WorldWideScience

Sample records for understanding soil processes

  1. From Process Understanding Via Soil Functions to Sustainable Soil Management - A Systemic Approach

    Science.gov (United States)

    Wollschlaeger, U.; Bartke, S.; Bartkowski, B.; Daedlow, K.; Helming, K.; Kogel-Knabner, I.; Lang, B.; Rabot, E.; Russell, D.; Stößel, B.; Weller, U.; Wiesmeier, M.; Rabot, E.; Vogel, H. J.

    2017-12-01

    Fertile soils are central resources for the production of biomass and the provision of food and energy. A growing world population and latest climate targets lead to an increasing demand for both, food and bio-energy, which requires preserving and improving the long-term productivity of soils as a bio-economic resource. At the same time, other soil functions and ecosystem services need to be maintained: filter for clean water, carbon sequestration, provision and recycling of nutrients, and habitat for biological activity. All these soil functions result from the interaction of a multitude of physical, chemical and biological processes that are not yet sufficiently understood. In addition, we lack understanding about the interplay between the socio-economic system and the soil system and how soil functions benefit human wellbeing. Hence, a solid and integrated assessment of soil quality requires the consideration of the ensemble of soil functions and its relation to soil management to finally be able to develop site-specific options for sustainable soil management. We present an integrated modeling approach that investigates the influence of soil management on the ensemble of soil functions. It is based on the mechanistic relationships between soil functional attributes, each explained by a network of interacting processes as derived from scientific evidence. As the evidence base required for feeding the model is for the most part stored in the existing scientific literature, another central component of our work is to set up a public "knowledge-portal" providing the infrastructure for a community effort towards a comprehensive knowledge base on soil processes as a basis for model developments. The connection to the socio-economic system is established using the Drivers-Pressures-Impacts-States-Responses (DPSIR) framework where our improved understanding about soil ecosystem processes is linked to ecosystem services and resource efficiency via the soil functions.

  2. A soil-landscape framework for understanding spatial and temporal variability in biogeochemical processes in catchments

    Science.gov (United States)

    McGuire, K. J.; Bailey, S. W.; Ross, D. S.

    2017-12-01

    Heterogeneity in biophysical properties within catchments challenges how we quantify and characterize biogeochemical processes and interpret catchment outputs. Interactions between the spatiotemporal variability of hydrological states and fluxes and soil development can spatially structure catchments, leading to a framework for understanding patterns in biogeochemical processes. In an upland, glaciated landscape at the Hubbard Brook Experimental Forest (HBEF) in New Hampshire, USA, we are embracing the structure and organization of soils to understand the spatial relations between runoff production zones, distinct soil-biogeochemical environments, and solute retention and release. This presentation will use observations from the HBEF to demonstrate that a soil-landscape framework is essential in understanding the spatial and temporal variability of biogeochemical processes in this catchment. Specific examples will include how laterally developed soils reveal the location of active runoff production zones and lead to gradients in primary mineral dissolution and the distribution of weathering products along hillslopes. Soil development patterns also highlight potential carbon and nitrogen cycling hotspots, differentiate acidic conditions, and affect the regulation of surface water quality. Overall, this work demonstrates the importance of understanding the landscape-level structural organization of soils in characterizing the variation and extent of biogeochemical processes that occur in catchments.

  3. Nitrous oxide emissions from soils: how well do we understand the processes and their controls?

    Science.gov (United States)

    Butterbach-Bahl, Klaus; Baggs, Elizabeth M.; Dannenmann, Michael; Kiese, Ralf; Zechmeister-Boltenstern, Sophie

    2013-01-01

    Although it is well established that soils are the dominating source for atmospheric nitrous oxide (N2O), we are still struggling to fully understand the complexity of the underlying microbial production and consumption processes and the links to biotic (e.g. inter- and intraspecies competition, food webs, plant–microbe interaction) and abiotic (e.g. soil climate, physics and chemistry) factors. Recent work shows that a better understanding of the composition and diversity of the microbial community across a variety of soils in different climates and under different land use, as well as plant–microbe interactions in the rhizosphere, may provide a key to better understand the variability of N2O fluxes at the soil–atmosphere interface. Moreover, recent insights into the regulation of the reduction of N2O to dinitrogen (N2) have increased our understanding of N2O exchange. This improved process understanding, building on the increased use of isotope tracing techniques and metagenomics, needs to go along with improvements in measurement techniques for N2O (and N2) emission in order to obtain robust field and laboratory datasets for different ecosystem types. Advances in both fields are currently used to improve process descriptions in biogeochemical models, which may eventually be used not only to test our current process understanding from the microsite to the field level, but also used as tools for up-scaling emissions to landscapes and regions and to explore feedbacks of soil N2O emissions to changes in environmental conditions, land management and land use. PMID:23713120

  4. Can Process Understanding Help Elucidate The Structure Of The Critical Zone? Comparing Process-Based Soil Formation Models With Digital Soil Mapping.

    Science.gov (United States)

    Vanwalleghem, T.; Román, A.; Peña, A.; Laguna, A.; Giráldez, J. V.

    2017-12-01

    There is a need for better understanding the processes influencing soil formation and the resulting distribution of soil properties in the critical zone. Soil properties can exhibit strong spatial variation, even at the small catchment scale. Especially soil carbon pools in semi-arid, mountainous areas are highly uncertain because bulk density and stoniness are very heterogeneous and rarely measured explicitly. In this study, we explore the spatial variability in key soil properties (soil carbon stocks, stoniness, bulk density and soil depth) as a function of processes shaping the critical zone (weathering, erosion, soil water fluxes and vegetation patterns). We also compare the potential of traditional digital soil mapping versus a mechanistic soil formation model (MILESD) for predicting these key soil properties. Soil core samples were collected from 67 locations at 6 depths. Total soil organic carbon stocks were 4.38 kg m-2. Solar radiation proved to be the key variable controlling soil carbon distribution. Stone content was mostly controlled by slope, indicating the importance of erosion. Spatial distribution of bulk density was found to be highly random. Finally, total carbon stocks were predicted using a random forest model whose main covariates were solar radiation and NDVI. The model predicts carbon stocks that are double as high on north versus south-facing slopes. However, validation showed that these covariates only explained 25% of the variation in the dataset. Apparently, present-day landscape and vegetation properties are not sufficient to fully explain variability in the soil carbon stocks in this complex terrain under natural vegetation. This is attributed to a high spatial variability in bulk density and stoniness, key variables controlling carbon stocks. Similar results were obtained with the mechanistic soil formation model MILESD, suggesting that more complex models might be needed to further explore this high spatial variability.

  5. Using infrared thermography for understanding and quantifying soil surface processes

    Science.gov (United States)

    de Lima, João L. M. P.

    2017-04-01

    At present, our understanding of the soil hydrologic response is restricted by measurement limitations. In the literature, there have been repeatedly calls for interdisciplinary approaches to expand our knowledge in this field and eventually overcome the limitations that are inherent to conventional measuring techniques used, for example, for tracing water at the basin, hillslope and even field or plot scales. Infrared thermography is a versatile, accurate and fast technique of monitoring surface temperature and has been used in a variety of fields, such as military surveillance, medical diagnosis, industrial processes optimisation, building inspections and agriculture. However, many applications are still to be fully explored. In surface hydrology, it has been successfully employed as a high spatial and temporal resolution non-invasive and non-destructive imaging tool to e.g. access groundwater discharges into waterbodies or quantify thermal heterogeneities of streams. It is believed that thermal infrared imagery can grasp the spatial and temporal variability of many processes at the soil surface. Thermography interprets the heat signals and can provide an attractive view for identifying both areas where water is flowing or has infiltrated more, or accumulated temporarily in depressions or macropores. Therefore, we hope to demonstrate the potential for thermal infrared imagery to indirectly make a quantitative estimation of several hydrologic processes. Applications include: e.g. mapping infiltration, microrelief and macropores; estimating flow velocities; defining sampling strategies; identifying water sources, accumulation of waters or even connectivity. Protocols for the assessment of several hydrologic processes with the help of IR thermography will be briefly explained, presenting some examples from laboratory soil flumes and field.

  6. An interdisciplinary approach towards improved understanding of soil deformation during compaction

    DEFF Research Database (Denmark)

    Keller, T.; Lamandé, Mathieu; Peth, S.

    2013-01-01

    and validation of new soil compaction models. The integration of concepts underlying dynamic processes that modify soil pore spaces and bulk properties will improve the understanding of how soil management affect vital soil mechanical, hydraulic and ecological functions supporting plant growth.......Soil compaction not only reduces available pore volume in which fluids are stored, but it alters the arrangement of soil constituents and pore geometry, thereby adversely impacting fluid transport and a range of soil ecological functions. Quantitative understanding of stress transmission...... and deformation processes in arable soils remains limited. Yet such knowledge is essential for better predictions of effects of soil management practices such as agricultural field traffic on soil functioning. Concepts and theory used in agricultural soil mechanics (soil compaction and soil tillage) are often...

  7. Oxygen diffusion in soils: Understanding the factors and processes needed for modeling

    Directory of Open Access Journals (Sweden)

    José Neira

    2015-08-01

    Full Text Available Oxygen is an important element for plant growth. Reducing its concentration in the soil affects plant physiological processes such as nutrient and water uptake as well as respiration, the redox potential of soil elements and the activity of microorganisms. The main mechanism of oxygen transport in the soil is by diffusion, a dynamic process greatly influenced by soil physical properties such as texture and structure, conditioning, pore size distribution, tortuosity and connectivity. Organic matter is a modifying agent of the soil's chemical and physical properties, affecting its structure and the porous matrix, which are determinants of oxygen transport. This study reviews the theory of soil gas diffusion and the effect of soil organic matter on the soil's physical properties and transport of gases. It also reviews gas diffusion models, particularly those including the effect of soil organic matter.

  8. Soil color - a window for public and educators to understands soils

    Science.gov (United States)

    Libohova, Zamir; Beaudette, Dylan; Wills, Skye; Monger, Curtis; Lindbo, David

    2017-04-01

    Soil color is one of the most visually striking properties recorded by soil scientists around the world. Soil color is an important characteristic related to soil properties such organic matter, parent materials, drainage. It is a simplified way for the public and educators alike to understand soils and their functions. Soil color is a quick measurement that can be recorded by people using color charts or digital cameras, offering an opportunity for the citizen science projects to contribute to soil science. The US Soil Survey has recorded soil colors using Munsell color system for over 20,000 soil types representing a wide range of conditions throughout the Unites States. The objective of this research was to generate a US soil color map based on color descriptions from the Official Series Descriptions (OSDs). A color calculator developed in R and ArcMap were used to spatially display the soil colors. Soil colors showed vertical trends related to soil depth and horizontal trends related to parent material and climate. Soil colors represent development processes depending upon environment and time that have influenced their appearance and geographic distribution. Dark colors represent soils that are rich in organic matter, such as the soils of the Midwest USA, which are some of the most fertile soils in the world. These soils are relatively "young" in that they developed over the last 20,000 years in materials left behind after continental Glaciers retreated and reflect long- term prairie vegetation that dominated this area prior to European settlements. Dark soils of the Pacific Northwest reflect the influence of forests (and volcanic activity) but are shallower and less fertile than the deep dark Midwest soils. Soils of the eastern and southern Coastal Plains are older and are enriched with iron oxides ('rust') which gives them their red coloring. Soils of flood plains, like the broad Mississippi Valley, have multi-colored soils that reflect the process of

  9. Understanding and Enhancing Soil Biological Health: The Solution for Reversing Soil Degradation

    Directory of Open Access Journals (Sweden)

    R. Michael Lehman

    2015-01-01

    Full Text Available Our objective is to provide an optimistic strategy for reversing soil degradation by increasing public and private research efforts to understand the role of soil biology, particularly microbiology, on the health of our world’s soils. We begin by defining soil quality/soil health (which we consider to be interchangeable terms, characterizing healthy soil resources, and relating the significance of soil health to agroecosystems and their functions. We examine how soil biology influences soil health and how biological properties and processes contribute to sustainability of agriculture and ecosystem services. We continue by examining what can be done to manipulate soil biology to: (i increase nutrient availability for production of high yielding, high quality crops; (ii protect crops from pests, pathogens, weeds; and (iii manage other factors limiting production, provision of ecosystem services, and resilience to stresses like droughts. Next we look to the future by asking what needs to be known about soil biology that is not currently recognized or fully understood and how these needs could be addressed using emerging research tools. We conclude, based on our perceptions of how new knowledge regarding soil biology will help make agriculture more sustainable and productive, by recommending research emphases that should receive first priority through enhanced public and private research in order to reverse the trajectory toward global soil degradation.

  10. Soil organic matter dynamics and CO2 fluxes in relation to landscape scale processes: linking process understanding to regional scale carbon mass-balances

    Science.gov (United States)

    Van Oost, Kristof; Nadeu, Elisabet; Wiaux, François; Wang, Zhengang; Stevens, François; Vanclooster, Marnik; Tran, Anh; Bogaert, Patrick; Doetterl, Sebastian; Lambot, Sébastien; Van wesemael, Bas

    2014-05-01

    In this paper, we synthesize the main outcomes of a collaborative project (2009-2014) initiated at the UCL (Belgium). The main objective of the project was to increase our understanding of soil organic matter dynamics in complex landscapes and use this to improve predictions of regional scale soil carbon balances. In a first phase, the project characterized the emergent spatial variability in soil organic matter storage and key soil properties at the regional scale. Based on the integration of remote sensing, geomorphological and soil analysis techniques, we quantified the temporal and spatial variability of soil carbon stock and pool distribution at the local and regional scales. This work showed a linkage between lateral fluxes of C in relation with sediment transport and the spatial variation in carbon storage at multiple spatial scales. In a second phase, the project focused on characterizing key controlling factors and process interactions at the catena scale. In-situ experiments of soil CO2 respiration showed that the soil carbon response at the catena scale was spatially heterogeneous and was mainly controlled by the catenary variation of soil physical attributes (soil moisture, temperature, C quality). The hillslope scale characterization relied on advanced hydrogeophysical techniques such as GPR (Ground Penetrating Radar), EMI (Electromagnetic induction), ERT (Electrical Resistivity Tomography), and geophysical inversion and data mining tools. Finally, we report on the integration of these insights into a coupled and spatially explicit model and its application. Simulations showed that C stocks and redistribution of mass and energy fluxes are closely coupled, they induce structured spatial and temporal patterns with non negligible attached uncertainties. We discuss the main outcomes of these activities in relation to sink-source behavior and relevance of erosion processes for larger-scale C budgets.

  11. Developing and using artificial soils to analyze soil microbial processes

    Science.gov (United States)

    Gao, X.; Cheng, H. Y.; Boynton, L.; Masiello, C. A.; Silberg, J. J.

    2017-12-01

    Microbial diversity and function in soils are governed by soil characteristics such as mineral composition, particles size and aggregations, soil organic matter (SOM), and availability of nutrients and H2O. The spatial and temporal heterogeneity of soils creates a range of niches (hotspots) differing in the availability of O2, H2O, and nutrients, which shapes microbial activities at scales ranging from nanometer to landscape. Synthetic biologists often examine microbial response trigged by their environment conditions in nutrient-rich aqueous media using single strain microbes. While these studies provided useful insight in the role of soil microbes in important soil biogeochemical processes (e.g., C cycling, N cycling, etc.), the results obtained from the over-simplified model systems are often not applicable natural soil systems. On the contrary, soil microbiologists examine microbial processes in natural soils using longer incubation time. However, due to its physical, chemical and biological complexity of natural soils, it is often difficult to examine soil characteristics independently and understand how each characteristic influences soil microbial activities and their corresponding soil functioning. Therefore, it is necessary to bridge the gap and develop a model matrix to exclude unpredictable influences from the environment while still reliably mimicking real environmental conditions. The objective of this study is to design a range of ecologically-relevant artificial soils with varying texture (particle size distribution), structure, mineralogy, SOM content, and nutrient heterogeneity. We thoroughly characterize the artificial soils for pH, active surface area and surface morphology, cation exchange capacity (CEC), and water retention curve. We demonstrate the effectiveness of the artificial soils as useful matrix for microbial processes, such as microbial growth and horizontal gene transfer (HGT), using the gas-reporting biosensors recently developed in

  12. Quantification of chemical transport processes from the soil to surface runoff.

    Science.gov (United States)

    Tian, Kun; Huang, Chi-Hua; Wang, Guang-Qian; Fu, Xu-Dong; Parker, Gary

    2013-01-01

    There is a good conceptual understanding of the processes that govern chemical transport from the soil to surface runoff, but few studies have actually quantified these processes separately. Thus, we designed a laboratory flow cell and experimental procedures to quantify the chemical transport from soil to runoff water in the following individual processes: (i) convection with a vertical hydraulic gradient, (ii) convection via surface flow or the Bernoulli effect, (iii) diffusion, and (iv) soil loss. We applied different vertical hydraulic gradients by setting the flow cell to generate different seepage or drainage conditions. Our data confirmed the general form of the convection-diffusion equation. However, we now have additional quantitative data that describe the contribution of each individual chemical loading process in different surface runoff and soil hydrological conditions. The results of this study will be useful for enhancing our understanding of different geochemical processes in the surface soil mixing zone. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. The importance of Soil Science to understand and remediate Land Degradation and Desertification processes

    Science.gov (United States)

    Bouma, Johan; Keesstra, Saskia; Cerdà, Artemi

    2017-04-01

    Documentation is abundantly available to demonstrate the devastating effect of Land degradation and desertification on sustainable development in many countries. This present a major barrier to achieving the UN Sustainable Development Goals by 2030, as agreed upon at the General Assembly of the UN in September 2015. Research has certainly been successful in reversing these two processes in many case studies but persistant problems remain not only in developing countries but also in developed countries where, for example, soil compaction and loss of soil organic matter due to the industrialization of agriculture, result in a structural decline of agricultural productivity and environmental quality. The problems are quite complex because not only technical matters play a role but also, and often quite prominantly, socio-economic factors. What turn out to be successful remediation procedures at a given location or region, based on the characterization of underlying soil processes, will most likely not work in other regions inhibiting the extrapolation of local research results to areas elsewhere. One important reason for location specificity of research is the variation of soil properties in combination with the location of soils in a given landscape which governs its water, energy and nutrient dynamics, also considering the climate. Different soils are characterized by different natural riks for degradation and , in arid regions, deserticification and their particular remediation potential differs widely as well. Such risks can sometimes be overcome by innovative soil management and knowing the soil type, the climate and landscape processes, extrapolation of such types of innovative management to comparable soils and landscapes elsewhere may be feasible and effective , provided that socio-economic conditions allow the required risk-reducing measures to be realized in practice. More cooperation between soil scientists and physical geographers, familiar with landscape

  14. Cultural Patterns of Soil Understanding

    Science.gov (United States)

    Patzel, Nikola; Feller, Christian

    2017-04-01

    Living soil supports all terrestrial ecosystems. The only global threat to earth's soils comes from human societies' land use and resource consuming activities. Soil perception and understanding by soil scientists are mainly drawn from biophysical parameters and found within Cartesian rationality, and not, or much less consciously from its rather intangible cultural dimension. But nevertheless, human soil perception, soil awareness, and soil relation are a cultural phenomenon, too. Aiming at soil awareness and education, it is of first order importance for the soil science community and the IUSS to study, discuss and communicate also about the cultural perceptions and representations of soil. For any society, cultural patterns in their relation to soil encompass: (i) General culturally underlying structures like (religious or 'secular') myths and belief systems. (ii) The personal, individual relation to/with and behaviour towards soil. This includes implicit concepts of soil being part integral concepts of landscape because the large majority of humans don't see soil as a distinct object. This communication would be to make evident: (i) the importance of cultural patterns and psychic/psychological background concerning soil, by case studies and overviews on different cultural areas, (ii) the necessity to develop reflections on this topic as well to communicate about soil with large public, as to raise awareness soil scientists to the cultural dimension of soils. A working group was recently founded at IUSS (Division 4) on this topic.

  15. Geophysical methods for monitoring soil stabilization processes

    Science.gov (United States)

    Saneiyan, Sina; Ntarlagiannis, Dimitrios; Werkema, D. Dale; Ustra, Andréa

    2018-01-01

    Soil stabilization involves methods used to turn unconsolidated and unstable soil into a stiffer, consolidated medium that could support engineered structures, alter permeability, change subsurface flow, or immobilize contamination through mineral precipitation. Among the variety of available methods carbonate precipitation is a very promising one, especially when it is being induced through common soil borne microbes (MICP - microbial induced carbonate precipitation). Such microbial mediated precipitation has the added benefit of not harming the environment as other methods can be environmentally detrimental. Carbonate precipitation, typically in the form of calcite, is a naturally occurring process that can be manipulated to deliver the expected soil strengthening results or permeability changes. This study investigates the ability of spectral induced polarization and shear-wave velocity for monitoring calcite driven soil strengthening processes. The results support the use of these geophysical methods as soil strengthening characterization and long term monitoring tools, which is a requirement for viable soil stabilization projects. Both tested methods are sensitive to calcite precipitation, with SIP offering additional information related to long term stability of precipitated carbonate. Carbonate precipitation has been confirmed with direct methods, such as direct sampling and scanning electron microscopy (SEM). This study advances our understanding of soil strengthening processes and permeability alterations, and is a crucial step for the use of geophysical methods as monitoring tools in microbial induced soil alterations through carbonate precipitation.

  16. Bringing life to soil physical processes

    Science.gov (United States)

    Hallett, P. D.

    2013-12-01

    When Oklahoma's native prairie grass roots were replaced by corn, the greatest environmental (and social) disaster ever to hit America ensued. The soils lost structure, physical binding by roots was annihilated and when drought came the Great Dust Bowl commenced. This form of environmental disaster has repeated over history and although not always apparent, similar processes drive the degradation of seemingly productive farmland and forests. But just as negative impacts on biology are deleterious to soil physical properties, positive impacts could reverse these trends. In finding solutions to soil sustainability and food security, we should be able to exploit biological processes to improve soil physical properties. This talk will focus on a quantitative understanding of how biology changes soil physical behaviour. Like the Great Dust Bowl, it starts with reinforcement mechanisms by plant roots. We found that binding of soil by cereal (barley) roots within 5 weeks of planting can more than double soil shear strength, with greater plant density causing greater reinforcement. With time, however, the relative impact of root reinforcement diminishes due to root turnover and aging of the seedbed. From mechanical tests of individual roots, reasonable predictions of reinforcement by tree roots are possible with fibre bundle models. With herbaceous plants like cereals, however, the same parameters (root strength, stiffness, size and distribution) result in a poor prediction. We found that root type, root age and abiotic factors such as compaction and waterlogging affect mechanical behaviour, further complicating the understanding and prediction of root reinforcement. For soil physical stability, the interface between root and soil is an extremely important zone in terms of resistance of roots to pull-out and rhizosphere formation. Compounds analogous to root exudates have been found with rheological tests to initially decrease the shear stress where wet soils flow, but

  17. Soil architecture relationships with dynamic soil physical processes: a conceptual study using natural, artificial, and 3D-printed soil cores

    DEFF Research Database (Denmark)

    Lamandé, Mathieu; Schjønning, Per; Dal Ferro, Nicola

    Pore system architecture is a key feature for understanding physical, biological and chemical processes in soils. Development of visualisation technics, especially x-ray CT, during recent years has been useful in describing the complex relationships between soil architecture and soil functions. We...... believe that combining visualization with physical models is a step further towards a better understanding of these relationships. We conducted a concept study using natural, artificial and 3D-printed soil cores. Eight natural soil cores (100 cm3) were sampled in a cultivated stagnic Luvisol at two depths...... (topsoil and subsoil), representing contrasting soil pore systems. Cylinders (100 cm3) were produced from plastic or from autoclaved aerated concrete. Holes of diameters 1.5 and 3 mm were drilled in the cylinder direction for the plastic cylinder and for one of the AAC cylinders. All natural and artificial...

  18. Radiography as a tool in understanding soil insect behavior in turfgrass

    International Nuclear Information System (INIS)

    Villani, M.G.; Wright, R.J.

    1987-01-01

    In an effort to gain a more realistic picture of the events that occur within the soil matrix an x-ray technique has been developed that has been used to study seed insects, parasitized cocoons, and wood boring insects in trees to study soil insect movement and behavior. This technique makes it possible to study the movement of the target insects within simulated or natural soil blocks over time. This method also shows physical properties of the soil matrix: particle size, extent of compaction, differences in soil moisture, horizons, and random soil heterogeneity. Blocks of soil up to 14'' x 17'' x 5'' have been removed from the field and x-rayed in my laboratory using this technique. These radiographs are of sufficient quality to determine the movement of white grubs in situ. Such blocks retain their field characteristics and therefore allow for the careful monitoring and manipulation of the system over relatively long (several months) periods of time. Radiographic data are presented which document the behavior of several white grub species in response to dynamic soil ecosystem processes such as moisture and temperature flux. Additional data on the effects of specific soil insecticides on the behavior of white grubs in the soil and the movement of these insecticides through the soil profile are also presented. The importance of understanding the dynamic interaction of soil insect and soil insecticide provided through x-ray technology, both in understanding white grub behavior in the field and maximizing management efforts is discussed

  19. Spies and Bloggers: New Synthetic Biology Tools to Understand Microbial Processes in Soils and Sediments

    Science.gov (United States)

    Masiello, C. A.; Silberg, J. J.; Cheng, H. Y.; Del Valle, I.; Fulk, E. M.; Gao, X.; Bennett, G. N.

    2017-12-01

    Microbes can be programmed through synthetic biology to report on their behavior, informing researchers when their environment has triggered changes in their gene expression (e.g. in response to shifts in O2 or H2O), or when they have participated in a specific step of an elemental cycle (e.g. denitrification). This use of synthetic biology has the potential to significantly improve our understanding of microbes' roles in elemental and water cycling, because it allows reporting on the environment from the perspective of a microbe, matching the measurement scale exactly to the scale that a microbe experiences. However, synthetic microbes have not yet seen wide use in soil and sediment laboratory experiments because synthetic organisms typically report by fluorescing, making their signals difficult to detect outside the petri dish. We are developing a new suite of microbial programs that report instead by releasing easily-detected gases, allowing the real-time, noninvasive monitoring of behaviors in sediments and soils. Microbial biosensors can, in theory, be programmed to detect dynamic processes that contribute to a wide range of geobiological processes, including C cycling (biofilm production, methanogenesis, and synthesis of extracellular enzymes that degrade organic matter), N cycling (expression of enzymes that underlie different steps of the N cycle) and potentially S cycling. We will provide an overview of the potential uses of gas-reporting biosensors in soil and sediment lab experiments, and will report the development of the systematics of these sensors. Successful development of gas biosensors for laboratory use will require addressing issues including: engineering the intensity and selectivity of microbial gas production to maximize the signal to noise ratio; normalizing the gas reporter signal to cell population size, managing gas diffusion effects on signal shape; and developing multiple gases that can be used in parallel.

  20. Gaining insights into interrill soil erosion processes using rare earth element tracers

    Science.gov (United States)

    Increasing interest in developing process-based erosion models requires better understanding of the relationships among soil detachment, transportation, and deposition. The objectives are to 1) identify the limiting process between soil detachment and sediment transport for interrill erosion, 2) und...

  1. Critical Zone Experimental Design to Assess Soil Processes and Function

    Science.gov (United States)

    Banwart, Steve

    2010-05-01

    Through unsustainable land use practices, mining, deforestation, urbanisation and degradation by industrial pollution, soil losses are now hypothesized to be much faster (100 times or more) than soil formation - with the consequence that soil has become a finite resource. The crucial challenge for the international research community is to understand the rates of processes that dictate soil mass stocks and their function within Earth's Critical Zone (CZ). The CZ is the environment where soils are formed, degrade and provide their essential ecosystem services. Key among these ecosystem services are food and fibre production, filtering, buffering and transformation of water, nutrients and contaminants, storage of carbon and maintaining biological habitat and genetic diversity. We have initiated a new research project to address the priority research areas identified in the European Union Soil Thematic Strategy and to contribute to the development of a global network of Critical Zone Observatories (CZO) committed to soil research. Our hypothesis is that the combined physical-chemical-biological structure of soil can be assessed from first-principles and the resulting soil functions can be quantified in process models that couple the formation and loss of soil stocks with descriptions of biodiversity and nutrient dynamics. The objectives of this research are to 1. Describe from 1st principles how soil structure influences processes and functions of soils, 2. Establish 4 European Critical Zone Observatories to link with established CZOs, 3. Develop a CZ Integrated Model of soil processes and function, 4. Create a GIS-based modelling framework to assess soil threats and mitigation at EU scale, 5. Quantify impacts of changing land use, climate and biodiversity on soil function and its value and 6. Form with international partners a global network of CZOs for soil research and deliver a programme of public outreach and research transfer on soil sustainability. The

  2. Long-term experiments to better understand soil-human interactions

    Science.gov (United States)

    Bormann, B. T.; Homann, P. S.

    2011-12-01

    knobcone pines were established, that trended positively with 2 Mg C ha-1. Soil changes resulting from wild and prescribed fire were substantial. About 50% of the soil C (3-21 Mg ha-1) and 36% of soil N (41-650 kg ha-1) were lost from the upper profile (0-6.2 cm) compared to pre-fire conditions. Intense wildfire that killed most forest trees had about double the losses of C and N than forests burned at lower temperature with fewer trees killed. Average wildfire C losses were more than twice prescribed-fire losses. A long-term perspective is needed to compare episodic influences on soils, like harvesting and wildfire, to day-in, day-out effects of different species mixtures. Especially important is the effect of shrubs, that can rapidly achieve full leaf area but that lack the woody stem structure to store captured C as well as conifers. In theory, therefore, extending shrub cover will increase soil C. The annual profile soil C loss in Douglas-fir (-0.8 Mg ha-1yr-1), if continued beyond 11 yrs, would be similar to the effects of a fire-return interval of less than a third of the historical interval of about 100 years. National and regional soil-C monitoring would benefit from being grounded in existing experimental studies to help integrate large-scale changes with an unfolding understanding of processes in ways useful to decisionmakers.

  3. Mind the gap: non-biological processes contributing to soil CO2 efflux.

    Science.gov (United States)

    Rey, Ana

    2015-05-01

    Widespread recognition of the importance of soil CO2 efflux as a major source of CO2 to the atmosphere has led to active research. A large soil respiration database and recent reviews have compiled data, methods, and current challenges. This study highlights some deficiencies for a proper understanding of soil CO2 efflux focusing on processes of soil CO2 production and transport that have not received enough attention in the current soil respiration literature. It has mostly been assumed that soil CO2 efflux is the result of biological processes (i.e. soil respiration), but recent studies demonstrate that pedochemical and geological processes, such as geothermal and volcanic CO2 degassing, are potentially important in some areas. Besides the microbial decomposition of litter, solar radiation is responsible for photodegradation or photochemical degradation of litter. Diffusion is considered to be the main mechanism of CO2 transport in the soil, but changes in atmospheric pressure and thermal convection may also be important mechanisms driving soil CO2 efflux greater than diffusion under certain conditions. Lateral fluxes of carbon as dissolved organic and inorganic carbon occur and may cause an underestimation of soil CO2 efflux. Traditionally soil CO2 efflux has been measured with accumulation chambers assuming that the main transport mechanism is diffusion. New techniques are available such as improved automated chambers, CO2 concentration profiles and isotopic techniques that may help to elucidate the sources of carbon from soils. We need to develop specific and standardized methods for different CO2 sources to quantify this flux on a global scale. Biogeochemical models should include biological and non-biological CO2 production processes before we can predict the response of soil CO2 efflux to climate change. Improving our understanding of the processes involved in soil CO2 efflux should be a research priority given the importance of this flux in the global

  4. Grounded in the landscape: Eliciting farmers' understanding of soil and soil fertility, Mali (West Africa)

    OpenAIRE

    Crane, T.

    2002-01-01

    In order to develop convincing messages and sustainable interventions, it is necessary to understand how farmers themselves perceive soil conditions and how these perceptions influence their soil management and land use decisions. This brief illustrates an ethno-scientific methodology for eliciting farmers' conceptualization of soil and soil fertility.

  5. Soil nitrate reducing processes - drivers, mechanisms for spatial variation, and significance for nitrous oxide production.

    Science.gov (United States)

    Giles, Madeline; Morley, Nicholas; Baggs, Elizabeth M; Daniell, Tim J

    2012-01-01

    The microbial processes of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are two important nitrate reducing mechanisms in soil, which are responsible for the loss of nitrate ([Formula: see text]) and production of the potent greenhouse gas, nitrous oxide (N(2)O). A number of factors are known to control these processes, including O(2) concentrations and moisture content, N, C, pH, and the size and community structure of nitrate reducing organisms responsible for the processes. There is an increasing understanding associated with many of these controls on flux through the nitrogen cycle in soil systems. However, there remains uncertainty about how the nitrate reducing communities are linked to environmental variables and the flux of products from these processes. The high spatial variability of environmental controls and microbial communities across small sub centimeter areas of soil may prove to be critical in determining why an understanding of the links between biotic and abiotic controls has proved elusive. This spatial effect is often overlooked as a driver of nitrate reducing processes. An increased knowledge of the effects of spatial heterogeneity in soil on nitrate reduction processes will be fundamental in understanding the drivers, location, and potential for N(2)O production from soils.

  6. Soil properties and processes

    NARCIS (Netherlands)

    Hartemink, A.E.; McBratney, A.B.; White, R.E.

    2009-01-01

    This four-volume set, edited by leading experts in soil science, brings together in one collection a series of papers that have been fundamental to the development of soil science as a defined discipline. Tis volume 2 on Soil Properties and Processes covers: - Soil physics - Soil (bio)chemistry -

  7. Radioisotope tracer approach for understanding the impacts of global change-induced pedoturbation on soil C dynamics

    Science.gov (United States)

    Gonzalez-Meler, M. A.; Sturchio, N. C.; Sanchez-de Leon, Y.; Blanc-Betes, E.; Taneva, L.; Poghosyan, A.; Norby, R. J.; Filley, T. R.; Guilderson, T. P.; Welker, J. M.

    2010-12-01

    Biogeochemical carbon-cycle feedbacks to climate are apparent but uncertain, primarily because of gaps in mechanistic understanding on the ecosystem processes that drive carbon cycling and storage in terrestrial ecosystems, particularly in soils. Recent findings are increasingly recognizing the interaction between soil biota and the soil physical environment. Soil carbon turnover is partly determined by burial of organic matter and its physical and chemical protection. These factors are potentially affected by changes in climate (freezing-thawing or wet-drying cycles) or ecosystem structure including biological invasions. A major impediment to understanding dynamics of soil C in terrestrial systems is our inability to measure soil physical processes such as soil mixing rates or turnover of soil structures, including aggregates. Here we present a multiple radioisotope tracer approach (naturally occurring and man-made) to measure soil mixing rates in response to global change. We will present evidence of soil mixing rate changes in a temperate forest exposed to increased levels of atmospheric CO2 and in a tundra ecosystem exposed to increased thermal insulation. In both cases, radioisotope tracers proved to be an effective way to measure effects of global change on pedoturbation. Results also provided insights into the specific mechanisms involved in the responses. Elevated CO2 resulted in deeper soil mixing cells (increased by about 5cm on average) when compared to control soils as a consequence of changes in biota (increased root growth, higher earthworm density). In the tundra, soil warming induced higher rates of cryoturbation, resulting in what appears to be a net uplift of organic matter to the surface thereby exposing deeper C to decomposers. In both cases, global change factors affected the vertical distribution of C and changed the amount of bulk soil actively involved in soil processes. As a consequence, comparisons of C budgets to a given soil depth in

  8. Understanding the Role of Microorganisms in Soil Quality and Fertility under changing Climatic Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dercon, Gerd; Adu-Gyamfi, Joseph; Heiling, Maria; Aigner, Martina; Nguyen, Minh-Long [Soil and Water Management and Crop Nutrition Laboratory, Joint FAO/IAEA Division for Nuclear Techniques in Food and Agriculture, Seibersdorf (Austria); Schwartz, Egbert [Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, (United States); Dexin, Lin [Soil and Water Management and Crop Nutrition Laboratory, Joint FAO/IAEA Division for Nuclear Techniques in Food and Agriculture, Seibersdorf, (Austria); Fujian Agriculture and Forestry University, Fujian (China)

    2013-01-15

    The Soil and Water Management and Crop Nutrition (SWMCN) Subprogramme (Section and Laboratory) assists FAO and IAEA Member States in the development, validation and dissemination of a range of soil, water and crop management technology packages using nuclear and nuclear-related techniques. In the coming years, SWMCN aims to (i) improve soil quality and soil resilience against the impacts of climate change and variability and (ii) reduce greenhouse gas emissions and increase soil carbon sequestration in both productive and marginal lands. To achieve these aims, the SWMCN Subprogramme is planning to put major emphasis on applied microbial ecology. Microbial communities play a major role in soil fertility improvement through the decomposition of crop residues, live- stock manure and soil organic matter. These microbes are often affected by variations in rainfall and temperature patterns caused by climate change. Recent advances in the use of stable isotopes like carbon-3, nitrogen-5 and oxygen-18 as biomarkers to characterize microbial communities and their interactions with soil nutrient and organic matter processes, known as stable isotope probing (SIP), are important for soil-water-nutrient management. SIP helps us to understand the interactions between soil microbial communities and their specific functions in soil carbon sequestration, soil organic matter stabilization, soil fertility and soil resilience, as well as the soil productive capacity for sustainable intensification of cropping and livestock production. SIP involves the introduction of a stable isotope labelled substrate into a soil microbial community to trace the fate of the substrate. This allows direct observations of substrate assimilation to be made in minimally disturbed communities of microorganisms. Microorganisms that are actively involved in specific metabolic processes can be identified under in-situ conditions. SIP is most developed for carbon-13 probing, but studies using nitrogen-15 and

  9. Towards Understanding Soil Forming in Santa Clotilde Critical Zone Observatory: Modelling Soil Mixing Processes in a Hillslope using Luminescence Techniques

    Science.gov (United States)

    Sanchez, A. R.; Laguna, A.; Reimann, T.; Giráldez, J. V.; Peña, A.; Wallinga, J.; Vanwalleghem, T.

    2017-12-01

    Different geomorphological processes such as bioturbation and erosion-deposition intervene in soil formation and landscape evolution. The latter processes produce the alteration and degradation of the materials that compose the rocks. The degree to which the bedrock is weathered is estimated through the fraction of the bedrock which is mixing in the soil either vertically or laterally. This study presents an analytical solution for the diffusion-advection equation to quantify bioturbation and erosion-depositions rates in profiles along a catena. The model is calibrated with age-depth data obtained from profiles using the luminescence dating based on single grain Infrared Stimulated Luminescence (IRSL). Luminescence techniques contribute to a direct measurement of the bioturbation and erosion-deposition processes. Single-grain IRSL techniques is applied to feldspar minerals of fifteen samples which were collected from four soil profiles at different depths along a catena in Santa Clotilde Critical Zone Observatory, Cordoba province, SE Spain. A sensitivity analysis is studied to know the importance of the parameters in the analytical model. An uncertainty analysis is carried out to stablish the better fit of the parameters to the measured age-depth data. The results indicate a diffusion constant at 20 cm in depth of 47 (mm2/year) in the hill-base profile and 4.8 (mm2/year) in the hilltop profile. The model has high uncertainty in the estimation of erosion and deposition rates. This study reveals the potential of luminescence single-grain techniques to quantify pedoturbation processes.

  10. Soil nitrate reducing processes – drivers, mechanisms for spatial variation, and significance for nitrous oxide production

    Science.gov (United States)

    Giles, Madeline; Morley, Nicholas; Baggs, Elizabeth M.; Daniell, Tim J.

    2012-01-01

    The microbial processes of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are two important nitrate reducing mechanisms in soil, which are responsible for the loss of nitrate (NO3−) and production of the potent greenhouse gas, nitrous oxide (N2O). A number of factors are known to control these processes, including O2 concentrations and moisture content, N, C, pH, and the size and community structure of nitrate reducing organisms responsible for the processes. There is an increasing understanding associated with many of these controls on flux through the nitrogen cycle in soil systems. However, there remains uncertainty about how the nitrate reducing communities are linked to environmental variables and the flux of products from these processes. The high spatial variability of environmental controls and microbial communities across small sub centimeter areas of soil may prove to be critical in determining why an understanding of the links between biotic and abiotic controls has proved elusive. This spatial effect is often overlooked as a driver of nitrate reducing processes. An increased knowledge of the effects of spatial heterogeneity in soil on nitrate reduction processes will be fundamental in understanding the drivers, location, and potential for N2O production from soils. PMID:23264770

  11. Soil nitrate reducing processes – drivers, mechanisms for spatial variation and significance for nitrous oxide production

    Directory of Open Access Journals (Sweden)

    Madeline Eleanore Giles

    2012-12-01

    Full Text Available The microbial processes of denitrification and dissimilatory nitrate reduction to ammonium (DNRA are two important nitrate reducing mechanisms in soil, which are responsible for the loss of nitrate (NO3-¬ and production of the potent greenhouse gas, nitrous oxide (N2O. A number of factors are known to control these processes, including O2 concentrations and moisture content, N, C, pH and the size and community structure of nitrate reducing organisms responsible for the processes. There is an increasing understanding associated with many of these controls on flux through the nitrogen cycle in soil systems. However, there remains uncertainty about how the nitrate reducing communities are linked to environmental variables and the flux of products from these processes. The high spatial variability of environmental controls and microbial communities across small sub cm areas of soil may prove to be critical in determining why an understanding of the links between biotic and abiotic controls has proved elusive. This spatial effect is often overlooked as a driver of nitrate reducing processes. An increased knowledge of the effects of spatial heterogeneity in soil on nitrate reduction processes will be fundamental in understanding the drivers, location and potential for N2O production from soils.

  12. PUNCS: Towards Predictive Understanding of Nitrogen Cycling in Soils

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, Frank E. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Microbiology. Dept. of Civil and Environmental Engineering. Center for Environmental Biotechnology; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division; Konstantinidis, Konstantinos T. [Georgia Inst. of Technology, Atlanta, GA (United States); Sanford, Robert A. [Univ. of Illinois, Urbana, IL (United States)

    2015-11-30

    In anoxic environments, the major nitrate/nitrite-consuming processes are respiratory ammonification (also known as dissimilatory nitrate reduction to ammonium) and denitrification (i.e., the formation of the gaseous products N2O and N2). Respiratory ammonification oxidizes more carbon per mole of nitrate than denitrification and generates a cation (NH4+), which is retained in soils and bioavailable for plants. Thus, these processes have profoundly different impacts on N retention and greenhouse gas (CO2, N2O) emissions. Microbes capable of respiratory ammonification or denitrification coexist but the environmental controls over these competing nitrate/nitrite-reducing processes are largely unknown. With the current level of understanding, predictions under what environmental conditions respiratory ammonification activity predominates leading to N-retention rather than N-loss are tenuous. Further, the diversity of genes encoding the ammonium-forming nitrite reductase NrfA is poorly defined hampering the development of tools to assess and monitor this activity in environmental systems. Incomplete denitrification leads to N2O, a gas implicated in ozone layer destruction and climate change. The conversion of the greenhouse gas N2O to benign N2 is catalyzed by N2O reductase, the characteristic enzyme system of complete denitrifiers. Thus, efforts to estimate N2O conversion to N2 have focused on the well-characterized denitrifier nosZ genes; however, our understanding of the diversity of genes and organisms contributing to N2O consumption is incomplete. This paucity of information limits the development of more accurate, predictive models for C- and N-fluxes and greenhouse gas emissions. A comprehensive analysis of the key catalyst of respiratory ammonification, ammonia-forming nitrite reductase NrfA, revealed the evolutionary history of

  13. Misrepresentation of hydro-erosional processes in rainfall simulations using disturbed soil samples

    Science.gov (United States)

    Thomaz, Edivaldo L.; Pereira, Adalberto A.

    2017-06-01

    Interrill erosion is a primary soil erosion process which consists of soil detachment by raindrop impact and particle transport by shallow flow. Interill erosion affects other soil erosion sub-processes, e.g., water infiltration, sealing, crusting, and rill initiation. Interrill erosion has been widely studied in laboratories, and the use of a sieved soil, i.e., disturbed soil, has become a standard method in laboratory experiments. The aims of our study are to evaluate the hydro-erosional response of undisturbed and disturbed soils in a laboratory experiment, and to quantify the extent to which hydraulic variables change during a rainstorm. We used a splash pan of 0.3 m width, 0.45 m length, and 0.1 m depth. A rainfall simulation of 58 mm h- 1 lasting for 30 min was conducted on seven replicates of undisturbed and disturbed soils. During the experiment, several hydro-physical parameters were measured, including splashed sediment, mean particle size, runoff, water infiltration, and soil moisture. We conclude that use of disturbed soil samples results in overestimation of interrill processes. Of the nine assessed parameters, four displayed greater responses in the undisturbed soil: infiltration, topsoil shear strength, mean particle size of eroded particles, and soil moisture. In the disturbed soil, five assessed parameters displayed greater responses: wash sediment, final runoff coefficient, runoff, splash, and sediment yield. Therefore, contextual soil properties are most suitable for understanding soil erosion, as well as for defining soil erodibility.

  14. Soil desiccation cracks as a suction–contraction process

    KAUST Repository

    Cordero, J. A.; Useche, G.; Prat, P. C.; Ledesma, A.; Santamarina, Carlos

    2017-01-01

    Recent macro- and particle-scale advances in unsaturated soil behaviour have led to an enhanced understanding of the effects of moisture changes on soil response. This research examines desiccation cracks as a suction–contraction-coupled process using sand–clay mixtures. Suction–moisture measurements highlight the role of fines on suction potential even at low fines content; on the other hand, oedometer tests exhibit a marked transition from sand-controlled to clay-controlled compressibility. Time-lapse photography of desiccation tests in flat trays show the onset of crack initiation and the subsequent evolution in horizontal strains; concurrent gravimetric water content measurements relate crack nucleation to suction at air entry. Suction and compressibility increase with the soil-specific surface and have a compounded effect on desiccation-driven lateral contraction. Both layer thickness and its lateral extent affect the development of desiccation cracks. The recently proposed revised soil classification system properly anticipates the transitions in compressibility and capillary phenomena observed in this study (between 15 and 35% fines content).

  15. Soil desiccation cracks as a suction–contraction process

    KAUST Repository

    Cordero, J. A.

    2017-10-05

    Recent macro- and particle-scale advances in unsaturated soil behaviour have led to an enhanced understanding of the effects of moisture changes on soil response. This research examines desiccation cracks as a suction–contraction-coupled process using sand–clay mixtures. Suction–moisture measurements highlight the role of fines on suction potential even at low fines content; on the other hand, oedometer tests exhibit a marked transition from sand-controlled to clay-controlled compressibility. Time-lapse photography of desiccation tests in flat trays show the onset of crack initiation and the subsequent evolution in horizontal strains; concurrent gravimetric water content measurements relate crack nucleation to suction at air entry. Suction and compressibility increase with the soil-specific surface and have a compounded effect on desiccation-driven lateral contraction. Both layer thickness and its lateral extent affect the development of desiccation cracks. The recently proposed revised soil classification system properly anticipates the transitions in compressibility and capillary phenomena observed in this study (between 15 and 35% fines content).

  16. Strontium isotope fractionation in soils and pedogenic processes

    Energy Technology Data Exchange (ETDEWEB)

    Shalev, Netta [Institute of Earth Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Geological Survey of Israel, 30 Malkhe Israel Street, 95501 Jerusalem (Israel); Lazar, Boaz [Institute of Earth Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Halicz, Ludwik; Stein, Mordechai; Gavrieli, Ittai; Sandler, Amir; Segal, Irena [Geological Survey of Israel, 30 Malkhe Israel Street, 95501 Jerusalem (Israel)

    2013-07-01

    The stable isotope composition of strontium (the ratio {sup 88}Sr/{sup 86}Sr expressed as δ{sup 88/86}Sr) showed significant fractionation in mountain soils of the Judea Highland. In order to understand this phenomenon, we studied the elemental composition and the stable and radiogenic Sr isotopic composition in soil transects conducted from semi-arid (desert fringe) to wetter (Mediterranean) climate zones. These transects were selected because the degree of soil leaching depends on the amount of precipitation and the permeability of the underlying bedrock. These soils are the pedogenic products of leaching of the accumulated desert dust and the underlying carbonate bed-rocks resulting in, among others, enrichment of the residual soils in Al-clays. A clear negative correlation was found between the δ{sup 88/86}Sr and Al{sub 2}O{sub 3} (Al-clay content) values of the soils, the high δ{sup 88/86}Sr-low Al{sub 2}O{sub 3} being the dust end-member. This preliminary study demonstrates the feasibility of using stable {sup 88}Sr-{sup 86}Sr isotopes as tracers of terrestrial weathering processes. (authors)

  17. UNDERSTANDING AND APPLICABILITY OF THE FOREST SOIL CONCEPT

    Directory of Open Access Journals (Sweden)

    Ana Paula Moreira Rovedder

    2013-08-01

    Full Text Available http://dx.doi.org/10.5902/1980509810563The forestry sector plays an important role in the socioeconomic and environmental Brazilian context, therefore the improvement of the knowledge about forest soil becomes essential for its sustainable use as a conservation base of natural heritage as resource for economical development. Forest soil can be characterized by pedogenesis occurred under influence of a forestry typology or under a currently natural or cultivated forest coverage. Differentiating forest soils from those occupied with other uses helps the understanding of possible alterations related to vegetal coverage and the developing of better management strategies to soil and forest use. Nevertheless, there is no consensus about this term because the soils present variations according to the forest characteristics, stimulating the discussion concerning its interpretation and applicability. This review aimed to analyze the utilization of forest soil concept, highlighting the differentiation characteristics and the relation with coverage type, natural or cultivated. Aspects related to deposition, quality and management of residues, nutrients cycling, soil compaction and site productivity are emphasized. The forest soil concept is widely used by specific literature and useful to collect specific information and to plan the sustainable use of soil and forest. The improvement of knowledge about these resources provides the creation of a common identity, supporting comparative studies and consolidating the research regarding to this theme.

  18. EPRI/Alberta Research Council Clean Soil Process

    International Nuclear Information System (INIS)

    Spear, C.E.

    1992-12-01

    The EPRI/Alberta Research Council Clean Soil Process can remove hydrocarbon contamination from waste material from manufactured gas plants. The process uses coal as an absorbent to remove hydrocarbons. For petroleum contaminated soils, the process can bring residual concentration of petroleum below 0.1 percent and polycyclic aromatic hydrocarbon (PAH) concentration to 1--5 ppM. For coal tar contaminated soils, the process can reduce tar concentrations to about 0.05-0.5 percent and the PAH concentration to about 10--60 ppM. Additional post-treatment may be required for some precleaned soils. The process yields by-product agglomerates suitable for combustion in industrial boilers. Light hydrocarbons such as benzene are vaporized from the soil, condensed and collected in the Process and disposed of off-site. The Clean Soil Process has been tested at pilot-plant scale. A conceptual design for a 200-tons-per-day plant yielded a capital cost estimated at $3.1 million with a per-ton operating cost of $40

  19. Understanding the biological underpinnings of ecohydrological processes

    Science.gov (United States)

    Huxman, T. E.; Scott, R. L.; Barron-Gafford, G. A.; Hamerlynck, E. P.; Jenerette, D.; Tissue, D. T.; Breshears, D. D.; Saleska, S. R.

    2012-12-01

    Climate change presents a challenge for predicting ecosystem response, as multiple factors drive both the physical and life processes happening on the land surface and their interactions result in a complex, evolving coupled system. For example, changes in surface temperature and precipitation influence near-surface hydrology through impacts on system energy balance, affecting a range of physical processes. These changes in the salient features of the environment affect biological processes and elicit responses along the hierarchy of life (biochemistry to community composition). Many of these structural or process changes can alter patterns of soil water-use and influence land surface characteristics that affect local climate. Of the many features that affect our ability to predict the future dynamics of ecosystems, it is this hierarchical response of life that creates substantial complexity. Advances in the ability to predict or understand aspects of demography help describe thresholds in coupled ecohydrological system. Disentangling the physical and biological features that underlie land surface dynamics following disturbance are allowing a better understanding of the partitioning of water in the time-course of recovery. Better predicting the timing of phenology and key seasonal events allow for a more accurate description of the full functional response of the land surface to climate. In addition, explicitly considering the hierarchical structural features of life are helping to describe complex time-dependent behavior in ecosystems. However, despite this progress, we have yet to build an ability to fully account for the generalization of the main features of living systems into models that can describe ecohydrological processes, especially acclimation, assembly and adaptation. This is unfortunate, given that many key ecosystem services are functions of these coupled co-evolutionary processes. To date, both the lack of controlled measurements and experimentation

  20. Modeling Microbial Processes in EPIC to Estimate Greenhouse Gas Emissions from soils

    Science.gov (United States)

    Schwab, D. E.; Izaurralde, R. C.; McGill, W. B.; Williams, J. R.; Schmid, E.

    2009-12-01

    Emissions of trace gases (CO2, N2O and CH4) to the atmosphere from managed terrestrial ecosystems have been contributing significantly to the warming of Earth. Trace gas production is dominated by biospheric processes. An improved knowledge of the soil-plant-atmosphere interface is of key importance for understanding trace gas dynamics. In soils, microbial metabolism plays a key role in the release or uptake of trace gases. Here we present work on the biophysical and biogeochemical model EPIC (Environmental Policy/Integrated Climate) to extend its capabilities to simulate CO2 and N2O fluxes in managed and unmanaged ecosystems. Emphasis will be given to recently developed, microbially-based, denitrification and nitrification modules. The soil-atmosphere exchange of trace gases can be measured by using various equipments, but often these measurements exhibit extreme space-time variability. We use hourly time steps to account for the variability induced by small changes in environmental conditions. Soils are often studied as macroscopic systems, although their functions are predominantly controlled at a microscopic level; i.e. the level of the microorganisms. We include these processes to the extent that these are known and can be quantitatively described. We represent soil dynamics mathematically with routines for gas diffusion, Michael Menten processes, electron budgeting and other processes such as uptake and transformations. We hypothesize that maximization of energy capture form scarce substrates using energetic favorable reactions drives evolution and that competitive advantage can result by depriving a competitor from a substrate. This Microbe Model changes concepts of production of N-containing trace gases; it unifies understanding of N oxidation and reduction, predicts production and evolution of trace gases and is consistent with observations of anaerobic ammonium oxidation.

  1. Soil transference patterns on bras: Image processing and laboratory dragging experiments.

    Science.gov (United States)

    Murray, Kathleen R; Fitzpatrick, Robert W; Bottrill, Ralph S; Berry, Ron; Kobus, Hilton

    2016-01-01

    In a recent Australian homicide, trace soil on the victim's clothing suggested she was initially attacked in her front yard and not the park where her body was buried. However the important issue that emerged during the trial was how soil was transferred to her clothing. This became the catalyst for designing a range of soil transference experiments (STEs) to study, recognise and classify soil patterns transferred onto fabric when a body is dragged across a soil surface. Soil deposits of interest in this murder were on the victim's bra and this paper reports the results of anthropogenic soil transfer to bra-cups and straps caused by dragging. Transfer patterns were recorded by digital photography and photomicroscopy. Eight soil transfer patterns on fabric, specific to dragging as the transfer method, appeared consistently throughout the STEs. The distinctive soil patterns were largely dependent on a wide range of soil features that were measured and identified for each soil tested using X-ray Diffraction and Non-Dispersive Infra-Red analysis. Digital photographs of soil transfer patterns on fabric were analysed using image processing software to provide a soil object-oriented classification of all soil objects with a diameter of 2 pixels and above transferred. Although soil transfer patterns were easily identifiable by naked-eye alone, image processing software provided objective numerical data to support this traditional (but subjective) interpretation. Image software soil colour analysis assigned a range of Munsell colours to identify and compare trace soil on fabric to other trace soil evidence from the same location; without requiring a spectrophotometer. Trace soil from the same location was identified by linking soils with similar dominant and sub-dominant Munsell colour peaks. Image processing numerical data on the quantity of soil transferred to fabric, enabled a relationship to be discovered between soil type, clay mineralogy (smectite), particle size and

  2. From patterns to causal understanding: Structural equation modeling (SEM) in soil ecology

    Science.gov (United States)

    Eisenhauer, Nico; Powell, Jeff R; Grace, James B.; Bowker, Matthew A.

    2015-01-01

    In this perspectives paper we highlight a heretofore underused statistical method in soil ecological research, structural equation modeling (SEM). SEM is commonly used in the general ecological literature to develop causal understanding from observational data, but has been more slowly adopted by soil ecologists. We provide some basic information on the many advantages and possibilities associated with using SEM and provide some examples of how SEM can be used by soil ecologists to shift focus from describing patterns to developing causal understanding and inspiring new types of experimental tests. SEM is a promising tool to aid the growth of soil ecology as a discipline, particularly by supporting research that is increasingly hypothesis-driven and interdisciplinary, thus shining light into the black box of interactions belowground.

  3. Fluorescent probes for understanding soil water repellency: the novel application of a chemist's tool to soil science

    Science.gov (United States)

    Balshaw, Helen M.; Davies, Matthew L.; Doerr, Stefan H.; Douglas, Peter

    2015-04-01

    Food security and production is one of the key global issues faced by society. It has become essential to work the land efficiently, through better soil management and agronomy whilst protecting the environment from air and water pollution. The failure of soil to absorb water - soil water repellency can lead to major environmental problems such as increased overland flow and soil erosion, poor uptake of agricultural chemicals, and increased risk of groundwater pollution due to the rapid transfer of contaminants and nutrient leaching through uneven wetting and preferential flow pathways. Understanding the causes of soil hydrophobicity is essential for the development of effective methods for its amelioration, supporting environmental stability and food security. Organic compounds deposited on soil mineral or aggregate surfaces have long been recognised as a major factor in causing soil water repellency. It is widely accepted that the main groups of compounds responsible are long-chain acids, alkanes and other organic compounds with hydrophobic properties. However, when reapplied to sands and soils, the degree of water repellency induced by these compounds and mixtures varied widely with compound type, amount, and mixture, in a seemingly unpredictable way. Fluorescent and phosphorescent probes are widely used in chemistry and biochemistry due to their sensitive response to their physical and chemical environment, such as polarity, and viscosity. However, they have to-date not been used to study soil water repellency. Here we present preliminary work on the evaluation of fluorescent probes as tools to study two poorly understood features that determine the degree of wettability for water repellent soils: (i) the distribution of organics on soils; (ii) the changes in polarity at soil surfaces required for water drops to infiltrate. In our initial work we have examined probes adsorbed onto model soils, prepared by adsorption of specific organics onto acid washed sand

  4. Understanding Plant-Microbe Interactions for Phytoremediation of Petroleum-Polluted Soil

    Science.gov (United States)

    Nie, Ming; Wang, Yijing; Yu, Jiayi; Xiao, Ming; Jiang, Lifen; Yang, Ji; Fang, Changming; Chen, Jiakuan; Li, Bo

    2011-01-01

    Plant-microbe interactions are considered to be important processes determining the efficiency of phytoremediation of petroleum pollution, however relatively little is known about how these interactions are influenced by petroleum pollution. In this experimental study using a microcosm approach, we examined how plant ecophysiological traits, soil nutrients and microbial activities were influenced by petroleum pollution in Phragmites australis, a phytoremediating species. Generally, petroleum pollution reduced plant performance, especially at early stages of plant growth. Petroleum had negative effects on the net accumulation of inorganic nitrogen from its organic forms (net nitrogen mineralization (NNM)) most likely by decreasing the inorganic nitrogen available to the plants in petroleum-polluted soils. However, abundant dissolved organic nitrogen (DON) was found in petroleum-polluted soil. In order to overcome initial deficiency of inorganic nitrogen, plants by dint of high colonization of arbuscular mycorrhizal fungi might absorb some DON for their growth in petroleum-polluted soils. In addition, through using a real-time polymerase chain reaction method, we quantified hydrocarbon-degrading bacterial traits based on their catabolic genes (i.e. alkB (alkane monooxygenase), nah (naphthalene dioxygenase) and tol (xylene monooxygenase) genes). This enumeration of target genes suggests that different hydrocarbon-degrading bacteria experienced different dynamic changes during phytoremediation and a greater abundance of alkB was detected during vegetative growth stages. Because phytoremediation of different components of petroleum is performed by different hydrocarbon-degrading bacteria, plants’ ability of phytoremediating different components might therefore vary during the plant life cycle. Phytoremediation might be most effective during the vegetative growth stages as greater abundances of hydrocarbon-degrading bacteria containing alkB and tol genes were observed

  5. Use of radioactive sodium-22 to study the processes of soil salinization and desalinization

    International Nuclear Information System (INIS)

    Alzubaidi, A.H.

    1979-01-01

    This study deals with the salinization of four undisturbed soil columns of silt loam soil, collected with special plexiglass columns. The salinization was effected by adding a certain volume of salt solution consisting of a mixture of NaCl, CaCl 2 and MgCl 2 and containing 0.5 mCi of sodium-22. The salt solution was added to the surface of the first two columns and then the soil columns were leached with distilled water, while for the other two columns, the salt solution was added from the bottom of the columns using a syphon technique. The first two columns represent a model for the desalinization process of saline soils, while the latter two columns represent a model for the salinization process under the effect of high groundwater table. The downward and upward movements of sodium through the soil columns were recorded by measuring sodium radioactivity periodically, using a special scanner which continuously and automatically detected the radioactivity of sodium with the help of a gamma spectrometer. The final distribution curves for sodium movement throughout these soil columns versus time were obtained by computer. The data obtained indicate that radioactive sodium can be used with success to study the movement of salts in soil. The results also bring a new and better understanding of the nature of the salt movement during the processes of salinization and desalinization, the most important soil processes in the arid and semi-arid regions. (author)

  6. Understanding the soil underfoot: building a national postgraduate soils cohort through participative learning

    Science.gov (United States)

    Quinton, John; Haygarth, Phil; Black, Helaina; Allton, Kathryn

    2015-04-01

    Many of the PhD students starting Soil Science PhDs have only a limited understanding of the wider importance of soils, the state -of-art in other sub disciplines, and have often never seen a soil profile in the field. As the number of students nationally in the UK is also small compared to some other disciplines there is also a need to build a cohort of early career researchers. To address these issues, Lancaster University and the James Hutton Institute together with support from the British Society of Soil Science and the Natural Environment Research Council (NERC), ran a 5 day residential foundation soil science 'Summer School' in March 2015. The training school was an intense programme for ambitious and energetic post-graduate students. The course was specifically designed for students who were keen to develop skills in the development of inter-disciplinary research ideas and proposals. Specifically the course addressed: • the different functions in land uses and across landscapes • novel approaches for investigating how soils function • the basics of making a soil description and soil sampling in the field; • the current key challenges in soil science research • the requirements of, and approaches to, soil science research that requires multi-disciplinary and interdisciplinary approaches • the essentials of developing and planning a research project Our approach was to provide a space for the students to both learn from, but also work with some of the leading UK Soil Science experts. We used workshop style lectures, including some delivered via the internet, combined with student research teams working alongside research mentors to produce research proposals to be 'pitched' to a panel at the end of the course. These proposals formed the focus for engagement with the 'experts' making the time the students spent with them concentrated and productive. Feedback from the students was excellent and a variant of the course will be repeated by Cranfield

  7. Soil mapping and processes modelling for sustainable land management: a review

    Science.gov (United States)

    Pereira, Paulo; Brevik, Eric; Muñoz-Rojas, Miriam; Miller, Bradley; Smetanova, Anna; Depellegrin, Daniel; Misiune, Ieva; Novara, Agata; Cerda, Artemi

    2017-04-01

    Soil maps and models are fundamental for a correct and sustainable land management (Pereira et al., 2017). They are an important in the assessment of the territory and implementation of sustainable measures in urban areas, agriculture, forests, ecosystem services, among others. Soil maps represent an important basis for the evaluation and restoration of degraded areas, an important issue for our society, as consequence of climate change and the increasing pressure of humans on the ecosystems (Brevik et al. 2016; Depellegrin et al., 2016). The understanding of soil spatial variability and the phenomena that influence this dynamic is crucial to the implementation of sustainable practices that prevent degradation, and decrease the economic costs of soil restoration. In this context, soil maps and models are important to identify areas affected by degradation and optimize the resources available to restore them. Overall, soil data alone or integrated with data from other sciences, is an important part of sustainable land management. This information is extremely important land managers and decision maker's implements sustainable land management policies. The objective of this work is to present a review about the advantages of soil mapping and process modeling for sustainable land management. References Brevik, E., Calzolari, C., Miller, B., Pereira, P., Kabala, C., Baumgarten, A., Jordán, A. (2016) Historical perspectives and future needs in soil mapping, classification and pedological modelling, Geoderma, 264, Part B, 256-274. Depellegrin, D.A., Pereira, P., Misiune, I., Egarter-Vigl, L. (2016) Mapping Ecosystem Services in Lithuania. International Journal of Sustainable Development and World Ecology, 23, 441-455. Pereira, P., Brevik, E., Munoz-Rojas, M., Miller, B., Smetanova, A., Depellegrin, D., Misiune, I., Novara, A., Cerda, A. (2017) Soil mapping and process modelling for sustainable land management. In: Pereira, P., Brevik, E., Munoz-Rojas, M., Miller, B

  8. Soil process modelling in CZO research: gains in data harmonisation and model validation

    Science.gov (United States)

    van Gaans, Pauline; Andrianaki, Maria; Kobierska, Florian; Kram, Pavel; Lamacova, Anna; Lair, Georg; Nikolaidis, Nikos; Duffy, Chris; Regelink, Inge; van Leeuwen, Jeroen P.; de Ruiter, Peter

    2014-05-01

    Various soil process models were applied to four European Critical Zone observatories (CZOs), the core research sites of the FP7 project SoilTrEC: the Damma glacier forefield (CH), a set of three forested catchments on geochemically contrasing bedrocks in the Slavkov Forest (CZ), a chronosequence of soils in the former floodplain of the Danube of Fuchsenbigl/Marchfeld (AT), and the Koiliaris catchments in the north-western part of Crete, (GR). The aim of the modelling exercises was to apply and test soil process models with data from the CZOs for calibration/validation, identify potential limits to the application scope of the models, interpret soil state and soil functions at key stages of the soil life cycle, represented by the four SoilTrEC CZOs, contribute towards harmonisation of data and data acquisition. The models identified as specifically relevant were: The Penn State Integrated Hydrologic Model (PIHM), a fully coupled, multiprocess, multi-scale hydrologic model, to get a better understanding of water flow and pathways, The Soil and Water Assessment Tool (SWAT), a deterministic, continuous time (daily time step) basin scale model, to evaluate the impact of soil management practices, The Rothamsted Carbon model (Roth-C) to simulate organic carbon turnover and the Carbon, Aggregation, and Structure Turnover (CAST) model to include the role of soil aggregates in carbon dynamics, The Ligand Charge Distribution (LCD) model, to understand the interaction between organic matter and oxide surfaces in soil aggregate formation, and The Terrestrial Ecology Model (TEM) to obtain insight into the link between foodweb structure and carbon and nutrient turnover. With some exceptions all models were applied to all four CZOs. The need for specific model input contributed largely to data harmonisation. The comparisons between the CZOs turned out to be of great value for understanding the strength and limitations of the models, as well as the differences in soil conditions

  9. Key Process Uncertainties in Soil Carbon Dynamics: Comparing Multiple Model Structures and Observational Meta-analysis

    Science.gov (United States)

    Sulman, B. N.; Moore, J.; Averill, C.; Abramoff, R. Z.; Bradford, M.; Classen, A. T.; Hartman, M. D.; Kivlin, S. N.; Luo, Y.; Mayes, M. A.; Morrison, E. W.; Riley, W. J.; Salazar, A.; Schimel, J.; Sridhar, B.; Tang, J.; Wang, G.; Wieder, W. R.

    2016-12-01

    Soil carbon (C) dynamics are crucial to understanding and predicting C cycle responses to global change and soil C modeling is a key tool for understanding these dynamics. While first order model structures have historically dominated this area, a recent proliferation of alternative model structures representing different assumptions about microbial activity and mineral protection is providing new opportunities to explore process uncertainties related to soil C dynamics. We conducted idealized simulations of soil C responses to warming and litter addition using models from five research groups that incorporated different sets of assumptions about processes governing soil C decomposition and stabilization. We conducted a meta-analysis of published warming and C addition experiments for comparison with simulations. Assumptions related to mineral protection and microbial dynamics drove strong differences among models. In response to C additions, some models predicted long-term C accumulation while others predicted transient increases that were counteracted by accelerating decomposition. In experimental manipulations, doubling litter addition did not change soil C stocks in studies spanning as long as two decades. This result agreed with simulations from models with strong microbial growth responses and limited mineral sorption capacity. In observations, warming initially drove soil C loss via increased CO2 production, but in some studies soil C rebounded and increased over decadal time scales. In contrast, all models predicted sustained C losses under warming. The disagreement with experimental results could be explained by physiological or community-level acclimation, or by warming-related changes in plant growth. In addition to the role of microbial activity, assumptions related to mineral sorption and protected C played a key role in driving long-term model responses. In general, simulations were similar in their initial responses to perturbations but diverged over

  10. [Response processes of Aralia elata photosynthesis and transpiration to light and soil moisture].

    Science.gov (United States)

    Chen, Jian; Zhang, Guang-Can; Zhang, Shu-Yong; Wang, Meng-Jun

    2008-06-01

    By using CIRAS-2 portable photosynthesis system, the light response processes of Aralia elata photosynthesis and transpiration under different soil moisture conditions were studied, aimed to understand the adaptability of A. elata to different light and soil moisture conditions. The results showed that the response processes of A. elata net photosynthetic rate (Pn), transpiration rate (Tr), and water use efficiency (WUE) to photon flux density (PFD) were different. With the increasing PFD in the range of 800-1800 micromol x m2(-2) x s(-1), Pn changed less, Tr decreased gradually, while WUE increased obviously. The light saturation point (LSP) and light compensation point (LCP) were about 800 and 30 micromol m(-2) x s(-1), respectively, and less affected by soil water content; while the apparent photosynthetic quantum yield (Phi) and dark respiratory rate (Rd) were more affected by the moisture content. The Pn and WUE had evident threshold responses to the variations of soil water content. When the soil relative water content (RWC) was in the range of 44%-79%, A. elata could have higher levels of Pn and WUE.

  11. Impact of cornstalk buffer strip on hillslope soil erosion and its hydrodynamic understanding

    Science.gov (United States)

    Soil erosion is still a serious concern on the Loess Plateau despite extensive soil conservation measures. Cornstalk buffer strip is not well utilized on the Loess Plateau, and there is little information on the hydrodynamic understanding of this soil erosion control practice. A simulated rainfall e...

  12. Understanding Litter Input Controls on Soil Organic Matter Turnover and Formation are Essential for Improving Carbon-Climate Feedback Predictions for Arctic, Tundra Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Wallenstein, Matthew [Colorado State Univ., Fort Collins, CO (United States)

    2017-12-05

    The Arctic region stored vast amounts of carbon (C) in soils over thousands of years because decomposition has been limited by cold, wet conditions. Arctic soils now contain roughly as much C that is contained in all other soils across the globe combined. However, climate warming could unlock this oil C as decomposition accelerates and permafrost thaws. In addition to temperature-driven acceleration of decomposition, several additional processes could either counteract or augment warming-induced SOM losses. For example, increased plant growth under a warmer climate will increase organic matter inputs to soils, which could fuel further soil decomposition by microbes, but will also increase the production of new SOM. Whether Arctic ecosystems store or release carbon in the future depends in part on the balance between these two counteracting processes. By differentiating SOM decomposition and formation and understanding the drivers of these processes, we will better understand how these systems function. We did not find evidence of priming under current conditions, defined as an increase in the decomposition of native SOM stocks. This suggests that decomposition is unlikely to be further accelerated through this mechanism. We did find that decomposition of native SOM did occur when nitrogen was added to these soils, suggesting that nitrogen limits decomposition in these systems. Our results highlight the resilience and extraordinary C storage capacity of these soils, and suggest shrub expansion may partially mitigate C losses from decomposition of old SOM as Arctic soils warm.

  13. Soil Degradation Processes; Procesos de Degradacion del Suelo

    Energy Technology Data Exchange (ETDEWEB)

    Nunez Crespi, S; Perez Martinez, M; Cuesta Santianes, M J; Cabrera Jimenez, J A

    2007-12-28

    In the European communication entitled Towards a Thematic Strategy for Soil Protection, eight main threats to soil were identified: contamination, erosion, loss of organic matter, compaction, salinization; hydro-geological risks, soil sealing, and decline in biodiversity. The main purpose of this report is to provide the current state of knowledge of the soil degradation processes both, in the European Community scale and, particularly, in the Spanish territory. Furthermore, the main research project information related to soil degradation processes is also included, identifying the main actors involved in soil scientific research and development. (Author) 66 refs.

  14. Soil remediation process and system

    International Nuclear Information System (INIS)

    Monlux, K.J.

    1992-01-01

    This patent describes a process for remediation of soil containing up to about 30,000 ppm hydrocarbon contaminants. It comprises: providing hydrocarbon-contaminated soil in a divided condition of minus 1 1/2 double-prime to a first confined zone where it is exposed to an open flame; heating while agitating the contaminated soil in an oxidizing atmosphere in the first zone to a temperature below soil ignition within a range of from about 375 degrees F. to about 750 degrees F. for a time sufficient to drive off as vapors a substantial percentage of the hydrocarbon contaminates from the soil; passing hot gases containing the hydrocarbon contaminates from the soil; passing hot gases containing the hydrocarbon vapors from the first zone to a second zone; recovering heat from the hot gases in the second zone to condense a substantial percentage of the hydrocarbon vapors as liquid hydrocarbons; recovering the liquid hydrocarbons; and removing the soil from the first zone as remediated soil having below about 1000 ppm hydrocarbon contaminants

  15. Modeling soil processes - are we lost in diversity?

    Science.gov (United States)

    Vogel, Hans-Joerg; Schlüter, Steffen

    2015-04-01

    Soils are among the most complex environmental systems. Soil functions - e.g. production of biomass, habitat for organisms, reactor for and storage of organic matter, filter for ground water - emerge from a multitude of processes interacting at different scales. It still remains a challenge to model and predict these functions including their stability and resilience towards external perturbations. As an inherent property of complex systems it is prohibitive to unravel all the relevant process in all detail to derive soil functions and their dynamics from first principles. Hence, when modeling soil processes and their interactions one is close to be lost in the overwhelming diversity and spatial heterogeneity of soil properties. In this contribution we suggest to look for characteristic similarities within the hyperdimensional state space of soil properties. The underlying hypothesis is that this state space is not evenly and/or randomly populated but that processes of self organization produce attractors of physical, chemical and biological properties which can be identified. (The formation of characteristic soil horizons is an obvious example). To render such a concept operational a suitable and limited set of indicators is required. Ideally, such indicators are i) related to soil functions, ii) are measurable and iii) are integral measures of the relevant physical, chemical and biological soil properties. This would allow for identifying suitable attractors. We will discuss possible indicators and will focus on soil structure as an especially promising candidate. It governs the availability of water and gas, it effects the spatial distribution of organic matter and, moreover, it forms the habitat of soil organisms and it is formed by soil biota. Quantification of soil structural properties became possible only recently with the development of more powerful tools for non-invasive imaging. Future research need to demonstrate in how far these tools can be used to

  16. Role of Biotic and Abiotic Processes on Soil CO2 Dynamics in the McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Risk, D. A.; Macintyre, C. M.; Lee, C.; Cary, C.; Shanhun, F.; Almond, P. C.

    2016-12-01

    In the harsh conditions of the Antarctic Dry Valleys, microbial activity has been recorded via measurements of soil carbon dioxide (CO2) concentration and surface efflux. However, high temporal resolution studies in the Dry Valleys have also shown that abiotic solubility-driven processes can strongly influence (and perhaps even dominate) the CO2 dynamics in these low flux environments and suggests that biological activity may be lower than previously thought. In this study, we aim to improve our understanding of CO2 dynamics (biotic and abiotic) in Antarctic Dry Valley soils using long-term automated measurements of soil CO2 surface flux and soil profile concentration at several sites, often at sub-diel frequency. We hypothesize that soil CO2 variations are driven primarily by environmental factors affecting CO2 solubility in soil solution, mainly temperature, and that these processes may even overprint biologic production in representative Dry Valley soils. Monitoring of all sites revealed only one likely biotic CO2 production event, lasting three weeks during the Austral summer and reaching fluxes of 0.4 µmol/m2/s. Under more typical low flux conditions (sampling campaigns. Subsurface CO2 monitoring and a lab-controlled Antarctic soil simulation experiment confirmed that abiotic processes are capable of dominating soil CO2 variability. Diel temperature cycles crossing the freezing boundary revealed a dual abiotic cycle of solubility cycling and gas exclusion from ice formation observed only by high temporal frequency measurements (30 min). This work demonstrates a need for a numerical model to partition the dynamic abiotic processes underlying any biotic CO2 production in order to understand potential climate-change induced increases in microbial productivity in terrestrial Antarctica.

  17. The underlying processes of a soil mite metacommunity on a small scale

    Science.gov (United States)

    Guo, Chuanwei; Lin, Lin; Wu, Donghui; Zhang, Limin

    2017-01-01

    Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m) in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran’s eigenvector maps (MEMs) were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables) and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA) were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend), indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important in the

  18. The underlying processes of a soil mite metacommunity on a small scale.

    Directory of Open Access Journals (Sweden)

    Chengxu Dong

    Full Text Available Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran's eigenvector maps (MEMs were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend, indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important

  19. Dryland soil hydrological processes and their impacts on the nitrogen balance in a soil-maize system of a freeze-thawing agricultural area.

    Directory of Open Access Journals (Sweden)

    Wei Ouyang

    Full Text Available Understanding the fates of soil hydrological processes and nitrogen (N is essential for optimizing the water and N in a dryland crop system with the goal of obtaining a maximum yield. Few investigations have addressed the dynamics of dryland N and its association with the soil hydrological process in a freeze-thawing agricultural area. With the daily monitoring of soil water content and acquisition rates at 15, 30, 60 and 90 cm depths, the soil hydrological process with the influence of rainfall was identified. The temporal-vertical soil water storage analysis indicated the local albic soil texture provided a stable soil water condition for maize growth with the rainfall as the only water source. Soil storage water averages at 0-20, 20-40 and 40-60 cm were observed to be 490.2, 593.8, and 358 m3 ha-1, respectively, during the growing season. The evapo-transpiration (ET, rainfall, and water loss analysis demonstrated that these factors increased in same temporal pattern and provided necessary water conditions for maize growth in a short period. The dry weight and N concentration of maize organs (root, leaf, stem, tassel, and grain demonstrated the N accumulation increased to a peak in the maturity period and that grain had the most N. The maximum N accumulative rate reached about 500 mg m-2d-1 in leaves and grain. Over the entire growing season, the soil nitrate N decreased by amounts ranging from 48.9 kg N ha-1 to 65.3 kg N ha-1 over the 90 cm profile and the loss of ammonia-N ranged from 9.79 to 12.69 kg N ha-1. With soil water loss and N balance calculation, the N usage efficiency (NUE over the 0-90 cm soil profile was 43%. The soil hydrological process due to special soil texture and the temporal features of rainfall determined the maize growth in the freeze-thawing agricultural area.

