes. To investigate the experimental secondary ion mass spectroscopy (SIMS) doping profiles, a redistribution model well adapted to the particular structure of Si-LPCVD layers and to the effects of strong-concentrations has been established. The good adjustment of the simulated profiles with the experimental SIMS profiles allowed a fundamental understanding about the instantaneous physical phenomena giving and disturbing the TED process in strongly doped Si-LPCVD layers. It was found that boron TED is strongly affected by the simultaneous complex kinetics of clustering, crystallization, trapping and segregation during annealing. The fast formation of small Si-B clusters enhances the B diffusivity whereas the evolution of the clusters and segregation reduce this enhancement. (author)

  20. Beyond Seed and Soil: Understanding and Targeting Metastatic Prostate Cancer; Report From the 2016 Coffey-Holden Prostate Cancer Academy Meeting.

    Science.gov (United States)

    Miyahira, Andrea K; Roychowdhury, Sameek; Goswami, Sangeeta; Ippolito, Joseph E; Priceman, Saul J; Pritchard, Colin C; Sfanos, Karen S; Subudhi, Sumit K; Simons, Jonathan W; Pienta, Kenneth J; Soule, Howard R

    2017-02-01

    The 2016 Coffey-Holden Prostate Cancer Academy (CHPCA) Meeting, "Beyond Seed and Soil: Understanding and Targeting Metastatic Prostate Cancer," was held from June 23 to June 26, 2016, in Coronado, California. For the 4th year in a row, the Prostate Cancer Foundation (PCF) hosted the CHPCA Meeting, a think tank-structured scientific conference, which focuses on a specific topic of critical unmet need on the biology and treatment of advanced prostate cancer. The 2016 CHPCA Meeting was attended by 71 investigators from prostate cancer and other fields, who discussed the biology, study methodologies, treatment strategies, and critical unmet needs concerning metastatic prostate cancer, with the ultimate goal of advancing strategies to treat and eliminate this disease. The major topics of discussion included: the molecular landscape and molecular heterogeneity of metastatic prostate cancer, the role of the metastatic microenvironment, optimizing immunotherapy in metastatic prostate cancer, learning from exceptional responders and non-responders, targeting DNA repair deficiency in advanced prostate cancer, developing and applying novel biomarkers and imaging techniques, and potential roles for the microbiome in prostate cancer. This article reviews the topics presented and discussions held at the CHPCA Meeting, with a focus on the unknowns and next steps needed to advance our understanding of the biology and most effective treatment strategies for metastatic prostate cancer. Prostate 77:123-144, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Redistribution Principle Approach for Evaluation of Seismic Active Earth Pressure Behind Retaining Wall

    Science.gov (United States)

    Maskar, A. D.; Madhekar, S. N.; Phatak, D. R.

    2017-11-01

    The knowledge of seismic active earth pressure behind the rigid retaining wall is very essential in the design of retaining wall in earthquake prone regions. Commonly used Mononobe-Okabe (MO) method considers pseudo-static approach. Recently there are many pseudo-dynamic methods used to evaluate the seismic earth pressure. However, available pseudo-static and pseudo-dynamic methods do not incorporate the effect of wall movement on the earth pressure distribution. Dubrova (Interaction between soils and structures, Rechnoi Transport, Moscow, 1963) was the first, who considered such effect and till date, it is used for cohesionless soil, without considering the effect of seismicity. In this paper, Dubrova's model based on redistribution principle, considering the seismic effect has been developed. It is further used to compute the distribution of seismic active earth pressure, in a more realistic manner, by considering the effect of wall movement on the earth pressure, as it is displacement based method. The effects of a wide range of parameters like soil friction angle (ϕ), wall friction angle (δ), horizontal and vertical seismic acceleration coefficients (kh and kv); on seismic active earth pressure (Kae) have been studied. Results are presented for comparison of pseudo-static and pseudo-dynamic methods, to highlight the realistic, non-linearity of seismic active earth pressure distribution. The current study results in the variation of Kae with kh in the same manner as that of MO method and Choudhury and Nimbalkar (Geotech Geol Eng 24(5):1103-1113, 2006) study. To increase in ϕ, there is a reduction in static as well as seismic earth pressure. Also, by keeping constant ϕ value, as kh increases from 0 to 0.3, earth pressure increases; whereas as δ increases, active earth pressure decreases. The seismic active earth pressure coefficient (Kae) obtained from the present study is approximately same as that obtained by previous researchers. Though seismic earth

  2. [Biodistribution and Postmortem Redistribution of Emamectin Benzoate in Intoxicated Mice].

    Science.gov (United States)

    Tang, Wei-wei; Lin, Yu-cai; Lu, Yan-xu

    2016-02-01

    To investigate the lethal blood level, the target organs and tissues, the toxicant storage depots and the postmortem redistribution in mice died of emamectin benzoate poisoning. The mice model of emamectin benzoate poisoning was established via intragastric injection. The main poisoning symptoms and the clinical death times of mice were observed and recorded dynamically in the acute poisoning group as well as the sub-acute poisoning death group. The pathological and histomorphological changes of organs and tissues were observed after poisoning death. The biodistribution and postmortem redistribution of emamectin benzoate in the organs and tissues of mice were assayed by the enzyme-linked immunosorbent assay (ELISA) at 0h, 24h, 48h and 72h after death. The lethal blood concentrations and the concentrations of emamectin benzoate were detected by high performance liquid chromatography (HPLC) at different time points after death. The symptoms of nervous and respiratory system were observed within 15-30 min after intragastric injection. The average time of death was (45.8 ± 7.9) min in the acute poisoning group and (8.0 ± 1.4) d in the sub-acute poisoning group, respectively. The range of acute lethal blood level was 447.164 0-524.463 5 mg/L. The pathological changes of the organs and tissues were observed via light microscope and immunofluorescence microscope. The changes of emamectin benzoate content in the blood, heart, liver, spleen, lung, kidney and brain of poisoning mice showed regularity within 72 h after death (P emamectin benzoate poisoning include heart, liver, kidney, lung, brain and contact position (stomach). The toxicant storage depots are kidney and liver. There is emamectin benzoate postmortem redistribution in mice.

  3. Income- and energy-taxation for redistribution in general equilibrium

    International Nuclear Information System (INIS)

    FitzRoy, F.R.

    1993-01-01

    In a 3-factor General Equilibrium (GE)-model with a continuum of ability, the employed choose optimal labour supply, and equilibrium unemployment is determined by benefits funded by wage- and energy-taxes. Aggregate labour and the net wage may increase or decrease with taxation (and unemployment), and conditions for a reduction in redistributive wage-taxes to be Pareto-improving are derived. A small energy tax always raises the net wage, providing the wage tax is reduced to maintain constant employment and a balanced budget. High ability households prefer higher energy taxes when externalities are uniformly distributed and non-distorting. (author)

  4. Internal Transport Barrier Driven by Redistribution of Energetic Ions

    International Nuclear Information System (INIS)

    Wong, K.L.; Heidbrink, W.W.; Ruskov, E.; Petty, C.C.; Greenfield, C.M.; Nazikian, R.; Budny, R.

    2004-01-01

    Alfven instabilities excited by energetic ions are used as a means to reduce the central magnetic shear in a tokamak via redistribution of energetic ions. When the central magnetic shear is low enough, ballooning modes become stable for any plasma pressure gradient and an internal transport barrier (ITB) with a steep pressure gradient can exist. This mechanism can sustain a steady-state ITB as demonstrated by experimental data from the DIII-D tokamak. It can also produce a shear in toroidal and poloidal plasma rotation. Possible application of this technique to use the energetic alpha particles for improvement of burning plasma performance is discussed

  5. Democracy, Redistributive Taxation and the Private Provision of Public Goods

    DEFF Research Database (Denmark)

    Markussen, Thomas

    ) pointed to, is weakened and might even be reversed in this context. Also, the median voter may choose a negative tax rate, even if he is poorer than the mean, in order to stimulate public goods production. The relevance of the model is illustrated with an application to the finance of higher education.......The paper studies in a simple, Downsian model of political competition how the private provision of public goods is affected when it is embedded in a system of democracy and redistributive taxation. Results show that the positive effect of inequality on public goods production, which Olson (1965...

  6. Isotope exchange investigation of nitrogen redistribution in expanded austenite

    International Nuclear Information System (INIS)

    Christiansen, T.L.; Drouet, M.; Martinavičius, A.; Somers, M.A.J.

    2013-01-01

    Sequential plasma and gaseous nitriding of Fe–18Cr–10Ni–3Mo stainless steel at 390 °C with 14 N and 15 N isotopes followed by denitriding in flowing hydrogen was investigated. Redistribution of plasma-inserted nitrogen atoms ( 15 N) by subsequent gaseous nitriding ( 14 N) was observed. Denitriding after plasma- and gaseous nitriding resulted in predominant retraction of 14 N, and only a minor amount of 15 N. The nitrogen isotope diffusion behaviour is explained by two different states of nitrogen bonding and short-range ordering between nitrogen and chromium

  7. 137Cs use in estimating soil erosion: 30 years of research

    International Nuclear Information System (INIS)

    Ritchie, J.C.

    1998-01-01

    Significant amounts of fallout 137 Cs from nuclear weapons tests were introduced to the landscape during the 1950s and 1960s. Once 137 Cs reaches the soil surface it is strongly and quickly adsorbed by clay particles, and is essentially nonexchangeable in most environments. Thus, 137 Cs becomes and effective tracer of the movement of soil particles across the landscape. Over the past 30 years, researchers have shown that 137 Cs can be used to study soil movement. Early work used empirical relationships between soil loss and 137 Cs loss to estimate erosion. This was followed by the development of proportional and theoretical models to relate 137 Cs movement and soil redistribution. Most of the problems related to the 137 Cs technique are the same as those encountered with other techniques (i.e., sampling, measurement). The 137 Cs technique can make actual measurements of soil loss and redeposition in fields, fostering the formulation of better plans to conserve the quality of the landscape. This paper reviews the development of the 137 Cs technique to show how it can be used to understand erosion and soil movement on the landscape. (author)

  8. Cascading failures with local load redistribution in interdependent Watts-Strogatz networks

    Science.gov (United States)

    Hong, Chen; Zhang, Jun; Du, Wen-Bo; Sallan, Jose Maria; Lordan, Oriol

    2016-05-01

    Cascading failures of loads in isolated networks have been studied extensively over the last decade. Since 2010, such research has extended to interdependent networks. In this paper, we study cascading failures with local load redistribution in interdependent Watts-Strogatz (WS) networks. The effects of rewiring probability and coupling strength on the resilience of interdependent WS networks have been extensively investigated. It has been found that, for small values of the tolerance parameter, interdependent networks are more vulnerable as rewiring probability increases. For larger values of the tolerance parameter, the robustness of interdependent networks firstly decreases and then increases as rewiring probability increases. Coupling strength has a different impact on robustness. For low values of coupling strength, the resilience of interdependent networks decreases with the increment of the coupling strength until it reaches a certain threshold value. For values of coupling strength above this threshold, the opposite effect is observed. Our results are helpful to understand and design resilient interdependent networks.

  9. Large scale mass redistribution and surface displacement from GRACE and SLR

    Science.gov (United States)

    Cheng, M.; Ries, J. C.; Tapley, B. D.

    2012-12-01

    Mass transport between the atmosphere, ocean and solid earth results in the temporal variations in the Earth gravity field and loading induced deformation of the Earth. Recent space-borne observations, such as GRACE mission, are providing extremely high precision temporal variations of gravity field. The results from 10-yr GRACE data has shown a significant annual variations of large scale vertical and horizontal displacements occurring over the Amazon, Himalayan region and South Asia, African, and Russian with a few mm amplitude. Improving understanding from monitoring and modeling of the large scale mass redistribution and the Earth's response are a critical for all studies in the geosciences, in particular for determination of Terrestrial Reference System (TRS), including geocenter motion. This paper will report results for the observed seasonal variations in the 3-dimentional surface displacements of SLR and GPS tracking stations and compare with the prediction from time series of GRACE monthly gravity solution.

  10. Patrons and clients, or redistribution between equals? a review of political clientelism and its contextual transpositions

    Directory of Open Access Journals (Sweden)

    Laura Colabella

    Full Text Available This article focuses on the ways in which a candidate running for city councilor and representing the Peronist party organized the distribution of public resources (social plans and food programs in La Matanza, a district in the west of Greater Buenos Aires, during the 2005 election campaign. The first part describes the personal trajectory of the candidate and some of the neighbors dependent on him. The second part examines how this leading figure rallied election campaigners and the meaning invested in their behaviors during a series of events including the opening of a 'soup kitchen' and the election day itself. The text also identifies the constraints imposed on these actors and the implications associated with their compliance (or failure to comply with mutual obligations. This analysis enables a clearer understanding of the dynamics and complexity of the processes regulating vast political circuits in which State resources are redistributed in exchange for votes on the outskirts of Greater Buenos Aires.

  11. Current Redistribution around the Superconducting-to-normal Transition in Superconducting Nb-Ti Rutherford Cables

    CERN Document Server

    Willering, G P; ten Kate, H H J

    2008-01-01

    Sufficient thermal-electromagnetic stability against external heat sources is an essential design criterion for superconducting Rutherford cables, especially if operated close to the critical current. Due to the complex phenomena contributing to stability such as helium cooling, inter-strand current and heat transfer, its level is difficult to quantify. In order to improve our understanding, many stability tests were performed on different cable samples, each incorporating several point-like heaters. The current redistribution around the heat front is measured after inducing a local normal zone in one strand of the cable. By using voltage taps, expansion of the normal zone is monitored in the initially quenched strand as well as in adjacent strands. An array of Hall probes positioned at the cable edge is used to scan the selffield generated by the cable by which it becomes possible to estimate the inter-strand current transfer. In this paper it is demonstrated that two different stability regimes can be disti...

  12. Complex Boron Redistribution in P+ Doped-polysilicon / Nitrogen Doped Silicon Bi-layers during Activation Annealing

    Science.gov (United States)

    Abadli, S.; Mansour, F.; Perrera, E. Bedel

    We have investigated and modeled the complex phenomenon of boron (B) redistribution process in strongly doped silicon bilayers structure. A one-dimensional two stream transfer model well adapted to the particular structure of bi- layers and to the effects of strong-concentrations has been developed. This model takes into account the instantaneous kinetics of B transfer, trapping, clustering and segregation during the thermal B activation annealing. The used silicon bi-layers have been obtained by low pressure chemical vapor deposition (LPCVD) method, using in-situ nitrogen- doped-silicon (NiDoS) layer and strongly B doped polycrystalline-silicon (P+) layer. To avoid long redistributions, thermal annealing was carried out at relatively lowtemperatures (600 °C and 700 °C) for various times ranging between 30 minutes and 2 hours. The good adjustment of the simulated profiles with the experimental secondary ion mass spectroscopy (SIMS) profiles allowed a fundamental understanding about the instantaneous physical phenomena giving and disturbing the complex B redistribution profiles-shoulders kinetics.

  13. Tracing the source of soil organic matter eroded from temperate forest catchments using carbon and nitrogen isotopes

    Science.gov (United States)

    Emma P. McCorkle; Asmeret Asefaw Berhe; Carolyn T. Hunsaker; Dale W. Johnson; Karis J. McFarlane; Marilyn L. Fogel; Stephen C. Hart

    2016-01-01

    Soil erosion continuously redistributes soil and associated soil organic matter (SOM) on the Earth's surface, with important implications for biogeochemical cycling of essential elements and terrestrial carbon sequestration. Despite the importance of soil erosion, surprisingly few studies have evaluated the sources of eroded carbon (C). We used natural abundance...

  14. Puromycin induces SUMO and ubiquitin redistribution upon proteasome inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Hotaru [Course for Biological Sciences, Faculty of Science, Kumamoto University, Kumamoto (Japan); Saitoh, Hisato, E-mail: hisa@kumamoto-u.ac.jp [Course for Biological Sciences, Faculty of Science, Kumamoto University, Kumamoto (Japan); Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto (Japan)

    2016-07-29

    We have previously reported the co-localization of O-propargyl-puromycin (OP-Puro) with SUMO-2/3 and ubiquitin at promyelocytic leukemia-nuclear bodies (PML-NBs) in the presence of the proteasome inhibitor MG132, implying a role for the ubiquitin family in sequestering OP-puromycylated immature polypeptides to the nucleus during impaired proteasome activity. Here, we found that as expected puromycin induced SUMO-1/2/3 accumulation with ubiquitin at multiple nuclear foci in HeLa cells when co-exposed to MG132. Co-administration of puromycin and MG132 also facilitated redistribution of PML and the SUMO-targeted ubiquitin ligase RNF4 concurrently with SUMO-2/3. As removal of the drugs from the medium led to disappearance of the SUMO-2/3-ubiquitin nuclear foci, our findings indicated that nuclear assembly/disassembly of SUMO-2/3 and ubiquitin was pharmacologically manipulable, supporting our previous observation on OP-Puro, which predicted the ubiquitin family function in sequestrating aberrant proteins to the nucleus. -- Highlights: •Puromycin exhibits the O-propargyl-puromycin effect. •Puromycin induces SUMO redistribution upon proteasome inhibition. •Ubiquitin and RNF4 accumulate at PML-nuclear bodies with SUMO-2/3. •The ubiquitin family may function in nuclear sequestration of immature proteins.

  15. Damage and redistribution of impurities by ionic bombardment

    International Nuclear Information System (INIS)

    Tognetti, N.P.

    1982-01-01

    Some aspects of displacement collisions in solids bombarded with ions in the medium energy range have been studied using the backscattering and channelling techniques. The production of lattice damage and the spatial redistribution of atoms within the collision cascade were the two main effects considered and experimentally studied. A comprehensive study of disorder production in GaAs was carried out at 40 K for a variety of ions and ion energies, providing insight into the mechanisms of damage generation from both the macro and microscopic points of view. Experiments on thermal recovery of partially disordered substrates revealed that annealing occurs from approximately 100 K to 300 K. A direct procedure developed for the obtainment of damage profiles from backscattering-channelling measurements is described. The net spatial redistribution of displaced atoms, in combined impurity-matrix substrates was studied and compared with existing theories of ion beam mixing. The Ag-Si system was studied for a wide range of fluence of bombarding Ar + ions. Furthermore, the contribution of atomic mixing in the experimental observation of Ge implantation at high doses into Si is discussed. (M.E.L) [es

  16. Oxygen redistribution in (UCe)Osub(2-x)

    International Nuclear Information System (INIS)

    Guedeney, Philippe.

    1983-01-01

    Redistribution of oxygen has been investigated in (Usub(0,7)Cesub(0,3))Osub(2-x) mixed oxide subjected to a temperature gradient in laboratory experiments, in order to apply the results to the nuclear fuel (UPu)Osub(2-x). Cylindrical sintered oxide specimens were exposed to temperature up to 1300 0 C with a longitudinal thermal gradient of about 400 0 C/cm. The most interesting feature of the experimental set-up is a solid-state electrochemical gauge (ThO 2 - Y 2 O 3 ), placed in the cold part of the sample which allows a continuous measurement of the oxygen activity. The experiments showed a fast oxygen migration down the thermal gradient. The calculations performed with a model based on solid-state thermodiffusion are in good agreement with experimental results. The heat of transport Q measured for bare samples reaches (7.2+-0.5)-kcal/mole. When the sample is coated with a tight fitting metallic cladding, an extra term Qe has to be added to the heat of transport Qe. This was interpreted as an electrotransport phenomena. On the same basis, calculations applied to radial oxygen redistribution in (UPu)Osub(2-x) seem to be adequate at least during the first stage of irradiation, taking Q=(20+-5)kcal/mole [fr

  17. Heat-induced redistribution of surface oxide in uranium

    International Nuclear Information System (INIS)

    Swissa, E.; Shamir, N.; Bloch, J.; Mintz, M.H.; Israel Atomic Energy Commission, Beersheba. Nuclear Research Center-Negev)

    1990-01-01

    The redistribution of oxygen and uranium metal at the vicinity of the metal-oxide interface of native and grown oxides due to vacuum thermal annealing was studied for uranium and uranium-chromium alloy using Auger depth profiling and metallographic techniques. It was found that uranium metal is segregating out through the uranium oxide layer for annealing temperatures above 450deg C. At the same time the oxide is redistributed in the metal below the oxide-metal interface in a diffusion like process. By applying a diffusion equation of a finite source, the diffusion coefficients for the process were obtained from the oxygen depth profiles measured for different annealing times. An Arrhenius like behavior was found for the diffusion coefficient between 400 and 800deg C. The activation energy obtained was E a =15.4±1.9 kcal/mole and the pre-exponential factor, D 0 =1.1x10 -8 cm 2 /s. An internal oxidation mechanism is proposed to explain the results. (orig.)

  18. Puromycin induces SUMO and ubiquitin redistribution upon proteasome inhibition

    International Nuclear Information System (INIS)

    Matsumoto, Hotaru; Saitoh, Hisato

    2016-01-01

    We have previously reported the co-localization of O-propargyl-puromycin (OP-Puro) with SUMO-2/3 and ubiquitin at promyelocytic leukemia-nuclear bodies (PML-NBs) in the presence of the proteasome inhibitor MG132, implying a role for the ubiquitin family in sequestering OP-puromycylated immature polypeptides to the nucleus during impaired proteasome activity. Here, we found that as expected puromycin induced SUMO-1/2/3 accumulation with ubiquitin at multiple nuclear foci in HeLa cells when co-exposed to MG132. Co-administration of puromycin and MG132 also facilitated redistribution of PML and the SUMO-targeted ubiquitin ligase RNF4 concurrently with SUMO-2/3. As removal of the drugs from the medium led to disappearance of the SUMO-2/3-ubiquitin nuclear foci, our findings indicated that nuclear assembly/disassembly of SUMO-2/3 and ubiquitin was pharmacologically manipulable, supporting our previous observation on OP-Puro, which predicted the ubiquitin family function in sequestrating aberrant proteins to the nucleus. -- Highlights: •Puromycin exhibits the O-propargyl-puromycin effect. •Puromycin induces SUMO redistribution upon proteasome inhibition. •Ubiquitin and RNF4 accumulate at PML-nuclear bodies with SUMO-2/3. •The ubiquitin family may function in nuclear sequestration of immature proteins.

  19. Heat-induced redistribution of surface oxide in uranium

    Science.gov (United States)

    Swissa, Eli; Shamir, Noah; Mintz, Moshe H.; Bloch, Joseph

    1990-09-01

    The redistribution of oxygen and uranium metal at the vicinity of the metal-oxide interface of native and grown oxides due to vacuum thermal annealing was studied for uranium and uranium-chromium alloy using Auger depth profiling and metallographic techniques. It was found that uranium metal is segregating out through the uranium oxide layer for annealing temperatures above 450°C. At the same time the oxide is redistributed in the metal below the oxide-metal interface in a diffusion like process. By applying a diffusion equation of a finite source, the diffusion coefficients for the process were obtained from the oxygen depth profiles measured for different annealing times. An Arrhenius like behavior was found for the diffusion coefficient between 400 and 800°C. The activation energy obtained was Ea = 15.4 ± 1.9 kcal/mole and the pre-exponential factor, D0 = 1.1 × 10 -8cm2/ s. An internal oxidation mechanism is proposed to explain the results.

  20. Electricity market integration: Redistribution effect versus resource reallocation

    International Nuclear Information System (INIS)

    Finon, Dominique; Romano, Elliot

    2009-01-01

    Summary: In countries with a significant amount of low variable cost generation capacity, the integration of electricity markets poses a real problem with respect to consumers' interests. In such cases, consumers face a significant price rise compared with consumers in countries where low-cost capacities are lacking. This paper analyses this problem both in the short and long term, focusing on a market dominated by nuclear and hydro production. When there are too many restrictions on new capacity developments in low-cost technologies, market integration will lead to surplus redistribution without any production reallocation. This really makes it legitimate to contemplate redistributive compensations towards local consumers in countries which benefited from low variable cost generators at the moment of liberalisation. This paper examines two alternative ways of rent reallocation, one by income with a windfall tax on nuclear producers and the allocation of this revenue to energy efficiency policy funds, and another by price by giving drawing rights on the existing nuclear generators' production to small commercial and domestic consumers, at a level equivalent to the one necessary to maintain regulated prices.