  20. Soil Response to Global Change: Soil Process Domains and Pedogenic Thresholds (Invited)

    Science.gov (United States)

    Chadwick, O.; Kramer, M. G.; Chorover, J.

    2013-12-01

    The capacity of soil to withstand perturbations, whether driven by climate, land use change, or spread of invasive species, depends on its chemical composition and physical state. The dynamic interplay between stable, well buffered soil process domains and thresholds in soil state and function is a strong determinant of soil response to forcing from global change. In terrestrial ecosystems, edaphic responses are often mediated by availability of water and its flux into and through soils. Water influences soil processes in several ways: it supports biological production, hence proton-donor, electron-donor and complexing-ligand production; it determines the advective removal of dissolution products, and it can promote anoxia that leads microorganisms to utilize alternative electron acceptors. As a consequence climate patterns strongly influence global distribution of soil, although within region variability is governed by other factors such as landscape age, parent material and human land use. By contrast, soil properties can vary greatly among climate regions, variation which is guided by the functioning of a suite of chemical processes that tend to maintain chemical status quo. This soil 'buffering' involves acid-base reactions as minerals weather and oxidation-reduction reactions that are driven by microbial respiration. At the planetary scale, soil pH provides a reasonable indicator of process domains and varies from about 3.5 to10, globally, although most soils lie between about 4.5 and 8.5. Those that are above 7.5 are strongly buffered by the carbonate system, those that are characterized by neutral pH (7.5-6) are buffered by release of non-hydrolyzing cations from primary minerals and colloid surfaces, and those that are buffered by hydrolytic aluminum on colloidal surfaces. Alkali and alkaline (with the exception of limestone parent material) soils are usually associated with arid and semiarid conditions, neutral pH soils with young soils in both dry and wet

  1. Hydrological balance and water transport processes of partially sealed soils

    Science.gov (United States)

    Timm, Anne; Wessolek, Gerd

    2017-04-01

    With increased urbanisation, soil sealing and its drastic effects on hydrological processes have received a lot of attention. Based on safety concerns, there has been a clear focus on urban drainage and prevention of urban floods caused by storm water events. For this reason, any kind of sealing is often seen as impermeable runoff generator that prevents infiltration and evaporation. While many hydrological models, especially storm water models, have been developed, there are only a handful of empirical studies actually measuring the hydrological balance of (partially) sealed surfaces. These challenge the general assumption of negligible infiltration and evaporation and show that these processes take place even for severe sealing such as asphalt. Depending on the material, infiltration from partially sealed surfaces can be equal to that of vegetated ones. Therefore, more detailed knowledge is needed to improve our understanding and models. In Berlin, two partially sealed weighable lysimeters were equipped with multiple temperature and soil moisture sensors in order to study their hydrological balance, as well as water and heat transport processes within the soil profile. This combination of methods affirms previous observations and offers new insights into altered hydrological processes of partially sealed surfaces at a small temporal scale. It could be verified that not all precipitation is transformed into runoff. Even for a relatively high sealing degree of concrete slabs with narrow seams, evaporation and infiltration may exceed runoff. Due to the lack of plant roots, the hydrological balance is mostly governed by precipitation events and evaporation generally occurs directly after rainfall. However, both surfaces allow for upward water transport from the upper underlying soil layers, sometimes resulting in relatively low evaporation rates on days without precipitation. The individual response of the surfaces differs considerably, which illustrates how

  2. Measuring, understanding and implementing (or at least trying) soil and water conservation in agricultural areas in Mediterranean conditions

    Science.gov (United States)

    Gómez, Jose Alfonso; Burguet, María; Castillo, Carlos; de Luna, Elena; Guzmán, Gema; Lora, Ángel; Lorite, Ignacio; Mora, José; Pérez, Rafael; Soriano, María A.; Taguas, Encarnación V.

    2015-04-01

    Understanding soil erosion processes is the first step for designing and implementing effective soil conservation strategies. In agricultural areas, spatially in arid and semiarid conditions, water conservation is interlinked with soil conservation, and usually need to be addressed simultaneously to achieve success in their use by farmers. This is so for different reasons, but usually because some reduction in runoff is required to prevent soil erosion or to the need to design soil conservation systems that do maintain a favourable water balance for the crop to prevent yield reductions. The team presenting this communication works around both issues in Southern Spain, interconnecting several lines of research with the final objective of contribute to reverse some severe issues relating soil conservation in agricultural areas, mostly on tree crops (olives and vineyards). One of these lines is long-term experiments measuring, runoff and sediment losses at plot and small catchment scale. In these experiments we test the effect of different soil management alternatives on soil and water conservation. We also measured the evolution of soil properties and, in some cases, the evolution of soil moisture as well as nutrient and carbon losses with runoff and sediment. We also tests in these experiments new cover crops, from species better adapted to the rainfall regime of the region to mixes with several species to increase biodiversity. We complement these studies with surveys of soil properties in commercial farms. I some of these farms we follow the introduction by farmers of the cover crop strategies previously developed in our experimental fields. These data are invaluable to elaborate, calibrate and validate different runoff generation, water balance, and water erosion models and hillslope and small catchment scale. This allows us to elaborate regional analysis of the effect of different strategies to soil and water conservation in olive growing areas, and to refine

  3. Moditored unsaturated soil transport processes as a support for large scale soil and water management

    Science.gov (United States)

    Vanclooster, Marnik

    2010-05-01

    The current societal demand for sustainable soil and water management is very large. The drivers of global and climate change exert many pressures on the soil and water ecosystems, endangering appropriate ecosystem functioning. The unsaturated soil transport processes play a key role in soil-water system functioning as it controls the fluxes of water and nutrients from the soil to plants (the pedo-biosphere link), the infiltration flux of precipitated water to groundwater and the evaporative flux, and hence the feed back from the soil to the climate system. Yet, unsaturated soil transport processes are difficult to quantify since they are affected by huge variability of the governing properties at different space-time scales and the intrinsic non-linearity of the transport processes. The incompatibility of the scales between the scale at which processes reasonably can be characterized, the scale at which the theoretical process correctly can be described and the scale at which the soil and water system need to be managed, calls for further development of scaling procedures in unsaturated zone science. It also calls for a better integration of theoretical and modelling approaches to elucidate transport processes at the appropriate scales, compatible with the sustainable soil and water management objective. Moditoring science, i.e the interdisciplinary research domain where modelling and monitoring science are linked, is currently evolving significantly in the unsaturated zone hydrology area. In this presentation, a review of current moditoring strategies/techniques will be given and illustrated for solving large scale soil and water management problems. This will also allow identifying research needs in the interdisciplinary domain of modelling and monitoring and to improve the integration of unsaturated zone science in solving soil and water management issues. A focus will be given on examples of large scale soil and water management problems in Europe.

  4. Soil Erosion as a stochastic process

    Science.gov (United States)

    Casper, Markus C.

    2015-04-01

    The main tools to provide estimations concerning risk and amount of erosion are different types of soil erosion models: on the one hand, there are empirically based model concepts on the other hand there are more physically based or process based models. However, both types of models have substantial weak points. All empirical model concepts are only capable of providing rough estimates over larger temporal and spatial scales, they do not account for many driving factors that are in the scope of scenario related analysis. In addition, the physically based models contain important empirical parts and hence, the demand for universality and transferability is not given. As a common feature, we find, that all models rely on parameters and input variables, which are to certain, extend spatially and temporally averaged. A central question is whether the apparent heterogeneity of soil properties or the random nature of driving forces needs to be better considered in our modelling concepts. Traditionally, researchers have attempted to remove spatial and temporal variability through homogenization. However, homogenization has been achieved through physical manipulation of the system, or by statistical averaging procedures. The price for obtaining this homogenized (average) model concepts of soils and soil related processes has often been a failure to recognize the profound importance of heterogeneity in many of the properties and processes that we study. Especially soil infiltrability and the resistance (also called "critical shear stress" or "critical stream power") are the most important empirical factors of physically based erosion models. The erosion resistance is theoretically a substrate specific parameter, but in reality, the threshold where soil erosion begins is determined experimentally. The soil infiltrability is often calculated with empirical relationships (e.g. based on grain size distribution). Consequently, to better fit reality, this value needs to be

  5. A natural saline soil as a model for understanding to what extent the concentration of salt affects the distribution of microorganisms

    Science.gov (United States)

    Canfora, Loredana; Pinzari, Flavia; Lo Papa, Giuseppe; Vittori Antisari, Livia; Vendramin, Elisa; Salvati, Luca; Dazzi, Carmelo; Benedetti, Anna

    2017-04-01

    Soils preserve and sustain life. Their health and functioning are crucial for crop production and for the maintenance of major ecosystem services. Human induced salinity is one of the main soil threats that reduces soil fertility and affect crop yields. In recent times, great attention has been paid to the general shortage of arable land and to the increasing demand for ecological restoration of areas affected by salinization processes. Despite the diffuse interest on the effects of salinization on plants' growth, and all the derived socioeconomic issues, very few studies analyzed the ecology of the microbial species in naturally saline soils and the resilience of biological fertility in these extreme habitats. Microorganisms inhabiting such environments may share a strategy, may have developed multiple adaptations for maintaining their populations, and cope eventually to extreme conditions by altruistic or cooperative behaviors for maintaining their metabolism active. The understanding and the knowledge of the composition and distribution of microbial communities in natural hypersaline soils can be interesting for ecological reasons but also to develop new restoration strategy where soil fertility was compromised by natural accidents or human mismanagement. The aim of this research was to provide specific information on saline soils in Italy, stressing mainly their distribution, the socioeconomic issues and the understanding of the characterizing ecological processes. Moreover, natural saline soils were used as a model for understanding to what extent the concentration of salt can affect some basic microbial processes. In the present study, physical, chemical and microbiological soil properties were investigated in the shallower horizons of natural salt affected soils in Sicily (Italy), where some ecological contrasting variables acted as strong drivers in fungal and bacterial spatial distribution. Furthermore, the interface between biological and geochemical

  6. Genesis Eco Systems, Inc. soil washing process

    International Nuclear Information System (INIS)

    Cena, R.J.

    1994-01-01

    The Genesis soil washing system is an integrated system of modular design allowing for maximum material handling capabilities, with optimized use of space for site mobility. The Surfactant Activated Bio-enhanced Remediation Equipment-Generation 1 (SABRE-1, Patent Applied For) modification was developed specifically for removing petroleum byproducts from contaminated soils. Scientifically formulated surfactants, introduced by high pressure spray nozzles, displace the contaminant from the surface of the soil particles into the process solution. Once the contaminant is dispersed into the liquid fraction of the process, it is either mechanically removed, chemically oxidized, or biologically oxidized. The contaminated process water is pumped through the Genesis Biosep (Patent Applied For) filtration system where the fines portion is flocculated, and the contaminant-rich liquid portion is combined with an activated mixture of nutrients and carefully selected bacteria to decompose the hydrocarbon fraction. The treated soil and dewatered fines are transferred to a bermed stockpile where bioremediation continues during drying. The process water is reclaimed, filtered, and recycled within the system

  7. SOILS VULNERABILITY OF CATCHMENT ALMAŞ AT GEOMORPHOLOGIC CONTEMPORARY PROCESSES

    Directory of Open Access Journals (Sweden)

    MĂDĂLINA-IOANA RUS

    2015-03-01

    Full Text Available Soils vulnerability of the Catchment Almas geomorphologic processes. Almas Basin, signed lower lithologic Miocene soils deposits, shows six classes: Cernisols, Cambisols, Luvisols, Hydrosols, Pelisols, Protosols (after SRTS, 2003. The largest share is attributed to Luvisols class (60%, followed by undeveloped soil represented by Protosols and Antrisols (15%, followed by the remaining classes with lower weights: Cambisols (13%, Cernisols (7%, Pelisols (4%, Hydrosols (1%. Contemporary geomorphological processes (surface and deep erosion, mass movements change agricultural areas and forest ratio or flow out of economic network tens of hectares annually. Soil vulnerability to the manifestation of these processes is expressed by disturbing soil horizons, coastal springs appearance and growth of the adjoining excess moisture, soil sealing productive by dropping or by alienation.

  8. Understanding cassava yield response to soil and fertilizer nutrient supply in West Africa

    NARCIS (Netherlands)

    Ezui, K.S.; Franke, A.C.; Ahiabor, B.D.K.; Tetteh, F.M.; Sogbedji, J.; Janssen, B.H.; Mando, A.; Giller, K.E.

    2017-01-01

    Background and aims: Enhanced understanding of plant and nutrient interactions is key to improving yields. We adapted the model for QUantitative Evaluation of the Fertility of Tropical Soils (QUEFTS) to assess cassava yield response to soil and fertilizer nutrients in West Africa. Methods: Data

  9. New understanding of rhizosphere processes enabled by advances in molecular and spatially resolved techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Nancy J.; Paša-Tolić, Ljiljana; Bailey, Vanessa L.; Dohnalkova, Alice C.

    2017-06-01

    Understanding the role played by microorganisms within soil systems is challenged by the unique intersection of physics, chemistry, mineralogy and biology in fostering habitat for soil microbial communities. To address these challenges will require observations across multiple spatial and temporal scales to capture the dynamics and emergent behavior from complex and interdependent processes. The heterogeneity and complexity of the rhizosphere require advanced techniques that press the simultaneous frontiers of spatial resolution, analyte sensitivity and specificity, reproducibility, large dynamic range, and high throughput. Fortunately many exciting technical advancements are now available to inform and guide the development of new hypotheses. The aim of this Special issue is to provide a holistic view of the rhizosphere in the perspective of modern molecular biology methodologies that enabled a highly-focused, detailed view on the processes in the rhizosphere, including numerous, strong and complex interactions between plant roots, soil constituents and microorganisms. We discuss the current rhizosphere research challenges and knowledge gaps, as well as perspectives and approaches using newly available state-of-the-art toolboxes. These new approaches and methodologies allow the study of rhizosphere processes and properties, and rhizosphere as a central component of ecosystems and biogeochemical cycles.

  10. Development of an ultrasonic process for soil remediation

    International Nuclear Information System (INIS)

    Wu, J.M.; Huang, H.S.; Livengood, C.D.

    1995-01-01

    An ultrasonic process for the detoxification of carbon tetrachloride- (CCl 4 - ) contaminated soil was investigated in the laboratory by using a batch irradiation reactor equipped with a 600-W ultrasonic power supply operated at a frequency of 20 kHz. Key parameters studied included soil characteristics, irradiation time, CCl 4 concentration, steady-state operating temperature, applied ultrasonic-wave energy, and the ratio of soil to water in the system. The results of the experiments showed that (1) residual CCl 4 concentrations could be decreased with longer irradiation periods and (2) detoxification efficiency was proportional to steady-state operating temperature and applied ultrasonic-wave energy. The characteristics of the contaminated soil were found to be an important factor in the design of an ultrasonic detoxification system. A soil-phase CCl 4 concentration below 1 ppm (initial concentration of 56 ppm) was achieved through this process, indicating that the application of ultrasonic irradiation is feasible and effective in the detoxification of soil contaminated by organic compounds. On the basis of the experimental results, a schematic of a full-scale ultrasonic soil-detoxification system was developed. Improvements to this novel process are discussed

  11. Sustainable Materials Management (SMM) Web Academy Webinar: Compost from Food Waste: Understanding Soil Chemistry and Soil Biology on a College/University Campus

    Science.gov (United States)

    This page contains information about the Sustainable Materials Management (SMM) Web Academy Webinar Series titled Compost from Food Waste:Understanding Soil Chemistry and Soil Biology on a College/University Campus

  12. Exploring C-water-temperature interactions and non-linearities in soils through developments in process-based models

    Science.gov (United States)

    Esteban Moyano, Fernando; Vasilyeva, Nadezda; Menichetti, Lorenzo

    2016-04-01

    Soil carbon models developed over the last couple of decades are limited in their capacity to accurately predict the magnitudes and temporal variations in observed carbon fluxes and stocks. New process-based models are now emerging that attempt to address the shortcomings of their more simple, empirical counterparts. While a spectrum of ideas and hypothetical mechanisms are finding their way into new models, the addition of only a few processes known to significantly affect soil carbon (e.g. enzymatic decomposition, adsorption, Michaelis-Menten kinetics) has shown the potential to resolve a number of previous model-data discrepancies (e.g. priming, Birch effects). Through model-data validation, such models are a means of testing hypothetical mechanisms. In addition, they can lead to new insights into what soil carbon pools are and how they respond to external drivers. In this study we develop a model of soil carbon dynamics based on enzymatic decomposition and other key features of process based models, i.e. simulation of carbon in particulate, soluble and adsorbed states, as well as enzyme and microbial components. Here we focus on understanding how moisture affects C decomposition at different levels, both directly (e.g. by limiting diffusion) or through interactions with other components. As the medium where most reactions and transport take place, water is central en every aspect of soil C dynamics. We compare results from a number of alternative models with experimental data in order to test different processes and parameterizations. Among other observations, we try to understand: 1. typical moisture response curves and associated temporal changes, 2. moisture-temperature interactions, and 3. diffusion effects under changing C concentrations. While the model aims at being a process based approach and at simulating fluxes at short time scales, it remains a simplified representation using the same inputs as classical soil C models, and is thus potentially

  13. Modelling spatiotemporal distribution patterns of earthworms in order to indicate hydrological soil processes

    Science.gov (United States)

    Palm, Juliane; Klaus, Julian; van Schaik, Loes; Zehe, Erwin; Schröder, Boris

    2010-05-01

    environmental predictors which explain the distribution and dynamics of different ecological earthworm types can help us to understand where or when these processes are relevant in the landscape. Therefore, we develop species distribution models which are a useful tool to predict spatiotemporal distributions of earthworm occurrence and abundance under changing environmental conditions. On field scale, geostatistical distribution maps have shown that the spatial distribution of earthworms depends on soil parameters such as food supply, soil moisture, bulk density but with different patterns for earthworm stages (adult, juvenile) and ecological types (anecic, endogeic, epigeic). On landscape scales, earthworm distribution seems to be strongly controlled by management/disturbance-related factors. Our study shows different modelling approaches for predicting distribution patterns of earthworms in the Weiherbach area, an agricultural site in Kraichtal (Baden-Württemberg, Germany). We carried out field studies on arable fields differing in soil management practices (conventional, conservational), soil properties (organic matter content, texture, soil moisture), and topography (slope, elevation) in order to identify predictors for earthworm occurrence, abundance and biomass. Our earthworm distribution models consider all ecological groups as well as different life stages, accounting for the fact that the activity of juveniles is sometimes different from those of adults. Within our BIOPORE-project it is our final goal to couple our distribution models with population dynamic models and a preferential flow model to an integrated ecohydrological model to analyse feedbacks between earthworm engineering and transport characteristics affecting the functioning of (agro-) ecosystems.

  14. Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change.

    Science.gov (United States)

    Lladó, Salvador; López-Mondéjar, Rubén; Baldrian, Petr

    2017-06-01

    The ecology of forest soils is an important field of research due to the role of forests as carbon sinks. Consequently, a significant amount of information has been accumulated concerning their ecology, especially for temperate and boreal forests. Although most studies have focused on fungi, forest soil bacteria also play important roles in this environment. In forest soils, bacteria inhabit multiple habitats with specific properties, including bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are shaped by nutrient availability and biotic interactions. Bacteria contribute to a range of essential soil processes involved in the cycling of carbon, nitrogen, and phosphorus. They take part in the decomposition of dead plant biomass and are highly important for the decomposition of dead fungal mycelia. In rhizospheres of forest trees, bacteria interact with plant roots and mycorrhizal fungi as commensalists or mycorrhiza helpers. Bacteria also mediate multiple critical steps in the nitrogen cycle, including N fixation. Bacterial communities in forest soils respond to the effects of global change, such as climate warming, increased levels of carbon dioxide, or anthropogenic nitrogen deposition. This response, however, often reflects the specificities of each studied forest ecosystem, and it is still impossible to fully incorporate bacteria into predictive models. The understanding of bacterial ecology in forest soils has advanced dramatically in recent years, but it is still incomplete. The exact extent of the contribution of bacteria to forest ecosystem processes will be recognized only in the future, when the activities of all soil community members are studied simultaneously. Copyright © 2017 American Society for Microbiology.

  15. Understanding the relationship between livelihood strategy and soil management

    DEFF Research Database (Denmark)

    Oumer, Ali Mohammed; Hjortsø, Carsten Nico Portefée; de Neergaard, Andreas

    2013-01-01

    help build livelihood strategies with high-economic return that in turn provide incentives to undertake improved soil management practices. The identified household types may guide entry points for development interventions targeting both food security and agricultural sustainability concerns......This paper aims to understand the relationship between households’ livelihood strategy and soil management using commonalities among rural households. We grouped households into four distinct types according to similar livelihood diversification strategies. For each household type, we identified...... the dominant income-generating strategies as well as the main agronomic activities pursued. The household types were: (I) households that pursue a cereal-based livelihood diversification strategy (23 %); (II) households predominantly engaged in casual off-farm-based strategy (15 %); (III) households...

  16. North American Soil Degradation: Processes, Practices, and Mitigating Strategies

    Directory of Open Access Journals (Sweden)

    R. L. Baumhardt

    2015-03-01

    Full Text Available Soil can be degraded by several natural or human-mediated processes, including wind, water, or tillage erosion, and formation of undesirable physical, chemical, or biological properties due to industrialization or use of inappropriate farming practices. Soil degradation occurs whenever these processes supersede natural soil regeneration and, generally, reflects unsustainable resource management that is global in scope and compromises world food security. In North America, soil degradation preceded the catastrophic wind erosion associated with the dust bowl during the 1930s, but that event provided the impetus to improve management of soils degraded by both wind and water erosion. Chemical degradation due to site specific industrial processing and mine spoil contamination began to be addressed during the latter half of the 20th century primarily through point-source water quality concerns, but soil chemical degradation and contamination of surface and subsurface water due to on-farm non-point pesticide and nutrient management practices generally remains unresolved. Remediation or prevention of soil degradation requires integrated management solutions that, for agricultural soils, include using cover crops or crop residue management to reduce raindrop impact, maintain higher infiltration rates, increase soil water storage, and ultimately increase crop production. By increasing plant biomass, and potentially soil organic carbon (SOC concentrations, soil degradation can be mitigated by stabilizing soil aggregates, improving soil structure, enhancing air and water exchange, increasing nutrient cycling, and promoting greater soil biological activity.

  17. Soil Infrastructure, Interfaces & Translocation Processes in Inner Space ("Soil-it-is": towards a road map for the constraints and crossroads of soil architecture and biophysical processes

    Directory of Open Access Journals (Sweden)

    L. W. de Jonge

    2009-08-01

    Full Text Available Soil functions and their impact on health, economy, and the environment are evident at the macro scale but determined at the micro scale, based on interactions between soil micro-architecture and the transport and transformation processes occurring in the soil infrastructure comprising pore and particle networks and at their interfaces. Soil structure formation and its resilience to disturbance are highly dynamic features affected by management (energy input, moisture (matric potential, and solids composition and complexation (organic matter and clay interactions. In this paper we review and put into perspective preliminary results of the newly started research program "Soil-it-is" on functional soil architecture. To identify and quantify biophysical constraints on soil structure changes and resilience, we claim that new approaches are needed to better interpret processes and parameters measured at the bulk soil scale and their links to the seemingly chaotic soil inner space behavior at the micro scale. As a first step, we revisit the soil matrix (solids phase and pore system (water and air phases, constituting the complementary and interactive networks of soil infrastructure. For a field-pair with contrasting soil management, we suggest new ways of data analysis on measured soil-gas transport parameters at different moisture conditions to evaluate controls of soil matrix and pore network formation. Results imply that some soils form sponge-like pore networks (mostly healthy soils in terms of agricultural and environmental functions, while other soils form pipe-like structures (agriculturally poorly functioning soils, with the difference related to both complexation of organic matter and degradation of soil structure. The recently presented Dexter et al. (2008 threshold (ratio of clay to organic carbon of 10 kg kg−1 is found to be a promising constraint for a soil's ability to maintain or regenerate functional structure. Next

  18. Spectral Characteristics of Salinized Soils during Microbial Remediation Processes.

    Science.gov (United States)

    Ma, Chuang; Shen, Guang-rong; Zhi, Yue-e; Wang, Zi-jun; Zhu, Yun; Li, Xian-hua

    2015-09-01

    In this study, the spectral reflectance of saline soils, the associated soil salt content (SSC) and the concentrations of salt ions were measured and analysed by tracing the container microbial remediation experiments for saline soil (main salt is sodium chloride) of Dongying City, Shandong Province. The sensitive spectral reflectance bands of saline soils to SSC, Cl- and Na+ in the process of microbial remediation were analysed. The average-dimension reduction of these bands was conducted by using a combination of correlation coefficient and decision coefficient, and by gradually narrowing the sampling interval method. Results showed that the tendency and magnitude of the average spectral reflectance in all bands of saline soils during the total remediation processes were nearly consistent with SSC and with Cl- coocentration, respectively. The degree of salinity of the soil, including SSC and salt ion concentrations, had a significant positive correlation with the spectral reflectance of all bands, particularly in the near-infrared band. The optimal spectral bands of SSC were 1370 to 1445 nm and 1447 to 1608 nm, whereas the optimal spectral bands of Cl- and Na+ were 1336 to 1461 nm and 1471 to 1561 nm, respectively. The relationship model among SSC, soil salt ion concentrations (Cl- and Na+) and soil spectral reflectance of the corresponding optimal spectral band was established. The largest R2 of relationship model between SSC and the average reflectance of associated optimal band reached to 0.95, and RMSEC and RMSEP were 1.076 and 0.591, respectively. Significant statistical analysis of salt factors and soil reflectance for different microbial remediation processes indicated that the spectral response characteristics and sensitivity of SSC to soil reflectance, which implied the feasibility of high spectrum test on soil microbial remediation monitoring, also provided the basis for quick nondestructive monitoring soil bioremediation process by soil spectral

  19. Analyzing heterogeneous hydrological processes within soil mantle and shallow bedrock in a granitic foothill

    Science.gov (United States)

    Yamakawa, Y.; Kosugi, K.; Mizuyama, T.; Kinoshita, A.

    2011-12-01

    In mountainous watersheds, groundwater flowing contributes significantly to runoff generation and plays an important role in the occurrence of landslides. Understanding the hydrological processes within not only the soil mantle but also bedrock is essential for modeling runoff generation and predicting landslides, but it is limited by the physical difficulties of observations. In this study, we conducted intensive in-situ investigations including hydrometric observations using dense borehole well network drilled within soil mantle (central Japan. Groundwater levels in soil mantle showed large spatial and temporal variations in response to rainfall; time lag of peaks between right and left banks in the watershed and localized existences of confined groundwater aquifers. The groundwater movement within soil mantle could be significantly affected by soil mantle structure, i.e., water retention characteristics of soil and soil thickness distributions, as well as groundwater flowing within bedrock. Moreover, the groundwater movement within bedrock also varied considerably with location, which could be controlled by structural condition such as weathering of the bedrock and existence of faults.

  20. Towards a global understanding of vertical soil carbon dynamics: meta-analysis of soil 14C data

    Science.gov (United States)

    hatte, C.; Balesdent, J.; Guiot, J.

    2012-12-01

    Soil represents the largest terrestrial storage mechanism for atmospheric carbon from photosynthesis, with estimates ranging from 1600 Pg C within the top 1 meter to 2350 Pg C for the top 3 meters. These values are at least 2.5 times greater than atmospheric C pools. Small changes in soil organic carbon storage could result in feedback to atmospheric CO2 and the sensitivity of soil organic matter to changes in temperature, and precipitation remains a critical area of research with respect to the global carbon cycle. As an intermediate storage mechanism for organic material through time, the vertical profile of carbon generally shows an age continuum with depth. Radiocarbon provides critical information for understanding carbon exchanges between soils and atmosphere, and within soil layers. Natural and "bomb" radiocarbon has been used to demonstrate the importance and nature of the soil carbon response to climatic and human impacts on decadal to millennial timescales. Radiocarbon signatures of bulk, or chemically or physically fractionated soil, or even of specific organic compounds, offer one of the only ways to infer terrestrial carbon turnover times or test ecosystem carbon models. We compiled data from the literature on radiocarbon distribution on soil profiles and characterized each study according to the following categories: soil type, analyzed organic fraction, location (latitude, longitude, elevation), climate (temperature, precipitation), land use and sampling year. Based on the compiled data, soil carbon 14C profiles were reconstructed for each of the 226 sites. We report here partial results obtained by statistical analyses of portion of this database, i.e. bulk and bulk-like organic matter and sampling year posterior to 1980. We highlight here 14C vertical pattern in relationship with external parameters (climate, location and land use).

  1. An adaptive management process for forest soil conservation.

    Science.gov (United States)

    Michael P. Curran; Douglas G. Maynard; Ronald L. Heninger; Thomas A. Terry; Steven W. Howes; Douglas M. Stone; Thomas Niemann; Richard E. Miller; Robert F. Powers

    2005-01-01

    Soil disturbance guidelines should be based on comparable disturbance categories adapted to specific local soil conditions, validated by monitoring and research. Guidelines, standards, and practices should be continually improved based on an adaptive management process, which is presented in this paper. Core components of this process include: reliable monitoring...

  2. Soil bioremediation at CFB Trenton: evaluation of bioremediation processes

    International Nuclear Information System (INIS)

    Ouellette, L.; Cathum, S.; Avotins, J.; Kokars, V.; Cooper, D.

    1996-01-01

    Bioremediation processes and their application in the cleanup of contaminated soil, were discussed. The petroleum contaminated soil at CFB Trenton, was evaluated to determine which bioremediation process or combination of processes would be most effective. The following processes were considered: (1) white hot fungus, (2) Daramend proprietary process, (3) composting, (4) bioquest proprietary bioremediation processes, (5) Hobbs and Millar proprietary bioremediation process, and (6) farming. A brief summary of each of these options was included. The project was also used as an opportunity to train Latvian and Ukrainian specialists in Canadian field techniques and laboratory analyses. Preliminary data indicated that bioremediation is a viable method for treatment of contaminated soil. 18 refs., 3 figs

  3. Specific microbial gene abundances and soil parameters contribute to C, N, and greenhouse gas process rates after land use change in Southern Amazonian Soils

    Directory of Open Access Journals (Sweden)

    Daniel Renato Lammel

    2015-10-01

    Full Text Available Ecological processes regulating soil carbon (C and nitrogen (N cycles are still poorly understood, especially in the world’s largest agricultural frontier in Southern Amazonia. We analyzed soil parameters in samples from pristine rainforest and after land use change to pasture and crop fields, and correlated them with abundance of functional and phylogenetic marker genes (amoA, nirK, nirS, norB, nosZ, nifH, mcrA, pmoA, and 16S/18S rRNA. Additionally, we integrated these parameters using path analysis and multiple regressions. Following forest removal, concentrations of soil C and N declined, and pH and nutrient levels increased, which influenced microbial abundances and biogeochemical processes. A seasonal trend was observed, suggesting that abundances of microbial groups were restored to near native levels after the dry winter fallow. Integration of the marker gene abundances with soil parameters using path analysis and multiple regressions provided good predictions of biogeochemical processes, such as the fluxes of NO3, N2O, CO2, and CH4. In the wet season, agricultural soil showed the highest abundance of nitrifiers (amoA and Archaea, however forest soils showed the highest abundances of denitrifiers (nirK, nosZ and high N, which correlated with increased N2O emissions. Methanogens (mcrA and methanotrophs (pmoA were more abundant in forest soil, but methane flux was highest in pasture sites, which was related to soil compaction. Rather than analyzing direct correlations, the data integration using multivariate tools provided a better overview of biogeochemical processes. Overall, in the wet season, land use change from forest to agriculture reduced the abundance of different functional microbial groups related to the soil C and N cycles; integrating the gene abundance data and soil parameters provided a comprehensive overview of these interactions. Path analysis and multiple regressions addressed the need for more comprehensive approaches

  4. Unveiling Microbial Carbon Cycling Processes in Key U.S. Soils using ''Omics''

    Energy Technology Data Exchange (ETDEWEB)

    Myrold, David D. [Oregon State Univ., Corvallis, OR (United States); Bottomely, Peter J. [Oregon State Univ., Corvallis, OR (United States); Jumpponen, Ari [Kansas State Univ., Manhattan, KS (United States); Rice, Charles W. [Kansas State Univ., Manhattan, KS (United States); Zeglin, Lydia H. [Kansas State Univ., Manhattan, KS (United States); David, Maude M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jansson, Janet K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Prestat, Emmanuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hettich, Robert L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-09-17

    Soils process and store large amounts of C; however, considerable uncertainty still exists about the details of that influence microbial partitioning of C into soil C pools, and what are the main influential forces that control the fraction of the C input that is stabilized. The soil microbial community is genotypically and phenotypically diverse. Despite our ability to predict the kinds of regional environmental changes that will accompany global climate change, it is not clear how the microbial community will respond to climate-induced modification of precipitation and inter-precipitation intervals, and if this response will affect the fate of C deposited into soil by the local plant community. Part of this uncertainty lies with our ignorance of how the microbial community adapts genotypically and physiologically to changes in soil moisture brought about by shifts in precipitation. Our overarching goal is to harness the power of multiple meta-omics tools to gain greater understanding of the functioning of whole-soil microbial communities and their role in C cycling. We will do this by meeting the following three objectives: 1. Further develop and optimize a combination of meta-omics approaches to study how environmental factors affect microbially-mediated C cycling processes. 2. Determine the impacts of long-term changes in precipitation timing on microbial C cycling using an existing long-term field manipulation of a tallgrass prairie soil. 3. Conduct laboratory experiments that vary moisture and C inputs to confirm field observations of the linkages between microbial communities and C cycling processes. We took advantage of our state-of-the-art expertise in community “omics” to better understand the functioning soil C cycling within the Great Prairie ecosystem, including our ongoing Konza Prairie soil metagenome flagship project at JGI and the unique rainfall manipulation plots (RaMPs) established at this site more than a decade ago. We employed a systems

  5. Soil Production and Erosion Rates and Processes in Mountainous Landscapes

    Science.gov (United States)

    Heimsath, A. M.; DiBiase, R. A.; Whipple, K. X.

    2012-12-01

    We focus here on high-relief, steeply sloped landscapes from the Nepal Himalaya to the San Gabriels of California that are typically thought to be at a critical threshold of soil cover. Observations reveal that, instead, there are significant areas mantled with soil that fit the conceptual framework of a physically mobile layer derived from the underlying parent material with some locally-derived organic content. The extent and persistence of such soils depends on the long-term balance between soil production and erosion despite the perceived discrepancy between high erosion and low soil production rates. We present cosmogenic Be-10-derived soil production and erosion rates that show that soil production increases with catchment-averaged erosion, suggesting a feedback that enhances soil-cover persistence, even in threshold landscapes. Soil production rates do decline systematically with increasing soil thickness, but hint at the potential for separate soil production functions for different erosional regimes. We also show that a process transistion to landslide-dominated erosion results in thinner, patchier soils and rockier topography, but find that there is no sudden transition to bedrock landscapes. Our landslide modeling is combined with a detailed quantification of bedrock exposure for these steep, mountainous landscapes. We also draw an important conclusion connecting the physical processes producing and transporting soil and the chemical processes weathering the parent material by measuring parent material strength across three different field settings. We observe that parent material strength increases with overlying soil thickness and, therefore, the weathered extent of the saprolite. Soil production rates, thus, decrease with increasing parent material competence. These observation highlight the importance of quantifying hillslope hydrologic processes where such multi-facted measurements are made.

  6. Development of Decontamination Process for Soil Contaminated Uranium

    International Nuclear Information System (INIS)

    Kim, Gye-Nam; Kim, Seung-Soo; Park, Uk-Rang; Han, Gyu-Seong; Moon, Jei-Kwon

    2014-01-01

    Various experiments with full-scaled electrokinetic equipment, soil washing equipment, and gravel washing equipment were performed to remove 238 U from contaminated soils of below 0.4 Bq/g. The repetition number and the removal efficiencies of the soil and gravel washing equipment were evaluated. The decontamination periods by the soil and gravel electrokinetic equipment were evaluated. Finally, a work process of full-scaled decontamination equipment was developed. Contaminated soils were classified into soils and gravels using a 8.0 cm sieve. Soils were sent to the soil washing equipment, while gravels were sent to the gravel washing equipment. Soils sent to the soil washing equipment were sent to the soil electrokinetic equipment after soil washing. A repetition number of soil washing was two times. The washed gravels were sent to the gravel electrokinetic equipment. Gravel contaminated with a high concentration requires crushing after gravel washing

  7. Development of Decontamination Process for Soil Contaminated Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gye-Nam; Kim, Seung-Soo; Park, Uk-Rang; Han, Gyu-Seong; Moon, Jei-Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Various experiments with full-scaled electrokinetic equipment, soil washing equipment, and gravel washing equipment were performed to remove {sup 238}U from contaminated soils of below 0.4 Bq/g. The repetition number and the removal efficiencies of the soil and gravel washing equipment were evaluated. The decontamination periods by the soil and gravel electrokinetic equipment were evaluated. Finally, a work process of full-scaled decontamination equipment was developed. Contaminated soils were classified into soils and gravels using a 8.0 cm sieve. Soils were sent to the soil washing equipment, while gravels were sent to the gravel washing equipment. Soils sent to the soil washing equipment were sent to the soil electrokinetic equipment after soil washing. A repetition number of soil washing was two times. The washed gravels were sent to the gravel electrokinetic equipment. Gravel contaminated with a high concentration requires crushing after gravel washing.

  8. Measuring and understanding soil water repellency through novel interdisciplinary approaches

    Science.gov (United States)

    Balshaw, Helen; Douglas, Peter; Doerr, Stefan; Davies, Matthew

    2017-04-01

    Food security and production is one of the key global issues faced by society. It has become evermore essential to work the land efficiently, through better soil management and agronomy whilst protecting the environment from air and water pollution. The failure of soil to absorb water - soil water repellency - can lead to major environmental problems such as increased overland flow and soil erosion, poor uptake of agricultural chemicals and increased risk of groundwater pollution due to the rapid transfer of contaminants and nutrient leaching through uneven wetting and preferential flow pathways. Understanding the causes of soil hydrophobicity is essential for the development of effective methods for its amelioration, supporting environmental stability and food security. Organic compounds deposited on soil mineral or aggregate surfaces have long been recognised as a major factor in causing soil water repellency. It is widely accepted that the main groups of compounds responsible are long-chain acids, alkanes and other organic compounds with hydrophobic properties. However, when reapplied to sands and soils, the degree of water repellency induced by these compounds and mixtures varied widely with compound type, amount and mixture, in a seemingly unpredictable way. Our research to date involves two new approaches for studying soil wetting. 1) We challenge the theoretical basis of current ideas on the measured water/soil contact angle measurements. Much past and current discussion involves Wenzel and Cassie-Baxter models to explain anomalously high contact angles for organics on soils, however here we propose that these anomalously high measured contact angles are a consequence of the measurement of a water drop on an irregular non-planar surface rather than the thermodynamic factors of the Cassie-Baxter and Wenzel models. In our analysis we have successfully used a much simpler geometric approach for non-flat surfaces such as soil. 2) Fluorescent and phosphorescent

  9. Microbial interactions with organic contaminants in soil: Definitions, processes and measurement

    International Nuclear Information System (INIS)

    Semple, Kirk T.; Doick, Kieron J.; Wick, Lukas Y.; Harms, Hauke

    2007-01-01

    There has been and continues to be considerable scientific interest in predicting bioremediation rates and endpoints. This requires the development of chemical techniques capable of reliably predicting the bioavailability of organic compounds to catabolically active soil microbes. A major issue in understanding the link between chemical extraction and bioavailability is the problem of definition; there are numerous definitions, of varying degrees of complexity and relevance, to the interaction between organic contaminants and microorganisms in soil. The aim of this review is to consider the bioavailability as a descriptor for the rate and extent of biodegradation and, in an applied sense, bioremediation of organic contaminants in soil. To address this, the review will (i) consider and clarify the numerous definitions of bioavailability and discuss the usefulness of the term 'bioaccessibility'; (ii) relate definition to the microbiological and chemical measurement of organic contaminants' bioavailability in soil, and (iii) explore the mechanisms employed by soil microorganisms to attack organic contaminants in soil. - Understanding organic contaminant's behaviour in soil is key to chemically predicting biodegradation

  10. Cultural Patterns of Soil Understanding in Organic Agriculture

    Science.gov (United States)

    Patzel, Nikola

    2017-04-01

    Different branches of modern agriculture rely on different cultural patterns of soil understanding; and they are supported by different schools of thought in soil science with their specific values and perspectives. For example, the European branch of organic agriculture, as it developed mainly in the 20th Century, is rooted in specific cultural concepts and was supported by associated minorities, or rather marginalised tendencies, within the soil science community. Some cases: It is about the transformations of living or organic matter, linked with debates on "microbes" and "life particles", "tissues" and macromolecules in the humus-sphere. It is about the "industrialised economical-technical paradigm" versus an "organic" or "ecological paradigm" - whatever both may be. It is about the relevance respectively of the "duties" of control by power, or by relatedness and "intercourse" in agricultural human-nature interaction. It is about the male and female qualities of effective God-images - both in their "religious" as well as their "secular" representations in individuals' and society's relation with nature and when dealing with soil. In today's conceptual and strategic debates and power struggles over how to sustainably feed from the land, we see patterns similar to those from the 19th and 20th Centuries in action. But the threats they pose are not yet sufficiently realised; the opportunities they offer are not yet sufficiently fulfilled. In this presentation, using the example of cultural patterns inside organic agriculture in Europe, some cultural problems and tasks will be highlighted, to which geosciences are of course confronted, being part of human society.

  11. Soil Organic Matter Erosion by Interrill Processes from Organically and Conventionally farmed Devon Soil

    Science.gov (United States)

    Armstrong, E.; Ling, A.; Kuhn, N. J.

    2012-04-01

    Globally, between 0.57 and 1.33 Pg of soil organic carbon (SOC) may be affected by interrill processes. Also, a significant amount of phosphorus (P) is contained in the surface soil layer transformed by raindrop impact, runoff and crust formation. In the EU, the P content of a crusted (2 mm) surface layer corresponds to 4 to 40 kg ha-1 of P on arable land (1.094 mil km2). Therefore, the role of interrill processes for nutrient cycling and the global carbon cycle requires close attention. Interrill erosion is a complex phenomenon involving the detachment, transport and deposition of soil particles by raindrop impacted flow. Resistance to interrill erosion varies between soils depending on their physical, chemical and mineralogical properties. In addition, significant changes in soil resistance to interrill erosion occur during storms as a result of changes in surface roughness, cohesion and particle size. As a consequence, erosion on interrill areas is selective, moving the most easily detached small and/or light soil particles. This leads to the enrichment of clay, phosphorous (P) and carbon (C). Such enrichment in interrill sediment is well documented, however, the role of interrill erosion processes on the enrichment remains unclear. Enrichment of P and C in interrill sediment is attributed to the preferential erosion of the smaller, lighter soil particles. In this study, the P and organic C content of sediment generated from two Devon silts under conventional (CS) and organic (OS) soil management were examined. Artificial rainfall was applied to the soils using two rainfall scenarios of differing intensity and kinetic energy to determine the effects on the P and C enrichment in interrill sediment. Interrill soil erodibility was lower on the OS, irrespective of rainfall intensity. Sediment from both soils showed a significant enrichment in P and C compared to the bulk soil. However, sediment from the OS displayed a much greater degree of P enrichment. This shows

  12. Lateral saturated hydraulic conductivity of soil horizons evaluated in large-volume soil monoliths

    NARCIS (Netherlands)

    Pirastru, Mario; Marrosu, Roberto; Prima, Di Simone; Keesstra, Saskia; Giadrossich, Filippo; Niedda, Marcello

    2017-01-01

    Evaluating the lateral saturated hydraulic conductivity, Ks,l, of soil horizons is crucial for understanding and modelling the subsurface flow dynamics in many shallow hill soils. A Ks,l measurement method should be able to catch the effects of soil heterogeneities governing hydrological processes

  13. Soil Functional Mapping: A Geospatial Framework for Scaling Soil Carbon Cycling

    Science.gov (United States)

    Lawrence, C. R.

    2017-12-01

    Climate change is dramatically altering biogeochemical cycles in most terrestrial ecosystems, particularly the cycles of water and carbon (C). These changes will affect myriad ecosystem processes of importance, including plant productivity, C exports to aquatic systems, and terrestrial C storage. Soil C storage represents a critical feedback to climate change as soils store more C than the atmosphere and aboveground plant biomass combined. While we know plant and soil C cycling are strongly coupled with soil moisture, substantial unknowns remain regarding how these relationships can be scaled up from soil profiles to ecosystems. This greatly limits our ability to build a process-based understanding of the controls on and consequences of climate change at regional scales. In an effort to address this limitation we: (1) describe an approach to classifying soils that is based on underlying differences in soil functional characteristics and (2) examine the utility of this approach as a scaling tool that honors the underlying soil processes. First, geospatial datasets are analyzed in the context of our current understanding of soil C and water cycling in order to predict soil functional units that can be mapped at the scale of ecosystems or watersheds. Next, the integrity of each soil functional unit is evaluated using available soil C data and mapping units are refined as needed. Finally, targeted sampling is conducted to further differentiate functional units or fill in any data gaps that are identified. Completion of this workflow provides new geospatial datasets that are based on specific soil functions, in this case the coupling of soil C and water cycling, and are well suited for integration with regional-scale soil models. Preliminary results from this effort highlight the advantages of a scaling approach that balances theory, measurement, and modeling.

  14. A process-based framework for soil ecosystem services study and management.

    Science.gov (United States)

    Su, Changhong; Liu, Huifang; Wang, Shuai

    2018-06-15

    Soil provides various indispensable ecosystem services for human society. Soil's complex structure and property makes the soil ecological processes complicated and brings about tough challenges for soil ecosystem services study. Most of the current frameworks on soil services focus exclusively on services per se, neglecting the links and underlying ecological mechanisms. This article put forward a framework on soil services by stressing the underlying soil mechanisms and processes, which includes: 1) analyzing soil natural capital stock based on soil structure and property, 2) disentangling the underlying complex links and soil processes, 3) soil services valuation based on field investigation and spatial explicit models, and 4) enacting soil management strategy based on soil services and their driving factors. By application of this framework, we assessed the soil services of sediment retention, water yield, and grain production in the Upper-reach Fenhe Watershed. Based on the ecosystem services and human driving factors, the whole watershed was clustered into five groups: 1) municipal area, 2) typical coal mining area, 3) traditional farming area, 4) unsustainable urbanizing area, and 5) ecological conservation area. Management strategies on soils were made according to the clustering based soil services and human activities. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Potential and limitations of using soil mapping information to understand landscape hydrology

    Directory of Open Access Journals (Sweden)

    F. Terribile

    2011-12-01

    Full Text Available This paper addresses the following points: how can whole soil data from normally available soil mapping databases (both conventional and those integrated by digital soil mapping procedures be usefully employed in hydrology? Answering this question requires a detailed knowledge of the quality and quantity of information embedded in and behind a soil map.

    To this end a description of the process of drafting soil maps was prepared (which is included in Appendix A of this paper. Then a detailed screening of content and availability of soil maps and database was performed, with the objective of an analytical evaluation of the potential and the limitations of soil data obtained through soil surveys and soil mapping. Then we reclassified the soil features according to their direct, indirect or low hydrologic relevance. During this phase, we also included information regarding whether this data was obtained by qualitative, semi-quantitative or quantitative methods. The analysis was performed according to two main points of concern: (i the hydrological interpretation of the soil data and (ii the quality of the estimate or measurement of the soil feature.

    The interaction between pedology and hydrology processes representation was developed through the following Italian case studies with different hydropedological inputs: (i comparative land evaluation models, by means of an exhaustive itinerary from simple to complex modelling applications depending on soil data availability, (ii mapping of soil hydrological behaviour for irrigation management at the district scale, where the main hydropedological input was the application of calibrated pedo-transfer functions and the Hydrological Function Unit concept, and (iii flood event simulation in an ungauged basin, with the functional aggregation of different soil units for a simplified soil pattern.

    In conclusion, we show that special care is required in handling data from soil

  16. A Study on the Removal of Cesium in Soil Contaminated with Radiation Using a Soil Washing Process

    International Nuclear Information System (INIS)

    Park, Ukryang; Kim, Gyenam; Kim, Seungsoo; Park, Hyemin; Kim, Wansuk; Moon, Jaikwon

    2013-01-01

    The first principle is related with the washing process which is carried out to transfer the contaminated mass from the soil to water by dissolving it with a cleansing solution. The second is concerned with the size of the separation process which focuses on the reduction of the volume by separating the subject matters based on the different sizes of the soil. The complex agents used in the soil washing process include HCl, Oxalic acid, Citric acid, CaCl 2 , BaCl 2 , NH 4 NO 3 , and NaOH. It is known that the complex-forming capacity of such complex agents and radionuclides influences the decontamination from the soil. Also, since the forms of the chemical species related with the complex agents and the surface potential of the soil vary based on the changes of acidity observed in the cleansing solution, the level of acidity in the cleansing solution can be regarded as a factor that influences the decontamination. Therefore, in this study, H 2 SO 4 was selected as the complex agent and used to check the influence of the temperature when the subject contaminated soil was washed. Then, by applying the sieve grading process with a sieve-shaker, the size separation process was carried out to measure the level of radiation for each size. By washing the contaminated soil separated into different sizes with the complex agent H 2 SO 4 , the different removal tendencies for each size were considered. After selecting the complex agent H 2 SO 4 and checking the influence of temperature when the contaminated soil was washed based on the solid-liquid ratio of 1g:2ml, it was found that the heat washing process at a temperature of 95 .deg. C showed a higher level of efficiency for the removal of Cs compared to the case of the non-heat washing process. Also, according to the results given by the process of considering the different removal tendencies for each size based on the heat washing process after the sieve grading process was applied with the sieve-shaker prior for the size

  17. Experimental Simulations to Understand the Lunar and Martian Surficial Processes

    Science.gov (United States)

    Zhao, Y. Y. S.; Li, X.; Tang, H.; Li, Y.; Zeng, X.; Chang, R.; Li, S.; Zhang, S.; Jin, H.; Mo, B.; Li, R.; Yu, W.; Wang, S.

    2016-12-01

    In support with China's Lunar and Mars exploration programs and beyond, our center is dedicated to understand the surficial processes and environments of planetary bodies. Over the latest several years, we design, build and optimize experimental simulation facilities and utilize them to test hypotheses and evaluate affecting mechanisms under controlled conditions particularly relevant to the Moon and Mars. Among the fundamental questions to address, we emphasize on five major areas: (1) Micrometeorites bombardment simulation to evaluate the formation mechanisms of np-Fe0 which was found in lunar samples and the possible sources of Fe. (2) Solar wind implantation simulation to evaluate the alteration/amorphization/OH or H2O formation on the surface of target minerals or rocks. (3) Dusts mobility characteristics on the Moon and other planetary bodies by excitation different types of dust particles and measuring their movements. (4) Mars basaltic soil simulant development (e.g., Jining Martian Soil Simulant (JMSS-1)) and applications for scientific/engineering experiments. (5) Halogens (Cl and Br) and life essential elements (C, H, O, N, P, and S) distribution and speciation on Mars during surficial processes such as sedimentary- and photochemical- related processes. Depending on the variables of interest, the simulation systems provide flexibility to vary source of energy, temperature, pressure, and ambient gas composition in the reaction chambers. Also, simulation products can be observed or analyzed in-situ by various analyzer components inside the chamber, without interrupting the experimental conditions. In addition, behavior of elements and isotopes during certain surficial processes (e.g., evaporation, dissolution, etc.) can be theoretically predicted by our theoretical geochemistry group with thermodynamics-kinetics calculation and modeling, which supports experiment design and result interpretation.

  18. Long Term Monitoring of Microbial Induced Soil Strengthening Processes

    Science.gov (United States)

    Saneiyan, S.; Ntarlagiannis, D.; Werkema, D. D., Jr.; Colwell, F. S.; Ohan, J.

    2016-12-01

    Soil strengthening/stabilization processes are used to address some of soil quality issues. Microbial induced calcite precipitation (MICP) is a promising soil stabilization process that could offer long term solution by overcoming problems of commonly used methods (e.g. injecting cement slurry). MICP can be applied in larger spatial scales, allowing the enhanced soils to be maintained in an economic sustainable and environmental friendly way. Methods are sought for the long term monitoring of MICP enhanced soils. The spectral induced polarization (SIP) method is one promising method due to sensitivity on such processes and the ability for long term, even autonomous, operation as well as cost effectiveness. Previous laboratory tests showed the sensitivity of the SIP method on soil strengthening as a result of abiotic calcite precipitation. We extended this work to biotic calcite precipitation through MICP. Early results suggest that the MICP formed calcite is denser and could provide improved strengthening capabilities. Our results are supported by geophysical (SIP and shear-wave velocity), geo-chemical and microbiological monitoring. Destructive analysis and visualization (scanning electron imaging - SEM) is expected to provide conclusive evidence on the MICP long term effectiveness.

  19. Using rainfall simulations to understand the relationship between precipitation, soil crust and infiltration in four agricultural soils

    Science.gov (United States)

    Angulo-Martinez, Marta; Alastrué, Juan; Moret-Fernández, David; Beguería, Santiago; López, Mariví; Navas, Ana

    2017-04-01

    Rainfall simulation experiments were carried out in order to study soil crust formation and its relation with soil infiltration parameters—sorptivity (S) and hydraulic conductivity (K)—on four common agricultural soils with contrasted properties; namely, Cambisol, Gypsisol, Solonchak, and Solonetz. Three different rainfall simulations, replicated three times each of them, were performed over the soils. Prior to rainfall simulations all soils were mechanically tilled with a rototiller to create similar soil surface conditions and homogeneous soils. Rainfall simulation parameters were monitored in real time by a Thies Laser Precipitation Monitor, allowing a complete characterization of simulated rainfall microphysics (drop size and velocity distributions) and integrated variables (accumulated rainfall, intensity and kinetic energy). Once soils dried after the simulations, soil penetration resistance was measured and soil hydraulic parameters, S and K, were estimated using the disc infiltrometry technique. There was little variation in rainfall parameters among simulations. Mean intensity and mean median diameter (D50) varied in simulations 1 ( 0.5 bar), 2 ( 0.8 bar) and 3 ( 1.2 bar) from 26.5 mm h-1 and 0.43 mm (s1) to 40.5 mm h-1 and 0.54 mm (s2) and 41.1 mm h-1 and 0.56 mm for (s3), respectively. Crust formation by soil was explained by D50 and subsequently by the total precipitation amount and the percentage of silt and clay in soil, being Cambisol and Gypsisol the soils that showed more increase in penetration resistance by simulation. All soils showed similar S values by simulations which were explained by rainfall intensity. Different patterns of K were shown by the four soils, which were explained by the combined effect of D50 and intensity, together with soil physico-chemical properties. This study highlights the importance of monitoring all precipitation parameters to determine their effect on different soil processes.

  20. Understanding on Soil Inorganic Carbon Transformation in North China

    Science.gov (United States)

    Li, Guitong; Yang, Lifang; Zhang, Chenglei; Zhang, Hongjie

    2015-04-01

    experiment concerning soil carbonate transformation under straw return and biochar addition was carried out. It is designed as a long-term field experiment. In the experiment, Ca2+ and Mg2+ in soil solution of different depth and time, in situ soil pH, soil CO2 concentration, and microbial activity will be measured. The main propose of the experiment is to explore the relationship between the transformation of SOC and SIC. Meanwhile, it is one of important field experiment for biochar effects on crop production, soil processes, and environmental impact. These researches were funded by National Natural Science Foundation of China (NNSFC) under projects of 41171211,40771106, and 40303015.

  1. Process for removing polychlorinated biphenyls from soil

    Science.gov (United States)

    Hancher, C.W.; Saunders, M.B.; Googin, J.M.

    1984-11-16

    The present invention relates to a method of removing polychlorinated biphenyls from soil. The polychlorinated biphenyls are extracted from the soil by employing a liquid organic solvent dispersed in water in the ratio of about 1:3 to 3:1. The organic solvent includes such materials as short-chain hydrocarbons including kerosene or gasoline which are immiscible with water and are nonpolar. The organic solvent has a greater affinity for the PCB's than the soil so as to extract the PCB's from the soil upon contact. The organic solvent phase is separated from the suspended soil and water phase and distilled for permitting the recycle of the organic solvent phase and the concentration of the PCB's in the remaining organic phase. The present process can be satisfactorily practiced with soil containing 10 to 20% petroleum-based oils and organic fluids such as used in transformers and cutting fluids, coolants and the like which contain PCB's. The subject method provides for the removal of a sufficient concentration of PCB's from the soil to provide the soil with a level of PCB's within the guidelines of the Environmental Protection Agency.

  2. Soil remediation using a coupled process: soil washing with surfactant followed by photo-Fenton oxidation

    International Nuclear Information System (INIS)

    Villa, Ricardo D.; Trovo, Alam G.; Nogueira, Raquel F. Pupo

    2010-01-01

    In the present work the use of a coupled process, soil washing and photo-Fenton oxidation, was investigated for remediation of a soil contaminated with p,p'-DDT (DDT) and p,p'-DDE (DDE), and a soil artificially contaminated with diesel. In the soil washing experiments, Triton X-100 (TX-100) aqueous solutions were used at different concentrations to obtain wastewaters with different compositions. Removal efficiencies of 66% (DDT), 80% (DDE) and 100% (diesel) were achieved for three sequential washings using a TX-100 solution strength equivalent to 12 times the effective critical micelle concentration of the surfactant (12 CMC eff ). The wastewater obtained was then treated using a solar photo-Fenton process. After 6 h irradiation, 99, 95 and 100% degradation efficiencies were achieved for DDT, DDE and diesel, respectively. In all experiments, the concentration of dissolved organic carbon decreased by at least 95%, indicating that residual concentration of contaminants and/or TX-100 in the wastewater was very low. The co-extraction of metals was also evaluated. Among the metals analyzed (Pb, Cr, Ni, Cu, Cd, Mn and Co), only Cr and Mn were detected in the wastewater at concentrations above the maximum value permitted by current Brazilian legislation. The effective removal of contaminants from soil by the TX-100 washing process, together with the high degradation efficiency of the solar photo-Fenton process, suggests that this procedure could be a useful option for soil remediation.

  3. Soil remediation using a coupled process: soil washing with surfactant followed by photo-Fenton oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Villa, Ricardo D., E-mail: ricardovilla@ufmt.br [UNESP - Sao Paulo State University, Institute of Chemistry of Araraquara, Department of Analytical Chemistry, P.O. Box 355, 14801-970 Araraquara, SP (Brazil); Trovo, Alam G., E-mail: alamtrovo@smail.ufsm.br [UNESP - Sao Paulo State University, Institute of Chemistry of Araraquara, Department of Analytical Chemistry, P.O. Box 355, 14801-970 Araraquara, SP (Brazil); Nogueira, Raquel F. Pupo, E-mail: nogueira@iq.unesp.br [UNESP - Sao Paulo State University, Institute of Chemistry of Araraquara, Department of Analytical Chemistry, P.O. Box 355, 14801-970 Araraquara, SP (Brazil)

    2010-02-15

    In the present work the use of a coupled process, soil washing and photo-Fenton oxidation, was investigated for remediation of a soil contaminated with p,p'-DDT (DDT) and p,p'-DDE (DDE), and a soil artificially contaminated with diesel. In the soil washing experiments, Triton X-100 (TX-100) aqueous solutions were used at different concentrations to obtain wastewaters with different compositions. Removal efficiencies of 66% (DDT), 80% (DDE) and 100% (diesel) were achieved for three sequential washings using a TX-100 solution strength equivalent to 12 times the effective critical micelle concentration of the surfactant (12 CMC{sub eff}). The wastewater obtained was then treated using a solar photo-Fenton process. After 6 h irradiation, 99, 95 and 100% degradation efficiencies were achieved for DDT, DDE and diesel, respectively. In all experiments, the concentration of dissolved organic carbon decreased by at least 95%, indicating that residual concentration of contaminants and/or TX-100 in the wastewater was very low. The co-extraction of metals was also evaluated. Among the metals analyzed (Pb, Cr, Ni, Cu, Cd, Mn and Co), only Cr and Mn were detected in the wastewater at concentrations above the maximum value permitted by current Brazilian legislation. The effective removal of contaminants from soil by the TX-100 washing process, together with the high degradation efficiency of the solar photo-Fenton process, suggests that this procedure could be a useful option for soil remediation.

  4. A Study on the Removal of Cesium in Soil Contaminated with Radiation Using a Soil Washing Process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ukryang; Kim, Gyenam; Kim, Seungsoo; Park, Hyemin; Kim, Wansuk; Moon, Jaikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The first principle is related with the washing process which is carried out to transfer the contaminated mass from the soil to water by dissolving it with a cleansing solution. The second is concerned with the size of the separation process which focuses on the reduction of the volume by separating the subject matters based on the different sizes of the soil. The complex agents used in the soil washing process include HCl, Oxalic acid, Citric acid, CaCl{sub 2}, BaCl{sub 2}, NH{sub 4}NO{sub 3}, and NaOH. It is known that the complex-forming capacity of such complex agents and radionuclides influences the decontamination from the soil. Also, since the forms of the chemical species related with the complex agents and the surface potential of the soil vary based on the changes of acidity observed in the cleansing solution, the level of acidity in the cleansing solution can be regarded as a factor that influences the decontamination. Therefore, in this study, H{sub 2}SO{sub 4} was selected as the complex agent and used to check the influence of the temperature when the subject contaminated soil was washed. Then, by applying the sieve grading process with a sieve-shaker, the size separation process was carried out to measure the level of radiation for each size. By washing the contaminated soil separated into different sizes with the complex agent H{sub 2}SO{sub 4}, the different removal tendencies for each size were considered. After selecting the complex agent H{sub 2}SO{sub 4} and checking the influence of temperature when the contaminated soil was washed based on the solid-liquid ratio of 1g:2ml, it was found that the heat washing process at a temperature of 95 .deg. C showed a higher level of efficiency for the removal of Cs compared to the case of the non-heat washing process. Also, according to the results given by the process of considering the different removal tendencies for each size based on the heat washing process after the sieve grading process was

  5. The Development of Treatment Process Technology for Uranium Soil washing Leachate

    Energy Technology Data Exchange (ETDEWEB)

    Shon, Dong Bin; Kim, Gye Nam; Park, Hye Min; Kim, Ki Hong; Lee, Ki Won; Moon, Jeik won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    Electrokinetic treatment technology is a good method for removing radioactive substances such as U, Co, Cs: but it has a weakness. It takes a long time to get high removal efficiency. The Soil washing method compensates for this weak point with its short reaction time and with this method it is possible to remove a lot of uranium-contaminated soil. But a great deal of leachate is generated. That is, about more amounts of leachate are generated for the decontamination of the same volume of radioactive soil using the electrokinetic equipment. Therefore, the development of a treatment process for The Soil washing leachate is important so that there is a reduction of leachate waste volume and a choice of process. Previously, studies for liquid radioactive waste were in process at various nuclear facilities. Nuclear fuel plant survey appropriate cohesion quantity of liquid waste of radioactive. Nuclear power plants manage liquid radioactive waste with centrifugation equipment. In this study, the treatment technology for uranium Soil washing leachate generated on Soil washing decontamination for the soil contaminated with uranium was developed. A treatment process suitable to the contamination characteristics of Soil washing leachate was proposed

  6. Development direction of the soil-formation processes for reclaimed soda solonetz-solonchak soils of the Ararat valley during their cultivation

    Directory of Open Access Journals (Sweden)

    R.R. Manukyan

    2018-03-01

    Full Text Available The data of the article show that the long-term cultivation of reclaimed sodium solonetz-solonchak soils entails to further improvement of their properties and in many parameters of chemical compositions of soil solution and soil-absorbing complex they come closer to irrigated meadow-brown soils in the period of 15–20 years of agricultural development. The analysis of the experimental research by the method of non-linear regression shows, that for the enhancement of some yield determining parameters to the level of irrigated meadow-brown soils, a time period of 30–40 years of soil-formation processes is needed and longer time is necessary for humidification. The forecast of soil-formation processes for the long-term period, allows to reveal the intensity and orientation of development of the specified processes and to develop the scientifically-justified actions for their further improvement. Keywords: Soil-formation processes, Reclaimed soda solonetz-solonchaks, Irrigated meadow-brown soils, Multi-year cultivation, Improvement, Forecasting

  7. Microbial Contribution to Organic Carbon Sequestration in Mineral Soil

    Science.gov (United States)

    Soil productivity and sustainability are dependent on soil organic matter (SOM). Our understanding on how organic inputs to soil from microbial processes become converted to SOM is still limited. This study aims to understand how microbes affect carbon (C) sequestration and the formation of recalcit...

  8. Relationships at the aboveground-belowground interface: plants, soil biota and soil processes

    NARCIS (Netherlands)

    Porazinska, D.L.; Bardgett, R.D.; Postma-Blaauw, M.B.; Hunt, H.W.; Parsons, A.N.; Seastedt, T.R.; Wall, D.M.

    2003-01-01

    Interactions at the aboveground-below ground interface provide important feedbacks that regulate ecosystem processes. Organisms within soil food webs are involved in processes of decomposition and nutrient mineralization, and their abundance and activity have been linked to plant ecophysiological

  9. Soil mapping and processes models to support climate change mitigation and adaptation strategies: a review

    Science.gov (United States)

    Muñoz-Rojas, Miriam; Pereira, Paulo; Brevik, Eric; Cerda, Artemi; Jordan, Antonio

    2017-04-01

    As agreed in Paris in December 2015, global average temperature is to be limited to "well below 2 °C above pre-industrial levels" and efforts will be made to "limit the temperature increase to 1.5 °C above pre-industrial levels. Thus, reducing greenhouse gas emissions (GHG) in all sectors becomes critical and appropriate sustainable land management practices need to be taken (Pereira et al., 2017). Mitigation strategies focus on reducing the rate and magnitude of climate change by reducing its causes. Complementary to mitigation, adaptation strategies aim to minimise impacts and maximize the benefits of new opportunities. The adoption of both practices will require developing system models to integrate and extrapolate anticipated climate changes such as global climate models (GCMs) and regional climate models (RCMs). Furthermore, integrating climate models driven by socio-economic scenarios in soil process models has allowed the investigation of potential changes and threats in soil characteristics and functions in future climate scenarios. One of the options with largest potential for climate change mitigation is sequestering carbon in soils. Therefore, the development of new methods and the use of existing tools for soil carbon monitoring and accounting have therefore become critical in a global change context. For example, soil C maps can help identify potential areas where management practices that promote C sequestration will be productive and guide the formulation of policies for climate change mitigation and adaptation strategies. Despite extensive efforts to compile soil information and map soil C, many uncertainties remain in the determination of soil C stocks, and the reliability of these estimates depends upon the quality and resolution of the spatial datasets used for its calculation. Thus, better estimates of soil C pools and dynamics are needed to advance understanding of the C balance and the potential of soils for climate change mitigation. Here

  10. Soil Heat Flow. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    Science.gov (United States)

    Simpson, James R.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. Soil heat flow and the resulting soil temperature distributions have ecological consequences…

  11. Soil microbial community composition is correlated to soil carbon processing along a boreal wetland formation gradient

    Science.gov (United States)

    Chapman, Eric; Cadillo-Quiroz, Hinsby; Childers, Daniel L.; Turetsky, Merritt R.; Waldrop, Mark P.

    2017-01-01

    Climate change is modifying global biogeochemical cycles. Microbial communities play an integral role in soil biogeochemical cycles; knowledge about microbial composition helps provide a mechanistic understanding of these ecosystem-level phenomena. Next generation sequencing approaches were used to investigate changes in microbial functional groups during ecosystem development, in response to climate change, in northern boreal wetlands. A gradient of wetlands that developed following permafrost degradation was used to characterize changes in the soil microbial communities that mediate C cycling: a bog representing an “undisturbed” system with intact permafrost, and a younger bog and an older bog that formed following the disturbance of permafrost thaw. Reference 16S rRNA databases and several diversity indices were used to assess structural differences among these communities, to assess relationships between soil microbial community composition and various environmental variables including redox potential and pH. Rates of potential CO2 and CH4 gas production were quantified to correlate sequence data with gas flux. The abundance of organic C degraders was highest in the youngest bog, suggesting higher rates of microbial processes, including potential CH4 production. In addition, alpha diversity was also highest in the youngest bog, which seemed to be related to a more neutral pH and a lower redox potential. These results could potentially be driven by increased niche differentiation in anaerobic soils. These results suggest that ecosystem structure, which was largely driven by changes in edaphic and plant community characteristics between the “undisturbed” permafrost bog and the two bogs formed following permafrost thaw, strongly influenced microbial function.

  12. Hydrologic-Process-Based Soil Texture Classifications for Improved Visualization of Landscape Function

    Science.gov (United States)

    Groenendyk, Derek G.; Ferré, Ty P.A.; Thorp, Kelly R.; Rice, Amy K.

    2015-01-01

    Soils lie at the interface between the atmosphere and the subsurface and are a key component that control ecosystem services, food production, and many other processes at the Earth’s surface. There is a long-established convention for identifying and mapping soils by texture. These readily available, georeferenced soil maps and databases are used widely in environmental sciences. Here, we show that these traditional soil classifications can be inappropriate, contributing to bias and uncertainty in applications from slope stability to water resource management. We suggest a new approach to soil classification, with a detailed example from the science of hydrology. Hydrologic simulations based on common meteorological conditions were performed using HYDRUS-1D, spanning textures identified by the United States Department of Agriculture soil texture triangle. We consider these common conditions to be: drainage from saturation, infiltration onto a drained soil, and combined infiltration and drainage events. Using a k-means clustering algorithm, we created soil classifications based on the modeled hydrologic responses of these soils. The hydrologic-process-based classifications were compared to those based on soil texture and a single hydraulic property, Ks. Differences in classifications based on hydrologic response versus soil texture demonstrate that traditional soil texture classification is a poor predictor of hydrologic response. We then developed a QGIS plugin to construct soil maps combining a classification with georeferenced soil data from the Natural Resource Conservation Service. The spatial patterns of hydrologic response were more immediately informative, much simpler, and less ambiguous, for use in applications ranging from trafficability to irrigation management to flood control. The ease with which hydrologic-process-based classifications can be made, along with the improved quantitative predictions of soil responses and visualization of landscape

  13. Soil classification predicts differences in prokaryotic communities across a range of geographically distant soils once pH is accounted for

    OpenAIRE

    Morales, Sergio; Trouche, Blandine; Kaminsky, Rachel

    2017-01-01

    Agricultural land is typically managed based on visible plant life at the expense of the belowground majority. However, microorganisms mediate processes sustaining plant life and the soil environment. To understand the role of microbes we first must understand what controls soil microbial community assembly. We assessed the distribution and composition of prokaryotic communities from soils representing four geographic regions on the South Island of New Zealand. These soils are under three dif...

  14. Effect of Space Radiation Processing on Lunar Soil Surface Chemistry: X-Ray Photoelectron Spectroscopy Studies

    Science.gov (United States)

    Dukes, C.; Loeffler, M.J.; Baragiola, R.; Christoffersen, R.; Keller, J.

    2009-01-01

    Current understanding of the chemistry and microstructure of the surfaces of lunar soil grains is dominated by a reference frame derived mainly from electron microscopy observations [e.g. 1,2]. These studies have shown that the outermost 10-100 nm of grain surfaces in mature lunar soil finest fractions have been modified by the combined effects of solar wind exposure, surface deposition of vapors and accretion of impact melt products [1,2]. These processes produce surface-correlated nanophase Feo, host grain amorphization, formation of surface patinas and other complex changes [1,2]. What is less well understood is how these changes are reflected directly at the surface, defined as the outermost 1-5 atomic monolayers, a region not easily chemically characterized by TEM. We are currently employing X-ray Photoelectron Spectroscopy (XPS) to study the surface chemistry of lunar soil samples that have been previously studied by TEM. This work includes modification of the grain surfaces by in situ irradiation with ions at solar wind energies to better understand how irradiated surfaces in lunar grains change their chemistry once exposed to ambient conditions on earth.

  15. Digital soil mapping: strategy for data pre-processing

    Directory of Open Access Journals (Sweden)

    Alexandre ten Caten

    2012-08-01

    Full Text Available The region of greatest variability on soil maps is along the edge of their polygons, causing disagreement among pedologists about the appropriate description of soil classes at these locations. The objective of this work was to propose a strategy for data pre-processing applied to digital soil mapping (DSM. Soil polygons on a training map were shrunk by 100 and 160 m. This strategy prevented the use of covariates located near the edge of the soil classes for the Decision Tree (DT models. Three DT models derived from eight predictive covariates, related to relief and organism factors sampled on the original polygons of a soil map and on polygons shrunk by 100 and 160 m were used to predict soil classes. The DT model derived from observations 160 m away from the edge of the polygons on the original map is less complex and has a better predictive performance.

  16. A Modified Soil Quality Index to Assess the Influence of Soil Degradation Processes on Desertification Risk: The Apulia Case

    Directory of Open Access Journals (Sweden)

    Valeria Ancona

    2010-10-01

    Full Text Available Apulia is one of the most prone Italian regions to soil alteration phenomena, due to geographical and climatic conditions and also to human activities’ impact. In this study, in order to investigate regional soil degradation processes, following the “European Directive for Soil Protection”, the ESA’s method has been adopted. It is based on the use of an indicator’s set to assess the desertification risk. This approach simplifies the diagnosis and monitoring of soil degradation processes, defining their status and trend. Special attention has been given to Soil Quality Index (SQI determined by six predisposing indicators (parent material, soil texture, rock fragment, soil depth, drainage and slope grade. The integration in the SQI calculation of two additional soil parameters (organic matter content and soil salinity has been considered particularly significant. In fact, through the evaluation of a so “modified SQI” and the Apulia land use too, it could be possible to assess the role of agriculture management on soil degradation processes, which predisposing regional area to desertification threat. Moreover this approach provides short, but accurate, information thanks to GIS integration, which defines phenomena in detail, offering helpful planning tools.

  17. Performance of wind-powered soil electroremediation process for the removal of 2,4-D from soil.

    Science.gov (United States)

    Souza, F L; Llanos, J; Sáez, C; Lanza, M R V; Rodrigo, M A; Cañizares, P

    2016-04-15

    In this work, it is studied a wind-powered electrokinetic soil flushing process for the removal of pesticides from soil. This approach aims to develop an eco-friendly electrochemical soil treatment technique and to face the in-situ treatment of polluted soils at remote locations. Herbicide 2,4 dichlorophenoxyacetic acid (2,4-D) is selected as a model pollutant for the soil treatment tests. The performance of the wind-powered process throughout a 15 days experiment is compared to the same remediation process powered by a conventional DC power supply. The wind-powered test covered many different wind conditions (from calm to near gale), being performed 20.7% under calm conditions and 17% under moderate or gentle breeze. According to the results obtained, the wind-powered soil treatment is feasible, obtaining a 53.9% removal of 2,4-D after 15 days treatment. Nevertheless, the remediation is more efficient if it is fed by a constant electric input (conventional DC power supply), reaching a 90.2% removal of 2,4-D with a much lower amount of charge supplied (49.2 A h kg(-1) and 4.33 A h kg(-1) for wind-powered and conventional) within the same operation time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A systemic approach for modeling soil functions

    Science.gov (United States)

    Vogel, Hans-Jörg; Bartke, Stephan; Daedlow, Katrin; Helming, Katharina; Kögel-Knabner, Ingrid; Lang, Birgit; Rabot, Eva; Russell, David; Stößel, Bastian; Weller, Ulrich; Wiesmeier, Martin; Wollschläger, Ute

    2018-03-01

    The central importance of soil for the functioning of terrestrial systems is increasingly recognized. Critically relevant for water quality, climate control, nutrient cycling and biodiversity, soil provides more functions than just the basis for agricultural production. Nowadays, soil is increasingly under pressure as a limited resource for the production of food, energy and raw materials. This has led to an increasing demand for concepts assessing soil functions so that they can be adequately considered in decision-making aimed at sustainable soil management. The various soil science disciplines have progressively developed highly sophisticated methods to explore the multitude of physical, chemical and biological processes in soil. It is not obvious, however, how the steadily improving insight into soil processes may contribute to the evaluation of soil functions. Here, we present to a new systemic modeling framework that allows for a consistent coupling between reductionist yet observable indicators for soil functions with detailed process understanding. It is based on the mechanistic relationships between soil functional attributes, each explained by a network of interacting processes as derived from scientific evidence. The non-linear character of these interactions produces stability and resilience of soil with respect to functional characteristics. We anticipate that this new conceptional framework will integrate the various soil science disciplines and help identify important future research questions at the interface between disciplines. It allows the overwhelming complexity of soil systems to be adequately coped with and paves the way for steadily improving our capability to assess soil functions based on scientific understanding.

  19. The solonetzic process in surface soils and buried paleosols and its reflection in the mineralogical soil memory

    Science.gov (United States)

    Chizhikova, N. P.; Kovda, I. V.; Borisov, A. V.; Shishlina, N. I.

    2009-10-01

    The development of the solonetzic process in paleosols buried under kurgans and in the modern surface soils has been studied on the basis of the analysis of the clay (memory“ of the solid-phase soil components. The mineralogical characteristics show that the solonetzic process in the modern background soil is more developed. The mineralogical approach allows us to reveal the long-term changes in the soil status; it is less useful for studying the effect of short-term bioclimatic fluctuations. In the latter case, more labile soil characteristics should be used. The mineralogical method, combined with other methods, becomes more informative upon the study of soil chronosequences. Our studies have shown that the data on the clay minerals in the buried paleosols may contain specific information useful for paleoreconstructions that is not provided by other methods.

  20. What makes process models understandable?

    NARCIS (Netherlands)

    Mendling, J.; Reijers, H.A.; Cardoso, J.; Alonso, G.; Dadam, P.; Rosemann, M.