  1. Interplane redistribution of oxygen in fine-grained HTSC

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, E.F. [Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, Moscow 119991 (Russian Federation); Mamsurova, L.G. [Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, Moscow 119991 (Russian Federation)]. E-mail: mamsurova@chph.ras.ru; Permyakov, Yu.V. [National Institute for Physical, Radio and Technical Measurements (VNIIFTRI), Mendeleevo, Moscow Region 141570 (Russian Federation); Pigalskiy, K.S. [Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, Moscow 119991 (Russian Federation); Vishnev, A.A. [Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, Moscow 119991 (Russian Federation)

    2004-10-01

    Moessbauer spectra (T = 78 and 293 K) and X-ray (T = 293 K) studies of fine-grained high-temperature superconductors (HTSC) YBa{sub 2}Cu{sub 2.985}{sup 57}Fe{sub 0.015}O{sub y} (y = 6.92-6.93, T{sub c} = 91-91.5 K) with the average grain sizes equal to 0.4, 1, and 2 {mu}m are carried out. The redistribution in the intensities of Moessbauer spectra components with the decrease in the average grain size is found. The latter evidences the oxygen content to increase in (CuO{sub {delta}}) basal planes at the expense of its decrease in (CuO{sub 2}) and (BaO) planes. The redistribution of the oxygen between the different planes of the unit cell is accompanied by the decrease in the lattice parameter c. These effects are caused likely by nonequilibrium conditions which are commonly used in preparation of fine-grained HTSC. The assumption about the existence of partial disorder between Y{sup 3+} and Ba{sup 2+} sites in the samples explains the observed changes in the values of {delta} and c parameters. An efficiency of Moessbauer spectra studies for the compounds of YBaCuO type in the case of the enhanced oxygen parameter {delta} and the possibility of its quantitative estimation from the analysis of the intensities of Moessbauer spectrum components is demonstrated.

  2. Spatial variability of soil erosion and soil quality on hillslopes in the Chinese loess plateau

    International Nuclear Information System (INIS)

    Li, Y.; Lindstrom, M.J.; Zhang, J.; Yang, J.

    2000-01-01

    Soil erosion rates and soil quality indicators were measured along two hillslope transects in the Loess Plateau near Yan'an, China. The objectives were to: (a) quantify spatial patterns and controlling processes of soil redistribution due to water and tillage erosion, and (b) correlate soil quality parameters with soil redistribution along the hillslope transects for different land use management systems. Water erosion data were derived from 137 Cs measurements and tillage erosion from the simulation of a Mass Balance Model along the hillslope transects. Soil quality measurements, i.e. soil organic matter, bulk density and available nutrients were made at the same sampling locations as the 137 Cs measurements. Results were compared at the individual site locations and along the hillslope transect through statistical and applied time series analysis. The results showed that soil loss due to water erosion and soil deposition from tillage are the dominant soil redistribution processes in range of 23-40 m, and soil deposition by water erosion and soil loss by tillage are dominant processes occurring in range of more than 80 m within the cultivated landscape. However, land use change associated with vegetation cover can significantly change both the magnitudes and scale of these spatial patterns within the hillslope landscapes. There is a strong interaction between the spatial patterns of soil erosion processes and soil quality. It was concluded that soil loss by water erosion and deposition by tillage are the main cause for the occurrence of significant scale dependency of spatial variability of soil quality along hillslope transects. (author)

  3. Clinical significance of 201Tl reverse redistribution in patients with aorto-coronary bypass surgery

    International Nuclear Information System (INIS)

    Nishimura, Tsunehiko; Uehara, Tashiisa; Hayashida, Kohei; Kozuka, Takahira

    1987-01-01

    Detection of myocardial ischemia by the stress thallium scan has traditionally been performed using transient defect analysis on exercise, followed by redistribution studies. Worsening of the 201 Tl myocardial image from exercise to redistribution is referred to as reverse redistribution. In this study, we found reverse redistribution in 10 (21%) of 48 angina pectoris patients who had undergone aortocoronary bypass surgery. The clinical significance of this phenomenon in these patients was investigated in relation to angiographic and surgical findings. Reverse redistribution was found to occur in regions which were supplied by bypass grafts. These areas showed increased coronary blood flow and rapid thallium washout. Our results indicate that a perfusion defect in the bypass region of the redistribution image might be caused by relatively rapid washout in the bypass graft region compared to the adjacent normal myocardium. These results should be considered in the clinical interpretation of stress thallium scans. (orig.)

  4. Reducing food waste through direct surplus food redistribution : the Norwegian case

    OpenAIRE

    Capodistrias, Paula

    2015-01-01

    Food waste is a global problem with significant economic and environmental consequences. Food waste management approaches include production of biogas, animal feed and compost and surplus food redistribution. From a sustainability point of view, surplus food redistribution is the most favorable approach. Surplus food redistribution can be either direct (between suppliers of surplus food and charity food services) or indirect (Through Food banks). This paper is a case study on direct surplus f...

  5. Does Subjective Left-Right Position Have a Causal Effect on Support for Redistribution?

    DEFF Research Database (Denmark)

    Jæger, Mads Meier

    characteristics as instruments for left-right position, can be used to estimate the causal effect of left-right position on support for redistribution. I analyze data on Sweden, Germany, and Norway from the two first waves of the European Social Survey and find first that left-right position is endogenous...... to support for redistribution, and second consistent with theory, that a causal effect of left-right position on support for redistribution exists which is stronger than previously shown....

  6. A little fairness may induce a lot of redistribution in democracy

    DEFF Research Database (Denmark)

    Tyran, Jean-Robert; Sausgruber, Rupert

    2006-01-01

    We use a model of self-centered inequality aversion suggested by Fehr and Schmidt (Quart. J. Econom. 114 (3) (1999) 817) to study voting on redistribution. We theoretically identify two classes of conditions when an empirically plausible amount of fairness preferences induces redistribution throu...... referenda. We test the predictions of the adapted inequality aversion model in a simple redistribution experiment and find that it predicts voting outcomes far better than the standard model of voting assuming rationality and strict self-interest...

  7. Hot fire, cool soil

    NARCIS (Netherlands)

    Stoof, C.R.; Moore, D.; Fernandes, P.; Stoorvogel, J.J.; Fernandes, R.; Ferreira, A.J.D.; Ritsema, C.J.

    2013-01-01

    Wildfires greatly increase a landscape's vulnerability to flooding and erosion events by removing vegetation and changing soils. Fire damage to soil increases with increasing soil temperature, and, for fires where smoldering combustion is absent, the current understanding is that soil temperatures

  8. Role of biological soil crusts in desert hydrology and geomorphology: Implications for military training operations

    Science.gov (United States)

    Steven D. Warren

    2014-01-01

    Biological soil crusts, composed of soil surfaces stabilized by a consortium of cyanobacteria, algae, fungi, lichens, and/or bryophytes, are common in most deserts and perform functions of primary productivity, nitrogen fixation, nutrient cycling, water redistribution, and soil stabilization. The crusts are highly susceptible to disturbance. The degree of perturbation...

  9. Re-motivation in tourist destinations, redistribution and power

    Directory of Open Access Journals (Sweden)

    Carmen Díaz Domínguez

    2016-09-01

    Full Text Available Tourist destinations are constantly required to renew their products, services and projected image. This is possible, among other processes, through business innovation and co-management between tour operators and administrations in order to reach markets. This paper focusses on case studies of two specialised agrotourism businesses located in Fuerteventura (Canary Islands, and shows how innovation in products is limited when tour operators also come to control the supply of small and medium-sized companies, at least in destinations where mass tourism predominate. Here remotivation is presented as a means of providing the tourist with local supply in the destination in a way that allows it to stand out, aid the creation of local businesses and products, enrich the tourist experience and redistribute the profits of tourism across the area.

  10. Sediment-associated transport and redistribution of Chernobyl fallout radionuclides

    International Nuclear Information System (INIS)

    Walling, D.E.; Rowan, J.S.; Bradley, S.B.

    1989-01-01

    Fallout of Chernobyl-derived radionuclides over the United Kingdom evidenced marked spatial variation. Relatively high levels were recorded in central Wales, but they declined rapidly to the east. As a result the headwaters of the River Severn received significant inputs of fallout, whereas only low levels were recorded over the middle and lower reaches. Measurements of the caesium-137 content of suspended sediment transported by the River Severn and of channel and floodplain sediments collected from various locations within the basin have been used to assess the importance of fluvial transport and redistribution of Chernobyl-derived radionuclides. High concentrations of caesium-137 (up to 1450 mBqg -1 ) were recorded in suspended sediment collected from the lower reaches of the river shortly after the Chernobyl incident and substantial accumulations of Chernobyl-derived radionuclides have been detected in floodplain and channel sediments collected from areas which received only low levels of fallout directly. (author)

  11. Numerical simulation of abutment pressure redistribution during face advance

    Science.gov (United States)

    Klishin, S. V.; Lavrikov, S. V.; Revuzhenko, A. F.

    2017-12-01

    The paper presents numerical simulation data on the abutment pressure redistribution in rock mass during face advance, including isolines of maximum shear stress and pressure epures. The stress state of rock in the vicinity of a breakage heading is calculated by the finite element method using a 2D nonlinear model of a structurally heterogeneous medium with regard to plasticity and internal self-balancing stress. The thus calculated stress field is used as input data for 3D discrete element modeling of the process. The study shows that the abutment pressure increases as the roof span extends and that the distance between the face breast and the peak point of this pressure depends on the elastoplastic properties and internal self-balancing stress of a rock medium.

  12. From microscopic taxation and redistribution models to macroscopic income distributions

    Science.gov (United States)

    Bertotti, Maria Letizia; Modanese, Giovanni

    2011-10-01

    We present here a general framework, expressed by a system of nonlinear differential equations, suitable for the modeling of taxation and redistribution in a closed society. This framework allows one to describe the evolution of income distribution over the population and to explain the emergence of collective features based on knowledge of the individual interactions. By making different choices of the framework parameters, we construct different models, whose long-time behavior is then investigated. Asymptotic stationary distributions are found, which enjoy similar properties as those observed in empirical distributions. In particular, they exhibit power law tails of Pareto type and their Lorenz curves and Gini indices are consistent with some real world ones.

  13. Debate on redistribution and recognition: towards an oposition posmodern feminism

    Directory of Open Access Journals (Sweden)

    María del Pilar Rodríguez

    2010-12-01

    Full Text Available Marxist tradition has strongly criticized Derrida’s deconstruction approach as well as the postmodern positions, considering them as only concerned with differences but with no regards for socioeconomic inequality. Nevertheless, an important part of feminism has nursed in such theories to support its own arguments. We analyze the pertinence of such criticism as well as the particular effects of deconstruction and postmodernism in the theory and praxis of feminism in the light of two current debates. The first one regarding the political potential of deconstruction and postmodernism positions; the second one, referred to the so-called contradiction between socioeconomic redistribution and cultural acknowledgement of the differences. This will lead us to a broader and more comprehensive analysis horizon.

  14. Stress Redistribution Explains Anti-correlated Subglacial Pressure Variations

    Directory of Open Access Journals (Sweden)

    Pierre-Marie Lefeuvre

    2018-01-01

    Full Text Available We used a finite element model to interpret anti-correlated pressure variations at the base of a glacier to demonstrate the importance of stress redistribution in the basal ice. We first investigated two pairs of load cells installed 20 m apart at the base of the 210 m thick Engabreen glacier in Northern Norway. The load cell data for July 2003 showed that pressurisation of a subglacial channel located over one load cell pair led to anti-correlation in pressure between the two pairs. To investigate the cause of this anti-correlation, we used a full Stokes 3D model of a 210 m thick and 25–200 m wide glacier with a pressurised subglacial channel represented as a pressure boundary condition. The model reproduced the anti-correlated pressure response at the glacier bed and variations in pressure of the same order of magnitude as the load cell observations. The anti-correlation pattern was shown to depend on the bed/surface slope. On a flat bed with laterally constrained cross-section, the resulting bridging effect diverted some of the normal forces acting on the bed to the sides. The anti-correlated pressure variations were then reproduced at a distance >10–20 m from the channel. In contrast, when the bed was inclined, the channel support of the overlying ice was vertical only, causing a reduction of the normal stress on the bed. With a bed slope of 5 degrees, the anti-correlation occurred within 10 m of the channel. The model thus showed that the effect of stress redistribution can lead to an opposite response in pressure at the same distance from the channel and that anti-correlation in pressure is reproduced without invoking cavity expansion caused by sliding.

  15. Isotopic Tracing of Thallium Contamination in Soils Affected by Emissions from Coal-Fired Power Plants.

    Science.gov (United States)

    Vaněk, Aleš; Grösslová, Zuzana; Mihaljevič, Martin; Trubač, Jakub; Ettler, Vojtěch; Teper, Leslaw; Cabala, Jerzy; Rohovec, Jan; Zádorová, Tereza; Penížek, Vít; Pavlů, Lenka; Holubík, Ondřej; Němeček, Karel; Houška, Jakub; Drábek, Ondřej; Ash, Christopher

    2016-09-20

    Here, for the first time, we report the thallium (Tl) isotope record in moderately contaminated soils with contrasting land management (forest and meadow soils), which have been affected by emissions from coal-fired power plants. Our findings clearly demonstrate that Tl of anthropogenic (high-temperature) origin with light isotope composition was deposited onto the studied soils, where heavier Tl (ε(205)Tl ∼ -1) naturally occurs. The results show a positive linear relationship (R(2) = 0.71) between 1/Tl and the isotope record, as determined for all the soils and bedrocks, also indicative of binary Tl mixing between two dominant reservoirs. We also identified significant Tl isotope variations within the products from coal combustion and thermo-desorption experiments with local Tl-rich coal pyrite. Bottom ash exhibited the heaviest Tl isotope composition (ε(205)Tl ∼ 0), followed by fly ash (ε(205)Tl between -2.5 and -2.8) and volatile Tl fractions (ε(205)Tl between -6.2 and -10.3), suggesting partial Tl isotope fractionations. Despite the evident role of soil processes in the isotope redistributions, we demonstrate that Tl contamination can be traced in soils and propose that the isotope data represent a possible tool to aid our understanding of postdepositional Tl dynamics in surface environments for the future.

  16. Hydraulic redistribution of water from Pinus ponderosa trees to seedlings: evidence for an ectomycorrhizal pathway.

    Science.gov (United States)

    Warren, Jeffrey M; Brooks, J Renée; Meinzer, Frederick C; Eberhart, Joyce L

    2008-01-01

    While there is strong evidence for hydraulic redistribution (HR) of soil water by trees, it is not known if common mycorrhizal networks (CMN) can facilitate HR from mature trees to seedlings under field conditions. Ponderosa pine (Pinus ponderosa) seedlings were planted into root-excluding 61-microm mesh barrier chambers buried in an old-growth pine forest. After 2 yr, several mature trees were cut and water enriched in D(2)O and acid fuchsin dye was applied to the stumps. Fine roots and mycorrhizal root tips of source trees became heavily dyed, indicating reverse sap flow in root xylem transported water from stems throughout root systems to the root hyphal mantle that interfaces with CMN. Within 3 d, D(2)O was found in mesh-chamber seedling foliage > 1 m from source trees; after 3 wk, eight of 10 mesh-chamber seedling stem samples were significantly enriched above background levels. Average mesh-chamber enrichment was 1.8 x greater than that for two seedlings for which the connections to CMN were broken by trenching before D(2)O application. Even small amounts of water provided to mycorrhizas by HR may maintain hyphal viability and facilitate nutrient uptake under drying conditions, which may provide an advantage to seedlings hydraulically linked by CMN to large trees.

  17. Pressure Jumps during Drainage in Macroporous Soils

    DEFF Research Database (Denmark)

    Soto, Diego; Paradelo Pérez, Marcos; Corral, A

    2018-01-01

    Tensiometer readings obtained at high resolution during drainage of structured soil columns revealed pressure jumps with long range correlations and burst sequences with a hierarchical structure. The statistical properties of jumps are similar to Haines jumps described in invasion percolation...... processes at pore scale, but they are much larger in amplitude and duration. Pressure jumps can result from transient redistribution of water potential in internal regions of soil and can be triggered during drainage by capillary displacements at the scale of structural pores....

  18. In-situ Monitoring of Plant-microbe Communication to Understand the Influence of Soil Properties on Symbiotic Biological Nitrogen Fixation

    Science.gov (United States)

    Webster, T.; Del Valle, I.; Cheng, H. Y.; Silberg, J. J.; Masiello, C. A.; Lehmann, J.

    2016-12-01

    Plant-microbe signaling is important for many symbiotic and pathogenic interactions. While this signaling often occurs in soils, very little research has evaluated the role that the soil mineral and organic matter matrix plays in plant-microbe communication. One hurdle to these studies is the lack of simple tools for evaluating how soil mineral phases and organic matter influence the availability of plant-produced flavonoids that initiate the symbiosis between nitrogen-fixing bacteria and legumes. Because of their range of hydrophobic and electrostatic properties, flavonoids represent an informative class of signaling molecules. In this presentation, we will describe studies examining the bioavailable concentrations of flavonoids in soils using traditional techniques, such as high-pressure liquid chromatography and fluorescent microbial biosensors. Additionally, we will describe our progress developing a Rhizobium leguminosarum reporter that can be deployed into soils to report on flavonoid levels. This new microbial reporter is designed so that Rhizobium only generates a volatile gas signal when it encounters a defined concentration of flavonoids. By monitoring the output of this biosensor using gas chromatography-mass spectrometry during real time during soil incubations, we are working to establish the impact of soil organic matter, pH, and mineral phases on the reception of these signaling molecules. We expect that the findings from these studies will be useful for recommending soil management strategies that can enhance the communication between legumes and nitrogen fixing bacteria. This research highlights the importance of studying the role of soil as a mediator of plant-microbe communication.

  19. Determination of Redistribution of Erosion/Deposition Rate in Cultivated Area Using 137Cs Technique

    International Nuclear Information System (INIS)

    Nita Suhartini; Syamsul Abbas RAS; Barokah A; Ali Arman L

    2004-01-01

    The aim of the research is to determine the rate of redistribution of erosion/deposition in cultivated area. The application of 137 Cs technique was carried out at cultivated area in Bojong - Ciawi, with slope less than 10 o and slope length of about 2 km. A reference site was selected at the top of the slope, and this site is flat, open and covered with grass. Two sites in the cultivated area were selected as study site namely LU-I ( 15 x 25 ) m with the distance of 1000 m from the top, and LU-II (17.5 x 20) m with the distance of 1300 m from the top. Sampling of soil at reference site was done by using scraper (20 x 50) cm, while sampling at study site by using core sampling (di = 7 cm). Soil samples were brought to the laboratorium for preparation and analysis of 137 Cs content. Preparation are including of drying, weighing the total dry, sieving and crushing. Analysis of 137 Cs content was done using multi channel analyzer (MCA) that connected to high purity germanium (HPGe), at 661 keV, and the minimum counting time of 16 hours. To estimate the erosion/deposit rate, two mathematical model were used, namely Proportional Model (PM) and Mass Balance Model 1 (MBM1). The result for application of 137 Cs technique showed that MBM1 gives somewhat higher value for deposit rate and somewhat lower value for erosion than PM. Land use - I (LU-I) of Bojong - Ciawi was suffering from erosion with the erosion rate from 1 t/(ha.y) to 13 t/(ha.y), and LU-II has deposit rate from 1 t/(ha.y) to 50 t/(ha.y). (author)

  20. Effects of erosion in the fate of soil organic carbon and soil aggregation in a burned Mediterranean hill-slope

    Science.gov (United States)

    Campo, Julian; Cammeraat, Erik; Gimeno-García, Eugenia; Andreu, Vicente

    2016-04-01

    hypothesized that fire caused the homogenization of SOC content and AS in the different hill-slope positions, and only when erosion expose unburned organic matter to mineralization processes, SOC losses will increase in eroding sites, likely decreasing in transport and depositional ones. Ongoing work is related to the analyses of organic C in different soil fractions (determined by sieving and density) in order to understand C stabilization in post-fire soil, and its role in disaggregation and SOC redistribution by sediment in different hill-slope positions. Acknowledgements: This work has been supported by the Generalitat Valenciana through the VALi+d postdoctoral contract (APOSTD/2014/010). References: Bento-Goncalves, A., Vieira, A., Ubeda, X., Martin, D., 2012. Fire and soils: Key concepts and recent advances. Geoderma 191, 3-13. IPCC, 2014. Fifth Assessment Report (AR5). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Wang, X., Cammeraat, E.L.H., Cerli, C., Kalbitz, K., 2014. Soil aggregation and the stabilization of organic carbon as affected by erosion and deposition. Soil Biology & Biochemistry 72, 55-65.

  1. Element mobilization and redistribution under extreme tropical weathering of basalts from the Hainan Island, South China

    Science.gov (United States)

    Jiang, Ke; Qi, Hua-Wen; Hu, Rui-Zhong

    2018-06-01

    Chemical weathering of rocks has substantial influence on the global geochemical cycle. In this paper, the geochemical profile of a well-developed basalt weathering profile (>15 m thick, including soil, saprolite, semi-weathered rock and fresh basalt) on the Island of Hainan (South China) was presented. The soil and saprolite samples from this profile are characterized by high Al2O3 and Fe2O3 concentrations (up to 32.3% and 28.5%, respectively). The mineral assemblage is dominated by kaolinite, Fe-oxides/-hydroxides and gibbsite (or boehmite), indicating extensive desilicate and ferrallitic weathering. The acidic and organic-rich environment in the soil horizon may have promoted elemental remobilization and leaching. The strongest SiO2 depletion and Al2O3 enrichment at about 2.4 m deep indicate that the main kaolinite hydrolysis and gibbsite formation occurred near the soil-saprolite interface. The mild Sr reconcentration at about 3.9 m and 7.1 m deep may be attributed to secondary carbonate precipitation. Mn-oxides/-hydroxides precipitated at 6.1 m deep, accompanied by the strongest enrichment of Ba and Co. Uranium is mildly enriched in the middle part (about 7.1 m and 9.1 m deep) of the weathering profile, and the enrichment may have been caused by the decomposition of uranyl carbonates or the accumulation of zircon. Immobile element (i.e., Zr, Hf, Nb, Ta, Th and Ti) distributions at different depths are mainly controlled by secondary Fe-oxides/-hydroxides, and follow the stability sequence of Nb ≈ Ta ≈ Th > Zr ≈ Hf > Ti. The limited thickness (∼15 cm) of the semi-weathered basalt horizon at the rock-regolith interface (15.28 m deep) suggests that plagioclase and pyroxene are readily altered to kaolinite, smectite and Fe-oxides under tropical climate. The marked enrichment of transitional metals (such as Cu, Zn, Ni, and Sc) along the rock-regolith interface may have associated mainly with increasing pH values, as well as the dissolution of primary apatite

  2. Modelling dynamic water redistribution patterns in arid catchments in the Negev Desert of Israel

    NARCIS (Netherlands)

    Buis, E.; Veldkamp, A.

    2008-01-01

    In arid climate regions, redistribution of runoff water is highly relevant for vegetation development. The process of water redistribution at catchment scale is studied with the landscape process model LAPSUS, mainly used for erosion and sedimentation modelling. LAPSUS, formerly applied in

  3. 7 CFR 247.24 - Recovery and redistribution of caseload and administrative funds.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Recovery and redistribution of caseload and...) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS COMMODITY SUPPLEMENTAL FOOD PROGRAM § 247.24 Recovery and redistribution of caseload and administrative funds. (a) May FNS...

  4. Business Groups and Profit Redistribution : A Boon or Bane for Firms

    NARCIS (Netherlands)

    George, R.; Kabir, M.R.; Douma, S.W.

    2004-01-01

    This study investigates how profit redistribution affects the performance of firms affiliated to business groups.It shows that inefficient profit redistribution causes group-affiliated firms to perform poorly relative to independent firms.This underperformance persists even after controlling for

  5. Inequality, Collective Action and Redistribution: a New Indicator for Assessing a Complex Relationship

    Directory of Open Access Journals (Sweden)

    Federico Traversa

    2015-01-01

    Full Text Available The predominant theoretical viewpoint about the problem of income redistribution in capitalist democracies continues to postulate that the pressure towards redistribution is greatest in democracies with more inequality. However, this assumption does not seem to be corroborated empirically; perhaps this is because sometimes inequality only increases between the lower reaches of the distribution of income. In these cases, inequality increases the dispersion of earnings among the stakeholders of redistribution, and this increases their collective action problems. This paper proposes a new theoretical principle for the analysis of the relationship between inequality and redistribution, and develops an indicator consistent to this principle. A preliminary empirical exploration is carried out to illustrate how the proposed indicator is signifi cantly associated with the levels of income redistribution in 19 OECD countries between 1974 and 2005.

  6. Redistribution and Recognition: Assessing Alternative Frameworks for Aboriginal Policy in Canada

    Directory of Open Access Journals (Sweden)

    Robert Maciel

    2012-11-01

    Full Text Available In this paper, we argue that government approaches to addressing the claims of Aboriginal peoples in Canada are insufficient. Historically, these approaches have focused on redistribution. At the same time, these approaches have all but ignored recognition. We argue that a more holistic approach that addresses both redistribution and recognition is necessary. Further, we attempt to show that our approach is consistent with the tenets of liberalism. By conceiving of Aboriginal politics as such, the state may be better able to address claims. We begin by providing a theoretical overview of redistribution and recognition, respectively. Then, we proceed to show how redistribution and recognition must work together in an adequate account of justice with respect to Aboriginal peoples in Canada. Finally, we offer a conception of Aboriginal politics that fulfills this desideratum, and integrates the principle of recognition and redistribution in a way that is within the bounds of liberalism.

  7. Post-depositional redistribution and gradual accumulation of 137Cs in a riparian wetland ecosystem in Sweden

    International Nuclear Information System (INIS)

    Stark, K.; Wallberg, P.; Nylen, T.