    2007-01-01

    Despite that formal and informal quality aspects are of significant importance to business process modeling, there is only little empirical work reported on process model quality and its impact factors. In this paper we investigate understandability as a proxy for quality of process models and focus

  1. The influence of grazing intensity on soil properties and degradation processes in Mediterranean rangelands (Extremadura, SW Spain)

    Science.gov (United States)

    Pulido-Fernández, Manuel; Schnabel, Susanne; Francisco Lavado-Contador, Joaquín

    2014-05-01

    Rangelands cover vast extensions of land in Spain (>90,000 km2), where a total amount of 13 millions of domestic animals graze extensively their pastures. By clear-cutting shrubs, removing selected trees and by cultivation, these rangelands were created from former Mediterranean oak forests, mainly composed by holm oak and cork oak (Quercus ilex rotundifolia and Q. suber) as tree species, Nowadays this land system is exploited economically in large farms (>100 ha), most of them held on private ownership (80% of total) and dedicated to extensive ranching. Overgrazing is common and the excessive stocking rates may deteriorate soil quality, causing economic losses and environmental damage. Many studies have been developed on the effects of livestock grazing over soil properties and degradation processes, most of them by only comparing extreme cases (e.g. ungrazed vs. grazed or overgrazed areas). The main goal of this study is to contribute to the understanding on how animal grazing affects soil properties and degradation processes. The study is particularly focused on soil compaction and sheet erosion as related to the reduction of vegetation cover by defoliation. Soil properties were analysed from 119 environmental units selected from 56 farms distributed throughout the region of Extremadura (SW Spain). The units are representative of different rangeland types, i.e. scrublands of Retama sphaerocarpa, dehesas (wooded rangelands) and treeless grasslands. Soil surface cover was determined along transects in September 2010 (antecedent rainfall: 413-923 mm) considering the following classes: bare ground, grasses, mosses, litter, stones (<2 mm) and rock outcrops. Farmer interviews were also conducted in order to quantify stocking rates and to assess land management in 12 out of 56 farms. In the farms where transects and farmer interviews could not be carried out, bare soil surface and livestock densities were estimated. Bare soil surface was determined by classifying

  2. Agricultural watershed modeling: a review for hydrology and soil erosion processes

    Directory of Open Access Journals (Sweden)

    Carlos Rogério de Mello

    2016-02-01

    Full Text Available ABSTRACT Models have been used by man for thousands of years to control his environment in a favorable way to better human living conditions. The use of hydrologic models has been a widely effective tool in order to support decision makers dealing with watersheds related to several economic and social activities, like public water supply, energy generation, and water availability for agriculture, among others. The purpose of this review is to briefly discuss some models on soil and water movement on landscapes (RUSLE, WEPP, GeoWEPP, LASH, DHSVM and AnnAGNPS to provide information about them to help and serve in a proper manner in order to discuss particular problems related to hydrology and soil erosion processes. Models have been changed and evaluated significantly in recent years, highlighting the use of remote sense, GIS and automatic calibration process, allowing them capable of simulating watersheds under a given land-use and climate change effects. However, hydrology models have almost the same physical structure, which is not enough for simulating problems related to the long-term effects of different land-uses. That has been our challenge for next future: to understand entirely the hydrology cycle, having as reference the critical zone, in which the hydrological processes act together from canopy to the bottom of aquifers.

  3. [Dynamics of unprotected soil organic carbon with the restoration process of Pinus massoniana plantation in red soil erosion area].

    Science.gov (United States)

    Lü, Mao-Kui; Xie, Jin-Sheng; Zhou, Yan-Xiang; Zeng, Hong-Da; Jiang, Jun; Chen, Xi-Xiang; Xu, Chao; Chen, Tan; Fu, Lin-Chi

    2014-01-01

    By the method of spatiotemporal substitution and taking the bare land and secondary forest as the control, we measured light fraction and particulate organic carbon in the topsoil under the Pinus massoniana woodlands of different ages with similar management histories in a red soil erosion area, to determine their dynamics and evaluate the conversion processes from unprotected to protected organic carbon. The results showed that the content and storage of soil organic carbon increased significantly along with ages in the process of vegetation restoration (P organic carbon content and distribution proportion to the total soil organic carbon increased significantly (P organic carbon mostly accumulated in the form of unprotected soil organic carbon during the initial restoration period, and reached a stable level after long-term vegetation restoration. Positive correlations were found between restoration years and the rate constant for C transferring from the unprotected to the protected soil pool (k) in 0-10 cm and 10-20 cm soil layers, which demonstrated that the unprotected soil organic carbon gradually transferred to the protected soil organic carbon in the process of vegetation restoration.

  4. Thematic issue on soil water infiltration

    Science.gov (United States)

    Infiltration is the term applied to the process of water entry into the soil, generally by downward flow through all or part of the soil surface. Understanding of infiltration concept and processes has greatly improved, over the past 30 years, and new insights have been given into modeling of non-un...

  5. Integrating Electrokinetic and Bioremediation Process for Treating Oil Contaminated Low Permeability Soil

    Science.gov (United States)

    Ramadan, Bimastyaji Surya; Effendi, Agus Jatnika; Helmy, Qomarudin

    2018-02-01

    Traditional oil mining activities always ignores environmental regulation which may cause contamination in soil and environment. Crude oil contamination in low-permeability soil complicates recovery process because it requires substantial energy for excavating and crushing the soil. Electrokinetic technology can be used as an alternative technology to treat contaminated soil and improve bioremediation process (biostimulation) through transfer of ions and nutrient that support microorganism growth. This study was conducted using a combination of electrokinetic and bioremediation processes. Result shows that the application of electrokinetic and bioremediation in low permeability soils can provide hydrocarbon removal efficiency up to 46,3% in 7 days operation. The highest amount of microorganism can be found in 3-days operation, which is 2x108 CFU/ml using surfactant as flushing fluid for solubilizing hydrocarbon molecules. Enhancing bioremediation using electrokinetic process is very potential to recover oil contaminated low permeability soil in the future.

  6. Geochemical Modeling of Trivalent Chromium Migration in Saline-Sodic Soil during Lasagna Process: Impact on Soil Physicochemical Properties

    Science.gov (United States)

    Bukhari, Alaadin; Al-Malack, Muhammad H.; Mu'azu, Nuhu D.; Essa, Mohammed H.

    2014-01-01

    Trivalent Cr is one of the heavy metals that are difficult to be removed from soil using electrokinetic study because of its geochemical properties. High buffering capacity soil is expected to reduce the mobility of the trivalent Cr and subsequently reduce the remedial efficiency thereby complicating the remediation process. In this study, geochemical modeling and migration of trivalent Cr in saline-sodic soil (high buffering capacity and alkaline) during integrated electrokinetics-adsorption remediation, called the Lasagna process, were investigated. The remedial efficiency of trivalent Cr in addition to the impacts of the Lasagna process on the physicochemical properties of the soil was studied. Box-Behnken design was used to study the interaction effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil pH, electroosmotic volume, soil electrical conductivity, current, and remedial efficiency of trivalent Cr in saline-sodic soil that was artificially spiked with Cr, Cu, Cd, Pb, Hg, phenol, and kerosene. Overall desirability of 0.715 was attained at the following optimal conditions: voltage gradient 0.36 V/cm; polarity reversal rate 17.63 hr; soil pH 10.0. Under these conditions, the expected trivalent Cr remedial efficiency is 64.75 %. PMID:25152905

  7. Effects of aerobic and anaerobic biological processes on leaching of heavy metals from soil amended with sewage sludge compost.

    Science.gov (United States)

    Fang, Wen; Wei, Yonghong; Liu, Jianguo; Kosson, David S; van der Sloot, Hans A; Zhang, Peng

    2016-12-01

    The risk from leaching of heavy metals is a major factor hindering land application of sewage sludge compost (SSC). Understanding the change in heavy metal leaching resulting from soil biological processes provides important information for assessing long-term behavior of heavy metals in the compost amended soil. In this paper, 180days aerobic incubation and 240days anaerobic incubation were conducted to investigate the effects of the aerobic and anaerobic biological processes on heavy metal leaching from soil amended with SSC, combined with chemical speciation modeling. Results showed that leaching concentrations of heavy metals at natural pH were similar before and after biological process. However, the major processes controlling heavy metals were influenced by the decrease of DOC with organic matter mineralization during biological processes. Mineralization of organic matter lowered the contribution of DOC-complexation to Ni and Zn leaching. Besides, the reducing condition produced by biological processes, particularly by the anaerobic biological process, resulted in the loss of sorption sites for As on Fe hydroxide, which increased the potential risk of As release at alkaline pH. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Simulating the influence of snow surface processes on soil moisture dynamics and streamflow generation in an alpine catchment

    Directory of Open Access Journals (Sweden)

    N. Wever

    2017-08-01

    Full Text Available The assessment of flood risks in alpine, snow-covered catchments requires an understanding of the linkage between the snow cover, soil and discharge in the stream network. Here, we apply the comprehensive, distributed model Alpine3D to investigate the role of soil moisture in the predisposition of the Dischma catchment in Switzerland to high flows from rainfall and snowmelt. The recently updated soil module of the physics-based multilayer snow cover model SNOWPACK, which solves the surface energy and mass balance in Alpine3D, is verified against soil moisture measurements at seven sites and various depths inside and in close proximity to the Dischma catchment. Measurements and simulations in such terrain are difficult and consequently, soil moisture was simulated with varying degrees of success. Differences between simulated and measured soil moisture mainly arise from an overestimation of soil freezing and an absence of a groundwater description in the Alpine3D model. Both were found to have an influence in the soil moisture measurements. Using the Alpine3D simulation as the surface scheme for a spatially explicit hydrologic response model using a travel time distribution approach for interflow and baseflow, streamflow simulations were performed for the discharge from the catchment. The streamflow simulations provided a closer agreement with observed streamflow when driving the hydrologic response model with soil water fluxes at 30 cm depth in the Alpine3D model. Performance decreased when using the 2 cm soil water flux, thereby mostly ignoring soil processes. This illustrates that the role of soil moisture is important to take into account when understanding the relationship between both snowpack runoff and rainfall and catchment discharge in high alpine terrain. However, using the soil water flux at 60 cm depth to drive the hydrologic response model also decreased its performance, indicating that an optimal soil depth to include in

  9. Integrating Electrokinetic and Bioremediation Process for Treating Oil Contaminated Low Permeability Soil

    OpenAIRE

    Surya Ramadan Bimastyaji; Jatnika Effendi Agus; Helmy Qomarudin

    2018-01-01

    Traditional oil mining activities always ignores environmental regulation which may cause contamination in soil and environment. Crude oil contamination in low-permeability soil complicates recovery process because it requires substantial energy for excavating and crushing the soil. Electrokinetic technology can be used as an alternative technology to treat contaminated soil and improve bioremediation process (biostimulation) through transfer of ions and nutrient that support microorganism gr...

  10. In situ vitrification: Test results for a contaminated soil-melting process

    International Nuclear Information System (INIS)

    Buelt, J.L.; Timmerman, C.L.; Westsik, J.H. Jr.

    1989-10-01

    In situ vitrification (ISV) is being developed at Pacific Northwest Laboratory for the Department of Energy to stabilize soils and sludges that are contaminated with radioactive and hazardous chemical wastes. ISV is a process that immobilizes contaminated soil in place by converting it to a durable glass and crystalline product similar to obsidian and basalt. In June 1987, a large-scale test of the process was completed at a transuranic-contaminated soil site. The test constituted the first full-scale demonstration of ISV at an actual site. This paper summarizes the results of that test and describes the potential adaptation of the process to radioactive and hazardous chemical waste-contaminated soils. 15 refs., 9 figs., 3 tabs

  11. An improved SOIL*EX trademark process for the removal of hazardous and radioactive contaminants from soils, sludges and other materials

    International Nuclear Information System (INIS)

    Bloom, R.R.; Bonnema, B.E.; Navratil, J.D.; Falconer, K.L.; Van Vliet, J.A.; Diel, B.N.

    1995-01-01

    Rust's patented SOIL*EX process is designed to remove hazardous and radioactive contaminants from soils, sludges and a matrix of other materials while destroying volatile organic compounds often associated with contaminated soil and debris. The process is comprised of three major process operations. The first operation involves the dissolution of contaminants that are chemically or mechanically bonded to the solid phase. The second process operation involves separation of the solid phase from the dissolution solution (mother liquor), which contains the dissolved contaminants. The final operation concentrates and removes the contaminants from the mother liquor. A pilot-scale SOIL*EX system was constructed at Rust's Clemson Technical Center for a Proof-of-Process demonstration. The demonstration program included the design, fabrication, and operation of pilot scale and demonstration equipment and systems. The pilot plant, an accurate scaled-down version of a proposed full-scale treatment system, was operated for five months to demonstrate the efficiency of the overall process. The pilot plant test program focused on demonstrating that the SOIL*EX process would remove and concentrate the contaminants and destroy volatile organic compounds. The pilot plant processed nearly 20 tons of soils and sludges, and test results indicated that all contaminants of concern were removed. Additionally, Rust completed numerous bench scale tests to optimize the chemistry. This paper discusses the pilot plant test criteria and results along with the salient design features of the SOIL*EX system and planned improvements

  12. Integrating Electrokinetic and Bioremediation Process for Treating Oil Contaminated Low Permeability Soil

    Directory of Open Access Journals (Sweden)

    Surya Ramadan Bimastyaji

    2018-01-01

    Full Text Available Traditional oil mining activities always ignores environmental regulation which may cause contamination in soil and environment. Crude oil contamination in low-permeability soil complicates recovery process because it requires substantial energy for excavating and crushing the soil. Electrokinetic technology can be used as an alternative technology to treat contaminated soil and improve bioremediation process (biostimulation through transfer of ions and nutrient that support microorganism growth. This study was conducted using a combination of electrokinetic and bioremediation processes. Result shows that the application of electrokinetic and bioremediation in low permeability soils can provide hydrocarbon removal efficiency up to 46,3% in 7 days operation. The highest amount of microorganism can be found in 3-days operation, which is 2x108 CFU/ml using surfactant as flushing fluid for solubilizing hydrocarbon molecules. Enhancing bioremediation using electrokinetic process is very potential to recover oil contaminated low permeability soil in the future.

  13. Understanding Soil Erosion in Irrigated Agriculture

    OpenAIRE

    O' Schwankl, Lawrence J

    2006-01-01

    A soil's physical and chemical properties determine whether it is vulnerable to erosion, which can reduce soil quality and cause other problems besides. Learn the basics of identifying what type of erosion is affecting your land and what's causing it.

  14. Cracking up (and down): Linking multi-domain hydraulic properties with multi-scale hydrological processes in shrink-swell soils

    Science.gov (United States)

    Stewart, R. D.; Rupp, D. E.; Abou Najm, M. R.; Selker, J. S.

    2017-12-01

    Shrink-swell soils, often classified as Vertisols or vertic intergrades, are found on every continent except Antarctica and within many agricultural and urban regions. These soils are characterized by cyclical shrinking and swelling, in which bulk density and porosity distributions vary as functions of time and soil moisture. Crack networks that form in these soils act as dominant environmental controls on the movement of water, contaminants, and gases, making it important to develop fundamental understanding and tractable models of their hydrologic characteristics and behaviors. In this study, which took place primarily in the Secano Interior region of South-Central Chile, we quantified soil-water interactions across scales using a diverse and innovative dataset. These measurements were then utilized to develop a set of parsimonious multi-domain models for describing hydraulic properties and hydrological processes in shrink-swell soils. In a series of examples, we show how this model can predict porosity distributions, crack widths, saturated hydraulic conductivities, and surface runoff (i.e., overland flow) thresholds, by capturing the dominant mechanisms by which water moves through and interacts with clayey soils. Altogether, these models successfully link small-scale shrinkage/swelling behaviors with large-scale thresholds, and can be applied to describe important processes such as infiltration, overland flow development, and the preferential flow and transport of fluids and gases.

  15. Comparison of seasonal soil microbial process in snow-covered temperate ecosystems of northern China.

    Directory of Open Access Journals (Sweden)

    Xinyue Zhang

    Full Text Available More than half of the earth's terrestrial surface currently experiences seasonal snow cover and soil frost. Winter compositional and functional investigations in soil microbial community are frequently conducted in alpine tundra and boreal forest ecosystems. However, little information on winter microbial biogeochemistry is known from seasonally snow-covered temperate ecosystems. As decomposer microbes may differ in their ability/strategy to efficiently use soil organic carbon (SOC within different phases of the year, understanding seasonal microbial process will increase our knowledge of biogeochemical cycling from the aspect of decomposition rates and corresponding nutrient dynamics. In this study, we measured soil microbial biomass, community composition and potential SOC mineralization rates in winter and summer, from six temperate ecosystems in northern China. Our results showed a clear pattern of increased microbial biomass C to nitrogen (N ratio in most winter soils. Concurrently, a shift in soil microbial community composition occurred with higher fungal to bacterial biomass ratio and gram negative (G- to gram positive (G+ bacterial biomass ratio in winter than in summer. Furthermore, potential SOC mineralization rate was higher in winter than in summer. Our study demonstrated a distinct transition of microbial community structure and function from winter to summer in temperate snow-covered ecosystems. Microbial N immobilization in winter may not be the major contributor for plant growth in the following spring.

  16. Deformational mass transport and invasive processes in soil evolution

    Science.gov (United States)

    Brimhall, George H.; Chadwick, Oliver A.; Lewis, Chris J.; Compston, William; Williams, Ian S.; Danti, Kathy J.; Dietrich, William E.; Power, Mary E.; Hendricks, David; Bratt, James

    1992-01-01

    Channels left in soil by decayed roots and burrowing animals allow organic and inorganic precipitates and detritus to move through soil from above, to depths at which the minuteness of pores restricts further passage. Consecutive translocation-and-root-growth phases stir the soil, constituting an invasive, dilatational process which generates cumulative strains. Below the depths thus affected, mineral dissolution by descending organic acids leads to internal collapse; this softened/condensed precursor horizon is then transformed into soil via biological activity that mixes and expands the evolving residuum through root and micropore-network invasion.

  17. Induced polarization for characterizing and monitoring soil stabilization processes

    Science.gov (United States)

    Saneiyan, S.; Ntarlagiannis, D.; Werkema, D. D., Jr.

    2017-12-01

    Soil stabilization is critical in addressing engineering problems related to building foundation support, road construction and soil erosion among others. To increase soil strength, the stiffness of the soil is enhanced through injection/precipitation of a chemical agents or minerals. Methods such as cement injection and microbial induced carbonate precipitation (MICP) are commonly applied. Verification of a successful soil stabilization project is often challenging as treatment areas are spatially extensive and invasive sampling is expensive, time consuming and limited to sporadic points at discrete times. The geophysical method, complex conductivity (CC), is sensitive to mineral surface properties, hence a promising method to monitor soil stabilization projects. Previous laboratory work has established the sensitivity of CC on MICP processes. We performed a MICP soil stabilization projects and collected CC data for the duration of the treatment (15 days). Subsurface images show small, but very clear changes, in the area of MICP treatment; the changes observed fully agree with the bio-geochemical monitoring, and previous laboratory experiments. Our results strongly suggest that CC is sensitive to field MICP treatments. Finally, our results show that good quality data alone are not adequate for the correct interpretation of field CC data, at least when the signals are low. Informed data processing routines and the inverse modeling parameters are required to produce optimal results.

  18. Dynamic arsenic aging processes and their mechanisms in nine types of Chinese soils.

    Science.gov (United States)

    Wang, Yanan; Zeng, Xibai; Lu, Yahai; Bai, Lingyu; Su, Shiming; Wu, Cuixia

    2017-11-01

    Although specific soil properties controlling the arsenic (As) aging process have been studied extensively, few investigations have attempted to determine how soil types influence As bioavailability and fractionations in soils. Nine types of soil were selected from typical grain producing areas in China, and the bioavailability and fractionations of As during aging were measured. Results showed that available As in all soils rapidly decreased in the first 30 days and slowly declined thereafter. In spiked soils, As easily became less available and less toxic in low pH soils compared to high pH soils, demonstrating the importance of soil pH on As availability. Results from fitting kinetic equations revealed that the pseudo-second-order model described the As aging processes well in all soils (R 2  = 0.945-0.999, P soil clay content. The shortest time for approximate stabilization of As aging was 28 d in latosol soils (LS), while the longest approximate equilibrium time was 169 d in cinnamon soils (CS). Individual soil properties controlling the variation in different As fractionations further confirmed that the influences of soil types on As aging were the result of the combined effects of soil properties and a time-consuming redistribution process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Permafrost sub-grid heterogeneity of soil properties key for 3-D soil processes and future climate projections

    Directory of Open Access Journals (Sweden)

    Christian Beer

    2016-08-01

    Full Text Available There are massive carbon stocks stored in permafrost-affected soils due to the 3-D soil movement process called cryoturbation. For a reliable projection of the past, recent and future Arctic carbon balance, and hence climate, a reliable concept for representing cryoturbation in a land surface model (LSM is required. The basis of the underlying transport processes is pedon-scale heterogeneity of soil hydrological and thermal properties as well as insulating layers, such as snow and vegetation. Today we still lack a concept of how to reliably represent pedon-scale properties and processes in a LSM. One possibility could be a statistical approach. This perspective paper demonstrates the importance of sub-grid heterogeneity in permafrost soils as a pre-requisite to implement any lateral transport parametrization. Representing such heterogeneity at the sub-pixel size of a LSM is the next logical step of model advancements. As a result of a theoretical experiment, heterogeneity of thermal and hydrological soil properties alone lead to a remarkable initial sub-grid range of subsoil temperature of 2 deg C, and active-layer thickness of 150 cm in East Siberia. These results show the way forward in representing combined lateral and vertical transport of water and soil in LSMs.

  20. In Situ Vitrification: Recent test results for a contaminated soil melting process

    International Nuclear Information System (INIS)

    Buelt, J.L.; Timmerman, C.L.; Westsik, J.H. Jr.

    1988-06-01

    In Situ Vitrification (ISV) is being developed at Pacific Northwest Laboratory for the Department of Energy and other clients for the stabilization of soils and sludges contaminated with radioactive and hazardous chemical wastes. ISV is a process that immobilizes contaminated soil in place by converting it to a durable glass and crystalline product that is similar to obsidian. In June 1987, a large-scale test of the process was completed at a transuranic- contaminated soil site. This constituted the first full-scale demonstration of the ISV process at an actual site. This paper summarizes the preliminary results of this test and describes the processes' potential adaptation to radioactive and hazardous chemical waste contaminated soils. 10 refs., 10 figs

  1. [Effects of soil properties on the stabilization process of cadmium in Cd alone and Cd-Pb contaminated soils].

    Science.gov (United States)

    Wu, Man; Xu, Ming-Gang; Zhang, Wen-Ju; Wu, Hai-Wen

    2012-07-01

    In order to clarify the effects of soil properties on the stabilization process of the cadmium (Cd) added, 11 different soils were collected and incubated under a moisture content of 65%-70% at 25 degrees C. The changes of available Cd contents with incubation time (in 360 days) in Cd and Cd-Pb contaminated treatments were determined. The stabilization process was simulated using dynamic equations. The results showed that after 1.0 mg x kg(-1) Cd or 500 mg x kg(-1) Pb + 1.0 mg x kg(-1) Cd were added into the soil, the available Cd content decreased rapidly during the first 15 days, and then the decreasing rate slowed down, with an equilibrium content reached after 60 days' incubation. In Cd-Pb contaminated soils, the presence of Pb increased the content of available Cd. The stabilization process of Cd could be well described by the second-order equation and the first order exponential decay; meanwhile, dynamic parameters including equilibrium content and stabilization velocity were used to characterize the stabilization process of Cd. These two key dynamic parameters were significantly affected by soil properties. Correlation analysis and stepwise regression suggested that high pH and high cation exchange capacity (CEC) significantly retarded the availability of Cd. High pH had the paramount effect on the equilibrium content. The stabilization velocity of Cd was influenced by the soil texture. It took shorter time for Cd to get stabilized in sandy soil than in the clay.

  2. The response of soil processes to climate change

    DEFF Research Database (Denmark)

    Emmett, B.A.; Beier, C.; Estiarte, M.

    2004-01-01

    Predicted changes in climate may affect key soil processes such as respiration and net nitrogen (N) mineralization and thus key ecosystem functions such as carbon (C) storage and nutrient availability. To identify the sensitivity of shrubland soils to predicted climate changes, we have carried out...... the environmental gradient with the results from the manipulation experiments provides evidence for strong climate controls on soil respiration, net N mineralization and nitrification, and litter decomposition. Trends of 0%-19% increases of soil respiration in response to warming and decreases of 3%-29% in response...... to drought were observed. Across the environmental gradient and below soil temperatures of 20degreesC at a depth of 5-10 cm, a mean Q(10) of 4.1 in respiration rates was observed although this varied from 2.4 to 7.0 between sites. Highest Q(10), values were observed in Spain and the UK and were therefore...

  3. Investigation of Rainfall-Runoff Processes and Soil Moisture Dynamics in Grassland Plots under Simulated Rainfall Conditions

    Directory of Open Access Journals (Sweden)

    Nana Zhao

    2014-09-01

    Full Text Available The characteristics of rainfall-runoff are important aspects of hydrological processes. In this study, rainfall-runoff processes and soil moisture dynamics at different soil depths and slope positions of grassland with two different row spacings (5 cm and 10 cm, respectively, referred to as R5 and R10 were analyzed, by means of a solution of rainfall simulation experiments. Bare land was also considered as a comparison. The results showed that the mechanism of runoff generation was mainly excess infiltration overland flow. The surface runoff amount of R5 plot was greater than that of R10, while the interflow amount of R10 was larger than that of R5 plot, although the differences of the subsurface runoff processes between plots R5 and R10 were little. The effects of rainfall intensity on the surface runoff were significant, but not obvious on the interflow and recession curve, which can be described as a simple exponential equation, with a fitting degree of up to 0.854–0.996. The response of soil moisture to rainfall and evapotranspiration was mainly in the 0–20 cm layer, and the response at the 40 cm layer to rainfall was slower and generally occurred after the rainfall stopped. The upper slope generally responded fastest to rainfall, and the foot of the slope was the slowest. The results presented here could provide insights into understanding the surface and subsurface runoff processes and soil moisture dynamics for grasslands in semi-arid regions.

  4. Toward a complete soil C and N cycle: incorporating the soil fauna.

    Science.gov (United States)

    Osler, Graham H R; Sommerkorn, Martin

    2007-07-01

    Increasing pressures on ecosystems through global climate and other land-use changes require predictive models of their consequences for vital processes such as soil carbon and nitrogen cycling. These environmental changes will undoubtedly affect soil fauna. There is sufficient evidence that soil fauna have significant effects on all of the pools and fluxes in these cycles, and soil fauna mineralize more N than microbes in some habitats. It is therefore essential that their role in the C and N cycle be understood. Here we introduce a new framework that attempts to reconcile our current understanding of the role of soil fauna within the C and N cycle with biogeochemical models and soil food web models. Using a simple stoichiometric approach to integrate our understanding of N mineralization and immobilization with the C:N ratio of substrates and faunal life history characteristics, as used in food web studies, we consider two mechanisms through which soil fauna can directly affect N cycling. First, fauna that are efficient assimilators of C and that have prey with similar C:N ratios as themselves, are likely to contribute directly to the mineral N pool. Second, fauna that are inefficient assimilators of C and that have prey with higher C:N ratios than themselves are likely to contribute most to the dissolved organic matter (DOM) pool. Different groups of fauna are likely to contribute to these two pathways. Protists and bacteria-feeding nematodes are more likely to be important for N mineralization through grazing on microbial biomass, while the effects of enchytraeids and fungal-feeding microarthropods are most likely to be important for DOM production. The model is consistent with experimental evidence and, despite its simplicity, provides a new framework in which the effects of soil fauna on pools and fluxes can be understood. Further, the model highlights our gaps in knowledge, not only for effects of soil fauna on processes, but also for understanding of the

  5. Effects of Near Soil Surface Characteristics on the Soil Detachment Process in a Chronological Series of Vegetation Restoration

    Science.gov (United States)

    Wang, Bing

    2017-04-01

    The effects of near soil surface characteristics on the soil detachment process might be different at different stages of vegetation restoration. This study was performed to investigate the effects of the near soil surface factors of plant litter, biological soil crusts (BSCs), dead roots and live roots on the soil detachment process by overland flow at different stages of restoration. Soil samples (1 m long, 0.1 m wide, and 0.05 m high) under four treatment conditions were collected from 1-yr-old and 24-yr-old natural grasslands and subjected to flow scouring under five different shear stresses ranging from 5.3 to 14.6 Pa. The results indicated that the effects of near soil surface characteristics on soil detachment were substantial during the process of vegetation restoration. The total reduction in the soil detachment capacity of the 1-yr-old grassland was 98.1%, and of this total, 7.9%, 30.0% and 60.2% was attributed to the litter, BSCs and plant roots, respectively. In the 24-yr-old grassland, the soil detachment capacity decreased by 99.0%, of which 13.2%, 23.5% and 62.3% was caused by the litter, BSCs and plant roots, respectively. Combined with the previously published data of a 7-yr-old grassland, the influence of plant litter on soil detachment was demonstrated to increase with restoration time, but soil detachment was also affected by the litter type and composition. The role of BSCs was greater than that of plant litter in reducing soil detachment during the early stages of vegetation recovery. However, its contribution weakened with time since restoration. The influence of plant roots accounted for at least half or up to two-thirds of the total near soil surface factors, of which more than 72.6% was attributed to the physical binding effects of the roots. The chemical bonding effect of the roots increased with time since restoration and was greater than the effect of the litter on soil detachment in the late stages of vegetation restoration. The

  6. Effect of a base-catalyzed dechlorination process on the genotoxicity of PCB-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    DeMarini, D.M.; Houk, V.S.; Kornel, A.; Rogers, C.J.

    1992-01-01

    We evaluated the genotoxicity of dichloromethane (DCM) extracts of PCB-contaminated soil before and after the soil had been treated by a base-catalyzed dechlorination process, which involved heating a mixture of the soil, polyethylene glycol, and sodium hydroxide to 250-350 C. This dechlorination process reduced by over 99% the PCB concentration in the soil, which was initially 2,200 ppm. The DCM extracts of both control and treated soils were not mutagenic in strain TA100 of Salmonella, but they were mutagenic in strain TA98. The base-catalyzed dechlorination process reduced the mutagenic potency of the soil by approximately one-half. The DCM extracts of the soils before and after treatment were equally genotoxic in a prophage-induction assay in E. coli, which detects some chlorinated organic carcinogens that were not detected by the Salmonella mutagenicity assay. These results show that treatment of PCB-contaminated soil by this base-catalyzed dechlorination process did not increase the genotoxicity of the soil.

  7. Understanding the role of soil erosion on co{sub 2}-c loss using {sup 13}c isotopic signatures in abandoned Mediterranean agricultural land

    Energy Technology Data Exchange (ETDEWEB)

    Novara, Agata, E-mail: agata.novara@unipa.it [Department of Scienze Agrarie e Forestali, University of Palermo, viale delle Scienze, ed.4, 90128 Palermo (Italy); Keesstra, Saskia, E-mail: saskia.keesstra@wur.nl [Soil Physics and Land Management Group, Wageningen University, Droevendaalsesteeg 4, 6708PB Wageningen (Netherlands); Cerdà, Artemio, E-mail: artemio.cerda@uv.es [Soil Erosion and Degradation Research Group, Department of Geography, University of Valencia, Valencia (Spain); Pereira, Paulo, E-mail: paulo@mruni.eu [Environmental Management Centre, Mykolas Romeris University, Vilnius (Lithuania); Gristina, Luciano [Department of Scienze Agrarie e Forestali, University of Palermo, viale delle Scienze, ed.4, 90128 Palermo (Italy)

    2016-04-15

    Understanding soil water erosion processes is essential to evaluate the redistribution of soil organic carbon (SOC) within a landscape and is fundamental to assess the role of soil erosion in the global carbon (C) budget. The main aim of this study was to estimate the C redistribution and losses using {sup 13}C natural abundance. Carbon losses in soil sediment, dissolved organic carbon (DOC) and CO{sub 2} emission were determined. Four bounded parallel plots were installed on a 10% slope. In the upper part of the plots, C{sub 3}soil was replaced with C{sub 4}soil. The SOC and δ{sup 13}C were measured after 145.2 mm rainfall in the upper (2 m far from C{sub 4}strip), middle (4 m far from C{sub 4}strip) lower (6 m far from C{sub 4}strip) trams of the plot and in the sediments collected in the Gerlach collector at the lower part of the plot. A laboratory incubation experiment was performed to evaluate the CO{sub 2} emission rate of soils in each area. OC was mainly lost in the sediments as 2.08 g{sup −2} of C was lost after 145.2 mm rainfall. DOC losses were only 5.61% of off-site OC loss. Three months after the beginning of the experiment, 15.90% of SOC in the upper tram of the plot had a C{sub 4} origin. The C{sub 4}-SOC content decreased along the 6 m length of the plot, and in the sediments collected by the Gerlach collector. CO{sub 2} emission rate was high in the upper plot tram due to the high SOC content. The discrimination of CO{sub 2} in C{sub 3} and C{sub 4} portion permitted to increase our level of understanding on the stability of SOC and its resilience to decomposition. The transport of sediments along the plot increased SOC mineralization by 43%. Our study underlined the impact of rainfall in C losses in soil and water in abandoned Mediterranean agriculture fields and the consequent implications on the C balance. - Highlights: • The soil C isotopic difference is a useful tracer for erosion processes studies. • The main loss of Carbon was

  8. Fenton process-affected transformation of roxarsone in paddy rice soils: Effects on plant growth and arsenic accumulation in rice grain.

    Science.gov (United States)

    Qin, Junhao; Li, Huashou; Lin, Chuxia

    2016-08-01

    Batch and greenhouse experiments were conducted to examine the effects of Fenton process on transformation of roxarsone in soils and its resulting impacts on the growth of and As uptake by a rice plant cultivar. The results show that addition of Fenton reagent markedly accelerated the degradation of roxarsone and produced arsenite, which was otherwise absent in the soil without added Fenton reagent. Methylation of arsenate was also enhanced by Fenton process in the earlier part of the experiment due to abundant supply of arsenate from Roxarsone degradation. Overall, addition of Fenton reagent resulted in the predominant presence of arsenate in the soils. Fenton process significantly improved the growth of rice in the maturity stage of the first crop, The concentration of methylated As species in the rice plant tissues among the different growth stages was highly variable. Addition of Fenton reagent into the soils led to reduced uptake of soil-borne As by the rice plants and this had a significant effect on reducing the accumulation of As in rice grains. The findings have implications for understanding As biogeochemistry in paddy rice field receiving rainwater-borne H2O2 and for development of mitigation strategies to reduce accumulation of As in rice grains. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Soil as a Sustainable Resource for the Bioeconomy - BonaRes

    Science.gov (United States)

    Wollschläger, Ute; Amelung, Wulf; Brüggemann, Nicolas; Brunotte, Joachim; Gebbers, Robin; Grosch, Rita; Heinrich, Uwe; Helming, Katharina; Kiese, Ralf; Leinweber, Peter; Reinhold-Hurek, Barbara; Veldkamp, Edzo; Vogel, Hans-Jörg; Winkelmann, Traud

    2017-04-01

    Fertile soils are a fundamental resource for the production of biomass and provision of food and energy. A growing world population and latest climate targets lead to an increasing demand for bio-based products which require preserving and - ideally - improving the long-term productivity of soils as a bio-economic resource. At the same time, other soil functions and ecosystem services need to be maintained: filter for clean water, carbon sequestration, provision and recycling of nutrients, and habitat for biological activity. All these soil functions result from the interaction of a multitude of physical, chemical and biological processes which are insufficiently understood. In addition, we lack understanding about the interplay between the socio-economic system and the soil system and how soil functions benefit human wellbeing, including SDGs. However, a solid and integrated assessment of soil quality requires the consideration of the ensemble of soil functions and its relation to soil management. To make soil management sustainable, we need to establish a scientific knowledge base of complex soil system processes that allows for developing models and tools to quantitatively predict the impact of a multitude of management measures on soil functions. This will finally allow for the provision of options for a site-specific, sustainable soil management. To face this challenge, the German Federal Ministry of Education and Research (BMBF) recently launched the funding program "Soil as a Sustainable Resource for the Bioeconomy - BonaRes". In a joint effort, ten collaborative projects and the coordinating BonaRes Centre are engaged to close existing knowledge gaps for a profound and systemic assessment and understanding of soil functions and their sensitivity to soil management. In BonaRes, the complete process chain of sustainable soil use in the context of a sustainable bio-economy is being addressed: from understanding of soil processes using state-of the art and

  10. Load-bearing processes in agricultural wheel-soil systems

    NARCIS (Netherlands)

    Tijink, F.G.J.

    1988-01-01

    In soil dynamics we distinguish between loosening and loadbearing processes. Load-bearing processes which can occur under agricultural rollers, wheels, and tyres are dealt with In this dissertation.

    We classify rollers, wheels, and tyres and treat some general aspects of these

  11. Predicting plot soil loss by empirical and process-oriented approaches: A review

    Science.gov (United States)

    Soil erosion directly affects the quality of the soil, its agricultural productivity and its biological diversity. Many mathematical models have been developed to estimate plot soil erosion at different temporal scales. At present, empirical soil loss equations and process-oriented models are consid...

  12. Hydromorphic soil development in the coastal temperate rainforest of Alaska

    Science.gov (United States)

    David V. D' Amore; Chien-Lu Ping; Paul A. Herendeen

    2015-01-01

    Predictive relationships between soil drainage and soil morphological features are essential for understanding hydromorphic processes in soils. The linkage between patterns of soil saturation, reduction, and reductimorphic soil properties has not been extensively studied in mountainous forested terrain. We measured soil saturation and reduction during a 4-yr period in...

  13. Processes regulating nitric oxide emissions from soils

    DEFF Research Database (Denmark)

    Pilegaard, Kim

    2013-01-01

    , the net result is complex and dependent on several factors such as nitrogen availability, organic matter content, oxygen status, soil moisture, pH and temperature. This paper reviews recent knowledge on processes forming NO in soils and the factors controlling its emission to the atmosphere. Schemes......Nitric oxide (NO) is a reactive gas that plays an important role in atmospheric chemistry by influencing the production and destruction of ozone and thereby the oxidizing capacity of the atmosphere. NO also contributes by its oxidation products to the formation of acid rain. The major sources...

  14. Current State and Development of Land Degradation Processes Based on Soil Monitoring in Slovakia

    Directory of Open Access Journals (Sweden)

    Kobza Jozef

    2017-08-01

    Full Text Available Current state and development of land degradation processes based on soil monitoring system in Slovakia is evaluated in this contribution. Soil monitoring system in Slovakia is consistently running since 1993 year in 5-years repetitions. Soil monitoring network in Slovakia is constructed using ecological principle, taking into account all main soil types and subtypes, soil organic matter, climatic regions, emission regions, polluted and non-polluted regions as well as various land use. The result of soil monitoring network is 318 sites on agricultural land in Slovakia. Soil properties are evaluated according to the main threats to soil relating to European Commission recommendation for European soil monitoring performance as follows: soil erosion and compaction, soil acidification, decline in soil organic matter and soil contamination. The most significant change has been determined in physical degradation of soils. The physical degradation was especially manifested in compacted and the eroded soils. It was determined that about 39% of agricultural land is potentially affected by soil erosion in Slovakia. In addition, slight decline in soil organic matter indicates the serious facts on evaluation and extension of soil degradation processes during the last period in Slovakia. Soil contamination is without significant change for the time being. It means the soils contaminated before soil monitoring process this unfavourable state lasts also at present.

  15. Coagulation-flocculation process applied to wastewaters generated in hydrocarbon-contaminated soil washing

    International Nuclear Information System (INIS)

    Torres, L. g.; Belloc, C.; Iturbe, R.; Bandala, E.

    2009-01-01

    A wastewater produced in the contaminated soil washing was treated by means of coagulation-flocculation (CF) process. the wastewater treatment in this work continued petroleum hydrocarbons, a surfactant, i. e., sodium dodecyl sulphate (SDS) as well as salts, humic acids and other constituents that were lixiviated rom the soil during the washing process. The aim of this work was to develop a process for treating the wastewaters generated when washing hydrocarbon-contaminated soils in such a way that it could be recycled to the washing process, and at the end of the cleaning up, the waters could be disposed properly. (Author)

  16. Factors of influencing dissolved organic carbon stabilization in two cambic forest soils with contrasting soil-forming processes

    Science.gov (United States)

    Kawasaki, M.; Ohte, N.; Asano, Y.; Uchida, T.; Kabeya, N.; Kim, S.

    2004-05-01

    Stabilization of Dissolved Organic Carbon (DOC) in forest soil is a major process of soil organic carbon formation. However, the factors influencing DOC stabilization are poorly understood. To clarify the factors that affect the stabilization of DOC in forest soil mantle, we measured DOC concentrations and soil properties which were DOC adsorption efficiency at two adjacent cambic forest soils with contrasting forest management histories in Tanakami Mountains, central Japan. Matsuzawa was devastated about 1,200 years ago by excessive timber use and remained denuded for a long period. Hillside restoration and reforestation work have been carried out over the last 100 years and soil loss has been reduced. Fudoji is covered with undisturbed forest (mixed stands of cypress and oaks) with developed forest soils (more than 2,600 years old). There was no apparent seasonal variation in DOC concentration in the soil solution in either catchment. In addition, there were no significant relationships between the DOC concentration, soil temperature, and new water ratio. These results indicate that temporal variation in biological activity and rainfall-runoff process have little effect on temporal variation in DOC. The vertical variation in the DOC adsorption efficiency and DOC concentration differed between Matsuzawa and Fudoji, and the highest DOC removal rate occurred at the lowest DOC adsorption efficiency in the 0 to 10-cm soil layer at Fudoji. These results suggest that DOC removal rate is independent of DOC adsorption efficiency. Below 60 cm soil depth, DOC fluxes were constant and dissolved organic Al concentrations were little or zero in either catchment. These results suggest that abiotic precipitation of DOC is a major mechanism for stabilization of DOC. Therefore, DOC content which is able to form metal complexes may be the most important factor of influencing DOC stabilization in cambic forest soil.

  17. Soil mapping and modelling for evaluation of the effects of historical and present-day soil erosion

    Science.gov (United States)

    Smetanova, Anna; Szwarczewski, Piotr

    2016-04-01

    The loess hilly lands in Danube Lowland are characterized by patchy soil-scape. The soil erosion processes uncover the subsurface, bright loess horizon, while non-eroded and colluvial soils are of the dark colour, in the chernozem area. With the modernisation of agriculture since the 1950's and in the process of collectivization, when small fields were merged into bigger, the soil degradation progressed. However, the analysis of historical sources and sediment archives showed the proofs of historical soil erosion. The objective of this study is to map the soil erosion patterns in connection of both pre- and post-collectivization landscape and to understand the accordingly developed soil erosion patterns. The combined methods of soil mapping and soil erosion modelling were applied in the part of the Trnavska pahorkatina Hilly Land in Danube Lowland. The detailed soil mapping in a zero-order catchment (0.28 km²) uncovered the removal of surface soil horizon of 0.6m or more, while the colluvial soils were about 1.1m deep. The soil properties and dating helped to describe the original soil profile in the valley bottom, and reconstruct the history of soil erosion in the catchment. The soil erosion model was applied using the reconstructed land use patterns in order to understand the effect of recent and historical soil erosion in the lowland landscape. This work was supported by the Slovak Research and Development Agency under the contract ESF-EC-0006-07 and APVV-0625-11; Anna Smetanová has received the support of the AgreenSkills fellowship (under grant agreement n°267196).

  18. Mechanisms of Soil Carbon Sequestration

    Science.gov (United States)

    Lal, Rattan

    2015-04-01

    Carbon (C) sequestration in soil is one of the several strategies of reducing the net emission of CO2 into the atmosphere. Of the two components, soil organic C (SOC) and soil inorganic C (SIC), SOC is an important control of edaphic properties and processes. In addition to off-setting part of the anthropogenic emissions, enhancing SOC concentration to above the threshold level (~1.5-2.0%) in the root zone has numerous ancillary benefits including food and nutritional security, biodiversity, water quality, among others. Because of its critical importance in human wellbeing and nature conservancy, scientific processes must be sufficiently understood with regards to: i) the potential attainable, and actual sink capacity of SOC and SIC, ii) permanence of the C sequestered its turnover and mean residence time, iii) the amount of biomass C needed (Mg/ha/yr) to maintain and enhance SOC pool, and to create a positive C budget, iv) factors governing the depth distribution of SOC, v) physical, chemical and biological mechanisms affecting the rate of decomposition by biotic and abiotic processes, vi) role of soil aggregation in sequestration and protection of SOC and SIC pool, vii) the importance of root system and its exudates in transfer of biomass-C into the SOC pools, viii) significance of biogenic processes in formation of secondary carbonates, ix) the role of dissolved organic C (DOC) in sequestration of SOC and SIC, and x) importance of weathering of alumino-silicates (e.g., powered olivine) in SIC sequestration. Lack of understanding of these and other basic processes leads to misunderstanding, inconsistencies in interpretation of empirical data, and futile debates. Identification of site-specific management practices is also facilitated by understanding of the basic processes of sequestration of SOC and SIC. Sustainable intensification of agroecosystems -- producing more from less by enhancing the use efficiency and reducing losses of inputs, necessitates thorough

  19. [Soil hydrolase characteristics in late soil-thawing period in subalpine/alpine forests of west Sichuan].

    Science.gov (United States)

    Tan, Bo; Wu, Fu-Zhong; Yang, Wan-Qin; Yu, Sheng; Yang, Yu-Lian; Wang, Ao

    2011-05-01

    Late soil-thawing period is a critical stage connecting winter and growth season. The significant temperature fluctuation at this stage might have strong effects on soil ecological processes. In order to understand the soil biochemical processes at this stage in the subalpine/alpine forests of west Sichuan, soil samples were collected from the representative forests including primary fir forest, fir and birch mixed forest, and secondary fir forest in March 5-April 25, 2009, with the activities of soil invertase, urease, and phosphatase (neutral, acid and alkaline phosphatases) measured. In soil frozen period, the activities of the three enzymes in test forests still kept relatively higher. With the increase of soil temperature, the activities of hydrolases at the early stage of soil-thawing decreased rapidly after a sharp increase, except for neutral phosphatease. Thereafter, there was an increase in the activities of urease and phosphatase. Relative to soil mineral layer, soil organic layer had higher hydrolase activity in late soil-thawing period, and showed more obvious responses to the variation of soil temperature.

  20. The Accelerated Urbanization Process: A Threat to Soil Resources in Eastern China

    Directory of Open Access Journals (Sweden)

    Jiadan Li

    2015-06-01

    Full Text Available The eastern coastal region of China has been experiencing rapid urbanization which has imposed great challenges on soil resources, characterized by soil sealing and fragmented soil landscapes. Taking Zhejiang Province—a fairly economically-developed and highly-urbanized region in eastern China—as a case study, a practical framework that integrates remote sensing, GIS, soil quality assessment and landscape analysis was employed to track and analyze the rapid urbanization process and spatiotemporal dynamics of soil sealing and landscape change from 1990 to 2010. Meanwhile, this paper qualitatively explored the regional inequality and characteristics in soil sealing intensity among cities of different geo-zones in Zhejiang Province. Results showed that total area of 6420 km2 had been sealed during the past two decades for the entire study area, which represents 6.2% of the provincial area. Among these sealed soils, 68.6% are fertile soils located in flat plains, such as Paddy soils. Soil landscapes became more fragmented and dispersed in distribution, more irregular and complex in shape, and less dominant and diverse in soil type, as evidenced by the constant change of various spatial landscape metrics. What is more, different geo-zones exhibited significant differences in dynamics of soil sealing intensity, soil composition and soil landscape patterns. The permanent loss of valuable soil resource and increasing fragmented soil landscape patterns concomitant with rapid urbanization processes may inevitably bring about potential threats to regional soil resources and food security.

  1. Understanding Arsenic Dynamics in Agronomic Systems to ...

    Science.gov (United States)

    This review is on arsenic in agronomic systems, and covers processes that influence the entry of arsenic into the human food supply. The scope is from sources of arsenic (natural and anthropogenic) in soils, biogeochemical and rhizosphere processes that control arsenic speciation and availability, through to mechanisms of uptake by crop plants and potential mitigation strategies. This review makes a case for taking steps to prevent or limit crop uptake of arsenic, wherever possible, and to work toward a long-term solution to the presence of arsenic in agronomic systems. The past two decades have seen important advances in our understanding of how biogeochemical and physiological processes influence human exposure to soil arsenic, and thus must now prompt an informed reconsideration and unification of regulations to protect the quality of agricultural and residential soils. Consumption of staple foods such as rice, beverages such as apple juice, or vegetables grown in historically arsenic-contaminated soils is now recognized as a tangible route of arsenic exposure that, in many cases, is more significant than exposure from drinking water. Understanding the sources of arsenic to crop plants and the factors that influence them is key to reducing exposure now and preventing exposure in future. In addition to the abundant natural sources of arsenic, there are a large number of industrial and agricultural sources of arsenic to the soil; from mining wastes, coal fly

  2. Ectomycorrhizal fungi slow soil carbon cycling.

    Science.gov (United States)

    Averill, Colin; Hawkes, Christine V

    2016-08-01

    Respiration of soil organic carbon is one of the largest fluxes of CO2 on earth. Understanding the processes that regulate soil respiration is critical for predicting future climate. Recent work has suggested that soil carbon respiration may be reduced by competition for nitrogen between symbiotic ectomycorrhizal fungi that associate with plant roots and free-living microbial decomposers, which is consistent with increased soil carbon storage in ectomycorrhizal ecosystems globally. However, experimental tests of the mycorrhizal competition hypothesis are lacking. Here we show that ectomycorrhizal roots and hyphae decrease soil carbon respiration rates by up to 67% under field conditions in two separate field exclusion experiments, and this likely occurs via competition for soil nitrogen, an effect larger than 2 °C soil warming. These findings support mycorrhizal competition for nitrogen as an independent driver of soil carbon balance and demonstrate the need to understand microbial community interactions to predict ecosystem feedbacks to global climate. © 2016 John Wiley & Sons Ltd/CNRS.

  3. BIOCHEMICAL PROCESSES IN CHERNOZEM SOIL UNDER DIFFERENT FERTILIZATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Ecaterina Emnova

    2012-06-01

    Full Text Available The paper deals with the evaluation of the intensity of certain soil biochemical processes (e.g. soil organic C mineralization at Organic and mixed Mineral+Organic fertilization of typical chernozem in crop rotation dynamics (for 6 years by use of eco-physiological indicators of biological soil quality: microbial biomass carbon, basal soil respiration, as well as, microbial and metabolic quotients. Soil sampling was performed from a long-term field crop experiment, which has been established in 1971 at the Balti steppe (Northern Moldova. The crop types had a more considerable impact on the soil microbial biomass accumulation and community biochemical activity compared to long-term Organic or mixed Mineral + Organic fertilizers amendments. The Org fertilization system doesn’t make it possible to avoid the loss of organic C in arable typical chernozem. The organic fertilizer (cattle manure is able to mitigate the negative consequences of long-term mineral fertilization.

  4. Uranium soils integrated demonstration: Soil characterization project report

    International Nuclear Information System (INIS)

    Cunnane, J.C.; Gill, V.R.; Lee, S.Y.; Morris, D.E.; Nickelson, M.D.; Perry, D.L.; Tidwell, V.C.

    1993-08-01

    An Integrated Demonstration Program, hosted by the Fernald Environmental Management Project (FEMP), has been established for investigating technologies applicable to the characterization and remediation of soils contaminated with uranium. Critical to the design of relevant treatment technologies is detailed information on the chemical and physical characteristics of the uranium waste-form. To address this need a soil sampling and characterization program was initiated which makes use of a variety of standard analytical techniques coupled with state-of-the-art microscopy and spectroscopy techniques. Sample representativeness is evaluated through the development of conceptual models in an effort to identify and understand those geochemical processes governing the behavior of uranium in FEMP soils. Many of the initial results have significant implications for the design of soil treatment technologies for application at the FEMP

  5. Uranium soils integrated demonstration: Soil characterization project report

    Energy Technology Data Exchange (ETDEWEB)

    Cunnane, J.C. [Argonne National Lab., IL (United States); Gill, V.R. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Lee, S.Y. [Oak Ridge National Lab., TN (United States); Morris, D.E. [Los Alamos National Lab., NM (United States); Nickelson, M.D. [HAZWRAP, Oak Ridge, TN (United States); Perry, D.L. [Lawrence Berkeley Lab., CA (United States); Tidwell, V.C. [Sandia National Labs., Albuquerque, NM (United States)

    1993-08-01

    An Integrated Demonstration Program, hosted by the Fernald Environmental Management Project (FEMP), has been established for investigating technologies applicable to the characterization and remediation of soils contaminated with uranium. Critical to the design of relevant treatment technologies is detailed information on the chemical and physical characteristics of the uranium waste-form. To address this need a soil sampling and characterization program was initiated which makes use of a variety of standard analytical techniques coupled with state-of-the-art microscopy and spectroscopy techniques. Sample representativeness is evaluated through the development of conceptual models in an effort to identify and understand those geochemical processes governing the behavior of uranium in FEMP soils. Many of the initial results have significant implications for the design of soil treatment technologies for application at the FEMP.

  6. Linkages between aggregate formation, porosity and soil chemical properties

    NARCIS (Netherlands)

    Regelink, I.C.; Stoof, C.R.; Rousseva, S.; Weng, L.; Lair, G.J.; Kram, P.; Nikolaidis, N.P.; Kercheva, M.; Banwart, S.; Comans, R.N.J.

    2015-01-01

    Linkages between soil structure and physical–chemical soil properties are still poorly understood due to the wide size-range at which aggregation occurs and the variety of aggregation factors involved. To improve understanding of these processes, we collected data on aggregate fractions, soil

  7. Aftermath of Uranium Ore Processing on Floodplains: Lasting Effects of Uranium on Soil and Microbes

    Science.gov (United States)

    Tang, H.; Boye, K.; Bargar, J.; Fendorf, S. E.

    2016-12-01

    A former uranium ore processing site located between the Wind River and the Little Wind River near the city of Riverton, Wyoming, has generated a uranium plume in the groundwater within the floodplain. Uranium is toxic and poses a threat to human health. Thus, controlling and containing the spread of uranium will benefit the human population. The primary source of uranium was removed from the processing site, but a uranium plume still exists in the groundwater. Uranium in its reduced form is relatively insoluble in water and therefore is retained in organic rich, anoxic layers in the subsurface. However, with the aid of microbes uranium becomes soluble in water which could expose people and the environment to this toxin, if it enters the groundwater and ultimately the river. In order to better understand the mechanisms controlling uranium behavior in the floodplains, we examined sediments from three sediment cores (soil surface to aquifer). We determined the soil elemental concentrations and measured microbial activity through the use of several instruments (e.g. Elemental Analyzer, X-ray Fluorescence, MicroResp System). Through the data collected, we aim to obtain a better understanding of how the interaction of geochemical factors and microbial metabolism affect uranium mobility. This knowledge will inform models used to predict uranium behavior in response to land use or climate change in floodplain environments.

  8. Soil Organic Carbon and Its interaction with Minerals in Two Hillslopes with Different Climates and Erosion Processes

    Science.gov (United States)

    Wang, X.; Yoo, K.; Wackett, A. A.; Gutknecht, J.; Amundson, R.; Heimsath, A. M.

    2017-12-01

    Climate and topography have been widely recognized as important factors regulating soil organic carbon (SOC) dynamics but their interactive effects on SOC storage and its pools remain poorly constrained. Here we aimed to evaluate SOC storages and carbon-mineral interactions along two hillslope transects with moderately different climates (MAP: 549 mm vs. 816 mm) in Southeastern Australia. We sampled soil along the convex (eroding)-to-convergent (depositional) continuum at each hillslope transect and conducted size and density fractionation of these samples. In responses to the difference in climate factor, SOC inventories of eroding soils were twice as large at the wetter site compared with the drier site but showed little difference between two sites in depositional soils. These trends in SOC inventories were primarily controlled by SOC concentrations and secondarily by soil thicknesses. Similar patterns were observed for mineral associated organic carbon (MOC), and the abundances of MOC were controlled by the two independently operating processes affecting MOC concentration and fine-heavy fraction minerals. The contents and species of secondary clay and iron oxide minerals, abundances of particulate organic carbon, and bioturbation affected MOC concentrations. In contrast, the abundances of fine-heavy fraction minerals were impacted by erosion mechanisms that uniquely responded to regional- and micro- climate conditions. Consequently, topographic influences on SOC inventories and carbon-mineral interactions were more strongly pronounced in the drier climate where vegetation and erosion mechanisms were sensitive to microclimate. Our results highlight the significance of understanding topography and erosional processes in capturing climatic effects on soil carbon dynamics.

  9. Feasibility Process for Remediation of the Crude Oil Contaminated Soil

    Science.gov (United States)

    Keum, H.; Choi, H.; Heo, H.; Lee, S.; Kang, G.

    2015-12-01

    More than 600 oil wells were destroyed in Kuwait by Iraqi in 1991. During the war, over 300 oil lakes with depth of up to 2m at more than 500 different locations which has been over 49km2. Therefore, approximately 22 million m3was crude oil contaminated. As exposure of more than 20 years under atmospheric conditions of Kuwait, the crude oil has volatile hydrocarbons and covered heavy oily sludge under the crude oil lake. One of crude oil contaminated soil which located Burgan Oilfield area was collected by Kuwait Oil Company and got by H-plus Company. This contaminated soil has about 42% crude oil and could not biodegraded itself due to the extremely high toxicity. This contaminated soil was separated by 2mm sieve for removal oil sludge ball. Total petroleum hydrocarbons (TPH) was analysis by GC FID and initial TPH concentration was average 48,783 mg/kg. Ten grams of the contaminated soil replaced in two micro reactors with 20mL of bio surfactant produce microorganism. Reactor 1 was added 0.1g powder hemoglobin and other reactor was not added hemoglobin at time 0 day. Those reactors shake 120 rpm on the shaker for 7 days and CO2 produced about 150mg/L per day. After 7 days under the slurry systems, the rest days operated by hemoglobin as primary carbon source for enhanced biodegradation. The crude oil contaminated soil was degraded from 48,783mg/kg to 20,234mg/kg by slurry process and final TPH concentration degraded 11,324mg/kg for 21days. Therefore, highly contaminated soil by crude oil will be combined bio slurry process and biodegradation process with hemoglobin as bio catalytic source. Keywords: crude-oil contaminated soil, bio slurry, biodegradation, hemoglobin ACKOWLEDGEMENTS This project was supported by the Korea Ministry of Environment (MOE) GAIA Program

  10. Integrating plant-microbe interactions to understand soil C stabilization with the MIcrobial-MIneral Carbon Stabilization model (MIMICS)

    Science.gov (United States)

    Grandy, Stuart; Wieder, Will; Kallenbach, Cynthia; Tiemann, Lisa

    2014-05-01

    If soil organic matter is predominantly microbial biomass, plant inputs that build biomass should also increase SOM. This seems obvious, but the implications fundamentally change how we think about the relationships between plants, microbes and SOM. Plant residues that build microbial biomass are typically characterized by low C/N ratios and high lignin contents. However, plants with high lignin contents and high C/N ratios are believed to increase SOM, an entrenched idea that still strongly motivates agricultural soil management practices. Here we use a combination of meta-analysis with a new microbial-explicit soil biogeochemistry model to explore the relationships between plant litter chemistry, microbial communities, and SOM stabilization in different soil types. We use the MIcrobial-MIneral Carbon Stabilization (MIMICS) model, newly built upon the Community Land Model (CLM) platform, to enhance our understanding of biology in earth system processes. The turnover of litter and SOM in MIMICS are governed by the activity of r- and k-selected microbial groups and temperature sensitive Michaelis-Menten kinetics. Plant and microbial residues are stabilized short-term by chemical recalcitrance or long-term by physical protection. Fast-turnover litter inputs increase SOM by >10% depending on temperature in clay soils, and it's only in sandy soils devoid of physical protection mechanisms that recalcitrant inputs build SOM. These results challenge centuries of lay knowledge as well as conventional ideas of SOM formation, but are they realistic? To test this, we conducted a meta-analysis of the relationships between the chemistry of plant liter inputs and SOM concentrations. We find globally that the highest SOM concentrations are associated with plant inputs containing low C/N ratios. These results are confirmed by individual tracer studies pointing to greater stabilization of low C/N ratio inputs, particularly in clay soils. Our model and meta-analysis results suggest

  11. Flow and transport processes in a macroporous subsurface-drained glacial till soil

    DEFF Research Database (Denmark)

    Villholth, Karen Grothe; Jensen, Karsten Høgh; Fredericia, Johnny

    1998-01-01

    of macropore structure and hydraulic efficiency, using image analysis and tension infiltration, and of soil water content, level of groundwater table, and chloride content of soil water within the soil profile yielded insights into small-scale processes and their associated variability. Macropore how...... into the soil profile. Dye infiltration experiments in the field as well as in the laboratory supported the recognition of the dominant contribution of macropores to the infiltration and transport process. The soil matrix significantly influenced the tracer distribution by acting as a source or sink...... for continuous solute exchange with the macropores. An average field-determined active macroporosity constituted 0.2% of the total porosity, or approximately 10% of the total macroporosity. (C) 1998 Elsevier Science B.V. All rights reserved....

  12. Understanding the solid phase chemical fractionation of uranium in soil and effect of ageing

    Energy Technology Data Exchange (ETDEWEB)

    Rout, Sabyasachi, E-mail: srout.barc@gmail.com [Health Physics Division, Bhabha Atomic Research Centre, Mumbai (India); Kumar, Ajay [Health Physics Division, Bhabha Atomic Research Centre, Mumbai (India); Ravi, P.M.; Tripathi, R.M. [Homi Bhabha National Institute Anushaktinagar, Mumbai (India)

    2016-11-05

    Highlights: • Apart of U(VI) converted to U(IV) during adsorption to soil. • Ageing leads to rearrangement of chemical fractionation of U in soil. • Organic matter and carbonate minerals responsible for Surface enrichment of U. • There occurs Occlusion of U-Fe-Oxides (Hydroxide) in to silica. - Abstract: The aim of the present work is to understand the solid phase chemical fractionation of Uranium (U) in soil and the mechanism involved. This study integrated batch experiments of U(VI) adsorption to soil, study of U in different soil fractions, ageing impact on fractionation of U and spectroscopic investigation of adsorbed U(VI) using X-ray Photoelectron Spectroscopy (XPS). For the study three soils, pedogenically different (S1: Igneous, S2: Sedimentary and S3: Metamorphic) were amended with U(VI) and chemical fractionation of U was studied by sequential extraction after an interval of one month and 12 months. It was found that there occurs a significant rearrangement of U in different fractions with ageing and no correlation was observed between the U content in different fractions and the adsorbents of respective fractions such as soil organic matter (SOM), Fe/Mn oxides (hydroxides) carbonates, soil cation exchange capacity (CEC). XPS study revealed that surface enrichment of U mainly governed by the carbonate minerals and SOM, whereas bulk concentration was controlled by the oxides (hydroxides) of Si and Al. Occlusion of U-Fe-oxides (hydroxides) on silica was identified as an important mechanism for bulk enrichment (Increase in residual fraction) and depletion of U concentration in reducible fraction.

  13. Understanding the solid phase chemical fractionation of uranium in soil and effect of ageing

    International Nuclear Information System (INIS)

    Rout, Sabyasachi; Kumar, Ajay; Ravi, P.M.; Tripathi, R.M.

    2016-01-01

    Highlights: • Apart of U(VI) converted to U(IV) during adsorption to soil. • Ageing leads to rearrangement of chemical fractionation of U in soil. • Organic matter and carbonate minerals responsible for Surface enrichment of U. • There occurs Occlusion of U-Fe-Oxides (Hydroxide) in to silica. - Abstract: The aim of the present work is to understand the solid phase chemical fractionation of Uranium (U) in soil and the mechanism involved. This study integrated batch experiments of U(VI) adsorption to soil, study of U in different soil fractions, ageing impact on fractionation of U and spectroscopic investigation of adsorbed U(VI) using X-ray Photoelectron Spectroscopy (XPS). For the study three soils, pedogenically different (S1: Igneous, S2: Sedimentary and S3: Metamorphic) were amended with U(VI) and chemical fractionation of U was studied by sequential extraction after an interval of one month and 12 months. It was found that there occurs a significant rearrangement of U in different fractions with ageing and no correlation was observed between the U content in different fractions and the adsorbents of respective fractions such as soil organic matter (SOM), Fe/Mn oxides (hydroxides) carbonates, soil cation exchange capacity (CEC). XPS study revealed that surface enrichment of U mainly governed by the carbonate minerals and SOM, whereas bulk concentration was controlled by the oxides (hydroxides) of Si and Al. Occlusion of U-Fe-oxides (hydroxides) on silica was identified as an important mechanism for bulk enrichment (Increase in residual fraction) and depletion of U concentration in reducible fraction.

  14. Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition.

    Science.gov (United States)

    Bradford, Mark A; Wood, Stephen A; Bardgett, Richard D; Black, Helaina I J; Bonkowski, Michael; Eggers, Till; Grayston, Susan J; Kandeler, Ellen; Manning, Peter; Setälä, Heikki; Jones, T Hefin

    2014-10-07

    Ecosystem management policies increasingly emphasize provision of multiple, as opposed to single, ecosystem services. Management for such "multifunctionality" has stimulated research into the role that biodiversity plays in providing desired rates of multiple ecosystem processes. Positive effects of biodiversity on indices of multifunctionality are consistently found, primarily because species that are redundant for one ecosystem process under a given set of environmental conditions play a distinct role under different conditions or in the provision of another ecosystem process. Here we show that the positive effects of diversity (specifically community composition) on multifunctionality indices can also arise from a statistical fallacy analogous to Simpson's paradox (where aggregating data obscures causal relationships). We manipulated soil faunal community composition in combination with nitrogen fertilization of model grassland ecosystems and repeatedly measured five ecosystem processes related to plant productivity, carbon storage, and nutrient turnover. We calculated three common multifunctionality indices based on these processes and found that the functional complexity of the soil communities had a consistent positive effect on the indices. However, only two of the five ecosystem processes also responded positively to increasing complexity, whereas the other three responded neutrally or negatively. Furthermore, none of the individual processes responded to both the complexity and the nitrogen manipulations in a manner consistent with the indices. Our data show that multifunctionality indices can obscure relationships that exist between communities and key ecosystem processes, leading us to question their use in advancing theoretical understanding--and in management decisions--about how biodiversity is related to the provision of multiple ecosystem services.

  15. In situ vitrification: Test results for a contaminated soil melting process

    International Nuclear Information System (INIS)

    Buelt, J.L.; Bonner, W.F.

    1989-04-01

    Pacific Northwest Laboratory (PNL) is developing in situ vitrification (ISV), a remedial action process for treating contaminated soils. In situ vitrification is a thermal treatment process that converts contaminated soil into a chemically inert and stable glass and crystalline product. Figure 1 depicts the process. A square array of four molybdenum/graphite electrodes is inserted into the ground to the desired treatment depth. Because soil is not electrically conductive when the moisture has been driven off, a conductive mixture of flaked graphite and glass frit is placed between the pairs of electrodes as a starter path. An electrical potential is applied to the electrodes to establish an electric current in the starter path. The resultant power heats the starter path and surrounding soil to 2000 degree C, well above the initial soil-melting temperature of 1100 to 1400 degree C. The graphite starter path is eventually consumed by oxidation, and the current is transferred to the molten soil, which is electrically conductive. As the molten or vitrified zone grows, it incorporates radionuclides and nonvolatile hazardous elements, such as heavy metals, and destroys organic components by pyrolysis. The pyrolyzed byproducts migrate to the surface of the vitrified zone, where they burn in the presence of oxygen. A hood placed over the area being vitrified directs the gaseous effluents to an off-gas treatment system. 5 refs., 1 fig., 1 tab

  16. The Chemophytostabilisation Process of Heavy Metal Polluted Soil.

    Science.gov (United States)

    Grobelak, Anna; Napora, Anna

    2015-01-01

    Industrial areas are characterised by soil degradation processes that are related primarily to the deposition of heavy metals. Areas contaminated with metals are a serious source of risk due to secondary pollutant emissions and metal leaching and migration in the soil profile and into the groundwater. Consequently, the optimal solution for these areas is to apply methods of remediation that create conditions for the restoration of plant cover and ensure the protection of groundwater against pollution. Remediation activities that are applied to large-scale areas contaminated with heavy metals should mainly focus on decreasing the degree of metal mobility in the soil profile and metal bioavailability to levels that are not phytotoxic. Chemophytostabilisation is a process in which soil amendments and plants are used to immobilise metals. The main objective of this research was to investigate the effects of different doses of organic amendments (after aerobic sewage sludge digestion in the food industry) and inorganic amendments (lime, superphosphate, and potassium phosphate) on changes in the metals fractions in soils contaminated with Cd, Pb and Zn during phytostabilisation. In this study, the contaminated soil was amended with sewage sludge and inorganic amendments and seeded with grass (tall fescue) to increase the degree of immobilisation of the studied metals. The contaminated soil was collected from the area surrounding a zinc smelter in the Silesia region of Poland (pH 5.5, Cd 12 mg kg-1, Pb 1100 mg kg-1, Zn 700 mg kg-1). A plant growth experiment was conducted in a growth chamber for 5 months. Before and after plant growth, soil subsamples were subjected to chemical and physical analyses. To determine the fractions of the elements, a sequential extraction method was used according to Zeien and Brümmer. Research confirmed that the most important impacts on the Zn, Cd and Pb fractions included the combined application of sewage sludge from the food industry and

  17. The Chemophytostabilisation Process of Heavy Metal Polluted Soil.

    Directory of Open Access Journals (Sweden)

    Anna Grobelak

    Full Text Available Industrial areas are characterised by soil degradation processes that are related primarily to the deposition of heavy metals. Areas contaminated with metals are a serious source of risk due to secondary pollutant emissions and metal leaching and migration in the soil profile and into the groundwater. Consequently, the optimal solution for these areas is to apply methods of remediation that create conditions for the restoration of plant cover and ensure the protection of groundwater against pollution. Remediation activities that are applied to large-scale areas contaminated with heavy metals should mainly focus on decreasing the degree of metal mobility in the soil profile and metal bioavailability to levels that are not phytotoxic. Chemophytostabilisation is a process in which soil amendments and plants are used to immobilise metals. The main objective of this research was to investigate the effects of different doses of organic amendments (after aerobic sewage sludge digestion in the food industry and inorganic amendments (lime, superphosphate, and potassium phosphate on changes in the metals fractions in soils contaminated with Cd, Pb and Zn during phytostabilisation. In this study, the contaminated soil was amended with sewage sludge and inorganic amendments and seeded with grass (tall fescue to increase the degree of immobilisation of the studied metals. The contaminated soil was collected from the area surrounding a zinc smelter in the Silesia region of Poland (pH 5.5, Cd 12 mg kg-1, Pb 1100 mg kg-1, Zn 700 mg kg-1. A plant growth experiment was conducted in a growth chamber for 5 months. Before and after plant growth, soil subsamples were subjected to chemical and physical analyses. To determine the fractions of the elements, a sequential extraction method was used according to Zeien and Brümmer. Research confirmed that the most important impacts on the Zn, Cd and Pb fractions included the combined application of sewage sludge from the

  18. Soil erosion and sediment production on watershed landscapes: Processes and control

    Science.gov (United States)

    Peter F. Ffolliott; Kenneth N. Brooks; Daniel G. Neary; Roberto Pizarro Tapia; Pablo Garcia-Chevesich

    2013-01-01

    Losses of the soil resources from otherwise productive and well functioning watersheds is often a recurring problem confronting hydrologists and watershed managers. These losses of soil have both on-site and off-site effects on the watershed impacted. In addition to the loss of inherent soil resources through erosion processes, on-site effects can include the breakdown...

  19. Soil process-oriented modelling of within-field variability based on high-resolution 3D soil type distribution maps.

    Science.gov (United States)

    Bönecke, Eric; Lück, Erika; Gründling, Ralf; Rühlmann, Jörg; Franko, Uwe

    2016-04-01

    Today, the knowledge of within-field variability is essential for numerous purposes, including practical issues, such as precision and sustainable soil management. Therefore, process-oriented soil models have been applied for a considerable time to answer question of spatial soil nutrient and water dynamics, although, they can only be as consistent as their variation and resolution of soil input data. Traditional approaches, describe distribution of soil types, soil texture or other soil properties for greater soil units through generalised point information, e.g. from classical soil survey maps. Those simplifications are known to be afflicted with large uncertainties. Varying soil, crop or yield conditions are detected even within such homogenised soil units. However, recent advances of non-invasive soil survey and on-the-go monitoring techniques, made it possible to obtain vertical and horizontal dense information (3D) about various soil properties, particularly soil texture distribution which serves as an essential soil key variable affecting various other soil properties. Thus, in this study we based our simulations on detailed 3D soil type distribution (STD) maps (4x4 m) to adjacently built-up sufficient informative soil profiles including various soil physical and chemical properties. Our estimates of spatial STD are based on high-resolution lateral and vertical changes of electrical resistivity (ER), detected by a relatively new multi-sensor on-the-go ER monitoring device. We performed an algorithm including fuzzy-c-mean (FCM) logic and traditional soil classification to estimate STD from those inverted and layer-wise available ER data. STD is then used as key input parameter for our carbon, nitrogen and water transport model. We identified Pedological horizon depths and inferred hydrological soil variables (field capacity, permanent wilting point) from pedotransferfunctions (PTF) for each horizon. Furthermore, the spatial distribution of soil organic carbon

  20. Effect of acid rain on soil microbial processes

    International Nuclear Information System (INIS)

    Myrold, D.D.; Nason, G.E.

    1992-01-01

    Acid rain is real; the pH of precipitation in many areas of the world is below its normal equilibrium value, and concentrations of inorganic N and S are elevated above background. The impact of acid rain on soil microbial processes is less clear. This is largely because of the chemical buffering of the soil ecosystem and the inherent resiliency and redundancy of soil microorganisms. Microorganisms have an amazing capacity to adapt to new situations, which is enhanced by their ability to evolve under selection pressure. Their resilience is a function of both the large number of microorganisms present in a given volume of soil and their high growth rate relative to macroorganisms. This suggests that microorganisms are likely to be able to adapt more quickly to acidification than plants or animals, which may be one reason why symbiotic associations, such as ectomycorrhizae, are more susceptible to acid inputs than their saprophytic counterparts

  1. Side Effects of Nitrification Inhibitors on Non Target Microbial Processes in Soils

    Directory of Open Access Journals (Sweden)

    Johannes Carl Gottlieb Ottow

    2011-01-01

    Full Text Available Agricultural chemicals have been used extensively in modern agriculture and toxicological studies suggest a great potential for inducing undesirable effects on non target organisms. A model experiment was conducted in order to determine side effects of three nitrification inhibitors (NIs, 3,4dimethylpyrazolephosphate = DMPP, 4-Chlor-methylpyrazole phosphate = ClMPP and dicyandiamide = DCD on non target microbial processes in soils. Side effects and dose response curve of three NIs were quantified under laboratory conditions using silty clay, loam and a sandy soils. Dehydrogenase, dimethylsulfoxide reductase as well as nitrogenase activity (NA and potential denitrification capacity were measured as common and specific non target microbial processes. The influence of 5-1000 times the base concentration, dose response curves were examined, and no observable effect level = NOEL, as well as effective dose ED10 and ED50 (10% and 50% inhibition were calculated. The NOEL for microbial non target processes were about 30–70 times higher than base concentration in all investigated soils. The potential denitrification capacity revealed to be the most sensitive parameter. ClMPP exhibited the strongest influence on the non target microbial processes in the three soils. The NOEL, ED10 and ED50 values were higher in clay than in loamy or sandy soil. The NIs was the most effective in sandy soils.

  2. A review of concentrated flow erosion processes on rangelands: fundamental understanding and knowledge gaps

    Science.gov (United States)

    Concentrated flow erosion processes are distinguished from splash and sheetflow processes in their enhanced ability to mobilize and transport large amounts of soil, water and dissolved elements. On rangelands, soil, nutrients and water are scarce and only narrow margins of resource losses are tolera...

  3. Pyrene removal from contaminated soil using electrokinetic process combined with surfactant

    Directory of Open Access Journals (Sweden)

    Seyed Enayat Hashemi

    2015-07-01

    Full Text Available Background: Pyrene is one of the stable polycyclic aromatic hydrocarbons that is considered as an important pollutants, because of extensive distribution in the environment and carcinogenic and mutagenic properties. Among the various treatment techniques, electrokinetic method is an environmental- friendly process for organic and mineral pollutants adsorbed to soil with fine pore size the same as clay and low hydraulic conductivity soils. For improving the efficiency of pyrene removal from soil, soulobilization of pyrene from soil could be used by surfactants. Materials and Methods : In this study, clay soil was selected as model because of the specific properties. Combined method using surfactant and electrokinetic was applied for pyrene removal from soil. Experiments were designed using response surface methodology (RSM, and effect of three variables includes surfactant concentration, voltage and surfactant type were evaluated for pyrene removal from contaminated soil. Results: Pyrene removal using anionic surfactants(SDS and nonionic surfactants(TX100 as a solubilizing agents has high removal efficiency. In the optimum condition with 95% confidence coefficient, utilizing mixed surfactants of sodium dodecyl sulfate and triton X-100 with the same volume, induced of 18.54 volt and 6.53 percent surfactant concentration have 94.6% pyrene removal efficiency. Conclusion:: Results of this study shows that electrokinetic process combined with surfactant as solubilizing agent could be applied as an efficient method for treating the pyrene-contaminated soils.

  4. Monitoring Bare Soil Freeze–Thaw Process Using GPS-Interferometric Reflectometry: Simulation and Validation

    Directory of Open Access Journals (Sweden)

    Xuerui Wu

    2017-12-01

    Full Text Available Frozen soil and permafrost affect ecosystem diversity and productivity as well as global energy and water cycles. Although some space-based Radar techniques or ground-based sensors can monitor frozen soil and permafrost variations, there are some shortcomings and challenges. For the first time, we use GPS-Interferometric Reflectometry (GPS-IR to monitor and investigate the bare soil freeze–thaw process as a new remote sensing tool. The mixed-texture permittivity models are employed to calculate the frozen and thawed soil permittivities. When the soil freeze/thaw process occurs, there is an abrupt change in the soil permittivity, which will result in soil scattering variations. The corresponding theoretical simulation results from the forward GPS multipath simulator show variations of GPS multipath observables. As for the in-situ measurements, virtual bistatic radar is employed to simplify the analysis. Within the GPS-IR spatial resolution, one SNOTEL site (ID 958 and one corresponding PBO (plate boundary observatory GPS site (AB33 are used for analysis. In 2011, two representative days (frozen soil on Doy of Year (DOY 318 and thawed soil on DOY 322 show the SNR changes of phase and amplitude. The GPS site and the corresponding SNOTEL site in four different years are analyzed for comparisons. When the soil freeze/thaw process occurred and no confounding snow depth and soil moisture effects existed, it exhibited a good absolute correlation (|R| = 0.72 in 2009, |R| = 0.902 in 2012, |R| = 0.646 in 2013, and |R| = 0.7017 in 2014 with the average detrended SNR data. Our theoretical simulation and experimental results demonstrate that GPS-IR has potential for monitoring the bare soil temperature during the soil freeze–thaw process, while more test works should be done in the future. GNSS-R polarimetry is also discussed as an option for detection. More retrieval work about elevation and polarization combinations are the focus of future development.

  5. Effect of Cassava Processing Effluent on Soil Properties, Growth and ...

    African Journals Online (AJOL)

    A study, comprising a survey, greenhouse and field experiments was conducted to examine the effect of Cassava Processing Effluent (CPE) on soil chemical properties, maize growth performances and grain yield. In the survey, soil samples were taken (0-15 and 15 – 30cm) of CPE contaminated and non contaminated ...

  6. Deriving site-specific soil clean-up values for metals and metalloids: rationale for including protection of soil microbial processes.

    Science.gov (United States)

    Kuperman, Roman G; Siciliano, Steven D; Römbke, Jörg; Oorts, Koen

    2014-07-01

    Although it is widely recognized that microorganisms are essential for sustaining soil fertility, structure, nutrient cycling, groundwater purification, and other soil functions, soil microbial toxicity data were excluded from the derivation of Ecological Soil Screening Levels (Eco-SSL) in the United States. Among the reasons for such exclusion were claims that microbial toxicity tests were too difficult to interpret because of the high variability of microbial responses, uncertainty regarding the relevance of the various endpoints, and functional redundancy. Since the release of the first draft of the Eco-SSL Guidance document by the US Environmental Protection Agency in 2003, soil microbial toxicity testing and its use in ecological risk assessments have substantially improved. A wide range of standardized and nonstandardized methods became available for testing chemical toxicity to microbial functions in soil. Regulatory frameworks in the European Union and Australia have successfully incorporated microbial toxicity data into the derivation of soil threshold concentrations for ecological risk assessments. This article provides the 3-part rationale for including soil microbial processes in the development of soil clean-up values (SCVs): 1) presenting a brief overview of relevant test methods for assessing microbial functions in soil, 2) examining data sets for Cu, Ni, Zn, and Mo that incorporated soil microbial toxicity data into regulatory frameworks, and 3) offering recommendations on how to integrate the best available science into the method development for deriving site-specific SCVs that account for bioavailability of metals and metalloids in soil. Although the primary focus of this article is on the development of the approach for deriving SCVs for metals and metalloids in the United States, the recommendations provided in this article may also be applicable in other jurisdictions that aim at developing ecological soil threshold values for protection of

  7. A longer climate memory carried by soil freeze–thaw processes in Siberia

    International Nuclear Information System (INIS)

    Matsumura, Shinji; Yamazaki, Koji

    2012-01-01

    The climate memory of a land surface generally persists for only a few months, but analysis of surface meteorological data revealed a longer-term climate memory carried by soil freeze–thaw processes in Siberia. Surface temperature variability during the snowmelt season corresponds reasonably well with that in the summer of the following year, when most stations show a secondary autocorrelation peak. The surface temperature memory is thought to be stored as variations in the amount of snowmelt water held in the soil, and through soil freezing, which emerges as latent heat variations in the near-surface atmosphere during soil thawing approximately one year later. The ground conditions are dry in the longer-term climate memory regions, such as eastern Siberia, where less snow cover (higher surface air temperature) in spring results in less snowmelt water or lower soil moisture in the summer. Consequently, through soil freezing, it will require less latent heat to thaw in the summer of the following year, resulting in higher surface air temperature. In addition to soil moisture and snow cover, soil freeze–thaw processes can also act as agents of climate memory in the near-surface atmosphere. (letter)

  8. Integrated process-based hydrologic and ephemeral gully modeling for better assessment of soil erosion in small watersheds

    Science.gov (United States)

    Sheshukov, A. Y.; Karimov, V. R.

    2017-12-01

    Excessive soil erosion in agriculturally dominated watersheds causes degradation of arable land and affects agricultural productivity. Structural and soil-quality best management practices can be beneficial in reducing sheet and rill erosion, however, larger rills, ephemeral gullies, and concentrated flow channels still remain to be significant sources of sediment. A better understanding of channelized soil erosion, underlying physical processes, and ways to mitigate the problem is needed to develop innovative approaches for evaluation of soil losses from various sediment sources. The goal of this study was to develop a novel integrated process-based catchment-scale model for sheet, rill, and ephemeral gully erosion and assess soil erosion mitigation practices. Geospatially, a catchment was divided into ephemeral channels and contributing hillslopes. Surface runoff hydrograph and sheet-rill erosion rates from contributing hillslopes were calculated based on the Water Erosion Prediction Project (WEPP) model. For ephemeral channels, a dynamic ephemeral gully erosion model was developed. Each channel was divided into segments, and channel flow was routed according to the kinematic wave equation. Reshaping of the channel profile in each segment (sediment deposition, soil detachment) was simulated at each time-step according to acting shear stress distribution along the channel boundary and excess shear stress equation. The approach assumed physically-consistent channel shape reconfiguration representing channel walls failure and deposition in the bottom of the channel. Soil erodibility and critical shear stress parameters were dynamically adjusted due to seepage/drainage forces based on computed infiltration gradients. The model was validated on the data obtained from the field study by Karimov et al. (2014) yielding agreement with NSE coefficient of 0.72. The developed model allowed to compute ephemeral gully erosion while accounting for antecedent soil moisture

  9. Microbial Genetic Memory to Study Heterogeneous Soil Processes

    Science.gov (United States)

    Fulk, E. M.; Silberg, J. J.; Masiello, C. A.

    2017-12-01

    Microbes can be engineered to sense environmental conditions and produce a detectable output. These microbial biosensors have traditionally used visual outputs that are difficult to detect in soil. However, recently developed gas-producing biosensors can be used to noninvasively monitor complex soil processes such as horizontal gene transfer or cell-cell signaling. While these biosensors report on the fraction of a microbial population exposed to a process or chemical signal at the time of measurement, they do not record a "memory" of past exposure. Synthetic biologists have recently developed a suite of genetically encoded memory circuits capable of reporting on historical exposure to the signal rather than just the current state. We will provide an overview of the microbial memory systems that may prove useful to studying microbial decision-making in response to environmental conditions. Simple memory circuits can give a yes/no report of any past exposure to the signal (for example anaerobic conditions, osmotic stress, or high nitrate concentrations). More complicated systems can report on the order of exposure of a population to multiple signals or the experiences of spatially distinct populations, such as those in root vs. bulk soil. We will report on proof-of-concept experiments showing the function of a simple permanent memory system in soil-cultured microbes, and we will highlight additional applications. Finally, we will discuss challenges still to be addressed in applying these memory circuits for biogeochemical studies.

  10. Participatory innovation process for testing new practices for soil fertility management in Chókwè Irrigation Scheme (Mozambique)

    Science.gov (United States)

    Sánchez Reparaz, Maite; de Vente, Joris; Famba, Sebastiao; Rougier, Jean-Emmanuel; Ángel Sánchez-Monedero, Miguel; Barberá, Gonzalo G.

    2015-04-01

    Integrated water and nutrient management are key factors to increase productivity and to reduce the yield gap in irrigated systems in Sub-Saharan Africa. These two elements are affected by an ensemble of abiotic, biotic, management and socio-economic factors that need to be taken into account to reduce the yield gap, as well as farmers' perceptions and knowledge. In the framework of the project European Union and African Union cooperative research to increase Food production in irrigated farming systems in Africa (EAU4Food project) we are carrying out a participatory innovation process in Chókwè irrigation scheme (Mozambique) based on stakeholders engagement, to test new practices for soil fertility management that can increase yields reducing costs. Through a method combining interviews with three farmers' associations and other relevant stakeholders and soil sampling from the interviewed farmers' plots with the organization of Communities of Practices, we tried to capture how soil fertility is managed by farmers, the constraints they find as well as their perceptions about soil resources. This information was the basis to design and conduct a participatory innovation process where compost made with rice straw and manure is being tested by a farmers' association. Most important limitations of the method are also evaluated. Our results show that socio-economic characteristics of farmers condition how they manage soil fertility and their perceptions. The difficulties they face to adopt new practices for soil fertility management, mainly related to economic resources limitations, labour availability, knowledge time or farm structure, require a systemic understanding that takes into account abiotic, biotic, management and socio-economic factors and their implication as active stakeholders in all phases of the innovation process.

  11. Ecotoxicological evaluation of diesel-contaminated soil before and after a bioremediation process.

    Science.gov (United States)

    Molina-Barahona, L; Vega-Loyo, L; Guerrero, M; Ramírez, S; Romero, I; Vega-Jarquín, C; Albores, A

    2005-02-01

    Evaluation of contaminated sites is usually performed by chemical analysis of pollutants in soil. This is not enough either to evaluate the environmental risk of contaminated soil nor to evaluate the efficiency of soil cleanup techniques. Information on the bioavailability of complex mixtures of xenobiotics and degradation products cannot be totally provided by chemical analytical data, but results from bioassays can integrate the effects of pollutants in complex mixtures. In the preservation of human health and environment quality, it is important to assess the ecotoxicological effects of contaminated soils to obtain a better evaluation of the healthiness of this system. The monitoring of a diesel-contaminated soil and the evaluation of a bioremediation technique conducted on a microcosm scale were performed by a battery of ecotoxicological tests including phytotoxicity, Daphnia magna, and nematode assays. In this study we biostimulated the native microflora of soil contaminated with diesel by adding nutrients and crop residue (corn straw) as a bulking agent and as a source of microorganisms and nutrients; in addition, moisture was adjusted to enhance diesel removal. The bioremediation process efficiency was evaluated directly by an innovative, simple phytotoxicity test system and the diesel extracts by Daphnia magna and nematode assays. Contaminated soil samples were revealed to have toxic effects on seed germination, seedling growth, and Daphnia survival. After biostimulation, the diesel concentration was reduced by 50.6%, and the soil samples showed a significant reduction in phytotoxicity (9%-15%) and Daphnia assays (3-fold), confirming the effectiveness of the bioremediation process. Results from our microcosm study suggest that in addition to the evaluation of the bioremediation processes efficiency, toxicity testing is different with organisms representative of diverse phylogenic levels. The integration of analytical, toxicological and bioremediation data

  12. Soil physical land degradation processes

    Science.gov (United States)

    Horn, Rainer

    2017-04-01

    According to the European Soil Framework Directive (2006) soil compaction is besides water and wind erosion one of the main physical reasons and threats of soil degradation. It is estimated, that 32% of the subsoils in Europe are highly degraded and 18% moderately vulnerable to compaction. The problem is not limited to crop land or forest areas (especially because of non-site adjusted harvesting machines) but is also prevalent in rangelands and grassland, and even in so called natural non-disturbed systems. The main reasons for an intense increase in compacted agricultural or forested regions are the still increasing masses of the machines as well the increased frequency of wheeling under non favorable site conditions. Shear and vibration induced soil deformation enhances the deterioration of soil properties especially if the soil water content is very high and the internal soil strength very low. The same is true for animal trampling in combination with overgrazing of moist to wet pastures which subsequently causes a denser (i.e. reduced proportion of coarse pores with smaller continuity) but still structured soil horizons and will finally end in a compacted platy structure. In combination with high water content and shearing due to trampling therefore results in a complete muddy homogeneous soil with no structure at all. (Krümmelbein et al. 2013) Site managements of arable, forestry or horticulture soils requires a sufficiently rigid pore system which guarantees water, gas and heat exchange, nutrient transport and adsorption as well as an optimal rootability in order to avoid subsoil compaction. Such pore system also guarantees a sufficient microbial activity and composition in order to also decompose the plant etc. debris. It is therefore essential that well structured horizons dominate in soils with at best subangular blocky structure or in the top A- horizons a crumbly structure due to biological activity. In contrast defines the formation of a platy

  13. Ultrasonic and mechanical soil washing processes for the remediation of heavy-metal-contaminated soil

    Science.gov (United States)

    Kim, Seulgi; Lee, Wontae; Son, Younggyu

    2016-07-01

    Ultrasonic/mechanical soil washing process was investigated and compared with ultrasonic process and mechanical process using a relatively large lab-scale sonoreactor. It was found that higher removal efficiencies were observed in the combined processes for 0.1 and 0.3 M HCl washing liquids. It was due to the combination effects of macroscale removal for the overall range of slurry by mechanical mixing and microscale removal for the limited zone of slurry by cavitational actions.

  14. Microbial decontamination of polluted soil in a slurry process

    International Nuclear Information System (INIS)

    Geerdink, M.J.; Kleijntjens, R.H.; Loosdrecht, M.C.M. van; Luyben, K.C.A.M.

    1996-01-01

    Oil-contaminated soil (2.3--17 g/kg), even soil with high clay and silt content, was remediated microbiologically in a slurry reactor. The presence of soil, however, limits the degradation rate of oil. In contrast with results form experiments using oil dispersed in water, the relative composition of the oil components in a soil slurry after degradation was about the same as that of the original oil. Thus the composition of the degraded oil is the same as that of the original oil, which is indicative for a physical, rather than a (bio)chemical, limitation on the oil degradation rate. About 70% of the contaminant was readily available and was degraded in less than eight days. The dual injected turbulent suspension (DITS) reactor is able to combine remediation of part of the contaminated (polydisperse) soil with separation of the soil into a heavily and a lightly polluted fraction. In continuous operation, lowering the overall soil residence time from 200 to 100 h did not significantly increase the oil concentration in the effluent soil. Therefore a soil residence time of less than 100 h is feasible. With a residence time of 100 h, overall oil degradation rates at the steady state were more than 70 times faster than in a comparable land farm. After treatment in a DITS reactor, the remaining oil in the contaminated soil fraction is slowly released from the soil. From a batch experiment it was found that another 10 weeks were needed to reach the Dutch reference level of 50 mg/kg. This can be done in a process with a low energy input, such as a landfarm

  15. Understanding Patients? Process to Use Medical Marijuana

    OpenAIRE

    Crowell, Tara L

    2016-01-01

    Given the necessity to better understand the process patients need to go through in order to seek treatment via medical marijuana, this study investigates this process to better understand this phenomenon. Specifically, Compassion Care Foundation (CCF) and Stockton University worked together to identify a solution to this problem. Specifically, 240 new patients at CCF were asked to complete a 1-page survey regarding various aspects associated with their experience prior to their use of medici...

  16. A machine learning approach to understand business processes

    NARCIS (Netherlands)

    Maruster, L.

    2003-01-01

    Business processes (industries, administration, hospitals, etc.) become nowadays more and more complex and it is difficult to have a complete understanding of them. The goal of the thesis is to show that machine learning techniques can be used successfully for understanding a process on the basis of

  17. Sulfamethazine transport in agroforestry and cropland soils

    Science.gov (United States)

    Knowledge of veterinary antibiotic transport and persistence is critical to understanding environmental risks associated with these potential contaminants. To understand mobility of sulfamethazine (SMZ) and sorption processes involved during SMZ transport in soil, column leaching experiments were p...

  18. Climate Change, Soils, and Human Health

    Science.gov (United States)

    Brevik, Eric C.

    2013-04-01

    According to the Intergovernmental Panel on Climate Change, global temperatures are expected to increase 1.1 to 6.4 degrees C during the 21st century and precipitation patterns will be altered by climate change (IPCC, 2007). Soils are intricately linked to the atmospheric/climate system through the carbon, nitrogen, and hydrologic cycles. Altered climate will, therefore, have an effect on soil processes and properties. Studies into the effects of climate change on soil processes and properties are still incomplete, but have revealed that climate change will impact soil organic matter dynamics including soil organisms and the multiple soil properties that are tied to organic matter, soil water, and soil erosion. The exact direction and magnitude of those impacts will be dependent on the amount of change in atmospheric gases, temperature, and precipitation amounts and patterns. Recent studies give reason to believe at least some soils may become net sources of atmospheric carbon as temperatures rise; this is particularly true of high latitude regions with permanently frozen soils. Soil erosion by both wind and water is also likely to increase. These soil changes will lead to both direct and indirect impacts on human health. Possible indirect impacts include temperature extremes, food safety and air quality issues, increased and/or expanded disease incidences, and occupational health issues. Potential direct impacts include decreased food security and increased atmospheric dust levels. However, there are still many things we need to know more about. How climate change will affect the nitrogen cycle and, in turn, how the nitrogen cycle will affect carbon sequestration in soils is a major research need, as is a better understanding of soil water-CO2 level-temperature relationships. Knowledge of the response of plants to elevated atmospheric CO2 given limitations in nutrients like nitrogen and phosphorus and how that affects soil organic matter dynamics is a critical

  19. New era of satellite chlorophyll fluorescence and soil moisture observations leads to advances in the predictive understanding of global terrestrial coupled carbon-water cycles

    Science.gov (United States)

    Qiu, B.; Xue, Y.; Fisher, J.; Guo, W.

    2017-12-01

    The terrestrial carbon cycle and water cycle are coupled through a multitude of connected processes among soil, roots, leaves, and the atmosphere. The strength and sensitivity of these couplings are not yet well known at the global scale, which contributes to uncertainty in predicting the terrestrial water and carbon budgets. For the first time, we now have synchronous, high fidelity, global-scale satellite observations of critical terrestrial carbon and water cycle components: sun-induced chlorophyll fluorescence (SIF) and soil moisture. We used these observations within the framework of a well-established global terrestrial biosphere model (Simplified Simple Biosphere Model version 2.0, SSiB2) to investigate carbon-water coupling processes. We updated SSiB2 to include a mechanistic representation of SIF and tested the sensitivity of model parameters to improve the simulation of both SIF and soil moisture with the ultimate objective of improving the first-order terrestrial carbon component, gross primary production (GPP). Although several vegetation parameters, such as leaf area index (LAI) and green leaf fraction, improved the simulated SIF, and several soil parameters, such as hydraulic conductivity, improved simulated soil moisture, their effects were mainly limited to their respective cycles. One parameter emerged as the key coupler between the carbon and water cycles: the wilting point. Updates to the wilting point significantly improved the simulations for both soil moisture and SIF, as well as GPP. This study demonstrates the value of synchronous global measurements of the terrestrial carbon and water cycles in improving the understanding of coupled carbon-water cycles.

  20. A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils

    International Nuclear Information System (INIS)

    Huang Xiaodong; El-Alawi, Yousef; Penrose, Donna M.; Glick, Bernard R.; Greenberg, Bruce M.

    2004-01-01

    To improve phytoremediation processes, multiple techniques that comprise different aspects of contaminant removal from soils have been combined. Using creosote as a test contaminant, a multi-process phytoremediation system composed of physical (volatilization), photochemical (photooxidation) and microbial remediation, and phytoremediation (plant-assisted remediation) processes was developed. The techniques applied to realize these processes were land-farming (aeration and light exposure), introduction of contaminant degrading bacteria, plant growth promoting rhizobacteria (PGPR), and plant growth of contaminant-tolerant tall fescue (Festuca arundinacea). Over a 4-month period, the average efficiency of removal of 16 priority PAHs by the multi-process remediation system was twice that of land-farming, 50% more than bioremediation alone, and 45% more than phytoremediation by itself. Importantly, the multi-process system was capable of removing most of the highly hydrophobic, soil-bound PAHs from soil. The key elements for successful phytoremediation were the use of plant species that have the ability to proliferate in the presence of high levels of contaminants and strains of PGPR that increase plant tolerance to contaminants and accelerate plant growth in heavily contaminated soils. The synergistic use of these approaches resulted in rapid and massive biomass accumulation of plant tissue in contaminated soil, putatively providing more active metabolic processes, leading to more rapid and more complete removal of PAHs. - Persistent PAH contaminants in soils can be removed more completely and rapidly by using multiple remediation processes

  1. Kinetics and Mechanism of Metal Retention/Release in Geochemical Processes in Soil - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Robert W.

    2000-12-29

    Effective, remediation of soils contaminated with heavy metals requires a better understanding of the mechanisms by which the metals are retained/released in soils over a long period of time. Studies on reaction of Cr(VI) with iron-rich clays indicated that structural iron (II) in these surfaces is capable of reducing chromate to chromium (III). We found that iron (II) either found naturally or produced by treatment of clay with sodium dithionite, effectively reduced Cr (VI) to Cr (III). Thus, in situ remediation of chromium combines reduction of Cr (VI) to Cr (III) and immobilization of chromium on mineral surfaces. During this study, lead sorption on a kaolin surface was found to be a rapid and a pH dependant process in which lead sorption significantly increased with the amount of phosphate on the clay surface. This study verifies that methylmercury cation remains intact when it binds to humic acids, forming a monodentate complex with some sub-population of humic thiol ligands .

  2. Modelling soil carbon fate under erosion process in vineyard

    Science.gov (United States)

    Novara, Agata; Scalenghe, Riccardo; Minacapilli, Mario; Maltese, Antonino; Capodici, Fulvio; Borgogno Mondino, Enrico; Gristina, Luciano

    2017-04-01

    Soil erosion processes in vineyards beyond water runoff and sediment transport have a strong effect on soil organic carbon loss (SOC) and redistribution along the slope. The variation of SOC across the landscape determines a difference in soil fertility and vine productivity. The aim of this research was to study erosion of a Mediterranean vineyard, develop an approach to estimate the SOC loss, correlate the vines vigor with sediment and carbon erosion. The study was carried out in a Sicilian (Italy) vineyard, planted in 2011. Along the slope, six pedons were studied by digging 6 pits up to 60cm depth. Soil was sampled in each pedon every 10cm and SOC was analyzed. Soil erosion, detachment and deposition areas were measured by pole height method. The vigor of vegetation was expressed in term of NDVI (Normalized difference Vegetation Index) derived from a satellite image (RapidEye) acquired at berry pre-veraison stage (July) and characterized by 5 spectral bands in the shortwave region, including a band in the red wavelength (R, 630-685 nm) and in the near infrared (NIR, 760-850 nm) . Results showed that soil erosion, sediments redistribution and SOC across the hill was strongly affected by topographic features, slope and curvature. The erosion rate was 46Mg ha-1 y-1 during the first 6 years since planting. The SOC redistribution was strongly correlated with the detachment or deposition area as highlighted by pole height measurements. The approach developed to estimate the SOC loss showed that during the whole study period the off-farm SOC amounts to 1.6Mg C ha-1. As highlighted by NDVI results, the plant vigor is strong correlated with SOC content and therefore, developing an accurate NDVI approach could be useful to detect the vineyard areas characterized by low fertility due to erosion process.

  3. Natural physical and biological processes compromise the long-term performance of compacted soil caps

    International Nuclear Information System (INIS)

    Smith, E.D.

    1995-01-01

    Compacted soil barriers are components of essentially all caps placed on closed waste disposal sites. The intended functions of soil barriers in waste facility caps include restricting infiltration of water and release of gases and vapors, either independently or in combination with synthetic membrane barriers, and protecting other manmade or natural barrier components. Review of the performance of installed soil barriers and of natural processes affecting their performance indicates that compacted soil caps may function effectively for relatively short periods (years to decades), but natural physical and biological processes can be expected to cause them to fail in the long term (decades to centuries). This paper addresses natural physical and biological processes that compromise the performance of compacted soil caps and suggests measures that may reduce the adverse consequences of these natural failure mechanisms

  4. Understanding r-process nucleosynthesis with dwarf galaxies

    Science.gov (United States)

    Ji, Alexander P.

    2018-06-01

    The Milky Way's faintest dwarf galaxy satellites each sample short, independent bursts of star formation from the first 1-2 Gyr of the universe. Their simple formation history makes them ideal systems to understand how rare events like neutron star mergers contribute to early enrichment of r-process elements. I will focus on the ultra-faint galaxy Reticulum II, which experienced a single prolific r-process event that left ~80% of its stars extremely enriched in r-process elements. I will present abundances of ~40 elements derived from the highest signal-to-noise high-resolution spectrum ever taken for an ultra-faint dwarf galaxy star. Precise measurements of elements from all three r-process peaks reaffirm the universal nature of the r-process abundance pattern from Ba to Ir. The first r-process peak is significantly lower than solar but matches other r-process enhanced stars. This constrains the neutron-richness of r-process ejecta in neutron star mergers. The radioactive element thorium is detected with a somewhat low abundance. Naive application of currently predicted initial production ratios could imply an age >20 Gyr, but more likely indicates that the initial production ratios require revision. The abundance of lighter elements up to Zn are consistent with extremely metal-poor Milky Way halo stars. These elements may eventually provide a way to test for other hypothesized r-process sites, but only after a more detailed understanding of the chemical evolution in this galaxy. Reticulum II provides a clean view of early r-process enrichment that can be used to understand the increasing number of r-process measurements in other dwarf galaxies.

  5. Energetic Materials Effects on Essential Soil Processes: Decomposition of Orchard Grass (Dactylis glomerata) Litter in Soil Contaminated with Energetic Materials

    Science.gov (United States)

    2014-02-01

    availabilities of their respective food sources (bacteria and fungi ), were also unaffected-or-increasing in soil with CL-20 treatments. This is...ENERGETIC MATERIALS EFFECTS ON ESSENTIAL SOIL PROCESSES: DECOMPOSITION OF ORCHARD...GRASS (DACTYLIS GLOMERATA) LITTER IN SOIL CONTAMINATED WITH ENERGETIC MATERIALS ECBC-TR-1199 Roman G. Kuperman Ronald T. Checkai Michael Simini

  6. Imaging and Analytical Approaches for Characterization of Soil Mineral Weathering

    Energy Technology Data Exchange (ETDEWEB)

    Dohnalkova, Alice; Arey, Bruce; Varga, Tamas; Miller, Micah; Kovarik, Libor

    2017-07-01

    Soil minerals weathering is the primary natural source of nutrients necessary to sustain productivity in terrestrial ecosystems. Soil microbial communities increase soil mineral weathering and mineral-derived nutrient availability through physical and chemical processes. Rhizosphere, the zone immediately surrounding plant roots, is a biogeochemical hotspot with microbial activity, soil organic matter production, mineral weathering, and secondary phase formation all happening in a small temporally ephemeral zone of steep geochemical gradients. The detailed exploration of the micro-scale rhizosphere is essential to our better understanding of large-scale processes in soils, such as nutrient cycling, transport and fate of soil components, microbial-mineral interactions, soil erosion, soil organic matter turnover and its molecular-level characterization, and predictive modeling.

  7. Role of soil biology and soil functions in relation to land use intensity.

    Science.gov (United States)

    Bondi, Giulia; Wall, David; Bacher, Matthias; Emmet-Booth, Jeremy; Graça, Jessica; Marongiu, Irene; Creamer, Rachel

    2017-04-01

    The delivery of the ecosystem's functions is predominantly controlled by soil biology. The biology found in a gram of soil contains more than ten thousand individual species of bacteria and fungi (Torsvik et al., 1990). Understanding the role and the requirements of these organisms is essential for the protection and the sustainable use of soils. Soil biology represents the engine of all the processes occurring in the soil and it supports the ecosystem services such as: 1) nutrient mineralisation 2) plant production 3) water purification and regulation and 4) carbon cycling and storage. During the last years land management type and intensity have been identified as major drivers for microbial performance in soil. For this reason land management needs to be appropriately studied to understand the role of soil biology within this complex interplay of functions. We aimed to study whether and how land management drives soil biological processes and related functions. To reach this objective we built a land use intensity index (LUI) able to quantify the impact of the common farming practices carried out in Irish grassland soils. The LUI is derived from a detailed farmer questionnaire on grassland management practices at 38 farms distributed in the five major agro-climatic regions of Ireland defined by Holden and Brereton (2004). Soils were classified based on their drainage status according to the Irish Soil Information System by Creamer et al. (2014). This detailed questionnaire is then summarised into 3 management intensity components: (i) intensity of Fertilisation (Fi), (ii) frequency of Mowing (Mi) and (iii) intensity of Livestock Grazing (Gi). Sites were sampled to assess the impact of land management intensity on microbial community structure and enzyme behaviour in relation to nitrogen, phosphorus and carbon cycling. Preliminary results for enzymes linked to C and N cycles showed higher activity in relation to low grazing pressure (low Gi). Enzymes linked to P

  8. Influence of soil parameters on the linearity of the soil-to-plant transfer process of {sup 238}U and {sup 226}Ra

    Energy Technology Data Exchange (ETDEWEB)

    Blanco Rodriguez, P.; Vera Tome, F. [Natural Radioactivity Group. Universidad de Extremadura, 06071 Badajoz (Spain); Lozano, J.C. [Laboratorio de Radiactividad Ambiental. Universidad de Salamanca, 37008 Salamanca (Spain)

    2014-07-01

    Transfer from soil to plant is an important input of radionuclides into the food chain. Also, the mobility of radionuclides in soils is enhanced through their passage into the plant compartment. Thus, the soil-to-plant transfer of radionuclides raises the potential human dose. In radiological risk assessment models, this process is usually considered to be an equilibrium process such that the activity concentration in plants is linearly related to the soil concentration through a constant transfer factor (TF). However, the large variability present by measured TF values leads to major uncertainties in the assessment of risks. One possible way to reduce this variability in TF values is to parametrize their determination. This paper presents correlations of TF with the major element concentrations in soils. The findings confirm the major influence of the chemical environment of a soil on the assimilation process. The variability of TF might be greatly reduced if only the labile fraction were considered. Experiments performed with plants (Helianthus annuus L.) growing in a hydroponic medium appear to confirm this suggestion, showing a linear correlation between the plant and the soil solution activity concentrations. Extracting the labile fraction of a real soil is no trivial task, however. A possible operationally definable method is to consider the water-soluble together with the exchangeable fractions of the soil. Studies performed in granitic soils showed that the labile concentration of uranium and radium strongly depended on the soil's textural characteristics. In this sense, a parametrization is proposed of the labile uranium and radium concentration as a function of the soil's granulometric parameters. (authors)

  9. Strontium isotopes provide clues for a process shift in base cation dynamics in young volcanic soils

    Science.gov (United States)

    Bingham, N.; Jackson, M. G.; Bookhagen, B.; Maher, K.; Chadwick, O.

    2015-12-01

    Despite advances in soil development theory based on studies of old soils or over long timescales, little is known about soil thresholds (dramatic changes in soil properties associated with only small shifts in external forcing factors) that might be expressed in young soils (less than 10 kyr). Therefore, we seek to understand infant soil development in a tropical environment through the sourcing of plant available base cations by measuring the strontium (Sr) isotopic composition of the soil exchange complex. Our sampling strategy spans soils in three different precipitation ranges (950-1060 mm, 1180-1210 mm, and 1450-1500) and an array of soil ages from 500 to 7500 years in the Kona region on the island of Hawaii. In Hawaiian soils, 87Sr/86Sr values are determined by a mixture of three components: a mantle-derived component from the lava (0.7034), a rainfall component (0.7093) and a component from continental dust (0.720). Elevation-controlled leaching intensity in the wettest localities produces a decline in the concentration of base cations supplied by basalt and a dilute resupply by rainfall. In the driest sites, where leaching intensity is dramatically reduced, there is a buildup of rainfall-derived extractable Sr in the soil over time. Slow rock weathering rates produce a small rock-derived cation input to the soil. Thus, Sr isotope signatures reflect both the input of rainfall-derived cations and rock-derived cations with values that fall between rainfall and basaltic signatures. Soils in the intermediate precipitation range have Sr isotopic signatures consistent with both the wet and dry trends; suggesting that they lie close to the critical precipitation amount that marks a shift between these two processes. For the Kona region, this transition seems to occur at 1200 mm /yr. In contrast to the clear-cut differentiation in strontium isotopes with precipitation shifts observed in older soils, patterns on these young soils in Kona are complicated by low soil

  10. Cleanup of metals and hydrocarbons contaminated soils using the ChemTech process

    International Nuclear Information System (INIS)

    Stephenson, R.; Yan, V.; Lim, S.

    1997-01-01

    The ChemTech soil treatment process, an on-site ex-situ system, comprised of a three-phase fluidized bed to scour, emulsify and chemically leach soil contaminants into a process water, was described. The cleaned soils are then removed from the process circuit by means of a hydrodynamic classifier. At this point they are suitable for return to the excavation site. The process was demonstrated on a pilot scale in January 1997 by Klohn-Crippen Consultants at a demonstration program of emerging and innovative technologies sponsored by the Bay Area Defence Conversion Action Team (BADCAT), to assist with the remediation of twelve closing military bases in the San Francisco area. The ChemTest demonstration involved the removal of copper, chromium, lead and zinc from the Hunter Point Naval Reserve, plus treatability tests on a number of other contaminated soil samples. The ChemTech process was selected by federal and state regulatory agencies from 21 proposed technologies on the basis of performance, effectiveness, low cost, and absence of secondary environmental impacts. This paper provides details of the demonstration program, addresses the applicability of the technology to other sites, and provides cost estimates of unit cleanup costs. 3 refs., 4 tabs., 4 figs

  11. Validation of the solidifying soil process using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Lin, Zhao-Xiang; Liu, Lin-Mei; Liu, Lu-Wen

    2016-09-01

    Although an Ionic Soil Stabilizer (ISS) has been widely used in landslide control, it is desirable to effectively monitor the stabilization process. With the application of laser-induced breakdown spectroscopy (LIBS), the ion contents of K, Ca, Na, Mg, Al, and Si in the permeable fluid are detected after the solidified soil samples have been permeated. The processes of the Ca ion exchange are analyzed at pressures of 2 and 3 atm, and it was determined that the cation exchanged faster as the pressure increased. The Ca ion exchanges were monitored for different stabilizer mixtures, and it was found that a ratio of 1:200 of ISS to soil is most effective. The investigated plasticity and liquidity indexes also showed that the 1:200 ratio delivers the best performance. The research work indicates that it is possible to evaluate the engineering performances of soil solidified by ISS in real time and online by LIBS.

  12. Soil shrinkage characteristics in swelling soils

    International Nuclear Information System (INIS)

    Taboada, M.A.

    2004-01-01

    The objectives of this presentation are to understand soil swelling and shrinkage mechanisms, and the development of desiccation cracks, to distinguish between soils having different magnitude of swelling, as well as the consequences on soil structural behaviour, to know methods to characterize soil swell/shrink potential and to construct soil shrinkage curves, and derive shrinkage indices, as well to apply them to assess soil management effects

  13. Effects of Medium-Term Amendment with Diversely Processed Sewage Sludge on Soil Humification—Mineralization Processes and on Cu, Pb, Ni, and Zn Bioavailability

    Directory of Open Access Journals (Sweden)

    Gabriella Rossi

    2018-03-01

    Full Text Available The organic fraction of sewage sludge administered to agricultural soil can contribute to slowing down the loss of soil’s organic carbon and, in some cases, can improve the physical and mechanical properties of the soil. One of the main constraints to the agricultural use of sewage sludge is its heavy metals content. In the long term, agricultural administration of sewage sludge to soil could enhance the concentration of soil heavy metals (as total and bioavailable fractions. The aim of this research was to evaluate the effects of medium-term fertilization with diversely processed sewage sludge on the soil’s organic carbon content and humification–mineralization processes, on the physical–mechanical properties of soil and their influence on the pool of potentially bioavailable heavy metals, in order to assess their effectiveness as soil organic amendments. After eight years of sludge administration; an increase in the concentrations of bioavailable form was evidenced in all the heavy metals analyzed; independently of the type of sludge administered. The form of sludge administration (liquid, dehydrated, composted has differently influenced the soil humification–mineralization processes and the physical–mechanical properties of soil. The prolonged amendment with composted sewage sludge contributed to keeping the soil humification–mineralization process in equilibrium and to improving the physical and mechanical qualities of the treated soil.

  14. Process based modelling of soil organic carbon redistribution on landscape scale

    Science.gov (United States)

    Schindewolf, Marcus; Seher, Wiebke; Amorim, Amorim S. S.; Maeso, Daniel L.; Jürgen, Schmidt

    2014-05-01

    Recent studies have pointed out the great importance of erosion processes in global carbon cycling. Continuous erosion leads to a massive loss of top soils including the loss of organic carbon accumulated over long time in the soil humus fraction. Lal (2003) estimates that 20% of the organic carbon eroded with top soils is emitted into atmosphere, due to aggregate breakdown and carbon mineralization during transport by surface runoff. Furthermore soil erosion causes a progressive decrease of natural soil fertility, since cation exchange capacity is associated with organic colloids. As a consequence the ability of soils to accumulate organic carbon is reduced proportionately to the drop in soil productivity. The colluvial organic carbon might be protected from further degradation depending on the depth of the colluvial cover and local decomposing conditions. Some colluvial sites can act as long-term sinks for organic carbon. The erosional transport of organic carbon may have an effect on the global carbon budget, however, it is uncertain, whether erosion is a sink or a source for carbon in the atmosphere. Another part of eroded soils and organic carbon will enter surface water bodies and might be transported over long distances. These sediments might be deposited in the riparian zones of river networks. Erosional losses of organic carbon will not pass over into atmosphere for the most part. But soil erosion limits substantially the potential of soils to sequester atmospheric CO2 by generating humus. The present study refers to lateral carbon flux modelling on landscape scale using the process based EROSION 3D soil loss simulation model, using existing parameter values. The selective nature of soil erosion results in a preferentially transport of fine particles while less carbonic larger particles remain on site. Consequently organic carbon is enriched in the eroded sediment compared to the origin soil. For this reason it is essential that EROSION 3D provides the

  15. Relationship of microbial processes to the fate of transuranic elements in soil

    International Nuclear Information System (INIS)

    Wildung, R.E.; Drucker, H.

    1975-09-01

    Any assessment of the long-term behavior of the transuranics in the terrestrial environment must be based on determination of the factors influencing solubility in soil. The influence of soil properties and abiotic and biotic processes on the long-term solubility of the transuranics entering soils is reviewed in detail. Principal emphasis is directed toward the role of soil microorganisms. Emphasis is given to plutonium, but, where possible, the available information is used to discuss long-term behavior of other transuranics

  16. Unsaturated Seepage Analysis of Cracked Soil including Development Process of Cracks

    Directory of Open Access Journals (Sweden)

    Ling Cao

    2016-01-01

    Full Text Available Cracks in soil provide preferential pathways for water flow and their morphological parameters significantly affect the hydraulic conductivity of the soil. To study the hydraulic properties of cracks, the dynamic development of cracks in the expansive soil during drying and wetting has been measured in the laboratory. The test results enable the development of the relationships between the cracks morphological parameters and the water content. In this study, the fractal model has been used to predict the soil-water characteristic curve (SWCC of the cracked soil, including the developmental process of the cracks. The cracked expansive soil has been considered as a crack-pore medium. A dual media flow model has been developed to simulate the seepage characteristics of the cracked expansive soil. The variations in pore water pressure at different part of the model are quite different due to the impact of the cracks. This study proves that seepage characteristics can be better predicted if the impact of cracks is taken into account.

  17. Using the Bongwana natural CO2 release to understand leakage processes and develop monitoring

    Science.gov (United States)

    Jones, David; Johnson, Gareth; Hicks, Nigel; Bond, Clare; Gilfillan, Stuart; Kremer, Yannick; Lister, Bob; Nkwane, Mzikayise; Maupa, Thulani; Munyangane, Portia; Robey, Kate; Saunders, Ian; Shipton, Zoe; Pearce, Jonathan; Haszeldine, Stuart

    2016-04-01

    Natural CO2 leakage along the Bongwana Fault in South Africa is being studied to help understand processes of CO2 leakage and develop monitoring protocols. The Bongwana Fault crops out over approximately 80 km in KwaZulu-Natal province, South Africa. In outcrop the fault is expressed as a broad fracture corridor in Dwyka Tillite, with fractures oriented approximately N-S. Natural emissions of CO2 occur at various points along the fault, manifest as travertine cones and terraces, bubbling in the rivers and as gas fluxes through soil. Exposed rock outcrop shows evidence for Fe-staining around fractures and is locally extensively kaolinitised. The gas has also been released through a shallow water well, and was exploited commercially in the past. Preliminary studies have been carried out to better document the surface emissions using near surface gas monitoring, understand the origin of the gas through major gas composition and stable and noble gas isotopes and improve understanding of the structural controls on gas leakage through mapping. In addition the impact of the leaking CO2 on local water sources (surface and ground) is being investigated, along with the seismic activity of the fault. The investigation will help to build technical capacity in South Africa and to develop monitoring techniques and plans for a future CO2 storage pilot there. Early results suggest that CO2 leakage is confined to a relatively small number of spatially-restricted locations along the weakly seismically active fault. Fracture permeability appears to be the main method by which the CO2 migrates to the surface. The bulk of the CO2 is of deep origin with a minor contribution from near surface biogenic processes as determined by major gas composition. Water chemistry, including pH, DO and TDS is notably different between CO2-rich and CO2-poor sites. Soil gas content and flux effectively delineates the fault trace in active leakage sites. The fault provides an effective testing ground for

  18. Decontamination of Soils Contaminated with Co and Cs by Using an Acid Leaching Process

    International Nuclear Information System (INIS)

    Jung-Joon, Lee; Gye-Nam, Kim; Jei-Kwon, Moon; Kune-Woo, Lee

    2009-01-01

    Acid leaching process has been adapted for the remediation of soils contaminated with heavy metals and radionuclides. This method has been reported to be simple, and economically promising. Moreover it can be applicable for on-site and off-site remediations as well. Investigations were conducted on an acid leaching process using surrogate contaminated soils. Size sieving, agglomeration and column leaching were carried out with soils artificially contaminated with Co and Cs, respectively. Size distribution was analyzed for a determination of the particle size required to be agglomerated. Because of the low water permeability of the soils due to their fine particles, they were sieved by using a sieve with a 0.075 mm size (No. 200 mesh) for an agglomeration. The soils with a size smaller than 0.075 mm were agglomerated by using 2 % sodium silicate (Na 2 SiO 3 ), while the soils with a size larger than 0.075 mm were used directly for the column leaching test. From the preliminary test (the batch scale leaching test), 0.1 M of HCl was determined as the effective leaching agent for Co and Cs. Finally, the soils mixed with the coarse soil and the agglomerated soil were decontaminated with 0.1 M HCl within 11.3 days and the removal efficiencies of Co and Cs were 94.0 % and 82.8 %, respectively. In conclusion, an acid leaching process could be applied for a remediation of soils contaminated with radionuclides such as Co and Cs. (authors)

  19. Optimization of a sample processing protocol for recovery of Bacillus anthracis spores from soil

    Science.gov (United States)

    Silvestri, Erin E.; Feldhake, David; Griffin, Dale; Lisle, John T.; Nichols, Tonya L.; Shah, Sanjiv; Pemberton, A; Schaefer III, Frank W

    2016-01-01

    Following a release of Bacillus anthracis spores into the environment, there is a potential for lasting environmental contamination in soils. There is a need for detection protocols for B. anthracis in environmental matrices. However, identification of B. anthracis within a soil is a difficult task. Processing soil samples helps to remove debris, chemical components, and biological impurities that can interfere with microbiological detection. This study aimed to optimize a previously used indirect processing protocol, which included a series of washing and centrifugation steps. Optimization of the protocol included: identifying an ideal extraction diluent, variation in the number of wash steps, variation in the initial centrifugation speed, sonication and shaking mechanisms. The optimized protocol was demonstrated at two laboratories in order to evaluate the recovery of spores from loamy and sandy soils. The new protocol demonstrated an improved limit of detection for loamy and sandy soils over the non-optimized protocol with an approximate matrix limit of detection at 14 spores/g of soil. There were no significant differences overall between the two laboratories for either soil type, suggesting that the processing protocol will be robust enough to use at multiple laboratories while achieving comparable recoveries.

  20. Understanding spatial heterogeneity in soil carbon and nitrogen cycling in regenerating tropical dry forests

    Science.gov (United States)

    Waring, B. G.; Powers, J. S.; Branco, S.; Adams, R.; Schilling, E.

    2015-12-01

    Tropical dry forests (TDFs) currently store significant amounts of carbon in their biomass and soils, but these highly seasonal ecosystems may be uniquely sensitive to altered climates. The ability to quantitatively predict C cycling in TDFs under global change is constrained by tremendous spatial heterogeneity in soil parent material, land-use history, and plant community composition. To explore this variation, we examined soil carbon and nitrogen dynamics in 18 permanent plots spanning orthogonal gradients of stand age and soil fertility. Soil C and N pools, microbial biomass, and microbial extracellular enzyme activities were most variable at small (m2) spatial scales. However, the ratio of organic vs. inorganic N cycling was consistently higher in forest stands dominated by slow-growing, evergreen trees that associate with ectomycorrhizal fungi. Similarly, although bulk litter stocks and turnover rates varied greatly among plots, litter decomposition tended to be slower in ectomycorrhizae-dominated stands. Soil N cycling tended to be more conservative in older plots, although the relationship between stand age and element cycling was weak. Our results emphasize that microscale processes, particularly interactions between mycorrhizal fungi and free-living decomposers, are important controls on ecosystem-scale element cycling.

  1. Modelling soil-water dynamics in the rootzone of structured and water-repellent soils

    Science.gov (United States)

    Brown, Hamish; Carrick, Sam; Müller, Karin; Thomas, Steve; Sharp, Joanna; Cichota, Rogerio; Holzworth, Dean; Clothier, Brent

    2018-04-01

    In modelling the hydrology of Earth's critical zone, there are two major challenges. The first is to understand and model the processes of infiltration, runoff, redistribution and root-water uptake in structured soils that exhibit preferential flows through macropore networks. The other challenge is to parametrise and model the impact of ephemeral hydrophobicity of water-repellent soils. Here we have developed a soil-water model, which is based on physical principles, yet possesses simple functionality to enable easier parameterisation, so as to predict soil-water dynamics in structured soils displaying time-varying degrees of hydrophobicity. Our model, WEIRDO (Water Evapotranspiration Infiltration Redistribution Drainage runOff), has been developed in the APSIM Next Generation platform (Agricultural Production Systems sIMulation). The model operates on an hourly time-step. The repository for this open-source code is https://github.com/APSIMInitiative/ApsimX. We have carried out sensitivity tests to show how WEIRDO predicts infiltration, drainage, redistribution, transpiration and soil-water evaporation for three distinctly different soil textures displaying differing hydraulic properties. These three soils were drawn from the UNSODA (Unsaturated SOil hydraulic Database) soils database of the United States Department of Agriculture (USDA). We show how preferential flow process and hydrophobicity determine the spatio-temporal pattern of soil-water dynamics. Finally, we have validated WEIRDO by comparing its predictions against three years of soil-water content measurements made under an irrigated alfalfa (Medicago sativa L.) trial. The results provide validation of the model's ability to simulate soil-water dynamics in structured soils.

  2. Characterization of soil water content variability and soil texture using GPR groundwave techniques

    Energy Technology Data Exchange (ETDEWEB)

    Grote, K.; Anger, C.; Kelly, B.; Hubbard, S.; Rubin, Y.

    2010-08-15

    Accurate characterization of near-surface soil water content is vital for guiding agricultural management decisions and for reducing the potential negative environmental impacts of agriculture. Characterizing the near-surface soil water content can be difficult, as this parameter is often both spatially and temporally variable, and obtaining sufficient measurements to describe the heterogeneity can be prohibitively expensive. Understanding the spatial correlation of near-surface soil water content can help optimize data acquisition and improve understanding of the processes controlling soil water content at the field scale. In this study, ground penetrating radar (GPR) methods were used to characterize the spatial correlation of water content in a three acre field as a function of sampling depth, season, vegetation, and soil texture. GPR data were acquired with 450 MHz and 900 MHz antennas, and measurements of the GPR groundwave were used to estimate soil water content at four different times. Additional water content estimates were obtained using time domain reflectometry measurements, and soil texture measurements were also acquired. Variograms were calculated for each set of measurements, and comparison of these variograms showed that the horizontal spatial correlation was greater for deeper water content measurements than for shallower measurements. Precipitation and irrigation were both shown to increase the spatial variability of water content, while shallowly-rooted vegetation decreased the variability. Comparison of the variograms of water content and soil texture showed that soil texture generally had greater small-scale spatial correlation than water content, and that the variability of water content in deeper soil layers was more closely correlated to soil texture than were shallower water content measurements. Lastly, cross-variograms of soil texture and water content were calculated, and co-kriging of water content estimates and soil texture

  3. The effect of soil properties on the toxicity of silver to the soil nitrification process.

    Science.gov (United States)

    Langdon, Kate A; McLaughlin, Mike J; Kirby, Jason K; Merrington, Graham

    2014-05-01

    Silver (Ag) is being increasingly used in a range of consumer products, predominantly as an antimicrobial agent, leading to a higher likelihood of its release into the environment. The present study investigated the toxicity of Ag to the nitrification process in European and Australian soils in both leached and unleached conditions. Overall, leaching of soils was found to have a minimal effect on the final toxicity data, with an average leaching factor of approximately 1. Across the soils, the toxicity was found to vary by several orders of magnitude, with concentrations of Ag causing a 50% reduction in nitrification relative to the controls (EC50) ranging from 0.43 mg Ag/kg to >640 mg Ag/kg. Interestingly, the dose-response relationships in most of the soils showed significant stimulation in nitrification at low Ag concentrations (i.e., hormesis), which in some cases produced responses up to double that observed in the controls. Soil pH and organic carbon were the properties found to have the greatest influence on the variations in toxicity thresholds across the soils, and significant relationships were developed that accounted for approximately 90% of the variability in the data. The toxicity relationships developed from the present study will assist in future assessment of potential Ag risks and enable the site-specific prediction of Ag toxicity. © 2014 SETAC.

  4. Isotopic techniques to study phosphorus cycling in soils

    International Nuclear Information System (INIS)

    Manjaiah, K.M.; Sreenivasa Chari, M.; Sachdev, P.; Sachdev, M.S.

    2008-01-01

    A sound understanding of phosphorus cycling in soil system is essential in order to manage this system in a sustainable manner. Phosphorus transformations are characterized by physico-chemical (sorption-desorption) and biological processes . The transformation rates need to be taken into account while developing nutrient management strategies for economical and sustainable production. One of the important tools and the method gaining popularity for determining the gross transformation rates of nutrients in the soil is the isotopic dilution technique. The major processes in the soil-plant system which determine the distribution and bioavailability of phosphorus in various inorganic and organic soil components consist of: (1) the dissolution of soil mineral phosphates, (2) retention of phosphorus by inorganic soil constituents, (3) decomposition of organic phosphorus contained in plant, animal and microbial detritus and (4) Immobilization of phosphorus via the soil microbial biomass and plan uptake

  5. Concentration and distribution of elements in plants and soils near phosphate processing factories, Pocatello, Idaho

    International Nuclear Information System (INIS)

    Severson, R.C.; Gough, L.P.

    1976-01-01

    The processing of phosphatic shale near Pocatello, Idaho has a direct influence on the element content of local vegetation and soil. Samples of big sagebrush (Artemisia tridentata Nutt. subsp. tridentata) and cheatgrass (Bromus tectorum L.) show important negative relations between the concentration of certain elements (Cd, Cr, F, Ni, P, Se, U, V, and Zn) and distance from phosphate processing factories. Plant tissues within 3 km of the processing factories contain unusually high amounts of these elements except Ni and Se. Important negative relations with distance were also found for certain elements (Be, F, Fe, K, Li, Pb, Rb, Th, and Zn) in A-horizon soil. Amounts of seven elements (Be, F, Li, Pb, Rb, Th, and Zn) being contributed to the upper 5 cm of the soil by phosphate processing, as well as two additional elements (U and V) suspected as being contributed to soil, were estimated, with F showing the greatest increase (about 300 kg/ha) added to soils as far as 4 km downwind from the factories. The greatest number of important relations for both plants and soils was found downwind (northeast) of the processing factories

  6. Uranium removal from soils: An overview from the Uranium in Soils Integrated Demonstration program

    International Nuclear Information System (INIS)

    Francis, C.W.; Brainard, J.R.; York, D.A.; Chaiko, D.J.; Matthern, G.

    1994-01-01

    An integrated approach to remove uranium from uranium-contaminated soils is being conducted by four of the US Department of Energy national laboratories. In this approach, managed through the Uranium in Soils Integrated Demonstration program at the Fernald Environmental Management Project, Fernald, Ohio, these laboratories are developing processes that selectively remove uranium from soil without seriously degrading the soil's physicochemical characteristics or generating waste that is difficult to manage or dispose of. These processes include traditional uranium extractions that use carbonate as well as some nontraditional extraction techniques that use citric acid and complex organic chelating agents such as naturally occurring microbial siderophores. A bench-scale engineering design for heap leaching; a process that uses carbonate leaching media shows that >90% of the uranium can be removed from the Fernald soils. Other work involves amending soils with cultures of sulfur and ferrous oxidizing microbes or cultures of fungi whose role is to generate mycorrhiza that excrete strong complexers for uranium. Aqueous biphasic extraction, a physical separation technology, is also being evaluated because of its ability to segregate fine particulate, a fundamental requirement for soils containing high levels of silt and clay. Interactions among participating scientists have produced some significant progress not only in evaluating the feasibility of uranium removal but also in understanding some important technical aspects of the task

  7. Combination of surfactant enhanced soil washing and electro-Fenton process for the treatment of soils contaminated by petroleum hydrocarbons.

    Science.gov (United States)

    Huguenot, David; Mousset, Emmanuel; van Hullebusch, Eric D; Oturan, Mehmet A

    2015-04-15

    In order to improve the efficiency of soil washing treatment of hydrocarbon contaminated soils, an innovative combination of this soil treatment technique with an electrochemical advanced oxidation process (i.e. electro-Fenton (EF)) has been proposed. An ex situ soil column washing experiment was performed on a genuinely diesel-contaminated soil. The washing solution was enriched with surfactant Tween 80 at different concentrations, higher than the critical micellar concentration (CMC). The impact of soil washing was evaluated on the hydrocarbons concentration in the leachates collected at the bottom of the soil columns. These eluates were then studied for their degradation potential by EF treatment. Results showed that a concentration of 5% of Tween 80 was required to enhance hydrocarbons extraction from the soil. Even with this Tween 80 concentration, the efficiency of the treatment remained very low (only 1% after 24 h of washing). Electrochemical treatments performed thereafter with EF on the collected eluates revealed that the quasi-complete mineralization (>99.5%) of the hydrocarbons was achieved within 32 h according to a linear kinetic trend. Toxicity was higher than in the initial solution and reached 95% of inhibition of Vibrio fischeri bacteria measured by Microtox method, demonstrating the presence of remaining toxic compounds even after the complete degradation. Finally, the biodegradability (BOD₅/COD ratio) reached a maximum of 20% after 20 h of EF treatment, which is not enough to implement a combined treatment with a biological treatment process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The scale effect on soil erosion. A plot approach to understand connectivity on slopes under cultivation at variable plot sizes and under Mediterranean climatic conditions

    Science.gov (United States)

    Cerdà, Artemi; Bagarello, Vicenzo; Ferro, Vito; Iovino, Massimo; Borja, Manuel Estaban Lucas; Francisco Martínez Murillo, Juan; González Camarena, Rafael

    2017-04-01

    It is well known that soil erosion changes along time and seasons and attention was paid to this issue in the past (González Hidalgo et al., 2010; 2012). However, although the scientific community knows that soil erosion is also a time spatial scale-scale dependent process (Parsons et al., 1990; Cerdà et al., 2009; González Hidalgo et al., 2013; Sadeghi et al., 2015) very little is done on this topic. This is due to the fact that at different scales, different soil erosion mechanisms (splash, sheetflow, rill development) are active and their rates change with the scale of measurement (Wainwright et al., 2002; López-Vicente et al., 2015). This is making the research on soil erosion complex and difficult, and it is necessary to develop a conceptual framework but also measurements that will inform about the soil erosion behaviour. Connectivity is the key concept to understand how changes in the scale results in different rates of soil and water losses (Parsons et al., 1996; Parsons et al., 2015; Poeppl et al., 2016). Most of the research developed around the connectivity concept was applied in watershed or basin scales (Galdino et al., 2016; Martínez-Casasnovas et al., 2016; López Vicente et al., 2016; Marchamalo et al., 2015; Masselink et al., 2016), but very little is known about the connectivity issue at slope scale (Cerdà and Jurgensen, 2011). El Teularet (Eastern Iberian Peninsula) and Sparacia (Sicily) soil erosion experimental stations are being active for 15 years and data collected on different plots sizes can shed light into the effect of scale on runoff generation and soil losses at different scales and give information to understand how the transport of materials is determined by the connectivity between pedon to slope scale (Cerdà et al., 2014; Bagarello et al., 2015a; 2015b). The comparison of the results of the two research stations will shed light into the rates of soil erosion and mechanisms involved that act under different scales. Our

  9. [Effects of global change on soil fauna diversity: A review].

    Science.gov (United States)

    Wu, Ting-Juan

    2013-02-01

    Terrestrial ecosystem consists of aboveground and belowground components, whose interaction affects the ecosystem processes and functions. Soil fauna plays an important role in biogeochemical cycles. With the recognizing of the significance of soil fauna in ecosystem processes, increasing evidences demonstrated that global change has profound effects on soil faunima diversity. The alternation of land use type, the increasing temperature, and the changes in precipitation pattern can directly affect soil fauna diversity, while the increase of atmospheric CO2 concentration and nitrogen deposition can indirectly affect the soil fauna diversity by altering plant community composition, diversity, and nutrient contents. The interactions of different environmental factors can co-affect the soil fauna diversity. To understand the effects of different driving factors on soil fauna diversity under the background of climate change would facilitate us better predicting how the soil fauna diversity and related ecological processes changed in the future.

  10. Hydrologic Connectivity for Understanding Watershed Processes: Brand-new Puzzle or Emerging Panacea?

    Science.gov (United States)

    Ali, G. A.; Roy, A. G.; Tetzlaff, D.; Soulsby, C.; McDonnell, J. J.

    2011-12-01

    As a way to develop a more holistic approach to watershed assessment and management, the concept of hydrologic connectivity (HC) is often put at the forefront. HC can be seen as the strength of the water-mediated linkages between discrete units of the landscape and as such, it facilitates our intuitive understanding of the mechanisms driving runoff initiation and cessation. Much of the excitement surrounding HC is attributable to its potential to enhance our ability to gain insights into multiple areas including process dynamics, numerical model building, the effects of human elements in our landscape conceptualization, and the development of simplified watershed management tools. However, before such potential can be fully demonstrated, many issues must be resolved with regards to the measure of HC. Here we provide examples highlighting how connectivity can be useful towards understanding water routing in river basins, ecohydrological systems coupling, and intermittent rainfall-runoff dynamics. First, the use of connectivity metrics to examine the relative influence of surface/subsurface topography and soil characteristics on runoff generation will be discussed. Second, the effectiveness of using geochemical tracers will be examined with respect to identifying non-point runoff sources and linking hillslope-to-channel connectivity with surface water-groundwater exchanges in the biologically sensitive hyporheic zone. Third, the identification of different hydrologic thresholds will be presented as a way to discriminate the establishment of connectivity across a range of contrasted catchments located in Canada, Scotland, the USA, and Sweden. These examples will show that current challenges with regards to HC revolve around the choice of an accurate methodological framework for an appropriate translation of experimental findings into effective watershed management approaches. Addressing these questions simultaneously will lead to the emergence of HC as a powerful tool

  11. Chemical Alteration of Soils on Earth as a Function of Precipitation: Insights Into Weathering Processes Relevant to Mars

    Science.gov (United States)

    Amundson, R.; Chadwick, O.; Ewing, S.; Sutter, B.; Owen, J.; McKay, C.

    2004-12-01

    Soils lie at the interface of the atmosphere and lithosphere, and the rates of chemical and physical processes that form them hinge on the availability of water. Here we quantify the effect of these processes on soil volume and mass in different rainfall regimes. We then use the results of this synthesis to compare with the growing chemical dataset for soils on Mars in order to identify moisture regimes on Earth that may provide crude analogues for past Martian weathering conditions. In this synthesis, the rates of elemental gains/losses, and corresponding volumetric changes, were compared for soils in nine soil chronosequences (sequences of soils of differing ages) - sequences formed in climates ranging from ~1 to ~4500 mm mean annual precipitation (MAP). Total elemental chemistry of soils and parent materials were determined via XRF, ICP-MS, and/or ICP-OES, and the absolute elemental gains or losses (and volume changes) were determined by normalizing data to an immobile index element. For the chronosequences examined, the initial stages of soil formation (103^ to 104^ yr), regardless of climate, generally show volumetric expansion due to (1) reduction in bulk density by biological/physical turbation, (2) addition of organic matter, (3) accumulation of water during clay mineral synthesis, and/or (4) accumulation of atmospheric salts and dust. Despite large differences in parent materials (basalt, sandstone, granitic alluvium), there was a systematic relationship between long-term (105^ to 106^ yr) volumetric change and rainfall, with an approximate cross-over point between net expansion (and accumulation of atmospheric solutes and dust) and net collapse (net losses of Si, Al, and alkaline earths and alkali metals) between approximately 20 and 100 mm MAP. Recently published geochemical data of soils at Gusev Crater (Gellert et al. 2004. Science 305:829), when normalized to Ti, show apparent net losses of Si and Al that range between 5 and 50% of values relative to

  12. Effect of Linked Rules on Business Process Model Understanding

    DEFF Research Database (Denmark)

    Wang, Wei; Indulska, Marta; Sadiq, Shazia

    2017-01-01

    Business process models are widely used in organizations by information systems analysts to represent complex business requirements and by business users to understand business operations and constraints. This understanding is extracted from graphical process models as well as business rules. Prior...

  13. Effect of soil organic matter on antimony bioavailability after the remediation process

    International Nuclear Information System (INIS)

    Nakamaru, Yasuo Mitsui; Martín Peinado, Francisco José

    2017-01-01

    We evaluated the long-term (18 year) and short-term (4 weeks) changes of Sb in contaminated soil with SOM increase under remediation process. In the Aznalcóllar mine accident (1998) contaminated area, the remediation measurement implemented the Guadiamar Green Corridor, where residual pollution is still detected. Soils of the re-vegetated area (O2) with high pH and high SOM content, moderately re-vegetated area (O1) and unvegetated area (C) were sampled. Soil pH, CEC, SOM amount and soil Sb forms were evaluated. Soil Sb was measured as total, soluble, exchangeable, EDTA extractable, acid oxalate extractable, and pyro-phosphate extractable fractions. Further, the short-term effect of artificial organic matter addition was also evaluated with incubation study by adding compost to the sampled soil from C, O1 and O2 areas. After 4 weeks of incubation, soil chemical properties and Sb forms were evaluated. In re-vegetated area (O2), soil total Sb was two times lower than in unvegetated area (C); however, soluble, exchangeable, and EDTA extractable Sb were 2–8 times higher. The mobile/bioavailable Sb increase was also observed after 4 weeks of incubation with the addition of compost. Soluble, exchangeable, and EDTA extractable Sb was increased 2–4 times by compost addition. By the linear regression analysis, the significantly related factors for soluble, exchangeable, and EDTA extractable Sb values were pH, CEC, and SOM, respectively. Soluble Sb increase was mainly related to pH rise. Exchangeable Sb should be bound by SOM-metal complex and increased with CEC. EDTA extractable fraction should be increased with increase of SOM as SOM-Fe associated Sb complex. From these results, it was shown that increase of SOM under natural conditions or application of organic amendment under remediation process should increase availability of Sb to plants. - Highlights: • The effect of SOM on Sb availability was evaluated after the remediation process. • Increase in SOM raised

  14. Changes in assembly processes in soil bacterial communities following a wildfire disturbance.

    Science.gov (United States)

    Ferrenberg, Scott; O'Neill, Sean P; Knelman, Joseph E; Todd, Bryan; Duggan, Sam; Bradley, Daniel; Robinson, Taylor; Schmidt, Steven K; Townsend, Alan R; Williams, Mark W; Cleveland, Cory C; Melbourne, Brett A; Jiang, Lin; Nemergut, Diana R

    2013-06-01

    Although recent work has shown that both deterministic and stochastic processes are important in structuring microbial communities, the factors that affect the relative contributions of niche and neutral processes are poorly understood. The macrobiological literature indicates that ecological disturbances can influence assembly processes. Thus, we sampled bacterial communities at 4 and 16 weeks following a wildfire and used null deviation analysis to examine the role that time since disturbance has in community assembly. Fire dramatically altered bacterial community structure and diversity as well as soil chemistry for both time-points. Community structure shifted between 4 and 16 weeks for both burned and unburned communities. Community assembly in burned sites 4 weeks after fire was significantly more stochastic than in unburned sites. After 16 weeks, however, burned communities were significantly less stochastic than unburned communities. Thus, we propose a three-phase model featuring shifts in the relative importance of niche and neutral processes as a function of time since disturbance. Because neutral processes are characterized by a decoupling between environmental parameters and community structure, we hypothesize that a better understanding of community assembly may be important in determining where and when detailed studies of community composition are valuable for predicting ecosystem function.

  15. Understanding Quality in Process Modelling: Towards a Holistic Perspective

    Directory of Open Access Journals (Sweden)

    Jan Recker

    2007-09-01

    Full Text Available Quality is one of the main topics in current conceptual modelling research, as is the field of business process modelling. Yet, widely acknowledged academic contributions towards an understanding or measurement of business process model quality are limited at best. In this paper I argue that the development of methodical theories concerning the measurement or establishment of process model quality must be preceded by methodological elaborations on business process modelling. I further argue that existing epistemological foundations of process modelling are insufficient for describing all extrinsic and intrinsic traits of model quality. This in turn has led to a lack of holistic understanding of process modelling. Taking into account the inherent social and purpose-oriented character of process modelling in contemporary organizations I present a socio-pragmatic constructionist methodology of business process modelling and sketch out implications of this perspective towards an understanding of process model quality. I anticipate that, based on this research, theories can be developed that facilitate the evaluation of the ’goodness’ of a business process model.

  16. Feedbacks Between Soil Structure and Microbial Activities in Soil

    Science.gov (United States)

    Bailey, V. L.; Smith, A. P.; Fansler, S.; Varga, T.; Kemner, K. M.; McCue, L. A.

    2017-12-01

    Soil structure provides the physical framework for soil microbial habitats. The connectivity and size distribution of soil pores controls the microbial access to nutrient resources for growth and metabolism. Thus, a crucial component of soil research is how a soil's three-dimensional structure and organization influences its biological potential on a multitude of spatial and temporal scales. In an effort to understand microbial processes at scale more consistent with a microbial community, we have used soil aggregates as discrete units of soil microbial habitats. Our research has shown that mean pore diameter (x-ray computed tomography) of soil aggregates varies with the aggregate diameter itself. Analyzing both the bacterial composition (16S) and enzyme activities of individual aggregates showed significant differences in the relative abundances of key members the microbial communities associated with high enzyme activities compared to those with low activities, even though we observed no differences in the size of the biomass, nor in the overall richness or diversity of these communities. We hypothesize that resources and substrates have stimulated key populations in the aggregates identified as highly active, and as such, we conducted further research that explored how such key populations (i.e. fungal or bacterial dominated populations) alter pathways of C accumulation in aggregate size domains and microbial C utilization. Fungi support and stabilize soil structure through both physical and chemical effects of their hyphal networks. In contrast, bacterial-dominated communities are purported to facilitate micro- and fine aggregate stabilization. Here we quantify the direct effects fungal versus bacterial dominated communities on aggregate formation (both the rate of aggregation and the quality, quantity and distribution of SOC contained within aggregates). A quantitative understanding of the different mechanisms through which fungi or bacteria shape aggregate

  17. UNDERSTANDING PLANT-SOIL RELATIONSHIPS USING CONTROLLED ENVIRONMENT FACILITIES

    Science.gov (United States)

    Although soil is a component of terrestrial ecosystems, it is comprised of a complex web of interacting organisms, and therefore, can be considered itself as an ecosystem. Soil microflora and fauna derive energy from plants and plant residues and serve important functions in mai...

  18. ENGINEERING ISSUE: IN SITU BIOREMEDIATION OF CONTAMINATED UNSATURATED SUBSURFACE SOILS

    Science.gov (United States)

    An emerging technology for the remediation of unsaturated subsurface soils involves the use of microorganisms to degrade contaminants which are present in such soils. Understanding the processes which drive in situ bioremediation, as well as the effectiveness and efficiency of th...

  19. Soil water content plays an important role in soil-atmosphere exchange of carbonyl sulfide (OCS)

    Science.gov (United States)

    Yi, Zhigang; Behrendt, Thomas; Bunk, Rüdiger; Wu, Dianming; Kesselmeier, Jürgen

    2016-04-01

    Carbonyl sulfide (OCS) is a quite stable gas in the troposphere and is transported up to the stratosphere, where it contributes to the sulfate aerosol layer (Crutzen 1976). The tropospheric concentration seems to be quite constant, indicating a balance between sinks and sources. Recent work by Sandoval-Soto et al. (2005) demonstrated the enormous strength of the vegetation sink and the urgent needs to understand the sinks and sources. The role of soils is a matter of discussion (Kesselmeier et al., 1999; Van Diest and Kesselmeier, 2008; Maseyk et al., 2014; Whelan et al., 2015). To better understand the influence of soil water content and OCS mixing ratio on OCS fluxes, we used an OCS analyzer (LGR COS/CO Analyzer 907-0028, Los Gatos, CA, USA) coupled with automated soil chamber system (Behrendt et al., 2014) to measure the OCS fluxes with a slow drying of four different types of soil (arable wheat soil in Mainz, blueberry soil in Waldstein, spruce soil in Waldstein and needle forest soil in Finland). Results showed that OCS fluxes as well as the optimum soil water content for OCS uptake varied significantly for different soils. The net production rates changed significantly with the soil drying out from 100% to about 5% water holding capacity (WHC), implying that soil water content play an important role in the uptake processes. The production and uptake processes were distinguished by the regression of OCS fluxes under different OCS mixing ratios. OCS compensation points (CP) were found to differ significantly for different soil types and water content, with the lowest CP at about 20% WHC, implying that when estimating the global budgets of OCS, especially for soils fluxes, soil water content should be taken into serious consideration. References Crutzen, P. J. 1976, Geophys. Res. Lett., 3, 73-76. Sandoval-Soto, L. et al., 2005, Biogeosciences, 2, 125-132. Kesselmeier, J. et al., 1999, J. Geophys. Res., 104, 11577-11584. Van Diest, H. and Kesselmeier, J. 2008

  20. [Monitoring of water and salt transport in silt and sandy soil during the leaching process].

    Science.gov (United States)

    Fu, Teng-Fei; Jia, Yong-Gang; Guo, Lei; Liu, Xiao-Lei

    2012-11-01

    Water and salt transport in soil and its mechanism is the key point of the saline soil research. The dynamic rule of water and transport in soil during the leaching process is the theoretical basis of formation, flush, drainage and improvement of saline soil. In this study, a vertical infiltration experiment was conducted to monitor the variation in the resistivity of silt and sandy soil during the leaching process by the self-designed automatic monitoring device. The experimental results showed that the peaks in the resistivity of the two soils went down and faded away in the course of leaching. It took about 30 minutes for sandy soil to reach the water-salt balance, whereas the silt took about 70 minutes. With the increasing leaching times, the desalination depth remained basically the same, being 35 cm for sandy soil and 10 cm for the silt from the top to bottom of soil column. Therefore, 3 and 7 leaching processes were required respectively for the complete desalination of the soil column. The temporal and spatial resolution of this monitoring device can be adjusted according to the practical demand. This device can not only achieve the remote, in situ and dynamic monitoring data of water and salt transport, but also provide an effective method in monitoring, assessment and early warning of salinization.

  1. Roles of soil biota and biodiversity in soil environment – A concise communication

    Directory of Open Access Journals (Sweden)

    Suleiman Usman

    2016-10-01

    Full Text Available Soil biota (the living organisms in soil plays an important role in soil development and soil formation. They are the most important component of soil organic matter decomposition and behave efficiently in the development and formation of soil structure and soil aggregate. Their biodiversity provides many functional services to soil and soil components. They help in dissolving verities of plant and animal materials, which could left as decayed organic matter at the surface soil. Understanding the vital role of soil organisms would undoubtedly helps to increase food production and reduces poverty, hunger and malnutrition. Soil biota and biodiversity research in sub-Saharan Africa would play an important role in sustaining food security, environmental health, water quality and forest regeneration. This paper, briefly highlighted some of the biological functions of soil biota and suggests that proper understandings of biota and their biodiversity in soil environment would provide ways to get better understanding of soil health, soil function, soil quality and soil fertility under sustainable soil management activities in agricultural production.

  2. Assessing heterogeneity in soil nitrogen cycling: a plot-scale approach

    Science.gov (United States)

    Peter Baas; Jacqueline E. Mohan; David Markewitz; Jennifer D. Knoepp

    2014-01-01

    The high level of spatial and temporal heterogeneity in soil N cycling processes hinders our ability to develop an ecosystem-wide understanding of this cycle. This study examined how incorporating an intensive assessment of spatial variability for soil moisture, C, nutrients, and soil texture can better explain ecosystem N cycling at the plot scale. Five sites...

  3. Discovering the essence of soil

    Science.gov (United States)

    Frink, D.

    2012-04-01

    Science, and what it can learn, is constrained by its paradigms and premises. Similarly, teaching and what topics can be addressed are constrained by the paradigms and premises of the subject matter. Modern soil science is founded on the five-factor model of Dokuchaev and Jenny. Combined with Retallack's universal definition of soil as geologic detritus affected by weathering and/or biology, modern soil science emphasizes a descriptive rather than an interpretive approach. Modern soil science however, emerged from the study of plants and the need to improve crop yields in the face of chronic and wide spread famine in Europe. In order to teach that dirt is fascinating we must first see soils in their own right, understand their behavior and expand soil science towards an interpretive approach rather than limited as a descriptive one. Following the advice of James Hutton given over two centuries ago, I look at soils from a physiological perspective. Digestive processes are mechanical and chemical weathering, the resulting constituents reformed into new soil constituents (e.g. clay and humus), translocated to different regions of the soil body to serve other physiological processes (e.g. lamellae, argillic and stone-line horizons), or eliminated as wastes (e.g. leachates and evolved gasses). Respiration is described by the ongoing and diurnal exchange of gasses between the soil and its environment. Circulatory processes are evident in soil pore space, drainage capacity and capillary capability. Reproduction of soil is evident at two different scales: the growth of clay crystals (with their capacity for mutation) and repair of disturbed areas such as result from the various pedo-perturbations. The interactions between biotic and abiotic soil components provide examples of both neurological and endocrine systems in soil physiology. Through this change in perspective, both biotic and abiotic soil processes become evident, providing insight into the possible behavior of

  4. Improved Biosensors for Soils

    Science.gov (United States)

    Silberg, J. J.; Masiello, C. A.; Cheng, H. Y.

    2014-12-01

    Microbes drive processes in the Earth system far exceeding their physical scale, affecting crop yields, water quality, the mobilization of toxic materials, and fundamental aspects of soil biogeochemistry. The tools of synthetic biology have the potential to significantly improve our understanding of microbial Earth system processes: for example, synthetic microbes can be be programmed to report on environmental conditions that stimulate greenhouse gas production, metal oxidation, biofilm formation, pollutant degradation, and microbe-plant symbioses. However, these tools are only rarely deployed in the lab. This research gap arises because synthetically programmed microbes typically report on their environment by producing molecules that are detected optically (e.g., fluorescent proteins). Fluorescent reporters are ideal for petri-dish applications and have fundamentally changed how we study human health, but their usefulness is quite limited in soils where detecting fluorescence is challenging. Here we describe the construction of gas-reporting biosensors, which release nonpolar gases that can be detected in the headspace of incubation experiments. These constructs can be used to probe microbial processes within soils in real-time noninvasive lab experiments. These biosensors can be combined with traditional omics-based approaches to reveal processes controlling soil microbial behavior and lead to improved environmental management decisions.

  5. Sensitivity analysis and calibration of a soil carbon model (SoilGen2 in two contrasting loess forest soils

    Directory of Open Access Journals (Sweden)

    Y. Y. Yu

    2013-01-01

    Full Text Available To accurately estimate past terrestrial carbon pools is the key to understanding the global carbon cycle and its relationship with the climate system. SoilGen2 is a useful tool to obtain aspects of soil properties (including carbon content by simulating soil formation processes; thus it offers an opportunity for both past soil carbon pool reconstruction and future carbon pool prediction. In order to apply it to various environmental conditions, parameters related to carbon cycle process in SoilGen2 are calibrated based on six soil pedons from two typical loess deposition regions (Belgium and China. Sensitivity analysis using the Morris method shows that decomposition rate of humus (kHUM, fraction of incoming plant material as leaf litter (frecto and decomposition rate of resistant plant material (kRPM are the three most sensitive parameters that would cause the greatest uncertainty in simulated change of soil organic carbon in both regions. According to the principle of minimizing the difference between simulated and measured organic carbon by comparing quality indices, the suited values of kHUM, (frecto and kRPM in the model are deduced step by step and validated for independent soil pedons. The difference of calibrated parameters between Belgium and China may be attributed to their different vegetation types and climate conditions. This calibrated model allows more accurate simulation of carbon change in the whole pedon and has potential for future modeling of carbon cycle over long timescales.

  6. Assessing the dynamics of the upper soil layer relative to soil management practices

    Science.gov (United States)

    Hatfield, J.; Wacha, K.; Dold, C.

    2017-12-01

    The upper layer of the soil is the critical interface between the soil and the atmosphere and is the most dynamic in response to management practices. One of the soil properties most reflective to changes in management is the stability of the aggregates because this property controls infiltration of water and exchange of gases. An aggregation model has been developed based on the factors that control how aggregates form and the forces which degrade aggregates. One of the major factors for this model is the storage of carbon into the soil and the interaction with the soil biological component. To increase soil biology requires a stable microclimate that provides food, water, shelter, and oxygen which in turn facilitates the incorporation of organic material into forms that can be combined with soil particles to create stable aggregates. The processes that increase aggregate size and stability are directly linked the continual functioning of the biological component which in turn changes the physical and chemical properties of the soil. Soil aggregates begin to degrade as soon as there is no longer a supply of organic material into the soil. These processes can range from removal of organic material and excessive tillage. To increase aggregation of the upper soil layer requires a continual supply of organic material and the biological activity that incorporates organic material into substances that create a stable aggregate. Soils that exhibit stable soil aggregates at the surface have a prolonged infiltration rate with less runoff and a gas exchange that ensures adequate oxygen for maximum biological activity. Quantifying the dynamics of the soil surface layer provides a quantitative understanding of how management practices affect aggregate stability.

  7. Biotic and abiotic processes in eastside ecosystems: the effects of management on soil properties, processes, and productivity.

    Science.gov (United States)

    Alan E. Harvey; J. Michael Geist; Gerald L McDonald; Martin F. Jurgensen; Patrick H. Cochran; Darlene Zabowski; Robert T. Meurisse

    1994-01-01

    Productivity of forest and range land soils is based on a combination of diverse physical, chemical and biological properties. In ecosystems characteristic of eastside regions of Oregon and Washington, the productive zone is usually in the upper 1 or 2 m. Not only are the biological processes that drive both soil productivity and root development concentrated in...

  8. [Assessment of the impacts of soil erosion on water environment based on the integration of soil erosion process and landscape pattern].