    2006-01-01

    After the Chernobyl accident, high activity concentrations of 137 Cs (>1 MBq m -2 ) were detected in a riparian swamp in the central-eastern part of Sweden. The objective of this study was to clarify the redistribution processes behind the accumulation of 137 Cs in the wetland. A mass balance budget of 137 Cs was calculated based on soil and sediment samples and reports in the literature. Results showed that accumulation occurred over several years. Of all the 137 Cs activity discharged between 1986 and 2002 from the upstream lake, 29% was estimated to be retained in the wetland. In 2003, measurements showed that 17 kBq m -2 sedimented on the stream banks of the wetland. Continuing overbank sedimentation by spring flooding prolongs the time that the wetland will contain high activity concentrations of 137 Cs. Consequently, organisms living in wetlands serving as sinks for 137 Cs may become exposed over long time periods to high activity concentrations

  8. Dynamics of soil organic carbon and microbial biomass carbon in relation to water erosion and tillage erosion.

    Science.gov (United States)

    Xiaojun, Nie; Jianhui, Zhang; Zhengan, Su

    2013-01-01

    Dynamics of soil organic carbon (SOC) are associated with soil erosion, yet there is a shortage of research concerning the relationship between soil erosion, SOC, and especially microbial biomass carbon (MBC). In this paper, we selected two typical slope landscapes including gentle and steep slopes from the Sichuan Basin, China, and used the (137)Cs technique to determine the effects of water erosion and tillage erosion on the dynamics of SOC and MBC. Soil samples for the determination of (137)Cs, SOC, MBC and soil particle-size fractions were collected on two types of contrasting hillslopes. (137)Cs data revealed that soil loss occurred at upper slope positions of the two landscapes and soil accumulation at the lower slope positions. Soil erosion rates as well as distribution patterns of the erosion is the major process of soil redistribution in the gentle slope landscape, while tillage erosion acts as the dominant process of soil redistribution in the steep slope landscape. In gentle slope landscapes, both SOC and MBC contents increased downslope and these distribution patterns were closely linked to soil redistribution rates. In steep slope landscapes, only SOC contents increased downslope, dependent on soil redistribution. It is noticeable that MBC/SOC ratios were significantly lower in gentle slope landscapes than in steep slope landscapes, implying that water erosion has a negative effect on the microbial biomass compared with tillage erosion. It is suggested that MBC dynamics are closely associated with soil redistribution by water erosion but independent of that by tillage erosion, while SOC dynamics are influenced by soil redistribution by both water erosion and tillage erosion.

  9. Distribution of uranium-bearing phases in soils from Fernald

    International Nuclear Information System (INIS)

    Buck, E.C.; Brown, N.R.; Dietz, N.L.

    1993-01-01

    Electron beam techniques have been used to characterize uranium-contaminated soils and the Fernald Site, Ohio. Uranium particulates have been deposited on the soil through chemical spills and from the operation of an incinerator plant on the site. The major uranium phases have been identified by electron microscopy as uraninite, autunite, and uranium phosphite [U(PO 3 ) 4 ]. Some of the uranium has undergone weathering resulting in the redistribution of uranium within the soil

  10. Catchment-scale redistribution of lithogenic solutes and black carbon over three years following wildfire in the Jemez Mountains, New Mexico, USA

    Science.gov (United States)

    Pohlmann, M. A.; Root, R.; Abrell, L.; Schwartz, C. J.; Chorover, J.

    2017-12-01

    Wildfire represents a disturbance that is becoming more prevalent as climate shifts to hotter and drier conditions in the southwestern US. It has profound and potentially long-term effects on the physical, chemical and microbiological properties of soil, including immediate surface deposition of lithogenic elements and incompletely combusted organic matter (i.e., black carbon or BC) previously held in biomass. The long residence time of BC mitigates oxidative release of carbon to the atmosphere and thus has implications for long-term climate forcing. Immediately following the 2013 Thompson Ridge wildfire in the Jemez River Basin Critical Zone Observatory, we sampled 22 soil profiles across a zero order basin at finely resolved depth intervals to 40 cm. Samples were collected again 12 and 24 months following the fire to assess redistribution of solutes and BC in the two years following fire. Water extractable anions, cations and carbon were measured for each sample and maps were generated by geostatistical interpolation. Additionally, the benzene polycarboxylic acid (BPCA) molecular marker method was employed for a selection of samples to quantify and characterize the BC content of the existing soil organic carbon pool as a function of landscape position and time. The `pulsed' deposition of water-soluble ions and BC followed pre-fire vegetation structure as indicated by solution chemistry data for years one and two displaying elevated solute concentrations in surface depths proximal to dense vegetation. Vertical and lateral redistribution of the water extractable elements and BC were consistent with wetting front propagation and topographic trends (driven by erosion, overland flow and lateral subsurface flow). BC depth profiles indicate vertical infiltration and lateral transport with burial, the latter associated with surface erosion of sediment, as mechanisms for redistribution.

  11. Teaching Teaching & Understanding Understanding

    DEFF Research Database (Denmark)

    2006-01-01

    "Teaching Teaching & Understanding Understanding" is a 19-minute award-winning short-film about teaching at university and higher-level educational institutions. It is based on the "Constructive Alignment" theory developed by Prof. John Biggs. The film delivers a foundation for understanding what...

  12. Species-abundance distribution patterns of soil fungi: contribution to the ecological understanding of their response to experimental fire in Mediterranean maquis (southern Italy).

    Science.gov (United States)

    Persiani, Anna Maria; Maggi, Oriana

    2013-01-01

    Experimental fires, of both low and high intensity, were lit during summer 2000 and the following 2 y in the Castel Volturno Nature Reserve, southern Italy. Soil samples were collected Jul 2000-Jul 2002 to analyze the soil fungal community dynamics. Species abundance distribution patterns (geometric, logarithmic, log normal, broken-stick) were compared. We plotted datasets with information both on species richness and abundance for total, xerotolerant and heat-stimulated soil microfungi. The xerotolerant fungi conformed to a broken-stick model for both the low- and high intensity fires at 7 and 84 d after the fire; their distribution subsequently followed logarithmic models in the 2 y following the fire. The distribution of the heat-stimulated fungi changed from broken-stick to logarithmic models and eventually to a log-normal model during the post-fire recovery. Xerotolerant and, to a far greater extent, heat-stimulated soil fungi acquire an important functional role following soil water stress and/or fire disturbance; these disturbances let them occupy unsaturated habitats and become increasingly abundant over time.

  13. Reverse 201Tl myocardial redistribution induced by coronary artery spasm

    International Nuclear Information System (INIS)

    Xiang Dingcheng; Yin Jilin; Gong Zhihua; Xie Zhenhong; Zhang Jinhe; Wen Yanfei; Yi Shaodong

    2010-01-01

    Objective: To investigate the mechanism of reverse redistribution (RR) on dipyridamole 201 Tl myocardial perfusion studies in the patients with coronary artery spasm. Methods: Twenty-six patients with coronary artery spasm and presented as RR on dipyridamole 201 Tl myocardial perfusion studies were enlisted as RR group, while other 16 patients with no coronary artery stenosis nor RR were enlisted as control group. Dipyridamole test was repeated during coronary angiography. Corrected thrombolysis in myocardial infarction (TIMI) frame count (CTFC) and TIMI myocardial perfusion grade (TMPG) were measured at RR related and non-RR related coronary arteries before and after dipyridamole infusion respectively. All of the data were analyzed by Student's t-test or χ 2 -test and correlation analysis. Results: Coronary artery angiography showed slower blood flow and lower myocardial perfusion in RR related vessels when compared with non-RR related vessels in RR group, but there was no significant difference among the main coronary arteries in control group. The perfusion defects of RR area at rest were positively related to slower blood velocity at corresponding coronary arteries (r = 0.79, t =10.18, P 0.05). Conclusion: RR is related to the decreased blood flow and myocardial perfusion induced by coronary artery spasm at rest, which may be improved by stress test such as intravenous dipyridamole infusion. (authors)

  14. Managing fleet capacity effectively under second-hand market redistribution.

    Science.gov (United States)

    Quillérou, Emmanuelle; Roudaut, Nolwenn; Guyader, Olivier

    2013-09-01

    Fishing capacity management policies have been traditionally implemented at national level with national targets for capacity reduction. More recently, capacity management policies have increasingly targeted specific fisheries. French fisheries spatially vary along the French coastline and are associated to specific regions. Capacity management policies, however, ignore the capital mobility associated with second-hand vessel trade between regions. This is not an issue for national policies but could limit the effectiveness of regional capacity management policies. A gravity model and a random-effect Poisson regression model are used to analyze the determinants and spatial extent of the second-hand market in France. This study is based on panel data from the French Atlantic Ocean between 1992 and 2009. The trade flows between trading partners is found to increase with their sizes and to be spatially concentrated. Despite the low trade flows between regions, a net impact analysis shows that fishing capacity is redistributed by the second-hand market to regions on the Channel and Aquitaine from central regions. National capacity management policies (constructions/destructions) have induced a net decrease in regional fleet capacity with varying magnitude across regions. Unless there is a change of policy instruments or their scale of implementation, the operation of the second-hand market decreases the effectiveness of regional capacity management policies in regions on the Channel and Aquitaine.

  15. Climate velocity and the future global redistribution of marine biodiversity

    Science.gov (United States)

    García Molinos, Jorge; Halpern, Benjamin S.; Schoeman, David S.; Brown, Christopher J.; Kiessling, Wolfgang; Moore, Pippa J.; Pandolfi, John M.; Poloczanska, Elvira S.; Richardson, Anthony J.; Burrows, Michael T.

    2016-01-01

    Anticipating the effect of climate change on biodiversity, in particular on changes in community composition, is crucial for adaptive ecosystem management but remains a critical knowledge gap. Here, we use climate velocity trajectories, together with information on thermal tolerances and habitat preferences, to project changes in global patterns of marine species richness and community composition under IPCC Representative Concentration Pathways (RCPs) 4.5 and 8.5. Our simple, intuitive approach emphasizes climate connectivity, and enables us to model over 12 times as many species as previous studies. We find that range expansions prevail over contractions for both RCPs up to 2100, producing a net local increase in richness globally, and temporal changes in composition, driven by the redistribution rather than the loss of diversity. Conversely, widespread invasions homogenize present-day communities across multiple regions. High extirpation rates are expected regionally (for example, Indo-Pacific), particularly under RCP8.5, leading to strong decreases in richness and the anticipated formation of no-analogue communities where invasions are common. The spatial congruence of these patterns with contemporary human impacts highlights potential areas of future conservation concern. These results strongly suggest that the millennial stability of current global marine diversity patterns, against which conservation plans are assessed, will change rapidly over the course of the century in response to ocean warming.

  16. Inequality and Fiscal Redistribution in Middle Income Countries: Brazil, Chile, Colombia, Indonesia, Mexico, Peru and South Africa

    OpenAIRE

    Nora Lustig

    2015-01-01

    This paper examines the redistributive impact of fiscal policy for Brazil, Chile, Colombia, Indonesia, Mexico, Peru and South Africa using comparable fiscal incidence analysis with data from around 2010. The largest redistributive effect is in South Africa and the smallest in Indonesia. Success in fiscal redistribution is driven primarily by redistributive effort (share of social spending to GDP in each country) and the extent to which transfers/subsidies are targeted to the poor and direct t...

  17. A review of the potential for actinide redistribution in CANDU thorium cycle fuels

    International Nuclear Information System (INIS)

    Cameron, D.J.

    1978-02-01

    Actinide redistribution resulting from large radial temperature gradients is an accepted feature of the technology of fast reactor (U,Pu)O 2 fuels. A thorium cycle in CANDU reactors would require the use of oxide fuels with two or more components, raising the question of actinide redistribution in these fuels. The mechanisms proposed to explain redistribution in (U,Pu)O 2 fuels are reviewed, and their relevance to fuels based on ThO 2 is discussed. The fuel primarily considered is (Th,U)O 2 but some reference is made to (Th,Pu)O 2 . At this early stage of thorium fuel cycle technology, it is not possible to consider quantitatively the question of redistribution in specific fuels. However, some guidelines can be presented to indicate to fuel engineers conditions which might result in significant redistribution. It is concluded that redistribution is probably of little concern in high density, CANDU, thorium cycle fuel whose centre temperature is limited to 2350 K. If this centre temperature is exceeded, or if the fuel contains substantial inter-connected porosity, the potential for redistribution is significant and warrants more serious study. (author)

  18. Significance of Tl-201 redistribution on infarcted region assessed by coronary sinus flow and lactate metabolism

    International Nuclear Information System (INIS)

    Mori, Takao; Yamabe, Hiroshi; Suda, Kenichirou; Ohnishi, Masataka; Shiotani, Hideyuki; Kurimoto, Yasuyuki; Kobayashi, Katsuya; Maeda, Kazumi; Fukuzaki, Hisashi

    1987-01-01

    To clarify the significance of Tl-201 redistribution on infarcted regions, coronary sinus and great cardiac vein flow response and lactate metabolism assessed by Webster catheter on 14 infarcted regions after dipyridamole administration were compared with Tl-201 redistribution phenomenon. The regional coronary flow response and lactate extraction ratio in 11 regions with Tl-201 redistribution were lower than those in 3 regions without Tl-201 redistribution. Only 5 regions in 11 with Tl-201 redistribution showed lactate production. The coronary flow response in 5 regions with lactate production was not different from those in 6 without lactate production (1.16 ± 0.89 vs. 1.47 ± 0.67; n.s.). The degree of Tl-201 redistribution assessed by relative activity was not different between regions with and without lactate production. The left ventricular end-diastolic pressure elevated in 5 regions with lactate production (17.8 ± 5.4 mmHg to 29.6 ± 4.9 mmHg; p < 0.05), but didn't in 6 regions without lactate production. Five regions with lactate production contained 4 hypokinetic regions, on the other hand 6 regions without lactate production contained only 3 hypokinetic regions. In conclusion, Tl-201 redistribution on infarcted region revealed not only ischemia but also decreased coronary flow response without lactate production and/or left ventricular dysfunction. (author)

  19. Studies on so-called redistribution phenomenon of cerebral blood flow imaging

    International Nuclear Information System (INIS)

    Oba, Hiroshi

    1989-01-01

    To elucidate the relationship between so-called redistribution phenomenon and metabolism or viability of the brain tissue, a new quantitative triple-radionuclide autoradiography was developed, whereby making it possible to compare both late images and reditribution of IMP with cerebral metabolism in experimentally induced unilateral ischemic brain tissue of rats. Iodine-123 IMP and I-125 IMP were used as tracers for early and late imaging, and H-3 amino acid mixture or H-3 H-2 deoxyglucose as a tracer for protein synthesis or glucose metabolism imaging. There was no significant relationship between redistribution index and protein synthesis or glucose metabolism. Protein synthesis was remarkably decreased in the affected hemisphere regardless of redistribution index values. Although the redistribution indices showed a gentle peak at approximately 34 μ mol/100 g/ min of glucose metabolism, there was no obvious relationship between either late images or redistribution index images and glucose metabolism images. Redistribution indices showed a maximum value at approximately 40 to 50 ml/100 g/min of cerebral blood flow. Reverse redistribution was observed with 160 ml/100 g/min or more of flow. Thin layer chromatographic findings were similar in the affected and non-affected resions, suggesting redistribution of a lipophilic IMP metabolite of p-iodoamphetamine in the affected region. In vitro autoradiography revealed no significant reduction in binding ability of IMP to the affected ischemic cortex. In a computer simulation study for brain activity curve, brain activity at 150 min was found to be almost constant at more than 25 ml/100 g/min of flow. IMP redistribution was unlikely to reflect directly either brain metabolism or function, and both blood flow partition coefficient and blood flow values were independently responsible for cerebral kinetics of IMP. (N.K.)

  20. Fractionation of metals by sequential extraction procedures (BCR and Tessier) in soil exposed to fire of wide temperature range

    Science.gov (United States)

    Fajkovic, Hana; Rončević, Sanda; Nemet, Ivan; Prohić, Esad; Leontić-Vazdar, Dana

    2017-04-01

    Forest fire presents serious problem, especially in Mediterranean Region. Effects of fire are numerous, from climate change and deforestation to loss of soil organic matter and changes in soil properties. One of the effects, not well documented, is possible redistribution and/or remobilisation of pollutants previously deposited in the soil, due to the new physical and chemical soil properties and changes in equilibrium conditions. For understanding and predicting possible redistribution and/or remobilisation of potential pollutants from soil, affected by fire different in temperature, several laboratory investigations were carried out. To evaluate the influence of organic matter on soil under fire, three soil samples were analysed and compared: (a) the one with added coniferous organic matter; (b) deciduous organic matter (b) and (c) soil without additional organic matter. Type of organic matter is closely related to pH of soil, as pH is influencing the mobility of some pollutants, e.g. metals. For that reason pH was also measured through all experimental steps. Each of mentioned soil samples (a, b and c) were heated at 1+3 different temperatures (25°C, 200°C, 500°C and 850°C). After heating, whereby fire effect on soil was simulated, samples were analysed by BCR protocol with the addition of a first step of sequential extraction procedure by Tessier and analysis of residual by aqua regia. Element fractionation of heavy metals by this procedure was used to determine the amounts of selected elements (Al, Cd, Cr, Co, Cu, Fe, Mn, Ni, Pb and Zn). Selected metal concentrations were determined using inductively coupled plasma atomic emission spectrometer. Further on, loss of organic matter was calculated after each heating procedure as well as the mineral composition. The mineral composition was determined using an X-ray diffraction. From obtained results, it can be concluded that temperature has an influence on concentration of elements in specific step of

  1. Modeling of constituent redistribution in U-Pu-Zr metallic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo [Argonne National Laboratory, Nuclear Engineering, RERTR, 9700 South Cass Avenue, Argonne, IL 60439 (United States)]. E-mail: yskim@anl.gov; Hayes, S.L. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Hofman, G.L. [Argonne National Laboratory, Nuclear Engineering, RERTR, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Yacout, A.M. [Argonne National Laboratory, Nuclear Engineering, RERTR, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2006-12-01

    A computer model was developed to analyze constituent redistribution in U-Pu-Zr metallic nuclear fuels. Diffusion and thermochemical properties were parametrically determined to fit the postirradiation data from a fuel test performed in the Experimental Breeder Reactor II (EBR-II). The computer model was used to estimate redistribution profiles of fuels proposed for the conceptual designs of small modular fast reactors. The model results showed that the level of redistribution of the fuel constituents of the designs was similar to the measured data from EBR-II.

  2. Kinetic model for electric-field induced point defect redistribution near semiconductor surfaces

    Science.gov (United States)

    Gorai, Prashun; Seebauer, Edmund G.

    2014-07-01

    The spatial distribution of point defects near semiconductor surfaces affects the efficiency of devices. Near-surface band bending generates electric fields that influence the spatial redistribution of charged mobile defects that exchange infrequently with the lattice, as recently demonstrated for pile-up of isotopic oxygen near rutile TiO2 (110). The present work derives a mathematical model to describe such redistribution and establishes its temporal dependence on defect injection rate and band bending. The model shows that band bending of only a few meV induces significant redistribution, and that the direction of the electric field governs formation of either a valley or a pile-up.

  3. Kinetic model for electric-field induced point defect redistribution near semiconductor surfaces

    International Nuclear Information System (INIS)

    Gorai, Prashun; Seebauer, Edmund G.

    2014-01-01

    The spatial distribution of point defects near semiconductor surfaces affects the efficiency of devices. Near-surface band bending generates electric fields that influence the spatial redistribution of charged mobile defects that exchange infrequently with the lattice, as recently demonstrated for pile-up of isotopic oxygen near rutile TiO 2 (110). The present work derives a mathematical model to describe such redistribution and establishes its temporal dependence on defect injection rate and band bending. The model shows that band bending of only a few meV induces significant redistribution, and that the direction of the electric field governs formation of either a valley or a pile-up.

  4. Water redistribution at the soil surface : ponding and surface runoff in flat areas

    NARCIS (Netherlands)

    Appels, W.M.

    2013-01-01

    In The Netherlands, one of the most important targets for the improvement of surface water quality as aimed for in the European Water Framework Directive, is the reduction of nutrient concentrations (both nitrogen and phosphorus). To identify the most suitable and effective measures for reducing the

  5. Erosion and sedimentation effects on soil : organic carbon redistribution in a complex landscape of western Ecuador

    NARCIS (Netherlands)

    Corre, M.D.; Schoorl, J.M.; Koning, de F.; López-Ulloa, M.; Veldkamp, E.

    2015-01-01

    This study was conducted to evaluate how land-use changes affect the distribution of SOC within a complex tropical landscape through the processes of erosion and sedimentation. The objectives were: (i) to estimate the present SOC storage at a landscape scale using predictors such as slope,

  6. Redistribution and persistence of microorganisms and steroid hormones after soil-injection of swine slurry

    DEFF Research Database (Denmark)

    Amin, Mostofa; Bech, Tina B.; Forslund, Anita

    2014-01-01

    Typhimurium Bacteriophage 28B (phage 28B), Escherichia coli, steroid hormones and other slurry components (water, volatile solids, chloride and mineral N) determined in and around the injection slit. The two experiments at Silstrup and Estrup differed with respect to slurry solid content (6.3 vs. 0...

  7. Combining 137Cs and topographic surveys for measuring soil erosion/deposition patterns in a rapidly accreting area

    International Nuclear Information System (INIS)

    Ritchie, J.C.

    2000-01-01

    Narrow, stiff grass hedges are biological barriers designed to slow runoff and capture soils carried in runoff water. This study was designed to measure quantitatively the deposition of soil up slope of a narrow, stiff grass hedge using topographic and 137 Cs surveys. Topographic surveys made in 1991, 1995, and 1998 measured 1 to 2 cm yr -1 of recent sediment deposited up slope of the grass hedge. 137 Cs analyses of soil samples were used to determine the medium-term (45 years) soil redistribution patterns. Erosion rates and patterns determined using 137 Cs measured medium-term erosion near the hedge do not reflect the recent deposition patterns near the grass hedge measured by topographic surveys. Using the combination of topographic and 137 Cs surveys allows a better understanding of the role of grass hedges as barriers for capturing eroding soils and suggest that the recent deposition is associated with the grass hedge but that there is still a net loss of soil near the hedge position over the past 45 years. (author)

  8. Tenax TA extraction to understand the rate-limiting factors in methyl-β-cyclodextrin-enhanced bioremediation of PAH-contaminated soil.

    Science.gov (United States)

    Sun, Mingming; Luo, Yongming; Teng, Ying; Christie, Peter; Jia, Zhongjun; Li, Zhengao

    2013-06-01

    The effectiveness of many bioremediation systems for PAH-contaminated soil may be constrained by low contaminant bioaccessibility due to limited aqueous solubility or large sorption capacity. Information on the extent to which PAHs can be readily biodegraded is of vital importance in the decision whether or not to remediate a contaminated soil. In the present study the rate-limiting factors in methyl-β-cyclodextrin (MCD)-enhanced bioremediation of PAH-contaminated soil were evaluated. MCD amendment at 10 % (w/w) combined with inoculation with the PAH-degrading bacterium Paracoccus sp. strain HPD-2 produced maximum removal of total PAHs of up to 35 %. The desorption of PAHs from contaminated soil was determined before and after 32 weeks of bioremediation. 10 % (w/w) MCD amendment (M2) increased the Tenax extraction of total PAHs from 12 to 30 % and promoted degradation by up to 26 % compared to 6 % in the control. However, the percentage of Tenax extraction for total PAHs was much larger than that of degradation. Thus, in the control and M2 treatment it is likely that during the initial phase the bioaccessibility of PAHs is high and biodegradation rates may be limited by microbial processes. On the other hand, when the soil was inoculated with the PAH-degrading bacterium (CKB and MB2), the slowly and very slowly desorbing fractions (F sl and F vl ) became larger and the rate constants of slow and very slow desorption (k sl and k vl ) became extremely small after bioremediation, suggesting that desorption is likely rate limiting during the second, slow phase of biotransformation. These results have practical implications for site risk assessment and cleanup strategies.

  9. Assessing income redistributive effect of health financing in Zambia.

    Science.gov (United States)

    Mulenga, Arnold; Ataguba, John Ele-Ojo

    2017-09-01

    Ensuring an equitable health financing system is a major concern particularly in many developing countries. Internationally, there is a strong debate to move away from excessive reliance on direct out-of-pocket (OOP) spending towards a system that incorporates a greater element of risk pooling and thus affords greater protection for the poor. This is a major focus of the move towards universal health coverage (UHC). Currently, Zambia with high levels of poverty and income inequality is implementing health sector reforms for UHC through a social health insurance scheme. However, the way to identify the health financing mechanisms that are best suited to achieving this goal is to conduct empirical analysis and consider international evidence on funding universal health systems. This study assesses, for the first time, the progressivity of health financing and how it impacts on income inequality in Zambia. Three broad health financing mechanisms (general tax, a health levy and OOP spending) were considered. Data come from the 2010 nationally representative Zambian Living Conditions and Monitoring Survey with a sample size of 19,397 households. Applying standard methodologies, the findings show that total health financing in Zambia is progressive. It also leads to a statistically significant reduction in income inequality (i.e. a pro-poor redistributive effect estimated at 0.0110 (p taxes (0.0101 (p taxes. This points to areas where government policy may focus in attempting to reduce the high level of income inequality and to improve equity in health financing towards UHC in Zambia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Thermally driven moisture redistribution in partially saturated porous media

    Energy Technology Data Exchange (ETDEWEB)

    Green, R.T.; Dodge, F.T.; Svedeman, S.J.; Manteufel, R.D.; Meyer, K.A.; Baca, R.G. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses; Rice, G. [George Rice and Associates, San Antonio, TX (United States)

    1995-12-01

    It is widely recognized that the decay heat produced by high-level radioactive waste (HLW) will likely have a significant impact on both the pre- and post-closure performance of the proposed repository at Yucca Mountain (YM), in southwest Nevada. The task of delineating which aspects of that impact are favorable to isolation performance and which are adverse is an extremely challenging technical undertaking because of such factors as the hydrothermal regimes involved, heterogeneity of the geologic media, and the time and space scales involved. This difficulty has motivated both the US Department of Energy (DOE) and the US Nuclear Regulatory Commission (NRC) to undertake multi-year thermohydrology research programs to examine the effects of decay heat on pre- and post-closure performance of the repository. Both of these organizations are currently pursuing laboratory and field experiments, as well as numerical modeling studies, to advance the state of knowledge of the thermohydrologic phenomena relevant to the proposed geologic repository. The NRC-sponsored Thermohydrology Research Project, which was initiated in mid-1989 at the Center for Nuclear Waste Regulatory Analyses (CNWRA), began with the intent of addressing a broad spectrum of generic thermohydrologic questions. While some of these questions were answered in the conduct of the study, other new and challenging ones were encountered. Subsequent to that report, laboratory-scale experiments were designed to address four fundamental questions regarding thermohydrologic phenomena: what are the principal mechanisms controlling the redistribution of moisture; under what hydrothermal conditions and time frames do individual mechanisms predominate; what driving mechanism is associated with a particular hydrothermal regime; what is the temporal and spatial scale of each hydrothermal regime? This report presents the research results and findings obtained since issuance of the first progress report. 85 refs.

  11. Signaling flux redistribution at toll-like receptor pathway junctions.

    Directory of Open Access Journals (Sweden)

    Kumar Selvarajoo

    Full Text Available Various receptors on cell surface recognize specific extracellular molecules and trigger signal transduction altering gene expression in the nucleus. Gain or loss-of-function mutations of one molecule have shown to affect alternative signaling pathways with a poorly understood mechanism. In Toll-like receptor (TLR 4 signaling, which branches into MyD88- and TRAM-dependent pathways upon lipopolysaccharide (LPS stimulation, we investigated the gain or loss-of-function mutations of MyD88. We predict, using a computational model built on the perturbation-response approach and the law of mass conservation, that removal and addition of MyD88 in TLR4 activation, enhances and impairs, respectively, the alternative TRAM-dependent pathway through signaling flux redistribution (SFR at pathway branches. To verify SFR, we treated MyD88-deficient macrophages with LPS and observed enhancement of TRAM-dependent pathway based on increased IRF3 phosphorylation and induction of Cxcl10 and Ifit2. Furthermore, increasing the amount of MyD88 in cultured cells showed decreased TRAM binding to TLR4. Investigating another TLR4 pathway junction, from TRIF to TRAF6, RIP1 and TBK1, the removal of MyD88-dependent TRAF6 increased expression of TRAM-dependent Cxcl10 and Ifit2. Thus, we demonstrate that SFR is a novel mechanism for enhanced activation of alternative pathways when molecules at pathway junctions are removed. Our data suggest that SFR may enlighten hitherto unexplainable intracellular signaling alterations in genetic diseases where gain or loss-of-function mutations are observed.

  12. Thermally driven moisture redistribution in partially saturated porous media

    International Nuclear Information System (INIS)

    Green, R.T.; Dodge, F.T.; Svedeman, S.J.; Manteufel, R.D.; Meyer, K.A.; Baca, R.G.

    1995-12-01

    It is widely recognized that the decay heat produced by high-level radioactive waste (HLW) will likely have a significant impact on both the pre- and post-closure performance of the proposed repository at Yucca Mountain (YM), in southwest Nevada. The task of delineating which aspects of that impact are favorable to isolation performance and which are adverse is an extremely challenging technical undertaking because of such factors as the hydrothermal regimes involved, heterogeneity of the geologic media, and the time and space scales involved. This difficulty has motivated both the US Department of Energy (DOE) and the US Nuclear Regulatory Commission (NRC) to undertake multi-year thermohydrology research programs to examine the effects of decay heat on pre- and post-closure performance of the repository. Both of these organizations are currently pursuing laboratory and field experiments, as well as numerical modeling studies, to advance the state of knowledge of the thermohydrologic phenomena relevant to the proposed geologic repository. The NRC-sponsored Thermohydrology Research Project, which was initiated in mid-1989 at the Center for Nuclear Waste Regulatory Analyses (CNWRA), began with the intent of addressing a broad spectrum of generic thermohydrologic questions. While some of these questions were answered in the conduct of the study, other new and challenging ones were encountered. Subsequent to that report, laboratory-scale experiments were designed to address four fundamental questions regarding thermohydrologic phenomena: what are the principal mechanisms controlling the redistribution of moisture; under what hydrothermal conditions and time frames do individual mechanisms predominate; what driving mechanism is associated with a particular hydrothermal regime; what is the temporal and spatial scale of each hydrothermal regime? This report presents the research results and findings obtained since issuance of the first progress report. 85 refs

  13. The Importance of Deep Roots and Hydraulic Redistribution to Amazonian Rainforest Resilience and Response to Hydro-Climatic Variability: A Simulation Analysis

    Science.gov (United States)

    Drewry, D.; Kumar, P.; Sivapalan, M.; Long, S.; Liang, X.

    2008-12-01

    Amazonian rain forests are a crucial component of the terrestrial biosphere, acting as a significant sink of anthropogenic carbon emissions, as well as playing a key role in driving tropical climate patterns through surface energy partitioning and significant precipitation recycling. Recent studies using remotely-sensed indices of canopy functioning (ie. canopy greeness, canopy water storage and photosynthetic capacity) have raised questions regarding the response of deep-rooted Amazonian vegetation functioning to short-term hydro-climatic forcing anomalies. Climate model predictions show an increase in ENSO-driven drought for eastern Amazonia in the coming decades. In this context, we utilize a multi-layer process-based model that represents the complex set of interactions and feedbacks between the canopy, soil and root subsystems to examine the impacts of drought on deep-rooted Amazonian rainforests. The model canopy is partitioned into several layers, allowing for resolution of the shortwave and longwave radiation regimes that drive photosynthesis, stomatal conductance and leaf energy balance in each layer, along with the canopy microclimate. The above-ground component of the model is coupled to a multi-layer soil-root model that computes soil moisture and heat transport, root water uptake, and the passive redistribution of moisture across soil potential gradients by the root system (ie. hydraulic redistribution). Carbon and nitrogen transformations in each layer of the soil system are modulated by microbial activity, and act to provide nutrient constraints on the photosynthetic capacity of the canopy. Model skill in capturing the seasonal and inter-annual variability in canopy-atmosphere exchange is evaluated through multi-year records of canopy- top eddy covariance CO2, water vapor and heat fluxes collected at a field site in eastern Amazonia. A nearby throughfall exclusion experiment provides information on the vertical distribution of soil moisture under

  14. ISRIC - World Soil Information

    NARCIS (Netherlands)

    Dent, D.L.

    2006-01-01

    ISRICWorld Soil Information is an independent foundation, funded by the Netherlands Government with a mandate to increase knowledge of the land, its soils in particular, and to support the sustainable use of land resources; in short, to help people understand soils. Its aims are to -Inform and

  15. Growing Season Conditions Mediate the Dependence of Aspen on Redistributed Snow Under Climate Change.

    Science.gov (United States)

    Soderquist, B.; Kavanagh, K.; Link, T. E.; Seyfried, M. S.; Strand, E. K.

    2016-12-01

    Precipitation regimes in many semiarid ecosystems are becoming increasingly dominated by winter rainfall as a result of climate change. Across these regions, snowpack plays a vital role in the distribution and timing of soil moisture availability. Rising temperatures will result in a more uniform distribution of soil moisture, advanced spring phenology, and prolonged growing seasons. Productive and wide ranging tree species like aspen, Populus tremuloides, may experience increased vulnerability to drought and mortality resulting from both reduced snowpack and increased evaporative demand during the growing season. We simulated the net primary production (NPP) of aspen stands spanning the rain:snow transition zone in the Reynolds Creek Critical Zone Observatory (RCCZO) in southwest Idaho, USA. Within the RCCZO, the total amount of precipitation has remained unchanged over the past 50 years, however the percentage of the precipitation falling as snow has declined by approximately 4% per decade at mid-elevation sites. The biogeochemical process model Biome-BGC was used to simulate aspen NPP at three stands located directly below snowdrifts that provide melt water late into the spring. After adjusting precipitation inputs to account for the redistribution of snow, we assessed climate change impacts on future aspen productivity. Mid-century (2046-2065) aspen NPP was simulated using temperature projections from a multi-model average under high emission conditions using the Multivariate Adaptive Constructed Analogs (MACA) data set. While climate change simulations indicated over a 20% decrease in annual NPP for some years, NPP rates for other mid-century years remained relatively unchanged due to variations in growing season conditions. Mid-century years with the largest decreases in NPP typically showed increased spring transpiration rates resulting from earlier leaf flush combined with warmer spring conditions. During these years, the onset of drought stress occurred

  16. Resonance-line transfer with partial redistribution. VIII. Solution in the comoving frame for moving atmospheres

    International Nuclear Information System (INIS)

    Mihalas, D.; Shine, R.A.; Kunasz, P.B.; Hummer, D.G.

    1976-01-01

    An analysis of the effects of partial frequency redistribution in the scattering process for lines formed in moving atmospheres has been performed using a flexible and general method which allows solutions of the transfer equation in the comoving frame of the gas. As a specific example, we consider the same chromospheric and atomic model, with the same velocity field, that was studied by Cannon and Vardavas. We find that the large changes in the profiles obtained by those authors, between the cases of complete and partial redistribution are spurious effects of angle averaging in the observer's frame instead of the comoving frame. Our results support fully the conclusion by Magnan that these changes are, in fact, unreal, at least for this particular model and redistribution function. Future work with other redistribution functions and with nonmonotone velocity fields will be possible using the techniques developed in this paper

  17. Reverse re-distribution in the myocardial perfusion scan with 201 Ti

    International Nuclear Information System (INIS)

    Eftekhari, M.; Sadeghi, R.; Fard-Esfahani, A.; Beiki, D.; Fallahi, B.; Saghari, M.

    2004-01-01

    Reverse re-distribution pattern id defined as decreased activity in the myocardium in the rest phase of the myocardial perfusion scan in comparison with the stress images. There are many studies concerning the etiology and clinical significance of this phenomenon in nuclear medicine literature. The dominant idea about etiology of reserve redistribution is early wash out of the radiotracer from the myocardium. There is rather unanimous agreement among researchers about viability of the areas of reverse redistribution and the majority of the studies point to existence of viable tissue in these regions. However from prognostic point of view, this issue is much more controversial. In this review, we tried to summarize the current literature and reach a guideline for practical significance of reverse redistribution in every day work of nuclear medicine specialists

  18. The redistributive effects of personal taxes and social benefits in the Republic of Serbia

    Directory of Open Access Journals (Sweden)

    Đinđić Srđan M.

    2014-01-01

    Full Text Available In this paper we measure the influence of the instruments of Serbia’s fiscal system - personal taxes (personal income tax and social security contributions and social benefits (means tested and nonmeans tested - on income redistribution, using the latest data from the Household Budget Survey 2012. We analyse the redistributive effects of the fiscal system for the year 2013 and of the fiscal system that has been functioning since 1st January 2014. We find that the redistributive effect reduces income inequality by about 50% in both observed years. Social benefits create 98% of vertical redistribution (2013, whereas personal taxes initiate 2% (2013. State pensions, means-tested social benefits, and social security contributions are most important in reducing inequality in Serbia (2013. The partial fiscal reform (2014 has not changed the rank of the focused fiscal instruments.

  19. Unequal views of inequality: Cross-national support for redistribution 1985-2011.

    Science.gov (United States)

    VanHeuvelen, Tom

    2017-05-01

    This research examines public views on government responsibility to reduce income inequality, support for redistribution. While individual-level correlates of support for redistribution are relatively well understood, many questions remain at the country-level. Therefore, I examine how country-level characteristics affect aggregate support for redistribution. I test explanations of aggregate support using a unique dataset combining 18 waves of the International Social Survey Programme and European Social Survey. Results from mixed-effects logistic regression and fixed-effects linear regression models show two primary and contrasting effects. States that reduce inequality through bundles of tax and transfer policies are rewarded with more supportive publics. In contrast, economic development has a seemingly equivalent and dampening effect on public support. Importantly, the effect of economic development grows at higher levels of development, potentially overwhelming the amplifying effect of state redistribution. My results therefore suggest a fundamental challenge to proponents of egalitarian politics. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Emerging investigator series: As( v ) in magnetite: incorporation and redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Huhmann, Brittany L. [Department of Civil and Environmental Engineering; University of Iowa; Iowa City; USA; Neumann, Anke [School of Engineering; Newcastle University; Newcastle upon Tyne; UK; Boyanov, Maxim I. [Biosciences Division; Argonne National Laboratory; Argonne; USA; Institute of Chemical Engineering; Kemner, Kenneth M. [Biosciences Division; Argonne National Laboratory; Argonne; USA; Scherer, Michelle M. [Department of Civil and Environmental Engineering; University of Iowa; Iowa City; USA

    2017-01-01

    As coprecipitated with magnetite remained incorporated over time whereas sorbed As was redistributed and became increasingly incorporated into magnetite, both the absence and presence of aqueous Fe(ii).

  1. Elemental fingerprinting of mussel shells to predict population sources and redistribution potential in the Gulf of Maine.

    Directory of Open Access Journals (Sweden)

    Cascade J B Sorte

    Full Text Available As the climate warms, species that cannot tolerate changing conditions will only persist if they undergo range shifts. Redistribution ability may be particularly variable for benthic marine species that disperse as pelagic larvae in ocean currents. The blue mussel, Mytilus edulis, has recently experienced a warming-related range contraction in the southeastern USA and may face limitations to northward range shifts within the Gulf of Maine where dominant coastal currents flow southward. Thus, blue mussels might be especially vulnerable to warming, and understanding dispersal patterns is crucial given the species' relatively long planktonic larval period (>1 month. To determine whether trace elemental "fingerprints" incorporated in mussel shells could be used to identify population sources (i.e. collection locations, we assessed the geographic variation in shell chemistry of blue mussels collected from seven populations between Cape Cod, Massachusetts and northern Maine. Across this ∼500 km of coastline, we were able to successfully predict population sources for over two-thirds of juvenile individuals, with almost 80% of juveniles classified within one site of their collection location and 97% correctly classified to region. These results indicate that significant differences in elemental signatures of mussel shells exist between open-coast sites separated by ∼50 km throughout the Gulf of Maine. Our findings suggest that elemental "fingerprinting" is a promising approach for predicting redistribution potential of the blue mussel, an ecologically and economically important species in the region.

  2. Charity Starts … at Work? Conceptual Foundations for Research with Businesses that Donate to Food Redistribution Organisations

    Directory of Open Access Journals (Sweden)

    Elisha Vlaholias

    2015-06-01

    Full Text Available As global concern about sustainability, food waste, and poverty increases, there is an urgent need to understand what motivates businesses to adopt pro-social and pro-environmental behaviours. This paper suggests that food redistribution organisations hold both pro-social and pro-environmental aims, due to their concern with reducing food surplus and food insecurity. To achieve this, they must motivate food businesses to donate their surplus food. However, little is known about the values, attitudes, and motives of food industry donors. The purpose of this paper is to provide a theoretical and conceptual overview to set out principles from which empirical data on food redistribution will be analysed or critiqued. Specifically, it explores pro-social and pro-environmental literature, as these fields have examined the motivations behind donations and reducing environmental impact. This review highlights that charitable giving of food is different to other inorganic material, such as money. Thus, future research is needed to capture the unique temporal, emotional, social, and environmental factors that motivate food donations. This information may contribute to the development of strategies that target and motivate people from the food industry to become food donors. Alternatively, it may reveal concerns about food donations, and highlight the need for other approaches to food waste and food insecurity.

  3. Income inequality, redistribution and poverty: Contrasting rational choices and behavioural perspectives

    OpenAIRE

    Luebker, Malte

    2012-01-01

    Based on the standard axiom of individual utility maximization, rational choice has postulated that higher income inequality translates into greater redistribution by shaping the median voter’s preferences. While numerous papers have tested this proposition, the literature has remained divided over the appropriate measure for redistribution. Revisiting the original contribution by Meltzer and Richard, the present paper argues that the median voter hypothesis implies that relative redistributi...

  4. Electoral institutions, parties, and the politics of class: Why some democracies redistribute more than others

    OpenAIRE

    Iversen, Torben; Soskice, David

    2005-01-01

    We develop a general model of redistribution and use it to account for the remarkable variance in government redistribution across democracies. We show that the electoral system plays a key role because it shapes the nature of political parties and the composition of governing coalitions, whether these are conceived as electoral alliances between classes or alliances between class parties. Our argument implies a) that center-left governments dominate under PR systems, while center-right gover...

  5. Migration Elasticities, Fiscal Federalism and the Ability of States to Redistribute Income

    OpenAIRE

    Giertz, Seth H.; Tosun, Mehmet S.

    2012-01-01

    This paper develops a simulation model in order to examine the effectiveness of state attempts at redistribution under a variety of migration elasticity assumptions. Key outputs from the simulation include the impact of tax-induced migration on state revenues, excess burden, and fiscal externalities. With modest migration elasticities, the costs of state-level redistribution are substantial, but state action may still be preferred to a federal policy that is at odds with preferences of a stat...

  6. Current redistribution in cables made of insulated, soldered, or oxidized strands

    International Nuclear Information System (INIS)

    Turck, B.

    1979-07-01

    Current redistributions are compared in cables made of insulated strands, soldered, or oxidized strands and insulated strands with periodic joints. After discussing the different current redistributions in the cases of a rapidly changing current and a dc current, several particular situations are investigated: what happens if a strand is broken, or if a local normal zone appears that does not affect all the strands equally, the detection of this normal zone, and the influence of short circuits between strands

  7. Household perceptions towards a redistributive policy across health insurance funds in Tanzania

    DEFF Research Database (Denmark)

    Chomi, Eunice; Mujinja, Phares; Hansen, Kristian Schultz

    2015-01-01

    Background The Tanzanian health insurance system comprises multiple health insurance funds targeting different population groups but which operate in parallel, with no mechanisms for redistribution across the funds. Establishing such redistributive mechanisms requires public support, which...... data collected from a survey of 695 households relating to perceptions of household heads towards cross-subsidisation of the poor to enable them to access health services. Kruskal-Wallis test is used to compare perceptions by membership status. Generalized ordinal logistic regression models are used...

  8. A first attempt to derive soil erosion rates from 137Cs airborne gamma measurements in two Alpine valleys

    Science.gov (United States)

    Arata, Laura; Meusburger, Katrin; Bucher, Benno; Mabit, Lionel; Alewell, Christine

    2016-04-01

    The application of fallout radionuclides (FRNs) as soil tracers is currently one of the most promising and effective approach for evaluating soil erosion magnitudes in mountainous grasslands. Conventional assessment or measurement methods are laborious and constrained by the topographic and climatic conditions of the Alps. The 137Cs (half-life = 30.2 years) is the most frequently used FRN to study soil redistribution. However the application of 137Cs in alpine grasslands is compromised by the high heterogeneity of the fallout due to the origin of 137Cs fallout in the Alps, which is linked to single rain events occurring just after the Chernobyl accident when most of the Alpine soils were still covered by snow. The aim of this study was to improve our understanding of the 137Cs distribution in two study areas in the Central Swiss Alps: the Ursern valley (Canton Uri), and the Piora valley (Canton Ticino). In June 2015, a helicopter equipped with a NaI gamma detector flew over the two study sites and screened the 137Cs activity of the top soil. The use of airborne gamma measurements is particularly efficient in case of higher 137Cs concentration in the soil. Due to their high altitude and high precipitation rates, the Swiss Alps are expected to be more contaminated by 137Cs fallout than other parts of Switzerland. The airborne gamma measurements have been related to several key parameters which characterize the areas, such as soil properties, slopes, expositions and land uses. The ground truthing of the airborne measurements (i.e. the 137Cs laboratory measurements of the soil samples collected at the same points) returned a good fit. The obtained results offer an overview of the 137Cs concentration in the study areas, which allowed us to identify suitable reference sites, and to analyse the relationship between the 137Cs distribution and the above cited parameters. The authors also derived a preliminary qualitative and a quantitative assessment of soil redistribution

  9. Using global sensitivity analysis to understand higher order interactions in complex models: an application of GSA on the Revised Universal Soil Loss Equation (RUSLE) to quantify model sensitivity and implications for ecosystem services management in Costa Rica

    Science.gov (United States)

    Fremier, A. K.; Estrada Carmona, N.; Harper, E.; DeClerck, F.

    2011-12-01

    Appropriate application of complex models to estimate system behavior requires understanding the influence of model structure and parameter estimates on model output. To date, most researchers perform local sensitivity analyses, rather than global, because of computational time and quantity of data produced. Local sensitivity analyses are limited in quantifying the higher order interactions among parameters, which could lead to incomplete analysis of model behavior. To address this concern, we performed a GSA on a commonly applied equation for soil loss - the Revised Universal Soil Loss Equation. USLE is an empirical model built on plot-scale data from the USA and the Revised version (RUSLE) includes improved equations for wider conditions, with 25 parameters grouped into six factors to estimate long-term plot and watershed scale soil loss. Despite RUSLE's widespread application, a complete sensitivity analysis has yet to be performed. In this research, we applied a GSA to plot and watershed scale data from the US and Costa Rica to parameterize the RUSLE in an effort to understand the relative importance of model factors and parameters across wide environmental space. We analyzed the GSA results using Random Forest, a statistical approach to evaluate parameter importance accounting for the higher order interactions, and used Classification and Regression Trees to show the dominant trends in complex interactions. In all GSA calculations the management of cover crops (C factor) ranks the highest among factors (compared to rain-runoff erosivity, topography, support practices, and soil erodibility). This is counter to previous sensitivity analyses where the topographic factor was determined to be the most important. The GSA finding is consistent across multiple model runs, including data from the US, Costa Rica, and a synthetic dataset of the widest theoretical space. The three most important parameters were: Mass density of live and dead roots found in the upper inch

  10. Social mobility and demand for redistribution in Europe: a comparative analysis.

    Science.gov (United States)

    Jaime-Castillo, Antonio M; Marqués-Perales, Ildefonso

    2018-03-14

    The literature on preferences for redistribution has paid little attention to the effect of social mobility on the demand for redistribution and no systematic test of the hypotheses connecting social mobility and preferences for redistribution has yet been done to date. We use the diagonal reference model to estimate the effect of origin and destination classes on preferences for redistribution in a large sample of European countries using data from the European Social Survey. Our findings are consistent with the logic of acculturation in the sense that newcomers tend to adapt their views to those of the destination class at early stages and that upward and downward mobility do not have distinctive effects on the formation of political preferences. However, even though social origins seem to have a limited impact on preferences for redistribution, the evidence does not support the hypothesis that mobile and non-mobile individuals are alike. We also find that the effect of social origin on preferences varies largely across countries. The empirical evidence leads to the conclusion that the effect of social origin on preferences for redistribution increases in contexts of strong familism. © London School of Economics and Political Science 2018.

  11. REDISTRIBUTION OF BASE STATIONS LOAD IN MOBILE COMMUNICATION NETWORKS

    Directory of Open Access Journals (Sweden)

    Igor Ruban

    2017-09-01

    Full Text Available The subject matter of the article is the processes of load distribution in mobile communication networks. The object of research is the handover. The goal is to develop a method for redistributing the load between neighboring areas for mobile nodes. The considered base stations are supposed to have the signal-to-noise ratios that are equal or close. The methods that are used: methods of system analysis, methods of digital signal processing. The following results are obtained. The method that allows mobile nodes, whose signal-to-noise ratios are equal or close, to switch to a less loaded base station. This method allows the base station to launch the handover process enabling more even distribution of the load from mobile nodes among neighboring base stations in wireless and mobile networks. In the suggested modification of the method, the function assessing the bandwidth of the uplink channel is added to the base stations, as well a threshold value for using its bandwidth. Thus, when the current value of bandwidth reaches the threshold, the base station starts sending out a message to all mobile nodes and verifies free neighboring areas for switching over mobile nodes. If there are adjacent areas with a lower load, the base station notifies all potential candidates about the necessity of their switching over. The handover process is launched when the available bandwidth of the base station decreases below a certain threshold. Therefore, it is possible to optimize the operation of the WiMAX network with respect to the criterion of the total bandwidth capacity of the base stations. Besides, the results of the comparative analysis of the handover process in networks based on the WiMAX technology that are obtained using the OpNet simulation environment are presented. Conclusions.The suggested approach can be used to improve the basic software of mobile communication networks. When moving a node from one area to another one in access servers, the

  12. Application of Cs-137 techniques to problems of sediment redistribution in Sungai Lui representative basin, Selangor, Malaysia (Part 1)

    International Nuclear Information System (INIS)

    Daud bin Mohamad.