    Science.gov (United States)

    Liu, Yu; Wu, Bing-Fang; Zeng, Yuan; Zhang, Lei

    2013-09-01

    The integration of the effects of landscape pattern to the assessment of the impacts of soil erosion on eco-environmental is of practical significance in methodological prospect, being able to provide an approach for identifying water body's sediment source area, assessing the potential risks of sediment export of on-site soil erosion to the target water body, and evaluating the capacity of regional landscape pattern in preventing soil loss. In this paper, the RUSLE model was applied to simulate the on-site soil erosion rate. With the consideration of the soil retention potential of vegetation cover and topography, a quantitative assessment was conducted on the impacts of soil erosion in the water source region of the middle route for South-to-North Water Transfer Project on rivers and reservoirs by delineating landscape pattern at point (or cell) scale and sub-watershed level. At point (or grid cell) scale, the index of soil erosion impact intensity (I) was developed as an indicator of the potential risk of sediment export to the water bodies. At sub-watershed level, the landscape leakiness index (LI) was employed to indicate the sediment retention capacity of a given landscape pattern. The results revealed that integrating the information of landscape pattern and the indices of soil erosion process could spatially effectively reflect the impact intensity of in situ soil erosion on water bodies. The LI was significantly exponentially correlated to the mean sediment retention capacity of landscape and the mean vegetation coverage of watershed, and the sediment yield at sub-watershed scale was significantly correlated to the LI in an exponential regression. It could be concluded that the approach of delineating landscape pattern based on soil erosion process and the integration of the information of landscape pattern with its soil retention potential could provide a new approach for the risk evaluation of soil erosion.

  9. Processing plutonium-contaminated soil on Johnston Atoll

    International Nuclear Information System (INIS)

    Moroney, K.; Moroney, J. III; Turney, J.

    1994-01-01

    This article describes a cleanup project to process plutonium- and americium-contaminated soil on Johnston Atoll for volume reduction. Thermo Analytical's (TMA's) segmented gate system (SGS) for this remedial operation has been in successful on-site operation since 1992. Topics covered include the basis for development, a description of the Johnston Atoll; the significance of results; the benefits of the technology; applicability to other radiologically contaminated sites. 7 figs., 1 tab

  10. Soil pH effects on the interactions between dissolved zinc, non-nano- and nano-ZnO with soil bacterial communities

    DEFF Research Database (Denmark)

    Read, Daniel S.; Matzke, Marianne; Gweon, Hyun S.

    2016-01-01

    nanoparticles due to the practice of applying sewage sludge as a fertiliser or as an organic soil improver. However, understanding on the interactions between soil properties, nanoparticles and the organisms that live within soil is lacking, especially with regards to soil bacterial communities. We studied......Zinc oxide nanoparticles (ZnO NPs) are used in an array of products and processes, ranging from personal care products to antifouling paints, textiles, food additives, antibacterial agents and environmental remediation processes. Soils are an environment likely to be exposed to manmade...... the effects of nanoparticulate, non-nanoparticulate and ionic zinc (in the form of zinc chloride) on the composition of bacterial communities in soil with a modified pH range (from pH 4.5 to pH 7.2). We observed strong pH-dependent effects on the interaction between bacterial communities and all forms of zinc...

  11. Understanding Patients’ Process to Use Medical Marijuana

    Directory of Open Access Journals (Sweden)

    Tara L Crowell

    2016-09-01

    Full Text Available Given the necessity to better understand the process patients need to go through in order to seek treatment via medical marijuana, this study investigates this process to better understand this phenomenon. Specifically, Compassion Care Foundation (CCF and Stockton University worked together to identify a solution to this problem. Specifically, 240 new patients at CCF were asked to complete a 1-page survey regarding various aspects associated with their experience prior to their use of medicinal marijuana—diagnosis, what prompted them to seek treatment, level of satisfaction with specific stages in the process, total length of time the process took, and patient’s level of pain. Results reveal numerous patient diagnoses for which medical marijuana is being prescribed; the top 4 most common are intractable skeletal spasticity, chronic and severe pain, multiple sclerosis, and inflammatory bowel disease. Next, results indicate a little over half of the patients were first prompted to seek alternative treatment from their physicians, while the remaining patients indicated that other sources such as written information along with friends, relatives, media, and the Internet persuaded them to seek treatment. These data indicate that a variety of sources play a role in prompting patients to seek alternative treatment and is a critical first step in this process. Additional results posit that once patients began the process of qualifying to receive medical marijuana as treatment, the process seemed more positive even though it takes patients on average almost 6 months to obtain their first treatment after they started the process. Finally, results indicate that patients are reporting a moderately high level of pain prior to treatment. Implication of these results highlights several important elements in the patients’ initial steps toward seeking medical marijuana, along with the quality and quantity of the process patients must engage in prior to

  12. Hillslope Soils and Life (Invited)

    Science.gov (United States)

    Amundson, R.; Owen, J. J.; Heimsath, A. M.; Yoo, K.; Dietrich, W. E.

    2013-12-01

    That hillslope processes are impacted by biology has been long understood, but the complexities of the abiotic-biotic processes and their feedbacks are quantitatively emerging with the growing body of pertinent literature. The concept that plants modulate both the disaggregation and transport of soil particles on hillslopes was clearly articulated by G.K. Gilbert. Yet earlier, James Hutton (starting from very different intellectual boundary conditions) argued that soil, which results from the dynamic balance of rock destruction and removal, is a prerequisite for plants - a concept that underscores the need to more deeply examine the feedback of geomorphic processes on terrestrial ecosystems. We compiled the results of recent studies that have been conducted on gentle convex hillslopes across a broad range of rainfall. We found that vegetated landscapes appear to have strong controls on hillslope soil thickness, landscape denudation rates, and soil residence times. The restricted range in residence times - despite large differences in climate - appear in turn to sustain relatively high levels of both nitrogen (N) and phosphorus (P) fertility, suggesting ecological resilience and resistance to non-anthropogenic environmental perturbations. At the most arid end of Earth's climate vegetation disappears, but not all water. The loss of plants shifts soil erosion to abiotic processes, with a corresponding thinning or loss of the soil mantle. This reinforces the hypothesis that a planet without vegetation, but with a hydrologic cycle, would be largely devoid of soil-mantled hillslopes and would be driven toward hillslope morphologies that differ from the familiar convex-up forms of biotic landscapes. While our synthesis of the effects of vegetation on soil production and soil thickness provides a quantitative view of the suggestions of Gilbert, it also identifies that vegetation itself responds to the geomorphic processes, as believed by Hutton. There is a complex

  13. Cement conditioning of waste materials and polluted soil using the GEODUR process

    International Nuclear Information System (INIS)

    Brocdersen, K.; Hjelmar, O.; Mortonsen, S.

    1991-01-01

    In this paper two areas of application of the GEODUR additive in cement stabilization of waste materials have been investigated: stabilization of radioactive contaminated soil and stabilization of municipal solid waste incinerator ash. Preliminary experimental work on a clayey soil contaminated with radioactive cesium and strontium has indicated that the GEODUR process is a technically feasible method for soil solidification. The retarding effects of humic materials in the soil are eliminated by the additive even at low cement contents. The solidified soil is not particularly strong, but that satisfactory water permeability. Retention of cesium is reasonably good, but not as good as for the untreated soil. Retention of strontium is not good but is considerably improved by carbonation. The volume stability during permanent immersion of the solidified products in water is satisfactory, but crack formation during dryout cannot be excluded

  14. Migration through soil of organic solutes in an oil-shale process water

    Science.gov (United States)

    Leenheer, J.A.; Stuber, H.A.

    1981-01-01

    The migration through soil of organic solutes in an oil-shale process water (retort water) was studied by using soil columns and analyzing leachates for various organic constituents. Retort water extracted significant quantities of organic anions leached from ammonium-saturated-soil organic matter, and a distilled-water rinse, which followed retort-water leaching, released additional organic acids from the soil. After being corrected for organic constitutents extracted from soil by retort water, dissolved-organic-carbon fractionation analyses of effluent fractions showed that the order of increasing affinity of six organic compound classes for the soil was as follows: hydrophilic neutrals nearly equal to hydrophilic acids, followed by the sequence of hydrophobic acids, hydrophilic bases, hydrophobic bases, and hydrophobic neutrals. Liquid-chromatographic analysis of the aromatic amines in the hydrophobic- and hydrophilic-base fractions showed that the relative order of the rates of migration through the soil column was the same as the order of migration on a reversed-phase, octadecylsilica liquid-chromatographic column.

  15. [Key microbial processes in nitrous oxide emissions of agricultural soil and mitigation strategies].

    Science.gov (United States)

    Zhu, Yong-Guan; Wang, Xiao-Hui; Yang, Xiao-Ru; Xu, Hui-Juan; Jia, Yan

    2014-02-01

    Nitrous oxide (N2O) is a powerful atmospheric greenhouse gas, which does not only have a strong influence on the global climate change but also depletes the ozone layer and induces the enhancement of ultraviolet radiation to ground surface, so numerous researches have been focused on global climate change and ecological environmental change. Soil is the foremost source of N2O emissions to the atmosphere, and approximately two-thirds of these emissions are generally attributed to microbiological processes including bacterial and fungal denitrification and nitrification processes, largely as a result of the application of nitrogenous fertilizers. Here the available knowledge concerning the research progress in N2O production in agricultural soils was reviewed, including denitrification, nitrification, nitrifier denitrification and dissimilatory nitrate reduction to ammonium, and the abiotic (including soil pH, organic and inorganic nitrogen, organic matter, soil humidity and temperature) and biotic factors that have direct and indirect effects on N2O fluxes from agricultural soils were also summarized. In addition, the strategies for mitigating N2O emissions and the future research direction were proposed. Therefore, these studies are expected to provide valuable and scientific evidence for the study on mitigation strategies for the emission of greenhouse gases, adjustment of nitrogen transformation processes and enhancement of nitrogen use efficiency.

  16. Ageing processes and soil microbial community effects on the biodegradation of soil 13C-2,4-D nonextractable residues

    International Nuclear Information System (INIS)

    Lerch, T.Z.; Dignac, M.-F.; Nunan, N.; Barriuso, E.; Mariotti, A.

    2009-01-01

    The biodegradation of nonextractable residues (NER) of pesticides in soil is still poorly understood. The aim of this study was to evaluate the influence of NER ageing and fresh soil addition on the microbial communities responsible for their mineralisation. Soil containing either 15 or 90-day-old NER of 13 C-2,4-D (NER15 and NER90, respectively) was incubated for 90 days with or without fresh soil. The addition of fresh soil had no effect on the mineralisation of NER90 or of SOM, but increased the extent and rate of NER15 mineralisation. The analyses of 13 C-enriched FAME (fatty acids methyl esters) profiles showed that the fresh soil amendment only influenced the amount and structure of microbial populations responsible for the biodegradation of NER15. By coupling biological and chemical analyses, we gained some insight into the nature and the biodegradability of pesticide NER. - Ageing processes influence the NER mineralisation rate and the microbial population involved.

  17. Carbon-water Cycling in the Critical Zone: Understanding Ecosystem Process Variability Across Complex Terrain

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, Holly [Univ. of Colorado, Boulder, CO (United States); Brooks, Paul [Univ. of Utah, Salt Lake City, UT (United States); Univ. of Arizona, Tucson, AZ (United States)

    2016-06-16

    One of the largest knowledge gaps in environmental science is the ability to understand and predict how ecosystems will respond to future climate variability. The links between vegetation, hydrology, and climate that control carbon sequestration in plant biomass and soils remain poorly understood. Soil respiration is the second largest carbon flux of terrestrial ecosystems, yet there is no consensus on how respiration will change as water availability and temperature co-vary. To address this knowledge gap, we use the variation in soil development and topography across an elevation and climate gradient on the Front Range of Colorado to conduct a natural experiment that enables us to examine the co-evolution of soil carbon, vegetation, hydrology, and climate in an accessible field laboratory. The goal of this project is to further our ability to combine plant water availability, carbon flux and storage, and topographically driven hydrometrics into a watershed scale predictive model of carbon balance. We hypothesize: (i) landscape structure and hydrology are important controls on soil respiration as a result of spatial variability in both physical and biological drivers: (ii) variation in rates of soil respiration during the growing season is due to corresponding shifts in belowground carbon inputs from vegetation; and (iii) aboveground carbon storage (biomass) and species composition are directly correlated with soil moisture and therefore, can be directly related to subsurface drainage patterns.

  18. Transparent soil for imaging the rhizosphere.

    Directory of Open Access Journals (Sweden)

    Helen Downie

    Full Text Available Understanding of soil processes is essential for addressing the global issues of food security, disease transmission and climate change. However, techniques for observing soil biology are lacking. We present a heterogeneous, porous, transparent substrate for in situ 3D imaging of living plants and root-associated microorganisms using particles of the transparent polymer, Nafion, and a solution with matching optical properties. Minerals and fluorescent dyes were adsorbed onto the Nafion particles for nutrient supply and imaging of pore size and geometry. Plant growth in transparent soil was similar to that in soil. We imaged colonization of lettuce roots by the human bacterial pathogen Escherichia coli O157:H7 showing micro-colony development. Micro-colonies may contribute to bacterial survival in soil. Transparent soil has applications in root biology, crop genetics and soil microbiology.

  19. Use of green washing fluids in a washing process for dioxin contaminated soils

    Directory of Open Access Journals (Sweden)

    Siwalee Yotapukdee

    2017-09-01

    Full Text Available High levels of dioxin contamination in soil have significant environmental challenges. Soil washing is a successful remediation process that is primarily used to treat coarse soils. Several literature studies have used various kinds of chemical washing liquids to remove dioxins from soils, though there are secondary environmental effects. This study intends to develop environmentally friendly soil washing methods that are effective in dioxin removal at an acceptable cost. Sugarcane wine, compost leachate, and ground fish broth were chosen as potential washing liquids. Each washing liquid was analyzed to determine its content of semivolatile organic compounds (SVOCs and volatile organic compounds (VOCs. These compounds are related to their bio-surfactant content. Several of the identified compounds had properties to help remove dioxins from contaminated soil. In the experiments, high removal efficiencies were observed, up to 70%~95% after five to six washes. Although effective removal was observed, a significant amount of wastewater was produced and the problems were not completely resolved. Thus, the optimal washing conditions are necessary to minimize the overall costs, while improving the process effectiveness. Moreover, an appropriate treatment method is required for wastewater containing dioxins.

  20. Study of transport processes in soils and plants by microautoradiographic and radioabsorption methods

    International Nuclear Information System (INIS)

    Varro, T.; Gelencser, Judit; Somogyi, G.

    1987-01-01

    The concentration profiles of lead and boron in carrot root and potato tuber were determined at various diffusion times by microradiographic method. The transport process of nutrients, leaf-manures and plant-protecting agents in plants was investigated by radioabsorption method. The influence of the pH of soils and complex-forming agents on the effective diffusion coefficients of nutritives was studied by radioabsorption technique. In soils, the effective diffusion coefficient of the nutrients was found to change in the region of 10 -16 -10 -10 m 2 s -1 . The data of the measurements give valuable information about the transport processes in plants and soils. (author) 9 refs., 4 figs

  1. Electrochemical Processes for In-Situ Treatment of Contaminated Soils - Final Report - 09/15/1996 - 01/31/2001

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chin-Pao

    2001-05-31

    This project will study electrochemical processes for the in situ treatment of soils contaminated by mixed wastes, i.e., organic and inorganic. Soil samples collected form selected DOE waste sites will be characterized for specific organic and metal contaminants and hydraulic permeability. The soil samples are then subject to desorption experiments under various physical-chemical conditions such as pH and the presence of surfactants. Batch electro-osmosis experiments will be conducted to study the transport of contaminants in the soil-water systems. Organic contaminants that are released from the soil substrate will be treated by an advanced oxidation process, i.e., electron-Fantan. Finally, laboratory reactor integrating the elector-osmosis and elector-Fantan processes will be used to study the treatment of contaminated soil in situ.

  2. Distribution of rock fragments and their effects on hillslope soil erosion in purple soil, China

    Science.gov (United States)

    Wang, Xiaoyan

    2017-04-01

    Purple soil is widely distributed in Sichuan Basin and Three Gorges Reservoir Area. Purple soil region is abundant in soil fertility and hydrothermal resources, playing an important role in the agricultural development of China. Soil erosion has long been recognized as a major environmental problem in the purple soil region where the population is large and slope farming is commonly practiced, and rainstorm is numerous. The existence of rock fragments is one of the most important characteristics of purple soil. Rock fragments at the soil surface or in the soil layer affect soil erosion processes by water in various direct and indirect ways, thus the erosion processes of soil containing rock fragments have unique features. Against the severe soil degradation by erosion of purple soil slope, carrying out the research about the characteristics of purple soil containing rock fragments and understanding the influence of rock fragments on soil erosion processes have important significance, which would promote the rational utilization of purple soil slope land resources and accurate prediction of purple soil loss. Therefore, the aims of this study were to investigate the distribution of rock fragments in purple soil slope and the impact of rock fragment content on soil physical properties and soil erosion. First, field sampling methods were used to survey the spatial variability of rock fragments in soil profiles and along slope and the physical properties of soils containing rock fragments. Secondly, indoor simulated rainfall experiments were used to exam the effect of rock fragments in the soil layer on soil erosion processes and the relationships between rainfall infiltration, change of surface flow velocity, surface runoff volume and sediment on one hand, and rock fragment content (Rv, 0% 30%, which was determined according the results of field investigation for rock fragment distribution) on the other were investigated. Thirdly, systematic analysis about the

  3. [Research progress on photosynthesis regulating and controlling soil respiration].

    Science.gov (United States)

    Jing, Yan-Li; Guan, De-Xin; Wu, Jia-Bing; Wang, An-Zhi; Yuan, Feng-Hui

    2013-01-01

    To understand the mechanisms of soil respiration and accurately estimate its magnitude are the crucial basis of evaluating global carbon balance. However, the previously built soil respiration forecast models usually neglect the physiological processes that photosynthesis supplies substrates for rhizospheric respiration, leading to the defect in evaluating the mechanisms of soil respiration. This paper summarized the research progress on the mechanisms of photosynthetic regulation and control of soil respiration, introduced the related main research methods, and discussed the existing problems and research hotspots.

  4. Soil erodibility for water erosion: A perspective and Chinese experiences

    Science.gov (United States)

    Wang, Bin; Zheng, Fenli; Römkens, Mathias J. M.; Darboux, Frédéric

    2013-04-01

    Knowledge of soil erodibility is an essential requirement for erosion prediction, conservation planning, and the assessment of sediment related environmental effects of watershed agricultural practices. This paper reviews the status of soil erodibility evaluations and determinations based on 80 years of upland area erosion research mainly in China and the USA. The review synthesizes the general research progress made by discussing the basic concepts of erodibility and its evaluation, determination, and prediction as well as knowledge of its spatio-temporal variations. The authors found that soil erodibility is often inappropriately or inaccurately applied in describing soil loss caused by different soil erosion component processes and mechanisms. Soil erodibility indicators were related to intrinsic soil properties and exogenic erosional forces, measurements, and calculations. The present review describes major needs including: (1) improved definition of erodibility, (2) modified erodibility determinations in erosion models, especially for specific geographical locations and in the context of different erosion sub-processes, (3) advanced methodologies for quantifying erodibilities of different soil erosion sub-processes, and (4) a better understanding of the mechanism that causes temporal variations in soil erodibility. The review also provides a more rational basis for future research on soil erodibility and supports predictive modeling of soil erosion processes and the development of improved conservation practices.

  5. Wind erosion processes and control

    Science.gov (United States)

    Wind erosion continues to threaten the sustainability of our nations' soil, air, and water resources. To effectively apply conservation systems to prevent wind driven soil loss, an understanding of the fundamental processes of wind erosion is necessary so that land managers can better recognize the ...

  6. Study of API 5L X70 steel corrosion processes when in contact with some Brazilian soils

    International Nuclear Information System (INIS)

    Jesus, Sergio Luis de

    2007-01-01

    Pipelines, fuel storage tanks and other metallic structures are in permanent contact and exposed to different types of soils, of horizons or layers, or of soil aggressiveness. This interaction may cause expressive damages to the environment and to the planned work. Contamination may occur due to leakage of stored products, splitting during transportation, accidents caused by pipelines without extensive maintenance. The result of these accidents could be, among others, some financial losses. In order to recognize the dynamic interactions between metallic surfaces and the environment it is crucial to have preventive actions and to develop better-applied materials. API steel 5L X70 has been used in structures of low and high pressure with high mechanical strength and corrosion and, even so, it is susceptible to etching corrosion since it is in contact with different environments from mangrove regions to industrial environments. The present case evaluated the role of 5L X70 API steel in contact with different soil horizons representative of the Brazilian soil. This investigation correlated chemical species with solute ions in soil solution, secondary and primary phase minerals besides physical and chemical characteristics as pH, electric conductivity, total dissolved solids, among others, to the results of corrosion resistance and ways of corrosion. The evaluation was carried out using x-ray diffractometry, scanning electron microscopy, total reflection x-ray fluorescence, fuel injection flow besides texture and gravimetric analyses to soil characterization and mineralogy, identification of corrosion products, soil solution analyses, evaluation of tested materials and classification of ways and types of corrosion. This was an attempt to integrate the data to a better understanding of the process involving reagents and products. The results showed that different soil horizons such as different types of analyzed soils produce specific etching in metallic structures

  7. Nitrogen soil emissions and belowground plant processes in Mediterranean annual pastures are altered by ozone exposure and N-inputs

    Science.gov (United States)

    Sánchez-Martín, L.; Bermejo-Bermejo, V.; García-Torres, L.; Alonso, R.; de la Cruz, A.; Calvete-Sogo, H.; Vallejo, A.

    2017-09-01

    Increasing tropospheric ozone (O3) and atmospheric nitrogen (N) deposition alter the structure and composition of pastures. These changes could affect N and C compounds in the soil that in turn can influence soil microbial activity and processes involved in the emission of N oxides, methane (CH4) and carbon dioxide (CO2), but these effects have been scarcely studied. Through an open top chamber (OTC) field experiment, the combined effects of both pollutants on soil gas emissions from an annual experimental Mediterranean community were assessed. Four O3 treatments and three different N input levels were considered. Fluxes of nitric (NO) and nitrous (N2O) oxide, CH4 and CO2 were analysed as well as soil mineral N and dissolved organic carbon. Belowground plant parameters like root biomass and root C and N content were also sampled. Ozone strongly increased soil N2O emissions, doubling the cumulative emission through the growing cycle in the highest O3 treatment, while N-inputs enhanced more slightly NO; CH4 and CO2 where not affected. Both N-gases had a clear seasonality, peaking at the start and at the end of the season when pasture physiological activity is minimal; thus, higher microorganism activity occurred when pasture had a low nutrient demand. The O3-induced peak of N2O under low N availability at the end of the growing season was counterbalanced by the high N inputs. These effects were related to the O3 x N significant interaction found for the root-N content in the grass and the enhanced senescence of the community. Results indicate the importance of the belowground processes, where competition between plants and microorganisms for the available soil N is a key factor, for understanding the ecosystem responses to O3 and N.

  8. Quantifying the Interactions Between Soil Thermal Characteristics, Soil Physical Properties, Hydro-geomorphological Conditions and Vegetation Distribution in an Arctic Watershed

    Science.gov (United States)

    Dafflon, B.; Leger, E.; Robert, Y.; Ulrich, C.; Peterson, J. E.; Soom, F.; Biraud, S.; Tran, A. P.; Hubbard, S. S.

    2017-12-01

    Improving understanding of Arctic ecosystem functioning and parameterization of process-rich hydro-biogeochemical models require advances in quantifying ecosystem properties, from the bedrock to the top of the canopy. In Arctic regions having significant subsurface heterogeneity, understanding the link between soil physical properties (incl. fraction of soil constituents, bedrock depth, permafrost characteristics), thermal behavior, hydrological conditions and landscape properties is particularly challenging yet is critical for predicting the storage and flux of carbon in a changing climate. This study takes place in Seward Peninsula Watersheds near Nome AK and Council AK, which are characterized by an elevation gradient, shallow bedrock, and discontinuous permafrost. To characterize permafrost distribution where the top of permafrost cannot be easily identified with a tile probe (due to rocky soil and/or large thaw layer thickness), we developed a novel technique using vertically resolved thermistor probes to directly sense the temperature regime at multiple depths and locations. These measurements complement electrical imaging, seismic refraction and point-scale data for identification of the various thermal behavior and soil characteristics. Also, we evaluate linkages between the soil physical-thermal properties and the surface properties (hydrological conditions, geomorphic characteristics and vegetation distribution) using UAV-based aerial imaging. Data integration and analysis is supported by numerical approaches that simulate hydrological and thermal processes. Overall, this study enables the identification of watershed structure and the links between various subsurface and landscape properties in representative Arctic watersheds. Results show very distinct trends in vertically resolved soil temperature profiles and strong lateral variations over tens of meters that are linked to zones with various hydrological conditions, soil properties and vegetation

  9. Atmosphere-soil-vegetation model including CO2 exchange processes: SOLVEG2

    International Nuclear Information System (INIS)

    Nagai, Haruyasu

    2004-11-01

    A new atmosphere-soil-vegetation model named SOLVEG2 (SOLVEG version 2) was developed to study the heat, water, and CO 2 exchanges between the atmosphere and land-surface. The model consists of one-dimensional multilayer sub-models for the atmosphere, soil, and vegetation. It also includes sophisticated processes for solar and long-wave radiation transmission in vegetation canopy and CO 2 exchanges among the atmosphere, soil, and vegetation. Although the model usually simulates only vertical variation of variables in the surface-layer atmosphere, soil, and vegetation canopy by using meteorological data as top boundary conditions, it can be used by coupling with a three-dimensional atmosphere model. In this paper, details of SOLVEG2, which includes the function of coupling with atmosphere model MM5, are described. (author)

  10. Characterizing the impact of diffusive and advective soil gas transport on the measurement and interpretation of the isotopic signal of soil respiration

    Science.gov (United States)

    Zachary E. Kayler; Elizabeth W. Sulzman; William D. Rugh; Alan C. Mix; Barbara J. Bond

    2010-01-01

    By measuring the isotopic signature of soil respiration, we seek to learn the isotopic composition of the carbon respired in the soil (δ13CR-S) so that we may draw inferences about ecosystem processes. Requisite to this goal is the need to understand how (δ13CR-S) is affected by...

  11. On Russian concepts of Soil Memory - expansion of Dokuchaev's pedological paradigm

    Science.gov (United States)

    Tsatskin, A.

    2012-04-01

    Having developed from Dokuchaev's research on chernosem soils on loess, the Russian school of pedology traditionally focused on soils as essential component of landscape. Dokuchaev's soil-landscape paradigm (SLP) was later considerably advanced and expanded to include surface soils on other continents by Hans Jenny. In the 1970s Sokolov and Targulian in Russia introduced the new term of soil memory as an inherent ability of soils to memorize in its morphology and properties the processes of earlier stages of development. This understanding was built upon ideas of soil organizational hierarchy and different rates of specific soil processes as proposed by Yaalon. Soil memory terminology became particularly popular in Russia which is expressed in the 2008 multi-author monograph on soil memory. The Soil Memory book edited by Targulian and Goryachkin and written by 34 authors touches upon the following themes: General approaches (Section 1), Mineral carriers of soil memory (Section 2), Biological carriers of soil memory (section 3) and Anthropogenic soil memory (section 4). The book presents an original account on different new interdisciplinary projects on Russian soils and represents an important contribution into the classical Dokuchaev-Jenny SL paradigm. There is still a controversy as to in what way the Russian term soil memory is related to western terms of soil as a record or archive of earlier events and processes during the time of soil formation. Targulian and Goryachkin agree that all of the terms are close, albeit not entirely interchangeable. They insist that soil memory may have a more comprehensive meaning, e.g. applicable to such complex cases when certain soil properties whose origin is currently ambiguous cannot provide valid environmental reconstructions or dated by available dating techniques. Anyway, not terminology is the main issue. The Russian soil memory concept advances the frontiers of pedology by deepening the time-related soil functions and

  12. Five questions to ask about the soils

    Science.gov (United States)

    Kasanin Grubin, Milica

    2013-04-01

    I think that anyone who ever gave a lecture would agree that this feels like being on a stage. One has to educate the audience of course, but also keep attention and be interesting to the listeners. Authority is important but there is a certain vulnerability at all times. There is also a fine line on both sides that should not be crossed. However, the most important thing is that the audience remembers the lecture and certain points the lecturer made for at least some time, and even more that someone gets interested enough to ask for more details. This is often done by giving interesting examples and unusual comparison. Teaching a soils course there are five main questions to be addressed, of which first four are often subordinated to the fifth being the most complex. First question is "Is the soil alive?". The answer is yes, and that is what it differentiates from any type of sediment or rock, and it is very vulnerable to environmental change. The second question is "Where does it come from?" Rocks being a main origin of soils are often neglected in soil science and petrography in general, and weathering, as an important process for soil formation, are not given enough explaining. Petrography teaches us about rock characteristics, structure and texture and mineralogy. Understanding petrography would help in understanding the weathering processes which are crucial for soil formation and this must not be ignored. The third question is "Is it old?" Yes, it is - at least for everybody else except geologists. It is important to understand how slow the soil formation process is. The forth question is "Does it move?" Yes, it can move and the faster it moves downhill, it less likes it. Erosion is a very important problem for soil and must be addressed. And finally, the fifth question is "What are the main characteristics of soils?" This is an opportunity to talk about physical, chemical, biological, microbiological issues. As the most elaborate question it allows the

  13. Establishing an International Soil Modelling Consortium

    Science.gov (United States)

    Vereecken, Harry; Schnepf, Andrea; Vanderborght, Jan

    2015-04-01

    Soil is one of the most critical life-supporting compartments of the Biosphere. Soil provides numerous ecosystem services such as a habitat for biodiversity, water and nutrients, as well as producing food, feed, fiber and energy. To feed the rapidly growing world population in 2050, agricultural food production must be doubled using the same land resources footprint. At the same time, soil resources are threatened due to improper management and climate change. Soil is not only essential for establishing a sustainable bio-economy, but also plays a key role also in a broad range of societal challenges including 1) climate change mitigation and adaptation, 2) land use change 3) water resource protection, 4) biotechnology for human health, 5) biodiversity and ecological sustainability, and 6) combating desertification. Soils regulate and support water, mass and energy fluxes between the land surface, the vegetation, the atmosphere and the deep subsurface and control storage and release of organic matter affecting climate regulation and biogeochemical cycles. Despite the many important functions of soil, many fundamental knowledge gaps remain, regarding the role of soil biota and biodiversity on ecosystem services, the structure and dynamics of soil communities, the interplay between hydrologic and biotic processes, the quantification of soil biogeochemical processes and soil structural processes, the resilience and recovery of soils from stress, as well as the prediction of soil development and the evolution of soils in the landscape, to name a few. Soil models have long played an important role in quantifying and predicting soil processes and related ecosystem services. However, a new generation of soil models based on a whole systems approach comprising all physical, mechanical, chemical and biological processes is now required to address these critical knowledge gaps and thus contribute to the preservation of ecosystem services, improve our understanding of climate

  14. Understanding the influence of biofilm accumulation on the hydraulic properties of soils: a mechanistic approach based on experimental data

    Science.gov (United States)

    Carles Brangarí, Albert; Sanchez-Vila, Xavier; Freixa, Anna; Romaní, Anna M.; Fernàndez-Garcia, Daniel

    2017-04-01

    The distribution, amount, and characteristics of biofilms and its components govern the capacity of soils to let water through, to transport solutes, and the reactions occurring. Therefore, unraveling the relationship between microbial dynamics and the hydraulic properties of soils is of concern for the management of natural systems and many technological applications. However, the increased complexity of both the microbial communities and the geochemical processes entailed by them causes that the phenomenon of bioclogging remains poorly understood. This highlights the need for a better understanding of the microbial components such as live and dead bacteria and extracellular polymeric substances (EPS), as well as of their spatial distribution. This work tries to shed some light on these issues, providing experimental data and a new mechanistic model that predicts the variably saturated hydraulic properties of bio-amended soils based on these data. We first present a long-term laboratory infiltration experiment that aims at studying the temporal variation of selected biogeochemical parameters along the infiltration path. The setup consists of a 120-cm-high soil tank instrumented with an array of sensors plus soil and liquid samplers. Sensors measured a wide range of parameters in continuous, such as volumetric water content, electrical conductivity, temperature, water pressure, soil suction, dissolved oxygen, and pH. Samples were kept for chemical and biological analyses. Results indicate that: i) biofilm is present at all depths, denoting the potential for deep bioclogging, ii) the redox conditions profile shows different stages, indicating that the community was adapted to changing redox conditions, iii) bacterial activity, richness and diversity also exhibit zonation with depth, and iv) the hydraulic properties of the soil experienced significant changes as biofilm proliferated. Based on experimental evidences, we propose a tool to predict changes in the

  15. Modeling carbon cycle process of soil profile in Loess Plateau of China

    Science.gov (United States)

    Yu, Y.; Finke, P.; Guo, Z.; Wu, H.

    2011-12-01

    SoilGen2 is a process-based model, which could reconstruct soil formation under various climate conditions, parent materials, vegetation types, slopes, expositions and time scales. Both organic and inorganic carbon cycle processes could be simulated, while the later process is important in carbon cycle of arid and semi-arid regions but seldom being studied. After calibrating parameters of dust deposition rate and segments depth affecting elements transportation and deposition in the profile, modeling results after 10000 years were confronted with measurements of two soil profiles in loess plateau of China, The simulated trends of organic carbon and CaCO3 in the profile are similar to measured values. Relative sensitivity analysis for carbon cycle process have been done and the results show that the change of organic carbon in long time scale is more sensitive to precipitation, temperature, plant carbon input and decomposition parameters (decomposition rate of humus, ratio of CO2/(BIO+HUM), etc.) in the model. As for the inorganic carbon cycle, precipitation and potential evaporation are important for simulation quality, while the leaching and deposition of CaCO3 are not sensitive to pCO2 and temperature of atmosphere.

  16. Mercury speciation during in situ thermal desorption in soil

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Min, E-mail: cmpark80@gmail.com; Katz, Lynn E.; Liljestrand, Howard M.

    2015-12-30

    Highlights: • Impact of soil conditions on distribution and phase transitions of Hg was identified. • Metallic Hg was slowly transformed to Hg{sup 0} gas until the temperature reached 358.15 K. • Phase change of HgCl{sub 2(s)} completely occurred without decomposition at 335.15 K. • HgS remained solid in dry soil sharply decreased in the narrow temperature range. • Hg gas can be easily captured with higher vapor pressures of soil compositions. - Abstract: Metallic mercury (Hg{sup 0}) and its compounds are highly mobile and toxic environmental pollutants at trace level. In situ thermal desorption (ISTD) is one of the soil remediation processes applying heat and vacuum simultaneously. Knowledge of thermodynamic mercury speciation is imperative to understand the fate and transport of mercury during thermal remediation and operate the treatment processes in a cost-effective manner. Hence, speciation model for inorganic mercury was developed over a range of environmental conditions to identify distribution of dissolved mercury species and potential transformations of mercury at near source environment. Simulation of phase transitions for metallic mercury, mercury(II) chloride and mercury sulfide with temperature increase showed that complete vaporization of metallic mercury and mercury(II) chloride were achieved below the boiling point of water. The effect of soil compositions on mercury removal was also evaluated to better understand thermal remediation process. Higher vapor pressures expected both from soil pore water and inorganic carbonate minerals in soil as well as creation of permeability were significant for complete vaporization and removal of mercury.

  17. Mercury speciation during in situ thermal desorption in soil

    International Nuclear Information System (INIS)

    Park, Chang Min; Katz, Lynn E.; Liljestrand, Howard M.

    2015-01-01

    Highlights: • Impact of soil conditions on distribution and phase transitions of Hg was identified. • Metallic Hg was slowly transformed to Hg"0 gas until the temperature reached 358.15 K. • Phase change of HgCl_2_(_s_) completely occurred without decomposition at 335.15 K. • HgS remained solid in dry soil sharply decreased in the narrow temperature range. • Hg gas can be easily captured with higher vapor pressures of soil compositions. - Abstract: Metallic mercury (Hg"0) and its compounds are highly mobile and toxic environmental pollutants at trace level. In situ thermal desorption (ISTD) is one of the soil remediation processes applying heat and vacuum simultaneously. Knowledge of thermodynamic mercury speciation is imperative to understand the fate and transport of mercury during thermal remediation and operate the treatment processes in a cost-effective manner. Hence, speciation model for inorganic mercury was developed over a range of environmental conditions to identify distribution of dissolved mercury species and potential transformations of mercury at near source environment. Simulation of phase transitions for metallic mercury, mercury(II) chloride and mercury sulfide with temperature increase showed that complete vaporization of metallic mercury and mercury(II) chloride were achieved below the boiling point of water. The effect of soil compositions on mercury removal was also evaluated to better understand thermal remediation process. Higher vapor pressures expected both from soil pore water and inorganic carbonate minerals in soil as well as creation of permeability were significant for complete vaporization and removal of mercury.

  18. Interpretation and evaluation of combined measurement techniques for soil CO2 efflux: Discrete surface chambers and continuous soil CO2 concentration probes

    Science.gov (United States)

    Diego A. Riveros-Iregui; Brian L. McGlynn; Howard E. Epstein; Daniel L. Welsch

    2008-01-01

    Soil CO2 efflux is a large respiratory flux from terrestrial ecosystems and a critical component of the global carbon (C) cycle. Lack of process understanding of the spatiotemporal controls on soil CO2 efflux limits our ability to extrapolate from fluxes measured at point scales to scales useful for corroboration with other ecosystem level measures of C exchange....

  19. Effect of soil organic matter on antimony bioavailability after the remediation process.

    Science.gov (United States)

    Nakamaru, Yasuo Mitsui; Martín Peinado, Francisco José

    2017-09-01

    We evaluated the long-term (18 year) and short-term (4 weeks) changes of Sb in contaminated soil with SOM increase under remediation process. In the Aznalcóllar mine accident (1998) contaminated area, the remediation measurement implemented the Guadiamar Green Corridor, where residual pollution is still detected. Soils of the re-vegetated area (O2) with high pH and high SOM content, moderately re-vegetated area (O1) and unvegetated area (C) were sampled. Soil pH, CEC, SOM amount and soil Sb forms were evaluated. Soil Sb was measured as total, soluble, exchangeable, EDTA extractable, acid oxalate extractable, and pyro-phosphate extractable fractions. Further, the short-term effect of artificial organic matter addition was also evaluated with incubation study by adding compost to the sampled soil from C, O1 and O2 areas. After 4 weeks of incubation, soil chemical properties and Sb forms were evaluated. In re-vegetated area (O2), soil total Sb was two times lower than in unvegetated area (C); however, soluble, exchangeable, and EDTA extractable Sb were 2-8 times higher. The mobile/bioavailable Sb increase was also observed after 4 weeks of incubation with the addition of compost. Soluble, exchangeable, and EDTA extractable Sb was increased 2-4 times by compost addition. By the linear regression analysis, the significantly related factors for soluble, exchangeable, and EDTA extractable Sb values were pH, CEC, and SOM, respectively. Soluble Sb increase was mainly related to pH rise. Exchangeable Sb should be bound by SOM-metal complex and increased with CEC. EDTA extractable fraction should be increased with increase of SOM as SOM-Fe associated Sb complex. From these results, it was shown that increase of SOM under natural conditions or application of organic amendment under remediation process should increase availability of Sb to plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A Dual Process Approach to Understand Tourists’ Destination Choice Processes

    DEFF Research Database (Denmark)

    Kock, Florian; Josiassen, Alexander; Assaf, Albert

    2017-01-01

    Most studies that investigate tourists' choices of destinations apply the concept of mental destination representations, also referred to as destination image. The present study investigates tourists’ destination choice processes by conceptualizing how different components of destination image...... are mentally processed in tourists' minds. Specifically, the seminal dual processing approach is applied to the destination image literature. By doing this, we argue that some components of mental destination representations are processed systematically while others serve as inputs for heuristics...... that individuals apply to inform their decision making. Understanding how individuals make use of their mental destination representations and how they color their decision-making is essential in order to better explain tourist behavior....

  1. Rainfall simulations as a tool for quantification of soil erosion processes caused by the trampling of sheep and goats in semi-arid and arid landscapes

    Science.gov (United States)

    Ruthenberg, Jonas; Tumbrink, Jonas; Wilms, Tobias; Peter, Klaus Daniel; Wirtz, Stefan; Ries, Johannes B.

    2015-04-01

    As there is a massive increase of livestock husbandry in semi-arid and arid landscapes, the investigation of trampling-induced soil erosion has become indispensable for a better understanding of erosive processes such as loosening and translocation of sediment, as well as the genesis of rill erosion and gully systems. Our work will support other studies focusing on desertification and land-use changes in the investigated landscapes. Up to this date, research on livestock-induced soil erosion, even in relation to other erosion processes such as aeolian and fluvial/pluvial sediment translocation, is very scarcely found in literature. The presented study on trampling-induced soil erosion by sheep and goats in arid and semi-arid landscapes aims to create a general understanding, an estimation and quantification of the influencing factors of these erosive processes. Within this study, we present the first results of several field rainfall experiments on rock fragment translocation as well as loosening and transportation of coarse and fine sediment depending on the motion sequence and the individual weight, size, and hoof beat of the animals. Furthermore, we conducted additional experiments to investigate the trampling-induced erosion processes for various other sediments, especially those in the range of clay, silt, and sand. To do so, we used a specially designed test plot, equipped with sediment traps on each side. For a clear and reliable analysis of the measured parameters, univariate as well as multivariate statistical methods have been used. For all field methods, we developed relevant statements concerning flock size. The rock fragment translocation experiments done so fare have shown that a flock of 45 sheep or goats moved 87 % of 320 spread out rock fragments with a mean translocation distance of 0.123 m when trampling across a test plot of 3.2 m^2. Besides that we found out that the soil surface was worked up in a way that the loosened fine sediment proved to

  2. On the assessment of root and soil respiration for soils of different textures: interactions with soil moisture contents and soil CO2 concentrations

    NARCIS (Netherlands)

    Bouma, T.J.; Bryla, D.R.

    2000-01-01

    Estimates of root and soil respiration are becoming increasingly important in agricultural and ecological research, but there is little understanding how soil texture and water content may affect these estimates. We examined the effects of soil texture on (i) estimated rates of root and soil

  3. Coastal plain soils and geomorphology: a key to understanding forest hydrology

    Science.gov (United States)

    Thomas M. Williams; Devendra M. Amatya

    2016-01-01

    In the 1950s, Coile published a simple classification of southeastern coastal soils using three characteristics: drainage class, sub-soil depth, and sub-soil texture. These ideas were used by Warren Stuck and Bill Smith to produce a matrix of soils with drainage class as one ordinate and subsoil texture as the second for the South Carolina coastal plain. Soils...

  4. Phenols in anaerobic digestion processes and inhibition of ammonia oxidising bacteria (AOB) in soil

    International Nuclear Information System (INIS)

    Leven, Lotta; Nyberg, Karin; Korkea-aho, Lena; Schnuerer, Anna

    2006-01-01

    This study focuses on the presence of phenols in digestate from seven Swedish large-scale anaerobic digestion processes and their impact on the activity of ammonia oxidising bacteria (AOB) in soil. In addition, the importance of feedstock composition and phenol degradation capacity for the occurrence of phenols in the digestate was investigated in the same processes. The results revealed that the content of phenols in the digestate was related to the inhibition of the activity of AOB in soil (EC 5 = 26 μg phenols g -1 d.w. soil). In addition, five pure phenols (phenol, o-, p-, m-cresol and 4-ethylphenol) inhibited the AOB to a similar extent (EC 5 = 43-110 μg g -1 d.w. soil). The phenol content in the digestate was mainly dependent on the composition of the feedstock, but also to some extent by the degradation capacity in the anaerobic digestion process. Swine manure in the feedstock resulted in digestate containing higher amounts of phenols than digestate from reactors with less or no swine manure in the feedstock. The degradation capacity of phenol and p-cresol was studied in diluted small-scale batch cultures and revealed that anaerobic digestion at mesophilic temperatures generally exhibited a higher degradation capacity compared to digestion at thermophilic temperature. Although phenol, p-cresol and 4-ethylphenol were quickly degraded in soil, the phenols added with the digestate constitute an environmental risk according to the guideline values for contaminated soils set by the Swedish Environmental Protection Agency. In conclusion, the management of anaerobic digestion processes is of decisive importance for the production of digestate with low amounts of phenols, and thereby little risks for negative effects of the phenols on the soil ecosystem

  5. Applying soil property information for watershed assessment.

    Science.gov (United States)

    Archer, V.; Mayn, C.; Brown, S. R.

    2017-12-01

    The Forest Service uses a priority watershed scheme to guide where to direct watershed restoration work. Initial assessment was done across the nation following the watershed condition framework process. This assessment method uses soils information for a three step ranking across each 12 code hydrologic unit; however, the soil information used in the assessment may not provide adequate detail to guide work on the ground. Modern remote sensing information and terrain derivatives that model the environmental gradients hold promise of showing the influence of soil forming factors on watershed processes. These small scale data products enable the disaggregation of coarse scale soils mapping to show continuous soil property information across a watershed. When this information is coupled with the geomorphic and geologic information, watershed specialists can more aptly understand the controlling influences of drainage within watersheds and focus on where watershed restoration projects can have the most success. A case study on the application of this work shows where road restoration may be most effective.

  6. Understanding environmental drivers in the regulation of soil respiration dynamics after fire in semi-arid ecosystems

    Science.gov (United States)

    Muñoz-Rojas, Miriam; Lewandrowski, Wolfgang; Erickson, Todd E.; Dixon, Kingsley W.; Merritt, David J.

    2016-04-01

    Keywords: Pilbara, soil CO2 efflux, soil C, soil moisture, soil temperature Introduction Soil respiration (Rs) has become a major research focus given the increase in atmospheric CO2 emissions and the large contribution of these CO2 fluxes from soils (Van Groenigen et al., 2014). In addition to its importance in the global C cycle, Rs is a fundamental indicator of soil health and quality that reflects the level of microbial activity and provides an indication of the ability of soils to support plant growth (Oyonarte et al., 2012; Munoz-Rojas et al., 2015). Wildfires can have a significant impact on Rs rates, with the scale of the impact depending on environmental factors such as temperature and moisture, and organic C content in the soil. Vegetation cover can have a significant effect on regulating organic C contents; and while advances are made into understanding the effects of fire on organic C contents and CO2 fluxes (Granged et al., 2011; Willaarts et al., 2015; Muñoz-Rojas et al., 2016), there is limited knowledge of the variability of Rs across ecosystem types, vegetation communities, and responses to fire. In this research we aimed to assess the impacts of a wildfire on the soil CO2 fluxes and soil respiration in a semi-arid ecosystem of Western Australia (Pilbara biogeographical region), and to understand the main environmental drivers controlling these fluxes in different vegetation types. The study has application for other arid and semi-arid regions of the world. Methods The study area was selected following a wildfire that affected 25 ha in February 2014. Twelve plots were established in the burnt site (B) within a 400 m2 area, and 12 plots in an adjacent unburnt control site. At each site, three plots were installed below the canopy of each of the most representative vegetation types of the areas: Eucalyptus trees, Acacia shrubs and Triodia grasses, and three on bare soil. Soil sampling and measurement of soil CO2 efflux, temperature and moisture were

  7. Predicting Soil-Air and Soil-Water Transport Properties During Soil Vapor Extraction

    DEFF Research Database (Denmark)

    Poulsen, Tjalfe

    Increased application of in-situ technology for control and removal of volatile organic compounds (VOC) in the subsurface has made the understanding of soil physical properties and their impact upon contaminant transport even more important. Knowledge of contaminant transport is important when...... properties of undisturbed soil from more easily measurable soil properties are developed. The importance of soil properties with respect to contaminant migration during remediation by soil vapor extraction (SVE) in the unsaturated zone was investigated using numerical simulations....

  8. Influence of Disturbance on Soil Respiration in Biologically Crusted Soil during the Dry Season

    Directory of Open Access Journals (Sweden)

    Wei Feng

    2013-01-01

    Full Text Available Soil respiration (Rs is a major pathway for carbon cycling and is a complex process involving abiotic and biotic factors. Biological soil crusts (BSCs are a key biotic component of desert ecosystems worldwide. In desert ecosystems, soils are protected from surface disturbance by BSCs, but it is unknown whether Rs is affected by disturbance of this crust layer. We measured Rs in three types of disturbed and undisturbed crusted soils (algae, lichen, and moss, as well as bare land from April to August, 2010, in Mu Us desert, northwest China. Rs was similar among undisturbed soils but increased significantly in disturbed moss and algae crusted soils. The variation of Rs in undisturbed and disturbed soil was related to soil bulk density. Disturbance also led to changes in soil organic carbon and fine particles contents, including declines of 60–70% in surface soil C and N, relative to predisturbance values. Once BSCs were disturbed, Q10 increased. Our findings indicate that a loss of BSCs cover will lead to greater soil C loss through respiration. Given these results, understanding the disturbance sensitivity impact on Rs could be helpful to modify soil management practices which promote carbon sequestration.

  9. Ion enrichment of snowmelt water by processes within a podzolic soil

    International Nuclear Information System (INIS)

    Hazlett, P.W.; Foster, N.W.; English, M.C.

    1992-01-01

    Ion concentrations in snowmelt runoff, forest-floor percolate and mineral-soil percolate collected in a tolerant hardwood forest at the Turkey Lakes Watershed, ON, were determined during the spring snowmelt of 1986. The results were examined to assess the modification of snowmelt water after contact with the forest soil. Concentrations of NO 3 - increased from 17 to 201 μmol c L -1 and SO 4 2- increased from 25 to 107 μmol c L -1 as meltwater passed through the organic layers and the upper mineral-soil horizons. Mineralization of organic N and S, and desorption of So 4 2- from the soil, provide sources of these ions for leaching during the snowmelt period. Ion-exchange reactions in the forest floor and upper mineral soil resulted in a decrease in H + and an increase in Ca 2+ concentration is solution. In the steep topography of this forested basin, the altered snowmelt solutions are rapidly transported downslope towards the aquatic system by lateral flow. Processes within the forest soil may therefore play an important role in determining the effects of snowmelt water on surface water chemistry in the spring

  10. Soil erosion-runoff relationships: insights from laboratory studies

    Science.gov (United States)

    Mamedov, Amrakh; Warrington, David; Levy, Guy

    2016-04-01

    Understanding the processes and mechanisms affecting runoff generation and subsequent soil erosion in semi-arid regions is essential for the development of improved soil and water conservation management practices. Using a drip type laboratory rain simulator, we studied runoff and soil erosion, and the relationships between them, in 60 semi-arid region soils varying in their intrinsic properties (e.g., texture, organic matter) under differing extrinsic conditions (e.g., rain properties, and conditions prevailing in the field soil). Both runoff and soil erosion were significantly affected by the intrinsic soil and rain properties, and soil conditions within agricultural fields or watersheds. The relationship between soil erosion and runoff was stronger when the rain kinetic energy was higher rather than lower, and could be expressed either as a linear or exponential function. Linear functions applied to certain limited cases associated with conditions that enhanced soil structure stability, (e.g., slow wetting, amending with soil stabilizers, minimum tillage in clay soils, and short duration exposure to rain). Exponential functions applied to most of the cases under conditions that tended to harm soil stability (e.g., fast wetting of soils, a wide range of antecedent soil water contents and rain kinetic energies, conventional tillage, following biosolid applications, irrigation with water of poor quality, consecutive rain simulations). The established relationships between runoff and soil erosion contributed to a better understanding of the mechanisms governing overland flow and soil loss, and could assist in (i) further development of soil erosion models and research techniques, and (ii) the design of more suitable management practices for soil and water conservation.

  11. Relationship of microbial processes to the fate and behavior of transuranic elements in soils, plants, and animals

    International Nuclear Information System (INIS)

    Wildung, R.E.; Garland, T.R.

    1977-10-01

    This review considers the influence of soil physicochemical and microbial processes on the long-term solubility, form, and bioavailability of plutonium and other transuranic elements important in the nuclear fuel cycle. Emphasis is placed on delineation of the relationships between soil chemical and microbial processes and the role of soil microorganisms in effecting solubilization, transformation and plant/animal uptake of elements considered largely insoluble in soils strictly on the basis of their inorganic chemical characteristics

  12. Monitoring of Soil Remediation Process in the Metal Mining Area

    Science.gov (United States)

    Kim, Kyoung-Woong; Ko, Myoung-Soo; Han, Hyeop-jo; Lee, Sang-Ho; Na, So-Young

    2016-04-01

    Stabilization using proper additives is an effective soil remediation technique to reduce As mobility in soil. Several researches have reported that Fe-containing materials such as amorphous Fe-oxides, goethite and hematite were effective in As immobilization and therefore acid mine drainage sludge (AMDS) may be potential material for As immobilization. The AMDS is the by-product from electrochemical treatment of acid mine drainage and mainly contains Fe-oxide. The Chungyang area in Korea is located in the vicinity of the huge abandoned Au-Ag Gubong mine which was closed in the 1970s. Large amounts of mine tailings have been remained without proper treatment and the mobilization of mine tailings can be manly occurred during the summer heavy rainfall season. Soil contamination from this mobilization may become an urgent issue because it can cause the contamination of groundwater and crop plants in sequence. In order to reduce the mobilization of the mine tailings, the pilot scale study of in-situ stabilization using AMDS was applied after the batch and column experiments in the lab. For the monitoring of stabilization process, we used to determine the As concentration in crop plants grown on the field site but it is not easily applicable because of time and cost. Therefore, we may need simple monitoring technique to measure the mobility or leachability which can be comparable with As concentration in crop plants. We compared several extraction methods to suggest the representative single extraction method for the monitoring of soil stabilization efficiency. Several selected extraction methods were examined and Mehlich 3 extraction method using the mixture of NH4F, EDTA, NH4NO3, CH3COOH and HNO3 was selected as the best predictor of the leachability or mobility of As in the soil remediation process.

  13. Molecular approaches to understand the regulation of N2O emission from denitrifying bacteria - model strains and soil communities (Invited)

    Science.gov (United States)

    Frostegard, A.; Bakken, L. R.

    2010-12-01

    Emissions of N2O from agricultural soils are largely caused by denitrifying bacteria. Field measurements of N2O fluxes show large variations and depend on several environmental factors, and possibly also on the composition of the denitrifying microbial community. The temporal and spatial variation of fluxes are not adequately captured by biogeochemical models, and few options for mitigations have been invented, which underscores the need to understand the mechanisms underlying the emissions of N2O. Analyses of denitrification genes and transcripts extracted from soils are important for describing the system, but may have limited value for prediction of N2O emissions. In contrast, phenotypic analyses are direct measures of the organisms’ responses to changing environmental conditions. Our approach is to combine phenotypic characterizations using high-resolution gas kinetics, with gene transcription analyses to study denitrification regulatory phenotypes (DRP) of bacterial strains or complex microbial communities. The rich data sets obtained provide a basis for refinement of biochemical and physiological research on this key process in the nitrogen cycle. The strength of this combined approach is illustrated by a series of experiments investigating effects of soil pH on denitrification. Soil pH emerges as a master variable determining the microbial community composition as well as its denitrification product ratio (N2O/N2), with higher ratio in acid than in alkaline soil. It is therefore likely that emissions of N2O from agro-ecosystems will increase in large parts of the world where soil pH is decreasing due to intensified management and increased use of chemical fertilizers. Considering its immense implications, surprisingly few attempts have been made to unravel the mechanisms involved in the pH-control of the product stoichiometry of denitrification. We investigated the kinetics of gas transformations (O2, NO, N2O and N2) and transcription of functional genes

  14. Soil Organic Matter Stabilization via Mineral Interactions in Forest Soils with Varying Saturation Frequency

    Science.gov (United States)

    Possinger, A. R.; Inagaki, T.; Bailey, S. W.; Kogel-Knabner, I.; Lehmann, J.

    2017-12-01

    Soil carbon (C) interaction with minerals and metals through surface adsorption and co-precipitation processes is important for soil organic C (SOC) stabilization. Co-precipitation (i.e., the incorporation of C as an "impurity" in metal precipitates as they form) may increase the potential quantity of mineral-associated C per unit mineral surface compared to surface adsorption: a potentially important and as yet unaccounted for mechanism of C stabilization in soil. However, chemical, physical, and biological characterization of co-precipitated SOM as such in natural soils is limited, and the relative persistence of co-precipitated C is unknown, particularly under dynamic environmental conditions. To better understand the relationships between SOM stabilization via organometallic co-precipitation and environmental variables, this study compares mineral-SOM characteristics across a forest soil (Spodosol) hydrological gradient with expected differences in co-precipitation of SOM with iron (Fe) and aluminum (Al) due to variable saturation frequency. Soils were collected from a steep, well-drained forest soil transect with low, medium, and high frequency of water table intrusion into surface soils (Hubbard Brook Experimental Forest, Woodstock, NH). Lower saturation frequency soils generally had higher C content, C/Fe, C/Al, and other indicators of co-precipitation interactions resulting from SOM complexation, transport, and precipitation, an important process of Spodosol formation. Preliminary Fe X-ray Absorption Spectroscopic (XAS) characterization of SOM and metal chemistry in low frequency profiles suggest co-precipitation of SOM in the fine fraction (soils showed greater SOC mineralization per unit soil C for low saturation frequency (i.e., higher co-precipitation) soils; however, increased mineralization may be attributed to non-mineral associated fractions of SOM. Further work to identify the component of SOM contributing to rapid mineralization using 13C

  15. A more holistic understanding of soil organic matter pools of alpine and pre-alpine grassland soils in a changing climate

    Science.gov (United States)

    Garcia Franco, Noelia; Wiesmeier, Martin; Kiese, Ralf; Dannenmann, Michael; Wolf, Benjamin; Brandhuber, Robert; Beck, Robert; Kögel-Knabner, Ingrid

    2016-04-01

    In southern Germany, the alpine and pre-alpine grassland systems (> 1 Mio ha) provide an important economic value via fodder used for milk and meat production and grassland soils support environmental key functions (C and N storage, water retention, erosion control and biodiversity hot spot). In addition, these grassland soils constitute important regions for tourism and recreation. However, the different land use and management practices in this area introduce changes which are likely to accelerate due to climate change. The newly launched SUPSALPS project within the BonaRes Initiative of the German Ministry for Education and Research is focused on the development and evaluation of innovative grassland management strategies under climate change with an emphasis on soil functions, which are on the one hand environmental sustainable and on the other hand economically viable. Several field experiments of the project will be initialized in order to evaluate grassland soil functioning for a range of current and climate adapted management practices. A multi-factorial design combines ongoing and new plant-soil meso-/macrocosm and field studies at a multitude of existing long-term research sites along an elevation gradient in Bavaria. One of the specific objectives of the project is to improve our knowledge on the sensitivity of specific soil organic matter (SOM) fractions to climate change. Moreover, the project aims to determine the processes and mechanisms involved in the build-up and stabilization of C and N pools under different management practices. In order to derive sensitive SOM pools, a promising physical fractionation method was developed that enables the separation of five different SOM fractions by density, ultrasonication and sieving separation: fine particulate organic matter (fPOM), occluded particulate organic matter (oPOM>20μm and oPOM 20 μm; medium + fine silt and clay, management changes.

  16. Using Remotely Sensed Fluorescence and Soil Moisture to Better Understand the Seasonal Cycle of Tropical Grasslands

    Science.gov (United States)

    Smith, Dakota Carlysle

    Seasonal grasslands account for a large area of Earth's land cover. Annual and seasonal changes in these grasslands have profound impacts on Earth's carbon, energy, and water cycles. In tropical grasslands, growth is commonly water-limited and the landscape oscillates between highly productive and unproductive. As the monsoon begins, soils moisten providing dry grasses the water necessary to photosynthesize. However, along with the rain come clouds that obscure satellite products that are commonly used to study productivity in these areas. To navigate this issue, we used solar induced fluorescence (SIF) products from OCO-2 along with soil moisture products from the Soil Moisture Active Passive satellite (SMAP) to "see through" the clouds to monitor grassland productivity. To get a broader understanding of the vegetation dynamics, we used the Simple Biosphere Model (SiB4) to simulate the seasonal cycles of vegetation. In conjunction with SiB4, the remotely sensed SIF and soil moisture observations were utilized to paint a clearer picture of seasonal productivity in tropical grasslands. The remotely sensed data is not available for every place at one time or at every time for one place. Thus, the study was focused on a large area from 15° E to 35° W and from 8°S to 20°N in the African Sahel. Instead of studying productivity relative to time, we studied it relative to soil moisture. Through this investigation we found soil moisture thresholds for the emergence of grassland growth, near linear grassland growth, and maturity of grassland growth. We also found that SiB4 overestimates SIF by about a factor of two for nearly every value of soil moisture. On the whole, SiB4 does a surprisingly good job of predicting the response of seasonal growth in tropical grasslands to soil moisture. Future work will continue to integrate remotely sensed SIF & soil moisture with SiB4 to add to our growing knowledge of carbon, water, and energy cycling in tropical grasslands.

  17. On the role of soil fauna in providing soil functions - a meta study

    Science.gov (United States)

    Lang, Birgit; Russell, David J.; Vogel, Hans-Jörg; Wollschläger, Ute

    2017-04-01

    Fertile soils are fundamental for the production of biomass and therefore for the provision of goods such as food or fuel. However, soils are threatened by e.g. land degradation, but once lost their functionality cannot simply be replaced as soils are complex systems developed over long time periods. Thus, to develop strategies for sustainable soil use and management, we need a comprehensive functional understanding of soil systems. To this end, the interdisciplinary research program "Soil as a Natural Resource for the Bio-Economy - BonaRes" was launched by the German Federal Government in 2015. One part of this program is the development of a Knowledge Centre for soil functions and services. As part of the Knowledge Centre, we focus on the identification and quantification of biological drivers of soil functions. Based on a systematic review of existing literature, we assess the importance of different soil faunal groups for the soil functions and processes most relevant to agricultural production (i.e. decomposition, mineralization, soil structuring. Additionally, we investigate direct impacts of soil fauna on soil properties (e.g. aggregation, pore volume). As site specific conditions such as climate, soil type or management practices affect soil fauna and their performance, these responses must also be taken into account. In the end, our findings will be used in the development of modeling tools aiming to predict the impacts of different management measures on soil ecosystem services and functions.

  18. Spatial variation in microbial processes controlling carbon mineralization within soils and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Fendorf, Scott [Stanford Univ., CA (United States); Kleber, Markus [Oregon State Univ., Corvallis, OR (United States); Nico, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-10-19

    Soils have a defining role in global carbon cycling, having one of the largest dynamic stocks of C on earth—3300 Pg of C are stored in soils, which is three-times the amount stored in the atmosphere and more than the terrestrial land plants. An important control on soil organic matter (SOM) quantities is the mineralization rate. It is well recognized that the rate and extent of SOM mineralization is affected by climatic factors and mineral-organic matter associations. What remained elusive is to what extent constraints on microbial metabolism induced by the respiratory pathway, and specifically the electron acceptor in respiration, control overall rates of carbon mineralization in soils. Therefore, physical factors limiting oxygen diffusion such as soil texture and aggregate size (soil structure) may therefore be central controls on C mineralization rates. The goal of our research was therefore to determine if variations in microbial metabolic rates induced by anaerobic microsites in soils are a major control on SOM mineralization rates and thus storage. We performed a combination of laboratory experiments and field investigations will be performed to fulfill our research objectives. We used laboratory studies to examine fundamental factors of respiratory constraints (i.e., electron acceptor) on organic matter mineralization rates. We ground our laboratory studies with both manipulation of field samples and in-field measurements. Selection of the field sites is guided by variation in soil texture and structure while having (other environmental/soil factors constant. Our laboratory studies defined redox gradients and variations in microbial metabolism operating at the aggregate-scale (cm-scale) within soils using a novel constructed diffusion reactor. We further examined micro-scale variation in terminal electron accepting processes and resulting C mineralization rates within re-packed soils. A major outcome of our research is the ability to quantitatively place

  19. Understanding and Managing Process Interaction in IS Development Projects

    DEFF Research Database (Denmark)

    Bygstad, Bendik; Nielsen, Peter Axel

    2005-01-01

    Increasingly, information systems must be developed and implemented as a part of business change. This is a challenge for the IS project manager, since business change and information systems development usually are performed as separate processes. Thus, there is a need to understand and manage......-technical innovation in a situation where the organisational change process and the IS development process are parallel but incongruent. We also argue that iterative software engineering frameworks are well structured to support process interaction. Finally, we advocate that the IS project manager needs to manage...... the relationship between these two kinds of processes. To understand the interaction between information systems development and planned organisational change we introduce the concept of process interaction. We draw on a longitudinal case study of an IS development project that used an iterative and incremental...

  20. Techniques of radioactive soil processing at rehabilitation of contamination territories - 59199

    International Nuclear Information System (INIS)

    Volkov, Victor; Chesnokov, Alexander; Danilovich, Alexey; Zverkov, Yury; Koltyshev, Sergey; Semenov, Sergey; Shisha, Anatoly

    2012-01-01

    Rehabilitation of nuclear- and radiation objects assumes dealing with and removal of considerable volumes of a radioactive soil. A similar situation was faced at the remediation of such sufficiently large objects, as old radioactive waste storages at the territory of 'Kurchatov Institute' and elimination of consequences of radiation accident at Podolsk plant of nonferrous metals. At rough estimates the volumes of a radioactive soil at territory of 'Kurchatov institute' were 15-20 thousand m 3 , volumes of a removed soil at carrying out of urgent measures in territory of Kirovo-Chepetsk chemical plant exceeded 20-25 thousand m 3 , volumes of a low active waste at the territory of Podolsk plant may reach 20 thousand m 3 . Such considerable volumes demand creation of technologies of their processing, an effective measuring technique of levels of their contamination and ways of considerable (in times) decrease of their volumes at the expense of decontamination or separation. Works have been aimed at the decision of these problems at carrying out of rehabilitation of territory 'Kurchatov institute'. During works technologies of radiation and water-gravitational separation of a radioactive soil have been offered and are realized in practice. A facility of water -gravitational separation of the soil was created and used within 5 years. It allowed decreasing of volumes of the low active waste in 5-6 times. In further the facility was supplied by a facility of radiation separation of the soil that has raised its efficiency. On turn there is a start-up question in experimental operation of facility of radiation separation of low active slag for Podolsk plant of nonferrous metals. The decision of these problems will allow to gain experience of creation of through technology of the processing of a radioactive soil and decrease in its volumes for using it as a design decisions for rehabilitation of other large scale radioactive-contaminated territories and industrial objects

  1. Microbial Mechanisms Enhancing Soil C Storage

    Energy Technology Data Exchange (ETDEWEB)

    Zak, Donald [Univ. of Michigan, Ann Arbor, MI (United States)

    2015-09-24

    Human activity has globally increased the amount of nitrogen (N) entering ecosystems, which could foster higher rates of C sequestration in the N-limited forests of the Northern Hemisphere. Presently, these ecosystems are a large global sink for atmospheric CO2, the magnitude of which could be influenced by the input of human-derived N from the atmosphere. Nevertheless, empirical studies and simulation models suggest that anthropogenic N deposition could have either an important or inconsequential effect on C storage in forests of the Northern Hemisphere, a set of observations that continues to fuel scientific discourse. Although a relatively simple set of physiological processes control the C balance of terrestrial ecosystems, we still fail to understand how these processes directly and indirectly respond to greater N availability in the environment. The uptake of anthropogenic N by N-limited forest trees and a subsequent enhancement of net primary productivity have been the primary mechanisms thought to increase ecosystem C storage in Northern Hemisphere forests. However, there are reasons to expect that anthropogenic N deposition could slow microbial activity in soil, decrease litter decay, and increase soil C storage. Fungi dominate the decay of plant detritus in forests and, under laboratory conditions, high inorganic N concentrations can repress the transcription of genes coding for enzymes which depolymerize lignin in plant detritus; this observation presents the possibility that anthropogenic N deposition could elicit a similar effect under field conditions. In our 18-yr-long field experiment, we have been able to document that simulated N deposition, at a rate expected in the near future, resulted in a significant decline in cellulolytic and lignolytic microbial activity, slowed plant litter decay, and increased soil C storage (+10%); this response is not portrayed in any biogeochemical model simulating the effect of atmospheric N deposition on ecosystem C

  2. Understanding the Day Cent model: Calibration, sensitivity, and identifiability through inverse modeling

    Science.gov (United States)

    Necpálová, Magdalena; Anex, Robert P.; Fienen, Michael N.; Del Grosso, Stephen J.; Castellano, Michael J.; Sawyer, John E.; Iqbal, Javed; Pantoja, Jose L.; Barker, Daniel W.

    2015-01-01

    The ability of biogeochemical ecosystem models to represent agro-ecosystems depends on their correct integration with field observations. We report simultaneous calibration of 67 DayCent model parameters using multiple observation types through inverse modeling using the PEST parameter estimation software. Parameter estimation reduced the total sum of weighted squared residuals by 56% and improved model fit to crop productivity, soil carbon, volumetric soil water content, soil temperature, N2O, and soil3NO− compared to the default simulation. Inverse modeling substantially reduced predictive model error relative to the default model for all model predictions, except for soil 3NO− and 4NH+. Post-processing analyses provided insights into parameter–observation relationships based on parameter correlations, sensitivity and identifiability. Inverse modeling tools are shown to be a powerful way to systematize and accelerate the process of biogeochemical model interrogation, improving our understanding of model function and the underlying ecosystem biogeochemical processes that they represent.

  3. Irrigation model of bleached Kraft mill wastewater through volcanic soil as a pollutants attenuation process.

    Science.gov (United States)

    Navia, R; Inostroza, X; Diez, M C; Lorber, K E

    2006-05-01

    An irrigation process through volcanic soil columns was evaluated for bleached Kraft mill effluent pollutants retention. The system was designed to remove color and phenolic compounds and a simple kinetic model for determining the global mass transfer coefficient and the adsorption rate constant was used. The results clearly indicate that the global mass transfer coefficient values (K(c)a) and the adsorption rate constants are higher for the irrigation processes onto acidified soil. This means that the pretreatment of washing the volcanic soil with an acid solution has a positive effect on the adsorption rate for both pollutant groups. The enhanced adsorption capacity is partially explained by the activation of the metal oxides present in the soil matrix during the acid washing process. Increasing the flow rate from 1.5 to 2.5 ml/min yielded higher (K(c)a) values and adsorption rate constants for both pollutant groups. For instance, regarding color adsorption onto acidified soil, there is an increment of 43% in the (K(c)a) value for the experiment with a flow rate of 2.5 ml/min. Increasing the porosity of the column from 0.55 to 0.59, yielded a decrease in the (K(c)a) values for color and phenolic compounds adsorption processes. Onto natural soil for example, these decreases reached 21% and 24%, respectively. Therefore, the (K(c)a) value is dependent on both the liquid-phase velocity (external resistance) and the soil fraction in the column (internal resistance); making forced convection and diffusion to be the main transport mechanisms involved in the adsorption process. Analyzing the adsorption rate constants (K(c)a)/m, phenolic compounds and color adsorption rates onto acidified soil of 2.25 x 10(-6) and 2.62 x 10(-6) l/mg min were achieved for experiment 1. These adsorption rates are comparable with other adsorption systems and adsorbent materials.

  4. Climate change impairs processes of soil and plant N cycling in European beech forests on marginal soil

    Science.gov (United States)

    Tejedor, Javier; Gasche, Rainer; Gschwendtner, Silvia; Leberecht, Martin; Bimüller, Carolin; Kögel-Knabner, Ingrid; Pole, Andrea; Schloter, Michael; Rennenberg, Heinz; Simon, Judy; Hanewinkel, Marc; Baltensweiler, Andri; Bilela, Silvija; Dannenmann, Michael

    2014-05-01

    Beech forests of Central Europe are covering large areas with marginal calcareous soils, but provide important ecological services and represent a significant economical value. The vulnerability of these ecosystems to projected climate conditions (higher temperatures, increase of extreme drought and precipitation events) is currently unclear. Here we present comprehensive data on the influence of climate change conditions on ecosystem performance, considering soil nitrogen biogeochemistry, soil microbiology, mycorrhiza ecology and plant physiology. We simultaneously quantified major plant and soil gross N turnover processes by homogenous triple 15N isotope labeling of intact beech natural regeneration-soil-microbe systems. This isotope approach was combined with a space for time climate change experiment, i.e. we transferred intact beech seedling-soil-microbe mesocosms from a slope with N-exposure (representing present day climate conditions) to a slope with S exposure (serving as a warmer and drier model climate for future conditions). Transfers within N slope served as controls. After an equilibration period of 1 year, three isotope labeling/harvest cycles were performed. Reduced soil water content resulted in a persistent decline of ammonia oxidizing bacteria in soil (AOB). Consequently, we found a massive five-fold reduction of gross nitrification in the climate change treatment and a subsequent strong decline in soil nitrate concentrations as well as nitrate uptake by microorganisms and beech. Because nitrate was the major nutrient for beech in this forest type with little importance of ammonium and amino acids, this resulted in a strongly reduced performance of beech natural regeneration with reduced N content, N metabolite concentrations and plant biomass. These findings provided an explanation for a large-scale decline of distribution of beech forests on calcareous soils in Europe by almost 80% until 2080 predicted by statistical modeling. Hence, we

  5. Soil protists: a fertile frontier in soil biology research.

    Science.gov (United States)

    Geisen, Stefan; Mitchell, Edward A D; Adl, Sina; Bonkowski, Michael; Dunthorn, Micah; Ekelund, Flemming; Fernández, Leonardo D; Jousset, Alexandre; Krashevska, Valentyna; Singer, David; Spiegel, Frederick W; Walochnik, Julia; Lara, Enrique

    2018-05-01

    Protists include all eukaryotes except plants, fungi and animals. They are an essential, yet often forgotten, component of the soil microbiome. Method developments have now furthered our understanding of the real taxonomic and functional diversity of soil protists. They occupy key roles in microbial foodwebs as consumers of bacteria, fungi and other small eukaryotes. As parasites of plants, animals and even of larger protists, they regulate populations and shape communities. Pathogenic forms play a major role in public health issues as human parasites, or act as agricultural pests. Predatory soil protists release nutrients enhancing plant growth. Soil protists are of key importance for our understanding of eukaryotic evolution and microbial biogeography. Soil protists are also useful in applied research as bioindicators of soil quality, as models in ecotoxicology and as potential biofertilizers and biocontrol agents. In this review, we provide an overview of the enormous morphological, taxonomical and functional diversity of soil protists, and discuss current challenges and opportunities in soil protistology. Research in soil biology would clearly benefit from incorporating more protistology alongside the study of bacteria, fungi and animals.

  6. Application of a biological process for decontamination of soils in the far north

    International Nuclear Information System (INIS)

    Pouliot, Y.; Sansregret, J.-L.

    1994-01-01

    The site of a diesel-fuelled power station in the extreme north of Quebec (62 degree latitude) was contaminated with hydrocarbons. The site was characterized by typical Arctic conditions: presence of permafrost, limited land transport facilities, restricted availability of machinery and equipment, and scarcity of skilled labor and specialized services. To remediate the site, it was decided to excavate the contaminated soil and subject it to a biological treatment process. The soil was piled on an impermeable base inside of the old power station building and the following parameters were controlled in order to optimize the biodegradation of the hydrocarbons: temperature, humidity, pH, presence of hydrocarbon degrading microorganisms, and concentrations of oxygen, nitrogen, and phosphorus in the soil. Samples were analyzed to monitor the performance of the biodegradation process. In less than 12 weeks, of treatment, an inital hydrocarbon content estimated at 6,400 mg/kg of oils and greases was reduced to 750 mg/kg, corresponding to a level acceptable for residential areas. Indigenous microorganisms capable of degrading hydrocarbons were already present in the native soil in sufficient quantity, and their performance improved when the soil conditions were optimized. 1 fig., 3 tabs

  7. Sustaining "the Genius of Soils"

    Science.gov (United States)

    Sposito, G.

    2011-12-01

    Soils are weathered porous earth surficial materials that exhibit an approximately vertical stratification reflecting the continual action of percolating water and living organisms. They are complex open, multicomponent, multiphase biogeochemical systems which function as both provisioning and regulatory agents in terrestrial ecosystems while influencing aquatic ecosystems through their impacts on evapotranspiration and runoff. The ability of soils to engage in their supportive ecosystem functions depends on what has been termed metaphorically as their "natural capital," the defining properties that condition soil response to biological, geological, and hydrological processes as well as human-driven activities. Natural capital must necessarily differ among soils depending on how they have developed under the five soil-forming processes, but it also can be determined by land use and by the flows of matter and energy that link the global atmosphere, biosphere, and hydrosphere. These latter two determinants have in recent decades begun to exhibit strong variability that exceeds what has been characteristic of them during the past 10 millennia of earth history, thereby raising the apocalyptic issue of whether a deleterious or even catastrophic undermining of the ability of soils to function supportively in ecosystems is in the offing. Resolving this issue will require deeper understanding of how soils perform their provisioning and regulatory functions, how they respond to land-use changes, and how they mediate the global flows of matter and energy.

  8. Error characterization of microwave satellite soil moisture data sets using fourier analysis

    Science.gov (United States)

    Abstract: Soil moisture is a key geophysical variable in hydrological and meteorological processes. Accurate and current observations of soil moisture over mesoscale to global scales as inputs to hydrological, weather and climate modelling will benefit the predictability and understanding of these p...

  9. Soil mapping and process modeling for sustainable land use management: a brief historical review

    Science.gov (United States)

    Brevik, Eric C.; Pereira, Paulo; Muñoz-Rojas, Miriam; Miller, Bradley A.; Cerdà, Artemi; Parras-Alcántara, Luis; Lozano-García, Beatriz

    2017-04-01

    Basic soil management goes back to the earliest days of agricultural practices, approximately 9,000 BCE. Through time humans developed soil management techniques of ever increasing complexity, including plows, contour tillage, terracing, and irrigation. Spatial soil patterns were being recognized as early as 3,000 BCE, but the first soil maps didn't appear until the 1700s and the first soil models finally arrived in the 1880s (Brevik et al., in press). The beginning of the 20th century saw an increase in standardization in many soil science methods and wide-spread soil mapping in many parts of the world, particularly in developed countries. However, the classification systems used, mapping scale, and national coverage varied considerably from country to country. Major advances were made in pedologic modeling starting in the 1940s, and in erosion modeling starting in the 1950s. In the 1970s and 1980s advances in computing power, remote and proximal sensing, geographic information systems (GIS), global positioning systems (GPS), and statistics and spatial statistics among other numerical techniques significantly enhanced our ability to map and model soils (Brevik et al., 2016). These types of advances positioned soil science to make meaningful contributions to sustainable land use management as we moved into the 21st century. References Brevik, E., Pereira, P., Muñoz-Rojas, M., Miller, B., Cerda, A., Parras-Alcantara, L., Lozano-Garcia, B. Historical perspectives on soil mapping and process modelling for sustainable land use management. In: Pereira, P., Brevik, E., Muñoz-Rojas, M., Miller, B. (eds) Soil mapping and process modelling for sustainable land use management (In press). Brevik, E., Calzolari, C., Miller, B., Pereira, P., Kabala, C., Baumgarten, A., Jordán, A. 2016. Historical perspectives and future needs in soil mapping, classification and pedological modelling, Geoderma, 264, Part B, 256-274.

  10. [Responses of soil fauna to environment degeneration in the process of wind erosion desertification of Hulunbeir steppe].

    Science.gov (United States)

    Lü, Shi-Hai; Lu, Xin-Shi; Gao, Ji-Xi

    2007-09-01

    To reveal the relationships between soil fauna and soil environmental factors in the process of steppe desertification, field survey combined with laboratory analysis was made to study the community structure, population density and biodiversity of soil fauna, and their relationships with the changes of soil organic matter, hydrolysable nitrogen, available phosphorus and moisture contents and soil pH at different stages of desertification of Hulunbeir steppe. The soil faunal specimens collected belonged to 4 phyla, 6 classes and 12 orders. Nematoda was the only dominant group of medium- and small-sized soil fauna, occupying 94.3% of the total, while Coleoptera and Hemiptera were the dominant groups of large-sized soil fauna, with the amount of 79.7%. The group amount, population density, diversity, and evenness of soil fauna had an obvious decreasing trend with the aggravation of steppe desertification. At serious stage of desertification, soil fauna vanished completely. The population density of soil fauna in 0-20 cm soil layer had significant linear correlations with soil nutrients and moisture contents, soil pH, and litter mass, indicating that soil fauna had stronger sensibility to the changes of soil environmental factors in the process of wind erosion desertification of Hulunbeir steppe.

  11. Phytopathology Prediction in Dry Soil Using Artificial Neural Networks Modeling

    OpenAIRE

    F. Allag; S. Bouharati; M. Belmahdi; R. Zegadi

    2014-01-01

    The rapid expansion of deserts in recent decades as a result of human actions combined with climatic changes has highlighted the necessity to understand biological processes in arid environments. Whereas physical processes and the biology of flora and fauna have been relatively well studied in marginally used arid areas, knowledge of desert soil micro-organisms remains fragmentary. The objective of this study is to conduct a diversity analysis of bacterial communities in unvegetated arid soil...

  12. Increasing process understanding by analyzing complex interactions in experimental data

    DEFF Research Database (Denmark)

    Naelapaa, Kaisa; Allesø, Morten; Kristensen, Henning Gjelstrup

    2009-01-01

    understanding of a coating process. It was possible to model the response, that is, the amount of drug released, using both mentioned techniques. However, the ANOVAmodel was difficult to interpret as several interactions between process parameters existed. In contrast to ANOVA, GEMANOVA is especially suited...... for modeling complex interactions and making easily understandable models of these. GEMANOVA modeling allowed a simple visualization of the entire experimental space. Furthermore, information was obtained on how relative changes in the settings of process parameters influence the film quality and thereby drug......There is a recognized need for new approaches to understand unit operations with pharmaceutical relevance. A method for analyzing complex interactions in experimental data is introduced. Higher-order interactions do exist between process parameters, which complicate the interpretation...

  13. A combined process coupling phytoremediation and in situ flushing for removal of arsenic in contaminated soil.

    Science.gov (United States)

    Yan, Xiulan; Liu, Qiuxin; Wang, Jianyi; Liao, Xiaoyong

    2017-07-01

    Phytoremediation and soil washing are both potentially useful for remediating arsenic (As)-contaminated soils. We evaluated the effectiveness of a combined process coupling phytoremediation and in situ soil flushing for removal of As in contaminated soil through a pilot study. The results showed that growing Pteris vittata L. (P.v.) accompanied by soil flushing of phosphate (P.v./Flushing treatment) could significantly decrease the total As concentration of soil over a 37day flushing period compared with the single flushing (Flushing treatment). The P.v./Flushing treatment removed 54.04% of soil As from contaminated soil compared to 47.16% in Flushing treatment, suggesting that the growth of P. vittata was beneficial for promoting the removal efficiency. We analyzed the As fractionation in soil and As concentration in soil solution to reveal the mechanism behind this combined process. Results showed that comparing with the control treatment, the percent of labile arsenate fraction significantly increased by 17% under P.v./Flushing treatment. As concentration in soil solution remained a high lever during the middle and later periods (51.26-56.22mg/L), which was significantly higher than the Flushing treatment. Although soil flushing of phosphate for more than a month, P. vittata still had good accumulation and transfer capacity of As of the soil. The results of the research revealed that combination of phytoremediation and in situ soil flushing is available to remediate As-contaminated soils. Copyright © 2016. Published by Elsevier B.V.

  14. Biostimulatory Effect Of Processed Sewage Sludge In Bioremediation Of Engine Oil Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Kamaluddeen

    2015-08-01

    Full Text Available A study was conducted to evaluate the influence of sewage sludge on biodegradation of engine oil in contaminated soil. Soil samples were collected from a mechanics workshop in Sokoto metropolis. The Soil samples were taken to the laboratory for isolation of engine oil degrading bacteria. About 1 g of soil sample was used to inoculate 9 ml of trypticase soy broth and incubated at 28oC for 24 h. The growth obtained was sub-cultured in mineral salt medium overlaid with crude oil and allowed to stand at 28oC for 72 h. The culture obtained was then maintained on tryticase soy agar plates at 28oC for 48 h. A combination of microscopy and biochemical tests was carried out to identify the colonies. The sewage sludge was obtained from sewage collection point located behind Jibril Aminu Hall of Usmanu Danfodiyo University Sokoto and processed i.e. dried grounded and sterilized. A portion of land obtained in a botanical garden was divided into small portions 30 X 30 cm and the soil was excavated in-situ and sterilized in the laboratory. A polythene bag was subsequently used to demarcate between the sterilized soil and the garden soil. The sterilized soil plots were artificially contaminated with equal amount of used engine oil to represent a typical farmland oil spill. The plots were amended with various amount of processed sewage sludge i.e. 200 g 300 g and 400 g respectively. A pure culture of the bacteria was maintained on trypticase soy broth and was introduced into the sterile amended soil. The plots were watered twice daily for ten days. The degree of biodegradation and heavy metal content were assessed using standard procedures and the results obtained indicate a remarkable reduction in poly aromatic hydrocarbons PAHs total petroleum hydrocarbon TPH and heavy metal content.

  15. Temporal changes of spatial soil moisture patterns: controlling factors explained with a multidisciplinary approach

    Science.gov (United States)

    Martini, Edoardo; Wollschläger, Ute; Kögler, Simon; Behrens, Thorsten; Dietrich, Peter; Reinstorf, Frido; Schmidt, Karsten; Weiler, Markus; Werban, Ulrike; Zacharias, Steffen

    2016-04-01

    Characterizing the spatial patterns of soil moisture is critical for hydrological and meteorological models, as soil moisture is a key variable that controls matter and energy fluxes and soil-vegetation-atmosphere exchange processes. Deriving detailed process understanding at the hillslope scale is not trivial, because of the temporal variability of local soil moisture dynamics. Nevertheless, it remains a challenge to provide adequate information on the temporal variability of soil moisture and its controlling factors. Recent advances in wireless sensor technology allow monitoring of soil moisture dynamics with high temporal resolution at varying scales. In addition, mobile geophysical methods such as electromagnetic induction (EMI) have been widely used for mapping soil water content at the field scale with high spatial resolution, as being related to soil apparent electrical conductivity (ECa). The objective of this study was to characterize the spatial and temporal pattern of soil moisture at the hillslope scale and to infer the controlling hydrological processes, integrating well established and innovative sensing techniques, as well as new statistical methods. We combined soil hydrological and pedological expertise with geophysical measurements and methods from digital soil mapping for designing a wireless soil moisture monitoring network. For a hillslope site within the Schäfertal catchment (Central Germany), soil water dynamics were observed during 14 months, and soil ECa was mapped on seven occasions whithin this period of time using an EM38-DD device. Using the Spearman rank correlation coefficient, we described the temporal persistence of a dry and a wet characteristic state of soil moisture as well as the switching mechanisms, inferring the local properties that control the observed spatial patterns and the hydrological processes driving the transitions. Based on this, we evaluated the use of EMI for mapping the spatial pattern of soil moisture under

  16. Study of ferrallitisation process in soil by application of isotopic dilution kinetic technique to iron

    International Nuclear Information System (INIS)

    Thomann, Christiane

    1978-01-01

    Isotopic dilution kinetic technique applied to iron may contribute to make clear the conditions of ''potential'' mobility of iron in soils, under the action of three factors: moisture, incubation period and organic matter imputs. Comparison between surface horizons of three tropical soils: leached ferruginous tropical soil, weakly ferrallitic red soil and ferrallitic soil shows that in the ferrallitisation process, weakly ferrallitic soil would take place between the two other types of soils with a maximum mobility of iron. This mobility decreases when organic matter rate decreases leading then to ''beige'' soil (ferruginous leached tropical soil), and when hydroxide rate increases, which leads to ferrallitic soil. In podzol (A 1 horizon), for the same rate of organic matter, potential mobility of iron is higher than in ferallitic soil, because it contains ten times more free iron than the podzol [fr

  17. Degradation process modelization in of metallic drink containers, in soil, in water and in water-soil interaction

    International Nuclear Information System (INIS)

    Rieiro, I.; Trivino, V.; Gutierrez, T.; Munoz, J.; Larrea, M. T.

    2013-01-01

    This study asses the environmental pollution by metal release that takes place during prolonged exposures when metallic drink containers are accidentally settle in the soil in a uncontrolled way, For comparative purposes, the F111 steel and the aluminium alloy 3003, widely used for the fabrication of these containers, are also considered. A experimental design is proposed to simulate the environmental pollution during prolonged exposures. Analytical indicators have been obtained determining the metallic concentration from three types of mediums; water, water in presence of soil, and absorption-adsorption in soil. An analytical methodology has been developed by Atomic Emission Spectrometry with ICP as exciting source (ICP-OES) for metallic quantification. The method was validated using Certified Reference Materials (CRMs) of soil and water and the precision obtained varies from 5.39 to 5.86% and from 5.75 to 6.27%, respectively according to of the element studied. A statistical descriptive study followed by a factorial analysis (linear general model) has been carried out for the treatment of the experimental data packages. The metallic quantification for the three mediums shows that the soil inhibits metallic solubility in water. The process to make packages reduces in both cases their metallic cession. (Author)

  18. Processes and Causes of Accelerated Soil Erosion on Cultivated ...

    African Journals Online (AJOL)

    Processes and Causes of Accelerated Soil Erosion on Cultivated Fields of South Welo, Ethiopia. ... In most of the highlands, crop cultivation is carried out without any type of terracing, while about 74 per cent of this land requires application of contour plowing, broad-based terracing, or bench terracing. The third group of ...

  19. Distribution flow: a general process in the top layer of water repellent soils

    NARCIS (Netherlands)

    Ritsema, C.J.; Dekker, L.W.

    1995-01-01

    Distribution flow is the process of water and solute flowing in a lateral direction over and through the very first millimetre or centimetre of the soil profile. A potassium bromide tracer was applied in two water-repellent sandy soils to follow the actual flow paths of water and solutes in the

  20. A decision-making process on cleanup of contaminated surface soil

    International Nuclear Information System (INIS)

    Yasuda, Hiroshi

    1996-01-01

    This study presents principles for determining derived intervention levels (DILs) for surface soil cleanup. The people concerned were divided into major three groups: residents, responsible parties, and cleanup workers; it was considered that each group has different interests. The DILs for soil cleanup were determined from the viewpoints of these three groups: safety of residence, advantages of the countermeasures, and safety of cleanup activities, respectively. An example process for determination of the DILs in accordance with the principles was also presented for a site contaminated by 137 Cs. This decision-making frame is expected to be applicable to other contaminants. (author)

  1. Toward a Simple Framework for Understanding the Influence of Litter Quality on Vertical and Horizontal Patterns of Soil Organic Matter Pools

    Science.gov (United States)

    Craig, M.; Phillips, R.

    2016-12-01

    Decades of research have revealed that plant litter quality fundamentally influences soil organic matter (SOM) properties. Yet we lack the predictive frameworks necessary to up-scale our understanding of these dynamics in biodiverse systems. Given that ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) plants are thought to differ in their litter quality, we ask whether this dichotomy represents a framework for understanding litter quality effects on SOM in temperate forests. To do this, we sampled soils from 250 spatially referenced locations within a 25-Ha plot where 28,000 trees had been georeferenced, and analyzed spatial patterns of plant and SOM properties. We then examined the extent to which the dominance of AM- versus EM-trees relates to 1) the quality of litter inputs to forest soils and 2) the horizontal and vertical distribution of SOM fractions. We found that leaf litters produced by EM-associated trees were generally of lower quality, having a lower concentration of soluble compounds and higher C:N. Concomitant with this, we observed higher soil C:N under EM trees. Interestingly, this reflected greater N storage in AM-dominated soils rather than greater C storage in EM-dominated soils. These patterns were driven by the storage of SOM in N-rich fractions in AM-dominated soils. Specifically, trees with high litter quality were associated with greater amounts of deep and mineral-associated SOM; pools that are generally considered stable. Our results support the recent contention that high-quality plant inputs should lead to the formation of stable SOM and suggest that the AM-EM framework may provide a way forward for representing litter quality effects on SOM in earth system models.

  2. Bacterial chitinolytic communities respond to chitin and pH alteration in soil

    NARCIS (Netherlands)

    Kielak-Butterbach, A.M.; Cretoiu, M.S.; Semenov, A.V.; Sørensen, S.J.; van Elsas, J.D.

    Chitin amendment is a promising soil management strategy that may enhance the suppressiveness of soil toward plant pathogens. However, we understand very little of the effects of added chitin, including the putative successions that take place in the degradative process. We performed an experiment

  3. The importance of understanding during the teaching process

    Directory of Open Access Journals (Sweden)

    Dubljanin Saša

    2015-01-01

    Full Text Available Learning in the teaching process often goes on without proper understanding which is one of important problems that modern didactics tries to solve. In order to direct the totality of teaching towards understanding it is necessary to answer the question what understanding is, which is why we analysed different philosophical views on the concept of understanding and stressed their semblance to pedagogic explanations. Different kinds of understanding were analyzed as well as their role and contribution in different teaching situations, especially in the context of problem solving. As an alternative to the teaching based on accumulation of knowledge the characteristics and some principles of teaching focused on understanding are described, and the need for stimulating and developing understanding as an important goal of education. The results of our research unequivocally show that learning with understanding enables students to memorize the teaching material better, as well as to understand the whole teaching subject and efficiently apply the acquired knowledge out of school, and leads to more flexible behaviour and better coping in everyday life.

  4. Understanding the Mechanism of Soil Erosion from Outdoor Model ...

    African Journals Online (AJOL)

    A method for obtaining important data on eroded soils, using a one eight experimental slope model is presented. The scope of the investigation herein described encompassed three locations in the south- eastern parts of Nigeria, which are belts of severe erosion, namely Opi-Nsukka, Agulu and Udi, [Fig. 1.] Soil samples ...

  5. Tungstate adsorption onto Italian soils with different characteristics.

    Science.gov (United States)

    Petruzzelli, Gianniantonio; Pedron, Francesca

    2017-08-01

    The study of tungsten in the environment is currently of considerable interest because of the growing concerns resulting from its possible toxicity and carcinogenicity. Adsorption reactions are some of the fundamental processes governing the fate and transport of tungsten compounds in soil. This paper reports data on the adsorption of tungstate ions in three different Italian soils, which are characteristic of the Mediterranean region. The results show that pH is the most important factor governing the adsorption of tungstate in these soils. The data interpreted according to the Langmuir equation show that the maximum value of adsorption is approximately 30 mmol kg -1 for the most acidic soil (pH = 4.50) and approximately 9 mmol kg -1 for the most basic soil (pH = 7.40). In addition, soil organic matter is shown to play a fundamental role in adsorption processes, which are favored in soils with a higher organic matter content. The data could contribute to a better understanding of the behavior of tungsten compounds in Italian soils for which current knowledge is very scarce, also in view of environmental regulations, which are currently lacking.

  6. Effects of Organic Matter and Clay Content in Soil on Pesticide Adsorption Processes

    Directory of Open Access Journals (Sweden)

    Rada Đurović

    2009-01-01

    Full Text Available The effect of organic matter and clay content on the adsorption of atrazine, acetochlor, clomazone, pendimethalin and oxyfluorfen in soil samples was studied. In order to determine whether and to what degree different soil properties affect the process of determinationof selected pesticides, three soils with different clay and organic matter contents were used. An optimized liquid-solid extraction procedure followed by SPME measurement was applied to analyse the selected pesticides in soil samples. Detection and quantificationwere done by gas chromatography-mass spectrometry (GC/MS. Relative standard deviation (RSD values for multiple analyses of soil samples fortified at 30 μg/kg of each pesticide were below 19%. Limits of detection (LODs for all compounds studied were less than 2 μg/kg. The results indicate that soils with different physico-chemical properties have different effects on the adsorption of most pesticides, especially at higher concentration levels.

  7. Task-specific visual cues for improving process model understanding

    NARCIS (Netherlands)

    Petrusel, Razvan; Mendling, Jan; Reijers, Hajo A.

    2016-01-01

    Context Business process models support various stakeholders in managing business processes and designing process-aware information systems. In order to make effective use of these models, they have to be readily understandable. Objective Prior research has emphasized the potential of visual cues to

  8. Climate Impacts on Soil Carbon Processes along an Elevation Gradient in the Tropical Luquillo Experimental Forest

    Directory of Open Access Journals (Sweden)

    Dingfang Chen

    2017-03-01

    Full Text Available Tropical forests play an important role in regulating the global climate and the carbon cycle. With the changing temperature and moisture along the elevation gradient, the Luquillo Experimental Forest in Northeastern Puerto Rico provides a natural approach to understand tropical forest ecosystems under climate change. In this study, we conducted a soil translocation experiment along an elevation gradient with decreasing temperature but increasing moisture to study the impacts of climate change on soil organic carbon (SOC and soil respiration. As the results showed, both soil carbon and the respiration rate were impacted by microclimate changes. The soils translocated from low elevation to high elevation showed an increased respiration rate with decreased SOC content at the end of the experiment, which indicated that the increased soil moisture and altered soil microbes might affect respiration rates. The soils translocated from high elevation to low elevation also showed an increased respiration rate with reduced SOC at the end of the experiment, indicating that increased temperature at low elevation enhanced decomposition rates. Temperature and initial soil source quality impacted soil respiration significantly. With the predicted warming climate in the Caribbean, these tropical soils at high elevations are at risk of releasing sequestered carbon into the atmosphere.

  9. On the Need to Establish an International Soil Modeling Consortium

    Science.gov (United States)

    Vereecken, H.; Vanderborght, J.; Schnepf, A.

    2014-12-01

    Soil is one of the most critical life-supporting compartments of the Biosphere. Soil provides numerous ecosystem services such as a habitat for biodiversity, water and nutrients, as well as producing food, feed, fiber and energy. To feed the rapidly growing world population in 2050, agricultural food production must be doubled using the same land resources footprint. At the same time, soil resources are threatened due to improper management and climate change. Despite the many important functions of soil, many fundamental knowledge gaps remain, regarding the role of soil biota and biodiversity on ecosystem services, the structure and dynamics of soil communities, the interplay between hydrologic and biotic processes, the quantification of soil biogeochemical processes and soil structural processes, the resilience and recovery of soils from stress, as well as the prediction of soil development and the evolution of soils in the landscape, to name a few. Soil models have long played an important role in quantifying and predicting soil processes and related ecosystem services. However, a new generation of soil models based on a whole systems approach comprising all physical, mechanical, chemical and biological processes is now required to address these critical knowledge gaps and thus contribute to the preservation of ecosystem services, improve our understanding of climate-change-feedback processes, bridge basic soil science research and management, and facilitate the communication between science and society. To meet these challenges an international community effort is required, similar to initiatives in systems biology, hydrology, and climate and crop research. Our consortium will bring together modelers and experimental soil scientists at the forefront of new technologies and approaches to characterize soils. By addressing these aims, the consortium will contribute to improve the role of soil modeling as a knowledge dissemination instrument in addressing key

  10. Soil erosion processes on sloping land using REE tracer

    International Nuclear Information System (INIS)

    Shen Zhenzhou; Liu Puling; Yang Mingyi; Lian Zhenlong; Ju Tongjun; Yao Wenyi; Li Mian

    2007-01-01

    Sheet erosion is the main performance in the slope soil erosion process at the primary stage of natural rainfall. For three times of rainfall during experiment, the ratios of sheet erosion to total erosion account for 71%, 48% and 49% respectively, which showed that the sloping erosion was still at the primary stage from sheet erosion to rill erosion. With the rainfall going, the rill erosion amount increase. It showed that soil erosion was changing from sheet erosion to rill erosion. The sources of sediment from different sections of the plot were analyzed, and the results indicated that whatever the sheet erosion changed, the ratio erosion of upper part of surface soil was always lower than 10%. Sheet erosion came mainly from the lower section of surface soil. With the ratios to the amount of total rill erosion changes, the rill erosion amount of each section regularly changes too. The general conclusion is that when the rainfall ends, relative erosion of different slope element to the foot of slope is: 1 meter away accounts for 16%, 2-4 meters away is 6% and 5-9 meters away is 3%. The ratio of rill erosion amount of these three slope element is 5:2:1, which shows the rill erosion amount are mainly from the slope element of 4 meters from the foot of slope. (authors)

  11. Application of poultry processing industry waste: a strategy for vegetation growth in degraded soil.

    Science.gov (United States)

    do Nascimento, Carla Danielle Vasconcelos; Pontes Filho, Roberto Albuquerque; Artur, Adriana Guirado; Costa, Mirian Cristina Gomes

    2015-02-01

    The disposal of poultry processing industry waste into the environment without proper care, can cause contamination. Agricultural monitored application is an alternative for disposal, considering its high amount of organic matter and its potential as a soil fertilizer. This study aimed to evaluate the potential of poultry processing industry waste to improve the conditions of a degraded soil from a desertification hotspot, contributing to leguminous tree seedlings growth. The study was carried out under greenhouse conditions in a randomized blocks design and a 4 × 2 factorial scheme with five replicates. The treatments featured four amounts of poultry processing industry waste (D1 = control 0 kg ha(-1); D2 = 1020.41 kg ha(-1); D3 = 2040.82 kg ha(-1); D4 = 4081.63 kg ha(-1)) and two leguminous tree species (Mimosa caesalpiniaefolia Benth and Leucaena leucocephala (Lam.) de Wit). The poultry processing industry waste was composed of poultry blood, grease, excrements and substances from the digestive system. Plant height, biomass production, plant nutrient accumulation and soil organic carbon were measured forty days after waste application. Leguminous tree seedlings growth was increased by waste amounts, especially M. caesalpiniaefolia Benth, with height increment of 29.5 cm for the waste amount of 1625 kg ha(-1), and L. leucocephala (Lam.) de Wit, with maximum height increment of 20 cm for the waste amount of 3814.3 kg ha(-1). M. caesalpiniaefolia Benth had greater initial growth, as well as greater biomass and nutrient accumulation compared with L. leucocephala (Lam.) de Wit. However, belowground biomass was similar between the evaluated species, resulting in higher root/shoot ratio for L. leucocephala (Lam.) de Wit. Soil organic carbon did not show significant response to waste amounts, but it did to leguminous tree seedlings growth, especially L. leucocephala (Lam.) de Wit. Poultry processing industry waste contributes to leguminous tree seedlings growth

  12. Patterns and controls on nitrogen cycling of biological soil crusts

    Science.gov (United States)

    Barger, Nichole N.; Zaady, Eli; Weber, Bettina; Garcia-Pichel, Ferran; Belnap, Jayne

    2016-01-01

    Biocrusts play a significant role in the nitrogen [N ] cycle within arid and semi-arid ecosystems, as they contribute major N inputs via biological fixation and dust capture, harbor internal N transformation processes, and direct N losses via N dissolved, gaseous and erosional loss processes (Fig. 1). Because soil N availability in arid and semi-arid ecosystems is generally low and may limit net primary production (NPP), especially during periods when adequate water is available, understanding the mechanisms and controls of N input and loss pathways in biocrusts is critically important to our broader understanding of N cycling in dryland environments. In particular, N cycling by biocrusts likely regulates short-term soil N availability to support vascular plant growth, as well as long-term N accumulation and maintenance of soil fertility. In this chapter, we review the influence of biocrust nutrient input, internal cycling, and loss pathways across a range of biomes. We examine linkages between N fixation capabilities of biocrust organisms and spatio-temporal patterns of soil N availability that may influence the longer-term productivity of dryland ecosystems. Lastly, biocrust influence on N loss pathways such as N gas loss, leakage of N compounds from biocrusts, and transfer in wind and water erosion are important to understand the maintenance of dryland soil fertility over longer time scales. Although great strides have been made in understanding the influence of biocrusts on ecosystem N cycling, there are important knowledge gaps in our understanding of the influence of biocrusts on ecosystem N cycling that should be the focus of future studies. Because work on the interaction of N cycling and biocrusts was reviewed in Belnap and Lange (2003), this chapter will focus primarily on research findings that have emerged over the last 15 years (2000-2015).

  13. Soil Architecture and physicochemical functions

    DEFF Research Database (Denmark)

    de Jonge, Lis Wollesen; Møldrup, Per; Vendelboe, Anders Lindblad

    2012-01-01

    , and modeling of soil structure (architecture) and physical, chemical, and biological processes in different porous media systems and at different scales. Several studies in this special section also outline and discuss emerging and exciting interdisciplinary challenges for the rapidly growing vadose zone......Soils function as Earth's life support system, a thin layer full of life covering most of the terrestrial surfaces. Soils form the foundation of society. Norman Borlaug stated in his Nobel laureate lecture that “the first essential component of social justice is adequate food for all mankind.......” If we are to provide this component while sustaining environmental quality in the midst of a growing population and rapidly diminishing resources, it is imperative to study and obtain a deeper level of understanding of soil functions using state-of-the-art technologies as well as provide the next...

  14. Heterogeneity and loss of soil nutrient elements under aeolian processes in the Otindag Desert, China

    Science.gov (United States)

    Li, Danfeng; Wang, Xunming; Lou, Junpeng; Liu, Wenbin; Li, Hui; Ma, Wenyong; Jiao, Linlin

    2018-02-01

    The heterogeneity of the composition of surface soils that are affected by aeolian processes plays important roles in ecological evolution and the occurrence of aeolian desertification in fragile ecological zones, but the associated mechanisms are poorly understood. Using field investigation, wind tunnel experiments, and particle size and element analyses, we discuss the variation in the nutrient elements of surface soils that forms in the presence of aeolian processes of four vegetation species (Caragana microphylla Lam, Artemisia frigida Willd. Sp. Pl., Leymus chinensis (Trin.) Tzvel. and Stipa grandis P. Smirn) growing in the Otindag Desert, China. These four vegetation communities correspond to increasing degrees of degradation. A total of 40 macro elements, trace elements, and oxides were measured in the surface soil and in wind-transported samples. The results showed that under the different degradation stages, the compositions and concentrations of nutrients in surface soils differed for the four vegetation species. Aeolian processes may cause higher heterogeneity and higher loss of soil nutrient elements for the communities of Artemisia frigida Willd. Sp. Pl., Leymus chinensis (Trin.) Tzvel, and Stipa grandis P. Smirn than for the Caragana microphylla Lam community. There was remarkable variation in the loss of nutrients under different aeolian transportation processes. Over the past several decades, the highest loss of soil elements occurred in the 1970s, whereas the loss from 2011 to the present was generally 4.0% of that in the 1970s. These results indicate that the evident decrease in nutrient loss has played an important role in the rehabilitation that has occurred in the region recently.

  15. Effects of Surfactants on Cryptosporidium parvum Mobility in Agricultural Soils from Illinois and Utah

    Science.gov (United States)

    Darnault, C. J.; Koken, E.; Jacobson, A. R.; Powelson, D.

    2011-12-01

    The occurence of the parasitic protozoan Cryptosporidium parvum in rural and agricultural watersheds due to agricultural activities and wildlife is inevitable. Understanding the behavior of C. parvum oocysts in the environment is critical for the protection of public health and the environment. To better understand the mechanisms by which the pathogen moves through soils and contaminates water resources, we study their mobility under conditions representative of real-world scenarios, where both C. parvum and chemicals that affect their fate are present in soils. Surfactants occur widely in soils due to agricultural practices such as wastewater irrigation and the application of pesticides or soil wetting agents. They affect water tension and, consequently, soil infiltration processes and the air-water interfaces in soil pores where C. parvum may be retained. We investigate the effects of surfactants on the mobility of C. parvum oocysts in agricultural soils from Illinois and Utah under unsaturated flow conditions. As it is critical to examine C. parvum in natural settings, we also developed a quantification method using RT-PCR for monitoring C. parvum oocysts in environmental soil and water samples. We optimized physico-chemical parameters to disrupt C. parvum oocysts and extract their DNA, and developed isolation methods to separate C. parvum oocysts from colloids in natural soil samples. The results of this research will lead to the development of an accurate and sensitive molecular method for the monitoring of C. parvum oocysts in environmental soil and water samples, and will further our understanding of the mechanisms controlling the behavior of C. parvum oocysts in soils, in particular the role of vadose zone processes, sorption to soil and surfactants.

  16. Initial interaction of {sup 137}Cs with soils

    Energy Technology Data Exchange (ETDEWEB)

    Nagasaki, S., E-mail: nagasaki@mcmaster.ca [McMaster Univ., Hamilton, Ontario (Canada); Makino, H.; Saito, T. [Univ. of Toyko, Tokyo (Japan)

    2013-07-01

    It is critical to understand the physicochemical behaviour of Cs in soil in order to progress the decontamination of soils which were contaminated by nuclear power plant accident and to improve the reliability of safety assessment of used nuclear fuel disposal. In this paper, the initial interactions of {sup 137}Cs with soils, which were sampled in Fukushima 38 days after Fukushima Accident, were investigated with sequential extraction method. It was found that there were fast and slow processes of fixation of {sup 137}Cs in clay minerals and that the organic substances might play an important role on kinetics of {sup 137}Cs in soils. (author)

  17. Natural soil mediated photo Fenton-like processes in treatment of pharmaceuticals: Batch and continuous approach.

    Science.gov (United States)

    Changotra, Rahil; Rajput, Himadri; Dhir, Amit

    2017-12-01

    This paper manifests the potential viability of soil as a cost-free catalyst in photo-Fenton-like processes for treating pharmaceuticals at large scale. Naturally available soil without any cost intensive modification was utilized as a catalyst to degrade pharmaceuticals, specifically ornidazole (ORZ) and ofloxacin (OFX). Soil was characterized and found enriched with various iron oxides like hematite, magnetite, goethite, pyrite and wustite, which contributes toward enhanced dissolution of Fe 3+ than Fe 2+ in the aqueous solution resulting in augmented rate of photo-Fenton reaction. The leached iron concentration in solution was detected during the course of experiments. The degradation of ORZ and OFX was assessed in solar induced batch experiments using H 2 O 2 as oxidant and 95% ORZ and 92% OFX removal was achieved. Elevated efficiencies were achieved due to Fe 2+ /Fe 3+ cycling, producing more hydroxyl radical leading to the existence of homogeneous and heterogeneous reactions simultaneously. The removal efficiency of solar photo-Fenton like process was also compared to photo-Fenton process with different irradiation sources (UV-A and UV-B) and were statistically analysed. Continuous-scale studies were conducted employing soil either in the form of soil beads or as a thin layer spread on the surface of baffled reactor. Soil beads were found to have satisfactory reusability and stability. 84 and 79% degradation of ORZ and OFX was achieved using soil as thin layer while with soil beads 71 and 68% degradation, respectively. HPLC and TOC study confirmed the efficient removal of both the compounds. Toxicity assessment demonstrates the inexistence of toxic intermediates during the reaction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Copper removal from contaminated soils by soil washing process using camellian-derived saponin

    Science.gov (United States)

    Reyes, Arturo; Fernanda Campos, Maria; Videla, Álvaro; Letelier, María Victoria; Fuentes, Bárbara

    2015-04-01

    Antofagasta Region in North of Chile has been the main copper producer district in the world. As a consequence of a lack of mining closure regulation, a large number of abandon small-to-medium size metal-contaminated sites have been identified in the last survey performed by the Chilean Government. Therefore, more research development on sustainable reclamation technologies must be made in this extreme arid-dry zone. The objective of this study is to test the effectiveness of soil remediation by washing contaminated soil using camellian-derived saponin for the mobilization of copper. Soil samples were taken from an abandoned copper mine site located at 30 km North Antofagasta city. They were dried and sieved at 75 µm for physico-chemical characterization. A commercial saponin extracted from camellias seed was used as biosurfactant. The soil used contains 67.4 % sand, 26.3 % silt and 6.3 % clay. The soil is highly saline (electric conductivity, 61 mScm-1), with low organic matter content (0.41%), with pH 7.30, and a high copper concentration (2200 mg Kg-1 soil). According to the sequential extraction procedure of the whole soil, copper species are mainly as exchangeable fraction (608.2 mg Kg-1 soil) and reducible fraction (787.3 mg Kg-1 soil), whereas the oxidizable and residual fractions are around 205.7 and 598.8 mg Kg-1 soil, respectively. Soil particles under 75 µm contain higher copper concentrations (1242 mg Kg-1 soil) than the particle fraction over 75 µm (912 mg Kg-1 soil). All washing assays were conducted in triplicate using a standard batch technique with and without pH adjustment. The testing protocols includes evaluation of four solid to liquid ratio (0.5:50; 1.0:50; 2.0:50, and 5.0:50) and three saponin concentrations (0, 1, and 4 mg L-1). After shaking (24 h, 20±1 °C) and subsequently filtration (0.45 µm), the supernatants were analyzed for copper and pH. The removal efficiencies of copper by saponin solutions were calculated in according to the

  19. Theoretical study of soil water balance and process of soil moisture evaporation

    Directory of Open Access Journals (Sweden)

    Yu. A. Savel'ev

    2017-01-01

    Full Text Available Nearly a half of all grain production in the Russian Federation is grown in dry regions. But crop production efficiency there depends on amount of moisture, available to plants. However deficit of soil moisture is caused not only by a lack of an atmospheric precipitation, but also inefficient water saving: losses reach 70 percent. With respect thereto it is important to reveal the factors influencing intensity of soil moisture evaporation and to develop methods of decrease in unproductive moisture losses due to evaporation. The authors researched soil water balance theoretically and determined the functional dependences of moisture loss on evaporation. Intensity of moisture evaporation depends on physicomechanical characteristics of the soil, a consistence of its surface and weather conditions. To decrease losses of moisture for evaporation it is necessary, first, to improve quality of crumbling of the soil and therefore to reduce the evaporating surface of the soil. Secondly - to create the protective mulching layer which will allow to enhance albedo of the soil and to reduce its temperature that together will reduce unproductive evaporative water losses and will increase its inflow in case of condensation from air vapors. The most widespread types of soil cultivation are considered: disk plowing and stubble mulch plowing. Agricultural background «no tillage» was chosen as a control. Subsoil mulching tillage has an essential advantage in a storage of soil moisture. So, storage of soil moisture after a disking and in control (without tillage decreased respectively by 24.9 and 19.8 mm while at the mulching tillage this indicator revised down by only 15.6 mm. The mulching layer has lower heat conductivity that provides decrease in unproductive evaporative water losses.

  20. Kinetics of heterogeneous chemical reactions: a theoretical model for the accumulation of pesticides in soil.

    Science.gov (United States)

    Lin, S H; Sahai, R; Eyring, H

    1971-04-01

    A theoretical model for the accumulation of pesticides in soil has been proposed and discussed from the viewpoint of heterogeneous reaction kinetics with a basic aim to understand the complex nature of soil processes relating to the environmental pollution. In the bulk of soil, the pesticide disappears by diffusion and a chemical reaction; the rate processes considered on the surface of soil are diffusion, chemical reaction, vaporization, and regular pesticide application. The differential equations involved have been solved analytically by the Laplace-transform method.

  1. Colloid mobilization and heavy metal transport in the sampling of soil solution from Duckum soil in South Korea.

    Science.gov (United States)

    Lee, Seyong; Ko, Il-Won; Yoon, In-Ho; Kim, Dong-Wook; Kim, Kyoung-Woong

    2018-03-24

    Colloid mobilization is a significant process governing colloid-associated transport of heavy metals in subsurface environments. It has been studied for the last three decades to understand this process. However, colloid mobilization and heavy metal transport in soil solutions have rarely been studied using soils in South Korea. We investigated the colloid mobilization in a variety of flow rates during sampling soil solutions in sand columns. The colloid concentrations were increased at low flow rates and in saturated regimes. Colloid concentrations increased 1000-fold higher at pH 9.2 than at pH 7.3 in the absence of 10 mM NaCl solution. In addition, those were fourfold higher in the absence than in the presence of the NaCl solution at pH 9.2. It was suggested that the mobility of colloids should be enhanced in porous media under the basic conditions and the low ionic strength. In real field soils, the concentrations of As, Cr, and Pb in soil solutions increased with the increase in colloid concentrations at initial momentarily changed soil water pressure, whereas the concentrations of Cd, Cu, Fe, Ni, Al, and Co lagged behind the colloid release. Therefore, physicochemical changes and heavy metal characteristics have important implications for colloid-facilitated transport during sampling soil solutions.

  2. Different types of nitrogen deposition show variable effects on the soil carbon cycle process of temperate forests.

    Science.gov (United States)

    Du, Yuhan; Guo, Peng; Liu, Jianqiu; Wang, Chunyu; Yang, Ning; Jiao, Zhenxia

    2014-10-01

    Nitrogen (N) deposition significantly affects the soil carbon (C) cycle process of forests. However, the influence of different types of N on it still remained unclear. In this work, ammonium nitrate was selected as an inorganic N (IN) source, while urea and glycine were chosen as organic N (ON) sources. Different ratios of IN to ON (1 : 4, 2 : 3, 3 : 2, 4 : 1, and 5 : 0) were mixed with equal total amounts and then used to fertilize temperate forest soils for 2 years. Results showed that IN deposition inhibited soil C cycle processes, such as soil respiration, soil organic C decomposition, and enzymatic activities, and induced the accumulation of recalcitrant organic C. By contrast, ON deposition promoted these processes. Addition of ON also resulted in accelerated transformation of recalcitrant compounds into labile compounds and increased CO2 efflux. Meanwhile, greater ON deposition may convert C sequestration in forest soils into C source. These results indicated the importance of the IN to ON ratio in controlling the soil C cycle, which can consequently change the ecological effect of N deposition. © 2014 John Wiley & Sons Ltd.

  3. The Contribution of Soils to North America's Current and Future Climate

    Science.gov (United States)

    Mayes, M. A.; Reed, S.; Thornton, P. E.; Lajtha, K.; Bailey, V. L.; Shrestha, G.; Jastrow, J. D.; Torn, M. S.

    2015-12-01

    This presentation will cover key aspects of the terrestrial soil carbon cycle in North America and the US for the upcoming State of the Carbon Cycle Report (SOCCRII). SOCCRII seeks to summarize how natural processes and human interactions affect the global carbon cycle, how socio-economic trends affect greenhouse gas concentrations in the atmosphere, and how ecosystems are influenced by and respond to greenhouse gas emissions, management decisions, and concomitant climate effects. Here, we will summarize the contemporary understanding of carbon stocks, fluxes, and drivers in the soil ecosystem compartment. We will highlight recent advances in modeling the magnitude of soil carbon stocks and fluxes, as well as the importance of remaining uncertainties in predicting soil carbon cycling and its relationship with climate. Attention will be given to the role of uncertainties in predicting future fluxes from soils, and how those uncertainties vary by region and ecosystem. We will also address how climate feedbacks and management decisions can enhance or minimize future climatic effects based on current understanding and observations, and will highlight select research needs to improve our understanding of the balance of carbon in soils in North America.

  4. THE ANALYSIS OF CONSOLIDATION PROCESS OF CLAY SOILS FROM CAUSED BY THE DUTY PROCESS IN ERECTIONS THE ROAD BED OF HIGHWAYS

    Directory of Open Access Journals (Sweden)

    L. M. Timofeeva

    2010-04-01

    Full Text Available The analysis of consolidation process of condensed water-saturated clay soils of the floodable bridge-approach fill to the bridge across Kama River, erected by method called «Intensive technology», is presented. The method consists in the arrangement of drainage longitudinal and cross-section cuts for acceleration of consolidation of soils of the road bad and the base composed from the weak, strongly compressible water-saturated clay soils of different consistency.

  5. Decontamination of soil washing wastewater using solar driven advanced oxidation processes.

    Science.gov (United States)

    Bandala, Erick R; Velasco, Yuridia; Torres, Luis G

    2008-12-30

    Decontamination of soil washing wastewater was performed using two different solar driven advanced oxidation processes (AOPs): the photo-Fenton reaction and the cobalt/peroxymonosulfate/ultraviolet (Co/PMS/UV) process. Complete sodium dodecyl sulphate (SDS), the surfactant agent used to enhance soil washing process, degradation was achieved when the Co/PMS/UV process was used. In the case of photo-Fenton reaction, almost complete SDS degradation was achieved after the use of almost four times the actual energy amount required by the Co/PMS/UV process. Initial reaction rate in the first 15min (IR15) was determined for each process in order to compare them. Highest IR15 value was determined for the Co/PMS/UV process (0.011mmol/min) followed by the photo-Fenton reaction (0.0072mmol/min) and the dark Co/PMS and Fenton processes (IR15=0.002mmol/min in both cases). Organic matter depletion in the wastewater, as the sum of surfactant and total petroleum hydrocarbons present (measured as chemical oxygen demand, COD), was also determined for both solar driven processes. It was found that, for the case of COD, the highest removal (69%) was achieved when photo-Fenton reaction was used whereas Co/PMS/UV process yielded a slightly lower removal (51%). In both cases, organic matter removal achieved was over 50%, which can be consider proper for the coupling of the tested AOPs with conventional wastewater treatment processes such as biodegradation.

  6. Three phase heat and mass transfer model for unsaturated soil freezing process: Part 1 - model development

    Science.gov (United States)

    Xu, Fei; Zhang, Yaning; Jin, Guangri; Li, Bingxi; Kim, Yong-Song; Xie, Gongnan; Fu, Zhongbin

    2018-04-01

    A three-phase model capable of predicting the heat transfer and moisture migration for soil freezing process was developed based on the Shen-Chen model and the mechanisms of heat and mass transfer in unsaturated soil freezing. The pre-melted film was taken into consideration, and the relationship between film thickness and soil temperature was used to calculate the liquid water fraction in both frozen zone and freezing fringe. The force that causes the moisture migration was calculated by the sum of several interactive forces and the suction in the pre-melted film was regarded as an interactive force between ice and water. Two kinds of resistance were regarded as a kind of body force related to the water films between the ice grains and soil grains, and a block force instead of gravity was introduced to keep balance with gravity before soil freezing. Lattice Boltzmann method was used in the simulation, and the input variables for the simulation included the size of computational domain, obstacle fraction, liquid water fraction, air fraction and soil porosity. The model is capable of predicting the water content distribution along soil depth and variations in water content and temperature during soil freezing process.

  7. Process, engineering and design aspects of contaminated soil bioremediation. Pt. 1 In situ treatments

    International Nuclear Information System (INIS)

    De Fraja Frangipane, E.; Andreottola, G.; Tatano, F.

    1995-01-01

    The present paper is an up-to-date overview of contaminated soil bioremediation techniques, which are analyzed in detail with regard to main process, engineering and design aspects. General biochemical/kinetic aspects of bioremediation of contaminated soil, and in situ treatments, are discussed in this part one

  8. Application of remedy studies to the development of a soil washing pilot plant that uses mineral processing technology: a practical experience

    International Nuclear Information System (INIS)

    Richardson, W.S.; Phillips, C.R.; Hicks, R.; Luttrell, J.; Cox, C.

    1999-01-01

    Soil washing employing mineral processing technology to treat radionuclide-contaminated soils has been examined as a remedy alternative to the exclusive excavation, transportation, and disposal of the soil. Successful application depends on a thorough remedy study, employing a systematic tiered approach that is efficient, self-limiting, and cost effective. The study includes: (1) site and soil characterization to determine the basic mineral and physical properties of both the soil and contaminants and to identify their relative associations; (2) treatment studies to evaluate the performance of process units for contaminant separation; (3) conceptual process design to develop a treatment pilot plant; and (4) engineering design to construct, test, and optimize the actual full-scale plant. A pilot plant using soil washing technology for the treatment of radium-contaminated soil was developed, tested, and demonstrated. The plant used particle-size separation to produced a remediated product that represented approximately 50% of the contaminated soil. Subsequently, it was modified for more effective performance and application to soil with alternate characteristics; it awaits further testing. The economic analysis of soil washing using the pilot plant as a model indicates that a remedy plan based on mineral processing technology is very competitive with the traditional alternative employing excavation, transportation, and disposal exclusively, even when disposal costs are modest or when recovery of remediated soil during treatment is low. This paper reviews the tiered approach as it applies to mineral processing technology to treat radionuclide-contaminated soils and a pilot plant developed to test the soil washing process. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  9. Soil bioindicators as a usefull tools for land management and spatial planning processes: a case-study of prioritization of contaminated soil remediation

    Science.gov (United States)

    Grand, Cécile; Pauget, Benjamin; Villenave, Cécile; Le Guédard, Marina; Piron, Denis; Nau, Jean-François; Pérès, Guénola

    2017-04-01

    When setting up new land management, contaminated site remediation or soil use change are sometimes necessary to ensure soil quality and the restoration of the ecosystem services. The biological characterization of the soil can be used as complementary information to chemical data in order to better define the conditions for operating. Then, in the context of urban areas, elements on the soil biological quality can be taken into consideration to guide the land development. To assess this "biological state of soil health", some biological tools, called bioindicators, could provide comprehensive information to understand and predict the functioning of the soil ecosystem. In this context, a city of 200 thousand inhabitants has decided to integrate soil bioindicators in their soil diagnostic for their soil urban management. This city had to elaborate a spatial soil management in urban areas which presented soil contamination linked to a complex industrial history associated with bad uses of gardens not always safe for the environment. The project will lead to establish a Natural Urban Park (PNU) in order to develop recreational and leisure activities in a quality environment. In order to complete the knowledge of soil contamination and to assess the transfer of contaminants to the terrestrial ecosystem, a biological characterization of soils located in different areas was carried out using six bioindicators: bioindicators of accumulation which allowed to evaluate the transfers of soil contaminants towards the first 2 steps of a trophic chain (plants and soil fauna, e.g. snails), bioindicators of effects (Omega 3 index was used to assess the effects of soil contamination and to measure their impact on plants), bioindicators of soil functioning (measurement of microbial biomass, nematodes and earthworm community) ; the interest of these last bioindicators is that they also act on the functioning of ecosystems as on the dynamics of organic matter (mineralization) but also

  10. Quantitative comparison of initial soil erosion processes and runoff generation in Spanish and German vineyards.

    Science.gov (United States)

    Rodrigo Comino, J; Iserloh, T; Lassu, T; Cerdà, A; Keestra, S D; Prosdocimi, M; Brings, C; Marzen, M; Ramos, M C; Senciales, J M; Ruiz Sinoga, J D; Seeger, M; Ries, J B

    2016-09-15

    The aim of this study was to enable a quantitative comparison of initial soil erosion processes in European vineyards using the same methodology and equipment. The study was conducted in four viticultural areas with different characteristics (Valencia and Málaga in Spain, Ruwer-Mosel valley and Saar-Mosel valley in Germany). Old and young vineyards, with conventional and ecological planting and management systems were compared. The same portable rainfall simulator with identical rainfall intensity (40mmh(-1)) and sampling intervals (30min of test duration, collecting the samples at 5-min-intervals) was used over a circular test plot with 0.28m(2). The results of 83 simulations have been analysed and correlation coefficients were calculated for each study area to identify the relationship between environmental plot characteristics, soil texture, soil erosion, runoff and infiltration. The results allow for identification of the main factors related to soil properties, topography and management, which control soil erosion processes in vineyards. The most important factors influencing soil erosion and runoff were the vegetation cover for the ecological German vineyards (with 97.6±8% infiltration coefficients) and stone cover, soil moisture and slope steepness for the conventional land uses. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Short-Term Effect of Feedstock and Pyrolysis Temperature on Biochar Characteristics, Soil and Crop Response in Temperate Soils

    DEFF Research Database (Denmark)

    Nelissen, Victoria; Ruysschaert, Greet; Müller-Stöver, Dorette Sophie

    2014-01-01

    At present, there is limited understanding of how biochar application to soil could be beneficial to crop growth in temperate regions and which biochar types are most suitable. Biochar’s (two feedstocks: willow, pine; three pyrolysis temperatures: 450 °C, 550 °C, 650 °C) effect on nitrogen (N......) availability, N use efficiency and crop yield was studied in northwestern European soils using a combined approach of process-based and agronomic experiments. Biochar labile carbon (C) fractions were determined and a phytotoxicity test, sorption experiment, N incubation experiment and two pot trials were...... conducted. Generally, biochar caused decreased soil NO3−availability and N use efficiency, and reduced biomass yields compared to a control soil. Soil NO3−concentrations were more reduced in the willow compared to the pine biochar treatments and the reduction increased with increasing pyrolysis temperatures...

  12. Degradation of roxarsone in a silt loam soil and its toxicity assessment.

    Science.gov (United States)

    Liang, Tengfang; Ke, Zhengchen; Chen, Qing; Liu, Li; Chen, Guowei

    2014-10-01

    The land application of poultry or swine litter, containing large amounts of roxarsone, causes serious arsenic pollution in soil. Understanding biotransformation process of roxarsone and its potential risks favors proper disposal of roxarsone-contaminated animal litter, yet remains not achieved. We report an experimental study of biotransformation process of roxarsone in a silt loam soil under various soil moisture and temperature conditions, and the toxicity of roxarsone and its products from degradation. Results showed that soil moisture and higher temperature promoted roxarsone degradation, associating with emergent pentavalent arsenic. Analysis of fluorescein diacetate (FDA) hydrolysis activity revealed that roxarsone does not exert acute toxic on soil microbes. With the release of inorganic arsenic, FDA hydrolysis activity was inhibited gradually, as evidenced by ecotoxicological assessment using Photobacterium leiognathi. The results shade new lights on the dynamic roxarsone biotransformation processes in soil, which is important for guiding appropriate disposal of poultry or swine litter in the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Comparison of the depth distribution processes for 137Cs and 210Pbex in cultivated soils

    International Nuclear Information System (INIS)

    Zhang Yunqi; Zhang Xinbao; Long Yi; He Xiubin; Yu Xingxiu

    2012-01-01

    This paper focuses on the different processes of 137 Cs and 210 Pb ex depth distribution in cultivated soils. In view of their different fallout deposition processes, considering radionuclide will diffuse from the plough layer to the plough pan layer duo to the concentration gradient between the two layers, the 137 Cs and 210 Pb ex depth distribution processes were theoretically derived. Additionally, the theoretical derivation was verified by the measured 137 Cs and 210 Pb ex values in the soil core collected from wheat field in Fujianzhuang, Shanxi Province, China, and the 137 Cs and 210 Pb ex concentrations variation with depth in soils of the wheat field was explained rationally. The 137 Cs depth distribution state in cultivated soils will consistently vary with time due to 137 Cs continual decay and diffusion as an artificial radionuclide without sustainable fallout input since 1960s. In contrast, the 210 Pb ex depth distribution in cultivated soils will achieve steady state because of sustainable deposition of the naturally occurring 210 Pb ex fallout, and it can be concluded that the differences between the theoretical and the measured values, especially for 210 Pb ex , might be associated with the history of plough depth variation or LUCC. (authors)

  14. Application of a participative process for DSS development in soil remediation

    Science.gov (United States)

    José Blanco-Velázquez, Francisco; Muñoz-Vallés, Sara; Anaya-Romero, María

    2017-04-01

    A wide range of current legislation concerning environmental protection and public health at the national and international level include mandatory actions related to site characterization and the implementation of effective soil remediation measures. The efficiency, in terms of reliability and costs, of this kind of assessment, involves the development and linkage of integrated-harmonized databases, simulating models and specialization tools. So far, no data/knowledge engineering technologies in the academy or market provides the possibility for simulating soil remediation processes for hypothetic spatio-temporal scenarios in a harmonized manner across Europe. In this context, under the framework of RECARE (Preventing and Remediating degradation of Soils in Europe through Land Care) project, we are designing a Decision Support System (DSS) comprising a large database of knowledge including soil, climatic and socio-economic attributes, focused on soil remediation techniques that allows the user to automatically perform a more accurate quantifying of soil pollution, spatial identification of vulnerable zones and formulation of action programs to deal with the particular problem under scenarios of climate and land-use changes. The pilot study area is the Guadiamar valley (SW Spain) where the main threat is soil contamination, after a mine spill occurred on April 1998. About four hm3 of acid waters and two hm3 of mud, rich in heavy metals, were released into the Agrio and Guadiamar rivers affecting more than 4,600 ha of agricultural and pasture land. Consequently, the area was subjected to a large-scale phyto-management project, including the removal of sludge and topsoil, the addition of amendments, and plantation of native shrubs and trees. The objective of this research is to test the feasibility of the DSS concept as well as the likelihood to establish a solid high-potential innovation tool, aligned with the scientific and market strategy and within a European

  15. Soil property control of biogeochemical processes beneath two subtropical stormwater infiltration basins.

    Science.gov (United States)

    O'Reilly, Andrew M; Wanielista, Martin P; Chang, Ni-Bin; Harris, Willie G; Xuan, Zhemin

    2012-01-01

    Substantially different biogeochemical processes affecting nitrogen fate and transport were observed beneath two stormwater infiltration basins in north-central Florida. Differences are related to soil textural properties that deeply link hydroclimatic conditions with soil moisture variations in a humid, subtropical climate. During 2008, shallow groundwater beneath the basin with predominantly clayey soils (median, 41% silt+clay) exhibited decreases in dissolved oxygen from 3.8 to 0.1 mg L and decreases in nitrate nitrogen (NO-N) from 2.7 mg L to soils (median, 2% silt+clay), aerobic conditions persisted from 2007 through 2009 (dissolved oxygen, 5.0-7.8 mg L), resulting in NO-N of 1.3 to 3.3 mg L in shallow groundwater. Enrichment of δN and δO of NO combined with water chemistry data indicates denitrification beneath the clayey basin and relatively conservative NO transport beneath the sandy basin. Soil-extractable NO-N was significantly lower and the copper-containing nitrite reductase gene density was significantly higher beneath the clayey basin. Differences in moisture retention capacity between fine- and coarse-textured soils resulted in median volumetric gas-phase contents of 0.04 beneath the clayey basin and 0.19 beneath the sandy basin, inhibiting surface/subsurface oxygen exchange beneath the clayey basin. Results can inform development of soil amendments to maintain elevated moisture content in shallow soils of stormwater infiltration basins, which can be incorporated in improved best management practices to mitigate NO impacts. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Impact of biostimulated redox processes on metal dynamics in an iron-rich creek soil of a former uranium mining area.

    Science.gov (United States)

    Burkhardt, Eva-Maria; Akob, Denise M; Bischoff, Sebastian; Sitte, Jana; Kostka, Joel E; Banerjee, Dipanjan; Scheinost, Andreas C; Küsel, Kirsten

    2010-01-01

    Understanding the dynamics of metals and radionuclides in soil environments is necessary for evaluating risks to pristine sites. An iron-rich creek soil of a former uranium-mining district (Ronneburg, Germany) showed high porewater concentrations of heavy metals and radionuclides. Thus, this study aims to (i) evaluate metal dynamics during terminal electron accepting processes (TEAPs) and (ii) characterize active microbial populations in biostimulated soil microcosms using a stable isotope probing (SIP) approach. In biostimulated soil slurries, concentrations of soluble Co, Ni, Zn, As, and unexpectedly U increased during Fe(III)-reduction. This suggests that there was a release of sorbed metals and As during reductive dissolution of Fe(III)-oxides. Subsequent sulfate-reduction was concurrent with a decrease of U, Co, Ni, and Zn concentrations. The relative contribution of U(IV) in the solid phase changed from 18.5 to 88.7% after incubation. The active Fe(III)-reducing population was dominated by delta-Proteobacteria (Geobacter) in (13)C-ethanol amended microcosms. A more diverse community was present in (13)C-lactate amended microcosms including taxa related to Acidobacteria, Firmicutes, delta-Proteobacteria, and beta-Proteobacteria. Our results suggested that biostimulated Fe(III)-reducing communities facilitated the release of metals including U to groundwater which is in contrast to other studies.

  17. Suitability aero-geophysical methods for generating conceptual soil maps and their use in the modeling of process-related susceptibility maps

    Science.gov (United States)

    Tilch, Nils; Römer, Alexander; Jochum, Birgit; Schattauer, Ingrid

    2014-05-01

    . Previous studies show that, especially with radiometric measurements, the two-dimensional spatial variability of the nature of the process-relevant soil, close to the surface can be determined. In addition, the electromagnetic measurements are more important to obtain three-dimensional information of the deeper geological conditions and to improve the area-specific geological knowledge and understanding. The validation of these measurements is done with terrestrial geoelectrical measurements. So both aspects, radiometric and electromagnetic measurements, are important and subsequently, interpretation of the geophysical results can be used as the parameter maps in the modeling of more realistic susceptibility maps with respect to various processes. Within this presentation, results of geophysical measurements, the outcome and the derived parameter maps, as well as first process-oriented susceptibility maps in terms of gravitational soil mass movements will be presented. As an example results which were obtained with a heuristic method in an area in Vorarlberg (Western Austria) will be shown. References: Schwarz, L. & Tilch, N. (2011): Why are good process data so important for the modelling of landslide susceptibility maps?- EGU-Postersession "Landslide hazard and risk assessment, and landslide management" (NH 3.6), Vienna. [http://www.geologie.ac.at/fileadmin/user_upload/dokumente/pdf/poster/poster_2011_egu_schwarz_tilch_1.pdf] Tilch, N. & Schwarz, L. (2011): Spatial and scale-dependent variability in data quality and their influence on susceptibility maps for gravitational mass movements in soil, modelled by heuristic method.- EGU-Postersession "Landslide hazard and risk assessment, and landslide management" (NH 3.6); Vienna. [http://www.geologie.ac.at/fileadmin/user_upload/dokumente/pdf/poster/poster_2011_egu_tilch_schwarz.pdf

  18. DISPERSION OF GLYPHOSATE IN SOILS UNDERGOING EROSION

    Directory of Open Access Journals (Sweden)

    Gorana Todorovic Rampazzo

    2010-08-01

    Full Text Available Different physical, chemical and biological processes influence the behaviour of organic contaminants in soils. A better understanding of the organic pollutant behaviour in soils would improve the environmental protection. One possible way for better attenuation of the risk of pollution in agriculture can be achieved through ta better-specified pesticide management based on the adaptation of the pesticide type and application rates to the specific environmental characteristics of the area of application. Nowadays, one of the actually most applied herbicide world wide is glyphosate. Glyphosate is highly water soluble and traces have been found in surface and groundwater systems. For a better understanding of the natural influence of erosion processes on glyphosate behaviour and dispersion under heavy rain conditions after application in the field, two erosion simulation experiments were conducted on two different locations in Austria with completely different soil types in September 2008. The results of the experiments showed that under normal practical conditions (e.g. no rainfall is expected immediatly after application, the potential adsorption capacity of the Kirchberg soil (Stagnic Cambisol, with about 16.000 ppm Fe-oxides is confirmed compared to the low adsorption Chernosem soil (about 8.000 ppm pedogenic Fe-oxides.  Considering the enormous difference in the run-off amounts between the two sites Pixendorf and Kirchberg soils it can be concluded how important the soil structural conditions and vegetation type and cover are for the risks of erosion and, as a consequence, pollution of neighbouring waters. In the rainfall experiments under comparable simulation conditions, the amount of run-off was about 10 times higher at Kirchberg, owing to its better infiltration rate, than at the Pixendorf site. Moreover, the total loss of glyphosate (NT+CT through run-off at the Kirchberg site was more than double that at Pixendorf, which confirms the

  19. An inorganic CO2 diffusion and dissolution process explains negative CO2 fluxes in saline/alkaline soils

    Science.gov (United States)

    Ma, Jie; Wang, Zhong-Yuan; Stevenson, Bryan A.; Zheng, Xin-Jun; Li, Yan

    2013-01-01

    An ‘anomalous' negative flux, in which carbon dioxide (CO2) enters rather than is released from the ground, was studied in a saline/alkaline soil. Soil sterilization disclosed an inorganic process of CO2 dissolution into (during the night) and out of (during the day) the soil solution, driven by variation in soil temperature. Experimental and modeling analysis revealed that pH and soil moisture were the most important determinants of the magnitude of this inorganic CO2 flux. In the extreme cases of air-dried saline/alkaline soils, this inorganic process was predominant. While the diurnal flux measured was zero sum, leaching of the dissolved inorganic carbon in the soil solution could potentially effect net carbon ecosystem exchange. This finding implies that an inorganic module should be incorporated when dealing with the CO2 flux of saline/alkaline land. Neglecting this inorganic flux may induce erroneous or misleading conclusions in interpreting CO2 fluxes of these ecosystems. PMID:23778238

  20. Understanding Combustion Processes Through Microgravity Research

    Science.gov (United States)

    Ronney, Paul D.

    1998-01-01

    A review of research on the effects of gravity on combustion processes is presented, with an emphasis on a discussion of the ways in which reduced-gravity experiments and modeling has led to new understanding. Comparison of time scales shows that the removal of buoyancy-induced convection leads to manifestations of other transport mechanisms, notably radiative heat transfer and diffusional processes such as Lewis number effects. Examples from premixed-gas combustion, non-premixed gas-jet flames, droplet combustion, flame spread over solid and liquid fuels, and other fields are presented. Promising directions for new research are outlined, the most important of which is suggested to be radiative reabsorption effects in weakly burning flames.

  1. Does soil compaction increase floods? A review

    Science.gov (United States)

    Alaoui, Abdallah; Rogger, Magdalena; Peth, Stephan; Blöschl, Günter

    2018-02-01

    Europe has experienced a series of major floods in the past years which suggests that flood magnitudes may have increased. Land degradation due to soil compaction from crop farming or grazing intensification is one of the potential drivers of this increase. A literature review suggests that most of the experimental evidence was generated at plot and hillslope scales. At larger scales, most studies are based on models. There are three ways in which soil compaction affects floods at the catchment scale: (i) through an increase in the area affected by soil compaction; (ii) by exacerbating the effects of changes in rainfall, especially for highly degraded soils; and (iii) when soil compaction coincides with soils characterized by a fine texture and a low infiltration capacity. We suggest that future research should focus on better synthesising past research on soil compaction and runoff, tailored field experiments to obtain a mechanistic understanding of the coupled mechanical and hydraulic processes, new mapping methods of soil compaction that combine mechanical and remote sensing approaches, and an effort to bridge all disciplines relevant to soil compaction effects on floods.

  2. Volatilization of iodine from soils and plants

    International Nuclear Information System (INIS)

    Wildung, R.E.; Cataldo, D.A.; Garland, T.R.

    1985-04-01

    Elevated levels of 129 I, a long-lived fission product, are present in the environment as a result of nuclear weapons testing and fuel reprocessing. To aid in understanding the anomalous behavior of this element, relative to natural I ( 127 I), in the vicinity of nuclear fuel reprocessing plants, preliminary laboratory-growth chamber studies were undertaken to examine the possible formation of volatile inorganic and organic I species in soil and plant systems. Inorganic 129 I added to soil was volatilized from both the soil and plant during plant growth, at average ratios of 2 x 10 -3 %/day soil and 9 x 10 -3 %/day foliage, respectively. Volatilization rates from soil were an order of magnitude less in the absence of growing roots. Less than 2% of soil or plant volatiles was subsequently retained by plant canopies. Volatile I, chemically characterized by selective sorption methods, consisted principally of alkyl iodides formed by both soil and plant processes. However, plants and soils containing actively growing roots produced a larger fraction of volatile inorganic I than soil alone. 14 refs., 1 fig., 3 tabs

  3. Natural and anthropogenic controls on soil erosion in the internal betic Cordillera (southeast Spain)

    NARCIS (Netherlands)

    Bellin, N.; VanAcker, V.; Wesemael, van B.; Solé-Benet, A.; Bakker, M.M.

    2011-01-01

    Soil erosion in southeast Spain is a complex process due to strong interactions between biophysical and human components. Significant progress has been achieved in the understanding of soil hydrological behavior, despite the fact that most investigations were focused on the experimental plot scale.

  4. Soil, Food Security and Human Health

    Science.gov (United States)

    Oliver, Margaret

    2017-04-01

    "Upon this handful of soil our survival depends. Husband it and it will grow food, our fuel, and our shelter and surround us with beauty. Abuse it and the soil will collapse and die, taking humanity with it" Vedas Sanskrit Scripture, 1500 BC. As the world's population increases issues of food security become more pressing as does the need to sustain soil fertility and to minimize soil degradation. Soil and land are finite resources, and agricultural land is under severe competition from many other uses. Lack of adequate food and food of poor nutritional quality lead to under-nutrition of different degrees, all of which can cause ill- or suboptimal-health. The soil can affect human health directly and indirectly. Direct effects of soil or its constituents result from its ingestion, inhalation or absorption. For example, hook worms enter the body through the skin and cause anaemia, and fungi and dust can be inhaled resulting in respiratory problems. The soil is the source of actinomycetes on which our earliest antibiotics are based (actinomycin, neomycin and streptomycin). Furthermore, it is a potential reservoir of new antibiotics with methods such as functional metagenomics to identify antibiotic resistant genes. Indirect effects of soil arise from the quantity and quality of food that humans consume. Trace elements can have both beneficial and toxic effects on humans, especially where the range for optimal intake is narrow as for selenium. Deficiencies of four trace elements, iodine, iron, selenium and zinc, will be considered because of their substantial effects on human health. Relations between soil and human health are often difficult to extricate because of the many confounding factors present such as the source of food, social factors and so on. Nevertheless, recent scientific understanding of soil processes and factors that affect human health are enabling greater insight into the effects of soil on our health. Multidisciplinary research that includes soil

  5. Developing improved MD codes for understanding processive cellulases

    International Nuclear Information System (INIS)

    Crowley, M F; Nimlos, M R; Himmel, M E; Uberbacher, E C; Iii, C L Brooks; Walker, R C

    2008-01-01

    The mechanism of action of cellulose-degrading enzymes is illuminated through a multidisciplinary collaboration that uses molecular dynamics (MD) simulations and expands the capabilities of MD codes to allow simulations of enzymes and substrates on petascale computational facilities. There is a class of glycoside hydrolase enzymes called cellulases that are thought to decrystallize and processively depolymerize cellulose using biochemical processes that are largely not understood. Understanding the mechanisms involved and improving the efficiency of this hydrolysis process through computational models and protein engineering presents a compelling grand challenge. A detailed understanding of cellulose structure, dynamics and enzyme function at the molecular level is required to direct protein engineers to the right modifications or to understand if natural thermodynamic or kinetic limits are in play. Much can be learned about processivity by conducting carefully designed molecular dynamics (MD) simulations of the binding and catalytic domains of cellulases with various substrate configurations, solvation models and thermodynamic protocols. Most of these numerical experiments, however, will require significant modification of existing code and algorithms in order to efficiently use current (terascale) and future (petascale) hardware to the degree of parallelism necessary to simulate a system of the size proposed here. This work will develop MD codes that can efficiently use terascale and petascale systems, not just for simple classical MD simulations, but also for more advanced methods, including umbrella sampling with complex restraints and reaction coordinates, transition path sampling, steered molecular dynamics, and quantum mechanical/molecular mechanical simulations of systems the size of cellulose degrading enzymes acting on cellulose

  6. Soil Characteristics Driving Arbuscular Mycorrhizal Fungal Communities in Semiarid Mediterranean Soils.

    Science.gov (United States)

    Alguacil, Maria Del Mar; Torres, Maria Pilar; Montesinos-Navarro, Alicia; Roldán, Antonio

    2016-06-01

    We investigated communities of arbuscular mycorrhizal fungi (AMF) in the roots and the rhizosphere soil of Brachypodium retusum in six different natural soils under field conditions. We explored phylogenetic patterns of AMF composition using indicator species analyses to find AMF associated with a given habitat (root versus rhizosphere) or soil type. We tested whether the AMF characteristics of different habitats or contrasting soils were more closely related than expected by chance. Then we used principal-component analysis and multivariate analysis of variance to test for the relative contribution of each factor in explaining the variation in fungal community composition. Finally, we used redundancy analysis to identify the soil properties that significantly explained the differences in AMF communities across soil types. The results pointed out a tendency of AMF communities in roots to be closely related and different from those in the rhizosphere soil. The indicator species analyses revealed AMF associated with rhizosphere soil and the root habitat. Soil type also determined the distribution of AMF communities in soils, and this effect could not be attributed to a single soil characteristic, as at least three soil properties related to microbial activity, i.e., pH and levels of two micronutrients (Mn and Zn), played significant roles in triggering AMF populations. Communities of arbuscular mycorrhizal fungi (AMF) are main components of soil biota that can determine the productivity of ecosystems. These fungal assemblages vary across host plants and ecosystems, but the main ecological processes that shape the structures of these communities are still largely unknown. A field study in six different soil types from semiarid areas revealed that AMF communities are significantly influenced by habitat (soil versus roots) and soil type. In addition, three soil properties related to microbiological activity (i.e., pH and manganese and zinc levels) were the main factors

  7. Soil Characteristics Driving Arbuscular Mycorrhizal Fungal Communities in Semiarid Mediterranean Soils

    Science.gov (United States)

    Torres, Maria Pilar; Montesinos-Navarro, Alicia; Roldán, Antonio

    2016-01-01

    ABSTRACT We investigated communities of arbuscular mycorrhizal fungi (AMF) in the roots and the rhizosphere soil of Brachypodium retusum in six different natural soils under field conditions. We explored phylogenetic patterns of AMF composition using indicator species analyses to find AMF associated with a given habitat (root versus rhizosphere) or soil type. We tested whether the AMF characteristics of different habitats or contrasting soils were more closely related than expected by chance. Then we used principal-component analysis and multivariate analysis of variance to test for the relative contribution of each factor in explaining the variation in fungal community composition. Finally, we used redundancy analysis to identify the soil properties that significantly explained the differences in AMF communities across soil types. The results pointed out a tendency of AMF communities in roots to be closely related and different from those in the rhizosphere soil. The indicator species analyses revealed AMF associated with rhizosphere soil and the root habitat. Soil type also determined the distribution of AMF communities in soils, and this effect could not be attributed to a single soil characteristic, as at least three soil properties related to microbial activity, i.e., pH and levels of two micronutrients (Mn and Zn), played significant roles in triggering AMF populations. IMPORTANCE Communities of arbuscular mycorrhizal fungi (AMF) are main components of soil biota that can determine the productivity of ecosystems. These fungal assemblages vary across host plants and ecosystems, but the main ecological processes that shape the structures of these communities are still largely unknown. A field study in six different soil types from semiarid areas revealed that AMF communities are significantly influenced by habitat (soil versus roots) and soil type. In addition, three soil properties related to microbiological activity (i.e., pH and manganese and zinc levels

  8. A Combination of Biochar-Mineral Complexes and Compost Improves Soil Bacterial Processes, Soil Quality, and Plant Properties.

    Science.gov (United States)

    Ye, Jun; Zhang, Rui; Nielsen, Shaun; Joseph, Stephen D; Huang, Danfeng; Thomas, Torsten

    2016-01-01

    Organic farming avoids the use of synthetic fertilizers and promises food production with minimal environmental impact, however this farming practice does not often result in the same productivity as conventional farming. In recent years, biochar has received increasing attention as an agricultural amendment and by coating it with minerals to form biochar-mineral complex (BMC) carbon retention and nutrient availability can be improved. However, little is known about the potential of BMC in improving organic farming. We therefore investigated here how soil, bacterial and plant properties respond to a combined treatment of BMC and an organic fertilizer, i.e., a compost based on poultry manure. In a pakchoi pot trial, BMC and compost showed synergistic effects on soil properties, and specifically by increasing nitrate content. Soil nitrate has been previously observed to increase leaf size and we correspondingly saw an increase in the surface area of pakchoi leaves under the combined treatment of BMC and composted chicken manure. The increase in soil nitrate was also correlated with an enrichment of bacterial nitrifiers due to BMC. Additionally, we observed that the bacteria present in the compost treatment had a high turnover, which likely facilitated organic matter degradation and a reduction of potential pathogens derived from the manure. Overall our results demonstrate that a combination of BMC and compost can stimulate microbial process in organic farming that result in better vegetable production and improved soil properties for sustainable farming.

  9. A combination of biochar-mineral complexes and compost improves soil bacterial processes, soil quality and plant properties

    Directory of Open Access Journals (Sweden)

    JUN eYE

    2016-04-01

    Full Text Available Organic farming avoids the use of synthetic fertilizers and promises food production with minimal environmental impact, however this farming practice does not often result in the same productivity as conventional farming. In recent years, biochar has received increasing attention as an agricultural amendment and by coating it with minerals to form biochar-mineral complex (BMC carbon retention and nutrient availability can be improved. However, little is known about the potential of BMC in improving organic farming. We therefore investigated here how soil, bacterial and plant properties respond to a combined treatment of BMC and an organic fertilizer, i.e. a compost based on poultry manure. In a pakchoi pot trial, BMC and compost showed synergistic effects on soil properties, and specifically by increasing nitrate content. Soil nitrate has been previously observed to increase leaf size and we correspondingly saw an increase in the surface area of pakchoi leaves under the combined treatment of BMC and chicken manure. The increase in soil nitrate was also correlated with an enrichment of bacterial nitrifiers due to BMC. Additionally, we observed that the bacteria present in the compost treatment had a high turnover, which likely facilitated organic matter degradation and a reduction of potential pathogens derived from the manure. Overall our results demonstrate that a combination of BMC and compost can stimulate microbial process in organic farming that result in better vegetable production and improved soil properties for sustainable farming.

  10. Mitigating climate change through the understanding of Nitrous Oxide (N2O) consumption processes in peat lands

    Science.gov (United States)

    Akrami, N.; Barker, X. Z.; Horwath, W. R.

    2017-12-01

    Nitrous Oxide (N2O) with global warming potential of 298 over a 100-year horizon is one of the most potent green house gases. In the United States, agriculture share to N2O emissions is over 70%. Peat lands, however, are being considered as both sources and sinks of greenhouse gases. N2O emissions are a product of both production and consumption processes. However, there is still a lack of understanding of N2O consumption processes in soils. In this work, the potential of re-wetted peat lands planted to rice in Sacramento-San Joaquin Delta, California, to act as a potential sink for N2O is being evaluated. Four peat land soils with 1%, 5%, 11% and 23% of organic carbon have been anaerobically incubated with different water contents (15%, 30%, 50%, 75% and 100% of their water holding capacity). 15N-N2O gas has been injected to the headspace of experiment jars and the production and consumption rate of 15N-N2O, 15N-N2 and production rate of Carbon Dioxide (CO2) and Methane (CH4) along with dissolved Nitrate (NO3-), Nitrite (NO2-), Ammonium (NH4+), Iron (II) and Iron (III) concentration has been quantified. Our results show promising N2O consumption rates under high carbon content and relatively high water content treatments. This research introduces organic carbon and water content as two major criteria in N2O consumption processes in peat lands that make it a potential hotspot for climate changes mitigation through adopting effective management practices to decrease greenhouse gas emissions.

  11. Soil quality: key for sustainable production

    Directory of Open Access Journals (Sweden)

    Stefano Mocali

    2011-02-01

    Full Text Available In the last few years several definitions of “soil quality” have been advanced, but among them the most appreciated is “the ability of soils to interact with the ecosystem in order to maintain the biological productivity, the environmental quality and to promote animal and vegetal health” as defined by Doran and Parkin in 1994. Many researchers place more emphasis on its conceptual meaning for land planning and farm management, while others consider that definition to be worth nothing in order to understand soil properties and the concept of soil quality looks like the concept of “to be suitable for”. For this reason a definition of “soil use” is needed. The food quality is characterized by several properties: the healthiness and the nutritional value, the amount of the production, the typicalness and organoleptic properties, etc.. A lot of these properties depend on environmental quality and, in particular, on soil quality. In fact soil represents the natural substrate for growth and productivity of most of the plants that live on the Hearth because they get all the essential nutritional elements from it for their own development; consequently each nutritional element present into the soil as bioavailable form for the plants is potentially destined to entry in the animal (and human food chain. In the quality process of food productive process it will be important to assure the best soil quality as possible, without any unwanted element (which will not be discussed in this note and with the right amount of fertility elements in order to guarantee the best production. In this paper the relationships between soil quality, soil biodiversity and crop sustainability will be discussed. Finally the concept of soil “biota” as nodal point for the environment regulation and the application of the indicators for soil quality will be discussed.

  12. Soil quality: key for sustainable production

    Directory of Open Access Journals (Sweden)

    Anna Benedetti

    2009-04-01

    Full Text Available In the last few years several definitions of “soil quality” have been advanced, but among them the most appreciated is “the ability of soils to interact with the ecosystem in order to maintain the biological productivity, the environmental quality and to promote animal and vegetal health” as defined by Doran and Parkin in 1994. Many researchers place more emphasis on its conceptual meaning for land planning and farm management, while others consider that definition to be worth nothing in order to understand soil properties and the concept of soil quality looks like the concept of “to be suitable for”. For this reason a definition of “soil use” is needed. The food quality is characterized by several properties: the healthiness and the nutritional value, the amount of the production, the typicalness and organoleptic properties, etc.. A lot of these properties depend on environmental quality and, in particular, on soil quality. In fact soil represents the natural substrate for growth and productivity of most of the plants that live on the Hearth because they get all the essential nutritional elements from it for their own development; consequently each nutritional element present into the soil as bioavailable form for the plants is potentially destined to entry in the animal (and human food chain. In the quality process of food productive process it will be important to assure the best soil quality as possible, without any unwanted element (which will not be discussed in this note and with the right amount of fertility elements in order to guarantee the best production. In this paper the relationships between soil quality, soil biodiversity and crop sustainability will be discussed. Finally the concept of soil “biota” as nodal point for the environment regulation and the application of the indicators for soil quality will be discussed.

  13. In-situ treatment of PCP contaminated soil by electrokinetics-Fenton-biodegradation process

    Energy Technology Data Exchange (ETDEWEB)

    Yang, G.C.C.; Chen Jenteh [Inst. of Environmental Engineering, National Sun Yat-Sen Univ., Kaohsiung (Taiwan)

    2001-07-01

    This laboratory investigation was conducted to evaluate the treatment efficiency of a process combining electrokinetic remediation (EK), Fenton process, and biodegradation for treating a pentachlorophenol (PCP) contaminated soil. For EK-Fenton experiments, the results have indicated that an increase of treatment time (e.g., from 10 to 15 days) would substantially increase the overall treatment (i.e., removal and destruction) efficiency of PCP. Only a limited increase of the treatment efficiency would be found if the concentration of FeSO{sub 4} was increased from 0.0196M to 0.098M. When scrap iron power was employed as the catalyst, the residual PCP concentration for soil near the anode end was found to be lower than that of 0.0196M FeSO{sub 4}. But its overall treatment efficiency was only 56.58%, which is lower than 68.34% obtained by using 0.0196M FeSO{sub 4} and 0.35% H{sub 2}O{sub 2}. When H{sub 2}O{sub 2} concentration was further increased to 3.5%, an overall treatment efficiency of 79.77% would be obtained when 0.0196M FeSO{sub 4} was used. When treated by EK-biodegradation process with phenol enrichment bacteria, the overall treatment efficiency of PCP was as low as 25.67%. If PCP contaminated soil was pre-treated by EK-Fenton process and followed by EK-biodegradation, an overall treatment efficiency of 100% was found to be achievable. (orig.)