    1982-11-01

    Since the beginning of the nuclear age, Cesium-137 has become a part of the world's ecosystems. Cs-137 is carried from the atmosphere to the ground by rainfall. On reaching the earth's surface, 137 Cs becomes strongly adsorbed to soil profiles and is concentrated predominantly in the surface layer, particularly in clayey soils. Systematic measurements of Cs-137 levels will therefore permit estimates to be made of the cumulative effects of soil redistribution over the past 25 years. Sediment movement in river catchments and coastal areas is a very old problem in Malaysia. In view of rapid development of urban and agricultural areas in Malaysia it was realised tha soil loss problems are particularly serious. The Sungai Lui catchment was chosen to be the investigational site. Geologically, the area comprises of granite and granitic schist. The area is mostly covered by forest (approx. 83%) and rubber (13%), padi (2%) and others (2%). The climate is considered to be typical of Peninsular Malaysia (equatorial) characterised by uniform temperature, high humidity and high rainfall. The area is mainly drained by the Lui River. Soil samples were collected from the catchment area at 4 sampling points in April 1981. The results of analyses of Cs-137 in soil samples from Sungai Lui catchment area ranged from 1.3 to 6.8 M Bq g -1 of sample and they could still be detected even up to 20 cm depth. A general pattern of Cs-137 distribution was observed in the soil profile at each site. The highest activity being in the top 3 cm layer and then decreasing up to about 6 cm. The activity increases again up to about 9 cm layer. From there onwards, it decreases. Based on these results, the estimated rate of sediment accumulation in the area was found to be about 0.47 cm/year. Since the samples were only collected from the depositional sites, further sampling especially from erosional site should therefore be carried out in order to obtain more complete data

  13. Establishment of the relationship between 137Cs loss and soil erosion rates

    International Nuclear Information System (INIS)

    Phan Son Hai

    2003-01-01

    The key stages involved in the use of 137 Cs in soil erosion assessment is presented. The method have been successfully applied in pilot scale. These main stages can be summarized as follows: 1/ selection of reference sites next to the study site and establishment of a reference fallout inventory for the study site; 2/measurement of the current spatial distribution of 137 Cs inventory; 3/ evaluation of the pattern of 137 Cs redistribution at the study site; 4/ development of a calibration relationship between 137 CS loss and gain and rate of soil erosion; 5/ estimation of soil redistribution rates using the calibration relationship. (PSH)

  14. Soil Profile Characteristics of a 25-Year-Old Windrowed Loblolly Pine Plantation in Louisiana

    Science.gov (United States)

    William B. Patterson; John C. Adams; Spencer E. Loe; R. Jarod Patterson

    2002-01-01

    Windrowing site preparation, the raking and piling of long rows of logging debris, has been reported to displace surface soil, redistribute nutrients, and reduce volume growth of southern pine forests. Many of these studies have reported short-term results, and there are few long-term studies of the effects of windrowing on soil properties and pine growth. A 16.2...

  15. Reduction of the efficacy of biochar as soil amendment by soil erosion

    DEFF Research Database (Denmark)

    Fister, Wolfgang; Heckrath, Goswin Johann; Greenwood, Philip

    Biochar is primarily used as soil amendment to improve soil quality and to sequester more carbon (C) to increase both medium- and long-term soil C stocks. These positive effects are obviously diminished if biochar is eroded and transported out of the field. Due to its low bulk density......, the preferential mobilization and redistribution of biochar in the landscape seems probable. Therefore, the question has been raised in recent years of how vulnerable biochar actually is to soil erosion. This is especially relevant on soils which are regularly cultivated and are vulnerable to soil erosion...... of the financial value of the eroded biochar and its cost-effectiveness were scaled up from plot to field scale. In this investigation, the biochar was applied to the soil surface of three plots on a recently cultivated sandy field near Viborg in northern Jutland, Denmark at concentrations equivalent to 1.5-2.0 kg...

  16. Reverse redistribution in dipyridamole-loading thallium-201 images using single photon emission computed tomography

    International Nuclear Information System (INIS)

    Mori, Kiyoo; Masuda, Masanosuke; Bunko, Hisashi.

    1986-01-01

    Dipyridamole was infused intravenously at a rate of 0.142 mg/kg per min for four min, and a stress image was obtained 10 min after the injection of two mCi 201 Tl. The myocardial image of Tl was analyzed by single photon emission computed tomography and its washout rate was calculated by the segmental ROI method. Myocardial function and the motion of the left ventricular wall were analyzed by 99m Tc-RBC-gated cardiac pool imaging. Reverse redistribution was noted in 27 (21.6 %) of 125 consecutive Tl dipyridamole and redistribution myocardial imaging studies. The stress image demonstrated normal perfusion (group 1) and reduced perfusion (group 2) of Tl. Group 1 consisted of 17 patients with diabetes mellitus, supraventricular arrhythmias, hypertension, and others. Group 2 consisted of 10 patients with subendocardial infarction, diabetes mellitus, and hypertension, and others. The percentage prevalence of reverse redistribution among patients with supraventricular arrhythmia was 62.5 % (five of eight patients), with subendocardial infarction 60.0 % (three of five), with hypertension 42.8 % (six of 14), and with diabetes mellitus 40.0 % (eight of 20), while in those with transmyocardial infarction and angina pectoris no reverse redistribution percentage was found. The washout rate of Tl in normal perfusion areas was 44.0 ± 12.8 %, the reverse redistribution of group 1 was 47.4 ± 12.8 %, and of group 2 was 51.2 ± 8.2 %. The washout rate of the reverse redistribution of group 2 was significantly greater than that of the normal areas. In gated cardiac pool imaging, patients in group 2 had significantly larger areas showing abnormal contraction of the left ventricular wall and significantly lower ejection fraction than did group 1. In the electrocardiogram ST segment depression was noted more frequently in group 2 than group 1. No Q wave was present in the corresponding reverse redistribution area. (J.P.N.)

  17. Modeling soil moisture memory in savanna ecosystems

    Science.gov (United States)

    Gou, S.; Miller, G. R.

    2011-12-01

    Antecedent soil conditions create an ecosystem's "memory" of past rainfall events. Such soil moisture memory effects may be observed over a range of timescales, from daily to yearly, and lead to feedbacks between hydrological and ecosystem processes. In this study, we modeled the soil moisture memory effect on savanna ecosystems in California, Arizona, and Africa, using a system dynamics model created to simulate the ecohydrological processes at the plot-scale. The model was carefully calibrated using soil moisture and evapotranspiration data collected at three study sites. The model was then used to simulate scenarios with various initial soil moisture conditions and antecedent precipitation regimes, in order to study the soil moisture memory effects on the evapotranspiration of understory and overstory species. Based on the model results, soil texture and antecedent precipitation regime impact the redistribution of water within soil layers, potentially causing deeper soil layers to influence the ecosystem for a longer time. Of all the study areas modeled, soil moisture memory of California savanna ecosystem site is replenished and dries out most rapidly. Thus soil moisture memory could not maintain the high rate evapotranspiration for more than a few days without incoming rainfall event. On the contrary, soil moisture memory of Arizona savanna ecosystem site lasts the longest time. The plants with different root depths respond to different memory effects; shallow-rooted species mainly respond to the soil moisture memory in the shallow soil. The growing season of grass is largely depended on the soil moisture memory of the top 25cm soil layer. Grass transpiration is sensitive to the antecedent precipitation events within daily to weekly timescale. Deep-rooted plants have different responses since these species can access to the deeper soil moisture memory with longer time duration Soil moisture memory does not have obvious impacts on the phenology of woody plants

  18. Modeling of cadmium migration in Ca-saturated soils

    International Nuclear Information System (INIS)

    Pinsky, D.L.; Pachepsky, Y.A.

    1994-01-01

    The paper shows how different methods of description of the Cd ion-exchange redistribution between SAC and the soil solution affects the position of the bulk of migrant and the shape of the distribution curve. It also considers physicochemical mechanisms governing the observed distribution of the element in the column

  19. A consistent decomposition of the redistributive, vertical, and horizontal effects of health care finance by factor components.

    Science.gov (United States)

    Hierro, Luis A; Gómez-Álvarez, Rosario; Atienza, Pedro

    2014-01-01

    In studies on the redistributive, vertical, and horizontal effects of health care financing, the sum of the contributions calculated for each financial instrument does not equal the total effects. As a consequence, the final calculations tend to be overestimated or underestimated. The solution proposed here involves the adaptation of the Shapley value to achieve additive results for all the effects and reveals the relative contributions of different instruments to the change of whole-system equity. An understanding of this change would help policy makers attain equitable health care financing. We test the method with the public finance and private payments of health care systems in Denmark and the Netherlands. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Dynamic magneto-optical imaging of transport current redistribution and normal zone propagation in YBa2Cu3O7-δ coated conductor

    International Nuclear Information System (INIS)

    Song Honghai; Schwartz, Justin; Davidson, Michael W

    2009-01-01

    YBa 2 Cu 3 O 7-δ (YBCO) coated conductors carry high critical current density with the potential for low cost and thus have a broad range of potential applications. An unresolved issue that could inhibit implementation, however, is a lack of understanding of the current redistribution and normal zone propagation behavior in the event of a thermal disturbance (quench). In this work, we for the first time present the real-time, dynamic observation of magnetic field redistribution during a thermal disturbance via magneto-optical imaging with a high speed, high resolution CCD (charge coupled device) camera. The optical images are converted to a two-dimensional, time-dependent data set that is then analyzed quantitatively. It is found that the normal zone propagates non-uniformly in two dimensions within the YBCO layer. Two stages of normal zone propagation are observed. During the first stage, the normal zone propagates along the conductor length as the current and magnetic field redistribute within the YBCO layer. During the second stage, current sharing with the Cu begins and the magneto-optical image becomes constant. The normal zone propagation velocity at 45 K, I = 50 A (∼50% I c ), is determined as 22.7 mm s -1 using the time-dependent optical light intensity data. (rapid communication)

  1. Quick test for infiltration of arable soils

    OpenAIRE

    Liebl, Boris; Spiegel, Ann-Kathrin

    2018-01-01

    The quick test makes the consequences of soil compaction on water infiltration and the yield of agricultural crops visible. It promotes an understanding of the effects of soil compaction and the importance of soil-conserving cultivation.

  2. Phases and rates of iron and magnetism changes during paddy soil development on calcareous marine sediment and acid Quaternary red-clay.

    Science.gov (United States)

    Huang, Laiming; Jia, Xiaoxu; Shao, Ming'an; Chen, Liumei; Han, Guangzhong; Zhang, Ganlin

    2018-01-11

    Dynamic changes in Fe oxides and magnetic properties during natural pedogenesis are well documented, but variations and controls of Fe and magnetism changes during anthropedogenesis of paddy soils strongly affected by human activities remain poorly understood. We investigated temporal changes in different Fe pools and magnetic parameters in soil profiles from two contrasting paddy soil chronosequences developed on calcareous marine sediment and acid Quaternary red clay in Southern China to understand the directions, phases and rates of Fe and magnetism evolution in Anthrosols. Results showed that paddy soil evolution under the influence of artificial submergence and drainage caused changes in soil moisture regimes and redox conditions with both time and depth that controlled Fe transport and redistribution, leading to increasing profile differentiation of Fe oxides, rapid decrease of magnetic parameters, and formation of diagnostic horizons and features, irrespective of the different parent materials. However, the initial parent material characteristics (pH, Fe content and composition, weathering degree and landscape positions) exerted a strong influence on the rates and trajectories of Fe oxides evolution as well as the phases and rates of magnetism changes. This influence diminished with time as prolonged rice cultivation drove paddy soil evolving to common pedogenic features.

  3. Load-redistribution strategy based on time-varying load against cascading failure of complex network

    International Nuclear Information System (INIS)

    Liu Jun; Shi Xin; Wang Kai; Shi Wei-Ren; Xiong Qing-Yu

    2015-01-01

    Cascading failure can cause great damage to complex networks, so it is of great significance to improve the network robustness against cascading failure. Many previous existing works on load-redistribution strategies require global information, which is not suitable for large scale networks, and some strategies based on local information assume that the load of a node is always its initial load before the network is attacked, and the load of the failure node is redistributed to its neighbors according to their initial load or initial residual capacity. This paper proposes a new load-redistribution strategy based on local information considering an ever-changing load. It redistributes the loads of the failure node to its nearest neighbors according to their current residual capacity, which makes full use of the residual capacity of the network. Experiments are conducted on two typical networks and two real networks, and the experimental results show that the new load-redistribution strategy can reduce the size of cascading failure efficiently. (paper)

  4. Redistribution of Chernobyl 137Cs in Ukraine wetlands by flooding

    International Nuclear Information System (INIS)

    Burrough, P.A.; Gillespie, M.; Howard, B.; Prister, B.

    1996-01-01

    In northwest Ukraine, some soils in the Rovno region near the Belarus border 300-km west of Chernobyl have unusually high radiocesium levels with strong evidence of rapid uptake in the food chain. In a study area covering 76.5 km 2 near Dubrovitsa, radiocesium levels vary strongly both spatially and temporally from less than 50 kBq/m 2 to more than 1200 kBq/m 2 : at some sites near major streams, 1993 levels are more than three times those of 1988. Geostatistical methods linked to geographic information systems (GIS) demonstrate that the elevated 1993 levels result from transport and concentration by river flooding, a problem which probably affects all areas regularly inundated by the river Pripyat and its tributaries along a 400-km stretch of the Ukraine-Belarus border

  5. Physical and Chemical Properties of Soils under Contrasting Land ...

    African Journals Online (AJOL)

    Physical and Chemical Properties of Soils under Contrasting Land Use ... the aim of understanding the response of the soil to different management practices over time. ... The soil chemical properties studied were soil pH, organic carbon, total ...

  6. Using semi-variogram analysis for providing spatially distributed information on soil surface condition for land surface modeling

    Science.gov (United States)

    Croft, Holly; Anderson, Karen; Kuhn, Nikolaus J.

    2010-05-01

    The ability to quantitatively and spatially assess soil surface roughness is important in geomorphology and land degradation studies. Soils can experience rapid structural degradation in response to land cover changes, resulting in increased susceptibility to erosion and a loss of Soil Organic Matter (SOM). Changes in soil surface condition can also alter sediment detachment, transport and deposition processes, infiltration rates and surface runoff characteristics. Deriving spatially distributed quantitative information on soil surface condition for inclusion in hydrological and soil erosion models is therefore paramount. However, due to the time and resources involved in using traditional field sampling techniques, there is a lack of spatially distributed information on soil surface condition. Laser techniques can provide data for a rapid three dimensional representation of the soil surface at a fine spatial resolution. This provides the ability to capture changes at the soil surface associated with aggregate breakdown, flow routing, erosion and sediment re-distribution. Semi-variogram analysis of the laser data can be used to represent spatial dependence within the dataset; providing information about the spatial character of soil surface structure. This experiment details the ability of semi-variogram analysis to spatially describe changes in soil surface condition. Soil for three soil types (silt, silt loam and silty clay) was sieved to produce aggregates between 1 mm and 16 mm in size and placed evenly in sample trays (25 x 20 x 2 cm). Soil samples for each soil type were exposed to five different durations of artificial rainfall, to produce progressively structurally degraded soil states. A calibrated laser profiling instrument was used to measure surface roughness over a central 10 x 10 cm plot of each soil state, at 2 mm sample spacing. The laser data were analysed within a geostatistical framework, where semi-variogram analysis quantitatively represented

  7. Land-use change interacts with climate to determine elevational species redistribution.

    Science.gov (United States)

    Guo, Fengyi; Lenoir, Jonathan; Bonebrake, Timothy C

    2018-04-03

    Climate change is driving global species redistribution with profound social and economic impacts. However, species movement is largely constrained by habitat availability and connectivity, of which the interaction effects with climate change remain largely unknown. Here we examine published data on 2798 elevational range shifts from 43 study sites to assess the confounding effect of land-use change on climate-driven species redistribution. We show that baseline forest cover and recent forest cover change are critical predictors in determining the magnitude of elevational range shifts. Forest loss positively interacts with baseline temperature conditions, such that forest loss in warmer regions tends to accelerate species' upslope movement. Consequently, not only climate but also habitat loss stressors and, importantly, their synergistic effects matter in forecasting species elevational redistribution, especially in the tropics where both stressors will increase the risk of net lowland biotic attrition.

  8. The analysis of fuel constituent redistribution for ternary metallic fuel slug

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byoung Oon; Lee, Dong Uk; Kim, Young Kyun; Chang, Jin Wook; Lee, Ki Bok; Kim, Young Il

    2004-02-01

    U-TRU-Zr metallic alloy is being considered as the fuel slug for the proliferation resistance core of KALIMER. The radial fuel constituent migration is a general phenomenon in the metallic alloys. This phenomenon may affect the in-reactor performance of metallic fuel rods, influencing such factors as melting temperature, thermal conductivity, power generation rate, phase boundaries and eutectic melting of the fuel slug. Thus, constituent redistribution modeling is essential when developing a metallic fuel performance code. The constituent migration model adopted in this report was based on the Ishida's model and Hofman's theory. A subroutine program has been made and installed into the MACSIS code to simulate constituent redistribution. The radial profile of Zr redistribution was calculated for the ternary metallic fuel, and compared with the measured data.

  9. Redistributed orebodies of Poison Canyon, Sec. 18 and 19, T. 13 N., R. 9 W., McKinley County

    International Nuclear Information System (INIS)

    Tessendorf, T.N.

    1980-01-01

    Since the early 1950's, the Poison Canyon mine has been considered a classic example of uranium geology. Owing to present economic condtions, a close examination of the redistributed mineralization is taking place. Because of the evolution of the structure and geomorphology of Poison Canyon, the primary mineralization went through further oxidation and reduction. Enriched solutions of uranium migrated downdip through permeable sands. These solutions were controlled by north-trending fracture patterns, with some vertical movement along major faults. The uranium collected in structural and lithological traps, forming amoeba-like orebodies with the higher grade mineralization located in the fractures. First-generation redistributed ore is primarily coffinite. Forming later is second-generation redistributed ore, which is mainly tyuyamunite. The latter formed from further oxidation and redistribution of the primary and first-generation mineralization, combined with an increasing nearness to surface. The authigenic minerals in the redistributed mineralization are found in carbon-deficient sands. The redistributed minerals are locally associated with pascoite, although this mineral is rare. The radiometric equilibrium of the primary minerals differs from that of the redistributed minerals. The uranium has been leached from the primary minerals making chemical values less than radiometric values. The redistributed minerals are chemically greater than radiometric, producing a favorable equilibrium. The percent extraction in the mill process is greater for the redistributed ore than for the primary ore. The paragenetic position of the different minerals has a direct bearing on these observations

  10. Influence of Microsprinkler Irrigation Amount on Water, Soil, and pH Profiles in a Coastal Saline Soil

    Directory of Open Access Journals (Sweden)

    Linlin Chu

    2014-01-01

    Full Text Available Microsprinkler irrigation is a potential method to alleviate soil salinization. After conducting a homogeneous, highly saline, clayey, and coastal soil from the Bohai Gulf in northern China in a column experiment, the results show that the depth of the wetting front increased as the water amount applied increased, low-salinity and low-SAR enlarged after irrigation and water redistribution, and the soil pH increased with an increase in irrigation amount. We concluded that a water amount of 207 mm could be used to reclaim the coastal saline soil in northern China.

  11. Predicting Soil-Air and Soil-Water Transport Properties During Soil Vapor Extraction

    DEFF Research Database (Denmark)

    Poulsen, Tjalfe

    Increased application of in-situ technology for control and removal of volatile organic compounds (VOC) in the subsurface has made the understanding of soil physical properties and their impact upon contaminant transport even more important. Knowledge of contaminant transport is important when...... properties of undisturbed soil from more easily measurable soil properties are developed. The importance of soil properties with respect to contaminant migration during remediation by soil vapor extraction (SVE) in the unsaturated zone was investigated using numerical simulations....

  12. SERDP and ESTCP Expert Panel Workshop on Research and Development Needs for Understanding and Assessing the Bioavailability of Contaminants in Soils and Sediments

    Science.gov (United States)

    2008-11-01

    compartments contributing to fish tissue uptake. Develop tools to evaluate contaminant source apportionment into fish and higher trophic levels for use in... apportionment into risk assessments. 7.1.1.2 Improved Understanding of Metal Bioavailability in Sediments. The bioavailability of metals from...Bryan, G.W. and Langston, W.J., 1992. Bioavailability, Accumulation and Effects of Heavy Metals in Sediments with Special Reference to United

  13. Determination of the hydraulic conductivity in column of undeformed soil by gamma rays transmission

    International Nuclear Information System (INIS)

    Moreira, Anderson C.; Cavalcante, Fabio H.M.; Portezan Filho, Otavio; Coimbra, Melayne M.; Appoloni, Carlos Roberto

    2000-01-01

    The water infiltration process in undeformed soil column and the measurement of redistribution process by gamma rays transmission in different depth allow the determination of Hydraulic Conductivity K(Θ) function, using the Sisson et al. (1980) method. A LRd (dystrophic dark red soil) soil column with 60 cm of height, 10 cm of width and 5 cm of thickness, was analyzed in laboratory, reproducing the field conditions concerning to the water infiltration and redistribution in the soil. The soil moisture content data was obtained with a radioactivity source 241 Am (100 mCi; 59,6 keV), NaI (Tl) 2x2 detector, coupled to an gamma rays spectrometric electronic chain and a measurement table that allowed the vertical displacement of the soil column. The results indicate a growing behavior for K(Θ) in relation to the depth. The collimators had 2 mm and 5 mm diameter for radioactivity source and detector respectively. (author)

  14. Who wants to redistribute? Russia's tunnel effect in the 1990's

    OpenAIRE

    Ravallion, Martin; Lokshin, Michael

    1999-01-01

    It seems natural to expect the rich to oppose policies to redistribute income from the rich to the poor, and the poor to favor such policies. But this may be too simple a model, say the Authors. Expectations of future welfare may come into play. Well-off people on a downward trajectory may well favor such policies and poor people on a rising trajectory may not. This resistance of upwardly mobile poor people to lasting redistribution is analogous to Hirshman's"tunnel effect", as applied to tra...

  15. Calculation of pressure drop and flow redistribution in the core of LMFBR type reactors

    International Nuclear Information System (INIS)

    Botelho, D.A.; Morgado, O.J.

    1985-01-01

    It is studied the flow redistribution through of fuel elements to the pressure drop calculation in the core of sodium cooled reactors. Using the quasi-static formulation of equations of the conservation of mass, energy and momentum, it was developed a computer program to flow redistribution calculations and pressure drop for different power levels and total flow simulating an arbitrary number of channels for sodium flowing . An optimization of the number of sufficient channels for calculations of this nature is done. The method is applied in studies of transients in the same reactor. (M.C.K.) [pt

  16. Stress redistribution and void growth in butt-welded canisters for spent nuclear fuel

    International Nuclear Information System (INIS)

    Josefson, B.L.; Karlsson, L.; Haeggblad, H.Aa.

    1993-02-01

    The stress-redistribution in Cu-Fe canisters for spent nuclear fuel during waiting for deposition and after final deposition is calculated numerically. The constitutive equation modelling creep deformation during this time period employs values on materials parameters determined within the SKB-project on 'mechanical integrity of canisters for spent nuclear fuel'. The welding residual stresses are redistributed without lowering maximum values during the waiting period, a very low amount of void growth is predicted for this type of copper during the deposition period. This leads to an estimated very large rupture time

  17. Soil water content evaluation considering time-invariant spatial pattern and space-variant temporal change

    Science.gov (United States)

    Hu, W.; Si, B. C.

    2013-10-01

    Soil water content (SWC) varies in space and time. The objective of this study was to evaluate soil water content distribution using a statistical model. The model divides spatial SWC series into time-invariant spatial patterns, space-invariant temporal changes, and space- and time-dependent redistribution terms. The redistribution term is responsible for the temporal changes in spatial patterns of SWC. An empirical orthogonal function was used to separate the total variations of redistribution terms into the sum of the product of spatial structures (EOFs) and temporally-varying coefficients (ECs). Model performance was evaluated using SWC data of near-surface (0-0.2 m) and root-zone (0-1.0 m) from a Canadian Prairie landscape. Three significant EOFs were identified for redistribution term for both soil layers. EOF1 dominated the variations of redistribution terms and it resulted in more changes (recharge or discharge) in SWC at wetter locations. Depth to CaCO3 layer and organic carbon were the two most important controlling factors of EOF1, and together, they explained over 80% of the variations in EOF1. Weak correlation existed between either EOF2 or EOF3 and the observed factors. A reasonable prediction of SWC distribution was obtained with this model using cross validation. The model performed better in the root zone than in the near surface, and it outperformed conventional EOF method in case soil moisture deviated from the average conditions.

  18. Sources of variability in fatty acid (FA) biomarkers in the application of compound-specific stable isotopes (CSSIs) to soil and sediment fingerprinting and tracing: A review

    Energy Technology Data Exchange (ETDEWEB)

    Reiffarth, D.G., E-mail: Dominic.Reiffarth@unbc.ca [Natural Resources and Environmental Studies Program, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9 (Canada); Petticrew, E.L., E-mail: Ellen.Petticrew@unbc.ca [Geography Program and Quesnel River Research Centre, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9 (Canada); Owens, P.N., E-mail: Philip.Owens@unbc.ca [Environmental Science Program and Quesnel River Research Centre, University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9 (Canada); Lobb, D.A., E-mail: David.Lobb@umanitoba.ca [Watershed Systems Research Program, University of Manitoba, 13 Freedman Crescent, Winnipeg, MB R3T 2N2 (Canada)

    2016-09-15

    Determining soil redistribution and sediment budgets in watersheds is often challenging. One of the methods for making such determinations employs soil and sediment fingerprinting techniques, using sediment properties such as geochemistry, fallout radionuclides, and mineral magnetism. These methods greatly improve the estimation of erosion and deposition within a watershed, but are limited when determining land use-based soil and sediment movement. Recently, compound-specific stable isotopes (CSSIs), which employ fatty acids naturally occurring in the vegetative cover of soils, offer the possibility of refining fingerprinting techniques based on land use, complementing other methods that are currently in use. The CSSI method has been met with some success; however, challenges still remain with respect to scale and resolution due to a potentially large degree of biological, environmental and analytical uncertainty. By better understanding the source of tracers used in CSSI work and the inherent biochemical variability in those tracers, improvement in sample design and tracer selection is possible. Furthermore, an understanding of environmental and analytical factors affecting the CSSI signal will lead to refinement of the approach and the ability to generate more robust data. This review focuses on sources of biological, environmental and analytical variability in applying CSSI to soil and sediment fingerprinting, and presents recommendations based on past work and current research in this area for improving the CSSI technique. A recommendation, based on current information available in the literature, is to use very-long chain saturated fatty acids and to avoid the use of the ubiquitous saturated fatty acids, C{sub 16} and C{sub 18}. - Highlights: • Compound-specific stable isotopes (CSSIs) of carbon may be used as soil tracers. • The variables affecting CSSI data are: biological, environmental and analytical. • Understanding sources of variability will lead

  19. Sources of variability in fatty acid (FA) biomarkers in the application of compound-specific stable isotopes (CSSIs) to soil and sediment fingerprinting and tracing: A review

    International Nuclear Information System (INIS)

    Reiffarth, D.G.; Petticrew, E.L.; Owens, P.N.; Lobb, D.A.

    2016-01-01

    Determining soil redistribution and sediment budgets in watersheds is often challenging. One of the methods for making such determinations employs soil and sediment fingerprinting techniques, using sediment properties such as geochemistry, fallout radionuclides, and mineral magnetism. These methods greatly improve the estimation of erosion and deposition within a watershed, but are limited when determining land use-based soil and sediment movement. Recently, compound-specific stable isotopes (CSSIs), which employ fatty acids naturally occurring in the vegetative cover of soils, offer the possibility of refining fingerprinting techniques based on land use, complementing other methods that are currently in use. The CSSI method has been met with some success; however, challenges still remain with respect to scale and resolution due to a potentially large degree of biological, environmental and analytical uncertainty. By better understanding the source of tracers used in CSSI work and the inherent biochemical variability in those tracers, improvement in sample design and tracer selection is possible. Furthermore, an understanding of environmental and analytical factors affecting the CSSI signal will lead to refinement of the approach and the ability to generate more robust data. This review focuses on sources of biological, environmental and analytical variability in applying CSSI to soil and sediment fingerprinting, and presents recommendations based on past work and current research in this area for improving the CSSI technique. A recommendation, based on current information available in the literature, is to use very-long chain saturated fatty acids and to avoid the use of the ubiquitous saturated fatty acids, C 16 and C 18 . - Highlights: • Compound-specific stable isotopes (CSSIs) of carbon may be used as soil tracers. • The variables affecting CSSI data are: biological, environmental and analytical. • Understanding sources of variability will lead to more

  20. Value of mammals trophycal and metabolitycal activity during of soils self-cleaning in conditions of the antropogenyc pollution

    OpenAIRE

    V. L. Zhuk

    2005-01-01

    The influencing of elk and roe deer excrements on radionuckleids migration in the soil horizon under zinc pollution circumstances has been investigated. It is confirmed that mammals excretory activity is an important acting natural ecological factor further radionuckleids quickly redistribution in the soil thus reducing the level of radioactivity and heavy metals

  1. Mass Redistribution in the Core and Time-varying Gravity at the Earth's Surface

    Science.gov (United States)

    Kuang, Wei-Jia; Chao, Benjamin F.; Fang, Ming

    2003-01-01

    The Earth's liquid outer core is in convection, as suggested by the existence of the geomagnetic field in much of the Earth's history. One consequence of the convection is the redistribution of mass resulting from relative motion among fluid parcels with slightly different densities. This time dependent mass redistribution inside the core produces a small perturbation on the gravity field of the Earth. With our numerical dynamo solutions, we find that the mass redistribution (and the resultant gravity field) symmetric about the equator is much stronger than that anti-symmetric about the equator. In particular, J(sub 2) component is the strongest. In addition, the gravity field variation increases with the Rayleigh number that measures the driving force for the geodynamo in the core. With reasonable scaling from the current dynamo solutions, we could expect that at the surface of the Earth, the J(sub 2) variation from the core is on the order of l0(exp -16)/year relative to the mean (i.e. spherically symmetric) gravity field of the Earth. The possible shielding effect due to core-mantle boundary pressure variation loading is likely much smaller and is therefore negligible. Our results suggest that time-varying gravity field perturbation due to core mass redistribution may be measured with modem space geodetic observations, which will result a new means of detecting dynamical processes in the Earth's deep interior.

  2. Automatic system for redistributing feedwater in a steam generator of a nuclear power plant

    International Nuclear Information System (INIS)

    Fuoto, J.S.; Crotzer, M.E.; Lang, G.E.

    1980-01-01

    A system is described for automatically redistributing a steam generator secondary tube system after a burst in the secondary tubing. This applies to a given steam generator in a system having several steam generators partially sharing a common tube system, and employs a pressure control generating an electrical signal which is compared with given values [fr

  3. A glimpse through the veil of ignorance: equality of opportunity and support for redistribution

    NARCIS (Netherlands)

    Krawczyk, M.W.

    2007-01-01

    This study is an experimental investigation into preference for redistribution of income. It had been hypothesized that (belief in) equality of opportunity in a society diminishes support for the welfare state. This could potentially explain the low taxes and social benefits in the United States

  4. A glimpse through the veil of ignorance: Equality of opportunity and support for redistribution

    NARCIS (Netherlands)

    Krawczyk, M.W.

    2010-01-01

    This study is an experimental investigation into preference for redistribution of income. It had been hypothesized that (belief in) equality of opportunity in a society diminishes support for the welfare state. This could potentially explain the low taxes and social benefits in the United States

  5. Normalization of reverse redistribution of thallium-201 with procainamide pretreatment in Wolff-Parkinson-White syndrome

    International Nuclear Information System (INIS)

    Nii, T.; Nakashima, Y.; Nomoto, J.; Hiroki, T.; Ohshima, F.; Arakawa, K.

    1991-01-01

    Stress thallium-201 myocardial perfusion imaging was performed in a patient with Wolff-Parkinson-White syndrome. Reverse redistribution phenomenon was observed in the absence of coronary artery disease. This seems to be the first report of normalization of this phenomenon in association with reversion of accessory pathway to normal atrioventricular conduction after pretreatment with procainamide

  6. Normalization of reverse redistribution of thallium-201 with procainamide pretreatment in Wolff-Parkinson-White syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Nii, T.; Nakashima, Y.; Nomoto, J.; Hiroki, T.; Ohshima, F.; Arakawa, K. (Fukuoka Univ. School of Medicine (Japan))

    1991-03-01

    Stress thallium-201 myocardial perfusion imaging was performed in a patient with Wolff-Parkinson-White syndrome. Reverse redistribution phenomenon was observed in the absence of coronary artery disease. This seems to be the first report of normalization of this phenomenon in association with reversion of accessory pathway to normal atrioventricular conduction after pretreatment with procainamide.

  7. Redistribution, Growth, and Inclusion : The Development of the Urban Housing System in China, 1949-2015

    NARCIS (Netherlands)

    Deng, W.; Hoekstra, J.S.C.M.; Elsinga, M.G.

    2017-01-01

    This paper explains the development of the urban housing system in China from 1949 to 2011 with an emphasis on the factors driving housing inequality in each policy period. We argue that the logic underpinning the housing policy had shifted from socialist redistribution to the stimulation of growth

  8. The failing redistribution of roles between men and women : A psychological view and its unexpected consequences

    NARCIS (Netherlands)

    Roe, R.A.

    1996-01-01

    A major objective of social policy in Western-European countries during the last decade has been the redistribution of work and caring roles between mean and women. This aim has inspired social scientists to investigate the conditions for and the mechanisms by which such a role-change could be

  9. Studying DAC capacitor-array degradation in charge-redistribution SAR ADCs

    NARCIS (Netherlands)

    Khan, M.A.; Kerkhoff, Hans G.

    2014-01-01

    In this paper, system-level behavioural models are used to simulate the aging-related degradation effects in the DAC capacitor array of a charge-redistribution successive approximation register (SAR) ADC because of the large calculation time of transistor-level aging simulators. A

  10. Redistribution spurs growth by using a portfolio effect on risky human capital.

    Directory of Open Access Journals (Sweden)

    Jan Lorenz

    Full Text Available We demonstrate by mathematical analysis and systematic computer simulations that redistribution can lead to sustainable growth in a society. In accordance with economic models of risky human capital, we assume that dynamics of human capital is modeled as a multiplicative stochastic process which, in the long run, leads to the destruction of individual human capital. When agents are linked by fully redistributive taxation the situation might turn to individual growth in the long run. We consider that a government collects a proportion of income and reduces it by a fraction as costs for administration (efficiency losses. The remaining public good is equally redistributed to all agents. Sustainable growth is induced by redistribution despite the losses from the random growth process and despite administrative costs. Growth results from a portfolio effect. The findings are verified for three different tax schemes: proportional tax, taking proportionally more from the rich, and proportionally more from the poor. We discuss which of these tax schemes performs better with respect to maximize growth under a fixed rate of administrative costs, and the governmental income. This leads us to general conclusions about governmental decisions, the relation to public good games with free riding, and the function of taxation in a risk-taking society.

  11. Development and validity of a new model for assessing pressure redistribution properties of support surfaces.

    Science.gov (United States)

    Matsuo, Junko; Sugama, Junko; Sanada, Hiromi; Okuwa, Mayumi; Nakatani, Toshio; Konya, Chizuko; Sakamoto, Jirou

    2011-05-01

    Pressure ulcers are a common problem, especially in older patients. In Japan, most institutionalized older people are malnourished and show extreme bony prominence (EBP). EBP is a significant factor in the development of pressure ulcers due to increased interface pressure concentrated at the skin surface over the EBP. The use of support surfaces is recommended for the prophylaxis of pressure ulcers. However, the present equivocal criteria for evaluating the pressure redistribution of support surfaces are inadequate. Since pressure redistribution is influenced by physique and posture, evaluations using human subjects are limited. For this reason, models that can substitute for humans are necessary. We developed a new EBP model based on the anthropometric measurements, including pelvic inclination, of 100 bedridden elderly people. A comparison between the pressure distribution charts of our model and bedridden elderly subjects demonstrated that maximum contact pressure values, buttock contact pressure values, and bone prominence rates corresponded closely. This indicates that the model provides a good approximation of the features of elderly people with EBP. We subsequently examined the validity of the model through quantitative assessment of pressure redistribution functions consisting of immersion, envelopment, and contact area change. The model was able to detect differences in the hardness of urethane foam, differences in the internal pressure of an air mattress, and sequential changes during the pressure switching mode. These results demonstrate the validity of our new buttock model in evaluating pressure redistribution for a variety of surfaces. Copyright © 2010 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  12. Preferences on Redistribution in Fragmented Labor Markets in Latin America and the Caribbean

    Directory of Open Access Journals (Sweden)

    Sarah Berens

    2015-01-01

    Full Text Available This study investigates the extent to which labor market dualization polarizes preferences on redistribution between formal and informal sector workers in Latin America and the Caribbean. Differences in welfare state costs and benefits for these labor market groups are likely to fuel diverging incentives regarding welfare consumption. The article tests whether or not informal workers are driven mainly by economic self-interest to increase gains from public welfare goods. The study employed a hierarchical model on pooled survey data from the Latin American Public Opinion Project (LAPOP 2008 and 2010 to analyze the risk exposure of formal and informal workers and, subsequently, their preferences on redistribution. The analysis reveals that while economic self-interest is an influential factor for formal workers, it is (unexpectedly much less so for informal workers. Also, an increased economically insecure environment, reflected by high unemployment rates, does not motivate informal workers to an exceptional degree to turn towards the state for redistribution, despite greater exposure to economic risk. Labor market dualization does not translate into polarization at the individual level regarding redistributive preferences in Latin America and the Caribbean.

  13. Strain redistribution around holes and notches in fiber-reinforced cross-woven brittle matrix composites

    DEFF Research Database (Denmark)

    Jacobsen, Torben Krogsdal; Brøndsted, Povl

    1997-01-01

    Mechanics, and an identification procedure based on a uni-axial tensile test and a shear test the strain redistribution around a hole or a notch due to matrix cracking can be predicted. Damage due to fiber breakage is not included in the model. Initial matrix damage in the C-f/SiCm material has...

  14. Charge transfer and redistribution at interfaces between metals and 2D materials

    NARCIS (Netherlands)

    Bokdam, Menno

    2013-01-01

    Large potential steps are observed at the interfaces between metals and novel 2D materials. They can lower the work function by more than 1 eV, even when the two parts are only weakly interacting. In this thesis the transfer and redistribution of electrons in metal|2D material heterostructures are

  15. Redistribution spurs growth by using a portfolio effect on risky human capital.

    Science.gov (United States)

    Lorenz, Jan; Paetzel, Fabian; Schweitzer, Frank

    2013-01-01

    We demonstrate by mathematical analysis and systematic computer simulations that redistribution can lead to sustainable growth in a society. In accordance with economic models of risky human capital, we assume that dynamics of human capital is modeled as a multiplicative stochastic process which, in the long run, leads to the destruction of individual human capital. When agents are linked by fully redistributive taxation the situation might turn to individual growth in the long run. We consider that a government collects a proportion of income and reduces it by a fraction as costs for administration (efficiency losses). The remaining public good is equally redistributed to all agents. Sustainable growth is induced by redistribution despite the losses from the random growth process and despite administrative costs. Growth results from a portfolio effect. The findings are verified for three different tax schemes: proportional tax, taking proportionally more from the rich, and proportionally more from the poor. We discuss which of these tax schemes performs better with respect to maximize growth under a fixed rate of administrative costs, and the governmental income. This leads us to general conclusions about governmental decisions, the relation to public good games with free riding, and the function of taxation in a risk-taking society.

  16. Collision-induced absorption intensity redistribution and the atomic pair polarizabilities

    International Nuclear Information System (INIS)

    Bulanin, M. O.

    1997-01-01

    A modified relation between the trace polarizability of a diatom and the S(-2) dipole sum is proposed that accounts for the effect of atomic collisions on the dipole oscillator strength distribution. Contribution to the collision-induced trace due to redistribution in the ionization continuum of Ar is evaluated and is found to be significant

  17. Redistributive Taxation vs. Education Subsidies: Fostering Equality and Social Mobility in an Intergenerational Model

    Science.gov (United States)

    Schneider, Andrea

    2010-01-01

    Redistributive taxation and education subsidies are common policies intended to foster education attendance of poor children. However, this paper shows that in an intergenerational framework, these policies can raise social mobility only for some investment situations but not in general. I also study the impact of both policies on the aggregate…

  18. The impact of soil erosion on soil fertility and vine vigor. A multidisciplinary approach based on field, laboratory and remote sensing approaches.

    Science.gov (United States)

    Novara, Agata; Pisciotta, Antonino; Minacapilli, Mario; Maltese, Antonino; Capodici, Fulvio; Cerdà, Artemi; Gristina, Luciano

    2018-05-01

    Soil erosion processes in vineyards, beyond surface runoff and sediment transport, have a strong effect on soil organic carbon (SOC) loss and redistribution along the slope. Variation in SOC across the landscape can determine differences in soil fertility and vine vigor. The goal of this research was to analyze the interactions among vines vigor, sediment delivery and SOC in a sloping vineyard located in Sicily. Six pedons were studied along the slope by digging 6 pits up to 60cm depth. Soil was sampled every 10cm and SOC, water extractable organic carbon (WEOC) and specific ultraviolet absorbance (SUVA) were analyzed. Erosion rates, detachment and deposition areas were measured by the pole height method which allowed mapping of the soil redistribution. The vigor of vegetation, expressed as Normalized Difference Vegetation Index (NDVI), derived from high-resolution satellite multispectral data, was compared with measured pruning weight. Results confirmed that soil erosion, sediment redistribution and SOC across the slope was strongly affected by topographic features, slope and curvature. The erosion rate was 16Mgha -1 y -1 since the time of planting (6years). SOC redistribution was strongly correlated with the detachment or deposition areas as highlighted by pole height measurements. The off-farm SOC loss over six years amounted to 1.2MgCha -1 . SUVA 254 values, which indicate hydrophobic material rich in aromatic constituents of WEOC, decreased significantly along the slope, demonstrating that WEOC in the detachment site is more stable in comparison to deposition sites. The plant vigor was strongly correlated with WEOC constituents. Results demonstrated that high resolution passive remote sensing data combined with soil and plant analyses can survey areas with contrasting SOC, soil fertility, soil erosion and plant vigor. This will allow monitoring of soil erosion and degradation risk areas and support decision-makers in developing measures for friendly

  19. Continuum soil modeling in the static analysis of buried structures

    International Nuclear Information System (INIS)

    Julyk, L.J.; Marlow, R.S.; Moore, C.J.; Day, J.P.; Dyrness, A.D.

    1993-10-01

    Soil loading traditionally has been modeled as a hydrostatic pressure, a practice acceptable for many design applications. In the analyses of buried structure with predictive goals, soil compliance and load redistribution in the presence of soil plasticity are important factors to consider in determining the appropriate response of the structure. In the analysis of existing buried waste-storage tanks at the US Department of Energy's Hanford Site, three soil-tank interaction modeling considerations are addressed. First, the soil interacts with the tank as the tank expands and contracts during thermal cycles associated with changes in the heat generated by the waste material as a result of additions and subtractions of the waste. Second, the soil transfers loads from the surface to the tank and provides support by resisting radial displacement of the tank haunch. Third, conventional finite-element mesh development causes artificial stress concentrations in the soil associated with differential settlement

  20. Drug-driven AMPA receptor redistribution mimicked by selective dopamine neuron stimulation.

    Directory of Open Access Journals (Sweden)

    Matthew T C Brown

    2010-12-01

    Full Text Available Addictive drugs have in common that they cause surges in dopamine (DA concentration in the mesolimbic reward system and elicit synaptic plasticity in DA neurons of the ventral tegmental area (VTA. Cocaine for example drives insertion of GluA2-lacking AMPA receptors (AMPARs at glutamatergic synapes in DA neurons. However it remains elusive which molecular target of cocaine drives such AMPAR redistribution and whether other addictive drugs (morphine and nicotine cause similar changes through their effects on the mesolimbic DA system.We used in vitro electrophysiological techniques in wild-type and transgenic mice to observe the modulation of excitatory inputs onto DA neurons by addictive drugs. To observe AMPAR redistribution, post-embedding immunohistochemistry for GluA2 AMPAR subunit was combined with electron microscopy. We also used a double-floxed AAV virus expressing channelrhodopsin together with a DAT Cre mouse line to selectively express ChR2 in VTA DA neurons. We find that in mice where the effect of cocaine on the dopamine transporter (DAT is specifically blocked, AMPAR redistribution was absent following administration of the drug. Furthermore, addictive drugs known to increase dopamine levels cause a similar AMPAR redistribution. Finally, activating DA VTA neurons optogenetically is sufficient to drive insertion of GluA2-lacking AMPARs, mimicking the changes observed after a single injection of morphine, nicotine or cocaine.We propose the mesolimbic dopamine system as a point of convergence at which addictive drugs can alter neural circuits. We also show that direct activation of DA neurons is sufficient to drive AMPAR redistribution, which may be a mechanism associated with early steps of non-substance related addictions.

  1. Calculation of axial hydrogen redistribution on the spent fuels during interim dry storage

    International Nuclear Information System (INIS)

    Sasahara, Akihiro; Matsumura, Tetsuo

    2006-01-01

    One of the phenomena that will affect fuel integrity during a spent fuel dry storage is a hydrogen axial migration in cladding. If there is a hydrogen pickup in cladding in reactor operation, hydrogen will move from hotter to colder cladding region in the axial direction under fuel temperature gradient during dry storage. Then hydrogen beyond solubility limit in colder region will be precipitated as hydride, and consequently hydride embrittlement may take place in the cladding. In this study, hydrogen redistribution experiments were carried out to obtain the data related to hydrogen axial migration by using actually twenty years dry (air) stored spent PWR-UO 2 fuel rods of which burn-ups were 31 and 58 MWd/kg HM. From the hydrogen redistribution experiments, the heat of transport of hydrogen of zircaloy-4 cladding from twenty years dry stored spent PWR-UO 2 fuel rods were from 10.1 to 18.6 kcal/mol and they were significantly larger than that of unirradiated zircaloy-4 cladding. This means that hydrogen in irradiated cladding can move easier than that in unirradiated cladding. In the hydrogen redistribution experiments, hydrogen diffusion coefficients and solubility limit were also obtained. There are few differences in the diffusion coefficients and solubility limits between the irradiated cladding and unirradiated cladding. The hydrogen redistribution in the cladding after dry storage for forty years was evaluated by one-dimensional diffusion calculation using the measured values. The maximum values as the heat of transports, diffusion coefficients and solubility limits of the irradiated cladding and various spent fuel temperature profiles reported were used in the calculation. The axial hydrogen migration was not significant after dry storage for forty years in helium atmosphere and the maximum values as the heat of transports, diffusion coefficients and solubility limits of the unirradiated cladding gave conservative evaluation for hydrogen redistribution

  2. Effect of eating on thallium-201 myocardial redistribution after myocardial ischemia

    International Nuclear Information System (INIS)

    Angello, D.A.; Wilson, R.A.; Palac, R.T.

    1987-01-01

    To determine whether eating a high-carbohydrate meal between initial and delayed postexercise thallium-201 (Tl-201) imaging affects detection of Tl-201 redistribution during exercise stress testing, 16 patients with stable angina performed 2 Tl-201 treadmill exercise stress tests within a 14-day interval. Immediately after initial postexercise imaging, patients either drank a commercially available instant breakfast preparation for the intervention test or drank an equivalent volume of water for the control test. Comparable exercise workloads were achieved by exercising patients to the same heart rate for both tests. The order of the 2 (intervention and control) tests were randomized. All patients had at least 1 region of Tl-201 myocardial redistribution on either their eating or control test scans, although only 7 of the 16 had positive treadmill exercise test responses. Forty-six regions showing Tl-201 myocardial redistribution were identified in all 144 regions examined. Significantly more of these regions were identified on control test scans than on eating test scans: 11 of 46 on both test scans, 6 of 46 only on eating test scans and 29 of 46 only on control scans (p less than 0.001). Consistent with results of the quantitative regional analysis, the percentage of Tl-201 clearance over 4 hours in the 46 Tl-201 myocardial redistribution regions was 39 +/- 8% for the eating tests and 29 +/- 8% for control tests (mean +/- standard deviation, p less than 0.003). In 4 patients diagnosis of transient ischemia would have been missed because their 14 Tl-201 myocardial redistribution regions were detected only on the control test scans

  3. The Spanish income tax reform of 2015: analysis of the effects on poverty and redistribution using microsimulation tools

    Directory of Open Access Journals (Sweden)

    Nuria Badenes-Plá

    2017-09-01

    Full Text Available In this work we analyze the effects of the 2015 reform of the Spanish personal income tax (PIT on tax revenue, liquidity, redistribution, progressivity, and poverty, using microdata. Tax reform has increased the redistributive effect. The applicable legislation in 2016 is almost 6.3% more redistributive than that in 2011, as measured by the Reynolds-Smolensky index. This is a remarkable achievement since greater redistribution has been attained through significantly lower tax revenue. The 2016 legislation has produced 4.4% lower tax revenue, but progressivity, as measured by Kakwani index, has increased by 12.2% from the 2011 legislation. The redistributive and progressivity analysis has been conducted with the use of microsimulation tools developed in the Instituto de Estudios Fiscales (IEF, in Spain. The poverty analysis is made using EUROMOD, a tax-benefit microsimulation model for the European Union.