  14. Research on the infiltration processes of lawn soils of the Babao River in the Qilian Mountain.

    Science.gov (United States)

    Li, GuangWen; Feng, Qi; Zhang, FuPing; Cheng, AiFang

    2014-01-01

    Using a Guelph Permeameter, the soil water infiltration processes were analyzed in the Babao River of the Qilian Mountain in China. The results showed that the average soil initial infiltration and the steady infiltration rates in the upstream reaches of the Babao River are 1.93 and 0.99 cm/min, whereas those of the middle area are 0.48 cm/min and 0.21 cm/min, respectively. The infiltration processes can be divided into three stages: the rapidly changing stage (0-10 min), the slowly changing stage (10-30 min) and the stabilization stage (after 30 min). We used field data collected from lawn soils and evaluated the performances of the infiltration models of Philip, Kostiakov and Horton with the sum of squared error, the root mean square error, the coefficient of determination, the mean error, the model efficiency and Willmott's index of agreement. The results indicated that the Kostiakov model was most suitable for studying the infiltration process in the alpine lawn soils.

  15. Hot fire, cool soil

    NARCIS (Netherlands)

    Stoof, C.R.; Moore, D.; Fernandes, P.; Stoorvogel, J.J.; Fernandes, R.; Ferreira, A.J.D.; Ritsema, C.J.

    2013-01-01

    Wildfires greatly increase a landscape's vulnerability to flooding and erosion events by removing vegetation and changing soils. Fire damage to soil increases with increasing soil temperature, and, for fires where smoldering combustion is absent, the current understanding is that soil temperatures

  16. Soil CO2 dynamics and fluxes as affected by tree harvest in an experimental sand ecosystem.

    Science.gov (United States)

    C.K. Keller; T.M. White; R. O' Brien; J.L. Smith

    2006-01-01

    Soil CO2 production is a key process in ecosystem C exchange, and global change predictions require understanding of how ecosystem disturbance affects this process. We monitored CO2 levels in soil gas and as bicarbonate in drainage from an experimental red pine ecosystem, for 1 year before and 3 years after its aboveground...

  17. Enzymology under global change: organic nitrogen turnover in alpine and sub-Arctic soils

    NARCIS (Netherlands)

    Weedon, J.T.; Aerts, R.; Kowalchuk, G.A.; van Bodegom, P.M.

    2011-01-01

    Understanding global change impacts on the globally important carbon storage in alpine, Arctic and sub-Arctic soils requires knowledge of the mechanisms underlying the balance between plant primary productivity and decomposition. Given that nitrogen availability limits both processes, understanding

  18. Enzymology under global change: organic nitrogen turnover in alpine and sub-Arctic soils.

    NARCIS (Netherlands)

    Weedon, J.T.; Aerts, R.; Kowalchuk, G.A.; van Bodegom, P.M.

    2011-01-01

    Understanding global change impacts on the globally important carbon storage in alpine, Arctic and sub-Arctic soils requires knowledge of the mechanisms underlying the balance between plant primary productivity and decomposition. Given that nitrogen availability limits both processes, understanding

  19. The VULCAN Project: Toward a better understanding of the vulnerability of soil organic matter to climate change in permafrost ecosystems

    Science.gov (United States)

    Plaza, C.; Schuur, E.; Maestre, F. T.

    2015-12-01

    Despite much recent research, high uncertainty persists concerning the extent to which global warming influences the rate of permafrost soil organic matter loss and how this affects the functioning of permafrost ecosystems and the net transfer of C to the atmosphere. This uncertainty continues, at least in part, because the processes that protect soil organic matter from decomposition and stabilize fresh plant-derived organic materials entering the soil are largely unknown. The objective of the VULCAN (VULnerability of soil organic CArboN to climate change in permafrost and dryland ecosystems) project is to gain a deeper insight into these processes, especially at the molecular level, and to explore potential implications in terms of permafrost ecosystem functioning and feedback to climate change. We will capitalize on a globally unique ecosystem warming experiment in Alaska, the C in Permafrost Experimental Heating Research (CiPEHR) project, which is monitoring soil temperature and moisture, thaw depth, water table depth, plant productivity, phenology, and nutrient status, and soil CO2 and CH4 fluxes. Soil samples have been collected from the CiPEHR experiment from strategic depths, depending on thaw depth, and allow us to examine effects related to freeze/thaw, waterlogging, and organic matter relocation along the soil profile. We will use physical fractionation methods to separate soil organic matter pools characterized by different preservation mechanisms of aggregation and mineral interaction. We will determine organic C and total N content, transformation rates, turnovers, ages, and structural composition of soil organic matter fractions by elemental analysis, stable and radioactive isotope techniques, and nuclear magnetic resonance tools. Acknowledgements: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 654132. Web site: http://vulcan.comule.com

  20. Preliminary assessment of soil erosion impact during forest restoration process

    Science.gov (United States)

    Lai, Yen-Jen; Chang, Cheng-Sheng; Tsao, Tsung-Ming; Wey, Tsong-Huei; Chiang, Po-Neng; Wang, Ya-Nan

    2014-05-01

    Taiwan has a fragile geology and steep terrain. The 921 earthquake, Typhoon Toraji, Typhoon Morakot, and the exploitation and use of the woodland by local residents have severely damaged the landscape and posed more severe challenges to the montane ecosystem. A land conservation project has been implemented by the Experimental Forest of National Taiwan University which reclaimed approximately 1,500 hectares of leased woodland from 2008 to 2010, primarily used to grow bamboo, tea trees, betel nut, fruit, and vegetable and about 1,298 hectares have been reforested. The process of forest restoration involves clear cutting, soil preparation and a six-year weeding and tending period which may affect the amount of soil erosion dramatically. This study tried to assess the impact of forest restoration from the perspective of soil erosion through leased-land recovery periods and would like to benefit the practical implementation of reforestation in the future. A new plantation reforested in the early 2013 and a nearby 29-year-old mature forest were chosen as experimental and comparison sites. A self-designed weir was set up in a small watershed of each site for the runoff and sediment yield observation. According to the observed results from May to August 2013, a raining season in Taiwan, the runoff and erosion would not as high as we expected, because the in-situ soil texture of both sites is sandy loam to sandy with high percentage of coarse fragment which increased the infiltration. There were around 200 kg to 250 kg of wet sand/soil yielded in mature forest during the hit of Typhoon Soulik while the rest of the time only suspended material be yielded at both sites. To further investigate the influence of the six-year weeding and tending period, long term observations are needed for a more completed assessment of soil erosion impact.

  1. Kinetic modelling of a diesel-polluted clayey soil bioremediation process

    Energy Technology Data Exchange (ETDEWEB)

    Fernández, Engracia Lacasa; Merlo, Elena Moliterni [Chemical Engineering Department, Research Institute for Chemical and Environmental Technology (ITQUIMA), University of Castilla La Mancha, 13071 Ciudad Real (Spain); Mayor, Lourdes Rodríguez [National Institute for Hydrogen Research, C/Fernando el Santo, 13500 Puertollano (Spain); Camacho, José Villaseñor, E-mail: jose.villasenor@uclm.es [Chemical Engineering Department, Research Institute for Chemical and Environmental Technology (ITQUIMA), University of Castilla La Mancha, 13071 Ciudad Real (Spain)

    2016-07-01

    A mathematical model is proposed to describe a diesel-polluted clayey soil bioremediation process. The reaction system under study was considered a completely mixed closed batch reactor, which initially contacted a soil matrix polluted with diesel hydrocarbons, an aqueous liquid-specific culture medium and a microbial inoculation. The model coupled the mass transfer phenomena and the distribution of hydrocarbons among four phases (solid, S; water, A; non-aqueous liquid, NAPL; and air, V) with Monod kinetics. In the first step, the model simulating abiotic conditions was used to estimate only the mass transfer coefficients. In the second step, the model including both mass transfer and biodegradation phenomena was used to estimate the biological kinetic and stoichiometric parameters. In both situations, the model predictions were validated with experimental data that corresponded to previous research by the same authors. A correct fit between the model predictions and the experimental data was observed because the modelling curves captured the major trends for the diesel distribution in each phase. The model parameters were compared to different previously reported values found in the literature. Pearson correlation coefficients were used to show the reproducibility level of the model. - Highlights: • A mathematical model is proposed to describe a soil bioremediation process. • The model couples mass transfer phenomena among phases with biodegradation. • Model predictions were validated with previous data reported by the authors. • A correct fit and correlation coefficients were observed.

  2. Kinetic modelling of a diesel-polluted clayey soil bioremediation process

    International Nuclear Information System (INIS)

    Fernández, Engracia Lacasa; Merlo, Elena Moliterni; Mayor, Lourdes Rodríguez; Camacho, José Villaseñor

    2016-01-01

    A mathematical model is proposed to describe a diesel-polluted clayey soil bioremediation process. The reaction system under study was considered a completely mixed closed batch reactor, which initially contacted a soil matrix polluted with diesel hydrocarbons, an aqueous liquid-specific culture medium and a microbial inoculation. The model coupled the mass transfer phenomena and the distribution of hydrocarbons among four phases (solid, S; water, A; non-aqueous liquid, NAPL; and air, V) with Monod kinetics. In the first step, the model simulating abiotic conditions was used to estimate only the mass transfer coefficients. In the second step, the model including both mass transfer and biodegradation phenomena was used to estimate the biological kinetic and stoichiometric parameters. In both situations, the model predictions were validated with experimental data that corresponded to previous research by the same authors. A correct fit between the model predictions and the experimental data was observed because the modelling curves captured the major trends for the diesel distribution in each phase. The model parameters were compared to different previously reported values found in the literature. Pearson correlation coefficients were used to show the reproducibility level of the model. - Highlights: • A mathematical model is proposed to describe a soil bioremediation process. • The model couples mass transfer phenomena among phases with biodegradation. • Model predictions were validated with previous data reported by the authors. • A correct fit and correlation coefficients were observed.

  3. Hydropodelogy From the Pedon to the Landscape: Challenges and Accomplishments in the National Cooperative Soil Survey

    Science.gov (United States)

    Hammer, D.; Richardson, J.; Hempel, J.; Market, P.

    2005-12-01

    American pedology has focused on the National Cooperative Soil Survey. Primary responsibility rests with the U.S. Department of Agriculture. The primary goals, are legislatively mandated, are to map the country's soils, make interpretations, provide information to clients, maintain and market the soil survey. The first goal is near completion and focus is shifting to the other three. Concomitantly, American pedological science is being impacted by several conditions: technological advances; land use changes at unprecedented scales and magnitudes; a burgeoning population increasingly "separated" from the land; and a major emphasis in universities upon biological ("life") sciences at the DNA scale - as if soil, nutrients and water are not life essentials. Effects of the Flood of 1993 and Hurricane Katrina suggest that humans do not understand earth/climate interactions, particularly climatic extremes. Pedologists know the focus on soil classification and mapping was at the expense of understanding processes. Hydropedology is a holistic approach to understanding soil and geomorphic process in order to predict the impacts of perturbations. Water movement on and in the soil is the primary mechanism of distributing and altering sediments and chemicals (pedogenesis), and depends for its success upon understanding that the soil profile is the record of developmental history at that landscape site. Hydropedologists believe soil scientists can use pedons (point data) from appropriate locations from flownets in complex landscapes to extrapolate processes. This is the "pedotransfer function" concept. Technological advances are coupled with the existing soil survey information to create important soil-landscape interpretations at a variety of scales. Early results have been very successful. Quantification of soil systems can be classified broadly into three categories; hard data, soft data and tacit knowledge. "Hard data" are measured numbers, and include such attributes as p

  4. The importance of plant-soil interactions for N mineralisation in different soil types

    Science.gov (United States)

    Murphy, Conor; Paterson, Eric; Baggs, Elizabeth; Morley, Nicholas; Wall, David; Schulte, Rogier

    2013-04-01

    The last hundred years has seen major advancements in our knowledge of nitrogen mineralisation in soil, but key drivers and controls remain poorly understood. Due to an increase in the global population there is a higher demand on food production. To accommodate this demand agriculture has increased its use of N based fertilizers, but these pose risks for water quality and GHG emissions as N can be lost through nitrate leaching, ammonia volatilization, and denitrification processes (Velthof, et al., 2009). Therefore, understanding the underlying processes that determine the soils ability to supply N to the plant is vital for effective optimisation of N-fertilisation with crop demand. Carbon rich compounds exuded from plant roots to the rhizosphere, which are utilized by the microbial biomass and support activities including nutrient transformations, may be a key unaccounted for driver of N mineralisation. The main aim of this study was to study the impact of root exudates on turnover of C and N in soil, as mediated by the microbial community. Two soil types, known to contrast in N-mineralisation capacity, were used to determine relationships between C inputs, organic matter mineralisation (priming effects) and N fluxes. 15N and 13C stable isotope approaches were used to quantify the importance of rhizosphere processes on C and N mineralisation. Gross nitrogen mineralisation was measured using 15N pool dilution. Total soil CO2 efflux was measured and 13C isotope partitioning was applied to quantify SOM turnover and microbial biomass respiration. Also, 13C was traced through the microbial biomass (chloroform fumigation) to separate pool-substitution effects (apparent priming) from altered microbial utilisation of soil organic matter (real priming effects). Addition of labile carbon resulted in an increase in N-mineralisation from soil organic matter in both soils. Concurrent with this there was an increase in microbial biomass size, indicating that labile C elicited

  5. The Role of Soil Biological Function in Regulating Agroecosystem Services and Sustainability in the Quesungual Agroforestry System

    Science.gov (United States)

    Fonte, S.; Pauli, N.; Rousseau, L.; SIX, J. W. U. A.; Barrios, E.

    2014-12-01

    The Quesungual agroforestry system from western Honduras has been increasingly promoted as a promising alternative to traditional slash-and-burn agriculture in tropical dry forest regions of the Americas. Improved residue management and the lack of burning in this system can greatly impact soil biological functioning and a number of key soil-based ecosystem services, yet our understanding of these processes has not been thoroughly integrated to understand system functionality as a whole that can guide improved management. To address this gap, we present a synthesis of various field studies conducted in Central America aimed at: 1) quantifying the influence of the Quesungual agroforestry practices on soil macrofauna abundance and diversity, and 2) understanding how these organisms influence key soil-based ecosystem services that ultimately drive the success of this system. A first set of studies examined the impact of agroecosystem management on soil macrofauna populations, soil fertility and key soil processes. Results suggest that residue inputs (derived from tree biomass pruning), a lack of burning, and high tree densities, lead to conditions that support abundant, diverse soil macrofauna communities under agroforestry, with soil organic carbon content comparable to adjacent forest. Additionally, there is great potential in working with farmers to develop refined soil quality indicators for improved land management. A second line of research explored interactions between residue management and earthworms in the regulation of soil-based ecosystem services. Earthworms are the most prominent ecosystem engineers in these soils. We found that earthworms are key drivers of soil structure maintenance and the stabilization of soil organic matter within soil aggregates, and also had notable impacts on soil nutrient dynamics. However, the impact of earthworms appears to depend on residue management practices, thus indicating the need for an integrated approach for

  6. Grassland Soil Carbon Responses to Nitrogen Additions

    Science.gov (United States)

    Hofmockel, K. S.; Tfailly, M.; Callister, S.; Bramer, L.; Thompson, A.

    2017-12-01

    Using a long-term continental scale experiment, we tested if increases in nitrogen (N) inputs augment the accumulation of plant and microbial residues onto mineral soil surfaces. This research investigates N effects on molecular biogeochemistry across six sites from the Nutrient Network (NutNet) experiment. The coupling between concurrently changing carbon (C) and N cycles remains a key uncertainty in understanding feedbacks between the terrestrial C cycle and climate change. Existing models do not consider the full suite of linked C-N processes, particularly belowground, that could drive future C-climate feedbacks. Soil harbors a wealth of diverse organic molecules, most of which have not been measured in hypothesis driven field research. For the first time we systematically assess the chemical composition of soil organic matter (SOM) and functional characteristics of the soil microbiome, to enhance our understanding of the molecular underpinnings of ecosystem C and N cycling. We have acquired soils from 5 ecosystem experiments across the US that have been subjected to 8 years of N addition treatments. These soils have been analyzed for chemical composition to identify how the soil fertility and stability is altered by N fertilization. We found distinct SOM signatures from our field experiments and shifts in soil chemistry in response to 8 years of N fertilization. Across all sites, we found the molecular composition of SOM varied with clay content, supporting the importance of soil mineralogy in the accumulation of specific chemical classes of SOM. While many molecules were common across sites, we discovered a suite of molecules that were site specific. N fertilization had a significant effect on SOM composition. Differences between control and N amended plots were greater in sites rich in lipids and more complex molecules, compared to sites with SOM rich in amino-sugar and protein like substances. Our results have important implications for how SOM is

  7. Climate and Landuse Change Impacts on hydrological processes and soil erosion in a dry Mediterranean agro-forested catchment, southern Portugal

    Science.gov (United States)

    Santos, Juliana; Nunes, João Pedro; Sampaio, Elsa; Moreira, Madalena; Lima, Júlio; Jacinto, Rita; Corte-Real, João

    2014-05-01

    Climate change is expected to increase aridity in the Mediterranean rim of Europe, due to decreasing rainfall and increasing temperatures. This could lead to impacts on soil erosion, since the lower rainfall could nevertheless become concentrated in higher intensity events during the wet season, while the more arid conditions could reduce vegetation cover, also due to climate-induced land-use changes. In consequence, there is an interest in understanding how climate change will affect the interaction between the timing of extreme rainfall events, hydrological processes, vegetation growth, soil cover and soil erosion. To study this issue, the SWAT eco-hydrological model was applied to Guadalupe, an agro-forested catchment (446 ha) located close to the city of Évora, with a Mediterranean inland climate. The landcover is a mix of dispersed cork oak forests ("montado"), annual crops, and agroforesty regions where the cork oaks are associated with crops or pasture; this land cover is representative of the dry regions of southern Portugal and Spain. The catchment has been instrumented since 2011 with a hydrometric station (water discharge and suspended sediment concentration data) and a soil moisture measurement station. There is also observed data of actual evapotranspiration, LAI and biomass production (in pasture; from 1999 and 2008) and runoff data and sediment yield measured in six 16m2 plots. Water balance, vegetation growth, soil erosion and sediment yield in SWAT was calibrated with this dataset. This work will present the dataset, modeling process, results for impacts of climate and land-use change scenarios for vegetation growth, soil erosion and sediment export, considering the climate and socio-economic scenarios A1b and B1 (based on SRES storylines). Climate scenarios were created by statistical downscaling from Global Circulation Models (GCMs) for the period 2071-2100 (30 years). The reference period was 1971-2000 (30 years). The SWAT model was used to

  8. INFLUENCE OF USUAL AND DUAL WHEELS ON SOIL PENETRATION RESISTANCE: THE GIS-APPROACH

    Directory of Open Access Journals (Sweden)

    Zhukov A. V.

    2015-12-01

    Full Text Available GIS-APPROACH application has allowed establishing that usual wheels of machine-tractor units carry out considerable influence on soil which exceeds visible borders of a track of wheels on the dimensions. This influence shows in augmentation of soil penetration resistance at 100-155 % in comparison with the control on depth of 0-10 cm and on 20-30 % on depth of 45-50 %. It is impossible to exclude that influence of wheels proceeds more deeply, than tests have been conducted. Critical for cultivated plants value of soil penetration resistance in 3 MPa under the influence of usual wheels of agricultural machinery comes nearer practically to a surface. Character of profile changes of hardness in various regions influences of wheels allows assuming the long season of a relaxation of soil for achievement of background values of soil penetration resistance. The further researches are necessary for an establishment of concrete indicators of dynamics. Negative influence of an overstocking does not confine only deterioration of conditions of growth of assemblages of rootlets of plants. Infringement of processes of moving of moisture in the soil, the accelerated evaporation and the slowed down processes of a filtration and an infiltration, destruction of modular frame, activization of erosive processes is possible. The understanding of these processes will give the chance volume understanding of real influence of running systems of machine-tractor devices on bedrock. Region intensive influence of dual wheels is circumscribed by the top soil layers (0-15 cm. The major feature of influence of dual wheels is absence of an overstocking above critical levels. It is impossible to exclude possible positive influence of moderate inspissations of soil under the influence of dual wheels for growth of agricultural crops and moisture conservation in soil. The cumulative negative effect on soil crossed vehicles traces is probable. The long season of a relaxation of

  9. Understanding soil food web dynamics, how close do we get?

    NARCIS (Netherlands)

    Morriën, E.

    2016-01-01

    Soil food webs are traditionally considered to have distinct energy channels through which resources flow belowground. Resources enter the soil food web either from roots or from detrital inputs. Compared to this traditional view we are now much more aware of the flow of carbon, nitrogen and other

  10. Constraining Parameter Uncertainty in Simulations of Water and Heat Dynamics in Seasonally Frozen Soil Using Limited Observed Data

    Directory of Open Access Journals (Sweden)

    Mousong Wu

    2016-02-01

    Full Text Available Water and energy processes in frozen soils are important for better understanding hydrologic processes and water resources management in cold regions. To investigate the water and energy balance in seasonally frozen soils, CoupModel combined with the generalized likelihood uncertainty estimation (GLUE method was used. Simulation work on water and heat processes in frozen soil in northern China during the 2012/2013 winter was conducted. Ensemble simulations through the Monte Carlo sampling method were generated for uncertainty analysis. Behavioral simulations were selected based on combinations of multiple model performance index criteria with respect to simulated soil water and temperature at four depths (5 cm, 15 cm, 25 cm, and 35 cm. Posterior distributions for parameters related to soil hydraulic, radiation processes, and heat transport indicated that uncertainties in both input and model structures could influence model performance in modeling water and heat processes in seasonally frozen soils. Seasonal courses in water and energy partitioning were obvious during the winter. Within the day-cycle, soil evaporation/condensation and energy distributions were well captured and clarified as an important phenomenon in the dynamics of the energy balance system. The combination of the CoupModel simulations with the uncertainty-based calibration method provides a way of understanding the seasonal courses of hydrology and energy processes in cold regions with limited data. Additional measurements may be used to further reduce the uncertainty of regulating factors during the different stages of freezing–thawing.

  11. Bioremediation of chlorpyrifos contaminated soil by two phase bioslurry reactor: Processes evaluation and optimization by Taguchi's design of experimental (DOE) methodology.

    Science.gov (United States)

    Pant, Apourv; Rai, J P N

    2018-04-15

    Two phase bioreactor was constructed, designed and developed to evaluate the chlorpyrifos remediation. Six biotic and abiotic factors (substrate-loading rate, slurry phase pH, slurry phase dissolved oxygen (DO), soil water ratio, temperature and soil micro flora load) were evaluated by design of experimental (DOE) methodology employing Taguchi's orthogonal array (OA). The selected six factors were considered at two levels L-8 array (2^7, 15 experiments) in the experimental design. The optimum operating conditions obtained from the methodology showed enhanced chlorpyrifos degradation from 283.86µg/g to 955.364µg/g by overall 70.34% of enhancement. In the present study, with the help of few well defined experimental parameters a mathematical model was constructed to understand the complex bioremediation process and optimize the approximate parameters upto great accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Temporal compression of soil erosion processes. A regional analysis of USLE database

    International Nuclear Information System (INIS)

    Gonzalez-Hidalgo, J. C.; Luis, M.; Lopez-Bermudez, F.

    2009-01-01

    When John Thornes and Denis Brunsden wrote in 1977 How often one hears the researcher (and no less the undergraduate) complain that after weeks of observation nothing happened only to learn that, the day after his departure, a flood caused unprecedented erosion and channel changes (Thrones and Brunsden, 1977, p. 57), they were focussing to important problems in Geomorphology: the extreme events and time compression of geomorphological processes. Time compression is a fundamental characteristic of geomorphological processes, some times produced by extreme events. Extreme events are rare events, defined by deviation from mean values. But from magnitude-frequency analysis we know that few events, not necessarily extreme, are able to produce a high amount of geomorphological work. finally time compression of geomorphological processes can be focused by the analysis of largest events defined by ranks, not magnitude. We have analysed the effects of largest events on total soil erosion by using 594 erosion plots from USLE database. Plots are located in different climate regions of USA and have different length of records. The 10 largest daily events mean contribution value is 60% of total soil erosion. There exist a relationship between such percentage and total daily erosive events recorded. The pattern seems to be independent of climate conditions. We discuss the nature of such relationship and the implications in soil erosion research. (Author) 17 refs.

  13. Modelling the Impact of Soil Management on Soil Functions

    Science.gov (United States)

    Vogel, H. J.; Weller, U.; Rabot, E.; Stößel, B.; Lang, B.; Wiesmeier, M.; Urbanski, L.; Wollschläger, U.

    2017-12-01

    Due to an increasing soil loss and an increasing demand for food and energy there is an enormous pressure on soils as the central resource for agricultural production. Besides the importance of soils for biomass production there are other essential soil functions, i.e. filter and buffer for water, carbon sequestration, provision and recycling of nutrients, and habitat for biological activity. All these functions have a direct feed back to biogeochemical cycles and climate. To render agricultural production efficient and sustainable we need to develop model tools that are capable to predict quantitatively the impact of a multitude of management measures on these soil functions. These functions are considered as emergent properties produced by soils as complex systems. The major challenge is to handle the multitude of physical, chemical and biological processes interacting in a non-linear manner. A large number of validated models for specific soil processes are available. However, it is not possible to simulate soil functions by coupling all the relevant processes at the detailed (i.e. molecular) level where they are well understood. A new systems perspective is required to evaluate the ensemble of soil functions and their sensitivity to external forcing. Another challenge is that soils are spatially heterogeneous systems by nature. Soil processes are highly dependent on the local soil properties and, hence, any model to predict soil functions needs to account for the site-specific conditions. For upscaling towards regional scales the spatial distribution of functional soil types need to be taken into account. We propose a new systemic model approach based on a thorough analysis of the interactions between physical, chemical and biological processes considering their site-specific characteristics. It is demonstrated for the example of soil compaction and the recovery of soil structure, water capacity and carbon stocks as a result of plant growth and biological

  14. Thermal signal propagation in soils in Romania: conductive and non-conductive processes

    Directory of Open Access Journals (Sweden)

    C. Demetrescu

    2007-11-01

    Full Text Available Temperature data recorded in 2002 and 2003 at 10 stations out of the 70 available in the Romanian automatic weather stations network are presented and analyzed in terms of the heat transfer from air to underground. The air temperature at 2 m, the soil temperatures at 0, 5, 10, 20, 50 and 100 cm below the surface as well as rain fall and snow cover thickness have been monitored. The selected locations sample various climate environments in Romania. Preliminary analytical modelling shows that soil temperatures track air temperature variations at certain locations and, consequently, the heat transfer is by conduction, while at other stations processes such as soil freezing and/or solar radiation heating play an important part in the heat flux balance at the air/soil interface. However, the propagation of the annual thermal signal in the uppermost one meter of soil is mainly by conduction; the inferred thermal diffusivity for 8 stations with continuous time series at all depth levels ranges from 3 to 10×10−7 m2 s−1.

  15. Effect of microbial processes on transuranium elements behaviour in soil, plants and animal organism

    International Nuclear Information System (INIS)

    Uajldung, R.Eh.; Garlend, T.P.

    1985-01-01

    Results of preliminary studies discussed in the present paper bring about the supposition that concentration and chemical from of an element in a plant play an essential role in variation of its availability for animals consuming plants. That is why any assessment of long-term behaviour of transuranium elements in terrestrialenvironment should be based on determination of factors affecting solubility and forms of soluble compounds in soil. These factors include concentration and chemical form of the element migrating to soil; effect of the properties of soil on element distribution between solid and liquid phases; effect soil processes on kinetics of sorption reactions, concentration of transuranium elements, forms of soluble and non-soluble chemical compounds

  16. Analysis of Cleaning Process for Several Kinds of Soil by Probability Density Functional Method.

    Science.gov (United States)

    Fujimoto, Akihiro; Tanaka, Terumasa; Oya, Masaru

    2017-10-01

    A method of analyzing the detergency of various soils by assuming normal distributions for the soil adhesion and soil removal forces was developed by considering the relationship between the soil type and the distribution profile of the soil removal force. The effect of the agitation speed on the soil removal was also analyzed by this method. Washing test samples were prepared by soiling fabrics with individual soils such as particulate soils, oily dyes, and water-soluble dyes. Washing tests were conducted using a Terg-O-Tometer and four repetitive washing cycles of 5 min each. The transition of the removal efficiencies was recorded in order to calculate the mean value (μ rl ) and the standard deviation (σ rl ) of the removal strength distribution. The level of detergency and the temporal alteration in the detergency can be represented by μ rl and σ rl , respectively. A smaller σ rl indicates a smaller increase in the detergency with time, which also indicates the existence of a certain amount of soil with a strong adhesion force. As a general trend, the values of σ rl were the greatest for the oily soils, followed by those of the water-soluble soils and particulate soils in succession. The relationship between the soil removal processes and the soil adhesion force was expressed on the basis of the transition of the distribution of residual soil. Evaluation of the effects of the agitation speed on µ rl and ơ rl showed that σ rl was not affected by the agitation speed; the value of µ rl for solid soil and oily soil increased with increasing agitation, and the µ rl of water-soluble soil was not specifically affected by the agitation speed. It can be assumed that the parameter ơ rl is related to the characteristics of the soil and the adhesion condition, and can be applied to estimating the soil removal mechanism.

  17. Soil invertebrate fauna affect N2O emissions from soil

    NARCIS (Netherlands)

    Kuiper, I.; Deyn, de G.B.; Thakur, M.P.; Groenigen, van J.W.

    2013-01-01

    Nitrous oxide (N2O) emissions from soils contribute significantly to global warming. Mitigation of N2O emissions is severely hampered by a lack of understanding of its main controls. Fluxes can only partly be predicted from soil abiotic factors and microbial analyses – a possible role for soil fauna

  18. Soil mixing of stratified contaminated sands.

    Science.gov (United States)

    Al-Tabba, A; Ayotamuno, M J; Martin, R J

    2000-02-01

    Validation of soil mixing for the treatment of contaminated ground is needed in a wide range of site conditions to widen the application of the technology and to understand the mechanisms involved. Since very limited work has been carried out in heterogeneous ground conditions, this paper investigates the effectiveness of soil mixing in stratified sands using laboratory-scale augers. This enabled a low cost investigation of factors such as grout type and form, auger design, installation procedure, mixing mode, curing period, thickness of soil layers and natural moisture content on the unconfined compressive strength, leachability and leachate pH of the soil-grout mixes. The results showed that the auger design plays a very important part in the mixing process in heterogeneous sands. The variability of the properties measured in the stratified soils and the measurable variations caused by the various factors considered, highlighted the importance of duplicating appropriate in situ conditions, the usefulness of laboratory-scale modelling of in situ conditions and the importance of modelling soil and contaminant heterogeneities at the treatability study stage.

  19. Reappraisal of soil C storage processes. The controversy on structural diversity of humic substances as biogeochemical driver for soil C fluxes

    Science.gov (United States)

    Almendros, Gonzalo; Gonzalez-Vila, Francisco J.; Gonzalez-Perez, Jose Antonio; Knicker, Heike

    2016-04-01

    The functional relationships between the macromolecular structure of the humic substances (HS) and a series of biogeochemical processes related with the C sequestration performance in soils have been recently questioned. In this communication we collect recent data from a wide array of different ecosystems where the C storage in soils has been studied and explained as a possible cause-to-effect relationship or has been found significantly correlated (multivariate statistical models) with a series of structural characteristics of humic materials. The study of humic materials has methodological analytical limitations that are derived from its complex, chaotic and not completely understood structure, that reflects its manifold precursors as well as the local impact of environmental/depositional factors. In this work we attempt to design an exploratory, multiomic approach based on the information provided by the molecular characterization of the soil organic matter (SOM). Massive data harvesting was carried out of statistical variables, to infer biogeochemical proxies (spectroscopic, chromatographic, mass spectrometric quantitative descriptors). The experimental data were acquired from advanced instrumental methodologies, viz, analytical pyrolysis, compound-specific stable isotope analysis (CSIA), derivative infrared (FTIR) spectroscopy, solid-state C-13 and N-15 nuclear magnetic resonance (NMR) and mass spectrometry (MS) data after direct injection (thermoevaporation), previous pyrolysis, or ion averaging of specific m/z ranges from classical GC/MS chromatograms. In the transversal exploratory analysis of the multianalytical information, the data were coded for on-line processing in a stage in which there is no need for interpretation, in molecular or structural terms, of the quantitative data consisting of e.g., peak intensities, signal areas, chromatographic (GC) total abundances, etc. A series of forecasting chemometric approaches (aiming to express SOM

  20. Reclaiming Saline-Sodic Soils Using Electrochemical Processes: A Case Study From Sahl El-Tina Plain, Egypt

    Directory of Open Access Journals (Sweden)

    Abdel-Fattah Mohamed K.

    2014-10-01

    Full Text Available A leaching experiment was conducted using column techniques assessing efficiency of electrochemical process to reclaim saline-sodic soils. Soil material was collected from Sahl El-Tina plain, which located in North West coast of Sinai, Egypt. The experiment was designed as factorial randomized complete block and all treatments were replicated three times. Two 2.5 cm diameterx30 cm height mild stainless steel tubes were inserted into the soil matrix to serve as electrodes (i.e. cathode and anode. Distance between cathode and anode was 10 cm. Electrodes were supplied by a direct current (DC power supply; Volt ages of 0.3 or 9 Volt. Leaching was done using the intermittent method so as to add portions to the already saturated soil columns, and obtain leachates equal to the added portions. Pore volume 0.1 PV was used in the leaching processes which are equal 498.4 cm3, i.e. PV being volume of pores per column, thus 1 PV equals volume of pores (cm3 expressed as water quantity. Electric remediation increased ionic mobility and separated salts from soil. All treatments decreased soil EC and soil sodicity expressed as SAR and ESP. Results showed that 9 Volt treatment was more effective in decreasing the soil EC and soil sodicity than the other treatments. Efficiency of treatments were 9-Volt > 3-Volt > leaching alone (non-DC treatment. This study suggests that leaching using direct current (DC led to improvement of the chemical properties of saline sodic soils and required a short time to reclaim saline-sodic soils compared with leaching alone.

  1. Carbon storage and nutrient mobilization from soil minerals by deep roots and rhizospheres

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Harrison, Robert; Stupak, Inge

    2016-01-01

    studies on potential release of nutrients due to chemical weathering indicate the importance of root access to deep soil layers. Nutrient release profiles clearly indicate depletion in the top layers and a much higher potential in B and C horizons. Reviewing potential sustainability of nutrient supplies......Roots mobilize nutrients via deep soil penetration and rhizosphere processes inducing weathering of primary minerals. These processes contribute to C transfer to soils and to tree nutrition. Assessments of these characteristics and processes of root systems are important for understanding long......-term supplies of nutrient elements essential for forest growth and resilience. Research and techniques have significantly advanced since Olof Tamm’s 1934 “base mineral index” for Swedish forest soils, and the basic nutrient budget estimates for whole-tree harvesting systems of the 1970s. Recent research...

  2. Mass Transport within Soils

    Energy Technology Data Exchange (ETDEWEB)

    McKone, Thomas E.

    2009-03-01

    Contaminants in soil can impact human health and the environment through a complex web of interactions. Soils exist where the atmosphere, hydrosphere, geosphere, and biosphere converge. Soil is the thin outer zone of the earth's crust that supports rooted plants and is the product of climate and living organisms acting on rock. A true soil is a mixture of air, water, mineral, and organic components. The relative proportions of these components determine the value of the soil for agricultural and for other human uses. These proportions also determine, to a large extent, how a substance added to soil is transported and/or transformed within the soil (Spositio, 2004). In mass-balance models, soil compartments play a major role, functioning both as reservoirs and as the principal media for transport among air, vegetation, surface water, deeper soil, and ground water (Mackay, 2001). Quantifying the mass transport of chemicals within soil and between soil and atmosphere is important for understanding the role soil plays in controlling fate, transport, and exposure to multimedia pollutants. Soils are characteristically heterogeneous. A trench dug into soil typically reveals several horizontal layers having different colors and textures. As illustrated in Figure 1, these multiple layers are often divided into three major horizons: (1) the A horizon, which encompasses the root zone and contains a high concentration of organic matter; (2) the B horizon, which is unsaturated, lies below the roots of most plants, and contains a much lower organic carbon content; and (3) the C horizon, which is the unsaturated zone of weathered parent rock consisting of bedrock, alluvial material, glacial material, and/or soil of an earlier geological period. Below these three horizons lies the saturated zone - a zone that encompasses the area below ground surface in which all interconnected openings within the geologic media are completely filled with water. Similarly to the unsaturated

  3. Chemistry teachers’ understanding of science process skills in relation of science process skills assessment in chemistry learning

    Science.gov (United States)

    Hikmah, N.; Yamtinah, S.; Ashadi; Indriyanti, N. Y.

    2018-05-01

    A Science process skill (SPS) is a fundamental scientific method to achieve good knowledge. SPS can be categorized into two levels: basic and integrated. Learning SPS helps children to grow as individuals who can access knowledge and know how to acquire it. The primary outcomes of the scientific process in learning are the application of scientific processes, scientific reasoning, accurate knowledge, problem-solving, and understanding of the relationship between science, technology, society, and everyday life’s events. Teachers’ understanding of SPS is central to the application of SPS in a learning process. Following this point, this study aims to investigate the high school chemistry teachers’ understanding of SPS pertains to their assessment of SPS in chemistry learning. The understanding of SPS is measured from the conceptual and operational aspects of SPS. This research uses qualitative analysis method, and the sample consists of eight chemistry teachers selected by random sampling. A semi-structured interview procedure is used to collect the data. The result of the analysis shows that teachers’ conceptual and operational understanding of SPS is weak. It affects the accuracy and appropriateness of the teacher’s selection of SPS assessment in chemistry learning.

  4. Process envelopes for stabilisation/solidification of contaminated soil using lime-slag blend.

    Science.gov (United States)

    Kogbara, Reginald B; Yi, Yaolin; Al-Tabbaa, Abir

    2011-09-01

    Stabilisation/solidification (S/S) has emerged as an efficient and cost-effective technology for the treatment of contaminated soils. However, the performance of S/S-treated soils is governed by several intercorrelated variables, which complicates the optimisation of the treatment process design. Therefore, it is desirable to develop process envelopes, which define the range of operating variables that result in acceptable performance. In this work, process envelopes were developed for S/S treatment of contaminated soil with a blend of hydrated lime (hlime) and ground granulated blast furnace slag (GGBS) as the binder (hlime/GGBS = 1:4). A sand contaminated with a mixture of heavy metals and petroleum hydrocarbons was treated with 5%, 10% and 20% binder dosages, at different water contents. The effectiveness of the treatment was assessed using unconfined compressive strength (UCS), permeability, acid neutralisation capacity and contaminant leachability with pH, at set periods. The UCS values obtained after 28 days of treatment were up to ∼800 kPa, which is quite low, and permeability was ∼10(-8) m/s, which is higher than might be required. However, these values might be acceptable in some scenarios. The binder significantly reduced the leachability of cadmium and nickel. With the 20% dosage, both metals met the waste acceptance criteria for inert waste landfill and relevant environmental quality standards. The results show that greater than 20% dosage would be required to achieve a balance of acceptable mechanical and leaching properties. Overall, the process envelopes for different performance criteria depend on the end-use of the treated material.

  5. Carbon Storage in Soils: Climate vs. Geology

    International Nuclear Information System (INIS)

    Doetterl, Sebastian; Boeckx, Pascal; Stevens, Antoine; Van Oost, Kristof; Six, Johan; Merckx, Roel; Casanova Pinto, Manuel; Casanova-Katny, Angélica; Muñoz, Cristina; Zagal Venegas, Erick; Boudin, Mathieu

    2016-01-01

    In a recently published Nature Geoscience article, scientists took a closer look at the much-discussed topic of carbon storage in soils under Climate Change. In a large-scale study across Chile and the Antarctic Peninsula, they showed that the role of precipitation and temperature in controlling carbon dynamics in soils is less than currently considered in Global Ecosystem Models. Soils are important for carbon (C) storage and thus for atmospheric CO 2 concentrations. Whether soils act as a sink or source for atmospheric C generally depend on climatic factors, as they control plant growth (driving the incorporation of C into the soil), the activity of soil microorganism (driving the release of C from the soil to the atmosphere), as well as several other chemical processes in soils. However, we still do not fully understand the response of soil C to Climate Change. An international team of researchers led by Pascal Boeckx and Sebastian Doetterl from Ghent University, Belgium and Erick Zagal from University of Concepcion in Chile, have been investigating the interaction between climate, different types of soil minerals, and soil as sink or source for C. They studied this interaction by sampling soils from numerous locations representing different vegetation types in Chile and the Antarctic Peninsula

  6. Modeling soil CO2 production and transport to investigate the intra-day variability of surface efflux and soil CO2 concentration measurements in a scots pine forest (Pinus Sylvestris, L.)

    OpenAIRE

    Goffin, Stéphanie; Wylock, Christophe; Haut, Benoît; Maier, Martin; Longdoz, Bernard; Aubinet, Marc

    2015-01-01

    Aimed:The main aim of this study is to improve the mechanistic understanding of soil CO2 efflux (Fs), especially its temporal variation at short-time scales, by investigating, through modeling, which underlying process among CO2 production and its transport up to the atmosphere is responsible for observed intra-day variation of Fs and soil CO2 concentration [CO2].Methods:In this study, a measurement campaign of Fs and vertical soil [CO2] profiles was conducted in a Scots Pine Forest soil in H...

  7. Hydrogen Isotopes in Amino Acids and Soils Offer New Potential to Study Complex Processes

    Science.gov (United States)

    Fogel, M. L.; Newsome, S. D.; Williams, E. K.; Bradley, C. J.; Griffin, P.; Nakamoto, B. J.

    2016-12-01

    Hydrogen isotopes have been analyzed extensively in the earth and biogeosciences to trace water through various environmental systems. The majority of the measurements have been made on water in rocks and minerals (inorganic) or non-exchangeable H in lipids (organic), important biomarkers that represent a small fraction of the organic molecules synthesized by living organisms. Our lab has been investigating hydrogen isotopes in amino acids and complex soil organic matter, which have traditionally been thought to be too complex to interpret owing to complications from potentially exchangeable hydrogen. For the amino acids, we show how hydrogen in amino acids originates from two sources, food and water, and demonstrate that hydrogen isotopes can be routed directly between organisms. Amino acid hydrogen isotopes may unravel cycling in extremophiles in order to discover novel biochemical pathways central to the organism. For soil organic matter, recent approaches to understanding the origin of soil organic matter are pointing towards root exudates along with microbial biomass as the source, rather than aboveground leaf litter. Having an isotope tracer in very complex, potentially exchangeable organic matter can be handled with careful experimentation. Although no new instrumentation is being used per se, extension of classes of organic matter to isotope measurements has potential to open up new doors for understanding organic matter cycling on earth and in planetary materials.

  8. Mean residence time of kaolinite and smectite-bound organic matter in mozambiquan soils

    NARCIS (Netherlands)

    Wattel-Koekkoek, E.J.W.; Buurman, P.

    2004-01-01

    To gain understanding about the process of global warming, it is essential to study the global C cycle. In the global C cycle, soil organic matter (SOM) is a major source and sink of atmospheric C. Turnover times of C in these soil organic compounds vary from hours to thousands of years. Clay

  9. Understanding processes that generate flash floods in the arid Judean Desert to the Dead Sea - a measurement network

    Science.gov (United States)

    Hennig, Hanna; Rödiger, Tino; Laronne, Jonathan B.; Geyer, Stefan; Merz, Ralf

    2016-04-01

    Flash floods in (semi-) arid regions are fascinating in their suddenness and can be harmful for humans, infrastructure, industry and tourism. Generated within minutes, an early warning system is essential. A hydrological model is required to quantify flash floods. Current models to predict flash floods are often based on simplified concepts and/or on concepts which were developed for humid regions. To more closely relate such models to local conditions, processes within catchments where flash floods occur require consideration. In this study we present a monitoring approach to decipher different flash flood generating processes in the ephemeral Wadi Arugot on the western side of the Dead Sea. To understand rainfall input a dense rain gauge network was installed. Locations of rain gauges were chosen based on land use, slope and soil cover. The spatiotemporal variation of rain intensity will also be available from radar backscatter. Level pressure sensors located at the outlet of major tributaries have been deployed to analyze in which part of the catchment water is generated. To identify the importance of soil moisture preconditions, two cosmic ray sensors have been deployed. At the outlet of the Arugot water is sampled and level is monitored. To more accurately determine water discharge, water velocity is measured using portable radar velocimetry. A first analysis of flash flood processes will be presented following the FLEX-Topo concept .(Savenije, 2010), where each landscape type is represented using an individual hydrological model according to the processes within the three hydrological response units: plateau, desert and outlet. References: Savenije, H. H. G.: HESS Opinions "Topography driven conceptual modelling (FLEX-Topo)", Hydrol. Earth Syst. Sci., 14, 2681-2692, doi:10.5194/hess-14-2681-2010, 2010.

  10. Effect of stone coverage on soil erosion

    Science.gov (United States)

    Jomaa, S.; Barry, D. A.; Heng, B. P.; Brovelli, A.; Sander, G. C.; Parlange, J.

    2010-12-01

    Soil surface coverage has a significant impact on water infiltration, runoff and soil erosion yields. In particular, surface stones protect the soils from raindrop detachment, they retard the overland flow therefore decreasing its sediment transport capacity, and they prevent surface sealing. Several physical and environmental factors control to what extent stones on the soil surface modify the erosion rates and the related hydrological response. Among the most important factors are the moisture content of the topsoil, stone size, emplacement, coverage density and soil texture. Owing to the different inter-related processes, there is ambiguity concerning the quantitative effect of stones, and process-based understanding is limited. Experiments were performed (i) to quantify how stone features affect sediment yields, (ii) to understand the local effect of isolated surface stones, that is, the changes of the soil particle size distribution in the vicinity of a stone and (iii) to determine how stones attenuate the development of surface sealing and in turn how this affects the local infiltration rate. A series of experiments using the EPFL 6-m × 2-m erosion flume were conducted at different rainfall intensities (28 and 74 mm h-1) and stone coverage (20 and 40%). The total sediment concentration, the concentration of the individual size classes and the flow discharge were measured. In order to analyze the measurements, the Hairsine and Rose (HR) erosion model was adapted to account for the shielding effect of the stone cover. This was done by suitably adjusting the parameters based on the area not covered by stones. It was found that the modified HR model predictions agreed well with the measured sediment concentrations especially for the long time behavior. Changes in the bulk density of the topsoil due to raindrop-induced compaction with and without stone protection revealed that the stones protect the upper soil surface against the structural seals resulting in

  11. Coupling of phenological information and simulated vegetation index time series: Limitations and potentials for the assessment and monitoring of soil erosion risk

    Science.gov (United States)

    Monitoring of agricultural used soils at frequent intervals is needed to get a sufficient understanding of soil erosion processes. This is crucial to support decision making and refining soil policies especially in the context of climate change. Along with rainfall erosivity, soil coverage by vegeta...

  12. A Holistic Approach to Understanding the Desorption of Phosphorus in Soils.

    Science.gov (United States)

    Menezes-Blackburn, Daniel; Zhang, Hao; Stutter, Marc; Giles, Courtney D; Darch, Tegan; George, Timothy S; Shand, Charles; Lumsdon, David; Blackwell, Martin; Wearing, Catherine; Cooper, Patricia; Wendler, Renate; Brown, Lawrie; Haygarth, Philip M

    2016-04-05

    The mobility and resupply of inorganic phosphorus (P) from the solid phase were studied in 32 soils from the UK. The combined use of diffusive gradients in thin films (DGT), diffusive equilibration in thin films (DET) and the "DGT-induced fluxes in sediments" model (DIFS) were adapted to explore the basic principles of solid-to-solution P desorption kinetics in previously unattainable detail. On average across soil types, the response time (Tc) was 3.6 h, the desorption rate constant (k-1) was 0.0046 h(-1), and the desorption rate was 4.71 nmol l(-1) s(-1). While the relative DGT-induced inorganic P flux responses in the first hour is mainly a function of soil water retention and % Corg, at longer times it is a function of the P resupply from the soil solid phase. Desorption rates and resupply from solid phase were fundamentally influenced by P status as reflected by their high correlation with P concentration in FeO strips, Olsen, NaOH-EDTA and water extracts. Soil pH and particle size distribution showed no significant correlation with the evaluated mobility and resupply parameters. The DGT and DET techniques, along with the DIFS model, were considered accurate and practical tools for studying parameters related to soil P desorption kinetics.

  13. Soil Health Assessment Approaches and the Cornell Framework

    Science.gov (United States)

    van Es, Harold

    2016-04-01

    Soil health constraints beyond nutrient limitations and excesses currently limit agroecosystem productivity and sustainability, resilience to drought and extreme rainfall, and progress in soil and water conservation. With mounting pressure to produce food, feed, fiber, and even fuel for an increasing population, the concept of soil health is gaining national and international attention. Multiple regional, national, and global efforts are now leveraging that work to reach new stakeholder audiences, so that soil health management is expanding into mainstream agriculture. Each grower is generally faced with a unique situation in the choice of management options to address soil health constraints and each system affords its own set of opportunities or limitations to soil management. A more comprehensive understanding of soil health status can better guide farmers' management decisions. Until recently, there has not been a formalized decision making process for implementing a soil health management system that alleviates field-specific constrains identified through standard measurements and then maintains improved soil health. This presentation will discuss current US-based efforts related to soil health assessment, including efforts to build national consensus on appropriate methods for simple (inexpensive) and comprehensive tests. This includes the Cornell Soil Health Management Planning and Implementation Framework. The most relevant components of the framework are 1) measurement of indicators that represent critical soil processes, 2) scoring of measured values that allows for interpretation, and 3) linkage of identified constraints with management practices. Land managers can monitor changes over time through further assessment, and adapt management practices to achieve chosen goals. We will discuss the full tests and approaches for simplification.

  14. Abiotic versus biotic controls on soil nitrogen cycling in drylands along a 3200 km transect

    Science.gov (United States)

    Liu, Dongwei; Zhu, Weixing; Wang, Xiaobo; Pan, Yuepeng; Wang, Chao; Xi, Dan; Bai, Edith; Wang, Yuesi; Han, Xingguo; Fang, Yunting

    2017-03-01

    Nitrogen (N) cycling in drylands under changing climate is not well understood. Our understanding of N cycling over larger scales to date relies heavily on the measurement of bulk soil N, and the information about internal soil N transformations remains limited. The 15N natural abundance (δ15N) of ammonium and nitrate can serve as a proxy record for the N processes in soils. To better understand the patterns and mechanisms of N cycling in drylands, we collected soils along a 3200 km transect at about 100 km intervals in northern China, with mean annual precipitation (MAP) ranging from 36 to 436 mm. We analyzed N pools and δ15N of ammonium, dual isotopes (15N and 18O) of nitrate, and the microbial gene abundance associated with soil N transformations. We found that N status and its driving factors were different above and below a MAP threshold of 100 mm. In the arid zone with MAP below 100 mm, soil inorganic N accumulated, with a large fraction being of atmospheric origin, and ammonia volatilization was strong in soils with high pH. In addition, the abundance of microbial genes associated with soil N transformations was low. In the semiarid zone with MAP above 100 mm, soil inorganic N concentrations were low and were controlled mainly by biological processes (e.g., plant uptake and denitrification). The preference for soil ammonium over nitrate by the dominant plant species may enhance the possibility of soil nitrate losses via denitrification. Overall, our study suggests that a shift from abiotic to biotic controls on soil N biogeochemistry under global climate changes would greatly affect N losses, soil N availability, and other N transformation processes in these drylands in China.

  15. Effect of Aggregate Structure on VOC Gas Adsorption onto Volcanic Ash Soil

    OpenAIRE

    濱本, 昌一郎

    2008-01-01

    The understanding of the gaseous adsorption process and the parameters of volatile organic compounds such as organic solvents or fuels onto soils is very important in the analysis of the transport or fate of these chemicals in soils. Batch adsorption experiments with six different treatments were conducted to determine the adsorption of isohexane, a gaseous aliphatic, onto volcanic ash soil (Tachikawa loam). The measured gas adsorption coefficient for samples of Tachikawa loam used in the fir...

  16. Predicting soil formation on the basis of transport-limited chemical weathering

    Science.gov (United States)

    Yu, Fang; Hunt, Allen Gerhard

    2018-01-01

    Soil production is closely related to chemical weathering. It has been shown that, under the assumption that chemical weathering is limited by solute transport, the process of soil production is predictable. However, solute transport in soil cannot be described by Gaussian transport. In this paper, we propose an approach based on percolation theory describing non-Gaussian transport of solute to predict soil formation (the net production of soil) by considering both soil production from chemical weathering and removal of soil from erosion. Our prediction shows agreement with observed soil depths in the field. Theoretical soil formation rates are also compared with published rates predicted using soil age-profile thickness (SAST) method. Our formulation can be incorporated directly into landscape evolution models on a point-to-point basis as long as such models account for surface water routing associated with overland flow. Further, our treatment can be scaled-up to address complications associated with continental-scale applications, including those from climate change, such as changes in vegetation, or surface flow organization. The ability to predict soil formation rates has implications for understanding Earth's climate system on account of the relationship to chemical weathering of silicate minerals with the associated drawdown of atmospheric carbon, but it is also important in geomorphology for understanding landscape evolution, including for example, the shapes of hillslopes, and the net transport of sediments to sedimentary basins.

  17. Effects of soil type, moisture content, redox potential and methyl bromide fumigation on Kd values of radio-selenium in soil

    International Nuclear Information System (INIS)

    Ashworth, D.J.; Moore, J.; Shaw, G.

    2008-01-01

    Understanding the processes that determine the solid-liquid partitioning (K d value) of Se is of fundamental importance in assessing the risk associated with the disposal of radio-selenium-containing waste. Using a mini-column (rather than batch) approach, K d values for 75 Se were determined over time in relation to soil moisture content (field capacity or saturated), redox potential and methyl bromide fumigation (used to disrupt the soil microbial population) in three contrasting soil types: clay loam, organic and sandy loam. The K d values were generally in the range 50-500 L kg -1 , with mean soil K d increasing with increasing organic matter content. Saturation with water lowered the measured redox potentials in the soils. However, only in the sandy loam soil did redox potential become negative, and this led to an increase in 75 Se K d value in this soil. Comparison of the data with the Eh-pH stability diagram for Se suggested that such strong reduction may have been consistent with the formation of the insoluble Se species, selenide. These findings, coupled with the fact that methyl bromide fumigation had no discernible effect on 75 Se K d value in the sandy loam soil, suggest that geochemical, rather than microbial, processes controlled 75 Se partitioning. The inter-relations between soil moisture content, redox potential and Se speciation should be considered in the modelling and assessment of radioactive Se fate and transport in the environment

  18. UNDERSTANDING SEVERE WEATHER PROCESSES THROUGH SPATIOTEMPORAL RELATIONAL RANDOM FORESTS

    Data.gov (United States)

    National Aeronautics and Space Administration — UNDERSTANDING SEVERE WEATHER PROCESSES THROUGH SPATIOTEMPORAL RELATIONAL RANDOM FORESTS AMY MCGOVERN, TIMOTHY SUPINIE, DAVID JOHN GAGNE II, NATHANIEL TROUTMAN,...

  19. Quantifying and modeling soil erosion and sediment export from construction sites in southern California

    Science.gov (United States)

    Wernet, A. K.; Beighley, R. E.

    2006-12-01

    Soil erosion is a power process that continuously alters the Earth's landscape. Human activities, such as construction and agricultural practices, and natural events, such as forest fires and landslides, disturb the landscape and intensify erosion processes leading to sudden increases in runoff sediment concentrations and degraded stream water quality. Understanding soil erosion and sediment transport processes is of great importance to researchers and practicing engineers, who routinely use models to predict soil erosion and sediment movement for varied land use and climate change scenarios. However, existing erosion models are limited in their applicability to constructions sites which have highly variable soil conditions (density, moisture, surface roughness, and best management practices) that change often in both space and time. The goal of this research is to improve the understanding, predictive capabilities and integration of treatment methodologies for controlling soil erosion and sediment export from construction sites. This research combines modeling with field monitoring and laboratory experiments to quantify: (a) spatial and temporal distribution of soil conditions on construction sites, (b) soil erosion due to event rainfall, and (c) potential offsite discharge of sediment with and without treatment practices. Field sites in southern California were selected to monitor the effects of common construction activities (ex., cut/fill, grading, foundations, roads) on soil conditions and sediment discharge. Laboratory experiments were performed in the Soil Erosion Research Laboratory (SERL), part of the Civil and Environmental Engineering department at San Diego State University, to quantify the impact of individual factors leading to sediment export. SERL experiments utilize a 3-m by 10-m tilting soil bed with soil depths up to 1 m, slopes ranging from 0 to 50 percent, and rainfall rates up to 150 mm/hr (6 in/hr). Preliminary modeling, field and laboratory

  20. Connectivity of rainfall and human activity impacts on soil erosion processes in Mediterranean vineyards

    Science.gov (United States)

    Rodrigo-Comino, Jesús; Terol Esparza, Enric; Damián Ruiz-Sinoga, José; Cerdà, Artemi

    2017-04-01

    Soils are recognized as one of the most important components characterizing a terroir (Vaudour et al., 2015). However, the soils of vineyards are one of the most degraded in comparison to other cultivated context due to traditional tillage management (Prosdocimi et al., 2016). The key factor to understand the connectivity between topsoil redistribution and overland flow is the human activity as the management, who can reduce or increase these geomorphological interchanges (sediment and runoff) and changes the soil properties such it was found in different regions and under different crops (Parras-Alcántara et al., 2016). In order to assess this topsoil redistribution in vineyards, the Stock Unearthing Method (SUM) has been accepted to be a reliable method to assess erosion rates and spatial evolution and interchanging of the topsoil, sediments and water flux directions at long-term time scales in vineyards (Brenot et al., 2008; Paroissien et al., 2010; Rodrigo Comino et al., 2016). The SUM is based on the measurement of the distance from the topsoil to the grafted vine stock, confirmed as a passive indicator of topsoil movements since the initial planting of vine stocks. Therefore, the aims of this work are: i) to quantify the soil erosion rates by means of Stock Unearthing Method; ii) to measure the impact of plantation of new vineyards; iii) to compare sediment transport, water flux directions and topsoil redistributions between different soil types, land management (bare soil, amendments, straw mulch…) and soil tillage practices; iv) to assess sediment budgets and water flux direction conditioned by the micro-topographical variations; and, v) to detect key factors and impact on the surface features within the detected connectivity processes (rills and inter-rills…) using cartography. Acknowledgements The research leading to these results has received funding from the COST Action (Connecting European Connectivity Research): ES1306 and the European Union

  1. Hydrous pyrolysis/oxidation process for in situ destruction of chlorinated hydrocarbon and fuel hydrocarbon contaminants in water and soil

    Science.gov (United States)

    Knauss, Kevin G.; Copenhaver, Sally C.; Aines, Roger D.

    2000-01-01

    In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.

  2. Understanding rhizosphere processes to enhance phytoextraction of germanium and rare earth elements

    Science.gov (United States)

    Wiche, Oliver

    2017-04-01

    Germanium (Ge) and rare earth elements (REEs) are economically valuable raw materials that are not actually rare in terms of concentrations in soils but they are hardly available for plant uptake due to interactions with organic matter (SOM), secondary soil constituents such as Fe/Mn oxides and P bearing soil fractions. Processes in the rhizosphere might influence availability of Ge and REEs in the soil-plant system, since lowering of the pH and presence of carboxylates and siderophores (small molecules that strongly chelate Fe and other elements) strongly influences the chemical speciation of Ge and REEs in soil and consequently this comprehensive knowledge helps us to improve phytomining. In a series of field and greenhouse experiments 16 plant species from the functional groups of grasses, herbs and legumes were tested with regard to their accumulation efficiency of Ge and REEs in shoots. Subsequently, we conducted mixed culture experiments in which inefficient species (e.g. cereals like Avena sativa, Hordeum vulgare, Panicum miliaceum) were cultivated in mixed cultures with efficient species (Lupinus albus, Lupinus angustifolius). Based on the plant concentrations a principal component analysis (PCA) was performed to identify significant factors that explain the accumulation behavior of different plant species with regard to Ge, REEs, Si, Fe and Mn. In this analysis Mn was used to identify plant species with efficient mechanisms to access sparingly available P-resources in soils. Particularly in nonmycorrhizal species concentrations of Mn in leaves often indicate a carboxylate based P-mobilising strategy. Herbaceous plant species accumulated significantly higher amounts of REEs while grasses accumulated significantly higher amounts of Ge. Concentrations of Ge in shoots of grasses correlated significantly positive with Si, but negatively with concentrations of Mn. Indeed, the results of the PCA clearly show that plants with high Mn concentrations tend to have

  3. Dynamics of bacterial communities in two unpolluted soils after spiking with phenanthrene: soil type specific and common responders

    Directory of Open Access Journals (Sweden)

    Guo-Chun eDing

    2012-08-01

    Full Text Available Considering their key role for ecosystem processes, it is important to understand the response of microbial communities in unpolluted soils to pollution with polycyclic aromatic hydrocarbons (PAH. Phenanthrene, a model compound for PAH, was spiked to a Cambisol and a Luvisol soil. Total community DNA from phenanthrene-spiked and control soils collected on days 0, 21 and 63 were analyzed based on PCR-amplified 16S rRNA genefragments. Denaturing gradient gel electrophoresis (DGGE fingerprints of bacterial communities increasingly deviated with time between spiked and control soils. In taxon specific DGGE, significant responses of Alphaproteobacteria and Actinobacteria became only detectable after 63 days, while significant effects on Betaproteobacteria were detectable in both soils after 21 days. Comparison of the taxonomic distribution of bacteria in spiked and control soils on day 63 as revealed by pyrosequencing indicated soil type specific negative effects of phenanthrene on several taxa, many of them belonging to the Gamma-, Beta- or Deltaproteobacteria. Bacterial richness and evenness decreased in spiked soils. Despite the significant differences in the bacterial community structure between both soils on day 0, similar genera increased in relative abundance after PAH spiking, especially Sphingomonas and Polaromonas. However, this did not result in an increased overall similarity of the bacterial communities in both soils.

  4. Soil respiration in the cold desert environment of the Colorado Plateau (USA): Abiotic regulators and thresholds

    Science.gov (United States)

    Fernandez, D.P.; Neff, J.C.; Belnap, J.; Reynolds, R.L.

    2006-01-01

    Decomposition is central to understanding ecosystem carbon exchange and nutrient-release processes. Unlike mesic ecosystems, which have been extensively studied, xeric landscapes have received little attention; as a result, abiotic soil-respiration regulatory processes are poorly understood in xeric environments. To provide a more complete and quantitative understanding about how abiotic factors influence soil respiration in xeric ecosystems, we conducted soil- respiration and decomposition-cloth measurements in the cold desert of southeast Utah. Our study evaluated when and to what extent soil texture, moisture, temperature, organic carbon, and nitrogen influence soil respiration and examined whether the inverse-texture hypothesis applies to decomposition. Within our study site, the effect of texture on moisture, as described by the inverse texture hypothesis, was evident, but its effect on decomposition was not. Our results show temperature and moisture to be the dominant abiotic controls of soil respiration. Specifically, temporal offsets in temperature and moisture conditions appear to have a strong control on soil respiration, with the highest fluxes occurring in spring when temperature and moisture were favorable. These temporal offsets resulted in decomposition rates that were controlled by soil moisture and temperature thresholds. The highest fluxes of CO2 occurred when soil temperature was between 10 and 16??C and volumetric soil moisture was greater than 10%. Decomposition-cloth results, which integrate decomposition processes across several months, support the soil-respiration results and further illustrate the seasonal patterns of high respiration rates during spring and low rates during summer and fall. Results from this study suggest that the parameters used to predict soil respiration in mesic ecosystems likely do not apply in cold-desert environments. ?? Springer 2006.

  5. Understanding controls of hydrologic processes across two headwater monolithological catchments using model-data synthesis

    Science.gov (United States)

    Xiao, D.; Shi, Y.; Hoagland, B.; Del Vecchio, J.; Russo, T. A.; DiBiase, R. A.; Li, L.

    2017-12-01

    How do watershed hydrologic processes differ in catchments derived from different lithology? This study compares two first order, deciduous forest watersheds in Pennsylvania, a sandstone watershed, Garner Run (GR, 1.34 km2), and a shale-derived watershed, Shale Hills (SH, 0.08 km2). Both watersheds are simulated using a combination of national datasets and field measurements, and a physics-based land surface hydrologic model, Flux-PIHM. We aim to evaluate the effects of lithology on watershed hydrology and assess if we can simulate a new watershed without intensive measurements, i.e., directly use calibration information from one watershed (SH) to reproduce hydrologic dynamics of another watershed (GR). Without any calibration, the model at GR based on national datasets and calibration inforamtion from SH cannot capture some discharge peaks or the baseflow during dry periods. The model prediction agrees well with the GR field discharge and soil moisture after calibrating the soil hydraulic parameters using the uncertainty based Hornberger-Spear-Young algorithm and the Latin Hypercube Sampling method. Agreeing with the field observation and national datasets, the difference in parameter values shows that the sandstone watershed has a larger averaged soil pore diameter, greater water storage created by porosity, lower water retention ability, and greater preferential flow. The water budget calculation shows that the riparian zone and the colluvial valley serves as buffer zones that stores water at GR. Using the same procedure, we compared Flux-PIHM simulations with and without a field measured surface boulder map at GR. When the boulder map is used, the prediction of areal averaged soil moisture is improved, without performing extra calibration. When calibrated separately, the cases with or without boulder map yield different calibration values, but their hydrologic predictions are similar, showing equifinality. The calibrated soil hydraulic parameter values in the

  6. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?

    Science.gov (United States)

    Cotrufo, M Francesca; Wallenstein, Matthew D; Boot, Claudia M; Denef, Karolien; Paul, Eldor

    2013-04-01

    The decomposition and transformation of above- and below-ground plant detritus (litter) is the main process by which soil organic matter (SOM) is formed. Yet, research on litter decay and SOM formation has been largely uncoupled, failing to provide an effective nexus between these two fundamental processes for carbon (C) and nitrogen (N) cycling and storage. We present the current understanding of the importance of microbial substrate use efficiency and C and N allocation in controlling the proportion of plant-derived C and N that is incorporated into SOM, and of soil matrix interactions in controlling SOM stabilization. We synthesize this understanding into the Microbial Efficiency-Matrix Stabilization (MEMS) framework. This framework leads to the hypothesis that labile plant constituents are the dominant source of microbial products, relative to input rates, because they are utilized more efficiently by microbes. These microbial products of decomposition would thus become the main precursors of stable SOM by promoting aggregation and through strong chemical bonding to the mineral soil matrix. © 2012 Blackwell Publishing Ltd.

  7. Diagnosing Soil Moisture Anomalies and Neglected Soil Moisture Source/Sink Processes via a Thermal Infrared-based Two-Source Energy Balance Model

    Science.gov (United States)

    Hain, C.; Crow, W. T.; Anderson, M. C.; Yilmaz, M. T.

    2014-12-01

    Atmospheric processes, especially those that occur in the surface and boundary layer, are significantly impacted by soil moisture (SM). Due to the observational gaps in the ground-based monitoring of SM, methodologies have been developed to monitor SM from satellite platforms. While many have focused on microwave methods, observations of thermal infrared land surface temperature (LST) also provides a means of providing SM information. One particular TIR SM method exploits surface flux predictions retrieved from the Atmosphere Land Exchange Inverse (ALEXI) model. ALEXI uses a time-differential measurement of morning LST rise to diagnose the partitioning of net radiation into surface energy fluxes. Here an analysis will be presented to study relationships between three SM products during a multi-year period (2000-2013) from an active/passive microwave dataset (ECV), a TIR-based model (ALEXI), and a land surface model (Noah) over the CONUS. Additionally, all three will be compared against in-situ SM observations from the North American Soil Moisture Database. The second analysis will focus on the use of ALEXI towards diagnosing SM source/sink processes. Traditional soil water balance modeling is based on one-dimensional (vertical-only) water flow, free drainage at the bottom of the soil column, and neglecting ancillary inputs due to processes such as irrigation. However, recent work has highlighted the importance of secondary water source (e.g., irrigation, groundwater extraction, inland wetlands, lateral flows) and sink (e.g., tile drainage in agricultural areas) processes on the partitioning of evaporative and sensible heat fluxes. ALEXI offers a top-down approach for mapping areas where SM source/sink processes have a significant impact on the surface energy balance. Here we present an index, ASSET, that is based on comparisons between ALEXI latent heat flux (LE) estimates and LE predicted by a free-drainage prognostic LSM lacking irrigation, groundwater and tile

  8. Making US Soil Taxonomy more scientifically applicable to environmental and food security issues.

    Science.gov (United States)

    Monger, Curtis; Lindbo, David L.; Wysocki, Doug; Schoeneberger, Phil; Libohova, Zamir

    2017-04-01

    US Department of Agriculture began mapping soils in the 1890s on a county-by-county basis until most of the conterminous United States was mapped by the late 1930s. This first-generation mapping was followed by a second-generation that re-mapped the US beginning in the 1940s. Soil classification during these periods evolved into the current system of Soil Taxonomy which is based on (1) soil features as natural phenomena and on (2) soil properties important for agriculture and other land uses. While this system has enabled communication among soil surveyors, the scientific applicability of Soil Taxonomy to address environmental and food security issues has been under-utilized. In particular, little effort has been exerted to understand how soil taxa interact and function together as larger units—as soil systems. Thus, much soil-geomorphic understanding that could be applied to process-based modeling remains unexploited. The challenge for soil taxonomists in the United States and elsewhere is to expand their expertise and work with modelers to explore how soil taxa are linked to each other, how they influence water, nutrient, and pollutant flow through the landscape, how they interact with ecology, and how they change with human land use.

  9. Habitat and Biodiversity: One out of five essential soil functions for agricultural soils

    Science.gov (United States)

    Trinsoutrot Gattin, Isabelle; Creamer, Rachel; van Leeuwen, Jeroen; Vrebos, Dirk; Gatti, Fabio; Bampa, Francesca; Schulte, Rogier; Rutgers, Michiel

    2017-04-01

    Current agricultural challenges require developing new agricultural systems that can optimize the ecological functioning of soils in order to limit the use of chemical inputs (i.e. disease suppression) and maintain a high organic matter content. This implies our ability to evaluate the effects of management practices on immediate performance objectives (i.e. fertility linked to nutrient cycling) but also in longer-term objective (i.e. C cycling and storage) in a variety of agro-climatic conditions. These issues demand the development of systemic approaches for understanding the determinants of soil functioning. In ecology, it is generally accepted that there are many positive relationships between soil biodiversity indicators and the functioning of ecosystems. Indeed, soil organisms and their interactions are essential drivers of ecosystem processes and impact the response, resilience and adaptability of ecosystems to environmental pressures. Thus, maintaining soil biodiversity is a condition for the sustainability of cropping systems. In this new context, the European project Landmark considers soil functions as a key to the improvement of agricultural land management towards sustainable development goals, amongst the five functions is soil biodiversity and habitat provisioning. We propose to present how we manage within this project to deal with this challenging objective at three spatial scales : field, landscape (regional) and European (policy). We aim to define a link between the physical, chemical and biological soil properties and "habitat & biodiversity" soil function in order to identify key indicators which modulate biodiversity. This will allow us to quantify and assess this soil function, in order to provide insight in win wins and tradeoffs in soil functions to enhance management practices which optimise the biodiversity in European agricultural systems.

  10. Incorporating soil variability in continental soil water modelling: a trade-off between data availability and model complexity

    Science.gov (United States)

    Peeters, L.; Crosbie, R. S.; Doble, R.; van Dijk, A. I. J. M.

    2012-04-01

    Developing a continental land surface model implies finding a balance between the complexity in representing the system processes and the availability of reliable data to drive, parameterise and calibrate the model. While a high level of process understanding at plot or catchment scales may warrant a complex model, such data is not available at the continental scale. This data sparsity is especially an issue for the Australian Water Resources Assessment system, AWRA-L, a land-surface model designed to estimate the components of the water balance for the Australian continent. This study focuses on the conceptualization and parametrization of the soil drainage process in AWRA-L. Traditionally soil drainage is simulated with Richards' equation, which is highly non-linear. As general analytic solutions are not available, this equation is usually solved numerically. In AWRA-L however, we introduce a simpler function based on simulation experiments that solve Richards' equation. In the simplified function soil drainage rate, the ratio of drainage (D) over storage (S), decreases exponentially with relative water content. This function is controlled by three parameters, the soil water storage at field capacity (SFC), the drainage fraction at field capacity (KFC) and a drainage function exponent (β). [ ] D- -S- S = KF C exp - β (1 - SFC ) To obtain spatially variable estimates of these three parameters, the Atlas of Australian Soils is used, which lists soil hydraulic properties for each soil profile type. For each soil profile type in the Atlas, 10 days of draining an initially fully saturated, freely draining soil is simulated using HYDRUS-1D. With field capacity defined as the volume of water in the soil after 1 day, the remaining parameters can be obtained by fitting the AWRA-L soil drainage function to the HYDRUS-1D results. This model conceptualisation fully exploits the data available in the Atlas of Australian Soils, without the need to solve the non

  11. Continuous soil maps - a fuzzy set approach to bridge the gap between aggregation levels of process and distribution models

    NARCIS (Netherlands)

    Gruijter, de J.J.; Walvoort, D.J.J.; Gaans, van P.F.M.

    1997-01-01

    Soil maps as multi-purpose models of spatial soil distribution have a much higher level of aggregation (map units) than the models of soil processes and land-use effects that need input from soil maps. This mismatch between aggregation levels is particularly detrimental in the context of precision

  12. Toward understanding dynamic annealing processes in irradiated ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Michael Thomas [Texas A & M Univ., College Station, TX (United States)

    2013-05-01

    High energy particle irradiation inevitably generates defects in solids. The ballistic formation and thermalization of the defect creation process occur rapidly, and are believed to be reasonably well understood. However, knowledge of the evolution of defects after damage cascade thermalization, referred to as dynamic annealing, is quite limited. Unraveling the mechanisms associated with dynamic annealing is crucial since such processes play an important role in the formation of stable postirradiation disorder in ion-beam-processing of semiconductors, and determines the “radiation tolerance” of many nuclear materials. The purpose of this dissertation is to further our understanding of the processes involved in dynamic annealing. In order to achieve this, two main tasks are undertaken.

  13. Soil fauna: key to new carbon models

    Science.gov (United States)

    Filser, Juliane; Faber, Jack H.; Tiunov, Alexei V.; Brussaard, Lijbert; Frouz, Jan; De Deyn, Gerlinde; Uvarov, Alexei V.; Berg, Matty P.; Lavelle, Patrick; Loreau, Michel; Wall, Diana H.; Querner, Pascal; Eijsackers, Herman; José Jiménez, Juan

    2016-11-01

    Soil organic matter (SOM) is key to maintaining soil fertility, mitigating climate change, combatting land degradation, and conserving above- and below-ground biodiversity and associated soil processes and ecosystem services. In order to derive management options for maintaining these essential services provided by soils, policy makers depend on robust, predictive models identifying key drivers of SOM dynamics. Existing SOM models and suggested guidelines for future SOM modelling are defined mostly in terms of plant residue quality and input and microbial decomposition, overlooking the significant regulation provided by soil fauna. The fauna controls almost any aspect of organic matter turnover, foremost by regulating the activity and functional composition of soil microorganisms and their physical-chemical connectivity with soil organic matter. We demonstrate a very strong impact of soil animals on carbon turnover, increasing or decreasing it by several dozen percent, sometimes even turning C sinks into C sources or vice versa. This is demonstrated not only for earthworms and other larger invertebrates but also for smaller fauna such as Collembola. We suggest that inclusion of soil animal activities (plant residue consumption and bioturbation altering the formation, depth, hydraulic properties and physical heterogeneity of soils) can fundamentally affect the predictive outcome of SOM models. Understanding direct and indirect impacts of soil fauna on nutrient availability, carbon sequestration, greenhouse gas emissions and plant growth is key to the understanding of SOM dynamics in the context of global carbon cycling models. We argue that explicit consideration of soil fauna is essential to make realistic modelling predictions on SOM dynamics and to detect expected non-linear responses of SOM dynamics to global change. We present a decision framework, to be further developed through the activities of KEYSOM, a European COST Action, for when mechanistic SOM models

  14. The International year of soils: thoughts on future directions for experiments in soil erosion research

    Science.gov (United States)

    Kuhn, Nikolaus J.

    2015-04-01

    The 2015 UN Year of Soils (IYS), implemented by the FAO, aims to increase awareness and understanding of the importance of soil for food security and essential ecosystem functions. The IYS has six specific objectives, ranging from raising the awareness among civil society and decision makers about the profound importance of soils, to the development of policies supporting the sustainable use of the non-renewable soil resource. For scientists and academic teachers using experiments to study soil erosion processes, two objectives appear of particular relevance. First is need for the rapid capacity enhancement for soil information collection and monitoring at all levels (global, regional and national). While at first glance, this objective appears to relate mostly to traditional mapping, sampling and monitoring, the threat of large-scale soil loss, at least with regards to their ecosystem services, illustrates the need for approaches of studying soils that avoids such irreversible destruction. Relying on often limited data and their extrapolation does not cover this need for soil information because rapid change of the drivers of change itself carry the risk of unprecedented soil reactions not covered by existing data sets. Experiments, on the other hand, offer the possibility to simulate and analyze future soil change in great detail. Furthermore, carefully designed experiments may also limit the actual effort involved in collecting the specific required information, e.g. by applying tests designed to study soil system behavior under controlled conditions, compared to field monitoring. For rainfall simulation, experiments should therefore involve the detailed study of erosion processes and include detailed recording and reporting of soil and rainfall properties. The development of a set of standardised rainfall simulations would widen the use data collected by such experiments. A second major area for rainfall simulation lies in the the education of the public about

  15. The spatial distribution of exoenzyme activities across the soil micro-landscape, as measured in micro- and macro-aggregates, and ecosystem processes

    DEFF Research Database (Denmark)

    Kim, Haryun; Nunan, Naoise; Dechesne, Arnaud

    2015-01-01

    The spatial ecology of soil microbial communities and their functioning is an understudied aspect of soil microbial ecology. Much of our understanding of the spatial organisation of microbial communities has been obtained at scales that are inappropriate for identifying how microbial functioning ...