  4. Soil invertebrate fauna affect N2O emissions from soil

    NARCIS (Netherlands)

    Kuiper, I.; Deyn, de G.B.; Thakur, M.P.; Groenigen, van J.W.

    2013-01-01

    Nitrous oxide (N2O) emissions from soils contribute significantly to global warming. Mitigation of N2O emissions is severely hampered by a lack of understanding of its main controls. Fluxes can only partly be predicted from soil abiotic factors and microbial analyses – a possible role for soil fauna

  5. Relaxometry in soil science

    Science.gov (United States)

    Schaumann, G. E.; Jaeger, F.; Bayer, J. V.

    2009-04-01

    relaxometry of soil samples. Soil Science Society of America Journal, 72, 1694-1707. Jaeger, F., Bowe, S. & Schaumann, G.E. in preparation. Evaluation of 1H NMR relaxometry for the assessment of pore size distribution in soil samples. European Journal of Soil Science. Jähnert, S., Vaca Chavez, F., Schaumann, G.E., Schreiber, A., Schönhoff, M. & Findenegg, G.H. 2008. Melting and freezing of water in cylindrical silica nanopores. Physical Chemistry Chemical Physics, 39, 6039-6051. Schaumann, G.E., Hurraß, J., Müller, M. & Rotard, W. 2004. Swelling of organic matter in soil and peat samples: insights from proton relaxation, water absorption and PAH extraction. In Humic Substances: Nature's Most Versatile Materials eds. E.A. Ghabbour & G. Davies), pp. 101-117. Taylor and Francis, Inc., New York. Schaumann, G.E., Hobley, E., Hurraß, J. & Rotard, W. 2005. H-NMR Relaxometry to monitor wetting and swelling kinetics in high organic matter soils. Plant and Soil, 275, 1-20. Schaumann, G.E. & Bertmer, M. 2008. Do water molecules bridge soil organic matter molecule segments? European Journal of Soil Science, 59, 423-429. Todoruk, T.R., Langford, C.H. & Kantzas, A. 2003. Pore-Scale Redistribution of Water during Wetting of Air-Dried Soils As Studied by Low-Field NMR Relaxometry. Environmental Science and Technology, 37, 2707-2713. Todoruk, T.R., Litvina, M., Kantzas, A. & Langford, C.H. 2003. Low-Field NMR Relaxometry: A Study of Interactions of Water with Water-Repellant Soils. Environmental Science and Technology, 37, 2878-2882. Van As, H. & van Dusschoten, D. 1997. NMR methods for imaging of transport processes in micro-porous systems. Geoderma, 80, 389-403. Van As, H. & Lens, P. 2001. Use of 1H NMR to study transport processes in porous biosystems. Journal of Industrial Microbiology & Biotechnology, 26, 43-52.

  6. Forest soils

    Science.gov (United States)

    Charles H. (Hobie) Perry; Michael C. Amacher

    2009-01-01

    Productive soils are the foundation of sustainable forests throughout the United States. Forest soils are generally subjected to fewer disturbances than agricultural soils, particularly those that are tilled, so forest soils tend to have better preserved A-horizons than agricultural soils. Another major contrast between forest and agricultural soils is the addition of...

  7. Usefulness of semiquantitative analysis of dipyridamole-thallium-201 redistribution for improving risk stratification before vascular surgery

    International Nuclear Information System (INIS)

    Levinson, J.R.; Boucher, C.A.; Coley, C.M.; Guiney, T.E.; Strauss, H.W.; Eagle, K.A.

    1990-01-01

    Preoperative dipyridamole-thallium-201 scanning is sensitive in identifying patients prone to ischemic cardiac complications after vascular surgery, but most patients with redistribution do not have an event after surgery. Therefore, its positive predictive value is limited. To determine which patients with thallium redistribution are at highest risk, dipyridamole-thallium-201 images were interpreted semiquantitatively. Sixty-two consecutive patients with redistribution on preoperative dipyridamole-thallium-201 planar imaging studies were identified. Each thallium scan was then analyzed independently by 2 observers for the number of myocardial segments out of 15, the number of thallium views out of 3 and the number of coronary artery territories with redistribution. Seventeen patients (27%) had postoperative ischemic events, including unstable angina pectoris, ischemic pulmonary edema, myocardial infarction and cardiac death. Thallium predictors of ischemic operative complications included thallium redistribution greater than or equal to 4 myocardial segments (p = 0.03), greater than or equal to 2 of the 3 planar views (p = 0.005) and greater than or equal to 2 coronary territories (p = 0.007). No patient with redistribution in only 1 view had an ischemic event (0 of 15). Thus, determining the extent of redistribution by dipyridamole-thallium-201 scanning improves risk stratification before vascular surgery. Patients with greater numbers of myocardial segments and greater numbers of coronary territories showing thallium-201 redistribution are at higher risk for ischemic cardiac complications. In contrast, when the extent of thallium redistribution is limited, there is a lower risk despite the presence of redistribution

  8. Soil and Soil Water Relationships

    OpenAIRE

    Easton, Zachary M.; Bock, Emily

    2017-01-01

    Discusses the relationships between soil, water and plants. Discusses different types of soil, and how these soils hold water. Provides information about differences in soil drainage. Discusses the concept of water balance.

  9. Minnesota's Soils and Their Uses.

    Science.gov (United States)

    Halsey, Clifton

    There is an increasing need for land planning and understanding soil is one step toward assuring proper land use. This publication, written by soil scientists and teachers, is designed as a reference for high school teachers. It is designed to be a comprehensive collection about Minnesota soils (although the information can be applied to other…

  10. Use of cesium-137 to assess soil erosion rates under soybean, coffee and pasture

    International Nuclear Information System (INIS)

    Andrello, A.C.; Appoloni, C.R.; Guimaraes, M.F.

    2003-01-01

    The methodology cesium-137 was used to assess soil erosion and deposition rates in a small watershed with varied crops, at 23 deg 16' S and 51 deg 17' W, in a district of Cambe, Parana State, Brazil. A theoretical equation which considers soil loss or gain directly proportional to the cesium-137 redistribution was utilized in this study. In the watershed, soil redistribution was assessed by transect sampling, and the regional input of cesium-137 by radioactive rainfall determined based on samples from a point in the native forest. Most sampled pasture points presented soil loss, as well as the points in the soybean area under conventional tillage, while in the coffee crop there was neither soil loss nor gain. (author)

  11. Relationship between soil 137Cs inventories and chemical properties in a small intensively cropped watershed

    International Nuclear Information System (INIS)

    Mabit, L.

    1998-01-01

    After estimating and spatializing the erosion risks in a small agricultural watershed in northeastern France in a previous study, the authors investigate the quality of eroding soils. Soil erosion is a selective process, exporting the finest particles, and associated chemical elements, in a preferential way. Consequently, the spatial redistribution of soil should translate into the depletion of soil in eroding areas and its enrichment in deposition sectors. Of the fifteen elements considered in this study, only organic matter confirms this hypothesis. A significant correlation was found between the soil 137 Cs (indicative of the severity of erosion) and organic matter contents. This result suggests that erosion is a redistribution process that may influence the productivity of agricultural systems on the mid/long term. (authors)

  12. Comparison of soil erosion and deposition rates using radiocesium, RUSLE, and buried soils in dolines in East Tennessee

    International Nuclear Information System (INIS)

    Turnage, K.M.; Lee, S.Y.; Foss, J.E.; Kim, K.H.; Larsen, I.L.

    1997-01-01

    Three dolines (sinkholes), each representing different land uses (crop, grass, and forest) in a karst area in East Tennesse, were selected to determine soil erosional and depositional rates. Three methods were used to estimate the rates: fallout radiocesium ( 137 Cs) redistribution, buried surface soil horizons (Ab horizon), and the revised universal soil loss equation (RUSLE). When 137 Cs redistribution was examined, the average soil erosion rates were calculated to be 27 t ha -1 yr -1 at the cropland, 3 t ha -1 yr -1 at the grassland, and 2 t ha -1 yr -1 at the forest. By comparison, cropland erosion rate of 2.6 t ha -1 yr -1 , a grassland rate of 0.6 t ha -1 yr -1 , and a forest rate of 0.2 t ha -1 yr -1 were estimated by RUSLE. The 137 Cs method expressed higher rates than RUSLE because RUSLE tends to overestimate low erosion rates and does not account for deposition. The buried surface horizons method resulted in deposition rates that were 8 t ha -1 yr -1 (during 480 yr) at the cropland, 12 t ha -1 yr -1 (during 980 yr) at the grassland, and 4 t ha -1 yr -1 (during 101 yr) at the forest site. By examining 137 Cs redistribution, soil deposition rates were found to be 23 t ha -1 yr -1 at the cropland, 20 t ha -1 yr -1 at the grassland, and 16 t ha -1 yr -1 at the forest site. The variability in deposition rates was accounted for by temporal differences; 137 Cs expressed deposition during the last 38 yr, whereas Ab horizons represented deposition during hundreds of years. In most cases, land used affected both erosion and deposition rates - the highest rates of soil redistribution usually representing the cropland and the lowest, the forest. When this was not true, differences in the rates were attributed to differences in the size, shape, and closure of the dolines. (orig.)

  13. Missing links in the root-soil organic matter continuum

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Sarah L. [Argonne National Laboratory (ANL); Iversen, Colleen M [ORNL

    2009-01-01

    The soil environment remains one of the most complex and poorly understood research frontiers in ecology. Soil organic matter (SOM), which spans a continuum from fresh detritus to highly processed, mineral-associated organic matter, is the foundation of sustainable terrestrial ecosystems. Heterogeneous SOM pools are fueled by inputs from living and dead plants, driven by the activity of micro- and mesofauna, and are shaped by a multitude of abiotic factors. The specialization required to measure unseen processes that occur on a wide range of spatial and temporal scales has led to the partitioning of soil ecology research across several disciplines. In the organized oral session 'Missing links in the root-soil organic matter continuum' at the annual Ecological Society of America meeting in Albuquerque, NM, USA, we joined the call for greater communication and collaboration among ecologists who work at the root-soil interface (e.g. Coleman, 2008). Our goal was to bridge the gap between scientific disciplines and to synthesize disconnected pieces of knowledge from root-centric and soil-centric studies into an integrated understanding of belowground ecosystem processes. We focused this report around three compelling themes that arose from the session: (1) the influence of the rhizosphere on SOM cycling, (2) the role of soil heterotrophs in driving the transformation of root detritus to SOM, and (3) the controlling influence of the soil environment on SOM dynamics. We conclude with a discussion of new approaches for gathering data to bridge gaps in the root-SOM continuum and to inform the next generation of ecosystem models. Although leaf litter has often been considered to be the main source of organic inputs to soil, Ann Russell synthesized a convincing body of work demonstrating that roots, rather than surface residues, control the accumulation of SOM in a variety of ecosystems. Living roots, which are chemically diverse and highly dynamic, also influence a

  14. Hydromorphic soil development in the coastal temperate rainforest of Alaska

    Science.gov (United States)

    David V. D' Amore; Chien-Lu Ping; Paul A. Herendeen

    2015-01-01

    Predictive relationships between soil drainage and soil morphological features are essential for understanding hydromorphic processes in soils. The linkage between patterns of soil saturation, reduction, and reductimorphic soil properties has not been extensively studied in mountainous forested terrain. We measured soil saturation and reduction during a 4-yr period in...

  15. Collective religiosity and the gender gap in attitudes towards economic redistribution in 86 countries, 1990-2008.

    Science.gov (United States)

    Jaime-Castillo, Antonio M; Fernández, Juan J; Valiente, Celia; Mayrl, Damon

    2016-05-01

    What is the relationship between gender and the demand for redistribution? Because, on average, women face more economic deprivation than men, in many countries women favor redistribution more than men. However, this is not the case in a number of other countries, where women do not support redistribution more than men. To explain this cross-national paradox, we stress the role of collective religiosity. In many religions, theological principles both militate against public policies designed to redistribute income, and also promote traditionally gendered patterns of work and family involvement. Hence, we hypothesize that, in those countries where religion remains influential either through closer church-state ties or an intensely religious population, men and women should differ less in their attitudes towards redistribution. Drawing upon the World Values Survey, we estimate three-level regression models that test our religiosity-based approach and two alternative explanations in 86 countries and 175 country-years. The results are consistent with our hypothesis. Moreover, in further support of our theoretical approach, societal religiosity undermines pro-redistribution preferences more among women than men. Our findings suggest that collective religiosity matters more to the gender gap in redistributive attitudes than traditional political and labor force factors. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Influences of sediment redistribution on sea-level changes along the U.S. Atlantic margin since the mid-Pliocene

    Science.gov (United States)

    Li, Q.; Ferrier, K.; Austermann, J.; Mitrovica, J. X.

    2017-12-01

    The Orangeburg Scarp is a paleo-shoreline formed along the southeastern U.S. Atlantic coast during the mid-Pliocene warm period (MPWP; 3.3 - 2.9 Ma). The MPWP is a time of interest because it is often cited as an analog for modern climate and thus an important target for understanding sea-level responses to climate change. The present Orangeburg Scarp exhibits 40-meter variations in elevation along its length, implying that it has been warped since its formation, which complicates efforts to infer global ice volume at the MPWP. Previous studies have shown that the effects of glacial isostatic adjustment (GIA) and dynamic topography (DT) on sea level can explain a significant fraction of the observed variability in elevation along the Orangeburg Scarp. Here we build on these studies by using a gravitationally self-consistent ice age sea-level model to compute the effects of sediment loading and unloading on paleo-shoreline elevation since the mid-Pliocene. To constrain the sediment loading history in this region, we present a new compilation of erosion and deposition rates along the U.S. Atlantic margin, from which we generate a range of sediment redistribution scenarios since the MPWP. We simultaneously drive the sea-level model with these sediment redistribution histories and existing ice and dynamic topography histories. Our results show that sediment loading and unloading is capable of warping the elevation of this paleo-shoreline by 20 meters since its formation, similar in magnitude to the contributions from GIA and DT over the same time period. These results demonstrate that sediment redistribution can induce significant perturbations in sea-level markers from the MPWP, and thus accounting for its influence will improve reconstructions of sea level and global ice volume during the MPWP and perhaps other periods of relative ice age warmth.

  17. Role of redistribution and 24 hour reinjection images to assess myocardial viability in patients with acute myocardial infarction

    International Nuclear Information System (INIS)

    Yoon, Seok Nam; Pai, Moon Sun; Park, Chan H.; Yoon, Myung Ho; Choi, Byung Il

    1998-01-01

    We evaluated the importance of redistribution and 24 hour reinjection images in Tl-201 SPECT assessment of myocardial viability after acute myocardial infarction (AMI). We performed dipyridamole stress-4 hour redistribution-24 hour reinjection Tl-201 SPECT in 43 patients with recent AMI (4-16 days). The myocardium was divided into 16 segments and perfusion grade was measured visually with 4 point score from 0 to 3 (absent uptake to normal uptake). A perfusion defect with stress score 2 was considered moderate. A defect was considered severe if the stress score was 0 or 1 (absent uptake or severe perfusion decrease). Moderate defect on stress image were considered viable and and segments with severe defect were considered viable if they showed improvement of 1 score or more on redistribution or reinjection images. We compared the results of viability assessment in stress-redistribution and stress-reinjection images. On visual analysis, 344 of 688 segments (50%) had abnormal perfusion. Fify two (15%) had moderate perfusion defects and 292 (85%) had severe perfusion defects on stress image. Of 292 severe stress defects, 53 were irreversible on redistribution and reversible on reinjection images, and 15 were reverseble on redistribution and irreversible on reinjection images. Two hundred twenty four of 292 segments (76.7%) showed concordant results on stress-redistribution and stress- reinjection images. Therefore 24 hour reinjection image changed viability status from necrotic to viable in 53 segments of 292 severe stress defect (18%). However, myocardial viability was underestimated in only 5% (15/292) of severe defects by 24 hour reinjection. The 24 hour reinjection imaging is useful in the assessment of myocardial viability. It is more sensitive than 4 hour redistribution imaging. However, both redistribution and reinjection images are needed since they complement each other

  18. Use of 137Cs isotopic technique in soil erosion studies in Central Greece

    International Nuclear Information System (INIS)

    Theocharopoulos, S.P.; Belis, D.; Tsouloucha, F.; Christou, M.; Kouloumbis, P.; Nikolaou, T.; Florou, H.; Kritidis, P.

    2000-01-01

    The 137 Cs technique was used to study soil erosion and deposition rates in soils in the Viotia prefecture, central Greece. Three sites with different soil types were selected and studied. Soils were sampled along transects and analyzed for 137 Cs. The main goal of this field investigation was to study the 137 Cs 3-D distribution pattern within key sites and to apply this information for the assessment of soil redistribution. The erosion and deposition rates were estimated using the proportional and the simplified mass balance models (Walling and He, 1997). Erosion and deposition rates predicted through the spatial distribution of 137 Cs depended on the location of the profile studied in the landscape and were determined by the soil plough depth, the soil structure (bulk density), and the calibration model used to convert soil 137 Cs measurements to estimates of soil redistribution rates. Estimated erosion rates for the Mouriki area site, varied from 16.62 to 102.56 t ha -1 y -1 for the top of the slope soil profile and from 5.37 to 25.68 t ha -1 y -1 for the middle of the slope soil profile. The deposition rates varied from 7.26 to 42.95 t ha -1 y -1 for the bottom of the slope soil profile. (author)

  19. Field study of time-dependent selenium partitioning in soils using isotopically enriched stable selenite tracer

    International Nuclear Information System (INIS)

    Di Tullo, Pamela; Pannier, Florence; Thiry, Yves; Le Hécho, Isabelle; Bueno, Maïté

    2016-01-01

    A better understanding of selenium fate in soils at both short and long time scales is mandatory to consolidate risk assessment models relevant for managing both contamination and soil fertilization issues. The purpose of this study was thus to investigate Se retention processes and their kinetics by monitoring time-dependent distribution/speciation changes of both ambient and freshly added Se, in the form of stable enriched selenite-77, over a 2-years field experiment. This study clearly illustrates the complex reactivity of selenium in soil considering three methodologically defined fractions (i.e. soluble, exchangeable, organic). Time-dependent redistribution of Se-77 within solid-phases having different reactivity could be described as a combination of chemical and diffusion controlled processes leading to its stronger retention. Experimental data and their kinetic modeling evidenced that transfer towards less labile bearing phases are controlled by slow processes limiting the overall sorption of Se in soils. These results were used to estimate time needed for "7"7Se to reach the distribution of naturally present selenium which may extend up to several decades. Ambient Se speciation accounted for 60% to 100% of unidentified species as function of soil type whereas "7"7Se(IV) remained the more abundant species after 2-years field experiment. Modeling Se in the long-term without taking account these slow sorption kinetics would thus result in underestimation of Se retention. When using models based on K_d distribution coefficient, they should be at least reliant on ambient Se which is supposed to be at equilibrium.

  20. Field study of time-dependent selenium partitioning in soils using isotopically enriched stable selenite tracer

    Energy Technology Data Exchange (ETDEWEB)

    Di Tullo, Pamela, E-mail: pamela.ditullo@univ-pau.fr [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Université de Pau et des Pays de l' Adour/CNRS, UMR 5254, IPREM, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 9 (France); Andra, Research and Development Division, Parc de la Croix Blanche, 1-7 rue Jean Monnet, 92298 Châtenay-Malabry Cedex (France); Pannier, Florence, E-mail: florence.pannier@univ-pau.fr [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Université de Pau et des Pays de l' Adour/CNRS, UMR 5254, IPREM, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 9 (France); Thiry, Yves, E-mail: yves.thiry@andra.fr [Andra, Research and Development Division, Parc de la Croix Blanche, 1-7 rue Jean Monnet, 92298 Châtenay-Malabry Cedex (France); Le Hécho, Isabelle, E-mail: isabelle.lehecho@univ-pau.fr [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Université de Pau et des Pays de l' Adour/CNRS, UMR 5254, IPREM, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 9 (France); Bueno, Maïté, E-mail: maite.bueno@univ-pau.fr [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Université de Pau et des Pays de l' Adour/CNRS, UMR 5254, IPREM, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 9 (France)

    2016-08-15

    A better understanding of selenium fate in soils at both short and long time scales is mandatory to consolidate risk assessment models relevant for managing both contamination and soil fertilization issues. The purpose of this study was thus to investigate Se retention processes and their kinetics by monitoring time-dependent distribution/speciation changes of both ambient and freshly added Se, in the form of stable enriched selenite-77, over a 2-years field experiment. This study clearly illustrates the complex reactivity of selenium in soil considering three methodologically defined fractions (i.e. soluble, exchangeable, organic). Time-dependent redistribution of Se-77 within solid-phases having different reactivity could be described as a combination of chemical and diffusion controlled processes leading to its stronger retention. Experimental data and their kinetic modeling evidenced that transfer towards less labile bearing phases are controlled by slow processes limiting the overall sorption of Se in soils. These results were used to estimate time needed for {sup 77}Se to reach the distribution of naturally present selenium which may extend up to several decades. Ambient Se speciation accounted for 60% to 100% of unidentified species as function of soil type whereas {sup 77}Se(IV) remained the more abundant species after 2-years field experiment. Modeling Se in the long-term without taking account these slow sorption kinetics would thus result in underestimation of Se retention. When using models based on K{sub d} distribution coefficient, they should be at least reliant on ambient Se which is supposed to be at equilibrium.

  1. Investigation into Variations of Welding Residual Stresses and Redistribution Behaviors for Different Repair Welding Widths

    International Nuclear Information System (INIS)

    Park, Chiyong; Lee, Hweesueng; Huh, Namsu

    2014-01-01

    In this study, we investigated the variations in welding residual stresses in dissimilar metal butt weld due to width of repair welding and re-distribution behaviors resulting from similar metal welding (SMW) and mechanical loading. To this end, detailed two-dimensional axi-symmetric finite element (FE) analyses were performed considering five different repair welding widths. Based on the FE results, we first evaluated the welding residual stress distributions in repair welding. We then investigated the re-distribution behaviors of the residual stresses due to SMW and mechanical loads. It is revealed that large tensile welding residual stresses take place in the inner surface and that its distribution is affected, provided repair welding width is larger than certain value. The welding residual stresses resulting from repair welding are remarkably reduced due to SMW and mechanical loading, regardless of the width of the repair welding

  2. LABORATORY FREQUENCY REDISTRIBUTION FUNCTION FOR THE POLARIZED Λ-TYPE THREE-TERM ATOM

    Energy Technology Data Exchange (ETDEWEB)

    Casini, R. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Manso Sainz, R. [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2016-12-20

    We present the frequency redistribution function for a polarized three-term atom of the Λ-type in the collisionless regime, and we specialize it to the case where both the initial and final terms of the three-state transition are metastable (i.e., with infinitely sharp levels). This redistribution function represents a generalization of the well-known R {sub II} function to the case where the lower terms of the transition can be polarized and carry atomic coherence, and it can be applied to the investigation of polarized line formation in tenuous plasmas, where collisional rates may be low enough that anisotropy-induced atomic polarization survives even in the case of metastable levels.

  3. Intra-assembly flow redistribution in LMFBRs: a simple computational approach

    International Nuclear Information System (INIS)

    Khatib-Rahbar, M.; Cazzoli, E.G.

    1983-01-01

    The liquid metal fast breeder reactor (LMFBR) core consists of fuel, blanket, control, and shielding assemblies packed in a hexagonal configuration. Radial blanket assemblies occupy peripheral locations in the reactor core and are characterized by steep power gradients, while inner blanket assemblies are located within the fuel assembly region and have higher power levels but flatter distributions. It is due to the presence of this radial power gradient that large sodium temperature distributions exist at full power operation. However, at low power, low flow natural convection conditions, a significant flow redistribution takes place leading to considerable radial temperature flattening. The purpose of the present study is to formulate a simple flow-regime dependent model supported by experimental data for prediction of sodium temperature flattening due to buoyancy-induced flow redistribution in LMFBR subassemblies with significant radial power gradient

  4. Observation of instability-induced current redistribution in a spherical-torus plasma.

    Science.gov (United States)

    Menard, J E; Bell, R E; Gates, D A; Kaye, S M; LeBlanc, B P; Levinton, F M; Medley, S S; Sabbagh, S A; Stutman, D; Tritz, K; Yuh, H

    2006-09-01

    A motional Stark effect diagnostic has been utilized to reconstruct the parallel current density profile in a spherical-torus plasma for the first time. The measured current profile compares favorably with neoclassical theory when no large-scale magnetohydrodynamic instabilities are present in the plasma. However, a current profile anomaly is observed during saturated interchange-type instability activity. This apparent anomaly can be explained by redistribution of neutral beam injection current drive and represents the first observation of interchange-type instabilities causing such redistribution. The associated current profile modifications contribute to sustaining the central safety factor above unity for over five resistive diffusion times, and similar processes may contribute to improved operational scenarios proposed for ITER.