  16. Effect of rainfall infiltration into unsaturated soil using soil column

    Science.gov (United States)

    Ibrahim, A.; Mukhlisin, M.; Jaafar, O.

    2018-02-01

    Rainfall especially in tropical region caused infiltration to the soil slope. The infiltration may change pore water pressure or matric suction of the soil. The event of rainfall infiltration into soil is a complex mechanism. Therefore, the main objectives of this research paper is to study the influence of rainfall intensity and duration that changed pore water pressure to soil. There are two types of soils used in this study; forest soil and kaolin. Soil column apparatus is used for experiments. Rainfall were applied to the soil and result for 3, 6, 12, 24, 72, 120 and 168 hours were retrieved. Result shows that for the both types of soil, the negative pore water pressures were increased during wetting process and gradually decreased towards drying process. The results also show that pore water pressure at top part was increased greatly as the wetting process started compared to the middle and bottom part of the column.

  17. Relationship of microbial processes to the fate and behavior of transuranic elements in soils, plants, and animals

    International Nuclear Information System (INIS)

    Wildung, R.E.; Garland, T.R.

    1980-01-01

    Soil physicochemical and microbial processes influence the long-term solubility, form, and bioavailability of plutonium and other transuranic elements important in the nuclear fuel cycle. Consideration is given to the chemistry/microbiology of the transuranic elements in soil, emphasizing possible organic complexation reactions in soils and plants and the relationship of these phenomena to gastrointestinal absorption

  18. STRAIN-STRESS DISTRIBUTION OF “HOMOGENEOUS” SOIL MASS DURING THE LOAD TRANSMITTED THROUGH THE LIMITED AREA IN THE PLAN, APPLIED INSIDE THE ELASTIC HOMOGENEOUS SOIL MASS

    Directory of Open Access Journals (Sweden)

    BOLSHAKOV V. I.

    2017-03-01

    Full Text Available Summary. Based on the current understanding of the piles work in clayey soils; that is forming during driving process a compacted core (compacted platform in the pile tip plane and transferring the load from the pile (from the piling foundation not through the pile tip but through the pressed core (compacted platform, the stress in the soil mass by the load applied inside the elastic half-space is determined with the change in the calculated scheme of load transferring to the “homogeneous” soil mass.

  19. Geophysical Methods for Monitoring Soil Stabilization Processes

    Science.gov (United States)

    Soil stabilization involves methods used to turn unconsolidated and unstable soil into a stiffer, consolidated medium that could support engineered structures, alter permeability, change subsurface flow, or immobilize contamination through mineral precipitation. Among the variety...

  20. Impact of Climate Change on Soil and Groundwater Chemistry Subject to Process Waste Land Application

    Science.gov (United States)

    McNab, W. W.

    2013-12-01

    Nonhazardous aqueous process waste streams from food and beverage industry operations are often discharged via managed land application in a manner designed to minimize impacts to underlying groundwater. Process waste streams are typically characterized by elevated concentrations of solutes such as ammonium, organic nitrogen, potassium, sodium, and organic acids. Land application involves the mixing of process waste streams with irrigation water which is subsequently applied to crops. The combination of evapotranspiration and crop salt uptake reduces the downward mass fluxes of percolation water and salts. By carefully managing application schedules in the context of annual climatological cycles, growing seasons, and process requirements, potential adverse environmental impacts to groundwater can be mitigated. However, climate change poses challenges to future process waste land application efforts because the key factors that determine loading rates - temperature, evapotranspiration, seasonal changes in the quality and quantity of applied water, and various crop factors - are all likely to deviate from current averages. To assess the potential impact of future climate change on the practice of land application, coupled process modeling entailing transient unsaturated fluid flow, evapotranspiration, crop salt uptake, and multispecies reactive chemical transport was used to predict changes in salt loading if current practices are maintained in a warmer, drier setting. As a first step, a coupled process model (Hydrus-1D, combined with PHREEQC) was calibrated to existing data sets which summarize land application loading rates, soil water chemistry, and crop salt uptake for land disposal of process wastes from a food industry facility in the northern San Joaquin Valley of California. Model results quantify, for example, the impacts of evapotranspiration on both fluid flow and soil water chemistry at shallow depths, with secondary effects including carbonate mineral

  1. Studies of soil and ecohydrological processes in oil-gas production regions.

    Science.gov (United States)

    Khodyreva, E. Ya.; Khodyrev, Yu. P.

    2009-04-01

    For a better understanding and describing of the functional interactions between processes in soil and drinking, underground and stratum waters in oil-gas production regions we used laboratory and field monitoring methods of studies. The control of ecological situation dynamics in oil-gas production regions proposes a presence of primary data about parameter-indicators, which characterize a state of the object under investigation. One of these parameters is the concentration of heavy metal salts in drinking and stratum waters. Isolation of some compounds, which are extracted as impurities of oil and water during recovery of hydrocarbons from productive horizons, would enhance profitableness of recovery. Because accompanying impurities are a mixture of different salts and complexes, the methods of multielement analysis give the most objective evaluation of total content of some elements by search and prospecting. The developed method of laser mass-spectrometric analysis of oil and drinking, underground and industrial waters allows to investigate the samples on all elements of the periodical system simultaneously with limit sensitivity 0.1 mkg/l. The preparation of the oil and water probes was carried out by sublimation of highly volatile fractions in vacuum at 100 0C. The samples of drinking and underground waters, oils and industrial waters from wells of oil field Romashkin (Tatarstan) were chosen as the object for the research. In respect to possible metal extraction scandium is of most interest in inspected area because it's very high cost and availability of water-soluble pattern, most probably chloride. Its concentration in one well was 1 mg/l in water and 0.01 mg/l in oil. According to the received data of laser mass-spectrometric analysis, industrial waters on the activity investigated territory joint-stock company "Tatneft" contain 220-330 kg / ton of salts of metals that does by their potential source of alternative raw material for the chemical industry

  2. Transport mechanisms of soil-bound mercury in the erosion process during rainfall-runoff events.

    Science.gov (United States)

    Zheng, Yi; Luo, Xiaolin; Zhang, Wei; Wu, Xin; Zhang, Juan; Han, Feng

    2016-08-01

    Soil contamination by mercury (Hg) is a global environmental issue. In watersheds with a significant soil Hg storage, soil erosion during rainfall-runoff events can result in nonpoint source (NPS) Hg pollution and therefore, can extend its environmental risk from soils to aquatic ecosystems. Nonetheless, transport mechanisms of soil-bound Hg in the erosion process have not been explored directly, and how different fractions of soil organic matter (SOM) impact transport is not fully understood. This study investigated transport mechanisms based on rainfall-runoff simulation experiments. The experiments simulated high-intensity and long-duration rainfall conditions, which can produce significant soil erosion and NPS pollution. The enrichment ratio (ER) of total mercury (THg) was the key variable in exploring the mechanisms. The main study findings include the following: First, the ER-sediment flux relationship for Hg depends on soil composition, and no uniform ER-sediment flux function exists for different soils. Second, depending on soil composition, significantly more Hg could be released from a less polluted soil in the early stage of large rainfall events. Third, the heavy fraction of SOM (i.e., the remnant organic matter coating on mineral particles) has a dominant influence on the enrichment behavior and transport mechanisms of Hg, while clay mineral content exhibits a significant, but indirect, influence. The study results imply that it is critical to quantify the SOM composition in addition to total organic carbon (TOC) for different soils in the watershed to adequately model the NPS pollution of Hg and spatially prioritize management actions in a heterogeneous watershed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Electrochemical soil remediation - accelerated soil weathering?

    Energy Technology Data Exchange (ETDEWEB)

    Ottosen, L.M.; Villumsen, A.; Hansen, H.K.; Jensen, P.E.; Pedersen, A.J. [Dept. of Civil Engineering, Technical Univ. of Denmark, Lyngby (Denmark); Ribeiro, A.B. [Dept. of Environmental Sciences and Engineering, New Univ. of Lisbon, Monte da Caparica (Portugal)

    2001-07-01

    In electrochemical soil remediation systems, where enhancement solutions and complexing agents are not used, a developing acidic front is mobilizing the heavy metals and the electric current is removing the mobilized elements from the soil. The hypotheses investigated in this paper is whether this process may be comparable to the chemical soil weathering that occurs in the environment due to the acidic rain, where the mobilized elements are removed from the soil by the penetrating water. Even through the weathering process is highly accelerated in the electrochemical cell. This paper shows results from electrodialytic remediation experiments performed with four different Danish heavy metal polluted soils. The main emphasis is laid on the relation between the developing acidic front and electromigration of Cu, Zn, Mn, Mg, Fe and Ca. (orig.)

  4. The Efficiency of Strontium-90 Desorption Using Iron (III Solutions in the Decontamination Process of Radioactive Soils

    Directory of Open Access Journals (Sweden)

    Olga Vladimirovna Cheremisina

    2018-03-01

    Full Text Available The paper presents the investigation on the estimated efficiency of iron (III chloride solutions in the decontamination process of radioactive soils with 90 Sr, according to kinetic and thermodynamic characteristics of the desorption process. The specific 90 Sr radioactivity of soil samples was (3.9±0.3·104 Bq·g. The adsorption isotherms of Sr 2+ and Fe 3+ are described with the Langmuir equation. The values of Gibbs energy G0298 = -4.65 kJ·mol -1 and equilibrium ion exchange constant Keq = 6,5 confirm the hypothesis of strontium removal from soils with iron (III cations. The effectiveness of the method is substantiated by experimental and calculated results of this study samples of radioactive soils are deactivated in 90% after 9.5 hours, whereas the kinetic constant is 6.77·10 s -1 . The suggested method of soil cleanup with 0.2 M Fe 3+ solutions is optimal and complies with the environmental requirements.

  5. Evaluation of Integrated Time-Temperature Effect in Pyrolysis Process of Historically Contaminated Soils with Cadmium (Cd and Lead (Pb

    Directory of Open Access Journals (Sweden)

    Bulmău C

    2013-04-01

    Full Text Available It is already known that heavy metals pollution causes important concern to human and ecosystem health. Heavy metals in soils at the European level represents 37.3% between main contaminates affecting soils (EEA, 2007. This paper illustrates results obtained in the framework of laboratory experiments concerning the evaluation of integrated time-temperature effect in pyrolysis process applied to contaminated soil by two different ways: it is about heavy metals historically contaminated soil from one of the most polluted areas within Romania, and artificially contaminated with PCB-containing transformer oil. In particular, the authors focused on a recent evaluation of pyrolysis efficiency on removing lead (Pb and cadmium (Cd from the contaminated soil. The experimental study evaluated two important parameters related to the studied remediation methodology: thermal process temperature and the retention time in reactor of the contaminated soils. The remediation treatments were performed in a rotary kiln reactor, taking into account three process temperatures (400°C, 600°C and 800°C and two retention times: 30 min. and 60 min. Completed analyses have focused on pyrolysis solids and gas products. Consequently, both ash and gas obtained after pyrolysis process were subjected to chemical analyses.

  6. Geochemical and radiological characterization of soils from former radium processing sites.

    Science.gov (United States)

    Landa, E R

    1984-02-01

    Soil samples were collected from former radium processing sites in Denver, CO, and East Orange, NJ. Particle-size separations and radiochemical analyses of selected samples showed that while the greatest contents of both 226Ra and U were generally found in the finest (less than 45 micron) fraction, the pattern was not always of progressive increase in radionuclide content with decreasing particle size. Leaching tests on these samples showed a large portion of the 226Ra and U to be soluble in dilute hydrochloric acid. Radon-emanation coefficients measured for bulk samples of contaminated soil were about 20%. Recovery of residual uranium and vanadium, as an adjunct to any remedial action program, appears unlikely due to economic considerations.

  7. Modelling carbon and nitrogen turnover in variably saturated soils

    Science.gov (United States)

    Batlle-Aguilar, J.; Brovelli, A.; Porporato, A.; Barry, D. A.

    2009-04-01

    Natural ecosystems provide services such as ameliorating the impacts of deleterious human activities on both surface and groundwater. For example, several studies have shown that a healthy riparian ecosystem can reduce the nutrient loading of agricultural wastewater, thus protecting the receiving surface water body. As a result, in order to develop better protection strategies and/or restore natural conditions, there is a growing interest in understanding ecosystem functioning, including feedbacks and nonlinearities. Biogeochemical transformations in soils are heavily influenced by microbial decomposition of soil organic matter. Carbon and nutrient cycles are in turn strongly sensitive to environmental conditions, and primarily to soil moisture and temperature. These two physical variables affect the reaction rates of almost all soil biogeochemical transformations, including microbial and fungal activity, nutrient uptake and release from plants, etc. Soil water saturation and temperature are not constants, but vary both in space and time, thus further complicating the picture. In order to interpret field experiments and elucidate the different mechanisms taking place, numerical tools are beneficial. In this work we developed a 3D numerical reactive-transport model as an aid in the investigation the complex physical, chemical and biological interactions occurring in soils. The new code couples the USGS models (MODFLOW 2000-VSF, MT3DMS and PHREEQC) using an operator-splitting algorithm, and is a further development an existing reactive/density-dependent flow model PHWAT. The model was tested using simplified test cases. Following verification, a process-based biogeochemical reaction network describing the turnover of carbon and nitrogen in soils was implemented. Using this tool, we investigated the coupled effect of moisture content and temperature fluctuations on nitrogen and organic matter cycling in the riparian zone, in order to help understand the relative

  8. Characterization of waste products prepared from radioactive contaminated clayey soil cemented according to the GEODUR process

    International Nuclear Information System (INIS)

    Brodersen, K.; Vinther, A.

    1990-11-01

    Radioactive contaminated soil may arise due to accidents of various types or may be detected during decommisioning of nuclear installations. Ordinary surface soil cannot normally be conditioned using conventional cementation processes since the content of humic materials retards or prevents the solidification. An additive available from the Danish firm Geodur A/S makes it possible to circumvent this difficulty and to produce a monolithic, nondusting waste type using rather small amounts of cement. The report describes work on characterization of such a cemented waste product prepared on basis of clayey top soil from the Risoe area. The claimed advantages of the process was verified, and data for the compression strength (low), hydraulic conductivity (satisfactory) and other pore structure-related properties are given for the obtained products. Unfortunately the behaviour of cesium and strontium, representing two of the most relevant radionuclides, was not too promising. The retention of cesium is satisfactory, but less good than for the untreated soil. Greatly improved cesium retention after drying of the materials was noticed. Good retention of strontium is only obtained after reaction of the material with carbon dioxide from the atmosphere. The behaviour of the two isotopes in other types of cemented waste is somewhat similar, but the decrease in retention compared with untreated soil makes the process less interesting as a possibility for remedial actions after accidents, etc. Some further studies of the cemented soil waste are beeing made within the frame of the Nordic Nuclear Safety Studies. Elements forming low solublity components in the high pH environment in the cemented soil will probably be retained quite efficiently. This was demonstrated in case of Zn. (author) 11 tabs., 22 ills., 8 refs

  9. Trace metal pyritization variability in response to mangrove soil aerobic and anaerobic oxidation processes.

    Science.gov (United States)

    Machado, W; Borrelli, N L; Ferreira, T O; Marques, A G B; Osterrieth, M; Guizan, C

    2014-02-15

    The degree of iron pyritization (DOP) and degree of trace metal pyritization (DTMP) were evaluated in mangrove soil profiles from an estuarine area located in Rio de Janeiro (SE Brazil). The soil pH was negatively correlated with redox potential (Eh) and positively correlated with DOP and DTMP of some elements (Mn, Cu and Pb), suggesting that pyrite oxidation generated acidity and can affect the importance of pyrite as a trace metal-binding phase, mainly in response to spatial variability in tidal flooding. Besides these aerobic oxidation effects, results from a sequential extraction analyses of reactive phases evidenced that Mn oxidized phase consumption in reaction with pyrite can be also important to determine the pyritization of trace elements. Cumulative effects of these aerobic and anaerobic oxidation processes were evidenced as factors affecting the capacity of mangrove soils to act as a sink for trace metals through pyritization processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Preliminary laboratory study of plutonium-238 dissolution from Mound soil by means of the ACT*DE*CONSM process

    International Nuclear Information System (INIS)

    Brown, K.A.; Heinrich, R.R.; Johnson, D.O.; Edgar, D.E.

    1992-04-01

    The treatment of contaminated soil presents a significant technical problem. Soil-washing and chemical-extraction methods have proven to be effective for specific applications, but a process with more comprehensive treatment properties that is both cost-effective and environmentally propitious is needed. Bradtec, Inc., has developed a process, the ACT*DE*CON SM process, that has been tested on soil contaminated with plutonium. The process effectively extracted Pu-238 after three washes, reducing the contamination levels from approximately 20 Bq/g to 1.6--1.9 Bq/g and yielding a decontamination factor ranging from 11 to 13. By using four or more ACT*DE*CON SM washes or a continuous-flow process with ACT*DE*CON SM solvents on a pilot-scale test, a target decontamination level of 0.93 Bq/g might be achievable

  11. Use of morphometric soil aggregates parameters to evaluate the reclamation process in mined areas located at amazon forest - Brazil

    Science.gov (United States)

    Ribeiro, A. I.; Fengler, F. H.; Longo, R. M.; Mello, G. F.; Damame, D. B.; Crowley, D. E.

    2015-12-01

    Brazil has a high mineral potential that have been explored over the years. A large fraction of these mineral resources are located in Amazon region, which is known for its large biodiversity and world climate importance. As the policies that control the Amazon preservation are relatively new, several mining activities have been exploring the Amazon territory, promoting a large process of degradation. Once the mining activities have a high potential of environmental changes the government created polices to restrain the mining in Amazon forests and obligate mining companies to reclaim theirs minded areas. However, the measurement of reclamation development still is a challenging task for the Professionals involved. The volume and complexity of the variables, allied to the difficulty in identifying the reclamation of ecosystem functionalities are still lack to ensure the reclamation success. In this sense this work aims to investigate the representativeness of morphometric soil aggregates parameters in the understanding of reclamation development. The study area is located in the National Forest of Jamari, State of Rondônia. In the past mining companies explored the region producing eight closed mines that are now in reclamation process. The soil aggregates morphometric measurements: geometric mean diameter (GMD), aggregate circularity index, and aggregate roundness, were choose based in its obtaining facility, and their association to biological activity. To achieve the proposed objective the aggregates of eight sites in reclamation, from different closed mines, where chosen and compared to Amazon forest and open mine soil aggregates. The results were analyzed to one way ANOVA to identifying differences between areas in reclamation, natural ecosystem, and open mine. It was obtained differences for GMD and circularity index. However, only the circularity index allowed to identifying differences between the reclamation sites. The results allowed concluding: (1

  12. Urbanization Effects on the Vertical Distribution of Soil Microbial Communities and Soil C Storage across Edge-to-Interior Urban Forest Gradients

    Science.gov (United States)

    Rosier, C. L.; Van Stan, J. T., II; Trammell, T. L.

    2017-12-01

    Urbanization alters environmental conditions such as temperature, moisture, carbon (C) and nitrogen (N) deposition affecting critical soil processes (e.g., C storage). Urban soils experience elevated N deposition (e.g., transportation, industry) and decreased soil moisture via urban heat island that can subsequently alter soil microbial community structure and activity. However, there is a critical gap in understanding how increased temperatures and pollutant deposition influences soil microbial community structure and soil C/N cycling in urban forests. Furthermore, canopy structural differences between individual tree species is a potentially important mechanism facilitating the deposition of pollutants to the soil. The overarching goal of this study is to investigate the influence of urbanization and tree species structural differences on the bacterial and fungal community and C and N content of soils experiencing a gradient of urbanization pressures (i.e., forest edge to interior; 150-m). Soil cores (1-m depth) were collected near the stem (urban pressure (i.e., forest edge). We further expect trees located on the edge of forest fragments will maintain greater surface soil (urbanization alters soil microbial community composition via reduced soil moisture and carbon storage potential via deposition gradients. Further analyses will answer important questions regarding how individual tree species alters urban soil C storage, N retention, and microbial dynamics.

  13. Modelling soil and soil to plant transfer processes of radionuclides and toxic chemicals at long time scales for performance assessment of Radwaste disposal

    Science.gov (United States)

    Albrecht, Achim; Miquel, Stephan

    2015-04-01

    Performance assessments for surface nuclear waste disposal facilities require simulation of transfer processes from the waste canisters to a reference group living near-by. Such simulations need to be extended over several hundred to hundred thousand years, depending on waste type, restraining possibilities to represent short term system complexity and variability. Related modelling can be simplified as long as processes are represented conservatively with assessment endpoints estimated larger compared to more realistic modelling approaches. The indicators are doses for radionuclides (RN) and risk factors for toxic chemicals (TC, i.e. heavy metals, nitrate). We discuss a new simulation tool (SCM-Andra-multilayer-model, SAMM) that, among others, allows to model situations where RN/TC move through a soil profile characterised by temporal undersaturation and root growth (soil-plant subsystem of the biosphere model compared to the adjacent saturated geosphere). SAMM describes all relevant transfer and reaction processes (advection, diffusion, root transport, radioactive decay, chemical reactions incl. sorption - desorption) using well known differential equations solved numerically within MATLAB with scenario description and parameterisation defined in Excel sheets. With this conservative approach in mind, we apply global parameters for which the solid-solution (Kd) or soil-to-plant (TF) distribution coefficients are the most relevant. Empirical data are available for homogeneous situations, such as one compartment pot experiments, but rare for entire soil profiles. Similarly soil hydrology, in particular upward and downward advective fluxes are modelled using an empirical approach solely based on key soil hydrological parameters (precipitation, evapotranspiration, irrigation, water table level) and the soil porosity. Variability of soil hydrology in space and time, likely to change drastically even on hourly bases (i.e. intense precipitation event) or within a single

  14. Soil evolution in spruce forest ecosystems: role and influence of humus studied by morphological approach

    Directory of Open Access Journals (Sweden)

    Chersich S

    2007-01-01

    Full Text Available In order to understand the role and the mutual influences of humus and soil in alpine spruce forest ecosystems we studied and classified 7 soil - humic profiles on the 4 main forestry dynamics: open canopy, regeneration, young stand, tree stage. We studied the role of humification process in the pedologic process involving soils and vegetations studing humic and soil horizons. Study sites are located at an altitude of 1740 m a.s.l near Pellizzano (TN, and facing to the North. The parent soil material is predominantly composed of morenic sediments, probably from Cevedale glacier lying on a substrate of tonalite from Presanella (Adamello Tertiary pluton. The soil temperature regime is frigid, while the moisture regime is udic. The characteristics observed in field were correlated with classical chemical and physical soil analyses (MIPAF 2000. In order to discriminate the dominant soil forming process, the soils were described and classified in each site according to the World Reference Base (FAO-ISRIC-ISSS 1998. Humus was described and classified using the morphological-genetic approach (Jabiol et al. 1995. The main humus forms are acid and they are for the greater part Dysmoder on PODZOLS. The main pedogenetic processes is the podzolization, locally there are also hydromorphic processes. We associate a definite humus form with a pedological process at a particular step of the forest evolution. We concluded thath the soil study for a correct pedological interpretation must take count of the characteristics of the humic epipedon.

  15. Understanding Natural Gas Methane Leakage from Buried Pipelines as Affected by Soil and Atmospheric Conditions - Field Scale Experimental and Modeling Study

    Science.gov (United States)

    Smits, K. M.; Mitton, M.; Moradi, A.; Chamindu, D. K.

    2017-12-01

    Reducing the amount of leaked natural gas (NG) from pipelines from production to use has become a high priority in efforts to cut anthropogenic emissions of methane. In addition to environmental impacts, NG leakage can cause significant economic losses and safety failures such as fires and explosions. However, tracking and evaluating NG pipeline leaks requires a better understanding of the leak from the source to the detector as well as more robust quantification methods. Although recent measurement-based approaches continue to make progress towards this end, efforts are hampered due to the complexity of leakage scenarios. Sub- surface transport of leaked NG from pipelines occurs through complex transport pathways due to soil heterogeneities and changes in soil moisture. Furthermore, it is affected by variable atmospheric conditions such as winds, frontal passages and rain. To better understand fugitive emissions from NG pipelines, we developed a field scale testbed that simulates low pressure gas leaks from pipe buried in soil. The system is equipped with subsurface and surface sensors to continuously monitor changes in soil and atmospheric conditions (e.g. moisture, pressure, temperature) and methane concentrations. Using this testbed, we are currently conducting a series of gas leakage experiments to study of the impact of subsurface (e.g. soil moisture, heterogeneity) and atmospheric conditions (near-surface wind and temperature) on the detected gas signals and establish the relative importance of the many pathways for methane migration between the source and the sensor location. Accompanying numerical modeling of the system using the multiphase transport simulator TOUGH2-EOS7CA demonstrates the influence of leak location and direction on gas migration. These findings will better inform leak detectors of the leak severity before excavation, aiding with safety precautions and work order categorization for improved efficiency.

  16. Towards an Understanding of Enabling Process Knowing in Global Software Development: A Case Study

    DEFF Research Database (Denmark)

    Zahedi, Mansooreh; Babar, Muhammad Ali

    2014-01-01

    Shared understanding of Software Engineering (SE) processes, that we call process knowing, is required for effective communication and coordination and communication within a team in order to improve team performance. SE Process knowledge can include roles, responsibilities and flow of informatio...... challenges of lack of process knowing and how an organization can enable process knowing for achieving the desired results that also help in increasing social interactions and positive behavioral changes......Shared understanding of Software Engineering (SE) processes, that we call process knowing, is required for effective communication and coordination and communication within a team in order to improve team performance. SE Process knowledge can include roles, responsibilities and flow of information...... over a project lifecycle. Developing and sustaining process knowledge can be more challenging in Global Software Development (GSD). GSD distances can limit the ability of a team to develop a common understanding of processes. Anecdotes of the problems caused by lack of common understanding of processes...

  17. Combined effects of leaf litter and soil microsite on decomposition process in arid rangelands.

    Science.gov (United States)

    Carrera, Analía Lorena; Bertiller, Mónica Beatriz

    2013-01-15

    The objective of this study was to analyze the combined effects of leaf litter quality and soil properties on litter decomposition and soil nitrogen (N) mineralization at conserved (C) and disturbed by sheep grazing (D) vegetation states in arid rangelands of the Patagonian Monte. It was hypothesized that spatial differences in soil inorganic-N levels have larger impact on decomposition processes of non-recalcitrant than recalcitrant leaf litter (low and high concentration of secondary compounds, respectively). Leaf litter and upper soil were extracted from modal size plant patches (patch microsite) and the associated inter-patch area (inter-patch microsite) in C and D. Leaf litter was pooled per vegetation state and soil was pooled combining vegetation state and microsite. Concentrations of N and secondary compounds in leaf litter and total and inorganic-N in soil were assessed at each pooled sample. Leaf litter decay and soil N mineralization at microsites of C and D were estimated in 160 microcosms incubated at field capacity (16 month). C soils had higher total N than D soils (0.58 and 0.41 mg/g, respectively). Patch soil of C and inter-patch soil of D exhibited the highest values of inorganic-N (8.8 and 8.4 μg/g, respectively). Leaf litter of C was less recalcitrant and decomposed faster than that of D. Non-recalcitrant leaf litter decay and induced soil N mineralization had larger variation among microsites (coefficients of variation = 25 and 41%, respectively) than recalcitrant leaf litter (coefficients of variation = 12 and 32%, respectively). Changes in the canopy structure induced by grazing disturbance increased leaf litter recalcitrance, and reduced litter decay and soil N mineralization, independently of soil N levels. This highlights the importance of the combined effects of soil and leaf litter properties on N cycling probably with consequences for vegetation reestablishment and dynamics, rangeland resistance and resilience with implications

  18. Time domain reflectometry-measuring dielectric permittivity to detect soil non-acqeous phase liquids contamination-decontamination processes

    Directory of Open Access Journals (Sweden)

    A. Comegna

    2013-09-01

    Full Text Available Contamination of soils with non-aqueous phase liquids (NAPL constitutes a serious geo-environmental problem, given the toxicity level and high mobility of these organic compounds. To develop effective decontamination methods, characterisation and identification of contaminated soils are needed. The objective of this work is to explore the potential of dielectric permittivity measurements to detect the presence of NAPLs in soils. The dielectric permittivity was measured by Time Domain Reflectometry method (TDR in soil samples with either different volumetric content of water (w and NAPL (NAPL or at different stages during immiscible displacement test carried out with two different flushing solutions. A mixing model proposed by Francisca and Montoro, was calibrated to estimate the volume fraction of contaminant present in soil. Obtained results, showed that soil contamination with NAPL and the monitoring of immiscible fluid displacement, during soil remediation processes, can be clearly identified from dielectric measurements.

  19. Application of biodegradation screening protocol to contaminated soils from manufactured gas plant sites

    International Nuclear Information System (INIS)

    Smith, J.R.; Nakles, D.V.; Cushey, M.A.; Morgan, D.J.; Linz, D.G.

    1990-01-01

    Bioremediation (i.e., land treatment) has been demonstrated to be a viable option for treating a variety of soils contamianted with organics. Conventional treatability studies utilize soil microcosm experiments to evaluate the potential for bioremediation of specific contaminated soils. Unfortunately, soil microcosms take from 4- to 6-months to complete and do not fully exploit the current understanding of the bioremediation process. This paper describes a treatability protocol that investigates underlying mechanisms and can be completed in 2- to 3-months. It is believed that soil bioremediation is governed by the sequential processes of contanate desorption from the soil into the aqueous phase and subsequent oxidation by microorganisms. The relative importance of each process depends upon the contaminant and soil. Accordingly, the treatability protocol has three steps. In the first step, tests are performed to determine soil characteristics. In the second step, tests are performed to characterize the desorption of contaminants from the soil. In the third step, the potential for biological oxidaiton is evaluated with a soil-water slurry reactor that maximizes desorption and provides an optimum environment for microbial growth. This paper provides a thorough discussion of the laboratory protocol including the primary theoretical tenets which serve as its basis. Preliminary procedures and results are presented for soils contaminated with manufactured gas plant (MGP) wastes. Particular attention is focused on biodegradation of polynuclear aromatic hydrocarbons (PAHs)

  20. Extraction of bismuth, cadmium, lead, and uranyl ions from contaminated soil and the influence of bacterial on the process

    International Nuclear Information System (INIS)

    Tsang, K.W.; Dugan, P.R.; Pfister, R.M.

    1992-01-01

    Among the various environmental concerns, soil and sediment remediation has received considerable attention in recent years because soils and sediments are the ultimate repositories for many metals that cycle in the environment as a result of activities such as mining, electroplating, and various manufacturing and industrial processes. There is considerable interest in the remediation of contaminated soils and sediments by so-called soil-cleaning techniques and in the prevention of future contamination via removal of hazardous metals from processing streams prior to deposition into receiving waters. Bioremediation also appears to have value because of its potential economic advantage. This paper demonstrates the effectiveness of the amino acid cysteine, either alone or in combination with the activity of microorganisms, for the removal of several hazardous metals from soil

  1. Tropical Soil Chemistry

    DEFF Research Database (Denmark)

    Borggaard, Ole K.

    and environmental protection. Tropical Soil Chemistry by Ole K. Borggaard provides an overview of the composition, occurrence, properties, processes, formation, and environmental vulnerability of various tropical soil types (using American Soil Taxonomy for classification). The processes and the external factors...... soil chemical issues are also presented to assess when, why, and how tropical soils differ from soils in other regions. This knowledge can help agricultural specialists in the tropics establish sustainable crop production. Readers are assumed to be familiar with basic chemistry, physics...

  2. Understanding the creative processes of phenomenological research: The life philosophy of Løgstrup

    Science.gov (United States)

    Dreyer, Pia; Haahr, Anita; Martinsen, Bente

    2011-01-01

    The creative processes of understanding patients’ experiences in phenomenological research are difficult to articulate. Drawing on life philosophy as represented by the Danish philosopher K.E. Løgstrup (1905–1981), this article aims to illustrate Løgstrup's thinking as a way to elaborate the creation of cognition and understanding of patients’ experiences. We suggest that Løgstrup's thoughts on sensation can add new dimensions to an increased understanding of the creative process of phenomenological research, and that his thinking can be seen as an epistemological ground for these processes. We argue with Løgstrup that sense-based impressions can facilitate an flash of insight, i.e., the spontaneous, intuitive flash of an idea. Løgstrup stresses that an “flash of insight” is an important source in the creation of cognition and understanding. Relating to three empirical phenomenological studies of patients’ experiences, we illustrate how the notions of impression and flash of insight can add new dimensions to increased understanding of the creative processes in phenomenological research that have previously not been discussed. We illustrate that sense-based impressions can facilitate creative flash of insights that open for understanding of patients’ experiences in the research process as well as in the communication of the findings. The nature of impression and flash of insight and their relevance in the creation of cognition and understanding contributes to the sparse descriptions in the methodological phenomenological research literature of the creative processes of this research. An elaboration of the creative processes in phenomenological research can help researchers to articulate these processes. Thus, Løgstrup's life philosophy has proven to be valuable in adding new dimensions to phenomenological empirical research as well as embracing lived experience. PMID:22076123

  3. Understanding the creative processes of phenomenological research: The life philosophy of Løgstrup

    Directory of Open Access Journals (Sweden)

    Annelise Norlyk

    2011-11-01

    Full Text Available The creative processes of understanding patients’ experiences in phenomenological research are difficult to articulate. Drawing on life philosophy as represented by the Danish philosopher K.E. Løgstrup (1905–1981, this article aims to illustrate Løgstrup's thinking as a way to elaborate the creation of cognition and understanding of patients’ experiences. We suggest that Løgstrup's thoughts on sensation can add new dimensions to an increased understanding of the creative process of phenomenological research, and that his thinking can be seen as an epistemological ground for these processes. We argue with Løgstrup that sense-based impressions can facilitate an flash of insight, i.e., the spontaneous, intuitive flash of an idea. Løgstrup stresses that an “flash of insight” is an important source in the creation of cognition and understanding. Relating to three empirical phenomenological studies of patients’ experiences, we illustrate how the notions of impression and flash of insight can add new dimensions to increased understanding of the creative processes in phenomenological research that have previously not been discussed. We illustrate that sense-based impressions can facilitate creative flash of insights that open for understanding of patients’ experiences in the research process as well as in the communication of the findings. The nature of impression and flash of insight and their relevance in the creation of cognition and understanding contributes to the sparse descriptions in the methodological phenomenological research literature of the creative processes of this research. An elaboration of the creative processes in phenomenological research can help researchers to articulate these processes. Thus, Løgstrup's life philosophy has proven to be valuable in adding new dimensions to phenomenological empirical research as well as embracing lived experience.

  4. Understanding the creative processes of phenomenological research: The life philosophy of Løgstrup.

    Science.gov (United States)

    Norlyk, Annelise; Dreyer, Pia; Haahr, Anita; Martinsen, Bente

    2011-01-01

    The creative processes of understanding patients' experiences in phenomenological research are difficult to articulate. Drawing on life philosophy as represented by the Danish philosopher K.E. Løgstrup (1905-1981), this article aims to illustrate Løgstrup's thinking as a way to elaborate the creation of cognition and understanding of patients' experiences. We suggest that Løgstrup's thoughts on sensation can add new dimensions to an increased understanding of the creative process of phenomenological research, and that his thinking can be seen as an epistemological ground for these processes. We argue with Løgstrup that sense-based impressions can facilitate an flash of insight, i.e., the spontaneous, intuitive flash of an idea. Løgstrup stresses that an "flash of insight" is an important source in the creation of cognition and understanding. Relating to three empirical phenomenological studies of patients' experiences, we illustrate how the notions of impression and flash of insight can add new dimensions to increased understanding of the creative processes in phenomenological research that have previously not been discussed. We illustrate that sense-based impressions can facilitate creative flash of insights that open for understanding of patients' experiences in the research process as well as in the communication of the findings. The nature of impression and flash of insight and their relevance in the creation of cognition and understanding contributes to the sparse descriptions in the methodological phenomenological research literature of the creative processes of this research. An elaboration of the creative processes in phenomenological research can help researchers to articulate these processes. Thus, Løgstrup's life philosophy has proven to be valuable in adding new dimensions to phenomenological empirical research as well as embracing lived experience.

  5. Removal of macro-pollutants in oily wastewater obtained from soil remediation plant using electro-oxidation process.

    Science.gov (United States)

    Zolfaghari, Mehdi; Drogui, Patrick; Blais, Jean François

    2018-03-01

    Electro-oxidation process by niobium boron-doped diamond (Nb/BDD) electrode was used to treat non-biodegradable oily wastewater provided from soil leachate contaminated by hydrocarbons. Firstly, the diffusion current limit and mass transfer coefficient was experimentally measured (7.1 mA cm -2 and 14.7 μm s -1 , respectively), in order to understand minimum applied current density. Later on, the oxidation kinetic model of each pollutant was investigated in different current densities ranged between 3.8 and 61.5 mA cm -2 . It was observed that direct oxidation was the main removal mechanism of organic and inorganic carbon, while the indirect oxidation in higher current density was responsible for nitrogen oxidation. Hydrocarbon in the form of colloidal particles could be removed by electro-flotation. On the other hand, electro-decomposition on the surface of cathode and precipitation by hydroxyl ions were the utmost removal pathway of metals. According to the initial experiments, operating condition was further optimized by central composite design model in different current density, treatment time, and electrolyte addition, based on the best responses on the specific energy consumption (SEC), chemical oxygen demand (COD), and total organic carbon (TOC) removal efficiency. Unde r optimum operating condition (current density = 23.1 mA cm -2 , time = 120 min, Ti/Pt as a cathode, and Nb/BDD as the anode), electro-oxidation showed the following removal efficiencies: COD (84.6%), TOC (68.2%), oil and grease (99%), color (87.9%), total alkalinity (92%), N tot (18%), NH 4 + (31%), Ca (66.4%), Fe (71.1%), Mg (41.4%), Mn (78.1%), P tot (75%), S (67.1%), and Si (19.1%). Graphical abstract Environmental significance statement Soil treatment facilities are rapidly grown throughout the world, especially in North America due to its intense industrialization. High water content soil in humid area like Canada produces significant amount of leachate which is

  6. Effects of straw mulching on soil evaporation during the soil thawing ...

    Indian Academy of Sciences (India)

    26

    Keywords: straw mulching, soil water evaporation, soil thawing period, freezing depth, soil liquid water .... moisture and the soil water evaporation process. The Songnen Plain ...... soils on soil infiltration and evaporation: Water Sci. Technol.

  7. Comparative study of soil erodibility and critical shear stress between loess and purple soils

    Science.gov (United States)

    Xing, Hang; Huang, Yu-han; Chen, Xiao-yan; Luo, Bang-lin; Mi, Hong-xing

    2018-03-01

    Loess and purple soils are two very important cultivated soils, with the former in the loess region and the latter in southern sub-tropical region of China, featured with high-risks of erosion, considerable differences of soil structures due to differences in mineral and nutrient compositions. Study on soil erodibility (Kr) and critical shear stress (τc) of these two soils is beneficial to predict soil erosion with such models as WEPP. In this study, rill erosion experimental data sets of the two soils are used for estimating their Kr and τc before they are compared to understand their differences of rill erosion behaviors. The maximum detachment rates of the loess and purple soils are calculated under different hydrodynamic conditions (flow rates: 2, 4, 8 L/min; slope gradients: 5°, 10°, 15°, 20°, 25°) through analytical and numerical methods respectively. Analytical method used the derivative of the function between sediment concentration and rill length to estimate potential detachment rates, at the rill beginning. Numerical method estimated potential detachment rates with the experimental data, at the rill beginning and 0.5 m location. The Kr and τc of these two soils are determined by the linear equation based on experimental data. Results show that the methods could well estimate the Kr and τc of these two soils as they remain basically unchanged under different hydrodynamic conditions. The Kr value of loess soil is about twice of the purple soil, whereas the τc is about half of that. The numerical results have good correlations with the analytical values. These results can be useful in modeling rill erosion processes of loess and purple soils.

  8. Plume Mitigation: Soil Erosion and Lunar Prospecting Sensor Project

    Science.gov (United States)

    Metzger, Philip T.

    2014-01-01

    Demonstrate feasibility of the simplest, lowest-mass method of measuring density of a cloud of lunar soil ejected by rocket exhaust, using new math techniques with a small baseline laser/camera system. Focus is on exploring the erosion process that occurs when the exhaust plume of a lunar rocket impacts the regolith. Also, predicting the behavior of the lunar soil that would be blasted from a lunar landing/launch site shall assist in better design and protection of any future lunar settlement from scouring of structures and equipment. NASA is gathering experimental data to improve soil erosion models and understand how lunar particles enter the plume flow.

  9. COSMOS: the COsmic-ray Soil Moisture Observing System

    Directory of Open Access Journals (Sweden)

    M. Zreda

    2012-11-01

    Full Text Available The newly-developed cosmic-ray method for measuring area-average soil moisture at the hectometer horizontal scale is being implemented in the COsmic-ray Soil Moisture Observing System (or the COSMOS. The stationary cosmic-ray soil moisture probe measures the neutrons that are generated by cosmic rays within air and soil and other materials, moderated by mainly hydrogen atoms located primarily in soil water, and emitted to the atmosphere where they mix instantaneously at a scale of hundreds of meters and whose density is inversely correlated with soil moisture. The COSMOS has already deployed more than 50 of the eventual 500 cosmic-ray probes, distributed mainly in the USA, each generating a time series of average soil moisture over its horizontal footprint, with similar networks coming into existence around the world. This paper is written to serve a community need to better understand this novel method and the COSMOS project. We describe the cosmic-ray soil moisture measurement method, the instrument and its calibration, the design, data processing and dissemination used in the COSMOS project, and give example time series of soil moisture obtained from COSMOS probes.

  10. Stabilization of recent soil carbon in the humid tropics following land use changes: evidence from aggregate fractionation and stable isotope analyses

    OpenAIRE

    Paul, Sonja; Flessa, Heiner; Veldkamp, Edzo; López-Ulloa, Magdalena

    2008-01-01

    Keywords: Carbon sequestration - Ecuador - Mean residence time - Pasture - Secondary forest - Soil type - Texture - Water-stable aggregates Quantitative knowledge of stabilization- and decomposition processes is necessary to understand, assess and predict effects of land use changes on storage and stability of soil organic carbon (soil C) in the tropics. Although it is well documented that different soil types have different soil C stocks, it is presently unknown how different soil types a...

  11. Low-concentration tailing and subsequent quicklime-enhanced remediation of volatile chlorinated hydrocarbon-contaminated soils by mechanical soil aeration.

    Science.gov (United States)

    Ma, Yan; Du, Xiaoming; Shi, Yi; Xu, Zhu; Fang, Jidun; Li, Zheng; Li, Fasheng

    2015-02-01

    Mechanical soil aeration has long been regarded as an effective ex-situ remediation technique and as suitable for remediation of large-scale sites contaminated by volatile organic compounds (VOCs) at low cost. However, it has been reported that the removal efficiency of VOCs from soil is relatively low in the late stages of remediation, in association with tailing. Tailing may extend the remediation time required; moreover, it typically results in the presence of contaminants residues at levels far exceeding regulations. In this context, the present study aimed to discuss the tailing that occurs during the process of remediation of soils contaminated artificially with volatile chlorinated hydrocarbons (VCHs) and to assess possible quicklime-enhanced removal mechanisms. The results revealed the following conclusions. First, temperature and aeration rate can be important controls on both the timing of appearance of tailing and the levels of residual contaminants. Furthermore, the addition of quicklime to soil during tailing can reduce the residual concentrations rapidly to below the remedial target values required for site remediation. Finally, mechanical soil aeration can be enhanced using quicklime, which can improve the volatilization of VCHs via increasing soil temperature, reducing soil moisture, and enhancing soil permeability. Our findings give a basic understanding to the elimination of the tailing in the application of mechanical soil aeration, particularly for VOCs-contaminated soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The role of water tracks in altering biotic and abiotic soil properties and processes in a polar desert in Antarctica

    Science.gov (United States)

    Ball, Becky A.; Levy, Joseph

    2015-02-01

    Groundwater discharge via water tracks is a largely unexplored passageway routing salts and moisture from high elevations to valley floors in the McMurdo Dry Valleys (MDV) of Antarctica. Given the influence that water tracks have on the distribution of liquid water in seasonally thawed Antarctic soils, it is surprising how little is known about their role in structuring biotic and abiotic processes this cold desert ecosystem. Particularly, it is unclear how soil biota will respond to the activation of new water tracks resulting from enhanced active layer thickening or enhanced regional snowmelt. In the MDV, water tracks are both wetter and more saline than the surrounding soils, constituting a change in soil habitat suitability for soil biology and therefore the ecological processes they carry out. To investigate the net impact that water tracks have on Dry Valley soil biology, and therefore the ecosystem processes for which they are responsible, we analyzed microbial biomass and activity in soils inside and outside of three water tracks and relate this to the physical soil characteristics. Overall, our results suggest that water tracks can significantly influence soil properties, which can further impact biological biovolume and both biotic and abiotic fluxes of CO2. However, the nature of its impact differs with water track, further suggesting that not all water tracks can be regarded the same.

  13. Understanding and Managing Process Interaction in IS Development Projects

    DEFF Research Database (Denmark)

    Bygstad, Bendik; Nielsen, Peter Axel

    2012-01-01

    Software-based information systems must be developed and implemented as a part of business change. This is a major challenge, since business change and the development of software-based information systems usually are performed in separate processes. Thus, there is a need to understand and manage...... critical events in the case, what led to the events, and what the consequences are. We discuss the implications for information systems research and in particular we discuss the contribution to project management of iterative and incremental software development.......Software-based information systems must be developed and implemented as a part of business change. This is a major challenge, since business change and the development of software-based information systems usually are performed in separate processes. Thus, there is a need to understand and manage...

  14. Understanding the Impacts of Soil, Climate, and Farming Practices on Soil Organic Carbon Sequestration: A Simulation Study in Australia.

    Science.gov (United States)

    Godde, Cécile M; Thorburn, Peter J; Biggs, Jody S; Meier, Elizabeth A

    2016-01-01

    Carbon sequestration in agricultural soils has the capacity to mitigate greenhouse gas emissions, as well as to improve soil biological, physical, and chemical properties. The review of literature pertaining to soil organic carbon (SOC) dynamics within Australian grain farming systems does not enable us to conclude on the best farming practices to increase or maintain SOC for a specific combination of soil and climate. This study aimed to further explore the complex interactions of soil, climate, and farming practices on SOC. We undertook a modeling study with the Agricultural Production Systems sIMulator modeling framework, by combining contrasting Australian soils, climates, and farming practices (crop rotations, and management within rotations, such as fertilization, tillage, and residue management) in a factorial design. This design resulted in the transposition of contrasting soils and climates in our simulations, giving soil-climate combinations that do not occur in the study area to help provide insights into the importance of the climate constraints on SOC. We statistically analyzed the model's outputs to determinate the relative contributions of soil parameters, climate, and farming practices on SOC. The initial SOC content had the largest impact on the value of SOC, followed by the climate and the fertilization practices. These factors explained 66, 18, and 15% of SOC variations, respectively, after 80 years of constant farming practices in the simulation. Tillage and stubble management had the lowest impacts on SOC. This study highlighted the possible negative impact on SOC of a chickpea phase in a wheat-chickpea rotation and the potential positive impact of a cover crop in a sub-tropical climate (QLD, Australia) on SOC. It also showed the complexities in managing to achieve increased SOC, while simultaneously aiming to minimize nitrous oxide (N2O) emissions and nitrate leaching in farming systems. The transposition of contrasting soils and climates in

  15. Understanding the Impacts of Soil, Climate and Farming Practices on Soil Organic Carbon Sequestration: a Simulation Study in Australia

    Directory of Open Access Journals (Sweden)

    Cecile Marie Godde

    2016-05-01

    Full Text Available Carbon sequestration in agricultural soils has the capacity to mitigate greenhouse gas emissions, as well as to improve soil biological, physical and chemical properties. The review of literature pertaining to soil organic carbon (SOC dynamics within Australian grain farming systems does not enable us to conclude on the best farming practices to increase or maintain SOC for a specific combination of soil and climate. This study aimed to further explore the complex interactions of soil, climate and farming practices on SOC. We undertook a modeling study with the APSIM (Agricultural Production Systems sIMulator modeling framework, by combining contrasting Australian soils, climates and farming practices (crop rotations, and management within rotations, such as fertilization, tillage and residue management in a factorial design. This design resulted in the transposition of contrasting soils and climates in our simulations, giving soil-climate combinations that do not occur in the study area to help provide insights into the importance of the climate constraints on SOC. We statistically analyzed the model’s outputs to determinate the relative contributions of soil parameters, climate and farming practices on SOC. The initial SOC content had the largest impact on the value of SOC, followed by the climate and the fertilization practices. These factors explained 66%, 18% and 15% of SOC variations, respectively, after 80 years of constant farming practices in the simulation. Tillage and stubble management had the lowest impacts on SOC. This study highlighted the possible negative impact on SOC of a chickpea phase in a wheat-chickpea rotation and the potential positive impact of a cover crop in a sub-tropical climate (Queensland on SOC. It also showed the complexities in managing to achieve increased SOC, while simultaneously aiming to minimize nitrous oxide (N2O emissions and nitrate leaching in farming systems. The transposition of contrasting soils

  16. ISRIC - World Soil Information

    NARCIS (Netherlands)

    Dent, D.L.

    2006-01-01

    ISRICWorld Soil Information is an independent foundation, funded by the Netherlands Government with a mandate to increase knowledge of the land, its soils in particular, and to support the sustainable use of land resources; in short, to help people understand soils. Its aims are to -Inform and

  17. Farmers' knowledge and use of soil fauna in agriculture: a worldwide review

    Directory of Open Access Journals (Sweden)

    Natasha Pauli

    2016-09-01

    Full Text Available General knowledge of the small, invisible, or hidden organisms that make soil one of the most biodiverse habitats on Earth is thought to be scarce, despite their importance in food systems and agricultural production. We provide the first worldwide review of high-quality research that reports on farmers' knowledge of soil organisms in agriculture. The depth of farmers' knowledge varied; some farming communities held detailed local taxonomies and observations of soil biota, or used soil biological activity as indicators of soil fertility, while others were largely unaware of soil fauna. Elicitation of soil biota knowledge was often incidental to the main research goal in many of the reviewed studies. Farmers are rarely deliberately or deeply consulted by researchers on their existing knowledge of soil biota, soil ecology, or soil ecological processes. Deeper understanding of how farmers use and value soil life can lead to more effective development of collaborative extension programs, policies, and management initiatives directed at maintaining healthy, living soils.

  18. Electrokinetics and soil decontamination: concepts and overview (Review

    Directory of Open Access Journals (Sweden)

    Mohammed A. Karim

    2014-12-01

    Full Text Available Electrokinetic decontamination and extraction have been proven to be one of the most viable, cost effective and emerging techniques in removing contaminants, especially heavy metals from soils for about last five decades. Basic concepts and an overview of the electrokinetic extraction processes and their potential applications in geotechnical and geoenvironmental engineering have been reviewed based on the literature and presented in this paper. Primarily, theoretical and laboratory experimental studies related to electroreclamation of soils are summarised in brief with basic concepts of electrokinetic processes. The paper has been divided into different sections that include history of electrokinetics, background and concepts, modelling, parameter effects, instrumentation, contaminant extraction, field applications, and summary and recommendation. Based on the review it is obvious that the field application of electrokinetic technology to remediate heavy metal contaminated soils /sediments is very limited and site specific. Additional laboratory studies and more pilot- and full-scale information from field applications are critical to the further understanding of the technology and to customize the process in different field conditions.

  19. [Effects of biochar on soil nitrogen cycle and related mechanisms: a review].

    Science.gov (United States)

    Pan, Yi-Fan; Yang, Min; Dong, Da; Wu, Wei-Xiang

    2013-09-01

    Biochar has its unique physical and chemical properties, playing a significant role in soil amelioration, nutrient retention, fertility improvement, and carbon storage, and being a hotspot in the research areas of soil ecosystem, biogeochemical cycling, and agricultural carbon sequestration. As a kind of anthropogenic materials, biochar has the potential in controlling soil nitrogen (N) cycle directly or indirectly, and thus, has profound effects on soil ecological functions. This paper reviewed the latest literatures regarding the effects of biochar applications on soil N cycle, with the focuses on the nitrogen species adsorption and the biochemical processes (nitrification, denitrification, and nitrogen fixation) , and analyzed the related action mechanisms of biochar. The future research areas for better understanding the interactions between biochar and soil N cycle were proposed.

  20. Understanding the Advising Learning Process Using Learning Taxonomies

    Science.gov (United States)

    Muehleck, Jeanette K.; Smith, Cathleen L.; Allen, Janine M.

    2014-01-01

    To better understand the learning that transpires in advising, we used Anderson et al.'s (2001) revision of Bloom's (1956) taxonomy and Krathwohl, Bloom, and Masia's (1964) affective taxonomy to analyze eight student-reported advising outcomes from Smith and Allen (2014). Using the cognitive processes and knowledge domains of Anderson et al.'s…

  1. Review of effect of soil on radionuclide uptake by plants

    International Nuclear Information System (INIS)

    Sheppard, S.C.; Evenden, W.G.

    1987-03-01

    This review was undertaken to improve the understanding of, and to compile the available data concerning, the transfer of uranium (U), thorium (Th) and lead (Pb) from soils to plants. The emphasis of the review was on the absorption of these elements from the soil by plant roots, and the mechanisms underlying this process were outlined. The behaviour of U, Th and Pb in soils and plants was discussed with illustration by data from the literature. An extensive compilation of plant/soil concentration ratios (CR) was completed and the most relevant data for Canadian nuclear facilities were selected. Very few data were found for edible plants and these did not represent the range of soil types found near Canadian nuclear facilities. Recommendations of the most fruitful research directions were made. 69 refs

  2. Silver Nanoparticle Transport Through Soil: Illuminating the Pore-Scale Processes

    Science.gov (United States)

    Molnar, I. L.; Willson, C. S.; Gerhard, J.; O'Carroll, D. M.

    2015-12-01

    For nanoparticle transport through soil, the pore-scale (i.e., tens to hundreds of grains and pores) is a crucial intermediate scale which links nanoparticle-surface interactions with field-scale transport behaviour. However, very little information exists on how nanoparticles behave within real three-dimensional pore spaces. As a result, pore-scale processes are poorly characterized for nanoparticle systems and, subsequently, continuum-scale transport models struggle to describe commonly observed 'anomalous' behaviour such as extended tailing. This knowledge gap is due to two primary factors: an inability to experimentally observe nanoparticles within real pore spaces, and the computationally expensive models required to simulate nanoparticle movement. However, due to recent advances in Synchrotron X-Ray Computed Microtomography (SXCMT), it is now possible to quantify in-situ pore-scale nanoparticle concentrations during transport through real 3-dimensional porous media [1]. Employing this SXCMT quantification method to examine real nanoparticle/soil transport experiments has yielded new insights into the pore-scale processes governing nanoparticle transport. By coupling SXCMT nanoparticle quantification method with Computational Fluid Dynamics (CFD) simulations we are able to construct a better picture of how nanoparticles flow through real pore spaces. This talk presents SXCMT/CFD analyses of three silver nanoparticle transport experiments. Silver nanoparticles were flushed through three different sands to characterize the influence of grain distribution and retention rates on pore-scale flow and transport processes. These CFD/SXCMT analyses illuminate how processes such as temporary hydraulic retention govern nanoparticle transport. In addition, the observed distributions of pore water velocities and nanoparticle mass flow rates challenge the standard conceptual model of nanoparticle transport, suggesting that pore-scale processes require explicit consideration

  3. Thinking and Countermeasures for Rational Utilization of Soil Fertility in Modern Agriculture Developping

    Directory of Open Access Journals (Sweden)

    WENG Bo-qi

    2014-02-01

    Full Text Available Soil is not only an important foundation for agricultural production, but also is the safeguard of human survival. Soil quality is close-ly related with food safety and argo-ecological environment. Soil fertility is the support of modern agricultural development. Multiple disci-plines and specialties are involved in researches of soil cultivating process. Nowadays, the understanding of soil fertility has changed from a-gricultural production to environmental security and resource exploitation, even larger scales to ecological health and global soil change. In this review, the characteristics and inherent link between soil and agriculture were comprehensive expounded from the aspects of long-term fertilization trials, soil cultivation techniques, and modern agriculture development. The challenge and prospect faced in soil science research field were also analyzed. Finally, several suggestions and countermeasures were proposed to the researches of soil science in future.

  4. Underestimation of boreal soil carbon stocks by mathematical soil carbon models linked to soil nutrient status

    Science.gov (United States)

    Ťupek, Boris; Ortiz, Carina A.; Hashimoto, Shoji; Stendahl, Johan; Dahlgren, Jonas; Karltun, Erik; Lehtonen, Aleksi

    2016-08-01

    Inaccurate estimate of the largest terrestrial carbon pool, soil organic carbon (SOC) stock, is the major source of uncertainty in simulating feedback of climate warming on ecosystem-atmosphere carbon dioxide exchange by process-based ecosystem and soil carbon models. Although the models need to simplify complex environmental processes of soil carbon sequestration, in a large mosaic of environments a missing key driver could lead to a modeling bias in predictions of SOC stock change.We aimed to evaluate SOC stock estimates of process-based models (Yasso07, Q, and CENTURY soil sub-model v4) against a massive Swedish forest soil inventory data set (3230 samples) organized by a recursive partitioning method into distinct soil groups with underlying SOC stock development linked to physicochemical conditions.For two-thirds of measurements all models predicted accurate SOC stock levels regardless of the detail of input data, e.g., whether they ignored or included soil properties. However, in fertile sites with high N deposition, high cation exchange capacity, or moderately increased soil water content, Yasso07 and Q models underestimated SOC stocks. In comparison to Yasso07 and Q, accounting for the site-specific soil characteristics (e. g. clay content and topsoil mineral N) by CENTURY improved SOC stock estimates for sites with high clay content, but not for sites with high N deposition.Our analysis suggested that the soils with poorly predicted SOC stocks, as characterized by the high nutrient status and well-sorted parent material, indeed have had other predominant drivers of SOC stabilization lacking in the models, presumably the mycorrhizal organic uptake and organo-mineral stabilization processes. Our results imply that the role of soil nutrient status as regulator of organic matter mineralization has to be re-evaluated, since correct SOC stocks are decisive for predicting future SOC change and soil CO2 efflux.

  5. Soil erosion under multiple time-varying rainfall events

    Science.gov (United States)

    Heng, B. C. Peter; Barry, D. Andrew; Jomaa, Seifeddine; Sander, Graham C.

    2010-05-01

    Soil erosion is a function of many factors and process interactions. An erosion event produces changes in surface soil properties such as texture and hydraulic conductivity. These changes in turn alter the erosion response to subsequent events. Laboratory-scale soil erosion studies have typically focused on single independent rainfall events with constant rainfall intensities. This study investigates the effect of multiple time-varying rainfall events on soil erosion using the EPFL erosion flume. The rainfall simulator comprises ten Veejet nozzles mounted on oscillating bars 3 m above a 6 m × 2 m flume. Spray from the nozzles is applied onto the soil surface in sweeps; rainfall intensity is thus controlled by varying the sweeping frequency. Freshly-prepared soil with a uniform slope was subjected to five rainfall events at daily intervals. In each 3-h event, rainfall intensity was ramped up linearly to a maximum of 60 mm/h and then stepped down to zero. Runoff samples were collected and analysed for particle size distribution (PSD) as well as total sediment concentration. We investigate whether there is a hysteretic relationship between sediment concentration and discharge within each event and how this relationship changes from event to event. Trends in the PSD of the eroded sediment are discussed and correlated with changes in sediment concentration. Close-up imagery of the soil surface following each event highlight changes in surface soil structure with time. This study enhances our understanding of erosion processes in the field, with corresponding implications for soil erosion modelling.

  6. Nitrogen isotope ratios in surface and sub-surface soil horizons

    International Nuclear Information System (INIS)

    Rennie, D.A.; Paul, E.A.

    1975-01-01

    Nitrogen isotope analysis of surface soils and soil-derived nitrate for selected chernozemic and luvisolic soils showed mean delta 15 N values of 11.7 and 11.3, respectively. Isotope enrichment of the total N reached a maximum in the lower B horizon. Sub-soil parent material samples from the one deep profile included in the study indicated a delta 15 N value (NO 3 -N) of 1/3 that of the Ap horizon, at a depth of 180 cm. The delta 15 N of sub-surface soil horizons containing residual fertilizer N were low (-2.2) compared to the surface horizon (9.9). The data reported from this preliminary survey suggest that the natural variations in 15 N abundance between different soils and horizons of the same soil reflect the cumulative effects of soil genesis and soil management. More detailed knowledge and understanding of biological and other processes which control N isotope concentrations in these soils must be obtained before the data reported can be interpreted. (author)

  7. An increase in precipitation exacerbates negative effects of nitrogen deposition on soil cations and soil microbial communities in a temperate forest.

    Science.gov (United States)

    Shi, Leilei; Zhang, Hongzhi; Liu, Tao; Mao, Peng; Zhang, Weixin; Shao, Yuanhu; Fu, Shenglei

    2018-04-01

    World soils are subjected to a number of anthropogenic global change factors. Although many previous studies contributed to understand how single global change factors affect soil properties, there have been few studies aimed at understanding how two naturally co-occurring global change drivers, nitrogen (N) deposition and increased precipitation, affect critical soil properties. In addition, most atmospheric N deposition and precipitation increase studies have been simulated by directly adding N solution or water to the forest floor, and thus largely neglect some key canopy processes in natural conditions. These previous studies, therefore, may not realistically simulate natural atmospheric N deposition and precipitation increase in forest ecosystems. In a field experiment, we used novel canopy applications to investigate the effects of N deposition, increased precipitation, and their combination on soil chemical properties and the microbial community in a temperate deciduous forest. We found that both soil chemistry and microorganisms were sensitive to these global change factors, especially when they were simultaneously applied. These effects were evident within 2 years of treatment initiation. Canopy N deposition immediately accelerated soil acidification, base cation depletion, and toxic metal accumulation. Although increased precipitation only promoted base cation leaching, this exacerbated the effects of N deposition. Increased precipitation decreased soil fungal biomass, possible due to wetting/re-drying stress or to the depletion of Na. When N deposition and increased precipitation occurred together, soil gram-negative bacteria decreased significantly, and the community structure of soil bacteria was altered. The reduction of gram-negative bacterial biomass was closely linked to the accumulation of the toxic metals Al and Fe. These results suggested that short-term responses in soil cations following N deposition and increased precipitation could change

  8. Decontamination of PCBs-containing soil using subcritical water extraction process.

    Science.gov (United States)

    Islam, Mohammad Nazrul; Park, Jeong-Hun; Shin, Moon-Su; Park, Ha-Seung

    2014-08-01

    Polychlorinated biphenyls (PCBs) are one of the excision compounds listed at the Stockholm convention in 2001. Although their use has been heavily restricted, PCBs can be found in some specific site-contaminated soils. Either removal or destruction is required prior to disposal. The subcritical water extraction (SCWE) of organic hazardous compounds from contaminated soils is a promising technique for hazardous waste contaminated-site cleanup. In this study, the removal of PCBs by the SCWE process was investigated. The effects of temperature and treatment time on removal efficiency have been determined. In the SCWE experiments, a removal percentage of 99.7% was obtained after 1h of treatment at 250°C. The mass removal efficiency of low-chlorinated species was higher than high-chlorinated congeners at lower temperatures, but it was oppositely observed at higher temperatures because the lower chlorinated congeners are formed by dechlorination of higher chlorinated congeners. Gas chromatography/mass spectrometry analysis confirmed that the PCBs underwent partial degradation. Several degradation products including mono- and di-chlorinated biphenyls, oxygen-containing aromatic compounds, and small-size hydrocarbons were identified in the effluent water, which were not initially present in the contaminated soil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Toxicological benchmarks for screening potential contaminants of concern for effects on soil and litter invertebrates and heterotrophic process

    International Nuclear Information System (INIS)

    Will, M.E.; Suter, G.W. II.

    1994-09-01

    One of the initial stages in ecological risk assessments for hazardous waste sites is the screening of contaminants to determine which of them are worthy of further consideration as open-quotes contaminants of potential concern.close quotes This process is termed open-quotes contaminant screening.close quotes It is performed by comparing measured ambient concentrations of chemicals to benchmark concentrations. Currently, no standard benchmark concentrations exist for assessing contaminants in soil with respect to their toxicity to soil- and litter-dwelling invertebrates, including earthworms, other micro- and macroinvertebrates, or heterotrophic bacteria and fungi. This report presents a standard method for deriving benchmarks for this purpose, sets of data concerning effects of chemicals in soil on invertebrates and soil microbial processes, and benchmarks for chemicals potentially associated with United States Department of Energy sites. In addition, literature describing the experiments from which data were drawn for benchmark derivation. Chemicals that are found in soil at concentrations exceeding both the benchmarks and the background concentration for the soil type should be considered contaminants of potential concern

  10. Toxicological benchmarks for screening potential contaminants of concern for effects on soil and litter invertebrates and heterotrophic process

    Energy Technology Data Exchange (ETDEWEB)

    Will, M.E.; Suter, G.W. II

    1994-09-01

    One of the initial stages in ecological risk assessments for hazardous waste sites is the screening of contaminants to determine which of them are worthy of further consideration as {open_quotes}contaminants of potential concern.{close_quotes} This process is termed {open_quotes}contaminant screening.{close_quotes} It is performed by comparing measured ambient concentrations of chemicals to benchmark concentrations. Currently, no standard benchmark concentrations exist for assessing contaminants in soil with respect to their toxicity to soil- and litter-dwelling invertebrates, including earthworms, other micro- and macroinvertebrates, or heterotrophic bacteria and fungi. This report presents a standard method for deriving benchmarks for this purpose, sets of data concerning effects of chemicals in soil on invertebrates and soil microbial processes, and benchmarks for chemicals potentially associated with United States Department of Energy sites. In addition, literature describing the experiments from which data were drawn for benchmark derivation. Chemicals that are found in soil at concentrations exceeding both the benchmarks and the background concentration for the soil type should be considered contaminants of potential concern.

  11. Evaluation of soil erosion risk using Analytic Network Process and GIS: a case study from Spanish mountain olive plantations.

    Science.gov (United States)

    Nekhay, Olexandr; Arriaza, Manuel; Boerboom, Luc

    2009-07-01

    The study presents an approach that combined objective information such as sampling or experimental data with subjective information such as expert opinions. This combined approach was based on the Analytic Network Process method. It was applied to evaluate soil erosion risk and overcomes one of the drawbacks of USLE/RUSLE soil erosion models, namely that they do not consider interactions among soil erosion factors. Another advantage of this method is that it can be used if there are insufficient experimental data. The lack of experimental data can be compensated for through the use of expert evaluations. As an example of the proposed approach, the risk of soil erosion was evaluated in olive groves in Southern Spain, showing the potential of the ANP method for modelling a complex physical process like soil erosion.

  12. [Fractal features of soil particle size in the process of desertification in desert grassland of Ningxia, China].

    Science.gov (United States)

    Yan, Xin; An, Hui

    2017-10-01

    The variation of soil properties, the fractal dimension of soil particle size, and the relationships between fractal dimension of soil particle size and soil properties in the process of desertification in desert grassland of Ningxia were discussed. The results showed that the fractal dimension (D) at different desertification stages in desert grassland varied greatly, the value of D was between 1.69 and 2.62. Except for the 10-20 cm soil layer, the value of D gradually declined with increa sing desertification of desert grassland at 0-30 cm soil layer. In the process of desertification in de-sert grassland, the grassland had the highest values of D , the volume percentage of clay and silt, and the lowest values of the volume percentage of very fine sand and fine sand. However, the mobile dunes had the lowest value of D , the volume percentage of clay and silt, and the highest value of the volume percentage of very fine sand and fine sand. There was a significant positive correlation between the soil fractal dimension value and the volume percentage of soil particles 50 μm. The grain size of 50 μm was the critical value for deciding the relationship between the soil particle fractal dimension and the volume percentage. Soil organic matter (SOM) and total nitrogen (TN) decreased gradually with increasing desertification of desert grassland, but soil bulk density increased gradually. Qualitative change from fixed dunes to semi fixed dunes with the rapid decrease of the volume percentage of clay and silt, SOM, TN and the rapid increase of volume percentage of very fine sand and fine sand, soil bulk density. Fractal dimension was significantly correlated to SOM, TN and soil bulk density. Fractal dimension 2.58 was a critical value of fixed dunes and semi fixed dunes. So, the fractal dimension of 2.58 could be taken as the desertification indicator of desert grassland.

  13. Invasive soil organisms and their effects on belowground processes

    Science.gov (United States)

    Erik Lilleskov; Jr. Mac A. Callaham; Richard Pouyat; Jane E. Smith; Michael Castellano; Grizelle Gonzalez; D. Jean Lodge; Rachel Arango; Frederick. Green

    2010-01-01

    Invasive species have a wide range of effects on soils and their inhabitants. By altering soils, through their direct effects on native soil organisms (including plants), and by their interaction with the aboveground environment, invasive soil organisms can have dramatic effects on the environment, the economy and human health. The most widely recognized effects...

  14. Simultaneous application of chemical oxidation and extraction processes is effective at remediating soil Co-contaminated with petroleum and heavy metals.

    Science.gov (United States)

    Yoo, Jong-Chan; Lee, Chadol; Lee, Jeung-Sun; Baek, Kitae

    2017-01-15

    Chemical extraction and oxidation processes to clean up heavy metals and hydrocarbon from soil have a higher remediation efficiency and take less time than other remediation processes. In batch extraction/oxidation process, 3% hydrogen peroxide (H 2 O 2 ) and 0.1 M ethylenediaminetetraacetic acid (EDTA) could remove approximately 70% of the petroleum and 60% of the Cu and Pb in the soil, respectively. In particular, petroleum was effectively oxidized by H 2 O 2 without addition of any catalysts through dissolution of Fe oxides in natural soils. Furthermore, heavy metals bound to Fe-Mn oxyhydroxides could be extracted by metal-EDTA as well as Fe-EDTA complexation due to the high affinity of EDTA for metals. However, the strong binding of Fe-EDTA inhibited the oxidation of petroleum in the extraction-oxidation sequential process because Fe was removed during the extraction process with EDTA. The oxidation-extraction sequential process did not significantly enhance the extraction of heavy metals from soil, because a small portion of heavy metals remained bound to organic matter. Overall, simultaneous application of oxidation and extraction processes resulted in highly efficient removal of both contaminants; this approach can be used to remove co-contaminants from soil in a short amount of time at a reasonable cost. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Site-specific analysis of radiological and physical parameters for cobbly soils at the Gunnison, Colorado, processing site

    International Nuclear Information System (INIS)

    1993-10-01

    The remedial action at the Gunnison, Colorado, processing site is being performed under the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 [Public Law (PL) 95-6041]. Under UMTRCA, the US Environmental Protection Agency (EPA) is charged with the responsibility of developing appropriate and applicable standards for the cleanup of radiologically contaminated land and buildings at 24 designated sites, including the Gunnison, Colorado, inactive processing site. The remedial action at the processing site will be conducted to remove the tailings and contaminated materials to meet the EPA bulk soil cleanup standards for surface and subsurface soils. The site areas disturbed by remedial action excavation will be either contoured or backfilled with radiologically uncontaminated soil and contoured to restore the site. The final contours will produce a final surface grade that will create positive drainage from the site

  16. Low-level gamma spectrometry of forest and moor soils from exposed mountain regions in Saxony (Erzgebirge)

    Energy Technology Data Exchange (ETDEWEB)

    Schleich, N [Technische Univ. Bergakademie Freiberg (Germany). Inst. of Applied Physics; Preusse, W [Technische Univ. Bergakademie Freiberg (Germany). Inst. of Applied Physics; Degering, D [Technische Univ. Bergakademie Freiberg (Germany). Inst. of Applied Physics; Unterricker, S [Technische Univ. Bergakademie Freiberg (Germany). Inst. of Applied Physics

    1997-03-01

    In soils with distinct organic and mineral horizons, radionuclides (RN) can be used to understand geochemical migration processes. In the study presented here high sensitivity HPGe-detectors with active and passive shielding were employed to determine the low activity levels of various natural, cosmogenic and artificial RN. Soils of a spruce forest and a moor from exposed mountain regions in Saxony (Erzgebirge) were investigated as they provide a good example of layered soil systems with vertical transfer of chemical elements. Different soil horizons were sub-sampled as thin slices and analysed to examine the migration processes at sub-horizon level. The depth distributions of chemically different RN were studied considering the geochemical and pedological soil characteristics of the profiles. (orig.)

  17. A study on implementation plan of decontamination and decommissioning R and D and evaluation of KAERI soil decontamination process

    International Nuclear Information System (INIS)

    Oh, Won Zin; Lee, K. W.; Won, H. J.; Jung, C. H.; Choi, W. K.; Kim, G. N.

    2001-08-01

    A. Decontamination Technology Development of Uranium Conversion Facility. Understanding of uranium conversion facility and related decontamination technologies, and analysis of current status of decontamination technologies. Establishment of the objective and research items of the middle and long term R and D project. Discussion of the erformance plan and about the methodology for connection with the project of environmental restoration of uranium conversion facility B. Treatment Technology Development of Uranium Sludge Analysis of the domestic and overseas research development status. Suggestion of treatment methodology of uranium slurry and cooperative R and D among industries, universities and research institute. Establishment of the objective and research items of the middle and long term R and D project. Discussion about the performance plan and about the methodology for connection with the project of environmental restoration of uranium conversion facility C. Decommissioning Technology Development Analysis of the domestic and overseas research development status and the overview of decommissioning technologies. Establishment of the objective and research items of the middle and long term R and D project. Discussion about the performance plan and about the methodology for connection with the project of TRIGA decommissioning D. Evaluation of KAERI Soil Decontamination Technology. Evaluation of soil decontamination process and the liquid decontamination waste treatment technology. Performance of soil decontamination test using solvent flushing test equipment for evaluation of residual radioactivity after decontami- nation and modeling of the results

  18. A study on implementation plan of decontamination and decommissioning R and D and evaluation of KAERI soil decontamination process

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Lee, K. W.; Won, H. J.; Jung, C. H.; Choi, W. K.; Kim, G. N

    2001-08-01

    A. Decontamination Technology Development of Uranium Conversion Facility. Understanding of uranium conversion facility and related decontamination technologies, and analysis of current status of decontamination technologies. Establishment of the objective and research items of the middle and long term R and D project. Discussion of the erformance plan and about the methodology for connection with the project of environmental restoration of uranium conversion facility B. Treatment Technology Development of Uranium Sludge Analysis of the domestic and overseas research development status. Suggestion of treatment methodology of uranium slurry and cooperative R and D among industries, universities and research institute. Establishment of the objective and research items of the middle and long term R and D project. Discussion about the performance plan and about the methodology for connection with the project of environmental restoration of uranium conversion facility C. Decommissioning Technology Development Analysis of the domestic and overseas research development status and the overview of decommissioning technologies. Establishment of the objective and research items of the middle and long term R and D project. Discussion about the performance plan and about the methodology for connection with the project of TRIGA decommissioning D. Evaluation of KAERI Soil Decontamination Technology. Evaluation of soil decontamination process and the liquid decontamination waste treatment technology. Performance of soil decontamination test using solvent flushing test equipment for evaluation of residual radioactivity after decontami- nation and modeling of the results.

  19. Carbonate heap leach of uranium-contaminated soils

    International Nuclear Information System (INIS)

    Turney, W.R.; Mason, C.F.V.; Longmire, P.

    1994-01-01

    A new approach to removal of uranium from soils based on existing heap leach mining technologies proved highly effective for remediation of soils from the Fernald Environmental Management Project (FEMP) near Cincinnati, Ohio. In laboratory tests, remediation of uranium-contaminated soils by heap leaching with carbonate salt solutions was demonstrated in column experiments. An understanding of the chemical processes that occur during carbonate leach of uranium from soils may lead to enhancement of uranium removal. Carbonate leaching requires the use of an integrated and closed circuit process, wherein the leach solutions are recycled and the reagents are reused, resulting in a minimum secondary waste stream. Carbonate salt leach solution has two important roles. Primarily, the formation of highly soluble anionic carbonate uranyl species, including uranyl dicarbonate (UO 2 CO 32 = ) and uranyl tricarbonate (UO 2 CO 33 4- ), allows for high concentration of uranium in a leachate solution. Secondly, carbonate salts are nearly selective for dissolution of uranium from uranium contaminated soils. Other advantages of the carbonate leaching process include (1) the high solubility, (2) the selectivity, (3) the purity of the solution produced, (4) the relative ease with which a uranium product can be precipitated directly from the leachate solution, and (5) the relatively non-corrosive and safe handling characteristics of carbonate solutions. Experiments conducted in the laboratory have demonstrated the effectiveness of carbonate leach. Efficiencies of uranium removal from the soils have been as high as 92 percent. Higher molar strength carbonate solutions (∼0.5M) proved more effective than lower molar strength solutions (∼ 0.1M). Uranium removal is also a function of lixiviant loading rate. Furthermore, agglomeration of the soils with cement resulted in less effective uranium removal

  20. [CO2 response process and its simulation of Prunus sibirica photosynthesis under different soil moisture conditions].

    Science.gov (United States)

    Wu, Qin; Zhang, Guang-Can; Pei, Bin; Xu, Zhi-Qiang; Zhao, Yu; Fang, Li-Dong

    2013-06-01

    Taking the two-year old potted Prunus sibirica seedlings as test materials, and using CIRAS-2 photosynthetic system, this paper studied the CO2 response process of P. sibirica photosynthesis in semi-arid loess hilly region under eight soil moisture conditions. The CO2 response data of P. sibirica were fitted and analyzed by rectangular hyperbola model, exponential equation, and modified rectangular hyperbola model. Meanwhile, the quantitative relationships between the photosynthesis and the soil moisture were discussed. The results showed that the CO2 response process of P. sibirica photosynthesis had obvious response characteristics to the soil moisture threshold. The relative soil water content (RWC) required to maintain the higher photosynthetic rate (P(n)) and carboxylation efficiency (CE) of P. sibirica was in the range of 46.3%-81.9%. In this RWC range, the photosynthesis did not appear obvious CO2 saturated inhibition phenomenon. When the RWC exceeded this range, the photosynthetic capacity (P(n max)), CE, and CO2 saturation point (CSP) decreased evidently. Under different soil moisture conditions, there existed obvious differences among the three models in simulating the CO2 response data of P. sibirica. When the RWC was in the range of 46.3%-81.9%, the CO2 response process and the characteristic parameters such as CE, CO2 compensation point (see symbol), and photorespiration rate (R(p)) could be well fitted by the three models, and the accuracy was in the order of modified rectangular hyperbola model > exponential equation > rectangular hyperbola model. When the RWC was too high or too low, namely, the RWC was > 81.9% or CO2 response process and the characteristic parameters. It was suggested that when the RWC was from 46.3% to 81.9%, the photosynthetic efficiency of P. sibirica was higher, and, as compared with rectangular hyperbola model and exponential equation, modified rectangular hyperbola model had more applicability to fit the CO2 response data of