  5. Reverse redistribution on planar thallium scintigraphy: relationship to resting thallium uptake and long-term outcome

    International Nuclear Information System (INIS)

    Dey, H.M.; Soufer, R.

    1995-01-01

    Reverse redistribution (RR) of thallium-201 has been associated with both acute and healed myocardial infarction, and with recent thrombolysis. The physiologic basis for RR in coronary artery disease (CAD) is unclear but may be related to an admixture of viable and scarred myocardium within the RR segment. We performed thallium reinjection imaging at rest to better characterize RR defects in patients with chronic CAD. We found enhanced uptake of 201 Tl in 52% of RR segments after reinjection, consistent with significant regional viability that was not evident on redistribution images. We then used a logistic multiple regression analysis to determine whether RR alone or in combination with other scintigraphic findings could predict patient outcome. The results showed that severe RR was an independent predictor of patient outcome. We conclude that RR may have prognostic significance in chronic CAD. (orig.)

  6. Calculation of pressure drop and flow redistribution in the LMFBR core

    International Nuclear Information System (INIS)

    Morgado, O.J.

    1984-01-01

    The flow redistribution through fuel assemblies of LMFBRs: for the correct calculation of mass flow rates and pressure drop, are studied. Using a quasi-static formulation of conservation equations of mass and energy, a computer program was developed to simulate any arbitrary number of flow channels, operating at different linear power levels. Therefore f flow channels, operating at different linear power levels. Therefore, it was possible to perform thermal transient calculations for the Clinch River reactor core. The results of the calculations agree with the data found in the literature and supply accurate information about flow redistribution, average temperature, and pressure drop in the core, when the reactor is operated at conditions from the designed flow conditions, as is always the case in a load changing operation, or during transients. (Autor) [pt

  7. Study of two-phase flow redistribution between two passes of a heat exchanger

    International Nuclear Information System (INIS)

    Mendes de Moura, L.F.

    1989-04-01

    The object of the present thesis deals with the study of two-phase flow redistribution between two passes of a heat exchanger. Mass flow rate measurements of each component performed at each channel outlet of the second pass allowed us to determine the influence of mass flow, gas quality, flow direction (upward or downward) and common header geometry upon flow redistribution. Local void fraction inside common header was measured with an optical probe. A two-dimensional two-phase flow computational code was developed from a two-fluid model. Modelling of interfacial momentum transfer was used in order to take into account twp-phase flow patterns in common headers. Numerical simulation results show qualitative agreement with experimental results. Present theoretical model limitations are analysed and future improvements are proposed [fr

  8. The hydrostatic pressure indifference point underestimates orthostatic redistribution of blood in humans

    DEFF Research Database (Denmark)

    Petersen, L G; Carlsen, Jonathan F.; Nielsen, Michael Bachmann

    2014-01-01

    The hydrostatic indifference point (HIP; where venous pressure is unaffected by posture) is located at the level of the diaphragm and is believed to indicate the orthostatic redistribution of blood, but it remains unknown whether HIP coincides with the indifference point for blood volume (VIP......). During graded (± 20°) head-up (HUT) and head-down tilt (HDT) in 12 male volunteers, we determined HIP from central venous pressure and VIP from redistribution of both blood, using ultrasound imaging of the inferior caval vein (VIPui), and fluid volume, by regional electrical admittance (VIPadm...... of pressure and filling of the inferior caval vein as well as fluid distribution, we found HIP located corresponding to the diaphragm while VIP was placed low in the abdomen, and that medical antishock trousers elevated both HIP and VIP. The low indifference point for volume shows that the gravitational...

  9. Repair, redistribution and repopulation in V79 spheroids during multifraction irradiation

    International Nuclear Information System (INIS)

    Brown, R.C.; Durand, R.E.

    1994-01-01

    We used cells growing as multicell spheroids to determine whether the initial radiation response would be predictive for multifraction exposures, or whether other factors including repopulation rate should be considered. Potential problems of hypoxia and reoxygenation were avoided by using small spheroids which had not yet developed radiobiologically hypoxic regions. Repair and redistribution dominated the responses in the first two or three exposures, with repopulation playing a minor role. As the fractionation schedule was extended, however, repopulation between fractions largely determined the number of viable cells per spheroid. We conclude that the radiation response of cells from untreated spheroids provides a general indication of net sensitivity, but that repair and redistribution produces considerable variation in radiosensitivity throughout a fractionation protocol. Ultimately, repopulation effects may dominate the multifraction response. (Author)

  10. A Novel Load Capacity Model with a Tunable Proportion of Load Redistribution against Cascading Failures

    Directory of Open Access Journals (Sweden)

    Zhen-Hao Zhang

    2018-01-01

    Full Text Available Defence against cascading failures is of great theoretical and practical significance. A novel load capacity model with a tunable proportion is proposed. We take degree and clustering coefficient into account to redistribute the loads of broken nodes. The redistribution is local, where the loads of broken nodes are allocated to their nearest neighbours. Our model has been applied on artificial networks as well as two real networks. Simulation results show that networks get more vulnerable and sensitive to intentional attacks along with the decrease of average degree. In addition, the critical threshold from collapse to intact states is affected by the tunable parameter. We can adjust the tunable parameter to get the optimal critical threshold and make the systems more robust against cascading failures.

  11. Welfare State Regimes and Attitudes Towards Redistribution in 15 Western European Countries

    DEFF Research Database (Denmark)

    Jæger, Mads

    Social Survey and the third wave of the European Values Study, and by means of an ordered mixed probit model with concomitant variables, we find strong evidence that structural characteristics affect mass opinion in a manner consistent with regime theory. For example, public support for redistribution...... increases with total social expenditure relative to GDP, family benefits, and active labour market policies. Furthermore, we find that institutionalised left-wing political power as measured by left-wing government seats and neo-corporatism are significant predictors of support for redistribution.- See more...... at: http://www.sfi.dk/s%c3%b8geresultat-10668.aspx?Action=1&NewsId=248&PID=32427#sthash.ISdYS6vF.dpuf...

  12. Modelling the effect of agricultural management practices on soil organic carbon stocks: does soil erosion matter?

    Science.gov (United States)

    Nadeu, Elisabet; Van Wesemael, Bas; Van Oost, Kristof

    2014-05-01

    Over the last decades, an increasing number of studies have been conducted to assess the effect of soil management practices on soil organic carbon (SOC) stocks. At regional scales, biogeochemical models such as CENTURY or Roth-C have been commonly applied. These models simulate SOC dynamics at the profile level (point basis) over long temporal scales but do not consider the continuous lateral transfer of sediment that takes place along geomorphic toposequences. As a consequence, the impact of soil redistribution on carbon fluxes is very seldom taken into account when evaluating changes in SOC stocks due to agricultural management practices on the short and long-term. To address this gap, we assessed the role of soil erosion by water and tillage on SOC stocks under different agricultural management practices in the Walloon region of Belgium. The SPEROS-C model was run for a 100-year period combining three typical crop rotations (using winter wheat, winter barley, sugar beet and maize) with three tillage scenarios (conventional tillage, reduced tillage and reduced tillage in combination with additional crop residues). The results showed that including soil erosion by water in the simulations led to a general decrease in SOC stocks relative to a baseline scenario (where no erosion took place). The SOC lost from these arable soils was mainly exported to adjacent sites and to the river system by lateral fluxes, with magnitudes differing between crop rotations and in all cases lower under conservation tillage practices than under conventional tillage. Although tillage erosion plays an important role in carbon redistribution within fields, lateral fluxes induced by water erosion led to a higher spatial and in-depth heterogeneity of SOC stocks with potential effects on the soil water holding capacity and crop yields. This indicates that studies assessing the effect of agricultural management practices on SOC stocks and other soil properties over the landscape should

  13. Robin Hood vs. King John Redistribution: How Do Local Judges Decide Cases In Brazil?

    OpenAIRE

    Ribeiro, Ivan Cesar

    2007-01-01

    This article discusses two opposed hypotheses to predict the behavior of judges when they have to decide a claim between parties with asymmetrical eco- nomic and political power. The .rst, which has broad acceptance among policy makers in Brazil, is the jurisdictional uncertainty hypothesis (Arida et al, 2005) that suggests that Brazilian judges tend to favor the weak party in the claim as a form of social justice and redistribution of income in favor of the poor. Glaeser et al (2003) stated ...

  14. Flux-redistribution in the focal region of a planar Fresnel ring mirror

    Energy Technology Data Exchange (ETDEWEB)

    Sastroamidjojo, M.S.A. (Gadjah Mada Univ., Indonesia); Lubis, W.

    1979-01-01

    The results of an investigation of flux redistribution at the focal region of a planar Fresnel ring mirror are reported. A parabolic mirror of large aperture was used to provide a parallel beam of light which was directed at the Fresnel test object. A cotton thread grid was used as a mapping aid to provide a 25 x 25 matrix of spatial data points. (SPH)

  15. Redistribution of the solar radiation and the rain inside of coffee plantations (Arabic Coffea L.)

    International Nuclear Information System (INIS)

    Jaramillo Robledo, Alvaro

    2005-01-01

    The following review presents a series of studies on microclimates of non-shaded and shaded conditions of coffee plantations (Coffea arabica L.) in Colombia. Likewise, The redistribution of solar radiation and the temperature, as well as the energy balance, of the coffee plant and the crop are described. The results on the components of water balance and transport of nutrients within the coffee plantations are reported

  16. Fears of Redistribution, Decentralization and Secession: Evidence from Bolivia’s Referendum for Departmental Autonomy

    OpenAIRE

    Werner L. Hernani-Limarino

    2006-01-01

    Recent years have witnessed strong movements toward decentralization and secession. The former Soviet Union, Yugoslavia, Czechoslovaquia and Serbia and Montenegro have disintegrated. Movements for regional autonomy and even independence have gained larger support in Bolivia, Canada, Spain, France and Italy. What is the importance of redistributive politics in explaining decentralization and secession outcomes in a democratic polity? This paper attempts to answer this question building a simpl...

  17. Activité féminine, prestations familiales et redistribution

    OpenAIRE

    Olivia Ekert

    1983-01-01

    Ekert Olivia. ? Women's Work, Family Allowances and Redistribution. The system of family allowances may be looked at from two different points of view : the contributions paid throughout working life, and the benefits received when there are dependant children. The aim of this study is to determine who are the net beneficiaries of the system. A balance sheet extending over the lifetime of couples classified by their completed family size and their social group is drawn up. A model is construc...

  18. Re-distribution (condensation) of magnons in a ferromagnet under pumping

    International Nuclear Information System (INIS)

    Zvyagin, A.A.

    2008-01-01

    In recent years several experiments have been performed to study the Bose-Einstein condensation of quasiparticles, in particular, magnons in magnetically ordered systems. Recently the Bose-Einstein condensation of magnons was observed at room temperatures in a ferromagnetic film. A theory of the condensation (redistribution) of magnons under the conditions of pumping, which explains many features of that experiment, is presented. The use of the term 'Bose-Einstein condensation of magnons' is discussed

  19. Direct visualization of redistribution and capping of fluorescent gangliosides on lymphocytes

    OpenAIRE

    1984-01-01

    Fluorescent derivatives of gangliosides were prepared by oxidizing the sialyl residues to aldehydes and reacting them with fluorescent hydrazides. When rhodaminyl gangliosides were incubated with lymphocytes, the cells incorporated them in a time- and temperature- dependent manner. Initially, the gangliosides were evenly distributed on the cell surface but were redistributed into patches and caps by antirhodamine antibodies. When the cells were then stained with a second antibody or protein A...

  20. Finance-dominated capitalism and redistribution of income: A Kaleckian perspective

    OpenAIRE

    Hein, Eckhard

    2013-01-01

    This paper examines a major channel through which financialization or finance-dominated capitalism affects macroeconomic performance: the distribution channel. Empirical data for the following dimensions of redistribution in the period of finance-dominated capitalism since the early 1980s is provided for 15 advanced capitalist economies: functional distribution, personal/household distribution, and the share and composition of top incomes. Based on the Kaleckian approach to the determination ...

  1. Taxation and redistribution in autocratic and democratic regimes over the long-run of history

    OpenAIRE

    SEELKOPF, Laura; LIERSE, Hanna

    2017-01-01

    The introduction of the personal income tax has often coincided with phases of democratization in history. A common explanation is that the demands of the newly enfranchised poor contribute to the rise of progressive taxes. Yet, although the world has, on average, become more democratic since the first permanent introduction of the income tax in Great Britain in 1842, inequality is again on the rise. To what extent do democratic societies really adopt more redistributive policies than their a...

  2. Radioembolization of hepatic tumors. Flow redistribution after the occlusion of intrahepatic arteries

    International Nuclear Information System (INIS)

    Lauenstein, T.C.; Heusner, T.A.; Antoch, G.; Hamami, M.; Bockisch, A.; Ertle, J.; Schlaak, J.F.; Gerken, G.

    2011-01-01

    Radioembolization using 90yttrium is an emerging therapy option for unresectable liver malignancies. In order to reduce the number of yttrium injections, endovascular occlusion of a segmental hepatic artery has been proposed. The aim of this study was to assess whether sufficient vascular redistribution of the occluded liver segments through intrahepatic collaterals can be observed. 27 patients with hepatocellular carcinoma (n = 16) or hepatic metastases (n = 11) were studied. Hepatic angiography was performed on average 16 days prior to radioembolization. The segment II/III artery (n = 9) or the segment IV artery (n = 18) was occluded using coils. Technectium-99m-labeled macroaggregated albumin (99mTc-MAA) was injected into the right and the remaining part of the left hepatic artery in order to identify any hepatic volume not included in the perfused area. Patients underwent a SPECT/CT on average 1 h after the 99mTc-MAA injection. Two radiologists evaluated the SPECT/CT scans regarding the presence of non-perfused hepatic segments. Furthermore, hepatic perfusion was assessed by digital subtraction angiography (DSA) on the day of radioembolization. In 16 / 27 patients (59 %) a perfusion of the occluded liver segment was visible on the SPECT/CT scan. In 8 / 11 patients without flow redistribution at the time of the SPECT/CT, perfusion of the occluded segment through hepatic collaterals was observed during angiography prior to radioembolization. Hence, flow redistribution was eventually found in 24 / 27 patients (89 %). Flow redistribution after the occlusion of intrahepatic arteries prior to radioembolization can be successfully induced in the majority of patients with anatomical variants of the hepatic arteries. (orig.)

  3. Characterization of field-measured soil-water properties

    International Nuclear Information System (INIS)

    Nielsen, D.R.; Reichardt, K.; Wierenga, P.J.

    1983-01-01

    As part of a five-year co-ordinated research programme of the International Atomic Energy Agency, the Use of Radiation and Isotope Techniques in Studies of Soil-Water Regimes, soil physicists examined soil-water properties of one or two field sites in 11 different countries (Brazil, Belgium, Cyprus, Chile, Israel, Japan, Madagascar, Nigeria, Senegal, Syria and Thailand). The results indicate that the redistribution method yields values of soil-water properties that have a large degree of uncertainty, and that this uncertainty is not necessarily related to the kind of soil being analysed. Regardless of the fundamental cause of this uncertainty (experimental and computational errors versus natural soil variability), the conclusion is that further developments of field technology depend upon stochastic rather than deterministic concepts

  4. Soil Erosion. LC Science Tracer Bullet.

    Science.gov (United States)

    Buydos, John F., Comp.

    Soil erosion is the detachment and movement of topsoil or soil material from the upper part of the soil profile. It may occur in the form of rill, gully, sheet, or wind erosion. Agents of erosion may be water, wind, glacial ice, agricultural implements, machinery, and animals. Soil conservation measures require a thorough understanding of the…

  5. On the assessment of root and soil respiration for soils of different textures: interactions with soil moisture contents and soil CO2 concentrations

    NARCIS (Netherlands)

    Bouma, T.J.; Bryla, D.R.

    2000-01-01

    Estimates of root and soil respiration are becoming increasingly important in agricultural and ecological research, but there is little understanding how soil texture and water content may affect these estimates. We examined the effects of soil texture on (i) estimated rates of root and soil

  6. POLARIZED LINE FORMATION WITH LOWER-LEVEL POLARIZATION AND PARTIAL FREQUENCY REDISTRIBUTION

    Energy Technology Data Exchange (ETDEWEB)

    Supriya, H. D.; Sampoorna, M.; Nagendra, K. N.; Ravindra, B. [Indian Institute of Astrophysics, Bangalore 560034 (India); Stenflo, J. O. [Institute of Astronomy, ETH Zurich, CH-8093 Zurich (Switzerland)

    2016-09-10

    In the well-established theories of polarized line formation with partial frequency redistribution (PRD) for a two-level and two-term atom, it is generally assumed that the lower level of the scattering transition is unpolarized. However, the existence of unexplained spectral features in some lines of the Second Solar Spectrum points toward a need to relax this assumption. There exists a density matrix theory that accounts for the polarization of all the atomic levels, but it is based on the flat-spectrum approximation (corresponding to complete frequency redistribution). In the present paper we propose a numerical algorithm to solve the problem of polarized line formation in magnetized media, which includes both the effects of PRD and the lower level polarization (LLP) for a two-level atom. First we derive a collisionless redistribution matrix that includes the combined effects of the PRD and the LLP. We then solve the relevant transfer equation using a two-stage approach. For illustration purposes, we consider two case studies in the non-magnetic regime, namely, the J {sub a} = 1, J {sub b} = 0 and J {sub a} = J {sub b} = 1, where J {sub a} and J {sub b} represent the total angular momentum quantum numbers of the lower and upper states, respectively. Our studies show that the effects of LLP are significant only in the line core. This leads us to propose a simplified numerical approach to solve the concerned radiative transfer problem.

  7. Public speaking stress-induced neuroendocrine responses and circulating immune cell redistribution in irritable bowel syndrome.

    Science.gov (United States)

    Elsenbruch, Sigrid; Lucas, Ayscha; Holtmann, Gerald; Haag, Sebastian; Gerken, Guido; Riemenschneider, Natalie; Langhorst, Jost; Kavelaars, Annemieke; Heijnen, Cobi J; Schedlowski, Manfred

    2006-10-01

    Augmented neuroendocrine stress responses and altered immune functions may play a role in the manifestation of functional gastrointestinal (GI) disorders. We tested the hypothesis that IBS patients would demonstrate enhanced psychological and endocrine responses, as well as altered stress-induced redistribution of circulating leukocytes and lymphocytes, in response to an acute psychosocial stressor when compared with healthy controls. Responses to public speaking stress were analyzed in N = 17 IBS patients without concurrent psychiatric conditions and N = 12 healthy controls. At baseline, immediately following public speaking, and after a recovery period, state anxiety, acute GI symptoms, cardiovascular responses, serum cortisol and plasma adrenocorticotropic hormone (ACTH) were measured, and numbers of circulating leukocytes and lymphocyte subpopulations were analyzed by flow cytometry. Public speaking led to significant cardiovascular activation, a significant increase in ACTH, and a redistribution of circulating leukocytes and lymphocyte subpopulations, including significant increases in natural killer cells and cytotoxic/suppressor T cells. IBS patients demonstrated significantly greater state anxiety both at baseline and following public speaking. However, cardiovascular and endocrine responses, as well as the redistribution of circulating leukocytes and lymphocyte subpopulations after public speaking stress, did not differ for IBS patients compared with controls. In IBS patients without psychiatric comorbidity, the endocrine response as well as the circulation pattern of leukocyte subpopulations to acute psychosocial stress do not differ from healthy controls in spite of enhanced emotional responses. Future studies should discern the role of psychopathology in psychological and biological stress responses in IBS.

  8. Validation of neutron flux redistribution factors in JSI TRIGA reactor due to control rod movements

    International Nuclear Information System (INIS)

    Kaiba, Tanja; Žerovnik, Gašper; Jazbec, Anže; Štancar, Žiga; Barbot, Loïc; Fourmentel, Damien; Snoj, Luka

    2015-01-01

    For efficient utilization of research reactors, such as TRIGA Mark II reactor in Ljubljana, it is important to know neutron flux distribution in the reactor as accurately as possible. The focus of this study is on the neutron flux redistributions due to control rod movements. For analyzing neutron flux redistributions, Monte Carlo calculations of fission rate distributions with the JSI TRIGA reactor model at different control rod configurations have been performed. Sensitivity of the detector response due to control rod movement have been studied. Optimal radial and axial positions of the detector have been determined. Measurements of the axial neutron flux distribution using the CEA manufactured fission chambers have been performed. The experiments at different control rod positions were conducted and compared with the MCNP calculations for a fixed detector axial position. In the future, simultaneous on-line measurements with multiple fission chambers will be performed inside the reactor core for a more accurate on-line power monitoring system. - Highlights: • Neutron flux redistribution due to control rod movement in JSI TRIGA has been studied. • Detector response sensitivity to the control rod position has been minimized. • Optimal radial and axial detector positions have been determined

  9. [Performance of Thallium 201 rest-redistribution spect to predict viability in recent myocardial infarction].

    Science.gov (United States)

    Coll, Claudia; González, Patricio; Massardo, Teresa; Sierralta, Paulina; Humeres, Pamela; Jofré, Josefina; Yovanovich, Jorge; Aramburú, Ivonne; Brugère, Solange; Chamorro, Hernán; Ramírez, Alfredo; Kunstmann, Sonia; López, Héctor

    2002-03-01

    The detection of viability after acute myocardial infarction is primordial to select the most appropriate therapy, to decrease cardiac events and abnormal remodeling. Thallium201 SPECT is one of the radionuclide techniques used to detect viability. To evaluate the use of Thallium201 rest-redistribution SPECT to detect myocardial viability in reperfused patients after a recent myocardial infarction. Forty one patients with up to of 24 days of evolution of a myocardial infarction were studied. All had angiographically demonstrated coronary artery disease and were subjected to a successful thrombolysis, angioplasty or bypass grafting. SPECT Thallium201 images were acquired at rest and after 4 h of redistribution. These results were compared with variations in wall motion score, studied at baseline and after 3 or 4 months with echocardiography. The sensitivity of rest-redistribution Thallium201 SPECT, to predict recovery of wall motion was 91% when patient analysis was performed and 79% when segmental analysis was done in the culprit region. The figures for specificity were 56 and 73% respectively. Rest-distribution Thallium201 SPECT has an excellent sensitivity to predict myocardial viability in recent myocardial infarction. The data obtained in this study is similar to that reported for chronic coronary artery disease.

  10. Economic benefits of sharing and redistributing influenza vaccines when shortages occurred.

    Science.gov (United States)

    Chen, Sheng-I

    2017-01-01

    Recurrent influenza outbreak has been a concern for government health institutions in Taiwan. Over 10% of the population is infected by influenza viruses every year, and the infection has caused losses to both health and the economy. Approximately three million free vaccine doses are ordered and administered to high-risk populations at the beginning of flu season to control the disease. The government recommends sharing and redistributing vaccine inventories when shortages occur. While this policy intends to increase inventory flexibility, and has been proven as widely valuable, its impact on vaccine availability has not been previously reported. This study developed an inventory model adapted to vaccination protocols to evaluate government recommended polices under different levels of vaccine production. Demands were uncertain and stratified by ages and locations according to the demographic data in Taiwan. When vaccine supply is sufficient, sharing pediatric vaccine reduced vaccine unavailability by 43% and overstock by 54%, and sharing adult vaccine reduced vaccine unavailability by 9% and overstock by 15%. Redistributing vaccines obtained greater gains for both pediatrics and adults (by 75%). When the vaccine supply is in short, only sharing pediatric vaccine yielded a 48% reduction of unused inventory, while other polices do not improve performances. When implementing vaccination activities for seasonal influenza intervention, it is important to consider mismatches of demand and vaccine inventory. Our model confirmed that sharing and redistributing vaccines can substantially increase availability and reduce unused vaccines.

  11. The influence of Pt redistribution on Ni1-xPtxSi growth properties

    International Nuclear Information System (INIS)

    Demeulemeester, J.; Smeets, D.; Temst, K.; Vantomme, A.; Comrie, C. M.; Van Bockstael, C.; Knaepen, W.; Detavernier, C.

    2010-01-01

    We have studied the influence of Pt on the growth of Ni silicide thin films by examining the Pt redistribution during silicide growth. Three different initial Pt configurations were investigated, i.e., a Pt alloy (Ni+Pt/ ), a Pt capping layer (Pt/Ni/ ) and a Pt interlayer (Ni/Pt/ ), all containing 7 at. % Pt relative to the Ni content. The Pt redistribution was probed using in situ real-time Rutherford backscattering spectrometry (RBS) whereas the phase sequence was monitored during the solid phase reaction (SPR) using in situ real-time x-ray diffraction. We found that the capping layer and alloy exhibit a SPR comparable to the pure Ni/ system, whereas Pt added as an interlayer has a much more drastic influence on the Ni silicide phase sequenc